Determining a size and demographics of an audience of a media presentation helps media providers and distributors schedule programming and determine a price for advertising presented during the programming. In addition, accurate estimates of audience demographics enable advertisers to target advertisements to certain types and sizes of audiences. To collect these demographics, an audience measurement entity enlists a group of media consumers (often called panelists) to cooperate in an audience measurement study (often called a panel) for a predefined length of time. In some examples, the audience measurement entity obtains (e.g., directly, or indirectly from a media service provider) return path data from media presentation devices (e.g., set-top boxes) that identifies tuning data from the media presentation device. In such examples, because the return path data may not be associated with a known panelist, the audience measurement entity models and/or assigns viewers to represent the return path data. Additionally, the media consumption habits and demographic data associated with the enlisted media consumers are collected and used to statistically determine the size and demographics of the entire audience of the media presentation. In some examples, this collected data (e.g., data collected via measurement devices) may be supplemented with survey information, for example, recorded manually by the presentation audience members.
The figures are not to scale. Instead, the thickness of the layers or regions may be enlarged in the drawings. In general, the same reference numbers will be used throughout the drawing(s) and accompanying written description to refer to the same or like parts.
Descriptors “first,” “second,” “third,” etc. are used herein when identifying multiple elements or components which may be referred to separately. Unless otherwise specified or understood based on their context of use, such descriptors are not intended to impute any meaning of priority, physical order or arrangement in a list, or ordering in time but are merely used as labels for referring to multiple elements or components separately for ease of understanding the disclosed examples. In some examples, the descriptor “first” may be used to refer to an element in the detailed description, while the same element may be referred to in a claim with a different descriptor such as “second” or “third.” In such instances, it should be understood that such descriptors are used merely for ease of referencing multiple elements or components.
Audience measurement entities seek to understand the composition and size of audiences of media, such as television programming. Such information allows audience measurement entity researchers to, for example, report advertising delivery and/or targeting statistics to advertisers that target their media (e.g., advertisements) to particular audiences. Additionally, such information helps to establish advertising prices commensurate with audience exposure and demographic makeup (referred to herein collectively as “audience configuration”). One way to gather media presentation information is to gather the media presentation information from media output devices (e.g., gathering television presentation data from a set-top box (STB) connected to a television). As used herein, media presentation includes media output by a media device regardless of whether or not an audience member is present (e.g., media output by a media output device at which no audience is present, media exposure to an audience member(s), etc.).
A media presentation device (e.g., STB) provided by a service provider (e.g., a cable television service provider, a satellite television service provider, an over the top service provider, a music service provider, a movie service provider, a streaming media provider, etc.) or purchased by a consumer may contain processing capabilities to monitor, store, and transmit tuning data (e.g., which television channels are tuned by the media presentation device at a particular time) back to the service provider, which can then aggregate and provide such return path data to an audience measurement entity (e.g., The Nielsen Company (US), LLC.) to analyze media presentation activity. Data transmitted from a media presentation device back to the service provider is referred to herein as return path data. Return path data includes tuning data. Tuning data is based on data received from the media presentation device while the media presentation device is on (e.g., powered on, switched on, and/or tuned to a media channel, streaming, etc.). Although return path data includes tuning data, return path data may not include data related to the user viewing the media corresponding to the media presentation device. Accordingly, return path data may not be able to be associated with specific viewers, demographics, locations, etc.
To determine aspects of media presentation data (e.g., which household member is currently consuming a particular media and the demographics of that household member), market researchers may perform audience measurement by enlisting a subset of the media consumers as panelists. Panelists or monitored panelists are audience members (e.g., household members, users, panelists, etc.) enlisted to be monitored, who divulge and/or otherwise share their media activity and/or demographic data to facilitate a market research study. An audience measurement entity typically monitors media presentation activity (e.g., viewing, listening, etc.) of the monitored panelists via audience measurement system(s), which may include one or more metering devices, local people meters (LPMs), etc. Audience measurement typically includes determining the identity of the media being presented on a media output device (e.g., a television, a radio, a computer, etc.), determining data related to the media (e.g., presentation duration data, timestamps, channel data, etc.), determining demographic information of an audience, and/or determining which members of a household are associated with (e.g., have been exposed to) a media presentation. For example, an LPM in communication with an audience measurement entity communicates audience measurement (e.g., metering) data to the audience measurement entity. As used herein, the phrase “in communication,” including variances thereof, encompasses direct communication and/or indirect communication through one or more intermediary components and does not require direct physical (e.g., wired) communication and/or constant communication, but rather additionally includes selective communication at periodic or aperiodic intervals, as well as one-time events.
In some examples, metering data (e.g., including media presentation data) collected by an LPM or other meter is stored in a memory and transmitted via a network, such as the Internet, to a datastore managed by the audience measurement entity. Typically, such metering data is combined with additional metering data collected from a group of LPMs monitoring a group of panelist households. The metering data may include, but are not limited to, a number of minutes a household media presentation device was tuned to a particular channel, a number of minutes a household media presentation device was used (e.g., consumed) by a household panelist member and/or a visitor (e.g., a presentation session), demographics of the audience (which may be statistically projected based on the panelist data), information indicative of when the media presentation device is on or off, and/or information indicative of interactions with the media presentation device (e.g., channel changes, station changes, volume changes, etc.), etc. As used herein, a channel may be a tuned frequency, selected stream, an address for media (e.g., a network address), and/or any other identifier for a source and/or carrier of media.
In some examples, the audience measurement entity processes the collected and/or aggregated metering data from panelist to represent a total audience and obtains (e.g., from one or more service provider) return path data corresponding to a total audience. These monitored panelists may be selected from a panel (e.g., a national panel of metered users) based on a regional proximity to a designated market area, a similarity between demographics of the monitored panelists and demographics of the return path data audience location, household media characteristics (e.g., how the households receive television signals (cable, satellite, over-the-air radio, etc.)), a similarity between media consumption of the monitored panelists and the return path data audience, etc. As used herein, a return path data audience is represented by audience (e.g., viewer or listener) assigned return path data associated with a population (e.g., a universe of users) and/or location. As used herein, respondent level data is processed viewing data at the level of individual respondents and synthetic respondent level data is estimated/virtual viewing data at the level of virtual individual respondents used to collectively represent the known, aggregate characteristics of an audience. Synthetic respondent level data may include complete synthesized time records (e.g., at the quarter hour level, hour level, etc.) across each broadcasting day of all viewing sessions by individual family member(s) and guest(s) on individual metered media output devices in a home, and include the demographic data. As used herein, designated market area is a geographical area that defines a media market where synthetic respondent level data is produced.
In some examples, media exposure data can be determined for a union of margins and/or events. A margin and/or event may be a sub increment of time (e.g., 15 minute increments of an hour program), a visit to a website from a group of websites, a visit to a store of a chain of stores, an exposure to a television show, radio show, podcast, etc. across different days of a week., an exposure to a television show in a series of shows or in a group of programs for a channel or group of channels, etc. As used herein, a rating is an average percentage of a population exposed to media across a specified time interval (e.g., a margin or event). As used herein, reach is a cumulative percentage or total of a population that has been counted as a viewer of the media at least once during a specified time interval (e.g., hourly, daily, weekly, monthly, etc.). Media exposure data may include a total number of people exposed to the media at the different margins, a total population of audience members exposed to the media at the different margins, a total number of deduplicated people exposed to the media (e.g., an audience reach) from all of the different marginal ratings (e.g., probabilities), and a total population size (e.g., universe estimate) of users that potentially could be exposed to the media. As used herein, a marginal rating corresponds to a probability that a person in the universe of people was exposed to media for a particular duration of time. As used herein, a recorded audience refers to monitored panelists exposed to media and a population audience represents the total population of people (e.g., monitored panelists and other unmonitored media consumers associated with return path data) exposed to the media.
Examples disclosed herein receive marginal media exposure data for different instances of media exposures (e.g., a margin of unions such as people visiting multiple websites, attending different sporting events, watching different episodes of a television series, being exposed to a television show, radio show, podcast, etc. across different days of a week, different weeks of a month, different quarter hour time slots of a television program, etc.) and estimates a population reach across all of the different instances of media exposure based on the marginal media exposure data. Traditional techniques of determining the total population based on marginal media ratings include numerical calculations that enumerate the marginal rating data for all combinations in which someone can watch a program. The number of probabilities to be solved by such traditional techniques is 2n number of probabilities, where n is the number of marginal probabilities provided in the marginal ratings data (e.g., the ratings for the different possible instances of media exposure). For example, if reach is to be calculated across 4 quarter hours (e.g., for an hour-long media exposure), which corresponds to four possible marginal ratings of a one-hour set or union, the total number of probabilities to be solved using such a traditional technique is 16 (e.g., 24). If the reach is to be calculated across 96 quarter hours (e.g., a day-long media exposure), the total number of probabilities to be solved using such a traditional technique is 8* 1028 (e.g., 296) thereby exceeding the memory limit and/or processing power of any existing computer. Examples disclosed herein alleviate such memory/processing resource problems associated with such a traditional technique by calculating the solution using a disclosed analytical process.
To estimate the total population reach for a target audience (e.g., an audience with at least some unknown marginal data) across a number of margins (e.g., also referred to as events) making up a set or union (e.g., 15 minute segments of an hour program, websites in a group of websites, days across a week, weeks across a month, etc.), examples disclosed herein assume that the total joint distribution of the margins sums to 100%, the target audience for each of the n events/margins are known as Xi, for i={1, 2, . . . n}, and the total deduplicated audience across all n events (e.g., the reach) is known as Xd. Examples disclosed herein force a unique solution for the n+2 constraints across the 2n possibilities by solving for a set that has the maximum entropy. The unique solution is shown below in Equations 1-3 in terms of the n+2 variables, one for each constraint.
In the preceding equations, Q is a pseudo universe estimate. A pseudo universe estimate corresponds to what the size of the universe of individuals capable of being in a given audience would need to be to achieve the ratings and reach values for that audience if the different marginal ratings are assumed to be independent, regardless of how much dependence actually exists. For example, when the universe of a recorded audience is equal to the pseudo universe value, then the total reach of the recorded audience can be calculated from the audience marginal ratings assuming they are independent. However, if there is a difference between the pseudo universe of the recorded (also referred to as monitored) audience and the actual universe of the recorded audience, the audience marginal ratings are dependent. The pseudo universe estimate is defined as a solution to the below Equation 4.
The n+2 variables z0, zi, zd shown in above Equations 1-3 are the minimum sufficient set to fully specify the joint distribution consistent with all the constraints. A member of the joint distribution of Boolean membership of yes/no per event represented as either ei=1 or ei=0 can be computed using the below Equation 5, which represents the percentage of audience members exposed to media during a first one or more of the events/margins but not during remaining event/margins (e.g., a percentage of audience members exposed to a show during the first and second 15 minute segment but not during the third and fourth 15 minute segment).
Additionally, the de-duplicated union estimate (e.g., reach estimate) across any set of days, Ω, can be estimated using the below Equation 6.
A joint distribution for a combination can be estimated using the above Equations 5 and 6 if the values of Q, Xd, and Xi are known. Examples disclosed herein determine/estimate audience margin/event totals, audience reach, and/or pseudo universe estimates to be able to estimate joint distribution-based audience metrics and/or reach metrics relating media exposure events/margins across any union.
Examples disclosed herein utilize prior known information of a similar set to predict missing audience event information. The known prior information may be previous equivalent time interface temporal data, panel data for spatial data, etc. Using the prior information, an entire joint distribution across all missing values can be determined, thereby leading to more consistent audience measurement data. For example, daily audiences for a particular show that airs daily may be known for all the days up to the present day, but not known for the rest of the week (e.g., on Wednesday, the daily audience for a daily show is known for Monday, Tuesday, and Wednesday, and unknown for Thursday and Friday). In such an example, the known audience from this week and the known audiences from the previous week can be utilized to estimate the audiences for the upcoming days (e.g., Thursday and Friday), which in turn can be used to calculate a total deduplicated audience total (e.g., a reach total).
If |Z| represents the size of a set/union Z, and Z includes two margins/events (e.g., Z={a, b}, where a and b are events), then |Z|=2. Because the set (Ω0) and the reach across all events (Xd) are unknown, the below Equations 7-8 represent the system of |Ω0|+1 equations to be satisfied.
In Equations 7-8, Ai is a known total audience percentage for an event i from a known previous set (e.g., a prior week) and Ad is the known reach (e.g., deduplicated audience total) percentage from the known previous set and/or based on known panel data. After the pseudo universe estimate for the known prior/panel audience (QA) is solved for, the above system of equations corresponding to Equations 7-8 reduces down to a single unknown pseudo universe estimate for the target audience (QX), independent of the number of missing events, which corresponds to the size of set Ω0. Because the audience totals for the margins in the prior/panel union (Ai) are known for all i={1, 2, . . . n}, and also the total deduplicated audience across the margins in the prior union (Ad) is known, the pseudo universe estimate for the known prior audience (QA) can be determined directly using the below Equation 9, which corresponds to the above Equation 4 with respect to the known audience for the prior/known/panel union (A).
After the pseudo universe estimate for the known prior audience (QA) is determined, Xi becomes the only unknown variable in Equations 7 and 8, which is simplified in the below Equations 10 and 11.
The above Equations 10 and 11 illustrate that the unknown audiences are proportional to the prior audiences, with the same constant of proportionality throughout. Thus examples disclosed herein define
so that when the pseudo universe estimate for the target audience (QX) is determined, the ratio of the pseudo universe estimate for the target audience (QX) to the pseudo universe estimate for the known prior audience (QA) (e.g., r) is known and the unknown total margin audience for the margins of the target union (Xi) for i∈Ω0 can be determined.
As shown below, Equation 12 corresponds to the above Equation 10 after dividing both sides by QX and subtracting both sides by 1, so that the equations is an expression of unknowns in terms of knowns to connect previous information to help infer the unknown information.
The above Equation 12 can be utilized in conjunction with the above Equation 4, corresponding to the below Equations 13-15.
In Equation 15, the variables in the first product are all known and the first product is equal to some scalar value. In the second product, only the pseudo universe estimate for the target audience (QX) is unknown as the unknown total margin audience for the margins of the target union (Xi) for i∈Ω1 are all known. Examples disclosed herein can use Equation 8 to solve for the deduplicated audience (e.g., reach) for the target union (Xd), as shown below in Equation 16.
Equation 16 can be substituted into Equations 13-15 and simplified into one equation with one unknown, which can be used to for the pseudo universe estimate for the target audience QX, represented below in Equations 17.
In Equation 17, co and ci are audience constants, which are known when the pseudo universe estimate for the known prior audience (QA) is determined, as shown below in Equations 18 and 19.
After the pseudo universe estimate for the target audience (QX) is solved, examples disclose herein use Equation 16 to determine the deduplicated audience (e.g., reach) for the target union (Xd) and use Equation 10 to determine the unknown total margin audience for the margins of the target union (Xi). From there, examples disclosed herein can determine the entire joint distribution across any event(s) within a set. For example, if the total measured audience of a daily show for a target week is known for the first 3 days and unknown for the last two days, and the audience totals for last week audience for the same show is known. Examples disclosed herein can determine the pseudo universe estimate for the known prior audience (QA) based on Equation 9, the audience constants (c0, c1) using Equations 18 and 19, the pseudo universe estimate for the target audience (QX) using Equation 17, the unknown total margin audience for the margins of the target union (Xi) using Equation 10, and the deduplicated audience (e.g., reach) for the target union (Xd) using Equation 16. After the set of missing Xi (e.g., the audience for the last two days of the show), the deduplicated audience (e.g., reach) for the target union (Xd), and pseudo universe estimate for the target audience (QX) are determined (e.g., estimated), examples disclosed herein can determine various information regarding the joint distribution using Equations 5 and 6. For example, examples disclosed herein can determine the total deduplicated audience (reach) for the any group of days within the week, predictions of the audience for the remaining two days, predicted total deduplicated audience for the entire week, a predicted total deduplicated audience who was exposed on the first day and not on the remaining days, etc. Although the above Equations are based on percentage of audience with respect to a universe estimate, the above Equations may be formulated with respect to the total audience numbers (e.g., where ‘1’ is replaced with the universe audience estimate).
The example media provider 104 of
When the example media presentation device 106 of
By way of example, the example media presentation device 106 may be tuned to channel 5. In such an example, the media presentation device 106 outputs media (from the example media provider 104) corresponding to the tuned channel 5. The media presentation device 106 may gather tuning data corresponding to which channels, stations, websites, etc., that the example media presentation device 106 was tuned. The example media presentation device 106 generates and transmits the example return path data 100 to the example media provider 104. The example return path data 100 includes the tuning data and/or data corresponding to the example media provider 104. Although the illustrated example of
The example media output device 110 of
In some examples, the example LPM 112 of
The example return path data 100 of
The example audience measurement entity 114 of
The example population reach determiner 122 of
The example interface(s) 200 of
The example pseudo universe calculator 202 of
The example audience constants calculator 204 of
The example reach calculator 206 of
The example joint distribution information calculator 208 of
While an example manner of implementing the example audience measurement entity 114 and/or the example population reach determiner 122 of
A flowchart representative of example hardware logic, machine readable instructions, hardware implemented state machines, and/or any combination thereof for implementing the example audience measurement entity 114 and/or the population reach determiner 122 of
The machine readable instructions described herein may be stored in one or more of a compressed format, an encrypted format, a fragmented format, a compiled format, an executable format, a packaged format, etc. Machine readable instructions as described herein may be stored as data (e.g., portions of instructions, code, representations of code, etc.) that may be utilized to create, manufacture, and/or produce machine executable instructions. For example, the machine readable instructions may be fragmented and stored on one or more storage devices and/or computing devices (e.g., servers). The machine readable instructions may require one or more of installation, modification, adaptation, updating, combining, supplementing, configuring, decryption, decompression, unpacking, distribution, reassignment, compilation, etc. in order to make them directly readable, interpretable, and/or executable by a computing device and/or other machine. For example, the machine readable instructions may be stored in multiple parts, which are individually compressed, encrypted, and stored on separate computing devices, wherein the parts when decrypted, decompressed, and combined form a set of executable instructions that implement a program such as that described herein.
In another example, the machine readable instructions may be stored in a state in which they may be read by a computer, but require addition of a library (e.g., a dynamic link library (DLL)), a software development kit (SDK), an application programming interface (API), etc. in order to execute the instructions on a particular computing device or other device. In another example, the machine readable instructions may need to be configured (e.g., settings stored, data input, network addresses recorded, etc.) before the machine readable instructions and/or the corresponding program(s) can be executed in whole or in part. Thus, the disclosed machine readable instructions and/or corresponding program(s) are intended to encompass such machine readable instructions and/or program(s) regardless of the particular format or state of the machine readable instructions and/or program(s) when stored or otherwise at rest or in transit.
The machine readable instructions described herein can be represented by any past, present, or future instruction language, scripting language, programming language, etc. For example, the machine readable instructions may be represented using any of the following languages: C, C++, Java, C#, Perl, Python, JavaScript, HyperText Markup Language (HTML), Structured Query Language (SQL), Swift, etc.
As mentioned above, the example process of
“Including” and “comprising” (and all forms and tenses thereof) are used herein to be open ended terms. Thus, whenever a claim employs any form of “include” or “comprise” (e.g., comprises, includes, comprising, including, having, etc.) as a preamble or within a claim recitation of any kind, it is to be understood that additional elements, terms, etc. may be present without falling outside the scope of the corresponding claim or recitation. As used herein, when the phrase “at least” is used as the transition term in, for example, a preamble of a claim, it is open-ended in the same manner as the term “comprising” and “including” are open ended. The term “and/or” when used, for example, in a form such as A, B, and/or C refers to any combination or subset of A, B, C such as (1) A alone, (2) B alone, (3) C alone, (4) A with B, (5) A with C, (6) B with C, and (7) A with B and with C. As used herein in the context of describing structures, components, items, objects and/or things, the phrase “at least one of A and B” is intended to refer to implementations including any of (1) at least one A, (2) at least one B, and (3) at least one A and at least one B. Similarly, as used herein in the context of describing structures, components, items, objects and/or things, the phrase “at least one of A or B” is intended to refer to implementations including any of (1) at least one A, (2) at least one B, and (3) at least one A and at least one B. As used herein in the context of describing the performance or execution of processes, instructions, actions, activities and/or steps, the phrase “at least one of A and B” is intended to refer to implementations including any of (1) at least one A, (2) at least one B, and (3) at least one A and at least one B. Similarly, as used herein in the context of describing the performance or execution of processes, instructions, actions, activities and/or steps, the phrase “at least one of A or B” is intended to refer to implementations including any of (1) at least one A, (2) at least one B, and (3) at least one A and at least one B.
As used herein, singular references (e.g., “a”, “an”, “first”, “second”, etc.) do not exclude a plurality. The term “a” or “an” entity, as used herein, refers to one or more of that entity. The terms “a” (or “an”), “one or more”, and “at least one” can be used interchangeably herein. Furthermore, although individually listed, a plurality of means, elements or method actions may be implemented by, e.g., a single unit or processor. Additionally, although individual features may be included in different examples or claims, these may possibly be combined, and the inclusion in different examples or claims does not imply that a combination of features is not feasible and/or advantageous.
At block 301, the example interface 200 obtains the target audience data (e.g., Xi) and the prior/panel audience data (e.g., Ai and Ad). For example, the interface 200 may obtain the target audience data of Xi={0.32, 0.35, 0.21, X4, X5} from the RPD audience storage 118 representing known audience totals for Monday (X1), Tuesday (X2), and Wednesday (X3) and unknown audience totals for Thursday (X4) and Friday (X5). Additionally, the interface 200 may obtain the prior/panel audience data of A={0.38, 0.30, 0.27, 0.40, 0.32} and the reach of the prior/panel audience data of Ad=0.45 from the RPD audience storage 188 and/or the panelist data storage 120.
At block 302, the example pseudo universe calculator 202 determines the pseudo universe estimate for the known prior/panel audience (Ai). As described above, a pseudo universe corresponds to what the size of the universe of individuals capable of being in a given audience would need to be to achieve the ratings and reach values for that audience if the different marginal ratings are assumed to be independent, regardless of how much dependence actually exists. The example pseudo universe calculator 202 determines the pseudo universe estimate for a set of data with known information (e.g., a prior union corresponding to the target union or panelist data corresponding to the target union) (QA) by solving the above Equation 9 based on the total audience for the margins (Ai) and the reach across the margins in the union (Ad). Accordingly, the example pseudo universe calculator 202 determines the pseudo universe estimate for the known prior/union panel audience (QA) to be 0.450304 by solving the equation
At block 304, the example audience constants calculator 204 determines the audience constants based on the prior/panel known audience data. For example, the audience constants calculator 204 determines the audience constants (c0, c1) by solving the above Equations 18 and 19 based on the pseudo universe estimate of for the union with the known information (QA), the reach of the audience for the union with the known information (Ad), and the individual margin totals for the union with the known information (Ai). Accordingly, the example audience constants calculator 204 determines the audience constants for the known prior/union panel audience (c0, c1) to be
At block 306, the example pseudo universe calculator 202 determines the pseudo universe estimate of the target audience based on the audience constants. The example pseudo universe calculator 202 determines the pseudo universe estimate for the target audience (e.g., a set of data with unknown information) (QX) by solving the above Equation 17. For example, the pseudo universe calculator 202 determines the pseudo universe estimate for the target audience to be QX=0.426952 by solving the equation
At block 308, the example reach calculator 206 determines the estimated population unknown marginal ratings (X4, X5) for the target audience based on the pseudo universe estimate of the target audience. The example reach calculator 206 determines the marginal population estimate for the target audience by solving the above Equation 10. For example, the reach calculator 206 determines the marginal population estimate for the target audience to be
At block 310, the example reach calculator 206 determines the total population reach estimate (e.g., the total audience) for the target audience across the margins of the union (Xd) based on the pseudo universe estimate for the pane/prior audience and the pseudo universe estimate for the target audience. The example reach calculator 206 determines the total reach (Xd) using the above Equation 16 using the estimated audience totals for the unknown margins in the union with missing information (Xi). For example, the reach calculator 206 determines the reach for the target audience across the margins to be
At block 312, the example report generator 212 generates a report based on the estimate reach for the target audience (Xd) and/or the estimated daily total(s) (X4, X5) for the target audience. At block 314, the example report generator 212 determines if the report should include joint distribution information. For example, the user interface 210 may obtain instructions and/or preferences from a user to provide various joint distribution information, including the total deduplicated audience (reach) for the any group of days within the week, predictions of the audience for the remaining two days, predicted total deduplicated audience for the entire week, a predicted total deduplicated audience who was exposed on the first day and not on the remaining days, etc. If the example report generator 212 determines that joint distribution information should not be included in the report (block 314: NO), control continues to block 320, as further described below.
If the example report generator 212 determines that joint distribution information should be included in the report (block 314: YES), the example joint distribution information calculator 208 determines the joint distribution information regarding the target audience based on the joint distribution information to be included (e.g., based on any one of Equations 5 and/or 6) (block 318). For example, if the user interface 210 receives a request to determine the deduplicated total audience across the known audience totals (e.g., Monday, Wednesday, and Friday) for the target audience, the joint distribution information calculator 208 determines the percentage of total audience with respect to the universe estimate for the first three days to be 0.417156 using Equation 5
If the user interface 210 receives a request to determine the predicted audience totals for Thursday and Friday for the target audience, the joint distribution information calculator 208 includes the determined X4 and X5 values determined at block 308. If the user interface 210 receives a request to determine the deduplicated total audience across the entire week for the target audience, the joint distribution information calculator 208 determines the percentage of total audience with respect to the universe estimate for the week to be Xd determined at block 310. If the user interface 210 receives a request to determine the audience who watched on Monday but stopped watching for the rest of the week, the joint distribution information calculator 208 determines the percentage of audience with respect to the universe estimate for Monday and not the rest of the days of the week to be 0.000947369 using Equation 6
If the user interface 210 receives a request to determine the total audience who watched on Monday or Friday, the joint distribution information calculator 208 determines the percentage of audience with respect to the universe estimate for Monday or Friday to be 0.396 using Equation 6
At block 318, the example report generator 212 includes the determined joint distribution information regarding the target audience in the report. At block 320, the example interface 200 outputs the generated report to the example actuator 126. In some examples, the example interface 200 may additionally or alternatively output the generated report to storage, the user interface 210, and/or any other device. At block 322, the example actuator 126 performs an action based on the report. For example, the actuator 126 may (a) target an advertisement for an individual and/or group of people based on the report, (b) select a commercial or advertisement for a particular region based on the
The processor platform 400 of the illustrated example includes a processor 412. The processor 412 of the illustrated example is hardware. For example, the processor 412 can be implemented by one or more integrated circuits, logic circuits, microprocessors, GPUs, DSPs, or controllers from any desired family or manufacturer. The hardware processor may be a semiconductor based (e.g., silicon based) device. In this example, the processor implements the example data organizer 124, the example actuator 126, the pseudo universe calculator 202, the audience constants calculator 204, the reach calculator 206, the joint distribution information calculator 208, the user interface 210, and the report generator 212.
The processor 412 of the illustrated example includes a local memory 413 (e.g., a cache). The processor 412 of the illustrated example is in communication with a main memory including a volatile memory 414 and a non-volatile memory 416 via a bus 418. The volatile memory 414 may be implemented by Synchronous Dynamic Random Access Memory (SDRAM), Dynamic Random Access Memory (DRAM), RAMBUS® Dynamic Random Access Memory (RDRAM®) and/or any other type of random access memory device. The non-volatile memory 416 may be implemented by flash memory and/or any other desired type of memory device. Access to the main memory 414, 416 is controlled by a memory controller.
The processor platform 400 of the illustrated example also includes an interface circuit 200. The interface circuit 200 may be implemented by any type of interface standard, such as an Ethernet interface, a universal serial bus (USB), a Bluetooth® interface, a near field communication (NFC) interface, and/or a PCI express interface.
In the illustrated example, one or more input devices 422 are connected to the interface circuit 200. The input device(s) 422 permit(s) a user to enter data and/or commands into the processor 412. The input device(s) can be implemented by, for example, an audio sensor, a microphone, a camera (still or video), a keyboard, a button, a mouse, a touchscreen, a track-pad, a trackball, isopoint and/or a voice recognition system.
One or more output devices 424 are also connected to the interface circuit 200 of the illustrated example. The output devices 424 can be implemented, for example, by display devices (e.g., a light emitting diode (LED), an organic light emitting diode (OLED), a liquid crystal display (LCD), a cathode ray tube display (CRT), an in-place switching (IPS) display, a touchscreen, etc.), a tactile output device, a printer and/or speaker. The interface circuit 200 of the illustrated example, thus, typically includes a graphics driver card, a graphics driver chip and/or a graphics driver processor.
The interface circuit 200 of the illustrated example also includes a communication device such as a transmitter, a receiver, a transceiver, a modem, a residential gateway, a wireless access point, and/or a network interface to facilitate exchange of data with external machines (e.g., computing devices of any kind) via a network 426. The communication can be via, for example, an Ethernet connection, a digital subscriber line (DSL) connection, a telephone line connection, a coaxial cable system, a satellite system, a line-of-site wireless system, a cellular telephone system, etc.
The processor platform 400 of the illustrated example also includes one or more mass storage devices 428 for storing software and/or data. Examples of such mass storage devices 428 include floppy disk drives, hard drive disks, compact disk drives, Blu-ray disk drives, redundant array of independent disks (RAID) systems, and digital versatile disk (DVD) drives.
The machine executable instructions 432 of
From the foregoing, it should be appreciated that the above disclosed methods, apparatus, and articles of manufacture estimate population reach from marginal ratings with missing information. Example disclosed herein determine the reach of a target audience analytically using the above Equations 9, 10, 16, 17, 18, and/or 19 and determine joint distribution information corresponding to the target audience using Equations 5 and/or 6. Traditional techniques for determining reach from different margins include determining the reach numerically. However, such traditional techniques are unsolvable for a large number of margins dues to memory and/or processing constraints. For example, enumerating all the results over 50 days would require 2{circumflex over ( )}50 calculations to enumerate a joint distribution for the 50 days, which is requires more storage than is available on any known computer. Examples disclosed herein alleviate the problems associated with such traditional techniques by determining the reach analytically (e.g., via solving the disclosed Equations), thereby saving computing resources and memory and providing the ability to solve systems that traditional computers could not solve. Using examples disclosed herein reach can be determined from a nearly infinite number of margins. Additionally, some traditional techniques result in solutions that are not logical (e.g., reach larger than the universe estimate) for particular examples (e.g., small number of calculations, large number of calculations, etc.). Examples disclosed herein does not result in inconsistent or illogical results for different situations, including situations that correspond to illogical results from some traditional techniques. Additionally, examples disclosed herein include an actuate to perform an action based on the determined reach data including selected a target advertisement or media based on the report. Accordingly, the disclosed methods, apparatus and articles of manufacture are accordingly directed to one or more improvement(s) in the functioning of a computer.
Although certain example methods, apparatus and articles of manufacture have been described herein, the scope of coverage of this patent is not limited thereto. On the contrary, this patent covers all methods, apparatus and articles of manufacture fairly falling within the scope of the appended claims either literally or under the doctrine of equivalents.
This patent arises from a continuation of U.S. patent application Ser. No. 17/099,510, now U.S. Pat. No. 11,553,226, filed Nov. 16, 2020, entitled “METHODS AND APPARATUS TO ESTIMATE POPULATION REACH FROM MARGINAL RATINGS WITH MISSING INFORMATION. U.S. patent application Ser. No. 17/099,510 is hereby incorporated herein by reference in its entirety. Priority to U.S. patent application Ser. No. 17/099,510 is hereby claimed.
Number | Name | Date | Kind |
---|---|---|---|
5956692 | Foley | Sep 1999 | A |
6029045 | Picco et al. | Feb 2000 | A |
6108637 | Blumenau | Aug 2000 | A |
6460025 | Fohn et al. | Oct 2002 | B1 |
6775663 | Kim | Aug 2004 | B1 |
7197472 | Conkwright et al. | Mar 2007 | B2 |
7746272 | Vollath | Jun 2010 | B2 |
7865916 | Beser et al. | Jan 2011 | B2 |
7954120 | Roberts et al. | May 2011 | B2 |
8087041 | Fu et al. | Dec 2011 | B2 |
8112301 | Harvey et al. | Feb 2012 | B2 |
8149162 | Pauls | Apr 2012 | B1 |
8171032 | Herz | May 2012 | B2 |
8185456 | LeClair et al. | May 2012 | B2 |
8200693 | Steele et al. | Jun 2012 | B2 |
8214518 | Bertz | Jul 2012 | B1 |
8370489 | Mazumdar et al. | Feb 2013 | B2 |
8423406 | Briggs | Apr 2013 | B2 |
8453173 | Anderson et al. | May 2013 | B1 |
8619892 | Vetter et al. | Dec 2013 | B2 |
8874652 | Pecjak et al. | Oct 2014 | B1 |
8930701 | Burbank et al. | Jan 2015 | B2 |
8973023 | Rao et al. | Mar 2015 | B1 |
9070139 | Zhang | Jun 2015 | B2 |
9094710 | Lee et al. | Jul 2015 | B2 |
9111186 | Blasinski et al. | Aug 2015 | B2 |
9224094 | Oliver et al. | Dec 2015 | B2 |
9236962 | Hawkins et al. | Jan 2016 | B2 |
9237138 | Bosworth et al. | Jan 2016 | B2 |
9420320 | Doe | Aug 2016 | B2 |
9529836 | Hale | Dec 2016 | B1 |
10045057 | Shah et al. | Aug 2018 | B2 |
10070166 | Chaar et al. | Sep 2018 | B2 |
10313752 | Nagaraja Rao et al. | Jun 2019 | B2 |
10382818 | Sheppard et al. | Aug 2019 | B2 |
10491696 | Gierada | Nov 2019 | B2 |
10602224 | Sullivan et al. | Mar 2020 | B2 |
10609451 | De Andrade et al. | Mar 2020 | B2 |
10681414 | Sheppard et al. | Jun 2020 | B2 |
10728614 | Sheppard et al. | Jul 2020 | B2 |
10743064 | Berezowski et al. | Aug 2020 | B2 |
10856027 | Sheppard et al. | Dec 2020 | B2 |
11115710 | Sheppard et al. | Sep 2021 | B2 |
11140449 | Sullivan et al. | Oct 2021 | B2 |
11216834 | Sheppard et al. | Jan 2022 | B2 |
11323772 | Sheppard et al. | May 2022 | B2 |
11425458 | Sheppard et al. | Aug 2022 | B2 |
11438662 | Sullivan et al. | Sep 2022 | B2 |
11483606 | Sheppard et al. | Oct 2022 | B2 |
11523177 | Sheppard et al. | Dec 2022 | B2 |
11553226 | Sheppard et al. | Jan 2023 | B2 |
20020123928 | Eldering et al. | Sep 2002 | A1 |
20030037041 | Hertz | Feb 2003 | A1 |
20040001538 | Garrett | Jan 2004 | A1 |
20040059549 | Kropaczek et al. | Mar 2004 | A1 |
20060190318 | Downey et al. | Aug 2006 | A1 |
20070087756 | Hoffberg | Apr 2007 | A1 |
20080028006 | Liu et al. | Jan 2008 | A1 |
20080228543 | Doe | Sep 2008 | A1 |
20080300965 | Doe | Dec 2008 | A1 |
20080313017 | Totten | Dec 2008 | A1 |
20100161385 | Karypis et al. | Jun 2010 | A1 |
20100191723 | Perez et al. | Jul 2010 | A1 |
20110015992 | Liffiton et al. | Jan 2011 | A1 |
20110196733 | Li et al. | Aug 2011 | A1 |
20120023522 | Anderson et al. | Jan 2012 | A1 |
20120052930 | McGucken | Mar 2012 | A1 |
20120066410 | Stefanakis et al. | Mar 2012 | A1 |
20120072940 | Fuhrer | Mar 2012 | A1 |
20120110027 | Falcon | May 2012 | A1 |
20120254911 | Doe | Oct 2012 | A1 |
20130138743 | Amento et al. | May 2013 | A1 |
20130165277 | Wang | Jun 2013 | A1 |
20130198125 | Oliver et al. | Aug 2013 | A1 |
20130254787 | Cox et al. | Sep 2013 | A1 |
20130290233 | Ferren et al. | Oct 2013 | A1 |
20130339991 | Ricci | Dec 2013 | A1 |
20130346033 | Wang et al. | Dec 2013 | A1 |
20140101685 | Kitts et al. | Apr 2014 | A1 |
20140112557 | Santamaria-Pang et al. | Apr 2014 | A1 |
20140278933 | McMillan | Sep 2014 | A1 |
20140280891 | Doe | Sep 2014 | A1 |
20140337104 | Splaine et al. | Nov 2014 | A1 |
20140358676 | Srivastava et al. | Dec 2014 | A1 |
20150032310 | Zettel et al. | Jan 2015 | A1 |
20150180989 | Seth | Jun 2015 | A1 |
20150186403 | Srivastava et al. | Jul 2015 | A1 |
20150193813 | Toupet et al. | Jul 2015 | A1 |
20150332310 | Cui et al. | Nov 2015 | A1 |
20150332317 | Cui et al. | Nov 2015 | A1 |
20160012314 | Ramamurthy et al. | Jan 2016 | A1 |
20160086208 | Oliver et al. | Mar 2016 | A1 |
20160134934 | Jared et al. | May 2016 | A1 |
20160162955 | O'Kelley et al. | Jun 2016 | A1 |
20160165277 | Kirillov et al. | Jun 2016 | A1 |
20160232563 | Perez et al. | Aug 2016 | A1 |
20160249098 | Pecjak et al. | Aug 2016 | A1 |
20160269783 | Mowrer et al. | Sep 2016 | A1 |
20160323616 | Doe | Nov 2016 | A1 |
20160373820 | Meyer et al. | Dec 2016 | A1 |
20160379246 | Sheppard et al. | Dec 2016 | A1 |
20170006342 | Nagaraja Rao et al. | Jan 2017 | A1 |
20170034594 | Francis et al. | Feb 2017 | A1 |
20170155956 | Nagaraja Rao et al. | Jun 2017 | A1 |
20170187478 | Shah et al. | Jun 2017 | A1 |
20170213243 | Dollard | Jul 2017 | A1 |
20170300911 | Alnajem | Oct 2017 | A1 |
20180073933 | Keskin et al. | Mar 2018 | A1 |
20180189950 | Norouzi et al. | Jul 2018 | A1 |
20180225709 | Ferber et al. | Aug 2018 | A1 |
20180249208 | Sheppard et al. | Aug 2018 | A1 |
20180249210 | Sheppard et al. | Aug 2018 | A1 |
20180249211 | Sheppard et al. | Aug 2018 | A1 |
20180249214 | Sullivan et al. | Aug 2018 | A1 |
20180315060 | Sheppard et al. | Nov 2018 | A1 |
20180376198 | Sheppard et al. | Dec 2018 | A1 |
20190147461 | Sheppard et al. | May 2019 | A1 |
20190289363 | Nagaraja Rao et al. | Sep 2019 | A1 |
20190354574 | Wick et al. | Nov 2019 | A1 |
20190356950 | Sheppard et al. | Nov 2019 | A1 |
20190370860 | Morovati Lopez et al. | Dec 2019 | A1 |
20200120387 | Sheppard et al. | Apr 2020 | A1 |
20200175546 | Perez et al. | Jun 2020 | A1 |
20200204863 | Sullivan et al. | Jun 2020 | A1 |
20200294069 | Sheppard et al. | Sep 2020 | A1 |
20200296441 | Sheppard et al. | Sep 2020 | A1 |
20200359090 | Sheppard et al. | Nov 2020 | A1 |
20210014564 | Sheppard et al. | Jan 2021 | A1 |
20210058659 | Sheppard et al. | Feb 2021 | A1 |
20210065230 | Flynn | Mar 2021 | A1 |
20210133773 | Sheppard et al. | May 2021 | A1 |
20210158377 | Sheppard et al. | May 2021 | A1 |
20210319002 | Ryan et al. | Oct 2021 | A1 |
20210319474 | Sheppard et al. | Oct 2021 | A1 |
20210400341 | Sheppard et al. | Dec 2021 | A1 |
20220038781 | Sullivan et al. | Feb 2022 | A1 |
20220058667 | Sheppard et al. | Feb 2022 | A1 |
20220058688 | Sheppard et al. | Feb 2022 | A1 |
20220122104 | Sheppard et al. | Apr 2022 | A1 |
20220159326 | Sheppard et al. | May 2022 | A1 |
20220264179 | Sheppard et al. | Aug 2022 | A1 |
20220264187 | Sheppard et al. | Aug 2022 | A1 |
20220408154 | Sheppard et al. | Dec 2022 | A1 |
20230042879 | Sheppard et al. | Feb 2023 | A1 |
20230070980 | Sullivan et al. | Mar 2023 | A1 |
20230111617 | Sheppard et al. | Apr 2023 | A1 |
Number | Date | Country |
---|---|---|
2015529870 | Oct 2015 | JP |
20160087263 | Jul 2016 | KR |
2008127737 | Oct 2008 | WO |
2014210597 | Dec 2014 | WO |
Entry |
---|
Patent Cooperation Treaty, “International Search Report,” issued in connection with International Appl. No. PCT/US2021/026010, dated Jul. 26, 2021, 3 pages. |
Patent Cooperation Treaty, “Written Opinion,” issued in connection with International Appl. No. PCT/US2021/026010, dated Jul. 26, 2021, 5 pages. |
Patent Cooperation Treaty, “International Preliminary Report on Patentability,” issued in connection with International Appl. No. PCT/US2021/026010, dated Oct. 6, 2022, 6 pages. |
Patent Cooperation Treaty, “International Search Report,” issued in connection with International Appl. No. PCT/US2022/015516, dated May 26, 2022, 3 pages. |
Patent Cooperation Treaty, “Written Opinion,” issued in connection with International Appl. No. PCT/US2022/015516, dated May 26, 2022, 4 pages. |
United States Patent and Trademark Office, “Non-Final Office Action,” issued in connection with U.S. Appl. No. 17/902,612, dated Jan. 6, 2023, 5 pages. |
Huckett et al., “Combining Methods to Create Synthetic Microdata: Quantile Regression, Hot Deck, and Rank Swapping,” Research Gate, Apr. 2008, 11 pages. |
Golub et al., “Linear Least Squares and Quadratic Programming,” Technical Report No. CS 134, Stanford University, Computer Science Department, May 1969, 38 pages. |
Charles L. Byrne, “Iterative Algorithms in Inverse Problems,” Apr. 25, 2006, 347 pages. |
Charles L. Byrne, “Applied Iterative Methods,” Jan. 23, 2007, 396 pages. |
Bourguignon et al., “On the Construction of Synthetic Panels,” Oct. 2015, 42 pages. |
Marno Verbeek, “Pseudo-Panels and Repeated Cross-Sections,” The Econometrics of Panel Data, Springer-Verlag Berlin Heidelberg 2008, 15 pages. |
P.J.G. Teunissen, “Least-Squares Estimation of the Integer GPS Ambiguities,” Delft University of Technology, Department of the Geodetic Engineering, Aug. 1993, 16 pages. |
United States Patent and Trademark Office, “Non-Final Office action” issued in connection with U.S. Appl. No. 15/445,543, dated Jan. 11, 2018, 19 pages. |
United States Patent and Trademark Office, “Non-Final Office action” issued in connection with U.S. Appl. No. 15/445,530, dated Apr. 11, 2018, 10 pages. |
United States Patent and Trademark Office, “Non-Final Office Action,” issued in connection with U.S. Appl. No. 15/445,557, dated Jun. 29, 2018, 11 pages. |
United States Patent and Trademark Office, “Non-Final Office action” issued in connection with U.S. Appl. No. 15/635,153, dated Feb. 5, 2018, 8 pages. |
United States Patent and Trademark Office, “Notice of Allowance” issued in connection with U.S. Appl. No. 15/635,153, dated Jul. 23, 2018, 8 pages. |
United States Patent and Trademark Office, “Final Office Action” issued in connection with U.S. Appl. No. 15/445,543, dated Aug. 3, 2018, 16 pages. |
United States Patent and Trademark Office, “Non-Final Office Action,” issued in connection with U.S. Appl. No. 15/619,257, dated Jun. 15, 2018, 15 pages. |
United States Patent and Trademark Office, “Notice of Allowance,” issued in connection with U.S. Appl. No. 15/635,153, dated Oct. 17, 2018, 5 pages. |
United States Patent and Trademark Office, “Final Office Action” issued in connection with U.S. Appl. No. 15/445,557, dated Dec. 27, 2018, 10 pages. |
United States Patent and Trademark Office, “Non-Final Office Action,” issued in connection with U.S. Appl. No. 15/445,543, dated Jan. 8, 2019, 15 pages. |
United States Patent and Trademark Office, “Notice of Allowance,” issued in connection with U.S. Appl. No. 15/445,530, dated Jan. 2, 2019, 7 pages. |
United States Patent and Trademark Office, “Final Office Action” issued in connection with U.S. Appl. No. 15/619,257, dated Jan. 18, 2019, 18 pages. |
United States Patent and Trademark Office, “Notice of Allowance, ” issued in connection with U.S. Appl. No. 15/635,153, dated Mar. 21, 2019, 7 pages. |
United States Patent and Trademark Office, “Notice of Allowability,” issued in connection with U.S. Appl. No. 15/635,153, dated Apr. 8, 2019, 2 pages. |
United States Patent and Trademark Office, “Notice of Allowance, ” issued in connection with U.S. Appl. No. 15/445,557, dated Apr. 15, 2019, 8 pages. |
United States Patent and Trademark Office, “Notice of Allowance, ” issued in connection with U.S. Appl. No. 15/445,530, dated May 3, 2019, 5 pages. |
United States Patent and Trademark Office, “Notice of Allowability,” issued in connection with U.S. Appl. No. 15/445,530, dated May 21, 2019, 2 pages. |
United States Patent and Trademark Office, “Notice of Allowance,” issued in connection with U.S. Appl. No. 15/445,557, dated Jul. 26, 2019, 7 pages. |
United States Patent and Trademark Office, “Notice of Allowance and Fee(s) Due” issued in connection with U.S. Appl. No. 15/445,557, dated Nov. 5, 2019, 9 pages. |
United States Patent and Trademark Office, “Final Office Action” issued in connection with U.S. Appl. No. 15/445,543, dated Jul. 18, 2019, 12 pages. |
United States Patent and Trademark Office, “Notice of Allowance and Fee(s) Due,” issued in connection with U.S. Appl. No. 15/445,530, dated Sep. 25, 2019, 5 pages. |
Haggin, Patience et al., “Google Nears a Long-Tipped Limit on Tracking “Cookies,” in Blow to Rivals,” The Wall Street Journal, May 6, 2019, obtained from https://www.wsj.com/articles/googles-new-privacy-tools-to-make-cookies-crumble-competitors-stumble-11557151913, 3 pages. |
United States Patent and Trademark Office, “Notice of Allowance, ” issued in connection with U.S. Appl. No. 15/445,530, dated Jan. 31, 2020, 10 pages. |
International Searching Authority. “International Search Report & Written Opinion”, issued in connection with application No. PCT/US2020/022438 dated Jul. 6, 2020, 10 pages. |
International Searching Authority. “International Search Report & Written Opinion,” issued in connection with application No. PCT/US2020/022436 dated Jul. 6, 2020, 9 pages. |
United States Patent and Trademark Office, “Final Office Action,” issued in connection with U.S. Appl. No. 16/526,747, dated Dec. 30, 2020, 9 pages. |
United States Patent and Trademark Office, “Non-Final Office Action,” issued in connection with U.S. Appl. No. 16/355,386, dated Nov. 9, 2020, 8 pages. |
United States Patent and Trademark Office, “Non-Final Office Action,” issued in connection with U.S. Appl. No. 16/526,747, dated Jul. 23, 2020, 8 pages. |
United States Patent and Trademark Office, “Non-Final Office Action,” issued in connection with U.S. Appl. No. 16/657,652, dated Oct. 27, 2020, 18 pages. |
United States Patent and Trademark Office, “Notice of Allowance,” issued in connection with U.S. Appl. No. 16/355,393, dated Jul. 8, 2020, 8 pages. |
United States Patent and Trademark Office, “Non-Final Office Action,” issued in connection with U.S. Appl. No. 16/893,129, dated Apr. 13, 2021, 8 pages. |
United States Patent and Trademark Office, “Notice of Allowance,” issued in connection with U.S. Appl. No. 16/526,747, dated Apr. 28, 2021, 8 pages. |
United States Patent and Trademark Office, “Final Office Action,” issued in connection with U.S. Appl. No. 16/355,386, dated May 4, 2021, 10 pages. |
United States Patent and Trademark Office, “Notice of Allowance,” issued in connection with U.S. Appl. No. 16/805,361, dated Feb. 18, 2021, 8 pages. |
United States Patent and Trademark Office, “Final Office Action,” issued in connection with U.S. Appl. No. 16/657,652, dated May 14, 2021, 19 pages. |
United States Patent and Trademark Office, “Non-Final Office Action,” issued in connection with U.S. Appl. No. 16/939,996, dated Jun. 24, 2021, 15 pages. |
United States Patent and Trademark Office, “Non-Final Office Action,” issued in connection with U.S. Appl. No. 16/843,650, dated May 26, 2021, 26 pages. |
United States Patent and Trademark Office, “Notice of Allowance” issued in connection with U.S. Appl. No. 15/619,257, dated Mar. 17, 2020, 8 pages. |
United States Patent and Trademark Office, “Corrected Notice of Allowability,” issued in connection with U.S. Appl. No. 16/526,747, dated Aug. 11, 2021, 3 pages. |
United States Patent and Trademark Office, “Advisory Action,” issued in connection with U.S. Appl. No. 16/657,652, dated Aug. 19, 2021, 5 pages. |
United States Patent and Trademark Office, “Notice of Allowance,” issued in connection with U.S. Appl. No. 16/893,129, dated Jul. 29, 2021, 5 pages. |
United States Patent and Trademark Office, “Notice of Allowance,” issued in connection with U.S. Appl. No. 16/355,386, dated Aug. 30, 2021, 7 pages. |
United States Patent and Trademark Office, “Notice of Allowance,” issued in connection with U.S. Appl. No. 16/805,361, dated Jun. 3, 2021, 8 pages. |
United States Patent and Trademark Office, “Non-Final Office Action,” issued in connection with U.S. Appl. No. 16/657,652, dated Oct. 18, 2021, 22 pages. |
International Searching Authority. “International Preliminary Report on Patentability”, issued in connection with application No. PCT/US2020/022438 dated Sep. 16, 2021, 6 pages. |
International Searching Authority. “International Preliminary Report on Patentability”, issued in connection with application No. PCT/US2020/022436 dated Sep. 16, 2021, 5 pages. |
United States Patent and Trademark Office, “Non-Final Office Action,” issued in connection with U.S. Appl. No. 17/093,460, dated Oct. 22, 2021, 5 pages. |
United States Patent and Trademark Office, “Non-Final Office Action,” issued in connection with U.S. Appl. No. 16/676,158, dated Nov. 29, 2021, 24 pages. |
United States Patent and Trademark Office, “Notice of Allowance,” issued in connection with U.S. Appl. No. 16/893,129, dated Dec. 14, 2021, 5 pages. |
United States Patent and Trademark Office, “Corrected Notice of Allowability,” issued in connection with U.S. Appl. No. 16/355,386, dated Dec. 9, 2021, 2 pages. |
United States Patent and Trademark Office, “Final Office Action,” issued in connection with U.S. Appl. No. 16/939,996, dated Dec. 16, 2021, 19 pages. |
United States Patent and Trademark Office, “Final Office Action,” issued in connection with U.S. Appl. No. 16/843,650, dated Dec. 17, 2021, 33 pages. |
United States Patent and Trademark Office, “Notice of Allowance and Fee(s) Due,” issued in connection with U.S. Appl. No. 17/093,460, dated Mar. 1, 2022, 9 pages. |
United States Patent and Trademark Office, “Non-Final Office Action,” issued in connection with U.S. Appl. No. 17/408,208 , dated Jan. 5, 2022, 19 pages. |
United States Patent and Trademark Office, “Notice of Allowance,” issued in connection with U.S. Appl. No. 16/939,996, dated Mar. 11, 2022, 8 pages. |
United States Patent and Trademark Office, “Non-Final Office Action,” issued in connection with U.S. Appl. No. 17/099,510, dated Mar. 29, 2022, 6 pages. |
United States Patent and Trademark Office, “Non-Final Office Action,” issued in connection with U.S. Appl. No. 16/676,158, dated Mar. 18, 2022, 29 pages. |
United States Patent and Trademark Office, “Corrected Notice of Allowability,” issued in connection with U.S. Appl. No. 16/893,129, dated Dec. 22, 2021, 2 pages. |
International Searching Authority. “International Search Report & Written Opinion,” issued in connection with application No. PCT/US21/26010 dated Jul. 26, 2021, 8 pages. |
United States Patent and Trademark Office, “Corrected Notice of Allowability,” issued in connection with U.S. Appl. No. 16/893,129, dated Apr. 8, 2022, 2 pages. |
United States Patent and Trademark Office, “Notice of Allowance and Fee(s) Due,” issued in connection with U.S. Appl. No. 16/657,652, dated Apr. 12, 2022, 8 pages. |
United States Patent and Trademark Office, “Final Office Action,” issued in connection with U.S. Appl. No. 17/408,208 , dated Apr. 20, 2022, 26 pages. |
Esch et al., “Appendix 8 Numerical Methods for Solving Nonlinear Equations,” Asset and Risk Management: Risk Oriented Finance, published 2005 by John Wiley & Sons LTd., 7 pages. |
United States Patent and Trademark Office, “Notice of Allowance and Fee(s) Due,” issued in connection with U.S. Appl. No. 17/493,653, dated Apr. 29, 2022, 8 pages. |
United States Patent and Trademark Office, “Supplemental Notice of Allowability,” issued in connection with U.S. Appl. No. 17/493,653, dated May 26, 2022, 2 pages. |
United States Patent and Trademark Office, “Notice of Allowance and Fee(s) Due,” issued in connection with U.S. Appl. No. 17/093,460, dated Jun. 10, 2022, 9 pages. |
United States Patent and Trademark Office, “Notice of Allowance and Fee(s) Due,” issued in connection with U.S. Appl. No. 16/939,996, dated Aug. 5, 2022, 8 pages. |
United States Patent and Trademark Office, “Final Office Action,” issued in connection with U.S. Appl. No. 16/676,158, dated Jul. 29, 2022, 30 pages. |
United States Patent and Trademark Office, “Corrected Notice of Allowability,” issued in connection with U.S. Appl. No. 16/657,652, dated Jul. 29, 2022, 3 pages. |
United States Patent and Trademark Office, “Non-Final Office Action,” issued in connection with U.S. Appl. No. 16/843,650, dated Jul. 29, 2022, 36 pages. |
International Searching Authority, “International Search Report and Written Opinion,” issued in connection with PCT Application No. PCT-US2022/015516, dated May 26, 2022, 7 pages. |
United States Patent and Trademark Office, “Non-Final Office Action,” issued in connection with U.S. Appl. No. 17/666,359, dated Aug. 18, 2022, 8 pages. |
United States Patent and Trademark Office, “Non-Final Office Action,” issued in connection with U.S. Appl. No. 17/408,208 , dated Aug. 15, 2022, 24 pages. |
United States Patent and Trademark Office, “Notice of Allowance and Fee(s) Due,” issued in connection with U.S. Appl. No. 17/099,510, dated Aug. 24, 2022, 7 pages. |
United States Patent and Trademark Office, “Supplemental Notice of Allowability,” issued in connection with U.S. Appl. No. 17/099,510, dated Sep. 7, 2022, 2 pages. |
United States Patent and Trademark Office, “Corrected Notice of Allowability,” issued in connection with U.S. Appl. No. 16/939,996, dated Aug. 26, 2022, 3 pages. |
United States Patent and Trademark Office, “Advisory Action,” issued in U.S. Appl. No. 16/676,158, dated Oct. 6, 2022, 3 pages. |
United States Patent and Trademark Office, “Non-Final Office Action,” issued in connection with U.S. Appl. No. 17/734,792, dated Oct. 13, 2022, 6 pages. |
United States Patent and Trademark Office, “Non-Final Office Action,” issued in connection with U.S. Appl. No. 17/567,710 , dated Oct. 14, 2022, 8 pages. |
International Searching Authority, “International Preliminary Report on Patentability”, issued in connection with application No. PCT/US2021/026010 dated Oct. 6, 2022, 6 pages. |
United States Patent and Trademark Office, “Non-Final Office Action,” issued in connection with U.S. Appl. No. 17/666,359, dated Nov. 18, 2022, 9 pages. |
United States Patent and Trademark Office, “Non-Final Office Action,” issued in connection with U.S. Appl. No. 17/465,567, dated Nov. 16, 2022, 12 pages. |
United States Patent and Trademark Office, “Final Office Action,” issued in connection with U.S. Appl. No. 16/843,650, dated Apr. 10, 2023, 40 pages. |
United States Patent and Trademark Office, “Final Office Action,” issued in connection with U.S. Appl. No. 17/408,208, dated Dec. 8, 2022, 10 pages. |
United States Patent and Trademark Office, “Notice of Allowance and Fee(s) Due,” issued in connection with U.S. Appl. No. 17/734,792, dated Feb. 13, 2023, 8 pages. |
United States Patent and Trademark Office, “Notice of Allowance and Fee(s) Due,” issued in connection with U.S. Appl. No. 17/567,710, dated Feb. 10, 2023, 7 pages. |
United States Patent and Trademark Office, “Advisory Action,” issued in connection with U.S. Appl. No. 17/408,208, dated Mar. 3, 2023, 2 pages. |
United States Patent and Trademark Office, “Notice of Allowance and Fee(s) Due,” issued in connection with U.S. Appl. No. 17/465,567, dated Mar. 10, 2023, 7 pages. |
United States Patent and Trademark Office, “Non-Final Office Action,” issued in connection with U.S. Appl. No. 17/408,164, dated Mar. 29, 2023, 14 pages. |
United States Patent and Trademark Office, “Non-Final Office Action,” issued in connection with U.S. Appl. No. 16/843,650, dated Dec. 2, 2022, 43 pages. |
United States Patent and Trademark Office, “Notice of Allowance and Fee(s) Due,” issued in U.S. Appl. No. 16/676,158, dated Apr. 14, 2023, 10 pages. |
United States Patent and Trademark Office, “Non-Final Office Action,” issued in connection with U.S. Appl. No. 17/408,208, dated May 10, 2023, 9 pages. |
United States Patent and Trademark Office, “Notice of Allowance and Fee(s) Due,” issued in connection with U.S. Appl. No. 17/902,612, dated Apr. 26, 22023, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20230232057 A1 | Jul 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17099510 | Nov 2020 | US |
Child | 18151993 | US |