Many optical communication systems manipulate light waves to carry information. For instance, often a light source (e.g., a laser source) is modulated to change various properties of emitted light, such as an amplitude, phase, or frequency of the light to convey information. An optical receiver may receive and demodulate the light waves to recover the information. For free space optical communications, when communicating with a moving object such as an aircraft or a satellite, the optical receiver may need to spatially track the incoming signal to maintain the communications link.
Aspects and embodiments are directed to optical receivers using an optical resonator assembly for signal demodulation, and to methods and apparatus for tracking a moving signal source transmitting a phase modulated optical signal.
According to one embodiment an optical receiver comprises an optical resonator assembly including at least one optical resonator and a steering mechanism coupled to the at least one optical resonator, the at least one optical resonator being configured to receive a phase modulated input optical signal, to accumulate optical signal energy inside the at least one optical resonator based at least in part on the phase modulated input optical signal, and to produce an intensity modulated output optical signal, an intensity modulation of the output optical signal being representative of the phase modulation of the input optical signal, the at least one optical resonator being tuned to exhibit a symmetric phase change condition in the output optical signal at normal incidence of the phase modulated input optical signal on a surface of the at least one optical resonator. The optical receiver further comprises an optical-electrical converter configured to detect the intensity modulated output optical signal and to convert the intensity modulated output optical signal into an electrical signal, and signal processing and control circuitry coupled to the optical resonator assembly and to the optical-electrical converter, the signal processing and control circuitry being configured to receive the electrical signal, to perform symmetric phase change measurements based on the electrical signal, and to provide a control signal based on the symmetric phase change measurements to actuate the steering mechanism to steer the at least one optical resonator to maintain normal incidence of the phase modulated input optical signal on the surface of at least one optical resonator.
In one example, the at least one optical resonator is a Fabry-Perot etalon.
In another example, the at least one optical resonator includes a first semi-reflective surface positioned to receive the phase modulated input optical signal, and a second semi-reflective surface positioned facing the first semi-reflective surface, wherein the at least one optical resonator is configured to accumulate the optical signal energy inside the at least one optical resonator and between the first semi-reflective surface and the second semi-reflective surface to approach a steady-state output value of the output optical signal, the intensity modulation of the output optical signal including a series of deviations from the steady-state output value.
In one example, in performing the symmetric phase change measurements, the signal processing and control circuitry is configured to compare a first amplitude of the intensity modulated output optical signal in response to a positive phase rotation in the phase modulated input optical signal to a second amplitude of the intensity modulated output optical signal in response to a negative phase rotation of a same magnitude in the phase modulated input optical signal. In one example, the signal processing and control circuitry includes a Kalman filter configured to filter the symmetric phase change measurements. In another example, the signal processing and control circuitry includes a position estimator configured to, based on the symmetric phase change measurements, to produce an estimate of an orientation, in x, y, and z coordinates, of the at least one optical resonator to maintain normal incidence of the phase modulated input optical signal on the surface of at least one optical resonator, the control signal being based on the estimate of the orientation. In another example, the signal processing and control circuitry is further configured to compute directional cosine vectors in a direction of a source of the phase modulated input optical signal based on the orientation of the at least one optical resonator.
In one example, the steering mechanism is a piezoelectric device.
According to another embodiment, a method of tracking a moving transmitter using an optical receiver comprises receiving a phase modulated input optical signal from the transmitter at an optical resonator included in the optical receiver, emitting an intensity modulated output optical signal from the optical resonator, an intensity modulation of the intensity modulated output optical signal being representative of a phase modulation of the phase modulated input optical signal, measuring a response of the optical resonator to positive and negative phase rotations of equal magnitude in the phase modulated input optical signal, and based on the measured response, steering an orientation the optical resonator to maintain normal incidence of the phase modulated input optical signal on a surface of the optical resonator.
In one example, measuring the response of the optical resonator includes measuring an amplitude of the intensity modulated output optical signal in response to +Pi and −Pi phase rotations in the phase modulated input optical signal.
The method may further comprise filtering measurements of the response of the optical resonator using a Kalman filter to produce filtered measurements. In one example, the method further comprises, based on the filtered measurements, computing an estimate of the orientation of the optical resonator needed to maintain the normal incidence of the phase modulated input optical signal, and wherein steering the orientation of the optical resonator is based on the estimate. In another example, steering the orientation of the optical resonator includes actuating a piezoelectric steering mechanism coupled to the optical resonator.
The method may further comprise based on the orientation of the optical resonator, computing directional cosine vectors in a direction of the transmitter, and determining a bearing to the transmitter from the optical receiver based on the directional cosine vectors. In one example, the phase modulated input optical signal includes a time-dependent coding signal, and the method further comprises estimating a distance between the optical receiver and the transmitter based on the time-dependent coding signal. The method may further comprise estimating a location of the transmitter based on the directional cosine vectors and the estimated distance between the optical receiver and the transmitter. In another example, the method further comprises determining a Doppler shift of the phase modulated input optical signal received at the optical resonator based on a frequency of the phase modulated input optical signal, the orientation of the optical resonator, and a thickness of the optical resonator. In another example, the method further comprises determining an instantaneous velocity of the transmitter based on the Doppler shift.
Still other aspects, embodiments, and advantages of these exemplary aspects and embodiments are discussed in detail below. Embodiments disclosed herein may be combined with other embodiments in any manner consistent with at least one of the principles disclosed herein, and references to “an embodiment,” “some embodiments,” “an alternate embodiment,” “various embodiments,” “one embodiment” or the like are not necessarily mutually exclusive and are intended to indicate that a particular feature, structure, or characteristic described may be included in at least one embodiment. The appearances of such terms herein are not necessarily all referring to the same embodiment. Various aspects and embodiments described herein may include means for performing any of the described methods or functions.
Various aspects of at least one embodiment are discussed below with reference to the accompanying figures, which are not intended to be drawn to scale. The figures are included to provide illustration and a further understanding of the various aspects and embodiments, and are incorporated in and constitute a part of this specification, but are not intended as a definition of the limits of the disclosure. In the figures, each identical or nearly identical component that is illustrated in various figures is represented by a like numeral. For purposes of clarity, not every component may be labeled in every figure. In the figures:
Certain optical signal receivers include an optical resonator assembly, such as a Fabry-Perot resonator assembly or other bulk free-space optical cavity/resonator generally referred to herein as an “etalon,” that is used to demodulate arriving optical signals. In certain examples, the optical resonator assembly converts a received phase, amplitude, or frequency modulated optical signal into a directly detectable intensity modulated output signal, as discussed further below. The arriving optical signals may be phase modulated, amplitude modulated, or frequency modulated, or may be modulated using a combination of these techniques (e.g., QAM methods). For phase modulated optical signals, an etalon can be configured to distinguish the direction of a phase change as well as the magnitude of the phase change. For example, the etalon can be configured to distinguish between a +Pi phase change and a −Pi phase change in the arriving phase modulated optical signal. Further, the optical resonator assembly may be sensitive to the angle of arrival of the incoming optical signal, and its output response signal may change as a function of that angle. According to certain aspects, it has been discovered that the depth of the signal following a phase change varies with the angle of arrival of the incoming signal. These phenomena are discussed further below with reference to
As discussed above, when communicating with a moving object such as an aircraft or a satellite, the optical receiver may need to spatially track the incoming signal to maintain the communications link. Accordingly, aspects and examples described herein leverage the angular sensitivity of the etalon and its ability to distinguish positive and negative phase rotations in the arriving phase modulated optical signal and to determine that the arriving signal is normal to the etalon surface based on the output response to +pi and −pi phase changes having the same magnitude to provide a method by which to track a moving source of the arriving optical signal.
It is to be appreciated that embodiments of the methods and apparatuses discussed herein are not limited in application to the details of construction and the arrangement of components set forth in the following description or illustrated in the accompanying drawings. The methods and apparatuses are capable of implementation in other embodiments and of being practiced or of being carried out in various ways. Examples of specific implementations are provided herein for illustrative purposes only and are not intended to be limiting.
Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use herein of “including,” “comprising,” “having,” “containing,” “involving,” and variations thereof is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. References to “or” may be construed as inclusive so that any terms described using “or” may indicate any of a single, more than one, and all of the described terms. Any references to front and back, left and right, top and bottom, upper and lower, and vertical and horizontal are intended for convenience of description, not to limit the present systems and methods or their components to any one positional or spatial orientation. The terms light, light signal, and optical signal may be used interchangeably herein and refer generally to an electromagnetic signal that propagates through a given medium, which may be empty space, e.g., a vacuum, or may be an atmospheric, e.g., air, or other medium, such as fiber or other optics components. The terms “light,” “light signal,” and “optical signal” are not meant to imply any particular characteristic of the light, such as frequency or wavelength, band, coherency, spectral density, quality factor, etc., and may include radio waves, microwaves, infrared, visible, and/or ultraviolet electromagnetic radiation, or other non-ionizing electromagnetic radiation conventionally processed in the field of optics.
Operation of an optical resonator as a phase change detector is discussed below using the example of an etalon; however, those skilled in the art will appreciate that other types of optical resonators can be operated according to similar principles.
Referring to
The optical signal 110 received by the etalon 200 establishes a steady-state condition in which optical signal energy continuously arrives at the etalon 200, adds to the built-up resonating energy existing inside the etalon 200, and emerges from the etalon 200 at a constant rate. If the frequency, amplitude, or phase of the arriving optical signal 110 changes, this change causes a temporary disruption to the resonance inside the etalon 200 and the light intensity emerging from the etalon 200 is also disrupted, until a steady state condition is re-established. Accordingly, a change in phase, frequency, or amplitude of the arriving optical signal 110 causes a change in intensity of the output optical signal 112. Thus, the etalon functions as a modulation converter, for the optical signal 110. The output optical signal 112 may therefore carry the same information content as the arriving optical signal 110, but in an intensity modulated form, rather than a phase modulated form, for example.
The etalon 200 may have varying levels of reflectivity of the semi-reflective surfaces 212, 214. In certain examples, the reflectivity may be expressed as a fraction of light amplitude reflected back into the interior 216 or may be expressed as a fraction of light intensity reflected back into the interior 216. The reflectivity of each of the first and second semi-reflective surfaces 212, 214 may be the same or different, and may be any suitable value for a particular implementation. The etalon 200 is one example of a suitable optical resonator in accord with aspects and embodiments described herein. However, the use of the term “etalon” throughout this disclosure is not intended to be limiting and as used herein may include any of multiple structures, including plates with reflecting surfaces as well as parallel mirrors with various materials in between, and may also be referred to as cavities, interferometers, and the like. Additionally, etalon structures may be formed as a laminate, layer, film, coating, or the like. In some examples, an etalon may include reflective surfaces (including semi-reflective surfaces) that are not co-planar and/or are not co-linear. For example, an interior reflective surface of an etalon may include some curvature, and an opposing surface may also be curved such that a distance between the two surfaces is substantially constant across various regions of the etalon, in some examples. In other examples, an etalon may have non-linear or non-planar surfaces with varying distances between the surfaces at various regions, and may still function as an optical resonator for various wavelengths and at various regions, suitable for use in examples discussed herein. Accordingly, an etalon may be purposefully designed to conform to a surface, or to have various regions responsive to differing wavelengths, or responsive to differing angles of arrival for a given wavelength, in certain examples. In the example shown in
As discussed above, the optical resonator assembly 120 may include one or more etalons 200, or other types of optical resonators that operate similarly to convert the modulation of the arriving optical signal 110 into the intensity-modulated output optical signal 112 which may then be detected and processed to recover the information encoded in the original optical signal 110. The etalon(s) 200 may also be used to track the transmitter 300 as it or the optical receiver 100 moves. According to certain aspects, tracking the moving transmitter 300 can be accomplished by maintaining the incoming optical signal 110 normal to and centered on the surface 212 of the etalon 200. The output response 112 of the etalon 200 is sensitive to, and varies with, the angle of incidence of the arriving optical signal 110. In particular, the response of the etalon 200 to a given phase change in the input optical signal 110 is different depending on whether the input optical signal 110 arrives at normal incidence or some angle relative to normal. Therefore, by monitoring the output optical signal 112 (or its electrical counterpart 114), and adjusting the position of the etalon 200, normal incidence can be maintained, thereby ensuring that the etalon 200, and thus the optical receiver 100, track and maintain alignment with the transmitter 300.
According to certain embodiments, the etalon 200 can be configured such that the difference between +Pi and −Pi phase changes in the input optical signal 110 can be identified. The intensity profile of the output optical signal 112 from the etalon 200 varies with the angle of incidence of the arriving optical signal 110 and with the magnitude and direction of the phase change in the arriving optical signal 110. These phenomena are illustrated in
Referring to
According to certain embodiments, the etalon 200 is set up and tuned to an operating point where the etalon 200 produces the output optical signal 112 exhibiting the symmetric phase change condition at normal incidence of the arriving optical signal 110. This can be achieved by selecting (or tuning) the dimension 216 of the etalon 200 based on a known wavelength/frequency of the input optical signal 110. Examples of tuning the optical path length of the etalon 200 to a particular operating point and the relationship between the optical thickness of the etalon and its operating point (resonance condition or detuning from resonance) are discussed, for example, in U.S. Provisional Application No. 62/835,672 titled “METHODS AND APPARATUS FOR MAINTAINING RECEIVER OPERATING POINT WITH CHANGING ANGLE-OF-ARRIVAL OF A RECEIVED SIGNAL,” which is herein incorporated by reference in its entirety for all purposes. Once the etalon 200 is tuned for the desired response given particular conditions, deviations from that response can indicate a change in the conditions. For example, due to the angular sensitivity of the etalon 200, a change in the intensity profile of the output optical signal 112 can indicate a change in the angle of arrival of the input optical signal 110. The etalon 200 may be adjusted, e.g., rotated, to maintain normal incidence, for example.
Thus, according to certain embodiments, the etalon 200 can be used to track the incoming optical signal 110, and thereby track the location of the transmitter 300 as it moves. In certain examples, the etalon 200 is configured to exhibit symmetric phase change in the output optical signal 112 at normal incidence of the input optical signal 110. Thus, by adjusting the etalon 200 such that the difference between a +Pi and a −Pi phase change is maximized, it can be ensured that the input optical signal is arriving normal to the surface 212 of the etalon 200. The orientation of the etalon 200 in turn allows the directional cosine vectors, in the direction of the tracked transmitter 300 to be determined. This provides a bearing to the tracked transmitter 300. In certain examples, timing information can be embedded in the input optical signal 110, such that the range, bearing, position, velocity, and acceleration of the transmitter 300 can all be estimated.
Referring again to
The above process can be used to track the moving transmitter 300, or to maintain alignment between the transmitter 300 and the optical receiver 100 if the receiver is moving. In another example, the technique discussed above may also be used to estimate the location in space of a satellite or other moving transmitter 300. Direction cosine vectors can be computed from the position estimate vector output by the position estimator 430. By embedding a time-dependent coding signal, such as a direct sequence spread spectrum signal, in the optical transmission 110 from the transmitter 300, an estimate can be made of the distance between the optical receiver 100 and the transmitter 300. Knowing both the distance and the directional cosines, an estimate can be made of the location of the transmitter 300 and/or the optical receiver 100. In addition, if the transmission frequency, F0, is known and stable, the Doppler shift can be computed. Given known dimensions of the etalon 200 and known orientation of the etalon, the internal path length travelled by the incoming optical signal 110 can be computed to determine the Doppler shifted frequency. The difference between F0 and the resonant frequency of the etalon 20 is the Doppler shift frequency, from which the instantaneous velocity can be determined.
Thus, aspects and embodiments provide a method for tracking moving objects using an optical communications link. The symmetric phase change condition in the optical output signal from an etalon or other optical cavity resonator can be used to optimally orient the etalon for reception of an incoming optical signal. Those skilled in the art will appreciate, given the benefit of this disclosure, that while in examples discussed above the etalon 200 is tuned to exhibit the symmetric phase change condition for normal incidence of the arriving optical signal 110, another angle of incidence may be chosen. Further, a variety of different operating points of the etalon 200 may be selected, provided that a difference between positive and negative phase rotations can be reliably determined and used to produce a control signal to adjust the orientation of the etalon 200. As discussed above, orientation of the etalon 200 can be dynamically adjusted using a piezoelectric or other steering mechanism 150 controlled using symmetric phase change measurements. In certain examples, direction cosines of the vector normal (vector between the etalon 200 and the tracked object) can be determined from the orientation of the etalon 200, and these direction cosines can be used to determine a bearing to the object. Thus, the above-discussed technique can provide a method for determining the bearing to a moving object. In addition, as discussed above, if the arriving optical signal 110 contains timing information, then the position, velocity and acceleration of the transmitting object being tracked can be determined using both the directional cosine vectors and the timing information. The techniques may be applied to input optical signals 110 having all phase modulation schemes.
Having described above several aspects of at least one embodiment, it is to be appreciated various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to be part of this disclosure and are intended to be within the scope of the invention. Accordingly, the foregoing description and drawings are by way of example only, and the scope of the invention should be determined from proper construction of the appended claims, and their equivalents.
This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application Ser. No. 62/864,090, titled “METHODS AND APPARATUS FOR TRACKING MOVING OBJECTS USING SYMMETRIC PHASE CHANGE DETECTION,” filed on Jun. 20, 2019, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4172663 | Byer et al. | Oct 1979 | A |
4417964 | Wolfrum et al. | Nov 1983 | A |
4980892 | Cunningham et al. | Dec 1990 | A |
5777768 | Korevaar | Jul 1998 | A |
5896005 | Gurvitch et al. | Apr 1999 | A |
5912748 | Wu et al. | Jun 1999 | A |
6466707 | Dawes et al. | Oct 2002 | B1 |
6816315 | Ai et al. | Nov 2004 | B1 |
6868237 | Willebrand et al. | Mar 2005 | B2 |
6882764 | Deng et al. | Apr 2005 | B1 |
7039278 | Huang et al. | May 2006 | B1 |
7158281 | Chen et al. | Jan 2007 | B2 |
7361884 | Tanaka et al. | Apr 2008 | B2 |
7711441 | Tillotson | May 2010 | B2 |
7907648 | Matsui et al. | Mar 2011 | B2 |
8427649 | Hays et al. | Apr 2013 | B2 |
8929408 | Diels et al. | Jan 2015 | B1 |
9018575 | Kowalevicz et al. | Apr 2015 | B2 |
9091853 | Longeaud | Jul 2015 | B2 |
9165963 | Kowalevicz et al. | Oct 2015 | B2 |
9171219 | Kowalevicz | Oct 2015 | B2 |
9323034 | Dolgin | Apr 2016 | B2 |
9400414 | Kowalevicz | Jul 2016 | B2 |
9451185 | Dolgin et al. | Sep 2016 | B2 |
9503660 | Kowalevicz et al. | Nov 2016 | B2 |
9535245 | Kowalevicz | Jan 2017 | B1 |
9538096 | Dolgin | Jan 2017 | B2 |
9887779 | Kowalevicz | Feb 2018 | B2 |
9973281 | Kowalevicz et al. | May 2018 | B2 |
9989700 | Ayliffe et al. | Jun 2018 | B1 |
10164765 | Dolgin et al. | Dec 2018 | B2 |
10177856 | Kowalevicz et al. | Jan 2019 | B2 |
10205526 | Kowalevicz | Feb 2019 | B2 |
10225020 | Dolgin et al. | Mar 2019 | B2 |
10243670 | Kowalevicz et al. | Mar 2019 | B2 |
10243673 | Dolgin et al. | Mar 2019 | B2 |
10250292 | Graceffo et al. | Apr 2019 | B2 |
10256917 | Dolgin et al. | Apr 2019 | B2 |
10305602 | Dolgin et al. | May 2019 | B2 |
10313022 | Dolgin et al. | Jun 2019 | B2 |
10340965 | Dolgin et al. | Jul 2019 | B2 |
10374743 | Dolgin et al. | Aug 2019 | B2 |
10378880 | Dolgin et al. | Aug 2019 | B2 |
10432315 | Chen et al. | Oct 2019 | B2 |
10498464 | Graceffo et al. | Dec 2019 | B2 |
10530494 | Dolgin et al. | Jan 2020 | B2 |
10554306 | Graceffo et al. | Feb 2020 | B1 |
10571774 | Graceffo et al. | Feb 2020 | B2 |
10637580 | Dolgin et al. | Apr 2020 | B2 |
10686533 | Dolgin et al. | Jun 2020 | B2 |
10714251 | Dolgin et al. | Jul 2020 | B2 |
10826603 | Kowalevicz et al. | Nov 2020 | B1 |
10924189 | Kowalevicz et al. | Feb 2021 | B2 |
11012160 | Kowalevicz et al. | May 2021 | B2 |
11101896 | Kowalevicz et al. | Aug 2021 | B2 |
11133873 | Kowalevicz et al. | Sep 2021 | B1 |
20020030439 | Gurvitch et al. | Mar 2002 | A1 |
20020122614 | Zhou et al. | Sep 2002 | A1 |
20020171908 | Copner et al. | Nov 2002 | A1 |
20040013437 | Wiltsey et al. | Jan 2004 | A1 |
20040080832 | Singh | Apr 2004 | A1 |
20040080834 | Thompson | Apr 2004 | A1 |
20050014472 | Cox et al. | Jan 2005 | A1 |
20060140548 | Shin et al. | Jun 2006 | A1 |
20060159135 | Cliche et al. | Jul 2006 | A1 |
20060182154 | Tanaka et al. | Aug 2006 | A1 |
20060262396 | Smith | Nov 2006 | A1 |
20070076282 | Kourogi et al. | Apr 2007 | A1 |
20070171504 | Fujimori | Jul 2007 | A1 |
20090210191 | Rogers | Aug 2009 | A1 |
20100135670 | Amadeo | Jun 2010 | A1 |
20100253948 | Strandjord et al. | Oct 2010 | A1 |
20110242290 | Arai | Oct 2011 | A1 |
20110273758 | Wang et al. | Nov 2011 | A1 |
20120147361 | Mochizuki et al. | Jun 2012 | A1 |
20120154542 | Katz et al. | Jun 2012 | A1 |
20130099140 | Nakarai et al. | Apr 2013 | A1 |
20130126755 | Kemnitz | May 2013 | A1 |
20130278933 | Nozawa | Oct 2013 | A1 |
20140240711 | Matsushita | Aug 2014 | A1 |
20140314406 | Zerbe et al. | Oct 2014 | A1 |
20160043794 | Ashrafi et al. | Feb 2016 | A1 |
20160047987 | Du et al. | Feb 2016 | A1 |
20160064894 | Takiguchi et al. | Mar 2016 | A1 |
20160209643 | Tsikouras et al. | Jul 2016 | A1 |
20160259185 | Osumi et al. | Sep 2016 | A1 |
20160349284 | Pradhan et al. | Dec 2016 | A1 |
20160357189 | Barrows | Dec 2016 | A1 |
20160363648 | Mindell | Dec 2016 | A1 |
20170299882 | New et al. | Oct 2017 | A1 |
20180019807 | Hreha et al. | Jan 2018 | A1 |
20180054259 | Kowalevicz et al. | Feb 2018 | A1 |
20180091227 | Dolgin et al. | Mar 2018 | A1 |
20180091228 | Kowalevicz et al. | Mar 2018 | A1 |
20180091230 | Dolgin et al. | Mar 2018 | A1 |
20180091232 | Dolgin et al. | Mar 2018 | A1 |
20180102853 | Dolgin | Apr 2018 | A1 |
20180145764 | Dolgin | May 2018 | A1 |
20180145765 | Kowalevicz et al. | May 2018 | A1 |
20180167145 | Dolgin et al. | Jun 2018 | A1 |
20180212682 | Chen et al. | Jul 2018 | A1 |
20180234231 | Dolgin et al. | Aug 2018 | A1 |
20180275050 | Iguchi et al. | Sep 2018 | A1 |
20180367223 | Graceffo et al. | Dec 2018 | A1 |
20190007091 | Graceffo et al. | Jan 2019 | A1 |
20190064629 | Abouraddy et al. | Feb 2019 | A1 |
20190158208 | Dolgin et al. | May 2019 | A1 |
20190208183 | Schmidt et al. | Jul 2019 | A1 |
20190257990 | Hunter et al. | Aug 2019 | A1 |
20190295264 | Petilli | Sep 2019 | A1 |
20190305853 | Dolgin et al. | Oct 2019 | A1 |
20190319714 | Kowalevicz et al. | Oct 2019 | A1 |
20190331941 | Coolbaugh et al. | Oct 2019 | A1 |
20200096504 | Kawata et al. | Mar 2020 | A1 |
20200136727 | Graceffo et al. | Apr 2020 | A1 |
20200278272 | Kasahara et al. | Sep 2020 | A1 |
20200371328 | Kowalevicz et al. | Nov 2020 | A1 |
20200403709 | Graceffo et al. | Dec 2020 | A1 |
20200409189 | Graceffo et al. | Dec 2020 | A1 |
20210006336 | Kowalevicz et al. | Jan 2021 | A1 |
20210021449 | Graceffo et al. | Jan 2021 | A1 |
20210021775 | Lee | Jan 2021 | A1 |
20210041515 | Dolgin | Feb 2021 | A1 |
20210099232 | Graceffo et al. | Apr 2021 | A1 |
20210099234 | Graceffo et al. | Apr 2021 | A1 |
20210105073 | Graceffo et al. | Apr 2021 | A1 |
20210126715 | Graceffo et al. | Apr 2021 | A1 |
Number | Date | Country |
---|---|---|
0426357 | May 1991 | EP |
H06265832 | Sep 1994 | JP |
8500484 | Jan 1985 | WO |
2007016537 | Feb 2007 | WO |
Entry |
---|
US 11,112,675 B1, 09/2021, Kowalevicz et al. (withdrawn) |
International Search Report and Written Opinion of International Patent Application No. PCT/US2020/028941 dated Sep. 23, 2020. |
International Search Report and Written Opinion of International Patent Application No. PCT/US2020/040751 dated Oct. 19,2020. |
Invitation to Pay Additional Fees from the International Searching Authority in International Patent Application No. PCT/US2020/042160 dated Oct. 16, 2020. |
International Search Report and Written Opinion in International Patent Application No. PCT/US2020/042160 dated Dec. 7, 2020. |
Ball, D.W., “Field Guide to Spectroscopy,” SPIE Press, Bellingham, WA (2006), https://spie.org/publications/fg08_p13_i ndex_of_refraction?SSO= 1. |
Number | Date | Country | |
---|---|---|---|
20200403709 A1 | Dec 2020 | US |
Number | Date | Country | |
---|---|---|---|
62864090 | Jun 2019 | US |