This aspect relates to communications system and, more particularly, to methods and apparatus for supporting quality of service differentiation between traffic flows in a communication system
This aspect relates to communications system and, more particularly, to methods and apparatus for supporting quality of service differentiation between traffic flows in a communication system
The
The intermediate network node 110 in the network 101 provides interconnectivity to network nodes that are external from the perspective of the network 101 via network link 111. Network link 111 is connected to another intermediate network node 112, which provides further connectivity to a plurality of access points 140, 140′, 140″ via network links 141, 141′, 141″, respectively.
Each access point 140, 140′, 140″ is depicted as providing connectivity to a plurality of N access terminals (144, 146), (144′, 146′), (144″, 146″), respectively, via corresponding access links (145, 147), (145′, 147′), (145″, 147″), respectively. In the exemplary communication system 100, each access point 140, 140′, 140″ is depicted as using wireless technology, e.g., wireless access links, to provide access. A radio coverage area, e.g., communications cell, 148, 148′, 148″ of each access point 140, 140′, 140″, respectively, is illustrated as a circle surrounding the corresponding access point.
The exemplary communication system 100 is subsequently used as a basis for the description of various embodiments. Alternative embodiments of the aspect include various network topologies, where the number and type of nodes (including network nodes, access points, access terminals, as well as various control, support, and server nodes), the number and type of links, and the interconnectivity between various nodes may differ from that of the exemplary communication system 100 depicted in
The wireless communication interface module 230 provides a mechanism by which the internal components of the access terminal 200 can send and receive signals to/from external devices and network nodes, e.g., access points. The wireless communication interface module 230 includes, e.g., a receiver module 232 with a corresponding receiving antenna 236 and a transmitter module 234 with a corresponding transmitting antenna 238 used for coupling the access terminal 200 to other network nodes, e.g., via wireless communications channels.
The exemplary access terminal 200 also includes a user input device 242, e.g., keypad, and a user output device 244, e.g., display, which are coupled to bus 206 via the user input/output interface 240. Thus, user input/output devices 242, 244 can exchange information, signals and data with other components of the access terminal 200 via user input/output interface 240 and bus 206. The user input/output interface 240 and associated devices 242, 244 provide a mechanism by which a user can operate the access terminal 200 to accomplish various tasks. In particular, the user input device 242 and user output device 244 provide the functionality that allows a user to control the access terminal 200 and applications, e.g., modules, programs, routines and/or functions, that execute in the memory 210 of the access terminal 200.
The processor 204 under control of various modules, e.g., routines, included in memory 210 controls operation of the access terminal 200 to perform various signaling and processing. The modules included in memory 210 are executed on startup or as called by other modules. Modules may exchange data, information, and signals when executed. Modules may also share data and information when executed. In the
The control signaling module 212 controls processing relating to receiving and sending signals, e.g., messages, for controlling operation and/or configuration of various aspects of the access terminal 200 including, e.g., the traffic control module 250 as well as the configuration information 251 and the various additional modules included therein 252, 253, 254, 255, 256, 257, 258, and 259. In some embodiments of the, the control signaling module 212 includes state information, e.g., parameters, status and/or other information, relating to operation of the access terminal 200 and/or one or more signaling protocols supported by the control signaling module 212. In particular, the control signaling module 212 may include configuration information, e.g., access terminal identification information and/or parameter settings, and operational information, e.g., information about current processing state, status of pending message transactions, etc.
The application module 214 controls processing and communications relating to one or more applications supported by the access terminal 200. In some embodiments of the aspect, application module 214 processing includes tasks relating to input/output of information via the user input/output interfaces 240, manipulation of information associated with an application, and/or receiving or sending signals, e.g., messages, associated with an application. In some embodiments, the application module 214 includes state information, e.g., parameters, status and/or other information, relating to operation of one or more applications supported by the application module 214. In particular, the application module 214 may include configuration information, e.g., user identification information and/or parameter settings, and operational information, e.g., information about current processing state, status of pending responses, etc. Applications supported by the application module 214 include, e.g., Voice over IP (VoIP), web browsing, streaming audio/video, instant messaging, file sharing, gaming, etc.
The database module 215 holds the information about the processes according to an aspect of some embodiments. For example, the database module 215 is used to storing the designated transmit process, an event look-up table, process registration information, a temporary holding place for envelopes, parameter valued, etc.
The traffic control module 250 controls processing relating to receiving and sending data information, e.g., messages, packets, and/or frames, via the wireless communication interface module 230. The exemplary traffic control module includes configuration information 251 as well as various additional modules 252, 253, 254, 255, 256, 257, 258, and 259 that control various aspects of quality of service for packets and/or traffic flows, e.g., associated sequences of packets. In some embodiments, the traffic control module 250 includes state information, e.g., parameters, status and/or other information, relating to operation of the access terminal 200, the traffic control module 250, and/or one or more of the various additional modules included therein 252, 253, 254, 255, 256, 257, 258, and 259. The configuration information 251, e.g., parameter settings, determines, affects and/or prescribes operation of the traffic control module 250 and/or the various additional modules included therein 252, 253, 254, 255, 256, 257, 258, and 259. The various additional modules are included, in some embodiments, to perform particular functions and operations as needed to support specific aspects of traffic control. In various embodiments, modules may be omitted and/or combined as needed depending on the functional requirements of traffic control. A description of each additional module included in the exemplary traffic control module 250 follows.
The admission control module 252 maintains information relating to resource utilization/availability and determines if sufficient resources are available to support the quality of service requirements of particular traffic flows. Resource availability information maintained by the admission control module 252 includes, e.g., packet and/or frame queuing capacity, scheduling capacity, as well as processing and memory capacity needed to support one or more traffic flows. The control signaling module 212, application module 214, and/or other modules included in the access terminal 200 may, and in some embodiments do, query the admission control module 252 to determine if sufficient resources are available to support a new or modified traffic flow, where the admission control determination is a function of the quality of service requirements of the particular traffic flow and/or the available resources. The configuration information 251 may, and in some embodiments does, include configuration information, e.g., parameters settings, that affect the operation of the admission control module 252, e.g., an admission control threshold value that indicates the percentage of resource that may be allocated prior to rejecting additional requests.
The uplink scheduler module 253 controls processing relating to transmission scheduling, e.g., order and/or timing, and allocation of transmission resources, e.g., information coding rate, transmission time slots, and/or transmission power, for data information, e.g., messages, packets, and/or frames, to be sent via the wireless interface module 230, e.g., from the access terminal 200 to an access point. The uplink scheduler module 253 may, and in some embodiments does, schedule transmissions and allocate transmission resources as a function of the quality of service requirements and/or constraints associated with one or more traffic flows. The configuration information 251 may, and in some embodiments does, include configuration information, e.g., parameters settings, that affect the operation of the uplink scheduler module 253, e.g., a priority, rate bound, latency bound, and/or sharing weight associated with one or more traffic flows. In some embodiments of the aspect, scheduling and/or resource allocation operations performed by the uplink scheduler module 253 are additionally a function of channel conditions and other factors, e.g., power budget.
The uplink PHY/MAC module 254 controls physical (PHY) layer and Media Access Control (MAC) layer processing relating to sending data information, e.g., messages, packets, and/or frames, via the wireless communication interface module 230, e.g., from the access terminal 200 to an access point. In some embodiments of the aspect, operation of the uplink PHY/MAC module 254 includes both sending and receiving control information, e.g., signals or messages, to coordinate sending of data information, e.g., messages, packets, or frames. The configuration information 251 may, and in some embodiments does, include configuration information, e.g., parameters settings, that affect the operation of the uplink PHY/MAC module 254, e.g., a frequency, band, channel, spreading code or hoping code to be used for transmissions, an identifier associated with the access terminal 200, a request dictionary prescribing use of an assignment request channel, etc.
The uplink Logical Link Control (ARQ) module 255 controls Logical Link Control (LLC) layer processing relating to sending data information, e.g., messages, packets, and/or frames, via the wireless communication interface module 230, e.g., from the access terminal 200 to an access point. The uplink LLC (ARQ) module 255 includes processing associated with Automatic Repeat Request (ARQ) capabilities, e.g., retransmission of lost packets or frames. In some embodiments of the aspect, the uplink LLC (ARQ) module 255 further includes processing relating to the addition of an LLC header and/or trailer to higher layer messages, e.g., packets, to provide additional functionality, e.g., multi-protocol multiplexing/demultiplexing via a type field or error detection via a checksum field. The uplink LLC (ARQ) module 255 may also, and in some embodiments does, perform fragmentation of higher layer messages, e.g., packets, into multiple sub-portions, e.g., frames to be sent by the uplink PHY/MAC module 254. The configuration information 251 may, and in some embodiments does, include configuration information, e.g., parameters settings, that affect the operation of the uplink LLC (ARQ) module 255, e.g., an ARQ window size, maximum number of retransmissions, a discard timer, etc.
The uplink queue management module 256 maintains information and controls processing relating to storage of data information, e.g., messages, packets, and/or frames, to be sent via the wireless communication interface module 230, e.g., from the access terminal 200 to an access point. The uplink queue management module 256 may, and in some embodiments does, control storage of data information awaiting transmission and maintain state information regarding data information awaiting transmission on a per traffic flow basis, e.g., packets associated with each traffic flow may be stored in separate queues. In some embodiments of the aspect, the uplink queue management module 256 supports a variety of queue management techniques and/or capabilities, e.g., head drop, tail drop, as well as various Active Queue Management (AQM) mechanisms such as Random Early Detection (RED). The configuration information 251 may, and in some embodiments does, include configuration information, e.g., parameters settings, that affect the operation of the uplink queue management module 256, e.g., a queue limit, drop strategy, and/or AQM thresholds associated with one or more traffic flows.
The uplink classifier module 257 controls processing relating to identification of data information, e.g., messages, packets, and/or frames, as belonging to particular traffic flows prior to being sent via the wireless communication interface module 230, e.g., from the access terminal 200 to an access point. In some embodiments of the aspect, messages, packets, and/or frames to be sent via the wireless communication interface module 230 are classified as belonging to one of a variety of traffic flows by the uplink classifier module 257 based on inspection of one or more header and/or payload fields. The results of classification by the uplink classifier module 257 may, and in some embodiments do, affect the treatment of the classified data information, e.g., messages, packets, and/or frames, by the uplink queue management module 256 and other modules 253, 254, 255, e.g., the results may determine a particular queue the message, packet, and/or frame will be associated with for storage and further affect subsequent processing such as scheduling. The configuration information 251 may, and in some embodiments does, include configuration information, e.g., parameters settings, that affect the operation of the uplink classifier module 257, e.g., a set of one or more classifier filter rules that prescribe criteria used to associate data information, e.g., messages, packets, and/or frames, as belonging to one or more traffic flows.
The downlink PHY/MAC module 258 controls PHY layer and MAC layer processing relating to receiving data information, e.g., packets and/or frames, via the wireless communication interface module 230, e.g., from an access point to the access terminal 200. In some embodiments of the aspect, operation of the downlink PHY/MAC module 258 includes both sending and receiving control information, e.g., signals or messages, to coordinate receiving of data information, e.g., messages, packets, or frames. The configuration information 251 may, and in some embodiments does, include configuration information, e.g., parameters settings, that affect the operation of the downlink PHY/MAC module 258, e.g., a frequency, band, channel, spreading code or hoping code to be used for reception, an identifier associated with the access terminal 200, etc.
The downlink LLC (ARQ) module 259 controls LLC layer processing relating to receiving data information, e.g., packets and/or frames, via the wireless communication interface module 230, e.g., from an access point to the access terminal 200. The downlink LLC (ARQ) module 259 includes processing associated with ARQ capabilities, e.g., retransmission of lost packets or frames. In some embodiments of the aspect, the downlink LLC (ARQ) module 259 further includes processing relating to an LLC header and/or trailer that encapsulates higher layer messages, e.g., packets, which provides additional functionality, e.g., multi-protocol multiplexing/demultiplexing via a type field or error detection via a checksum field. The downlink LLC (ARQ) module 259 may also, and in some embodiments does, perform reassembly of frames received by the downlink PHY/MAC module 258 into higher layer messages, e.g., packets. The configuration information 251 may, and in some embodiments does, include configuration information, e.g., parameters settings, that affect the operation of the downlink LLC (ARQ) module 259, e.g., an ARQ window size, maximum number of retransmissions, a discard timer, etc.
The external interface module 250 controls the data received and transmitted to one or more external devices (external nodes). The external interface module 250 comprises a receiver module 252 for receiving information from an external device. The receiver module interface may be an antenna, a USB slot, Ethernet slot, etc. In aspect, the receiver module may also comprise a set of RX modules (RX processor, Demodulator, decryptor, etc.) for receiving a wireless signal, data packets and messages over the air. The external interfaces module 250, further comprises an transmitter module 254. In an aspect, the transmitter module 254 comprises a set of TX modules (TX processor, Modulator, encryptor, etc.) for transmitting a wireless signal, data packets and message over the air. In an aspect, the USB slot, Ethernet slot, etc. may be used to wirelessly communicate with the external devices.
The network/internetwork interface module 320 provides a mechanism by which the internal components of the access point 300 can send and receive signals to/from external devices and network nodes. The network/internetwork interface module 320 includes, a receiver module 322 and a transmitter module 324 used for coupling the node 300 to other network nodes, e.g., via copper wires or fiber optic lines. The wireless communication interface module 330 also provides a mechanism by which the internal components of the access point 300 can send and receive signals to/from external devices and network nodes, e.g., access terminals. The wireless communication interface module 330 includes, e.g., a receiver module 332 with a corresponding receiving antenna 336 and a transmitter module 334 with a corresponding transmitting antenna 338. The wireless communication interface module 330 is used for coupling the access point 300 to other nodes, e.g., via wireless communication channels.
The processor 304 under control of various modules, e.g., routines, included in memory 310 controls operation of the access point 300 to perform various signaling and processing. The modules included in memory 310 are executed on startup or as called by other modules. Modules may exchange data, information, and signals when executed. Modules may also share data and information when executed. In the
The control signaling module 312 controls processing relating to receiving and sending signals, e.g., messages, for controlling operation and/or configuration of various aspects of the access point 300 including, e.g., the traffic control module 350 as well as the configuration information 351 and the various additional modules included therein 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, and 363. In some embodiments of the aspect, the control signaling module 312 includes state information, e.g., parameters, status and/or other information, relating to operation of the access point 300 and/or one or more signaling protocols supported by the control signaling module 312. In particular, the control signaling module 312 may include configuration information, e.g., access point identification information and/or parameter settings, and operational information, e.g., information about current processing state, status of pending message transactions, etc.
The traffic control module 350 controls processing relating to receiving and sending data information, e.g., messages, packets, and/or frames, via the wireless communication interface module 330. The exemplary traffic control module includes configuration information 351 as well as various additional modules 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, and 363 that control various aspects of quality of service for packets and/or traffic flows, e.g., associated sequences of packets. In some embodiments of the aspect, the traffic control module 350 includes state information, e.g., parameters, status and/or other information, relating to operation of the access point 300, the traffic control module 350, and/or one or more of the various additional modules included therein 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, and 363. The configuration information 351, e.g., parameter settings, determines, affects and/or prescribes operation of the traffic control module 350 and/or the various additional modules included therein 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, and 363. The various additional modules are included, in some embodiments, to perform particular functions and operations as needed to support specific aspects of traffic control. In various embodiments of the aspect, modules may be omitted and/or combined as needed depending on the functional requirements of traffic control. A description of each additional module included in the exemplary traffic control module 350 follows.
The admission control module 352 maintains information relating to resource utilization/availability and determines if sufficient resources are available to support the quality of service requirements of particular traffic flows. Resource availability information maintained by the admission control module 352 includes, e.g., packet and/or frame queuing capacity, scheduling capacity, as well as processing and memory capacity needed to support one or more traffic flows. The control signaling module 312 and/or other modules included in the access point 300 may, and in some embodiments do, query the admission control module 352 to determine if sufficient resources are available to support a new or modified traffic flow, where the admission control determination is a function of the quality of service requirements of the particular traffic flow and/or the available resources. The configuration information 351 may, and in some embodiments does, include configuration information, e.g., parameters settings, that affect the operation of the admission control module 352, e.g., an admission control threshold value that indicates the percentage of resource that may be allocated prior to rejecting additional requests.
The uplink scheduler module 353 controls processing relating to transmission scheduling, e.g., order and/or timing, and allocation of transmission resources, e.g., information coding rate, transmission time slots, and/or transmission power, for data information, e.g., messages, packets, and/or frames, to be sent from one or more access terminals to the access point via the wireless interface module 330. The uplink scheduler module 353 may, and in some embodiments does, schedule transmissions and allocate transmission resources as a function of the quality of service requirements and/or constraints associated with one or more traffic flows and/or one or more access terminals. The configuration information 351 may, and in some embodiments does, include configuration information, e.g., parameters settings, that affect the operation of the uplink scheduler module 353, e.g., a priority, rate bound, latency bound, and/or sharing weight associated with one or more traffic flows and/or access terminals. In some embodiments of the aspect, scheduling and/or resource allocation operations performed by the uplink scheduler module 353 are additionally a function of channel conditions and other factors, e.g., power budget.
The downlink scheduler module 354 controls processing relating to transmission scheduling, e.g., order and/or timing, and allocation of transmission resources, e.g., information coding rate, transmission time slots, and/or transmission power, for data information, e.g., messages, packets, and/or frames, to be sent from the access point 300 to one or more access terminals via the wireless interface module 330. The downlink scheduler module 354 may, and in some embodiments does, schedule transmissions and allocate transmission resources as a function of the quality of service requirements and/or constraints associated with one or more traffic flows and/or one or more access terminals. The configuration information 351 may, and in some embodiments does, include configuration information, e.g., parameters settings, that affect the operation of the downlink scheduler module 354, e.g., a priority, rate bound, latency bound, and/or sharing weight associated with one or more traffic flows and/or access terminals. In some embodiments of the aspect, scheduling and/or resource allocation operations performed by the downlink scheduler module 354 are additionally a function of channel conditions and other factors, e.g., power budget.
The uplink traffic conditioner module 355 controls processing relating to traffic conditioning, e.g., metering, marking, policing, etc., for data information, e.g., messages, packets, and/or frames, received via the wireless interface module 330, e.g., from an access terminal to the access point 300. The uplink traffic conditioner module 355 may, and in some embodiments does, condition traffic, e.g., meter, mark and/or police, as a function of the quality of service requirements and/or constraints associated with one or more traffic flows and/or one or more access terminals. The configuration information 351 may, and in some embodiments does, include configuration information, e.g., parameters settings, that affect the operation of the uplink traffic conditioner module 355, e.g., a rate bound, and/or marking value associated with one or more traffic flows and/or access terminals.
The uplink classifier module 356 controls processing relating to identification of data information, e.g., messages, packets, and/or frames, received via the wireless interface module 330, e.g., from an access terminal to the access point 300, as belonging to particular traffic flows prior to being processed by uplink traffic conditioner module 355. In some embodiments of the aspect, messages, packets, and/or frames received via the wireless communication interface module 330 are classified as belonging to one of a variety of traffic flows by the uplink classifier module 356 based on inspection of one or more header and/or payload fields. The results of classification by the uplink classifier module 356 may, and in some embodiments do, affect the treatment of the classified data information, e.g., messages, packets, and/or frames, by the uplink traffic conditioner module 355, e.g., the results may determine a particular data structure or state machine the message, packet, and/or frame will be associated with and further affect subsequent processing such as metering, marking, and/or policing. The configuration information 351 may, and in some embodiments does, include configuration information, e.g., parameters settings, that affect the operation of the uplink classifier module 356, e.g., a set of one or more classifier filter rules that prescribe criteria used to associate data information, e.g., messages, packets, and/or frames, as belonging to one or more traffic flows.
The uplink LLC (ARQ) module 357 controls LLC layer processing relating to receiving data information, e.g., packets and/or frames, via the wireless communication interface module 330, e.g., from an access terminal to the access point 300. The uplink LLC (ARQ) module 357 includes processing associated with ARQ capabilities, e.g., retransmission of lost packets or frames. In some embodiments of the aspect, the uplink LLC (ARQ) module 357 further includes processing relating to an LLC header and/or trailer that encapsulates higher layer messages, e.g., packets, which provides additional functionality, e.g., multi-protocol multiplexing/demultiplexing via a type field or error detection via a checksum field. The uplink LLC (ARQ) module 357 may also, and in some embodiments does, perform reassembly of frames received by the uplink PHY/MAC module 358 into higher layer messages, e.g., packets. The configuration information 251 may, and in some embodiments does, include configuration information, e.g., parameters settings, that affect the operation of the uplink LLC (ARQ) module 357, e.g., an ARQ window size, maximum number of retransmissions, a discard timer, etc.
The uplink PHY/MAC module 358 controls PHY layer and MAC layer processing relating to receiving data information, e.g., packets and/or frames, via the wireless communication interface module 330, e.g., from an access terminal to the access point 300. In some embodiments of the aspect, operation of the uplink PHY/MAC module 358 includes both sending and receiving control information, e.g., signals or messages, to coordinate receiving of data information, e.g., messages, packets, or frames. The configuration information 351 may, and in some embodiments does, include configuration information, e.g., parameters settings, that affect the operation of the uplink PHY/MAC module 358, e.g., a frequency, band, channel, spreading code or hoping code to be used for reception, an identifier associated with the access point 300, etc.
The downlink classifier module 359 controls processing relating to identification of data information, e.g., messages, packets, and/or frames, as belonging to particular traffic flows prior to being sent via the wireless communication interface module 330, e.g., from the access point 300 to an access terminal. In some embodiments of the aspect, messages, packets, and/or frames to be sent via the wireless communication interface module 330 are classified as belonging to one of a variety of traffic flows by the downlink classifier module 359 based on inspection of one or more header and/or payload fields. The results of classification by the downlink classifier module 359 may, and in some embodiments do, affect the treatment of the classified data information, e.g., messages, packets, and/or frames, by the downlink queue management module 361 and other modules 360, 362, 363, e.g., the results may determine a particular queue the message, packet, and/or frame will be associated with for storage and further affect subsequent processing such as scheduling. The configuration information 351 may, and in some embodiments does, include configuration information, e.g., parameters settings, that affect the operation of the downlink classifier module 359, e.g., a set of one or more classifier filter rules that prescribe criteria used to associate data information, e.g., messages, packets, and/or frames, as belonging to one or more traffic flows.
The downlink traffic conditioner module 360 controls processing relating to traffic conditioning, e.g., metering, marking, policing, etc., for data information, e.g., messages, packets, and/or frames, to be sent via the wireless interface module 330, e.g., from the access point 300 to an access terminal. The downlink traffic conditioner module 360 may, and in some embodiments does, condition traffic, e.g., meter, mark and/or police, as a function of the quality of service requirements and/or constraints associated with one or more traffic flows and/or one or more access terminals. The configuration information 351 may, and in some embodiments does, include configuration information, e.g., parameters settings, that affect the operation of the downlink traffic conditioner module 360, e.g., a rate bound, and/or marking value associated with one or more traffic flows and/or access terminals.
The downlink queue management module 361 maintains information and controls processing relating to storage of data information, e.g., messages, packets, and/or frames, to be sent via the wireless communication interface module 330, e.g., from the access point 300 to an access terminal. The downlink queue management module 361 may, and in some embodiments does, control storage of data information awaiting transmission and maintain state information regarding data information awaiting transmission on a per traffic flow basis, e.g., packets associated with each traffic flow may be stored in separate queues. In some embodiments of the aspect, the downlink queue management 361 module supports a variety of queue management techniques and/or capabilities, e.g., head drop, tail drop, as well as various AQM mechanisms such as RED. The configuration information 351 may, and in some embodiments does, include configuration information, e.g., parameters settings, that affect the operation of the downlink queue management module 361, e.g., a queue limit, drop strategy, and/or AQM thresholds associated with one or more traffic flows.
The downlink LLC (ARQ) module 362 controls LLC layer processing relating to sending data information, e.g., messages, packets, and/or frames, via the wireless communication interface module 330, e.g., from the access point 300 to an access terminal. The downlink LLC (ARQ) module 362 includes processing associated with ARQ capabilities, e.g., retransmission of lost packets or frames. In some embodiments of the aspect, the downlink LLC (ARQ) module 362 further includes processing relating to the addition of an LLC header and/or trailer to higher layer messages, e.g., packets, to provide additional functionality, e.g., multi-protocol multiplexing/demultiplexing via a type field or error detection via a checksum field. The downlink LLC (ARQ) module 362 may also, and in some embodiments does, perform fragmentation of higher layer messages, e.g., packets, into multiple sub-portions, e.g., frames to be sent by the downlink PHY/MAC module 363. The configuration information 351 may, and in some embodiments does, include configuration information, e.g., parameters settings, that affect the operation of the downlink LLC (ARQ) module 362, e.g., an ARQ window size, maximum number of retransmissions, a discard timer, etc.
The downlink PHY/MAC module 363 controls PHY layer and MAC layer processing relating to sending data information, e.g., messages, packets, and/or frames, via the wireless communication interface module 330, e.g., from the access point 300 to an access terminal. In some embodiments of the aspect, operation of the downlink PHY/MAC module 363 includes both sending and receiving control information, e.g., signals or messages, to coordinate sending of data information, e.g., messages, packets, or frames. The configuration information 351 may, and in some embodiments does, include configuration information, e.g., parameters settings, that affect the operation of the downlink PHY/MAC module 363, e.g., a frequency, band, channel, spreading code or hoping code to be used for transmissions, an identifier associated with the access point 300, etc.
In aspect, an envelope scheme is used to avoid unnecessary handshake communication that tie up valuable resources. During the operation of the wireless communication system according to an aspect, one or more processes are being independently and asynchronously executed by the processor. For example, a network access process, mobility management process, a QoS process, and a connection control protocol (CCP) process. Also, during the operation of the communication system, events occur that may require one or more the processes to transmit information to an external device (for example the base station) or to establish parameters. In an aspect, a connection establishment event, a handoff event, and QoS reservation events are pre-stored in memory. In an aspect, the events may be stored in memory of each node (base station, mobile terminal, host, wireless terminal, etc) at the start up. It should be noted that various other events and processes may be created by one skilled in the art without departing from the aspect of this embodiment.
In an aspect, for each event, one process may be designated as the process that will transmit and receive information from an external device and/or establish parameters. The designated process is considered as a transmit process and that process will transmit and receive messages from the external device. All other processes that are required to establish parameters will be considered as non-transmit process for a given event. In one aspect the transmit process is preconfigured and known by all the non-transmit processes and for all events. In another aspect the transmit process is preconfigured and known by all non-transmit processes on a per event basis. In another aspect, a different process may be designated as the transmit process in a dynamic way.
In an aspect, the Connection Control Protocol (CCP) is selected as the transmit process. All other processes that are required to transmit or to receive information will register with CCP process. The registration notifies the existence of each process to CCP process. In an aspect, the CCP process will generate a request message that will be transmitted to an external device. In an aspect the message is generated as a reaction to an event (e.g., a handoff or a connection establishment). All the non-transmit processes will attach an electronic envelope to the request message, wherein the request message capable of accepting one or more electronic envelopes.
In an aspect, an envelope comprises at least one envelope identification (ID), which identifies the process and comprises one or more objects. For example, the envelopes comprise a process identification identifying the requesting process (e.g., an EnvelopeID) and a list of required parameters or objects for the process (e.g., in ObjectID, Length, Value format). The number of objects per envelope may vary based the number of processes that require to establish parameters. In an aspect, each object may be an envelope comprising additional objects or parameter information such as type of parameter and length of parameters.
In another aspect of the some embodiments, the transmit process may be selected statically based one or more predetermined criteria, for example if a process that has already established physical resources with the external device. In this aspect, all other processes will generate the necessary envelope and attach the envelope to the currently identified transmit process.
In another aspect of some embodiments, a look-up table, that is pre-stored in the memory, may be used to designate the transmit process that will communicate with the external device. Also, the look-up table may be used to identify each processes that will generate and envelope and attach the envelope to the designated transmit process. In aspect, when an event occurs, each process may check the look-up table to determine if it the transmit process, a non-transmit process or no actions required. If determined that a process is a transmit process, set up resources, generate a request message, generate an envelope, if required, and accept envelopes from non-transmit processes. If determined that a process is a non-transmit process, then generate an envelope and attach it to a request message generated by the transmit process. In aspect, the processes may register with the transmit process prior to attaching the envelopes.
In another aspect of some embodiment, the transmit process may be permanently selected as a transmit process (even if that process does not need to transmit any information), wherein the transmit process may maintain resources periodically or throughout the operation of the communication. All other processes register with the transmit process and send information through the transmit process.
It should be noted that various other means may be employed to identify a process that will transmit a request message while other processes will attach information to the request message.
In an aspect, the transmit process (for example CCP) after transmitting the request message may receive a response message from the external entity. In another aspect, process other than the transmit process may receive the response. Generally, the transmit process will be the receive process for processing the response received from the external device as well as for processing unsolicited messages (initial messages in a transaction) by the external device. The response message may comprise a reply header, list of reply envelopes, an event or other information. Each reply envelope comprises a target process ID and one or more objects associated with establishing the parameters. In an aspect, the target process ID (e.g., Envelope IDs) identifies which process receives the attached envelope. In an aspect, upon receiving a reply from an external device (entity), the receive process will determine the content of the response message. If one or more envelope is embedded in the response message, then the receive process will distribute embedded envelope(s) to the appropriate processes. The envelopes are then processed by the respective processes.
The unsolicited message may comprise a request header, list of request envelopes, an event or other information. Each request envelope comprises a target process ID and one or more objects associated with establishing the parameters. In an aspect, the target process ID (e.g., Envelope IDs) identifies which process receives the attached envelope. In an aspect, upon receiving a request from an external device (entity), the receive process will determine the content of the request message. If one or more envelope is embedded in the request message, then the receive process will distribute embedded envelope(s) to the appropriate processes. The envelopes are then processed by the respective processes and a response message may also be generated.
In an aspect, if the response message triggers an event, then the receive process may notify all or a subset of processes by broadcasting the event to the processes. In an aspect, the received process may use the look-up table and broadcast the events only to those processes that would be affected by the event.
In an aspect, an event process may be independently and asynchronously executing along with other processes. The event notification process may be for processing events, wherein the receive process will forward all the events to the event notification process and event process will appropriately broadcast the events.
At block 509, the processor 204 is configured to wait for a response from the base station. At block 510, the processor 204 is configured to receive a response message from the base station. At block 512, the processor 204 executes a module to extract envelopes contained in the response message, if any, and distribute them to the appropriate processes. For example, the received envelopes may be placed in memory and each process is notified that an envelope is received. In an aspect, the envelopes may indicate the process that receives the envelope, for example the Envelope_ID (e.g. process ID). In another aspect, the envelopes may be attached in the same position as in the request message and the processor 204 will determine by the index which process receives the envelope.
Referring to
Messages described in the present patent application are stored in the memory of the nodes which generate and/or receive said messages in addition to the nodes through which said messages are communicated. Accordingly, in addition to being directed to methods and apparatus for generating, transmitting and using novel messages of aspects of some embodiments, the aspect is also directed to machine readable media, e.g., memory, which stores one or more of the novel messages of the type described and shown in the text and figures of the present application.
In various embodiments, nodes described herein are implemented using one or more modules to perform the steps corresponding to one or more methods of the aspect, for example, signal processing, message generation and/or transmission steps. Thus, in some embodiments various features are implemented using modules. Such modules may be implemented using software, hardware or a combination of software and hardware. Many of the above described methods or method steps can be implemented using machine executable instructions, such as software, included in a machine readable medium such as a memory device, e.g., RAM, floppy disk, compact disc, DVD, etc. to control a machine, e.g., general purpose computer with or without additional hardware, to implement all or portions of the above described methods, e.g., in one or more nodes. Accordingly, among other things, the aspect is directed to a machine-readable medium including machine executable instructions for causing a machine, e.g., processor and associated hardware, to perform one or more of the steps of the above-described method(s).
In various embodiments, nodes described herein are implemented using one or more modules to perform the steps corresponding to one or more methods, for example, signal processing, message generation and/or transmission steps. Thus, in some embodiments various features are implemented using modules. Such modules may be implemented using software, hardware or a combination of software and hardware. Many of the above described methods or method steps can be implemented using machine executable instructions, such as software, included in a machine readable medium such as a memory device, e.g., RAM, floppy disk, etc. to control a machine, e.g., general purpose computer with or without additional hardware, to implement all or portions of the above described methods, e.g., in one or more nodes. Accordingly, among other things, various embodiments are directed to a machine-readable medium including machine executable instructions for causing a machine, e.g., processor and associated hardware, to perform one or more of the steps of the above-described method(s).
For example, access point 300 and access terminal 200 are configured to for implementing communication protocols/standards such as World Interoperability for Microwave Access (WiMAX), infrared protocols such as Infrared Data Association (IrDA), short-range wireless protocols/technologies, Bluetooth® technology, ZigBee® protocol, ultra wide band (UWB) protocol, home radio frequency (HomeRF), shared wireless access protocol (SWAP), wideband technology such as a wireless Ethernet compatibility alliance (WECA), wireless fidelity alliance (Wi-Fi Alliance), 802.11 network technology, public switched telephone network technology, public heterogeneous communications network technology such as the Internet, private wireless communications network, land mobile radio network, code division multiple access (CDMA), wideband code division multiple access (WCDMA), universal mobile telecommunications system (UMTS), advanced mobile phone service (AMPS), time division multiple access (TDMA), frequency division multiple access (FDMA), orthogonal frequency division multiple access (OFDMA), global system for mobile communications (GSM), single carrier (IX) radio transmission technology (RTT), evolution data only (EV-DO) technology, general packet radio service (GPRS), enhanced data GSM environment (EDGE), high speed downlink data packet access (HSPDA), analog and digital satellite systems, and any other technologies/protocols that may be used in at least one of a wireless communications network and a data communications network.
Numerous additional variations on the methods and apparatus of the aspects described above will be apparent to those skilled in the art in view of the above description of the aspect. Such variations are to be considered within the scope of the aspect. The methods and apparatus of the aspects may be, and in various embodiments are, used with OFDM, CDMA, TDMA or various other types of communications techniques which may be used to provide wireless communications links between access nodes and mobile nodes. In some embodiments the access nodes are implemented as base stations which establish communications links with mobile nodes using OFDM, CDMA and/or TDMA. In various embodiments the mobile nodes are implemented as notebook computers, PDAs, or other portable devices including receiver/transmitter circuits and logic and/or routines, for implementing the methods of the aspects described above.