This disclosure generally relates weapons and, more particularly to methods and apparatus for use in a locked machine gun.
A locked machine gun includes locking parts on a breech mechanism and an abutment. These locking parts engage one another before the machine gun fires a shot. As will be readily appreciated, the locking parts are activated by the closing breech mechanism and, therefore, are abruptly subjected to stress. Additionally, the locking parts experience significant wear of tear because a machine gun may fire an extremely high number of rounds (at least some 105 rounds) during its life.
To account for this wear and tear, a conventional machine gun, such as the MG 42, uses an abutment that is coupled to a detachable barrel. When the barrel is worn out, it is scrapped along with the abutment. The movable locking parts that work with the abutment are associated with and coupled to the breech mechanism. Accordingly, these movable parts can be changed together with the breech mechanism and then, if necessary, be individually replaced in the armory.
Thus, the MG 42 has an advantage in that it is possible to change those wearing parts that are subjected to the most stress. On the other hand, a disadvantage is that the abutments are expensive to manufacture and they have to be changed in cases when only the barrel is worn out. Accordingly, there may be many instances in which the abutment is not worn out, but it must be replaced because the barrel of which the abutment is part is worn out. Further, abutment wear is not typically even.
The MG 42 is a recoil-operated gun with a removable barrel. With gas-operated machine guns, a gas piston facilitates the unlocking and loading motions, and the barrel remains rigid during the firing of a round. For this reason, the abutment in gas-operated machine guns is usually designed to be rigid in the casing of the weapon. Consequently, when replacing a worn abutment, the casing parts are also replaced.
Recoil-operated machine guns are also advantageous because it is easy to replace parts during use. If, for example, during the use of the weapon a quartz pebble falls into the abutment during the firing of a round, it is possible that the entire lock will no longer function. In the case of the recoil-operated MG 42, it is sufficient to change the barrel and if necessary the breech in order to make the MG fit for use again. The marksman can perform these activities on site in less than a minute. On the other hand, if a similar quartz pebble falls into the breech of a gas-operated MG, the weapon casing must be completely replaced. This cannot be performed in the field because the marksman of course does not carry a second weapons casing with him.
It is possible to assign the abutment to the barrel with the gas-operated MG, but the above mentioned disadvantages would still exist.
Throughout this specification, all directional references, e.g., “front,” “rear,” “up” etc. are with respect to the machine gun in a horizontal firing position, where the direction of fire is “to the front.”
Although not shown in the drawings, the first part 36 includes openings into which a bolt head 44 (described below) can penetrate with two locking pegs 46, 48. After the bolt head 44 is inserted through the openings in the first part 36, the bolt head 44 is rotated to cause the locking pegs 46, 48 to engage the casing 16 to prevent rearward movement of the bolt head with respect to the casing 16 during firing. In particular, the locking peg 48 may engage the shoulder 34.
The barrel 12 includes an extension 50 that protrudes from the rear of the barrel 12. Accordingly, the second part 38 of the abutment 30 includes the extension 50 having a radial cam 52. As described in detail below, the radial cam 52 cooperates with the bolt head 44 to facilitate locking of the bolt head 44 with the casing 16.
As shown in
To enable rotation, the bolt head 44 includes a sliding block 64, which extends past the center line 28 into the bolt head 44. The sliding block 64 rides within a crank 66. The bolt head 44 includes a radial bore hole 66 for the purpose of holding said sliding block 64 in its position. The sliding block 64 includes a bore hole 76 to accommodate the firing pin. The bolt head 44 also includes an axial bore hole 70 that is penetrated by the firing pin that lies along the center line 28. For removal of the sliding block 64 the firing pin must first be pulled out to the rear along the center line 28, and then the sliding block 64 must be radially extracted from the bolt head 44 and from the crank 66.
The contour of the crank 66 has, an extended z-shaped figure, with a rear end section, which extends parallel to the direction of the center line 28, and with a middle section extending between the rear end section and a front section. These sections have upper and lower edges, which run generally parallel to one another. The upper and lower edges of the front and middle sections are shaped differently from one another. As shown in the drawings, the lower edge is a straight line in the front and middle sections, which connects to another straight line forming the lower edge of the rear section. The upper edge of the rear section extends parallel to the center line 28. The upper edge of the middle section includes a transitional surface 68, which extends at a right angle to the center line 28. In other words, the transitional surface is substantially vertically oriented.
Complementary to the transitional surface 68, the sliding block 64 includes a flat surface 72 at its rear side. This flat surface 72 extends at a right angle to the direction of the center line 28. When the flat surface 72 rests on the transitional surface 68, as in the case of an open breech mechanism, as shown in
The sliding block 64 may be configured to have a second surface 74 that is parallel to and opposite the first surface 72. If surface 72 is worn out, the sliding block 64, as described in connection with
Certain aspects of the operation of the light weight machine gun 10 are now described in conjunction with
During the shot the bolt head carrier 62, propelled by a gas piston, recoils from it position shown in
After the light weight machine gun 10 has been fired and the barrel 12 is hot, the hot barrel 12 is replaced with a cold barrel 12. In the barrel replacement process, the extension 50 of the second part 38 of the abutment 30, and hence the radial cam 52, are also replaced. If the radial cam 50 of the hot barrel 12 is damaged or soiled, the barrel 12 can be scrapped or the radial cam 50 can be cleaned after it has cooled off.
If easily replaceable wearing parts are provided, they can be matched in hardness and material quality to the opposite surfaces in such a way that the opposite surfaces are not worn out or are worn out significantly less than the wearing surfaces.
One of ordinary skill in the art would appreciate the improvement the illustrated example makes over the prior art. In particular, the exchangeable barrel should be as economical as possible in light of all the causes of wear and tear. Also replacing the breech mechanism should be avoided. The prior art (e.g., EP-803 698) provides for a separation of the abutment, which simplifies the manufacture of the weapon. This is especially important in the usage of modern, small-caliber cartridges where the weapon components are considerably reduced in size and require greater finishing accuracy. When separating the abutment it is no longer necessary to use thin end mills to go through openings in the receptacle or in the casing to reach the reference surfaces of the abutment that are to be milled. Rather the reference surfaces are easily accessible, can be easily milled and polished, and have their measurements checked. Also, verification of the measurements is important because it makes the work of the weapons mechanic in the unit easier and more precise.
As discussed above, the front part of the abutment, which is associated with the barrel, bears great loads when the breech mechanism closes under the dynamic effect of the breech closing spring. Additionally, with machine guns, the breech mechanism is open in the ready-to-fire state until the trigger is pressed. Once the trigger is pressed, the breech mechanism closes, takes a cartridge from the magazine or belt, puts the cartridge into the cartridge chamber and fires it. As a result of the breech mechanism remaining in the rear and open position as long as there is a cartridge in the weapon and the weapon is not currently being fired, the machine gun is very easily and likely to become dirty. This dirt is pushed forward by the breech mechanism and can, under unfortunate circumstances reach the guide curve of the abutment, where it causes increased damage and wear.
One of ordinary skill in the art would appreciate that the illustrated example improves over the prior art with the use of a curved or cammed section 52 in the second part 38 of the abutment 30, which controls the engagement of the breech mechanism in the abutment 30 when said breech mechanism closes. The greatest surface pressure takes place on this curved section 52. Also, in accordance with the illustrated example, this curved section 52 is located on the barrel 12 and is distant from its rear side. If wear and tear takes place there, then the marksman can easily recognize scoring in the curved section 50 when changing the barrel 12 and then have the curved section 50 scrapped with the associated barrel 12.
One of ordinary skill in the art would appreciate that the illustrated example can be used with breech mechanisms that have locking rollers. However, the illustrated example is particularly useful with a breech mechanism which has a straight-line movable bolt head carrier 62, a rotating bolt head 44 located in the bolt head carrier 62 and a device for rotating the bolt head 44. In such an arrangement, the bolt head 44 engages the first part 36 of the abutment 30 during rotation, and the bolt head 44 can be rotated by running into the second part 38 of the abutment 30 forming the curved section 50. The abutment 30 of breech mechanisms with pivotally arranged bolt heads is difficult to manufacture, unless it is separated as described above. However, there is another advantage: the abutment 30 is relieved of all the work of rotating the bolt head 44 because the radial cam 52, which forms the second part 38 of the abutment 30 and is associated with the barrel 12, assumes that duty.
In the shown example of a machine gun with a rotating breech mechanism, a sliding block 64 is located laterally on the bolt head 44, which engages in a crank 66 on the bolt head carrier 62. As the breech mechanism closes and the bolt head 44 locks, the sliding block 64 lies on a transverse plane of the crank 66, which extends at a right angle to the direction of motion of the breech mechanism 60. Thus, the locking of the bolt head 44 in the abutment 30 is triggered exclusively by the second part 38 of the abutment 30 that has the curved section 52. This greatly reduces wear on the breech mechanism 60, because the crank 66 no longer has to provide for the locking. While it is difficult to close the breech mechanism noiselessly, with machine guns this is not a concern since the round is triggered with the closing of the breech mechanism.
One of ordinary skill in the art would appreciate that the illustrated example is improved by the fact that the sliding block 64 with a guide surface lies at random on the transverse plane of the crank 66. This prevents concentrated load or strip load from occurring in the moment of the greatest load on the sliding block 64 and on the guide surface of the crank 66.
It is further appreciable to one of ordinary skill in the art that the sliding block 64 can be attached in any way in the breech mechanism 64. According to one example, it is inserted laterally into the bolt head 44 and then held by the firing pin. Accordingly, the firing pin facilitates the convenient and rapid interchangeability of the sliding block 64, when it is worn out.
One of ordinary skill in the art would recognize the ease with which the surface 72 of the sliding block 64 can be replaced. The sliding block 64 has a second surface 74 opposite the surface 72. When the surface 72 needs to be replaced, the firing pin is removed and the sliding block 64 is extracted from the bolt head 44. The sliding block 64 is then rotated 180° and reinserted into the bolt head 44 so that the surface 74 is now in the position once occupied by the surface 72. Basically, a sliding block 64 is created which in the case of wear and tear is easily removed, turned over and used again, namely on the part of its surface that had been unused up to then.
Although certain example methods and apparatus have been described herein, this patent covers all methods, apparatus and articles of manufacture fairly falling within the scope of the appended claims either literally or under the doctrine of equivalents.
Number | Date | Country | Kind |
---|---|---|---|
102 29 846 | Jul 2002 | DE | national |
This patent is a continuation-in-part of International Patent Application Serial No. PCT/EP2003/005927, filed Jun. 5, 2003, the disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1360873 | Bjorgum | Nov 1920 | A |
1648833 | Vincon | Nov 1927 | A |
1744162 | Hatcher | Jan 1930 | A |
1925776 | Scotti et al. | Sep 1933 | A |
2110165 | Moore | Mar 1938 | A |
2131716 | Browning | Sep 1938 | A |
2625766 | Simpson | Jan 1953 | A |
2789478 | McColl | Apr 1957 | A |
2941449 | Reed | Jun 1960 | A |
3645165 | Wohlford | Feb 1972 | A |
3772959 | Tassie | Nov 1973 | A |
3969983 | Zellweger et al. | Jul 1976 | A |
4655118 | Bruderer et al. | Apr 1987 | A |
4920855 | Waters | May 1990 | A |
5920028 | Guhring et al. | Jul 1999 | A |
6101919 | Murello | Aug 2000 | A |
6708437 | Murello | Mar 2004 | B2 |
Number | Date | Country |
---|---|---|
130278 | Dec 1900 | DE |
299713 | Dec 1913 | DE |
0803698 | Oct 1997 | EP |
Number | Date | Country | |
---|---|---|---|
20100005956 A1 | Jan 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP03/05927 | Jun 2003 | US |
Child | 11027934 | US |