The invention generally relates to medical apparatus and methods. More specifically, the invention relates to apparatus and methods for treatment of patent foramen ovale.
Fetal blood circulation is much different than adult circulation. Because fetal blood is oxygenated by the placenta, rather than the fetal lungs, blood is generally shunted away from the lungs to the peripheral tissues through a number of vessels and foramens that remain patent (i.e., open) during fetal life and typically close shortly after birth. For example, fetal blood passes directly from the right atrium through the foramen ovale into the left atrium, and a portion of blood circulating through the pulmonary artery trunk passes through the ductus arteriosus to the aorta. This fetal circulation is shown in attached
At birth, as a newborn begins breathing, blood pressure in the left atrium rises above the pressure in the right atrium. In most newborns, a flap of tissue closes the foramen ovale and heals together. In approximately 20,000 babies born each year in the US, the flap of tissue is missing, and the hole remains open as an atrial septal defect (ASD). In a much more significant percentage of the population (estimates range from 5% to 20% of the entire population), the flap is present but does not heal together. This condition is known as a patent foramen ovale (PFO). Whenever the pressure in the right atrium rises above that in the left atrium, blood pressure can push this patent channel open, allowing blood to flow from the right atrium to the left atrium.
Patent foramen ovale has long been considered a relatively benign condition, since it typically has little effect on the body's circulation. More recently, however, it has been found that a significant number of strokes may be caused at least in part by PFO. In some cases, stroke may occur because a PFO allows blood containing small thrombi to flow directly from the venous circulation to the arterial circulation and into the brain, rather than flowing to the lungs where the thrombi can become trapped and gradually dissolved. In other cases, thrombi might form in the patent channel of the PFO itself and become dislodged when the pressures cause blood to flow from the right atrium to the left atrium. It has been estimated that patients with PFOs who have already had cryptogenic strokes have a 4% risk per year of having another stroke.
Further research is currently being conducted into the link between PFO and stroke. At the present time, if someone with a PFO has two or more strokes, the healthcare system in the U.S. may reimburse a surgical or other interventional procedure to definitively close the PFO. It is likely, however, that a more prophylactic approach would be warranted to close PFOs to prevent the prospective occurrence of a stroke. The cost and potential side-effects and complications of such a procedure must be low, however, since the event rate due to PFOs is relatively low. In younger patients, for example, PFOs sometimes close by themselves over time without any adverse health effects.
Another highly prevalent and debilitating condition—chronic migraine headaches—has also been linked with PFO. Although the exact link has not yet been explained, PFO closure has been shown to eliminate or significantly reduce migraine headaches in many patients. Again, prophylactic PFO closure to treat chronic migraine headaches might be warranted if a relatively non-invasive procedure were available.
Currently available interventional therapies for PFO are generally fairly invasive and/or have potential drawbacks. One strategy is simply to close a PFO during open heart surgery for another purpose, such as heart valve surgery. This can typically be achieved via a simple procedure such as placing a stitch or two across the PFO with vascular suture. Performing open heart surgery purely to close an asymptomatic PFO or even a very small ASD, however, would be very hard to justify.
A number of interventional devices for closing PFOs percutaneously have also been proposed and developed. Most of these devices are the same as or similar to ASD closure devices. They are typically “clamshell” or “double umbrella” shaped devices which deploy an area of biocompatible metal mesh or fabric (ePTFE or Dacron, for example) on each side of the atrial septum, held together with a central axial element, to cover the PFO. This umbrella then heals into the atrial septum, with the healing response forming a uniform layer of tissue or “pannus” over the device. Such devices have been developed, for example, by companies such as Nitinol Medical Technologies, Inc. (Boston, Mass.) and AGA Medical, Inc. (White Bear Lake, Minn.). U.S. Pat. No. 6,401,720 describes a method and apparatus for thoracoscopic intracardiac procedures which may be used for treatment of PFO.
Although available devices may work well in some cases, they also face a number of challenges. Relatively frequent causes of complications include, for example, improper deployment, device embolization into the circulation and device breakage. In some instances, a deployed device does not heal into the septal wall completely, leaving an exposed tissue which may itself be a nidus for thrombus formation. Furthermore, currently available devices are generally complex and expensive to manufacture, making their use for prophylactic treatment of PFO impractical. Additionally, currently available devices typically close a PFO by placing material on either side of the tunnel of the PFO, compressing and opening the tunnel acutely, until blood clots on the devices and causes flow to stop. No presently known methods or devices close a PFO by inserting a device primarily into the tunnel of the PFO to cause closure.
Research into methods and compositions for tissue welding has been underway for many years. Of particular interest are technologies developed by McNally et. al., (as shown in U.S. Pat. No. 6,391,049 and Fusion Medical (as shown in U.S. Pat. Nos. 5,156,613, 5,669,934, 5,824,015 and 5,931,165). These technologies all disclose the use of energy delivery to tissue solders and patches in order to join tissue and form anastomoses between arteries, bowel, nerves, etc. Also of interest are a number of patents by inventor Sinofsky, relating to laser suturing of biological materials (e.g., U.S. Pat. Nos. 5,725,522, 5,569,239, 5,540,677 and 5,071,417). Other references, such as PCT Patent Application Publication No. WO 03/0534493, describe devices for closing PFOs involving bioresorbable materials. While these basic technologies may be applicable to the closure of PFOs, however, none of them show methods or apparatus suitable for positioning the tissues of the PFO for welding or for delivering the energy to the site to be welded.
Therefore, it would be advantageous to have improved methods and apparatus for treating a PFO. Ideally, such methods and apparatus would help seal the PFO while leaving only a harmless repair material, or possibly very little or no foreign material, in the body. Also ideally, such methods and apparatus would be relatively simple to manufacture and use, thus rendering prophylactic treatment of PFO, such as for stroke prevention, a viable option. It would also be advantageous to have a device which could effect closure of a PFO without requiring insertion of a catheter through the PFO. At least some of these objectives will be met by the present invention.
Methods and apparatus for treatment of patent foramen ovale (PFO) generally involve use of a catheter having treatment apparatus at its distal end. In the present embodiments, the treatment apparatus includes at least one conductive element disposed at the distal end of the catheter. The treatment apparatus may also include a positive stop feature to limit the penetration of the treatment apparatus to a predetermined depth into the PFO. The apparatus also includes an energy source, such as a radiofrequency generator, used in conjunction with a closure device.
Methods generally involve advancing the catheter to position its distal end near the PFO and using the treatment apparatus to secure a closure device to the tissue with energy and/or tissue solder or tissue adhesive to close the PFO. The closure device may be a plug that physically covers the PFO. Alternatively, the closure device may be a plug inserted selectively into the PFO.
In one aspect, a method of treating a patent foramen ovale comprises: advancing a catheter device having a proximal end, a distal end and at least one conductive element and closure device near the distal end through vasculature of a patient to position the distal end adjacent the patent foramen ovale; advancing the at least one conductive element and closure device to or into the patent foramen ovale; exposing the at least one conductive element to the closure element and/or to the tissue; and applying energy to the tissue and/or closure device to fix the device to or into the tissue of the PFO. In some embodiments, advancing the catheter comprises advancing through at least one of a femoral vein, an iliac vein, an inferior vena cava, a brachial vein, an axial vein, a subclavian vein, and a superior vena cava of the patient. In some embodiments, advancing the catheter comprises advancing over a guidewire.
In other aspects, exposing the at least one conductive element and closure device involves retracting a catheter body of the catheter to expose the at least one conductive element and closure device out of an opening in the catheter body at or near the distal end of the catheter. Alternatively, exposing the at least one conductive element and closure device may involve advancing the conductive element and closure device relative to the catheter body. In any embodiment, the at least one conductive element and closure device may be retracted and advanced as many times as desired. Optionally, any embodiment may include visualization of the PFO and/or tissue surrounding the PFO using one or more visualization devices.
In further aspects, advancing the at least one conductive element and closure device to or into the PFO optionally includes inserting at least a portion of the at least one conductive element and closure device into the PFO until a positive stop provided on the treatment apparatus engages the peripheral limits of the PFO, limiting penetration depth of the at least one conductive element and closure device.
A further aspect of advancing the closure device to or into the PFO includes providing a closure device made from a self-expanding bioresorbable, doped matrix and allowing the self expanding material of the closure device to fill and/or span the PFO. In alternative embodiments, a self-expanding or expandable matrix that is not bioresorbable may be used.
In another method of therapy, advancing the treatment apparatus comprises advancing two or more conductive elements to the PFO and using the two or more conductive elements to apply lateral, dilatory or a combination of both forces to bring the tissue of the septum primum and septum secundum of the PFO into apposition. Alternatively, the lateral and/or dilatory forces may bring the tissue of the septum primum and septum secundum into apposition with one or more of the conductive elements, or into apposition with the closure device. In this method, advancing the closure device comprises spanning the area between the two or more conductive elements with the closure device. In a further aspect of the method, advancing the closure device may comprise allowing the closure device to self-expand in and/or near the PFO to fill any space left after the primum and secundum are brought into apposition by the two or more conductive elements. In some embodiments, applying lateral, dilatory or a combination of forces may be achieved by inflating a balloon within the conductive elements, or by incorporating the conductive elements into a balloon.
Methods for fixing the closure device to the PFO include applying energy to the at least one conductive element of the treatment apparatus via the delivery catheter. In one method, monopolar radiofrequency energy is applied through the at least one conductive element and the conductively doped closure device, heating the tissue and/or closure device, to fix the closure device to the tissue and close the PFO. Alternatively, applying energy to the closure device may cause solder or adhesive-filled compartments within the closure device to rupture, fixing the closure device to the PFO.
An alternative method includes applying bipolar radiofrequency energy between the at least one conductive element and a ground electrode on the delivery catheter or proximal treatment apparatus to heat the tissue and/or closure device to fix the closure device to the tissue and close the PFO.
A further method entails applying bipolar radiofrequency energy between the two or more conductive elements of the treatment apparatus to heat the tissue and/or closure device to fix the closure device to the tissue and close the PFO. In some methods, the energy may be conducted from each of the two or more conductive elements of the treatment apparatus into specifically defined conductive pathways of the closure device.
In yet another aspect, apparatus for treating PFO comprises an elongate catheter body having a proximal end and a distal end and a treatment apparatus comprised of at least one retractable conductive element movable between a retracted position wherein the conductive element resides wholly within the catheter body and a deployed position wherein at least a portion of the conductive element extends through an opening in the catheter body adjacent the distal end. In some embodiments, the catheter body is passable over a guidewire. Also in some embodiments, the at least one retractable conductive element contains at least one positive stop provided to engage the peripheral limits of the PFO, limiting penetration depth of the at least one conductive element and closure device. Optionally, the at least one retractable conductive element comprises multiple conductive elements. Also in some embodiments, the at least one retractable conductive element is movable relative to the catheter body to extend the at least one conductive element through the PFO and retract the conductive element back through the foramen ovale.
Apparatus for treating a PFO also consist of a closure device, which may include a bioabsorbable or non-resorbable matrix. The matrix may include conductive elements to reduce impedance over the desired energy transmission plane and to enhance energy conduction from the energy delivery means to the tissue in order to more predictably and securely affix the closure device to the tissue. Optionally, the closure device may incorporate tissue solders or adhesives. These solders or adhesives may be designed to achieve full adhesion upon energy delivery. Conductive elements incorporated into the closure device may include conductive wires. Alternatively, conductive elements may comprise patterned doping of conductive particles into specific conductive shapes or pathways within the closure device. Example conductive wires may be made from gold, platinum, iridium, or alloys thereof. Example doping elements include powdered metals such as tantalum, platinum, gold, iridium, or alloys thereof. Example matrices include self expanding collagen, hyaluronic acid, absorbable sponge, matrices of bioabsorbable polymers, and bioresorbable metals, such as iron or nickel alloys. Example tissue solders or adhesives include autologous blood, albumin, collagen, fibrin, cyanoacrylates, mussel byssus adhesives, polymer hot melt adhesives or the like. Combinations of several of these solders or adhesives may also be utilized.
Other embodiments of closure devices incorporating conductive elements may include design features such as skirts, flanges or lips which are designed to engage the tissue of the right atrium adjacent to the PFO, acting as a positive stop and as additional retention means. In some cases, the closure device will incorporate deformable non-resorbable frame members in order to facilitate closure device positioning and retention.
Methods and apparatus of the invention generally provide for treating tissue adjacent a patent foramen ovale (PFO) to cause closure of the foramen. The methods and devices typically include a catheter device which can be advanced through the vasculature of a patient to position the distal end of the catheter near the PFO to provide treatment. Treatment apparatus disposed at or near the distal end of the catheter can then be used to treat at least a portion of the heart wall tissue surrounding the PFO, to cause the PFO to close. In many embodiments, the treatment apparatus is used to transmit energy to a closure device and to the tissues surrounding the PFO. The energy causes bonding to occur between the tissue of the PFO and the closure device, which may in turn induce a response in the tissues which causes the PFO to close. In one embodiment, the treatment apparatus includes one or more conductive elements. Such conductive elements may be retractable into (and extendable out of) the body of the catheter.
In some embodiments, closure devices may be made from bioresorbable materials such as collagen, hyaluronic acids, or various formulations of bioresorbable polymers such as PLLA, PLGA, degradable metals or the like. Alternatively, closure devices may comprise one or more non-resorbable materials, such Dacron®, ePTFE, non-degradable metallic weaves such as platinum alloys, gold, nitinol or stainless steel, or composites of several of these materials. The closure device may be self expanding or expandable to fill gaps left between the tissues of the PFO after they are brought into apposition for sealing. Of particular interest are embodiments wherein conductive particles are incorporated into the matrix of the closure device to increase conductivity and inductance through the closure device and the tissues of the PFO in order to increase the efficacy and consistency of the closure. These particles may be evenly distributed throughout the matrix of the closure device, or they might be arranged into specifically designed conductive pathways.
For the purposes of this description, the tissue surrounding, encircling or forming a PFO will generally be referred to as “tissue adjacent the PFO” or “PFO tissue” or “tissue surrounding the PFO.” A “PFO” itself is actually a foramen, or opening, in tissue of the heart wall between the left and right atria (the interatrial septum), while tissue adjacent the PFO is tissue of the septum primum and the septum secundum that has failed to fuse, thus leaving the foramen ovale patent. Many embodiments of the present invention involve apparatus and methods acting on tissue adjacent the PFO, and it should be emphasized that “tissue adjacent the PFO” means tissue of the septum primum, tissue of the septum secundum, and/or any other adjacent heart wall tissue upon which an embodiment of the invention may act.
As shown in
Devices such as those described in FIGS. 2 and 3A-C will most preferably make use of monopolar radiofrequency (RF) energy transmitted from the conductive elements of the treatment apparatus, through the patient, completing the circuit to a ground pad affixed to the external skin of the patient. Control systems within the energy delivery systems may automatically stop energy delivery upon detecting a change in condition of energy delivery, for instance an increase in electrical resistance or impedance within closure device 16 and/or tissues, or an increased energy draw from the treatment apparatus. In other embodiments, bipolar RF energy may be transmitted from the treatment apparatus. Alternatively, other forms of energy may be applied to one or more closure devices and/or to tissues adjacent a PFO, such as but not limited to resistive heating, ultrasound, microwave or laser energy.
FIGS. 6 and 7A-C show a treatment apparatus 30 having multiple conductive elements 32 which apply both lateral and dilatory force to the PFO, in order to more forcefully bring a closure device 34 into apposition with the tissues of the PFO. In some embodiments, closure device 34, which may incorporate any of the features previously disclosed, may form a closed-ended sock-like structure. In some embodiments, the proximal edge of closure device 34 may be positioned on conductive elements 32 such that when lateral and dilatory forces are exerted on closure device 34 and the tissues of the PFO, the proximal portion of closure device 34 forms a skirt 36 which contacts the tissue of the right atrium peripheral to the PFO. In this embodiment, as shown in
Devices such as those described in
Control systems may be included in various embodiments within the energy delivery systems for detecting and/or stopping energy delivery. Such a control system may automatically stop energy delivery upon detecting a change in a condition of energy delivery, for instance an increase in electrical resistance or impedance within the closure device and/or tissues, or an increased energy draw from the treatment apparatus. In some embodiments, a control system will stop energy delivery when a temperature is detected that relates to a sufficient temperature for tissue welding. Such control features may be accomplished by any suitable devices or combinations, such as by thermistors or the like.
In all embodiments describing doping of a matrix to enhance energy transfer, association of a given doped pathway, whether is it highly selective to mimic a wire-like pathway or uniformly distributed to form a plate-like plane, the pathway may be made to be in true electrical connection with its intended conduction element, or it may simply be more strongly coupled with a given electrode than with a different electrode. True electrical conductivity may be established through the pathway or plane, or the mechanism of increased energy transfer may be that of reducing the impedance of a given path which it is desired for the energy to follow.
As is mentioned above, closure devices of the present invention may be entirely bioresorbable, partially bioresorbable, or entirely non-resorbable. Many of the embodiments described above are intended to be bioresporbable but may also be constructed from non-resorbable materials. The descriptions that follow often focus on “patches” for closing a PFO. Typically, these patches will be non-resorbable, but again, bioresorbable or partially resorbable patches are contemplated. Furthermore, a “patch” may comprise any of a number of different closure devices, and therefore, the term patch should not be interpreted to limit the scope of the invention to any one embodiment or configuration. For the purposes of this application, “patch”, “closure device” and the like may be used interchangeably to mean any device for closing a PFO.
That being said,
With reference now to
Referring now to
A system to apply lateral force inside the PFO is shown in
A pair of flexible spring arms attached to a catheter is one method to apply the necessary lateral force to the PFO (
Although the foregoing description is complete and accurate, it has described only a few embodiments of the invention. Various changes, additions, deletions and the like may be made to one or more embodiments of the invention without departing from the scope of the invention. Additionally, different elements of the invention could be combined to achieve any of the effects described above. Thus, the description above is provided for exemplary purposes only and should not be interpreted to limit the scope of the invention as set forth in the following claims.
This application is a continuation of U.S. application Ser. No. 10/665,974, filed Sep. 18, 2003, now U.S. Pat. No. 7,165,552, and which claimed priority to U.S. Provisional Patent Application Nos. 60/458,854, filed on Mar. 27, 2003; 60/478,035, filed on Jun. 11, 2003, and 60/490,082, filed on Jul. 24, 2003, the full disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2275167 | Bierman | Mar 1942 | A |
2580628 | Welsh | Jan 1952 | A |
2888928 | Seiger | Jun 1959 | A |
3490442 | Streu | Jan 1970 | A |
3862627 | Hans, Sr. | Jan 1975 | A |
3874388 | King et al. | Apr 1975 | A |
3906955 | Roberts | Sep 1975 | A |
4307720 | Weber, Jr. | Dec 1981 | A |
4326529 | Doss et al. | Apr 1982 | A |
4473077 | Noiles et al. | Sep 1984 | A |
4485817 | Swiggett | Dec 1984 | A |
4532924 | Auth et al. | Aug 1985 | A |
4556065 | Hoffmann | Dec 1985 | A |
4562838 | Walker | Jan 1986 | A |
4590934 | Malis et al. | May 1986 | A |
4682596 | Bales et al. | Jul 1987 | A |
4788975 | Shturman et al. | Dec 1988 | A |
4796622 | Lu et al. | Jan 1989 | A |
4798594 | Hillstead | Jan 1989 | A |
4832048 | Cohen | May 1989 | A |
4884567 | Elliott et al. | Dec 1989 | A |
4895565 | Hillstead | Jan 1990 | A |
4911159 | Johnson et al. | Mar 1990 | A |
4919129 | Weber, Jr. et al. | Apr 1990 | A |
4929246 | Sinofsky | May 1990 | A |
4976711 | Parins et al. | Dec 1990 | A |
4986889 | Charamathieu et al. | Jan 1991 | A |
5041095 | Littrell | Aug 1991 | A |
5042707 | Taheri | Aug 1991 | A |
5055100 | Olsen | Oct 1991 | A |
5056517 | Fenici | Oct 1991 | A |
5057107 | Parins et al. | Oct 1991 | A |
5071417 | Sinofsky | Dec 1991 | A |
5071418 | Rosenbaum | Dec 1991 | A |
5078717 | Parins et al. | Jan 1992 | A |
5099827 | Melzer et al. | Mar 1992 | A |
RE33925 | Bales et al. | May 1992 | E |
5125928 | Parins et al. | Jun 1992 | A |
5156608 | Troidl et al. | Oct 1992 | A |
5156613 | Sawyer | Oct 1992 | A |
5171311 | Rydell | Dec 1992 | A |
5195959 | Smith | Mar 1993 | A |
5196007 | Ellman et al. | Mar 1993 | A |
5197963 | Parins | Mar 1993 | A |
5207670 | Sinofsky | May 1993 | A |
5209756 | Seedhom et al. | May 1993 | A |
5290278 | Anderson | Mar 1994 | A |
5292362 | Bass et al. | Mar 1994 | A |
5295955 | Rosen et al. | Mar 1994 | A |
5300065 | Anderson | Apr 1994 | A |
5300068 | Rosar et al. | Apr 1994 | A |
5336221 | Anderson | Aug 1994 | A |
5336252 | Cohen | Aug 1994 | A |
5342413 | Hirschberg et al. | Aug 1994 | A |
5345935 | Hirsch | Sep 1994 | A |
5370675 | Edwards et al. | Dec 1994 | A |
5380304 | Parker | Jan 1995 | A |
5383917 | Desai et al. | Jan 1995 | A |
5405322 | Lennox et al. | Apr 1995 | A |
5409479 | Dew et al. | Apr 1995 | A |
5409481 | Poppas et al. | Apr 1995 | A |
5500012 | Brucker et al. | Mar 1996 | A |
5505730 | Edwards | Apr 1996 | A |
5507744 | Tay et al. | Apr 1996 | A |
5540677 | Sinofsky | Jul 1996 | A |
5569239 | Sinofsky | Oct 1996 | A |
5571088 | Lennox et al. | Nov 1996 | A |
5571216 | Anderson | Nov 1996 | A |
5575772 | Lennox | Nov 1996 | A |
5584872 | LaFontaine et al. | Dec 1996 | A |
5611794 | Sauer et al. | Mar 1997 | A |
5620481 | Desai et al. | Apr 1997 | A |
5626607 | Malecki et al. | May 1997 | A |
5662643 | Kung et al. | Sep 1997 | A |
5665109 | Yoon | Sep 1997 | A |
5669934 | Sawyer | Sep 1997 | A |
5693078 | Desai et al. | Dec 1997 | A |
5709224 | Behl et al. | Jan 1998 | A |
5713891 | Poppas | Feb 1998 | A |
5725522 | Sinofsky | Mar 1998 | A |
5730742 | Wojciechowicz | Mar 1998 | A |
5749895 | Sawyer et al. | May 1998 | A |
5782899 | Imran | Jul 1998 | A |
5810810 | Tay et al. | Sep 1998 | A |
5814065 | Diaz | Sep 1998 | A |
5824015 | Sawyer | Oct 1998 | A |
5827265 | Glinsky et al. | Oct 1998 | A |
5846196 | Siekmeyer et al. | Dec 1998 | A |
5855312 | Toledano | Jan 1999 | A |
5871443 | Edwards et al. | Feb 1999 | A |
5919200 | Stambaugh et al. | Jul 1999 | A |
5925078 | Anderson | Jul 1999 | A |
5928266 | Kontos | Jul 1999 | A |
5931165 | Reich et al. | Aug 1999 | A |
5944738 | Amplatz et al. | Aug 1999 | A |
5972023 | Tanner et al. | Oct 1999 | A |
5972024 | Northrup, III et al. | Oct 1999 | A |
6004316 | Laufer | Dec 1999 | A |
6012457 | Lesh | Jan 2000 | A |
6036699 | Andreas et al. | Mar 2000 | A |
6050994 | Sherman | Apr 2000 | A |
6056760 | Koike et al. | May 2000 | A |
6063081 | Mulier | May 2000 | A |
6063085 | Tay et al. | May 2000 | A |
6083223 | Baker | Jul 2000 | A |
6086570 | Aboul-Hosn et al. | Jul 2000 | A |
6086586 | Hooven | Jul 2000 | A |
6087552 | Gregory | Jul 2000 | A |
6092528 | Edwards | Jul 2000 | A |
6132429 | Baker | Oct 2000 | A |
6149660 | Laufer et al. | Nov 2000 | A |
6156032 | Lennox | Dec 2000 | A |
6168594 | Lafontaine | Jan 2001 | B1 |
6211335 | Owen et al. | Apr 2001 | B1 |
6221068 | Fried et al. | Apr 2001 | B1 |
6236875 | Bucholz | May 2001 | B1 |
6257241 | Wampler | Jul 2001 | B1 |
6290674 | Roue et al. | Sep 2001 | B1 |
6302898 | Edwards et al. | Oct 2001 | B1 |
6323037 | Lauto et al. | Nov 2001 | B1 |
6325798 | Edwards et al. | Dec 2001 | B1 |
6355030 | Aldrich et al. | Mar 2002 | B1 |
6358246 | Behl et al. | Mar 2002 | B1 |
6375668 | Gifford et al. | Apr 2002 | B1 |
6383198 | Hamilton | May 2002 | B1 |
6391049 | McNally et al. | May 2002 | B1 |
6398779 | Buysse et al. | Jun 2002 | B1 |
6398782 | Pecor et al. | Jun 2002 | B1 |
6401720 | Stevens et al. | Jun 2002 | B1 |
6409720 | Hissong et al. | Jun 2002 | B1 |
6413254 | Hissong et al. | Jul 2002 | B1 |
6419669 | Frazier et al. | Jul 2002 | B1 |
6423057 | He et al. | Jul 2002 | B1 |
6436088 | Frazier et al. | Aug 2002 | B2 |
6451013 | Bays et al. | Sep 2002 | B1 |
6456865 | Samson | Sep 2002 | B2 |
6458100 | Roue et al. | Oct 2002 | B2 |
6475213 | Whayne et al. | Nov 2002 | B1 |
6482224 | Michler et al. | Nov 2002 | B1 |
6514250 | Jahns et al. | Feb 2003 | B1 |
6558314 | Adelman et al. | May 2003 | B1 |
6558382 | Jahns et al. | May 2003 | B2 |
6562037 | Paton et al. | May 2003 | B2 |
6583117 | Owen et al. | Jun 2003 | B2 |
6584360 | Francischelli et al. | Jun 2003 | B2 |
6589237 | Woloszko | Jul 2003 | B2 |
6606523 | Jenkins | Aug 2003 | B1 |
6641604 | Adelman | Nov 2003 | B1 |
6645202 | Pless et al. | Nov 2003 | B1 |
6645225 | Atkinson | Nov 2003 | B1 |
6648897 | Hamilton | Nov 2003 | B2 |
6652518 | Wellman | Nov 2003 | B2 |
6669693 | Friedman | Dec 2003 | B2 |
6676685 | Pedros et al. | Jan 2004 | B2 |
6682546 | Amplatz | Jan 2004 | B2 |
6692450 | Coleman | Feb 2004 | B1 |
6702835 | Ginn | Mar 2004 | B2 |
6712804 | Roue et al. | Mar 2004 | B2 |
6712836 | Berg et al. | Mar 2004 | B1 |
6716211 | Mulier et al. | Apr 2004 | B2 |
6726718 | Carlyle et al. | Apr 2004 | B1 |
6730108 | Van Tassel et al. | May 2004 | B2 |
6733498 | Paton et al. | May 2004 | B2 |
6736810 | Hoey et al. | May 2004 | B2 |
6755790 | Stewart et al. | Jun 2004 | B2 |
6770072 | Truckai et al. | Aug 2004 | B1 |
6776784 | Ginn | Aug 2004 | B2 |
6790218 | Jayaraman | Sep 2004 | B2 |
6846319 | Ginn et al. | Jan 2005 | B2 |
6887238 | Jahns | May 2005 | B2 |
6893431 | Naimark et al. | May 2005 | B2 |
6893442 | Whayne | May 2005 | B2 |
6918908 | Bonner et al. | Jul 2005 | B2 |
6926716 | Baker et al. | Aug 2005 | B2 |
6929644 | Truckai et al. | Aug 2005 | B2 |
6932812 | Crowley et al. | Aug 2005 | B2 |
6939348 | Malecki et al. | Sep 2005 | B2 |
6946134 | Rosen et al. | Sep 2005 | B1 |
6960205 | Jahns et al. | Nov 2005 | B2 |
7025756 | Frazier et al. | Apr 2006 | B2 |
7094215 | Davison et al. | Aug 2006 | B2 |
7165552 | Deem et al. | Jan 2007 | B2 |
7186251 | Malecki et al. | Mar 2007 | B2 |
7238182 | Swoyer et al. | Jul 2007 | B2 |
7293562 | Malecki et al. | Nov 2007 | B2 |
7311701 | Deem et al. | Dec 2007 | B2 |
20010020166 | Daly et al. | Sep 2001 | A1 |
20010037129 | Thill | Nov 2001 | A1 |
20010051803 | Desai et al. | Dec 2001 | A1 |
20020128672 | Dinger et al. | Sep 2002 | A1 |
20020143322 | Haghighi | Oct 2002 | A1 |
20020156472 | Lee et al. | Oct 2002 | A1 |
20020183787 | Wahr et al. | Dec 2002 | A1 |
20030028189 | Woloszko et al. | Feb 2003 | A1 |
20030045893 | Ginn | Mar 2003 | A1 |
20030045901 | Opolski | Mar 2003 | A1 |
20030050665 | Ginn | Mar 2003 | A1 |
20030065364 | Wellman et al. | Apr 2003 | A1 |
20030069570 | Witzel | Apr 2003 | A1 |
20030078578 | Truckai et al. | Apr 2003 | A1 |
20030092988 | Makin | May 2003 | A1 |
20030093071 | Hauck et al. | May 2003 | A1 |
20030120268 | Bertolero et al. | Jun 2003 | A1 |
20030144652 | Baker et al. | Jul 2003 | A1 |
20030144694 | Chanduszko et al. | Jul 2003 | A1 |
20030158551 | Paton et al. | Aug 2003 | A1 |
20030199868 | Desai et al. | Oct 2003 | A1 |
20030208232 | Blaeser et al. | Nov 2003 | A1 |
20030225421 | Peavey et al. | Dec 2003 | A1 |
20030233091 | Whayne et al. | Dec 2003 | A1 |
20040059347 | Hamilton | Mar 2004 | A1 |
20040092973 | Chanduszko et al. | May 2004 | A1 |
20040098031 | Van der Burg et al. | May 2004 | A1 |
20040098042 | Devellian et al. | May 2004 | A1 |
20040102721 | Mckinley | May 2004 | A1 |
20040143292 | Marino et al. | Jul 2004 | A1 |
20040153057 | Davison | Aug 2004 | A1 |
20040153098 | Chin et al. | Aug 2004 | A1 |
20040176799 | Chanduszko et al. | Sep 2004 | A1 |
20040220596 | Frazier et al. | Nov 2004 | A1 |
20040243122 | Auth et al. | Dec 2004 | A1 |
20040249398 | Ginn | Dec 2004 | A1 |
20050021059 | Cole et al. | Jan 2005 | A1 |
20050033288 | Auth et al. | Feb 2005 | A1 |
20050033327 | Gainor et al. | Feb 2005 | A1 |
20050055050 | Alfaro | Mar 2005 | A1 |
20050065506 | Phan | Mar 2005 | A1 |
20050065509 | Coldwell et al. | Mar 2005 | A1 |
20050070923 | Mcintosh | Mar 2005 | A1 |
20050075665 | Brenzel et al. | Apr 2005 | A1 |
20050119675 | Adams et al. | Jun 2005 | A1 |
20050125032 | Whisenant et al. | Jun 2005 | A1 |
20050171526 | Rioux et al. | Aug 2005 | A1 |
20050187568 | Klenk et al. | Aug 2005 | A1 |
20050192626 | Widomski et al. | Sep 2005 | A1 |
20050192627 | Whisenant et al. | Sep 2005 | A1 |
20050192654 | Chanduszko et al. | Sep 2005 | A1 |
20050209636 | Widomski et al. | Sep 2005 | A1 |
20050216054 | Widomski et al. | Sep 2005 | A1 |
20050251201 | Roue et al. | Nov 2005 | A1 |
20050256532 | Nayak et al. | Nov 2005 | A1 |
20050267495 | Ginn et al. | Dec 2005 | A1 |
20050267525 | Chanduszko | Dec 2005 | A1 |
20060009762 | Whayne | Jan 2006 | A1 |
20060027241 | Malecki et al. | Feb 2006 | A1 |
20060036284 | Blaeser et al. | Feb 2006 | A1 |
20060052821 | Abbott et al. | Mar 2006 | A1 |
20060069408 | Kato | Mar 2006 | A1 |
20060079870 | Barry | Apr 2006 | A1 |
20060079887 | Buysse et al. | Apr 2006 | A1 |
20060173510 | Besio et al. | Aug 2006 | A1 |
20060241581 | Malecki et al. | Oct 2006 | A1 |
20060241582 | Malecki et al. | Oct 2006 | A1 |
20060241583 | Malecki et al. | Oct 2006 | A1 |
20060241584 | Malecki et al. | Oct 2006 | A1 |
20060247612 | Malecki et al. | Nov 2006 | A1 |
20060276779 | Malecki et al. | Dec 2006 | A1 |
20070010806 | Malecki et al. | Jan 2007 | A1 |
20070078485 | Deem et al. | Apr 2007 | A1 |
20070088355 | Auth | Apr 2007 | A9 |
20070123851 | Alejandro et al. | May 2007 | A1 |
20070123852 | Deem et al. | May 2007 | A1 |
20070299434 | Malecki et al. | Dec 2007 | A1 |
20080004658 | Malecki et al. | Jan 2008 | A1 |
20080140113 | Taimisto et al. | Jun 2008 | A1 |
Number | Date | Country |
---|---|---|
135840 | Apr 1985 | EP |
199694 | Oct 1986 | EP |
0265532 | May 1988 | EP |
0375556 | Jun 1990 | EP |
0428812 | May 1991 | EP |
0947165 | Oct 1999 | EP |
1260919 | Jan 1972 | GB |
1550676 | Aug 1979 | GB |
2 359 024 | Aug 2001 | GB |
WO 8500018 | Jan 1985 | WO |
WO 8704081 | Jul 1987 | WO |
WO 9004352 | May 1990 | WO |
WO 9115996 | Oct 1991 | WO |
WO 9204864 | Apr 1992 | WO |
WO 9305705 | Apr 1993 | WO |
WO 9315791 | Aug 1993 | WO |
WO 9400178 | Jan 1994 | WO |
WO 9807375 | Feb 1998 | WO |
WO 9818393 | May 1998 | WO |
WO 9918862 | Apr 1999 | WO |
WO 9918864 | Apr 1999 | WO |
WO 9918870 | Apr 1999 | WO |
WO 9918870 | Apr 1999 | WO |
WO 9918871 | Apr 1999 | WO |
WO 9918871 | Apr 1999 | WO |
WO 9923959 | May 1999 | WO |
WO 9949788 | Oct 1999 | WO |
WO 0007506 | Feb 2000 | WO |
WO 0009027 | Feb 2000 | WO |
WO 0060995 | Oct 2000 | WO |
WO 0113810 | Mar 2001 | WO |
WO 0178596 | Oct 2001 | WO |
WO 0182778 | Nov 2001 | WO |
WO 03022159 | Mar 2003 | WO |
WO 03022160 | Mar 2003 | WO |
WO 03026496 | Apr 2003 | WO |
WO 03053493 | Jul 2003 | WO |
WO 03071957 | Sep 2003 | WO |
WO 03082076 | Oct 2003 | WO |
WO 03094742 | Nov 2003 | WO |
WO 2004019791 | Mar 2004 | WO |
WO 2004043266 | May 2004 | WO |
WO 2004069055 | Aug 2004 | WO |
WO 2004082532 | Sep 2004 | WO |
WO 2004086944 | Oct 2004 | WO |
WO 2004087235 | Oct 2004 | WO |
WO 2004091411 | Oct 2004 | WO |
WO 2005006990 | Jan 2005 | WO |
WO 2005027753 | Mar 2005 | WO |
WO 2005034738 | Apr 2005 | WO |
2005074814 | Aug 2005 | WO |
2005115256 | Dec 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20070078485 A1 | Apr 2007 | US |
Number | Date | Country | |
---|---|---|---|
60490082 | Jul 2003 | US | |
60478035 | Jun 2003 | US | |
60458854 | Mar 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10665974 | Sep 2003 | US |
Child | 11464746 | US |