The subject matter disclosed herein relates to cooling fins and methods involving fabricating cooling fins.
Mechanical equipment such as, for example, turbine engines include a variety of air-cooled components. One method for improving the cooling effects of air is using cooling fins to direct the cooling airflow, and to provide additional surface area for convection.
Many air-cooled components are irregularly shaped; and forming and attaching fins for cooling on irregular shaped components may be difficult or expensive. A method and apparatus for effectively and efficiently forming and attaching cooling fins for air cooled components is desired.
According to one aspect of the invention, a fin apparatus including a corrugated strip of material having, a first lower planar surface, a second lower planar surface, a first upper planar surface corresponding to the first lower planar surface and the second lower planar surface, wherein the first lower planar surface and the second lower planar surface are operative to be attached to a surface of a component, and a first fin portion connecting the first lower planar surface to the first upper planar surface.
According to another aspect of the invention, a method for fabricating a fin assembly, the method comprising, identifying a surface of a component for cooling, forming a corrugated strip of material having a first lower planar surface, a second lower planar surface, a first upper planar surface corresponding to the first lower planar surface and the second lower planar surface, and a first fin portion connecting the first lower planar surface to the first upper planar surface, attaching the first lower planar surface to the surface of a component, and attaching the second lower planar surface to the surface of the component.
These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.
The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
The detailed description explains embodiments of the invention, together with advantages and features, by way of example with reference to the drawings.
Components in turbine engines are often air cooled. The cooling air often flows at a high velocity and may result in inefficient flow patterns that are insufficient to cool hot portions of a particular component. Cooling fins may be added to improve the cooling effects of the cooling air by, for example, disrupting undesirable boundary layers, increasing the cooling air turbulence, and adding additional surface area to a component to increase heat transfer. Previous methods for fabricating cooling fins included forming the fins as part of the component in a casting process. The cast fins increase the cost of fabricating the component and do not allow for changing the location of fins if desired. Other methods include attaching individual fins to a surface of a component. Attaching individual fins is costly and time consuming. A method and apparatus that allows multiple fins to be easily fabricated and attached to the surface of a component is described below.
The flexibility of the cooling fin apparatus 102 allows the cooling fin apparatus 102 to be bent to conform to curved profiles of the surface 104. The cooling fin apparatus 102 may be bent or twisted to make contact with the surface 104 along various points of the surface 104.
The embodiments of cooling fin apparatus described above may be formed from bending a strip of flexible material to form a corrugated cooling fin apparatus. The bends may be made at a normal or oblique angle to the longitudinal edges of the strip. Once a surface of a component is identified for cooling by, for example, experimentation and operational testing, the corrugated cooling fin apparatus may be attached to the surface of a component using a variety of methods. The flexibility of the cooling fin apparatus allows the apparatus to be bent to contact irregular and curved surfaces. For example, a selection of lower planar surfaces of the corrugated cooling fin apparatus may fastened to the surface by a resistive weld or similar method. The remaining lower planar surfaces may then be attached to the surface using a brazing method such as, for example, brazing tape, paste, or powder. Other attachment methods may include tack welding, or welding each of the lower planar surfaces to the surface of the component.
The apparatus and methods described above offer an efficient and cost effective method for forming and attaching cooling fins to a surface of an air cooled component. The method allows for multiple angled fin surfaces to be attached to a component that may include irregularly shaped surfaces.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.