The present invention relates to methods and apparatus for transmitting vibrations through teeth or bone structures in and/or around a mouth. More particularly, the present invention relates to methods and apparatus for sound conduction through teeth or bone structures in and/or around the mouth by transmitting vibrations correlating to auditory signals received by a user.
Hearing loss affects over 31 million people in the United States (about 13% of the population). As a chronic condition, the incidence of hearing impairment rivals that of heart disease and, like heart disease, the incidence of hearing impairment increases sharply with age.
While the vast majority of those with hearing loss can be helped by a well-fitted, high quality hearing device, only 22% of the total hearing impaired population own hearing devices. Current products and distribution methods are not able to satisfy of reach over 20 million persons with hearing impairment in the U.S. alone.
Hearing loss adversely affects a person's quality of life and psychological well-being. Individuals with hearing impairment often withdraw from social interactions to avoid frustrations resulting from inability to understand conversations. Recent studies have shown that hearing impairment causes increased stress levels, reduced self-confidence, reduced sociability and reduced effectiveness in the workplace.
The human ear generally comprises three regions: the outer ear, the middle ear, and the inner ear. The outer ear generally comprises the external auricle and the ear canal, which is a tubular pathway through which sound reaches the middle ear. The outer ear is separated from the middle ear by the tympanic membrane (eardrum). The middle ear generally comprises three small bones, known as the ossicles, which form a mechanical conductor from the tympanic membrane to the inner ear. Finally, the inner ear includes the cochlea, which is a fluid-filled structure that contains a large number of delicate sensory hair cells that are connected to the auditory nerve.
Hearing loss can also be classified in terms of being conductive, sensorineural, or a combination of both. Conductive hearing impairment typically results from diseases or disorders that limit the transmission of sound through the middle ear. Most conductive impairments can be treated medically or surgically. Purely conductive hearing loss represents a relatively small portion of the total hearing impaired population (estimated at less than 5% of the total hearing impaired population).
Sensorineural hearing losses occur mostly in the inner ear and account for the vast majority of hearing impairment (estimated at 90-95% of the total hearing impaired population). Sensorineural hearing impairment (sometimes called “nerve loss”) is largely caused by damage to the sensory hair cells inside the cochlea. Sensorineural hearing impairment occurs naturally as a result of aging or prolonged exposure to loud music and noise. This type of hearing loss cannot be reversed nor can it be medically or surgically treated; however, the use of properly fitted hearing devices can improve the individual's quality of life.
Conventional hearing devices are the most common devices used to treat mild to severe sensorineural hearing impairment. These are acoustic devices that amplify sound to the tympanic membrane. These devices are individually customizable to the patient's physical and acoustical characteristics over four to six separate visits to an audiologist or hearing instrument specialist. Such devices generally comprise a microphone, amplifier, battery, and speaker. Recently, hearing device manufacturers have increased the sophistication of sound processing, often using digital technology, to provide features such as programmability and multi-band compression. Although these devices have been miniaturized and are less obtrusive, they are still visible and have major acoustic limitation.
Industry research has shown that the primary obstacles for not purchasing a hearing device generally include: a) the stigma associated with wearing a hearing device; b) dissenting attitudes on the part of the medical profession, particularly ENT physicians; c) product value issues related to perceived performance problems; d) general lack of information and education at the consumer and physician level; and e) negative word-of-mouth from dissatisfied users.
Other devices such as cochlear implants have been developed for people who have severe to profound hearing loss and are essentially deaf (approximately 2% of the total hearing impaired population). The electrode of a cochlear implant is inserted into the inner ear in an invasive and non-reversible surgery. The electrode electrically stimulates the auditory nerve through an electrode array that provides audible cues to the user, which are not usually interpreted by the brain as normal sound. Users generally require intensive and extended counseling and training following surgery to achieve the expected benefit.
Other devices such as electronic middle ear implants generally are surgically placed within the middle ear of the hearing impaired. They are surgically implanted devices with an externally worn component.
The manufacture, fitting and dispensing of hearing devices remain an arcane and inefficient process. Most hearing devices are custom manufactured, fabricated by the manufacturer to fit the ear of each prospective purchaser. An impression of the ear canal is taken by the dispenser (either an audiologist or licensed hearing instrument specialist) and mailed to the manufacturer for interpretation and fabrication of the custom molded rigid plastic casing. Hand-wired electronics and transducers (microphone and speaker) are then placed inside the casing, and the final product is shipped back to the dispensing professional after some period of time, typically one to two weeks.
The time cycle for dispensing a hearing device, from the first diagnostic session to the final fine-tuning session, typically spans a period over several weeks, such as six to eight weeks, and involves multiple with the dispenser.
Accordingly, there exists a need for methods and devices which are efficacious and safe in facilitating the treatment of hearing loss in patients.
An electronic and transducer device may be attached, adhered, or otherwise embedded into or upon a removable dental or oral appliance to form a hearing aid assembly. Such a removable oral appliance may be a custom-made device fabricated from a thermal forming process utilizing a replicate model of a dental structure obtained by conventional dental impression methods. The electronic and transducer assembly may receive incoming sounds either directly or through a receiver to process and amplify the signals and transmit the processed sounds via a vibrating transducer element coupled to a tooth or other bone structure, such as the maxillary, mandibular, or palatine bone structure.
The assembly for transmitting vibrations via at least one tooth may generally comprise a housing having a shape which is conformable to at least a portion of the at least one tooth, and an actuatable transducer disposed within or upon the housing and in vibratory communication with a surface of the at least one tooth. Moreover, the transducer itself may be a separate assembly from the electronics and may be positioned along another surface of the tooth, such as the occlusal surface, or even attached to an implanted post or screw embedded into the underlying bone. Additionally, the transducer may also be placed directly onto the gingival tissue surface adjacent to the tooth for vibratory transmission through the tissue and into the underlying bone.
One example of a method for transmitting these vibrations via at least one tooth may generally comprising positioning a housing of the removable oral appliance onto at least one tooth, whereby the housing has a shape which is conformable to at least a portion of the tooth, and maintaining contact between a surface of the tooth with an actuatable transducer such that the surface and transducer remain in vibratory communication.
An electronic and transducer device may be attached, adhered, or otherwise embedded into or upon a removable oral appliance or other oral device to form a hearing aid assembly. Such an oral appliance may be a custom-made device fabricated from a thermal forming process utilizing a replicate model of a dental structure obtained by conventional dental impression methods. The electronic and transducer assembly may receive incoming sounds either directly or through a receiver to process and amplify the signals and transmit the processed sounds via a vibrating transducer element coupled to a tooth or other bone structure, such as the maxillary, mandibular, or palatine hone structure.
As shown in
Generally, the volume of electronics and/or transducer assembly 16 may be minimized so as to be unobtrusive and as comfortable to the user when placed in the mouth. Although the size may be varied, a volume of assembly 16 may be less than 800 cubic millimeters. This volume is, of course, illustrative and not limiting as size and volume of assembly 16 and may be varied accordingly between different users.
Moreover, removable oral appliance 18 may be fabricated from various polymeric or a combination of polymeric and metallic materials using any number of methods, such as computer-aided machining processes using computer numerical control (CNC) systems or three-dimensional printing processes, e.g., stereolithography apparatus (SLA), selective laser sintering (SLS), and/or other similar processes utilizing three-dimensional geometry of the patient's dentition, which may be obtained via any number of techniques. Such techniques may include use of scanned dentition using intra-oral scanners such as laser, white light, ultrasound, mechanical three-dimensional touch scanners, magnetic resonance imaging (MRI), computed tomography (CT), other optical methods, etc.
In forming the removable oral appliance 18, the appliance 18 may be optionally formed such that it is molded to fit over the dentition and at least a portion of the adjacent gingival tissue to inhibit the entry of food, fluids, and other debris into the oral appliance 18 and between the transducer assembly and tooth surface. Moreover, the greater surface area of the oral appliance 18 may facilitate the placement and configuration of the assembly 16 onto the appliance 18.
Additionally, the removable oral appliance 18 may be optionally fabricated to have a shrinkage factor such that when placed onto the dentition, oral appliance 18 may be configured to securely grab onto the tooth or teeth as the appliance 18 may have a resulting size slightly smaller than the scanned tooth or teeth upon which the appliance 18 was formed. The fitting may result in a secure interference fit between the appliance 18 and underlying dentition.
In one variation, with assembly 14 positioned upon the teeth, as shown in
The transmitter assembly 22, as described in further detail below, may contain a microphone assembly as well as a transmitter assembly and may be configured in any number of shapes and forms worn by the user, such as a watch, necklace, lapel, phone, belt-mounted device, etc.
With respect to microphone 30, a variety of various microphone systems may be utilized. For instance, microphone 30 may be a digital, analog, and/or directional type microphone. Such various types of microphones may be interchangeably configured to be utilized with the assembly, if so desired.
Power supply 36 may be connected to each of the components in transmitter assembly 22 to provide power thereto. The transmitter signals 24 may be in any wireless form utilizing, e.g., radio frequency, ultrasound, microwave, Blue Tooth® (BLUETOOTH SIG, INC., Bellevue, Wash.), etc. for transmission to assembly 16. Assembly 22 may also optionally include one or more input controls 28 that a user may manipulate to adjust various acoustic parameters of the electronics and/or transducer assembly 16, such as acoustic focusing, volume control, filtration, muting, frequency optimization, sound adjustments, and tone adjustments, etc.
The signals transmitted 24 by transmitter 34 may be received by electronics and/or transducer assembly 16 via receiver 38, which may be connected to an internal processor for additional processing of the received signals. The received signals may be communicated to transducer 40, which may vibrate correspondingly against a surface of the tooth to conduct the vibratory signals through the tooth and bone and subsequently to the middle ear to facilitate hearing of the user. Transducer 40 may be configured as any number of different vibratory mechanisms. For instance, in one variation, transducer 40 may be an electromagnetically actuated transducer. In other variations, transducer 40 may be in the form of a piezoelectric crystal having a range of vibratory frequencies, e.g., between 250 to 4000 Hz.
Power supply 42 may also be included with assembly 16 to provide power to the receiver, transducer, and/or processor, if also included. Although power supply 42 may be a simple battery, replaceable or permanent, other variations may include a power supply 42 which is charged by inductance via an external charger. Additionally, power supply 42 may alternatively be charged via direct coupling to an alternating current (AC) or direct current (DC) source. Other variations may include a power supply 42 which is charged via a mechanical mechanism, such as an internal pendulum or slidable electrical inductance charger as known in the art, which is actuated via, e.g., motions of the jaw and/or movement for translating the mechanical motion into stored electrical energy for charging power supply 42.
In another variation of assembly 16, rather than utilizing an extra-buccal transmitter, hearing aid assembly 50 may be configured as an independent assembly contained entirely within the user's mouth, as shown in
In order to transmit the vibrations corresponding to the received auditory signals efficiently and with minimal loss to the tooth or teeth, secure mechanical contact between the transducer and the tooth is ideally maintained to ensure efficient vibratory communication. Accordingly, any number of mechanisms may be utilized to maintain his vibratory communication.
In one variation as shown in
An electronics and/or transducer assembly 64 may be simply placed, embedded, or encapsulated within housing 62 for contacting the tooth surface. In this variation, assembly 64 may be adhered against the tooth surface via an adhesive surface or film 66 such that contact is maintained between the two. As shown in
Aside from an adhesive film 66, another alternative may utilize an expandable or swellable member to ensure a secure mechanical contact of the transducer against the tooth. As shown in
Another variation is shown in
In yet another variation, the electronics may be contained as a separate assembly 90 which is encapsulated within housing 62 and the transducer 92 may be maintained separately from assembly 90 but also within housing 62. As shown in
In other variations as shown in
In yet another variation shown in
Another variation for a mechanical mechanism is illustrated in
In yet another variation, the electronics 150 and the transducer 152 may be separated from one another such that electronics 150 remain disposed within housing 62 but transducer 152, connected via wire 154, is located beneath dental oral appliance 60 along an occlusal surface of the tooth, as shown in
In the variation of
In yet another variation, an electronics and/or transducer assembly 170 may define a channel or groove 172 along a surface for engaging a corresponding dental author 174, as shown in
In yet another variation,
Similarly, as shown in
In yet other variations, vibrations may be transmitted directly into the underlying bone or tissue structures rather than transmitting directly through the tooth or teeth of the user. As shown in
In yet another variation, rather utilizing a post or screw drilled into the underlying bone itself a transducer may be attached, coupled, or otherwise adhered directly to the gingival tissue surface adjacent to the teeth. As shown in
For any of the variations described above, they may be utilized as a single device or in combination with any other variation herein, as practicable, to achieve the desired hearing level in the user. Moreover, more than one oral appliance device and electronics and/or transducer assemblies may be utilized at any one time. For example,
Moreover, each of the different transducers 270, 272, 274, 276 can also be programmed to vibrate in a manner which indicates the directionality of sound received by the microphone worn by the user. For example, different transducers positioned at different locations within the user's mouth can vibrate in a specified manner by providing sound or vibrational queues to inform the user which direction a sound was detected relative to an orientation of the user. For instance, a first transducer located, e.g., on a user's left tooth, can be programmed to vibrate for sound detected originating from the user's left side. Similarly, a second transducer located, e.g., on a user's right tooth, can be programmed to vibrate for sound detected originating from the user's right side. Other variations and queues may be utilized as these examples are intended to be illustrative of potential variations.
In variations where the one or more microphones are positioned in intra-buccal locations, the microphone may be integrated directly into the electronics and/or transducer assembly, as described above. However, in additional variation, the microphone unit may be positioned at a distance from the transducer assemblies to minimize: feedback. In one example, similar to a variation shown above, microphone unit 282 may be separated from electronics and/or transducer assembly 280, as shown in
Although the variation illustrates the microphone unit 282 placed adjacent to the gingival tissue 268, unit 282 may be positioned upon another tooth or another location within the mouth. For instance.
In yet another variation for separating the microphone from the transducer assembly.
The applications of the devices and methods discussed above are not limited to the treatment of hearing loss but may include any number of further treatment applications. Moreover, such devices and methods may be applied to other treatment sites within the body. Modification of the above-described assemblies and methods for carrying out the invention, combinations between different variations as practicable, and variations of aspects of the invention that are obvious to those of skill in the art are intended to be within the scope of the claims.
This application is a continuation of U.S. application Ser. No. 13/551,158 filed Jul. 17, 2012 which is a continuation of U.S. application Ser. No. 12/333,259 filed Dec. 11, 2008, now U.S. Pat. No. 8,254,611 issued Aug. 28, 2012, which is a continuation of U.S. application Ser. No. 11/754,823 filed May 29, 2007, now U.S. Pat. No. 7,844,064 issued Nov. 30, 2010, which claims the benefit of priority to U.S. Provisional Patent Application Ser. Nos. 60/809,244 filed May 30, 2006 and 60/820,223 filed Jul. 24, 2006, each of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2045404 | Nicholides | Jun 1936 | A |
2161169 | Jefferis | Jun 1939 | A |
2230397 | Abraham | Feb 1941 | A |
2242118 | Fischer | May 1941 | A |
2318872 | Madiera | May 1943 | A |
2977425 | Cole | Mar 1961 | A |
2995633 | Puharich et al. | Aug 1961 | A |
3156787 | Puharich et al. | Nov 1964 | A |
3170993 | Puharich et al. | Feb 1965 | A |
3267931 | Puharich et al. | Aug 1966 | A |
3325743 | Blum | Jun 1967 | A |
3712962 | Epley | Jan 1973 | A |
3787641 | Santori | Jan 1974 | A |
3894196 | Briskey | Jul 1975 | A |
3985977 | Beaty et al. | Oct 1976 | A |
4025732 | Traunmuller | May 1977 | A |
4150262 | Ono | Apr 1979 | A |
4498461 | Hakansson | Feb 1985 | A |
4591668 | Iwata | May 1986 | A |
4612915 | Hough et al. | Sep 1986 | A |
4642769 | Petrofsky | Feb 1987 | A |
4738268 | Kipnis | Apr 1988 | A |
4791673 | Schreiber | Dec 1988 | A |
4817044 | Ogren | Mar 1989 | A |
4832033 | Maher et al. | May 1989 | A |
4904233 | Haakansson et al. | Feb 1990 | A |
4920984 | Furumichi et al. | May 1990 | A |
4962559 | Schuman | Oct 1990 | A |
4982434 | Lenhardt et al. | Jan 1991 | A |
5012520 | Steeger | Apr 1991 | A |
5033999 | Mersky | Jul 1991 | A |
5047994 | Lenhardt et al. | Sep 1991 | A |
5060526 | Barth et al. | Oct 1991 | A |
5082007 | Adell | Jan 1992 | A |
5233987 | Fabian et al. | Aug 1993 | A |
5323468 | Bottesch | Jun 1994 | A |
5325436 | Soli et al. | Jun 1994 | A |
5354326 | Comben et al. | Oct 1994 | A |
5372142 | Madsen et al. | Dec 1994 | A |
5402496 | Soli et al. | Mar 1995 | A |
5403262 | Gooch | Apr 1995 | A |
5447489 | Issalene et al. | Sep 1995 | A |
5455842 | Mersky et al. | Oct 1995 | A |
5460593 | Mersky et al. | Oct 1995 | A |
5477489 | Wiedmann | Dec 1995 | A |
5546459 | Sih et al. | Aug 1996 | A |
5558618 | Maniglia | Sep 1996 | A |
5565759 | Dunstan | Oct 1996 | A |
5579284 | May | Nov 1996 | A |
5616027 | Jacobs et al. | Apr 1997 | A |
5624376 | Ball et al. | Apr 1997 | A |
5661813 | Shimauchi et al. | Aug 1997 | A |
5706251 | May | Jan 1998 | A |
5760692 | Block | Jun 1998 | A |
5793875 | Lehr et al. | Aug 1998 | A |
5800336 | Ball et al. | Sep 1998 | A |
5812496 | Peck | Sep 1998 | A |
5828765 | Gable | Oct 1998 | A |
5902167 | Filo et al. | May 1999 | A |
5914701 | Gersheneld et al. | Jun 1999 | A |
5961443 | Rastatter et al. | Oct 1999 | A |
5984681 | Huang | Nov 1999 | A |
6029558 | Stevens et al. | Feb 2000 | A |
6047074 | Zoels et al. | Apr 2000 | A |
6057668 | Chao | May 2000 | A |
6068590 | Brisken | May 2000 | A |
6072884 | Kates | Jun 2000 | A |
6072885 | Stockham, Jr. et al. | Jun 2000 | A |
6075557 | Holliman et al. | Jun 2000 | A |
6115477 | Filo et al. | Sep 2000 | A |
6118882 | Haynes | Sep 2000 | A |
6171229 | Kroll et al. | Jan 2001 | B1 |
6223018 | Fukumoto et al. | Apr 2001 | B1 |
6239705 | Glen | May 2001 | B1 |
6333269 | Naito et al. | Dec 2001 | B2 |
6371758 | Kittelsen | Apr 2002 | B1 |
6377693 | Lippa et al. | Apr 2002 | B1 |
6394969 | Lenhardt | May 2002 | B1 |
6504942 | Hong et al. | Jan 2003 | B1 |
6533747 | Polaschegg et al. | Mar 2003 | B1 |
6538558 | Sakazume et al. | Mar 2003 | B2 |
6585637 | Brillhart et al. | Jul 2003 | B2 |
6629922 | Puria et al. | Oct 2003 | B1 |
6631197 | Taenzer | Oct 2003 | B1 |
6633747 | Reiss | Oct 2003 | B1 |
6658124 | Meadows | Dec 2003 | B1 |
6682472 | Davis | Jan 2004 | B1 |
6694035 | Teicher et al. | Feb 2004 | B1 |
6754472 | Williams et al. | Jun 2004 | B1 |
6778674 | Panasik et al. | Aug 2004 | B1 |
6826284 | Benesty et al. | Nov 2004 | B1 |
6885753 | Bank | Apr 2005 | B2 |
6917688 | Yu et al. | Jul 2005 | B2 |
6941952 | Rush, III | Sep 2005 | B1 |
6954668 | Cuozzo | Oct 2005 | B1 |
6985599 | Asnes | Jan 2006 | B2 |
7003099 | Zhang et al. | Feb 2006 | B1 |
7010139 | Smeehuyzen | Mar 2006 | B1 |
7033313 | Lupin et al. | Apr 2006 | B2 |
7035415 | Belt et al. | Apr 2006 | B2 |
7074222 | Westerkull | Jul 2006 | B2 |
7076077 | Atsumi et al. | Jul 2006 | B2 |
7099822 | Zangi | Aug 2006 | B2 |
7162420 | Zangi et al. | Jan 2007 | B2 |
7171003 | Venkatesh et al. | Jan 2007 | B1 |
7171008 | Elko | Jan 2007 | B2 |
7174022 | Zhang et al. | Feb 2007 | B1 |
7174026 | Niederdränk | Feb 2007 | B2 |
7206423 | Feng et al. | Apr 2007 | B1 |
7246058 | Burnett | Jul 2007 | B2 |
7258533 | Tanner et al. | Aug 2007 | B2 |
7269266 | Anjanappa et al. | Sep 2007 | B2 |
7271569 | Oglesbee | Sep 2007 | B2 |
7281924 | Ellison | Oct 2007 | B2 |
7310427 | Retchin et al. | Dec 2007 | B2 |
7329226 | Ni et al. | Feb 2008 | B1 |
7331349 | Brady et al. | Feb 2008 | B2 |
7333624 | Husung | Feb 2008 | B2 |
7361216 | Kangas et al. | Apr 2008 | B2 |
7409070 | Pitulia | Aug 2008 | B2 |
7486798 | Anjanappa et al. | Feb 2009 | B2 |
7512448 | Malick et al. | Mar 2009 | B2 |
7520851 | Davis et al. | Apr 2009 | B2 |
7522738 | Miller, III | Apr 2009 | B2 |
7522740 | Julstrom et al. | Apr 2009 | B2 |
7664277 | Abolfathi et al. | Feb 2010 | B2 |
7724911 | Menzel et al. | May 2010 | B2 |
7796769 | Abolfathi | Sep 2010 | B2 |
7801319 | Abolfathi | Sep 2010 | B2 |
7844064 | Abolfathi et al. | Nov 2010 | B2 |
7844070 | Abolfathi | Nov 2010 | B2 |
7876906 | Abolfathi | Jan 2011 | B2 |
8254611 | Abolfathi et al. | Aug 2012 | B2 |
8270638 | Abolfathi et al. | Sep 2012 | B2 |
8588447 | Abolfathi et al. | Nov 2013 | B2 |
20010003788 | Ball et al. | Jun 2001 | A1 |
20010051776 | Lenhardt | Dec 2001 | A1 |
20020026091 | Leysieffer | Feb 2002 | A1 |
20020071581 | Leysieffer et al. | Jun 2002 | A1 |
20020077831 | Numa | Jun 2002 | A1 |
20020122563 | Schumaier | Sep 2002 | A1 |
20020173697 | Lenhardt | Nov 2002 | A1 |
20030048915 | Bank | Mar 2003 | A1 |
20030059078 | Downs et al. | Mar 2003 | A1 |
20030091200 | Pompei | May 2003 | A1 |
20030212319 | Magill | Nov 2003 | A1 |
20040057591 | Beck et al. | Mar 2004 | A1 |
20040063073 | Kajimoto et al. | Apr 2004 | A1 |
20040131200 | Davis | Jul 2004 | A1 |
20040141624 | Davis et al. | Jul 2004 | A1 |
20040202339 | O'Brien, Jr. et al. | Oct 2004 | A1 |
20040202344 | Anjanappa et al. | Oct 2004 | A1 |
20040214130 | Fischer et al. | Oct 2004 | A1 |
20040243481 | Bradbury et al. | Dec 2004 | A1 |
20040247143 | Lantrua et al. | Dec 2004 | A1 |
20050037312 | Uchida | Feb 2005 | A1 |
20050067816 | Buckman | Mar 2005 | A1 |
20050070782 | Brodkin | Mar 2005 | A1 |
20050129257 | Tamura | Jun 2005 | A1 |
20050189910 | Hui | Sep 2005 | A1 |
20050196008 | Anjanappa et al. | Sep 2005 | A1 |
20050241646 | Sotos et al. | Nov 2005 | A1 |
20060008106 | Harper | Jan 2006 | A1 |
20060025648 | Lupin et al. | Feb 2006 | A1 |
20060064037 | Shalon et al. | Mar 2006 | A1 |
20060167335 | Park et al. | Jul 2006 | A1 |
20060207611 | Anonsen | Sep 2006 | A1 |
20060270467 | Song et al. | Nov 2006 | A1 |
20060275739 | Ray | Dec 2006 | A1 |
20070010704 | Pitulia | Jan 2007 | A1 |
20070035917 | Hotelling et al. | Feb 2007 | A1 |
20070036370 | Granovetter et al. | Feb 2007 | A1 |
20070041595 | Carazo et al. | Feb 2007 | A1 |
20070105072 | Koljonen | May 2007 | A1 |
20070142072 | Lassally | Jun 2007 | A1 |
20070223735 | LoPresti et al. | Sep 2007 | A1 |
20070230713 | Davis | Oct 2007 | A1 |
20070242835 | Davis | Oct 2007 | A1 |
20070265533 | Tran | Nov 2007 | A1 |
20070276270 | Tran | Nov 2007 | A1 |
20070280491 | Abolfathi | Dec 2007 | A1 |
20070280492 | Abolfathi | Dec 2007 | A1 |
20070280493 | Abolfathi | Dec 2007 | A1 |
20070280495 | Abolfathi | Dec 2007 | A1 |
20070286440 | Abolfathi et al. | Dec 2007 | A1 |
20070291972 | Abolfathi et al. | Dec 2007 | A1 |
20080019542 | Menzel et al. | Jan 2008 | A1 |
20080019557 | Bevirt et al. | Jan 2008 | A1 |
20080021327 | El-Bialy et al. | Jan 2008 | A1 |
20080064993 | Abolfathi et al. | Mar 2008 | A1 |
20080070181 | Abolfathi et al. | Mar 2008 | A1 |
20080109972 | Mah et al. | May 2008 | A1 |
20080205678 | Boglavskij et al. | Aug 2008 | A1 |
20080304677 | Abolfathi et al. | Dec 2008 | A1 |
20090028352 | Petroff | Jan 2009 | A1 |
20090052698 | Rader et al. | Feb 2009 | A1 |
20090088598 | Abolfathi | Apr 2009 | A1 |
20090097684 | Abolfathi et al. | Apr 2009 | A1 |
20090097685 | Menzel et al. | Apr 2009 | A1 |
20090099408 | Abolfathi et al. | Apr 2009 | A1 |
20090105523 | Kassayan et al. | Apr 2009 | A1 |
20090147976 | Abolfathi | Jun 2009 | A1 |
20090149722 | Abolfathi et al. | Jun 2009 | A1 |
20090180652 | Davis et al. | Jul 2009 | A1 |
20090220115 | Lantrua | Sep 2009 | A1 |
20090226020 | Abolfathi | Sep 2009 | A1 |
20100189288 | Menzel et al. | Jul 2010 | A1 |
20100220883 | Menzel et al. | Sep 2010 | A1 |
20100312568 | Abolfathi | Dec 2010 | A1 |
20100322449 | Abolfathi | Dec 2010 | A1 |
20110002492 | Abolfathi et al. | Jan 2011 | A1 |
20110026740 | Abolfathi | Feb 2011 | A1 |
20110116659 | Abolfathi | May 2011 | A1 |
20120321113 | Abolfathi | Dec 2012 | A1 |
20130003996 | Menzel et al. | Jan 2013 | A1 |
20130010987 | Abolfathi et al. | Jan 2013 | A1 |
Number | Date | Country |
---|---|---|
0715838 | Jun 1996 | EP |
0824889 | Feb 1998 | EP |
1783919 | May 2007 | EP |
1066299 | Apr 1967 | GB |
56-026490 | Mar 1981 | JP |
2007028248 | Feb 2007 | JP |
2007028610 | Feb 2007 | JP |
2007044284 | Feb 2007 | JP |
2007049599 | Feb 2007 | JP |
2007049658 | Feb 2007 | JP |
WO 8302047 | Jun 1983 | WO |
WO 9102678 | Mar 1991 | WO |
WO 9506398 | Mar 1995 | WO |
WO 9519678 | Jul 1995 | WO |
WO 9621335 | Jul 1996 | WO |
WO 0209622 | Feb 2002 | WO |
WO 03001845 | Jan 2003 | WO |
WO 2004045242 | May 2004 | WO |
WO 2004093493 | Oct 2004 | WO |
WO 2004105650 | Dec 2004 | WO |
WO 2005000391 | Jan 2005 | WO |
WO 2005037153 | Apr 2005 | WO |
WO 2005053533 | Jun 2005 | WO |
WO 2006044161 | Apr 2006 | WO |
WO 2006088410 | Aug 2006 | WO |
WO 2006130909 | Dec 2006 | WO |
WO 2007043055 | Apr 2007 | WO |
WO 2007052251 | May 2007 | WO |
WO 2007059185 | May 2007 | WO |
WO 2007140367 | Dec 2007 | WO |
WO 2007140368 | Dec 2007 | WO |
WO 2007140373 | Dec 2007 | WO |
WO 2007143453 | Dec 2007 | WO |
WO 2008024794 | Feb 2008 | WO |
WO 2008030725 | Mar 2008 | WO |
WO 2009014812 | Jan 2009 | WO |
WO 2009025917 | Feb 2009 | WO |
WO 2009066296 | May 2009 | WO |
WO 2009102889 | Aug 2009 | WO |
WO 2009111404 | Sep 2009 | WO |
WO 2009111566 | Sep 2009 | WO |
Entry |
---|
Altmann, et al. Foresighting the new technology waves—Exper Group. In: State of the Art Reviews and Related Papers—Center on Nanotechnology and Society. 2004 Conference. Published Jun. 14, 2004. p. 1-291. Available at http://www.nano-and-society.org/NELSI/documents/ECreviewsandpapers061404.pdf. Accessed Jan. 11, 2009. |
Berard, G., “Hearing Equals Behavior” [summary], 1993, http://www.bixby.org/faq/tinnitus/treatment.html. |
Bozkaya, D. et al., “Mechanics of the Tapered Interference Fit in Dental Implants,” published Oct. 2002 [online], retrieved Oct. 14, 2010. http://www1.coe.neu.edu/˜smuftu/Papers/paper-interference-fit-elsevier-2.pdf. |
Broyhill, D., “Battlefield Medical Information System—Telemedicine,” A research paper presented to the U.S. Army Command and General Staff College in partial Fulfillment of the requirement for A462 Combat Health Support Seminar, 12 pages, 2003. |
Dental Cements—Premarket Notification, U.S. Department of Health and Human Services Food and Drug Administration Center for Devices and Radiological Health, pp. 1-10, Aug. 18, 1998. |
Henry, et al. “Comparison of Custom Sounds for Achieving Tinnitus Relief,” J Am Acad Audiol,15:585·598, 2004. |
Jastreboff, Pawel, J., “Phantom auditory perception (tinnitus): mechanisms of generation and perception,” Neuroscience Research, 221-254, 1990, Elsevier Scientific Publishers Ireland, Ltd. |
Robb, “Tinnitus Device Directory Part I,” Tinnitus Today, p. 22. Jun. 2003. |
Song, S. et al., “A 0.2-mW 2-Mb/s Digital Transceiver Based on Wideband Signaling for Human Body Communications,” IEEE J Solid-State Cir, 42(9), 2021-2033, Sep. 2007. |
“Special Forces Smart Noise Cancellation Ear Buds with Built-In GPS,” http://www.gizmag.com/special-forces-smart-noise-cancellation-ear-buds-with-built-in-gps/9428/, 2 pages, 2008. |
Stuart, A., et al., “Investigations of the Impact of Altered Auditory Feedback In-The-Ear Devices on the Speech of People Who Stutter: Initial Fitting and 4-Month Follow-Up,” Int J Lang Commun Disord, 39(1), Jan. 2004, [abstract only]. |
Wen, Y. et al, “Online Prediction of Battery Lifetime for Embedded and Mobile Devices,” Special Issue on Embedded Systems: Springer-Verlag Heidelberg Lecture Notes in Computer Science, V3164/2004, 15 pages, Dec. 2004. |
Number | Date | Country | |
---|---|---|---|
20140177879 A1 | Jun 2014 | US |
Number | Date | Country | |
---|---|---|---|
60809244 | May 2006 | US | |
60820223 | Jul 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13551158 | Jul 2012 | US |
Child | 14056821 | US | |
Parent | 12333259 | Dec 2008 | US |
Child | 13551158 | US | |
Parent | 11754823 | May 2007 | US |
Child | 12333259 | US |