Methods and apparatus to determine impressions using distributed demographic information

Information

  • Patent Grant
  • 12148007
  • Patent Number
    12,148,007
  • Date Filed
    Monday, February 13, 2023
    a year ago
  • Date Issued
    Tuesday, November 19, 2024
    3 days ago
Abstract
Disclosed examples access first impression data representative of first impressions collected by an impression monitor system, the first impressions corresponding to the media accessed at a plurality of client devices; generate a panelist impressions composition by removing at least one duplicate impression from second impression data, the second impression data representative of second impressions logged by meters installed at the client devices, the duplicate impression corresponding to one or more accesses to the media represented in both the first impression data and the second impression data for a same audience member; determine an error value for the media based on the panelist impressions composition and a database proprietor impression composition, the database proprietor impression composition provided by a database proprietor for the media; and determine an error-corrected impression composition based on the error value and the panelist impressions composition.
Description
FIELD OF THE DISCLOSURE

The present disclosure relates generally to monitoring media and, more particularly, to methods and apparatus to determine impressions using distributed demographic information.


BACKGROUND

Traditionally, audience measurement entities determine audience engagement levels for media programming based on registered panel members. That is, an audience measurement entity enrolls people who consent to being monitored into a panel. The audience measurement entity then monitors those panel members to determine media programs (e.g., television programs or radio programs, movies, DVDs, etc.) exposed to those panel members. In this manner, the audience measurement entity can determine exposure measures for different media content based on the collected media measurement data.


Techniques for monitoring user access to Internet resources such as web pages, advertisements and/or other content has evolved significantly over the years. Some known systems perform such monitoring primarily through server logs. In particular, entities serving content on the Internet can use known techniques to log the number of requests received for their content at their server.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts an example system that may be used to determine advertisement viewership using distributed demographic information.



FIG. 2 depicts an example system that may be used to associate advertisement exposure measurements with user demographic information based on demographics information distributed across user account records of different web service providers.



FIG. 3 is a communication flow diagram of an example manner in which a web browser can report impressions to servers having access to demographic information for a user of that web browser.



FIG. 4 depicts an example ratings entity impressions table showing quantities of impressions to monitored users.



FIG. 5 depicts an example campaign-level age/gender and impression composition table generated by a database proprietor.



FIG. 6 depicts another example campaign-level age/gender and impression composition table generated by a ratings entity.



FIG. 7 depicts an example combined campaign-level age/gender and impression composition table based on the composition tables of FIGS. 5 and 6.



FIG. 8 depicts an example age/gender impressions distribution table showing impressions based on the composition tables of FIGS. 5-7.



FIG. 9 is a flow diagram representative of example machine readable instructions that may be executed to identify demographics attributable to impressions.



FIG. 10 is a flow diagram representative of example machine readable instructions that may be executed by a client computer to route beacon requests to web service providers to log impressions.



FIG. 11 is a flow diagram representative of example machine readable instructions that may be executed by a panelist monitoring system to log impressions and/or redirect beacon requests to web service providers to log impressions.



FIG. 12 is a flow diagram representative of example machine readable instructions that may be executed to dynamically designate preferred web service providers from which to request demographics attributable to impressions.



FIG. 13 depicts an example system that may be used to determine advertising exposure based on demographic information collected by one or more database proprietors.



FIG. 14 is a flow diagram representative of example machine readable instructions that may be executed to process a redirected request at an intermediary.



FIG. 15 is an example processor system that can be used to execute the example instructions of FIGS. 9, 10, 11, 12, and/or 14 to implement the example apparatus and systems described herein.





DETAILED DESCRIPTION

Although the following discloses example methods, apparatus, systems, and articles of manufacture including, among other components, firmware and/or software executed on hardware, it should be noted that such methods, apparatus, systems, and articles of manufacture are merely illustrative and should not be considered as limiting. For example, it is contemplated that any or all of these hardware, firmware, and/or software components could be embodied exclusively in hardware, exclusively in firmware, exclusively in software, or in any combination of hardware, firmware, and/or software. Accordingly, while the following describes example methods, apparatus, systems, and articles of manufacture, the examples provided are not the only ways to implement such methods, apparatus, systems, and articles of manufacture.


Techniques for monitoring user access to Internet resources such as web pages, advertisements and/or other content has evolved significantly over the years. At one point in the past, such monitoring was done primarily through server logs. In particular, entities serving content on the Internet would log the number of requests received for their content at their server. Basing Internet usage research on server logs is problematic for several reasons. For example, server logs can be tampered with either directly or via zombie programs which repeatedly request content from the server to increase the server log counts. Secondly, content is sometimes retrieved once, cached locally and then repeatedly viewed from the local cache without involving the server in the repeat viewings. Server logs cannot track these views of cached content. Thus, server logs are susceptible to both over-counting and under-counting errors.


The inventions disclosed in Blumenau, U.S. Pat. No. 6,108,637, fundamentally changed the way Internet monitoring is performed and overcame the limitations of the server side log monitoring techniques described above. For example, Blumenau disclosed a technique wherein Internet content to be tracked is tagged with beacon instructions. In particular, monitoring instructions are associated with the HTML of the content to be tracked. When a client requests the content, both the content and the beacon instructions are downloaded to the client. The beacon instructions are, thus, executed whenever the content is accessed, be it from a server or from a cache.


The beacon instructions cause monitoring data reflecting information about the access to the content to be sent from the client that downloaded the content to a monitoring entity. Typically, the monitoring entity is an audience measurement entity that did not provide the content to the client and who is a trusted third party for providing accurate usage statistics (e.g., The Nielsen Company, LLC). Advantageously, because the beaconing instructions are associated with the content and executed by the client browser whenever the content is accessed, the monitoring information is provided to the audience measurement company irrespective of whether the client is a panelist of the audience measurement company.


It is important, however, to link demographics to the monitoring information. To address this issue, the audience measurement company establishes a panel of users who have agreed to provide their demographic information and to have their Internet browsing activities monitored. When an individual joins the panel, they provide detailed information concerning their identity and demographics (e.g., gender, race, income, home location, occupation, etc.) to the audience measurement company. The audience measurement entity sets a cookie on the panelist computer that enables the audience measurement entity to identify the panelist whenever the panelist accesses tagged content and, thus, sends monitoring information to the audience measurement entity.


Since most of the clients providing monitoring information from the tagged pages are not panelists and, thus, are unknown to the audience measurement entity, it is necessary to use statistical methods to impute demographic information based on the data collected for panelists to the larger population of users providing data for the tagged content. However, panel sizes of audience measurement entities remain small compared to the general population of users. Thus, a problem is presented as to how to increase panel sizes while ensuring the demographics data of the panel is accurate.


There are many database proprietors operating on the Internet. These database proprietors provide services to large numbers of subscribers. In exchange for the provision of the service, the subscribers register with the proprietor. As part of this registration, the subscribers provide detailed demographic information. Examples of such database proprietors include social network providers such as Facebook, Myspace, etc. These database proprietors set cookies on the computers of their subscribers to enable the database proprietor to recognize the user when they visit their website.


The protocols of the Internet make cookies inaccessible outside of the domain (e.g., Internet domain, domain name, etc.) on which they were set. Thus, a cookie set in the amazon.com domain is accessible to servers in the amazon.com domain, but not to servers outside that domain. Therefore, although an audience measurement entity might find it advantageous to access the cookies set by the database proprietors, they are unable to do so.


In view of the foregoing, an audience measurement company would like to leverage the existing databases of database proprietors to collect more extensive Internet usage and demographic data. However, the audience measurement entity is faced with several problems in accomplishing this end. For example, a problem is presented as to how to access the data of the database proprietors without compromising the privacy of the subscribers, the panelists, or the proprietors of the tracked content. Another problem is how to access this data given the technical restrictions imposed by the Internet protocols that prevent the audience measurement entity from accessing cookies set by the database proprietor. Example methods, apparatus and articles of manufacture disclosed herein solve these problems by extending the beaconing process to encompass partnered database proprietors and by using such partners as interim data collectors.


Example methods, apparatus and/or articles of manufacture disclosed herein accomplish this task by responding to beacon requests from clients (who may not be a member of an audience member panel and, thus, may be unknown to the audience member entity) accessing tagged content by redirecting the client from the audience measurement entity to a database proprietor such as a social network site partnered with the audience member entity. The redirection initiates a communication session between the client accessing the tagged content and the database proprietor. The database proprietor (e.g., Facebook) can access any cookie it has set on the client to thereby identify the client based on the internal records of the database proprietor. In the event the client is a subscriber of the database proprietor, the database proprietor logs the content impression in association with the demographics data of the client and subsequently forwards the log to the audience measurement company. In the event the client is not a subscriber of the database proprietor, the database proprietor redirects the client to the audience measurement company. The audience measurement company may then redirect the client to a second, different database proprietor that is partnered with the audience measurement entity. That second proprietor may then attempt to identify the client as explained above. This process of redirecting the client from database proprietor to database proprietor can be performed any number of times until the client is identified and the content exposure logged, or until all partners have been contacted without a successful identification of the client. The redirections all occur automatically so the user of the client is not involved in the various communication sessions and may not even know they are occurring.


The partnered database proprietors provide their logs and demographic information to the audience measurement entity which then compiles the collected data into statistical reports accurately identifying the demographics of persons accessing the tagged content. Because the identification of clients is done with reference to enormous databases of users far beyond the quantity of persons present in a conventional audience measurement panel, the data developed from this process is extremely accurate, reliable and detailed.


Significantly, because the audience measurement entity remains the first leg of the data collection process (e.g., receives the request generated by the beacon instructions from the client), the audience measurement entity is able to obscure the source of the content access being logged as well as the identity of the content itself from the database proprietors (thereby protecting the privacy of the content sources), without compromising the ability of the database proprietors to log impressions for their subscribers. Further, the Internet security cookie protocols are complied with because the only servers that access a given cookie are associated with the Internet domain (e.g., Facebook.com) that set that cookie.


Example methods, apparatus, and articles of manufacture described herein can be used to determine content impressions, advertisement impressions, content exposure, and/or advertisement exposure using demographic information, which is distributed across different databases (e.g., different website owners, service providers, etc.) on the Internet. Not only do example methods, apparatus, and articles of manufacture disclosed herein enable more accurate correlation of Internet advertisement exposure to demographics, but they also effectively extend panel sizes and compositions beyond persons participating in the panel of an audience measurement entity and/or a ratings entity to persons registered in other Internet databases such as the databases of social medium sites such as Facebook, Twitter, Google, etc. This extension effectively leverages the content tagging capabilities of the ratings entity and the use of databases of non-ratings entities such as social media and other websites to create an enormous, demographically accurate panel that results in accurate, reliable measurements of exposures to Internet content such as advertising and/or programming.


In illustrated examples disclosed herein, advertisement exposure is measured in terms of online Gross Rating Points. A Gross Rating Point (GRP) is a unit of measurement of audience size that has traditionally been used in the television ratings context. It is used to measure exposure to one or more programs, advertisements, or commercials, without regard to multiple exposures of the same advertising to individuals. In terms of television (TV) advertisements, one GRP is equal to 1% of TV households. While GRPs have traditionally been used as a measure of television viewership, example methods, apparatus, and articles of manufacture disclosed herein develop online GRPs for online advertising to provide a standardized metric that can be used across the Internet to accurately reflect online advertisement exposure. Such standardized online GRP measurements can provide greater certainty to advertisers that their online advertisement money is well spent. It can also facilitate cross-medium comparisons such as viewership of TV advertisements and online advertisements. Because the example methods, apparatus, and/or articles of manufacture disclosed herein associate viewership measurements with corresponding demographics of users, the information collected by example methods, apparatus, and/or articles of manufacture disclosed herein may also be used by advertisers to identify markets reached by their advertisements and/or to target particular markets with future advertisements.


Traditionally, audience measurement entities (also referred to herein as “ratings entities”) determine demographic reach for advertising and media programming based on registered panel members. That is, an audience measurement entity enrolls people that consent to being monitored into a panel. During enrollment, the audience measurement entity receives demographic information from the enrolling people so that subsequent correlations may be made between advertisement/media exposure to those panelists and different demographic markets. Unlike traditional techniques in which audience measurement entities rely solely on their own panel member data to collect demographics-based audience measurement, example methods, apparatus, and/or articles of manufacture disclosed herein enable an audience measurement entity to share demographic information with other entities that operate based on user registration models. As used herein, a user registration model is a model in which users subscribe to services of those entities by creating an account and providing demographic-related information about themselves. Sharing of demographic information associated with registered users of database proprietors enables an audience measurement entity to extend or supplement their panel data with substantially reliable demographics information from external sources (e.g., database proprietors), thus extending the coverage, accuracy, and/or completeness of their demographics-based audience measurements. Such access also enables the audience measurement entity to monitor persons who would not otherwise have joined an audience measurement panel. Any entity having a database identifying demographics of a set of individuals may cooperate with the audience measurement entity. Such entities may be referred to as “database proprietors” and include entities such as Facebook, Google, Yahoo!, MSN, Twitter, Apple iTunes, Experian, etc.


Example methods, apparatus, and/or articles of manufacture disclosed herein may be implemented by an audience measurement entity (e.g., any entity interested in measuring or tracking audience exposures to advertisements, content, and/or any other media) in cooperation with any number of database proprietors such as online web services providers to develop online GRPs. Such database proprietors/online web services providers may be social network sites (e.g., Facebook, Twitter, MySpace, etc.), multi-service sites (e.g., Yahoo!, Google, Experian, etc.), online retailer sites (e.g., Amazon.com, Buy.com, etc.), and/or any other web service(s) site that maintains user registration records.


To increase the likelihood that measured viewership is accurately attributed to the correct demographics, example methods, apparatus, and/or articles of manufacture disclosed herein use demographic information located in the audience measurement entity's records as well as demographic information located at one or more database proprietors (e.g., web service providers) that maintain records or profiles of users having accounts therewith. In this manner, example methods, apparatus, and/or articles of manufacture disclosed herein may be used to supplement demographic information maintained by a ratings entity (e.g., an audience measurement company such as The Nielsen Company of Schaumburg, Illinois, United States of America, that collects media exposure measurements and/or demographics) with demographic information from one or more different database proprietors (e.g., web service providers).


The use of demographic information from disparate data sources (e.g., high-quality demographic information from the panels of an audience measurement company and/or registered user data of web service providers) results in improved reporting effectiveness of metrics for both online and offline advertising campaigns. Example techniques disclosed herein use online registration data to identify demographics of users and use server impression counts, tagging (also referred to as beaconing), and/or other techniques to track quantities of impressions attributable to those users. Online web service providers such as social networking sites (e.g., Facebook) and multi-service providers (e.g., Yahoo!, Google, Experian, etc.) (collectively and individually referred to herein as online database proprietors) maintain detailed demographic information (e.g., age, gender, geographic location, race, income level, education level, religion, etc.) collected via user registration processes. An impression corresponds to a home or individual having been exposed to the corresponding media content and/or advertisement. Thus, an impression represents a home or an individual having been exposed to an advertisement or content or group of advertisements or content. In Internet advertising, a quantity of impressions or impression count is the total number of times an advertisement or advertisement campaign has been accessed by a web population (e.g., including number of times accessed as decreased by, for example, pop-up blockers and/or increased by, for example, retrieval from local cache memory).


Example methods, apparatus, and/or articles of manufacture disclosed herein also enable reporting TV GRPs and online GRPs in a side-by-side manner. For instance, techniques disclosed herein enable advertisers to report quantities of unique people or users that are reached individually and/or collectively by TV and/or online advertisements.


Example methods, apparatus, and/or articles of manufacture disclosed herein also collect impressions mapped to demographics data at various locations on the Internet. For example, an audience measurement entity collects such impression data for its panel and automatically enlists one or more online demographics proprietors to collect impression data for their subscribers. By combining this collected impression data, the audience measurement entity can then generate GRP metrics for different advertisement campaigns. These GRP metrics can be correlated or otherwise associated with particular demographic segments and/or markets that were reached.



FIG. 1 depicts an example system 100 that may be used to determine media exposure (e.g., exposure to content and/or advertisements) based on demographic information collected by one or more database proprietors. “Distributed demographics information” is used herein to refer to demographics information obtained from at least two sources, at least one of which is a database proprietor such as an online web services provider. In the illustrated example, content providers and/or advertisers distribute advertisements 102 via the Internet 104 to users that access websites and/or online television services (e.g., web-based TV, Internet protocol TV (IPTV), etc.). The advertisements 102 may additionally or alternatively be distributed through broadcast television services to traditional non-Internet based (e.g., RF, terrestrial or satellite based) television sets and monitored for viewership using the techniques described herein and/or other techniques. Websites, movies, television and/or other programming is generally referred to herein as content. Advertisements are typically distributed with content. Traditionally, content is provided at little or no cost to the audience because it is subsidized by advertisers why pay to have their advertisements distributed with the content.


In the illustrated example, the advertisements 102 may form one or more ad campaigns and are encoded with identification codes (e.g., metadata) that identify the associated ad campaign (e.g., campaign ID), a creative type ID (e.g., identifying a Flash-based ad, a banner ad, a rich type ad, etc.), a source ID (e.g., identifying the ad publisher), and a placement ID (e.g., identifying the physical placement of the ad on a screen). The advertisements 102 are also tagged or encoded to include computer executable beacon instructions (e.g., Java, javascript, or any other computer language or script) that are executed by web browsers that access the advertisements 102 on, for example, the Internet. Computer executable beacon instructions may additionally or alternatively be associated with content to be monitored. Thus, although this disclosure frequently speaks in the area of tracking advertisements, it is not restricted to tracking any particular type of media. On the contrary, it can be used to track content or advertisements of any type or form in a network. Irrespective of the type of content being tracked, execution of the beacon instructions causes the web browser to send an impression request (e.g., referred to herein as beacon requests) to a specified server (e.g., the audience measurement entity). The beacon request may be implemented as an HTTP request. However, whereas a transmitted HTML request identifies a webpage or other resource to be downloaded, the beacon request includes the audience measurement information (e.g., ad campaign identification, content identifier, and/or user identification information) as its payload. The server to which the beacon request is directed is programmed to log the audience measurement data of the beacon request as an impression (e.g., an ad and/or content impressions depending on the nature of the media tagged with the beaconing instruction).


In some example implementations, advertisements tagged with such beacon instructions may be distributed with Internet-based media content including, for example, web pages, streaming video, streaming audio, IPTV content, etc. and used to collect demographics-based impression data. As noted above, methods, apparatus, and/or articles of manufacture disclosed herein are not limited to advertisement monitoring but can be adapted to any type of content monitoring (e.g., web pages, movies, television programs, etc.). Example techniques that may be used to implement such beacon instructions are disclosed in Blumenau, U.S. Pat. No. 6,108,637, which is hereby incorporated herein by reference in its entirety.


Although example methods, apparatus, and/or articles of manufacture are described herein as using beacon instructions executed by web browsers to send beacon requests to specified impression collection servers, the example methods, apparatus, and/or articles of manufacture may additionally collect data with on-device meter systems that locally collect web browsing information without relying on content or advertisements encoded or tagged with beacon instructions. In such examples, locally collected web browsing behavior may subsequently be correlated with user demographic data based on user IDs as disclosed herein.


The example system 100 of FIG. 1 includes a ratings entity subsystem 106, a partner database proprietor subsystem 108 (implemented in this example by a social network service provider), other partnered database proprietor (e.g., web service provider) subsystems 110, and non-partnered database proprietor (e.g., web service provider) subsystems 112. In the illustrated example, the ratings entity subsystem 106 and the partnered database proprietor subsystems 108, 110 correspond to partnered business entities that have agreed to share demographic information and to capture impressions in response to redirected beacon requests as explained below. The partnered business entities may participate to advantageously have the accuracy and/or completeness of their respective demographic information confirmed and/or increased. The partnered business entities also participate in reporting impressions that occurred on their websites. In the illustrated example, the other partnered database proprietor subsystems 110 include components, software, hardware, and/or processes similar or identical to the partnered database proprietor subsystem 108 to collect and log impressions (e.g., advertisement and/or content impressions) and associate demographic information with such logged impressions.


The non-partnered database proprietor subsystems 112 correspond to business entities that do not participate in sharing of demographic information. However, the techniques disclosed herein do track impressions (e.g., advertising impressions and/or content impressions) attributable to the non-partnered database proprietor subsystems 112, and in some instances, one or more of the non-partnered database proprietor subsystems 112 also report unique user IDs (UUIDs) attributable to different impressions. Unique user IDs can be used to identify demographics using demographics information maintained by the partnered business entities (e.g., the ratings entity subsystem 106 and/or the database proprietor subsystems 108, 110).


The database proprietor subsystem 108 of the example of FIG. 1 is implemented by a social network proprietor such as Facebook. However, the database proprietor subsystem 108 may instead be operated by any other type of entity such as a web services entity that serves desktop/stationary computer users and/or mobile device users. In the illustrated example, the database proprietor subsystem 108 is in a first internet domain, and the partnered database proprietor subsystems 110 and/or the non-partnered database proprietor subsystems 112 are in second, third, fourth, etc. internet domains.


In the illustrated example of FIG. 1, the tracked content and/or advertisements 102 are presented to TV and/or PC (computer) panelists 114 and online only panelists 116. The panelists 114 and 116 are users registered on panels maintained by a ratings entity (e.g., an audience measurement company) that owns and/or operates the ratings entity subsystem 106. In the example of FIG. 1, the TV and PC panelists 114 include users and/or homes that are monitored for exposures to the content and/or advertisements 102 on TVs and/or computers. The online only panelists 116 include users that are monitored for exposure (e.g., content exposure and/or advertisement exposure) via online sources when at work or home. In some example implementations, TV and/or PC panelists 114 may be home-centric users (e.g., home-makers, students, adolescents, children, etc.), while online only panelists 116 may be business-centric users that are commonly connected to work-provided Internet services via office computers or mobile devices (e.g., mobile phones, smartphones, laptops, tablet computers, etc.).


To collect exposure measurements (e.g., content impressions and/or advertisement impressions) generated by meters at client devices (e.g., computers, mobile phones, smartphones, laptops, tablet computers, TVs, etc.), the ratings entity subsystem 106 includes a ratings entity collector 117 and loader 118 to perform collection and loading processes. The ratings entity collector 117 and loader 118 collect and store the collected exposure measurements obtained via the panelists 114 and 116 in a ratings entity database 120. The ratings entity subsystem 106 then processes and filters the exposure measurements based on business rules 122 and organizes the processed exposure measurements into TV&PC summary tables 124, online home (H) summary tables 126, and online work (W) summary tables 128. In the illustrated example, the summary tables 124, 126, and 128 are sent to a GRP report generator 130, which generates one or more GRP report(s) 131 to sell or otherwise provide to advertisers, publishers, manufacturers, content providers, and/or any other entity interested in such market research.


In the illustrated example of FIG. 1, the ratings entity subsystem 106 is provided with an impression monitor system 132 that is configured to track exposure quantities (e.g., content impressions and/or advertisement impressions) corresponding to content and/or advertisements presented by client devices (e.g., computers, mobile phones, smartphones, laptops, tablet computers, etc.) whether received from remote web servers or retrieved from local caches of the client devices. In some example implementations, the impression monitor system 132 may be implemented using the SiteCensus system owned and operated by The Nielsen Company. In the illustrated example, identities of users associated with the exposure quantities are collected using cookies (e.g., Universally Unique Identifiers (UUIDs)) tracked by the impression monitor system 132 when client devices present content and/or advertisements. Due to Internet security protocols, the impression monitor system 132 can only collect cookies set in its domain. Thus, if, for example, the impression monitor system 132 operates in the “Nielsen.com” domain, it can only collect cookies set by a Nielsen.com server. Thus, when the impression monitor system 132 receives a beacon request from a given client, the impression monitor system 132 only has access to cookies set on that client by a server in the, for example, Nielsen.com domain. To overcome this limitation, the impression monitor system 132 of the illustrated example is structured to forward beacon requests to one or more database proprietors partnered with the audience measurement entity. Those one or more partners can recognize cookies set in their domain (e.g., Facebook.com) and therefore log impressions in association with the subscribers associated with the recognized cookies. This process is explained further below.


In the illustrated example, the ratings entity subsystem 106 includes a ratings entity cookie collector 134 to collect cookie information (e.g., user ID information) together with content IDs and/or ad IDs associated with the cookies from the impression monitor system 132 and send the collected information to the GRP report generator 130. Again, the cookies collected by the impression monitor system 132 are those set by server(s) operating in a domain of the audience measurement entity. In some examples, the ratings entity cookie collector 134 is configured to collect logged impressions (e.g., based on cookie information and ad or content IDs) from the impression monitor system 132 and provide the logged impressions to the GRP report generator 130.


The operation of the impression monitor system 132 in connection with client devices and partner sites is described below in connection with FIGS. 2 and 3. In particular, FIGS. 2 and 3 depict how the impression monitor system 132 enables collecting user identities and tracking exposure quantities for content and/or advertisements exposed to those users. The collected data can be used to determine information about, for example, the effectiveness of advertisement campaigns.


For purposes of example, the following example involves a social network provider, such as Facebook, as the database proprietor. In the illustrated example, the database proprietor subsystem 108 includes servers 138 to store user registration information, perform web server processes to serve web pages (possibly, but not necessarily including one or more advertisements) to subscribers of the social network, to track user activity, and to track account characteristics. During account creation, the database proprietor subsystem 108 asks users to provide demographic information such as age, gender, geographic location, graduation year, quantity of group associations, and/or any other personal or demographic information. To automatically identify users on return visits to the webpage(s) of the social network entity, the servers 138 set cookies on client devices (e.g., computers and/or mobile devices of registered users, some of which may be panelists 114 and 116 of the audience measurement entity and/or may not be panelists of the audience measurement entity). The cookies may be used to identify users to track user visits to the webpages of the social network entity, to display those web pages according to the preferences of the users, etc. The cookies set by the database proprietor subsystem 108 may also be used to collect “domain specific” user activity. As used herein, “domain specific” user activity is user Internet activity occurring within the domain(s) of a single entity. Domain specific user activity may also be referred to as “intra-domain activity.” The social network entity may collect intra-domain activity such as the number of web pages (e.g., web pages of the social network domain such as other social network member pages or other intra-domain pages) visited by each registered user and/or the types of devices such as mobile (e.g., smartphones) or stationary (e.g., desktop computers) devices used for such access. The servers 138 are also configured to track account characteristics such as the quantity of social connections (e.g., friends) maintained by each registered user, the quantity of pictures posted by each registered user, the quantity of messages sent or received by each registered user, and/or any other characteristic of user accounts.


The database proprietor subsystem 108 includes a database proprietor (DP) collector 139 and a DP loader 140 to collect user registration data (e.g., demographic data), intra-domain user activity data, inter-domain user activity data (as explained later) and account characteristics data. The collected information is stored in a database proprietor database 142. The database proprietor subsystem 108 processes the collected data using business rules 144 to create DP summary tables 146.


In the illustrated example, the other partnered database proprietor subsystems 110 may share with the audience measurement entity similar types of information as that shared by the database proprietor subsystem 108. In this manner, demographic information of people that are not registered users of the social network services provider may be obtained from one or more of the other partnered database proprietor subsystems 110 if they are registered users of those web service providers (e.g., Yahoo!, Google, Experian, etc.). Example methods, apparatus, and/or articles of manufacture disclosed herein advantageously use this cooperation or sharing of demographic information across website domains to increase the accuracy and/or completeness of demographic information available to the audience measurement entity. By using the shared demographic data in such a combined manner with information identifying the content and/or ads 102 to which users are exposed, example methods, apparatus, and/or articles of manufacture disclosed herein produce more accurate exposure-per-demographic results to enable a determination of meaningful and consistent GRPs for online advertisements.


As the system 100 expands, more partnered participants (e.g., like the partnered database proprietor subsystems 110) may join to share further distributed demographic information and advertisement viewership information for generating GRPs.


To preserve user privacy, the example methods, apparatus, and/or articles of manufacture described herein use double encryption techniques by each participating partner or entity (e.g., the subsystems 106, 108, 110) so that user identities are not revealed when sharing demographic and/or viewership information between the participating partners or entities. In this manner, user privacy is not compromised by the sharing of the demographic information as the entity receiving the demographic information is unable to identify the individual associated with the received demographic information unless those individuals have already consented to allow access to their information by, for example, previously joining a panel or services of the receiving entity (e.g., the audience measurement entity). If the individual is already in the receiving party's database, the receiving party will be able to identify the individual despite the encryption. However, the individual has already agreed to be in the receiving party's database, so consent to allow access to their demographic and behavioral information has previously already been received.



FIG. 2 depicts an example system 200 that may be used to associate exposure measurements with user demographic information based on demographics information distributed across user account records of different database proprietors (e.g., web service providers). The example system 200 enables the ratings entity subsystem 106 of FIG. 1 to locate a best-fit partner (e.g., the database proprietor subsystem 108 of FIG. 1 and/or one of the other partnered database proprietor subsystems 110 of FIG. 1) for each beacon request (e.g., a request from a client executing a tag associated with tagged media such as an advertisement or content that contains data identifying the media to enable an entity to log an exposure or impression). In some examples, the example system 200 uses rules and machine learning classifiers (e.g., based on an evolving set of empirical data) to determine a relatively best-suited partner that is likely to have demographics information for a user that triggered a beacon request. The rules may be applied based on a publisher level, a campaign/publisher level, or a user level. In some examples, machine learning is not employed and instead, the partners are contacted in some ordered fashion (e.g., Facebook, Myspace, then Yahoo!, etc.) until the user associated with a beacon request is identified or all partners are exhausted without an identification.


The ratings entity subsystem 106 receives and compiles the impression data from all available partners. The ratings entity subsystem 106 may weight the impression data based on the overall reach and demographic quality of the partner sourcing the data. For example, the ratings entity subsystem 106 may refer to historical data on the accuracy of a partner's demographic data to assign a weight to the logged data provided by that partner.


For rules applied at a publisher level, a set of rules and classifiers are defined that allow the ratings entity subsystem 106 to target the most appropriate partner for a particular publisher (e.g., a publisher of one or more of the advertisements or content 102 of FIG. 1). For example, the ratings entity subsystem 106 could use the demographic composition of the publisher and partner web service providers to select the partner most likely to have an appropriate user base (e.g., registered users that are likely to access content for the corresponding publisher).


For rules applied at a campaign level, for instances in which a publisher has the ability to target an ad campaign based on user demographics, the target partner site could be defined at the publisher/campaign level. For example, if an ad campaign is targeted at males aged between the ages of 18 and 25, the ratings entity subsystem 106 could use this information to direct a request to the partner most likely to have the largest reach within that gender/age group (e.g., a database proprietor that maintains a sports website, etc.).


For rules applied at the user level (or cookie level), the ratings entity subsystem 106 can dynamically select a preferred partner to identify the client and log the impression based on, for example, (1) feedback received from partners (e.g., feedback indicating that panelist user IDs did not match registered users of the partner site or indicating that the partner site does not have a sufficient number of registered users), and/or (2) user behavior (e.g., user browsing behavior may indicate that certain users are unlikely to have registered accounts with particular partner sites). In the illustrated example of FIG. 2, rules may be used to specify when to override a user level preferred partner with a publisher (or publisher campaign) level partner target.


Turning in detail to FIG. 2, a panelist computer 202 represents a computer used by one or more of the panelists 114 and 116 of FIG. 1. As shown in the example of FIG. 2, the panelist computer 202 may exchange communications with the impression monitor system 132 of FIG. 1. In the illustrated example, a partner A 206 may be the database proprietor subsystem 108 of FIG. 1 and a partner B 208 may be one of the other partnered database proprietor subsystems 110 of FIG. 1. A panel collection platform 210 contains the ratings entity database 120 of FIG. 1 to collect ad and/or content exposure data (e.g., impression data or content impression data). Interim collection platforms are likely located at the partner A 206 and partner B 208 sites to store logged impressions, at least until the data is transferred to the audience measurement entity.


The panelist computer 202 of the illustrated example executes a web browser 212 that is directed to a host website (e.g., www.acme.com) that displays one of the advertisements and/or content 102. The advertisement and/or content 102 is tagged with identifier information (e.g., a campaign ID, a creative type ID, a placement ID, a publisher source URL, etc.) and beacon instructions 214. When the beacon instructions 214 are executed by the panelist computer 202, the beacon instructions cause the panelist computer to send a beacon request to a remote server specified in the beacon instructions 214. In the illustrated example, the specified server is a server of the audience measurement entity, namely, at the impression monitor system 132. The beacon instructions 214 may be implemented using javascript or any other types of instructions or script executable via a web browser including, for example, Java, HTML, etc. It should be noted that tagged webpages and/or advertisements are processed the same way by panelist and non-panelist computers. In both systems, the beacon instructions are received in connection with the download of the tagged content and cause a beacon request to be sent from the client that downloaded the tagged content for the audience measurement entity. A non-panelist computer is shown at reference number 203. Although the client 203 is not a panelist 114, 116, the impression monitor system 132 may interact with the client 203 in the same manner as the impression monitor system 132 interacts with the client computer 202, associated with one of the panelists 114, 116. As shown in FIG. 2, the non-panelist client 203 also sends a beacon request 215 based on tagged content downloaded and presented on the non-panelist client 203. As a result, in the following description panelist computer 202 and non-panelist computer 203 are referred to generically as a “client” computer.


In the illustrated example, the web browser 212 stores one or more partner cookie(s) 216 and a panelist monitor cookie 218. Each partner cookie 216 corresponds to a respective partner (e.g., the partners A 206 and B 208) and can be used only by the respective partner to identify a user of the panelist computer 202. The panelist monitor cookie 218 is a cookie set by the impression monitor system 132 and identifies the user of the panelist computer 202 to the impression monitor system 132. Each of the partner cookies 216 is created, set, or otherwise initialized in the panelist computer 202 when a user of the computer first visits a website of a corresponding partner (e.g., one of the partners A 206 and B 208) and/or when a user of the computer registers with the partner (e.g., sets up a Facebook account). If the user has a registered account with the corresponding partner, the user ID (e.g., an email address or other value) of the user is mapped to the corresponding partner cookie 216 in the records of the corresponding partner. The panelist monitor cookie 218 is created when the client (e.g., a panelist computer or a non-panelist computer) registers for the panel and/or when the client processes a tagged advertisement. The panelist monitor cookie 218 of the panelist computer 202 may be set when the user registers as a panelist and is mapped to a user ID (e.g., an email address or other value) of the user in the records of the ratings entity. Although the non-panelist client computer 203 is not part of a panel, a panelist monitor cookie similar to the panelist monitor cookie 218 is created in the non-panelist client computer 203 when the non-panelist client computer 203 processes a tagged advertisement. In this manner, the impression monitor system 132 may collect impressions (e.g., ad impressions) associated with the non-panelist client computer 203 even though a user of the non-panelist client computer 203 is not registered in a panel and the ratings entity operating the impression monitor system 132 will not have demographics for the user of the non-panelist client computer 203.


In some examples, the web browser 212 may also include a partner-priority-order cookie 220 that is set, adjusted, and/or controlled by the impression monitor system 132 and includes a priority listing of the partners 206 and 208 (and/or other database proprietors) indicative of an order in which beacon requests should be sent to the partners 206, 208 and/or other database proprietors. For example, the impression monitor system 132 may specify that the client computer 202, 203 should first send a beacon request based on execution of the beacon instructions 214 to partner A 206 and then to partner B 208 if partner A 206 indicates that the user of the client computer 202, 203 is not a registered user of partner A 206. In this manner, the client computer 202, 203 can use the beacon instructions 214 in combination with the priority listing of the partner-priority-order cookie 220 to send an initial beacon request to an initial partner and/or other initial database proprietor and one or more re-directed beacon requests to one or more secondary partners and/or other database proprietors until one of the partners 206 and 208 and/or other database proprietors confirms that the user of the panelist computer 202 is a registered user of the partner's or other database proprietor's services and is able to log an impression (e.g., an ad impression, a content impression, etc.) and provide demographic information for that user (e.g., demographic information stored in the database proprietor database 142 of FIG. 1), or until all partners have been tried without a successful match. In other examples, the partner-priority-order cookie 220 may be omitted and the beacon instructions 214 may be configured to cause the client computer 202, 203 to unconditionally send beacon requests to all available partners and/or other database proprietors so that all of the partners and/or other database proprietors have an opportunity to log an impression. In yet other examples, the beacon instructions 214 may be configured to cause the client computer 202, 203 to receive instructions from the impression monitor system 132 on an order in which to send redirected beacon requests to one or more partners and/or other database proprietors.


To monitor browsing behavior and track activity of the partner cookie(s) 216, the panelist computer 202 is provided with a web client meter 222. In addition, the panelist computer 202 is provided with an HTTP request log 224 in which the web client meter 222 may store or log HTTP requests in association with a meter ID of the web client meter 222, user IDs originating from the panelist computer 202, beacon request timestamps (e.g., timestamps indicating when the panelist computer 202 sent beacon requests such as the beacon requests 304 and 308 of FIG. 3), uniform resource locators (URLs) of websites that displayed advertisements, and ad campaign IDs. In the illustrated example, the web client meter 222 stores user IDs of the partner cookie(s) 216 and the panelist monitor cookie 218 in association with each logged HTTP request in the HTTP requests log 224. In some examples, the HTTP requests log 224 can additionally or alternatively store other types of requests such as file transfer protocol (FTP) requests and/or any other internet protocol requests. The web client meter 222 of the illustrated example can communicate such web browsing behavior or activity data in association with respective user IDs from the HTTP requests log 224 to the panel collection platform 210. In some examples, the web client meter 222 may also be advantageously used to log impressions for untagged content or advertisements. Unlike tagged advertisements and/or tagged content that include the beacon instructions 214 causing a beacon request to be sent to the impression monitor system 132 (and/or one or more of the partners 206, 208 and/or other database proprietors) identifying the exposure or impression to the tagged content to be sent to the audience measurement entity for logging, untagged advertisements and/or advertisements do not have such beacon instructions 214 to create an opportunity for the impression monitor system 132 to log an impression. In such instances, HTTP requests logged by the web client meter 222 can be used to identify any untagged content or advertisements that were rendered by the web browser 212 on the panelist computer 202.


In the illustrated example, the impression monitor system 132 is provided with a user ID comparator 228, a rules/machine learning (ML) engine 230, an HTTP server 232, and a publisher/campaign/user target database 234. The user ID comparator 228 of the illustrated example is provided to identify beacon requests from users that are panelists 114, 116. In the illustrated example, the HTTP server 232 is a communication interface via which the impression monitor system 132 exchanges information (e.g., beacon requests, beacon responses, acknowledgements, failure status messages, etc.) with the client computer 202, 203. The rules/ML engine 230 and the publisher/campaign/user target database 234 of the illustrated example enable the impression monitor system 132 to target the ‘best fit’ partner (e.g., one of the partners 206 or 208) for each impression request (or beacon request) received from the client computer 202, 203. The ‘best fit’ partner is the partner most likely to have demographic data for the user(s) of the client computer 202, 203 sending the impression request. The rules/ML engine 230 is a set of rules and machine learning classifiers generated based on evolving empirical data stored in the publisher/campaign/user target database 234. In the illustrated example, rules can be applied at the publisher level, publisher/campaign level, or user level. In addition, partners may be weighted based on their overall reach and demographic quality.


To target partners (e.g., the partners 206 and 208) at the publisher level of ad campaigns, the rules/ML engine 230 contains rules and classifiers that allow the impression monitor system 132 to target the ‘best fit’ partner for a particular publisher of ad campaign(s). For example, the impression monitoring system 132 could use an indication of target demographic composition(s) of publisher(s) and partner(s) (e.g., as stored in the publisher/campaign/user target database 234) to select a partner (e.g., one of the partners 206, 208) that is most likely to have demographic information for a user of the client computer 202, 203 requesting the impression.


To target partners (e.g., the partners 206 and 208) at the campaign level (e.g., a publisher has the ability to target ad campaigns based on user demographics), the rules/ML engine 230 of the illustrated example are used to specify target partners at the publisher/campaign level. For example, if the publisher/campaign/user target database 234 stores information indicating that a particular ad campaign is targeted at males aged 18 to 25, the rules/ML engine 230 uses this information to indicate a beacon request redirect to a partner most likely to have the largest reach within this gender/age group.


To target partners (e.g., the partners 206 and 208) at the cookie level, the impression monitor system 132 updates target partner sites based on feedback received from the partners. Such feedback could indicate user IDs that did not correspond or that did correspond to registered users of the partner(s). In some examples, the impression monitor system 132 could also update target partner sites based on user behavior. For example, such user behavior could be derived from analyzing cookie clickstream data corresponding to browsing activities associated with panelist monitor cookies (e.g., the panelist monitor cookie 218). In the illustrated example, the impression monitor system 132 uses such cookie clickstream data to determine age/gender bias for particular partners by determining ages and genders of which the browsing behavior is more indicative. In this manner, the impression monitor system 132 of the illustrated example can update a target or preferred partner for a particular user or client computer 202, 203. In some examples, the rules/ML engine 230 specify when to override user-level preferred target partners with publisher or publisher/campaign level preferred target partners. For example such a rule may specify an override of user-level preferred target partners when the user-level preferred target partner sends a number of indications that it does not have a registered user corresponding to the client computer 202, 203 (e.g., a different user on the client computer 202, 203 begins using a different browser having a different user ID in its partner cookie 216).


In the illustrated example, the impression monitor system 132 logs impressions (e.g., ad impressions, content impressions, etc.) in an impressions per unique users table 235 based on beacon requests (e.g., the beacon request 304 of FIG. 3) received from client computers (e.g., the client computer 202, 203). In the illustrated example, the impressions per unique users table 235 stores unique user IDs obtained from cookies (e.g., the panelist monitor cookie 218) in association with total impressions per day and campaign IDs. In this manner, for each campaign ID, the impression monitor system 132 logs the total impressions per day that are attributable to a particular user or client computer 202, 203.


Each of the partners 206 and 208 of the illustrated example employs an HTTP server 236 and 240 and a user ID comparator 238 and 242. In the illustrated example, the HTTP servers 236 and 240 are communication interfaces via which their respective partners 206 and 208 exchange information (e.g., beacon requests, beacon responses, acknowledgements, failure status messages, etc.) with the client computer 202, 203. The user ID comparators 238 and 242 are configured to compare user cookies received from a client 202, 203 against the cookie in their records to identify the client 202, 203, if possible. In this manner, the user ID comparators 238 and 242 can be used to determine whether users of the panelist computer 202 have registered accounts with the partners 206 and 208. If so, the partners 206 and 208 can log impressions attributed to those users and associate those impressions with the demographics of the identified user (e.g., demographics stored in the database proprietor database 142 of FIG. 1).


In the illustrated example, the panel collection platform 210 is used to identify registered users of the partners 206, 208 that are also panelists 114, 116. The panel collection platform 210 can then use this information to cross-reference demographic information stored by the ratings entity subsystem 106 for the panelists 114, 116 with demographic information stored by the partners 206 and 208 for their registered users. The ratings entity subsystem 106 can use such cross-referencing to determine the accuracy of the demographic information collected by the partners 206 and 208 based on the demographic information of the panelists 114 and 116 collected by the ratings entity subsystem 106.


In some examples, the example collector 117 of the panel collection platform 210 collects web-browsing activity information from the panelist computer 202. In such examples, the example collector 117 requests logged data from the HTTP requests log 224 of the panelist computer 202 and logged data collected by other panelist computers (not shown). In addition, the collector 117 collects panelist user IDs from the impression monitor system 132 that the impression monitor system 132 tracks as having set in panelist computers. Also, the collector 117 collects partner user IDs from one or more partners (e.g., the partners 206 and 208) that the partners track as having been set in panelist and non-panelist computers. In some examples, to abide by privacy agreements of the partners 206, 208, the collector 117 and/or the database proprietors 206, 208 can use a hashing technique (e.g., a double-hashing technique) to hash the database proprietor cookie IDs.


In some examples, the loader 118 of the panel collection platform 210 analyzes and sorts the received panelist user IDs and the partner user IDs. In the illustrated example, the loader 118 analyzes received logged data from panelist computers (e.g., from the HTTP requests log 224 of the panelist computer 202) to identify panelist user IDs (e.g., the panelist monitor cookie 218) associated with partner user IDs (e.g., the partner cookie(s) 216). In this manner, the loader 118 can identify which panelists (e.g., ones of the panelists 114 and 116) are also registered users of one or more of the partners 206 and 208 (e.g., the database proprietor subsystem 108 of FIG. 1 having demographic information of registered users stored in the database proprietor database 142). In some examples, the panel collection platform 210 operates to verify the accuracy of impressions collected by the impression monitor system 132. In such some examples, the loader 118 filters the logged HTTP beacon requests from the HTTP requests log 224 that correlate with impressions of panelists logged by the impression monitor system 132 and identifies HTTP beacon requests logged at the HTTP requests log 224 that do not have corresponding impressions logged by the impression monitor system 132. In this manner, the panel collection platform 210 can provide indications of inaccurate impression logging by the impression monitor system 132 and/or provide impressions logged by the web client meter 222 to fill-in impression data for panelists 114, 116 missed by the impression monitor system 132.


In the illustrated example, the loader 118 stores overlapping users in an impressions-based panel demographics table 250. In the illustrated example, overlapping users are users that are panelist members 114, 116 and registered users of partner A 206 (noted as users P(A)) and/or registered users of partner B 208 (noted as users P(B)). (Although only two partners (A and B) are shown, this is for simplicity of illustration, any number of partners may be represented in the table 250. The impressions-based panel demographics table 250 of the illustrated example is shown storing meter IDs (e.g., of the web client meter 222 and web client meters of other computers), user IDs (e.g., an alphanumeric identifier such as a user name, email address, etc. corresponding to the panelist monitor cookie 218 and panelist monitor cookies of other panelist computers), beacon request timestamps (e.g., timestamps indicating when the panelist computer 202 and/or other panelist computers sent beacon requests such as the beacon requests 304 and 308 of FIG. 3), uniform resource locators (URLs) of websites visited (e.g., websites that displayed advertisements), and ad campaign IDs. In addition, the loader 118 of the illustrated example stores partner user IDs that do not overlap with panelist user IDs in a partner A (P(A)) cookie table 252 and a partner B (P(B)) cookie table 254.


Example processes performed by the example system 200 are described below in connection with the communications flow diagram of FIG. 3 and the flow diagrams of FIGS. 10, 11, and 12.


In the illustrated example of FIGS. 1 and 2, the ratings entity subsystem 106 includes the impression monitor system 132, the rules/ML engine 230, the HTTP server communication interface 232, the publisher/campaign/user target database 232, the GRP report generator 130, the panel collection platform 210, the collector 117, the loader 118, and the ratings entity database 120. In the illustrated example of FIGS. 1 and 2, the impression monitor system 132, the rules/ML engine 230, the HTTP server communication interface 232, the publisher/campaign/user target database 232, the GRP report generator 130, the panel collection platform 210, the collector 117, the loader 118, and the ratings entity database 120 may be implemented as a single apparatus or a two or more different apparatus. While an example manner of implementing the impression monitor system 132, the rules/ML engine 230, the HTTP server communication interface 232, the publisher/campaign/user target database 232, the GRP report generator 130, the panel collection platform 210, the collector 117, the loader 118, and the ratings entity database 120 has been illustrated in FIGS. 1 and 2, one or more of the impression monitor system 132, the rules/ML engine 230, the HTTP server communication interface 232, the publisher/campaign/user target database 232, the GRP report generator 130, the panel collection platform 210, the collector 117, the loader 118, and the ratings entity database 120 may be combined, divided, re-arranged, omitted, eliminated and/or implemented in any other way. Further, the impression monitor system 132, the rules/ML engine 230, the HTTP server communication interface 232, the publisher/campaign/user target database 232, the GRP report generator 130, the panel collection platform 210, the collector 117, the loader 118, and the ratings entity database 120 and/or, more generally, the example apparatus of the example ratings entity subsystem 106 may be implemented by hardware, software, firmware and/or any combination of hardware, software and/or firmware. Thus, for example, any of the impression monitor system 132, the rules/ML engine 230, the HTTP server communication interface 232, the publisher/campaign/user target database 232, the GRP report generator 130, the panel collection platform 210, the collector 117, the loader 118, and the ratings entity database 120 and/or, more generally, the example apparatus of the ratings entity subsystem 106 could be implemented by one or more circuit(s), programmable processor(s), application specific integrated circuit(s) (ASIC(s)), programmable logic device(s) (PLD(s)) and/or field programmable logic device(s) (FPLD(s)), etc. When any of the appended apparatus or system claims are read to cover a purely software and/or firmware implementation, at least one of the impression monitor system 132, the rules/ML engine 230, the HTTP server communication interface 232, the publisher/campaign/user target database 232, the GRP report generator 130, the panel collection platform 210, the collector 117, the loader 118, and/or the ratings entity database 120 appearing in such claim is hereby expressly defined to include a computer readable medium such as a memory, DVD, CD, etc. storing the software and/or firmware. Further still, the example apparatus of the ratings entity subsystem 106 may include one or more elements, processes and/or devices in addition to, or instead of, those illustrated in FIGS. 1 and 2, and/or may include more than one of any or all of the illustrated elements, processes and devices.


Turning to FIG. 3, an example communication flow diagram shows an example manner in which the example system 200 of FIG. 2 logs impressions by clients (e.g., clients 202, 203). The example chain of events shown in FIG. 3 occurs when a client 202, 203 accesses a tagged advertisement or tagged content. Thus, the events of FIG. 3 begin when a client sends an HTTP request to a server for content and/or an advertisement, which, in this example, is tagged to forward an exposure request to the ratings entity. In the illustrated example of FIG. 3, the web browser of the client 202, 203 receives the requested content or advertisement (e.g., the content or advertisement 102) from a publisher (e.g., ad publisher 302). It is to be understood that the client 202, 203 often requests a webpage containing content of interest (e.g., www.weather.com) and the requested webpage contains links to ads that are downloaded and rendered within the webpage. The ads may come from different servers than the originally requested content. Thus, the requested content may contain instructions that cause the client 202, 203 to request the ads (e.g., from the ad publisher 302) as part of the process of rendering the webpage originally requested by the client. The webpage, the ad or both may be tagged. In the illustrated example, the uniform resource locator (URL) of the ad publisher is illustratively named http://my.advertiser.com.


For purposes of the following illustration, it is assumed that the advertisement 102 is tagged with the beacon instructions 214 (FIG. 2). Initially, the beacon instructions 214 cause the web browser of the client 202 or 203 to send a beacon request 304 to the impression monitor system 132 when the tagged ad is accessed. In the illustrated example, the web browser sends the beacon request 304 using an HTTP request addressed to the URL of the impression monitor system 132 at, for example, a first internet domain. The beacon request 304 includes one or more of a campaign ID, a creative type ID, and/or a placement ID associated with the advertisement 102. In addition, the beacon request 304 includes a document referrer (e.g., www.acme.com), a timestamp of the impression, and a publisher site ID (e.g., the URL http://my.advertiser.com of the ad publisher 302). In addition, if the web browser of the client 202 or 203 contains the panelist monitor cookie 218, the beacon request 304 will include the panelist monitor cookie 218. In other example implementations, the cookie 218 may not be passed until the client 202 or 203 receives a request sent by a server of the impression monitor system 132 in response to, for example, the impression monitor system 132 receiving the beacon request 304.


In response to receiving the beacon request 304, the impression monitor system 132 logs an impression by recording the ad identification information (and any other relevant identification information) contained in the beacon request 304. In the illustrated example, the impression monitor system 132 logs the impression regardless of whether the beacon request 304 indicated a user ID (e.g., based on the panelist monitor cookie 218) that matched a user ID of a panelist member (e.g., one of the panelists 114 and 116 of FIG. 1). However, if the user ID (e.g., the panelist monitor cookie 218) matches a user ID of a panelist member (e.g., one of the panelists 114 and 116 of FIG. 1) set by and, thus, stored in the record of the ratings entity subsystem 106, the logged impression will correspond to a panelist of the impression monitor system 132. If the user ID does not correspond to a panelist of the impression monitor system 132, the impression monitor system 132 will still benefit from logging an impression even though it will not have a user ID record (and, thus, corresponding demographics) for the impression reflected in the beacon request 304.


In the illustrated example of FIG. 3, to compare or supplement panelist demographics (e.g., for accuracy or completeness) of the impression monitor system 132 with demographics at partner sites and/or to enable a partner site to attempt to identify the client and/or log the impression, the impression monitor system 132 returns a beacon response message 306 (e.g., a first beacon response) to the web browser of the client 202, 203 including an HTTP 302 redirect message and a URL of a participating partner at, for example, a second internet domain. In the illustrated example, the HTTP 302 redirect message instructs the web browser of the client 202, 203 to send a second beacon request 308 to the particular partner (e.g., one of the partners A 206 or B 208). In other examples, instead of using an HTTP 302 redirect message, redirects may instead be implemented using, for example, an iframe source instructions (e.g., <iframe src=“ ”>) or any other instruction that can instruct a web browser to send a subsequent beacon request (e.g., the second beacon request 308) to a partner. In the illustrated example, the impression monitor system 132 determines the partner specified in the beacon response 306 using its rules/ML engine 230 (FIG. 2) based on, for example, empirical data indicative of which partner should be preferred as being most likely to have demographic data for the user ID. In other examples, the same partner is always identified in the first redirect message and that partner always redirects the client 202, 203 to the same second partner when the first partner does not log the impression. In other words, a set hierarchy of partners is defined and followed such that the partners are “daisy chained” together in the same predetermined order rather than them trying to guess a most likely database proprietor to identify an unknown client 203.


Prior to sending the beacon response 306 to the web browser of the client 202, 203, the impression monitor system 132 of the illustrated example replaces a site ID (e.g., a URL) of the ad publisher 302 with a modified site ID (e.g., a substitute site ID) which is discernable only by the impression monitor system 132 as corresponding to the ad publisher 302. In some example implementations, the impression monitor system 132 may also replace the host website ID (e.g., www.acme.com) with another modified site ID (e.g., a substitute site ID) which is discernable only by the impression monitor system 132 as corresponding to the host website. In this way, the source(s) of the ad and/or the host content are masked from the partners. In the illustrated example, the impression monitor system 132 maintains a publisher ID mapping table 310 that maps original site IDs of ad publishers with modified (or substitute) site IDs created by the impression monitor system 132 to obfuscate or hide ad publisher identifiers from partner sites. In some examples, the impression monitor system 132 also stores the host website ID in association with a modified host website ID in a mapping table. In addition, the impression monitor system 132 encrypts all of the information received in the beacon request 304 and the modified site ID to prevent any intercepting parties from decoding the information. The impression monitor system 132 of the illustrated example sends the encrypted information in the beacon response 306 to the web browser 212. In the illustrated example, the impression monitor system 132 uses an encryption that can be decrypted by the selected partner site specified in the HTTP 302 redirect.


In some examples, the impression monitor system 132 also sends a URL scrape instruction 320 to the client computer 202, 302. In such examples, the URL scrape instruction 320 causes the client computer 202, 203 to “scrape” the URL of the webpage or website associated with the tagged advertisement 102. For example, the client computer 202, 203 may perform scraping of web page URLs by reading text rendered or displayed at a URL address bar of the web browser 212. The client computer 202, 203 then sends a scraped URL 322 to the impression monitor system 322. In the illustrated example, the scraped URL 322 indicates the host website (e.g., http://www.acme.com) that was visited by a user of the client computer 202, 203 and in which the tagged advertisement 102 was displayed. In the illustrated example, the tagged advertisement 102 is displayed via an ad iFrame having a URL ‘my.advertiser.com,’ which corresponds to an ad network (e.g., the publisher 302) that serves the tagged advertisement 102 on one or more host websites. However, in the illustrated example, the host website indicated in the scraped URL 322 is ‘www.acme.com,’ which corresponds to a website visited by a user of the client computer 202, 203.


URL scraping is particularly useful under circumstances in which the publisher is an ad network from which an advertiser bought advertisement space/time. In such instances, the ad network dynamically selects from subsets of host websites (e.g., www.caranddriver.com, www.espn.com, www.allrecipes.com, etc.) visited by users on which to display ads via ad iFrames. However, the ad network cannot foretell definitively the host websites on which the ad will be displayed at any particular time. In addition, the URL of an ad iFrame in which the tagged advertisement 102 is being rendered may not be useful to identify the topic of a host website (e.g., www.acme.com in the example of FIG. 3) rendered by the web browser 212. As such, the impression monitor system 132 may not know the host website in which the ad iFrame is displaying the tagged advertisement 102.


The URLs of host websites (e.g., www.caranddriver.com, www.espn.com, www.allrecipes.com, etc.) can be useful to determine topical interests (e.g., automobiles, sports, cooking, etc.) of user(s) of the client computer 202, 203. In some examples, audience measurement entities can use host website URLs to correlate with user/panelist demographics and interpolate logged impressions to larger populations based on demographics and topical interests of the larger populations and based on the demographics and topical interests of users/panelists for which impressions were logged. Thus, in the illustrated example, when the impression monitor system 132 does not receive a host website URL or cannot otherwise identify a host website URL based on the beacon request 304, the impression monitor system 132 sends the URL scrape instruction 320 to the client computer 202, 203 to receive the scraped URL 322. In the illustrated example, if the impression monitor system 132 can identify a host website URL based on the beacon request 304, the impression monitor system 132 does not send the URL scrape instruction 320 to the client computer 202, 203, thereby, conserving network and computer bandwidth and resources.


In response to receiving the beacon response 306, the web browser of the client 202, 203 sends the beacon request 308 to the specified partner site, which is the partner A 206 (e.g., a second internet domain) in the illustrated example. The beacon request 308 includes the encrypted parameters from the beacon response 306. The partner A 206 (e.g., Facebook) decrypts the encrypted parameters and determines whether the client matches a registered user of services offered by the partner A 206. This determination involves requesting the client 202, 203 to pass any cookie (e.g., one of the partner cookies 216 of FIG. 2) it stores that had been set by partner A 206 and attempting to match the received cookie against the cookies stored in the records of partner A 206. If a match is found, partner A 206 has positively identified a client 202, 203. Accordingly, the partner A 206 site logs an impression in association with the demographics information of the identified client. This log (which includes the undetectable source identifier) is subsequently provided to the ratings entity for processing into GRPs as discussed below. In the event partner A 206 is unable to identify the client 202, 203 in its records (e.g., no matching cookie), the partner A 206 does not log an impression.


In some example implementations, if the user ID does not match a registered user of the partner A 206, the partner A 206 may return a beacon response 312 (e.g., a second beacon response) including a failure or non-match status or may not respond at all, thereby terminating the process of FIG. 3. However, in the illustrated example, if partner A 206 cannot identify the client 202, 203, partner A 206 returns a second HTTP 302 redirect message in the beacon response 312 (e.g., the second beacon response) to the client 202, 203. For example, if the partner A site 206 has logic (e.g., similar to the rules/ml engine 230 of FIG. 2) to specify another partner (e.g., partner B 208 or any other partner) which may likely have demographics for the user ID, then the beacon response 312 may include an HTTP 302 redirect (or any other suitable instruction to cause a redirected communication) along with the URL of the other partner (e.g., at a third internet domain). Alternatively, in the daisy chain approach discussed above, the partner A site 206 may always redirect to the same next partner or database proprietor (e.g., partner B 208 at, for example, a third internet domain or a non-partnered database proprietor subsystem 110 of FIG. 1 at a third internet domain) whenever it cannot identify the client 202, 203. When redirecting, the partner A site 206 of the illustrated example encrypts the ID, timestamp, referrer, etc. parameters using an encryption that can be decoded by the next specified partner.


As a further alternative, if the partner A site 206 does not have logic to select a next best suited partner likely to have demographics for the user ID and is not effectively daisy chained to a next partner by storing instructions that redirect to a partner entity, the beacon response 312 can redirect the client 202, 203 to the impression monitor system 132 with a failure or non-match status. In this manner, the impression monitor system 132 can use its rules/ML engine 230 to select a next-best suited partner to which the web browser of the client 202, 203 should send a beacon request (or, if no such logic is provided, simply select the next partner in a hierarchical (e.g., fixed) list). In the illustrated example, the impression monitor system 132 selects the partner B site 208, and the web browser of the client 202, 203 sends a beacon request to the partner B site 208 with parameters encrypted in a manner that can be decrypted by the partner B site 208. The partner B site 208 then attempts to identify the client 202, 203 based on its own internal database. If a cookie obtained from the client 202, 203 matches a cookie in the records of partner B 208, partner B 208 has positively identified the client 202, 203 and logs the impression in association with the demographics of the client 202, 203 for later provision to the impression monitor system 132. In the event that partner B 208 cannot identify the client 202, 203, the same process of failure notification or further HTTP 302 redirects may be used by the partner B 208 to provide a next other partner site an opportunity to identify the client and so on in a similar manner until a partner site identifies the client 202, 203 and logs the impression, until all partner sites have been exhausted without the client being identified, or until a predetermined number of partner sites failed to identify the client 202, 203.


Using the process illustrated in FIG. 3, impressions (e.g., ad impressions, content impressions, etc.) can be mapped to corresponding demographics even when the impressions are not triggered by panel members associated with the audience measurement entity (e.g., ratings entity subsystem 106 of FIG. 1). That is, during an impression collection or merging process, the panel collection platform 210 of the ratings entity can collect distributed impressions logged by (1) the impression monitor system 132 and (2) any participating partners (e.g., partners 206, 208). As a result, the collected data covers a larger population with richer demographics information than has heretofore been possible. Consequently, generating accurate, consistent, and meaningful online GRPs is possible by pooling the resources of the distributed databases as described above. The example structures of FIGS. 2 and 3 generate online GRPs based on a large number of combined demographic databases distributed among unrelated parties (e.g., Nielsen and Facebook). The end result appears as if users attributable to the logged impressions were part of a large virtual panel formed of registered users of the audience measurement entity because the selection of the participating partner sites can be tracked as if they were members of the audience measurement entities panels 114, 116. This is accomplished without violating the cookie privacy protocols of the Internet.


Periodically or aperiodically, the impression data collected by the partners (e.g., partners 206, 208) is provided to the ratings entity via a panel collection platform 210. As discussed above, some user IDs may not match panel members of the impression monitor system 132, but may match registered users of one or more partner sites. During a data collecting and merging process to combine demographic and impression data from the ratings entity subsystem 106 and the partner subsystem(s) 108 and 110 of FIG. 1, user IDs of some impressions logged by one or more partners may match user IDs of impressions logged by the impression monitor system 132, while others (most likely many others) will not match. In some example implementations, the ratings entity subsystem 106 may use the demographics-based impressions from matching user ID logs provided by partner sites to assess and/or improve the accuracy of its own demographic data, if necessary. For the demographics-based impressions associated with non-matching user ID logs, the ratings entity subsystem 106 may use the impressions (e.g., advertisement impressions, content impressions, etc.) to derive demographics-based online GRPs even though such impressions are not associated with panelists of the ratings entity subsystem 106.


As briefly mentioned above, example methods, apparatus, and/or articles of manufacture disclosed herein may be configured to preserve user privacy when sharing demographic information (e.g., account records or registration information) between different entities (e.g., between the ratings entity subsystem 106 and the database proprietor subsystem 108). In some example implementations, a double encryption technique may be used based on respective secret keys for each participating partner or entity (e.g., the subsystems 106, 108, 110). For example, the ratings entity subsystem 106 can encrypt its user IDs (e.g., email addresses) using its secret key and the database proprietor subsystem 108 can encrypt its user IDs using its secret key. For each user ID, the respective demographics information is then associated with the encrypted version of the user ID. Each entity then exchanges their demographics lists with encrypted user IDs. Because neither entity knows the other's secret key, they cannot decode the user IDs, and thus, the user IDs remain private. Each entity then proceeds to perform a second encryption of each encrypted user ID using their respective keys. Each twice-encrypted (or double encrypted) user ID (UID) will be in the form of E1(E2(UID)) and E2(E1(UID)), where E1 represents the encryption using the secret key of the ratings entity subsystem 106 and E2 represents the encryption using the secret key of the database proprietor subsystem 108. Under the rule of commutative encryption, the encrypted user IDs can be compared on the basis that E1(E2(UID))=E2(E1(UID)). Thus, the encryption of user IDs present in both databases will match after the double encryption is completed. In this manner, matches between user records of the panelists and user records of the database proprietor (e.g., identifiers of registered social network users) can be compared without the partner entities needing to reveal user IDs to one another.


The ratings entity subsystem 106 performs a daily impressions and UUID (cookies) totalization based on impressions and cookie data collected by the impression monitor system 132 of FIG. 1 and the impressions logged by the partner sites. In the illustrated example, the ratings entity subsystem 106 may perform the daily impressions and UUID (cookies) totalization based on cookie information collected by the ratings entity cookie collector 134 of FIG. 1 and the logs provided to the panel collection platform 210 by the partner sites. FIG. 4 depicts an example ratings entity impressions table 400 showing quantities of impressions to monitored users. Similar tables could be compiled for one or more of advertisement impressions, content impressions, or other impressions. In the illustrated example, the ratings entity impressions table 400 is generated by the ratings entity subsystem 106 for an advertisement campaign (e.g., one or more of the advertisements 102 of FIG. 1) to determine frequencies of impressions per day for each user.


To track frequencies of impressions per unique user per day, the ratings entity impressions table 400 is provided with a frequency column 402. A frequency of 1 indicates one exposure per day of an ad in an ad campaign to a unique user, while a frequency of 4 indicates four exposures per day of one or more ads in the same ad campaign to a unique user. To track the quantity of unique users to which impressions are attributable, the ratings impressions table 400 is provided with a UUIDs column 404. A value of 100,000 in the UUIDs column 404 is indicative of 100,000 unique users. Thus, the first entry of the ratings entity impressions table 400 indicates that 100,000 unique users (i.e., UUIDs=100,000) were exposed once (i.e., frequency=1) in a single day to a particular one of the advertisements 102.


To track impressions based on exposure frequency and UUIDs, the ratings entity impressions table 400 is provided with an impressions column 406. Each impression count stored in the impressions column 406 is determined by multiplying a corresponding frequency value stored in the frequency column 402 with a corresponding UUID value stored in the UUID column 404. For example, in the second entry of the ratings entity impressions table 400, the frequency value of two is multiplied by 200,000 unique users to determine that 400,000 impressions are attributable to a particular one of the advertisements 102.


Turning to FIG. 5, in the illustrated example, each of the partnered database proprietor subsystems 108, 110 of the partners 206, 208 generates and reports a database proprietor ad campaign-level age/gender and impression composition table 500 to the GRP report generator 130 of the ratings entity subsystem 106 on a daily basis. Similar tables can be generated for content and/or other media. Additionally or alternatively, media in addition to advertisements may be added to the table 500. In the illustrated example, the partners 206, 208 tabulate the impression distribution by age and gender composition as shown in FIG. 5. For example, referring to FIG. 1, the database proprietor database 142 of the partnered database proprietor subsystem 108 stores logged impressions and corresponding demographic information of registered users of the partner A 206, and the database proprietor subsystem 108 of the illustrated example processes the impressions and corresponding demographic information using the rules 144 to generate the DP summary tables 146 including the database proprietor ad campaign-level age/gender and impression composition table 500.


The age/gender and impression composition table 500 is provided with an age/gender column 502, an impressions column 504, a frequency column 506, and an impression composition column 508. The age/gender column 502 of the illustrated example indicates the different age/gender demographic groups. The impressions column 504 of the illustrated example stores values indicative of the total impressions for a particular one of the advertisements 102 (FIG. 1) for corresponding age/gender demographic groups. The frequency column 506 of the illustrated example stores values indicative of the frequency of exposure per user for the one of the advertisements 102 that contributed to the impressions in the impressions column 504. The impressions composition column 508 of the illustrated example stores the percentage of impressions for each of the age/gender demographic groups.


In some examples, the database proprietor subsystems 108, 110 may perform demographic accuracy analyses and adjustment processes on its demographic information before tabulating final results of impression-based demographic information in the database proprietor campaign-level age/gender and impression composition table. This can be done to address a problem facing online audience measurement processes in that the manner in which registered users represent themselves to online data proprietors (e.g., the partners 206 and 208) is not necessarily veridical (e.g., truthful and/or accurate). In some instances, example approaches to online measurement that leverage account registrations at such online database proprietors to determine demographic attributes of an audience may lead to inaccurate demographic-exposure results if they rely on self-reporting of personal/demographic information by the registered users during account registration at the database proprietor site. There may be numerous reasons for why users report erroneous or inaccurate demographic information when registering for database proprietor services. The self-reporting registration processes used to collect the demographic information at the database proprietor sites (e.g., social media sites) does not facilitate determining the veracity of the self-reported demographic information. To analyze and adjust inaccurate demographic information, the ratings entity subsystem 106 and the database proprietor subsystems 108, 110 may use example methods, systems, apparatus, and/or articles of manufacture disclosed in U.S. patent application Ser. No. 13/209,292, filed on Aug. 12, 2011, and titled “Methods and Apparatus to Analyze and Adjust Demographic Information,” which is hereby incorporated herein by reference in its entirety.


Turning to FIG. 6, in the illustrated example, the ratings entity subsystem 106 generates a panelist ad campaign-level age/gender and impression composition table 600 on a daily basis. Similar tables can be generated for content and/or other media. Additionally or alternatively, media in addition to advertisements may be added to the table 600. The example ratings entity subsystem 106 tabulates the impression distribution by age and gender composition as shown in FIG. 6 in the same manner as described above in connection with FIG. 5. As shown in FIG. 6, the panelist ad campaign-level age/gender and impression composition table 600 also includes an age/gender column 602, an impressions column 604, a frequency column 606, and an impression composition column 608. In the illustrated example of FIG. 6, the impressions are calculated based on the PC and TV panelists 114 and online panelists 116.


After creating the campaign-level age/gender and impression composition tables 500 and 600 of FIGS. 5 and 6, the ratings entity subsystem 106 creates a combined campaign-level age/gender and impression composition table 700 shown in FIG. 7. In particular, the ratings entity subsystem 106 combines the impression composition percentages from the impression composition columns 508 and 608 of FIGS. 5 and 6 to compare the age/gender impression distribution differences between the ratings entity panelists and the social network users.


As shown in FIG. 7, the combined campaign-level age/gender and impression composition table 700 includes an error weighted column 702, which stores mean squared errors (MSEs) indicative of differences between the impression compositions of the ratings entity panelists and the users of the database proprietor (e.g., social network users). Weighted MSEs can be determined using Equation 4 below.

Weighted MSE=(α*IC(RE)+(1−α)IC(DP))  Equation 4


In Equation 4 above, a weighting variable (α) represents the ratio of MSE(SN)/MSE(RE) or some other function that weights the compositions inversely proportional to their MSE. As shown in Equation 4, the weighting variable (α) is multiplied by the impression composition of the ratings entity (IC(RE)) to generate a ratings entity weighted impression composition (α*IC(RE)). The impression composition of the database proprietor (e.g., a social network) (IC(DP)) is then multiplied by a difference between one and the weighting variable (α) to determine a database proprietor weighted impression composition ((1−α) IC(DP)).


In the illustrated example, the ratings entity subsystem 106 can smooth or correct the differences between the impression compositions by weighting the distribution of MSE. The MSE values account for sample size variations or bounces in data caused by small sample sizes.


Turning to FIG. 8, the ratings entity subsystem 106 determines reach and error-corrected impression compositions in an age/gender impressions distribution table 800. The age/gender impressions distribution table 800 includes an age/gender column 802, an impressions column 804, a frequency column 806, a reach column 808, and an impressions composition column 810. The impressions column 804 stores error-weighted impressions values corresponding to impressions tracked by the ratings entity subsystem 106 (e.g., the impression monitor system 132 and/or the panel collection platform 210 based on impressions logged by the web client meter 222). In particular, the values in the impressions column 804 are derived by multiplying weighted MSE values from the error weighted column 702 of FIG. 7 with corresponding impressions values from the impressions column 604 of FIG. 6.


The frequency column 806 stores frequencies of impressions as tracked by the database proprietor subsystem 108. The frequencies of impressions are imported into the frequency column 806 from the frequency column 506 of the database proprietor campaign-level age/gender and impression composition table 500 of FIG. 5. For age/gender groups missing from the table 500, frequency values are taken from the ratings entity campaign-level age/gender and impression composition table 600 of FIG. 6. For example, the database proprietor campaign-level age/gender and impression composition table 500 does not have a less than 12 (<12) age/gender group. Thus, a frequency value of 3 is taken from the ratings entity campaign-level age/gender and impression composition table 600.


The reach column 808 stores reach values representing reach of one or more of the content and/or advertisements 102 (FIG. 1) for each age/gender group. The reach values are determined by dividing respective impressions values from the impressions column 804 by corresponding frequency values from the frequency column 806. The impressions composition column 810 stores values indicative of the percentage of impressions per age/gender group. In the illustrated example, the final total frequency in the frequency column 806 is equal to the total impressions divided by the total reach.



FIGS. 9, 10, 11, 12, and 14 are flow diagrams representative of machine readable instructions that can be executed to implement the methods and apparatus described herein. The example processes of FIGS. 9, 10, 11, 12, and 14 may be implemented using machine readable instructions that, when executed, cause a device (e.g., a programmable controller, processor, other programmable machine, integrated circuit, or logic circuit) to perform the operations shown in FIGS. 9, 10, 11, 12, and 14. For instance, the example processes of FIGS. 9, 10, 11, 12, and 14 may be performed using a processor, a controller, and/or any other suitable processing device. For example, the example process of FIGS. 9, 10, 11, 12, and 14 may be implemented using coded instructions stored on a tangible machine readable medium such as a flash memory, a read-only memory (ROM), and/or a random-access memory (RAM).


As used herein, the term tangible computer readable medium is expressly defined to include any type of computer readable storage and to exclude propagating signals. Additionally or alternatively, the example processes of FIGS. 9, 10, 11, 12, and 14 may be implemented using coded instructions (e.g., computer readable instructions) stored on a non-transitory computer readable medium such as a flash memory, a read-only memory (ROM), a random-access memory (RAM), a cache, or any other storage media in which information is stored for any duration (e.g., for extended time periods, permanently, brief instances, for temporarily buffering, and/or for caching of the information). As used herein, the term non-transitory computer readable medium is expressly defined to include any type of computer readable medium and to exclude propagating signals.


Alternatively, the example processes of FIGS. 9, 10, 11, 12, and 14 may be implemented using any combination(s) of application specific integrated circuit(s) (ASIC(s)), programmable logic device(s) (PLD(s)), field programmable logic device(s) (FPLD(s)), discrete logic, hardware, firmware, etc. Also, the example processes of FIGS. 9, 10, 11, 12, and 14 may be implemented as any combination(s) of any of the foregoing techniques, for example, any combination of firmware, software, discrete logic and/or hardware.


Although the example processes of FIGS. 9, 10, 11, 12, and 14 are described with reference to the flow diagrams of FIGS. 9, 10, 11, 12, and 14, other methods of implementing the processes of FIGS. 9, 10, 11, 12, and 14 may be employed. For example, the order of execution of the blocks may be changed, and/or some of the blocks described may be changed, eliminated, sub-divided, or combined. Additionally, one or both of the example processes of FIGS. 9, 10, 11, 12, and 14 may be performed sequentially and/or in parallel by, for example, separate processing threads, processors, devices, discrete logic, circuits, etc.


Turning in detail to FIG. 9, the ratings entity subsystem 106 of FIG. 1 may perform the depicted process to collect demographics and impression data from partners and to assess the accuracy and/or adjust its own demographics data of its panelists 114, 116. The example process of FIG. 9 collects demographics and impression data for registered users of one or more partners (e.g., the partners 206 and 208 of FIGS. 2 and 3) that overlap with panelist members (e.g., the panelists 114 and 116 of FIG. 1) of the ratings entity subsystem 106 as well as demographics and impression data from partner sites that correspond to users that are not registered panel members of the ratings entity subsystem 106. The collected data is combined with other data collected at the ratings entity to determine online GRPs. The example process of FIG. 9 is described in connection with the example system 100 of FIG. 1 and the example system 200 of FIG. 2.


Initially, the GRP report generator 130 (FIG. 1) receives impressions per unique users 235 (FIG. 2) from the impression monitor system 132 (block 902). The GRP report generator 130 receives impressions-based aggregate demographics (e.g., the partner campaign-level age/gender and impression composition table 500 of FIG. 5) from one or more partner(s) (block 904). In the illustrated example, user IDs of registered users of the partners 206, 208 are not received by the GRP report generator 130. Instead, the partners 206, 208 remove user IDs and aggregate impressions-based demographics in the partner campaign-level age/gender and impression composition table 500 at demographic bucket levels (e.g., males aged 13-18, females aged 13-18, etc.). However, for instances in which the partners 206, 208 also send user IDs to the GRP report generator 130, such user IDs are exchanged in an encrypted format based on, for example, the double encryption technique described above.


For examples in which the impression monitor system 132 modifies site IDs and sends the modified site IDs in the beacon response 306, the partner(s) log impressions based on those modified site IDs. In such examples, the impressions collected from the partner(s) at block 904 are impressions logged by the partner(s) against the modified site IDs. When the ratings entity subsystem 106 receives the impressions with modified site IDs, GRP report generator 130 identifies site IDs for the impressions received from the partner(s) (block 906). For example, the GRP report generator 130 uses the site ID map 310 (FIG. 3) generated by the impression monitoring system 310 during the beacon receive and response process (e.g., discussed above in connection with FIG. 3) to identify the actual site IDs corresponding to the modified site IDs in the impressions received from the partner(s).


The GRP report generator 130 receives per-panelist impressions-based demographics (e.g., the impressions-based panel demographics table 250 of FIG. 2) from the panel collection platform 210 (block 908). In the illustrated example, per-panelist impressions-based demographics are impressions logged in association with respective user IDs of panelist 114, 116 (FIG. 1) as shown in the impressions-based panel demographics table 250 of FIG. 2.


The GRP report generator 130 removes duplicate impressions between the per-panelist impressions-based panel demographics 250 received at block 908 from the panel collection platform 210 and the impressions per unique users 235 received at block 902 from the impression monitor system 132 (block 910). In this manner, duplicate impressions logged by both the impression monitor system 132 and the web client meter 222 (FIG. 2) will not skew GRPs generated by the GRP generator 130. In addition, by using the per-panelist impressions-based panel demographics 250 from the panel collection platform 210 and the impressions per unique users 235 from the impression monitor system 132, the GRP generator 130 has the benefit of impressions from redundant systems (e.g., the impression monitor system 132 and the web client meter 222). In this manner, if one of the systems (e.g., one of the impression monitor system 132 or the web client meter 222) misses one or more impressions, the record(s) of such impression(s) can be obtained from the logged impressions of the other system (e.g., the other one of the impression monitor system 132 or the web client meter 222).


The GRP report generator 130 generates an aggregate of the impressions-based panel demographics 250 (block 912). For example, the GRP report generator 130 aggregates the impressions-based panel demographics 250 into demographic bucket levels (e.g., males aged 13-18, females aged 13-18, etc.) to generate the panelist ad campaign-level age/gender and impression composition table 600 of FIG. 6.


In some examples, the GRP report generator 130 does not use the per-panelist impressions-based panel demographics from the panel collection platform 210. In such instances, the ratings entity subsystem 106 does not rely on web client meters such as the web client meter 222 of FIG. 2 to determine GRP using the example process of FIG. 9. Instead in such instances, the GRP report generator 130 determines impressions of panelists based on the impressions per unique users 235 received at block 902 from the impression monitor system 132 and uses the results to aggregate the impressions-based panel demographics at block 912. For example, as discussed above in connection with FIG. 2, the impressions per unique users table 235 stores panelist user IDs in association with total impressions and campaign IDs. As such, the GRP report generator 130 may determine impressions of panelists based on the impressions per unique users 235 without using the impression-based panel demographics 250 collected by the web client meter 222.


The GRP report generator 130 combines the impressions-based aggregate demographic data from the partner(s) 206, 208 (received at block 904) and the panelists 114, 116 (generated at block 912) its demographic data with received demographic data (block 914). For example, the GRP report generator 130 of the illustrated example combines the impressions-based aggregate demographic data to form the combined campaign-level age/gender and impression composition table 700 of FIG. 7.


The GRP report generator 130 determines distributions for the impressions-based demographics of block 914 (block 916). In the illustrated example, the GRP report generator 130 stores the distributions of the impressions-based demographics in the age/gender impressions distribution table 800 of FIG. 8. In addition, the GRP report generator 130 generates online GRPs based on the impressions-based demographics (block 918). In the illustrated example, the GRP report generator 130 uses the GRPs to create one or more of the GRP report(s) 131. In some examples, the ratings entity subsystem 106 sells or otherwise provides the GRP report(s) 131 to advertisers, publishers, content providers, manufacturers, and/or any other entity interested in such market research. The example process of FIG. 9 then ends.


Turning now to FIG. 10, the depicted example flow diagram may be performed by a client computer 202, 203 (FIGS. 2 and 3) to route beacon requests (e.g., the beacon requests 304, 308 of FIG. 3) to web service providers to log demographics-based impressions. Initially, the client computer 202, 203 receives tagged content and/or a tagged advertisement 102 (block 1002) and sends the beacon request 304 to the impression monitor system 132 (block 1004) to give the impression monitor system 132 (e.g., at a first internet domain) an opportunity to log an impression for the client computer 202, 203. The client computer 202, 203 begins a timer (block 1006) based on a time for which to wait for a response from the impression monitor system 132.


If a timeout has not expired (block 1008), the client computer 202, 203 determines whether it has received a redirection message (block 1010) from the impression monitor system 132 (e.g., via the beacon response 306 of FIG. 3). If the client computer 202, 203 has not received a redirection message (block 1010), control returns to block 1008. Control remains at blocks 1008 and 1010 until either (1) a timeout has expired, in which case control advances to block 1016 or (2) the client computer 202, 203 receives a redirection message.


If the client computer 202, 203 receives a redirection message at block 1010, the client computer 202, 203 sends the beacon request 308 to a partner specified in the redirection message (block 1012) to give the partner an opportunity to log an impression for the client computer 202, 203. During a first instance of block 1012 for a particular tagged advertisement (e.g., the tagged advertisement 102), the partner (or in some examples, non-partnered database proprietor 110) specified in the redirection message corresponds to a second internet domain. During subsequent instances of block 1012 for the same tagged advertisement, as beacon requests are redirected to other partner or non-partnered database proprietors, such other partner or non-partnered database proprietors correspond to third, fourth, fifth, etc. internet domains. In some examples, the redirection message(s) may specify an intermediary(ies) (e.g., an intermediary(ies) server(s) or sub-domain server(s)) associated with a partner(s) and/or the client computer 202, 203 sends the beacon request 308 to the intermediary(ies) based on the redirection message(s) as described below in conjunction with FIG. 13.


The client computer 202, 203 determines whether to attempt to send another beacon request to another partner (block 1014). For example, the client computer 202, 203 may be configured to send a certain number of beacon requests in parallel (e.g., to send beacon requests to two or more partners at roughly the same time rather than sending one beacon request to a first partner at a second internet domain, waiting for a reply, then sending another beacon request to a second partner at a third internet domain, waiting for a reply, etc.) and/or to wait for a redirection message back from a current partner to which the client computer 202, 203 sent the beacon request at block 1012. If the client computer 202, 203 determines that it should attempt to send another beacon request to another partner (block 1014), control returns to block 1006.


If the client computer 202, 203 determines that it should not attempt to send another beacon request to another partner (block 1014) or after the timeout expires (block 1008), the client computer 202, 203 determines whether it has received the URL scrape instruction 320 (FIG. 3) (block 1016). If the client computer 202, 203 did not receive the URL scrape instruction 320 (block 1016), control advances to block 1022. Otherwise, the client computer 202, 203 scrapes the URL of the host website rendered by the web browser 212 (block 1018) in which the tagged content and/or advertisement 102 is displayed or which spawned the tagged content and/or advertisement 102 (e.g., in a pop-up window). The client computer 202, 203 sends the scraped URL 322 to the impression monitor system 132 (block 1020). Control then advances to block 1022, at which the client computer 202, 203 determines whether to end the example process of FIG. 10. For example, if the client computer 202, 203 is shut down or placed in a standby mode or if its web browser 212 (FIGS. 2 and 3) is shut down, the client computer 202, 203 ends the example process of FIG. 10. If the example process is not to be ended, control returns to block 1002 to receive another content and/or tagged ad. Otherwise, the example process of FIG. 10 ends.


In some examples, real-time redirection messages from the impression monitor system 132 may be omitted from the example process of FIG. 10, in which cases the impression monitor system 132 does not send redirect instructions to the client computer 202, 203. Instead, the client computer 202, 203 refers to its partner-priority-order cookie 220 to determine partners (e.g., the partners 206 and 208) to which it should send redirects and the ordering of such redirects. In some examples, the client computer 202, 203 sends redirects substantially simultaneously to all partners listed in the partner-priority-order cookie 220 (e.g., in seriatim, but in rapid succession, without waiting for replies). In such some examples, block 1010 is omitted and at block 1012, the client computer 202, 203 sends a next partner redirect based on the partner-priority-order cookie 220. In some such examples, blocks 1006 and 1008 may also be omitted, or blocks 1006 and 1008 may be kept to provide time for the impression monitor system 132 to provide the URL scrape instruction 320 at block 1016.


Turning to FIG. 11, the example flow diagram may be performed by the impression monitor system 132 (FIGS. 2 and 3) to log impressions and/or redirect beacon requests to web service providers (e.g., database proprietors) to log impressions. Initially, the impression monitor system 132 waits until it has received a beacon request (e.g., the beacon request 304 of FIG. 3) (block 1102). The impression monitor system 132 of the illustrated example receives beacon requests via the HTTP server 232 of FIG. 2. When the impression monitor system 132 receives a beacon request (block 1102), it determines whether a cookie (e.g., the panelist monitor cookie 218 of FIG. 2) was received from the client computer 202, 203 (block 1104). For example, if a panelist monitor cookie 218 was previously set in the client computer 202, 203, the beacon request sent by the client computer 202, 203 to the panelist monitoring system will include the cookie.


If the impression monitor system 132 determines at block 1104 that it did not receive the cookie in the beacon request (e.g., the cookie was not previously set in the client computer 202, 203, the impression monitor system 132 sets a cookie (e.g., the panelist monitor cookie 218) in the client computer 202, 203 (block 1106). For example, the impression monitor system 132 may use the HTTP server 232 to send back a response to the client computer 202, 203 to ‘set’ a new cookie (e.g., the panelist monitor cookie 218).


After setting the cookie (block 1106) or if the impression monitor system 132 did receive the cookie in the beacon request (block 1104), the impression monitor system 132 logs an impression (block 1108). The impression monitor system 132 of the illustrated example logs an impression in the impressions per unique users table 235 of FIG. 2. As discussed above, the impression monitor system 132 logs the impression regardless of whether the beacon request corresponds to a user ID that matches a user ID of a panelist member (e.g., one of the panelists 114 and 116 of FIG. 1). However, if the user ID comparator 228 (FIG. 2) determines that the user ID (e.g., the panelist monitor cookie 218) matches a user ID of a panelist member (e.g., one of the panelists 114 and 116 of FIG. 1) set by and, thus, stored in the record of the ratings entity subsystem 106, the logged impression will correspond to a panelist of the impression monitor system 132. For such examples in which the user ID matches a user ID of a panelist, the impression monitor system 132 of the illustrated example logs a panelist identifier with the impression in the impressions per unique users table 235 and subsequently an audience measurement entity associates the known demographics of the corresponding panelist (e.g., a corresponding one of the panelists 114, 116) with the logged impression based on the panelist identifier. Such associations between panelist demographics (e.g., the age/gender column 602 of FIG. 6) and logged impression data are shown in the panelist ad campaign-level age/gender and impression composition table 600 of FIG. 6. If the user ID comparator 228 (FIG. 2) determines that the user ID does not correspond to a panelist 114, 116, the impression monitor system 132 will still benefit from logging an impression (e.g., an ad impression or content impression) even though it will not have a user ID record (and, thus, corresponding demographics) for the impression reflected in the beacon request 304.


The impression monitor system 132 selects a next partner (block 1110). For example, the impression monitor system 132 may use the rules/ML engine 230 (FIG. 2) to select one of the partners 206 or 208 of FIGS. 2 and 3 at random or based on an ordered listing or ranking of the partners 206 and 208 for an initial redirect in accordance with the rules/ML engine 230 (FIG. 2) and to select the other one of the partners 206 or 208 for a subsequent redirect during a subsequent execution of block 1110.


The impression monitor system 132 sends a beacon response (e.g., the beacon response 306) to the client computer 202, 203 including an HTTP 302 redirect (or any other suitable instruction to cause a redirected communication) to forward a beacon request (e.g., the beacon request 308 of FIG. 3) to a next partner (e.g., the partner A 206 of FIG. 2) (block 1112) and starts a timer (block 1114). The impression monitor system 132 of the illustrated example sends the beacon response 306 using the HTTP server 232. In the illustrated example, the impression monitor system 132 sends an HTTP 302 redirect (or any other suitable instruction to cause a redirected communication) at least once to allow at least a partner site (e.g., one of the partners 206 or 208 of FIGS. 2 and 3) to also log an impression for the same advertisement (or content). However, in other example implementations, the impression monitor system 132 may include rules (e.g., as part of the rules/ML engine 230 of FIG. 2) to exclude some beacon requests from being redirected. The timer set at block 1114 is used to wait for real-time feedback from the next partner in the form of a fail status message indicating that the next partner did not find a match for the client computer 202, 203 in its records.


If the timeout has not expired (block 1116), the impression monitor system 132 determines whether it has received a fail status message (block 1118). Control remains at blocks 1116 and 1118 until either (1) a timeout has expired, in which case control returns to block 1102 to receive another beacon request or (2) the impression monitor system 132 receives a fail status message.


If the impression monitor system 132 receives a fail status message (block 1118), the impression monitor system 132 determines whether there is another partner to which a beacon request should be sent (block 1120) to provide another opportunity to log an impression. The impression monitor system 132 may select a next partner based on a smart selection process using the rules/ML engine 230 of FIG. 2 or based on a fixed hierarchy of partners. If the impression monitor system 132 determines that there is another partner to which a beacon request should be sent, control returns to block 1110. Otherwise, the example process of FIG. 11 ends.


In some examples, real-time feedback from partners may be omitted from the example process of FIG. 11 and the impression monitor system 132 does not send redirect instructions to the client computer 202, 203. Instead, the client computer 202, 203 refers to its partner-priority-order cookie 220 to determine partners (e.g., the partners 206 and 208) to which it should send redirects and the ordering of such redirects. In some examples, the client computer 202, 203 sends redirects simultaneously to all partners listed in the partner-priority-order cookie 220. In such some examples, blocks 1110, 1114, 1116, 1118, and 1120 are omitted and at block 1112, the impression monitor system 132 sends the client computer 202, 203 an acknowledgement response without sending a next partner redirect.


Turning now to FIG. 12, the example flow diagram may be executed to dynamically designate preferred web service providers (or preferred partners) from which to request logging of impressions using the example redirection beacon request processes of FIGS. 10 and 11. The example process of FIG. 12 is described in connection with the example system 200 of FIG. 2. Initial impressions associated with content and/or ads delivered by a particular publisher site (e.g., the publisher 302 of FIG. 3) trigger the beacon instructions 214 (FIG. 2) (and/or beacon instructions at other computers) to request logging of impressions at a preferred partner (block 1202). In this illustrated example, the preferred partner is initially the partner A site 206 (FIGS. 2 and 3). The impression monitor system 132 (FIGS. 1, 2, and 3) receives feedback on non-matching user IDs from the preferred partner 206 (block 1204). The rules/ML engine 230 (FIG. 2) updates the preferred partner for the non-matching user IDs (block 1206) based on the feedback received at block 1204. In some examples, during the operation of block 1206, the impression monitor system 132 also updates a partner-priority-order of preferred partners in the partner-priority-order cookie 220 of FIG. 2. Subsequent impressions trigger the beacon instructions 214 (and/or beacon instructions at other computers 202, 203) to send requests for logging of impressions to different respective preferred partners specifically based on each user ID (block 1208). That is, some user IDs in the panelist monitor cookie 218 and/or the partner cookie(s) 216 may be associated with one preferred partner, while others of the user IDs are now associated with a different preferred partner as a result of the operation at block 1206. The example process of FIG. 12 then ends.



FIG. 13 depicts an example system 1300 that may be used to determine media (e.g., content and/or advertising) exposure based on information collected by one or more database proprietors. The example system 1300 is another example of the systems 200 and 300 illustrated in FIGS. 2 and 3 in which an intermediary 1308, 1312 is provided between a client computer 1304 and a partner 1310, 1314. Persons of ordinary skill in the art will understand that the description of FIGS. 2 and 3 and the corresponding flow diagrams of FIGS. 8-12 are applicable to the system 1300 with the inclusion of the intermediary 1308, 1312.


According to the illustrated example, a publisher 1302 transmits an advertisement or other media content to the client computer 1304. The publisher 1302 may be the publisher 302 described in conjunction with FIG. 3. The client computer 1304 may be the panelist client computer 202 or the non-panelist computer 203 described in conjunction with FIGS. 2 and 3 or any other client computer. The advertisement or other media content includes a beacon that instructs the client computer to send a request to an impression monitor system 1306 as explained above.


The impression monitor system 1306 may be the impression monitor system 132 described in conjunction with FIGS. 1-3. The impression monitor system 1306 of the illustrated example receives beacon requests from the client computer 1304 and transmits redirection messages to the client computer 1304 to instruct the client to send a request to one or more of the intermediary A 1308, the intermediary B 1312, or any other system such as another intermediary, a partner, etc. The impression monitor system 1306 also receives information about partner cookies from one or more of the intermediary A 1308 and the intermediary B 1312.


In some examples, the impression monitor system 1306 may insert into a redirection message an identifier of a client that is established by the impression monitor system 1306 and identifies the client computer 1304 and/or a user thereof. For example, the identifier of the client may be an identifier stored in a cookie that has been set at the client by the impression monitor system 1306 or any other entity, an identifier assigned by the impression monitor system 1306 or any other entity, etc. The identifier of the client may be a unique identifier, a semi-unique identifier, etc. In some examples, the identifier of the client may be encrypted, obfuscated, or varied to prevent tracking of the identifier by the intermediary 1308, 1312 or the partner 1310, 1314. According to the illustrated example, the identifier of the client is included in the redirection message to the client computer 1304 to cause the client computer 1304 to transmit the identifier of the client to the intermediary 1308, 1312 when the client computer 1304 follows the redirection message. For example, the identifier of the client may be included in a URL included in the redirection message to cause the client computer 1304 to transmit the identifier of the client to the intermediary 1308, 1312 as a parameter of the request that is sent in response to the redirection message.


The intermediaries 1308, 1312 of the illustrated example receive redirected beacon requests from the client computer 1304 and transmit information about the requests to the partners 1310, 1314. The example intermediaries 1308, 1312 are made available on a content delivery network (e.g., one or more servers of a content delivery network) to ensure that clients can quickly send the requests without causing substantial interruption in the access of content from the publisher 1302.


In examples disclosed herein, a cookie set in a domain (e.g., “partnerA.com”) is accessible by a server of a sub-domain (e.g., “intermediary.partnerA.com”) corresponding to the domain (e.g., the root domain “partnerA.com”) in which the cookie was set. In some examples, the reverse is also true such that a cookie set in a sub-domain (e.g., “intermediary.partnerA.com”) is accessible by a server of a root domain (e.g., the root domain “partnerA.com”) corresponding to the sub-domain (e.g., “intermediary.partnerA.com”) in which the cookie was set. As used herein, the term domain (e.g., Internet domain, domain name, etc.) includes the root domain (e.g., “domain.com”) and sub-domains (e.g., “a.domain.com,” “b.domain.com,” “c.d.domain.com,” etc.).


To enable the example intermediaries 1308, 1312 to receive cookie information associated with the partners 1310, 1314 respectively, sub-domains of the partners 1310, 1314 are assigned to the intermediaries 1308, 1312. For example, the partner A 1310 may register an internet address associated with the intermediary A 1308 with the sub-domain in a domain name system associated with a domain for the partner A 1310. Alternatively, the sub-domain may be associated with the intermediary in any other manner. In such examples, cookies set for the domain name of partner A 1310 are transmitted from the client computer 1304 to the intermediary A 1308 that has been assigned a sub-domain name associated with the domain of partner A 1310 when the client 1304 transmits a request to the intermediary A 1308.


The example intermediaries 1308, 1312 transmit the beacon request information including a campaign ID and received cookie information to the partners 1310, 1314 respectively. This information may be stored at the intermediaries 1308, 1312 so that it can be sent to the partners 1310, 1314 in a batch. For example, the received information could be transmitted near the end of the day, near the end of the week, after a threshold amount of information is received, etc. Alternatively, the information may be transmitted immediately upon receipt. The campaign ID may be encrypted, obfuscated, varied, etc. to prevent the partners 1310, 1314 from recognizing the content to which the campaign ID corresponds or to otherwise protect the identity of the content. A lookup table of campaign ID information may be stored at the impression monitor system 1306 so that impression information received from the partners 1310, 1314 can be correlated with the content.


The intermediaries 1308, 1312 of the illustrated example also transmit an indication of the availability of a partner cookie to the impression monitor system 1306. For example, when a redirected beacon request is received at the intermediary A 1308, the intermediary A 1308 determines if the redirected beacon request includes a cookie for partner A 1310. The intermediary A 1308 sends the notification to the impression monitor system 1306 when the cookie for partner A 1310 was received. Alternatively, intermediaries 1308, 1312 may transmit information about the availability of the partner cookie regardless of whether a cookie is received. Where the impression monitor system 1306 has included an identifier of the client in the redirection message and the identifier of the client is received at the intermediaries 1308, 1312, the intermediaries 1308, 1312 may include the identifier of the client with the information about the partner cookie transmitted to the impression monitor system 1306. The impression monitor system 1306 may use the information about the existence of a partner cookie to determine how to redirect future beacon requests. For example, the impression monitor system 1306 may elect not to redirect a client to an intermediary 1308, 1312 that is associated with a partner 1310, 1314 with which it has been determined that a client does not have a cookie. In some examples, the information about whether a particular client has a cookie associated with a partner may be refreshed periodically to account for cookies expiring and new cookies being set (e.g., a recent login or registration at one of the partners).


The intermediaries 1308, 1312 may be implemented by a server associated with a content metering entity (e.g., a content metering entity that provides the impression monitor system 1306). Alternatively, intermediaries 1308, 1312 may be implemented by servers associated with the partners 1310, 1314 respectively. In other examples, the intermediaries may be provided by a third-party such as a content delivery network.


In some examples, the intermediaries 1308, 1312 are provided to prevent a direct connection between the partners 1310, 1314 and the client computer 1304, to prevent some information from the redirected beacon request from being transmitted to the partners 1310, 1314 (e.g., to prevent a REFERRER_URL from being transmitted to the partners 1310, 1314), to reduce the amount of network traffic at the partners 1310, 1314 associated with redirected beacon requests, and/or to transmit to the impression monitor system 1306 real-time or near real-time indications of whether a partner cookie is provided by the client computer 1304.


In some examples, the intermediaries 1308, 1312 are trusted by the partners 1310, 1314 to prevent confidential data from being transmitted to the impression monitor system 1306. For example, the intermediary 1308, 1312 may remove identifiers stored in partner cookies before transmitting information to the impression monitor system 1306.


The partners 1310, 1314 receive beacon request information including the campaign ID and cookie information from the intermediaries 1308, 1312. The partners 1310, 1314 determine identity and demographics for a user of the client computer 1304 based on the cookie information. The example partners 1310, 1314 track impressions for the campaign ID based on the determined demographics associated with the impression. Based on the tracked impressions, the example partners 1310, 1314 generate reports (previously described). The reports may be sent to the impression monitor system 1306, the publisher 1302, an advertiser that supplied an ad provided by the publisher 1302, a media content hub, or other persons or entities interested in the reports.



FIG. 14 is a flow diagram representative of example machine readable instructions that may be executed to process a redirected request at an intermediary. The example process of FIG. 14 is described in connection with the example intermediary A 1308. Some or all of the blocks may additionally or alternatively be performed by one or more of the example intermediary B 1312, the partners 1310, 1314 of FIG. 13 or by other partners described in conjunction with FIGS. 1-3.


According to the illustrated example, intermediary A 1308 receives a redirected beacon request from the client computer 1304 (block 1402). The intermediary A 1308 determines if the client computer 1304 transmitted a cookie associated with partner A 1310 in the redirected beacon request (block 1404). For example, when the intermediary A 1308 is assigned a domain name that is a sub-domain of partner A 1310, the client computer 1304 will transmit a cookie set by partner A 1310 to the intermediary A 1308.


When the redirected beacon request does not include a cookie associated with partner A 1310 (block 1404), control proceeds to block 1412 which is described below. When the redirected beacon request includes a cookie associated with partner A 1310 (block 1404), the intermediary A 1308 notifies the impression monitor system 1306 of the existence of the cookie (block 1406). The notification may additionally include information associated with the redirected beacon request (e.g., a source URL, a campaign ID, etc.), an identifier of the client, etc. According to the illustrated example, the intermediary A 1308 stores a campaign ID included in the redirected beacon request and the partner cookie information (block 1408). The intermediary A 1308 may additionally store other information associated with the redirected beacon request such as, for example, a source URL, a referrer URL, etc.


The example intermediary A 1308 then determines if stored information should be transmitted to the partner A 1310 (block 1408). For example, the intermediary A 1308 may determine that information should be transmitted immediately, may determine that a threshold amount of information has been received, may determine that the information should be transmitted based on the time of day, etc. When the intermediary A 1308 determines that the information should not be transmitted (block 1408), control proceeds to block 1412. When the intermediary A 1308 determines that the information should be transmitted (block 1408), the intermediary A 1308 transmits stored information to the partner A 1310. The stored information may include information associated with a single request, information associated with multiple requests from a single client, information associated with multiple requests from multiple clients, etc.


According to the illustrated example, the intermediary A 1308 then determines if a next intermediary and/or partner should be contacted by the client computer 1304 (block 1412). The example intermediary A 1308 determines that the next partner should be contacted when a cookie associated with partner a 1310 is not received. Alternatively, the intermediary A 1308 may determine that the next partner should be contacted whenever a redirected beacon request is received, associated with the partner cookie, etc.


When the intermediary A 1308 determines that the next partner (e.g., intermediary B 1314) should be contacted (block 1412), the intermediary A 1308 transmits a beacon redirection message to the client computer 1304 indicating that the client computer 1304 should send a request to the intermediary B 1312. After transmitting the redirection message (block 1414) or when the intermediary A 1308 determines that the next partner should not be contacted (block 1412), the example process of FIG. 14 ends.


While the example of FIG. 14 describes an approach where each intermediary 1308, 1312 selectively or automatically transmits a redirection message identifying the next intermediary 1308, 1312 in a chain, other approaches may be implemented. For example, the redirection message from the impression monitor system 1306 may identify multiple intermediaries 1308, 1312. In such an example, the redirection message may instruct the client computer 1304 to send a request to each of the intermediaries 1308, 1312 (or a subset) sequentially, may instruct the client computer 1304 to send requests to each of the intermediaries 1308, 1312 in parallel (e.g., using JavaScript instructions that support requests executed in parallel), etc.


While the example of FIG. 0.14 is described in conjunction with intermediary A, some or all of the blocks of FIG. 14 may be performed by the intermediary B 1312, one or more of the partners 1310, 1314, any other partner described herein, or any other entity or system. Additionally or alternatively, multiple instances of FIG. 14 (or any other instructions described herein) may be performed in parallel at any number of locations.



FIG. 15 is a block diagram of an example processor system 1510 that may be used to implement the example apparatus, methods, articles of manufacture, and/or systems disclosed herein. As shown in FIG. 15, the processor system 1510 includes a processor 1512 that is coupled to an interconnection bus 1514. The processor 1512 may be any suitable processor, processing unit, or microprocessor. Although not shown in FIG. 15, the system 1510 may be a multi-processor system and, thus, may include one or more additional processors that are identical or similar to the processor 1512 and that are communicatively coupled to the interconnection bus 1514.


The processor 1512 of FIG. 15 is coupled to a chipset 1518, which includes a memory controller 1520 and an input/output (I/O) controller 1522. A chipset provides I/O and memory management functions as well as a plurality of general purpose and/or special purpose registers, timers, etc. that are accessible or used by one or more processors coupled to the chipset 1518. The memory controller 1520 performs functions that enable the processor 1512 (or processors if there are multiple processors) to access a system memory 1524, a mass storage memory 1525, and/or an optical media 1527.


In general, the system memory 1524 may include any desired type of volatile and/or non-volatile memory such as, for example, static random access memory (SRAM), dynamic random access memory (DRAM), flash memory, read-only memory (ROM), etc. The mass storage memory 1525 may include any desired type of mass storage device including hard disk drives, optical drives, tape storage devices, etc. The optical media 1527 may include any desired type of optical media such as a digital versatile disc (DVD), a compact disc (CD), or a blu-ray optical disc. The instructions of any of FIGS. 9-12 and 14 may be stored on any of the tangible media represented by the system memory 1524, the mass storage device 1525, and/or any other media.


The I/O controller 1522 performs functions that enable the processor 1512 to communicate with peripheral input/output (I/O) devices 1526 and 1528 and a network interface 1530 via an I/O bus 1532. The I/O devices 1526 and 1528 may be any desired type of I/O device such as, for example, a keyboard, a video display or monitor, a mouse, etc. The network interface 1530 may be, for example, an Ethernet device, an asynchronous transfer mode (ATM) device, an 802.11 device, a digital subscriber line (DSL) modem, a cable modem, a cellular modem, etc. that enables the processor system 1310 to communicate with another processor system.


While the memory controller 1520 and the I/O controller 1522 are depicted in FIG. 15 as separate functional blocks within the chipset 1518, the functions performed by these blocks may be integrated within a single semiconductor circuit or may be implemented using two or more separate integrated circuits.


Although the foregoing discloses the use of cookies for transmitting identification information from clients to servers, any other system for transmitting identification information from clients to servers or other computers may be used. For example, identification information or any other information provided by any of the cookies disclosed herein may be provided by an Adobe Flash® client identifier, identification information stored in an HTML5 datastore, etc. The methods and apparatus described herein are not limited to implementations that employ cookies.


Although certain methods, apparatus, systems, and articles of manufacture have been disclosed herein, the scope of coverage of this patent is not limited thereto. To the contrary, this patent covers all methods, apparatus, systems, and articles of manufacture fairly falling within the scope of the claims either literally or under the doctrine of equivalents.

Claims
  • 1. A system to monitor access to media, the system comprising: a processor; andmemory storing instructions that, upon execution by the processor, cause the processor to perform operations comprising: accessing first impression data representative of first impressions logged by an impression monitor system, the first impressions corresponding to the media accessed at a plurality of client devices;generating a panelist impressions composition by removing at least one duplicate impression from second impression data, the second impression data representative of second impressions logged by meters installed at the client devices, the duplicate impression corresponding to one or more accesses to the media represented in both the first impression data and the second impression data for a same audience member;determining an error value for the media based on the panelist impressions composition and a database proprietor impression composition, the database proprietor impression composition provided by a database proprietor; anddetermining an error-corrected impression composition based on the error value and the panelist impressions composition.
  • 2. The system of claim 1, wherein the error value is an error weighted value, and wherein determining the error value comprises generating the error weighted value based on a ratio of: a first mean squared error of the database proprietor impression composition; anda second mean squared error of the panelist impressions composition.
  • 3. The system of claim 1, wherein determining the error-corrected impression composition comprises determining the error-corrected impression composition for a demographic group.
  • 4. The system of claim 1, the operations further comprising: accessing impressions-based aggregate demographics from the database proprietor, the database proprietor impression composition corresponding to the impressions-based aggregate demographics.
  • 5. The system of claim 1, the operations further comprising: determining a media identifier corresponding to the database proprietor impression composition, the media identifier representative of the media.
  • 6. The system of claim 1, the operations further comprising: causing transmission of a uniform resource locator (URL) scrape instruction to at least one of the client devices, the URL scrape instruction to cause the at least one of the client devices to (1) read a URL of a website from an address bar of a web browser, and (2) send the URL in a beacon request.
  • 7. The system of claim 1, wherein the first impressions are logged by the impression monitor system based on identifiers set on the client devices by a server of the impression monitor system.
  • 8. A non-transitory computer-readable medium comprising computer-readable instructions that, when executed by a processor of a computing system, cause the computing system to perform operations comprising: accessing first impression data representative of first impressions logged by an impression monitor system, the first impressions corresponding to media accessed at a plurality of client devices;generating a panelist impressions composition by removing at least one duplicate impression from second impression data, the second impression data representative of second impressions logged by meters installed at the client devices, the duplicate impression corresponding to one or more accesses to the media represented in both the first impression data and the second impression data for a same audience member;determining an error value for the media based on the panelist impressions composition and a database proprietor impression composition, the database proprietor impression composition provided by a database proprietor; anddetermining an error-corrected impression composition based on the error value and the panelist impressions composition.
  • 9. The non-transitory computer-readable medium of claim 8, wherein the error value is an error weighted value, and wherein determining the error value comprises generating the error weighted value based on a ratio of: a first mean squared error of the database proprietor impression composition; anda second mean squared error of the panelist impressions composition.
  • 10. The non-transitory computer-readable medium of claim 8, wherein determining the error-corrected impression composition comprises determining the error-corrected impression composition for a demographic group.
  • 11. The non-transitory computer-readable medium of claim 8, the operations further comprising: accessing impressions-based aggregate demographics from the database proprietor, the database proprietor impression composition corresponding to the impressions-based aggregate demographics.
  • 12. The non-transitory computer-readable medium of claim 8, the operations further comprising: determining a media identifier corresponding to the database proprietor impression composition, the media identifier representative of the media.
  • 13. The non-transitory computer-readable medium of claim 8, the operations further comprising: causing transmission of a uniform resource locator (URL) scrape instruction to at least one of the client devices, the URL scrape instruction to cause the at least one of the client devices to (1) read a URL of a website from an address bar of a web browser, and (2) send the URL in a beacon request.
  • 14. The non-transitory computer-readable medium of claim 8, wherein the first impressions are logged by the impression monitor system based on identifiers set on the client devices by a server of the impression monitor system.
  • 15. A method to monitor access to media, the method performed by a computing system comprising a processor, the method comprising: accessing, first impression data representative of first impressions logged by an impression monitor system, the first impressions corresponding to the media accessed at a plurality of client devices;generating a panelist impressions composition by removing at least one duplicate impression from second impression data, the second impression data representative of second impressions logged by meters installed at the client devices, the duplicate impression corresponding to one or more accesses to the media represented in both the first impression data and the second impression data for a same audience member;determining an error value for the media based on the panelist impressions composition and a database proprietor impression composition, the database proprietor impression composition provided by a database proprietor; anddetermining an error-corrected impression composition based on the error value and the panelist impressions composition.
  • 16. The method of claim 15, wherein the error value is an error weighted value, and wherein determining the error value comprises generating error weighted value based on a ratio of: a first mean squared error of the database proprietor impression composition; anda second mean squared error of the panelist impressions composition.
  • 17. The method of claim 15, wherein determining the error-corrected impression composition comprises determining the error-corrected impression composition for a demographic group.
  • 18. The method of claim 15, further comprising: determining a media identifier corresponding to the database proprietor impression composition, the media identifier representative of the media.
  • 19. The method of claim 15, wherein the database proprietor is a social network provider.
  • 20. The method of claim 15, further comprising logging the first impressions based on identifiers set on the client devices by a server of the impression monitor system.
CROSS REFERENCE TO RELATED APPLICATIONS

This patent arises from a continuation of U.S. Patent Application Ser. No. 17/378,529, now U.S. Pat. No. 11,580,576, filed Jul. 16, 2021, which is a continuation of U.S. patent application Ser. No. 16/374,533, filed Apr. 3, 2019, now U.S. Pat. No. 11,068,944, which is a continuation of U.S. patent application Ser. No. 14/981,448, filed Dec. 28, 2015, now U.S. Pat. No. 10,269,044, which is a continuation of U.S. patent application Ser. No. 13/690,915, filed Nov. 30, 2012, now U.S. Pat. No. 9,344,343, which is a continuation of U.S. patent application Ser. No. 13/513,148, filed May 31, 2012, now U.S. Pat. No. 8,370,489, which is a national stage entry of International Patent Application No. PCT/US11/52623, filed Sep. 21, 2011, which claims priority to U.S. Provisional Patent Application Ser. No. 61/385,553, filed on Sep. 22, 2010, and U.S. Provisional Patent Application Ser. No. 61/386,543, filed on Sep. 26, 2010, all of which are hereby incorporated herein by reference in their entireties.

US Referenced Citations (531)
Number Name Date Kind
3540003 Murphy Nov 1970 A
3818458 Deese Jun 1974 A
3906450 Prado, Jr. Sep 1975 A
3906454 Martin Sep 1975 A
T955010 Ragonese et al. Feb 1977 I4
4168396 Best Sep 1979 A
4230990 Lert, Jr. Oct 1980 A
4232193 Gerard Nov 1980 A
4306289 Lumley Dec 1981 A
4319079 Best Mar 1982 A
4361832 Cole Nov 1982 A
4367525 Brown et al. Jan 1983 A
4558413 Schmidt Dec 1985 A
4588991 Atalla May 1986 A
4590550 Eilert et al. May 1986 A
4595950 Lofberg Jun 1986 A
4658093 Hellman Apr 1987 A
4672572 Alsberg Jun 1987 A
4685056 Barnsdale, Jr. Aug 1987 A
4696034 Wiedemer Sep 1987 A
4703324 White Oct 1987 A
4718005 Feigenbaum et al. Jan 1988 A
4720782 Kovalcin Jan 1988 A
4734865 Scullion et al. Mar 1988 A
4740890 William Apr 1988 A
4747139 Taaffe May 1988 A
4757533 Allen et al. Jul 1988 A
4791565 Dunham et al. Dec 1988 A
4821178 Levin et al. Apr 1989 A
4825354 Agrawal et al. Apr 1989 A
4827508 Shear May 1989 A
4866769 Karp Sep 1989 A
4914689 Quade et al. Apr 1990 A
4926162 Pickell May 1990 A
4940976 Gastouniotis et al. Jul 1990 A
4943963 Waechter et al. Jul 1990 A
4956769 Smith Sep 1990 A
4977594 Shear Dec 1990 A
5023907 Johnson et al. Jun 1991 A
5032979 Hecht et al. Jul 1991 A
5086386 Islam Feb 1992 A
5182770 Medveczky Jan 1993 A
5204897 Wyman Apr 1993 A
5233642 Renton Aug 1993 A
5283734 Von Kohorn Feb 1994 A
5287408 Samson Feb 1994 A
5343239 Lappington Aug 1994 A
5355484 Record et al. Oct 1994 A
5374951 Welsh Dec 1994 A
5377269 Heptig et al. Dec 1994 A
5388211 Hornbuckle Feb 1995 A
5406269 Baran Apr 1995 A
5410598 Shear Apr 1995 A
5440738 Bowman et al. Aug 1995 A
5444642 Montgomery Aug 1995 A
5450134 Legate Sep 1995 A
5483658 Grube et al. Jan 1996 A
5497479 Hornbuckle Mar 1996 A
5499340 Barritz Mar 1996 A
5546353 Phillips et al. Aug 1996 A
5559808 Kostreski et al. Sep 1996 A
5584050 Lyons Dec 1996 A
5594934 Lu et al. Jan 1997 A
5675510 Coffey et al. Oct 1997 A
5695009 Hipp Dec 1997 A
5734720 Salganicoff Mar 1998 A
5793409 Tetsumura Aug 1998 A
5793410 Rao Aug 1998 A
5796952 Davis et al. Aug 1998 A
5812928 Watson, Jr. et al. Sep 1998 A
5822533 Saito et al. Oct 1998 A
5841978 Rhoads Nov 1998 A
5848396 Gerace Dec 1998 A
5910987 Ginter et al. Jun 1999 A
5940738 Rao Aug 1999 A
5947479 Ostrowski Sep 1999 A
5951694 Choquier et al. Sep 1999 A
5956716 Kenner et al. Sep 1999 A
5974396 Anderson et al. Oct 1999 A
6052730 Felciano et al. Apr 2000 A
6055573 Gardenswartz et al. Apr 2000 A
6073241 Rosenberg et al. Jun 2000 A
6098093 Bayeh et al. Aug 2000 A
6102406 Miles et al. Aug 2000 A
6108637 Blumenau Aug 2000 A
6138155 Davis et al. Oct 2000 A
6144988 Kappel Nov 2000 A
6164975 Weingarden et al. Dec 2000 A
6216129 Eldering Apr 2001 B1
6223215 Hunt Apr 2001 B1
6247050 Tso Jun 2001 B1
6286036 Rhoads Sep 2001 B1
6286140 Ivanyi Sep 2001 B1
6298348 Eldering Oct 2001 B1
6366298 Haitsuka et al. Apr 2002 B1
6415323 McCanne Jul 2002 B1
6434614 Blumenau Aug 2002 B1
6460079 Blumenau Oct 2002 B1
6463445 Suzuki et al. Oct 2002 B1
6505160 Levy et al. Jan 2003 B1
6527638 Walker et al. Mar 2003 B1
6529952 Blumenau Mar 2003 B1
6642966 Limaye Nov 2003 B1
6651253 Dudkiewicz et al. Nov 2003 B2
6658410 Sakamaki et al. Dec 2003 B1
6714683 Tian et al. Mar 2004 B1
6829368 Meyer et al. Dec 2004 B2
6839680 Liu Jan 2005 B1
6877007 Hentzel Apr 2005 B1
6970886 Conwell et al. Nov 2005 B1
6993590 Gauthier Jan 2006 B1
7039699 Narin May 2006 B1
7058697 Rhoads Jun 2006 B2
7092926 Cerrato Aug 2006 B2
7095871 Jones et al. Aug 2006 B2
7127305 Palmon Oct 2006 B1
7143195 Vange Nov 2006 B2
7150030 Eldering Dec 2006 B1
7159023 Tufts Jan 2007 B2
7171018 Rhoads et al. Jan 2007 B2
7181412 Fulgoni Feb 2007 B1
7215280 Percy et al. May 2007 B1
7257546 Ebrahimi Aug 2007 B2
7260837 Abraham Aug 2007 B2
7323991 Eckert et al. Jan 2008 B1
7343417 Baum Mar 2008 B2
7363278 Schmelzer et al. Apr 2008 B2
7363643 Drake et al. Apr 2008 B2
7386473 Blumenau Jun 2008 B2
7406516 Davis Jul 2008 B2
7444388 Svendsen Oct 2008 B1
7526538 Wilson Apr 2009 B2
7546370 Acharya Jun 2009 B1
7590568 Blumenau Sep 2009 B2
7593576 Meyer et al. Sep 2009 B2
7600014 Russell Oct 2009 B2
7613635 Blumenau Nov 2009 B2
7634786 Knee et al. Dec 2009 B2
7644156 Blumenau Jan 2010 B2
7650407 Blumenau Jan 2010 B2
7653724 Blumenau Jan 2010 B2
7712114 Ramaswamy May 2010 B2
7716326 Blumenau May 2010 B2
7720963 Blumenau May 2010 B2
7720964 Blumenau May 2010 B2
7756974 Blumenau Jul 2010 B2
7788216 Li Aug 2010 B2
7805332 Wilson Sep 2010 B2
7827312 Ramaswamy et al. Nov 2010 B2
7882242 Chen Feb 2011 B2
7925694 Harris Apr 2011 B2
7941525 Yavilevich May 2011 B1
7949565 Eldering May 2011 B1
7958234 Thomas Jun 2011 B2
7962603 Morimoto Jun 2011 B1
7962934 Eldering et al. Jun 2011 B1
8006259 Drake et al. Aug 2011 B2
8032626 Russell Oct 2011 B1
8046255 Bistriceanu Oct 2011 B2
8060601 Brown Nov 2011 B1
8117193 Svendsen et al. Feb 2012 B2
8131861 Butler Mar 2012 B2
8229780 Davidow Jul 2012 B2
8234408 Jungck Jul 2012 B2
8266687 Baldry Sep 2012 B2
8271866 Chen et al. Sep 2012 B2
8271886 Lee Sep 2012 B2
8302120 Ramaswamy Oct 2012 B2
8307006 Hannan Nov 2012 B2
8370489 Mazumdar Feb 2013 B2
8387084 Klappert et al. Feb 2013 B1
8495198 Sim Jul 2013 B2
8504411 Subasic Aug 2013 B1
8543454 Fleischman Sep 2013 B2
8578272 Pantos et al. Nov 2013 B2
8626084 Chan Jan 2014 B2
8631122 Kadam Jan 2014 B2
8688524 Ramalingam Apr 2014 B1
8713168 Heffernan Apr 2014 B2
8751461 Abraham Jun 2014 B2
8839338 Eyer Sep 2014 B2
8843626 Mazumdar Sep 2014 B2
8856869 Brinskelle Oct 2014 B1
8859076 Carr et al. Oct 2014 B2
8909771 Heath Dec 2014 B2
8910195 Barney et al. Dec 2014 B1
8954536 Kalus Feb 2015 B2
9055122 Grecco Jun 2015 B2
9218612 Mazumdar Dec 2015 B2
9332035 Ramaswamy et al. May 2016 B2
9344343 Mazumdar May 2016 B2
9503784 Ramaswamy et al. Nov 2016 B2
9596151 Heffernan Mar 2017 B2
9842339 Kirkby et al. Dec 2017 B2
9852163 Srivastava Dec 2017 B2
10269044 Mazumdar Apr 2019 B2
10356455 Ramaswamy et al. Jul 2019 B2
10504157 Heffernan Dec 2019 B2
10687100 Ramaswamy et al. Jun 2020 B2
10924347 Narsian et al. Feb 2021 B1
10963907 Toupet Mar 2021 B2
11068944 Mazumdar et al. Jul 2021 B2
11197046 Ramaswamy et al. Dec 2021 B2
11563994 Ramaswamy et al. Jan 2023 B2
11580576 Mazumdar et al. Feb 2023 B2
20010031066 Meyer et al. Oct 2001 A1
20010044851 Rothman et al. Nov 2001 A1
20010054004 Powers Dec 2001 A1
20020016969 Kimble Feb 2002 A1
20020029186 Roth Mar 2002 A1
20020032734 Rhoads Mar 2002 A1
20020033842 Zetts Mar 2002 A1
20020053078 Holtz et al. May 2002 A1
20020059218 August et al. May 2002 A1
20020062382 Rhoads et al. May 2002 A1
20020069037 Hendrickson et al. Jun 2002 A1
20020099609 Nascenzi et al. Jul 2002 A1
20020111934 Narayan Aug 2002 A1
20020112002 Abato Aug 2002 A1
20020120925 Logan Aug 2002 A1
20020124246 Kaminsky et al. Sep 2002 A1
20020134658 Lah Sep 2002 A1
20020138852 Reynolds et al. Sep 2002 A1
20020144262 Plotnick et al. Oct 2002 A1
20020157112 Kuhn Oct 2002 A1
20020162118 Levy et al. Oct 2002 A1
20020170814 Lah Nov 2002 A1
20020184088 Rosenberg Dec 2002 A1
20020194592 Tsuchida et al. Dec 2002 A1
20030006911 Smith et al. Jan 2003 A1
20030021441 Levy et al. Jan 2003 A1
20030037131 Verma Feb 2003 A1
20030046385 Marcus Mar 2003 A1
20030065770 Davis et al. Apr 2003 A1
20030088674 Ullman et al. May 2003 A1
20030093810 Taniguchi May 2003 A1
20030105870 Baum Jun 2003 A1
20030115598 Pantoja Jun 2003 A1
20030163516 Perkins Aug 2003 A1
20030177488 Smith Sep 2003 A1
20030220901 Carr Nov 2003 A1
20040003394 Ramaswamy Jan 2004 A1
20040025181 Addington et al. Feb 2004 A1
20040037271 Liscano et al. Feb 2004 A1
20040073916 Petrovic et al. Apr 2004 A1
20040088212 Hill May 2004 A1
20040098229 Error May 2004 A1
20040107125 Guheen et al. Jun 2004 A1
20040128514 Rhoads Jul 2004 A1
20040137929 Jones et al. Jul 2004 A1
20040254887 Jacoby Dec 2004 A1
20050033657 Herrington Feb 2005 A1
20050033758 Baxter Feb 2005 A1
20050058319 Rhoads et al. Mar 2005 A1
20050138179 Encarnacion et al. Jun 2005 A1
20050144067 Farahat Jun 2005 A1
20050152287 Yokomitsu et al. Jul 2005 A1
20050166233 Beyda Jul 2005 A1
20050192933 Rhoads et al. Sep 2005 A1
20050193425 Sull et al. Sep 2005 A1
20050223093 Hanson Oct 2005 A1
20050257141 Brandrud et al. Nov 2005 A1
20060056625 Nakabayashi et al. Mar 2006 A1
20060089754 Mortenson Apr 2006 A1
20060107195 Ramaswamy et al. May 2006 A1
20060143068 Calabria Jun 2006 A1
20060161635 Lamkin et al. Jul 2006 A1
20060178996 Matsushima Aug 2006 A1
20060184617 Nicholas et al. Aug 2006 A1
20060190616 Mayerhofer et al. Aug 2006 A1
20060212350 Ellis Sep 2006 A1
20060242325 Ramaswamy et al. Oct 2006 A1
20060271641 Stavrakos Nov 2006 A1
20060282328 Gerace Dec 2006 A1
20060294259 Matefi Dec 2006 A1
20070043769 Kasahara et al. Feb 2007 A1
20070055987 Lu et al. Mar 2007 A1
20070073585 Apple Mar 2007 A1
20070073833 Roy Mar 2007 A1
20070074020 Nishimura Mar 2007 A1
20070083611 Farago et al. Apr 2007 A1
20070094304 Horner et al. Apr 2007 A1
20070106787 Blumenau May 2007 A1
20070106792 Blumenau May 2007 A1
20070112837 Houh et al. May 2007 A1
20070118873 Houh et al. May 2007 A1
20070136777 Hasek et al. Jun 2007 A1
20070156532 Nyhan Jul 2007 A1
20070162927 Ramaswamy et al. Jul 2007 A1
20070186228 Ramaswamy et al. Aug 2007 A1
20070198327 Yazdani et al. Aug 2007 A1
20070198353 Behringer et al. Aug 2007 A1
20070208711 Rhoads et al. Sep 2007 A1
20070244985 Svendsen Oct 2007 A1
20070250901 McIntire et al. Oct 2007 A1
20070255618 Meerbergen Nov 2007 A1
20070271580 Tischer et al. Nov 2007 A1
20070276925 La Joie et al. Nov 2007 A1
20070276926 LaJoie et al. Nov 2007 A1
20070288476 Flanagan, III et al. Dec 2007 A1
20070294057 Crystal et al. Dec 2007 A1
20070294132 Zhang et al. Dec 2007 A1
20070294705 Gopalakrishnan et al. Dec 2007 A1
20070294706 Neuhauser et al. Dec 2007 A1
20080000495 Hansen et al. Jan 2008 A1
20080004958 Ralph Jan 2008 A1
20080028223 Rhoads Jan 2008 A1
20080040354 Ray et al. Feb 2008 A1
20080040653 Levine Feb 2008 A1
20080046499 Cabrera et al. Feb 2008 A1
20080059160 Saunders et al. Mar 2008 A1
20080082510 Wang et al. Apr 2008 A1
20080083003 Biniak et al. Apr 2008 A1
20080086356 Glassman et al. Apr 2008 A1
20080086523 Afergan Apr 2008 A1
20080086524 Afergan Apr 2008 A1
20080120661 Ludvig et al. May 2008 A1
20080126420 Wright May 2008 A1
20080139182 Levy et al. Jun 2008 A1
20080140573 Levy et al. Jun 2008 A1
20080201427 Chen Aug 2008 A1
20080201472 Bistriceanu Aug 2008 A1
20080209491 Hasek Aug 2008 A1
20080228537 Monfried Sep 2008 A1
20080235077 Harkness et al. Sep 2008 A1
20080235243 Lee Sep 2008 A1
20080240490 Finkelstein et al. Oct 2008 A1
20080249961 Harkness et al. Oct 2008 A1
20080250136 Izrailevsky Oct 2008 A1
20080276179 Borenstein Nov 2008 A1
20090015599 Bennett et al. Jan 2009 A1
20090019148 Britton Jan 2009 A1
20090030780 York Jan 2009 A1
20090055241 Chen Feb 2009 A1
20090070443 Vanderhook Mar 2009 A1
20090076899 Gbodimowo Mar 2009 A1
20090083417 Hughes et al. Mar 2009 A1
20090106202 Mizrahi Apr 2009 A1
20090119167 Kendall May 2009 A1
20090119723 Tinsman May 2009 A1
20090125934 Jones et al. May 2009 A1
20090132579 Kwang May 2009 A1
20090133093 Hodge May 2009 A1
20090144146 Levine Jun 2009 A1
20090158318 Levy Jun 2009 A1
20090164564 Willis Jun 2009 A1
20090171715 Conley et al. Jul 2009 A1
20090171762 Alkove Jul 2009 A1
20090217315 Malik et al. Aug 2009 A1
20090248494 Hueter Oct 2009 A1
20090254633 Olive Oct 2009 A1
20090259666 Tola Oct 2009 A1
20090276313 Wilhelm Nov 2009 A1
20090276667 Dopson et al. Nov 2009 A1
20090292587 Fitzgerald Nov 2009 A1
20090293001 Lu Nov 2009 A1
20090307061 Monighetti et al. Dec 2009 A1
20090307084 Monighetti Dec 2009 A1
20090327026 Bistriceanu Dec 2009 A1
20100004977 Marci Jan 2010 A1
20100008586 Meyer et al. Jan 2010 A1
20100009722 Levy et al. Jan 2010 A1
20100010866 Bal Jan 2010 A1
20100070621 Urdan Mar 2010 A1
20100076814 Manning Mar 2010 A1
20100088152 Bennett Apr 2010 A1
20100088373 Pinkham Apr 2010 A1
20100088583 Schachter Apr 2010 A1
20100094897 Sumrall et al. Apr 2010 A1
20100114739 Johnston May 2010 A1
20100121676 Jackson May 2010 A1
20100125567 Morris May 2010 A1
20100153175 Pearson et al. Jun 2010 A1
20100153207 Roberts et al. Jun 2010 A1
20100153544 Krassner Jun 2010 A1
20100174774 Kern et al. Jul 2010 A1
20100191723 Perez Jul 2010 A1
20100198911 Zhang et al. Aug 2010 A1
20100205057 Hook Aug 2010 A1
20100217665 Sharma Aug 2010 A1
20100223119 Klish Sep 2010 A1
20100228855 Sim Sep 2010 A1
20100241510 Zhang Sep 2010 A1
20100241745 Offen Sep 2010 A1
20100241963 Kulis et al. Sep 2010 A1
20100262498 Nolet Oct 2010 A1
20100262711 Bouazizi Oct 2010 A1
20100268540 Arshi Oct 2010 A1
20100268573 Jain Oct 2010 A1
20100280641 Harkness et al. Nov 2010 A1
20100299604 Blumenau Nov 2010 A1
20100306257 Levy Dec 2010 A1
20100312854 Hyman Dec 2010 A1
20100313009 Combet Dec 2010 A1
20100318600 Furbeck Dec 2010 A1
20100325051 Etchegoyen Dec 2010 A1
20110016231 Ramaswamy et al. Jan 2011 A1
20110016482 Tidwell et al. Jan 2011 A1
20110023293 Bayan et al. Feb 2011 A1
20110030031 Lussier et al. Feb 2011 A1
20110052762 Flieger et al. Mar 2011 A1
20110055314 Rosenstein et al. Mar 2011 A1
20110065881 Iji et al. Mar 2011 A1
20110087519 Fordyce, III Apr 2011 A1
20110087919 Deshmukh Apr 2011 A1
20110093327 Fordyce, III Apr 2011 A1
20110106620 Setiawan May 2011 A1
20110125593 Wright May 2011 A1
20110131596 Amsterdam Jun 2011 A1
20110137733 Baird Jun 2011 A1
20110153391 Tenbrock Jun 2011 A1
20110154185 Kern et al. Jun 2011 A1
20110158016 Rimondi et al. Jun 2011 A1
20110173200 Yang et al. Jul 2011 A1
20110185016 Kandasamy et al. Jul 2011 A1
20110191184 Blackhurst Aug 2011 A1
20110191664 Sheleheda Aug 2011 A1
20110191831 Chan Aug 2011 A1
20110196735 Von Sydow Aug 2011 A1
20110208660 Erbey et al. Aug 2011 A1
20110208860 Sim Aug 2011 A1
20110231240 Schoen Sep 2011 A1
20110238520 Selley Sep 2011 A1
20110246297 Buchalter Oct 2011 A1
20110246306 Blackhurst Oct 2011 A1
20110246641 Pugh Oct 2011 A1
20110252118 Pantos et al. Oct 2011 A1
20110276627 Blechar Nov 2011 A1
20110288907 Harvey Nov 2011 A1
20110296048 Knox et al. Dec 2011 A1
20110314114 Young, III Dec 2011 A1
20110321003 Doig et al. Dec 2011 A1
20120005015 Park Jan 2012 A1
20120005213 Hannan Jan 2012 A1
20120026760 Juhlin Feb 2012 A1
20120030037 Carriero Feb 2012 A1
20120042005 Papakostas et al. Feb 2012 A1
20120072469 Perez Mar 2012 A1
20120096546 Dilley et al. Apr 2012 A1
20120109709 Fordyce, III May 2012 A1
20120109882 Bouse et al. May 2012 A1
20120110027 Falcon May 2012 A1
20120143713 Dittus Jun 2012 A1
20120151079 Besehanic et al. Jun 2012 A1
20120151322 Lindsay Jun 2012 A1
20120158954 Heffernan Jun 2012 A1
20120166520 Lindsay Jun 2012 A1
20120173701 Tenbrock Jul 2012 A1
20120192214 Hunn Jul 2012 A1
20120206331 Gandhi Aug 2012 A1
20120209918 Shah et al. Aug 2012 A1
20120215621 Heffernan Aug 2012 A1
20120221559 Kidron Aug 2012 A1
20120239407 Lynch Sep 2012 A1
20120239809 Mazumdar Sep 2012 A1
20120254466 Jungck Oct 2012 A1
20120265735 McMillan et al. Oct 2012 A1
20120302222 Williamson et al. Nov 2012 A1
20120310729 Dalto Dec 2012 A1
20120311017 Sze Dec 2012 A1
20120311126 Jadallah et al. Dec 2012 A1
20130007298 Ramaswamy et al. Jan 2013 A1
20130007794 Besehanic et al. Jan 2013 A1
20130014144 Bhatia Jan 2013 A1
20130014223 Bhatia et al. Jan 2013 A1
20130019262 Bhatia et al. Jan 2013 A1
20130025687 Al-Shammari Jan 2013 A1
20130046615 Liyanage Feb 2013 A1
20130046651 Edson Feb 2013 A1
20130060629 Rangsikitpho et al. Mar 2013 A1
20130061275 Seo et al. Mar 2013 A1
20130080268 Gordon et al. Mar 2013 A1
20130097285 Van Zwol et al. Apr 2013 A1
20130097311 Mazumdar et al. Apr 2013 A1
20130097312 Mazumdar Apr 2013 A1
20130124628 Weerasinghe May 2013 A1
20130138506 Zhu May 2013 A1
20130138743 Amento May 2013 A1
20130145022 Srivastava Jun 2013 A1
20130159499 Besehanic Jun 2013 A1
20130198125 Oliver et al. Aug 2013 A1
20130198383 Tseng et al. Aug 2013 A1
20130202150 Sinha et al. Aug 2013 A1
20130204694 Banister Aug 2013 A1
20130212188 Duterque Aug 2013 A1
20130231931 Kulis et al. Sep 2013 A1
20130246389 Osann, Jr. Sep 2013 A1
20130246609 Topchy Sep 2013 A1
20130247078 Nikankin et al. Sep 2013 A1
20130254897 Reedy et al. Sep 2013 A1
20130268623 Besehanic et al. Oct 2013 A1
20130268630 Besehanic et al. Oct 2013 A1
20130282898 Kalus Oct 2013 A1
20130290508 Besehanic et al. Oct 2013 A1
20130291001 Besehanic et al. Oct 2013 A1
20130297411 Van Datta Nov 2013 A1
20130297467 Kidron et al. Nov 2013 A1
20130304777 Bilinski et al. Nov 2013 A1
20130311478 Frett et al. Nov 2013 A1
20130311776 Besehanic Nov 2013 A1
20130311780 Besehanic Nov 2013 A1
20130332604 Seth et al. Dec 2013 A1
20140033317 Barber Jan 2014 A1
20140040171 Segalov et al. Feb 2014 A1
20140046777 Markey et al. Feb 2014 A1
20140082220 Ramaswamy et al. Mar 2014 A1
20140108130 Vos et al. Apr 2014 A1
20140123253 Davis et al. May 2014 A1
20140156761 Heffernan et al. Jun 2014 A1
20140173646 Ramaswamy Jun 2014 A1
20140173746 Armstrong-Muntner et al. Jun 2014 A1
20140229629 Besehanic Aug 2014 A1
20140229970 Besehanic Aug 2014 A1
20140244828 Besehanic Aug 2014 A1
20140280896 Papakostas et al. Sep 2014 A1
20140298365 Matsubara et al. Oct 2014 A1
20140301386 Harrenstien et al. Oct 2014 A1
20140317114 Alla et al. Oct 2014 A1
20140324544 Donato et al. Oct 2014 A1
20140324545 Splaine et al. Oct 2014 A1
20140337104 Splaine et al. Nov 2014 A1
20150019322 Alla et al. Jan 2015 A1
20150019327 Mazumdar Jan 2015 A1
20150046248 Ben-Yaacov et al. Feb 2015 A1
20150046579 Perez et al. Feb 2015 A1
20150052217 Benguerah Feb 2015 A1
20150070585 Sharif-Ahmadi et al. Mar 2015 A1
20150106505 Ramaswamy et al. Apr 2015 A1
20160027038 Beyda Jan 2016 A1
20160212481 Ramaswamy et al. Jul 2016 A1
20170154366 Turgeman Jun 2017 A1
Foreign Referenced Citations (88)
Number Date Country
5109300 Jan 2001 AU
2011213606 Aug 2012 AU
2011305429 Mar 2013 AU
2011349435 May 2013 AU
2013203898 May 2013 AU
2013205736 May 2013 AU
2013203898 Jul 2015 AU
2017200423 Feb 2017 AU
2014331927 Jun 2017 AU
2018204318 Jul 2018 AU
2020213400 Aug 2020 AU
1801727 Jul 2006 CN
1898662 Jan 2007 CN
101077014 Nov 2007 CN
101222348 Jul 2008 CN
101505247 Aug 2009 CN
101617516 Dec 2009 CN
101796504 Aug 2010 CN
101222348 May 2011 CN
103119565 May 2013 CN
103189856 Jul 2013 CN
103119565 May 2016 CN
105760782 Jul 2016 CN
105814901 Jul 2016 CN
103189856 Sep 2016 CN
105760782 Jan 2019 CN
105814901 Apr 2019 CN
0325219 Jul 1989 EP
0703683 Mar 1996 EP
0744695 Nov 1996 EP
1045547 Oct 2000 EP
1193603 Apr 2002 EP
1379044 Jan 2004 EP
1379604 Feb 2010 EP
2176639 Dec 1986 GB
1227592 Oct 2017 HK
H05324352 Dec 1993 JP
H10124428 May 1998 JP
2000041115 Feb 2000 JP
2001282982 Oct 2001 JP
2002056280 Feb 2002 JP
2002091852 Mar 2002 JP
2002149693 May 2002 JP
2002163562 Jun 2002 JP
2002373152 Dec 2002 JP
2003345940 Dec 2003 JP
2006127320 May 2006 JP
2006127321 May 2006 JP
2007501454 Jan 2007 JP
2008083906 Apr 2008 JP
2009193473 Aug 2009 JP
2009259119 Nov 2009 JP
2010501939 Jan 2010 JP
2010039845 Feb 2010 JP
2010257448 Nov 2010 JP
2010282319 Dec 2010 JP
2013524319 Jun 2013 JP
2021047867 Mar 2021 JP
20020037980 May 2002 KR
20100067611 Jun 2010 KR
20100067611 Jun 2010 KR
20110023293 Mar 2011 KR
9600950 Jan 1996 WO
9617467 Jun 1996 WO
9628904 Sep 1996 WO
9632815 Oct 1996 WO
9637983 Nov 1996 WO
9641495 Dec 1996 WO
9809447 Mar 1998 WO
0041115 Jul 2000 WO
0152168 Jul 2001 WO
2005013072 Feb 2005 WO
2009026395 Feb 2009 WO
2009029940 Mar 2009 WO
2009039242 Mar 2009 WO
2010088372 Aug 2010 WO
2010104285 Sep 2010 WO
2011097624 Aug 2011 WO
2012040371 Mar 2012 WO
2012087954 Jun 2012 WO
2012128895 Sep 2012 WO
2012177866 Dec 2012 WO
2012177870 Dec 2012 WO
2012177874 Dec 2012 WO
2013122907 Aug 2013 WO
2014059319 Apr 2014 WO
2014172472 Oct 2014 WO
2015054445 Apr 2015 WO
Non-Patent Literature Citations (184)
Entry
Japanese Patent Office, “Notice of Reasons for Rejection,” issued Jul. 25, 2023 in connection with Japanese Patent Application No. 2022-076634, 6 pages (including translation).
Hiroki Okazaki, “How to understand the effects of customer attraction to a website, and the method of measuring the effects,” Web STRATEGY, Japan, MdN Corporation, Sep. 11, 2006, vol. 2, 10 pages.
Buyya, et al., Cloudbus Toolkit for Market-Oriented Cloud Computing, published by CloudCom 2009, LNCS 5931, Springer-Verlag, Berlin, Germany, © 2009, 21 pages.
Dhillon, et al., Leveraging Consumer Sensing Devices for Telehealth, published in CHINZ '12, Dunedin, New Zealand, on Jul. 2-3, 2012, 7 pages.
International Searching Authority, International Search Report & Written Opinion, issued in International Patent Application No. PCT/US2014/034389, on Sep. 5, 2014, 13 pages.
Liu, et al., Socialize Spontaneously with Mobile Applications, published in Infocom 2012, Orlando, FL, on Mar. 25-30, 2012, 9 pages.
Nilsson, ID3 tag version 2.3.0, published on Feb. 3, 1999, from https://id3lib.sourceforge.net/id3/id3v2.3.0.html, 37 pages.
United States Patent and Trademark Office, Notice of Allowance, issued in connection with U.S. Appl. No. 15/299,884, dated Jan. 24, 2019, 5 pages.
United States Patent and Trademark Office, Corrected Notice of Allowability, issued Dec. 12, 2022 in connection with U.S. Appl. No. 17/456,538, 2 pages.
United States Patent and Trademark Office, Notice of Allowance and Fee(s), issued in connection with U. S. U.S. Appl. No. 16/436,476, dated Feb. 10, 2020, 8 pages.
United States Patent and Trademark Office, Notice of Allowance, issued in connection with U.S. Appl. No. 16/902,065, dated Aug. 3, 2021, 8 pages.
United States Patent and Trademark Office, Notice of Allowance, issued Sep. 29, 2022 in connection with U.S. Appl. No. 17/456,538, 8 pages.
United States Patent Office, Notice of Allowance and Fee(s) Due, issued in connection with U.S. Appl. No. 15/082,991, on Jul. 14, 2016, 10 pages.
United States Patent Office, Notice of Allowance, issued in connection with U.S. Appl. No. 14/144,352, on Dec. 23, 2015, 16 pages.
Etgen et al., “What Does Getting WET (Web Event-logging tool) Mean for Web Usability?” Jun. 3, 1999, [online]. retrieved from the internet: <URL: http://zing.ncsl.nisl.gov/hfweb/proceedings/etgen-cantor/index.html>, 11 pages.
Steve Coffey, “Internet Audience Measurement: A Practitioner's View,” Journal of Interactive Advertising, vol. 1, No. 2, Spring 2001, 8 pages.
Pouttu-Clarke, Matt, “J2EE patterns: Cross Domain Cookie Provider,” The Server Side, Jan. 19, 2005, 12 pages, [Retrieved from the Internet at http://www.theserverside.com/discussions/thread/31258.html].
JavaScript and AJAX Forum, Sep. 28, 2005, [retrieved from Internet at http://www.webmasterworld.com/forum91/4465.htm on Jun. 29, 2011] 4 pages.
E sources of information Marketing current of the Internet age The 6th time, I.M.press vol. 119 and JP, Mar. 25, 2006. 64-67, pages.
“Storing and Retrieving non 3rd Party Cookies Across Multiple Domains,” Google Answers, Jun. 30, 2006, retrieved from http://answers.google.com/answers/threadview/id/742376.html, 4 pages.
With an access number, it is from a number and the nature customer gathering technique to evaluation of effectiveness. The wisdom of site customer gathering, ** , Web Strategy vol. Sep. 5, Feb. 2006.
Adam et al., “Privacy Preserving Integration of Health Care Data,” AMIA 2007 Symposium Proceedings, 6 pages.
Matt Doyle, “Using Javascript's Location Object to Work with URLs,” Jul. 28, 2008, Retrieved from the Internet: URL: https://www.elated.com/using-javascripts-location-object-tow-work-with-urls/>, 12 pages.
Yugawa, T., “Next Generation Marketing Platform,” Japan, Softbank Creative Corporation, Oct. 6, 2008, 1st edition, p. 160, 5 pages.
Mental Poker, Wikipedia, Jan. 12, 2010, [retrieved from internet at http://en.wikipedia.org/wiki/mental poker on Sep. 21, 2010, 5 pages.
Vranica, “Nielsen Testing A New Web-Ad Metric,” The Wall Street Journal, Sep. 23, 2010, 2 pages.
Vega, Tanzina, “Nielsen Introduces New Ad Measurement Product,” The New York Times, Sep. 27, 2010, 7 pages.
Emil Protalinski, “Facebook denies cookie tracking allegations,” Internet article, www.zdnet.com, Sep. 25, 2011, 2 pages.
Nik Cubrilovic, “Logging out of Facebook is not enough,” Internet article, www.nikcub.appspot.com, Sep. 25, 2011, 3 pages.
Emil Protalinski, “Facebook fixes cookie behavior after logging out,” Internet article, www.zdnet.com, Sep. 27, 2011, 2 pages.
Emil Protalinski, “US congressmen ask FTC to investigate Facebook cookies,” Internet article, retrieved from http://www.zdnet.com/blogifacebook/us-congressmen-ask-ftc-to-investigate-facebook-cookies/4218, Sep. 28, 2011, 2 pages.
Chloe Albanesius, “Facebook Issues Fix For Several Tracking Cookies,” Internet article, www.pcmag.com, Sep. 28, 2011, 2 pages.
International Searching Authority, “International Search Report” issued in connection with PCT Serial No. PCT/US2011/052623, mailed Mar. 8, 2012, 3 pages.
International Searching Authority, “Written Opinion of the International Searching Authority,” issued in connection with International Patent Application No. PCT/US2011/052623, Mar. 8, 2012, 4 Pages.
Nielsen Unveils New Online Advertising Measurement, The Nielsen Company, Sep. 27, 2010, [retrieved from Internet at http://nielsen.com/us/en/insights/press-room/2010/nielsen_unveils_newonlineadvertisingmeasurement.html on May 31, 2012] 3 pages.
United States Patent and Trademark Office, “Notice of Allowance”, issued in connection with U.S. Appl. No. 13/513,148, on Nov. 5, 2012, 25 pages.
International Searching Authority, “Written Opinion,” issued in connection with PCT Serial No. PCT/US2012/026760, mailed on Jan. 2, 2013, 3 pages.
International Searching Authority, “International Search Report,” issued in connection with PCT Serial No. PCT/US2012/026760, mailed on Jan. 2, 2013, 3 pages.
International Searching Authority, “International Preliminary Report on Patentability,” issued in connection with PCT Serial No. PCT/US2011/052623, issued Mar. 26, 2013, 5 pages.
Patent Cooperation Treaty, “International Preliminary Report on Patentability Chapter I,” issued on connection with International Patent Application No. PCT/US2011/052623, Apr. 4, 2013, 6 Pages.
Sharma, “Nielsen Gets Digital to Track Online TV Viewers,” All Things, Apr. 30, 2013, 3 pages.
Launder, “Media Journal: Nielsen to Test Online-TV Viewing Tool,” The Wall Street Journal, Apr. 30, 2013(2 pages).
Rapleaf, “Fast. Simple. Secure,” www.rapleaf.com/why-rapleaf/, retrieved on May 7, 2013, 3 pages.
Rapleaf, “Frequently Asked Questions,” www.rapleaf.com/about-us/faq/#where, retrieved on May 7, 2013, 3 pages.
Fliptop, “Get, Keep and Grow Customers with Fliptop's Customer Intelligence Application,” www.flinton.com/feature#social_matching, retrieved on May 7, 2013, 3 pages.
Rainier, “Why Businesses Should use Google Plus,” published by the Social Media Guide, on May 7, 2013, from the socialmediaguide.com/social_media/why-businesses-should-use-google-plus, 9 pages.
Fliptop, “What is Fliptop?” www.fliptop.com/about_us, retrieve on May 7, 2013, 1 page.
Rapleaf, “The Consumer Data Marketplace,” www.rapleaf.com/under-the-hood/, retrieved on May 7, 2013, 2 pages.
International Searching Authority, “International Search Report,” issued in connection with PCT Serial No. PCT/US2013/025687, on Jun. 2, 2013, 5 pages.
International Searching Authority, “Written Opinion of the International Searching Auhtority,” issued in connection with PCT Serial No. PCT/US2013/025687, on Jun. 2, 2013, 5 pages.
United States Patent and Trademark Office, “Non-Final Office Action,” issued in connection with U.S. Appl. No. 13/239,005, dated Jun. 4, 2013 28 pages.
United States Patent and Trademark Office, “Non-Final Office Action”, issued in connection with U.S. Appl. No. 13/239,005, on Jun. 4, 2013, 11 pages.
Australian Government, IP Australia, “Patent Examination Report No. 1,” issued in connection with AU Application No. 2013205736, issued on Jun. 18, 2013, 2 pages.
Japanese Patent Office, “Notice of Reasons for Rejection,” in connection with Application No. 2013-529435, on Aug. 20, 2013, 4 pages.
United States Patent and Trademark Office, “Non-Final Office Action”, issued in connection with U.S. Appl. No. 13/690,915, on Sep. 5, 2013, 13 pages.
United States Patent and Trademark Office, “Non-Final Office Action”, issued in connection with U.S. Appl. No. 13/691,175, on Sep. 9, 2013, 7 pages.
International Searching Authority, “International Preliminary Report on Patentability,” issued in connection with PCT Serial No. PCT/US2012/026760, on Sep. 24, 2013, 4 pages.
United States Patent Office, “Notice of Allowance”, issued in connection with U.S. Appl. No. 13/239,005, on Nov. 27, 2013, 11 pages.
The State Intellectual Property Office of China, “Notification to grant patent right for invention,” dated Dec. 9, 2013, in relation to appl. No. 2013-529435, 5 pages.
Japanese Patent Office, “Decision to Grant a Patent,” issued in connection with Japanese Patent Application No. 2013-529435, dated Dec. 17, 2013, 5 pages.
Australian Government, IP Australia,“Patent Examination Report No. 1,” issued in connection with AU Application No. 2017200423, issued on Jan. 19, 2018, 3 pages.
European Patent Office, “Summons to attend oral proceedings pursuant to Rule 115(1) EPC,” issued in connection with European Application No. 11827473.7, dated Feb. 13, 2018, 2 pages.
Australian Government, IP Australia,“Notice of Acceptance,” issued in connection with AU Application No. 2017200423, issued on Mar. 22, 2018, 3 pages.
The State Intellectual Property Office of People's Republic of China, “First Notification of Office Action,” mailed in connection with Chinese patetn appl. No. 20160244330.4, Mar. 29, 2018, 10 pages.
European Patent Office, “Extended European Search Report,” issued in connection with European patent appl. No. 19163127.4, on May 2, 2018, 11 pages.
Japanese Patent Office, “Notice of Allowance,” issued in connection with Japanese Patent Application No. 2017-148071, dated Jun. 28, 2018, 3 pages.
Japanese Patent Office, “Decision to Grant a Patent,” issued in connection with Japanese Patent Application No. 2017-148071, dated Jul. 3, 2018, 5 pages. [ English Translation Included ].
Australian Government, IP Australia,“Notice of Grant for Patent,” issued in connection with AU Application No. 2017200423, issued on Jul. 19, 2018, 1 page.
Canadian Intellectual Property Office, “Notice of Allowance”, issued in connection with Canadian Patent Application No. 2,810,541, on Aug. 29, 2018, 1 page.
United States Patent and Trademark Office, “Final Office Action”, issued in connection with U.S. Appl. No. 14/981,448, on Sep. 11, 2018, 4 pages.
European Patent Office, “Decision to Refuse a European Patent Application,” issued in connection with European patent appl. No. 11827473.7, on Oct. 18, 2018, 74 pages.
The State Intellectual Property Office of People's Republic of China, “Notice to Grant,” issued In connection with China Patent Application No. 201610244330.4, dated Nov. 5, 2018, 3 Pages.
United States Patent and Trademark Office, “Notice of Allowance”, issued in connection with U.S. Appl. No. 14/981,448, on Dec. 10, 2018, 5 pages.
European Patent Office, “Extended European Search Report”, issued in connection with European Patent Application No. 19 163 127.4, dated May 2, 2019, 10 Pages.
Australian Government, IP Australia,“Patent Examination Report No. 1,” issued in connection with AU Application No. 2018204318, issued on May 2, 2019, 3 pages.
Japanese Patent Office, “Decision to Grant a Patent,” issued in connection with Japanese Patent Application No. 2018-145196, dated Jun. 25, 2019, 5 pages. [ English Translation Included ].
European Patent Office, “Communication pursuant to Article 94(3) EPC”, issued in connection with European Patent Application No. 19 163 127.4, dated Jul. 3, 2019, 1 Page.
Canadian Intellectual Property Office, “Office Action”, issued in connection with Canadian Patent Application No. 3,027,898, dated Nov. 13, 2019, 3 pages.
United States Patent and Trademark Office, “Non-Final Office Action”, issued in connection with U.S. Appl. No. 16/374,533, filed Dec. 30, 2019, 6 pages.
United States Patent and Trademark Office, “Final Office Action”, issued in connection with U.S. Appl. No. 16/374,533, filed Apr. 9, 2020, 5 pages.
Australian Government, IP Australia,“Notice of Acceptance,” issued in connection with AU Application No. 2018204318, issued on Apr. 28, 2020, 3 pages.
United States Patent and Trademark Office, “Notice of Allowance”, issued in connection with U.S. Appl. No. 16/374,533, on Jul. 29, 2020, 7 pages.
Australian Government, IP Australia,“Notice of Grant for Patent,” issued in connection with AU Application No. 2018204318, issued on Aug. 20, 2020, 1 page.
Japanese Patent Office, “Decision to Grant a Patent,” issued in connection with Japanese Patent Application No. 2019-133874, dated Sep. 15, 2020, 5 pages. [ English Translation Included ].
United States Patent and Trademark Office, “Notice of Allowance”, issued in connection with U.S. Appl. No. 16/374,533, filed Nov. 25, 2020, 7 pages.
Canadian Intellectual Property Office, “Office Action”, issued in connection with Canadian Patent Application No. 3,027,898, dated Dec. 2, 2020, 3 pages.
European Patent Office, “Communication pursuant to Article 94(3) EPC”, issued in connection with European Patent Application No. 19 163 127.4, dated Feb. 17, 2021, 10 Pages.
United States Patent and Trademark Office, “Notice of Allowance”, issued in connection with U.S. Appl. No. 16/374,533, filed Mar. 23, 2021, 5 pages.
Japanese Patent Office, “Notice of Reasons for Refusal ,” issued in connection with Japanese Patent Application No. 2020-174014, dated Aug. 24, 2021, 5 pages. [ English Translation Included ].
Canadian Intellectual Property Office, “Office Action”, issued in connection with Canadian Patent Application No. 3,027,898, dated Sep. 20, 2021, 4 page.
Australian Government, IP Australia,“Patent Examination Report No. 1,” issued in connection with AU Application No. 2020213400, issued on Oct. 18, 2021, 2 pages.
Doyle,M., Using Javascript's Location Object to Work with URLs, [retrieved from the internet on Dec. 2, 2021], <URL: https://www.elated.com/using-javascripts-location-object-to-work-with-urls>published on Jul. 28, 2008.
Australian Government, IP Australia,“Patent Examination Report No. 2,” issued in connection with AU Application No. 2020213400, issued on Dec. 7, 2021, 5 pages.
Japanese Patent Office, “Written Opinion ,” issued in connection with Japanese Patent Application No. 2020-174014, dated Feb. 17, 2022, 4 pages. [ English Translation Included ].
European Patent Office, “Summons to oral proceedings pursuant to Rule 115(1) EPC,” issued in connection with European Application No. 11827473.7, dated Mar. 2, 2022, 3 pages.
Japanese Patent Office, “Notice of Allowance”, dated Apr. 4, 2022, in connection with Japanese Patent Application No. 2020-174014 (3 pages). Machine generated English translation provided.
Japanese Patent Office, “Decision to Grant a Patent,” issued in connection with Japanese Patent Application No. 2020-174014, dated Apr. 5, 2022, 5 pages. [ English Translation Included ].
European Patent Office, “Communication of the Board of Appeal pursuant to Article 15(1),” issued in connection with European Patent Application No. 11827473.7, dated May 19, 2022, 20 pages.
Canadian Intellectual Property Office, “Commissioner's Notice—Application Found Allowable”, issued in connection with Canadian Patent Application No. 3,027,898, dated Jul. 19, 2022, 1 page.
United States Patent and Trademark Office, “Notice of Allowance” issued in U.S. Appl. No. 17/378,529 on Sep. 23, 2022 (8 pages).
United States Patent and Trademark Office, “Corrected Notice of Allowability”, issued in connection with U.S. Appl. No. 17/378,529, on Oct. 5, 2022, 2 pages.
Australian Government, IP Australia,“Notice of Acceptance,” issued in connection with AU Application No. 2020213400, issued on Oct. 6, 2022, 3 pages.
European Patent Office, “Summons to attend oral proceedings pursuant to Rule 115(1) EPC”, issued in connection with European Patent Application No. 19 163 127.4, dated Oct. 19, 2022, 13 Pages.
Wikipedia, “Same-origin policy,” Aug. 28, 2010, [https://en.wikipedia.org/w/index.php?title=Same-origin_policy&oldid=381559205] retrieved on Nov. 3, 2022, 3 pages.
United States Patent and Trademark Office, “Corrected Notice of Allowability”, issued in connection with U.S. Appl. No. 17/378,529, on Nov. 30, 2022, 2 pages.
Australian Government, IP Australia,“Notice of Grant,” issued in connection with AU Application No. 2020213400, issued on Feb. 2, 2023, 1 page.
European Patent Office, “Communication pursuant to Article 94(3) EPC”, issued in connection with European Patent Application No. 19 163 127.4, dated Mar. 2, 2023, 12 Pages.
European Patent Office, “Intention to Grant,” Issued in connection with European Application No. 11827473.7, dated May 12, 2023, 9 pages.
United States Patent and Trademark Office, “Final Office Action,” issued in connection with U.S. Appl. No. 13/690,915, dated Dec. 20, 2013, 6 pages.
United States Patent and Trademark Office, “Non-Final Office Action,” issued in connection with U.S. Appl. No. 13/756,493, on Jan. 17, 2014, 7 pages.
United States Patent and Trademark Office, “Notice of Allowance,” issued in connection with U.S. Appl. No. 13/691,175, on Jan. 27, 2014, 5 pages.
Australian Government, IP Australia, “Examination Report,” issued in connection with Australian Patent Application No. 2012231667, dated Mar. 18, 2014, 2 pages.
United States Patent and Trademark Office, “Notice of Allowance,” issued in connection with U.S. Appl. No. 13/690,915, dated Apr. 9, 2014, 5 pages.
Japanese Patent Office, “Notice of Reasons for Refusal,” issued in connection with Japanese Patent Application No. 2014-005867, dated Apr. 15, 2014 , 9 pages. [ English Translation Included ].
Australian Government, IP Australia,“Patent Examination Report No. 1,” issued in connection with AU Application No. 2011305429, issued on Apr. 17, 2014, 4 pages.
United States Patent and Trademark Office, “Non-Final Office Action”, issued in connection with U.S. Appl. No. 13/396,071, on May 9, 2014, 14 pages.
United States Patent and Trademark Office, “Notice of Allowance”, issued in connection with U.S. Appl. No. 13/691,175, on May 9, 2014, 5 pages.
United States Patent and Trademark Office, “Notice of Allowance”, issued in connection with U.S. Appl. No. 13/756,493, on May 20, 2014, 11 pages.
Australian Government, IP Australia,“Notice of Acceptance,” issued in connection with AU Application No. 2013205736, issued on Jun. 18, 2014, 2 pages.
United States Patent and Trademark Office, “Notice of Allowance”, issued in connection with U.S. Appl. No. 13/690,915, on Jun. 24, 2014, 6 pages.
United States Patent and Trademark Office, “Supplemental Notice of Allowability”, issued in connection with U.S. Appl. No. 13/690,915, on Jul. 8, 2014, 3 pages.
Japanese Patent Office, “Written Opinion ,” issued in connection with Japanese Patent Application No. 2014-005867, dated Jul. 14, 2014, 8 pages. [ English Translation Included ].
United States Patent and Trademark Office, “Notice of Allowability,” issued in connection with U.S. Appl. No. 13/691,175, filed Aug. 12, 2014, 3 pages.
Japanese Patent Office, “Decision of Refusal,” issued in connection with Japanese Patent Application No. 2014-005867, dated Aug. 26, 2014 , 7 pages. [ English Translation Included ].
Australian Government, Ip Australia,“Notice of Grant,” issued in connection with AU Application No. 2013205736, issued on Oct. 16, 2014, 1 page.
United States Patent and Trademark Office, “Corrected Notice of Allowability”, issued in connection with U.S. Appl. No. 13/690,915, on Nov. 6, 2014, 2 pages.
The State Intellectual Property Office of People's Republic of China, “First Office Action,” issued In connection with China Patent Application No. 201180045957.2, dated Nov. 15, 2014, 17 Pages.
Australian Government, IP Australia,“Patent Examination Report No. 1,” issued in connection with AU Application No. 2013203898, issued on Nov. 27, 2014, 4 pages.
United States Patent and Trademark Office, “Notice of Allowance,” issued in connection with U.S. Appl. No. 13/690,915, dated Dec. 24, 2014, 2 pages.
United States Patent and Trademark Office, “Non-Final Office Action”, issued in connection with U.S. Appl. No. 14/500,297, on Jan. 5, 2015, 6 pages.
Canadian Intellectual Property Office, “Examiner Report”, issued in connection with Canadian Patent Application No. 2,810,541, on Jan. 20, 2015 , 3 pages.
Japanese Patent Office, “Notice of Reasons for Refusal,” issued in connection with Japanese Patent Application No. 2014-005867, dated Feb. 17, 2015 , 5 pages. [ English Translation Included ].
Japanese Patent Office, “Written Opinion,” issued in connection with Japanese Patent Application No. 2014-005867, dated May 15, 2015 , 2 pages. [ English Translation Included ].
United States Patent and Trademark Office, “Notice of Allowance”, issued in connection with U.S. Appl. No. 14/500,297, on May 21, 2015, 5 pages.
United States Patent and Trademark Office, “Notice of Allowance”, issued in connection with U.S. Appl. No. 13/690,915, on Jun. 5, 2015, 6 pages.
Japanese Patent Office, “Decision to Grant a Patent,” issued in connection with Japanese Patent Application No. 2014-005867, dated Jun. 9, 2015, 5 pages. [ English Translation Included ].
Australian Government, IP Australia,“Notice of Acceptance,” issued in connection with AU Application No. 2013203898, issued on Jun. 17, 2015, 2 pages.
Australian Government, IP Australia,“Notice of Acceptance,” issued in connection with AU Application No. 2011305429, issued on Jul. 15, 2015, 2 pages.
The State Intellectual Property Office of People's Republic of China, “Second Office Action,” Issued in connection with China Patent Application No. 201180045957.2, dated Jul. 29, 2015, 3 Pages.
Australian Government, IP Australia,“Notice of Grant,” issued in connection with AU Application No. 2013203898, issued on Oct. 15, 2015, 1 page.
Australian Government, IP Australia,“Notice of Grant,” issued in connection with AU Application No. 2011305429, issued on Nov. 12, 2015, 1 page.
Canadian Patent Office, “Examiner's Report,” issued in connection with Canadian Patent Application No. 2,810,541, mailed on Nov. 17, 2015, (3 pages).
Canadian Intellectual Property Office, “Office Action”, issued in connection with Canadian Patent Application No. 2,810,541, on Nov. 17, 2015 , 3 pages.
Japanese Patent Office, “Notice of Reasons for Refusal,” issued in connection with Japanese Patent Application No. 2014-262891, dated Jan. 12, 2016, 6 pages. [ English Translation Included ].
The State Intellectual Property Office of People's Republic of China, “Notice to Grant,” issued In connection with China Patent Application No. 201180045957.2, dated Feb. 5, 2016, 3 Pages.
European Patent Office, “Extended European Search Report,” issued in connection with European Patent Application No. 11827473.7, dated Apr. 12, 2016, 9 pages.
United States Patent and Trademark Office, “Notice of Allowance,” issued in connection with U.S. Appl. No. 13/690,915, dated Apr. 14, 2016, 3 pages.
Japanese Patent Office, “Written Opinion,” issued in connection with Japanese Patent Application No. 2014-262891, dated Jul. 12, 2016, 6 pages. [ English Translation Included ].
Australian Government, IP Australia,“Patent Examination Report No. 1,” issued in connection with AU Application No. 2015234350, issued on Aug. 24, 2016, 2 pages.
Australian Government, IP Australia,“Notice of Acceptance,” issued in connection with AU Application No. 2015234350, issued on Oct. 24, 2016, 2 pages.
Canadian Intellectual Property Office, “Office Action”, issued in connection with Canadian Patent Application No. 2,810,541, on Nov. 22, 2016 , 4 pages.
Japanese Patent Office, “Notice of Reasons for Refusal,” issued in connection with Japanese Patent Application No. 2014-262891, dated Dec. 20, 2016, 8 pages. [ English Translation Included ].
Australian Government, IP Australia,“Notice of Grant for Patent,” issued in connection with AU Application No. 2015234350, issued on Feb. 16, 2017, 1 page.
Japanese Patent Office, “Written Opinion,” issued in connection with Japanese Patent Application No. 2014-262891, dated May 18, 2017, 8 pages. [ English Translation Included ].
European Patent Office, “Communication pursuant to Article 94(3) EPC,” issued in connection with European Application No. 11827473.7, dated Jun. 20, 2017, 2 pages.
Japanese Patent Office, “Notice of Allowance,” issued in connection with Appl. No. 2014-262891, on Jun. 26, 2017, 3 pages.
Japanese Patent Office, “Decision to Grant a Patent,” issued in connection with Japanese Patent Application No. 2014-262891, dated Jul. 4, 2017, 5 pages. [ English Translation Included ].
Canadian Intellectual Property Office, “Office Action”, issued in connection with Canadian Patent Application No. 2,810,541, on Oct. 17, 2017 , 3 pages.
Apple Inc. HTTP Live Streaming Overview, Apr. 1, 2011, 36 pages.
Apple Inc. Timed Metadata for HTTP Live Streaming, Apr. 28, 2011, 12 pages.
Buyya, et al., Cloudbus Toolkit for Market-Oriented Cloud Computing, published by CloudCom 2009, LNCS 5931, Springer-Verlag, Berlin, Germany, © 2009,p. 24-44, 21 pages.
Dhillon, et al., Leveraging Consumer Sensing Devices for Telehealth, published in CHINZ '12, Dunedin, New Zealand, on Jul. 2-3, 2012, p. 29-35, 7 pages.
E sources of information Marketing current of the Internet age The 6th time, I.M.press vol. 119 and JP, Mar. 25, 2006, 34-67 pages.
European Patent Office, Extended European Search Report, in connection with European Patent Application No. 22212841.5, issued on Jan. 30, 2023, 10 pages.
European Patent Office, Extended European Search Report, issued in connection with European Patent Application No. 14851645.3, on Mar. 31, 2017, 11 pages.
European Patent Office, Extended European Search Report, issued in connection with European Patent Application No. 22155005.6 on Jul. 6, 2022, 8 pages.
Evensen, et al., AdScorer: An Event-Based System for Near Real-Time Impact Analysis of Television Advertisements, published by DEBS '12, Berlin, Germany, on Jul. 16-20, 2012, 22 pages.
Garfinkel Simpson, Spa Ford A gene, Ando Susumu, The volume Miyoko Endo, Web security, and for privacy & commerce (above) users, Web security, privacy & commerce The 2nd edition The first edition, JP, O'Reilly Japan, Dec. 24, 2002, p. 244-249.
Hiroki Okazaki, “How to understand the effects of customer attraction to a website, and the method of measuring the affects,” Web Strategy, Japan, MdN Corporation, Sep. 11, 2006, vol. 2, 10 pages.
“ID3”, published on Wikipedia, on Apr. 16, 2015, from en.wikipedia.org/wiki/ID3, 15 pages.
Infernational Searching Authority, International Search Report & Written Opinion, issued in International Patent Application No. PCT/US2014/034389, on Sep. 5, 2014, 13 pages.
International Searching Authority, International Search Report and Written Opinion, issued in connection with International Application No. PCT/US2014/059809, on Jan. 13, 2015, 10 pages.
Liu et al., “Socialize Spontaneously with Mobile Applications”, published in INFOCOM 2012, Orlando, FL, on Mar. 25-30, 2012 p. 1942-1950, 9 pages.
Nilsson, “ID3 tag version 2.3.0”, published on Feb. 3, 1999, from http://www.id3.org/id3v2.3.0.txt, 28 pages.
Pantos, et al., HTTP Live Streaming: draft-pantos-http-live-streaming-07, published by Apple Inc., on Sep. 30, 2011, 33 pages.
Software development kit, published on Wikipedia, on Apr. 16, 2015, from en.wikipedia.orgiwiki/Software development_kit, 2 pages.
United States Patent and Trademark Office, Non-Final Office Action, issued in connection with U.S. Appl. No. 15/299,884, dated Jul. 16, 2018, 5 pages.
United States Patent and Trademark Office, Non-Final Office Action, issued in connection with U.S. Appl. No. 16/436,476, dated Oct. 4, 2019, 7 pages.
United States Patent Office, Non-Final Office Action, issued in connection with U.S. Appl. No. 13/963,737, on May 17, 2016, 15 pages.
Video: timed text tracks, published by Windows Internet Explorer, Microsoft, 2012, from http://msdn.microsoft.com/en-us/library/ie/hh673566(v=vs.85).aspx, 6 pages.
Vsvaidya, Cookie Synching, Admonsters, Apr. 20, 2010, [retrieved from <https://www.admonsters.com/cookie-synching/> on Jun. 29, 2023], 11 pages.
Whiting, et al., Creating an I Phone Application for Collecting Continuous ABC Data, published by Journal of Applied Behavior Analysis, vol. 45, No. 3, on Fall 2012, 14 pages.
Winkelman, Timed Text Tracks and TV Services, published by CableLabs, on Aug. 15, 2011, 5 pages.
With an access number, it is from a number and the nature customer gathering technique to evaluation of effectiveness. The wisdom of site customer gathering, ** , Web Strategy vol. 2, Sep. 5, 2006, 10 pages.
Related Publications (1)
Number Date Country
20230196414 A1 Jun 2023 US
Provisional Applications (2)
Number Date Country
61386543 Sep 2010 US
61385553 Sep 2010 US
Continuations (5)
Number Date Country
Parent 17378529 Jul 2021 US
Child 18168327 US
Parent 16374533 Apr 2019 US
Child 17378529 US
Parent 14981448 Dec 2015 US
Child 16374533 US
Parent 13690915 Nov 2012 US
Child 14981448 US
Parent 13513148 US
Child 13690915 US