The present disclosure relates in general to wireless communication devices, and, in particular, to methods and apparatus for transmitting data between different peer-to-peer communication groups.
Most modern wireless devices include some form of peer-to-peer wireless communication. For example, a cellular phone may exchange contact information with another cellular phone via a Bluetooth connection or execute a multiplayer game with another cellular phone via a peer-to-peer Wi-Fi connection (e.g., an 802.11 Wi-Fi connection without the need for a router).
However, these peer-to-peer mechanisms do not scale efficiently to a large number of devices. Attempts to scale these peer-to-peer mechanisms results in inefficient routing of data packets, which results in data delays and increased power consumption.
Briefly, in a specific embodiment, a cellular phone or other computing device determines if it is simultaneously connected via Wi-Fi to two different peer-to-peer (P2P) Wi-Fi group owners. If so, the cellular phone instantiates a TRILL RBridge interface in the phone to facilitate communications between each, otherwise separate, peer-to-peer Wi-Fi group. The cellular phone also determines if it is simultaneously connected to at least one other peer-to-peer Wi-Fi device (e.g. another cellular phone) and a Wi-Fi router. In such an instance, the cellular phone determines if the Wi-Fi router also includes a TRILL RBridge interface. If the Wi-Fi router does not include a TRILL RBridge interface, the cellular phone instantiates/runs its local TRILL RBridge interface for communications between the other peer-to-peer Wi-Fi device and the Wi-Fi router. If the Wi-Fi router does include a TRILL RBridge interface, the cellular phone causes the TRILL RBridge interface at the Wi-Fi router to be instantiated for communications between the other peer-to-peer Wi-Fi device and the Wi-Fi router. Among other features, wireless devices are able to discover each other and dynamically form very large peer-to-peer groups in manner that consumes very little power and scales efficiently.
More generally, methods and apparatus for transmitting data between different peer-to-peer communication groups are disclosed. In an embodiment, a wireless device determines if it is simultaneously connected to a plurality of peer-to-peer communication groups and instantiates a bridge interface at the wireless device for communications between each peer-to-peer communication group. The wireless device also determines if it is simultaneously connected to at least one peer-to-peer communication device and an access point. In such an instance, the wireless device determines if the access point also includes a bridge interface. If the access point does not include a bridge interface, the wireless device instantiates/runs the bridge interface at the wireless device for communications between the at least one peer-to-peer communication device and the access point. If the access point does include a bridge interface, the wireless device causes the bridge interface at the access point to be instantiated for communications between the at least one peer-to-peer communication device and the access point.
In an embodiment, a radio frequency transceiver is operatively coupled to a controller (e.g., an 802.11 transceiver controlled by a microprocessor). The controller is structured to connect to a first peer-to-peer communication group via a first peer-to-peer group owner (e.g., connect to a first Wi-Fi peer-to-peer communication group via another wireless device acting as group owner). The controller is also structured to connect to a second different peer-to-peer communication group via a second peer-to-peer group owner (e.g., connect to a second Wi-Fi peer-to-peer communication group via yet another wireless device acting as another group owner). The controller is also structured to dynamically determine to instantiate a bridge interface to transmit data between the first peer-to-peer communication group and the second peer-to-peer communication group (e.g., run a TRILL RBrdige to connect the two separate peer-to-peer groups in to a peer-to-peer “neighborhood”). The controller is also structured to filter peer-to-peer traffic between the first peer-to-peer communication group and the second peer-to-peer communication group based on a class of traffic (e.g., limit peer-to-peer traffic to this peer-to-peer neighborhood).
In one example, a plurality of devices in the first peer-to-peer communication group and a second different plurality of devices in the second peer-to-peer communication group are each members of the same Internet Protocol (IP) subnet. In one example, the controller is structured to connect to the first peer-to-peer communication group by connecting to a Wi-Fi peer-to-peer communication group owner. In one example, the controller is structured to instantiate the bridge interface by instantiating a Transparent Interconnection of Lots of Links (TRILL) Routing Bridge (RBridge) interface.
Turning now to the figures, a block diagram of certain elements of an example peer-to-peer (P2P) neighborhood system 100 is illustrated in
A peer-to-peer group 104 may be wirelessly connected to one or more other peer-to-peer groups 104 via one or more of the wireless devices 102. In such an instance, a wireless device 102 connecting peer-to-peer groups 104 operates a bridge. For example, the connecting wireless device 102 may operate an RBridge. Wireless devices 102 operating a bridge may be peer-to-peer group owners and/or clients.
The example shown in
The group owner 102a runs an RBridge, which forms one side of a connection between group 104a and group 104b. The group owner 102c runs another RBridge, which forms the other side of the connection between group 104a and group 104b. The client 102e runs an RBridge, which forms one side of a connection between group 104b and group 104c. The group owner 102f runs another RBridge, which forms the other side of the connection between group 104b and group 104c.
Collectively, these peer-to-peer groups 104, directly and/or indirectly connected by bridges 102a, 102c, 102e, and 102f, form a network “neighborhood.” Any wireless device 102 in the neighborhood may communicate with any other wireless device 102 in the neighborhood. For example, wireless device 102b may send a message to wireless device 102g. In this example, the message travels from wireless device 102b to wireless device 102a. Wireless device 102a, acting as a group owner and a bridge, determines that the destination for the message is not in group 104a. Accordingly, wireless device 102a forwards the message to wireless device 102c. Wireless device 102c, acting as a group owner and a bridge, determines that the destination for the message is not in group 104b. Accordingly, wireless device 102c forwards the message to wireless device 102e. Wireless device 102e is not a group owner. Accordingly, wireless device 102e forwards the message to wireless device 102f. Wireless device 102f, acting as a group owner and a bridge, determines that the destination for the message is in group 104c. Accordingly, wireless device 102f forwards the message to its final destination, wireless device 102g.
A block diagram of certain elements of another example peer-to-peer (P2P) neighborhood system 100 is illustrated in
In addition, in this example, each peer-to-peer group owner 102a, 102c, and 102f has a wireless connection to an access point 202, which in turn has a direct connection to a network infrastructure 204. The network infrastructure 204 may be any suitable network infrastructure 204 such as the Internet and/or some other wired and/or wireless data network, including, but not limited to, any suitable wide area network or local area network.
As described above with reference to
In addition, each peer-to-peer group 104 may be connected to one or more other peer-to-peer groups 104 via an access point 202 and the network infrastructure 204. In such an instance, a wireless device 102 connecting the group 104 to the access point 202 may operate the bridge or the access point 202 may operate the bridge. For example, the wireless device 102 and/or the access point 202 may operate an RBridge.
Collectively, these peer-to-peer groups 104, directly and/or indirectly connected by wireless devices 102, access points 202, and/or the network infrastructure 204, form a network “neighborhood.” Any wireless device 102 in the neighborhood may communicate with any other wireless device 102 in the neighborhood. For example, wireless device 102b may send a message to wireless device 102h. In this example, the message travels from wireless device 102b to wireless device 102a. Wireless device 102a, acting as a group owner and a bridge, determines that the destination for the message is not in group 104a. Accordingly, wireless device 102a forwards the message to access point 202a. Access point 202a forwards the message to access point 202c via the network infrastructure 204. Access point 202c, acting as a bridge, determines that the destination for the message is in group 104d. Accordingly, access point 202c forwards the message to its final destination, wireless device 102h.
Each of the devices illustrated in
The memory 308 may include various types of non-transitory memory including volatile memory and/or non-volatile memory such as, but not limited to, distributed memory, read-only memory (ROM), random access memory (RAM) etc. The memory 308 typically stores a software program that interacts with the other devices in the system as described herein. This program may be executed by the processor 304 in any suitable manner. The memory 308 may also store digital data indicative of documents, files, programs, web pages, etc. retrieved from a server and/or loaded via an input device 314.
The interface circuit 312 may be implemented using any suitable interface standard, such as an Ethernet interface and/or a Universal Serial Bus (USB) interface. One or more input devices 314 may be connected to the interface circuit 312 for entering data and commands into the main unit 302. For example, the input device 314 may be a keyboard, mouse, touch screen, track pad, isopoint, camera, voice recognition system, accelerometer, global positioning system (GPS), and/or any other suitable input device.
One or more displays, printers, speakers, monitors, televisions, high definition televisions, and/or other suitable output devices 316 may also be connected to the main unit 302 via the interface circuit 312. The display 316 may be a cathode ray tube (CRTs), liquid crystal displays (LCDs), electronic ink (e-ink), and/or any other suitable type of display. The display 316 generates visual displays of data generated during operation of the device 300. For example, the display 316 may be used to display web pages and/or other content received from a server 106 and other device. The visual displays may include prompts for human input, run time statistics, calculated values, data, etc.
One or more storage devices 318 may also be connected to the main unit 302 via the interface circuit 312. For example, a hard drive, CD drive, DVD drive, and/or other storage devices may be connected to the main unit 302. The storage devices 318 may store any type of data used by the device 300.
The electrical device 300 may also exchange data with other network devices 322 via a connection to a network 110. The network connection may be any type of network connection, such as an Ethernet connection, digital subscriber line (DSL), telephone line, coaxial cable, wireless base station 330, etc. Users 114 of the system 100 may be required to register with a server 106. In such an instance, each user 114 may choose a user identifier (e.g., e-mail address) and a password which may be required for the activation of services. The user identifier and password may be passed across the network 110 using encryption built into the user's browser. Alternatively, the user identifier and/or password may be assigned by the server 106.
In some embodiments, the device 300 may be a wireless device 300. In such an instance, the device 300 may include one or more antennas 324 connected to one or more radio frequency (RF) transceivers 326. The transceiver 326 may include one or more receivers and one or more transmitters operating on the same and/or different frequencies. For example, the device 300 may include a blue tooth transceiver 316, a Wi-Fi transceiver 316, and diversity cellular transceivers 316. The transceiver 326 allows the device 300 to exchange signals, such as voice, video and data, with other wireless devices 328, such as a phone, camera, monitor, television, and/or high definition television. For example, the device 300 may send and receive wireless telephone signals, text messages, audio signals and/or video signals directly and/or via a base station 330. A receive signal strength indicator (RSSI) associated with each receiver generates an indication of the relative strength or weakness of each signal being received by the device 300.
A block diagram of certain elements of an example electronic device 400 for determining if a device will run a bridge is illustrated in
The example electronic device 400 includes simultaneous P2P connections detector 402 operatively coupled to a first bridge interface 404. In an example, the first bridge interface 404 is in a wireless device 102. If the simultaneous P2P connections detector 402 determines that the electronic device 400 is connected to two or more P2P connections at the same time, the simultaneous P2P connections detector 402 causes the electronic device 400 to instantiate the first bridge interface 404. For example, if a wireless device 102, such as a cellular phone, determines that it is associated with two different other wireless devices 102 that are both acting as P2P group owners, the wireless device 102 runs an RBridge.
The example electronic device 400 also includes a simultaneous P2P/access point detector 406 and an access point bridge interface detector 408. The simultaneous P2P/access point detector 406 and the access point bridge interface detector 408 are operatively coupled to an AND gate 410. The AND gate 410 is operatively coupled to a second bridge interface 412. In an example, the second bridge interface 404 is in an access point 202.
If the simultaneous P2P/access point detector 406 indicates that the electronic device 400 is connected to a P2P connection and an access point 202 at the same time, and the access point bridge interface detector 408 indicates that the access point 202 includes a bridge interface, then the electronic device 400 causes the second bridge interface 404 to be instantiated. For example, if the wireless device 102, determines that it is associated with another wireless device 102 that is acting as a P2P group owner, and at the same time the wireless device 102 is associated with an access point 202 that is capable of running an RBridge interface, the wireless device 102 causes the access point 202 to run the RBridge interface.
If the simultaneous P2P/access point detector 406 does not indicate that the electronic device 400 is connected to a P2P connection and an access point 202 at the same time, or the access point bridge interface detector 408 does not indicate that the access point 202 includes a bridge interface, then the electronic device 400 does not cause the second bridge interface 404 to be instantiated. For example, if the wireless device 102, determines that it is not associated with another wireless device 102 that is acting as a P2P group owner, or the wireless device 102 determines that it is not associated with an access point 202 that is capable of running an RBridge interface, the wireless device 102 does not attempt to cause the access point 202 to run an RBridge interface.
A flowchart of an example process 500 for transmitting data between different peer-to-peer communication groups is illustrated in
In general, data packets are transmitted between different peer-to-peer communication groups using RBridges. More specifically, the process 500 begins when a first RBridge determines that a data packet destination is outside of its local P2P group 104 (block 502). For example, in
When the second RBridge receives the data packet, the second RBridge determines that the data packet destination is inside of its local P2P group 104 (block 506). For example, RBridge 202c determines that the data packet destination is inside of its local P2P group 104d. Accordingly, the second RBridge forwards the data packet to its destination within the local P2P group 104. For example, RBridge 202c forwards the data packet to wireless device 102h.
A flowchart of another example process 600 for transmitting data between different peer-to-peer communication groups is illustrated in
In general, a wireless device 102 connects to two different peer-to-peer communication groups 104 via two different peer-to-peer group owners 102/202. The wireless device 102 then instantiates a bridge interface between the two communication groups 104 and uses the bridge interface to route and filter peer-to-peer traffic between the two communication groups based on a class of traffic.
More specifically, the process 600 begins when a wireless device 102 connects to a first peer-to-peer communication group 104 via a first peer-to-peer group owner 102/202 (block 602). For example, in
Once the wireless device 102 is connected to two or more different peer-to-peer communication groups 104, the wireless device 102 instantiates a bridge interface between the first peer-to-peer communication group 104 and the second peer-to-peer communication group 104 (block 606). For example, the wireless device 102e instantiates a TRILL RBridge interface between peer-to-peer communication group 104b and peer-to-peer communication group 104c. The wireless device 102 then uses the bridge interface to route and filter peer-to-peer traffic between the first peer-to-peer communication group and the second peer-to-peer communication group based on a class of traffic (block 608). For example, the wireless device 102e, running the RBridge between group 104b and group 104c, may allow local traffic to be routed, but filter network infrastructure traffic.
A flowchart of yet another example process 700 for transmitting data between different peer-to-peer communication groups is illustrated in
In general, a wireless device 102 determines if it is simultaneously connected to a plurality of peer-to-peer communication groups 104 and instantiates a bridge interface at the wireless device 102 (e.g., TRILL RBridge) for communications between each peer-to-peer communication group 104. The wireless device 102 also determines if it is simultaneously connected to at least one peer-to-peer communication device and an access point 202. In such an instance, the wireless device 102 determines if the access point 202 also includes a bridge interface. If the access point 202 does not include a bridge interface, the wireless device 102 instantiates/runs the bridge interface at the wireless device 102 for communications between the at least one peer-to-peer communication device 102 and the access point 202. If the access point 202 does include a bridge interface, the wireless device 102 causes the bridge interface at the access point 202 to be instantiated for communications between the at least one peer-to-peer communication device 102 and the access point 202.
More specifically, the process 700 begins when a wireless device 102 determines if it is simultaneously connected to a plurality of peer-to-peer communication groups 104 (block 702). For example, wireless device 102e determines if it is simultaneously connected to peer-to-peer communication group 104b and peer-to-peer communication group 104c. The wireless device 102 instantiates a first bridge interface between each peer-to-peer communication group 104 in the plurality of peer-to-peer communication groups 104 if the wireless device 102 is simultaneously connected to the plurality of peer-to-peer communication groups 102, the first bridge interface being at the wireless device 102 (block 704). For example, wireless device 102e runs a TRILL RBridge.
The wireless device 102 then determines if the wireless device 102 is simultaneously connected to at least one peer-to-peer communication device and an access point 202 (block 706). In one example, wireless device 102e is connected to peer-to-peer communication devices 102c and 102f. However, wireless device 102e is not connected to an access point 202. In another example, wireless device 102f is connected to peer-to-peer communication devices 102e and 102g, and wireless device 102f is also connected to an access point 202b.
As an example of how the order of many of the operations may be changed, the wireless device 102 may determine if the wireless device 102 is simultaneously connected to at least one peer-to-peer communication device and an access point 202 (block 706) before, after, simultaneously, or substantially simultaneously with determining if the wireless device 102 is simultaneously connected to a plurality of peer-to-peer communication groups 104 (block 702). Accordingly, the wireless device 102 may instantiate one bridge interface before, after, simultaneously, or substantially simultaneously with instantiating another bridge interface.
The wireless device 102 then determines if the access point 202 includes a second bridge interface (block 708). For example, wireless device 102f determines if access point 202b has an RBridge capability. The wireless device 102 instantiates the first bridge interface between the at least one peer-to-peer communication device 102 and the access point 202 if (i) the wireless device 102 is simultaneously connected to the least one peer-to-peer communication device 102 and the access point 202, and (ii) the access point 202 does not include the second bridge interface (block 710). For example, wireless device 102f runs a TRILL RBridge locally because access point 202b does not support RBridge.
The wireless device 102 instantiates the second bridge interface between the wireless device 102 and a network infrastructure 204 if (i) the wireless device 102 is simultaneously connected to the least one peer-to-peer communication device 102 and the access point 202, and (ii) the access point 202 includes the second bridge interface (block 712). For example, if access point 202b included an RBridge like access point 202c, wireless device 102f would not run the RBridge. Instead, the hypothetical RBridge in access point 202b would be used in order to conserve the battery life of wireless device 102f.
A flowchart of still another example process 800 for transmitting data between different peer-to-peer communication groups is illustrated in
The process 800 begins when an access point 202 broadcasts a message indicative of a peer-to-peer group owner functionality from an access point 202 (block 802). In an example, an 802.11 wireless router broadcasts a message indicating that it supports TRILL RBridge by setting the RBridge enabled bit in the P2P capability, device capability bitmap. The access point 202 then instantiates a bridge interface between a first wireless device 102 and a network infrastructure 204 (block 804). For example, the 802.11 wireless router runs a TRILL RBridge between a wireless phone and the Internet. The access point 202 then filters peer-to-peer traffic from a second different wireless device 102 not directly associated with the access point 202 (block 806). For example, the 802.11 wireless router uses TRILL traffic filters to limit Internet access to wireless devices 102 indirectly connected to an access point 202 via P2P connections.
A flowchart of an example process 900 for determining if a device will run a bridge is illustrated in
The process 900 begins when a wireless device 102 determines if the wireless device 102 is connected to two or more P2P groups 104 at the same time (block 902). If the wireless device 102 is connected to two or more P2P groups 104 at the same time, the wireless device 102 runs a bridge interface (block 904). For example, if a wireless device 102, such as a cellular phone, determines that it is associated with two different other wireless devices 102 that are both acting as P2P group owners, the wireless device 102 runs an RBridge.
If the wireless device 102 is not connected to two or more P2P groups 104 at the same time, the wireless device 102 determines if the wireless device 102 is associated with a P2P group 104 and an access point 202 (block 906). If the wireless device 102 is not associated with a P2P group 104 and an access point 202 at the same time, the wireless device 102 does not run a bridge interface (block 908).
If the wireless device 102 is associated with a P2P group 104 and an access point 202 at the same time, the wireless device 102 determines if it is able to negotiate having the access point 202 run the bridge interface (block 910). If the access point 202 is going to run the bridge, the wireless device 102 does not run the bridge (block 912). If the access point 202 is not going to run the bridge, the wireless device 102 runs the bridge instead (block 914).
A flowchart of an example process 1000 for determining what interface a bridge utilizes is illustrated in
The process 1000 begins when a bridge interface (e.g., an RBrdige) determines if it is connected to an access point 202 (block 1002). If the bridge interface is connected to an access point 202, the bridge uses an infrastructure interface (block 1004). However, if the bridge interface is not connected to an access point 202, the bridge uses a Wi-Fi P2P interface (block 1006).
In summary, persons of ordinary skill in the art will readily appreciate that methods and apparatus for transmitting data between different peer-to-peer communication groups have been provided. Among other features, wireless devices using the disclosed methods and apparatus are able to discover each other and dynamically form very large peer-to-peer groups in manner that consumes very little power and scales efficiently.
The foregoing description has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the exemplary embodiments disclosed. Many modifications and variations are possible in light of the above teachings. It is intended that the scope of the invention be limited not by this detailed description of examples, but rather by the claims appended hereto.
Number | Name | Date | Kind |
---|---|---|---|
4612669 | Nossen | Sep 1986 | A |
4631543 | Brodeur | Dec 1986 | A |
4754285 | Robitaille | Jun 1988 | A |
4881123 | Chapple | Nov 1989 | A |
4884252 | Teodoridis et al. | Nov 1989 | A |
4953197 | Kaewell, Jr. et al. | Aug 1990 | A |
5267234 | Harrison | Nov 1993 | A |
5459440 | Claridge et al. | Oct 1995 | A |
5564086 | Cygan et al. | Oct 1996 | A |
5634200 | Kitakubo et al. | May 1997 | A |
5649307 | Patino | Jul 1997 | A |
5699319 | Skrivervik | Dec 1997 | A |
5757326 | Koyama et al. | May 1998 | A |
5804944 | Alberkrack et al. | Sep 1998 | A |
5862458 | Ishii | Jan 1999 | A |
6144186 | Thadiwe et al. | Nov 2000 | A |
6339758 | Kanazawa et al. | Jan 2002 | B1 |
6362690 | Tichauer | Mar 2002 | B1 |
6373439 | Zurcher et al. | Apr 2002 | B1 |
6400702 | Meier | Jun 2002 | B1 |
6560444 | Imberg | May 2003 | B1 |
6594508 | Ketonen | Jul 2003 | B1 |
6674291 | Barber et al. | Jan 2004 | B1 |
6879942 | Nagase et al. | Apr 2005 | B1 |
6927555 | Johnson | Aug 2005 | B2 |
6937980 | Krasny et al. | Aug 2005 | B2 |
7019702 | Henriet et al. | Mar 2006 | B2 |
7142884 | Hagn | Nov 2006 | B2 |
7199754 | Krumm et al. | Apr 2007 | B2 |
7202734 | Raab | Apr 2007 | B1 |
7202815 | Swope et al. | Apr 2007 | B2 |
7224992 | Patino et al. | May 2007 | B2 |
7254420 | Klein | Aug 2007 | B1 |
7260366 | Lee et al. | Aug 2007 | B2 |
7359504 | Reuss et al. | Apr 2008 | B1 |
7400907 | Jin et al. | Jul 2008 | B2 |
7433661 | Kogiantis et al. | Oct 2008 | B2 |
7436896 | Hottinen et al. | Oct 2008 | B2 |
7440731 | Staudinger et al. | Oct 2008 | B2 |
7471963 | Kim et al. | Dec 2008 | B2 |
7486931 | Cho et al. | Feb 2009 | B2 |
7504833 | Sequine | Mar 2009 | B1 |
7599420 | Forenza et al. | Oct 2009 | B2 |
7620432 | Willins et al. | Nov 2009 | B2 |
D606958 | Knoppert et al. | Dec 2009 | S |
7639660 | Kim et al. | Dec 2009 | B2 |
7643642 | Patino et al. | Jan 2010 | B2 |
7649831 | Van Rensburg et al. | Jan 2010 | B2 |
7664200 | Ariyavisitakul et al. | Feb 2010 | B2 |
7746943 | Yamaura | Jun 2010 | B2 |
7760681 | Chhabra | Jul 2010 | B1 |
7773535 | Vook et al. | Aug 2010 | B2 |
7773685 | Tirkkonen et al. | Aug 2010 | B2 |
7813696 | Kim | Oct 2010 | B2 |
7822140 | Catreux et al. | Oct 2010 | B2 |
7835711 | McFarland | Nov 2010 | B2 |
7839201 | Jacobson | Nov 2010 | B2 |
7864969 | Ma et al. | Jan 2011 | B1 |
7885211 | Shen et al. | Feb 2011 | B2 |
7936237 | Park et al. | May 2011 | B2 |
7940740 | Krishnamurthy et al. | May 2011 | B2 |
7942936 | Golden | May 2011 | B2 |
7945229 | Wilson et al. | May 2011 | B2 |
7983722 | Lowles et al. | Jul 2011 | B2 |
8014455 | Kim et al. | Sep 2011 | B2 |
8072285 | Spears et al. | Dec 2011 | B2 |
8094011 | Faris et al. | Jan 2012 | B2 |
8095081 | Vance | Jan 2012 | B2 |
8098120 | Steeneken et al. | Jan 2012 | B2 |
8155683 | Buckley et al. | Apr 2012 | B2 |
8204446 | Scheer et al. | Jun 2012 | B2 |
8219336 | Hoebel et al. | Jul 2012 | B2 |
8219337 | Hoebel et al. | Jul 2012 | B2 |
8232685 | Perper et al. | Jul 2012 | B2 |
8233851 | Jeon et al. | Jul 2012 | B2 |
8244317 | Knoppert et al. | Aug 2012 | B2 |
8259431 | Katta | Sep 2012 | B2 |
8275327 | Yi et al. | Sep 2012 | B2 |
8280038 | Johnson et al. | Oct 2012 | B2 |
8280323 | Thompson | Oct 2012 | B2 |
8284849 | Lee et al. | Oct 2012 | B2 |
8302183 | Sood | Oct 2012 | B2 |
8319393 | DeReus | Nov 2012 | B2 |
8373596 | Kimball et al. | Feb 2013 | B1 |
8374633 | Frank et al. | Feb 2013 | B2 |
8384695 | Lee et al. | Feb 2013 | B2 |
8428022 | Frank et al. | Apr 2013 | B2 |
8460961 | Guo et al. | Jun 2013 | B2 |
8483707 | Krishnamurthy et al. | Jul 2013 | B2 |
8509338 | Sayana et al. | Aug 2013 | B2 |
8542776 | Kim et al. | Sep 2013 | B2 |
8588426 | Xin et al. | Nov 2013 | B2 |
8594584 | Greene et al. | Nov 2013 | B2 |
8606200 | Ripley et al. | Dec 2013 | B2 |
8611829 | Alberth et al. | Dec 2013 | B2 |
8620348 | Shrivastava et al. | Dec 2013 | B2 |
8626083 | Greene et al. | Jan 2014 | B2 |
8712340 | Hoirup et al. | Apr 2014 | B2 |
8712355 | Black et al. | Apr 2014 | B2 |
8731496 | Drogi et al. | May 2014 | B2 |
8761296 | Zhang et al. | Jun 2014 | B2 |
8767722 | Kamble et al. | Jul 2014 | B2 |
8909173 | Harmke | Dec 2014 | B2 |
8989747 | Padden et al. | Mar 2015 | B2 |
9002354 | Krishnamurthy et al. | Apr 2015 | B2 |
9031523 | Anderson | May 2015 | B2 |
9197255 | Pourkhaatoun et al. | Nov 2015 | B2 |
9203489 | Sayana et al. | Dec 2015 | B2 |
9215659 | Asrani et al. | Dec 2015 | B2 |
9241050 | Asrani et al. | Jan 2016 | B1 |
9298303 | Wagner et al. | Mar 2016 | B2 |
9301177 | Ballantyne et al. | Mar 2016 | B2 |
9326320 | Hong et al. | Apr 2016 | B2 |
9344837 | Russel et al. | May 2016 | B2 |
9386542 | Russell et al. | Jul 2016 | B2 |
9401750 | Sayana et al. | Jul 2016 | B2 |
9413409 | Black et al. | Aug 2016 | B2 |
9478847 | Russell et al. | Oct 2016 | B2 |
9491007 | Black et al. | Nov 2016 | B2 |
9549290 | Smith | Jan 2017 | B2 |
20010034238 | Voyer | Oct 2001 | A1 |
20020037742 | Enderlein et al. | Mar 2002 | A1 |
20020057751 | Jagger et al. | May 2002 | A1 |
20020090974 | Hagn | Jul 2002 | A1 |
20020138254 | Isaka et al. | Sep 2002 | A1 |
20020149351 | Kanekawa et al. | Oct 2002 | A1 |
20020193130 | Yang et al. | Dec 2002 | A1 |
20030143961 | Humphreys et al. | Jul 2003 | A1 |
20030161485 | Smith | Aug 2003 | A1 |
20030222819 | Karr et al. | Dec 2003 | A1 |
20040051583 | Hellberg | Mar 2004 | A1 |
20040052314 | Copeland | Mar 2004 | A1 |
20040052317 | Love et al. | Mar 2004 | A1 |
20040057530 | Tarokh et al. | Mar 2004 | A1 |
20040063439 | Glazko et al. | Apr 2004 | A1 |
20040082356 | Walton et al. | Apr 2004 | A1 |
20040106428 | Shoji | Jun 2004 | A1 |
20040148333 | Manion et al. | Jul 2004 | A1 |
20040176125 | Lee | Sep 2004 | A1 |
20040178912 | Smith et al. | Sep 2004 | A1 |
20040192398 | Zhu | Sep 2004 | A1 |
20040198392 | Harvey et al. | Oct 2004 | A1 |
20040235433 | Hugl et al. | Nov 2004 | A1 |
20040246048 | Leyonhjelm et al. | Dec 2004 | A1 |
20050037733 | Coleman et al. | Feb 2005 | A1 |
20050041018 | Philipp | Feb 2005 | A1 |
20050049864 | Kaltenmeier et al. | Mar 2005 | A1 |
20050075123 | Jin et al. | Apr 2005 | A1 |
20050085195 | Tong et al. | Apr 2005 | A1 |
20050124393 | Nuovo et al. | Jun 2005 | A1 |
20050134456 | Niu et al. | Jun 2005 | A1 |
20050135324 | Kim et al. | Jun 2005 | A1 |
20050136845 | Masuoka et al. | Jun 2005 | A1 |
20050208952 | Dietrich et al. | Sep 2005 | A1 |
20050227640 | Haque et al. | Oct 2005 | A1 |
20050250532 | Hwang et al. | Nov 2005 | A1 |
20060019677 | Teague et al. | Jan 2006 | A1 |
20060052131 | Ichihara | Mar 2006 | A1 |
20060067277 | Thomas et al. | Mar 2006 | A1 |
20060077952 | Kubsch et al. | Apr 2006 | A1 |
20060099940 | Pfleging et al. | May 2006 | A1 |
20060103635 | Park | May 2006 | A1 |
20060181453 | King et al. | Aug 2006 | A1 |
20060194593 | Drabeck et al. | Aug 2006 | A1 |
20060207806 | Philipp | Sep 2006 | A1 |
20060209754 | Ji et al. | Sep 2006 | A1 |
20060215618 | Soliman et al. | Sep 2006 | A1 |
20060240827 | Dunn | Oct 2006 | A1 |
20060245601 | Michaud et al. | Nov 2006 | A1 |
20060256887 | Kwon et al. | Nov 2006 | A1 |
20060280261 | Prikhodko et al. | Dec 2006 | A1 |
20060291393 | Teague et al. | Dec 2006 | A1 |
20060292990 | Karabinis et al. | Dec 2006 | A1 |
20070004344 | DeGroot et al. | Jan 2007 | A1 |
20070008108 | Schurig et al. | Jan 2007 | A1 |
20070026838 | Staudinger et al. | Feb 2007 | A1 |
20070042714 | Ayed | Feb 2007 | A1 |
20070049280 | Sambhwani et al. | Mar 2007 | A1 |
20070069735 | Graf et al. | Mar 2007 | A1 |
20070091004 | Puuri | Apr 2007 | A1 |
20070093281 | Park et al. | Apr 2007 | A1 |
20070133462 | Guey | Jun 2007 | A1 |
20070153743 | Mukkavilli et al. | Jul 2007 | A1 |
20070197180 | McKinzie et al. | Aug 2007 | A1 |
20070200766 | McKinzie et al. | Aug 2007 | A1 |
20070211657 | McBeath et al. | Sep 2007 | A1 |
20070211813 | Talwar et al. | Sep 2007 | A1 |
20070222629 | Yoneyama | Sep 2007 | A1 |
20070223422 | Kim et al. | Sep 2007 | A1 |
20070232370 | Kim et al. | Oct 2007 | A1 |
20070238425 | McFarland | Oct 2007 | A1 |
20070238496 | Chung et al. | Oct 2007 | A1 |
20070243894 | Das et al. | Oct 2007 | A1 |
20070255558 | Yasunaga et al. | Nov 2007 | A1 |
20070280160 | Kim et al. | Dec 2007 | A1 |
20070285326 | McKinzie | Dec 2007 | A1 |
20080001915 | Pihlaja et al. | Jan 2008 | A1 |
20080002735 | Poirier et al. | Jan 2008 | A1 |
20080014960 | Chou | Jan 2008 | A1 |
20080026710 | Buckley | Jan 2008 | A1 |
20080059188 | Konopka et al. | Mar 2008 | A1 |
20080080449 | Huang et al. | Apr 2008 | A1 |
20080089312 | Malladi | Apr 2008 | A1 |
20080095109 | Malladi et al. | Apr 2008 | A1 |
20080108310 | Tong et al. | May 2008 | A1 |
20080111714 | Kremin | May 2008 | A1 |
20080117886 | Kim | May 2008 | A1 |
20080130626 | Ventola et al. | Jun 2008 | A1 |
20080132247 | Anderson | Jun 2008 | A1 |
20080133462 | Aylward et al. | Jun 2008 | A1 |
20080157893 | Krah | Jul 2008 | A1 |
20080159239 | Odlyzko et al. | Jul 2008 | A1 |
20080165876 | Suh et al. | Jul 2008 | A1 |
20080167040 | Khandekar et al. | Jul 2008 | A1 |
20080167073 | Hobson et al. | Jul 2008 | A1 |
20080170602 | Guey | Jul 2008 | A1 |
20080170608 | Guey | Jul 2008 | A1 |
20080186105 | Scuderi et al. | Aug 2008 | A1 |
20080192683 | Han et al. | Aug 2008 | A1 |
20080212520 | Chen et al. | Sep 2008 | A1 |
20080225693 | Zhang et al. | Sep 2008 | A1 |
20080227414 | Karmi et al. | Sep 2008 | A1 |
20080227481 | Naguib et al. | Sep 2008 | A1 |
20080232395 | Buckley et al. | Sep 2008 | A1 |
20080267310 | Khan et al. | Oct 2008 | A1 |
20080274753 | Attar et al. | Nov 2008 | A1 |
20080279300 | Walker et al. | Nov 2008 | A1 |
20080298482 | Rensburg et al. | Dec 2008 | A1 |
20080307427 | Pi et al. | Dec 2008 | A1 |
20080309633 | Hotelling et al. | Dec 2008 | A1 |
20080312918 | Kim | Dec 2008 | A1 |
20080313146 | Wong et al. | Dec 2008 | A1 |
20080317259 | Zhang et al. | Dec 2008 | A1 |
20090041151 | Khan et al. | Feb 2009 | A1 |
20090055170 | Nagahama | Feb 2009 | A1 |
20090059783 | Walker et al. | Mar 2009 | A1 |
20090061790 | Rofougaran | Mar 2009 | A1 |
20090061887 | Hart et al. | Mar 2009 | A1 |
20090067382 | Li et al. | Mar 2009 | A1 |
20090091551 | Hotelling et al. | Apr 2009 | A1 |
20090102294 | Hodges et al. | Apr 2009 | A1 |
20090121963 | Greene | May 2009 | A1 |
20090122758 | Smith et al. | May 2009 | A1 |
20090122884 | Vook et al. | May 2009 | A1 |
20090228598 | Stamoulis et al. | Sep 2009 | A1 |
20090238131 | Montojo et al. | Sep 2009 | A1 |
20090243631 | Kuang | Oct 2009 | A1 |
20090252077 | Khandekar et al. | Oct 2009 | A1 |
20090256644 | Knudsen et al. | Oct 2009 | A1 |
20090258614 | Walker | Oct 2009 | A1 |
20090262699 | Wdngerter et al. | Oct 2009 | A1 |
20090264078 | Yun et al. | Oct 2009 | A1 |
20090268675 | Choi | Oct 2009 | A1 |
20090270103 | Pani et al. | Oct 2009 | A1 |
20090285321 | Schulz et al. | Nov 2009 | A1 |
20090290544 | Yano et al. | Nov 2009 | A1 |
20090295226 | Hodges et al. | Dec 2009 | A1 |
20090298433 | Sorrells et al. | Dec 2009 | A1 |
20090307511 | Fiennes et al. | Dec 2009 | A1 |
20090323608 | Adachi et al. | Dec 2009 | A1 |
20100002657 | Teo et al. | Jan 2010 | A1 |
20100014690 | Wolff et al. | Jan 2010 | A1 |
20100023898 | Nomura et al. | Jan 2010 | A1 |
20100034312 | Muharemovic et al. | Feb 2010 | A1 |
20100035627 | Hou et al. | Feb 2010 | A1 |
20100046460 | Kwak et al. | Feb 2010 | A1 |
20100046650 | Jongren et al. | Feb 2010 | A1 |
20100046763 | Homma | Feb 2010 | A1 |
20100056166 | Tenny | Mar 2010 | A1 |
20100081487 | Chen et al. | Apr 2010 | A1 |
20100085010 | Suzuki et al. | Apr 2010 | A1 |
20100092007 | Sun | Apr 2010 | A1 |
20100103949 | Jung et al. | Apr 2010 | A1 |
20100106459 | Bakalov | Apr 2010 | A1 |
20100109796 | Park et al. | May 2010 | A1 |
20100118706 | Parkvall et al. | May 2010 | A1 |
20100118839 | Malladi et al. | May 2010 | A1 |
20100156728 | Alvey et al. | Jun 2010 | A1 |
20100157858 | Lee et al. | Jun 2010 | A1 |
20100157924 | Prasad et al. | Jun 2010 | A1 |
20100159833 | Lewis et al. | Jun 2010 | A1 |
20100161658 | Hamynen et al. | Jun 2010 | A1 |
20100165882 | Palanki et al. | Jul 2010 | A1 |
20100167743 | Palanki et al. | Jul 2010 | A1 |
20100172310 | Cheng et al. | Jul 2010 | A1 |
20100172311 | Agrawal et al. | Jul 2010 | A1 |
20100182903 | Palanki et al. | Jul 2010 | A1 |
20100189191 | Taoka et al. | Jul 2010 | A1 |
20100195566 | Krishnamurthy et al. | Aug 2010 | A1 |
20100208838 | Lee et al. | Aug 2010 | A1 |
20100217590 | Nemer et al. | Aug 2010 | A1 |
20100220801 | Lee et al. | Sep 2010 | A1 |
20100260154 | Frank et al. | Oct 2010 | A1 |
20100271330 | Philipp | Oct 2010 | A1 |
20100272094 | Byard et al. | Oct 2010 | A1 |
20100274516 | Hoebel et al. | Oct 2010 | A1 |
20100291918 | Suzuki et al. | Nov 2010 | A1 |
20100311437 | Palanki et al. | Dec 2010 | A1 |
20100317343 | Krishnamurthy | Dec 2010 | A1 |
20100322176 | Chen et al. | Dec 2010 | A1 |
20100323718 | Jen | Dec 2010 | A1 |
20110039583 | Frank et al. | Feb 2011 | A1 |
20110051834 | Lee et al. | Mar 2011 | A1 |
20110080969 | Jongren et al. | Apr 2011 | A1 |
20110083066 | Chung et al. | Apr 2011 | A1 |
20110085588 | Zhuang | Apr 2011 | A1 |
20110085610 | Zhuang et al. | Apr 2011 | A1 |
20110096739 | Heidari et al. | Apr 2011 | A1 |
20110096915 | Nemer | Apr 2011 | A1 |
20110103498 | Chen et al. | May 2011 | A1 |
20110105023 | Scheer | May 2011 | A1 |
20110116423 | Rousu et al. | May 2011 | A1 |
20110116436 | Bachu et al. | May 2011 | A1 |
20110117925 | Sampath et al. | May 2011 | A1 |
20110119005 | Majima et al. | May 2011 | A1 |
20110121836 | Kim et al. | May 2011 | A1 |
20110143770 | Charbit et al. | Jun 2011 | A1 |
20110143773 | Kangas et al. | Jun 2011 | A1 |
20110148625 | Velusamy | Jun 2011 | A1 |
20110148700 | Lasagabaster et al. | Jun 2011 | A1 |
20110149868 | Krishnamurthy et al. | Jun 2011 | A1 |
20110149903 | Krishnamurthy et al. | Jun 2011 | A1 |
20110157067 | Wagner et al. | Jun 2011 | A1 |
20110158200 | Bachu et al. | Jun 2011 | A1 |
20110176252 | DeReus | Jul 2011 | A1 |
20110189964 | Jeon et al. | Aug 2011 | A1 |
20110190016 | Hamabe et al. | Aug 2011 | A1 |
20110216840 | Lee et al. | Sep 2011 | A1 |
20110244884 | Kangas et al. | Oct 2011 | A1 |
20110249637 | Hammarwall et al. | Oct 2011 | A1 |
20110250852 | Greene | Oct 2011 | A1 |
20110263303 | Lowles et al. | Oct 2011 | A1 |
20110268101 | Wang | Nov 2011 | A1 |
20110274188 | Sayana et al. | Nov 2011 | A1 |
20110281532 | Shin et al. | Nov 2011 | A1 |
20110285603 | Skarp | Nov 2011 | A1 |
20110286349 | Tee et al. | Nov 2011 | A1 |
20110292844 | Kwun et al. | Dec 2011 | A1 |
20110319027 | Sayana | Dec 2011 | A1 |
20120002609 | Larsson et al. | Jan 2012 | A1 |
20120008510 | Cai et al. | Jan 2012 | A1 |
20120021769 | Lindoff et al. | Jan 2012 | A1 |
20120032646 | Lee | Feb 2012 | A1 |
20120039251 | Sayana | Feb 2012 | A1 |
20120050122 | Wu et al. | Mar 2012 | A1 |
20120052903 | Han et al. | Mar 2012 | A1 |
20120071195 | Chakraborty et al. | Mar 2012 | A1 |
20120076043 | Nishio et al. | Mar 2012 | A1 |
20120077538 | Yun | Mar 2012 | A1 |
20120106475 | Jung | May 2012 | A1 |
20120112851 | Manssen et al. | May 2012 | A1 |
20120120772 | Fujisawa | May 2012 | A1 |
20120120934 | Cho | May 2012 | A1 |
20120122478 | Siomina et al. | May 2012 | A1 |
20120128175 | Visser et al. | May 2012 | A1 |
20120158839 | Hassan et al. | Jun 2012 | A1 |
20120161927 | Pierfelice et al. | Jun 2012 | A1 |
20120162129 | Krah et al. | Jun 2012 | A1 |
20120170541 | Love et al. | Jul 2012 | A1 |
20120177089 | Pelletier et al. | Jul 2012 | A1 |
20120178370 | George | Jul 2012 | A1 |
20120182144 | Richardson et al. | Jul 2012 | A1 |
20120206556 | Yu et al. | Aug 2012 | A1 |
20120214412 | Schlub et al. | Aug 2012 | A1 |
20120214421 | Hoirup et al. | Aug 2012 | A1 |
20120214549 | Philbin | Aug 2012 | A1 |
20120220243 | Mendolia | Aug 2012 | A1 |
20120224715 | Kikkeri | Sep 2012 | A1 |
20120295554 | Greene et al. | Nov 2012 | A1 |
20120295555 | Greene et al. | Nov 2012 | A1 |
20120302188 | Sahota et al. | Nov 2012 | A1 |
20120306716 | Satake et al. | Dec 2012 | A1 |
20120309388 | Moosavi et al. | Dec 2012 | A1 |
20120309413 | Grosman et al. | Dec 2012 | A1 |
20120316967 | Mgrdechian et al. | Dec 2012 | A1 |
20130030803 | Liao | Jan 2013 | A1 |
20130034241 | Pandey et al. | Feb 2013 | A1 |
20130039284 | Marinier et al. | Feb 2013 | A1 |
20130040578 | Khoshnevis et al. | Feb 2013 | A1 |
20130059600 | Elsom-Cook et al. | Mar 2013 | A1 |
20130078980 | Saito | Mar 2013 | A1 |
20130596000 | Elson-Cook et al. | Mar 2013 | |
20130094484 | Kneckt | Apr 2013 | A1 |
20130109314 | Kneckt | May 2013 | A1 |
20130109334 | Kwon et al. | May 2013 | A1 |
20130142113 | Fong et al. | Jun 2013 | A1 |
20130150092 | Frank et al. | Jun 2013 | A1 |
20130178175 | Kato | Jul 2013 | A1 |
20130194154 | Baliarda et al. | Aug 2013 | A1 |
20130195283 | Larson et al. | Aug 2013 | A1 |
20130195296 | Merks | Aug 2013 | A1 |
20130286937 | Liu et al. | Oct 2013 | A1 |
20130307735 | Contreras et al. | Nov 2013 | A1 |
20130310102 | Chao et al. | Nov 2013 | A1 |
20130316687 | Subbaramoo et al. | Nov 2013 | A1 |
20130322375 | Chang et al. | Dec 2013 | A1 |
20130322562 | Zhang et al. | Dec 2013 | A1 |
20130322655 | Schuldt et al. | Dec 2013 | A1 |
20130325149 | Manssen et al. | Dec 2013 | A1 |
20140024321 | Zhu et al. | Jan 2014 | A1 |
20140044126 | Sabhanatarajan et al. | Feb 2014 | A1 |
20140045422 | Qi | Feb 2014 | A1 |
20140068288 | Robinson et al. | Mar 2014 | A1 |
20140092830 | Chen et al. | Apr 2014 | A1 |
20140093091 | Dusan et al. | Apr 2014 | A1 |
20140177686 | Greene et al. | Jun 2014 | A1 |
20140185498 | Schwent et al. | Jul 2014 | A1 |
20140227981 | Pecen et al. | Aug 2014 | A1 |
20140273882 | Asrani et al. | Sep 2014 | A1 |
20140273886 | Black et al. | Sep 2014 | A1 |
20140313088 | Rozenblit et al. | Oct 2014 | A1 |
20140349593 | Danak et al. | Nov 2014 | A1 |
20140376652 | Sayana et al. | Dec 2014 | A1 |
20140379332 | Rodriguez et al. | Dec 2014 | A1 |
20150017978 | Hong et al. | Jan 2015 | A1 |
20150024786 | Asrani et al. | Jan 2015 | A1 |
20150031420 | Higaki et al. | Jan 2015 | A1 |
20150072632 | Pourkhaatoun et al. | Mar 2015 | A1 |
20150080047 | Russell et al. | Mar 2015 | A1 |
20150092954 | Coker et al. | Apr 2015 | A1 |
20150171919 | Ballantyne et al. | Jun 2015 | A1 |
20150181388 | Smith | Jun 2015 | A1 |
20150236828 | Park et al. | Aug 2015 | A1 |
20150245323 | You et al. | Aug 2015 | A1 |
20150280674 | Langer et al. | Oct 2015 | A1 |
20150280675 | Langer et al. | Oct 2015 | A1 |
20150280876 | You et al. | Oct 2015 | A1 |
20150312058 | Black et al. | Oct 2015 | A1 |
20150349410 | Russell et al. | Dec 2015 | A1 |
20150365065 | Higaki et al. | Dec 2015 | A1 |
20160014727 | Nimbalker | Jan 2016 | A1 |
20160036482 | Black et al. | Feb 2016 | A1 |
20160080053 | Sayana et al. | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
1762137 | Apr 2006 | CN |
1859656 | Nov 2006 | CN |
1984476 | Jun 2007 | CN |
101035379 | Sep 2007 | CN |
102638609 | Aug 2012 | CN |
102664861 | Sep 2012 | CN |
10053205 | May 2002 | DE |
10118189 | Nov 2002 | DE |
0695059 | Jan 1996 | EP |
1158686 | Nov 2001 | EP |
1298809 | Apr 2003 | EP |
1357543 | Oct 2003 | EP |
1511010 | Mar 2005 | EP |
1753152 | Feb 2007 | EP |
1443791 | Feb 2009 | EP |
2487967 | Aug 2012 | EP |
2255443 | Nov 2012 | EP |
2557433 | Feb 2013 | EP |
2568531 | Mar 2013 | EP |
2590258 | May 2013 | EP |
H09247852 | Sep 1997 | JP |
2000286924 | Oct 2000 | JP |
20050058333 | Jun 2005 | KR |
2005113251 | Jan 2006 | RU |
WO-9306682 | Apr 1993 | WO |
WO-9416517 | Jul 1994 | WO |
WO-9600401 | Jan 1996 | WO |
WO-9921389 | Apr 1999 | WO |
WO-9950968 | Oct 1999 | WO |
WO-0111721 | Feb 2001 | WO |
WO-03007508 | Jan 2003 | WO |
WO-03107327 | Dec 2003 | WO |
WO-2004021634 | Mar 2004 | WO |
WO-2004040800 | May 2004 | WO |
WO-2004084427 | Sep 2004 | WO |
WO-2004084447 | Sep 2004 | WO |
WO-2006039434 | Apr 2006 | WO |
WO-2006046192 | May 2006 | WO |
WO-2006130278 | Dec 2006 | WO |
WO-2007052115 | May 2007 | WO |
WO-2007080727 | Jul 2007 | WO |
WO-2008027705 | Mar 2008 | WO |
WO-2008033117 | Mar 2008 | WO |
WO-2008085107 | Jul 2008 | WO |
WO-2008085416 | Jul 2008 | WO |
WO-2008085720 | Jul 2008 | WO |
WO-2008112849 | Sep 2008 | WO |
WO-2008113210 | Sep 2008 | WO |
WO-2008137354 | Nov 2008 | WO |
WO-2008137607 | Nov 2008 | WO |
WO-2008156081 | Dec 2008 | WO |
WO-2009107090 | Sep 2009 | WO |
WO-2010080845 | Jul 2010 | WO |
WO-2010124244 | Oct 2010 | WO |
WO-2010138039 | Dec 2010 | WO |
WO-2012115649 | Aug 2012 | WO |
WO-2012149968 | Nov 2012 | WO |
WO-2012177939 | Dec 2012 | WO |
WO-2013131268 | Sep 2013 | WO |
Entry |
---|
WiFi Alliance Neighbor Awareness Networking Marketing Task Group, Market & Motivation (MRD Section3) for Interoperability Testing of Neighbor Awareness Networking, Version 0.14, 2011, all pages. |
WiFi Alliance, “Marketing Statement of Work Neighbor Awareness Networking”, Version 1.17 proposal, Neighbor Awareness Networking Task Group,May 30, 2012, all pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/072718, Jun. 18, 2014, 12 pages. |
Yun,“Distributed Self-Pruning(DSP) Algorithm for Bridges in Clustered Ad Hoc Networks”, Embedded Software and Systems; Lecture Notes in Computer Science, Springer, May 14, 2007, pp. 699-707. |
“3rd Generation Partnership Project; Technical Specification Group Radio Access Network”, 3GPP TR 36.814 V9.0.0 (Mar. 2010), Further Advancements for E-UTRA Physical Layer Aspects (Release 9), Mar. 2010, 104 pages. |
“A feedback framework based on W2W1 for Rei. 10”, 3GPP TSG RAN WG1 #61bis, R1-103664,, Jun. 2010, 19 pages. |
“Addition of PRS Muting Configuration Information to LPPa”, 3GPP TSG RAN3 #68, Montreal, Canada; Ericsson, R3-101526, May 2010, 7 pages. |
“Advisory Action”, U.S. Appl. No. 12/650,699, Jan. 30, 2013, 3 pages. |
“Advisory Action”, U.S. Appl. No. 12/650,699, Sep. 25, 2014, 3 pages. |
“An-1432 the LM4935 Headset and Push-Button Detection Guide”, Texas Instruments Incorporated—http://www.ti.com/lit/an/snaa024a.snaa024a.pdf, May 2013, 8 pages. |
“Best Companion' reporting for improved single- cell MU-MIMO pairing”, 3GPP TSG RAN WG1 #56; Athens, Greece; Alcatei-Lucent, R1-090926, Feb. 2009, 5 pages. |
“Change Request—Clarification of the CP length of empty OFDM symbols in PRS subframes”, 3GPP TSG RAN WG1 #59bis, Jeju, Vaiencia, Spain, ST-Ericsson, Motorola, Qualcomm Inc, R1-100311; Jan. 2009, 2 pages. |
“Change Request 36.211—Introduction of L TE Positioning”, 3GPP TSG RAN WG1 #59, Jeju, South Korea; Ericsson, R1-095027, May 2010, 6 pages. |
“Change Request 36.213 Clarification of POSCH and PRS in combination for L TE positioning”, 3GPP TSG RAN WG1 #58bis, Miyazaki, Japan; Ericsson, et al., R1-094262; Oct. 2009, 4 pages. |
“Change Request 36.214—Introduction of LTE Positioning”, 3GPP TSG RAN WG1 #59, Jeju, South Korea, Ericsson, et al., R1-094430, Nov. 2009, 4 pages. |
“Companion Subset Based PMI/CQI Feedback for LTE-A MU-MIMO”, 3GPP TSG RAN WG1 #60; San Francisco, USA, RIM; R1-101104, Feb. 2010, 8 pages. |
“Comparison of PMI-based and SCF-based MU-MIMO”, 3GPP TSG RAN1 #58; Shenzhen, China; R1-093421 Aug. 2009, 5 pages. |
“Development of two-stage feedback framework for Rel-10”, 3GPP TSG RAN WG1 #60bis Meeting, R1-101859, Alcatel-Lucent Shanghai Bell, Alcatel-Lucent, Apr. 2010, 5 pages. |
“Digital cellular telecommunications system (Phase 2+)”, Location Services (LCS); Broadcast Network Assistance for Enhanced Observed Time Difference (E-OTD) and Global Positioning System (GPS) Positioning Methods (3GPP TS 04.35 version 8.3.0 Release 1999), 2001, 37 pages. |
“Discussions on UE positioning issues”, 3GPP TSG-RAN WG1 #57 R1-091911, San Francisco, USA,, May 2009, 12 pages. |
“DL Codebook design for 8Tx preceding”, 3GPP TSG RAN WG1 #60bis, R1-102380, LG Electronics, Beijing, China, Apr. 2010, 4 pages. |
“Double codebook design principles”, 3GPP TSG RAN WG1 #61bis, R1-103804, Nokia, Nokia Siemens Networks, Dresden, Germany, Jun. 2010, 9 pages. |
“Earbud with Push-to-Talk Microphone”, Motorola, Inc., model 53727, iDEN 2.5 mm 4-pole mono PTT headset NNTNN5006BP, 2013, 10 pages. |
“Evaluation of protocol architecture alternatives for positioning”, 3GPP TSG-RAN WG2 #66bis R2-093855, Los Angeles, CA, USA, Jun. 2009, 4 pages. |
“Ex Parte Quayle Action”, U.S. Appl. No. 13/088,237, Dec. 19, 2012, 5 pages. |
“Extended European Search Report”, EP Application No. 12196319.3, Feb. 27, 2014, 7 pages. |
“Extended European Search Report”, EP Application No. 12196328.4, Feb. 26, 2014, 7 pages. |
“Extensions to Rel-8 type CQI/PMI/RI feedback using double codebook structure”, 3GPP TSG RAN WG1#59bis, R1-100251, Valencia, Spain Jan. 2010, 4 pages. |
“Feedback Codebook Design and Performance Evaluation”, 3GPP TSG RAN WG1 #61bis, R1-103970, LG Electronics, Jun. 2010, 6 pages. |
“Feedback considerations for DL MIMO and CoMP”, 3GPP TSG RAN WG1 #57bis; Los Angeles, USA; Qualcomm Europe; R1-092695, Jun. 2009, 6 pages. |
“Final Improvement Proposal for PTT Support in HFP”, Bluetooth SIG, Inc., revision V10r00 (PTTinHFP—FIPD), Jul. 20, 2010, 50 pages. |
“Final Office Action”, U.S. Appl. No. 12/407,783, Feb. 15, 2012, 18 pages. |
“Final Office Action”, U.S. Appl. No. 12/573,456, Mar. 21, 2012, 12 pages. |
“Final Office Action”, U.S. Appl. No. 12/650,699, Jul. 16, 2014, 20 pages. |
“Final Office Action”, U.S. Appl. No. 12/650,699, Jul. 29, 2015, 26 pages. |
“Final Office Action”, U.S. Appl. No. 12/650,699, Nov. 13, 2012, 17 pages. |
“Final Office Action”, U.S. Appl. No. 12/756,777, Nov. 1, 2013, 12 pages. |
“Final Office Action”, U.S. Appl. No. 12/899,211, Oct. 24, 2013, 17 pages. |
“Final Office Action”, U.S. Appl. No. 13/477,609, Jul. 31, 2015, 11 pages. |
“Final Office Action”, U.S. Appl. No. 13/733,297, Jul. 22, 2015, 20 pages. |
“Final Office Action”, U.S. Appl. No. 13/873,557, Jul. 17, 2015, 13 pages. |
“Final Office Action”, U.S. Appl. No. 14/012,050, Jul. 6, 2015, 23 pages. |
“Final Office Action”, U.S. Appl. No. 14/052,903, Oct. 1, 2015, 10 pages. |
“Final Office Action”, U.S. Appl. No. 14/280,775, Dec. 9, 2015, 13 pages. |
“Foreign Office Action”, CN Application No. 201080025882.7, Feb. 8, 2014, 19 pages. |
“Further details on DL OTDOA”, 3GPP TSG RAN WG1 #56bis, Seoul, South Korea—Ericsson, R1-091312 Mar. 2009, 6 pages. |
“Further Refinements of Feedback Framework”, 3GPP TSG-RAN WG1 #60bis R1-101742; Ericsson, ST-Ericsson, Apr. 2010, 8 pages. |
“IEEE 802.16m System Description Document [Draft]”, IEEE 802.16 Broadband Wireless Access Working Group, Nokia, Feb. 7, 2009, 171 pages. |
“Implicit feedback in support of downlink MU-MIMO Texas Instruments”, 3GPP TSG RAN WG1 #58; Shenzhen, China, R1-093176, Aug. 2009, 4 pages. |
“Improving the hearability of LTE Positioning Service”, 3GPP TSG RAN WG1 #55bis; Alcatei-Lucent, R1-090053,, Jan. 2009, 5 pages. |
“Innovator in Electronics, Technical Update, Filters & Modules PRM Alignment”, Module Business Unit, Apr. 2011, 95 pages. |
“International Preliminary Report on Patentability”, Application No. PCT/US2013/042042, Mar. 10, 2015, 8 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2014/060440, Feb. 5, 2015, 11 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2015/031328, Aug. 12, 2015, 11 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2014/045755, Oct. 23, 2014, 11 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2014/045956, Oct. 31, 2014, 11 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2014/056642, Dec. 9, 2014, 11 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/071615, Mar. 5, 2014, 13 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/040242, Oct. 4, 2013, 14 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2014/047233, Jan. 22, 2015, 8 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/077919, Apr. 24, 2014, 8 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2014/070925, May 11, 2015, 9 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2014/018564, Jun. 18, 2014, 11 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2015/027872, Jul. 15, 2015, 12 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2010/026579, Feb. 4, 2011, 13 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2011/034959, Aug. 16, 2011, 13 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2011/045209, Oct. 28, 2011, 14 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2011/039214, Sep. 14, 2011, 9 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2010/038257, Oct. 1, 2010, 9 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2010/034023, Dec. 1, 2010, 9 pages. |
“International Search Report”, Application No. PCT/US20013/071616, Mar. 5, 2014, 2 pages. |
“International Search Report”, Application No. PCT/US2010/030516, Oct. 8, 2010, 5 pages. |
“International Search Report”, Application No. PCT/US2010/036982, Nov. 22, 2010, 4 pages. |
“International Search Report”, Application No. PCT/US2010/041451, Oct. 25, 2010, 3 pages. |
“International Search Report”, Application No. PCT/US2011/044103, Oct. 24, 2011, 3 pages. |
“International Search Report”, Application No. PCT/US2014/014375, Apr. 7, 2014, 4 pages. |
“Introduction of L TE Positioning”, 3GPP TSG RAN WG1 #58, Shenzhen, China, R1-093604; Draft CR 36.213, Aug. 2009, 3 pages. |
“Introduction of L TE Positioning”, 3GPP TSG RAN WG1 #59, Jeju, South Korea, Ericsson et al.; R1-094429 Nov. 2009, 5 pages. |
“Introduction of LTE Positioning”, , 3GPP TSG RAN WG1 #58, Shenzhen, China; Draft CR 36.214; R1-093605;, Aug. 2009, 6 pages. |
“Introduction of LTE Positioning”, , 3GPP TSG-RAN WG1 Meeting #58, R1-093603, Shenzhen, China Aug. 2009, 5 pages. |
“LS on 12 5. Assistance Information for OTDOA Positioning Support for L TE Rel-9”, 3GPP TSG RAN WG1 Meeting #58; Shenzhen, China; R1-093729, Aug. 2009, 3 pages. |
“LS on LTE measurement supporting Mobility”, 3GPP TSG WG1 #48, Tdoc R1-071250; StLouis, USA, Feb. 2007, 2 pages. |
“LTE Positioning Protocol (LPP)”, 3GPP TS 36.355 V9.0.0 (Dec. 2009); 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Release 9, Dec. 2009, 102 pages. |
“Method for Channel Quality Feedback in Wireless Communication Systems”, U.S. Appl. No. 12/823,178, filed Jun. 25, 2010, 34 pages. |
“Motorola SJYN0505A Stereo Push to Talk Headset for Nextel”, Motorola Inc., iDEN 5-pole 2.5 mm Stereo Headset SJYN05058A, 2010, 2 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/407,783, Sep. 9, 2013, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/407,783, Oct. 5, 2011, 14 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/480,289, Jun. 9, 2011, 20 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/492,339, Aug. 19, 2011, 13 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/542,374, Feb. 24, 2014, 25 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/542,374, Aug. 7, 2013, 22 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/542,374, Aug. 31, 2012, 27 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/542,374, Dec. 23, 2011, 22 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/573,456, Nov. 18, 2011, 9 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/577,553, Feb. 4, 2014, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/577,553, Aug. 12, 2013, 11 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/577,553, Dec. 28, 2011, 7 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/650,699, Mar. 30, 2015, 28 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/650,699, Apr. 23, 2013, 19 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/650,699, Jul. 19, 2012, 12 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/650,699, Dec. 16, 2013, 26 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/756,777, Apr. 19, 2013, 17 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/813,221, Oct. 8, 2013, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/823,178, Aug. 23, 2012, 15 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/899,211, Apr. 10, 2014, 12 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/899,211, May 22, 2013, 17 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/973,467, Mar. 28, 2013, 9 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/477,609, Dec. 3, 2014, 7 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/477,609, Dec. 14, 2015, 9 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/692,520, Sep. 5, 2014, 15 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/692,520, Oct. 5, 2015, 17 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/733,297, Mar. 13, 2015, 23 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/759,089, Apr. 18, 2013, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/873,557, Mar. 11, 2015, 19 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/924,838, Nov. 28, 2014, 6 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/945,968, Apr. 28, 2015, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/955,723, Dec. 17, 2015, 21 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/012,050, Feb. 10, 2015, 18 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/031,739, Aug. 18, 2015, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/052,903, Mar. 11, 2015, 7 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/068,309, Oct. 2, 2015, 14 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/150,047, Jun. 29, 2015, 11 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/226,041, Jun. 5, 2015, 8 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/280,775, Jul. 16, 215, 9 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/339,476, Jan. 20, 2016, 9 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/445,715, Jan. 15, 2016, 26 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/952,738, Jan. 11, 2016, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 12/365,166, Apr. 16, 2010, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 12/365,166, Aug. 25, 2010, 4 pages. |
“Notice of Allowance”, U.S. Appl. No. 12/650,699, Jan. 14, 2016, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/040,090, Mar. 8, 2012, 6 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/088,237, Jun. 17, 2013, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/088,237, Jul. 11, 2013, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/188,419, May 22, 2013, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/873,557, Dec. 23, 2015, 10 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/924,838, Mar. 12, 2015, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/924,838, Jul. 8, 2015, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/945,968, Sep. 16, 2015, 6 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/012,050, Dec. 14, 2015, 12 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/226,041, Dec. 31, 2015, 5 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/488,709, Sep. 23, 2015, 10 pages. |
“On Extensions to Rel-8 PMI Feedback”, 3GPP TSG RAN WG1 #60, R1-101129, Motorola, San Francisco, USA,, Feb. 2010, 4 pages. |
“On OTDOA in LTE”, 3GPP TSG RAN WG1 #55bis, Ljubljana, Slovenia; R1-090353, Jan. 2009, 8 pages. |
“On OTDOA method for L TE Positioning”, 3GPP TSG RAN WG1 #56, Ericsson, R1090918, Athens, Greece, Feb. 2009, 6 pages. |
“On Serving Cell Muting for OTDOA Measurements”, 3GPP TSG RANI #57, R1-092628—Los Angeles, CA, USA, Jun. 2009, 7 pages. |
“Performance evaluation of adaptive codebook as enhancement of 4 Tx feedback”, 3GPP TSG RAN WG1#61bis, R1-103447, Jul. 2010, 6 pages. |
“PHY Layer 1 1 4. Specification Impact of Positioning Improvements”, 3GPP TSG RAN WG1 #56bis, Athens, Greece; Qualcomm Europe, R1-090852,, Feb. 2009, 3 pages. |
“Physical Channels and Modulation (Release 8)”, 3GPP TS 36.211 V8.6.0 (Mar. 2009) 3rd Generation Partnership Project; Technical Specification Group Radio Access 28 Network; Evolved Universal Terrestrial Radio Access (E-UTRA);, Mar. 2009, 83 pages. |
“Physical Channels and Modulation (Release 9)”, 3GPP TS 36.211 V9.0.0 (Dec. 2009); 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Release 9, Dec. 2009, 85 pages. |
“Physical layer procedures”, 3GPP TS 36.213 V9.0.1 (Dec. 2009); 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Release 9, Dec. 2009, 79 pages. |
“Positioning Subframe Muting for OTDOA Measurements”, 3GPP TSG RAN1 #58 R1-093406, Shenzhen, P. R. China, Aug. 2009, 9 pages. |
“Positioning Support for L TE”, 3GPP TSG RAN WG1 #42, Athens, Greece, RP-080995, Dec. 2008, 5 pages. |
“Pre-Brief Appeal Conference Decision”, U.S. Appl. No. 12/650,699, Apr. 9, 2013, 2 pages. |
“Rationale for mandating simulation of 4Tx Widely-Spaced Cross-Polarized Antenna Configuration for LTE-Advanced MU-MIMO”, 3GPP TSG-RAN WG1 Meeting #61bis, R1-104184, Dresden, Germany, Jun. 2010, 5 pages. |
“Reference Signals for Low Interference Subframes in Downlink;”, 3GPP TSG RAN WG1 Meeting #56bis; Seoul, South Korea; Ericsson; R1-091314, Mar. 2009, 8 pages. |
“Restriction Requirement”, U.S. Appl. No. 14/031,739, Apr. 28, 2015, 7 pages. |
“Signalling Support for PRS Muting in”, 3GPP TSG RAN2 #70, Montreal, Canada; Ericsson, ST-Ericsson; R2-103102, May 2010, 2 pages. |
“Some Results on DL-MIMO Enhancements for LTE-A”, 3GPP TSG WG1 #55bis, R1-090328, Motorola; Ljubjana, Slovenia, Jan. 2009, 5 pages. |
“Sounding RS Control Signaling for Closed Loop Antenna Selection”, 3GPP TSG RAN #51, R1-080017—Mitsubishi Electric, Jan. 2008, 8 pages. |
“Study on hearability of reference signals in LTE positioning support”, 3GPP TSG RAN1 #56bisa—R1-091336, Seoul, South Korea, Mar. 2009, 8 pages. |
“Supplemental Notice of Allowance”, U.S. Appl. No. 14/488,709, Oct. 7, 2015, 8 pages. |
“System Simulation Results for OTDOA”, 3GPP TSG RAN WG4 #53, Jeju, South Korea, Ericsson, R4-094532;, Nov. 2009, 3 pages. |
“Technical 1 34. Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA);”, 3GPP TS 36.211 v8.4.0 (Sep. 2008); 3rd Generation Partnership Project; Physical Channels and Modulation (Release 8), 2008, 78 pages. |
“Technical Specification Group Radio Access Network”, 3GPP TS 25.305 V8.1.0 (Dec. 2008) 3rd Generation Partnership Project; Stage 2 functional specification of User Equipment (UE) positioning in UTRAN (Release 8), 2008, 79 pages. |
“Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA)”, 3GPP TS 36.305 V0.2.0 (May 2009) 3rd generation Partnership Project; Stage 2 functional specification of User Equipment, (UE) positioning in E-UTRAN (Release 9);, 2010, 52 pages. |
“Text 1 3 0. proposal on Orthonogonal PRS transmissions in mixed CP deployments using MBSFN subframes”, 3GPP TSG RAN WG1 #59, Jeju, South Korea, Motorola, R1-095003;, Nov. 2009, 4 pages. |
“Text proposal on measurements”, 3GPP TSG RAN2 #60bis, Tdoc R2-080420; Motorola, Sevilla, Spain, Jan. 2008, 9 pages. |
“Two Component Feedback Design and Codebooks”, 3GPP TSG RAN1 #61, R1-103328, Motorola, Montreal, Canada, May 2010, 7 pages. |
“Two-Level Codebook design for MU MIMO enhancement”, 3GPP TSG RAN WG1 #60, R1-102904, Montreal, Canada, May 2010, 8 pages. |
“UTRAN SFN-SFN observed lime 11 difference measurement & 3GPP TS 25.311 IE 10.3.7.106 “UE positioning OTDOA neighbor cell info' assistance data D fields””, 3GPP TSG RAN WG4 (Radio) #20, New Jersey, USA; TDOC R4-011408,, Nov. 2001, 4 pages. |
“View on the feedback framework for Rei. 1 0”, 3GPP TSG RAN WG1 #61, R1-103026, Samsung, Montreal, Canada, May 2010, 15 pages. |
“Views on Codebook Design for Downlink 8Tx MIMO”, 3GPP TSG RAN WG1 #60. R1-101219, San Francisco, USA, Feb. 2010, 9 pages. |
Colin,“Restrictions on Autonomous Muting to Enable 1 58. Time Difference of Arrival Measurements”, U.S. Appl. No. 61/295,678, filed Jan. 15, 2010, 26 pages. |
Costas,“A Study of a Class of Detection Waveforms Having Nearly Ideal Range-Doppler Ambiguity Properties”, Fellow, IEEE; Proceedings of the IEEE, vol. 72, No. 8, Aug. 1984, 14 pages. |
Guo,“A Series-Shunt Symmetric Switch Makes Transmit-Receive Antennas Reconfigurable in Multipath Channels”, IEEE 3d Int'l Conf. on Digital Object Identifier, May 29, 2011, pp. 468-471. |
Jafar,“On Optimality of Beamforming for Multiple Antenna Systems with Imperfect Feedback”, Department of Electrical Engineering, Stanford University, CA, USA, 2004, 7 pages. |
Knoppert,“Communication Device”, U.S. Appl. No. 29/329,028, filed Dec. 8, 2008, 10 pages. |
Knoppert,“Indicator Shelf for Portable Electronic Device”, U.S. Appl. No. 12/480,289, filed Jun. 8, 2009, 15 pages. |
Krishnamurthy,“Interference Control, SINR Optimization and Signaling Enhancements to Improve the Performance of OTDOA Measurements”, U.S. Appl. No. 12/813,221, filed Jun. 10, 2010, 20 pages. |
Krishnamurthy,“Threshold Determination in TDOA-Based Positioning System”, U.S. Appl. No. 12/712,191, filed Feb. 24, 2010, 19 pages. |
Li,“A Subband Feedback Controlled Generalized Sidelobe Canceller in Frequency Domain with Multi-Channel Postfilter”, 2nd International Workshop on Intelligent Systems and Applications (ISA), IEEE, May 22, 2010, 4 pages. |
MACCM“GaAs SP6T 2.5V High Power Switch Dual-/Tri-/Quad-Band GSM Applications”, Rev. V1 data sheet, www.macomtech.com, Mar. 22, 2003, 5 pages. |
Renesas,“uPG2417T6M GaAs Integrated Circuit SP6T Switch for NFC Application (R09DS0010EJ0100)”, Rev. 1.00 data sheet, Dec. 24, 2010, 12 pages. |
Sayana,“Method of Codebook Design and Precoder Feedback in Wireless Communication Systems”, U.S. Appl. No. 61/374,241, filed Aug. 16, 2010, 40 pages. |
Sayana,“Method of Precoder Information Feedback in Multi-Antenna Wireless Communication Systems”, U.S. Appl. No. 61/331,818, filed May 5, 2010, 43 pages. |
Tesoriero,“Improving Location Awareness in Indoor Spaces Using RFID Technology”, ScienceDirect, Expert Systems with Applications, 2010, 894-898. |
Valkonen,“Impedance Matching and Tuning of Non-Resonant Mobile Terminal Antennas”, Aalto University Doctoral Dissertations, Mar. 15, 2013, 94 pages. |
Visotsky,“Space—Time Transmit Precoding With Imperfect Feedback”, IEEE Transactions on Information Theory, vol. 47, No. 6, Sep. 2001, pp. 2632-2639. |
Vodafone“PDCCH Structure for MTC Enhanced Coverage”, 3GPP TSG RAN WG1 #76, R1-141030, Prague, Czech Republic, Feb. 2014, 2 pages. |
Zhuang,“Method for Precoding Based on Antenna Grouping”, U.S. Appl. No. 12/899,211, filed Oct. 6, 2010, 26 pages. |
“Coverage enhancement for RACH messages”, 3GPP TSG-RAN WG1 Meeting #76, R1-140153, Alcatel-Lucent, Alcatel-Lucent Shanghai Bell, Feb. 2014, 5 pages. |
“Coverage Improvement for PRACH”, 3GPP TSG RAN WG1 Meeting #76—R1-140115, Intel Corporation, Feb. 2014, 9 pages. |
“Final Office Action”, U.S. Appl. No. 14/150,047, Mar. 4, 2016, 14 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2015/033570, Oct. 19, 2015, 18 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/733,297, Feb. 2, 2016, 17 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/280,775, Mar. 23, 2016, 11 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/330,317, Feb. 25, 2016, 14 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/873,557, Apr. 11, 2016, 5 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/031,739, Mar. 1, 2016, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/052,903, Feb. 1, 2016, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/952,738, Mar. 28, 2016, 7 pages. |
“On the need of PDCCH for SIB, RAR and Paging”, 3GPP TSG-RAN WG1 #76—R1140239, Feb. 2014, 4 pages. |
“Specification Impact of Enhanced Filtering for Scalable UMTS”, 3GPP TSG RAN WG1 Meeting #76, R1-140726, Qualcomm Incorporated, Feb. 2014, 2 pages. |
“Supplemental Notice of Allowance”, U.S. Appl. No. 14/031,739, Apr. 21, 2016, 2 pages. |
“Written Opinion”, Application No. PCT/US2013/071616, Jun. 3, 2015, 9 pages. |
Yu-chun,“A New Downlink Control Channel Scheme for LTE”, Vehicular Technology Conference (VTC Spring), 2013 IEEE 77th, Jun. 2, 2013, 6 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/031,739, Jun. 8, 2016, 2 pages. |
“Final Office Action”, U.S. Appl. No. 13/692,520, May 26, 2016, 25 pages. |
“Final Office Action”, U.S. Appl. No. 13/733,297, Jul. 18, 2016, 17 pages. |
“Final Office Action”, U.S. Appl. No. 13/955,723, Jun. 16, 2016, 31 pages. |
“Final Office Action”, U.S. Appl. No. 14/330,317, Jun. 16, 2016, 15 pages. |
“Final Office Action”, U.S. Appl. No. 14/445,715, Jul. 8, 2016, 31 pages. |
“Foreign Office Action”, CN Application No. 201480013330.2, Jun. 2, 2016, 15 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/280,755, Jul. 15, 2016, 5 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/339,476, Jul. 18, 2016, 11 pages. |
“Supplemental Notice of Allowance”, U.S. Appl. No. 14/952,738, Jun. 9, 2016, 4 pages. |
“Advisory Action”, U.S. Appl. No. 13/692,520, Sep. 6, 2016, 3 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/339,476, Sep. 13, 2016, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/339,476, Sep. 30, 2016, 2 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/692,520, Nov. 17, 2016, 7 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/445,715, Oct. 20, 2016, 43 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/150,047, Oct. 28, 2016, 8 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/150,047, Dec. 16, 2016, 2 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/955,723, Jan. 23, 2017, 23 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/955,723, Jan. 13, 2017, 30 pages. |
Number | Date | Country | |
---|---|---|---|
20140177472 A1 | Jun 2014 | US |