Manned and unmanned underwater vehicles, as well as stationary underwater sensors and probes have traditionally been limited in their communications capabilities. Such communications typically required wired communications to above-water transmitters or ground stations or sonic modems that need significant power supplies for operation. Undersea research sensors and probes, in particular, suffer from limited power sources and physical inaccessibility. Such devices commonly forgo communication of data in favor of storing data for subsequent physical retrieval. Smaller submersible vehicles, either manned or unmanned, also frequently lack the power supplies necessary to communicate wirelessly.
More recently a method of communicating wirelessly underwater has been developed using inductive or magnetic signaling. However, the inductive communication method requires that a transmitter and receiver nearly touch one another for successful communication to occur (i.e., within approximately 2 cm). The navigational requirements needed to bring a transmitter and receiver that close together, in many cases limits the utility of these devices.
The methods and apparatus described herein provide low-power, wireless, underwater communication capabilities without requiring precision underwater navigation. In one aspect, the methods and apparatus described relate to a transmitter which wirelessly transmits data underwater using light-emitting diodes and a receiver which wirelessly receives data emitted from light-emitting diodes using a photodiode. In one embodiment the light-emitting diodes are blue and in another embodiment the light-emitting diodes are red. The receiving photodiode can, for example, be a silicon photodiode. In yet other embodiments the transmitter transmits data to the receiver according to a standard protocol, for example, the IRDA protocol. In one embodiment the transmitter can communicate with receivers as far as 5 to 10 meters away from the transmitter.
In another aspect, the invention relates to methods of underwater communication involving the transmission of data using light-emitting diodes and the receiving of data using photodiodes at distances of around 10 meters.
More particularly, the systems and methods described herein include, a communication system, comprising an optical transducer having an optical transmitter with a single or array of light emitting diodes for generating light within a bandwidth of approximately 400-700 nm, an optical receiver with a single or array of photo detector elements of the type capable of detecting light within the communication bandwidth, and a face plate with a lens disposed in front of the array of receiving photo diodes, a watertight housing sealed to the optical transducer and defining an interior chamber, and a circuit in electrical communication with the optical transmitter and the optical receiver and a communication controller for driving the array of light emitting diodes according to the IRDA communication protocol. The device may optionally include a power cell disposed within the watertight housing and electrically coupled to the circuit and to the optical-transducer to provide power. The power cell may be a battery or other stored energy source. The watertight housing may be dimensionally adapted to fit on a manipulator of the type used with an underwater vehicle or in an underwater environment, and have a clamp coupled to the watertight housing for securing the watertight housing to a moveable or stationary member. The device can a circuit with a driver for driving the array of multiple light emitting diodes to transmit data at a rate of between 9600 BAUD (Bits Per Second) to 4 MBAUD.
The communication system can have a lens that comprises a light collecting lens disposed in front of the array of light emitting diodes for collecting light to direct light onto receiving photodiodes. Further there may be a telemetry interface for exchanging data to a location external to the watertight housing, as well as an acoustic sound generator coupled to the photodetector so that a user guiding the light beam between the transmitter and the receiver can receive a feedback message to keep the light beam hitting the receiver and maintain communication. Optionally to save on power, the device may include a low power sleep mode allowing the communication module to turn itself off by timed prearrangement or by lack of incoming signals. Further it may have a wake-up processor for causing the device to enter into an active state in response to being interrogated by a light beam from the transmitter or by incoming signals to the detector or by prearranged timing.
The device can be placed with a sensor, and a plurality of sensing transducers can form a network having multiple distributed sensing transducers with a data communication network interconnected among the plurality of optical communication devices. A data hub may be provided to allow for data communication among the plurality of devices.
The foregoing and other objects and advantages of the invention will be appreciated more fully from the following further description thereof, with reference to the accompanying drawings wherein;
To provide an overall understanding of the invention, certain illustrative embodiments will now be described, including a system that provides for undersea communication by use of optically generated communication signals. However, it will be understood by one of ordinary skill in the art that the systems and methods described herein may be adapted and modified as is appropriate for the application being addressed and that the systems and methods described herein may be employed in other suitable applications, and that such other additions and modifications will not depart from the scope hereof.
In general, an underwater communications device according to one aspect of the methods and apparatus described include at least a transmitter and a signal processor or a receiver and a signal processor. For two way communication, the communications device would utilize both a transmitter and a receiver or a combined transceiver.
The sensor 10 depicted in
In one embodiment, the emitters 20 operate in cooperation with the other elements depicted in
In one embodiment, the emitters may comprise an array of light-emitting diodes 20 and may include between twenty light-emitting diodes up to several hundred light-emitting diodes. In one embodiment, a transducer 12 equipped with 320 red light-emitting diodes successfully communicated data across about five meters of water. A transducer 12 including 300 light-emitting diodes requires on the order of a hundred milliwatts of power for operation. As such, a transducer 12 may be powered for extended periods of time using a standard 9-volt battery as a power source 22, and as depicted in
The communication device in sensor 10 may include a receiver according to an illustrative embodiment that includes one or more silicon-photodiodes, though other photodiodes or forms of light detectors can be employed. In the embodiment depicted in
The communications device of the sensor 10 may also include a signal processor 24 and a circuit 24 for encoding and decoding communication signals generated and received by the optical transducer 12. To this end,
In one embodiment, the communication device on the sensor 10 transfers data optically according to the infra red data association (IrDA) protocol. IrDA is a standard defined by the IrDA consortium. It specifies a way to wirelessly transfer data via infrared radiation. The IrDA specifications include standards for both the physical devices and the protocols they use to communicate with each other. IrDA devices may communicate using infrared LED's. Wavelengths may be typically around 875 nm +− production tolerance, which is typically around 30 nm. However, the wavelength employed by the systems and methods described herein may vary given that the ambient environment of the devices described herein is typically water, and often seawater. Seawater is a complex mix of materials including organic particulate matter, minerals and biological compounds and beings. To penetrate seawater for any meaningful distance may require wavelengths other than the wavelengths proposed by the IrDA. The systems described herein may use a chip set suitable for driving emitters 20 and detectors 18 according to the IrDA protocol Hewlett Packard manufactures a stand-alone IrDA transmitters, receivers, as well as transceivers. Speeds up to 115 kbps (IrDA 1.0) are available with the HSDL-1000 transceiver. A faster version of the transceiver is the HSDL-1100. It supports FIR speeds (up to 4 Mbit/s). Other IrDA components that may be used by the systems described herein for the encoder/decoder circuit 24 and detectors and or emitters may include the IR LEDs HSDL-4230 and HSDL-4220, standalone PIN receivers as well as IrDA modulation encoder/decoders HSDL-7000. The circuit 24 may include a serial port transmit/receive, an on board clock and optionally a sleep mode. Other manufacturers of IrDA components include Texas Instruments and National Semiconductors.
Examples of wavelengths and associated penetration for the purpose of communication are set out in the graph presented in
The communications device of
For operation at increasing depths the entire device can be enclosed within a pressure seal with a optical window allowing for light from the light-emitting diodes to either be transmitted out of the device or to be received at the transmitter.
For communication devices operating according to one embodiment that are located on manned or unmanned vehicles, which are in further communication with human operators, the receiver can also include a squealer device allowing the user to tune the communication between a transmitter and the user's receiver. The squealer may be an acoustic sound generator coupled to the photodetector so that a person in a submarine, such as the one depicted in
In the embodiment depicted in
The description provided above is intended for illustrative and descriptive purposes and is not intended to limit the scope of the invention to the embodiments described herein. Those skilled in the art will know or be able to ascertain using no more than routine experimentation, many equivalents to the embodiments and practices described herein.
Accordingly, it will be understood that the invention is not to be limited to the embodiments disclosed herein, but is to be understood from the following claims, which are to be interpreted as broadly as allowed under the law. For example, the systems described herein may include a network hub that allows a plurality of devices to be interconnected through a data network. One example of such a system is depicted in
This application claims priority to U.S. Ser. No. 60/559,330 filed Apr. 2, 2004, entitled Methods and Apparatus for Underwater Wireless Optical Communication, and naming Paul Fucile, Maurice Tivey, Enid Sichel, Jack Zhang as inventors, the contents of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60559330 | Apr 2004 | US |