Methods and apparatus for treating embolism

Information

  • Patent Grant
  • 10335186
  • Patent Number
    10,335,186
  • Date Filed
    Friday, December 30, 2016
    7 years ago
  • Date Issued
    Tuesday, July 2, 2019
    4 years ago
Abstract
A method and apparatus for treating a clot in the blood vessel of a patient, and particularly the treatment of a pulmonary embolism is disclosed. The treatment includes restoring flow through the clot followed by clot removal, either partially or substantially completely. The clot treatment device is expandable into the blood vessel and may contain radial extensions that assist in restoring flow as well as in removing clot material.
Description
TECHNICAL FIELD

This invention relates to the apparatus and methods of endovascular treatment of blood clots obstructing passageways in the circulatory system and particularly the endovascular treatment of pulmonary embolism.


BACKGROUND

Thromboembolism is the formation in a blood vessel of a clot (thrombus) that breaks loose (embolizes) and is carried by the blood stream to another location in the circulatory system resulting in a clot or obstruction at that new location. For example, a clot may embolize and plug a vessel in the lungs (pulmonary embolism), the brain (stroke), the gastrointestinal tract, the kidneys, or the legs. Thromboembolism is a significant cause of morbidity (disease) and mortality (death), especially in adults. A thromboembolism can be sudden and massive or it may be small and multiple. A thromboembolism can be any size and a thromboembolic event can happen at any time.


When a thrombus forms in the venous circulation of the body it often embolizes to the lungs. Such a thrombus typically embolizes from the veins of the legs, pelvis, or inferior vena cava and travels to the right heart cavities and then into the pulmonary arteries thus resulting in a pulmonary embolism.


A pulmonary embolism results in right heart failure and decreased blood flow through the lungs with subsequent decreased oxygenation of the lungs, heart and the rest of the body. More specifically, when such a thrombus enters the pulmonary arteries, obstruction and spasm of the different arteries of the lung occurs which further decreases blood flow and gaseous exchange through the lung tissue resulting in pulmonary edema. All of these factors decrease the oxygen in the blood in the left heart. As a result, the oxygenated blood supplied by the coronary arteries to the musculature of both the left and right heart is insufficient for proper contractions of the muscle which further decreases the entire oxygenated blood flow to the rest of the body. This often leads to heart dysfunction and specifically right ventricle dysfunction.


This condition is relatively common and has many causes. Some of the more common causes are prolonged inactivity such as bed rest, extended sitting (e.g., lengthy aircraft travel), dehydration, extensive surgery or protracted disease. Almost all of these causes are characterized by the blood of the inferior peripheral major circulatory system coagulating to varying degrees and resulting in permanent drainage problems.


There exist a number of approaches to treating thromboembolism and particularly pulmonary embolism. Some of those approaches include the use of anticoagulants, thrombolytics and endovascular attempts at removal of the emboli from the pulmonary artery. The endovascular attempts often rely on catheterization of the affected vessels and application of chemical or mechanical agents or both to disintegrate the clot. Invasive surgical intervention in which the emboli is removed by accessing the chest cavity, opening the embolized pulmonary artery and/or its branches and removing the clot is also possible.


The prior approaches to treatment, however, are lacking. For example, the use of agents such as anticoagulants and/or thrombolytics to reduce or remove a pulmonary embolism typically takes a prolonged period of time, e.g., hours and even days, before the treatment is effective. Moreover, such agents can cause hemorrhage in a patient.


And the known mechanical devices for removing an embolism are typically highly complex and prone to cause undue trauma to the vessel. Moreover, such known devices are difficult and expensive to manufacture.


Lastly, the known treatment methods do not emphasize sufficiently the goal of urgently restoring blood flow through the thrombus once the thrombus has been identified. In other words, the known methods focus primarily and firstly on overall clot reduction and removal instead of first focusing on relief of the acute blockage condition followed then by the goal of clot reduction and removal. Hence, known methods are not providing optimal patient care, particularly as such care relates to treatment of a pulmonary embolism.


SUMMARY

In view of the foregoing it is an object of the present invention to provide a method and system that initially restores an acceptable level of oxygenated blood to the patient's circulatory system followed by safe and effective removal of the thrombus.


It is a further object of the present invention to treat pulmonary embolism in a minimally invasive manner.


It is a further object of the present invention to provide a system that does not cause undue trauma to the vessel.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other objects, aspects, features and advantages of which the invention is capable will be apparent from the following description of embodiments of the present invention, reference being made to the accompanying drawings, in which



FIG. 1A is a schematic view of a patient with a pulmonary embolism;



FIG. 1B is an enlarged view of the lung area of the patient depicted in FIG. 1A;



FIG. 1C is an enlarged view of the introducer device depicted being used in the femoral vein of the patient in FIG. 1A;



FIG. 2 is a cross-sectional view of a patient's heart;



FIG. 3 is a perspective view of a patients main pulmonary artery and right and left pulmonary arteries with a clot located in the left pulmonary artery;



FIG. 4 is a cross-sectional view of a preferred embodiment of a clot treatment device in accordance with the present invention in a compressed, undeployed state;



FIG. 5 is a top view of a preferred embodiment of a clot treatment device in accordance with the present invention;



FIGS. 6A-6F are a series of cross-sectional views of a preferred embodiment of the method and device of the present invention;



FIGS. 7A-7B are a series of cross-sectional views of a preferred embodiment of the method and device of the present invention;



FIG. 8 is a cross-sectional view of another preferred embodiment of the method and device of the present invention; and,



FIGS. 9A-9H show cross-sectional views of preferred embodiments of a clot treatment device in accordance with the present invention.





DETAILED DESCRIPTION

Specific embodiments of the invention will now be described with reference to the accompanying drawings. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. The terminology used in the detailed description of the embodiments illustrated in the accompanying drawings is not intended to be limiting of the invention. In the drawings, like numbers refer to like elements.


Referring to FIGS. 1A-1C, these drawings show the typical locations in a human patient where pulmonary embolisms 100 occur in the pulmonary arteries and further discloses the pathway through which access to such pulmonary embolisms 100 is achieved. In particular, an introducer device (e.g., a hemostatic valve) 102 which supports relatively large diameter devices is inserted into the patient into the femoral vein FV in the pelvic area of the patient. The tools and devices needed to treat the pulmonary embolism are then inserted through the introducer 102 into the femoral vein FV through the inferior vena cava IVC to the patient's heart.


It will be understood, however, that other access locations into the venous circulatory system of a patient are possible and which are consistent with the present invention. For example, the user can gain access through the jugular vein, the subclavian vein, the brachial vein or any other vein that connects or eventually leads to the superior vena cava. Use of other vessels that are closer to right atrium RA of the patient's heart may be attractive as this will reduce the length of the instruments needed to reach the pulmonary embolism.


Referring to FIGS. 2 and 3, the tools/devices are then guided through the right atrium RA through the triscupid valve TV, into the right ventricle RV, through the pulmonary valve PV into the main pulmonary artery (MPA). Depending on the location of the embolism 100, the tools/devices are then guided to one or more of the branches of the right pulmonary artery RPA or the left pulmonary artery LPA, including deeper branches thereof, to the location of the pulmonary embolism 100.


Referring to FIG. 4, an embodiment of a clot treatment device 402 for restoring blood flow through the clot 100 and for removing at least a portion of the clot is depicted in its undeployed, or compressed state. The device 402 is constrained by a delivery catheter 606. In a preferred embodiment, the device 402 is constituted by a braided material, the ends of which are captured distally by a blunt tip 405 and proximally by an attachment member 403 that connects to a pusher wire 401.


In alternative preferred embodiments, the clot treatment device 402 may be an “over the wire” device, in which case, the pusher wire 401, the attachment member 403 and the blunt tip 405 will have a hollow central lumen for receiving a guide wire.


In yet a further preferred embodiment, the distal end of the clot treatment device shall have a flexible, atraumatic extension from the device.


In preferred embodiments the clot treatment device 402 of the present invention has a generally cylindrical shape that, during use, provides a flow lumen for blood across a clot. The treatment device 402 is not, however, limited to a generally cylindrical shape. For example, the shape can be generally conical, generally concave or generally convex along its axis, so long as such shapes provide the aforesaid lumen for blood flow.


In other preferred embodiments, the treatment device 402 also has a series of radially extending portions 406 which are separated by generally cylindrical portions 412. It is important that the clot treatment device be porous so as to allow the flow of blood therethrough. In this regard, in a preferred embodiment the clot treatment device is made from a mesh or braided material. The material can be a superelastic material such as nitinol or an alternative material such as cobalt chrome alloy. The device can be made from a wire lattice, wire braid or stent. Specific preferred embodiments are discussed throughout this specification.


Referring to FIG. 5, the deployed state of the clot treatment device 402 of FIG. 4 is depicted. This preferred embodiment of the clot treatment device 402 is constituted by a mesh structure that is generally cylindrical with a series of radially extending portions 406 situated along the axis of the device 402 and separated by a corresponding series of cylindrical sections 412. Optionally, the generally cylindrical section may have individually have tapers or collectively form a conical lumen (not shown). Each of these radially extending portions 406 is in the shape of a disk. The clot treatment device 402 is self expanding.


Referring to FIGS. 1-3 and 6A-6F, a preferred method of causing flow restoration and clot removal/retrieval with the clot treatment device 402 in a body lumen L is described.


After accessing the femoral vein and inserting a introducer device 102 into the patient, a guide wire 602 is inserted into the patient and maneuvered through the femoral vein FV into the inferior vena cava IVC to the heart. As stated above access can also be achieved through one of the veins leading to the superior vena cava SVC. The guide wire 602 is then urged through the right atrium RA, through the tricuspid valve TV, through the right ventricle RV, through the pulmonary valve PV to the main pulmonary artery MPA and then to a location of the embolism/clot 100 in one of the branches or lumens L of either the right or left pulmonary artery RPA, LPA. In a preferred embodiment, the guide wire 602 is extended through the clot in the body lumen L as shown in FIG. 6A.


Referring to FIG. 6B, a guide catheter 604 is placed over the guide wire 602 and moved to a location where a distal end of the guide catheter 604 is positioned proximal to the clot 100.


At this point, the guide wire can optionally be withdrawn. However, in a preferred embodiment the guide wire 602 remains and a delivery catheter 606 that is then moved through the guide catheter 604 over the guide wire 602 and is pushed through the clot 100. This is shown in FIG. 6C.


Referring to FIG. 6D, the guide wire 602 is then withdrawn and the clot treatment device 402 in its undeployed (i.e., compressed) state is then moved through the delivery catheter until it is disposed at the distal end of the delivery catheter 606.


The delivery catheter 606 is then retracted in a proximal direction while maintaining forward pressure on the clot retrieval device 402 via its pusher wire 401 so that the clot treatment device 402 becomes exposed and released from its delivery catheter 606. The clot treatment device 402 radially expands into the clot 100 and in one preferred embodiment, at least a portion of the clot treatment device 402 expands distal of the clot 100. As shown in FIG. 6E, at least one of the radially extending portions 406 of the clot treatment device 402 are located distal to the clot 100 upon expansion of the clot treatment device 402.


It can be seen that upon expansion of the clot treatment device 402 as just described, blood flowthrough the clot 100 is restored. This is depicted with arrows 407 in FIG. 6E. More specifically, the blood is now free to move through the mesh of the clot treatment device 402 and exit the clot treatment device 402 distal to the clot 100. As a result, the acute condition of blockage is corrected thus immediately improving the circulation of oxygenated blood in the patient.


The restoration of blood flow is anticipated to equate with restoration of a substantial portion of the normal blood flow rate for the patient. In less severe. i.e., “sub massive,” pulmonary embolism patients, the clot treatment device 402 may increase blood flow rate by at least about 50 ml/min, at least about 150 ml/min or between about 100 to 250 ml/min. In severe, i.e., “massive,” pulmonary embolism patients, a larger amount of the pulmonary artery flow is compromised. Hence, in some embodiments, at least about 500 ml/min of blood flow rate may be restored. Moreover, at least a portion of the flow restoration is expected to occur prior to the removal of the clot 100, or any portion thereof.


The restoration of blood flow by the clot treatment device 402 can be achieved in a low pressure environment. For example, the pressure in the target vessel can be less than 60 mmHg and the blood can be venous blood, substantially non-oxygenated blood or low oxygenated blood


In addition to restoring blood flow, the expansion of the clot treatment device 402 also impinges or cuts into the clot material. This enhances the subsequent removal of the clot 100 since portions of the clot 100 collect (1) between the radially extending portions 406; (2) through the pores of the mesh forming the radially extending portions 406; (3) along the longitudinal cylindrical sections 412 between the radially extending portions 406 of the removal device 402; and (4) within the clot treatment device 402 itself.


As can be understood from the above description and the drawing figures, the deployment of the clot treatment device 402 results in an outwardly expanding generally cylindrical force being urged against an inner surface of the clot 100. This force pushes the clot material outwardly and creates a lumen through which blood flow is restored. As can also be appreciated, the presence of the radially extending portions 406 on the clot treatment device 402 causes the outwardly expanding generally cylindrical force to vary in magnitude along the axis of the clot treatment device 402. The force on the clot material may be greater at the locations of the radially extending portions 406.


In braided embodiments of the clot treatment device 402, deployment, i.e., expansion, of the device leads the filaments of the braid to change their angular orientation with respect to the axis of the device. This angular change may improve or enhances adherence of clot material to the clot treatment device 402.


After the clot treatment device 402 has been expanded and blood flow restored, the user then retracts the clot treatment device 402 in a proximal direction as shown in FIG. 6F. In one embodiment, the clot treatment device 402 and the delivery catheter 606 are pulled back simultaneously into the guide catheter 604. This is followed by the entire apparatus (i.e., clot treatment device 402, delivery catheter 606 and guide catheter 604) being withdrawn through the heart and the venous circulation and out from the body.


As further shown in FIG. 6F, the clot treatment device 402 may become elongated as it is being withdrawn into the guide catheter 604 due to the resistance it encounters from the presence of clot material of the clot 100. The presence of the radially extending portions 406 may allow elongation that enhances the capability of the device 402 to capture the maximum amount of clot material. This is further discussed below with respect to the surface area and expansion ratio of preferred embodiments of the clot treatment device 402.


It will be appreciated that variations in the above-described method are contemplated. For example, in certain circumstances a guide catheter 604 may not be necessary or desirable and the user may choose to use only the delivery catheter 606 for placing and manipulation of the clot treatment device 402. As a further example, the clot may be of such a nature that the user may desire repeat the above-described process, or at least portions of it, in order to more fully remove the clot 100 or clot material.


Referring next to FIGS. 7A-7B, it may be advantageous to include the use of a collection or funnel catheter 612 to assist in the removal of the clot 100. Such a funnel catheter 612 has an expandable portion 614 at its distal end and may be situated between the guide catheter 604 and the delivery catheter 608 or may be part of the guide catheter 604. In the presence of the collection catheter 612, the clot treatment device 402 is pulled proximally into the collection catheter 612 such that the clot or portions of it are captured within the collection catheter 612. In an alternative embodiment, the collection catheter 612 can be pushed distally over the clot treatment device 402 and capture the clot, or portions thereof, in that manner. If the collection catheter 612 is separate from the guide catheter 606, the collection catheter with the clot treatment device 402 is then pulled into the guide catheter for ultimate removal of all devices (and the clot) from the patient.


In certain circumstances, it may be advisable to remove the clot 100 without capturing it in the guide catheter 606 or the collection catheter 612 (if used) and remove the clot 100 by withdrawing the entire system, e.g., guide catheter 605, delivery catheter 604, clot treatment device 402 and collection catheter 612 (if used) simultaneously.


In a preferred embodiment the collection catheter 612 is constructed as a mesh or braid or stent structure. Such structure assists in retrieving and containing the clot material in the withdrawal process. In yet further preferred embodiments, the collection catheter 612 contains structural features to assist in the expansion of the funnel portion 614 and to hold the funnel portion 614 open towards the wall of the blood vessel. Such features (not shown) include interwoven support struts, self-expanding material (e.g., nitinol), longitudinal wire supports, stent supports, polymeric webbing, etc.


In another embodiment of the present invention, a vacuum apparatus may be used to aid in the removal of the clot material. Referring to FIG. 8, a syringe 802 is shown connected to a vacuum manifold 806 that is in fluid communication with the proximal end of the guide catheter 604. At the time the clot treatment device 402 (and clot material) is being withdrawn into the guide catheter 604 (or the collection catheter 612), vacuum is applied by pulling on the syringe. Alternative sources of vacuum 804 are also acceptable, e.g., a vacuum pump. A system is also contemplated whereby vacuum is actuated automatically when the clot treatment device 402 (and the clot material) is being withdrawn. A representation of the effect of the use of vacuum can be seen with reference to FIG. 7B which shows how vacuum causes flow 701 into the catheter 612.


Referring now to FIGS. 9A-9H, alternative preferred embodiments of the clot treatment device 402 are disclosed.


Referring to FIG. 9A, the radially extending portions 406 between the generally cylindrical sections 412 of the clot treatment device 402 are defined by a cylindrical disk shape with a rounded triangular cross-section.


Referring to FIG. 9B, the radially extending portions 406 between the generally cylindrical sections 412 of the clot treatment device 402 are defined by a cylindrical disk shape with a rounded triangular cross-section wherein the diameter of the disk increases along the length of the device 402 thus forming a conical exterior extent.


Referring to FIG. 9C, the radially extending portions 406 between the generally cylindrical sections 412 of the clot treatment device 402 are defined by a cylindrical disk shape with a rectangular cross-section.


Referring to FIG. 9D, the radially extending portions 406 between the generally cylindrical sections 412 of the clot treatment device 402 are defined by a cylindrical disk shape with a linear (non-rounded) triangular cross-section.


Referring to FIG. 9E, some of the radially extending portions 406 between the generally cylindrical sections 412 of the clot treatment device 402 are defined by a cylindrical disk shape with a rounded cross-section and others have a rectangular cross section.


Referring to FIG. 9F, the radially extending portions 406 between the generally cylindrical sections 412 of the clot treatment device 402 alternate between cylindrical disk shape with a T-shaped cross-section and a flare-shaped cross-section.


Referring to FIG. 9G, the radially extending portions 406 between the generally cylindrical sections 412 of the clot treatment device 402 are defined by a partial cylindrical disk shapes.


Referring to FIG. 9H, the radially extending portions 406 between the generally cylindrical sections 412 of the clot treatment device 402 are defined by tabs and bumps or protuberances arising from the cylindrical surface of the device 402.


In this regard, it is noted that the radially extending portions 406 provide greater surface area along the device than a device that is uniformly cylindrical. Such increased surface area facilitates the treatment and/or retrieval of a much larger portion of the clot 100 than is generally feasible with a uniformly cylindrical device. For example, in a preferred embodiment of the clot treatment device 402, the device will have an external surface area between 1.5× and 6× the surface area of a uniformly cylindrical device of the same general diameter of the cylindrical sections 412. In other preferred embodiments the ration will be 2× to 4×.


This is advantageous particularly during retraction of the clot treatment device 402 through the clot 100. As shown in FIG. 6F, the clot treatment device 402 may become elongated as it is being withdrawn through the clot 100. Such elongation causes the clot material to encounter greater surface area of the clot treatment device 402 than would otherwise occur with a device that was only generally cylindrical, i.e., that did not incorporate radially extending portions 406. Accordingly the clot treatment device 402 is particularly adept at capturing the maximum amount of clot material during withdrawal.


The clot treatment device 402 is intended for use in large vessels, i.e., vessels with a diameter greater than 8 mm. For example, the diameter of the pulmonary arteries typically range from 15 to 30 mm whereas the first branches of the pulmonary arteries typically range from 10 to 15 mm and the secondary and tertiary branches typically range from 5 to 10 mm. At the same time, however, it is important to minimize the size of catheter providing access to the clot 100. Accordingly, the clot treatment device 402 has a large expansion ratio. In a preferred embodiment the expansion ratio from the diameter of the cylindrical sections 412 in the collapsed state to the expanded state will be between 4 and 8. In another preferred embodiment the ratio will be between 5 and 7. The large expansion ratio also enables the formation of a flow channel in the clot 100 that is large, e.g., on the order of 4-8 mm.


The radially extending portions 406, in their fully expanded position are intended to have a size that matches the diameter of the target blood vessel. However, the diameters may be slightly larger than the vessel diameter so to apply greater radial force against the blood vessel (without causing trauma) in those circumstances when it is desirable to improve clot collection. Similarly, in those circumstances where there is a concern of creating trauma on delicate blood vessels, the radially extending portions 406 may have a diameter that is smaller than the vessel diameter. It is contemplated that different sizes of the device 402 will be available for selection by the user for a particular presentation of the patient.


As for the length of the clot treatment device 402, it is known that a typical pulmonary embolism will have a length within the range between about 2 cm and 10 cm and sometimes between about 1 cm and 20 cm. Accordingly, in a preferred embodiment, the clot treatment device 402 will have a length that exceeds the length of the embolism so that a portion of the clot treatment device is positioned distal of the clot 100 during expansion.


With regard to the delivery catheter 606, in a preferred embodiment for use with a pulmonary embolism, the size will be around 1F-6F. Smaller diameters will pass through the clot 100 more easily. In addition, the delivery catheter 606 may have stiffness characteristics to assist in making sure the delivery catheter 606 passes through the clot in a smooth manner. Such stiffness characteristics include self-expanding nitinol wire braids or stent structures that are contained within the structure of the delivery catheter 606. The delivery catheter 606 also has sufficient flexibility so that it may carry the clot treatment device 402 and still pass through a tortuous vessel path as described above starting with insertion of the delivery catheter 606 in the femoral vein FV.


In some preferred embodiments, the method and device in accordance with the present invention may reduce the Mean Resting Pulmonary Artery Pressure (MRPAP). Upon at least partial relief from the clot 100, MRPAP may be reduced by about 20-50 mmHg to a normal range of 8-20 mmHg. In some embodiments, the reduction in MRPAP may be about 25-50%. In some embodiments, the reduction in MRPAP may be about 15% to 40% and in other embodiments between about 30% and 75%.


Such a reduction in MRPAP can occur in two steps. The first step is when the clot treatment device 402 is first deployed and blood flow is at least partially restored. The second step is when the clot treatment device 402 is retracted and at least some of the clot 100 is removed from the vessel.


Although the invention has been described in terms of particular embodiments and applications, one of ordinary skill in the art, in light of this teaching, can generate additional embodiments and modifications without departing from the spirit of or exceeding the scope of the claimed invention. Accordingly, it is to be understood that the drawings and descriptions herein are proffered by way of example to facilitate comprehension of the invention and should not be construed to limit the scope thereof.

Claims
  • 1. A device for treating an embolism that at least partially restricts blood flow through a blood vessel, the device comprising: an elongated shaft having a proximal region and a distal region;an expandable braid attached to the distal region of the elongated shaft, the braid having a plurality of radially extending portions and at least one cylindrical portion, and the radially extending portions and the cylindrical portion being configured to move from a compressed state sized to fit in a delivery catheter to an expanded state;wherein the cylindrical portion is between a pair of the radially extending portions, and in the expanded state the cylindrical portion is configured to press radially outward against the embolism;wherein a diameter of the cylindrical portion in the expanded state is between four and eight times greater than a diameter of the cylindrical portion in the compressed state;wherein the radially extending portions extend radially outward from the cylindrical portion in the expanded state such that portions of the embolism are retained between the radially extending portions; andwherein the cylindrical portion has a first length along a longitudinal direction of the braid in the expanded state and the radially extending portions have a second length along the longitudinal direction of the braid in the expanded state that is less that the first length.
  • 2. The device of claim 1 wherein at least a portion of the individual radially extending portions is disk-shaped.
  • 3. The device of claim 1 wherein the individual radially extending portions include a curved portion and a linear portion.
  • 4. The device of claim 1 wherein at least one of the radially extending portions is tapered.
  • 5. The device of claim 1 wherein at least one of the radially extending portions is generally cylindrical.
  • 6. The device of claim 1 wherein the individual radially expanding portions have a first diameter and a second diameter different than the first diameter.
  • 7. The device of claim 1 wherein individual radially extending portions have a flare-shaped cross-section with a concave proximal surface.
  • 8. The device of claim 1 wherein at least one of the radially extending portions has a generally triangular cross-section.
  • 9. A device for treating an embolism that at least partially restricts blood flow through a blood vessel, the device comprising: an elongated shaft having a proximal region and a distal region;an expandable braid attached to the distal region of the elongated shaft, the braid having a plurality of radially extending portions and at least one cylindrical portion, and the radially extending portions and the cylindrical portion being configured to move from a compressed state sized to fit in a delivery catheter to an expanded state;wherein the cylindrical portion is between a pair of the radially extending portions, and in the expanded state the cylindrical portion is configured to press radially outward against the embolism;wherein the radially extending portions extend radially outward from the cylindrical portion in the expanded state such that portions of the embolism are retained between the radially extending portions;wherein, in the expanded state, the radially extending portions have cross-sectional shapes selected from the group consisting of rounded-triangular, rectangular, linear triangular, rounded, flare-shaped, and T-shaped; andwherein the cylindrical portion has a first length along a longitudinal direction of the braid in the expanded state and the radially extending portions have a second length along the longitudinal direction of the braid in the expanded state that is less that the first length.
  • 10. The device of claim 9 wherein, in the expanded state, an exterior surface area of the device is at least two times to four times greater than the surface area of a uniformly cylindrical device.
  • 11. The device of claim 9 wherein the braid includes a plurality of filaments, and wherein: in the delivery state, the filaments form a first angle with respect to an axis of the device; andin the expanded state, the filaments form a second angle with respect to an axis of the device that is different than the first angle.
  • 12. The device of claim 9 wherein the expandable braid comprises metallic filaments of Nitinol.
  • 13. The device of claim 9 wherein the expandable braid comprises platinum.
  • 14. The device of claim 9 wherein at least one generally cylindrical portion forms a conical lumen.
CROSS-REFERENCE TO RELATED APPLICATION(S)

This is a continuation application of U.S. patent application Ser. No. 15/159,989 filed May 20, 2016 entitled Methods and Apparatus for Treating Embolism which is a continuation of U.S. patent application Ser. No. 14/602,014 filed Jan. 21, 2015 now issued Aug. 9, 2016 as U.S. Pat. No. 9,408,620 entitled Methods and Apparatus for Treating Embolism, which is a continuation of U.S. patent Ser. No. 14/288,778 filed May 28, 2014 and now issued Mar. 3, 2015 as U.S. Pat. No. 8,968,330 entitled Methods and Apparatus for Treating Embolism, which is a continuation of U.S. patent application Ser. No. 13/843,742 filed Mar. 15, 2013 now issued Jul. 22, 2014 as U.S. Pat. No. 8,784,434 entitled Methods and Apparatus for Treating Embolism, which claims priority to U.S. Provisional Application Ser. No. 61/728,775 filed Nov. 20, 2012 entitled Devices and Methods for Treatment of Vascular Occlusion and U.S. Provisional Application Ser. No. 61/750,277 filed Jan. 8, 2013 entitled Devices and Methods for Treatment of Vascular Occlusion, all of which are hereby incorporated herein by reference in their entireties.

US Referenced Citations (349)
Number Name Date Kind
2846179 Monckton Aug 1958 A
2955592 MacLean Oct 1960 A
3088363 Sparks May 1963 A
3435826 Fogarty Apr 1969 A
3892161 Sokol Jul 1975 A
3923065 Nozick et al. Dec 1975 A
4030503 Clark, III Jun 1977 A
4034642 Iannucci et al. Jul 1977 A
4287808 Leonard et al. Sep 1981 A
4393872 Reznik et al. Jul 1983 A
4523738 Raftis et al. Jun 1985 A
4551862 Haber Nov 1985 A
4650466 Luther Mar 1987 A
4873978 Ginsburg Oct 1989 A
4883458 Shiber Nov 1989 A
4890611 Monfort et al. Jan 1990 A
4978341 Niederhauser Dec 1990 A
5011488 Ginsburg Apr 1991 A
5059178 Ya Oct 1991 A
5100423 Fearnot Mar 1992 A
5102415 Guenther et al. Apr 1992 A
5129910 Phan et al. Jul 1992 A
5192286 Phan et al. Mar 1993 A
5192290 Hilal Mar 1993 A
5360417 Gravener et al. Nov 1994 A
5364345 Lowery et al. Nov 1994 A
5370653 Cragg Dec 1994 A
5443443 Shiber Aug 1995 A
5476450 Ruggio Dec 1995 A
5490859 Mische et al. Feb 1996 A
5591137 Stevens Jan 1997 A
5746758 Nordgren et al. May 1998 A
5749858 Cramer May 1998 A
5766191 Trerotola Jun 1998 A
5782817 Franzel et al. Jul 1998 A
5827304 Hart Oct 1998 A
5868708 Hart et al. Feb 1999 A
5873866 Kondo et al. Feb 1999 A
5873882 Straub et al. Feb 1999 A
5876414 Straub Mar 1999 A
5882329 Patterson et al. Mar 1999 A
5941869 Patterson et al. Aug 1999 A
5972019 Engelson et al. Oct 1999 A
5974938 Lloyd Nov 1999 A
5993483 Gianotti Nov 1999 A
6066149 Samson et al. May 2000 A
6066158 Engelson et al. May 2000 A
6152946 Broome et al. Nov 2000 A
6168579 Tsugita Jan 2001 B1
6203561 Ramee et al. Mar 2001 B1
6221006 Dubrul et al. Apr 2001 B1
6228060 Howell May 2001 B1
6238412 Dubrul et al. May 2001 B1
6254571 Hart Jul 2001 B1
6258115 Dubrul Jul 2001 B1
6306163 Fitz Oct 2001 B1
6350271 Kurz et al. Feb 2002 B1
6364895 Greenhalgh Apr 2002 B1
6368339 Amplatz Apr 2002 B1
6383205 Samson et al. May 2002 B1
6413235 Parodi Jul 2002 B1
6423032 Parodi Jul 2002 B2
6440148 Shiber Aug 2002 B1
6454741 Muni et al. Sep 2002 B1
6454775 Demarais et al. Sep 2002 B1
6458103 Albert et al. Oct 2002 B1
6458139 Palmer et al. Oct 2002 B1
6511492 Rosenbluth et al. Jan 2003 B1
6514273 Voss et al. Feb 2003 B1
6530935 Wensel et al. Mar 2003 B2
6530939 Hopkins et al. Mar 2003 B1
6544279 Hopkins et al. Apr 2003 B1
6551342 Shen et al. Apr 2003 B1
6589263 Hopkins et al. Jul 2003 B1
6596011 Johnson et al. Jul 2003 B2
6602271 Adams et al. Aug 2003 B2
6605074 Zadno-Azizi et al. Aug 2003 B2
6605102 Mazzocchi et al. Aug 2003 B1
6623460 Heck Sep 2003 B1
6635070 Leeflang et al. Oct 2003 B2
6645222 Parodi et al. Nov 2003 B1
6660013 Rabiner et al. Dec 2003 B2
6663650 Sepetka et al. Dec 2003 B2
6685722 Rosenbluth et al. Feb 2004 B1
6692504 Kurz et al. Feb 2004 B2
6699260 Dubrul et al. Mar 2004 B2
6755847 Eskuri Jun 2004 B2
6767353 Shiber Jul 2004 B1
6800080 Bates Oct 2004 B1
6939361 Kleshinski Sep 2005 B1
6960222 Vo et al. Nov 2005 B2
7004954 Voss et al. Feb 2006 B1
7036707 Aota et al. May 2006 B2
7041084 Fojtik May 2006 B2
7052500 Bashiri et al. May 2006 B2
7056328 Arnott Jun 2006 B2
7069835 Nishri et al. Jul 2006 B2
7179273 Palmer et al. Feb 2007 B1
7220269 Ansel et al. May 2007 B1
7232432 Fulton, III et al. Jun 2007 B2
7244243 Lary Jul 2007 B2
7285126 Sepetka et al. Oct 2007 B2
7306618 Demond et al. Dec 2007 B2
7320698 Eskuri Jan 2008 B2
7323002 Johnson et al. Jan 2008 B2
7331980 Dubrul et al. Feb 2008 B2
7534234 Fojtik May 2009 B2
7578830 Kusleika et al. Aug 2009 B2
7621870 Berrada et al. Nov 2009 B2
7674247 Fojtik Mar 2010 B2
7691121 Rosenbluth et al. Apr 2010 B2
7695458 Belley et al. Apr 2010 B2
7763010 Evans et al. Jul 2010 B2
7766934 Pal et al. Aug 2010 B2
7905896 Straub Mar 2011 B2
7938809 Lampropoulos et al. May 2011 B2
7938820 Webster et al. May 2011 B2
7967790 Whiting et al. Jun 2011 B2
7976511 Fojtik Jul 2011 B2
7993302 Hebert et al. Aug 2011 B2
7993363 Demond et al. Aug 2011 B2
8043313 Krolik et al. Oct 2011 B2
8052640 Fiorella et al. Nov 2011 B2
8066757 Ferrera et al. Nov 2011 B2
8070791 Ferrera et al. Dec 2011 B2
8075510 Aklog et al. Dec 2011 B2
8088140 Ferrera et al. Jan 2012 B2
8100935 Rosenbluth et al. Jan 2012 B2
8109962 Pal Feb 2012 B2
8118829 Carrison et al. Feb 2012 B2
8197493 Ferrera et al. Jun 2012 B2
8246641 Osborne et al. Aug 2012 B2
8261648 Marchand et al. Sep 2012 B1
8267897 Wells Sep 2012 B2
8298257 Sepetka et al. Oct 2012 B2
8317748 Fiorella et al. Nov 2012 B2
8337450 Fojtik Dec 2012 B2
RE43902 Hopkins et al. Jan 2013 E
8357178 Grandfield et al. Jan 2013 B2
8361104 Jones et al. Jan 2013 B2
8409215 Sepetka et al. Apr 2013 B2
8486105 Demond et al. Jul 2013 B2
8491539 Fojtik Jul 2013 B2
8512352 Martin Aug 2013 B2
8535334 Martin Sep 2013 B2
8545526 Martin et al. Oct 2013 B2
8568432 Straub Oct 2013 B2
8574262 Ferrera et al. Nov 2013 B2
8579915 French et al. Nov 2013 B2
8585713 Ferrera et al. Nov 2013 B2
8696622 Fiorella et al. Apr 2014 B2
8771289 Mohiuddin et al. Jul 2014 B2
8777893 Malewicz Jul 2014 B2
8784434 Rosenbluth et al. Jul 2014 B2
8784441 Rosenbluth et al. Jul 2014 B2
8795305 Martin et al. Aug 2014 B2
8795345 Grandfield et al. Aug 2014 B2
8801748 Martin Aug 2014 B2
8814927 Shin et al. Aug 2014 B2
8820207 Marchand et al. Sep 2014 B2
8826791 Thompson et al. Sep 2014 B2
8828044 Aggerholm et al. Sep 2014 B2
8833224 Thompson et al. Sep 2014 B2
8845621 Fojtik Sep 2014 B2
8852205 Brady et al. Oct 2014 B2
8852226 Gilson et al. Oct 2014 B2
8932319 Martin et al. Jan 2015 B2
8939991 Krolik et al. Jan 2015 B2
8945143 Ferrera et al. Feb 2015 B2
8945172 Ferrera et al. Feb 2015 B2
8968330 Rosenbluth et al. Mar 2015 B2
8992504 Castella et al. Mar 2015 B2
9005172 Chung Apr 2015 B2
9101382 Krolik et al. Aug 2015 B2
9149609 Ansel et al. Oct 2015 B2
9161766 Slee et al. Oct 2015 B2
9204887 Cully et al. Dec 2015 B2
9259237 Quick et al. Feb 2016 B2
9283066 Hopkins et al. Mar 2016 B2
9408620 Rosenbluth Aug 2016 B2
9439664 Sos Sep 2016 B2
9439751 White et al. Sep 2016 B2
9456834 Folk Oct 2016 B2
9463036 Brady et al. Oct 2016 B2
9526864 Quick Dec 2016 B2
9526865 Quick Dec 2016 B2
9566424 Pessin Feb 2017 B2
9579116 Nguyen et al. Feb 2017 B1
9616213 Furnish et al. Apr 2017 B2
9636206 Nguyen et al. May 2017 B2
9700332 Marchand et al. Jul 2017 B2
9717519 Rosenbluth et al. Aug 2017 B2
9744024 Nguyen et al. Aug 2017 B2
9757137 Krolik et al. Sep 2017 B2
9844386 Nguyen et al. Dec 2017 B2
9844387 Marchand et al. Dec 2017 B2
9999493 Nguyen et al. Jun 2018 B2
1009865 Marchand et al. Oct 2018 A1
20010004699 Gittings et al. Jun 2001 A1
20010041909 Tsugita et al. Nov 2001 A1
20010051810 Dubrul et al. Dec 2001 A1
20020022858 Demond et al. Feb 2002 A1
20020026211 Khosravi et al. Feb 2002 A1
20020111648 Kusleika et al. Aug 2002 A1
20020120277 Hauschild et al. Aug 2002 A1
20020147458 Hiblar et al. Oct 2002 A1
20020156457 Fisher Oct 2002 A1
20030100919 Hopkins et al. May 2003 A1
20030114875 Sjostrom Jun 2003 A1
20030116731 Hartley Jun 2003 A1
20030125663 Coleman et al. Jul 2003 A1
20030135230 Massey et al. Jul 2003 A1
20030153973 Soun et al. Aug 2003 A1
20030191516 Weldon et al. Oct 2003 A1
20040039412 Isshiki et al. Feb 2004 A1
20040068288 Palmer et al. Apr 2004 A1
20040073243 Sepetka et al. Apr 2004 A1
20040133232 Rosenbluth et al. Jul 2004 A1
20040167567 Cano et al. Aug 2004 A1
20040199201 Kellett et al. Oct 2004 A1
20050038468 Panetta et al. Feb 2005 A1
20050055047 Greenhalgh Mar 2005 A1
20050119668 Teague et al. Jun 2005 A1
20050283186 Berrada et al. Dec 2005 A1
20060020286 Niermann Jan 2006 A1
20060047286 West Mar 2006 A1
20060100662 Daniel et al. May 2006 A1
20060224177 Finitsis Oct 2006 A1
20060229645 Bonnette et al. Oct 2006 A1
20060247500 Voegele et al. Nov 2006 A1
20060253145 Lucas Nov 2006 A1
20060282111 Morsi Dec 2006 A1
20070112374 Paul, Jr. et al. May 2007 A1
20070118165 DeMello et al. May 2007 A1
20070161963 Smalling Jul 2007 A1
20070179513 Deutsch Aug 2007 A1
20070191866 Palmer et al. Aug 2007 A1
20070198028 Miloslayski et al. Aug 2007 A1
20070208361 Okushi et al. Sep 2007 A1
20070208367 Fiorella et al. Sep 2007 A1
20070213753 Waller Sep 2007 A1
20070255252 Mehta Nov 2007 A1
20070288054 Tanaka et al. Dec 2007 A1
20080015541 Rosenbluth et al. Jan 2008 A1
20080088055 Ross Apr 2008 A1
20080157017 Macatangay et al. Jul 2008 A1
20080167678 Morsi Jul 2008 A1
20080228209 DeMello et al. Sep 2008 A1
20080234722 Bonnette et al. Sep 2008 A1
20080269798 Ramzipoor et al. Oct 2008 A1
20080300466 Gresham Dec 2008 A1
20090018566 Escudero et al. Jan 2009 A1
20090054918 Henson Feb 2009 A1
20090062841 Amplatz et al. Mar 2009 A1
20090069828 Martin et al. Mar 2009 A1
20090160112 Ostrovsky Jun 2009 A1
20090163846 Aklog et al. Jun 2009 A1
20090182362 Thompson et al. Jul 2009 A1
20090281525 Harding et al. Nov 2009 A1
20090292307 Razack Nov 2009 A1
20090299393 Martin et al. Dec 2009 A1
20100087850 Razack Apr 2010 A1
20100114113 Dubrul et al. May 2010 A1
20100121312 Gielenz et al. May 2010 A1
20100204712 Mallaby Aug 2010 A1
20100249815 Jantzen et al. Sep 2010 A1
20100268264 Bonnette et al. Oct 2010 A1
20100318178 Rapaport et al. Dec 2010 A1
20110054405 Whiting et al. Mar 2011 A1
20110060212 Slee et al. Mar 2011 A1
20110144592 Wong et al. Jun 2011 A1
20110152993 Marchand et al. Jun 2011 A1
20110190806 Wittens Aug 2011 A1
20110196414 Porter et al. Aug 2011 A1
20110213290 Chin et al. Sep 2011 A1
20110213403 Aboytes Sep 2011 A1
20110224707 Miloslayski et al. Sep 2011 A1
20110251629 Galdonik et al. Oct 2011 A1
20110264133 Hanlon et al. Oct 2011 A1
20120059309 di Palma et al. Mar 2012 A1
20120089216 Rapaport et al. Apr 2012 A1
20120101480 Ingle et al. Apr 2012 A1
20120101510 Lenker et al. Apr 2012 A1
20120143239 Aklog et al. Jun 2012 A1
20120165919 Cox et al. Jun 2012 A1
20120179181 Straub et al. Jul 2012 A1
20120197277 Stinis Aug 2012 A1
20120232655 Lorrison et al. Sep 2012 A1
20120271231 Agrawal Oct 2012 A1
20120277788 Cattaneo Nov 2012 A1
20120310166 Huff Dec 2012 A1
20130066348 Fiorella et al. Mar 2013 A1
20130092012 Marchand et al. Apr 2013 A1
20130144326 Brady et al. Jun 2013 A1
20130165871 Fiorella et al. Jun 2013 A1
20130197567 Brady et al. Aug 2013 A1
20130317589 Martin et al. Nov 2013 A1
20130345739 Brady et al. Dec 2013 A1
20140005712 Martin Jan 2014 A1
20140005713 Bowman Jan 2014 A1
20140005715 Castella et al. Jan 2014 A1
20140005717 Martin et al. Jan 2014 A1
20140025048 Ward Jan 2014 A1
20140031856 Martin Jan 2014 A1
20140046243 Ray et al. Feb 2014 A1
20140121672 Folk May 2014 A1
20140180397 Gerberding et al. Jun 2014 A1
20140188143 Martin et al. Jul 2014 A1
20140236219 Dubrul et al. Aug 2014 A1
20140243882 Ma Aug 2014 A1
20140318354 Thompson et al. Oct 2014 A1
20150018860 Quick et al. Jan 2015 A1
20150018929 Martin et al. Jan 2015 A1
20150127035 Trapp et al. May 2015 A1
20150133990 Davidson May 2015 A1
20150150672 Ma Jun 2015 A1
20150190156 Ulm, III Jul 2015 A1
20150196380 Berrada et al. Jul 2015 A1
20150196744 Aboytes Jul 2015 A1
20150209058 Ferrera et al. Jul 2015 A1
20150209165 Grandfield et al. Jul 2015 A1
20150238207 Cox et al. Aug 2015 A1
20150250578 Cook et al. Sep 2015 A1
20150265299 Cooper et al. Sep 2015 A1
20150305756 Rosenbluth et al. Oct 2015 A1
20150305859 Eller Oct 2015 A1
20150352325 Quick Dec 2015 A1
20150360001 Quick Dec 2015 A1
20150374391 Quick et al. Dec 2015 A1
20160113666 Quick et al. Apr 2016 A1
20160143721 Rosenbluth et al. May 2016 A1
20160262790 Rosenbluth et al. Sep 2016 A1
20160277276 Tuthill et al. Sep 2016 A1
20160367285 Sos Dec 2016 A1
20170037548 Lee Feb 2017 A1
20170058623 Jaffrey et al. Mar 2017 A1
20170112513 Marchand et al. Apr 2017 A1
20170112514 Marchand et al. Apr 2017 A1
20170189041 Cox et al. Jul 2017 A1
20170233908 Kroczynski et al. Aug 2017 A1
20170265878 Marchand et al. Sep 2017 A1
20170325839 Rosenbluth et al. Nov 2017 A1
20180092652 Marchand et al. Apr 2018 A1
20180105963 Quick Apr 2018 A1
20180125512 Nguyen et al. May 2018 A1
20180256178 Cox et al. Sep 2018 A1
20180296240 Rosenbluth et al. Oct 2018 A1
20180344339 Cox et al. Dec 2018 A1
20180361116 Quick et al. Dec 2018 A1
Foreign Referenced Citations (31)
Number Date Country
102017004383 Jul 2018 DE
6190049 Jul 1994 JP
2001522631 May 1999 JP
2004097807 Apr 2004 JP
2005230132 Sep 2005 JP
2005323702 Nov 2005 JP
2006094876 Apr 2006 JP
2011526820 Jan 2010 JP
WO-1997017889 May 1997 WO
WO-1999044542 Sep 1999 WO
WO-2000053120 Sep 2000 WO
WO-2005046736 May 2005 WO
WO-2006110186 Oct 2006 WO
WO-2007092820 Aug 2007 WO
WO-2009155571 Dec 2009 WO
WO2010002549 Jan 2010 WO
WO-2010010545 Jan 2010 WO
WO-2010023671 Mar 2010 WO
WO-2010049121 May 2010 WO
WO-2010102307 Sep 2010 WO
WO-2011054531 May 2011 WO
WO-2012009675 Jan 2012 WO
WO-2012011097 Apr 2012 WO
WO-2012065748 May 2012 WO
WO-2014047650 Mar 2014 WO
WO-2014081892 May 2014 WO
WO-2015006782 Jan 2015 WO
WO-2015061365 Apr 2015 WO
WO2017024258 Feb 2017 WO
WO2017070702 Apr 2017 WO
WO2018080590 May 2018 WO
Non-Patent Literature Citations (51)
Entry
International Search Report and Written Opinion for International App. No. PCT/US2016/067628 filed Dec. 19, 2016, Applicant: Inari Medical Inc., dated Apr. 10, 2017, 11 pages.
Goldhaber S. et al. “Percutaneous Mechanical Thrombectomy for Acute Pulmonary Embolism—A Double-Edged Sword,” American College of CHEST Physicians Aug. 2007, 132:2 363-372.
Goldhaber S. “Advanced treatment strategies for acute pulmonary embolism including thrombolysis and embolectomy,” Journal of Thrombosis and Haemostasis 2009: 7 (Suppl. 1): 322-327.
International Search Report and Written Opinion for International App. No. PCT/US2017/029696, Date of Filing: Apr. 26, 2017, Applicant: Inari Medical, Inc., dated Sep. 15, 2017, 19 pages.
International Search Report and Written Opinion for International App. No. PCT/US2016/058536, Date of Filing: Oct. 24, 2016, Applicant: Inari Medical, Inc., dated Mar. 13, 2017, 14 pages.
European Patent Application No. 13838945.7, Extended European Search Report, 9 pages, dated Apr. 15, 2016.
Final Office Action for U.S. Appl. No. 14,299,933, dated Aug. 12, 2015, 7 pages.
Final Office Action in U.S. Appl. No. 14/299,933, dated Dec. 29, 2014, 15 pages.
Gibbs, et al., “Temporary Stent as a bail-out device during percutaneous transluminal coronary angioplasty: preliminary clinical experience,” British Heart Journal, 1994, 71:372-377,Oct. 12, 1993 6 pgs.
Gupta, S. et al., “Acute Pulmonary Embolism Advances in Treatment”, JAPI, Association of Physicians India, Mar. 2008, vol. 56, 185-191.
International Search Report and Written Opinion for International App. No. PCT/US13/61470, dated Jan. 17, 2014, 7 pages.
International Search Report and Written Opinion for International App. No. PCT/US2014/046567, dated Nov. 3, 2014, 13 pages.
International Search Report and Written Opinion for International App. No. PCT/US2014/061645, dated Jan. 23, 2015, 15 pages.
International Search Report and Written Opinion for International App. No. PCT/US2015/034987, dated Jun. 9, 2015, 12 pages.
International Search Report and Written Opinion for International Application No. PCT/US2015/034987, dated Sep. 17, 2015, 12 pages.
International Search Report for International App. No. PCT/US13/71101, dated Mar. 31, 2014, 4 pages.
Konstantinides, S. et al., “Pulmonary embolism hotline 2012—Recent and expected trials”, Thrombosis and Haemostasis, Jan. 9, 2013:33; 43-50.
Konstantinides, S. et al., “Pulmonary embolism: risk assessment and management”, European Society of Cardiology; European Heart Journal, Sep. 7, 2012:33, 3014-3022.
Kucher, N. et al., “Percutaneous Catheter Thrombectomy Device for Acute Pulmonary Embolism: In Vitro and in Vivo Testing”, Circulation, Sep. 2005:112:e28-e32.
Kucher, N., “Catheter Interventions in Massive Pulmonary Embolism”, CardiologyRounds, Mar. 2006 vol. 10, Issue 3, 6 pages.
Kucher, N. et al., “Management of Massive Pulmonary Embolism”, Radiology, Sep. 2005:236:3 852-858.
Kucher, N. et al., “Randomized, Controlled Trial of Ultrasound-Assisted Catheter-Directed Thrombolysis for Acute Intermediate-Risk Pulmonary Embolism.” Circulation, 2014, 129, pp. 9 pages.
Kuo, W. et al., “Catheter-directed Therapy for the Treatment of Massive Pulmonary Embolism: Systematic Review and Meta-analysis of Modern Techniques”, Journal of Vascular and Interventional Radiology, Nov. 2009:20:1431-1440.
Kuo, W. et al., “Catheter-Directed Embolectomy, Fragmentation, and Thrombolysis for the Treatment of Massive Pulmonary Embolism After Failure of Systemic Thrombolysis”, American College of Chest Physicians 2008: 134:250-254.
Kuo, W. MD, “Endovascular Therapy for Acute Pulmonary Embolism”, Continuing Medical Education Society of Interventional Radiology (“CME”); Journal of Vascular and Interventional Radiology, Feb. 2012: 23:167-179.
Lee, L. et al, “Massive pulmonary embolism: review of management strategies with a focus on catheter-based techniques”, Expert Rev. Cardiovasc. Ther. 8(6), 863-873 (2010).
Liu, S. et al, “Massive Pulmonary Embolism: Treatment with the Rotarex Thrombectomy System”, Cardiovascular Interventional Radiology; 2011: 34:106-113.
Muller-Hulsbeck, S. et al. “Mechanical Thrombectomy of Major and Massive Pulmonary Embolism with Use of the Amplatz Thrombectomy Device”, Investigative Radiology, Jun. 2001:36:6:317-322.
Non-Final Office Action in U.S. Appl. No. 13/843,742, dated Sep. 13, 2013, 16 pages.
Non-Final Office Action in U.S. Appl. No. 14/299,933, dated Aug. 29, 2014, 10 pages.
Notice of Allowance for U.S. Appl. No. 13/843,742, dated Mar. 12, 2014, 13 pages.
Notice of Allowance for U.S. Appl. No. 14/288,778, dated Dec. 23, 2014, 12 pages.
Reekers, J. et al., “Mechanical Thrombectomy for Early Treatment of Massive Pulmonary Embolism”, CardioVascular and Interventional Radiology, 2003: 26:246-250.
Schmitz-Rode et al., “New Mesh Basket for Percutaneous Removal of Wall-Adherent Thrombi in Dialysis Shunts,” Cardiovasc Intervent Radiol 16:7-10 1993 4 pgs.
Schmitz-Rode et al., “Temporary Pulmonary Stent Placement as Emergency Treatment of Pulmonary Embolism,” Journal of the American College of Cardiology, vol. 48, No. 4, 2006 (5 pgs.).
Schmitz-Rode, T. et al., “Massive Pulmonary Embolism: Percutaneous Emergency Treatment by Pigtail Rotation Catheter”, JACC Journal of the American College of Cardiology, Aug. 2000:36:2:375-380.
Spiotta, A et al., “Evolution of thrombectomy approaches and devices for acute stroke: a technical review.” J Neurolntervent Surg 2015, 7, pp. 7 pages.
Svilaas, T. et al., “Thrombus Aspiration During Primary Percutaneous Coronary Intervention.” The New England Journal of Medicine, 2008, vol. 358, No. 6, 11 pages.
Tapson, V., “Acute Pulmonary Embolism”, The New England Journal of Medicine, Mar. 6, 2008:358:2037-52.
The Penumbra Pivotal Stroke Trial Investigators, “The Penumbra Pivotal Stroke Trial: Safety and Effectiveness of a New Generation of Mechanical Devices for Clot Removal in Intracranial Large Vessel Occlusive Disease.” Stroke, 2009, 40: p. 9 pages.
Truong et al., “Mechanical Thrombectomy of Iliocaval Thrombosis Using a Protective Expandable Sheath,” Cardiovasc Intervent Radiol27-254-258, 2004, 5 pgs.
Turk et al., “Adapt Fast study: a direct aspiration first pass technique for acute stroke thrombectomy.” J Neurolntervent Surg, vol. 6, 2014, 6 pages.
Uflacker, R., “Interventional Therapy for Pulmonary Embolism”, Journal of Vascular and Interventional Radiology, Feb. 2001: 12:147-164.
Verma, R., MD et al. “Evaluation of a Newly Developed Percutaneous Thrombectomy Basket Device in Sheep With Central Pulmonary Embolisms”, Investigative Raiology, Oct. 2006, 41, 729-734.
International Search Report and Written Opinion for International App. No. PCT/US2015/034987 filed Jun. 9, 2015, Applicant: Inceptus Medical, LLC, dated Sep. 17, 2015, 12 pages.
English translation of Japanese Office Action received for JP Application No. 2016-564210, Applicant: Inceptus Medical, LLC, dated Sep. 4, 2017, 4 pages.
Australian Exam Report received for AU Application No. 2015274704, Applicant: Inceptus Medical, LLC, dated Sep. 7, 2017, 3 pages.
European Search Report received for EP Application No. 15805810.7, Applicant: Inceptus Medical, LLC, dated Sep. 4, 2017, 6 pages.
European First Office Action received for EP Application No. 13838945.7, Applicant: Inari Medical, Inc., dated Oct. 26, 2018, 7 pages.
International Search Report and Written Opinion for International App. No. PCT/US2018/048786, Date of Filing: Aug. 30, 2018, Applicant: Inari Medical, Inc., dated Dec. 13, 2018, 12 pages.
International Search Report and Written Opinion for International App. No. PCT/US2018/055780, Date of Filing: Oct. 13, 2018, Applicant: Inceptus Medical LLC., Dated: Jan. 22, 2019, 8 pages.
Related Publications (1)
Number Date Country
20170105745 A1 Apr 2017 US
Provisional Applications (2)
Number Date Country
61728775 Nov 2012 US
61750277 Jan 2013 US
Continuations (4)
Number Date Country
Parent 15159989 May 2016 US
Child 15396036 US
Parent 14602014 Jan 2015 US
Child 15159989 US
Parent 14288778 May 2014 US
Child 14602014 US
Parent 13843742 Mar 2013 US
Child 14288778 US