Methods and apparatus related to selecting reporting alternative in a request report

Information

  • Patent Grant
  • 9578654
  • Patent Number
    9,578,654
  • Date Filed
    Wednesday, December 13, 2006
    17 years ago
  • Date Issued
    Tuesday, February 21, 2017
    7 years ago
Abstract
Methods and apparatus related to wireless terminal reporting alternative selection for a fixed bit size control information request report, e.g., a 4 bit uplink traffic channel request report, are described. A wireless terminal maintains a plurality of different request groups corresponding to uplink traffic to be transmitted. The same request report format includes a plurality of reporting alternatives, different reporting alternatives corresponding to different request groups. Backlog can and sometimes does exist simultaneously corresponding to request groups corresponding to different reporting alternatives. The wireless terminal uses priority information associated with the request groups having non-zero backlog to select a reporting alternative. In some embodiments, at least some of the request groups have priorities which are calculated by the wireless terminal and change as a function of determined transmission deadline information.
Description
FIELD OF THE INVENTION

The present invention relates to wireless communications methods and apparatus and, more particularly, to methods and apparatus related to selecting a reporting alternative, for example, a reporting alternative for an uplink traffic request report.


BACKGROUND

In multiple access wireless communications systems, multiple wireless terminals are typically in competition for limited air link resources. A wireless terminal, operating in a state supporting uplink traffic signaling, typically needs to communicate control information to a base station attachment point. The information may be communicated in the form of one or more control information reports which allow the base station attachment point to characterize the wireless terminal and allocate resources such as uplink transmission resources.


A wireless terminal may support uplink traffic corresponding to a plurality of different types of applications. At different times the wireless terminal may have different traffic channel reporting needs. Accordingly, there is a need for methods and apparatus which would allow for a variety of reporting alternatives. For example, in systems which used a fixed bit size request report format, it would be beneficial if reporting alternatives corresponding to different groupings of traffic could be supported without changing the number of bits used for a report. In addition, assuming methods and apparatus for supporting reporting alternatives were developed, it would also be beneficial if methods and/or apparatus which could be used to select between available reporting alternatives could also be developed and/or supported. Improvements in reporting, and/or selection between reporting alternatives, if available, could facilitate efficient air link resource allocation and/or help to satisfy a wireless terminal's changing traffic needs and/or quality of service requirements.


SUMMARY

Various embodiments are directed to methods and apparatus for supporting a plurality of reporting alternatives, e.g., for a fixed size report. Some features are related to selecting a reporting alternative for a control information request report, e.g., an uplink traffic report which provides information on the amount of data waiting at a communications device to be transmitted. In some embodiments priority levels used in the selecting are predetermined. In some embodiments, priority levels used in the selecting are determined dynamically. Such a report may be viewed and/or interpreted as a request for uplink transmission resources and is therefore sometimes referred to as an uplink request report.


In some but not necessarily all embodiments a wireless terminal uses an N bit size, e.g., 4 bit size, uplink traffic channel request report having a mapping definition corresponding to each of the 2N distinct possible N bit bit patterns. In at least one such embodiment the wireless terminal includes a plurality of different request groups, each request group corresponding to a grouping of uplink traffic, e.g., traffic stored in one or a set of corresponding uplink traffic queues. The communications device keeps track of the information corresponding to the different request groups that is waiting to be communicated and maintains statistics on the different request groups, e.g., counts of frames of backlog. In some exemplary implementations, a request report format is structured to provide reporting alternatives associated with different request groups, e.g., reporting alternative A, if selected, allows the wireless terminal to communicate backlog information about request group 1; reporting alternative B, if selected, allows the wireless terminal to communicated combined backlog information about both request group 2 and request group 3; and reporting alternative C, if selected, allows the wireless terminal to communicate backlog information about request group 4. Different reporting alternatives correspond to different subsets of the 2N possible N bit mappings, where the subsets are non-overlapping. In some embodiments, the wireless terminal uses priority information associated with the different request groups, e.g., predetermined priority information, to select a reporting alternative. In some embodiments, priorities associated with at least some of the different request groups are calculated by the wireless terminal and change over time, e.g., as a function of transmission deadline information associated with packets in a queue. Thus, by selecting between the different reporting alternatives, the communications device can provide backlog information on one or more different request groups using an n-bit report.


An exemplary method of operating a wireless terminal in a wireless communications system to communicate transmission backlog information in accordance with various embodiments comprises: selecting one of a plurality of reporting alternatives, at least some of said reporting alternatives corresponding to different request groups, said different reporting alternatives being part of a report format for an n-bit size uplink request report, said report format defining a plurality of different n-bit mappings where n is a positive integer. The exemplary method, in some embodiments, further includes generating an uplink request report, said generating including mapping backlog information in accordance with the selected reporting alternative to obtain an n-bit information bit pattern to be included in a generated uplink request report. The generated report may then be transmitted, e.g., over a wireless communications link to, e.g., a base station responsible for assigning uplink resources which can be used to transmit the queued data.


Another exemplary method of operating a wireless terminal in a wireless communications system in accordance with various embodiments comprises: determining transmission deadline information corresponding to at least some of a plurality of different request groups including queued traffic and dynamically calculating a scheduling priority for each of said at least some of a plurality of different request groups for which transmission deadline information was determined. The method may, and sometimes does, further include selecting one of a plurality of reporting alternatives, said selected one of the reporting alternatives being a reporting alternative corresponding to the request group determined to have the highest priority. In some embodiments the method further includes transmitting an uplink request report including backlog information corresponding to the request group determined to have the highest priority where the transmitted uplink request report being in accordance with the selected reporting alternative.


Various embodiments are also directed to wireless terminals. One exemplary wireless terminal is intended for use in a wireless communications system and communicates transmission backlog information to a base station using one of a plurality of supported reporting alternatives. The exemplary wireless terminal includes a selection module for selecting one of a plurality of reporting alternatives, at least some of said reporting alternatives corresponding to different request groups, said different reporting alternatives being part of a report format for an n-bit size uplink request report, said report format defining a plurality of different n-bit mappings where n is a positive integer. The exemplary wireless terminal also includes, in some implementations, a report generation module for generating an uplink request report, said generating including mapping backlog information in accordance with the selected reporting alternative to obtain an n-bit information bit pattern to be included in a generated uplink request report and a transmitter for transmitting the generated uplink request report to thereby communicate transmission backlog information.


In another embodiment, the exemplary wireless terminal includes a transmission deadline determination module for determining transmission deadline information corresponding to at least some of a plurality of different request groups including queued traffic. In such an embodiment, the wireless terminal may also include a transmission scheduling module for dynamically calculating a scheduling priority for each of said at least some of a plurality of different request groups for which transmission deadline information is determined. The exemplary wireless terminal may, and sometimes does, also include a report selection module for selecting one of a plurality of reporting alternatives, said selected one of the reporting alternatives being a reporting alternative corresponding to the request group determined to have the highest priority. In order to communicate a generated report, the wireless terminal may, and sometimes does, also include a transmitter for transmitting an uplink request report including backlog information corresponding to the request group determined to have the highest priority, said transmitted uplink request report being in accordance with the selected reporting alternative.


While various embodiments have been discussed in the summary above, it should be appreciated that not necessarily all embodiments include the same features and some of the features described above are not necessary but can be desirable in some embodiments. Numerous additional features, embodiments and benefits of the present invention are discussed in the detailed description which follows.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 is drawing of an exemplary wireless communications system implemented in accordance with various embodiments.



FIG. 2 is a drawing of an exemplary wireless terminal, e.g., mobile node, in accordance with various embodiments.



FIG. 3 is a drawing of an exemplary base station in accordance with various embodiments.



FIG. 4 is a drawing of an exemplary wireless terminal, e.g., mobile node, in accordance with various embodiments.



FIG. 5 is a drawing of an exemplary base station in accordance with various embodiments.



FIG. 6 is a drawing of a flowchart of an exemplary method of operating a wireless terminal in a wireless communications system to communicate transmission backlog information.



FIG. 7 is a flowchart of an exemplary method of operating a wireless terminal in a wireless communications system.



FIG. 8 is a drawing of exemplary uplink dedicated control channel (DCCH) segments in an exemplary uplink timing and frequency structure in an exemplary orthogonal frequency division multiplexing (OFDM) multiple access wireless communications system.



FIG. 9 includes a table of a set of exemplary Dedicated Control Channel Reports (DCRs) used in an exemplary DCCH reporting structure.



FIG. 10 is a drawing illustrating an exemplary dedicated control channel reporting format including the dedicated control channel reports of FIG. 9.



FIG. 11 is a drawing including a table describing an exemplary format of exemplary 4 bit uplink traffic request report (ULRQST4) and a column describing reporting alternatives.



FIG. 12 is a drawing describing three exemplary request groups in an exemplary wireless terminal.



FIG. 13 is a drawing illustrating an example of a method of an exemplary wireless terminal using the exemplary 4 bit uplink request report format of FIG. 11 and including the request groups of FIG. 12.



FIG. 14 is a drawing illustrating another example of a method of an exemplary wireless terminal, using the exemplary 4 bit uplink request report format of FIG. 11 and including the request groups of FIG. 12.



FIG. 15 is a drawing including a table describing an exemplary format of exemplary 4 bit uplink traffic request report (ULRQST4) and a column describing reporting alternatives.



FIG. 16 is a drawing describing two exemplary request groups in an exemplary wireless terminal.



FIG. 17 is a drawing illustrating an example of a method of an exemplary wireless terminal using the exemplary 4 bit uplink request report format of FIG. 15 and including the request groups of FIG. 16.



FIG. 18 is a drawing illustrating another example of a method of an exemplary wireless terminal using the exemplary 4 bit uplink request report format of FIG. 15 and including the request groups of FIG. 16.



FIG. 19 is a drawing including a table describing an exemplary format of exemplary 4 bit uplink traffic request report (ULRQST4) and a column describing reporting alternatives.



FIG. 20 is a drawing describing three exemplary request groups in an exemplary wireless terminal.



FIG. 21 is a drawing illustrating an example of a method of an exemplary wireless terminal using the exemplary 4 bit uplink request report format of FIG. 19 and including the request groups of FIG. 20.



FIG. 22 is a drawing illustrating another example of a method of an exemplary wireless terminal using the exemplary 4 bit uplink request report format of FIG. 19 and including the request groups of FIG. 20.





DETAILED DESCRIPTION


FIG. 1 is drawing of an exemplary wireless communications system 100 implemented in accordance with various embodiments. Exemplary wireless communications system 100 is, e.g., an orthogonal frequency division multiple (OFDM) multiple access wireless communications system using a dedicated control channel uplink reporting structure including at least some fixed size multi-bit request reports. The fixed bit size request reports can be used to report transmission backlog information, e.g., the number of frames of information waiting to be transmitted with regard to a queue or set of queues. A backlog report may provide information on one or more request groups where different request groups correspond to different queues or sets of queues which can be used to store information to be transmitted.


Exemplary wireless communications system 100 includes a plurality of base stations (base station 1102, . . . , base station M 104). Each base station (102, 104) has a corresponding wireless coverage area (cell 1106, cell M 108), respectively. System 100 also includes network node 118 which is coupled to base stations (102, 104) via network links (120, 122), respectively. Network node 118 is also coupled to other network nodes and/or the Internet via link 124. Network links (120, 122, 124) are, e.g., fiber optic links. System 100 may also include cells with multiple sectors and/or cells using multiple carriers.


System 100 also includes a plurality of wireless terminals. At least some of the wireless terminals are mobile nodes which may move throughout the communication system. In FIG. 1, wireless terminals (WT 1110, WT N 112) are located in cell 1106 and coupled to base station 1102 via wireless links (126, 128), respectively. In FIG. 1, wireless terminals WT 1114, WT N′ 116) are located in cell M 108 and coupled to base station M 104 via wireless links (130, 132), respectively. In accordance with various embodiments, at least some of the wireless terminals use a request report format, e.g., for a fixed bit size uplink traffic channel request report, allowing the wireless terminal to select, for a request report to be transmitted, between reporting alternatives, said reporting alternative corresponding to at least two different request groups. For example, an exemplary 4 bit uplink traffic channel request report format may include 16 distinct bit patterns, and a first subset of the 16 bit mapping patterns may be associated with mapping request group 1 frame count backlog information, while a second subset of the 16 bit mapping patterns may be associated with mapping request group 2 and request group 3 frame count backlog information jointly coded, said first and second subsets being non-overlapping. Continuing with the example, assuming the wireless terminal has non-zero backlog counts in both (i) request group 1 and (ii) at least one of request 2 and request group 3, the wireless terminal selects an alternative to report, e.g., as a function of priority information and/or transmission deadline information.



FIG. 2 is a drawing of an exemplary wireless terminal 200, e.g., mobile node, in accordance with various embodiments. Exemplary wireless terminal 200 communicates transmission backlog information to a base station, e.g., transmission backlog information for uplink traffic that the wireless terminal intends to transmit corresponding to different request groups. Exemplary wireless terminal 200 includes a receiver module 202, a transmitter module 204, a processor 206, user I/O devices 208, and a memory 210 coupled together via a bus 212 over which the various elements interchange data and information. Memory 210 includes routines 214 and data/information 216. The processor 206, e.g., a CPU, executes the routines 214 and uses the data/information 216 in memory 210 to control the operation of the wireless terminal 200 and implement methods.


Receiver module 202, e.g., an OFDM receiver, is coupled to receive antenna 203 via which the wireless terminal 200 receives downlink signals from base stations. Transmitter module 204, e.g., an OFDM transmitter, is coupled to transmit antenna 205, via which the wireless terminal transmits uplink signals to base stations. The uplink signals include dedicated control channel segment signals. At least some of the dedicated control channel segment signals convey uplink traffic channel request reports, e.g., a 4 bit uplink traffic channel request report. Transmitter module 204 transmits generated uplink request reports to thereby communicate transmission backlog information. In some embodiments, the same antenna is used for receiver and transmitter.


User I/O device 208, e.g., keyboard, keypad, camera, microphone, switches, display, speaker, etc., allow a user of wireless terminal 200 to input data/information, to obtain output data/information, and to control at least some functions of the wireless terminal. For example, via I/O device interface 208, a user may initiate or terminate a communication session and/or an application.


Routines 214 include a reporting alternative selection module 218, an uplink request report generation module 220, and a request group determination module 222. The reporting alternative selection module 218 selects one of a plurality of reporting alternatives, at least some of said reporting alternatives corresponding to different request groups, said different reporting alternatives being part of a report format for an n-bit size uplink request report, said report format defining a plurality of n-bit mappings where n is a positive integer. Uplink request report generation module 220 generates an uplink request report, said generating including mapping backlog information in accordance with the selected reporting alternative to obtain an n-bit information bit pattern to be included in a generated uplink request report. In some embodiments, the generated uplink request report is a multi-bit uplink request report in a dedicated control channel reporting structure.


Request group determination module 222 determines a selected request group, said selected request group having the highest priority level among the request groups that have non-zero backlog and can be reported by the uplink request report. The selection of the request groups determination module 222 is used by reporting alternative selection module 218 as an input. In some embodiments, selecting one of the reporting alternatives selects a reporting alternative that conveys backlog information corresponding to the selected request group. In some such embodiments, the selected reporting alternative report backlog information corresponding to at least two request groups, the information corresponding to the two request groups being jointly coded in the generated report.


Data/information 216 includes an N bit size, e.g., 4 bit, request report format information 224, dedicated control channel reporting structure information 226, a plurality of request group communication queues (request group 1 communication queue 228, . . . , request group m communication queue 230), a plurality of corresponding request group priority information (request group 1 priority information 232, . . . , request group m priority information 234), a plurality of corresponding request group queue statistics information (request group 1 queue stats info 236, e.g., frame counts of backlog, . . . , request group m queue stats info 238, e.g., frame counts of backlog), selected request group information 238, selected reporting alternative information 242, and generated uplink request report information 244.


N bit size request report format information 224 includes information defining said plurality of different n-bit mappings, said plurality of different n-bit mappings includes 2n or fewer mappings. For example, in one exemplary embodiment where N=4, there are 16 different mappings, and a first subset of those mapping is associated with a first reporting alternative, while a second subset of those mappings is associated with a second reporting alternative, said first and second subsets being non-overlapping. N bit size request report format information 224 includes a plurality of reporting alternative bit mapping information sets (reporting alternative 1 bit mapping information 246, . . . , reporting alternative X bit mapping information 248).


Dedicated control channel (DCCH) reporting structure information 226 includes information identifying DCCH logical channel tones, DCCH segments, mapping of different types of reports to segments, and associated timing in a recurring reporting structure. The different types of reports in the DCCH reporting structure include a request report type in accordance with the N bit size request report format information 224.


Request groups communication queues (request group 1 communication queue 228, . . . request group m communication queue 230) are a plurality of communication queues for storing data to be transmitted, where each request group corresponds to one communication queue. In some embodiments, at least some of the different request groups correspond to a set of communication queues. Request group priority information (request group 1 priority information 232, . . . , request group m priority information 234) are stored request group priority information associated with the different request groups. Selection of a reporting alternative is performed as a function of request group priority information. In various embodiments the request group priorities are predetermined. Request groups queue status information (request group 1 queue status info 236, . . . , request group m queue status info 238) includes, e.g., frame counts of backlog, e.g., MAC frame counts of backlog, corresponding to (request group 1 communication queue 228, . . . , request group m communication queue 230), respectively. Request group determination module 222, uses the queue stats info (236, . . . , 238) in determining a selected request group. For example, if a particular request group has a zero frame count, indicating no backlog of uplink traffic corresponding to the request group, that particular request group is removed from consideration.


Selected request group information 238, an output of module 222 and an input to module 218, is, e.g., an identifier identifying which of the m request groups has been selected by request report determination module 222. Selected reporting alternative information 242, an output of module 218 and an input of module 220, is, e.g., an identifier identifying one of the X reporting alternatives in accordance with request report format information 224. Generated uplink request report information 244 is an output of report generation module 220. For example, if the uplink request report is a four bit uplink request report, the report is one of 16 different bit patterns.



FIG. 3 is a drawing of an exemplary base station 300 in accordance with various embodiments. Exemplary base station 300 may be any of the exemplary base stations (BS 1102, . . . , BS M 104) of system 100 of FIG. 1. Base station 300 includes a receiver module 304, a transmitter module 308, a processor 310, an I/O interface 312, and a memory 314 coupled together via a bus 316 over which the various elements may interchange data and information. Memory 314 includes routines 318 and data/information 320. The processor 310, e.g., a CPU, executes the routines 318 and uses the data/information in memory 314 to control the operation of the base station and implement methods.


Receiver module 304, e.g., an OFDM receiver, is coupled to receive antenna 302 via which the base station 300 receives uplink signals from wireless terminals, said received uplink signals including dedicated control channel segment signals at least some of the dedicated control channel segment signal conveying traffic channel request reports. Received uplink signals also include traffic channel segment signals. Transmitter module 308, e.g., an OFDM transmitter, is coupled to transmit antenna 306 via which the base station transmits downlink signals to wireless terminals, said downlink signals including assignment signals conveying assignments for uplink traffic channel segments. I/O interface 312 couples the base station to other network node, e.g., other base stations and/or the Internet. Thus I/O interface 312, by coupling the base station 300 to a backhaul network allows a wireless terminal using an attachment point of base station 300 to participate in a communications session with a peer node, e.g., another wireless terminal, using a different base station as its point of network attachment.


Routines 318 include a request report information recovery module 322, a scheduler module 324, a request group inference module 326 and a request group updating module. Request report information recovery module 322 uses data/information 320 including N bit size request report format information 334 to obtain recovered information from a received request report, e.g., a 4 bit request report for traffic channel resources communicated in an uplink dedicated control channel segment. For example corresponding to WT 1, the recovered information includes recovered information from processed request report 342. The information bits of the request report may be one of a plurality, e.g., 16, of different patterns, and the particular bit pattern is interpreted to mean that one request group or a set of request groups has a certain number of frames in backlog or has a number of frames within a range in its backlog. For example consider an example where the request report format corresponds to that of FIG. 11, bit pattern=0010 may signify that request group 2 has 2 or 3 frames in its backlog waiting to be transmitted.


Scheduler module 324 schedules uplink and downlink traffic channel segments to wireless terminals. For example, scheduler module 324 schedules uplink traffic channel segments in response to received requests communicated in fixed bit size uplink traffic channel request reports, e.g., ULRQST4 reports, from wireless terminals in an On-state of operation using the base station 300 as a current point of network attachment. Assigned uplink traffic channel segment information 350 corresponds to scheduler 324 assignments for WT 1, e.g., information identifying particular indexed uplink traffic channel segments assigned to WT 1.


Request group inference module 326 performs inferences about request groups not directly reported in the received request report. For example, consider that the predetermined request group priority information identifies that request group 2 has a higher predetermined priority than request group 1 or request group 3, and the reporting rules are such that a wireless terminal reports the backlog of the highest priority group with non-zero backlog. If in such a situation, the base station received a report which conveyed information about the combination of request group 1 and request group 3, the base station could infer that request group 2 has a current zero backlog.


Request group updating module 327 uses the recovered information, e.g., info 342, obtained from recovery module 322 and the inferred information, e.g., info 344, obtained from inference module 326 to update the set of request group information corresponding to the wireless terminal, e.g., (request group 1 information 346, . . . , request group m information 348). For example, request group updating module 327 loads new request group frame counts, modifies request frame counts, and/or clears request group counts with regard to one or more of request group information sets, e.g., (request group 1 information 346, . . . , request group m information 348).


Data/information 320 includes a plurality of sets of wireless terminal data/information (WT 1 data/information 328, . . . , WT N data/information 330), dedicated control channel reporting structure information 332, N bit size request report format information 334, and predetermined request group priority information 336. WT 1 data/information 328 includes recovered information from processed request report 342, inferred information regarding request groups 344, a plurality of set of request group information (request group 1 information 346, . . . , request group m information 348), and assigned uplink traffic channel segment information 350.


N bit size, e.g., 4 bit size, report format information 334 includes interpretation information for a plurality of bit patterns (interpretation information for bit pattern 1338, . . . , interpretation information for bit pattern N 340). For example in one exemplary embodiment, where N=4 there are 16 distinct bit patterns (0000, 0001, . . . , 1111) where each bit pattern has a different interpretation of the information being conveyed in the report.


Predetermined request group priority information 336 includes information associating different uplink traffic request groups with different predetermined priorities. In some embodiments, different wireless terminals have different priorities orderings associated with the request groups being used.


Dedicated control channel (DCCH) reporting structure information 332 includes information identifying DCCH logical channel tones, DCCH segments, mapping of different types of reports to segments, and associated timing in a recurring reporting structure. The different types of reports in the DCCH reporting structure include a request report type in accordance with the N bit size request report format information 334.



FIG. 4 is a drawing of an exemplary wireless terminal 400, e.g., mobile node, in accordance with various embodiments. Exemplary wireless terminal 400 communicates transmission backlog information to a base station, e.g., transmission backlog information for uplink traffic that the wireless terminal intends to transmit corresponding to different request groups. Exemplary wireless terminal 400 includes a receiver module 402, a transmitter module 404, a processor 406, user I/O devices 408, and a memory 410 coupled together via a bus 412 over which the various elements interchange data and information. Memory 410 includes routines 414 and data/information 416. The processor 406, e.g., a CPU, executes the routines 414 and uses the data/information 416 in memory 410 to control the operation of the wireless terminal 400 and implement methods.


Receiver module 402, e.g., an OFDM receiver, is coupled to receive antenna 403 via which the wireless terminal 400 receives downlink signals from base stations. Transmitter module 404, e.g., an OFDM transmitter, is coupled to transmit antenna 405, via which the wireless terminal transmits uplink signals to base stations. The uplink signals include dedicated control channel segment signals. At least some of the dedicated control channel segment signals convey uplink traffic channel request reports, e.g., a 4 bit uplink traffic channel request report. Transmitter module 404 transmits generated uplink request reports to thereby communicate transmission backlog information. For example, the transmitter module 404 transmits an uplink request report including backlog information corresponding to the request group determined to have the highest priority, said transmitted uplink request report being in accordance with the selected reporting format. In some embodiments, the same antenna is used for receiver and transmitter.


User I/O device 408, e.g., keyboard, keypad, camera, microphone, switches, display, speaker, etc., allow a user of wireless terminal 400 to input data/information, to obtain output data/information, and to control at least some functions of the wireless terminal. For example, via I/O device interface 408, a user may initiate or terminate a communications session and/or an application.


Routines 414 include a transmission deadline determination module 418, a transmission scheduling module 420, a reporting alternative selection module 422, a queue status monitoring module 424, and an uplink request report generation module 425. The transmission deadline determination module 418 determines transmission deadline information corresponding to at least some of a plurality of different request queues included queued traffic. Transmission scheduling module 420 dynamically calculates a scheduling priority for each of at least some of a plurality of different request groups for which transmission deadline information was determined. Reporting alternative selection module 422 selects one of a plurality of reporting alternatives, said selected one of the reporting alternative being a reporting alternative corresponding to the request groups determined to have the highest priority. In some embodiments, the reporting alternative selection module 422 selects one of a plurality of which reports backlog information corresponding to the request group having the highest calculated priority, e.g., calculated as a function of determined transmission deadline information. In some embodiments, some of the reporting alternatives may correspond to a request group whose priority is independent of determined transmission deadline information. For example, in some embodiments, one request group may assume the highest priority if it has a non-zero backlog count. Queue status monitoring module 424 determines which of a plurality of different request groups have queued traffic. Uplink request report generation module 425 generates an N bit size uplink request report in accordance with request report format information 426 using the reporting alternative including the selected request group having the determined highest priority and communicating request group backlog information, e.g., frame count information, corresponding to that request group.


Data/information 416 includes an N bit size, e.g., 4 bit, request report format information 426, dedicated control channel reporting structure information 428, a plurality of request group communication queues (request group 1 communication queue 430, . . . , request group m communication queue 432), a plurality of corresponding request group priority information (request group 1 priority information 434, . . . , request group m priority information 436), a plurality of request group maximum staleness information (request group 1 max staleness info 438, . . . , request group m maximum staleness info 440), a plurality of corresponding request group queue statistics information (request group 1 queue stats info 442, . . . , request group m queue stats info 444, selected request group information 446, selected reporting alternative information 448, and generated uplink request report information 450.


N bit size request report format information 426 includes information defining said plurality of different n-bit mappings, said plurality of different n-bit mappings includes 2n or fewer mappings. For example, in one exemplary embodiment where N=4, there are 16 different mappings, and a first subset of those mapping is associated with a first reporting alternative, while a second subset of those mappings is associated with a second reporting alternative, said first and second subsets being non-overlapping. N bit size request report format information 452 includes a plurality of reporting alternative bit mapping information sets (reporting alternative 1 bit mapping information 452, . . . , reporting alternative X bit mapping information 454).


Dedicated control channel (DCCH) reporting structure information 428 includes information identifying DCCH logical channel tones, DCCH segments, mapping of different types of reports to segments, and associated timing in a recurring reporting structure. The different types of reports in the DCCH reporting structure include a request report type in accordance with the N bit size request report format information 426.


Request groups communication queues (request group 1 communication queue 430, . . . request group m communication queue 432) are a plurality of communication queues for storing data to be transmitted, where each request group corresponds to one communication queue. Request group 1 communication queue 430 includes a plurality of packets to be transmitted (packet 1456, . . . packet Y 458). similarly, request group m communication queue 432 includes a plurality of packets to be transmitted (packet 1460, . . . packet Z 462) In some embodiments, at least some of the different request groups correspond to a set of communication queues. Request group priority information (request group 1 priority information 434, . . . , request group m priority information 434) includes stored request group priority information currently associated with the different request groups. At least some of the reporting priorities corresponding to request groups vary over time as a function of determined transmission deadline information. For example, a priority level associated with a particular request group corresponding to time sensitive traffic, e.g., gaming traffic, changes as a function of the remaining time a packet stored in its corresponding queue has until it will be discarded if not transmitted. Selection of a reporting alternative is performed as a function of request group priority information.


Request group maximum staleness information (request group 1 maximum staleness information 438, . . . , request group m maximum staleness information 440) includes criteria, e.g., a maximum time limit that a packet deposited in a particular request group queue should be allowed to remain if not transmitted before being dropped. For example, a request group queue corresponding to voice traffic typically has a smaller max time to discard value than a request group corresponding to a gaming application. Request groups queue stats information (request group 1 queue stats info 442, . . . , request group m queue stats info 444) includes, e.g., frame counts of backlog, e.g., MAC frame counts of backlog, and packet expiration information corresponding to (request group 1 communication queue 430, . . . , request group m communication queue 432), respectively. Packet expiration information is, in some embodiments, determined by transmission deadline determination module 418


Selected request group information 446, an output of transmission scheduling module 420 and an input to reporting alternative selection module 422, is, e.g., an identifier identifying which of the m request groups has been determined to have the highest priority. Selected reporting alternative information 448, an output of module 422 and an input of uplink request report generation module 425, is, e.g., an identifier identifying one of the X reporting alternatives in accordance with request report format information 426.


Generated uplink request report information 450 is an output of uplink report generation module. For example, if the uplink request report is a four bit uplink request report, the report is one of 16 alternative bit patterns.



FIG. 5 is a drawing of an exemplary base station 500 in accordance with various embodiments. Exemplary base station 500 may be any of the exemplary base stations (BS 1102, . . . , BS M 104) of system 100 of FIG. 1. Base station 500 includes a receiver module 504, a transmitter module 508, a processor 510, an I/O interface 512, and a memory 514 coupled together via a bus 516 over which the various elements may interchange data and information. Memory 514 includes routines 518 and data/information 520. The processor 510, e.g., a CPU, executes the routines 518 and uses the data/information 520 in memory 514 to control the operation of the base station 500 and implement methods.


Receiver module 504, e.g., an OFDM receiver, is coupled to receive antenna 502 via which the base station 500 receives uplink signals from wireless terminals, said received uplink signals including dedicated control channel segment signals, at least some of the dedicated control channel segment signals conveying traffic channel request reports. Received uplink signals also include traffic channel segment signals. Transmitter module 508, e.g., an OFDM transmitter, is coupled to transmit antenna 506 via which the base station 500 transmits downlink signals to wireless terminals, said downlink signals including assignment signals conveying assignments for uplink traffic channel segments. I/O interface 512 couples the base station 500 to other network nodes, e.g., other base stations and/or the Internet. Thus I/O interface 512, by coupling the base station 500 to a backhaul network allows a wireless terminal using an attachment point of base station 500 to participate in a communications session with a peer node, e.g., another wireless terminal, using a different base station as its point of network attachment.


Routines 518 include a request report information recovery module 522, a scheduler module 524, and a request group tracking/updating module 526. Request report information recovery module 522 uses data/information 520 including N bit size request report format information 534 to obtain recovered information from a received request report, e.g., from a 4 bit request report for traffic channel resources communicated in an uplink dedicated control channel segment. For example corresponding to WT 1, the recovered information includes recovered information from processed request report 542. The information bits of the request report may be one of a plurality, e.g., 16, of different patterns, and the particular bit pattern is interpreted to mean that one request group or a set of request groups has a certain number of frames in backlog or has a number of frames within a range in its backlog. For example consider an example where the request report format corresponds to that of FIG. 15, bit pattern=1110 may signify that request group 2 has 23, 24, 25, 26, or 27 frames in its backlog waiting to be transmitted.


Scheduler module 524 schedules uplink and downlink traffic channel segments to wireless terminals. For example, scheduler module 524 schedules uplink traffic channel segments in response to received requests communicated in fixed bit size uplink traffic channel request reports, e.g., ULRQST4 reports, from wireless terminals in an On-state of operation using the base station 500 as a current point of network attachment. Assigned uplink traffic channel segment information 550 corresponds to scheduler 524 assignments for WT 1, e.g., information identifying particular indexed uplink traffic channel segments assigned to WT 1.


Request group tracking/updating module 527 uses the recovered information, e.g., info 542, obtained from recovery module 522 and the inferred information, e.g., info 544, to update the set of request group information corresponding to the wireless terminal, e.g., (request group 1 information 546, . . . , request group m information 548). For example, request group tracking/updating module 526 loads new request group frame counts, modifies request frame counts, and/or clears request group counts with regard to one or more of request group information sets, e.g., (request group 1 information 546, . . . , request group m information 548).


Data/information 520 includes a plurality of sets of wireless terminal data/information (WT 1 data/information 528, . . . , WT N data/information 530), dedicated control channel reporting structure information 532, N bit size request report format information 534, and priority information pertaining to request groups 536. WT 1 data/information 528 includes recovered information from processed request report 542, inferred information regarding request groups 544, a plurality of set of request group information (request group 1 information 546, . . . , request group m information 548), and assigned uplink traffic channel segment information 550.


N bit size, e.g., 4 bit size, report format information 534 includes interpretation information for a plurality of bit patterns (interpretation information for bit pattern 1538, . . . , interpretation information for bit pattern N 540). For example in one exemplary embodiment, where N=4 there are 16 distinct bit patterns (0000, 0001, . . . , 1111) where each bit pattern has a different interpretation of the information being conveyed in the report.


Priority information pertaining to request groups 536 includes information associating at least some of the request groups for at least some of the wireless terminals with variable priorities which are calculated by the wireless terminal as a function of determined transmission deadline information. In some embodiments, at least some of the wireless terminals have request groups with predetermined overriding priority, e.g., one request group may be allocated the highest priority if it has any frames in its backlog; another request group may be allocated the lowest priority. This priority information 536 may be used by the request group tracking/updating module 526. For example, the wireless terminal recognizes that the received request report conveyed queue statistics corresponding to the predetermined overriding priority request group, and the wireless terminal, based on past request information, in some embodiments, extrapolates a request for at least one other request group.


Dedicated control channel (DCCH) reporting structure information 532 includes information identifying DCCH logical channel tones. DCCH segments, mapping of different types of reports to segments, and associated timing in a recurring reporting structure. The different types of reports in the DCCH reporting structure include a request report type in accordance with the N bit size request report format information 534.



FIG. 6 is a drawing of a flowchart 600 of an exemplary method of operating a wireless terminal in a wireless communications system to communicate transmission backlog information. For example, the exemplary wireless communications system is, in some embodiments, an orthogonal frequency division multiplexing (OFDM) multiple access wireless communications system using a dedicated control channel reporting structure and the transmission backlog information is uplink traffic transmission backlog information.


In some embodiments, there are different request groups and each of the different request groups corresponds to one or a set of communication queues which can be used to store data to be transmitted. In various embodiments priorities are associated with the different request groups, e.g., predetermined priorities, and a selection is performed as a function of request group priority.


Operation of the exemplary method starts in step 602, where the wireless terminal is powered on and initialized. Operation proceeds from start step 602 to step 604. In step 604, the wireless terminal determines a selected request group having the highest priority level among request groups that have non-zero backlog and can be reported by an uplink request report to be transmitted for this request opportunity.


Operation proceeds form step 604 to step 606. In step 606, the wireless terminal selects one of a plurality of reporting alternatives, at least some of said reporting alternatives corresponding to different request groups, said different reporting alternatives being part of a report format for an N bit size uplink request report, said report format defining a plurality of different N-bit mappings where N is a positive integer. In some embodiments, the plurality of different N-bit mappings includes 2N or fewer mappings.


In some embodiments, selecting one of the reporting alternatives selects a reporting alternative that conveys backlog information corresponding to the selected request group. In some such embodiments, the selected reporting alternative, for at least some reporting alternatives, reports backlog information corresponding to two request groups being jointly coded in a report.


Operation proceeds from step 606 to step 608. In step 608, the wireless terminal generates an uplink request report, said generating including mapping backlog information in accordance with the selected reporting alternative to obtain an N-bit information bit pattern to be included in a generated uplink request report. For example, the uplink request report is a multi-bit, e.g., 4 bit, uplink request report in a dedicated control channel reporting structure. Then, in step 610, the wireless terminal transmits the generated uplink request report.


Operation proceeds from step 610 to step 604, where the wireless terminal determines a selected request group corresponding to another request opportunity.



FIG. 7 is a drawing of a flowchart 700 of an exemplary method of operating a wireless terminal in a wireless communications system. For example, the exemplary wireless communications system is, in some embodiments, an orthogonal frequency division multiplexing (OFDM) multiple access wireless communications system using a dedicated control channel reporting structure including uplink request reporting opportunities for reporting transmission backlog information of uplink traffic.


Operation starts in step 702, where the wireless terminal is powered on and initialized and proceeds to step 704. In step 704, the wireless terminal determines which of a plurality of different request groups have queued traffic. In various embodiments, each of the different request groups corresponds to one or a set of communication queues which can be used to store data.


Then, in step 706, the wireless terminal determines transmission deadline information corresponding to at least some of said plurality of different request groups including queued traffic.


Operation proceeds from step 706 to step 708. In step 708, the wireless terminal dynamically calculates a scheduling priority for each of said at least some of a plurality of different request groups for which transmission deadline information was determined.


Then, in step 710, the wireless terminal selects one of a plurality of reporting alternatives said selected one of the reporting alternatives corresponding to the request groups determined to have the highest priority. In some embodiments, at least some of said reporting alternatives correspond to different request groups, said different reporting alternatives being part of a report format for an n-bit size uplink request report, said report format defining a plurality of different n-bit mappings where n is a positive integer.


In various embodiments, determining the highest priority includes considering a priority of at least one additional request group in addition to said at least some of a plurality of different request groups. In some such embodiments, said at least one additional request group is determined to have the highest priority provided it has at least some traffic to be transmitted.


In some embodiments, selecting the reporting alternative includes selecting the reporting alternative which reports backlog information corresponding to the request group having the highest calculated priority. In some embodiments, at some times, selecting the request group having the highest calculated priority includes at least some traffic that will be dropped if not allocated traffic channel resources in response to the generated uplink request report.


Operation proceeds from step 710 to step 712. In step 712, the wireless terminal transmits an uplink request report including backlog information corresponding to the request group determined to have the highest priority, said transmitted uplink request report being in accordance with the selected reporting alternative. In some embodiments, the report is a multi-bit uplink request report in a dedicated control channel reporting structure. Operation proceeds from step 712 to step 704, where the wireless terminal determines, for another point in time, which of a plurality of different request groups have queued traffic.


In some embodiments, at least some of the different request groups include a request group associated with voice traffic and a request group associated with another type of time critical traffic, and wherein a packet placed in a request group queue associated with said another type of time critical traffic is allowed to remain for a longer time than a packet placed in a request groups queue associated with voice traffic before being dropped if not transmitted. In some such embodiments, said another type of time critical traffic is gaming traffic.


In various embodiments, the relative priority level ranking between said voice traffic request group and said another type of time critical traffic changes over time, e.g., as a function of determined transmission deadline information. For example, consider that one of the voice request group and said another type of time critical traffic request group includes a packet or group of packets about to expire and be dropped if not allocated resources in an allocation corresponding to the pending request report, while the other one of the voice request group and said another type of time critical traffic request group does not includes a packet about to expire and be dropped if not allocated resources in an allocation corresponding to the pending request report. In such a situation, the higher priority can be assigned to the request group with the packet about to expire.



FIG. 8 is a drawing 800 of exemplary uplink dedicated control channel (DCCH) segments in an exemplary uplink timing and frequency structure in an exemplary orthogonal frequency division multiplexing (OFDM) multiple access wireless communications system. The uplink dedicated control channel is used to send Dedicated Control Reports (DCR) from wireless terminals to base stations. Vertical axis 802 plots logical uplink tone index while horizontal axis 804 plots the uplink index of the halfslot within a beaconslot. In this example, an uplink tone block includes 113 logical uplink tones indexed (0, . . . , 112); there are seven successive OFDM symbol transmission time periods within a halfslot, 2 additional OFDM symbol time periods followed by 16 successive half-slots within a superslot, and 8 successive superslots within a beacon slot. The first 9 OFDM symbol transmission time periods within a superslot are an access interval, and the dedicated control channel does not use the air link resources of the access interval.


The exemplary dedicated control channel is subdivided into 31 logical tones (uplink tone index 81806, uplink tone index 82808, . . . , uplink tone index 111810). Each logical uplink tone (81, . . . , 111) in the logical uplink frequency structure corresponds to a logical tone indexed with respect to the DCCH channel (0, . . . , 30).


For each tone in the dedicated control channel there are 40 segments in the beaconslot corresponding to forty columns (812, 814, 816, 818, 820, 822, . . . , 824). The segment structure repeats on a beaconslot basis. For a given tone in the dedicated control channel there are 40 segments corresponding to a beaconslot 828; each of the eight superslots of the beaconslot includes 5 successive segments for the given tone. For example, for first superslot 826 of beaconslot 828, corresponding to tone 0 of the DCCH, there are five indexed segments (segment [0][0], segment [0][1], segment [0][2], segment [0][3], segment [0][4]). Similarly, for first superslot 826 of beaconslot 828, corresponding to tone 1 of the DCCH, there are five indexed segments (segment [1][0], segment [1][1], segment [1][2], segment [1][3], segment [1][4]). Similarly, for first superslot 826 of beaconslot 828, corresponding to tone 30 of the DCCH, there are five indexed segments (segment [30][0], segment [30][1], segment [30][2], segment [30][3], segment [30][4]).


In this example each segment, e.g., segment [0][0], comprises one tone for 3 successive half-slots, e.g., representing an allocated uplink air link resource of 21 OFDM tone-symbols. In some embodiments, logical uplink tones are hopped to physical tones in accordance with an uplink tone hopping sequence such that the physical tone associated with a logical tone may be different for successive half-slots, but remains constant during a given half-slot.


Each logical tone of the dedicated control channel may be assigned by the base station to a different wireless terminal using the base station as its current point of attachment. For example, logical tone (506, 508, . . . , 510) may be currently assigned to (WT A 830, WT B 832, . . . , WT N′ 834), respectively.


Each uplink DCCH segment is used to transmit a set of Dedicated Control Channel Reports (DCRs). A list of exemplary DCRs is given in table 900 of FIG. 9. First column 902 of table 900 describes abbreviated names used for each exemplary report. The name of each report ends with a number which specifies the number of bits of the DCR. Second column 904 of table 900 briefly describes each named report.



FIG. 10 is a drawing 1099 illustrating an exemplary reporting format information in an exemplary beaconslot for a given DCCH tone, e.g., corresponding to a wireless terminal. In FIG. 10, each block (1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024, 1025, 1026, 1027, 1028, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039) represents one segment whose index s2 (0, . . . , 39) is shown above the block in rectangular region 1040. Each block, e.g., block 1000 representing segment 0, conveys 6 information bits; each block comprises 6 rows corresponding to the 6 bits in the segment, where the bits are listed from the most significant bit to the least significant bit downwards from the top row to the bottom row as shown in rectangular region 1043.



FIG. 11 is a drawing 1100 including a table 1102 describing an exemplary format of exemplary 4 bit uplink traffic request report (ULRQST4) and a column 1104 describing reporting alternatives. Column 1106 of table 1102 lists the 16 possible information bit patterns for the report, and column 1108 lists reported backlog information conveyed corresponding to each of the possible bit patterns. For example, N[2]=1 indicates that request group 2 has one frame in its backlog to be transmitted; N[1]+N[3]=12:14 indicates that the combination of request group 1 and request group 3 has a total of 12, 13, or 14 frames in its backlog to be transmitted. Column 1104 indicates that reporting alternative A reports request group 2 backlog information and corresponds to bit patterns (0000, 0001, 0010, 0011, 0100). Column 1104 also indicates that reporting alternative B reports on the combined backlog of request group 1 and request group 3 and corresponds to bit patterns (0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111).



FIG. 12 is a drawing 1200 describing three exemplary request groups in an exemplary wireless terminal. Column 1202 describes that request group 1 has a queue for uplink traffic, a frame count N[2], and a predetermined priority level=intermediate. Column 1204 describes that request group 2 has a queue for uplink traffic, a frame count N[2], and a predetermined priority level=high. Column 1206 describes that request group 3 has a queue for uplink traffic, a frame count N[3], and a predetermined priority level=low.



FIG. 13 is a drawing 1300 illustrating an example of a method of an exemplary wireless terminal, e.g., wireless terminal 200, using the exemplary 4 bit uplink request report format of table 1100 of FIG. 2 and including the request groups of drawing 1200. Block 1302 shows that request group 1 with intermediate priority level has a frame count of 5; block 1304 shows that request group 2 with high priority level has a frame count of 0; block 1306 shows that request group 3 with low priority level has a frame count of 7. Block 1308 indicates that the wireless terminal selects request group 1 as a function of priority, e.g., the wireless terminal selects request group 1 because it is the request group having the highest priority level with a non-zero backlog. Block 1310 shows that the wireless terminal selects report alternative B, as report alternative B reports backlog information on request group 1. Block 1312 indicates that the wireless terminal generates an uplink request report with information bit pattern=1011; namely, N[1]+N[3]=12, which is the range 12:14 which maps to bit pattern 1011. Then, block 1314 indicates the wireless terminal transmits the generated uplink request report as part of a dedicated control segment's signals.



FIG. 14 is a drawing 1400 illustrating an example of a method of an exemplary wireless terminal, e.g., wireless terminal 200, using the exemplary 4 bit uplink request report format of table 1100 of FIG. 2 and including the request groups of drawing 1200. Block 1402 shows that request group 1 with intermediate priority level has a frame count of 5; block 1404 shows that request group 2 with high priority level has a frame count of 3; block 1406 shows that request group 3 with low priority level has a frame count of 8. Block 1408 indicates that the wireless terminal selects request group 2 as a function of priority, e.g., the wireless terminal selects request group 2 because it is the request group having the highest priority level with a non-zero backlog. Block 1410 shows that the wireless terminal selects report alternative A, as report alternative A reports backlog information on request group 2. Block 1412 indicates that the wireless terminal generates an uplink request report with information bit pattern=0010; namely, N[2]=3, which is the range 2:3 which maps to bit pattern 0010. Then, block 1414 indicates the wireless terminal transmits the generated uplink request report as part of a dedicated control segment's signals.



FIG. 15 is a drawing 1500 including a table 1502 describing an exemplary format of exemplary 4 bit uplink traffic request report (ULRQST4) and a column 1504 describing reporting alternatives. Column 1506 of table 1502 lists the 16 possible information bit patterns for the report, and column 1508 lists reported backlog information conveyed corresponding to each of the possible bit patterns. For example, N[1]=1 indicates that request group 1 has one frame in its backlog to be transmitted; N[2]=4:5 indicates that request group 2 has a total of 4 or 5 frames in its backlog to be transmitted. Column 1504 indicates that reporting alternative A reports request group 1 backlog information and corresponds to bit patterns (0000, 0001, 0010, 0011, 0100). Column 1504 also indicates that reporting alternative B reports on request group 2 backlog and corresponds to bit patterns (0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111).



FIG. 16 is a drawing 1600 describing two exemplary request groups in an exemplary wireless terminal. Column 1602 describes that request group 1 has a queue for uplink voice traffic, a frame count N[1], a maximum retention time for a packet before discarding, transmission deadline information, and a calculated current priority. Column 1604 describes that request group 2 has a queue for uplink other time sensitive traffic, e.g., gaming traffic, a frame count N[2], a maximum retention time for a packet before discarding, transmission deadline information, and a calculated current priority.



FIG. 17 is a drawing 1700 illustrating an example of a method of an exemplary wireless terminal, e.g., wireless terminal 400, using the exemplary 4 bit uplink request report format of table 1500 of FIG. 15 and including the request groups of drawing 1600. Block 1702 shows that request group 1, used for voice traffic, has a frame count of 3, a maximum packet retention time of 20 milli-seconds, and a current transmission deadline of 9 milli-sec before a packet will be dropped if not transmitted; block 1704 shows that request group 2, used for other time sensitive traffic such as gaming traffic, has a frame count of 26, a maximum packet retention time of 200 milli-seconds, and a current transmission deadline of 2 milli-sec before a packet will be dropped if not transmitted. The transmission deadlines have been calculated by the wireless terminal, and the wireless terminal calculates current priority levels as a function of that information. In this example, the wireless terminal has calculated the current priority level=2 (low priority) for request group 1 as indicated by information 1702 and has calculated the current priority level=1 (high) for request group 2 as indicated by information 1704, e.g., selecting the request group with the smaller transmission deadline value to have the higher priority. Block 1706 indicates that the wireless terminal selects request group 2 as a function of current priority, e.g., the wireless terminal selects the request group having the highest calculated priority. Block 1708 shows that the wireless terminal selects report alternative B, as report alternative B reports backlog information on request group 2. Block 1710 indicates that the wireless terminal generates an uplink request report with information bit pattern=1110; namely, N[2]=26, which is the range 23:27 which maps to bit pattern 1110. Then, block 1712 indicates the wireless terminal transmits the generated uplink request report as part of a dedicated control segment's signals.



FIG. 18 is a drawing 1800 illustrating another example of a method of an exemplary wireless terminal, e.g., wireless terminal 400, using the exemplary 4 bit uplink request report format of table 1500 of FIG. 15 and including the request groups of drawing 1600. Block 1802 shows that request group 1, used for voice traffic, has a frame count of 3, a maximum packet retention time of 20 milli-seconds, and a current transmission deadline of 9 milli-sec before a packet will be dropped if not transmitted; block 1804 shows that request group 2, used for other time sensitive traffic such as gaming traffic, has a frame count of 16, a maximum packet retention time of 200 milli-seconds, and a current transmission deadline of 70 milli-sec before a packet will be dropped if not transmitted. The transmission deadlines have been calculated by the wireless terminal, and the wireless terminal calculates current priority levels as a function of that information. In this example, the wireless terminal has calculated the current priority level=1 (high priority) for request group 1 as indicated by information 1802 and has calculated the current priority level=2 (low) for request group 2 as indicated by information 1804, e.g., selecting the request group with the smaller transmission deadline value to have the higher priority. Block 1806 indicates that the wireless terminal selects request group 1 as a function of current priority, e.g., the wireless terminal selects the request group having the highest calculated priority. Block 1808 shows that the wireless terminal selects report alternative A, as report alternative A reports backlog information on request group 1. Block 1810 indicates that the wireless terminal generates an uplink request report with information bit pattern=0010; namely, N[1]=3, which is the range 3:3 which maps to bit pattern 0010. Then, block 1812 indicates the wireless terminal transmits the generated uplink request report as part of a dedicated control segment's signals.



FIG. 19 is a drawing 1900 including a table 1902 describing an exemplary format of exemplary 4 bit uplink traffic request report (ULRQST4) and a column 1904 describing reporting alternatives. Column 1906 of table 1902 lists the 16 possible information bit patterns for the report, and column 1908 lists reported backlog information conveyed corresponding to each of the possible bit patterns. For example, N[1]=1 indicates that request group 1 has one frame in its backlog to be transmitted; N[2]=4:5 indicates that request group 2 has a total of 4 or 5 frames in its backlog to be transmitted. N[3]>=28 indicates that request group 3 has 28 or more frames in its backlog to be communicated. Column 1904 indicates that reporting alternative A reports request group 1 backlog information and corresponds to bit patterns (0000, 0001, 0010). Column 1904 also indicates that reporting alternative B reports on request group 2 backlog and corresponds to bit patterns (0011, 0100, 0101, 0110) and that reporting alternative C reports on request group 3 backlog and corresponds to bit patterns (0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111).



FIG. 20 is a drawing 2000 describing three exemplary request groups in an exemplary wireless terminal. Column 2002 describes that request group 1 has a queue for uplink control traffic, a frame count N[1], and that the request group assumes the highest priority if it has any traffic in its backlog. Column 2004 describes that request group 2 has a queue for uplink voice traffic, a frame count N[2], a maximum retention time for a packet before discarding, transmission deadline information, and a calculated current priority. Column 2006 describes that request group 3 has a queue for uplink other time sensitive traffic, e.g., gaming traffic, a frame count N[3], a maximum retention time for a packet before discarding, transmission deadline information, and a calculated current priority.



FIG. 21 is a drawing 2100 illustrating an example of a method of an exemplary wireless terminal, e.g., wireless terminal 400, using the exemplary 4 bit uplink request report format of table 1900 of FIG. 19 and including the request groups of drawing 2000 of FIG. 20. Block 2102 shows that request group 1 used for control traffic has a zero frame count backlog and therefore is removed from consideration regarding priority. Block 2104 shows that request group 2, used for voice traffic, has a frame count of 3, a maximum packet retention time of 20 milli-seconds, and a current transmission deadline of 9 milli-sec before a packet will be dropped if not transmitted; block 2106 shows that request group 3, used for other time sensitive traffic such as gaming traffic, has a frame count of 18, a maximum packet retention time of 200 milli-seconds, and a current transmission deadline of 2 milli-sec before a packet will be dropped if not transmitted. The transmission deadlines have been calculated by the wireless terminal, and the wireless terminal calculates current priority levels as a function of that information. In this example, the wireless terminal has calculated the current priority level=2 (low priority) for request group 2 as indicated by information 2104 and has calculated the current priority level=1 (high) for request group 3 as indicated by information 2106, e.g., selecting the request group with the smaller transmission deadline value to have the higher priority. Block 2108 indicates that the wireless terminal selects request group 2 as a function of current calculated priority, e.g., the wireless terminal selects the request group having the highest calculated priority. Block 2110 shows that the wireless terminal selects report alternative C, as report alternative C reports backlog information on request group 3. Block 2112 indicates that the wireless terminal generates an uplink request report with information bit pattern=1101; namely, N[3]=18, which is the range 14:18 which maps to bit pattern 1101. Then, block 2114 indicates the wireless terminal transmits the generated uplink request report as part of a dedicated control segment's signals.



FIG. 22 is a drawing 2200 illustrating another example of a method of an exemplary wireless terminal, e.g., wireless terminal 400, using the exemplary 4 bit uplink request report format of table 1900 of FIG. 19 and including the request groups of drawing 2000 of FIG. 20. Block 2202 shows that request group 1 used for control traffic has a frame count=1 and therefore assumes the highest priority level=1. Block 2204 shows that request group 2, used for voice traffic, has a frame count of 3, a maximum packet retention time of 20 milli-seconds, and a current transmission deadline of 1 milli-sec before a packet will be dropped if not transmitted; block 2206 shows that request group 3, used for other time sensitive traffic such as gaming traffic, has a frame count of 18, a maximum packet retention time of 200 milli-seconds, and a current transmission deadline of 3 milli-sec before a packet will be dropped if not transmitted. The transmission deadlines have been calculated by the wireless terminal, and the wireless terminal calculates current priority levels as a function of that information. In this example, the wireless terminal has a non-zero backlog in request group 1 which assumes the highest priority and overrides any calculated priority determinations of the other request groups. Block 2208 indicates that the wireless terminal selects request group 1 as a function of the determined priority information. Block 2210 shows that the wireless terminal selects report alternative A, as report alternative A reports backlog information on request group 1. Block 2212 indicates that the wireless terminal generates an uplink request report with information bit pattern=0001; namely, N[1]=1, which maps to bit pattern 0001. Then, block 2214 indicates the wireless terminal transmits the generated uplink request report as part of a dedicated control segment's signals.


In some embodiments, in which transmission deadline information is calculated corresponding to request groups, a report format is such that for at least reporting alternatives multiple request groups are jointly coded. In some embodiments, at least some of the information to bit mapping definitions include control factors based upon information such as a previously transmitted power report and/or a previously transmitted interference report. In some embodiments, at least some of the information to bit mapping definitions indicate no change from a previously transmitted report.


While described in the context of an OFDM system, the methods and apparatus of various embodiments, are applicable to a wide range of communications systems including many non-OFDM and/or non-cellular systems.


In various embodiments nodes described herein are implemented using one or more modules to perform the steps corresponding to one or more methods, for example, signal processing, report alternative selection, report generation, deadline determination, scheduling priority calculation. In some embodiments various features are implemented using modules. Such modules may be implemented using software, hardware or a combination of software and hardware. Many of the above described methods or method steps can be implemented using machine executable instructions, such as software, included in a machine readable medium such as a memory device, e.g., RAM, floppy disk, etc. to control a machine, e.g., general purpose computer with or without additional hardware, to implement all or portions of the above described methods, e.g., in one or more nodes. Accordingly, among other things, various embodiments are directed to a machine-readable medium including machine executable instructions for causing a machine, e.g., processor and associated hardware, to perform one or more of the steps of the above-described method(s).


Numerous additional variations on the methods and apparatus described above will be apparent to those skilled in the art in view of the above descriptions. Such variations are to be considered within scope. The methods and apparatus of various embodiments may be, and in various embodiments are, used with CDMA, orthogonal frequency division multiplexing (OFDM), and/or various other types of communications techniques which may be used to provide wireless communications links between access nodes and mobile nodes. In some embodiments the access nodes are implemented as base stations which establish communications links with mobile nodes using OFDM and/or CDMA. In various embodiments the mobile nodes are implemented as notebook computers, personal data assistants (PDAs), or other portable devices including receiver/transmitter circuits and logic and/or routines, for implementing the methods of various embodiments.

Claims
  • 1. A method of operating a wireless terminal in a wireless communications system to communicate transmission backlog information, comprising: selecting a set of groups, from a plurality of sets of groups, to prepare a fixed size uplink report, wherein:a first number of possible uplink report values corresponds to a first one of said plurality of sets of groups, anda second number of possible uplink report values corresponds to a second one of said plurality of sets of groups;generating said fixed size uplink report, said generating including:mapping backlog information to one of the uplink report values corresponding to the selected set of groups, the selected set of groups being associated with a plurality of queues, andobtaining a bit pattern to be included in said fixed size uplink report, wherein a single value of the bit pattern in the generated fixed size uplink report indicates a backlog of traffic for the plurality of queues associated with the selected set of groups; andtransmitting the generated fixed size uplink report.
  • 2. The method of claim 1, wherein each set of groups, in said plurality of sets of groups, corresponds to one or a set of communication queues which are used to store data to be transmitted.
  • 3. The method of claim 1, wherein priorities are associated with the sets of groups and wherein said selection is performed as a function of said priorities.
  • 4. The method of claim 3 wherein said priorities are predetermined.
  • 5. The method of claim 3, wherein selecting a set of groups includes selecting the set of groups having the highest priority level among the sets of groups that have a non-zero backlog.
  • 6. The method of dam 5, wherein the first number is 5 and the second number is 11.
  • 7. The method of claim 6, wherein said fixed size uplink report is a multi-bit uplink report that is transmitted periodically according to a dedicated control channel reporting structure.
  • 8. The method of claim 1, wherein at least some of said plurality of sets of groups correspond to different numbers of queues, a first one of said plurality of sets of groups corresponding to a single queue, a second one of said sets of groups corresponding to multiple queues.
  • 9. The method of claim 1, wherein at least one of said first and second numbers is a number which is not an integer multiple of two.
  • 10. The method of claim 9 wherein said first number is five.
  • 11. The method of claim 1, wherein at least one of the values corresponding to the first set of groups indicates a zero backlog and wherein the values corresponding to the second set of groups only include values corresponding to non-zero backlogs.
  • 12. The method of claim 1, wherein said first group set includes a single queue and said second group set includes two queues.
  • 13. A wireless terminal for use in a wireless communications system to communicate transmission backlog information, comprising: a selection module for selecting a set of groups, from a plurality of sets of groups, to prepare a fixed size uplink report, wherein:a first number of possible uplink report values corresponds to a first one of said plurality of sets of groups, anda second number of possible uplink report values corresponds to a second one of said plurality of sets of groups;a report generation module for generating said fixed size uplink report, said generating including:mapping backlog information to one of the uplink report values corresponding to the selected set of groups, the selected set of groups being associated with a plurality of queues, andobtaining a bit pattern to be included in said fixed size uplink report, wherein a single value of the bit pattern in the generated fixed size uplink report indicates a backlog of traffic for the plurality of queues associated with the selected set of groups; anda transmitter for transmitting the generated fixed size uplink report to thereby communicate transmission backlog information.
  • 14. The wireless terminal of claim 13, further comprising a plurality of communications queues for storing data to be transmitted, each set of groups, in said plurality of sets of groups, corresponding to one or a set of said communication queues.
  • 15. The wireless terminal of claim 13, further comprising: memory including stored priority information, wherein said stored priority information associates priorities with the sets of groups and wherein said selection is performed as a function of said stored priority information.
  • 16. The wireless terminal of claim 13 wherein said priorities are predetermined.
  • 17. The wireless terminal of claim 13, wherein said selection module selects a set of groups having the highest priority level among the sets of groups that have a non-zero backlog.
  • 18. The wireless terminal of claim 17, wherein the first number is 5 and the second number is 11.
  • 19. The wireless terminal of claim 18, wherein said fixed size uplink report is a multi-bit uplink report which occurs periodically in a dedicated control channel reporting structure.
  • 20. The wireless terminal of claim 13, wherein at least some of said plurality of sets of groups correspond to different numbers of queues, a first one of said plurality of sets groups corresponding to a single queue, a second one of said sets of groups corresponding to multiple queues.
  • 21. The wireless terminal of claim 13, wherein at least one of said first and second numbers is a number which is not an integer multiple of two.
  • 22. The wireless terminal of claim 21 wherein said first number is five.
  • 23. A wireless terminal for use in a wireless communications system to communicate transmission backlog information, comprising: means for selecting a set of groups, from a plurality of sets of groups, to prepare a fixed size uplink report, wherein: a first number of possible uplink report values corresponds to a first one of said plurality of sets of groups, anda second number of possible uplink report values corresponds to a second one of said plurality of sets of groups;means for generating said fixed size uplink report, said generating including: mapping backlog information to one of the uplink report values corresponding to the selected set of groups, the selected set of groups being associated with a plurality of queues, andobtaining an information bit pattern to be included in said fixed size uplink report, wherein a single value of the bit pattern in the generated fixed size uplink report indicates a backlog of traffic for the plurality of queues associated with the selected set of groups; andmeans for transmitting the generated fixed size uplink report to thereby communicate transmission backlog information.
  • 24. The wireless terminal of claim 23, further comprising: means for storing a plurality of communications queues for storing data to be transmitted, each set of groups, in said plurality of sets of groups, corresponding to one or a set of said communication queues.
  • 25. The wireless terminal of claim 23, further comprising: means for storing priority information, wherein said priority information associates priorities with the sets of groups and wherein said selection is performed as a function of said priority information.
  • 26. The wireless terminal of claim 25 wherein said priorities are predetermined.
  • 27. The wireless terminal of claim 25, wherein said means for selecting include means for selecting a set of groups having the highest priority level among the groups that have a non-zero backlog.
  • 28. The wireless terminal of claim 27, wherein the first number is 5 and the second number is 11.
  • 29. The wireless terminal of claim 18, wherein at least one of said first and second numbers is a number which is not an integer multiple of two.
  • 30. The wireless terminal of claim 29 wherein said first number is five.
  • 31. The wireless terminal of claim 23, wherein at least one of the values corresponding to the first set of groups indicates a zero backlog and wherein the values corresponding to the second set of groups only include values corresponding to non-zero backlogs.
  • 32. A non-transitory computer readable medium embodying machine executable instructions for operating a wireless terminal to perform a method in a wireless communications system in which the wireless terminal communicates transmission backlog information, the method comprising: selecting a set of groups, from a plurality of sets of groups to prepare a fixed size uplink report, wherein: a first number of possible uplink report values corresponds to a first one of said plurality of sets of groups, anda second number of possible uplink report values corresponds to a second one of said plurality of sets of groups;generating said fixed size uplink report, said generating including: mapping backlog information to one of the uplink report values corresponding to the selected set of groups, the selected set of groups being associated with a plurality of queues, andobtaining a bit pattern to be included in said fixed size uplink report, wherein a single value of the bit pattern in the generated fixed size uplink report indicates a backlog of traffic for the plurality of queues associated with the selected set of groups; andtransmitting the generated fixed size uplink report.
  • 33. The computer readable medium of claim 32, wherein each set of groups, in said plurality of sets of groups, corresponds to one or a set of communication queues which are used to store data to be transmitted.
  • 34. The computer readable medium of claim 32, wherein priorities are associated with the sets of groups and wherein said selection is performed as a function of said priorities.
  • 35. The computer readable medium of claim 32 wherein said priorities are predetermined.
  • 36. The computer readable medium of claim 34, wherein said selecting a set of groups includes selecting the set of groups having the highest priority level among the sets of groups that have a non-zero backlog.
  • 37. The computer readable medium of claim 36, wherein the first number is 5 and the second number is 11.
  • 38. The computer readable medium of claim 32, wherein at least one of said first and second numbers is a number which is not an integer multiple of two.
  • 39. The computer readable medium of claim 38 wherein said first number is five.
  • 40. A device for use in a wireless communications system, the device comprising: a processor configured to: select a set of groups, from a plurality of sets of groups, to prepare a fixed size uplink report, wherein: a first number of possible uplink report values corresponds to a first one of said plurality of sets of groups, anda second number of possible uplink report values corresponds to a second one of said plurality of sets of groups;generate said it fixed size uplink request report, said generating including: mapping backlog information to one of the uplink request report values corresponding to the selected set of groups, the selected set of groups being associated with a plurality of queues, andobtaining a bit pattern to be included in said fixed size uplink report, wherein a single value of the bit pattern in the generated fixed size uplink report indicates a backlog of traffic for the plurality of queues associated with the selected set of groups; andcontrol transmission of the generated fixed size uplink report.
  • 41. The device of claim 40, wherein each set of groups, in said plurality of sets of groups, corresponds to one or a set of communication queues which are used to store data to be transmitted.
  • 42. The device of claim 40, wherein priorities are associated with groups and wherein said selection is performed as a function of said priorities.
  • 43. The device of claim 42 wherein said priorities are predetermined.
  • 44. The device of claim 42, wherein said processor is further configured to: select the set of groups having the highest priority level among the sets of groups that have a non-zero backlog.
  • 45. The device of claim 44, wherein the first number is 5 and the second number is 11.
  • 46. The device of claim 40, wherein at least one of said first and second numbers is a number which is not an integer multiple of two.
  • 47. The device of claim 38 wherein said first number is five.
RELATED APPLICATIONS

The present application for patent is a Continuation-in-Part of patent application Ser. No. 11/333,792, filed on Jan. 17, 2006, titled “METHODS AND APPARATUS OF IMPLEMENTING AND/OR USING A DEDICATED CONTROL CHANNEL”, pending, which claims priority to Provisional Application No. 60/752,973, filed on Dec. 22, 2005, titled “COMMUNICATIONS METHODS AND APPARATUS”, and assigned to the assignee hereof and each of which is hereby expressly incorporated by reference.

US Referenced Citations (436)
Number Name Date Kind
4631720 Koeck Dec 1986 A
4660196 Gray et al. Apr 1987 A
4679244 Kawasaki et al. Jul 1987 A
4833701 Comroe et al. May 1989 A
5128938 Borras Jul 1992 A
5203013 Breeden et al. Apr 1993 A
5387905 Grube et al. Feb 1995 A
5434848 Chimento, Jr. et al. Jul 1995 A
5461645 Ishii Oct 1995 A
5465389 Agrawal et al. Nov 1995 A
5491837 Haartsen Feb 1996 A
5506865 Weaver, Jr. Apr 1996 A
5537414 Takiyasu et al. Jul 1996 A
5579307 Richetta et al. Nov 1996 A
5732328 Mitra et al. Mar 1998 A
5835847 Gilmore et al. Nov 1998 A
5867478 Baum et al. Feb 1999 A
5898925 Honkasalo et al. Apr 1999 A
5914950 Tiedemann et al. Jun 1999 A
5915221 Sawyer et al. Jun 1999 A
5923650 Chen et al. Jul 1999 A
5933421 Alamouti et al. Aug 1999 A
5940771 Gollnick et al. Aug 1999 A
5966657 Sporre Oct 1999 A
5966662 Murto Oct 1999 A
5978657 Suzuki Nov 1999 A
5999534 Kim Dec 1999 A
6002676 Fleming Dec 1999 A
6004276 Wright et al. Dec 1999 A
6026081 Hamabe et al. Feb 2000 A
6028842 Chapman et al. Feb 2000 A
6028843 Delp et al. Feb 2000 A
6035000 Bingham et al. Mar 2000 A
6069871 Sharma et al. May 2000 A
6070072 Dorenbosch et al. May 2000 A
6073025 Chheda et al. Jun 2000 A
6075025 Bishop et al. Jun 2000 A
6122270 Whinnett et al. Sep 2000 A
6128506 Knutsson et al. Oct 2000 A
6131016 Greenstein et al. Oct 2000 A
6141565 Feuerstein et al. Oct 2000 A
6169896 Sant et al. Jan 2001 B1
6173005 Kotzin et al. Jan 2001 B1
6181948 Kondo Jan 2001 B1
6201793 Chen et al. Mar 2001 B1
6205129 Esteves et al. Mar 2001 B1
6215791 Kim Apr 2001 B1
6236646 Beming et al. May 2001 B1
6256478 Allen et al. Jul 2001 B1
6259927 Butovitsch et al. Jul 2001 B1
6263392 McCauley Jul 2001 B1
6298233 Souissi et al. Oct 2001 B1
6308080 Burt et al. Oct 2001 B1
6310857 Duffield et al. Oct 2001 B1
6311065 Ushiki et al. Oct 2001 B1
6374085 Saints et al. Apr 2002 B1
6377583 Lyles et al. Apr 2002 B1
6377955 Hartmann et al. Apr 2002 B1
6405047 Moon Jun 2002 B1
6414946 Satou et al. Jul 2002 B1
6445917 Bark et al. Sep 2002 B1
6453151 Kiang et al. Sep 2002 B1
6493539 Falco et al. Dec 2002 B1
6526281 Gorsuch et al. Feb 2003 B1
6538986 Isaksson et al. Mar 2003 B2
6545999 Sugita Apr 2003 B1
6553336 Johnson et al. Apr 2003 B1
6590890 Stolyar et al. Jul 2003 B1
6597914 Silventoinen et al. Jul 2003 B1
6600903 Lilja et al. Jul 2003 B1
6609007 Eibling et al. Aug 2003 B1
6621808 Sadri Sep 2003 B1
6625133 Balachandran et al. Sep 2003 B1
6662024 Walton et al. Dec 2003 B2
6671512 Laakso et al. Dec 2003 B2
6680909 Bansal et al. Jan 2004 B1
6697417 Fernandez-Corbaton et al. Feb 2004 B2
6710651 Forrester Mar 2004 B2
6742020 Dimitroff et al. May 2004 B1
6745003 Maca et al. Jun 2004 B1
6745044 Holtzman et al. Jun 2004 B1
6751187 Walton et al. Jun 2004 B2
6771934 Demers et al. Aug 2004 B2
6788963 Laroia et al. Sep 2004 B2
6798761 Cain et al. Sep 2004 B2
6804289 Takahashi Oct 2004 B2
6804521 Tong et al. Oct 2004 B2
6816476 Kim et al. Nov 2004 B2
6836673 Trott Dec 2004 B1
6865168 Sekine Mar 2005 B1
6889056 Shibutani May 2005 B2
6889257 Patel May 2005 B1
6892071 Park et al. May 2005 B2
6895005 Malin May 2005 B1
6895364 Banfer May 2005 B2
6901268 Chang et al. May 2005 B2
6901270 Beach May 2005 B1
6904016 Kuo et al. Jun 2005 B2
6912405 Hiramatsu et al. Jun 2005 B2
6917607 Yeom et al. Jul 2005 B1
6940827 Li et al. Sep 2005 B2
6957072 Kangras et al. Oct 2005 B2
6967937 Gormley Nov 2005 B1
6968156 Sugaya et al. Nov 2005 B2
7006841 Momogioudis et al. Feb 2006 B2
7024460 Koopmans et al. Apr 2006 B2
7027782 Moon et al. Apr 2006 B2
7031983 Israni et al. Apr 2006 B2
7034254 Grabowski et al. Apr 2006 B2
7039029 Lee et al. May 2006 B2
7043254 Chawla et al. May 2006 B2
7047009 Laroia et al. May 2006 B2
7054643 Trossen et al. May 2006 B2
7061885 Kurtz Jun 2006 B2
7092672 Pekonen et al. Aug 2006 B1
7120123 Quigley et al. Oct 2006 B1
7120448 Brouwer et al. Oct 2006 B2
7123910 Lucidarme et al. Oct 2006 B2
7139536 Chiu Nov 2006 B2
7142548 Fong et al. Nov 2006 B2
7146172 Li et al. Dec 2006 B2
7158796 Tiedemann, Jr. et al. Jan 2007 B2
7161909 Sharma Jan 2007 B2
7162203 Brunner et al. Jan 2007 B1
7164883 Rappaport et al. Jan 2007 B2
7197025 Chuah Mar 2007 B2
7203493 Fujii et al. Apr 2007 B2
7212821 Laroia et May 2007 B2
7218948 Laroia et al. May 2007 B2
7245935 Lin Jul 2007 B2
7260054 Olszewski et al. Aug 2007 B2
7269406 Qi Sep 2007 B2
7277709 Vadgama Oct 2007 B2
7277737 Vollmer et al. Oct 2007 B1
7280814 Austin et al. Oct 2007 B2
7283559 Cho et al. Oct 2007 B2
7283836 Hwang et al. Oct 2007 B2
7299277 Moran et al. Nov 2007 B1
7317921 Mueckenheim et al. Jan 2008 B2
7319680 Cho Jan 2008 B2
7321563 Kim et al. Jan 2008 B2
7340267 Budka et al. Mar 2008 B2
7349667 Magee et al. Mar 2008 B2
7356635 Woodings et al. Apr 2008 B2
7362702 Terrell et al. Apr 2008 B2
7382755 Dugad et al. Jun 2008 B2
7395058 Kalofonos et al. Jul 2008 B1
7397803 Love et al. Jul 2008 B2
7400901 Kostic et al. Jul 2008 B2
7412265 Chen et al. Aug 2008 B2
7418260 Lucidarme Aug 2008 B2
7420939 Laroia et al. Sep 2008 B2
7430206 Terry et al. Sep 2008 B2
7430207 Wu et al. Sep 2008 B2
7430420 Derakhshan et al. Sep 2008 B2
7447148 Gao et al. Nov 2008 B2
7463577 Sudo et al. Dec 2008 B2
7486620 Seol Feb 2009 B2
7486638 Ofuji et al. Feb 2009 B2
7502614 Uchida et al. Mar 2009 B2
7508792 Petrovic et al. Mar 2009 B2
7510828 Lynn et al. Mar 2009 B2
7512076 Kwon et al. Mar 2009 B2
7512185 Sharon et al. Mar 2009 B2
7519013 Destino et al. Apr 2009 B2
7519033 Soomro Apr 2009 B2
7522544 Cheng et al. Apr 2009 B2
7525971 Carroll et al. Apr 2009 B2
7526091 Jeong et al. Apr 2009 B2
7558235 Lester et al. Jul 2009 B2
7558572 Anigstein Jul 2009 B2
7561893 Moulsley et al. Jul 2009 B2
7668573 Laroia et al. Feb 2010 B2
7743284 Taylor et al. Jun 2010 B1
8040831 Kurtz et al. Oct 2011 B2
RE43593 Kayama et al. Aug 2012 E
8325621 Simonsson et al. Dec 2012 B2
8437251 Das et al. May 2013 B2
8989084 Hande et al. Mar 2015 B2
20010007552 Schiff et al. Jul 2001 A1
20010036181 Rogers Nov 2001 A1
20010046878 Chang et al. Nov 2001 A1
20010055293 Parsa et al. Dec 2001 A1
20020012326 Chang et al. Jan 2002 A1
20020031105 Zeira et al. Mar 2002 A1
20020037729 Kitazawa et al. Mar 2002 A1
20020045448 Park et al. Apr 2002 A1
20020049040 Sugaya et al. Apr 2002 A1
20020075835 Krishnakumar et al. Jun 2002 A1
20020077140 Monogioudis et al. Jun 2002 A1
20020080967 Abdo et al. Jun 2002 A1
20020082011 Fujii et al. Jun 2002 A1
20020085516 Bridgelall Jul 2002 A1
20020093953 Naim et al. Jul 2002 A1
20020107028 Rantalainen et al. Aug 2002 A1
20020122431 Cho et al. Sep 2002 A1
20020136195 Kurtz et al. Sep 2002 A1
20020142788 Chawla et al. Oct 2002 A1
20020143858 Teague et al. Oct 2002 A1
20020147017 Li et al. Oct 2002 A1
20020160802 Hiramatsu et al. Oct 2002 A1
20020177452 Ruutu et al. Nov 2002 A1
20020186678 Averbuch et al. Dec 2002 A1
20030003921 Laakso et al. Jan 2003 A1
20030007498 Angle et al. Jan 2003 A1
20030012212 Earnshaw et al. Jan 2003 A1
20030016641 Terry et al. Jan 2003 A1
20030027587 Proctor, Jr. et al. Feb 2003 A1
20030028606 Koopmans Feb 2003 A1
20030064737 Eriksson et al. Apr 2003 A1
20030078067 Kim et al. Apr 2003 A1
20030095519 Kuo et al. May 2003 A1
20030100269 Lehtinen et al. May 2003 A1
20030114180 Black et al. Jun 2003 A1
20030123396 Seo et al. Jul 2003 A1
20030123410 Youm Jul 2003 A1
20030139197 Kostic et al. Jul 2003 A1
20030144042 Weinfield et al. Jul 2003 A1
20030157899 Trossen et al. Aug 2003 A1
20030161285 Tiedemann et al. Aug 2003 A1
20030169705 Knisely et al. Sep 2003 A1
20030185224 Ramanan et al. Oct 2003 A1
20030185285 Talwar Oct 2003 A1
20030193915 Lee et al. Oct 2003 A1
20030198204 Taneja et al. Oct 2003 A1
20030198206 Cain et al. Oct 2003 A1
20030206541 Yun et al. Nov 2003 A1
20030207691 Chen Nov 2003 A1
20030207693 Roderique Nov 2003 A1
20030214906 Hu et al. Nov 2003 A1
20030214928 Chuah et al. Nov 2003 A1
20030223354 Olszewski et al. Dec 2003 A1
20040001429 Ma et al. Jan 2004 A1
20040004954 Terry et al. Jan 2004 A1
20040013103 Zhang et al. Jan 2004 A1
20040057402 Ramos et al. Mar 2004 A1
20040062206 Soong et al. Apr 2004 A1
20040081089 Ayyagari et al. Apr 2004 A1
20040082344 Moilanen et al. Apr 2004 A1
20040085936 Gopalakrishnan et al. May 2004 A1
20040091026 Nakayama May 2004 A1
20040111640 Baum Jun 2004 A1
20040120411 Walton et al. Jun 2004 A1
20040125776 Haugli et al. Jul 2004 A1
20040127226 Dugad et al. Jul 2004 A1
20040131007 Smee et al. Jul 2004 A1
20040141466 Kim et al. Jul 2004 A1
20040147262 Lescuyer et al. Jul 2004 A1
20040147276 Gholmieh et al. Jul 2004 A1
20040160922 Nanda et al. Aug 2004 A1
20040162097 Vijayan et al. Aug 2004 A1
20040166869 Laroia et al. Aug 2004 A1
20040166886 Laroia et al. Aug 2004 A1
20040166887 Laroia et al. Aug 2004 A1
20040171401 Balachandran Sep 2004 A1
20040180658 Uchida et al. Sep 2004 A1
20040184410 Park Sep 2004 A1
20040192371 Zhao et al. Sep 2004 A1
20040196802 Bae et al. Oct 2004 A1
20040203717 Wingrowicz et al. Oct 2004 A1
20040203981 Budka et al. Oct 2004 A1
20040218617 Sagfors Nov 2004 A1
20040223455 Fong et al. Nov 2004 A1
20040224677 Kuchibhotla et al. Nov 2004 A1
20040228313 Cheng et al. Nov 2004 A1
20040233838 Sudo et al. Nov 2004 A1
20040235510 Elicegui et al. Nov 2004 A1
20040248518 Kashiwase et al. Dec 2004 A1
20040248568 Lucidarme et al. Dec 2004 A1
20040252647 Chang et al. Dec 2004 A1
20040252662 Cho et al. Dec 2004 A1
20040253996 Chen et al. Dec 2004 A1
20040258040 Joshi et al. Dec 2004 A1
20040259546 Balachandran et al. Dec 2004 A1
20040264414 Dorenbosch Dec 2004 A1
20040266474 Petrus et al. Dec 2004 A1
20050003847 Love et al. Jan 2005 A1
20050008892 Yamamoto et al. Jan 2005 A1
20050037775 Moeglein et al. Feb 2005 A1
20050047344 Seol et al. Mar 2005 A1
20050047393 Liu et al. Mar 2005 A1
20050047416 Heo Mar 2005 A1
20050053099 Spear et al. Mar 2005 A1
20050058637 Lynn et al. Mar 2005 A1
20050064821 Hedberg et al. Mar 2005 A1
20050068922 Jalali Mar 2005 A1
20050085197 Laroia et al. Apr 2005 A1
20050099987 Lester et al. May 2005 A1
20050111361 Hosein May 2005 A1
20050111462 Walton et al. May 2005 A1
20050118993 Roux et al. Jun 2005 A1
20050122900 Tuulos et al. Jun 2005 A1
20050128999 Kwon et al. Jun 2005 A1
20050135320 Tiedemann et al. Jun 2005 A1
20050136937 Qian et al. Jun 2005 A1
20050143084 Cheng et al. Jun 2005 A1
20050143114 Moulsley et al. Jun 2005 A1
20050152320 Marinier et al. Jul 2005 A1
20050157803 Kim et al. Jul 2005 A1
20050157876 Jeong et al. Jul 2005 A1
20050170782 Rong et al. Aug 2005 A1
20050181732 Kang et al. Aug 2005 A1
20050185632 Draves et al. Aug 2005 A1
20050195765 Sharon et al. Sep 2005 A1
20050201331 Gaal et al. Sep 2005 A1
20050201353 Lee et al. Sep 2005 A1
20050207335 Schmidl et al. Sep 2005 A1
20050207359 Hwang et al. Sep 2005 A1
20050207373 Roy et al. Sep 2005 A1
20050220052 Uehara et al. Oct 2005 A1
20050232154 Bang et al. Oct 2005 A1
20050243938 Armstrong et al. Nov 2005 A1
20050249118 Terry et al. Nov 2005 A1
20050250509 Choksi Nov 2005 A1
20050250510 Kaikkonen et al. Nov 2005 A1
20050250529 Funnell et al. Nov 2005 A1
20050255873 Zhang et al. Nov 2005 A1
20050259662 Kim et al. Nov 2005 A1
20050265301 Heo et al. Dec 2005 A1
20050281232 Kim et al. Dec 2005 A1
20050281278 Black et al. Dec 2005 A1
20050289256 Cudak et al. Dec 2005 A1
20060003767 Kim et al. Jan 2006 A1
20060015357 Cagan Jan 2006 A1
20060018284 Rudolf et al. Jan 2006 A1
20060019694 Sutivong et al. Jan 2006 A1
20060034174 Nishibayashi et al. Feb 2006 A1
20060040696 Lin et al. Feb 2006 A1
20060045013 Vannithamby et al. Mar 2006 A1
20060056346 Vadgama et al. Mar 2006 A1
20060073836 Laroia et al. Apr 2006 A1
20060079257 Iochi et al. Apr 2006 A1
20060079267 Kim et al. Apr 2006 A1
20060083161 Laroia et al. Apr 2006 A1
20060089104 Kaikkonen et al. Apr 2006 A1
20060092881 Laroia et al. May 2006 A1
20060104240 Sebire et al. May 2006 A1
20060120470 Hwang et al. Jun 2006 A1
20060126497 Na et al. Jun 2006 A1
20060128410 Derryberry et al. Jun 2006 A1
20060128412 Mantha et al. Jun 2006 A1
20060133346 Chheda et al. Jun 2006 A1
20060135193 Ratasuk et al. Jun 2006 A1
20060140154 Kwak et al. Jun 2006 A1
20060142032 Derakhshan et al. Jun 2006 A1
20060164981 Olsson et al. Jul 2006 A1
20060165029 Melpignano et al. Jul 2006 A1
20060176807 Wu et al. Aug 2006 A1
20060182022 Abedi Aug 2006 A1
20060203765 Laroia et al. Sep 2006 A1
20060205356 Laroia et al. Sep 2006 A1
20060205396 Laroia Sep 2006 A1
20060215604 Mueckenheim et al. Sep 2006 A1
20060234722 Hanebeck et al. Oct 2006 A1
20060245452 Frederiksen et al. Nov 2006 A1
20060246916 Cheng et al. Nov 2006 A1
20060256747 Jaakkola Nov 2006 A1
20060270399 Qi et al. Nov 2006 A1
20060285481 Lane et al. Dec 2006 A1
20060287743 Sampath et al. Dec 2006 A1
20070002757 Soomro et al. Jan 2007 A1
20070002806 Soomro et al. Jan 2007 A1
20070004437 Harada et al. Jan 2007 A1
20070010226 Laroia et al. Jan 2007 A1
20070015541 Dominique et al. Jan 2007 A1
20070026803 Malm Feb 2007 A1
20070026808 Love et al. Feb 2007 A1
20070026810 Love et al. Feb 2007 A1
20070030828 Vimpari et al. Feb 2007 A1
20070036116 Eiger et al. Feb 2007 A1
20070054624 Kashiwagi Mar 2007 A1
20070057952 Swedberg et al. Mar 2007 A1
20070066273 Laroia et al. Mar 2007 A1
20070070894 Wang et al. Mar 2007 A1
20070081492 Petrovic et al. Apr 2007 A1
20070081498 Niwano Apr 2007 A1
20070104128 Laroia et al. May 2007 A1
20070104164 Laroia et al. May 2007 A1
20070109999 Brunner May 2007 A1
20070133412 Hutter et al. Jun 2007 A1
20070140168 Laroia et al. Jun 2007 A1
20070140179 Zhang et al. Jun 2007 A1
20070141994 Cheng et al. Jun 2007 A1
20070147283 Laroia et al. Jun 2007 A1
20070147377 Laroia et al. Jun 2007 A1
20070149126 Rangan et al. Jun 2007 A1
20070149128 Das et al. Jun 2007 A1
20070149129 Das et al. Jun 2007 A1
20070149131 Li et al. Jun 2007 A1
20070149132 Li et al. Jun 2007 A1
20070149137 Richardson et al. Jun 2007 A1
20070149138 Das et al. Jun 2007 A1
20070149194 Das et al. Jun 2007 A1
20070149227 Parizhsky et al. Jun 2007 A1
20070149228 Das Jun 2007 A1
20070149238 Das et al. Jun 2007 A1
20070159969 Das et al. Jul 2007 A1
20070168326 Das et al. Jul 2007 A1
20070169326 Smith Jul 2007 A1
20070173208 Nishio et al. Jul 2007 A1
20070177510 Natarajan et al. Aug 2007 A1
20070183308 Korobkov et al. Aug 2007 A1
20070213087 Laroia et al. Sep 2007 A1
20070243882 Edge Oct 2007 A1
20070249287 Das et al. Oct 2007 A1
20070249360 Das et al. Oct 2007 A1
20070253355 Hande et al. Nov 2007 A1
20070253357 Das et al. Nov 2007 A1
20070253385 Li et al. Nov 2007 A1
20070253449 Das et al. Nov 2007 A1
20070258365 Das et al. Nov 2007 A1
20080031368 Lindoff et al. Feb 2008 A1
20080037474 Niwano Feb 2008 A1
20080051086 Etemad et al. Feb 2008 A2
20080057969 Agami et al. Mar 2008 A1
20080076462 Iochi et al. Mar 2008 A1
20080144521 Soomro et al. Jun 2008 A1
20080159235 Son et al. Jul 2008 A1
20080167047 Abedi Jul 2008 A1
20080212524 Niwano Sep 2008 A1
20090004983 Darabi Jan 2009 A1
20090034455 Lee et al. Feb 2009 A1
20090103507 Gu et al. Apr 2009 A1
20090252122 Leinonen et al. Oct 2009 A1
20090303900 Cho et al. Dec 2009 A1
20100177731 Ananthaiyer et al. Jul 2010 A1
20100220626 Das et al. Sep 2010 A1
20110090812 Aoyama Apr 2011 A1
20110149789 Edge Jun 2011 A1
20120140756 Rudolf et al. Jun 2012 A1
20130230027 Das et al. Sep 2013 A1
20130242888 Das et al. Sep 2013 A1
20150043374 Hande et al. Feb 2015 A1
20150333948 Richardson Nov 2015 A1
20150334590 Das Nov 2015 A1
20160255633 Parizhsky Sep 2016 A1
Foreign Referenced Citations (150)
Number Date Country
3603-2006 Dec 2006 CL
3604-2006 Dec 2006 CL
3605-2006 Dec 2006 CL
1159262 Sep 1997 CN
1159286 Sep 1997 CN
1265792 Sep 2000 CN
1286006 Feb 2001 CN
1286821 Mar 2001 CN
1286832 Mar 2001 CN
1316140 Oct 2001 CN
1335036 Feb 2002 CN
1338877 Mar 2002 CN
1338878 Mar 2002 CN
1507708 Jun 2004 CN
1545252 Nov 2004 CN
1604685 Apr 2005 CN
1684457 Oct 2005 CN
10162564 Jul 2003 DE
1037419 Sep 2000 EP
1037491 Sep 2000 EP
1 054 518 Nov 2000 EP
1089500 Apr 2001 EP
1179962 Feb 2002 EP
1180881 Feb 2002 EP
1180907 Feb 2002 EP
1221273 Jul 2002 EP
1233637 Aug 2002 EP
1377100 Jan 2004 EP
1493284 Jan 2005 EP
1511245 Mar 2005 EP
1564953 Aug 2005 EP
1571762 Sep 2005 EP
1 594 260 Nov 2005 EP
1758276 Feb 2007 EP
1841259 Oct 2007 EP
2340693 Feb 2000 GB
08008806 Jan 1996 JP
8503591 Apr 1996 JP
9275582 Oct 1997 JP
09307939 Nov 1997 JP
10022975 Jan 1998 JP
10173585 Jun 1998 JP
11122167 Apr 1999 JP
2000049689 Feb 2000 JP
2001007761 Jan 2001 JP
2001016152 Jan 2001 JP
2001510974 Aug 2001 JP
2001512921 Aug 2001 JP
2001251680 Sep 2001 JP
2001523901 Nov 2001 JP
2001525135 Dec 2001 JP
2002077992 Mar 2002 JP
2002111627 Apr 2002 JP
2002262330 Sep 2002 JP
2003018641 Jan 2003 JP
2003500911 Jan 2003 JP
2003509983 Mar 2003 JP
2003510887 Mar 2003 JP
03520153 Jul 2003 JP
2003244161 Aug 2003 JP
2004153585 May 2004 JP
2004297284 Oct 2004 JP
2004533731 Nov 2004 JP
2004350052 Dec 2004 JP
2005073276 Mar 2005 JP
2005130482 May 2005 JP
2005136773 May 2005 JP
2005142965 Jun 2005 JP
2005525730 Aug 2005 JP
2005526417 Sep 2005 JP
2005333671 Dec 2005 JP
2006514735 May 2006 JP
2006518578 Aug 2006 JP
06268574 Oct 2006 JP
2006524966 Nov 2006 JP
2006526323 Nov 2006 JP
2007503156 Feb 2007 JP
2007509531 Apr 2007 JP
2007514364 May 2007 JP
2007514378 May 2007 JP
2007522692 Aug 2007 JP
2007525044 Aug 2007 JP
2007525045 Aug 2007 JP
2011045054 Mar 2011 JP
1019990084525 Dec 1999 KR
20010014223 Feb 2001 KR
20040018526 Mar 2004 KR
20040053859 Jun 2004 KR
20040084599 Oct 2004 KR
20040110044 Dec 2004 KR
20050021083 Mar 2005 KR
20050023187 Mar 2005 KR
20050039376 Apr 2005 KR
1020050099633 Oct 2005 KR
1020050121274 Dec 2005 KR
20060012282 Feb 2006 KR
2149518 May 2000 RU
2181529 Apr 2002 RU
2188506 Aug 2002 RU
2202154 Apr 2003 RU
200423642 Nov 2004 TW
9408432 Apr 1994 WO
WO9623371 Aug 1996 WO
WO9845967 Oct 1998 WO
WO9856120 Dec 1998 WO
9907090 Feb 1999 WO
9909779 Feb 1999 WO
WO 9913600 Mar 1999 WO
WO9959254 Nov 1999 WO
0001188 Jan 2000 WO
WO0101610 Jan 2001 WO
0122759 Mar 2001 WO
WO0135548 May 2001 WO
0142047 Jun 2001 WO
WO0182504 Nov 2001 WO
0199291 Dec 2001 WO
WO0232183 Apr 2002 WO
WO0233841 Apr 2002 WO
WO 0239760 May 2002 WO
WO0249305 Jun 2002 WO
WO02073831 Sep 2002 WO
WO 02101941 Dec 2002 WO
WO02104058 Dec 2002 WO
WO03094544 Nov 2003 WO
WO 03105498 Dec 2003 WO
2004031918 Apr 2004 WO
2004077685 Sep 2004 WO
2004084503 Sep 2004 WO
WO2004084452 Sep 2004 WO
WO-2004084575 Sep 2004 WO
2004100450 Nov 2004 WO
WO-2004098072 Nov 2004 WO
2004110081 Dec 2004 WO
WO 2004105420 Dec 2004 WO
2005018115 Feb 2005 WO
2005020490 Mar 2005 WO
2005039119 Apr 2005 WO
WO 2005034438 Apr 2005 WO
2005060132 Jun 2005 WO
WO2005057812 Jun 2005 WO
WO2005060271 Jun 2005 WO
WO2005060277 Jun 2005 WO
2005065056 Jul 2005 WO
WO2005065056 Jul 2005 WO
WO2005069519 Jul 2005 WO
2005107311 Nov 2005 WO
WO2005125049 Dec 2005 WO
WO2006044718 Apr 2006 WO
2006075293 Jul 2006 WO
2007031956 Mar 2007 WO
Non-Patent Literature Citations (30)
Entry
Hosein, et al., “Optimal Assignment of Mobile Station Serving Sector for the Forward Link of a Time-Shared WirelessPacket Data Channel,” Fifth IEE International Conference on 3G Mobile Communication Technologies (3G 2004), Oct. 18-Oct. 20, 2004. pp. 654-658.
Kwon, et el., “Quasi-Dedicated Access Scheme for Uplink Realtime Services in Future Wireless Communication Systems,” Vehicular Technology Conference, 2005. VTC 2005—Spring. 2005 IEEE 61st Stockholm, Sweden, Apr. 20-May 1, 2005, Piscataway, NJ, USA, May 30, 2005, pp. 3117-3121.
Majmundar, “Impact of Mobile-Originated Short Message Service on the Digital Control Channel of TDMA Systems,” Vehicular Technology Conference, 2000. IEEE VTS Fall VTC 2000. 52nd Sep. 24-28, 2000, Piscataway, NJ, USA, IEEE, Sep. 24, 2000, pp. 1550-1555.
Gunnarson, F., et al.: “Uplink Admission Control in WCDMA Based on Relative Load Estimates”, IEEE International Conference on Communications, vol. 1, pp. 3091-3095, IEEE, New York, NY USA (Apr. 28, 2002).
Wada, “Study of an OFDM Cellular System Using a Single Band,” 2002 Communication Society Convention, Collection of Lecture Papers 1, Japan, IEEE, Aug. 20, 2002, p. 355, B-5-58.
International Search Report and Written Opinion—PCT/US2006/048652, International Search Authority—U.S. Patent Office—Aug. 21, 2008.
IEEE P802.16e/D5: “Draft IEEE Standard for Local and metropolitan area networks, Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment for Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands”, pp. 1-356, Sep. 2004.
IEEE P802.16e/D5: “Draft IEEE Standard for Local and metropolitan area networks, Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment for Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands”, pp. 184-190, Sep. 2004.
Hang Zhang et al, “Clean up for Closed-Loop MIMO in H-ARQ MAP IE”, IEEE P802.16e/D7 Broadband Wireless Access Working Group <http://ieee802.org/16>, pp. 1-6, Mar. 10, 2010.
3GPP, Radio Resource Control (RRC) protocol specification (3GPP TS 25331 version 6.3.0 Release 6), ETSI TS 125 331, ETSI, Sep. 2004, V6.3.0, p49, 202-209, 220, 221, 406, 579-585, 589, 930.
Ericsson, Discussion on SIR Measurement, TSG-RAN Working Group 4 (Radio) meeting #18, 3GPP, Jul. 9, 2001, R4-010895, URL, http://www.3gpp.—org/ftp/tsg—ran/WG4—Radio/TSGR4—18/Docs/R4-010895.zip.
Supplementary European Search Report—EP04713438, Search Authority—The Hague Patent Office, Nov. 30, 2010.
TIM/TILAB, BIU, Mobilkom Austria , One2one,Telefonica, Re-introduction of SIR measurement, 3GPP TSG-RAN4 Meeting #17,3GPP. May 21, 2001, R4-010647, URL, http://www.3gpp.org/ftp/tsg—ran/WG4—Radio/TSGR4—17/Docs/R4-010647.Zip.
Translation of Office Action in Chinese application 200680047991.2 corresponding to U.S. Appl. No. 11/608,785, citing CN1604685 dated Dec. 31, 2010.
Translation of Office Action in Japan application 2008-547460 corresponding to U.S. Appl. No. 11/333,771, citing WO2005125049 and JP2001007761 dated Mar. 15, 2011.
Translation of Office Action in Japan application 2010-275603 corresponding to U.S. Appl. No. 11/251,069, citing JP003018641A 3GPP—ETSI—TS—125—year—2004, TIM/TILAB—R4-010647—year—2001 and Ericsson—R4—010895—year—2001 dated Feb. 8, 2011.
Translation of Office Action in Japanese application 2008-535738 corresponding to U.S. Appl. No. 11/486,714, citing JP2007514378, JP2003510887 and WO9623371 dated Nov. 16, 2010.
Translation of Office Action in Japanese application 2008-535739 corresponding to U.S. Appl. No. 11/549,611, citing JP2003244161, JP200277992 and JP2001016152 dated Jan. 18, 2011.
Translation of Office Action in Ukraine application 200508984 corresponding to U.S. Appl. No. 11/748,433, citing US20020160802, WO0232183, RU2181529,.WO9845967, EP1377100, US5867478, US20010007552 , US6035000 and US5933421 dated Dec. 9, 2010.
Translation of Office Action in Ukraine Application 201010406 corresponding to U.S. Appl. No. 11/748,433, citing US5867478 ,US20010007552 ,US6035000 ,US5933421, WO02073831, WO02032183, RU2181529 and EP1377100 dated Feb. 22, 2011.
3GPP TSG RAN2#45bis. “EDCH Buffer Status Reporting,” R2-050026, Sophia Antipolis, France, Jan. 10-14, 2005, URL: http://www.3gpp.org/ftp/tsg—ran/WG2—RL2/TSGR2—45bis/Dcs/R2-050026.zip.
3GPP TSG-RAN WG2 meeting #48. “Scheduling Information Contents,” R2-051957, London, United Kingdom, Aug. 29, 2005, URL: http://3gpp.org/ftp/tsg—ran/WG2—RL2/TSGR2—48/Docments/R2-095517.zip.
Chang, Cheng-Ta: “Downlink Transmit Power Issues in a WCDMA Cellular System,”Dec. 14, 2004, p. 3, Fig. 1, Retrieved online: http://wintech.ee.nctu.edu.tw/handoff/MediaTek/Material/Wintech/1214/Downlink%20Transmit%20Power%20Issues%20in%20a%20WCDMA%20Cellular%20System.pdf.
European Search Report—EP11165270, Search Authority—Berlin Patent Office, Jun. 6, 2011.
Gunnarsson, G. et al.,“Location Trial System for Mobile Phones,” Global Telecommunications Conference, 1998. GLOBECOM 98. The Bridge to Global Integration. IEEE, vol. 4, pp. 2211-2216, Nov. 8-12, 1998.
Hobfeld, T. et al., “Supporting Vertical Handover by Using a Pastry Peer-to-Peer Overlay Network,” Fourth Annual IEEE International Conference on Pervasive Computing and Communications Workshops, 2006. Percom Workshops 2006. Mar. 13-17, 2006, pp. 163-167, p. 164, paragraph III, IEEE, Piscataway, NJ, USA, XP010910514, ISBN: 0-7695-2520-2.
LG Electronics Inc., “Relative Buffer Status Reporting,” 3GPP TSG-RAN WG2 meeting #46bis, R2-050852, Apr. 4, 2005, pp. 1-3, URL, http://www.3gpp.org/ftp/tsg—ran/WG2—RL2/TSGR2—46bis/Documents/R2-050852.zip.
Samsung: “Uplink control signaling structure (Revision of R1-041086),” 3GPP TSG-RAN WG1 Meeting #38bis, Tdoc R1-041222, 3GPP, Sep. 20, 2004, URL: http://www.3gpp.org/ftp/tsg—ran/WG1—RL1/TSGR1—38bis/Dcs/R1-041222.zip.
Taiwan Search Report—TW095148233—TIPO—Oct. 19, 2012.
Taiwan Search Report—TW095148273—TIPO—Jul. 3, 2013.
Related Publications (1)
Number Date Country
20070253358 A1 Nov 2007 US
Provisional Applications (1)
Number Date Country
60752973 Dec 2005 US
Continuation in Parts (1)
Number Date Country
Parent 11333792 Jan 2006 US
Child 11610060 US