This invention relates generally to turbines, and, more particularly, to seal ring assemblies for use with turbines.
At least some known seal assemblies used with turbines are biased open by a spring coupled thereto. More specifically, the spring induces a radially outward biasing force against a seal ring that increases a diameter of the seal ring. As pressure is increased within the turbine, the biasing force induced by the spring must be overcome to decrease the diameter of the seal ring to facilitate preventing steam flow through the seal assembly within the turbine. Accordingly, in such sealing assemblies, radial inward travel of the seal ring is generally delayed until pre-determined operating conditions for the turbine are attained.
At least some known seal assembly springs may be installed in the field during final assembly of the turbine. Specifically, the springs may be temporarily positioned against the seal ring using re-roundable dowels which do not provide positive retention and only retain the spring after the seal ring is installed in the packing assembly. As such the spring may fall out or be deformed during installation of the seal ring. Moreover, the seal ring can not be shipped with the spring pre-installed. Accordingly, such seal ring/spring assemblies may increase installation time, decrease quality, and increase overall costs associated with installation of the seal assembly.
In one aspect, a method of assembling a seal assembly for a turbine engine is provided, wherein the method includes providing a seal ring having an arcuate inner ring portion, an arcuate outer ring portion, and a neck portion extending therebetween, and forming at least one recess within at least one of the outer ring portion and the neck portion. The method also includes extending a biasing mechanism across the seal ring such that the biasing mechanism is positively retained within the at least one recess.
In another aspect, a seal assembly for a turbine engine is provided, wherein the seal assembly includes a seal ring comprising an arcuate inner ring portion, an arcuate outer ring portion, and a neck portion extending therebetween. The seal assembly also includes at least one recess formed within at least one of the seal ring outer ring portion and the seal ring neck portion, and a biasing mechanism extending chordially across the seal ring and retained within the at least one recess.
In a further aspect, a turbine engine is provided, wherein the turbine engine includes a seal assembly configured to reduce steam leakage within the turbine engine. The seal assembly includes a seal ring comprising an arcuate inner ring portion, an arcuate outer ring portion, and a neck portion extending therebetween. The seal assembly also includes at least one recess formed within at least one of the seal ring outer ring portion and the seal ring neck portion, and a biasing mechanism extending chordially across the seal ring and retained within the at least one recess.
An annular section divider 42 extends radially inwardly from central section 18 towards a rotor shaft 60 that extends between HP section 12 and IP section 14. More specifically, divider 42 extends circumferentially around a portion of rotor shaft 60 between a first HP section nozzle 46 and a first IP section nozzle 48.
During operation, high pressure steam inlet 20 receives high pressure/high temperature steam from a steam source, for example, a power boiler (not shown). Steam is routed through HP section 12 wherein work is extracted from the steam to rotate rotor shaft 60. The steam exits HP section 12 and is returned to the boiler wherein it is reheated. Reheated steam is then routed to intermediate pressure steam inlet 22 and returned to IP section 14 at a reduced pressure than steam entering BP section 12, but at a temperature that is approximately equal to the temperature of steam entering HP section 12. Accordingly, an operating pressure within HP section 12 is higher than an operating pressure within IP section 14, such that steam within HP section 12 tends to flow towards IP section 14 through leakage paths that may develop between HP section 12 and IP section 14.
In operation, steam at higher pressure in HP section 12 tends to leak through a steam path defined between first stage nozzle diaphragm 70 and packing casing 72 to IP section 14, an area at a lower operating pressure. For example, in one embodiment, high pressure steam is admitted to HP section 12 at approximately 1800 pounds per square inch absolute (psia), and reheat steam is admitted to IP section 14 at between approximately 300-400 psia. Accordingly, a relatively large pressure drop across packing casing 72 may cause steam to leak around packing casing 72 along rotor shaft 60 resulting in a reduction in steam turbine efficiency.
Seal ring 102 includes a plurality of teeth 104 positioned in opposition to a plurality of rotor shaft circumferential projections 105 extending outward from rotor shaft 60. In the exemplary embodiment, each circumferential projection 105 includes radially outer rotor surfaces 107 positioned between a plurality of radially inner rotor surfaces 109. As explained above, a positive force may force fluid flow between the multiple restrictions formed by a clearance area 110 defined between teeth 104 and rotor shaft 60. More specifically, the combination of clearance area 110, the number, and relative sharpness, of teeth 104, the number of rotor shaft circumferential projections 105, and the operating conditions, including pressure and density, are factors that determine the amount of leakage flow. Alternately, other geometrical arrangements can also used to provide multiple or single leakage restrictions. For example, in an alternative embodiment, rotor portion 60 does not include teeth 105 or surfaces 109, but rather, is substantially planar. In another embodiment, seal ring 102 does not include a serpentine path with the rotor teeth. Further, in yet another embodiment, seal ring 102 may include a brush seal or any other suitable sealing mechanism.
Each seal ring 102 is retained in a casing groove 112 defined in casing 72. In one embodiment, each seal ring 102 includes a plurality of seal ring segments (not shown in
Each seal ring 102 includes an inner ring portion 114 having teeth 104 extending from a radially inner surface 116, and a radially outer surface 130 that facilitates controlling clearance area 110 by contacting a radial surface 118 of casing 72. Each seal ring 102 also includes an outer ring portion 120 that is positioned within casing groove 112. Outer ring portion 120 includes an inner circumferential surface 122 and an opposite radially outer surface 131. Inner circumferential surface 122 contacts an outer surface 126 of a casing groove shoulder 124 such that radial inward movement of seal ring 102 is limited. Seal ring 102 also includes a neck portion 128 extending between seal ring inner ring portion 114 and seal ring outer ring portion 120. Casing groove shoulder 124 interacts with seal ring neck portion 128 to axially locate each seal ring 102. Seal ring neck portion 128 includes a contact pressure surface 132 that contacts casing groove shoulder 124.
One steam flow path through labyrinth seal assembly 100 is defined from high pressure region 106 to low pressure region 108 through clearance area 110 and between teeth 104 and rotor shaft surfaces 107 and 109. Steam flow is modulated as a function of radial positioning of seal ring 102. As seal ring 102 moves radially outward, the overall size of clearance area 110 increases and steam flow through clearance area 110 increases. Conversely, as seal ring 102 moves radially inward, clearance area 110 decreases and steam flow through clearance area 110 decreases.
A second steam flow path is defined from high pressure annular space 134 to low pressure annular space 136 through casing groove 112. Steam at a higher pressure may flow from annular space 134 through an annular opening 140 defined between casing groove shoulder 124 and seal ring neck portion 128. Steam is channeled through opening 140 to a high pressure region 142 defined between casing groove shoulder outer surface 126 and seal ring outer ring portion ring circumferential surface 122 before entering a casing groove high pressure portion 144 defined by the casing 72 and seal ring outer ring portion 120. Steam exits casing groove high pressure portion 144 and enters a casing groove radially outer portion 148 defined between a casing groove radially outer surface 146 and seal ring outer portion radially outer surface 131. Steam may then flow to a low pressure portion 150 defined by the casing 72 and seal ring outer ring portion 120 and to a low pressure side shoulder region 152 defined between casing groove shoulder outer surface 126 and seal ring outer ring portion inner circumferential surface 122. Steam exits low pressure side shoulder region 152 through an annular opening 154 defined between casing groove shoulder 124 and seal ring neck portion 128, wherein the steam is discharged into annular space 136.
Radially outward travel of seal ring 102 is limited when seal ring outer surface 130, or any portion thereof, contacts casing radial surface 118. This position is referred to as the fully retracted position. Radially inward travel of seal ring 102 is limited when seal ring surface 122 contacts casing groove shoulder surface 126. This position is referred to as the fully inserted position. Sufficient space to accommodate expected transient misalignments of rotor shaft 60 and casing 72, without incurring damage to teeth 104, is provided for.
At low or no load operating conditions, the weight of seal ring 102, the confining limits of casing 72, frictional forces, and the forces of a plurality of biasing spring systems (not shown on
Internal pressures throughout the turbine 10 are substantially proportional to load. As load and steam mass flow are each increased, local pressures increase in a substantially linear fashion. This relationship can be used to determine desired positions of seal ring 102 at pre-determined turbine operating conditions. For example, as steam flow to turbine 10 is increased, steam pressure in annular space 134 and in casing groove 112 is likewise increased. The increased steam pressure exerts a radially inward force to seal ring 102 that is substantially carried by seal ring outer surfaces 130 and 131.
The increased steam pressure in high pressure region 106 induces increased steam flow via casing groove 112 through annular space 134, annular opening 140, shoulder region 142, casing groove high pressure portion 144, casing groove radially outer portion 148, casing groove low pressure portion 150, shoulder region 152, and annular opening 154 into annular region 136. The increased steam pressure in high pressure region 106 also induces increased pressures in the path defined from annular space 134 to annular space 136 via casing groove 112 as described above. The pressures in each subsequent region of the path are less than the regions preceding them. For example, the steam pressure in casing groove low pressure portion 150 is less than the steam pressure in casing groove high pressure portion 144. This pressure differential induces an increased force to the right on seal ring inner ring portion 114, seal ring neck portion 128 and seal ring outer ring portion 120. The increased forces on these surfaces causes seal ring 102 to move axially toward the low pressure region 108 until seal ring neck contact pressure surface 132 contacts casing groove shoulder 124. When fully inserted steam flow from high pressure annular space 134 to low pressure annular space 136 via casing groove 112 is substantially prevented by seal ring 102.
The condition illustrated above causes steam pressure to induce an increased radially inward force to surfaces 130 and 131 as described above. The increased steam pressure also induces an increased radially inward force to seal ring 102 to overcome the previously discussed frictional forces and plurality of biasing spring sub-systems (not shown) forces.
The dimensions of seal ring 102 and casing groove 112 are selected to facilitate optimizing the clearance 110 defined between teeth 104 and rotor shaft 60 surface for loaded, steady state operation.
The illustrated embodiment includes one pin 280 retaining one tab 250. In this embodiment, the second tab 250 is retained within notch 240 by one of friction, a tack weld, or glue. Alternatively, two pins 280 are inserted through outer ring portion 202 such that both tabs 250 are retained between pins 280 and cavity back surface 282. In yet another alternative embodiment, tabs 250 include an aperture therethrough and at least one pin 280 is inserted through the aperture of at least one tab 250 as pin 280 traverses notch 240. Furthermore, in another embodiment, biasing mechanism 208 may not include tabs 250. Accordingly, at least one pin 280 is inserted through at least one end of biasing mechanism 208 as pin 280 traverses notch 240. Moreover, pin 280 may be a screw.
Biasing mechanism 208 is positioned against neck portion 206 such that it is radially inward from outer ring portion 202. Second member 324 of each bent tab 316 is aligned with threaded aperture 310 such that screw 314 is received through the aperture in second member 324 and extends through threaded aperture 310. As such, biasing mechanism 208 extends across neck portion 206 and is positively retained by screws 314.
The operation of seal ring 200 is substantially similar to the operation of seal ring 102 described in
Each embodiment of the above-described seal ring facilitates positively retaining the biasing mechanism within the seal ring during shipment from a packing vendor to final assembly. Furthermore, the methods and apparatus described above prevent the biasing mechanism from moving during assembly. Specifically, the methods and apparatus described above prevent the biasing mechanism from falling out of the seal ring during shipment or assembly or being deformed as the seal ring is inserted into the seal assembly. As such, the methods and apparatus allow faster installation times and reduce the costs associated with seal assembly fabrication. Moreover, the above-described methods and apparatus allow for multiple cavities and biasing mechanisms and can, therefore, more equally distribute forces throughout the seal ring.
As used herein, an element or step recited in the singular and proceeded with the word “a” or “an” should be understood as not excluding plural said elements or steps, unless such exclusion is explicitly recited. Furthermore, references to “one embodiment” of the present invention are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features.
Although the apparatus and methods described herein are described in the context of a seal ring for a seal assembly, it is understood that the apparatus and methods are not limited to seal rings or seal assemblies. Likewise, the seal ring components illustrated are not limited to the specific embodiments described herein, but rather, components of the seal ring can be utilized independently and separately from other components described herein.
While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.
Number | Name | Date | Kind |
---|---|---|---|
2600991 | Hargrove | Jun 1952 | A |
3594010 | Warth | Jul 1971 | A |
4436311 | Brandon | Mar 1984 | A |
4538790 | Williams et al. | Sep 1985 | A |
4558874 | Williams et al. | Dec 1985 | A |
5002288 | Morrison et al. | Mar 1991 | A |
5037114 | Gray | Aug 1991 | A |
5161943 | Maier et al. | Nov 1992 | A |
5395124 | Brandon | Mar 1995 | A |
5603510 | Sanders | Feb 1997 | A |
5639095 | Rhode | Jun 1997 | A |
5704614 | Sanders et al. | Jan 1998 | A |
5934684 | Brandon et al. | Aug 1999 | A |
6007070 | Heathcott et al. | Dec 1999 | A |
6065754 | Cromer et al. | May 2000 | A |
6131910 | Bagepalli et al. | Oct 2000 | A |
6220603 | Brandon et al. | Apr 2001 | B1 |
6250641 | Dinc et al. | Jun 2001 | B1 |
6311983 | Burcham | Nov 2001 | B1 |
6651986 | Chevrette et al. | Nov 2003 | B2 |
20040096319 | Uchida et al. | May 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20080003100 A1 | Jan 2008 | US |