A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright rights whatsoever.
The present disclosure relates generally to the field of wireless networks and specifically, in one or more exemplary embodiments, to methods and apparatus for aggregating signals from multiple transmitter devices utilizing radio frequency spectrum to provide high-speed data services, such as for example those providing connectivity via quasi-licensed Citizens Broadband Radio Service (CBRS) technologies.
A multitude of wireless networking technologies, also known as Radio Access Technologies (“RATs”), provide the underlying means of connection for radio-based communication networks to user devices. Such RATs often utilize licensed radio frequency spectrum (i.e., that allocated by the FCC per the Table of Frequency Allocations as codified at Section 2.106 of the Commission's Rules. In the United States, regulatory responsibility for the radio spectrum is divided between the U.S. Federal Communications Commission (FCC) and the National Telecommunications and Information Administration (NTIA). The FCC, which is an independent regulatory agency, administers spectrum for non-Federal use (i.e., state, local government, commercial, private internal business, and personal use) and the NTIA, which is an operating unit of the Department of Commerce, administers spectrum for Federal use (e.g., use by the Army, the FAA, and the FBI). Currently only frequency bands between 9 kHz and 275 GHz have been allocated (i.e., designated for use by one or more terrestrial or space radio communication services or the radio astronomy service under specified conditions). For example, a typical cellular service provider might utilize spectrum for so-called “3G” (third generation) and “4G” (fourth generation) wireless communications as shown in Table 1 below:
Alternatively, unlicensed spectrum may be utilized, such as that within the so-called ISM-bands. The ISM bands are defined by the ITU Radio Regulations (Article 5) in footnotes 5.138, 5.150, and 5.280 of the Radio Regulations. In the United States, uses of the ISM bands are governed by Part 18 of the Federal Communications Commission (FCC) rules, while Part 15 contains the rules for unlicensed communication devices, even those that share ISM frequencies. Table 2 below shows typical ISM frequency allocations:
ISM bands are also been shared with (non-ISM) license-free communications applications such as wireless sensor networks in the 915 MHz and 2.450 GHz bands, as well as wireless LANs and cordless phones in the 915 MHz, 2.450 GHz, and 5.800 GHz bands.
Additionally, the 5 GHz band has been allocated for use by, e.g., WLAN equipment, as shown in Table 3:
User client devices (e.g., smartphone, tablet, phablet, laptop, smartwatch, or other wireless-enabled devices, mobile or otherwise) generally support multiple RATs that enable the devices to connect to one another, or to networks (e.g., the Internet, intranets, or extranets), often including RATs associated with both licensed and unlicensed spectrum. In particular, wireless access to other networks by client devices is made possible by wireless technologies that utilize networked hardware, such as a wireless access point (“WAP” or “AP”), small cells, femtocells, or cellular towers, serviced by a backend or backhaul portion of service provider network (e.g., a cable network). A user may generally access the network at a “hotspot,” a physical location at which the user may obtain access by connecting to modems, routers, APs, etc. that are within wireless range.
CBRS—
In 2016, the FCC made available Citizens Broadband Radio Service (CBRS) spectrum in the 3550-3700 MHz (3.5 GHz) band, making 150 MHz of spectrum available for mobile broadband and other commercial users. The CBRS is unique, in that it makes available a comparatively large amount of spectrum (frequency bandwidth) without the need for expensive auctions, and without ties to a particular operator or service provider.
Moreover, the CBRS spectrum is suitable for shared use between government and commercial interests, based on a system of existing “incumbents,” including the Department of Defense (DoD) and fixed satellite services. Specifically, a three-tiered access framework for the 3.5 GHz is used; i.e., (i) an Incumbent Access tier 102, (ii) Priority Access tier 104, and (iii) General Authorized Access tier 106. See
Incumbent Access (existing DOD and satellite) users 102 include authorized federal and grandfathered Fixed Satellite Service (FSS) users currently operating in the 3.5 GHz band shown in
The Priority Access tier 104 (including acquisition of spectrum for up to three years through an auction process) consists of Priority Access Licenses (PALs) that will be assigned using competitive bidding within the 3550-3650 MHz portion of the band. Each PAL is defined as a non-renewable authorization to use a 10 MHz channel in a single census tract for three years. Up to seven (7) total PALs may be assigned in any given census tract, with up to four PALs going to any single applicant. Applicants may acquire up to two-consecutive PAL terms in any given license area during the first auction.
The General Authorized Access tier 106 (for any user with an authorized 3.5 GHz device) is licensed-by-rule to permit open, flexible access to the band for the widest possible group of potential users. General Authorized Access (GAA) users are permitted to use any portion of the 3550-3700 MHz band not assigned to a higher tier user and may also operate opportunistically on unused Priority Access License (PAL) channels. See
The FCC's three-tiered spectrum sharing architecture of
Under the FCC system, the standard SAS 202 includes the following elements: (1) CBSD registration; (2) interference analysis; (3) incumbent protection; (4) PAL license validation; (5) CBSD channel assignment; (6) CBSD power limits; (7) PAL protection; and (8) SAS-to-SAS coordination. As shown in
An optional Domain Proxy (DP) 208 is also provided for in the FCC architecture. Each DP 208 includes: (1) SAS interface GW including security; (2) directive translation between CBSD 206 and domain commands; (3) bulk CBSD directive processing; and (4) interference contribution reporting to the SAS.
A domain is defined is any collection of CBSDs 206 that need to be grouped for management; e.g.: large enterprises, venues, stadiums, train stations. Domains can be even larger/broader in scope, such as for example a terrestrial operator network. Moreover, domains may or may not use private addressing. A Domain Proxy (DP) 208 can aggregate control information flows to other SAS, such as e.g., a Commercial SAS (CSAS, not shown), and generate performance reports, channel requests, heartbeats, etc.
CBSDs 206 can generally be categorized as either Category A or Category B. Category A CBSDs have an EIRP or Equivalent Isotropic Radiated Power of 30 dBm (1 Watt)/10 MHz, fixed indoor or outdoor location (with an antenna <6 m in length if outdoor). Category B CBSDs have 47 dBm EIRP (50 Watts)/10 MHz, and fixed outdoor location only. Professional installation of Category B CBSDs is required, and the antenna must be less than 6 m in length. All CBSD's have a vertical positioning accuracy requirement of +/−3 m. Terminals (i.e., user devices akin to UE) have 23 dBm EIRP (0.2 Watts)/10 MHz requirements, and mobility of the terminals is allowed.
In terms of spectral access, CBRS utilizes a time division duplex (TDD) multiple access architecture.
Unaddressed Issues of Restricted Maximum Power and Performance—
Extant CBRS architectures, while promising from the standpoint of reduced contention for spectrum, currently lack mechanisms for obtaining maximal power at a given Consumer Premises Equipment (CPE) such as a premises Fixed Wireless Access (FWA) device. In particular, in the extant CBRS ecosystem, many devices including higher-power CBSD and outdoor FWA devices functioning as CPE are treated or classified as CBSD Category B devices. As previously noted, Category A devices can transmit up 30 dbm (1 watt)/10 MHz, while Category B devices can transmit up to about 50 dbm/10 MHz, so the average coverage area for a Category B device (and its data rate) are limited. In practical terms, a Category B device may operate out to thousands of feet or more, the propagation and working range dictated by a number of factors, including the presence of RF or other interferers, physical topology of the venue/area, energy detection or sensitivity of the receiver, etc.
However, on an individual transmitter basis, even the foregoing Category B devices are, in comparison to e.g., cellular systems, limited in data throughput and area coverage. Specifically, to provide a high level of performance and greater coverage area, a single base station (e.g., CBSD/xNB) serving the CPE/FWA device has to transmit on comparatively higher power; accordingly, the received Signal-to-Noise Ratio (SNR) and interference ratio is sufficiently high for greater data throughput (using e.g., 256 QAM, 512 QAM and beyond). However, such higher power will violate the Category B EIRP limits enforced in the CBRS system.
Other related techniques known in the prior art for increasing usable power at a receiving device include: (i) use of a high device antenna gain; (ii) use of multiple receive antennas for receive diversity from a single transmitter; and (iii) use of multiple receive antennas for receive diversity from multiple distributed transmitters. Notably, under prior art schemes (see for example the architecture 200 of
Hence, to achieve (i) maximal data rates for CBRS or other systems with comparatively low maximum EIRP values for transmitting components, and (ii) wider area coverage for a fixed number of such transmitters, a better solution is needed.
The present disclosure addresses the foregoing needs by providing, inter alia, methods and apparatus for providing maximum delivered power and data rates for, inter alia, served CPE such as FWA devices.
In a first aspect of the disclosure, a method of operating a wireless network infrastructure comprising a fixed wireless receiver and at least two base stations is disclosed. In one embodiment, the method includes receiving at least two signals at the fixed wireless receiver, the at least two signals transmitted by respective ones of the at least two base stations and corresponding to a common data stream, and utilizing the at least two signals to obtain the common data stream for use by a premises device in data communication with the fixed wireless receiver.
In one variant, the at least two signals are transmitted within a frequency range between 3.550 and 3.70 GHz inclusive, and the at least two base stations comprise CBRS (Citizens Broadband Radio Service) compliant CBSDs (Citizens Broadband radio Service Devices).
In one implementation, the method further includes: detecting, via the fixed wireless receiver, the at least two signals; evaluating the detected at least two signals to generate data relating to the at least two signals; and transmitting the generated data to at least one network controller in data communication with the at least two base stations, the transmitted generated data being useful in the at least one network controller in scheduling the transmission of the at least two signals. The evaluating the detected at least two signals to generate data relating to the at least two signals includes for example evaluating the detected at least two signals as to signal strength and direction.
In another variant, the method further includes detecting, via the fixed wireless receiver, the at least two signals; evaluating the detected at least two signals to generate data relating to the at least two signals; and transmitting the generated data to at least one network controller in data communication with the at least two base stations, the transmitted generated data being useful in the at least one network controller in scheduling the transmission of the at least two signals.
In yet another variant, the method further includes: detecting, via the fixed wireless receiver, at least the at least two signals; evaluating the detected at least two signals to generate data relating to the at least two signals; and transmitting the generated data to at least one network controller in data communication with the three or more base stations, the transmitted generated data being useful in the at least one network controller in selecting a subset of multiple input multiple output (MIMO) antenna elements associated with each of the at least two base stations for subsequent delivery of the common data stream.
In still another variant, the transmitting the generated data to at least one network controller in data communication with the at least two base stations comprises transmitting the generated data in one or more data bursts via a then-best reverse channel between the fixed wireless receiver and one of the at least two base stations.
In another aspect of the disclosure, a network architecture for delivery of wireless data to at least one fixed wireless receiver apparatus is disclosed. In one embodiment, the network architecture includes: a plurality of wireless base stations; a computerized network controller in data communication with the plurality of base stations; at least one fixed wireless receiver apparatus; and a computerized premises controller in data communication with the at least one fixed wireless receiver and the computerized network controller.
In one variant, the computerized network controller and the computerized premises controller are configured to communicate data to enable selection of two or more of the plurality of wireless base stations for delivery of at least portions of a data stream to the at least one fixed wireless receiver apparatus.
In one implementation, the plurality of base stations each comprise a plurality of multiple input, multiple output (MIMO) antenna elements; and the computerized network controller and the computerized premises controller are further configured to communicate data to enable selection of individual ones of transmit beams formed by the plurality of MIMO antenna elements for each of the two or more of the plurality of wireless base stations for delivery of at least portions of a data stream to the at least one fixed wireless receiver apparatus. The plurality of base stations are in once scenario each limited to a common value of maximum EIRP (Equivalent Isotropic Radiated Power), and the fixed wireless receiver apparatus comprises computerized logic configured to enable utilization of received ones of the transmit beams carrying the at least portions of the data stream so as to achieve an aggregated received power value higher than that achievable by a single base station transmitting at the maximum EIRP.
In another variant, the architecture includes a plurality of substantially independent network controllers that each control a plurality of base stations (e.g., CBSD/xNBs) and is in communication with local radio path controllers/reporters associated with fixed wireless apparatus (FWAs) disposed at various client premises. The network controllers are also linked to an MSO CBRS Core controller for, e.g., spectrum management and allocation, client-specific functions and data, etc.
In a further aspect of the disclosure, a method of operating a wireless network infrastructure is disclosed. In one embodiment, the infrastructure includes a plurality of fixed wireless receivers each disposed at different physical locations and a plurality of base stations, each of the plurality of base stations having a plurality of independent radio frequency (RF) transmit beams, the method includes: transmitting at least two signals to each of the fixed wireless receivers, the at least two signals transmitted to each of the fixed wireless receivers transmitted by respective ones of different combinations of (i) the plurality of base stations and (ii) the plurality of independent radio frequency (RF) transmit beams of each of the plurality of base stations, the at least two signals received by each of the fixed wireless receivers corresponding to a common data stream to be delivered to that fixed wireless receivers, the at least two signals transmitted to each of the fixed wireless receivers being transmitted within one or more temporal periods allocated to the respective fixed wireless receiver; receiving the transmitted at least two signals at each of the fixed wireless receivers; and combining the respective received transmitted at least two signals at each of the fixed wireless receivers to generate respective ones of the common data streams for use by the respective fixed wireless receiver.
In a further aspect, a network controller is disclosed. In one embodiment, the network controller includes both control logic and scheduling logic for evaluating data sent from CPE/FWA disposed at various client premises, and determining optimal base station (e.g., CBSD/xNB), beam, frequency and TDD slot assignments for each CPE/FWA.
In another aspect, a wireless transmitter is disclosed that includes a CBRS (Citizens Broadband Radio Service)-compliant and 3GPP compliant eNB or gNB.
In another aspect, a wireless receiver is disclosed that includes a CBRS (Citizens Broadband Radio Service)-compliant FWA that is capable of data communication with the 3GPP compliant eNB or gNB. In one variant, the FWA includes radio path controller logic for, inter alia, generating signal report data and transmitting it to the network controller.
In one variant, the FWA apparatus comprises a premises device operated by a network operator (e.g., MSO) that is configured to communicate wirelessly with one or more CBSD/xNB devices to obtain high-speed data services and wireless backhaul from the premises. In one variant, the FWA apparatus is configured as a Category B CBSD CBRS device, and is mounted on the user's premises so as to enable the aforementioned backhaul for WLAN or wireline interfaces within the premises.
In an additional aspect of the disclosure, computer readable apparatus is described. In one embodiment, the apparatus includes a storage medium configured to store one or more computer programs, such as on a CPE-associated controller or network controller of a CBRS network. In one embodiment, the apparatus includes a program memory or HDD or SDD on a computerized controller device, such as an MSO controller/scheduler, DP, or SAS entity. In another embodiment, the apparatus includes a program memory, HDD or SSD on a computerized wireless access node (e.g., CBSD/xNB). In yet another embodiment, the apparatus is part of a CPE/FWA device and its local radio path controller.
In a further aspect, a system architecture for delivery of wireless signals via unlicensed or quasi-licensed spectrum from a plurality of CBSD/xNB to one or more associated CPE is disclosed.
In another aspect, methods and apparatus for inter-controller coordination for delivery/receipt of wireless signals to/from one or more target CPE are disclosed. In one embodiment, the inter-controller coordination comprises data messaging between two or more controllers relating to CBSD signal/beam reports from a target CPE such that CBSDs/beams associated with different controllers may be used to provide services to a common CPE.
These and other aspects shall become apparent when considered in light of the disclosure provided herein.
All figures © Copyright 2017-2019 Charter Communications Operating, LLC. All rights reserved.
Reference is now made to the drawings wherein like numerals refer to like parts throughout.
As used herein, the term “access node” refers generally and without limitation to a network node which enables communication between a user or client device and another entity within a network, such as for example a CBRS CBSD, a Wi-Fi AP, or a Wi-Fi-Direct enabled client or other device acting as a Group Owner (GO).
As used herein, the term “application” (or “app”) refers generally and without limitation to a unit of executable software that implements a certain functionality or theme. The themes of applications vary broadly across any number of disciplines and functions (such as on-demand content management, e-commerce transactions, brokerage transactions, home entertainment, calculator etc.), and one application may have more than one theme. The unit of executable software generally runs in a predetermined environment; for example, the unit could include a downloadable Java Xlet™ that runs within the JavaTV™ environment.
As used herein, the term “CBRS” refers without limitation to the CBRS architecture and protocols described in Signaling Protocols and Procedures for Citizens Broadband Radio Service (CBRS): Spectrum Access System (SAS)—Citizens Broadband Radio Service Device (CBSD) Interface Technical Specification—Document WINNF-TS-0016, Version V1.2.1. 3, January 2018, incorporated herein by reference in its entirety, and any related documents or subsequent versions thereof.
As used herein, the terms “client device” or “user device” or “UE” include, but are not limited to, set-top boxes (e.g., DSTBs), gateways, modems, personal computers (PCs), and minicomputers, whether desktop, laptop, or otherwise, and mobile devices such as handheld computers, PDAs, personal media devices (PMDs), tablets, “phablets”, smartphones, and vehicle infotainment systems or portions thereof.
As used herein, the term “computer program” or “software” is meant to include any sequence or human or machine cognizable steps which perform a function. Such program may be rendered in virtually any programming language or environment including, for example, C/C++, Fortran, COBOL, PASCAL, assembly language, markup languages (e.g., HTML, SGML, XML, VoXML), and the like, as well as object-oriented environments such as the Common Object Request Broker Architecture (CORBA), Java™ (including J2ME, Java Beans, etc.) and the like.
As used herein, the term “DOCSIS” refers to any of the existing or planned variants of the Data Over Cable Services Interface Specification, including for example DOCSIS versions 1.0, 1.1, 2.0, 3.0 and 3.1.
As used herein, the term “headend” or “backend” refers generally to a networked system controlled by an operator (e.g., an MSO) that distributes programming to MSO clientele using client devices. Such programming may include literally any information source/receiver including, inter alia, free-to-air TV channels, pay TV channels, interactive TV, over-the-top services, streaming services, and the Internet.
As used herein, the terms “Internet” and “internet” are used interchangeably to refer to inter-networks including, without limitation, the Internet. Other common examples include but are not limited to: a network of external servers, “cloud” entities (such as memory or storage not local to a device, storage generally accessible at any time via a network connection, and the like), service nodes, access points, controller devices, client devices, etc.
As used herein, the term “LTE” refers to, without limitation and as applicable, any of the variants or Releases of the Long-Term Evolution wireless communication standard, including LTE-U (Long Term Evolution in unlicensed spectrum), LTE-LAA (Long Term Evolution, Licensed Assisted Access), LTE-A (LTE Advanced), and 4G/4.5G LTE.
As used herein, the term “memory” includes any type of integrated circuit or other storage device adapted for storing digital data including, without limitation, ROM, PROM, EEPROM, DRAM, SDRAM, DDR/2 SDRAM, EDO/FPMS, RLDRAM, SRAM, “flash” memory (e.g., NAND/NOR), 3D memory, and PSRAM.
As used herein, the terms “microprocessor” and “processor” or “digital processor” are meant generally to include all types of digital processing devices including, without limitation, digital signal processors (DSPs), reduced instruction set computers (RISC), general-purpose (CISC) processors, microprocessors, gate arrays (e.g., FPGAs), PLDs, reconfigurable computer fabrics (RCFs), array processors, secure microprocessors, and application-specific integrated circuits (ASICs). Such digital processors may be contained on a single unitary IC die, or distributed across multiple components.
As used herein, the terms “MSO” or “multiple systems operator” refer to a cable, satellite, or terrestrial network provider having infrastructure required to deliver services including programming and data over those mediums.
As used herein, the terms “MNO” or “mobile network operator” refer to a cellular, satellite phone, WMAN (e.g., 802.16), or other network service provider having infrastructure required to deliver services including without limitation voice and data over those mediums.
As used herein, the terms “network” and “bearer network” refer generally to any type of telecommunications or data network including, without limitation, hybrid fiber coax (HFC) networks, satellite networks, telco networks, and data networks (including MANs, WANs, LANs, WLANs, internets, and intranets). Such networks or portions thereof may utilize any one or more different topologies (e.g., ring, bus, star, loop, etc.), transmission media (e.g., wired/RF cable, RF wireless, millimeter wave, optical, etc.) and/or communications or networking protocols (e.g., SONET, DOCSIS, IEEE Std. 802.3, ATM, X.25, Frame Relay, 3GPP, 3GPP2, LTE/LTE-A/LTE-U/LTE-LAA, 5G NR, WAP, SIP, UDP, FTP, RTP/RTCP, H.323, etc.).
As used herein, the term “network interface” refers to any signal or data interface with a component or network including, without limitation, those of the FireWire (e.g., FW400, FW800, etc.), USB (e.g., USB 2.0, 3.0. OTG), Ethernet (e.g., 10/100, 10/100/1000 (Gigabit Ethernet), 10-Gig-E, etc.), MoCA, Coaxsys (e.g., TVnet™), radio frequency tuner (e.g., in-band or OOB, cable modem, etc.), LTE/LTE-A/L1E-U/LTE-LAA, Wi-Fi (802.11), WiMAX (802.16), Z-wave, PAN (e.g., 802.15), or power line carrier (PLC) families.
As used herein, the term “QAM” refers to modulation schemes used for sending signals over e.g., cable or other networks. Such modulation scheme might use any constellation level (e.g. QPSK, 16-QAM, 64-QAM, 256-QAM, etc.) depending on details of a network. A QAM may also refer to a physical channel modulated according to the schemes.
As used herein, the term “SAS (Spectrum Access System)” refers without limitation to one or more SAS entities which may be compliant with FCC Part 96 rules and certified for such purpose, including (i) Federal SAS (FSAS), (ii) Commercial SAS (e.g., those operated by private companies or entities), and (iii) other forms of SAS.
As used herein, the term “server” refers to any computerized component, system or entity regardless of form which is adapted to provide data, files, applications, content, or other services to one or more other devices or entities on a computer network.
As used herein, the term “storage” refers to without limitation computer hard drives, DVR device, memory, RAID devices or arrays, optical media (e.g., CD-ROMs, Laserdiscs, Blu-Ray, etc.), or any other devices or media capable of storing content or other information.
As used herein, the term “Wi-Fi” refers to, without limitation and as applicable, any of the variants of IEEE Std. 802.11 or related standards including 802.11 a/b/g/n/s/v/ac or 802.11-2012/2013, 802.11-2016, as well as Wi-Fi Direct (including inter alia, the “Wi-Fi Peer-to-Peer (P2P) Specification”, incorporated herein by reference in its entirety).
As used herein, the term “wireless” means any wireless signal, data, communication, or other interface including without limitation Wi-Fi, Bluetooth/BLE, 3G (3GPP/3GPP2), HSDPA/HSUPA, TDMA, CBRS, CDMA (e.g., IS-95A, WCDMA, etc.), FHSS, DSSS, GSM, PAN/802.15, WiMAX (802.16), 802.20, Zigbee®, Z-wave, narrowband/FDMA, OFDM, PCS/DCS, LTE/LTE-A/LTE-U/LTE-LAA, 5G NR, analog cellular, CDPD, satellite systems, millimeter wave or microwave systems, acoustic, and infrared (i.e., IrDA).
As used herein, the term “xNB” refers to any 3GPP-compliant node including without limitation eNBs (eUTRAN) and gNBs (5G NR).
Overview
Methods and apparatus for managing radio device transmitters, beams, and receivers within a power-limited system so that maximal area coverage and/or data rates can be achieved. In one embodiment, the methods and apparatus utilize so-called “quasi-licensed” CBRS (Citizens Broadband Radio Service) wireless spectrum in conjunction with a distributed controller architecture that dynamically allocates frequency, base station, and transmit/receive beam resources for delivery of services to a number of installed fixed wireless apparatus (FWA) at user or subscriber premises.
The FWA include radio path controller logic that obtains signal data via its antenna elements and radio head, and transmits the data to a network or centralized controller that determines the resource allocation and timing (e.g., via a slotted TDD medium) for service delivery to each FWA.
As such, the base stations (e.g., CBSD/xNBs) do not determine the allocations as in the prior art, and multiple power-limited base stations can transmit signals to a single FWA such that greater coverage area and/or receive aggregated power are achieved.
Exemplary embodiments of the apparatus and methods of the present disclosure are now described in detail. While these exemplary embodiments are described in the context of the previously mentioned wireless access points (e.g., CBSDs) associated with e.g., a managed network (e.g., hybrid fiber coax (HFC) cable architecture having a multiple systems operator (MSO), digital networking capability, IP delivery capability, and a plurality of client devices), the general principles and advantages of the disclosure may be extended to other types of radio access technologies (“RATs”), networks and architectures that are configured to deliver digital data (e.g., text, images, games, software applications, video and/or audio). Such other networks or architectures may be broadband, narrowband, or otherwise, the following therefore being merely exemplary in nature.
It will also be appreciated that while described generally in the context of a network providing service to a customer or consumer or end user or subscriber (i.e., within a prescribed venue, or other type of premises), the present disclosure may be readily adapted to other types of environments including, e.g., outdoors, commercial/retail, or enterprise domain (e.g., businesses), or even governmental uses, such as those outside the proscribed “incumbent” users such as U.S. DoD and the like. Yet other applications are possible.
Also, while certain aspects are described primarily in the context of the well-known Internet Protocol (described in, inter alia, Internet Protocol DARPA Internet Program Protocol Specification, IETF RCF 791 (September 1981) and Deering et al., Internet Protocol, Version 6 (IPv6) Specification, IETF RFC 2460 (December 1998), each of which is incorporated herein by reference in its entirety), it will be appreciated that the present disclosure may utilize other types of protocols (and in fact bearer networks to include other internets and intranets) to implement the described functionality.
Moreover, while the current SAS framework is configured to allocate spectrum in the 3.5 GHz band (specifically 3,550 to 3,700 MHz), it will be appreciated by those of ordinary skill when provided the present disclosure that the methods and apparatus described herein may be configured to utilize other “quasi licensed” or other spectrum, including without limitations above 4.0 GHz (e.g., currently proposed allocations up to 4.2 GHz).
Additionally, while described primarily in terms of GAA 106 spectrum allocation (see
Moreover, while described in the context of quasi-licensed or unlicensed spectrum, it will be appreciated by those of ordinary skill given the present disclosure that various of the methods and apparatus described herein may be applied to reallocation/reassignment of spectrum or bandwidth within a licensed spectrum context; e.g., for cellular voice or data bandwidth/spectrum allocation, such as in cases where a given service provider must alter its current allocation of available spectrum to users.
Moreover, while some aspects of the present disclosure are described in detail with respect to so-called “4G/4.5G” 3GPP Standards (aka LTE/LTE-A) and so-called 5G “New Radio” (3GPP Release 15 and TS 38.XXX Series Standards and beyond), such aspects—including allocation/use/withdrawal of CBRS spectrum—are generally access technology “agnostic” and hence may be used across different access technologies, and can be applied to, inter alia, any type of P2MP (point-to-multipoint) or MP2P (multipoint-to-point) technology.
Other features and advantages of the present disclosure will immediately be recognized by persons of ordinary skill in the art with reference to the attached drawings and detailed description of exemplary embodiments as given below.
Service Provider Network—
The exemplary service provider network 300 is used in one embodiment of the disclosure to provide backbone and Internet access from the service provider's wireless access nodes (e.g., CBSD/xNBs, Wi-Fi APs, FWA devices or base stations 314 operated or maintained by the service provider or its customers/subscribers, including cases where the subscriber leases the device for use), one or more stand-alone or embedded cable modems (CMs) 312, 313 in data communication therewith, or even third party access points accessible to the service provider via, e.g., an interposed network such as the Internet 311 (e.g., with appropriate permissions from the access node owner/operator/user). As discussed in greater detail elsewhere herein, the exemplary enhanced CBSD/xNB nodes 314 include the capability of communication with served nodes such as the enhanced CPE 324 discussed infra for, inter alia, more efficient and higher bandwidth service from multiple CBSD/xNB so as to provide better end-user experience.
As described in greater detail subsequently herein with respect to
Moreover, the integrated service provider network architecture 300 allows components at a served premises or venue of interest (e.g., CBSDs, Wi-Fi APs and any supporting infrastructure such as routers, switches, etc.) to be remotely and dynamically reconfigured by the network MSO, based on e.g., prevailing operational conditions in the network, changes in user population and/or makeup of users at the venue, business models (e.g., to maximize profitability or provide other benefits such as enhanced user experience, as described infra), spectrum channel changes or withdrawals by the SAS, or even simply to enhance user experience using one RAT (e.g., CBRS) when another RAT (e.g., WLAN is sub-optimal for whatever reason). It also permits communication of data from the CBSDs backwards towards the controller, including configuration and demand data relating to the individual CBSDs for purposes of facilitating seamless handover.
In certain embodiments, the service provider network 300 also advantageously permits the aggregation and/or analysis of subscriber- or account-specific data (including inter alia, particular CPE/FWA devices 324 associated with such subscriber or accounts) as part of the provision of services to users under the exemplary delivery models described herein. As but one example, device-specific IDs (e.g., MAC address or the like) can be cross-correlated to MSO subscriber data maintained at e.g., the network head end(s) 307 so as to permit or at least facilitate, among other things, (i) device authentication; (ii) correlation of aspects, use cases or applications to particular subscriber geographics or installation features, such as for logical grouping of CPE/FWA devices of two or more discrete subscribers (or premises thereof) for purposes of e.g., aggregation under a common “host” CBSD/xNB, radio path metrics, etc. Moreover, device profiles for particular CPE/FWA devices can be maintained by the MSO, such that the MSO (or its automated proxy processes) can model the subscriber-associated device for wireless capabilities.
The CBSD/xNB wireless access nodes 314 disposed at the service location(s) (e.g., areas, premises or venue(s) of interest) can be coupled to the bearer managed network 300 (
The various components of the exemplary embodiment of the network 300 generally include (i) one or more data and application origination sources 302; (ii) one or more content sources 303, (iii) one or more application distribution servers 304; (iv) one or more video-on-demand (VOD) servers 305, (v) client devices 306, (vi) one or more routers 308, (vii) one or more wireless access node controllers 310 (may be placed more locally as shown or in the headend or “core” portion of network), (viii) one or more cable modems 312, 313, and/or (ix) one or more access nodes 314 (which may include 3GPP-compliant EUTRAN eNodeB and/or 5G NR gNodeB functionality as described elsewhere herein). The application server(s) 304, VOD servers 305 and client device(s) 306 are connected via a bearer (e.g., HFC) network 301. A simple architecture comprising one of each of certain components 302, 303, 304, 305, 308, 310 is shown in
It is also noted that cable network architecture is typically a “tree-and-branch” structure, and hence multiple tiered CBSD/xNB access nodes 314 (and other components) may be linked to each other or cascaded via such structure.
The network architecture 320 of
Various content sources 303, 303a are used to provide content to content servers 304, 305 and origin servers 321. For example, content may be received from a local, regional, or network content library as discussed in co-owned U.S. Pat. No. 8,997,136 entitled “APPARATUS AND METHODS FOR PACKETIZED CONTENT DELIVERY OVER A BANDWIDTH-EFFICIENT NETWORK”, which is incorporated herein by reference in its entirety. Alternatively, content may be received from linear analog or digital feeds, as well as third party content sources. Internet content sources 303a (such as e.g., a web server) provide Internet content to a packetized content origin server(s) 321. Other IP content may also be received at the origin server(s) 321, such as voice over IP (VoIP) and/or IPTV content. Content may also be received from subscriber and non-subscriber devices (e.g., a PC or smartphone-originated user made video).
The centralized media server(s) 321, 304 located in the headend 307 may also be replaced with or used in tandem with (e.g., as a backup) to hub media servers (not shown) in one alternative configuration. By distributing the servers to the hub stations 317, the size of the fiber transport network associated with delivering VOD services from the central headend media server is advantageously reduced. Multiple paths and channels are available for content and data distribution to each user, assuring high system reliability and enhanced asset availability. Substantial cost benefits are derived from the reduced need for a large content distribution network, and the reduced storage capacity requirements for hub servers (by virtue of the hub servers having to store and distribute less content).
It will also be recognized that a heterogeneous or mixed server approach may be utilized consistent with the disclosure. For example, one server configuration or architecture may be used for servicing cable, satellite, etc., subscriber CPE-based session requests (e.g., from a user's DSTB or the like), while a different configuration or architecture may be used for servicing mobile client requests. Similarly, the content servers 321, 304 may either be single-purpose/dedicated (e.g., where a given server is dedicated only to servicing certain types of requests), or alternatively multi-purpose (e.g., where a given server is capable of servicing requests from different sources).
The network architecture 320 of
In one exemplary content delivery paradigm, MPEG-based video content (e.g., MPEG-2, H.264/AVC) may be delivered to user IP-based client devices over the relevant physical transport (e.g., DOCSIS channels); that is as MPEG-over-IP-over-MPEG. Specifically, the higher layer MPEG or other encoded content may be encapsulated using an IP network-layer protocol, which then utilizes an MPEG packetization/container format of the type well known in the art for delivery over the RF channels or other transport, such as via a multiplexed transport stream (MPTS). In this fashion, a parallel delivery mode to the normal broadcast delivery exists; e.g., in the cable paradigm, delivery of video content both over traditional downstream QAMs to the tuner of the user's DSTB or other receiver device for viewing on the television, and also as packetized IP data over the DOCSIS QAMs to the user's PC or other IP-enabled device via the user's cable modem 312 (including to end users of the CBSD/xNB access node 314 and CPE/FWA 324). Delivery in such packetized modes may be unicast, multicast, or broadcast.
Delivery of the IP-encapsulated data may also occur over the non-DOCSIS QAMs, such as via IPTV or similar models with QoS applied.
Individual client devices such as cable modems 312 and associated end-user devices 306a, 306b of the implementation of
The edge switch forwards the packets receive from the CMTS to the QAM modulator, which transmits the packets on one or more physical (QAM-modulated RF) channels to the client devices. The IP packets are typically transmitted on RF channels that are different than the “in band” RF channels used for the broadcast video and audio programming, although this is not a requirement. As noted above, the premises devices such as cable modems 312 are each configured to monitor the particular assigned RF channel (such as via a port or socket ID/address, or other such mechanism) for IP packets intended for the subscriber premises/address that they serve.
In one embodiment, both IP data content and IP-packetized audio/video content is delivered to a user via one or more universal edge QAM devices 340. According to this embodiment, all of the content is delivered on DOCSIS channels, which are received by a premises gateway 360 or cable modem 312, and distributed to one or more respective client devices/UEs 306a, 306b, 306c in communication therewith.
In one implementation, the CM 312 shown in
In parallel with (or in place of) the foregoing delivery mechanisms, the MSO backbone 331 and other network components can be used to deliver packetized content to the user's mobile client device 306c via non-MSO networks. For example, so-called “OTT” content (whether tightly coupled or otherwise) can be ingested, stored within the MSO's network infrastructure, and delivered to the user's mobile device via an interposed ISP (Internet Service Provider) network and public Internet 311 (e.g., at a local coffee shop, via a Wi-Fi AP connected to the coffee shop's ISP via a modem, with the user's IP-enabled end-user device 306c utilizing an Internet browser or MSO/third-party app to stream content according to an HTTP-based approach).
Wireless Services Architecture—
It will be appreciated that while described primarily in terms of CBSD/xNBs 314 which also include EUTRAN (3GPP) compliant eNodeB and/or gNodeB functionality, the latter is by no means of requirement of practicing the broader features of the invention, and in fact non-3GPP signaling and protocols may be utilized to support the various functions described herein. Due to its current ubiquity (especially in mobile devices or UEs), however, the extant 3GPP protocols provide a convenient and effective platform which can be leveraged for CBRS-based operation. Moreover, the various aspects of the disclosure are not limited to CBRS-based frequencies or infrastructure, but rather may conceivably be applied to any fixed architecture wireless system with multiple transmitters and receivers.
As shown, the illustrated embodiment of the architecture may generally include if desired an MSO-maintained CBRS controller 310 (which may be disposed remotely at the backend or headend of the system within the MSO domain as shown or at the served venue, or at an intermediary site), a CBRS Core/Neutral Host/Private Network Controller 413, an analytics engine 413 in data communication with the CBRS controller 310, an MSO-maintained subscriber and CBRS database 404, multiple CBSD/xNB access nodes 314 in data communication with the CBRS controller 310 (e.g., via existing network architectures including any wired or wireless connection), as well as any number of CPE/FWA devices 324 (with CPE radio path controller logic 333, as described in greater detail below), and other client devices 306c (smartphones, laptops, tablets, watches, vehicles, etc.). The CBSD/xNB 314 includes in the illustrated embodiment an embedded cable modem 312 used for communication with a corresponding CMTS 339 (
The presence of the MSO analytics engine 413 is optional for purposes of implementing the methodologies and functions described herein; certain analytics functions may be performed by the MSO analytics engine in support of efficient frequency management and utilization (including mitigation of session disruption due to e.g., SAS-initiated spectrum withdrawals), depending on inter alia, the degree of integration between the cognizant SAS/DP and the MSO desired. For example, in one implementation, certain sets of rules or priorities may be implemented at the MSO level via logic on the network controller 310 and analytics engine 413 which are not visible to the SAS (the SAS being largely agnostic to particulars of each MSO/MNO domain which it serves). As such, the SAS (or DP) may provide the MSO domain with higher-level instructions or directives on frequency/carrier use, reclamation, time periods, etc., and effectively let the MSO domain decide how to execute the process consistent with those instructions or directives. These instructions/directives may subsequently be utilized by the network controller 310 in evaluating and selecting frequency allocations for various CPE/FWA 324 during one or more TDD slots.
It will be appreciated that while a single network controller entity 310 is shown in
As shown in
The MSO network controller entity 310 (or entities) in the illustrated embodiment communicates with the DP 208 via an MSO CBRS access network 410, which may be a public internetwork (e.g., the Internet), private network, or other, depending on any security and reliability requirements mandated by the MSO and/or SAS.
As used herein, a CBRS “domain” is defined is any collection of CBSDs/xNBs 314 that are or need to be grouped for management, whether logically or by other scheme; e.g.: according to network operator (NO), according to a serving SAS vendor, by radio path propagation characteristics, and/or by physical disposition (e.g., within a large enterprise, venues, certain geographic area, etc.) In the embodiment of
As previously noted, one primary attribute of the disclosure relates to its ability to enhance coverage area and/or signal strength (and data rate). Specifically, to increase the amount of power received by the end user (CPE/FWA), the CPE/FWA must receive the signal from multiple CBSD/xNBs with multiple beams (including from multipath) transmitting at e.g., maximum allowable EIRP. Unlike traditional cellular systems and technologies where the BS (e.g., eNB) maintains control of interactions with the target UE, the control in the exemplary architectures of
Also notably, since the CPE/FWA 324 are all presumed to be fixed in location in the exemplary embodiments, and hence no traditional “mobility” aspects such as those involved with cellular systems need be accounted for, the functions (and functional allocation) between the various components of the network (e.g., RAN, core, etc.) and the client (here, the CPE/FWA) is more flexible in some regards. Since the physical/spatial relationships between the CPE/FWA (fixed) and CBSD/xNBs (also fixed) are known a priori, many calculations can be obviated, and barring any significant other changes in path metrics, one or more given CBSD/xNBs can be used to serve one or more given CPE/FWA devices with some degree of stability and reliability.
To the degree that a new CPE/FWA or CBSD/xNB is installed within the architecture (e.g., a new customer is added), this new installation may be characterized as to its RF propagation characteristics via install/startup testing, and the results of the characterization used to assign the new CPE/FWA to a “host” network controller 310 by virtue of the CBSD/xNBs with which the new CPE “best” communicates (as well as other factors such as controller loading).
In one implementation, the CPE/FWA radio path controller 333 and the network controller 310 are in data communication via “opportunistic” radio frequency channels between the CPE/FWA and one or more of the CBSD/xNBs 314; e.g., on the prevailing then-strongest strongest radio path(s). This data may optionally be encrypted or otherwise protected, and sent as one or more data bursts. The receiving CBSD/xNB routes the received burst data to the controller via its wireline (e.g., DOCSIS) backhaul.
In the exemplary configuration, each CBSD/xNB 314 has multiple independent beams per use of multiple spatially diverse antenna elements (see discussion of
In the exemplary configuration, the CPE/FWA 324 is also configured to generate a comprehensive report; i.e., including data on all the Tx beams that the CPE/FWA can “see” for each Rx beam it can form. For instance, a given CPE/FWA may be able to form four (4) individual receive beams (e.g., which are precoded into the CPE/FWA receiver radio head logic). Within a given one of those 4 receive beams, the CPE/FWA may be able to resolve multiple different transmit beams transmitted from various ones of the CBSD/xNB MIMO elements (whether from the same CBSD/xNB, or two or more different ones). Accordingly, the exemplary embodiment of the CPE/FWA reporting logic is configured to report on all the transmit beams it detects within each of its precoded received beams (resolved on a per-receive beam basis), so as to afford the cognizant network controller 310 as much data as possible on generation of an optimal CBSD/xNB, beam, and scheduling plan for maximal service performance for that reporting CPE/FWA.
The opportunistically selected CBSD/xNB receives the (optionally encrypted or protected) reporting data bursts, and forwards them to the network radio controller 310 to decrypt/decode if necessary, and to use the data from the reporting CPE 324 to select/prepare the transmission of the next data downlink on the selected CBSD/xNB(s) 314, and the selected independent beams (e.g., which may correspond to one of a plurality of predesignated beams formed from the MIMO array of the CBSD/xNB) within those selected CBSD/xNB(s).
It will be appreciated that the aforementioned reporting/selection may be used to schedule one or more TDD slots or time periods, whether contiguous in time or not. For example, in one variant, selection/scheduling for each time slot is evaluated independently in advance of the occurrence of the slot. In another variant, several consecutive time slots are used as the basis of scheduling (e.g., the reporting and scheduling is conducted once every n consecutive slots, and then repeated for the next n slots, and so forth until the reporting indicates that the selection of the CBSD/xNB(s) or associated individual beams is no longer valid or appropriate.
Moreover, the selection may also include frequency selection, such as where the reporting data includes data on multiple possible channels or carriers to be utilized. Stated differently, depending on the granularity of the reporting data, available carriers for allocation (e.g., CBRS band availability), and suitability of the different reported carriers, multiple options for selection/delivery may exist in terms of (i) CBSD/xNB(s) to be utilized; (ii) individual beams formed by the CBSD/xNB MIMO elements; (iii) individual receive beams that can be formed by the target CPE/FWA, and (iv) carrier(s) to utilize.
The centralized or network controller process 310 is in data communication with the associated centralized scheduler process (the two processes may be co-located, logically separated, or physically separated as desired) to prepare the selection/scheduling data for the reporting CPE/FWA 324, and transmit the data via the selected CBSD/xNBs and their selected independent beams on the selected carrier(s) and time slots.
As can be appreciated, there may be a significant number of different CPE/FWA 324 within the coverage areas of the CBSD/xNBs associated with a given network controller/schedule 310. Each CPE/FWA installation may have markedly different path dynamics and RF signal propagation associated with it, and as such the exemplary embodiment of the network architecture of
At each CPE/FWA 324, the radio path controller logic 333 utilizes a receive antenna steering algorithm to “steer” the receive antenna to the proper position to receive the signal from the contributing CBSD/xNBs (i.e., those selected by the network controller for the designated time slot(s)), and their selected independent beams. In one embodiment, the selection of the beam(s) is based on (i) first identifying each beam and measuring its SNR (and/or the beam signal quality), then (ii) sorting based on one or more of the SNR/quality, and (iii) then selecting the highest ranked or best alternatives in order. Note that in one variant, the maximum number of beams selected can be capped or limited, such as to ensure the best intersection or maximization of signal/user service quality vs. “cost” (whether actual cost or virtual/resource consumption cost to the network). For example, if a given target CPE/FWA has 10 identified CBSD/xNBs with 14 beams in total theoretically available, then the amount of transmitted power form those 10 CBSD/xNBs and the processing in the CPE/FWA 324 will far exceed the amount of throughput gain that would be achieved from say 4 contributing CBSD/xNBs with 6 total beams, and as such, the exemplary logic would determine the reduced incremental return in performance and select the appropriate level of participation/contribution by the candidate constituent CBSD/xNBs and beams (e.g., by selecting the top N CBSD/xNBs and n beams associated therewith).
At the receiving end, once the constituent CBSD/xNBs and beams are selected and the resource plan implemented, the target CPE/FWA radio receiver collects the transmitted signals from all the contributing independent beams and combines them coherently, based on phase and amplitude information from the CPE/FWA radio path controller entity 333. In one exemplary embodiment, the target CPE/FWA and contributing CBSD/xNBs coordinate to assist the CPE/FWA in optimal reception of the transmitted signals via the selected beams. In one implementation of this coordination process, the CPE/FWA 324 first will detect the signals from the corresponding CBSD/xNBs and their selected beams to be the most “proper” (i.e., most likely to correspond to the selected beams/CBSD/xNBs). Then, the CPE/FWA will report the amplitude and phase of each detected signal back to the corresponding transmitter. The CNSD/xNB controller logic then utilizes this reported amplitude and phase data to identify the amount of attenuation and phase shift from its transmit operation, as compared to the values reported by CPE/FWA (i.e., what the CBSD/xNB is transmitting versus what the CPE/FWA is actually receiving). Such differences may be caused by any number of factors, including multipath propagation, interfering transmitters, and the like. When the next data transmission occurs (or prior thereto), the transmitting CBSD/xNB will send with it the estimated amplitude attenuation and phase shift data determined based on the aforementioned comparison, which aids the target CPE/FWA in the compensation of the phase and amplitude for that subsequent TDD reception cycle or cycles.
It will be appreciated that while the exemplary embodiments described herein utilize a significant amount of logic within the network radio controller entity 310 for the selection and configuration of the various CBSD/xNBs, independent transmission beams, and time slot/frequency scheduling, at least a portion of these functions can be provided by the CPE/FWA radio path controller entity 333. Specifically, in one such variant, the CPE/FWA gathers signal data as previously described herein; i.e., relating to phase and amplitude of signals of a prescribed frequency from its various MIMO antenna elements. To the degree that the transmitting CBSD/xNB for each of the constituent signals (and the pre-existing beam used by that CBSD/xNB for the transmission of the signal(s), such as via a pre-designated beam “codebook” maintained by the CBSD/xNB), the CPE/FWA may be configured to catalog the signals it receives as being generated by a certain beam of a certain particular CBSD/xNB. As such, the CPE/FWA controller entity logic may evaluate these data to generate a selection or recommendation to be forwarded to the host network controller entity 310 (via the transmitting CBSD/xNB), thereby relieving the network controller of the decision/analyses. Scheduling of TDD slots and frequency assignments may still be required by the network controller entity 310 under this model, however, since any given CPE/FWA 324 does not have a “global” view of these parameters or their utilization by other entities such as other CBSD/xNB with which it may not be presently in communication.
It will also be appreciated that the foregoing architecture allows for a maximum quality RF data link between the constituent CBSD/xNB devices 314 and the CPE/FWA in both directions (i.e., DL and UL). Specifically, it is assumed for purposes of the analyses herein that both the forward and reverse (DL and UL) RF propagation paths between a given CBSD/xNB and CPE/FWA are wholly symmetric, and include identical path losses and link budgets As such, when selecting an optimal configuration of CBSD/xNBs, beams, and carriers, it can be assumed that the selection applies equally well for both DL and UL transmissions.
As shown in
Referring now to
Returning again to
In certain embodiments, each CPE/FWA 324 is located within and/or services one or more areas within one or more premises or venues (e.g., a building, room, or plaza for commercial, corporate, academic purposes, and/or any other space suitable for wireless access). Each CBSD/xNB 314 is configured to provide wireless network coverage within its coverage or connectivity range, subject to the EIRP limitations on Category B devices. For example, a venue may have a wireless modem installed within the entrance thereof for prospective customers to connect to, including those in the parking lot via inter alia, their LTE-enabled vehicles or personal devices of operators thereof. Notably, different classes of CPE/FWA 324 and CBSD/xNB 314 may be utilized. For instance, as previously noted, Category A devices can transmit up 30 dbm (1 watt), while Category B devices can transmit up to approximately 50 dbm, so the average area can vary widely (including depending on whether the multi-CBSD signal aggregation techniques described herein are used or not).
In one exemplary embodiment, one or more CBSDs/xNBs 314 may be directly controlled by the CBRS network controller 310 (i.e., via infrastructure of the MSO network), in conjunction with a local or “client” CBRS controller entity 333 disposed at the venue (e.g., as part of the CPE/FWA 324). The network controller 310 and its associated scheduler logic is implemented in this instance as a substantially unified logical and physical apparatus maintained within the MSO domain, such as at an MSO headend or hubsite, and in communication with the MNO core 411 via the MSO core function 412, although the scheduler and controller may also be logically and/or physically partitioned, including being at different locations. The network controller entity 310 also optionally includes algorithms to optimize operation of the “local” CBRS network maintained by the MSO, such as within a target venue or area, when supporting operation of the SAS/DP inter-cell handover procedures (e.g., where the MSO controller is tasked with generating a migration plan). These optimizations may include for example: (a) utilization of the environmental interference data from the CPE/FWA reporting to characterize the CBRS band(s) of the venue/area; (b) use the characterization of (a) to structure migration plans for frequency reassignment within the CBRS band(s) to the DP/SAS (e.g., which will mitigate interference or contention/collisions within the venue/are in those bands); (c) use the interference data and other relevant data (e.g., attendance, time, interference/signal as a function of CBSD/xNB location, etc.) to build historical profiles of spectrum use a function of various variables, including profiles particular to the venue/area itself, as described in co-owned U.S. patent application Ser. No. 15/612,630 filed Jun. 2, 2017 entitled “APPARATUS AND METHODS FOR PROVIDING WIRELESS SERVICE IN A VENUE,” and issued as U.S. Pat. No. 10,645,547 on May 5, 2020, incorporated herein by reference in its entirety; (d) utilize data regarding spectrum availability withdrawals (e.g., where DoD assets require use of a previously allocated band) and other events to generate predictive or speculative models on CBRS band utilization as a function of time, including in support of migration plans.
Generally speaking, for a given CPE/FWA 324 to receive and utilize signals from different CBSD/xNBs 314, it will need to be on the same frequency and same time slot (presuming a single radio transceiver in the CPE/FWA). In various implementations, different schemes may be used by the CPE/FWA 324 to receive and combine the portions of the data stream(s) being transmitted. As previously discussed, in one variant, the network controller 310 and CPE/FWA radio path controller 333 coordinate to prepare the CPE/FWA to listen to the different TDD time slots with different scrambling codes, since it is predetermined (from prior communication between the controllers) that the CPE/FWA can “see” those CBSD/xNB's (somewhat akin to the neighbor measurements in a handover process utilized by a 3GPP UE, which measures on each BS with its own scrambling code and return values). Once it is established that the fixed CPE/FWA 324 can detect for example CBSD/xNB 1, 3, 4, and 5, then in one variant, the radio path controller 333 of the given CPE/FWA will instruct the network controller 310 of the detected CBSD/xNBs (using the mechanisms described elsewhere herein) to transmit the data destined for this CPE/FWA on a common time slot from each of those CNSD/xNBs (i.e., force each CBSD/xNV 314 to “follow” that CPE/FWA).
Alternatively, the controller 310 may instruct the relevant CBSD/xNBs to transmit at different time slots (e.g., according to a prescribed schedule, which may accommodate other CPE/FWA time slots already scheduled, etc.), and instruct the CPE/FWA via DS communications via the CBSD/xNB(s) to tune for each of the different time slots to an assigned CBSD/xNB for that time slot (e.g., the CPE will “follow” the CBSD/xNBs). Note that this approach markedly distinguishes over normal operation of the 3GPP LTE technology, but can implemented if both transmitter(s) and receiver are fixed, and know in advance which TDD slot(s) to tune to for listening and communicating.
Alternatively, if the CPE/FWA has two or more (N) independent radio transceivers, it can listen to N different frequencies at different time slots, and hence the present disclosure contemplates both configurations and permutations thereof for the CPE/FWA 324; i.e., (i) a single transceiver monitoring a given frequency and TDD slot to receive all contributing or constituent CBSD/xNB signals; (ii) two or more transceivers each monitoring different frequencies and/or slots for generation of independent data streams, such as where a given CPE/FWA supports two independent users; and (iii) two or more transceivers each monitoring different frequencies and/or slots for generation of a common data stream (i.e., the outputs of each transceiver are in effect additive). However, such additional transceivers add additional cost to the CPE/FWA, and hence such implementations must be balanced against commercial considerations, especially if a single transceiver provides suitable levels of performance for CPE/FWA users.
In addition, the present disclosure contemplates two or more network-side controllers 310 which may coordinate, such as where the “best” or optimal beams received by the target CPE/FWA originate from CBSD/xNBs controlled by different network controllers. Specifically,
Methods—
Various methods and embodiments thereof for providing quasi-licensed (e.g., CBRS GAA) utilization for enhanced data rate and/or coverage area according to the present disclosure are now described with respect to
Referring now to
As discussed above, the CBSD/xNB(s) may interface with the host SAS directly, or via one or more interposed entities such as computerized domain proxy (DP) entities 408. For the purposes of illustration, it will be assumed that each of the registering CBSD/xNBs is/are associated with a common network operator (NO) domain, although this is not a requirement for practicing the method 600.
At step 602 of the method 600, the SAS assigns one or more RF carrier (s) to each of a number of CBSD/xNB (whether individually or as a group, such as via an assignment to the host network controller 310 cognizant over each of the CBSD/xNBs), based on for instance lack of DoD usage of those carriers in the prescribed area(s). This assignment may occur for example via CBRS-compliant protocol messages transmitted from the SAS or DP to the target CBSD/xNBs (or their network controller 310) indicating their frequency assignment(s) via wired or wireline communication (e.g., backhaul) between the target CBSD/xNBs or controller and the SAS/DP.
Per step 604, the CBSD/xNBs establish operation on the assigned carrier(s), including transmission or broadcast of signals detectable by CPE/FWA 324 operating in the area and within communication range. It is assumed for sake of this discussion that the CPE/FWA is within the communications range of at least two of the participating CBSD/xNBs 314, the latter operating at maximum Category B EIRP.
Per step 606, the CPE/FWA 324 invokes its discovery procedures (such as upon UE service request, according to a prescribed schedule, after CPE/FWA device re-initialization or installation, etc.) and begins its scan of one or more prescribed frequency bands to attempt to detect and identify eligible serving CBSD/xNBs 314. Per step 608, the CPE/FWA eventually detects the CBSD/xNBs operating on the SAS-assigned carriers from steps 602-604.
It will be appreciated that while the method 600 of
Per step 610, the CPE/FWA utilizes the detected RF signals as the basis of evaluation or characterization of the detected CBSD/xNBs 314, including evaluation for relative phase, amplitude, frequency, and/or other parameters of interest in identifying which signals may be eligible for subsequent utilization by the CPE/FWA in establishing DL and UL data communications.
At completion of the evaluation/characterization procedure, the CPE/FWA (specifically the controller logic 333) generates reporting data based thereon (step 612), which is stored locally and forwarded to the network controller entity 310 via the detected CBSD/xNBs per step 614, such as via the previously described burst-mode communications. In one implementation, the CPE/FWA will send the measurement report data to the CBSD/xNB via an established 3GPP control channel between the CPE/FWA and an initial CBSD/xNB with which the CPE/FWA has connected. For instance, the CPE/FWA may transmit the reporting data via a PUSCH channel with the initial CBSD/xNB, or a dedicated control channel, when in RRC Connected state. The cognizant network controller 310 is then provided the report data via the receiving CBSD/xNB for further analysis. This foregoing process can be accomplished at the beginning of session establishment for example, such a prior to multiple CBSD/xNBs transmitting their “contributive” signals to the target CPE/FWA. Note that since the CPE/FWA is fixed (as are the CBSD/xNBs), then the variability of the received signals will advantageously be slow and small, in contrast to mobility applications where significant changes may occur over short periods of time. Moreover, by having multiple contributing beams, any more rapid variations (due to whatever cause) will only presumably affect one of the several constituents.
Per step 616, the network radio controller/scheduler 310 receives the reports transmitted by the target CPE/FWA from the intervening CBSD/xNBs and decodes them as necessary (including any requisite decryption).
Per step 618, the network controller/scheduler 310 accesses the data within the reports to evaluate and identify the best candidate CBSD/xNBs and individual beams thereof for providing service to the target CPE/FWA for the prescribed future time period (e.g., n incipient TDD slots). In that the carriers may have already been assigned to given CBSD/xNBs (or there is only one available carrier), frequency selection may or may not be required as well. This identification may be based on e.g., (i) relative amplitude or signal strength of the different candidate CBSD/xNBs; (ii) relative amplitude or signal strength of the different individual beams of the candidate CBSD/xNBs; (iii) phase or timing differences between different beams (e.g., whether one candidate is a direct propagation path, or is a multipath propagation), (iv) signal stability (e.g., whether the measured properties of the candidate have persisted with acceptable stability/variation over m prior reports from that CPE/FWA), and other factors which may be available to the network controller/scheduler 310 in deciding on resource allocations.
As previously noted, in the exemplary embodiment, the aforementioned analyses and identification of “best” candidates by the network controller/scheduler 310 proceeds in parallel on an ongoing basis for multiple different served or target CPE/FWA within the cognizance of that host controller/scheduler. As such, the controller/scheduler is advantageously in position to also schedule resource block mapping for the multiple served CPE/FWA; i.e., TDD time slot scheduling. Somewhat akin to extant time-frequency resource mapping used in association with PRBs in OFDM systems, the exemplary network controller/scheduler logic of the present disclosure maps different CPE/FWA services to different time-CBSD/xNB-beam resources so as achieve one or more desired performance or other goals (e.g., achieve desired data rates to the served CPE/FWA, maintain QoS requirements, etc.).
Per step 620 of the method 600, the network controller/scheduler schedules data transmissions for the target CPE/FWA 324 into one or more data slots or frames of the TDD time-divided DL medium. The controller/scheduler may also schedule UL slots or frames for use by the CPE/FWA in communicating upstream data to the selected CBSD/xNBs. As noted above, since multiple CPE/FWA are being serviced at the same time, the scheduler routines are configured to accommodate different CPE/FWA (whether UL or DL) or different time (or time-frequency) resources, and may utilize different CBSD/xNBs and/or beams to service different ones of the CPE/FWA.
Per step 622, the network controller/scheduler 310 generates one or more data packets for transmission to the target CPE/FWA via the existing wireless path(s) between the detected CBSD/xNB s and the CPE/FWA (i.e., the same paths used for transmission of the upstream bursts of reporting data in step 614). These data packets include CBSD/xNB, beam, frequency, and TDD slot scheduling data for the target CPE/FWA to utilize at the prescribed slot(s) to either receive DL data (e.g., user data) from the participating CBSD/xNB(s), or transmit UL data thereto. The data packets may also be encrypted or otherwise protected against surreptitious use if desired. It will further be appreciated that one or more of these slots can be utilized for management or other “overhead” (i.e., non-user data), such as requests to the CPE/FWA for additional reporting, responses with the requested additional reporting data, future TDD slot and carrier scheduling data, and yet other types of data necessary to manage operation of the RF links between the CBSD/xNBs and the target CPE/FWA.
Per step 624, the target CPE/FWA receives the transmitted data packets and decodes/decrypts them as necessary via the radio path controller 333.
Per step 626, the decoded/decrypted data packets are evaluated to extract the requisite slot (scheduling), carrier, and beam assignment data for that CPE/FWA. As previously discussed, this data may relate to one or multiple TDD slots on the bearer medium. For instance, the scheduling data may indicate that the target CPE/FWA 324 utilize slots n through n+x (with n through n+x being repetitively occurring with a timing periodicity linked to the TDD frame structure) until directed otherwise; as such, the CPE/FWA may be granted a “static” slot assignment. Conversely, the slot assignment reflected within the transmitted data may only have a prescribed validity, which may be as few as one (future) slot.
In the exemplary embodiment, the decode and processing of the slot assignment data by the radio path controller logic 333 of the CPE/FWA must occur before the assigned slot is accessed to extract the user or other data transmitted in the assigned slot(s); note, however, that a “rolling start” approach may be used, such as where the decode and processing occurs in a JIT or just-in-time fashion so that a first assigned slot can be accessed before the controller logic 333 possesses the subsequent additional slot assignments needed to access all of the transmitted data.
Referring again to
CBRS Network Controller and Scheduler Apparatus—
As shown, the controller and scheduler 310 includes, inter alia, a processor apparatus or subsystem 702, a program memory module 704, mass storage 705, controller and scheduler logic modules 706, 716, and one or more network (e.g., SAS/DP, CBSD/xNB and LAN) interfaces 708 such GbE, WiMAN, fiber optic, 5G NR, or other medium.
At a high level, the exemplary controller/scheduler 310 of
In the exemplary embodiment, the processor 702 may include one or more of a digital signal processor, microprocessor, field-programmable gate array, or plurality of processing components mounted on one or more substrates. The processor 702 may also comprise an internal cache memory, and is in communication with a memory subsystem 804, which can comprise, e.g., SRAM, flash and/or SDRAM components. The memory subsystem may implement one or more of DMA type hardware, so as to facilitate data accesses as is well known in the art. The memory subsystem of the exemplary embodiment contains computer-executable instructions which are executable by the processor 702.
The processing apparatus 702 is configured to execute at least one computer program stored in memory 804 (e.g., a non-transitory computer readable storage medium); in the illustrated embodiment, such programs include logic to implement the CBSD/xNB and beam selection, and slot/carrier assignment logic described previously herein (see e.g.,
In some embodiments, the controller/scheduler logic programs 706, 716 utilize memory 704 or other storage 705 configured to temporarily hold a number of data reports or files before transmission via the backend interface(s) 710 to the MSO CBRS Core controller 412 (if present), as well as schedule/assignment data packets for transmission to the target CPE/FWA RPCs 333 (and the participating selected CBSD/xNBs 314). In other embodiments, application program interfaces (APIs) may also reside in the internal cache or other memory 704. Such APIs may include common network protocols or programming languages configured to enable communication between the CBSD/xNBs 314 and controller/scheduler 310, and the controller/scheduler 310 and other network entities. Data stored may also relate to prescribed 3GPP or CBRS reporting from the CPE/FWA radio heads and associated controller logic 333 (e.g., measurement report data, RSSI, phase/timing, beams, etc. for use in evaluating and selecting the best or optimized CBSD/xNBs and beams for the given target CPE/FWA 324.
CPE/FWA Apparatus—
At a high level, the CPE/FWA 324 includes two (2) sub-elements; i.e., an outdoor portion or radio head 324a, and an indoor or processing portion 324b. The radio head 324a in the exemplary embodiment includes each of the MIMO, MISO or other spatial diversity antenna elements (see
As indicated by its name, the CPE outdoor module or radio head 324 is typically disposed on a premises structure (e.g., rooftop, tower, utility pole, etc.) outdoors so as to minimize intervening interfering structures and RF signal attenuation as much as possible. The indoor unit 324b is in communication with the outdoor unit via e.g., interposed coaxial cable or other medium, and includes a CPE receiver unit 818 responsible for detecting and demodulating the received RF signals from different paths and combining them into one logical data stream (and converting to an appropriate protocol for distribution within the premises such as IEEE Std. 802.3 Ethernet packets. Combination of the received constituent signals (e.g., user data accessed via the assigned TDD slots and carrier(s) and beams) is accomplished in one embodiment via stream, CBSD/xNB and beam ID data (i.e., each stream of data from the different beam from a different contributing CBSD/xNB 314 will have unique ID data that can be used to temporally reconstruct the packet data associated with that stream in proper order and relation). In one variant, the cognizant network controller 310 (or a constituent CBSD/xNB) determines the division of a given input stream of user plane data across different beams, and this division can be reflected in data transmitted to the target CPE/FWA (e.g., as part of the command data previously described to instruct the CPE/FWA on slot timing, frequency and beams) for reconstruction of the user data into its original undivided form.
In the exemplary embodiment, the processor 802 may include one or more of a digital signal processor, microprocessor, field-programmable gate array, or plurality of processing components mounted on one or more substrates. The processor 802 may also comprise an internal cache memory, and is in communication with a memory subsystem 804, which can comprise, e.g., SRAM, flash and/or SDRAM components. The memory subsystem may implement one or more of DMA type hardware, so as to facilitate data accesses as is well known in the art. The memory subsystem of the exemplary embodiment contains computer-executable instructions which are executable by the processor 802.
The processor 802 is configured to execute at least one computer program stored in memory 904 (e.g., a non-transitory computer readable storage medium); in the illustrated embodiment, such programs include logic to implement the RPC or radio path controller 333 functionality described previously herein. Other embodiments may implement such functionality within dedicated hardware, logic, and/or specialized co-processors (not shown).
The CBRS stack of the CPE is implemented and controlled via the RPC controller process (logic) 806 of the CPE 324 such that CBSD/xNB-to-CPE communication protocols are used to enable the RF detection and reporting, and scheduling/asset assignment data receipt functionality previously described, including CPE functions such as (i) generation and transmission of periodic, on-demand or ad hoc RF detection reports; (ii) receipt of network controller-generated TDD slot, carrier, and CBSD/xNB and wireless beam assignments. The logic 806 may also manage other aspects of CPE/FWA operation, including “intelligent” monitoring and storage of data for use in e.g., historical characterizations of the various CBSD/xNB in radio range of the CPE/FWA in terms of signal strength, signal stability, azimuth, receive beam configuration, and the like.
It will be recognized that while certain aspects of the disclosure are described in terms of a specific sequence of steps of a method, these descriptions are only illustrative of the broader methods of the disclosure, and may be modified as required by the particular application. Certain steps may be rendered unnecessary or optional under certain circumstances. Additionally, certain steps or functionality may be added to the disclosed embodiments, or the order of performance of two or more steps permuted. All such variations are considered to be encompassed within the disclosure disclosed and claimed herein.
While the above detailed description has shown, described, and pointed out novel features of the disclosure as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the device or process illustrated may be made by those skilled in the art without departing from the disclosure. This description is in no way meant to be limiting, but rather should be taken as illustrative of the general principles of the disclosure. The scope of the disclosure should be determined with reference to the claims.
It will be further appreciated that while certain steps and aspects of the various methods and apparatus described herein may be performed by a human being, the disclosed aspects and individual methods and apparatus are generally computerized/computer-implemented. Computerized apparatus and methods are necessary to fully implement these aspects for any number of reasons including, without limitation, commercial viability, practicality, and even feasibility (i.e., certain steps/processes simply cannot be performed by a human being in any viable fashion).
1EUTRA Absolute RF Channel Number
This application claims is a continuation of, and claims priority to, co-owned and co-pending U.S. patent application Ser. No. 16/287,385 of the same title filed on Feb. 27, 2019, and issuing as U.S. Pat. No. 11,129,171 on Sep. 21, 2021, incorporated herein by reference in its entirety. Additionally, the subject matter of this application is generally related to co-owned and co-pending U.S. patent application Ser. No. 15/902,833 filed Feb. 22, 2018 and entitled “METHODS AND APPARATUS FOR ALLOCATION AND RECONCILIATION OF QUASI-LICENSED WIRELESS SPECTRUM ACROSS MULTIPLE ENTITIES,” which claims priority to U.S. Provisional Patent Application Ser. No. 62/617,549 filed Jan. 15, 2018 of the same title, as well as U.S. patent application Ser. No. 15/677,940 filed Aug. 15, 2017 and entitled “METHODS AND APPARATUS FOR DYNAMIC CONTROL AND UTILIZATION OF QUASI-LICENSED WIRELESS SPECTRUM”, as well as Ser. No. 15/785,283 filed Oct. 16, 2017 and entitled “METHODS AND APPARATUS FOR COORDINATED UTILIZATION OF QUASI-LICENSED WIRELESS SPECTRUM,” and Ser. No. 15/814,133 filed Nov. 15, 2017 and entitled “METHODS AND APPARATUS FOR UTILIZATION OF QUASI-LICENSED WIRELESS SPECTRUM FOR IOT (INTERNET-OF-THINGS) SERVICES,” each of the foregoing incorporated herein by reference in its entirety. The subject matter of this application is also generally related to the subject matter of U.S. patent application Ser. No. 15/986,614 entitled “METHODS AND APPARATUS FOR INTRA-CELL AND INTER-FREQUENCY MOBILITY OPTIMIZATION AND MITIGATION OF SESSION DISRUPTION IN A QUASI-LICENSED WIRELESS SYSTEM” filed May 22, 2018, and Provisional Application Ser. No. 62/799,454 filed Jan. 31, 2019 and entitled “METHODS AND APPARATUS FOR FREQUENCY TRANSITION MANAGEMENT IN A QUASI-LICENSED WIRELESS SYSTEM,” each incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3999051 | Petschauer | Dec 1976 | A |
4339657 | Larson et al. | Jul 1982 | A |
4574364 | Tabata et al. | Mar 1986 | A |
4604751 | Aichelmann, Jr. et al. | Aug 1986 | A |
4692757 | Tsuhara et al. | Sep 1987 | A |
4710761 | Kapur et al. | Dec 1987 | A |
4845644 | Anthias et al. | Jul 1989 | A |
4890098 | Dawes et al. | Dec 1989 | A |
4890257 | Anthias et al. | Dec 1989 | A |
5113517 | Beard et al. | May 1992 | A |
5121475 | Child et al. | Jun 1992 | A |
5129055 | Yamazaki et al. | Jul 1992 | A |
5155731 | Yamaguchi | Oct 1992 | A |
5175813 | Golding et al. | Dec 1992 | A |
5245615 | Treu | Sep 1993 | A |
5276437 | Horvath et al. | Jan 1994 | A |
5408602 | Giokas et al. | Apr 1995 | A |
5463768 | Cuddihy et al. | Oct 1995 | A |
5487143 | Southgate | Jan 1996 | A |
5502839 | Kolnick | Mar 1996 | A |
5522025 | Rosenstein | May 1996 | A |
5564002 | Brown | Oct 1996 | A |
5581686 | Koppolu et al. | Dec 1996 | A |
5596702 | Stucka et al. | Jan 1997 | A |
5621879 | Kohda | Apr 1997 | A |
5664046 | Abecassis | Sep 1997 | A |
5673403 | Brown et al. | Sep 1997 | A |
5675755 | Trueblood | Oct 1997 | A |
5692142 | Craycroft et al. | Nov 1997 | A |
5734380 | Adams et al. | Mar 1998 | A |
5764230 | Baradel et al. | Jun 1998 | A |
5790779 | Ben-Natan et al. | Aug 1998 | A |
5831609 | London et al. | Nov 1998 | A |
5850544 | Parvathaneny et al. | Dec 1998 | A |
5856826 | Craycroft | Jan 1999 | A |
5862316 | Hagersten et al. | Jan 1999 | A |
5867160 | Kraft, IV et al. | Feb 1999 | A |
5874960 | Mairs et al. | Feb 1999 | A |
5877755 | Hellhake | Mar 1999 | A |
5895472 | Brodsky et al. | Apr 1999 | A |
5973702 | Orton et al. | Oct 1999 | A |
5991308 | Fuhrmann et al. | Nov 1999 | A |
5995103 | Ashe | Nov 1999 | A |
5995499 | Hottinen et al. | Nov 1999 | A |
6031530 | Trueblood | Feb 2000 | A |
6092107 | Eleftheriadis et al. | Jul 2000 | A |
6154648 | Comer | Nov 2000 | A |
6160872 | Karnowski et al. | Dec 2000 | A |
6169725 | Gibbs et al. | Jan 2001 | B1 |
6181713 | Patki et al. | Jan 2001 | B1 |
6192038 | Wallerius | Feb 2001 | B1 |
6192403 | Jong et al. | Feb 2001 | B1 |
6216152 | Wong et al. | Apr 2001 | B1 |
6219044 | Ansberry et al. | Apr 2001 | B1 |
6233611 | Ludtke et al. | May 2001 | B1 |
6240555 | Shoff et al. | May 2001 | B1 |
6252889 | Patki et al. | Jun 2001 | B1 |
6313880 | Smyers et al. | Nov 2001 | B1 |
6317881 | Shah-Nazaroff et al. | Nov 2001 | B1 |
6330010 | Nason et al. | Dec 2001 | B1 |
6336122 | Lee et al. | Jan 2002 | B1 |
6337717 | Nason et al. | Jan 2002 | B1 |
6356560 | Venters et al. | Mar 2002 | B1 |
6366876 | Looney | Apr 2002 | B1 |
6381710 | Kim | Apr 2002 | B1 |
6381735 | Hunt | Apr 2002 | B1 |
6397262 | Hayden et al. | May 2002 | B1 |
6430570 | Judge et al. | Aug 2002 | B1 |
6456892 | Dara-Abrams et al. | Sep 2002 | B1 |
6460141 | Olden | Oct 2002 | B1 |
6469742 | Trovato, I et al. | Oct 2002 | B1 |
6496864 | McCartney | Dec 2002 | B1 |
6505298 | Cerbini et al. | Jan 2003 | B1 |
6510152 | Gerszberg et al. | Jan 2003 | B1 |
6529965 | Thomsen et al. | Mar 2003 | B1 |
6532552 | Benignus et al. | Mar 2003 | B1 |
6542500 | Gerszberg et al. | Apr 2003 | B1 |
6546016 | Gerszberg et al. | Apr 2003 | B1 |
6546419 | Humpleman et al. | Apr 2003 | B1 |
6600958 | Zondag | Jul 2003 | B1 |
6606711 | Andrews et al. | Aug 2003 | B2 |
6625274 | Hoffpauir et al. | Sep 2003 | B1 |
6630943 | Nason et al. | Oct 2003 | B1 |
6631350 | Celi, Jr. et al. | Oct 2003 | B1 |
6631403 | Deutsch et al. | Oct 2003 | B1 |
6651248 | Alpern | Nov 2003 | B1 |
6654722 | Aldous et al. | Nov 2003 | B1 |
6687735 | Logston et al. | Feb 2004 | B1 |
6714534 | Gerszberg et al. | Mar 2004 | B1 |
6750879 | Sandberg | Jun 2004 | B2 |
6762796 | Nakajoh et al. | Jul 2004 | B1 |
6762798 | Messer et al. | Jul 2004 | B1 |
6771953 | Chow et al. | Aug 2004 | B1 |
6782262 | Lundborg | Aug 2004 | B1 |
6802056 | Chaiken et al. | Oct 2004 | B1 |
6847649 | Sutanto | Jan 2005 | B2 |
6850533 | Gerszberg et al. | Feb 2005 | B2 |
6856330 | Chew et al. | Feb 2005 | B1 |
6873877 | Tobias et al. | Mar 2005 | B1 |
6895573 | Norgaard et al. | May 2005 | B2 |
6938254 | Mathur et al. | Aug 2005 | B1 |
6941341 | Logston et al. | Sep 2005 | B2 |
6944185 | Patki et al. | Sep 2005 | B2 |
6948175 | Fong et al. | Sep 2005 | B1 |
6948183 | Peterka | Sep 2005 | B1 |
6952836 | Donlan et al. | Oct 2005 | B1 |
6968364 | Wong et al. | Nov 2005 | B1 |
6973050 | Birdwell et al. | Dec 2005 | B2 |
6996808 | Niewiadomski et al. | Feb 2006 | B1 |
7010796 | Strom et al. | Mar 2006 | B1 |
7039633 | Dey et al. | May 2006 | B1 |
7055146 | Durr et al. | May 2006 | B1 |
7058964 | Khandelwal et al. | Jun 2006 | B2 |
7068597 | Fijolek et al. | Jun 2006 | B1 |
7080356 | Atallah et al. | Jul 2006 | B2 |
7096459 | Keller et al. | Aug 2006 | B2 |
7111072 | Matthews et al. | Sep 2006 | B1 |
7137106 | Herman et al. | Nov 2006 | B2 |
7146305 | Van Der Made et al. | Dec 2006 | B2 |
7158993 | Schwabe | Jan 2007 | B1 |
7181725 | Posegga et al. | Feb 2007 | B1 |
7194249 | Phillips et al. | Mar 2007 | B2 |
7203869 | Gwak | Apr 2007 | B2 |
7213213 | Sekiguchi et al. | May 2007 | B2 |
7216170 | Ludvig et al. | May 2007 | B2 |
7240104 | Gautney | Jul 2007 | B2 |
7266726 | Ladd et al. | Sep 2007 | B1 |
7290253 | Agesen | Oct 2007 | B1 |
7316003 | Dulepet et al. | Jan 2008 | B1 |
7328333 | Kawano et al. | Feb 2008 | B2 |
7370322 | Matena et al. | May 2008 | B1 |
7394473 | Asai | Jul 2008 | B2 |
7401324 | Dmitriev | Jul 2008 | B1 |
7478341 | Dove | Jan 2009 | B2 |
7487534 | Peterka et al. | Feb 2009 | B1 |
7546602 | Hejlsberg et al. | Jun 2009 | B2 |
7552450 | Evans et al. | Jun 2009 | B1 |
7698606 | Ladd et al. | Apr 2010 | B2 |
7814544 | Wilhelm | Oct 2010 | B1 |
7945902 | Sahoo | May 2011 | B1 |
8024607 | Ladd et al. | Sep 2011 | B2 |
8042113 | Clohessy et al. | Oct 2011 | B2 |
8046636 | Ladd et al. | Oct 2011 | B2 |
8189465 | Pawar et al. | May 2012 | B1 |
8302111 | Ladd et al. | Oct 2012 | B2 |
8321723 | Ladd et al. | Nov 2012 | B2 |
8799723 | Ladd et al. | Aug 2014 | B2 |
8997136 | Brooks et al. | Mar 2015 | B2 |
9166891 | Hu et al. | Oct 2015 | B2 |
9258809 | Liao et al. | Feb 2016 | B2 |
9386496 | Gupta et al. | Jul 2016 | B2 |
9413651 | Tsym et al. | Aug 2016 | B2 |
9526056 | Tomici et al. | Dec 2016 | B2 |
9564932 | Pack et al. | Feb 2017 | B1 |
9591491 | Tapia et al. | Mar 2017 | B2 |
9612816 | Choi et al. | Apr 2017 | B2 |
9654149 | Piipponen et al. | May 2017 | B2 |
9699663 | Jovancevic | Jul 2017 | B1 |
9730135 | Rahman | Aug 2017 | B1 |
9730143 | Gormley et al. | Aug 2017 | B2 |
9769692 | Freda et al. | Sep 2017 | B2 |
9807778 | Ma et al. | Oct 2017 | B2 |
9813148 | Syed et al. | Nov 2017 | B2 |
9887864 | Han et al. | Feb 2018 | B1 |
10098568 | Gazdzinski | Oct 2018 | B2 |
10135730 | Chou | Nov 2018 | B2 |
10340976 | Kakinada et al. | Jul 2019 | B2 |
10405192 | Kakinada et al. | Sep 2019 | B2 |
10484876 | Shah et al. | Nov 2019 | B2 |
10492204 | Kakinada et al. | Nov 2019 | B2 |
10498611 | Kloberdans et al. | Dec 2019 | B1 |
10499409 | Shattil | Dec 2019 | B2 |
10506456 | Lou et al. | Dec 2019 | B2 |
10531309 | Li et al. | Jan 2020 | B1 |
10536859 | Gunasekara et al. | Jan 2020 | B2 |
10680883 | Hall et al. | Jun 2020 | B2 |
10805562 | Nakamura et al. | Oct 2020 | B2 |
11026205 | Hmimy et al. | Jun 2021 | B2 |
11219026 | Kakinada et al. | Jan 2022 | B2 |
11363466 | Khalid et al. | Jun 2022 | B2 |
20010007138 | Iida et al. | Jul 2001 | A1 |
20010049691 | Asazu | Dec 2001 | A1 |
20020009149 | Rodriguez et al. | Jan 2002 | A1 |
20020032754 | Logston et al. | Mar 2002 | A1 |
20020034193 | Patki et al. | Mar 2002 | A1 |
20020038358 | Sweatt, III et al. | Mar 2002 | A1 |
20020040470 | Guthrie et al. | Apr 2002 | A1 |
20020044567 | Voit et al. | Apr 2002 | A1 |
20020044569 | Kwok et al. | Apr 2002 | A1 |
20020049978 | Rodriguez et al. | Apr 2002 | A1 |
20020052977 | Stall | May 2002 | A1 |
20020073244 | Davies et al. | Jun 2002 | A1 |
20020080038 | Smith | Jun 2002 | A1 |
20020083214 | Heisig et al. | Jun 2002 | A1 |
20020112090 | Bennett et al. | Aug 2002 | A1 |
20020122040 | Noyle | Sep 2002 | A1 |
20020126144 | Chenede | Sep 2002 | A1 |
20020126748 | Rafie et al. | Sep 2002 | A1 |
20020144193 | Hicks et al. | Oct 2002 | A1 |
20020170033 | Chen | Nov 2002 | A1 |
20020174430 | Ellis et al. | Nov 2002 | A1 |
20020174433 | Baumgartner et al. | Nov 2002 | A1 |
20020191028 | Senechalle et al. | Dec 2002 | A1 |
20020198868 | Kinzhalin, I et al. | Dec 2002 | A1 |
20030005454 | Rodriguez et al. | Jan 2003 | A1 |
20030009765 | Linden et al. | Jan 2003 | A1 |
20030009769 | Hensgen et al. | Jan 2003 | A1 |
20030037331 | Lee | Feb 2003 | A1 |
20030041291 | Hashem | Feb 2003 | A1 |
20030056155 | Austen et al. | Mar 2003 | A1 |
20030056217 | Brooks | Mar 2003 | A1 |
20030061240 | McCann et al. | Mar 2003 | A1 |
20030081664 | Lu et al. | May 2003 | A1 |
20030105995 | Schroath et al. | Jun 2003 | A1 |
20030107604 | Ording | Jun 2003 | A1 |
20030110331 | Kawano et al. | Jun 2003 | A1 |
20030110511 | Schutte et al. | Jun 2003 | A1 |
20030121055 | Kaminski et al. | Jun 2003 | A1 |
20030122879 | Inui et al. | Jul 2003 | A1 |
20030140285 | Wilkie | Jul 2003 | A1 |
20030146826 | Viana et al. | Aug 2003 | A1 |
20030158906 | Hayes | Aug 2003 | A1 |
20030163811 | Luehrs | Aug 2003 | A1 |
20030181241 | Oakes et al. | Sep 2003 | A1 |
20030188320 | Shing | Oct 2003 | A1 |
20030204848 | Cheng et al. | Oct 2003 | A1 |
20030217197 | Chan et al. | Nov 2003 | A1 |
20030217365 | Caputo | Nov 2003 | A1 |
20030229899 | Thompson et al. | Dec 2003 | A1 |
20030229900 | Reisman | Dec 2003 | A1 |
20030231855 | Gates et al. | Dec 2003 | A1 |
20040001021 | Choo et al. | Jan 2004 | A1 |
20040003400 | Carney et al. | Jan 2004 | A1 |
20040034697 | Fairhurst et al. | Feb 2004 | A1 |
20040040041 | Crawford | Feb 2004 | A1 |
20040073944 | Booth | Apr 2004 | A1 |
20040078695 | Bowers et al. | Apr 2004 | A1 |
20040078829 | Patel et al. | Apr 2004 | A1 |
20040083464 | Cwalina et al. | Apr 2004 | A1 |
20040098730 | Foote et al. | May 2004 | A1 |
20040103434 | Ellis | May 2004 | A1 |
20040107451 | Khandelwal et al. | Jun 2004 | A1 |
20040143836 | McCormack et al. | Jul 2004 | A1 |
20040158829 | Beresin et al. | Aug 2004 | A1 |
20040181811 | Rakib | Sep 2004 | A1 |
20040186603 | Sanford et al. | Sep 2004 | A1 |
20040187150 | Gonder et al. | Sep 2004 | A1 |
20040187152 | Francis et al. | Sep 2004 | A1 |
20040196834 | Ofek et al. | Oct 2004 | A1 |
20040199903 | Iizuka | Oct 2004 | A1 |
20040205339 | Medin | Oct 2004 | A1 |
20040218736 | Fang et al. | Nov 2004 | A1 |
20040230754 | Gumm et al. | Nov 2004 | A1 |
20040236759 | Young | Nov 2004 | A1 |
20040261092 | Addington et al. | Dec 2004 | A1 |
20040261114 | Addington et al. | Dec 2004 | A1 |
20040261116 | McKeown et al. | Dec 2004 | A1 |
20040261126 | Addington et al. | Dec 2004 | A1 |
20050015799 | Park | Jan 2005 | A1 |
20050021766 | McKeowen et al. | Jan 2005 | A1 |
20050027851 | McKeown et al. | Feb 2005 | A1 |
20050071818 | Reissman et al. | Mar 2005 | A1 |
20050114900 | Ladd et al. | May 2005 | A1 |
20050120385 | Stalker | Jun 2005 | A1 |
20050132346 | Tsantilis | Jun 2005 | A1 |
20050160045 | Watanabe et al. | Jul 2005 | A1 |
20050162267 | Khandelwal et al. | Jul 2005 | A1 |
20050177832 | Chew | Aug 2005 | A1 |
20050273762 | Lesh | Dec 2005 | A1 |
20060005183 | Minear et al. | Jan 2006 | A1 |
20060020950 | Ladd et al. | Jan 2006 | A1 |
20060036750 | Ladd et al. | Feb 2006 | A1 |
20060047957 | Helms et al. | Mar 2006 | A1 |
20060070051 | Kuck et al. | Mar 2006 | A1 |
20060129947 | Hamzy et al. | Jun 2006 | A1 |
20060130107 | Gonder et al. | Jun 2006 | A1 |
20060130113 | Carlucci et al. | Jun 2006 | A1 |
20060143492 | Leduc et al. | Jun 2006 | A1 |
20060161946 | Shin | Jul 2006 | A1 |
20060188004 | Kizu et al. | Aug 2006 | A1 |
20070094345 | Rabbers et al. | Apr 2007 | A1 |
20070207771 | Bowser et al. | Sep 2007 | A1 |
20070217436 | Markley et al. | Sep 2007 | A1 |
20070261090 | Miller et al. | Nov 2007 | A1 |
20070288897 | Branda et al. | Dec 2007 | A1 |
20070294673 | Guerrera et al. | Dec 2007 | A1 |
20080010506 | Tabei et al. | Jan 2008 | A1 |
20080097913 | Dicks et al. | Apr 2008 | A1 |
20080098212 | Helms et al. | Apr 2008 | A1 |
20080126540 | Zeng et al. | May 2008 | A1 |
20080178153 | Fox et al. | Jul 2008 | A1 |
20080196011 | Bhandari et al. | Aug 2008 | A1 |
20080220786 | Beacham | Sep 2008 | A1 |
20080220788 | Stanwood et al. | Sep 2008 | A1 |
20080256510 | Auerbach | Oct 2008 | A1 |
20080288930 | Chen et al. | Nov 2008 | A1 |
20090034443 | Walker et al. | Feb 2009 | A1 |
20090129273 | Zou | May 2009 | A1 |
20090222867 | Munetsugu | Sep 2009 | A1 |
20090253438 | Chater-Lea et al. | Oct 2009 | A1 |
20090323516 | Bhagwan et al. | Dec 2009 | A1 |
20100035610 | Narang et al. | Feb 2010 | A1 |
20100094956 | Zuckerman et al. | Apr 2010 | A1 |
20100128608 | Zou et al. | May 2010 | A1 |
20100234042 | Chan et al. | Sep 2010 | A1 |
20100262722 | Vauthier et al. | Oct 2010 | A1 |
20100309806 | Wu et al. | Dec 2010 | A1 |
20110014924 | Hwang | Jan 2011 | A1 |
20110124335 | Martin et al. | May 2011 | A1 |
20110292970 | Lansford et al. | Dec 2011 | A1 |
20110314462 | Clark et al. | Dec 2011 | A1 |
20130007413 | Thomson et al. | Jan 2013 | A1 |
20130109323 | Ruutu et al. | May 2013 | A1 |
20130122903 | Farnsworth et al. | May 2013 | A1 |
20130201316 | Binder et al. | Aug 2013 | A1 |
20130247027 | Shah et al. | Sep 2013 | A1 |
20130281092 | Gassend | Oct 2013 | A1 |
20130288675 | Gassend | Oct 2013 | A1 |
20130303145 | Harrang et al. | Nov 2013 | A1 |
20130315124 | Rapaport | Nov 2013 | A1 |
20130336175 | Um et al. | Dec 2013 | A1 |
20140035182 | Boyer et al. | Feb 2014 | A1 |
20140106672 | Jeon et al. | Apr 2014 | A1 |
20140194068 | Coppage et al. | Jul 2014 | A1 |
20140241187 | Barkay et al. | Aug 2014 | A1 |
20140269526 | Mitola, III | Sep 2014 | A1 |
20140282704 | Tumuluru et al. | Sep 2014 | A1 |
20140282802 | Bowler et al. | Sep 2014 | A1 |
20140308986 | Yang et al. | Oct 2014 | A1 |
20140354442 | Maity et al. | Dec 2014 | A1 |
20150052512 | Kostadinov et al. | Feb 2015 | A1 |
20150055623 | Li et al. | Feb 2015 | A1 |
20150058861 | Zheng et al. | Feb 2015 | A1 |
20150071239 | Zhang et al. | Mar 2015 | A1 |
20150134970 | Jang et al. | May 2015 | A1 |
20150156095 | Lu | Jun 2015 | A1 |
20150208262 | Siomina | Jul 2015 | A1 |
20150280847 | Somasundaram et al. | Oct 2015 | A1 |
20150334664 | Sawai et al. | Nov 2015 | A1 |
20150341753 | Chen et al. | Nov 2015 | A1 |
20150373741 | Yerramalli et al. | Dec 2015 | A1 |
20160007138 | Palanisamy et al. | Jan 2016 | A1 |
20160007147 | Zhang et al. | Jan 2016 | A1 |
20160073259 | Lee et al. | Mar 2016 | A1 |
20160127185 | McAllister | May 2016 | A1 |
20160128001 | Tsuda | May 2016 | A1 |
20160149622 | Ma | May 2016 | A1 |
20160150415 | Laneman et al. | May 2016 | A1 |
20160165066 | Yang et al. | Jun 2016 | A1 |
20160182134 | Kol et al. | Jun 2016 | A1 |
20160212031 | Jain et al. | Jul 2016 | A1 |
20160234746 | Gopal et al. | Aug 2016 | A1 |
20160330743 | Das et al. | Nov 2016 | A1 |
20160381600 | Aksu | Dec 2016 | A1 |
20170026203 | Thomas et al. | Jan 2017 | A1 |
20170094527 | Shattil et al. | Mar 2017 | A1 |
20170111846 | Kang | Apr 2017 | A1 |
20170140073 | Chakraborty et al. | May 2017 | A1 |
20170149937 | Ren et al. | May 2017 | A1 |
20170155703 | Hao et al. | Jun 2017 | A1 |
20170164326 | Worrall | Jun 2017 | A1 |
20170188241 | Mueck et al. | Jun 2017 | A1 |
20170208540 | Egner et al. | Jul 2017 | A1 |
20170237767 | George et al. | Aug 2017 | A1 |
20170257750 | Gunasekara et al. | Sep 2017 | A1 |
20170272955 | Sadek et al. | Sep 2017 | A1 |
20170295497 | MacMullan et al. | Oct 2017 | A1 |
20170295578 | Khoshnevisan et al. | Oct 2017 | A1 |
20170303138 | Barmettler et al. | Oct 2017 | A1 |
20170311290 | Adjakple et al. | Oct 2017 | A1 |
20170316233 | Kherani et al. | Nov 2017 | A1 |
20170318472 | Yu et al. | Nov 2017 | A1 |
20170359731 | Soldati | Dec 2017 | A1 |
20180007587 | Feldman | Jan 2018 | A1 |
20180049036 | Sethi et al. | Feb 2018 | A1 |
20180063736 | Sadeghi et al. | Mar 2018 | A1 |
20180063758 | Velu | Mar 2018 | A1 |
20180115903 | Badic et al. | Apr 2018 | A1 |
20180124613 | Kang et al. | May 2018 | A1 |
20180132112 | Khoshnevisan et al. | May 2018 | A1 |
20180146058 | Somayazulu et al. | May 2018 | A1 |
20180146408 | Meylan et al. | May 2018 | A1 |
20180167948 | Egner et al. | Jun 2018 | A1 |
20180199214 | Shen | Jul 2018 | A1 |
20180234403 | Casella et al. | Aug 2018 | A1 |
20180235007 | Gou et al. | Aug 2018 | A1 |
20180242184 | Yerramalli et al. | Aug 2018 | A1 |
20180255575 | Yu et al. | Sep 2018 | A1 |
20180255576 | Bhorkar et al. | Sep 2018 | A1 |
20180279212 | Malik et al. | Sep 2018 | A1 |
20180316563 | Kumar et al. | Nov 2018 | A1 |
20180323938 | Takeda et al. | Nov 2018 | A1 |
20180343567 | Ashrafi | Nov 2018 | A1 |
20180351665 | Fukuta et al. | Dec 2018 | A1 |
20180352386 | Gunasekara et al. | Dec 2018 | A1 |
20180375887 | Dezent et al. | Dec 2018 | A1 |
20190021012 | Beck et al. | Jan 2019 | A1 |
20190028182 | Smyth et al. | Jan 2019 | A1 |
20190037480 | Sun et al. | Jan 2019 | A1 |
20190044614 | Khoshnevisan et al. | Feb 2019 | A1 |
20190081690 | Mueck et al. | Mar 2019 | A1 |
20190082447 | Harsha et al. | Mar 2019 | A1 |
20190098510 | Guo et al. | Mar 2019 | A1 |
20190098632 | Martin et al. | Mar 2019 | A1 |
20190104551 | Deenoo et al. | Apr 2019 | A1 |
20190115950 | Kakinada et al. | Apr 2019 | A1 |
20190150182 | Koorapaty et al. | May 2019 | A1 |
20190167948 | Klocke et al. | Jun 2019 | A1 |
20190182895 | Di Girolamo et al. | Jun 2019 | A1 |
20190222266 | Cui et al. | Jul 2019 | A1 |
20190230613 | Kim et al. | Jul 2019 | A1 |
20190239190 | Patel et al. | Aug 2019 | A1 |
20190296789 | Yu et al. | Sep 2019 | A1 |
20190319814 | Das | Oct 2019 | A1 |
20190320490 | Liu et al. | Oct 2019 | A1 |
20190349848 | Bali | Nov 2019 | A1 |
20190364435 | Ahmavaara | Nov 2019 | A1 |
20190364565 | Hmimy et al. | Nov 2019 | A1 |
20190373615 | Cimpu et al. | Dec 2019 | A1 |
20190393926 | Kakinada et al. | Dec 2019 | A1 |
20190394790 | Damnjanovic et al. | Dec 2019 | A1 |
20200021689 | Sultana et al. | Jan 2020 | A1 |
20200025629 | Zinger et al. | Jan 2020 | A1 |
20200053545 | Wong et al. | Feb 2020 | A1 |
20200059795 | Kakinada et al. | Feb 2020 | A1 |
20200083892 | Kundu et al. | Mar 2020 | A1 |
20200084759 | Liu et al. | Mar 2020 | A1 |
20200146058 | Xu et al. | May 2020 | A1 |
20200187150 | Eisner | Jun 2020 | A1 |
20200221392 | Xue et al. | Jul 2020 | A1 |
20200221518 | Schmitz et al. | Jul 2020 | A1 |
20200228993 | Don | Jul 2020 | A1 |
20200252933 | Hmimy et al. | Aug 2020 | A1 |
20200275457 | Hmimy | Aug 2020 | A1 |
20200344515 | Wong et al. | Oct 2020 | A1 |
20210014693 | Syed et al. | Jan 2021 | A1 |
20210026711 | Ovadia et al. | Jan 2021 | A1 |
20210051653 | Park et al. | Feb 2021 | A1 |
20210076424 | Mukherjee et al. | Mar 2021 | A1 |
20210105633 | Vaidya et al. | Apr 2021 | A1 |
20210126662 | Solichien | Apr 2021 | A1 |
20210127423 | Park et al. | Apr 2021 | A1 |
20210136838 | Khalid et al. | May 2021 | A1 |
20210204322 | Lou et al. | Jul 2021 | A1 |
20210219143 | Khalid et al. | Jul 2021 | A1 |
20210219303 | Khalid et al. | Jul 2021 | A1 |
20210235495 | Xu et al. | Jul 2021 | A1 |
20210266914 | Yoo et al. | Aug 2021 | A1 |
20210274499 | Hmimy et al. | Sep 2021 | A1 |
20210274506 | Raghavan et al. | Sep 2021 | A1 |
20210376905 | Zhou et al. | Dec 2021 | A1 |
20220007200 | Volkan et al. | Jan 2022 | A1 |
20220007374 | Sevindik et al. | Jan 2022 | A1 |
20220167176 | Khalid | May 2022 | A1 |
20220183093 | Sevindik et al. | Jun 2022 | A1 |
20220191675 | Mukherjee | Jun 2022 | A1 |
Number | Date | Country |
---|---|---|
1046259 | Oct 2000 | EP |
2294860 | Apr 2017 | EP |
2585394 | Jan 2021 | GB |
WO-0024192 | Apr 2000 | WO |
WO-0213039 | Feb 2002 | WO |
WO-2013020599 | Feb 2013 | WO |
WO-2017130494 | Aug 2017 | WO |
WO-2017186294 | Nov 2017 | WO |
Entry |
---|
Palola M., et al., “Field Trial of the 3.5 GHz Citizens Broadband Radio ServiceGoverned by a Spectrum Access System (SAS),” IEEE International Symposium on Dynamic Spectrum Access Networks, 2017, 9 pages. |
3GPP, “Technical Specification—3rd Generation Partnership Project, Technical Specification Group Services and System Aspects, Telecommunication Management, Charging management, Proximity-based services (ProSe) charging (Release 14),” TS 32.277, V14.0.0, Sep. 2016, 91 pages. |
3GPP TR 36.746 V15.0.0 (Sep. 2017), “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study On Further Enhancements to LTE Device to Device (D2D), User Equipment (UE) to Network Relays for Internet of Things (IoT) and Wearables; (Release 15)”, 56 pages. |
3GPP., TS 23.303 V12.0.0 (Feb. 2014), “3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Proximity-based Services (ProSe), Stage 2 (Release 12)”, 53 pages. |
3GPP TS 23.501 v.15.4.0 (Dec. 2018) 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; System Architecture for the 5G System; Stage 2; Release 15, 236 pages. |
3GPP TS 36.413 V14.4. entitled “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access Network (E-UTRAN); S1 Application Protocol (S1AP) (Release 14)” dated Sep. 2017. |
3GPP TS 38.473 V15.A.A (Apr. 2018) 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NG-RAN; F1 application protocol (F1AP) (Release 15), 106 pages. |
3GPP TS 38.889 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on NR-based Access to Unlicensed Spectrum; Release 16, (Nov. 2018), 120 pages. |
3GPP., “Study on New Radio Access Technology, Radio Interface Protocol Aspects (Release 14)”, Technical Specification Group Radio Access Network, Technical Report (TR 38.804), V14.0.0 (Mar. 2017), 57 pages. |
Allen, et al., The Case for Run-Time Types in Generic Java, Rice University 2002 pp. 1-6. |
Article 5 of the Radio Regulations (edition 2001), Introduction to International Radio Regulations, 161 pages. |
Banerji S., et al., “On IEEE 802.11: Wireless LAN Technology,” 2013, vol. 3(4), 19 pages. |
Chapter 16—Window Management. Xlib Programming Manual, No Date. 38 pages. |
Chapter 4—Window Manager for Mac ©. Apple Computer. Inc., Jul. 11, 1996, 4 pages. |
Chapter 7—Window Management, SOL library Documentation vU.3-rev 1, Sep. 2001, 2 pages. |
Chou, et al., Open CPE Architecture: A Solution to the Delivery of Integrated Services over Broadband, Intel Communication Group, Corp. pp. 1-10, 2001. |
Curran K., et al., “The Use of Dynamically Reconfigurable Protocol Stacks for Streaming Multimedia to Mobile Devices,” 8th IEEE International Conference on Communication Systems Singapore, Nov. 25-28, 2002, pp. 947-951. URL: http://www.infm.ulst.ac.uk/.about.kevin/pubs.htm. |
Day, “Java Media Framework Player API”, Apr. 1997, XP-002093309, www.javaworld.com. |
Deering, S., et al., “Internet Protocol, Version 6 (IPv6) Specification,” Internet Engineering Task Force (IETF) RFC 2460, Dec. 1998, 39 pages. |
Dual Channel Wi-Fi Arris XB3 RDK-B—Integration and Operations Guide, WR-GL-DCWARRIS-XB3—V01-190513, 2019. |
Eldering, Charles, Customer Permises Epuipment Residential Broadband Networks, Jun. 1997, IEEE, p. 114-212. |
Ellis, “Getting to Know the OpenCable Application Platform,” Sun microsystems, Jun. 2006. |
Evain, “The Multimedia Home Platform” EBU Review—Technical, European Broadcasting Union. Brussels, BE, No. 275, Mar. 21, 1998, pp. 4-10, XP000767493. |
“Fact Sheet* Unlicensed Use of the 6 GHz Band Notice of Proposed Rulemaking” ET Docket No. 18-295; GN Docket No. 17-183 dated Oct. 2, 2018 (available at https://docs.fcc.gov/public/attachments/DOC-354364A1.pdf). |
Han R., et al., Websplitter, 2000, pp. 13. |
Hentschel et al., Video Quality Of Service For Consumer Terminal A Novel System For Programmable Componets, 2002, IEEE, pp. 28-29. |
Hutchings D. R., et al., “Display Space Usage and Window Management Operation Comparison between Single Monitor and Multiple Monitor Users,” 8 pages. |
Hutchings D. R., et al., New Operation for Display Space Management and Window Management, Technical Report GIT-GVU-02-18, Aug. 2002, 20 pages. |
IEEE 802.11 standard, 1997, URL: http://www.ieeexplore.ieee.org/documenU654779, 459 pages. |
IEEE Std. 802.11 or related standards including 802.11a/b/g/n/s/v/ac/ad/ax/ay/ba/be or 802.11-2012/2013, 802.11-2016. |
“Internet Protocol, DARPA Internet Program, Protocol Specification”, IETF RCF 791, Sep. 1981, 50 pages. |
Java Media Players, V.1.0.5, May 5, 1998, X940410443, Sun Microsystems, Inc. |
“JMFRegistry User's Guide”, Sun Microsystems, XP-002573305, Mar. 8, 2010. |
Kadir E.A., et al., “Performance Analysis of Wireless LAN 802.11 Standard for e-Learning”, 2016 International Conference on Information and Communication Technology, 6 pages. |
Kar, et al., Cable's Home Digital Network Interface Of Choice, 1999, Cable Television Lab. IEEE, pp. 34-35. |
Luu J, “MainWin and Window Managers,” Mainsoft, 2000, 5 pages. |
Mayer, “Analyzing the Use of Interfaces in Large OO Projects,” ACM, Oct. 2003. |
Motorola, Control Management Module (CMM 2000) information sheets: 4 pages; C Motorola, Inc. 2001; https://www.motorola.com/broadband. |
Motorola, HFC Manager, Integrated Element Management System information sheets; 4 pages; .COPYRGT. Motorola, Inc. 2003; https://www.motorola.com/broadband. |
Motorola Product Detail, HFC Manager HFC Element Management System; 1 page: © Motorola, Inc. 2004; https://www.motorola.com/lbroadband. |
Motorola—DCT2000 Digital Consumer Terminal Installation Manual; 70 pgs. |
Motorola—DCT5100 Digital Consumer Terminal Installation Manual; 81 pgs. |
Nokia 5G New Radio (NR): Physical Layer Overview and Performance, IEEE Communication Theory Workshop, 2018 by A. Ghosh, May 15, 2018, 38 pages. |
OCAP Applications in Detail (pp. 1-8), www.tvwithoutborders.com, Feb. 13, 2010. |
OpenCable Application Platform Specification OC-SP-OCAP1.0-IF-I09-031121. |
OpenCable Application Platform Specification (“OpenCable” copyright 2001-2003 pp. 1-398). |
OpenCable Host Device, Core Functional Requirements, Issued Specification (OC-SP-HOST-CFR-I14-030905), Sep. 5, 2003, 81 pages. |
Ran WG1 Meeting #79, San Francisco, USA, Apr. 17-21, 2014. |
Scientific Atlanta Company Overview web pages, 3 pages, No date http://www.scientificatlanta.com/newscentedifrarne.sub.-- companyoverview.-%20htm. |
Scientific Atlanta, Recognize, Trouble-Shoot, Correct information sheet; 1 page; No date; https://www.scientificatlanta.com/. |
Scientific Atlanta, ROSA Network Management System and Element Management web pages, 10 pages, © Scientific Atlanta 2006, www.scientificatlanta.com. |
Scientific Atlanta, Subscriber Networks; Explorer.RTM. 3100HD High Definition DHCT information pages; Oct. 2001; 2 pgs. |
Scientific Atlanta, Subscriber Networks; Explorer.RTM. 4200 Home Gateway information pages; Sep. 2003; 3 pgs. |
Scientific Atlanta, Subscriber Products; Explorer.RTM. 8000.TM. Home Entertainment Server information pages; Nov. 2003; 4 pgs. |
Signaling Protocols and Procedures for Citizens Broadband Radio Service (CBRS): Spectrum Access System, (SAS)—Citizens Broadband Radio Service Device (CBSD) Interface Technical Specification—Document WINNF-TS-0016, Version V1.2.1.3, Jan. 3, 2018, 60 pages. |
Souryal, Michael R., et al., “Effect of Federal Incumbent Activity on CBRS CommercialService”, International Symposium on Dynamic Spectrum Access Networks (DySPAN), IEEE2019, 5 pages. |
Tan D. S., et al., WinCuts: Manipulating Arbitrary Window Regions for More Effective Use of Screen Space⋅ Microsoft Research. No Date. pp. 4. |
Wi-Fi Direct, “Wi-Fi Peer-to-Peer (P2P) Specification,” Wi-Fi Alliance, Version 1.5, 2014, 183 pages. |
Xie, et al., “MAPO: Mining API Usages from Open Source Repositories,” ACM, May 2006. |
Number | Date | Country | |
---|---|---|---|
20220078804 A1 | Mar 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16287385 | Feb 2019 | US |
Child | 17479662 | US |