The present invention relates generally to medical apparatus and methods and more particularly to devices and methods that are usable to treat disorders of the paranasal sinuses as well as other ear, nose & throat disorders.
Functional endoscopic sinus surgery (FESS) is currently the most common type of surgery used to treat chronic sinusitis. In a typical FESS procedure, an endoscope is inserted into the nostril along with one or more surgical instruments. The surgical instruments are then used to cut tissue and/or bone, cauterize, suction, etc. In most FESS procedures, the natural ostium (e.g., opening) of at least one paranasal sinus is surgically enlarged to improve drainage from the sinus cavity. The endoscope provides a direct line-of-sight view whereby the surgeon is typically able to visualize some but not all anatomical structures within the surgical field. Under visualization through the endoscope, the surgeon may remove diseased or hypertrophic tissue or bone and may enlarge the ostia of the sinuses to restore normal drainage of the sinuses. FESS procedures can be effective in the treatment of sinusitis and for the removal of tumors, polyps and other aberrant growths from the nose.
The surgical instruments used in the prior art FESS procedures have included; applicators, chisels, curettes, elevators, forceps, gouges, hooks, knives, saws, mallets, morselizers, needle holders, osteotomes, ostium seekers, probes, punches, backbiters, rasps, retractors, rongeurs, scissors, snares, specula, suction canulae and trocars. The majority of such instruments are of substantially rigid design.
In order to adequately view the operative field through the endoscope and/or to allow insertion and use of rigid instruments, many FESS procedures of the prior art have included the surgical removal or modification of normal anatomical structures. For example, in many prior art FESS procedures, a total uncinectomy (e.g., removal of the uncinate process) is performed at the beginning of the procedure to allow visualization and access of the maxilary sinus ostium and/or ethmoid bulla and to permit the subsequent insertion of the regid surgical instruments. Indeed, in most traditional FESS procedures, if the uncinate process is allowed to remain, such can interfere with endoscopic visualization of the maxillary sinus ostium and ethmoid bulla, as well as subsequent dissection of deep structures using the available rigid instrumentation.
More recently, new devices, systems and methods have been devised to enable the performance of FESS procedures and other ENT surgeries with minimal or no removal or modification of normal anatomical structures. Such new methods include, but are not limited to, uncinate-sparing Baloon Sinuplasty™ procedures and uncinate-sparing ethmoidectomy procedures using catheters, non-rigid instruments and advanced imaging techniques (Acclarent, Inc., Menlo Park, California). Examples of these new devices, systems and methods are described in incorporated U.S. patent application Ser. No. 10/829,917 entitled Devices, Systems and Methods for Diagnosing and Treating Sinusitis and Other Disorders of the Ears, Nose and/or Throat, issued as U.S. Pat. No. 7,654,997 on Feb. 2, 2010; Ser. No. 10/944,270 entitled Apparatus and Methods for Dilating and Modifying Ostia of Paranasal Sinuses and Other Intranasal or Paranasal Structures, now abandoned; Ser. No. 11/116,118 entitled Methods and Devices for Performing Procedures Within the Ear, Nose, Throat and Paranasal Sinuses filed Apr. 26, 2005, issued as U.S. Pat. No. 7,720,521 on May 18, 2010 and Ser. No. 11/150,847 entitled Devices, Systems And Methods Useable For Treating Sinusitus filed on Jun. 10, 2005, issued as U.S. Pat. No. 7,803,150 on Sep. 28, 2010, of which this application is a continuation-in-part.
There remains a need for further development of new and different devices and methodology for surgical treatment of sinusitis and other ear, nose and throat disorders.
The present invention provides apparatus and disorders for treating sinusitis and other disorders of the ear, nose, throat and paranasal sinuses. The various devices and methods of the present invention may be used separately or in any possible and desirable combinations with each other.
In accordance with the invention, there is provided endoscopic guide systems that generally comprise tubular guides (e.g., rigid, flexible and/or malleable guide catheters) that incorporate or are attachable to endoscopic apparatus. The endoscopic apparatus is usable to enable endoscopically view areas ahead of or adjacent to the distal end of the tubular guide. In some embodiments, such endoscopic guide systems are usable to facilitate trans-nasal advancement of a guidewire, catheter, instrument or other device to a position within or near an opening or a paranasal sinus (e.g., any transnasally accessible opening in a paranasal sinus or air cell including but not limited to; natural ostia, surgically altered natural ostia, surgically created openings, antrostomy openings, ostiotomy openings, burr holes, drilled holes, ethmoidectomy openings, natural or man made passageways, etc.). To facilitate this, the endoscopic guide system may comprise a) a tubular guide having a proximal end, a distal end and a lumen that extends longitudinally therethrough, said tubular guide having a distal portion that is more flexible than the remainder of the guide and said tubular guide being configured such that it may be i) inserted, distal end first, through a nostril of the subject's nose and ii) advanced, without requiring substantial modification or removal of any normal anatomical structure, to a position where the distal end of the guide is within or adjacent to the ostium of the paranasal sinus; and b) an endoscopic device incorporated in or attached to the tubular guide, said endoscopic device being usable to view a visual field that includes an area beyond the distal end of the tubular guide. In some embodiments, a portion (e.g., a distal portion) of the tubular guide may be curved and the endoscopic apparatus may allow to user to essentially see around the curve. The endoscopic apparatus may comprise a rigid, flexible, deflectable or steerable endoscopes that is incorporated into, inserted into or through, or attached to the tubular guide. Or, the endoscopic apparatus may comprise a waveguide, periscope or other device that serves as an extension of a separate endoscope such that the endoscope may be connected (e.g., attached, inserted, coupled or otherwise associated) to the proximal end of the endoscopic apparatus and will receive an image from the distal end of the endoscopic apparatus.
Further in accordance with the invention, there are provided seeker devices that are usable to locate or access structures within the ear, nose and throat. In some embodiments, these seeker devices have lumens extending therethrough. In such embodiments having lumens, guidewires may be inserted or advanced through the lumen, thereby providing seeker/guidewire systems that are usable for placing guidewires into various anatomical structures (e.g., into a paranasal sinus). In embodiments having lumens, the proximal end of the seeker device may be attachable to a source of fluid for irrigation or substance delivery through the lumen and/or to a source of negative pressure to permit suction through the lumen. Also, in some embodiments that have lumens, a slot opening may extend along all or a portion of the lumen to allow a guidewire or other elongate device to be extracted laterally from all or a portion of the lumen. Additionally or alternatively, in some embodiments, the seeker device may have an expandable member (e.g., a balloon) that is usable to dilate anatomical structures, anchor the seeker and/or for other purposes. Structurally, a seeker device of the present invention may comprise an elongate substantially rigid (e.g., straight, pre-shaped, bent, curved, malleable) shaft, optionally having a bulbous (e.g., enlarged) distal tip on one or both ends. Various curves may be formed or formable in the seeker shaft.
Still further in accordance with the invention, there are provided dilator devices (e.g., balloon dilators) that may be used to dilate anatomical structures within the ear, nose or throat of a human or animal subject (e.g., opening of paranasal sinuses as defined hereabove, metal passageways, other openings or passages). Such dilator devices may comprise a) a handpiece, b) an elongate shaft that extends from the handpiece, such elongate shaft having a distal portion that is insertable through a nostril of the subject's nose, c) a dilator having a non-expanded configuration and an expanded configuration and a dilator expansion control or trigger apparatus on or associated with the handpiece, such dilator expansion control or trigger apparatus being usable to move the dilator between its non-expanded configuration and its expanded configuration. In some embodiments, the dilator may be advanceable (or advanceable/retractable) from the elongate shaft. In such embodiments having an advanceable or advanceable/retractable dilator, the handpiece may additionally have a dilator advancement control or trigger. In some designs of these devices, the handpiece, dilator expansion control or trigger and/or dilator advancement control or trigger may be operable by one hand, thereby leaving the operators other hand free for handling other instruments or performing other tasks. In embodiments where the dilator comprises a balloon, the expansion of the dilator may result for the provision of a flow of infusion fluid into the balloon. Accordingly, such devices may incorporate pumps and/or sources of pressurized inflation fluid to facilitate inflation of the balloon. The balloon may be compliant or non-compliant. In embodiments having non-compliant balloons, the device may additionally comprise apparatus for applying negative pressure to the balloon thereby evacuating and collapsing the non-compliant balloon.
Further still in accordance with the invention, there are provided devices for deterring unwanted movement of catheter(s) or other device(s) (e.g., guidewires, endoscopes, dilators, etc.) that have been inserted into the nose of a human or animal subject. Such support device may generally comprise a support member (e.g., an elongate body) that is positionable adjacent to the subject's nose and an attachment substance or apparatus (e.g., adhesive, resilient or pliable projections, fingers, members, hook and loop connector material, other apparatus for frictional engagement, etc.). The attachment substance or apparatus is usable for releasably holding the catheter(s) or other device(s) in substantially fixed position relative to the support member. Additionally, these devices may comprise positioning apparatus (e.g., legs, brackets, holders, adhesive) for holding the support member in position adjacent to the subject's nose.
Still further in accordance with the invention, there are provided balloon catheters that are constructed in new ways. Such balloon catheters have guidewire lumens that extend though some or all of the length of the catheter. In some embodiments, an optional slot opening may be formed along some or all of the length of the guidewire lumen to allow a guidewire or other device to be extracted laterally from all of part of that lumen.
Further still in accordance with the invention, there are provided balloon folding tools that are usable to facilitate folding of catheter-mounted balloons, such as non-compliant balloons. A balloon folding tool of this invention may comprise a) a rigid body having a central bore formed therein, the central bore having a diameter that is less than the fully inflated balloon diameter, b) a plurality of side channels located adjacent to and substantially parallel with the central bore, each of such side channels being connected to the bore through a slot. The balloon is insertable into the central bore while in a less than fully inflated state. Thereafter the balloon is inflatable to a fully or partially inflated state causing a separate portion of the balloon to pass through the each slot and into each side channel. Thereafter the balloon is deflatable such that each separate portion of the balloon that has passed into each side channel will form a separate wing of the deflated balloon. Those wings are, thereafter, foldable to a collapsed shape.
Even further in accordance with the invention, there are provided apparatus for compressing balloons to a low profile to facilitate subsequent insertion or reinsertion of the balloon into the body of a human or animal subject. Such a balloon compression apparatus may comprise a plurality of compression members disposed radially about a central cavity, such compression members being spaced apart from each other such that gaps exist between adjacent compression members, such compression members being movable from non-compressing positions to compressing positions. The balloon is insertable into the central cavity of the compression device while the compression members are in their non-compressing positions. The compression members are then movable to their compressing positions, thereby compressing portions of the balloon causing any inflation fluid to be forced out of the balloon and causing portions of the balloon to protrude outwardly into the gaps between the compression members. This results in the formation of a plurality of wings an the deflated balloon, such wings being thereafter foldable into a collapsed shape.
Still further in accordance with the invention, there are provided inflator handpiece devices that are attachable to balloon catheters or other balloon equipped devices (e.g., balloon equipped tubular guides, seekers, guidewires, etc, as described herein and elsewhere) and usable to inflate the balloon. An inflator handpiece of the present invention may comprise a) a handpiece body configured to be grasped by a human hand, such handpiece body being attachable to the proximal end of a balloon catheter or other balloon equipped device, b) an inflator (e.g., a pump or source of compressed inflation fluid) and an inflation trigger usable to cause the inflator to inflate the balloon. These handpieces may facilitate precise handling and positioning of balloon catheters and other balloon equipped devices. In some embodiments, the handpiece may comprise and elongate body having a grip member that extends at an angle from the elongate body (e.g., generally similar to a pistol grip type of arrangement). In some embodiments, the handpiece and inflation trigger may be configured to be usable by a single hand, thereby freeing the operators other hand for handling of other instruments or performing other tasks. In embodiments where the catheter or other balloon equipped device has a lumen usable for passage of a guidewire or other device or substance, the inflator handpiece device may incorporate a port or passage to permit a guidewire or other device to be advanced through that lumen and/or to permit fluids to be infused or suction applied through that lumen. Various valves, grippers, etc. may be associated with such passageway or port to provide hemostasis, prevent fluid leakage, deter unwanted movement of guidewires or devices, etc.
Further yet in accordance with the present invention, there are provided devices for breaking nasal turbinates or other bony anatomical structures in a human or animal subject. Such a breaking device may comprise a) first and second members positionable at spaced apart positions on one side of the turbinate or bony structure and a third member positionable on the other side of the turbinate or bony structure, between the first and second members. The third member and/or said first and second members are then movable to exert pressure on the nasal turbinate or bony structure to cause the bone of the nasal turbinate or bony structure to break.
Still further in accordance with the invention, there are provided navigation adapters that are attachable to cannulae, catheters or elongate devices to facilitate their use in conjunction with navigation systems (e.g., optical, electromagnetic, etc.) of the type used in performing image guided surgery. Such navigation adapter may comprise a) an elongate adapter body that is attachable to the substantially rigid cannula, catheter or elongate device and b) apparatus usable by the image guidance system to determine the position of the substantially rigid cannula, catheter or elongate device within the body of a human it animal subject. The apparatus usable by the image guidance system may comprise various sensors, emitters, reflectors, transponders, reflective passive elements, light emitting diodes, transmitters or receivers of energy (e.g. optical energy, radiofrequency energy, etc.) or combinations thereof that are usable to enable a navigation system to track the position of catheter, cannula or other device within the body. Examples of commercially available navigation systems that may be usable in conjunction with these navigation adapters include but are not limited to (insert list from navigation application).
Still further in accordance with the invention, there are provided methods for using the above summarized devices.
Further yet in accordance with the present invention, there are provided methods where one or more anatomical structures (e.g. uncinate process, wall of ethmoid air cell, turbinate) and/or pathological structures (e.g., polyps, etc) are removed or modified in combination with a procedure where a dilator is inserted transnasally and used to dilate an opening of a paranasal sinus (as defined hereabove) or other anatomical structure within the ear, nose, throat or paranasal sinus of a human or animal subject. Such removal or modification of normal or pathological anatomical structures may facilitate visualization and/or access to various anatomical locations during and after the procedure.
Still further in accordance with the invention, there is provided a nasal introducer that comprises an introducer body (e.g., a plug) that insets into the nostril of a human or animal subject. One or more lumen(s) (e.g., passageway(s) or bore(s)) extend through the introducer body to allow one or more catheters or other devices (e.g., endoscopes, dilators, seekers, tubular guides, etc.) to be advanced through the introducer and into the nasal cavity or beyond. Various valves, grippers, etc. may be associated with such lumen(s) to provide hemostasis, prevent fluid leakage and/or deter unwanted movement of catheters or other devices that have been inserted through the lumen(s).
Further aspect, elements and advantages of the present invention will be understood by those of skill in the art upon reading of the detailed description set forth herebelow.
The following detailed description, the accompanying drawings and the above-set-forth Brief Description of the Drawings are intended to describe some, but not necessarily all, examples or embodiments of the invention. The contents of this detailed description do not limit the scope of the invention in any way.
A number of the drawings in this patent application may show anatomical structures of the ear, nose and throat. In general, these anatomical structures are labeled with the following reference letters:
The devices disclosed herein may be used alone or in various combinations to perform various procedures including, but not limited to, various transnasal procedures within paranasal sinuses and/or within openings of paranasal sinuses. As used herein, unless specified otherwise, the term “opening(s) of paranasal sinus(es)” shall include any transnasally accessible opening in a paranasal sinus or air cell including but not limited to; natural ostia, natural canals, surgically altered natural ostia, surgically created openings, antrostomy openings, ostiotomy openings, burr holes, drilled holes, puncture tracts, ethmoidectomy openings, fenestrations and other natural or man made passageways.
One or more devices disclosed herein may be supported by one or more support devices while performing diagnostic, therapeutic or access procedures on a patient. For example,
In the example of
In
In
Similar support devices may also be designed using hook and loop fasteners such as Velcro™.
One or more devices disclosed herein may be introduced through one or more nasal introducers. Such nasal introducers may also be used for keeping catheters or devices separate from each other and/or for anchoring for deterring unwanted movement or slippage of one or more catheter or other devices that have been inserted into the nose. Such nasal introducers may also be used for plugging the nostrils to prevent leakage of fluids through the nostril. For example,
In some method embodiments of the invention disclosed herein, a guidewire may be inserted into a paranasal sinus or into/near the opening of a paranasal sinus and, thereafter, one or more diagnostic or therapeutic devices may be introduced over the guidewire. In some instances, forces generated during introduction of devices over the guidewire may tend to cause the position of the guidewire to change. The forces may also cause the guidewire to get dislodged from a desired position in a paranasal sinus or opening of a paranasal sinus. To prevent such unwanted movement of the guidewire, one or more anchoring or occlusion apparatus may be present on the guidewire. For example,
Various diagnostic, therapeutic or access devices disclosed herein may be introduced in the anatomy through a seeker.
Any of the seeker devices disclosed herein may comprise a deflectable or bendable distal tip. For example,
Any of the seeker devices disclosed herein may be used to open or puncture scar tissue or adhesions of paranasal sinus ostia or passageways leading to paranasal sinuses. Such scar tissue or adhesions may be caused for example due to infection, prior surgery, etc.
Any of the guide catheters or other luminal devices disclosed herein may comprise an arrangement for suctioning an anatomical region through the distal end of the guide catheter or device unless to do so would render the device unusable for its intended purpose. For example,
Various devices being introduced in the anatomy may comprise a detachable navigation apparatus (e.g., a navigation module or localizer) usable in conjunction with a navigation or image guidance system to track and/or navigate the devices through the anatomy. For example,
In an alternate embodiment of navigational adaptor 830 of
The devices disclosed herein, especially the guide catheters, may comprise a proximal region adapted to fit to a suction tube. For example,
Bent, curved or angled regions of one or more devices disclosed herein may be made by bending a portion of the device and, in some instances, the devices will me formed of malleable material or may incorporate a malleable region to permit the user to bend, curve, angle or otherwise configure the device as desired. Some of the devices disclosed herein may be made by joining two elements, one of which comprises a bent, curved or angled region. For example,
In an alternate method of manufacture, bent, curved or angled regions of one or more devices disclosed herein are made by joining two molded parts. The two molded parts are made such that each molded part comprises a bent, curved or angled region. The two molded parts are then joined to each other to produce a tubular element enclosing a lumen.
Similar flap regions may also be attached to the distal end of endoscopes comprising one or more endoscope lumens. This enables a user to introduce one or more devices through the one or more endoscope lumens at an angle to the axis of the distal region of the endoscope.
The various devices described or incorporated herein may include one or more optical marker(s). Such optical marker(s) may be used for example for optically determining the relative location of the balloon of the balloon catheter with respect to the distal end of a guide catheter through which the balloon catheter is introduced. Such optical marker(s) may enable a user to determine the location of the balloon of the balloon catheter with respect to the distal end of a guide catheter without using methods like fluoroscopy that used ionizing radiation. If the balloon is too close to the distal end of the guide catheter, there is a risk that the balloon may be inflated by a user while it is inside the guide catheter. If the balloon is too far from the distal end of the guide catheter, the guide catheter may not provide adequate support to the balloon catheter. Thus, the balloon of the balloon catheter should be located at an optimal distance with respect to the distal end of the guide catheter. In one embodiment, the optimal distance is ensured by providing an optical marker on the proximal region of the balloon catheter. The balloon catheter is inserted through a guide catheter such that the distal region of the balloon catheter emerges out of the distal end of the guide catheter. The location of the optical marker relative to the proximal region of the guide catheter is used to determine the relative location of the balloon of the balloon catheter with respect to the distal end of the guide catheter. In another embodiment, the optimal distance is ensured by providing an optical marker on the distal region of the balloon catheter. The balloon catheter is inserted through a guide catheter such that the distal region of the balloon catheter emerges out of the distal end of the guide catheter. The location of each optical marker may be tracked by an endoscope inserted in the anatomy. The location of the optical marker relative to the distal end of the guide catheter is used to determine the relative location of the balloon of the balloon catheter with respect to the distal end of the guide catheter.
Similar optical markers may be located on other balloon catheters disclosed herein. For example, an optical marker may be located on a balloon catheter proximal to a balloon on the balloon catheter. Such an optical marker is especially useful to determine the location of the balloon with respect to a paranasal sinus ostium after the balloon has been introduced in a paranasal sinus. After the balloon is inserted inside the paranasal sinus, the balloon can no longer be visually seen by an endoscope. The user can then note the location of the optical marker proximal to the balloon. This information enables the user to determine the length of the balloon that is present inside the opening. This information in turn can be used by the user to accurately position the balloon with respect to the paranasal sinus ostium to achieve optimal dilation of the paranasal sinus ostium.
The optical markers disclosed herein may be combined optical-radiopaque markers. In one embodiment, the combined optical-radiopaque marker comprises a platinum coil or marker. Preferably, the combined optical-radiopaque marker comprises a coating of a colored polymer including, but not limited to colored heat shrink polyethylene terephthalate. The length of the combined optical-radiopaque marker ranges preferably from 0.5 mm-10 mm.
While removing a balloon catheter from the anatomy, the balloon of the balloon catheter might accidentally pull anatomical structures like the uncinate and damage the anatomical structures. To prevent such damage, in the method embodiments where a balloon catheter is introduced through a guide device, the balloon catheter may be removed from the anatomy along with the guide device. This step may be performed after ensuring that an undesirably long distal region of the balloon catheter is not protruding from the distal end of the guide device. The guide device may have a suitable attachment mechanism such as a rotating hemostasis valve, a clip, etc. to temporarily attach the balloon catheter to the guide device. The attachment mechanism enables a user to remove the balloon catheter from the anatomy along with the guide device.
The flexible endoscopes disclosed herein may comprise one or more endoscope lumens. In one embodiment, the endoscope lumen is a side lumen. The side lumen is designed such that one or more diagnostic, therapeutic or access devices can be inserted in the anatomy through the side lumen under endoscopic guidance.
The guide catheters disclosed herein may comprise a bent, curved or angled distal region to allow easier access to a paranasal sinus ostium. Such guide catheters may further comprise mechanisms to introduce an endoscope along the guide catheters. For example,
In an alternate embodiment, a balloon catheter comprises a first capacitance plate located on or within the balloon material; a second capacitance plate located on or within the balloon material and one or more shaft plates located on or within the balloon shaft. A user measures a first capacitance between the first capacitance plate and the one or more shaft plates. Also, the user measures a second capacitance between the second capacitance plate and the one or more shaft plates. The first capacitance and the second capacitance may be used to measure the degree of balloon inflation and also to measure the evenness of balloon inflation.
Any of the balloon catheters comprising capacitance measuring means disclosed herein may comprise a temperature sensor to measure the temperature of the inflation fluid. This is useful in cases where the dielectric constant of the inflation fluid varies significantly with temperature.
The balloon catheters disclosed herein and in the patent applications incorporated herein by reference may comprise a balloon of a working length adapted for dilating a particular region of the anatomy. For example, a balloon catheter comprising a balloon of working length ranging from 10-40 mm may be used for treating a disease of the frontal sinuses. Ideally, the balloon comprises a working length ranging from 20-30 mm. The inflated diameter of such balloons may range from 4-10 mm. In another example, a balloon catheter comprising a balloon of working length ranging from 6-10 mm may be used for treating a disease of the maxillary sinuses. In another example, a balloon catheter comprising a balloon of working length ranging from 3-10 mm may be used for dilating the Ethmoid sinuses.
The shafts of the balloon catheters disclosed herein and in the patent applications incorporated herein by reference may comprise one or more angled regions. Such balloon catheters may for example comprise an angled balloon located on an angled region of the shaft. Such balloon catheters are especially suited for treating diseases of the maxillary sinuses.
The balloon catheters disclosed herein and in the patent applications incorporated herein by reference may comprise a substantially compliant balloon. Such a substantially compliant balloon may be inflated at an inflation pressure preferably less than 4 atmospheres. Such balloon catheter may be used for example to dilate the mucosa of anatomical regions such as passageways leading to paranasal sinuses. The step of dilation of the mucosa may or may not include dilation of the underlying bony structures. Such balloon catheters may also be used for sizing anatomical regions such as passageways leading to paranasal sinuses. This is performed by inflating the substantially compliant balloon by a fluid comprising radiopaque contrast and observing the radiographic image of the balloon. The step of sizing an anatomical region may be performed before and/or after the step of dilating the anatomical region.
The balloon catheters disclosed herein and in the patent applications incorporated herein by reference may be introduced in the anatomy by a variety of manual introducing tools. Examples of such manual introducing tools include, but are not limited to forceps (e.g. giraffe forceps), pincers, tweezers, tongs, etc. Such manual introducing tools may have curved, bent, angled or substantially straight distal regions. For example, a balloon catheter may be grasped in a region proximal to the balloon by a forceps and then introduced in the target anatomy.
The balloon catheters disclosed herein and in the patent applications incorporated herein by reference may be used to deliver heat or cold, a gas, electromagnetic energy in the visible spectrum, etc.
If a balloon catheter is used for performing multiple procedures, it may be useful to refold the balloon of the balloon catheter after each procedure to lower the profile of the balloon before the next procedure.
The elongate body of the folding tool 2300 may be made of suitable biocompatible materials including, but not limited to metals e.g. titanium, stainless steel, etc.; polymers e.g. PVC, Nylon, DELRIN®, Polycarbonate, ABS, etc, Folding tool 2300 further comprises a balloon folding channel 2302. In one embodiment, the cross section of balloon folding channel 2302 is substantially uniform along the length of folding tool 2300. In another embodiment, the cross sectional size of balloon folding channel 2302 is larger at the proximal end of folding tool 2300. In this embodiment, the cross sectional size of balloon folding channel 2302 gradually reduces towards the distal end of folding tool 2300 to facilitate loading a balloon catheter in balloon folding channel 2302. In one embodiment, balloon folding channel 2302 extends through the entire length of the elongate body. In another embodiment, balloon folding channel 2302 extends through a part of the length of the elongate body. Folding tool 2300 further comprises one or more parallel channels 2304. Parallel channels 2304 are aligned substantially parallel to balloon folding channel 2302 and overlap lengthwise to balloon folding channel 2302 as shown in
In an alternate method of folding balloon 2308, balloon catheter 2306 is introduced into balloon folding channel 2302. Thereafter, balloon 2308 is partially inflated such that regions of balloon 2308 extend in parallel channels 2304. Thereafter, balloon 2308 is deflated and a vacuum is created in balloon 2308. This causes one or more ridges to be created in balloon 2308. Thereafter, balloon 2308 is pulled out of folding tool 2300. Balloon 2308 is then folded manually to obtain a folded balloon with a low profile.
Similarly, other folding tools comprising one or more folding channels, folding grooves, folding cavities, folding slits, etc. may be used for folding one or more balloons of the balloon catheters disclosed herein.
In the particular example shown in the figures, folding tool 2400 comprises a screw cap 2402 that encloses a clamping element 2404. The distal end of clamping element 2404 and the distal end of screw cap 2402 are in contact with a distal handle 2406. Clamping element 2404, screw cap 2402 and distal handle 2406 may be made of suitable biocompatible materials including, but not limited to metals e.g. stainless steel, titanium, etc.; polymers e.g. PVC, Polycarbonate, Delrin®, Nylon, ABS, etc.
Folding tool 2300 and folding tool 2400 may comprise a centering element to align the shaft of a balloon catheter with the central axis of the folding tools. In one embodiment, the centering element comprises a centering wire attached to the folding tool. The shaft of the balloon catheter slides over the centering wire. This aligns the shaft of the balloon catheter with the central axis of the folding tool.
Image guided surgery (IGS) procedures (sometimes referred to as “computer assisted surgery”) were first developed for use in neurosurgery and have now been adapted for use in certain ENT surgeries, including sinus surgeries. See, Kingdom T. T., Orlandi R. R., Image-Guided Surgery of the Sinuses: Current Technology and Applications, Otolaryngol. Clin. North Am. 37(2):381-400 (April 2004). Generally speaking, in a typical IGS procedure, a digital tomographic scan (e.g., a CT or MRI scan) of the operative field (e.g., the nasal cavities and paranasal sinuses) is obtained prior to surgery. A specially programmed computer is then used to convert the digital tomographic scan data into a digital map. During surgery, sensors mounted on the surgical instruments send data to the computer indicating the position of each surgical instrument. The computer correlates the data received from the instrument-mounted sensors with the digital map that was created from the preoperative tomographic scan. One or more image(s) is/are then displayed on a monitor showing the tomographic scan along with an indicator (e.g., cross hairs or an illuminated dot) of the real time position of each surgical instrument. In this manner, the surgeon is able to view the precise position of each sensor-equipped instrument relative to the surrounding anatomical structures shown on the tomographic scan. Various embodiments of adapter devices comprising image guidance sensors are disclosed herein. Such adapter devices are adapted to be fitted to one or more devices that are being introduced in the anatomy. This enables a user to view the real time position of the one or more devices that are being introduced in the anatomy. For example,
Similar navigation adapters can be designed wherein electromagnetic sensor 2638 is replaced by other surgical navigation units. Examples of such surgical navigation units include, but are not limited to navigation units comprising reflective passive elements, light emitting diodes, transmitters or receivers of energy (e.g. optical energy, radiofrequency energy, etc.), a combination of tow or more of the abovementioned navigation technologies, etc.
One or more of the devices disclosed herein may comprise a magnetic navigation element located at the distal region of the devices. Such a magnetic navigation element may comprise a permanent magnet or an electromagnet. The distal region of the devices can then be navigated through the anatomy by providing a magnetic field of specified direction and magnitude, positioned externally to the patient.
The balloon catheter tool of
Any of the handle assemblies of the tools described herein and in the patent applications incorporated herein by reference may comprise a rotatable handle. Such a rotatable handle may be designed to convert a part of a rotational force exerted by a user to a rectilinear force to draw components of the handle assembly towards each other. One embodiment of a rotatable handle is disclosed in U.S. Pat. No. 5,697,159 (Linden) titled ‘Pivoted hand tool’, the entire disclosure of which is expressly incorporated herein by reference. Such designs of rotatable handles may be used for handle assemblies including, but not limited to a) handle 2752 and trigger 2756 in
The devices disclosed in
The rigid or flexible endoscopes disclosed herein may have a range of view ranging from 0 degrees to 145 degrees. The embodiments of endoscopes comprising a curved, bent or angled region may be manufactured by curving or bending the optical fibers before fusing the optical fibers. The optical fibers may be fused for example by heating them to a temperature ranging from 500 to 700 degrees Celsius or by using suitable epoxy adhesives to attach the optical fibers to each other. The endoscopes may be made using reduced cladding thickness optical fibers to allow curved, bent or angled regions with a large angle or curvature but a small radius of curvature. The endoscopes may also be made using glass/glass/polymer (GGP) multimode fiber such as the ones made by 3M to allow curved, bent or angled regions with a large angle or curvature but a small radius of curvature. For example, in embodiments of endoscopes that have a bent, curved or angled region enclosing an angle of 90 degrees or more, the radius of curvature of the bent, curved or angled region may preferably be less than or equal to 1.5 cm. Such endoscopes comprising curved, bent or angled regions with a large angle or curvature but a small radius of curvature are especially useful to enable a user to access the maxillary sinuses.
The embodiments herein have been described primarily in conjunction with minimally invasive procedures, but they can also be used advantageously with existing open surgery or laparoscopic surgery techniques. For example, the methods and devices disclosed herein may be combined with one or more techniques of Functional Endoscopic Sinus Surgery (FESS). In FESS, a surgeon may remove diseased or hypertrophic tissue or bone and may enlarge the ostia of paranasal sinuses to restore normal drainage of the sinuses. It is typically performed with the patient under general anesthesia using endoscopic visualization.
Although FESS continues to be the gold standard therapy for severe sinuses, it has several shortfalls such as post-operative pain and bleeding associated with the procedure, failure to relieve symptoms in a significant subset of patients, risk of orbital, intracranial and sinonasal injuries, etc. Replacing one or more steps of FESS may reduce the shortfalls associated with the traditional FESS. The following are some examples of procedures involving a combination of FESS and the procedures disclosed in this patent application and the patent applications incorporated herein by reference.
Some specific examples of hybrid procedures of the present invention are shown in the flow diagrams of
It is to be appreciated that the devices and methods of the present invention relate to the accessing and dilation or modification of sinus ostia or other passageways within the ear nose and throat. These devices and methods may be used alone or may be used in conjunction with other surgical or non-surgical treatments, including but not limited to the delivery or implantation of devices and drugs or other substances as described in copending U.S. patent application Ser. No. 10/912,578 entitled Implantable Devices and Methods for Delivering Drugs and Other Substances to Treat Sinusitis and Other Disorders filed on Aug. 4, 2004, issued as U.S. Pat. No. 7,361,168 on Apr. 22, 2008, the entire disclosure of which is expressly incorporated herein by reference.
It is to be appreciated that the invention has been described hereabove with reference to certain examples or embodiments of the invention but that various additions, deletions, alterations and modifications may be made to these examples and embodiments without departing from the intended spirit and scope of the invention. For example, any element or attribute of one embodiment or example may be incorporated into or used with another embodiment or example, unless to do so would render the embodiment or example unsuitable for its intended use. All reasonable additions, deletions, modifications and alterations are to be considered equivalents of the described examples and embodiments and are to be included within the scope of the following claims.
This application is a continuation of application Ser. No. 15/803,106, filed Nov. 3, 2017, now U.S. Pat. No. 11,019,989, issued Jun. 1, 2021, which is a continuation of application Ser. No. 14/568,498, filed Dec. 12, 2014, published as U.S. Pub. No. 2015/0165176 on Jun. 18, 2015, now abandoned, which is a continuation of application Ser. No. 11/193,020, filed Jul. 29, 2005, now abandoned, which is a continuation-in-part of application Ser. No. 11/150,847, filed Jun. 10, 2005, now U.S. Pat. No. 7,803,150, issued Sep. 28, 2010, which is a continuation-in-part of U.S. patent application Ser. No. 10/829,917 entitled Devices, Systems and Methods for Diagnosing and Treating Sinusitis and Other Disorders of the Ears, Nose and/or Throat filed on Apr. 21, 2004, now U.S. Pat. No. 7,654,997, issued Feb. 2, 2010; Ser. No. 10/944,270 entitled Apparatus and Methods for Dilating and Modifying Ostia of Paranasal Sinuses and Other Intranasal or Paranasal Structures filed on Sep. 17, 2004, published as U.S. Pub. No. 2006/0004323 on Jan. 5, 2006, now abandoned; Ser. No. 11/116,118 entitled Methods and Devices for Performing Procedures Within the Ear, Nose, Throat and Paranasal Sinuses filed Apr. 26, 2005, now U.S. Pat. No. 7,720,521, issued May 18, 2010, each such application being expressly incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
446173 | Hancock | Feb 1891 | A |
504424 | De Pezzer | Sep 1893 | A |
513667 | Buckingham | Jan 1894 | A |
705346 | Hamilton | Jul 1902 | A |
798775 | Forsyte | Sep 1905 | A |
816792 | Green | Apr 1906 | A |
1080934 | Shackleford | Dec 1913 | A |
1200267 | Sunnergren | Oct 1916 | A |
1650959 | Pitman | Nov 1927 | A |
1735519 | Vance | Nov 1929 | A |
1828986 | Stevens | Oct 1931 | A |
1878671 | Cantor | Sep 1932 | A |
2201749 | Vandegrift | May 1940 | A |
2493326 | Trinder | Jan 1950 | A |
2525183 | Robison | Oct 1950 | A |
2847997 | Tibone | Aug 1958 | A |
2899227 | Jeanrenaud | Aug 1959 | A |
2906179 | Bower | Sep 1959 | A |
2995832 | Alderson | Aug 1961 | A |
3009265 | Bexark | Nov 1961 | A |
3037286 | Bower | Jun 1962 | A |
3173418 | baran | Mar 1965 | A |
3347061 | Stuemky | Oct 1967 | A |
3376659 | Asin et al. | Apr 1968 | A |
3384970 | Avalear | May 1968 | A |
3393073 | Reutenauer et al. | Jul 1968 | A |
3435826 | Fogarty | Apr 1969 | A |
3447061 | Russell et al. | May 1969 | A |
3469578 | Bierman | Sep 1969 | A |
3477438 | Allen et al. | Nov 1969 | A |
3481043 | Esch | Dec 1969 | A |
3486539 | Jacuzzi | Dec 1969 | A |
3506005 | Gilio et al. | Apr 1970 | A |
3509638 | Macleod | May 1970 | A |
3515137 | Santomieri | Jun 1970 | A |
3515888 | Lewis | Jun 1970 | A |
3527220 | Summers | Sep 1970 | A |
3531868 | Stevenson | Oct 1970 | A |
3552384 | Pierie et al. | Jan 1971 | A |
3624661 | Shebanow | Nov 1971 | A |
3726284 | Parker | Apr 1973 | A |
3731963 | Pond | May 1973 | A |
3766924 | Pidgeon | Oct 1973 | A |
3792391 | Ewing | Feb 1974 | A |
3802096 | Matern | Apr 1974 | A |
3804081 | Kinoshita | Apr 1974 | A |
3800788 | White | Jul 1974 | A |
3834394 | Hunter et al. | Sep 1974 | A |
3835854 | Jewett | Sep 1974 | A |
3847145 | Grossan | Nov 1974 | A |
3850176 | Gottschalk | Nov 1974 | A |
3856000 | Chikama | Dec 1974 | A |
3859993 | Bitner | Jan 1975 | A |
3871365 | Chikama | Mar 1975 | A |
3894538 | Richter | Jul 1975 | A |
3903893 | Scheer | Sep 1975 | A |
3910617 | Scalza et al. | Oct 1975 | A |
3921636 | Zaffaroni | Nov 1975 | A |
3948254 | Zaffaroni | Apr 1976 | A |
3948262 | Zaffaroni | Apr 1976 | A |
3967618 | Zaffaroni | Jul 1976 | A |
3993069 | Buckles et al. | Nov 1976 | A |
3993072 | Zaffaroni | Nov 1976 | A |
3993073 | Zaffaroni | Nov 1976 | A |
4016251 | Higuchi et al. | Apr 1977 | A |
4052505 | Higuchi et al. | Oct 1977 | A |
4053975 | Olbrich et al. | Oct 1977 | A |
4069307 | Higuchi et al. | Jan 1978 | A |
4102342 | Akiyama et al. | Jul 1978 | A |
4138151 | Nakao | Feb 1979 | A |
4184497 | Kolff et al. | Jan 1980 | A |
4198766 | Camin et al. | Apr 1980 | A |
4207890 | Mamajek et al. | Jun 1980 | A |
4209919 | Kirikae et al. | Jul 1980 | A |
4213095 | Falconer | Jul 1980 | A |
4217898 | Theeuwes | Aug 1980 | A |
4268115 | Slemon et al. | May 1981 | A |
4299226 | Banka | Nov 1981 | A |
4299227 | Lincoff | Nov 1981 | A |
4311146 | Wonder | Jan 1982 | A |
4312353 | Shahbabian | Jan 1982 | A |
4338941 | Payton | Jul 1982 | A |
D269204 | Trepp | May 1983 | S |
4388941 | Reidhammer | Jun 1983 | A |
RE31351 | Falconer | Aug 1983 | E |
4435716 | Zandbergen | Mar 1984 | A |
4437856 | Valli | Mar 1984 | A |
4441495 | Hicswa | Apr 1984 | A |
4445892 | Hussein et al. | May 1984 | A |
4450150 | Sidman | May 1984 | A |
4459977 | Pizon et al. | Jul 1984 | A |
4464175 | Altman et al. | Aug 1984 | A |
4471779 | Antoshkiw et al. | Sep 1984 | A |
4499899 | Lyons, III | Feb 1985 | A |
4517979 | Pecenka | May 1985 | A |
4554929 | Samson et al. | Nov 1985 | A |
4564364 | Zaffaroni et al. | Jan 1986 | A |
4571239 | Heyman | Feb 1986 | A |
4571240 | Samson et al. | Feb 1986 | A |
4581017 | Sahota | Apr 1986 | A |
4585000 | Hershenson | Apr 1986 | A |
D283921 | Dyak | May 1986 | S |
4589868 | Dretler | May 1986 | A |
4592357 | Ersek | Jun 1986 | A |
4596528 | Lewis et al. | Jun 1986 | A |
D284892 | Glassman | Jul 1986 | S |
4603564 | Kleinhany et al. | Aug 1986 | A |
4606346 | Berg et al. | Aug 1986 | A |
4607622 | Fritch et al. | Aug 1986 | A |
4637389 | Heyden | Jan 1987 | A |
4639244 | Rizk et al. | Jan 1987 | A |
4641654 | Samson et al. | Feb 1987 | A |
4645495 | Vaillancourt | Feb 1987 | A |
4669469 | Gifford, III | Jun 1987 | A |
4672961 | Davies | Jun 1987 | A |
4675613 | Naegeli et al. | Jun 1987 | A |
4682607 | Vaillancourt et al. | Jul 1987 | A |
4684363 | Ari et al. | Aug 1987 | A |
4686965 | Bonnet et al. | Aug 1987 | A |
4691948 | Austin, Jr. et al. | Sep 1987 | A |
4696544 | Costella | Sep 1987 | A |
4700694 | Shishido | Oct 1987 | A |
4708434 | Tsuno | Nov 1987 | A |
4708834 | Cohen et al. | Nov 1987 | A |
4726772 | Amplatz | Feb 1988 | A |
4736970 | McGourty et al. | Apr 1988 | A |
4737141 | Spits | Apr 1988 | A |
4748869 | Ohtsuka | Jun 1988 | A |
4748969 | Wardle | Jun 1988 | A |
4748986 | Morrison et al. | Jun 1988 | A |
4753637 | Horneffer | Jun 1988 | A |
4755171 | Tennant | Jul 1988 | A |
4771776 | Powell et al. | Sep 1988 | A |
4784117 | Miyazaki | Nov 1988 | A |
4793359 | Sharrow | Dec 1988 | A |
4795439 | Guest | Jan 1989 | A |
4796629 | Grayzel | Jan 1989 | A |
4802461 | Cho | Feb 1989 | A |
4803076 | Ranade | Feb 1989 | A |
4811743 | Stevens | Mar 1989 | A |
4815478 | Buchbinder et al. | Mar 1989 | A |
4819619 | Augustine et al. | Apr 1989 | A |
4834709 | Banning et al. | May 1989 | A |
4846186 | Box et al. | Jul 1989 | A |
4847258 | Sturm et al. | Jul 1989 | A |
4851228 | Zenter et al. | Jul 1989 | A |
4854330 | Evans, III et al. | Aug 1989 | A |
4862874 | Kellner | Sep 1989 | A |
4867138 | Kubota et al. | Sep 1989 | A |
4883465 | Brennan | Nov 1989 | A |
4884573 | Wijay et al. | Dec 1989 | A |
4897651 | DeMonte | Jan 1990 | A |
RE33166 | Samson | Feb 1990 | E |
4898577 | Badger et al. | Feb 1990 | A |
4917419 | Mora, Jr. et al. | Apr 1990 | A |
4917667 | Jackson | Apr 1990 | A |
4919112 | Siegmund | Apr 1990 | A |
4920967 | Cottonaro et al. | May 1990 | A |
4925445 | Sakamoto et al. | May 1990 | A |
4926858 | Gifford, III et al. | May 1990 | A |
4940062 | Hampton et al. | Jul 1990 | A |
4943275 | Stricker | Jul 1990 | A |
4946466 | Pinchuk et al. | Aug 1990 | A |
4953553 | Tremulis | Sep 1990 | A |
4961433 | Christian | Oct 1990 | A |
4961738 | Mackin | Oct 1990 | A |
4966163 | Kraus et al. | Oct 1990 | A |
4984581 | Stice | Jan 1991 | A |
4986810 | Semrad | Jan 1991 | A |
4991588 | Pflueger et al. | Feb 1991 | A |
4994033 | Shockey et al. | Feb 1991 | A |
4998916 | Hammerslag et al. | Mar 1991 | A |
4998917 | Gaiser et al. | Mar 1991 | A |
5001825 | Halpern | Mar 1991 | A |
5002322 | Fukumoto | Mar 1991 | A |
5009655 | Daignault, Jr. et al. | Apr 1991 | A |
5019075 | Spears et al. | May 1991 | A |
5019372 | Folkman et al. | May 1991 | A |
5020514 | Heckele | Jun 1991 | A |
5021043 | Becker et al. | Jun 1991 | A |
5024650 | Hagiwara et al. | Jun 1991 | A |
5024658 | Kozlov et al. | Jun 1991 | A |
5026384 | Farr et al. | Jun 1991 | A |
5030227 | Rosenbluth et al. | Jul 1991 | A |
5040548 | Yock | Aug 1991 | A |
5041089 | Mueller et al. | Aug 1991 | A |
5044678 | Detweiler | Sep 1991 | A |
5049132 | Shaffer et al. | Sep 1991 | A |
5053007 | Euteneuer | Oct 1991 | A |
5055051 | Duncan | Oct 1991 | A |
5060660 | Gamble et al. | Oct 1991 | A |
5067489 | Lind | Nov 1991 | A |
5069226 | Tamauchi et al. | Dec 1991 | A |
5084010 | Plaia et al. | Jan 1992 | A |
5087244 | Wolinsky et al. | Feb 1992 | A |
5087246 | Smith | Feb 1992 | A |
5090595 | Vandeninck | Feb 1992 | A |
5090910 | Narlo | Feb 1992 | A |
5090959 | Samson et al. | Feb 1992 | A |
5099845 | Besz et al. | Mar 1992 | A |
5102402 | Dror et al. | Apr 1992 | A |
5112228 | Zouras | May 1992 | A |
5116311 | Lofstedt | May 1992 | A |
5127393 | McFarlin et al. | Jul 1992 | A |
5137517 | Loney et al. | Aug 1992 | A |
5139510 | Goldsmith, III et al. | Aug 1992 | A |
5139832 | Hayashi et al. | Aug 1992 | A |
D329496 | Wotton | Sep 1992 | S |
5152747 | Oliver | Oct 1992 | A |
5156595 | Adams | Oct 1992 | A |
5161534 | Berthiaume | Nov 1992 | A |
5163989 | Campbell et al. | Nov 1992 | A |
5165420 | Strickland | Nov 1992 | A |
5167220 | Brown | Dec 1992 | A |
5168864 | Skockey | Dec 1992 | A |
5169386 | Becker et al. | Dec 1992 | A |
5171233 | Amplatz et al. | Dec 1992 | A |
5180368 | Garrison | Jan 1993 | A |
5183470 | Wettermann | Feb 1993 | A |
5189110 | Ikematu et al. | Feb 1993 | A |
5195168 | Yong | Mar 1993 | A |
5195971 | Sirhan | Mar 1993 | A |
5197457 | Adair | Mar 1993 | A |
5201908 | Jones | Apr 1993 | A |
5207695 | Trout, III | May 1993 | A |
5211952 | Spicer et al. | May 1993 | A |
5213576 | Abiuso et al. | May 1993 | A |
5215105 | Kizelshteyn et al. | Jun 1993 | A |
5221260 | Burns et al. | Jun 1993 | A |
5226302 | Anderson | Jul 1993 | A |
5230348 | Ishibe et al. | Jul 1993 | A |
5236422 | Eplett, Jr. | Aug 1993 | A |
5238004 | Sahatjian et al. | Aug 1993 | A |
5243996 | Hall | Sep 1993 | A |
D340111 | Yoshikawa | Oct 1993 | S |
5250059 | Andreas et al. | Oct 1993 | A |
5251092 | Brady et al. | Oct 1993 | A |
5252183 | Shaban et al. | Oct 1993 | A |
5255679 | Imran | Oct 1993 | A |
5256144 | Kraus et al. | Oct 1993 | A |
5263926 | Wilk | Nov 1993 | A |
5264260 | Saab | Nov 1993 | A |
5267965 | Deneiga | Dec 1993 | A |
5269752 | Bennett | Dec 1993 | A |
5270086 | Hamlin | Dec 1993 | A |
5273052 | Kraus et al. | Dec 1993 | A |
5275593 | Easley et al. | Jan 1994 | A |
5286254 | Shapland et al. | Feb 1994 | A |
5290310 | Makower et al. | Mar 1994 | A |
5292305 | Boudewijn et al. | Mar 1994 | A |
5295694 | Levin | Mar 1994 | A |
5300085 | Yock | Apr 1994 | A |
5304123 | Atala et al. | Apr 1994 | A |
5306272 | Cohen et al. | Apr 1994 | A |
5308326 | Zimmon | May 1994 | A |
5312430 | Rosenbluth et al. | May 1994 | A |
5313967 | Lieber et al. | May 1994 | A |
5314408 | Salmon et al. | May 1994 | A |
5314417 | Stephens et al. | May 1994 | A |
5314443 | Rudnick | May 1994 | A |
5315618 | Yoshida | May 1994 | A |
5318008 | Bullard | Jun 1994 | A |
5318528 | Heaven et al. | Jun 1994 | A |
5324306 | Makower et al. | Jun 1994 | A |
5333620 | Moutafis et al. | Aug 1994 | A |
5334143 | Carroll | Aug 1994 | A |
5334167 | Cocanower | Aug 1994 | A |
5334187 | Fischell et al. | Aug 1994 | A |
5335671 | Clement | Aug 1994 | A |
5336163 | DeMane et al. | Aug 1994 | A |
5341818 | Abrams et al. | Aug 1994 | A |
5342296 | Persson et al. | Aug 1994 | A |
5343865 | Gardineer et al. | Sep 1994 | A |
5345945 | Hodgson et al. | Sep 1994 | A |
5346075 | Nichols et al. | Sep 1994 | A |
5346508 | Hastings | Sep 1994 | A |
5348537 | Wiesner et al. | Sep 1994 | A |
5350396 | Eliachar | Sep 1994 | A |
5356418 | Shturman | Oct 1994 | A |
5368049 | Raman et al. | Nov 1994 | A |
5368558 | Nita | Nov 1994 | A |
5368566 | Crocker | Nov 1994 | A |
5370640 | Koloff | Dec 1994 | A |
5372138 | Crowley et al. | Dec 1994 | A |
5372584 | Zink et al. | Dec 1994 | A |
D355031 | Yoshikawa | Jan 1995 | S |
5378234 | Hammerslag et al. | Jan 1995 | A |
5385562 | Adams et al. | Jan 1995 | A |
5386817 | Jones | Feb 1995 | A |
5386828 | Owens et al. | Feb 1995 | A |
5391147 | Imran et al. | Feb 1995 | A |
5391179 | Mezzoli | Feb 1995 | A |
5395367 | Wilk | Mar 1995 | A |
5397305 | Kawula et al. | Mar 1995 | A |
5402799 | Colon et al. | Apr 1995 | A |
5409444 | Kensey | Apr 1995 | A |
5411475 | Atala et al. | May 1995 | A |
5411476 | Abrams et al. | May 1995 | A |
5411477 | Saab | May 1995 | A |
5415633 | Lazarus | May 1995 | A |
5425370 | Vilkomerson | Jun 1995 | A |
5439446 | Barry | Aug 1995 | A |
5441483 | Avitall | Aug 1995 | A |
5441494 | Ortiz | Aug 1995 | A |
5441497 | Narciso, Jr. | Aug 1995 | A |
5441515 | Khosravi et al. | Aug 1995 | A |
5445646 | Euteneuer et al. | Aug 1995 | A |
5447497 | Sogard et al. | Sep 1995 | A |
5450853 | Hastings et al. | Sep 1995 | A |
5451221 | Cho et al. | Sep 1995 | A |
5454817 | Katz | Oct 1995 | A |
5458572 | Campbell et al. | Oct 1995 | A |
5459700 | Jacobs | Oct 1995 | A |
5465717 | Imran et al. | Nov 1995 | A |
5465733 | Hinohara et al. | Nov 1995 | A |
5478309 | Sweezer et al. | Dec 1995 | A |
5478565 | Geria | Dec 1995 | A |
5486181 | Cohen et al. | Jan 1996 | A |
5496338 | Miyagi et al. | Mar 1996 | A |
5497783 | Urick et al. | Mar 1996 | A |
5503631 | Onishi | Apr 1996 | A |
5507301 | Wasicek et al. | Apr 1996 | A |
5507725 | Savage et al. | Apr 1996 | A |
5507766 | Kugo et al. | Apr 1996 | A |
5507795 | Chiang et al. | Apr 1996 | A |
5512055 | Domb et al. | Apr 1996 | A |
5514128 | Hillsman et al. | May 1996 | A |
5519532 | Broome | May 1996 | A |
5531676 | Edwards et al. | Jul 1996 | A |
5533985 | Wong | Jul 1996 | A |
5538008 | Crowe | Jul 1996 | A |
5546964 | Stangerup | Aug 1996 | A |
5549542 | Kovalcheck | Aug 1996 | A |
5558073 | Pomeranz et al. | Sep 1996 | A |
5558652 | Henke | Sep 1996 | A |
5562619 | Mirarchi et al. | Oct 1996 | A |
5568809 | Ben-Haim | Oct 1996 | A |
5571086 | Kaplan et al. | Nov 1996 | A |
5578007 | Imran | Nov 1996 | A |
5578048 | Pasqualucci et al. | Nov 1996 | A |
5582575 | Heckele et al. | Dec 1996 | A |
5584827 | Korteweg et al. | Dec 1996 | A |
5591194 | Berthiaume | Jan 1997 | A |
5599284 | Shea | Feb 1997 | A |
5599304 | Shaari | Feb 1997 | A |
5599576 | Opolski | Feb 1997 | A |
5601087 | Gunderson et al. | Feb 1997 | A |
5601585 | Banik et al. | Feb 1997 | A |
5601594 | Best | Feb 1997 | A |
5607386 | Flam | Mar 1997 | A |
5617870 | Hastings et al. | Apr 1997 | A |
5626374 | Kim | May 1997 | A |
5633000 | Grossman et al. | May 1997 | A |
5634908 | Loomas | Jun 1997 | A |
5638819 | Manwaring et al. | Jun 1997 | A |
5643251 | Hillsman et al. | Jul 1997 | A |
5645789 | Roucher, Jr. | Jul 1997 | A |
5647361 | Damadian | Jul 1997 | A |
5653690 | Booth et al. | Aug 1997 | A |
5656030 | Hunjan et al. | Aug 1997 | A |
5662621 | Lafontaine | Sep 1997 | A |
5662674 | Debbas | Sep 1997 | A |
5664567 | Linder | Sep 1997 | A |
5664580 | Erickson et al. | Sep 1997 | A |
5665052 | Bullard | Sep 1997 | A |
5669388 | Vilkomerson | Sep 1997 | A |
5673707 | Chandrasekaran | Oct 1997 | A |
5676673 | Ferre et al. | Oct 1997 | A |
5679400 | Tuch | Oct 1997 | A |
5682199 | Lankford | Oct 1997 | A |
5685838 | Peters et al. | Nov 1997 | A |
5685847 | Barry | Nov 1997 | A |
5690373 | Luker | Nov 1997 | A |
5693065 | Rains, III | Dec 1997 | A |
5694945 | Ben-Haim | Dec 1997 | A |
5697159 | Linden | Dec 1997 | A |
5700286 | Tartaglia et al. | Dec 1997 | A |
5707376 | Kavteladze et al. | Jan 1998 | A |
5707389 | Louw et al. | Jan 1998 | A |
5708175 | Loyanagi et al. | Jan 1998 | A |
5711315 | Jerusalmy | Jan 1998 | A |
5713839 | Shea | Feb 1998 | A |
5713946 | Ben-Haim | Feb 1998 | A |
5718702 | Edwards | Feb 1998 | A |
5720300 | Fagan et al. | Feb 1998 | A |
5720719 | Edwards et al. | Feb 1998 | A |
5722401 | Pietroski et al. | Mar 1998 | A |
5722984 | Fischell et al. | Mar 1998 | A |
5729129 | Acker | Mar 1998 | A |
5730128 | Pomeranz et al. | Mar 1998 | A |
5733248 | Adams et al. | Mar 1998 | A |
5749357 | Linder | May 1998 | A |
5749920 | Quiachon et al. | May 1998 | A |
5752513 | Acker et al. | May 1998 | A |
5752971 | Rosenbluth et al. | May 1998 | A |
5762604 | Kieturakis | Jun 1998 | A |
5766158 | Opolski | Jun 1998 | A |
5769821 | Abrahamson et al. | Jun 1998 | A |
5775327 | Randolph et al. | Jul 1998 | A |
5776158 | Chou | Jul 1998 | A |
5779699 | Lipson | Jul 1998 | A |
5789391 | Jacobus et al. | Aug 1998 | A |
5792100 | Shantha | Aug 1998 | A |
5797878 | Bleam | Aug 1998 | A |
5803089 | Ferre et al. | Sep 1998 | A |
5814016 | Valley et al. | Sep 1998 | A |
5819723 | Joseph | Oct 1998 | A |
5820568 | Willis | Oct 1998 | A |
5820592 | Hammerslag | Oct 1998 | A |
5823961 | Fields et al. | Oct 1998 | A |
5824044 | Quiachon et al. | Oct 1998 | A |
5824048 | Tuch | Oct 1998 | A |
5824173 | Fontirroche et al. | Oct 1998 | A |
5826576 | West | Oct 1998 | A |
5827224 | Shippert | Oct 1998 | A |
5827323 | Klieman et al. | Oct 1998 | A |
5830188 | Abouleish | Nov 1998 | A |
5833608 | Acker | Nov 1998 | A |
5833645 | Lieber et al. | Nov 1998 | A |
5833650 | Imran | Nov 1998 | A |
5833682 | Amplatz et al. | Nov 1998 | A |
5836638 | Slocum | Nov 1998 | A |
5836935 | Ashton et al. | Nov 1998 | A |
5836951 | Rosenbluth et al. | Nov 1998 | A |
5837313 | Ding et al. | Nov 1998 | A |
5843089 | Shatjian et al. | Dec 1998 | A |
5843113 | High | Dec 1998 | A |
5846259 | Berthiaume | Dec 1998 | A |
5857998 | Barry | Jan 1999 | A |
5862693 | Myers et al. | Jan 1999 | A |
5865767 | Frechette et al. | Feb 1999 | A |
5872879 | Hamm | Feb 1999 | A |
5873835 | Hastings | Feb 1999 | A |
5879324 | Von Hoffmann | Mar 1999 | A |
5882333 | Schaer et al. | Mar 1999 | A |
5882346 | Pomeranz et al. | Mar 1999 | A |
5887467 | Butterweck et al. | Mar 1999 | A |
5902247 | Coe et al. | May 1999 | A |
5902333 | Roberts et al. | May 1999 | A |
5904701 | Daneshvar | May 1999 | A |
5908407 | Frazee et al. | Jun 1999 | A |
5916147 | Boury | Jun 1999 | A |
5916193 | Stevens et al. | Jun 1999 | A |
5916213 | Haissaguerre et al. | Jun 1999 | A |
5928192 | Maahs | Jul 1999 | A |
5931811 | Haissaguerre et al. | Aug 1999 | A |
5931818 | Werp et al. | Aug 1999 | A |
5932035 | Koger et al. | Aug 1999 | A |
5935061 | Acker et al. | Aug 1999 | A |
5941816 | Barthel et al. | Aug 1999 | A |
5941849 | Amos, Jr. et al. | Aug 1999 | A |
D413629 | Wolff et al. | Sep 1999 | S |
5947988 | Smith | Sep 1999 | A |
5947991 | Cowan | Sep 1999 | A |
5949929 | Hamm | Sep 1999 | A |
5954693 | Barry | Sep 1999 | A |
5954694 | Sunseri | Sep 1999 | A |
5957842 | Littmann et al. | Sep 1999 | A |
5967984 | Chu et al. | Oct 1999 | A |
5968085 | Morris et al. | Oct 1999 | A |
5971975 | Mills et al. | Oct 1999 | A |
5976074 | Moriyama | Nov 1999 | A |
5979290 | Simeone | Nov 1999 | A |
5980503 | Chin | Nov 1999 | A |
5980551 | Summers et al. | Nov 1999 | A |
5984945 | Sirhan | Nov 1999 | A |
5985307 | Hanson et al. | Nov 1999 | A |
5987344 | West | Nov 1999 | A |
5989025 | Conley | Nov 1999 | A |
5993462 | Pomeranz et al. | Nov 1999 | A |
5997562 | Zadno-Azizi et al. | Dec 1999 | A |
6006126 | Cosmar | Dec 1999 | A |
6006130 | Higo et al. | Dec 1999 | A |
6007516 | Burbank et al. | Dec 1999 | A |
6007991 | Sivaraman et al. | Dec 1999 | A |
6010511 | Murphy | Jan 2000 | A |
6013019 | Fischell et al. | Jan 2000 | A |
6015414 | Werp et al. | Jan 2000 | A |
6016429 | Khafizov et al. | Jan 2000 | A |
6016439 | Acker | Jan 2000 | A |
6019736 | Avellanet et al. | Feb 2000 | A |
6019777 | Mackenzie | Feb 2000 | A |
6021340 | Randolph et al. | Feb 2000 | A |
6022313 | Ginn et al. | Feb 2000 | A |
6027461 | Walker et al. | Feb 2000 | A |
6027478 | Katz | Feb 2000 | A |
6039699 | Viera | Mar 2000 | A |
6042561 | Ash et al. | Mar 2000 | A |
6048299 | von Hoffmann | Apr 2000 | A |
6048358 | Barak | Apr 2000 | A |
6053172 | Hovda et al. | Apr 2000 | A |
6056702 | Lorenzo | May 2000 | A |
6059752 | Segal | May 2000 | A |
6063022 | Ben-Haim | May 2000 | A |
6063079 | Hovda et al. | May 2000 | A |
6071233 | Ishikawa et al. | Jun 2000 | A |
6079755 | Chang | Jun 2000 | A |
6080190 | Schwartz | Jun 2000 | A |
6083148 | Williams | Jul 2000 | A |
6083188 | Becker et al. | Jul 2000 | A |
6086585 | Hovda et al. | Jul 2000 | A |
6092846 | Fuss et al. | Jul 2000 | A |
6093150 | Chandler et al. | Jul 2000 | A |
6093195 | Ouchi | Jul 2000 | A |
6102891 | van Erp et al. | Aug 2000 | A |
6109268 | Thapliyal et al. | Aug 2000 | A |
6113567 | becker | Sep 2000 | A |
6117105 | Bresnaham et al. | Sep 2000 | A |
6122541 | Cosman et al. | Sep 2000 | A |
6123697 | Shippert | Sep 2000 | A |
6135991 | Muni et al. | Oct 2000 | A |
6136006 | Johnson et al. | Oct 2000 | A |
6139510 | Palermo | Oct 2000 | A |
6142957 | Diamond et al. | Nov 2000 | A |
6146402 | Munoz | Nov 2000 | A |
6146415 | Fitz | Nov 2000 | A |
6148823 | Hastings | Nov 2000 | A |
6149213 | Sokurenko et al. | Nov 2000 | A |
6159170 | Borodulin et al. | Dec 2000 | A |
6171298 | Matsuura et al. | Jan 2001 | B1 |
6171303 | Ben-Haim | Jan 2001 | B1 |
6174280 | Oneda et al. | Jan 2001 | B1 |
6176829 | Vilkomerson | Jan 2001 | B1 |
6179776 | Adams et al. | Jan 2001 | B1 |
6179788 | Sullivan | Jan 2001 | B1 |
6179811 | Fugoso et al. | Jan 2001 | B1 |
6183433 | Bays | Feb 2001 | B1 |
6183461 | Matsuura et al. | Feb 2001 | B1 |
6183464 | Sharp et al. | Feb 2001 | B1 |
6190353 | Makower et al. | Feb 2001 | B1 |
6190381 | Olsen et al. | Feb 2001 | B1 |
6193650 | Ryan, Jr. | Feb 2001 | B1 |
6195225 | Komatsu et al. | Feb 2001 | B1 |
6200257 | Winkler | Mar 2001 | B1 |
6206870 | Kanner | Mar 2001 | B1 |
6206900 | Tabatabaei et al. | Mar 2001 | B1 |
6213975 | Laksin | Apr 2001 | B1 |
6221042 | Adams | Apr 2001 | B1 |
6231543 | Hedge et al. | May 2001 | B1 |
6234958 | Snoke et al. | May 2001 | B1 |
6238364 | Becker | May 2001 | B1 |
6238391 | Olsen et al. | May 2001 | B1 |
6238430 | Klumb et al. | May 2001 | B1 |
6241519 | Sedleemayer | Jun 2001 | B1 |
6248092 | Miraki et al. | Jun 2001 | B1 |
6249180 | Maalej et al. | Jun 2001 | B1 |
6254550 | McNamara et al. | Jul 2001 | B1 |
6264087 | Whitman | Jul 2001 | B1 |
6268574 | Edens | Jul 2001 | B1 |
6270477 | Bagaoisan et al. | Aug 2001 | B1 |
6280433 | McIvor et al. | Aug 2001 | B1 |
6283908 | Powell et al. | Sep 2001 | B1 |
6290689 | Delaney et al. | Sep 2001 | B1 |
6293957 | Peters et al. | Sep 2001 | B1 |
6295990 | Lewis et al. | Oct 2001 | B1 |
6296638 | Davison et al. | Oct 2001 | B1 |
6302875 | Makower et al. | Oct 2001 | B1 |
6304768 | Blume et al. | Oct 2001 | B1 |
6306105 | Rooney et al. | Oct 2001 | B1 |
6306124 | Jones et al. | Oct 2001 | B1 |
D450382 | Nestenborg | Nov 2001 | S |
6322495 | Snow et al. | Nov 2001 | B1 |
6328564 | Thurow | Dec 2001 | B1 |
6328730 | Harkrider, Jr. | Dec 2001 | B1 |
6332089 | Acker et al. | Dec 2001 | B1 |
6332891 | Himes | Dec 2001 | B1 |
6340360 | Lyles et al. | Jan 2002 | B1 |
6344028 | Barry | Feb 2002 | B1 |
6348041 | Klint | Feb 2002 | B1 |
6351659 | Vilsmeier | Feb 2002 | B1 |
6352503 | Matsui et al. | Mar 2002 | B1 |
6355032 | Hovda et al. | Mar 2002 | B1 |
6364856 | Ding et al. | Apr 2002 | B1 |
6375615 | Flaherty et al. | Apr 2002 | B1 |
6375629 | Muni et al. | Apr 2002 | B1 |
6379319 | Garibotto et al. | Apr 2002 | B1 |
6381485 | Hunter et al. | Apr 2002 | B1 |
6383146 | Klint | May 2002 | B1 |
6386197 | Miller | May 2002 | B1 |
6389313 | Marchitto et al. | May 2002 | B1 |
6390993 | Cornish et al. | May 2002 | B1 |
6394093 | Lethi | May 2002 | B1 |
6398758 | Jacobsen et al. | Jun 2002 | B1 |
6409863 | Williams et al. | Jun 2002 | B1 |
6419653 | Edwards et al. | Jul 2002 | B2 |
6423012 | Kato et al. | Jul 2002 | B1 |
6425877 | Edwards | Jul 2002 | B1 |
6432986 | Levin | Aug 2002 | B2 |
6436119 | Erb et al. | Aug 2002 | B1 |
6440061 | Wenner et al. | Aug 2002 | B1 |
6443947 | Marko et al. | Sep 2002 | B1 |
6445939 | Swanson et al. | Sep 2002 | B1 |
6450975 | Brennan et al. | Sep 2002 | B1 |
6450989 | Dubrul et al. | Sep 2002 | B2 |
6464650 | Jafari et al. | Oct 2002 | B2 |
6468202 | Irion et al. | Oct 2002 | B1 |
6468297 | Williams et al. | Oct 2002 | B1 |
6485475 | Chelly | Nov 2002 | B1 |
6488653 | Lombardo | Dec 2002 | B1 |
6491940 | Levin | Dec 2002 | B1 |
6494894 | Mirarchi | Dec 2002 | B2 |
6500130 | Kinsella et al. | Dec 2002 | B2 |
6500189 | Lang et al. | Dec 2002 | B1 |
6503087 | Eggert et al. | Jan 2003 | B1 |
6503185 | Waksman et al. | Jan 2003 | B1 |
6503263 | Adams | Jan 2003 | B2 |
6511418 | Shahidi et al. | Jan 2003 | B2 |
6511471 | Rosenman et al. | Jan 2003 | B2 |
6514249 | Maguire et al. | Feb 2003 | B1 |
6517478 | Khadem | Feb 2003 | B2 |
6520954 | Ouchi | Feb 2003 | B2 |
6524129 | Cote et al. | Feb 2003 | B2 |
6524299 | Tran et al. | Feb 2003 | B1 |
6526302 | Hassett | Feb 2003 | B2 |
6527753 | Sekine et al. | Mar 2003 | B2 |
6529756 | Phan et al. | Mar 2003 | B1 |
6533754 | Hisamatsu et al. | Mar 2003 | B1 |
6536437 | Dragisic | Mar 2003 | B1 |
6537294 | Boyle et al. | Mar 2003 | B1 |
6543452 | Lavigne | Apr 2003 | B1 |
6544223 | Kokish | Apr 2003 | B1 |
6544230 | Flaherty et al. | Apr 2003 | B1 |
6549800 | Atalar et al. | Apr 2003 | B1 |
6551239 | Renner et al. | Apr 2003 | B2 |
6562022 | Hoste et al. | May 2003 | B2 |
6569146 | Werner et al. | May 2003 | B1 |
6569147 | Evans et al. | May 2003 | B1 |
6569191 | Hogan | May 2003 | B1 |
6571131 | Nguyen | May 2003 | B1 |
6572538 | Takase | Jun 2003 | B2 |
6572590 | Stevens et al. | Jun 2003 | B1 |
6579285 | Sinofsky | Jun 2003 | B2 |
6585639 | Kotmel et al. | Jul 2003 | B1 |
6585717 | Wittenberger et al. | Jul 2003 | B1 |
6585718 | Hayzelden et al. | Jul 2003 | B2 |
6585794 | Shimoda et al. | Jul 2003 | B2 |
6589164 | Flaherty | Jul 2003 | B1 |
6589237 | Woloszko et al. | Jul 2003 | B2 |
6591130 | Shahidi | Jul 2003 | B2 |
6596009 | Jelic | Jul 2003 | B1 |
6607546 | Murken | Aug 2003 | B1 |
6610059 | West, Jr. | Aug 2003 | B1 |
6612999 | Brennan et al. | Sep 2003 | B2 |
6613066 | Fukaya et al. | Sep 2003 | B1 |
6616601 | Hayakawa | Sep 2003 | B2 |
6616659 | de la Torre et al. | Sep 2003 | B1 |
6616678 | Nishtala et al. | Sep 2003 | B2 |
6616913 | Mautone | Sep 2003 | B1 |
6619085 | Hsieh | Sep 2003 | B1 |
6633773 | Reisfeld | Oct 2003 | B1 |
6634684 | Spiessl | Oct 2003 | B2 |
6638233 | Corvi et al. | Oct 2003 | B2 |
6638268 | Niazi | Oct 2003 | B2 |
6638291 | Ferrera et al. | Oct 2003 | B1 |
6645193 | Mangosong | Nov 2003 | B2 |
6645223 | Boyle et al. | Nov 2003 | B2 |
6650927 | Keidar | Nov 2003 | B1 |
6652472 | Jafari et al. | Nov 2003 | B2 |
6652480 | Imran et al. | Nov 2003 | B1 |
6656166 | Lurie et al. | Dec 2003 | B2 |
6659106 | Hovda et al. | Dec 2003 | B1 |
6663589 | Halevy | Dec 2003 | B1 |
6669689 | Lehmann et al. | Dec 2003 | B2 |
6669711 | Noda | Dec 2003 | B1 |
6672773 | Glenn et al. | Jan 2004 | B1 |
6673025 | Richardson et al. | Jan 2004 | B1 |
6679833 | Smith et al. | Jan 2004 | B2 |
6679871 | Hahnen | Jan 2004 | B2 |
6685648 | Flaherty et al. | Feb 2004 | B2 |
6689096 | Loubens et al. | Feb 2004 | B1 |
6689146 | Himes | Feb 2004 | B1 |
6702735 | Kelly | Mar 2004 | B2 |
6706010 | Miki et al. | Mar 2004 | B1 |
6712757 | Becker et al. | Mar 2004 | B2 |
6714809 | Lee et al. | Mar 2004 | B2 |
6716183 | Clayman et al. | Apr 2004 | B2 |
6716216 | Boucher et al. | Apr 2004 | B1 |
6716813 | Lim et al. | Apr 2004 | B2 |
6719749 | Schweikert | Apr 2004 | B1 |
6719763 | Chung et al. | Apr 2004 | B2 |
6726701 | Gilson et al. | Apr 2004 | B2 |
6738656 | Ferre et al. | May 2004 | B1 |
6740191 | Clarke et al. | May 2004 | B2 |
6741884 | Freeman et al. | May 2004 | B1 |
6743168 | Luloh et al. | Jun 2004 | B2 |
6755812 | Peterson et al. | Jun 2004 | B2 |
6758857 | Cioanta et al. | Jul 2004 | B2 |
6776772 | de Vrijer et al. | Aug 2004 | B1 |
6780168 | Jellie | Aug 2004 | B2 |
6783522 | Fischell | Aug 2004 | B2 |
6783536 | Vilsmeier et al. | Aug 2004 | B2 |
6786864 | Matsuura et al. | Sep 2004 | B2 |
6796960 | Cioanta et al. | Sep 2004 | B2 |
6811544 | Schaer | Nov 2004 | B2 |
6817364 | Garibaldi et al. | Nov 2004 | B2 |
6817976 | Rovengo | Nov 2004 | B2 |
6827683 | Otawara | Dec 2004 | B2 |
6827701 | MacMahon et al. | Dec 2004 | B2 |
6832715 | Eungard et al. | Dec 2004 | B2 |
D501677 | Becker | Feb 2005 | S |
6849062 | Kantor | Feb 2005 | B2 |
6851290 | Meier et al. | Feb 2005 | B1 |
6855136 | Dorros et al. | Feb 2005 | B2 |
6860264 | Christopher | Mar 2005 | B2 |
6860849 | Matsushita et al. | Mar 2005 | B2 |
6866669 | Buzzard et al. | Mar 2005 | B2 |
6878106 | Herrmann | Apr 2005 | B1 |
6890329 | Carroll et al. | May 2005 | B2 |
6899672 | Chin et al. | May 2005 | B2 |
6902556 | Grimes et al. | Jun 2005 | B2 |
6913763 | Lerner | Jul 2005 | B2 |
6927478 | Paek | Aug 2005 | B2 |
6939361 | Kleshinski | Sep 2005 | B1 |
6939374 | Banik et al. | Sep 2005 | B2 |
6953431 | Barthel | Oct 2005 | B2 |
6955657 | Webler | Oct 2005 | B1 |
6966906 | Brown | Nov 2005 | B2 |
6971998 | Rosenman et al. | Dec 2005 | B2 |
6979290 | Mourlas et al. | Dec 2005 | B2 |
6979979 | Xu et al. | Dec 2005 | B2 |
6984203 | Tartaglia et al. | Jan 2006 | B2 |
6989024 | Hebert et al. | Jan 2006 | B2 |
6991597 | Gellman et al. | Jan 2006 | B2 |
6997931 | Sauer et al. | Feb 2006 | B2 |
6997941 | Sharkey et al. | Feb 2006 | B2 |
7001369 | Griffin et al. | Feb 2006 | B2 |
7004173 | Sparks et al. | Feb 2006 | B2 |
7004176 | Lau | Feb 2006 | B2 |
7008412 | Maginot | Mar 2006 | B2 |
7011654 | Dubrul et al. | Mar 2006 | B2 |
7022105 | Edwards | Apr 2006 | B1 |
7037321 | Sachdeva | May 2006 | B2 |
7043961 | Pandey | May 2006 | B2 |
7044964 | Jang et al. | May 2006 | B2 |
7048711 | Rosemann et al. | May 2006 | B2 |
7052474 | Castell et al. | May 2006 | B2 |
7056284 | Martone et al. | Jun 2006 | B2 |
7056287 | Taylor et al. | Jun 2006 | B2 |
7056303 | Dennis et al. | Jun 2006 | B2 |
7056314 | Florio et al. | Jun 2006 | B1 |
7074197 | Reynolds et al. | Jul 2006 | B2 |
7074426 | Kochinke | Jul 2006 | B2 |
7097612 | Bertolero et al. | Aug 2006 | B2 |
7108677 | Courtney et al. | Sep 2006 | B2 |
7108706 | Hogle | Sep 2006 | B2 |
7117039 | Manning | Oct 2006 | B2 |
7128718 | Hojeibane et al. | Oct 2006 | B2 |
7131969 | Hovda et al. | Nov 2006 | B1 |
7140480 | Drussel et al. | Nov 2006 | B2 |
D534216 | Makower et al. | Dec 2006 | S |
7160255 | Saadat | Jan 2007 | B2 |
7169140 | Kume | Jan 2007 | B1 |
7169163 | Becker | Jan 2007 | B2 |
7172562 | Mckinley | Feb 2007 | B2 |
7174774 | Pawar et al. | Feb 2007 | B2 |
7182735 | Shireman et al. | Feb 2007 | B2 |
7184827 | Edwards | Feb 2007 | B1 |
7186224 | Windheuser | Mar 2007 | B2 |
7207981 | Quinn et al. | Apr 2007 | B2 |
7214201 | Burmeister et al. | May 2007 | B2 |
7233820 | Gilboa | Jun 2007 | B2 |
7235099 | Duncavage et al. | Jun 2007 | B1 |
7237313 | Skujins et al. | Jul 2007 | B2 |
7248914 | Hastings et al. | Jul 2007 | B2 |
7252677 | Burwell et al. | Aug 2007 | B2 |
7282057 | Surti et al. | Oct 2007 | B2 |
7292885 | Scott et al. | Nov 2007 | B2 |
7294345 | Haapakumpu et al. | Nov 2007 | B2 |
7294365 | Hayakawa et al. | Nov 2007 | B2 |
7303533 | Johansen et al. | Dec 2007 | B2 |
7309334 | von Hoffmann | Dec 2007 | B2 |
7313430 | Urquhart et al. | Dec 2007 | B2 |
7316168 | van der Knokke et al. | Jan 2008 | B2 |
7316656 | Shireman et al. | Jan 2008 | B2 |
7318831 | Alvarez et al. | Jan 2008 | B2 |
7322934 | Miyake et al. | Jan 2008 | B2 |
7326235 | Edwards | Feb 2008 | B2 |
7338467 | Lutter | Mar 2008 | B2 |
7343920 | Toby et al. | Mar 2008 | B2 |
7347868 | Burnett et al. | Mar 2008 | B2 |
7359755 | Jones et al. | Apr 2008 | B2 |
7361168 | Makower et al. | Apr 2008 | B2 |
7366562 | Dukesherer | Apr 2008 | B2 |
7371210 | Brock et al. | May 2008 | B2 |
7381205 | Thommen | Jun 2008 | B2 |
7384407 | Rodriguez et al. | Jun 2008 | B2 |
7410480 | Muni et al. | Aug 2008 | B2 |
7419497 | Muni et al. | Sep 2008 | B2 |
7438701 | Theeuwes et al. | Oct 2008 | B2 |
7442191 | Hovda et al. | Oct 2008 | B2 |
7452351 | Miller et al. | Nov 2008 | B2 |
7454244 | Kassab et al. | Nov 2008 | B2 |
7462175 | Chang et al. | Dec 2008 | B2 |
7471994 | Ford et al. | Dec 2008 | B2 |
7481218 | Djupesland | Jan 2009 | B2 |
7481800 | Jacques | Jan 2009 | B2 |
D586465 | Faulkner et al. | Feb 2009 | S |
D586916 | Faulkner et al. | Feb 2009 | S |
7488313 | Segal et al. | Feb 2009 | B2 |
7488337 | Saab et al. | Feb 2009 | B2 |
7493156 | Manning et al. | Feb 2009 | B2 |
7500971 | Chang et al. | Mar 2009 | B2 |
D590502 | Geisser et al. | Apr 2009 | S |
7520876 | Ressemann et al. | Apr 2009 | B2 |
7532920 | Ainsworth et al. | May 2009 | B1 |
7544192 | Eaton et al. | Jun 2009 | B2 |
7551758 | Florent et al. | Jun 2009 | B2 |
7559925 | Goldfarb et al. | Jul 2009 | B2 |
7566300 | Devierre et al. | Jul 2009 | B2 |
7610104 | Kaplan et al. | Oct 2009 | B2 |
7615005 | Stefanchik et al. | Nov 2009 | B2 |
7618450 | Zarowski et al. | Nov 2009 | B2 |
7625335 | Deichmann et al. | Dec 2009 | B2 |
7632291 | Stephens et al. | Dec 2009 | B2 |
7634233 | Deng et al. | Dec 2009 | B2 |
7641644 | Chang et al. | Jan 2010 | B2 |
7641668 | Perry et al. | Jan 2010 | B2 |
7645272 | Chang et al. | Jan 2010 | B2 |
7648367 | Makower et al. | Jan 2010 | B1 |
7648517 | Makower et al. | Jan 2010 | B2 |
7654997 | Makower et al. | Feb 2010 | B2 |
7680244 | Gertner et al. | Mar 2010 | B2 |
7686798 | Eaton et al. | Mar 2010 | B2 |
7691120 | Shluzas et al. | Apr 2010 | B2 |
7697972 | Verard et al. | Apr 2010 | B2 |
7717933 | Becker | May 2010 | B2 |
7720521 | Chang et al. | May 2010 | B2 |
7727186 | Makower et al. | Jun 2010 | B2 |
7727226 | Chang et al. | Jun 2010 | B2 |
7736301 | Webler et al. | Jun 2010 | B1 |
7740642 | Becker | Jun 2010 | B2 |
7751758 | Yahagi | Jul 2010 | B2 |
7753929 | Becker | Jul 2010 | B2 |
7753930 | Becker | Jul 2010 | B2 |
7758497 | Hern | Jul 2010 | B2 |
7771409 | Chang et al. | Aug 2010 | B2 |
7775968 | Mathis | Aug 2010 | B2 |
7785315 | Muni et al. | Aug 2010 | B1 |
7799048 | Hudson et al. | Sep 2010 | B2 |
7799337 | Levin | Sep 2010 | B2 |
7803150 | Chang et al. | Sep 2010 | B2 |
7833282 | Mandpe | Nov 2010 | B2 |
7837672 | Intoccia | Nov 2010 | B2 |
7840254 | Glossop | Nov 2010 | B2 |
7854744 | Becker | Dec 2010 | B2 |
7857750 | Belafsky | Dec 2010 | B2 |
D630321 | Hamilton, Jr. | Jan 2011 | S |
7875050 | Samson et al. | Jan 2011 | B2 |
D632791 | Murner | Feb 2011 | S |
7881769 | Sobe | Feb 2011 | B2 |
7883717 | Varner et al. | Feb 2011 | B2 |
7896891 | Catanese, III et al. | Mar 2011 | B2 |
7927271 | Dimitriou et al. | Apr 2011 | B2 |
7951132 | Eaton et al. | May 2011 | B2 |
7988705 | Galdonik et al. | Aug 2011 | B2 |
7993353 | Roβner et al. | Aug 2011 | B2 |
8002740 | Willink et al. | Aug 2011 | B2 |
8014849 | Peckham | Sep 2011 | B2 |
8016752 | Armstrong et al. | Sep 2011 | B2 |
8025635 | Eaton et al. | Sep 2011 | B2 |
8075476 | Vargas | Dec 2011 | B2 |
8075478 | Campos | Dec 2011 | B2 |
8080000 | Makower et al. | Dec 2011 | B2 |
8088063 | Fujikura et al. | Jan 2012 | B2 |
8088101 | Chang et al. | Jan 2012 | B2 |
8090433 | Makower et al. | Jan 2012 | B2 |
8100933 | Becker | Jan 2012 | B2 |
8104483 | Taylor | Jan 2012 | B2 |
8114062 | Muni et al. | Feb 2012 | B2 |
8114113 | Becker | Feb 2012 | B2 |
8123722 | Chang et al. | Feb 2012 | B2 |
8142422 | Makower et al. | Mar 2012 | B2 |
8146400 | Goldfarb et al. | Apr 2012 | B2 |
8147545 | Avior | Apr 2012 | B2 |
8167821 | Sharrow | May 2012 | B2 |
8172828 | Chang et al. | May 2012 | B2 |
8190389 | Kim et al. | May 2012 | B2 |
8197433 | Cohen | Jun 2012 | B2 |
8197552 | Mandpe | Jun 2012 | B2 |
8249700 | Clifford et al. | Aug 2012 | B2 |
8277386 | Ahmed et al. | Oct 2012 | B2 |
8317816 | Becker | Nov 2012 | B2 |
8337454 | Eaton et al. | Dec 2012 | B2 |
8388642 | Muni et al. | Mar 2013 | B2 |
8403954 | Santin et al. | Mar 2013 | B2 |
8414473 | Jenkins et al. | Apr 2013 | B2 |
8425457 | John et al. | Apr 2013 | B2 |
8439687 | Morriss et al. | May 2013 | B1 |
8475360 | Brown | Jul 2013 | B2 |
8521259 | Mandrusov et al. | Aug 2013 | B2 |
8529439 | Ito et al. | Sep 2013 | B2 |
8535707 | Arensdorf et al. | Sep 2013 | B2 |
8702626 | Kim et al. | Apr 2014 | B1 |
8715169 | Chang et al. | May 2014 | B2 |
8721591 | Chang et al. | May 2014 | B2 |
8740839 | Eaton et al. | Jun 2014 | B2 |
8740929 | Gopferich et al. | Jun 2014 | B2 |
8747389 | Goldfarb et al. | Jun 2014 | B2 |
8764709 | Chang et al. | Jul 2014 | B2 |
8764726 | Chang et al. | Jul 2014 | B2 |
8764729 | Muni et al. | Jul 2014 | B2 |
8777926 | Chang et al. | Jul 2014 | B2 |
8802131 | Arensdorf et al. | Aug 2014 | B2 |
8828041 | Chang et al. | Sep 2014 | B2 |
8870893 | Makower et al. | Oct 2014 | B2 |
8894614 | Muni et al. | Nov 2014 | B2 |
8894787 | Boe | Nov 2014 | B2 |
8905922 | Makower et al. | Dec 2014 | B2 |
8932276 | Morriss et al. | Jan 2015 | B1 |
8945088 | Chang et al. | Feb 2015 | B2 |
8951225 | Evard et al. | Feb 2015 | B2 |
8961398 | Makower et al. | Feb 2015 | B2 |
8961495 | Chang et al. | Feb 2015 | B2 |
9039657 | Makower et al. | May 2015 | B2 |
9055965 | Chang et al. | Jun 2015 | B2 |
9089258 | Goldfarb et al. | Jul 2015 | B2 |
9101574 | Chang et al. | Aug 2015 | B2 |
9101739 | Lesch, Jr. et al. | Aug 2015 | B2 |
9107574 | Goldfarb et al. | Aug 2015 | B2 |
9167961 | Makower et al. | Oct 2015 | B2 |
9179823 | Goldfarb et al. | Nov 2015 | B2 |
9216112 | Clifford et al. | Dec 2015 | B2 |
9220879 | Chang et al. | Dec 2015 | B2 |
9241834 | Chang et al. | Jan 2016 | B2 |
9265407 | Goldfarb et al. | Feb 2016 | B2 |
9289576 | Mann et al. | Mar 2016 | B2 |
9308361 | Muni et al. | Apr 2016 | B2 |
9351750 | Muni et al. | May 2016 | B2 |
9370649 | Chang et al. | Jun 2016 | B2 |
9399121 | Goldfarb et al. | Jul 2016 | B2 |
9468453 | Hart et al. | Oct 2016 | B2 |
9554691 | Goldfarb et al. | Jan 2017 | B2 |
9603506 | Goldfarb et al. | Mar 2017 | B2 |
9610428 | Muni et al. | Apr 2017 | B2 |
9649477 | Muni et al. | May 2017 | B2 |
9713700 | Chang et al. | Jul 2017 | B2 |
9814379 | Makower et al. | Nov 2017 | B2 |
10098652 | Goldfarb et al. | Oct 2018 | B2 |
10124154 | Evard et al. | Nov 2018 | B2 |
10188413 | Morriss et al. | Jan 2019 | B1 |
10492810 | Chang et al. | Dec 2019 | B2 |
10500380 | Chang et al. | Dec 2019 | B2 |
10631756 | Kim et al. | Apr 2020 | B2 |
10695080 | Chang et al. | Jun 2020 | B2 |
10779752 | Kim et al. | Sep 2020 | B2 |
10813547 | Makower et al. | Oct 2020 | B2 |
11019989 | Makower et al. | Jun 2021 | B2 |
20010004644 | Levin | Jun 2001 | A1 |
20010005785 | Sachse | Jun 2001 | A1 |
20010021843 | Bosselmann et al. | Sep 2001 | A1 |
20010034530 | Malackowski et al. | Oct 2001 | A1 |
20010037084 | Nardeo | Nov 2001 | A1 |
20020006961 | Katz et al. | Jan 2002 | A1 |
20020013548 | Hinchcliffe | Jan 2002 | A1 |
20020045924 | Fox | Apr 2002 | A1 |
20020055746 | Burke et al. | May 2002 | A1 |
20020068851 | Gravenstein et al. | Jun 2002 | A1 |
20020068928 | Werneth | Jun 2002 | A1 |
20020077593 | Perkins et al. | Jun 2002 | A1 |
20020090388 | Humes et al. | Jul 2002 | A1 |
20020161389 | Boyle et al. | Oct 2002 | A1 |
20030009095 | Skarda | Jan 2003 | A1 |
20030009190 | Kletschka et al. | Jan 2003 | A1 |
20030013985 | Saadat | Jan 2003 | A1 |
20030017111 | Rabito | Jan 2003 | A1 |
20030018291 | Hill et al. | Jan 2003 | A1 |
20030040697 | Pass et al. | Feb 2003 | A1 |
20030051733 | Kotmel et al. | Mar 2003 | A1 |
20030073900 | Senarith et al. | Apr 2003 | A1 |
20030074045 | Buzzard et al. | Apr 2003 | A1 |
20030083608 | Evans et al. | May 2003 | A1 |
20030114732 | Webler et al. | Jun 2003 | A1 |
20030114909 | Clerc et al. | Jun 2003 | A1 |
20030163154 | Miyata et al. | Aug 2003 | A1 |
20030167060 | Buzzard et al. | Sep 2003 | A1 |
20030220551 | Kimball et al. | Nov 2003 | A1 |
20040015150 | Zadno-Azizi | Jan 2004 | A1 |
20040018980 | Gurney et al. | Jan 2004 | A1 |
20040020492 | Dubrul et al. | Feb 2004 | A1 |
20040034311 | Mihakcik | Feb 2004 | A1 |
20040043052 | Hunter et al. | Mar 2004 | A1 |
20040058992 | Marinello et al. | Mar 2004 | A1 |
20040064105 | Capes et al. | Apr 2004 | A1 |
20040064150 | Becker | Apr 2004 | A1 |
20040116958 | Gopferich et al. | Jun 2004 | A1 |
20040127820 | Clayman et al. | Jul 2004 | A1 |
20040158229 | Quinn | Aug 2004 | A1 |
20040181175 | Clayman et al. | Sep 2004 | A1 |
20040193073 | DeMello et al. | Sep 2004 | A1 |
20040220516 | Solomon et al. | Nov 2004 | A1 |
20040230156 | Schreck et al. | Nov 2004 | A1 |
20040236231 | Knighton et al. | Nov 2004 | A1 |
20040249243 | Kleiner | Dec 2004 | A1 |
20040267347 | Cervantes | Dec 2004 | A1 |
20050027249 | Reifart et al. | Feb 2005 | A1 |
20050038319 | Goldwasser et al. | Feb 2005 | A1 |
20050055077 | Marco | Mar 2005 | A1 |
20050059930 | Garrison et al. | Mar 2005 | A1 |
20050059931 | Garrison et al. | Mar 2005 | A1 |
20050089670 | Large | Apr 2005 | A1 |
20050107738 | Slater et al. | May 2005 | A1 |
20050113687 | Herweck et al. | May 2005 | A1 |
20050113850 | Tagge | May 2005 | A1 |
20050119590 | Burmeister et al. | Jun 2005 | A1 |
20050124856 | Fujikura et al. | Jun 2005 | A1 |
20050131316 | Flagle et al. | Jun 2005 | A1 |
20050137621 | Stahl et al. | Jun 2005 | A1 |
20050143687 | Rosenblatt et al. | Jun 2005 | A1 |
20050182319 | Glossop | Aug 2005 | A1 |
20050228224 | Okada et al. | Oct 2005 | A1 |
20050234507 | Geske et al. | Oct 2005 | A1 |
20050240120 | Modesitt | Oct 2005 | A1 |
20050244472 | Hughes et al. | Nov 2005 | A1 |
20050283221 | Mann et al. | Dec 2005 | A1 |
20060004323 | Chang et al. | Jan 2006 | A1 |
20060047261 | Joshi | Mar 2006 | A1 |
20060063973 | Makower et al. | Mar 2006 | A1 |
20060173382 | Schreiner | Aug 2006 | A1 |
20060189844 | Tien | Aug 2006 | A1 |
20060190022 | Beyar et al. | Aug 2006 | A1 |
20060211752 | Kohn et al. | Sep 2006 | A1 |
20060271024 | Gertner et al. | Nov 2006 | A1 |
20060284428 | Beadle et al. | Dec 2006 | A1 |
20070020196 | Pipkin et al. | Jan 2007 | A1 |
20070112358 | Abbott | May 2007 | A1 |
20070129751 | Muni et al. | Jun 2007 | A1 |
20070135789 | Chang et al. | Jun 2007 | A1 |
20070167682 | Goldfarb et al. | Jul 2007 | A1 |
20070207186 | Scanlon et al. | Sep 2007 | A1 |
20070208252 | Makower | Sep 2007 | A1 |
20070208301 | Evard et al. | Sep 2007 | A1 |
20070249896 | Goldfarb et al. | Oct 2007 | A1 |
20070269385 | Yun et al. | Nov 2007 | A1 |
20070282305 | Goldfarb et al. | Dec 2007 | A1 |
20070293727 | Goldfarb et al. | Dec 2007 | A1 |
20070293946 | Gonzales et al. | Dec 2007 | A1 |
20080015544 | Keith et al. | Jan 2008 | A1 |
20080033519 | Burwell et al. | Feb 2008 | A1 |
20080051804 | Cottler et al. | Feb 2008 | A1 |
20080097516 | Chang et al. | Apr 2008 | A1 |
20080103521 | Makower et al. | May 2008 | A1 |
20080119693 | Makower et al. | May 2008 | A1 |
20080125626 | Chang et al. | May 2008 | A1 |
20080132938 | Chang et al. | Jun 2008 | A1 |
20080172033 | Keith et al. | Jul 2008 | A1 |
20080183128 | Morriss et al. | Jul 2008 | A1 |
20080188803 | Jang | Aug 2008 | A1 |
20080188870 | Andre et al. | Aug 2008 | A1 |
20080195041 | Goldfarb et al. | Aug 2008 | A1 |
20080228085 | Jenkins et al. | Sep 2008 | A1 |
20080262508 | Clifford et al. | Oct 2008 | A1 |
20080275483 | Makower et al. | Nov 2008 | A1 |
20080281156 | Makower et al. | Nov 2008 | A1 |
20080287908 | Muni et al. | Nov 2008 | A1 |
20080319424 | Muni et al. | Dec 2008 | A1 |
20090030274 | Goldfarb et al. | Jan 2009 | A1 |
20090088728 | Dollar et al. | Apr 2009 | A1 |
20090156980 | Eaton et al. | Jun 2009 | A1 |
20090163890 | Clifford et al. | Jun 2009 | A1 |
20090187089 | Say et al. | Jul 2009 | A1 |
20090187098 | Makower et al. | Jul 2009 | A1 |
20090198216 | Muni et al. | Aug 2009 | A1 |
20090240112 | Goldfarb et al. | Sep 2009 | A1 |
20090240237 | Goldfarb et al. | Sep 2009 | A1 |
20090312745 | Goldfarb et al. | Dec 2009 | A1 |
20100030031 | Goldfarb et al. | Feb 2010 | A1 |
20100042046 | Chang et al. | Feb 2010 | A1 |
20100087811 | Herrin et al. | Apr 2010 | A1 |
20100114066 | Makower et al. | May 2010 | A1 |
20100174138 | Chang et al. | Jul 2010 | A1 |
20100174308 | Chang et al. | Jul 2010 | A1 |
20100198191 | Clifford et al. | Aug 2010 | A1 |
20100198247 | Chang et al. | Aug 2010 | A1 |
20100198302 | Shalev | Aug 2010 | A1 |
20100210901 | Makower et al. | Aug 2010 | A1 |
20100211007 | Lesch, Jr. et al. | Aug 2010 | A1 |
20100268245 | Chang et al. | Oct 2010 | A1 |
20100274188 | Chang et al. | Oct 2010 | A1 |
20100290244 | Nath | Nov 2010 | A1 |
20100298862 | Chang et al. | Nov 2010 | A1 |
20110004057 | Goldfarb et al. | Jan 2011 | A1 |
20110015482 | Carrillo, Jr. | Jan 2011 | A1 |
20110060214 | Makower | Mar 2011 | A1 |
20110112512 | Muni et al. | May 2011 | A1 |
20110166190 | Anderson et al. | Jul 2011 | A1 |
20120071710 | Gazdzinski | Mar 2012 | A1 |
20120071824 | Chang et al. | Mar 2012 | A1 |
20120136207 | Goldfarb et al. | May 2012 | A1 |
20120184983 | Chang et al. | Jul 2012 | A1 |
20120245419 | Makower et al. | Sep 2012 | A1 |
20120265094 | Goldfarb et al. | Oct 2012 | A1 |
20130231529 | Chang et al. | Sep 2013 | A1 |
20130245608 | Muni et al. | Sep 2013 | A1 |
20130261388 | Jenkins et al. | Oct 2013 | A1 |
20150088188 | Muni et al. | Mar 2015 | A1 |
20150165175 | Evard et al. | Jun 2015 | A1 |
20150165176 | Makower et al. | Jun 2015 | A1 |
20150182735 | Chang et al. | Jul 2015 | A1 |
20150209055 | Chang et al. | Jul 2015 | A1 |
20150250992 | Morriss et al. | Sep 2015 | A1 |
20160192830 | Goldfarb et al. | Jul 2016 | A1 |
20160270863 | Makower | Sep 2016 | A1 |
20170007281 | Goldfarb et al. | Jan 2017 | A1 |
20170071625 | Chang et al. | Mar 2017 | A1 |
20200046949 | Chisena | Feb 2020 | A1 |
20200164188 | Chang et al. | May 2020 | A1 |
20200230373 | Stankus | Jul 2020 | A1 |
Number | Date | Country |
---|---|---|
2013323 | Sep 1990 | CA |
668188 | Dec 1988 | CH |
2151720 | Jan 1994 | CN |
2352818 | Dec 1999 | CN |
201005758 | Jan 2008 | CN |
3202878 | Aug 1983 | DE |
4032096 | Apr 1992 | DE |
4406077 | Sep 1994 | DE |
8810044 | Nov 1998 | DE |
29923582 | Dec 2000 | DE |
10104663 | Aug 2002 | DE |
10105592 | Aug 2002 | DE |
129634 | Jan 1985 | EP |
0200430 | Nov 1986 | EP |
257605 | Mar 1988 | EP |
355996 | Feb 1990 | EP |
418391 | Mar 1991 | EP |
427852 | May 1991 | EP |
0515201 | Nov 1992 | EP |
623582 | Nov 1994 | EP |
624349 | Nov 1994 | EP |
744400 | Nov 1996 | EP |
585757 | Jun 1997 | EP |
893426 | Jan 1999 | EP |
0920882 | Jun 1999 | EP |
0974936 | Jan 2000 | EP |
1042998 | Oct 2000 | EP |
1086664 | Mar 2001 | EP |
1112103 | Jul 2001 | EP |
1166710 | Jan 2002 | EP |
1413258 | Apr 2004 | EP |
1944053 | Jul 2008 | EP |
2662083 | Nov 1991 | FR |
2859377 | Mar 2005 | FR |
2916144 | Nov 2008 | FR |
2125874 | Mar 1984 | GB |
2305174 | Apr 1997 | GB |
53-67935 | Jun 1978 | JP |
S61-16750 | Jan 1986 | JP |
H10-24098 | Jan 1989 | JP |
10-034376 | Feb 1989 | JP |
H01-305965 | Dec 1989 | JP |
3-503011 | Jul 1991 | JP |
H03-504935 | Oct 1991 | JP |
4-221313 | Aug 1992 | JP |
4-224766 | Aug 1992 | JP |
H05-503650 | Jun 1993 | JP |
5-211985 | Aug 1993 | JP |
H05-506805 | Oct 1993 | JP |
06-17751 | Mar 1994 | JP |
6-277296 | Oct 1994 | JP |
7-327916 | Dec 1995 | JP |
8-317989 | Dec 1996 | JP |
H10-034376 | Feb 1998 | JP |
H10-501159 | Feb 1998 | JP |
H10-094543 | Apr 1998 | JP |
H11-507251 | Jun 1999 | JP |
2000-501634 | Feb 2000 | JP |
2000-126303 | May 2000 | JP |
2001-025508 | Jan 2001 | JP |
2001-501846 | Feb 2001 | JP |
2001-095815 | Apr 2001 | JP |
2001-526077 | Dec 2001 | JP |
2002-028166 | Jan 2002 | JP |
2002-508214 | Mar 2002 | JP |
2002-537908 | Nov 2002 | JP |
2002-538850 | Nov 2002 | JP |
2003-507140 | Feb 2003 | JP |
2003-062080 | Mar 2003 | JP |
2003-521327 | Jul 2003 | JP |
2004-049583 | Feb 2004 | JP |
2004-357728 | Dec 2004 | JP |
2005-323702 | Nov 2005 | JP |
2005-532869 | Nov 2005 | JP |
2008-539031 | Nov 2008 | JP |
2108764 | Apr 1998 | RU |
2213530 | Oct 2003 | RU |
1662571 | Jul 1991 | SU |
WO 90011053 | Oct 1990 | WO |
WO 90014865 | Dec 1990 | WO |
WO 91017787 | Nov 1991 | WO |
WO 92015286 | Sep 1992 | WO |
WO 92022350 | Dec 1992 | WO |
WO 94012095 | Jun 1994 | WO |
WO 94021320 | Sep 1994 | WO |
WO 95002430 | Jan 1995 | WO |
WO 96029071 | Sep 1996 | WO |
WO 97021461 | Jun 1997 | WO |
WO 98055174 | Dec 1998 | WO |
WO 99000064 | Jan 1999 | WO |
WO 99024106 | May 1999 | WO |
WO 99026692 | Jun 1999 | WO |
WO 99030655 | Jun 1999 | WO |
WO 99032041 | Jul 1999 | WO |
WO 99059649 | Nov 1999 | WO |
WO 00009190 | Feb 2000 | WO |
WO 00009192 | Feb 2000 | WO |
WO 00023009 | Apr 2000 | WO |
WO 00051672 | Sep 2000 | WO |
WO 00053252 | Sep 2000 | WO |
WO 00067834 | Nov 2000 | WO |
WO 01005462 | Jan 2001 | WO |
WO 01045572 | Jun 2001 | WO |
WO 01054558 | Aug 2001 | WO |
WO 01056481 | Aug 2001 | WO |
WO 01068178 | Sep 2001 | WO |
WO 01070325 | Sep 2001 | WO |
WO 01082800 | Nov 2001 | WO |
WO 01097895 | Dec 2001 | WO |
WO 02062269 | Aug 2002 | WO |
WO 02089899 | Nov 2002 | WO |
WO 03049603 | Jun 2003 | WO |
WO 03063703 | Aug 2003 | WO |
WO 03105657 | Dec 2003 | WO |
WO 04006788 | Jan 2004 | WO |
WO 04018980 | Mar 2004 | WO |
WO 04026391 | Apr 2004 | WO |
WO 04045387 | Jun 2004 | WO |
WO 04058045 | Jul 2004 | WO |
WO 04082525 | Sep 2004 | WO |
WO 05018730 | Mar 2005 | WO |
WO 05077450 | Aug 2005 | WO |
WO 05089670 | Sep 2005 | WO |
WO 05117755 | Dec 2005 | WO |
WO 06034008 | Mar 2006 | WO |
WO 06078884 | Jul 2006 | WO |
WO 06107957 | Oct 2006 | WO |
WO 06116597 | Nov 2006 | WO |
WO 06118737 | Nov 2006 | WO |
WO 06135853 | Dec 2006 | WO |
WO 07034203 | Mar 2007 | WO |
WO 07035204 | Mar 2007 | WO |
WO 07111636 | Oct 2007 | WO |
WO 07124260 | Nov 2007 | WO |
WO 08036149 | Mar 2008 | WO |
WO 08045242 | Apr 2008 | WO |
WO 08051918 | May 2008 | WO |
WO 08134382 | Nov 2008 | WO |
WO 01074266 | Oct 2011 | WO |
Entry |
---|
Canadian Office Action dated Jun. 20, 2016, for Application No. CA 2,617,054. |
European Communication dated May 12, 2017, for Application No. EP 09792627.3. |
European Communication dated Jul. 14, 2017, for Application No. EP 06784759.0. |
European Communication dated Aug. 2, 2017, for Application No. EP 12173295.2. |
Argon Medical. Maxxim Medical. Ad for Sniper EliteTM Hydrophilic Ni—Ti Alloy Guidewire (2001). |
Aust, R., et al. ‘The Functional Size of the Human Maxillary Ostium in Vivo’ Acta. Otolaryn. (9178) vol. 78 pp. 432-435. |
Baim, D.S., Md ‘Grossman's Cardiac Catheterization, Angiography, and Intervention’ (2000) Lippincott Williams & Wilkins pp. 76, 84 & 214. |
Barrett, S. ‘Be Wary of Neurocranial Restructuring (NCR)’ Chirobase; Jul. 2003; www.chirobase.org/06DD/ncr.html. |
Bartal, N. ‘An Improved stent for Use in the Surgical Management of Congential Posterior Choanal Atresia’ J. Laryngol. Otol (1988) vol. 102 pp. 146-147. |
Becker, A.E. ‘Restenosis After Angioplasty’ The Lancet (1988) vol. 331, No. 8584 p. 532. |
Bellis, M. History of the Catheter-Balloon Catheter-Thomas Fogarty. www.inventors.about.com/library/inventors/blcatheter.htm?p=1. |
Benninger et al.; Adult Chronic Rhinosinusitis: Definitions, Diagnosis, Epidemiology, and Pathophysilogy' Arch Otolarygol Head and Neck Surg. vol. 129 (Sep. 2003) pp. A1-S32. |
Bent et al. ‘The Frontal Cell as a Cause of Frontal Sinus Obstruction’ American Journal of Rhinology, vol. 8, No. 4 (1994) pp. 185-191. |
Binner et al. ‘Fibre-Optic Transillumination of the Sinuses: A Comparison of the Value of Radiography and Transillumination in Antral Disease’ Clinical Otolaryngology. vol. 3 (1978) pp. 1-11. |
Brown, C.L. et al., ‘Safety and Feasibility of Balloon Catheter Dilation of Paranasal Sinus Ostia: A Preliminary Investigation’ Annals of Otology, Rhinology & Laryngology (2006) vol. 115, No. 4 pp. 293-299. |
Casiano et al. ‘Endoscopic Lothrop Procedure: The University of Miami Experience’ American Journal of Rhinology, vol. 12, No. 5 (1998) pp. 335-339. |
Casserly, I.P et al., Chapter 7. ‘Guides and Wires in Percutaneous Coronary Intervention’ Strategic Approaches in Coronary Intervention (2006) Lippincott Williams & Wilkins pp. 91-99. |
Chien, Y.W. et al. ‘Nasal Systemic Drug Delivery’ Drugs and Pharmaceutical Sciences, vol. 39, pp. 60-63. |
Cohen et al. ‘Endoscopic Sinus Surgery: Where we are and where we're going’ Current Opinion in Otolaryngology & Head and Neck Surgery, vol. 13 (2005) pp. 32-38. |
Colla, A. et al., ‘Trihaloacetylated Enol Ethers-General Synthetic Procedure and Heterocyclic Ring Closure Reactions with Hydroxylamine’ Synthesis, (Jun. 1991) pp. 483-486. |
Costa, M.N. et al. ‘Endoscopic Study of the Intranasal Ostium in External Dacryocystorhinostomy Postoperative. Influence of Saline Solution and 5-Flurorouracil’ Clinics (2007) vol. 62, Issue1, pp. 41-46. |
Cussler, E.L. ‘Diffusion: Mass transfer in Fluid Systems’ Cambridge University Press (1996). |
Davis, G.E et al. ‘A Complication from Neurocranial Restructuring’ Arch Otolaryngol Head Neck Surg. vol. 129 (Apr. 2003) pp. 472-474. |
Definition of “bent” as accessed on Sep. 10, 2015 http://dictionary.reference.com/browse/bent. |
Deutschmann, R. et al. ‘A Contribution to the Topical Treatment of [Maxillary] Sinusitis Preliminary Communication’ Stomat DDR 26, (1976) pp. 585-592. |
Domb, A. et al. ‘Handbook of Biodegradable Polymers’ Harwood Academic Publishers (1997). |
Doyle Nasal Splints, Jan. 25, 2007; www.doylemedical.com/nasalsplints.htm. |
Draf, W. ‘Endonasal Micro-Endoscopic Frontal Sinus Surgery: the Fulda Concept’ Op Tech Otolaryngol Head Neck Surg. vol. 2 (1991) pp. 234-240. |
“Durometer Made Easy Durometer Hardness Scales—General Reference Guide.” Paramount Industries, Inc. 2008. Accessed online: http://www.paramountind.com/pdfs/paramount_durometer_scale_guide.pdf. |
“Durometer Shore Hardness Scale.” Smooth-On, Inc. 2016. Accessed online: https://www.smooth-on.com/page/durometer-shore-hardness-scale/. |
Edmond, C. et al. ‘ENT Surgical Stimulator’ Nov. 1989. |
ENT Checklist; Physical Examination Performance Checklist [date of publication unknown]. |
Eremychev, V.A. ‘Needles for Puncture and Drainage of the Maxillary Sinus’ Meditsinskaya Tekhnika, No. 5 (1974) pp. 54.55. |
Feldman, R.L. et al., ‘New Steerable, Ultra-Low-Profile, Fixed Wire Angioplasty Catheter: Initial Experience with the Cordis OrionTM Steerable PTCA Balloon Catheter’ Cathet. Cardiovasc. Diagn. (1990) vol. 19, No. 2 pp. 142-145. |
Ford, C.N. ‘A Multipurpose Laryngeal Injector Device’ Otolaryngol. Head Neck Surg. (1990) vol. 103, No. 1 pp. 135-137. |
Friedman, M., M.D., et al. ‘Frontal Sinus Surgery: Endoscopic Technique’ Operative Techniques in Otolarynology—Head and Neck Surgery. vol. 12, No. 2 (Jun. 2001) pp. 60-65. |
Friedman, et al. ‘Intraoperative and Postoperative Assessment of Frontal Sinus Patency by Transillumination’ Laryngoscope. vol. 110 (Apr. 2000) pp. 683-684. |
Friedman, et al.‘Middle Turbinate Medialization and Preservation in Endoscopic Surgery’ Otolaryngology—Head and Neck Surgery. (2000) vol. 123, No. 1, part 1, pp. 76-80. |
Fung, M.K.T. ‘Template for Frontal Osteoplastic Flap’ Laryngoscope. vol. 96 (1986) pp. 578-579. |
Gatot, A. et al. ‘Early treatment of Orbital Floor Fractures with Catheter Balloon in Children’ Int J. Pediatric Otorhinolaryngol (1991) vol. 21 pp. 97-101. |
Gerus, I.I. et al. ‘β-Ethoxyvinyl Polyfluroroalkyl Ketones—Versatile Synthones in Fluoroorganic Chemistry’ Journal of Fluorine Chemistry. vol. 69 (1994) pp. 195-198. Elsevier Science S.A. |
Good, R.H. ‘An Intranasal Method for Opening the Frontal Sinus Establishing the Largest Possible Drainage’ Laryngoscope. vol. 18 (1908) pp. 266-274. |
Gopferich ‘Polymer Degradation and Erosion: Mechanisms and Application’ Eur. J. Parm. Biophar. vol. 42 (1996) pp. 1-11. |
Gorlov, D.V et al.‘Acylation of 2-Methoxypropene with Anhydrides and Halides of Perflurocarboxylic Acids in the Presence of Teriary Amines’ Russian Chemical Bulletin. vol. 48 No. 9 (Sep. 1999) pp. 1791-1792. Kluwer Academic/Plenum Publishers. |
Gottmann, et al. ‘Balloon Dilatation in the Nasal Cavity and Paranasal Sinuses’ CIRSE. (Sep. 25, 2004) pp. 1-27. |
Gottmann, et al. ‘Balloon Dilatation of Recurrent Ostial Occlusion of the Frontal Sinus’ CIRSE Abstract (Mar. 2001) B-04353. |
Gottman, et al., Balloon Dilatation of Recurrent Ostial Occlusion of the Front Sinus' OASIS-Online Abstract Submission and Invitation System, 1996-2006, Coe Truman Technologies, Inc. |
Gottmann, et al. ‘Successful Treatment of Recurrent Post-Operative Frontal Sinus Stenoses by Balloon Dilatation’ CIRSE. (Oct. 5, 2002). |
Gottmann, D. ‘Treatment of Stenoses of Upper Air Routes by Balloon Dilation’ Proceeding of the 83rd Annual Convention of Association of West German ENT Physicians (1999). |
Gupta, D. et al., ‘Dacrystitis Secondary to an Iatrogenic Foreign Body in the Lacrimal Apparatus’ Ear, Nose & Throat Journal (2009) www.findarticles.com/p/articles/mi_m0BUM/is_7_88/ai_n32428620/. |
Hashim, et al. ‘Balloon Compression of the Intermaxillary Sinus for Intractable Post Traumatic Bleeding from the Maxillary Artery’ Scandinavian Journal of Plastic and reconstruction Surgery and Hand Surgery (1999) vol. 33 pp. 321-324. |
Hojo, M. et al., ‘Electrophilic Substitutions of Olefinic Hydrogens II. Acylation of Vinyle Ethers and N Vinyl Amides Chemistry Letters’ (1976) pp. 499-502. Chemical Society of Japan. |
Hopf, J.U.G et al. ‘Miniature Endoscopes in Otorhinolaryngologic Applications’ Min Invas Ther & Allied Technol. (1998) vol. 7, No. 3 pp. 209-218. |
Hosemann, W. et al. A Dissection Course on Endoscopic Endonasal Sinus Surgery (2005) Endo-Press, Tuttlingen pp. 4-37. |
Hosemann, W. et al. ‘Endonasal Frontal Sinusotomy in Surgical Management of Chronic Sinusitis: A Critical Evaluation’ American Journal of Rhinology. vol. 11, No. 1 (1997) pp. 1-9. |
Hosemann, M.E. et al. ‘Experimentelle Untersuchungen sur Wundheilung in den Nasennebenholhlen. II. Spontaner Wundschluss und medikamentose Effekte im standardisierten Wundmodell.’ HNO 39 (1991) pp. 48-54. ‘Experimental investigations on wound healing of the paranasal sinuses. II. Spontaneous wound closure and pharmacological effects in a standardized animal model.’ HNO 39 (1991) pp. 48-54. |
Hosemann, W.G. et al. ‘Minimally Invasive Endonasal Sinus Surgery’ Thieme, Stuttgart, New York (2000). |
Hosemann, M.E. et al. ‘Normal Wound Healing of the Paranasal Sinuses—Clinical and Experimental Investigations’ Eur Arch Otorhinolarygol. vol. 248, (1991) pp. 390-394. |
Hosemann, W. et al. ‘Behandlung nach Nasennebenhohleneingriffen, part 2: Theapeutische Maβnahem’ HNO akutell 7 (1999) pp. 291-302. |
Hospital Corpsman Sickcall Screener's Handbook. Naval Hospital Great Lakes (Apr. 1999) www.brooksidepress.org/Products/Operationa.Medicine/DATA. 2001 pp. 1-6. |
Hybels, R.L. ‘Transillumination During Osteoplastic Frontal Sinusotomy’ The Laryngoscope. vol. 91 (Sep. 1981) pp. 1560. |
Ijaduola, T.G.A. ‘Use of a Foley Catheter for Short-Term Drainage in Frontal Sinus Surgery’ The Journal of Laryngology and Otology. (1989) vol. 103. pp. 375.378. |
Ingals, E.F. ‘New Operation and Instruments for Draining the Frontal Sinus’ Ann. Otol. Rhinol. Layyngol. vol. 14 (1905) pp. 644-649. |
Iro, H. et al., ‘A New Device for Frontal Sinus Endoscopy: First Clinical Report’ Otolaryngol. Head Neck Surg. (2001) vol. 125 No. 6 pp. 613-616. |
Jacobs, J.B. ‘100 Years of Frontal Sinus Surgery’ Laryngoscope. vol. 107 (1997) pp. 1-36. |
K-Splint Internal Nasal Splints; Jan. 25, 2007; www.invotec.net/rhinology/ksplint.html. |
Kaiser, H et al ‘Cortizontherapie, Corticoide in Klinik und Praxis’ Thieme, Stuggart (1992) pp. 390-401. |
Kennedy, D.W., M.D et al. ‘Diseases of the Sinuses: Diagnosis and Management’ (Copyright 2001) by B.C. Decker Inc. |
Khomutov, S.M. et al. ‘Dissolution of a Mixture of Steroids in Cyclodextrin Solutions: a Model Description’ Pharmaceutical Chemistry Journal. vol. 35, No. 11 (Nov. 2001) pp. 627-629. |
Kingdom, T.T. et al. ‘Image-Guided Surgery of the Sinuses: Current Technology and Applications’ Otolaryngol. Clin. North Am. vol. 37, No. 2 (Apr. 2004) pp. 381-400. |
Klossek, J.M et al. ‘Local Safety of Intranasal Trimcinolone Acentonide: Clinical and Histological Aspects of Nasal Mucosa in the Long-Term Treatment of Perennial Allergic Rhinitis’ Rhinology. vol. 39, No. 1 (2001) pp. 17-22. |
Kozlov et al. ‘Diagnosis and Treatment of Sinusitis by YAMIK Sinus Catheters’ Rhinology (1996) vol. 34, pp. 123-124. |
Kuhn, et al. ‘The Agger Nasi Cell in Frontal Recess Obstruction: An Anatomic, Radiology and Clinical Correlation’ Operative Techniques in Otolaryngology-Head and Neck Surgery. vol. 2, No. 4 (1991) pp. 226-231. |
Laliberte, F. et al. ‘Clinical and Pathologic Methods to Assess the Long-Term Safety of Nasal Corticosteroids’ Allergy. vol. 55, No. 8 (2000) pp. 718-722. |
Lang, E.V., et al., ‘Access Systems for Puncture at an Acute Angle’ J. Vasc. Interv. Radiol. (1995) vol. 6, No. 5 pp. 711-713. |
Lanza, D.C. ‘Postoperative Care and Avoiding Frontal Recess Stenosis’ Internatinal Advanced Sinus Symposium (1993) Jul. 21-24. |
Large, G.C. ‘Crystalline Tetracycline Hydrochloride in the Treatment of Acute and Chronic Maxillary Sinusitis’ Canada. M.A.J. (1958) vol. 79 pp. 15-16. |
Lund, V.J. ‘Maximal Medical Therapy for Chronic Rhinosinusitis’ Otolaryngol Clin N. Am. vol. 38 (2005) pp. 1301-1310. |
Maran, A.G.D. et al. ‘The Use of the Foley Balloon Catheter in the Tripod Fracture’ J. Laryngol. Otol. (1971) vol. 85, Issue 9, pp. 897-902. |
May, M. et al. ‘Frontal Sinus Surgery: Endonasal Drainage Instead of an External Osteopolstic Approach’ Op Tech Otolaryngo Head Neck Surgery. 6 (1995) pp. 184-192. |
Medtronic, xomed.com-MicroFrance Catalog Browser. Www.xomcat.com/xomfrance/index.php?zone=both&cat=18&sub=58&prodline=1272 (Dec. 31, 2003) pp. 1-2. |
Mehan, V.K et al., ‘Coronary Angioplasty through 4 French Diagnostic Catheters’ Cathet. Cardiovasc. Diagn. (1993) vol. 30, No. 1 pp. 22-26. |
Mellor, J.M. et al.‘Synthesis of Trifluromethylnaphthalenes’ Tetrahedron. vol. 56 (2000) pp. 10067-10074. Elsevier Science Ltd. |
Merriam-Webster definition of “lumen” as accessed Jun. 10, 2016, http://www.merriam-webster.com/dictionary/lumen. |
Metson, R., et al., ‘Endoscopic Treatment of Sphenoid Sinusitis’ Otolaryngology. Head Neck Surg. (1996) vol. 114, No. 6 pp. 736-744. |
Metson, R. ‘Holmium: YAG Laser Endoscopic Sinus Surgery: A Randomized Controlled Study’ Laryngoscope. vol. 106, Issue 1, Supplement 77 (Jan. 1996) pp. 1-18. |
Miller, et al. ‘Management of Fractures of the Supraorbital Rim’ Journal of Trauma. vol. 18, No. 7 (Jul. 1978) pp. 507-512. |
Min, Y-G et al. ‘Mucociliary Activity and Histopathology of Sinus Mucosa in Experimental Maxillary Sinusitis: A Comparison of Systemic Administration of Antibiotic and Antibiotic Delivery by Polylactic Acid Polymer’ Laryngoscope. vol. 105 (Aug. 1995) pp. 835-842. |
Mols, B. ‘Movable Tool Tip for Keyhole Surgery’ Delft Outlook, vol. 3 (2005) pp. 13-17. |
Mooney, M.R., et al., ‘Monorail™ Piccolino Catheter: A New Rapid Exchange/Ultralow Profile Coronary Angioplasty System’ Catheter. Cardiovasc. Diagn. (1990) vol. 20, No. 2 pp. 114-119. |
Moriguchi, T. et al. ‘Additional-Elimination Reaction in the Trifluoroacetylation of Electron-Rich Olefins’ J. Org. Chem. vol. 60, No. 11 (1995) pp. 3523.3528. American Chemical Society. |
Nasal Surgery and Accessories, Jan. 25, 2007; www.technologyforlife.com.au/ent/nasal.html. |
Park, K. et al. ‘Biodegradable Hydrogels for Durg Delivery’ (1993) Technomic Publishing Inc. Lancaster. |
Piccirillo, J.F. et al. ‘Physchometric and Clinimetric Validity of the 20-Item Sino-Nasal Outcome test (SNOT-20)’ Copyright 1996 Washington University, St. Louis, MO. |
Piers, et al. ‘A Flexible Distal Tip with Two Degrees of Freedom for Enhanced Dexterity in Endoscopic Robot Surgery’ Proceedings 13th Micromechanics Europe Workshop (2002) pp. 271-274. |
Podoshin, L et al. ‘Balloon Technique for Treatment of Frontal Sinus Fractures’ The journal of Laryngology & Otology (1967), vol. 81. pp. 1157-1161. |
Pownell, P.H et al., ‘Diagnostic Nasal Endoscopy’ plastic & Reconstructive Surgery (1997) vol. 99, Iss5 pp. 1451-1458. |
Prince, et al. ‘Analysis of the Intranasal Distribution of Ointment’ J Otolaryngol. vol. 26 (1997) pp. 357-360. |
Ramsdale, D.R., Illustrated Coronary Intervention: A case-oriented approach, (2001) Martin Dunitz Ltd. pp. 1-5. |
Ritter, F.N. et al., Atlas of Paranasal Sinus Surgery (1991) Igaku-Shoin Medical Pub. pp. 1-81. |
Robison, J. Mathews, M.D. ‘Pressure Treatment of Maxillary Sinusitis’ J.A.M.A. (May 31, 1952) pp. 436-440. |
Robison, J. Mathews, M.D. ‘Pressure Treatment of Purulent Maxillary Sinusitis’ Texas State Journal of Medicine (May 1952) pp. 281-288. |
St. Croix et al. ‘Genes Expressed in Human Tumor Endothelium’ Science, vol. 289 (May 15, 2000) pp. 1197-1202. |
Sama, A., et al., ‘Current Opinions on the Surgical Management of Frontal Sinus Disease’ ENT News. Www.pinpointmedical.com/ent-news (2009) vol. 17, No. 6 pp. 60-63. |
Sanborn, T.A. et al., ‘Percutaneous Endocardial Transfer and Expression of Genes to the Myocardium Utilizing Fluropscopic Guidance’ Catheter Cardiovasc. Interv. (2001) vol. 52, No. 2 pp. 260-266. |
Sawbones Catalog 2001, Pacific Research Laboratories, Inc., Vashon Washington 98070 USA. |
Saxon, R.R. et al., ‘Technical Aspects of Accessing the Portal Vein During the TIPS Procedure’ J. Vasc. Interv. Radiol. (1997) vol. 8, No. 5 pp. 733-744. |
Schaefer, S.D., M.D. ‘Rhinology and Sinus Disease: A Problem-Oriented Approach’ (Copyright 1988) by Mosby, Inc. |
Schneider. Pfizer Ad for Softip [date of publication unknown]. |
Shah, N.J. et al., ‘Endoscopic Pituitary Surgery—A Beginner's Guide’ Indian Journal of Otolaryngology and Head and Neck Surgery (2004) vol. 56, No. 1 pp. 71-78. |
Shah, N.J. ‘Functional Endoscopic Sinus Surgery’ (1999); found at bhj.org/journal/1999_4104_oct99/sp_659.htm. |
Single-Pole and Multi-Pole Lightguides for UV Spot Light Curing Systems. |
Sinusitis, Maxillary, Acute Surgical Treatment. Http://www.emedicine.com/ent/topic340.htm. Aug. 29, 2006. pp. 1-11. |
Sobol, et al. ‘Sinusitis, Maxillary, Acute Surgical Treatment.’ eMedicine. Retrieved from the Internet: <<http://emedicine.medscape.com/article/862030-print>> (Nov. 16, 2010) pp. 1-11. |
Stammberger, H. ‘Komplikationen entzundlicher Nasennebenhohlenerkrankungen eischließ iatrogen bedingter Komplikationen’ Eur Arch Oti-Rhino-Laryngol Supple. (Jan. 1993) pp. 61-102. |
Stammberger, et al. Chapter 3 ‘Special Endoscopic Anatomy of the Lateral Nasal Wall and Ethmoidal Sinuses’ Functional Endoscopic Sinus Surgery. (1991) Ch. 3, pp. 49-87. |
Strohm, et al. Die Behandlung von Stenosen der oberen Luftwege mittels rontgenologisch gesteuerter Ballondilation (Sep. 25, 1999) pp. 1-4. |
Strohm, et al.‘Le Traitenment des Stenoses Voies Aeriennes Superieures Par Dilation Ay Balloon’ Sep. 25, 1999. |
Strohm, et al. ‘Treatment of Stenoses of the Upper Airways by Balloon Dilation’ Sudwestdeutscher Abstract 45 (Sep. 25, 1999) pp. 1-3. |
SurgTrainer Product Information 2003, Surg Trainer, Ltd. Ibaraki, Japan. |
SurgTrainer Product Information ‘Incisive Human Nasal Model for ESS Training’ Surg Trainer, Ltd. Ibaraki, Japan (2004) www1.accsnet.ne.jp/˜juliy/st/en/partslist.html. |
Tabor, M.H. et al., ‘Symptomatic Bilateral Duct Cysts in a Newborn-Rhinoscopic Clinic’ Ear, Nose & Throat Journal (2003) www.findarticles.com/p/articles/mi_m0BUM/is_2_82/ai_98248244 pp. 1-3. |
Tarasov, D.I. et al. ‘Application of Drugs Based on Polymers in the Treatment of Acute and Chronic Maxillary Sinusitis’ Vestn Otorinoloaringol. vol. 6 (1978) pp. 45-47. |
Terumo. Medi-Tech. Boston Scientific. (1993) Ad of Glidewire. |
The Operating Theatre Journal (www.otjonline.com) ‘Disposable Medical Device for Wound Disclosure/The Tristel Purple Promotion—A Collaboration between Tristel PLC and Karl Storz Endoscopy (UK) Ltd.’ p. 4. |
Weber, R. et al. ‘Endonasale Stirnhohlenchirugie mit Langzeiteinlage eines Platzhalters’ Laryngol. Rhinol. Otol. vol. 76 (1997) pp. 728-734. (English Abstract). |
Weber, R. et al., ‘Videoendoscopic Analysis of Nasal Steroid Distribution’ Rhinology. vol. 37 (1999) pp. 69-73. |
Weiner, R.I., D.O., et al., ‘Development and Application of Transseptal Left Heart Catheterization’ Cathet. Cardiovasc. Diagn. (1988) vol. 15, No. 2, pp. 112-120. |
Wiatrak, B.J., et al., 'Unilateral Choanal Atresia: Initial Presentation and Endoscopic Repair' International Journal of Pediatric Otorhinolaryngology (1998) vol. 46, pp. 27-35. |
Woog, et al. 'Paranasal Sinus Endoscopy and Orbital Fracture Repair' Arch Ophthalmol. Vol. 116 (May 1998) pp. 688-691. |
Wormald, p. J., et al., 'The 'Swing-Door' Technique for Uncinectomy in Endoscopic Sinus Surgery' The Journal of Laryngology and Otology (1998) vol. 112, pp. 547-551. |
Xomed-Treace. Bristol-Myers Squibb. Ad for Laser Shield II. Setting the Standards for Tomorrow. [date of publication unknown]. |
Yamauchi, Y et al., 'Development of a Silicone Model for Endoscopic Sinus Surgery' Proc International Journal of Computer Assisted Radiology and Surgery vol. 99 (1999) p. 1039. |
Yamauchi, Y., et al., 'A Training System for Endoscopic Sinus Surgery with Skill Evaluation' Computer Assisted Radiology and Surgery (2001) with accompanying copy of poster presentation. |
Yanagisawa et al. 'Anterior and Posterior Fontanelles.' Ear, Nose & Throat Journal (2001) vol. 80. pp. 10-12. |
Zimarino, M., M.D., et al., 'Initial Experience with the EuropassTM: A new Ultra- Low-Profile Monorail Balloon Catheter' Cathet. Cardiovasc. Diagn. (1994) vol. 33, No. 1, pp. 76-79. |
Australian Office Action, Examiners First Report dated Apr. 8, 2010 for Application No. AU 2005274794. |
Australian Office Action, Examiners First Report dated Dec. 9, 2011 for Application No. AU 2006292818. |
Australian Office Action dated Feb. 12, 2014 for Application No. AU 2012202103. |
Australian Office Action dated Aug. 1, 2014 for Application No. AU 2012244072. |
Australian Office Action dated Sep. 17, 2014 for Application No. AU 2012202103. |
Australian Office Action dated Sep. 30, 2014 for Application No. AU 2009293312. |
Australian Office Action dated Oct. 1, 2014 for Application No. AU 2009333010. |
Australian Office Action dated Jul. 8, 2015 for Application No. AU 2012244072. |
Canadian Office Action dated Jul. 10, 2015 for Application No. CA 2,617,054. |
Canadian Office Action dated Dec. 16, 2015 for Application No. CA 2,751,665. |
Chinese Office Action, First Office Action dated Nov. 5, 2012 for CN 200980137396.1. |
Chinese Search Report dated Oct. 29, 2012 for Application No. CN 200980137396.1. |
Chinese Search Report dated Jan. 11, 2013 for Application No. CN 200980152995.0. |
Chinese Office Action, First Office Action dated Jan. 29, 2013 for CN 200980152995.1. |
Chinese Office Action, Decision of Rejection, dated 2014 for Application No. CN 200980152995.1. |
Chinese Office Action, Third Office Action, dated Feb. 27, 2014 for Application No. CN 200980152995.1. |
Chinese Office Action and Search Report dated Jan. 21, 2015 for Application No. CN 201310672731.6. |
European Communication dated Sep. 4, 2008 for Application No. EP 05773189. |
European Communication dated Jun. 19, 2009 for Application No. EP 05773189. |
European Communication dated Sep. 27, 2011 for Application No. EP 06800540.4. |
European Communication dated Aug. 1, 2012 for Application No. EP 06784759.0. |
European Communication dated Aug. 24, 2012 for Application No. EP 05798331.4. |
European Communication dated Nov. 9, 2012 for Application No. EP 07750248.2. |
European Communication dated Apr. 19, 2012 for Application No. EP 08746715.5. |
European Communication dated Jan. 7, 2013 for Application No. EP 08746715.5. |
European Communication dated Apr. 11, 2013 for Application No. EP 05778834.1. |
European Communication dated May 10, 2013 for Application No. EP 06751637.7. |
European Communication dated Sep. 3, 2013 for Application No. EP 12182998.0. |
European Communication dated Feb. 26, 2014 for Application No. EP 06800540.4. |
European Communication dated Aug. 11, 2014 for Application No. EP 12182998.0. |
European Communication dated Aug. 26, 2014 for Application No. EP 12183000.4. |
European Communication dated Nov. 26, 2014 for Application No. EP 07836108.6. |
European Communication dated Feb. 17, 2016 for Application No. EP 12162712.9. |
European Communication dated Sep. 26, 2016 for Application No. EP 12162712.9. |
European Exam Report dated Feb. 22, 2006 for Application No. EP 02716734.5. |
European Exam Report dated Feb. 8, 2007 for Application No. EP 02716734.5. |
European Search Report and Written Opinion dated Sep. 11, 2009 for Application No. EP 06815174. |
European Search Report dated Mar. 16, 2010 for Application No. EP 06718986. |
European Search Report dated Sep. 27, 2011 for Application No. EP 10182961. |
European Search Report dated Sep. 29, 2011 for Application No. EP 10182893. |
European Search Report dated Jul. 23, 2012 for Application No. EP 12162709. |
European Search Report dated Jul. 24, 2012 for Application No. EP 12162712. |
European Search Report dated Aug. 31, 2012 for Application No. EP 12173295. |
European Search Report dated Oct. 10, 2012 for Application No. EP 12175607. |
European Search Report dated Nov. 22, 2012 for Application No. EP 12182993. |
European Search Report dated Dec. 5, 2012 for Application No. EP 12182998. |
European Search Report dated Jan. 9, 2013 for Application No. EP 12183000. |
European Search Report dated Jan. 11, 2013 for Application No. EP 12183002. |
European Search Report dated Aug. 13, 2013 for Application No. EP 13172140. |
European Search Report dated Sep. 9, 2013 for Application No. EP 13179223. |
European Search Report dated May 19, 2015 for Application No. EP 08746464.0. |
European Search Report dated Jun. 23, 2015 for Application No. EP 12162712.9. |
European Search Report dated Jun. 23, 2015 for Application No. EP 12162709.5. |
Extended European Search Report dated Jan. 17, 2014 for Application No. EP 108426321.1. |
Extended European Search Report dated Sep. 15, 2015 for Application No. EP 15163549.7. |
Extended European Search Report dated Jun. 28, 2017 for Application No. EP 17159646.3. |
Partial European Search Report dated Sep. 20, 2007 for Application No. EP 07252018. |
Partial European Search Report dated Mar. 25, 2008 for Application No. EP 07252018. |
Supplemental Partial European Search Report dated Jun. 2, 2008 for Application No. EP 05773189. |
Supplemental Partial European Search Report dated Jul. 1, 2009 for Application No. EP 06815285. |
Supplemental Partial European Search Report dated Nov. 19, 2010 for Application No. EP 06751637. |
Supplemental European Search Report dated Jan. 29, 2010 for Application No. EP 07836108. |
Supplemental European Search Report dated Feb. 2, 2010 for Application No. EP 07836109. |
Supplemental European Search Report dated Feb. 17, 2010 for Application No. EP 07836110. |
Supplemental European Search Report dated Mar. 1, 2010 for Application No. EP 05778834. |
Supplemental European Search Report dated Mar. 16, 2010 for Application No. EP 06718986. |
Supplemental European Search Report dated Mar. 24, 2010 for Application No. EP 07836108.6. |
Supplemental European Search Report dated Jun. 22, 2010 for Application No. EP 06784759. |
Supplemental European Search Report dated Sep. 23, 2010 for Application No. EP 08746715. |
Supplemental European Search Report dated Jan. 28, 2011 for Application No. EP 07777004. |
Supplemental European Search Report dated Mar. 31, 2011 for Application No. EP 05798331. |
Supplemental European Search Report dated Aug. 30, 2011 for Application No. EP 06800540. |
Supplemental European Search Report and Written Opinion dated Sep. 8, 2011 for EP 06800540.4. |
Supplemental European Search Report dated Sep. 29, 2011 for Application No. EP 07750248. |
Supplemental European Search Report dated Jan. 14, 2014 for Application No. EP 13184009. |
Supplemental European Search Report dated Jan. 17, 2014 for Application No. EP 1084263. |
Supplemental European Search Report dated Feb. 27, 2014 for Application No. EP 08746464.0. |
Supplemental European Search Report dated Dec. 9, 2014 for Application No. EP 07839152. |
Supplemental European Search Report dated Feb. 13, 2014 for Application No. EP 08746464. |
PCT Search Report dated Nov. 30, 2009 for Application No. UPCT/US2009/057203. |
International Preliminary Report on Patentability dated Aug. 7, 2006 for Application No. PCT/US05/25371. |
International Preliminary Report on Patentability and Written Opinion dated Sep. 25, 2007 for Application No. PCT/US06/002004. |
International Preliminary Report on Patentability dated Feb. 15, 2008 for Application No. PCT/US05/13617. |
International Preliminary Report on Patentability and Written Opinion dated Nov. 18, 2008 for Application No. PCT/US07/11449. |
International Preliminary Report on Patentability and Written Opinion dated Apr. 7, 2009 for Application No. PCT/US07/021170. |
International Preliminary Report on Patentability and Written Opinion dated May 5, 2009 for Application No. PCT/US06/036960. |
International Preliminary Report on Patentability and Written Opinion dated Oct. 13, 2009 for Application No. PCT/US08/059786. |
International Preliminary Report on Patentability and Written Opinion dated Oct. 27, 2009 for Application No. PCT/US08/061343. |
International Preliminary Report on Patentability dated Jun. 29, 2011 for Application No. PCT/US2009/069143. |
International Search Report dated Jun. 3, 2002 for Application No. PCT/EP02/01228. |
International Search Report and Written Opinion dated Apr. 10, 2006 for Application No. PCT/US05/25371. |
International Search Report dated May 8, 2007 for Application No. PCT/US2006/16026. |
International Search Report dated Aug. 17, 2007 for Application No. PCT/US05/013617. |
International Search Report dated Aug. 29, 2007 for Application No. PCT/US06/002004. |
International Search Report dated Sep. 25, 2007 for Application No. PCT/US06/037167. |
International Search Report dated Oct. 19, 2007 for Application No. PCT/US07/003394. |
International Search Report dated May 29, 2008 for Application No. PCT/US07/021170. |
International Search Report dated May 29, 2008 for Application No. PCT/US07/021922. |
International Search Report dated Jul. 1, 2008 for Application No. PCT/US06/022745. |
International Search Report dated Jul. 3, 2008 for Application No. PCT/US2006/029695. |
International Search Report dated Jul. 7, 2008 for Application No. PCT/US07/016213. |
International Search Report dated Jul. 8, 2008 for Application No. PCT/US07/011474. |
International Search Report dated Jul. 17, 2008 for Application No. PCT/US06/036960. |
International Search Report and Written Opinion dated Jul. 21, 2008 for Application No. PCT/US05/033090. |
International Search Report dated Aug. 25, 2008 for Application No. PCT/US2008/000911. |
International Search Report dated Sep. 10, 2008 for Application No. PCT/US07/016212. |
International Search Report and Written Opinion dated Sep. 12, 2008 for Application No. PCT/US07/16214. |
International Search Report and Written Opinion dated Sep. 17, 2008 for Application No. PCT/US08/059786. |
International Search Report and Written Opinion dated Sep. 17, 2008 for Application No. PCT/US08/061343. |
International Search Report and Written Opinion dated Oct. 1, 2008 for Application No. PCT/US07/011449. |
International Search Report dated Oct. 15, 2008 for Application No. PCT/US2008/061048. |
International Search Report dated Nov. 30, 2009 for Application No. PCT/US2009/057203. |
International Search Report dated Dec. 10, 2009 for Application No. PCT/US2009/052236. |
International Search Report dated Dec. 16, 2009 for Application No. PCT/US2009/050800. |
International Search Report dated Mar. 31, 2010 for Application No. PCT/US2009/069143. |
International Search Report dated Jul. 8, 2010 for Application No. PCT/US2010/027837. |
International Search Report and Written Opinion dated Oct. 6, 2010 for Application No. PCT/US2010/040548. |
International Search Report dated Mar. 25, 2011 for Application No. PCT/US2010/062161. |
International Search Report dated Mar. 28, 2011 for Application No. PCT/US2010/061850. |
International Search Report dated Mar. 31, 2011 for Application No. PCT/US2010/060898. |
International Search Report dated Aug. 9, 2011 for Application No. PCT/US2011/038751. |
International Search Report dated May 18, 2012 for Application No. PCT/US2011/052321. |
International Written Opinion dated Aug. 9, 2011 for Application No. PCT/US2011/038751. |
Partial International Search Report dated Feb. 7, 2012 for Application No. PCT/US2011/052321. |
Japanese Office Action, Examiner's Decision of Refusal dated Oct. 18, 2011 for Application No. JP 2007-509632. |
Japanese Office Action, Notification of Reasons for Refusal dated Apr. 26, 2011 for Application No. JP 2007-532485. |
Japanese Office Action, Notification of Reasons for Refusal dated Jan. 24, 2012 for Application No. JP 2007-532485. |
Japanese Office Action, Notification of Reasons for Refusal dated Aug. 16, 2011 for Application No. JP 2008-516013. |
Japanese Office Action, Notification of Reasons for Refusal dated Nov. 8, 2011 for Application No. JP 2008-524250. |
Japanese Office Action, Notification of Reasons for Refusal dated Jun. 25, 2013 for Application No. JP 2012-131840. |
Japanese Office Action, Notification of Reasons for Refusal dated Sep. 18, 2013 for Application No. JP 2011-527942. |
Japanese Office Action, Notification of Reasons for Refusal dated Nov. 12, 2013 for Application No. JP 2011-542562. |
Japanese Office Action, Notification of Reasons for Refusal dated Jan. 7, 2014 for Application No. JP 2012-266049. |
Japanese Office Action, Reasons for Refusal, dated Sep. 2, 2014 for Application No. JP 2012-544859. |
Japanese Office Action, Reasons for Refusal, dated Jun. 9, 2015 for Application No. JP 2014-147174. |
Japanese Office Action, Notification of Reasons for Refusal dated Mar. 29, 2016 for Application No. JP 2012-266049. |
Russian Office Action dated Sep. 28, 2012 for Application No. RU 2011130530. |
Russian Office Action dated Mar. 19, 2013 for Application No. RU 2011130530. |
USPTO Office Action dated Sep. 16, 2005 for U.S. Appl. No. 10/259,300. |
USPTO Office Action dated Jul. 7, 2006 for U.S. Appl. No. 10/259,300. |
USPTO Office Action dated Feb. 13, 2007 for U.S. Appl. No. 10/259,300. |
USPTO Office Action dated Oct. 9, 2007 for U.S. Appl. No. 10/259,300. |
USPTO Office Action dated Jan. 24, 2008 for U.S. Appl. No. 10/259,300. |
USPTO Office Action dated Oct. 6, 2008 for U.S. Appl. No. 10/259,300. |
USPTO Office Action dated May 29, 2007 for U.S. Appl. No. 10/912,578. |
USPTO Office Action dated Nov. 14, 2007 for U.S. Appl. No. 10/912,578. |
USPTO Office Action dated Dec. 10, 2007 for U.S. Appl. No. 10/912,578. |
USPTO Office Action dated Oct. 18, 2007 for U.S. Appl. No. 11/037,548. |
USPTO Office Action dated Dec. 6, 2007 for U.S. Appl. No. 11/037,548. |
USPTO Office Action dated Apr. 9, 2008 for U.S. Appl. No. 11/037,548. |
USPTO Office Action dated Nov. 28, 2007 for U.S. Appl. No. 11/234,395. |
USPTO Office Action dated Sep. 12, 2008 for U.S. Appl. No. 10/829,917. |
USPTO Office Action dated Nov. 17, 2008 for U.S. Appl. No. 10/829,917. |
USPTO Office Action dated Mar. 18, 2009 for U.S. Appl. No. 10/829,917. |
USPTO Office Action dated Nov. 9, 2009 for U.S. Appl. No. 10/829,917. |
USPTO Office Action dated Oct. 29, 2008 for U.S. Appl. No. 11/347,147. |
USPTO Office Action dated Feb. 4, 2009 for U.S. Appl. No. 11/347,147. |
USPTO Office Action dated Aug. 6, 2009 for U.S. Appl. No. 11/347,147. |
USPTO Office Action dated Nov. 7, 2008 for U.S. Appl. No. 10/944,270. |
USPTO Office Action dated Jan. 28, 2009 for U.S. Appl. No. 10/944,270. |
USPTO Office Action dated Apr. 21, 2009 for U.S. Appl. No. 10/944,270. |
USPTO Office Action dated Nov. 17, 2008 for U.S. Appl. No. 12/117,582. |
USPTO Office Action dated Mar. 3, 2009 for U.S. Appl. No. 12/117,582. |
USPTO Office Action dated Aug. 6, 2009 for U.S. Appl. No. 12/117,582. |
USPTO Office Action dated Nov. 17, 2008 for U.S. Appl. No. 12/118,931. |
USPTO Office Action dated Mar. 4, 2009 for U.S. Appl. No. 12/118,931. |
USPTO Office Action dated Jul. 30, 2009 for U.S. Appl. No. 12/118,931. |
USPTO Office Action dated Nov. 25, 2008 for U.S. Appl. No. 12/117,961. |
USPTO Office Action dated Aug. 6, 2009 for U.S. Appl. No. 12/117,961. |
USPTO Office Action dated Dec. 5, 2008 for U.S. Appl. No. 12/120,902. |
USPTO Office Action dated Oct. 21, 2009 for U.S. Appl. No. 12/120,902. |
USPTO Office Action dated Mar. 17, 2009 for U.S. Appl. No. 11/690,127. |
USPTO Office Action dated Mar. 23, 2009 for U.S. Appl. No. 11/804,309. |
USPTO Office Action dated Mar. 23, 2009 for U.S. Appl. No. 11/926,326. |
USPTO Office Action dated Aug. 28, 2009 for U.S. Appl. No. 11/150,847. |
USPTO Office Action dated Dec. 29, 2008 for U.S. Appl. No. 11/193,020. |
USPTO Office Action dated May 13, 2009 for U.S. Appl. No. 11/193,020. |
U.S. Appl. No. 60/844,874, filed Sep. 15, 2006. |
U.S. Appl. No. 60/922,730, filed Apr. 9, 2007. |
U.S. Appl. No. 61/052,413, filed May 12, 2008. |
U.S. Appl. No. 61/084,949, filed Jul. 30, 2008. |
U.S. Appl. No. 11/789,705, filed Apr. 24, 2007. |
U.S. Appl. No. 11/804,308, filed May 16, 2007. |
U.S. Appl. No. 11/804,309, filed May 16, 2007. |
U.S. Appl. No. 14/221,550, filed Mar. 21, 2014. |
U.S. Appl. No. 14/221,621, filed Mar. 21, 2014. |
U.S. Appl. No. 14/221,714, filed Mar. 21, 2014. |
U.S. Appl. No. 14/265,888, filed Apr. 30, 2014. |
U.S. Appl. No. 14/266,002, filed Apr. 30, 2014. |
U.S. Appl. No. 14/266,025, filed Apr. 30, 2014. |
U.S. Appl. No. 14/327,593, filed Jul. 10, 2014. |
U.S. Appl. No. 14/464,948, filed Aug. 21, 2014. |
U.S. Appl. No. 14/993,444, filed Jan. 12, 2016. |
U.S. Appl. No. 15/083,826, filed Mar. 29, 2016. |
U.S. Appl. No. 15/187,938, filed Jun. 21, 2016. |
U.S. Appl. No. 15/624,111, filed Jun. 15, 2017. |
Number | Date | Country | |
---|---|---|---|
20210315448 A1 | Oct 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15803106 | Nov 2017 | US |
Child | 17243669 | US | |
Parent | 14568498 | Dec 2014 | US |
Child | 15803106 | US | |
Parent | 11193020 | Jul 2005 | US |
Child | 14568498 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11150847 | Jun 2005 | US |
Child | 11193020 | US | |
Parent | 11116118 | Apr 2005 | US |
Child | 11150847 | US | |
Parent | 10944270 | Sep 2004 | US |
Child | 11116118 | US | |
Parent | 10829917 | Apr 2004 | US |
Child | 10944270 | US |