This disclosure relates generally to computing devices and, more particularly, to methods and apparatus to service workloads locally at a computing device.
In recent years, cloud-based services have increased in popularity to allow computing devices in the cloud to process workloads for a computing device outside of the cloud. For example, tasks that require a large amount of resources may be transmitted from a local computing device to the cloud to be executed by devices in the cloud. In this manner, the cloud can return the result of the workload to the computing device, thereby saving resources of the local computing device.
In general, the same reference numbers will be used throughout the drawing(s) and accompanying written description to refer to the same or like parts. The figures are not to scale.
As used herein, connection references (e.g., attached, coupled, connected, and joined) may include intermediate members between the elements referenced by the connection reference and/or relative movement between those elements unless otherwise indicated. As such, connection references do not necessarily infer that two elements are directly connected and/or in fixed relation to each other. As used herein, stating that any part is in “contact” with another part is defined to mean that there is no intermediate part between the two parts.
Unless specifically stated otherwise, descriptors such as “first,” “second,” “third,” etc., are used herein without imputing or otherwise indicating any meaning of priority, physical order, arrangement in a list, and/or ordering in any way, but are merely used as labels and/or arbitrary names to distinguish elements for ease of understanding the disclosed examples. In some examples, the descriptor “first” may be used to refer to an element in the detailed description, while the same element may be referred to in a claim with a different descriptor such as “second” or “third.” In such instances, it should be understood that such descriptors are used merely for identifying those elements distinctly that might, for example, otherwise share a same name.
As used herein, the phrase “in communication,” including variations thereof, encompasses direct communication and/or indirect communication through one or more intermediary components, and does not require direct physical (e.g., wired) communication and/or constant communication, but rather additionally includes selective communication at periodic intervals, scheduled intervals, aperiodic intervals, and/or one-time events.
As used herein, “processor circuitry” is defined to include (i) one or more special purpose electrical circuits structured to perform specific operation(s) and including one or more semiconductor-based logic devices (e.g., electrical hardware implemented by one or more transistors), and/or (ii) one or more general purpose semiconductor-based electrical circuits programmable with instructions to perform specific operations and including one or more semiconductor-based logic devices (e.g., electrical hardware implemented by one or more transistors). Examples of processor circuitry include programmable microprocessors, Field Programmable Gate Arrays (FPGAs) that may instantiate instructions, Central Processor Units (CPUs), Graphics Processor Units (GPUs), Digital Signal Processors (DSPs), XPUs, or microcontrollers and integrated circuits such as Application Specific Integrated Circuits (ASICs). For example, an XPU may be implemented by a heterogeneous computing system including multiple types of processor circuitry (e.g., one or more FPGAs, one or more CPUs, one or more GPUs, one or more DSPs, etc., and/or a combination thereof) and application programming interface(s) (API(s)) that may assign computing task(s) to whichever one(s) of the multiple types of processor circuitry is/are best suited to execute the computing task(s).
Although cloud systems can execute workloads for a computing device to save resources of the computing device and/or to execute workloads that the computing device may not have capacity and/or capability to execute. Particular workloads may be better suited to be processed locally at the computing device. For example, a user may want a workload that is to operate on particular data to remain local (e.g., be executed locally) and to not be sent to the cloud for privacy and/or security reasons. In some examples, transmitting workloads to the cloud may increase delay and/or increase cost of execution of the workloads due to network latency, reducing compute, network and/or storage costs, etc.
To avoid sending particular workloads to the cloud for execution, some techniques allow a local computing device to execute workload and/or portion(s) of a workload locally. For example, if a computing device has the capability and/or capacity to perform speech-to-text conversion locally, the computing device may start to perform the speech-to-text conversion locally instead of sending data to the cloud to perform the speech-to-text conversion. If the computing device determines that the speech-to-text conversion is taking up too many resources and/or is causing issues, the speech-to-text conversion workload can be automatically transferred to the cloud with or without intervention from an end user of the computing device.
Cloud services utilize a cloud API gateway to function as a interface between the end user devices and the cloud-based devices (e.g., to obtain workloads and provide the results of the workload execution). The cloud API gateway performs secure request termination to ensure that a workload is obtained, executed, and a result is returned, provides cross-origin resource sharing (CORS) support for cross-origin requests, performs metering of data to/from the end user devices from/to the cloud, performs authentication and authorization of end user devices to the cloud-based servers, and provides logging to track that amount of cloud resources spent. CORS is a HTTP header based mechanism used by a server to indicate any origins from which a browser should allow the loading of resources. CORS can also submit an initial request (e.g., including headers that indicate a HTTP method and headers that will be used in the request) to a server hosing a cross-origin resource to verify that the service will allow request(s).
For local execution of workloads in a computing device, an application running on the computing device (e.g., a software as a service (SaaS) application) needs a way to securely invoke representational state transfer (REST) APIs that are hosted in local containers. Traditionally, when an application uses a browser of a computing device attempt to execute a portion of a workload locally, the browser computing device hosts certificates for a requested API domain to be certified by a certificate authority (CA) for a transport layer security (TLS) session to be established using private key(s) and/or token(s). However, such traditional techniques are costly and complex. Additionally, such traditional techniques invoke a risk of a private key being stolen, sniffed, and/or intercepted by a third party (e.g., a malicious entity). Accordingly, examples disclosed herein provide a local API gateway that facilitates a security scheme for secure access of APIs that are service by local containers implemented in a computing device to execute workloads locally without the use of a traditional TLS session. By implementing a local API gateway, a browser of a computing device can transmit workload requests to local containers of the computing device, via the local API gateway, without the use of a TLS session by leveraging calls to a system local network stack (e.g., a localhost, a URL corresponding to a localhost IP address, etc.). Examples disclosed herein reduce cost, reduce complexity, and increase security for local workload execution. Additionally, the example local API gateway described herein can be used to perform local metering, logging, and/or authentication and authorization decisions.
The example computing device 102 of
The example network 104 of
The example cloud server 106 of
The example client application 200 of
If the container orchestration is available (e.g., service container circuitry is available to execute the workload or the portion of the workload), the example client application 200 of
The example platform 204 is an environment where instructions may be executed. The platform 204 may be and/or include hardware, an operating system, software, etc. For example, the platform 204 may be Amiga, Chrome, Linux, macOS, Microsoft Windows, WSL 2, OpenVMS, and/or any other type of computing platform. The example platform 204 includes the example local API gateway 206 to forward API requests to one or more of the service container circuitry 212a-212n to execute a workload or portion of a workload. The example local API gateway 206 includes the example interface 208. The example interface 208 obtains request from the client application 200 via the system local network stack API address and forwards the request to one or more of the service container circuitry 212a-212n. Additionally, the example interface 208 obtains results from a workload execution from the example service container circuitry 212a-212n and forwards the results to the example client application 200 using a loopback interface (e.g., a URL corresponding to a system local network stack IP address such as 127.0.0.1).
The example request routing circuitry 210 of
The example metering and/or logging circuitry 211 of
In some examples, the local API gateway 206, the interface 208, the request routing circuitry 210, and/or the metering and/or logging circuitry 211 is instantiated by processor circuitry executing local API gateway 206, interface 208, request routing circuitry 210, and/or metering and/or logging circuitry 211 instructions and/or configured to perform operations such as those represented by the flowchart of
The example service container circuitries 212a-212n implement containers to be able to execute a workload. In some examples, each service container circuitry 212a-212n is capable of implementing a particular container for particular types of workloads. In some examples, the service container circuitry 212a-212n may implement multiple containers, where some service container circuitries may implementing the same type or different types of containers. After one of the service container circuitry 212a-212n executes a workload or a portion of a workload by implementing a container, the service container circuitry 212a-212n transmits the results of the executed workload to the example local API gateway 206. In this manner, the local API gateway 206 can forward the results to the example client application 200. In some examples, the service container circuitry 212a-212n is instantiated by processor circuitry executing service container circuitry 212a-212n instructions and/or configured to perform operations such as those represented by the flowchart of
The example client circuitry 214 of
In some examples, the computing device 102 includes means for transmitting an API call. For example, the means for transmitting the API call may be implemented by the client application 200. In some examples, the computing device 102 includes means for identifying service container circuitry to execute a workload. For example, the means for identifying service container circuitry to execute a workload may be implemented by the local API gateway 206 and/or the request routing circuitry 210. In some examples, the computing device 102 includes means for utilizing a container to execute the workload. For example, the means for utilizing a container to execute the workload may be implemented by the service container circuitry 212a-212n. In some examples, the computing device 102 includes means for determining whether the container is locally available. For example, the means for determining whether the container is locally available may be implemented by the client circuitry 214. In some examples, the computing device 102 may be instantiated by processor circuitry such as the example processor circuitry 412 of
While an example manner of implementing the computing device 102 of
A flowchart representative of example machine readable instructions, which may be executed to configure processor circuitry to implement the example computing device 102 of
The machine readable instructions described herein may be stored in one or more of a compressed format, an encrypted format, a fragmented format, a compiled format, an executable format, a packaged format, etc. Machine readable instructions as described herein may be stored as data or a data structure (e.g., as portions of instructions, code, representations of code, etc.) that may be utilized to create, manufacture, and/or produce machine executable instructions. For example, the machine readable instructions may be fragmented and stored on one or more storage devices and/or computing devices (e.g., servers) located at the same or different locations of a network or collection of networks (e.g., in the cloud, in edge devices, etc.). The machine readable instructions may require one or more of installation, modification, adaptation, updating, combining, supplementing, configuring, decryption, decompression, unpacking, distribution, reassignment, compilation, etc., in order to make them directly readable, interpretable, and/or executable by a computing device and/or other machine. For example, the machine readable instructions may be stored in multiple parts, which are individually compressed, encrypted, and/or stored on separate computing devices, wherein the parts when decrypted, decompressed, and/or combined form a set of machine executable instructions that implement one or more operations that may together form a program such as that described herein.
In another example, the machine readable instructions may be stored in a state in which they may be read by processor circuitry, but require addition of a library (e.g., a dynamic link library (DLL)), a software development kit (SDK), an application programming interface (API), etc., in order to execute the machine readable instructions on a particular computing device or other device. In another example, the machine readable instructions may need to be configured (e.g., settings stored, data input, network addresses recorded, etc.) before the machine readable instructions and/or the corresponding program(s) can be executed in whole or in part. Thus, machine readable media, as used herein, may include machine readable instructions and/or program(s) regardless of the particular format or state of the machine readable instructions and/or program(s) when stored or otherwise at rest or in transit.
The machine readable instructions described herein can be represented by any past, present, or future instruction language, scripting language, programming language, etc. For example, the machine readable instructions may be represented using any of the following languages: C, C++, Java, C#, Perl, Python, JavaScript, HyperText Markup Language (HTML), Structured Query Language (SQL), Swift, etc.
As mentioned above, the example operations of
“Including” and “comprising” (and all forms and tenses thereof) are used herein to be open ended terms. Thus, whenever a claim employs any form of “include” or “comprise” (e.g., comprises, includes, comprising, including, having, etc.) as a preamble or within a claim recitation of any kind, it is to be understood that additional elements, terms, etc., may be present without falling outside the scope of the corresponding claim or recitation. As used herein, when the phrase “at least” is used as the transition term in, for example, a preamble of a claim, it is open-ended in the same manner as the term “comprising” and “including” are open ended. The term “and/or” when used, for example, in a form such as A, B, and/or C refers to any combination or subset of A, B, C such as (1) A alone, (2) B alone, (3) C alone, (4) A with B, (5) A with C, (6) B with C, or (7) A with B and with C. As used herein in the context of describing structures, components, items, objects and/or things, the phrase “at least one of A and B” is intended to refer to implementations including any of (1) at least one A, (2) at least one B, or (3) at least one A and at least one B. Similarly, as used herein in the context of describing structures, components, items, objects and/or things, the phrase “at least one of A or B” is intended to refer to implementations including any of (1) at least one A, (2) at least one B, or (3) at least one A and at least one B. As used herein in the context of describing the performance or execution of processes, instructions, actions, activities and/or steps, the phrase “at least one of A and B” is intended to refer to implementations including any of (1) at least one A, (2) at least one B, or (3) at least one A and at least one B. Similarly, as used herein in the context of describing the performance or execution of processes, instructions, actions, activities and/or steps, the phrase “at least one of A or B” is intended to refer to implementations including any of (1) at least one A, (2) at least one B, or (3) at least one A and at least one B.
As used herein, singular references (e.g., “a”, “an”, “first”, “second”, etc.) do not exclude a plurality. The term “a” or “an” object, as used herein, refers to one or more of that object. The terms “a” (or “an”), “one or more”, and “at least one” are used interchangeably herein. Furthermore, although individually listed, a plurality of means, elements or method actions may be implemented by, e.g., the same entity or object. Additionally, although individual features may be included in different examples or claims, these may possibly be combined, and the inclusion in different examples or claims does not imply that a combination of features is not feasible and/or advantageous.
At block 304, the example client application 200 obtains the token from the cloud server 106 via a network communication. The client application 200 may use the token to make requests to the example cloud server (e.g., to execute one or more workloads or portion of workload(s)). As described above, the client application 200 may determine that a workload or portion of a workload should be executed locally instead of at the cloud server 106. For example, the client application 200 may determine that the computing device 102 is capable and available to execute the workload and/or that the workload corresponds to sensitive and/or private data. Accordingly, in response to determining that a workload or a portion of a workload (e.g., a workload originally scheduled and/or tagged to be executed at the cloud server 106) should be executed locally, as opposed to at the cloud server 106, the example client application 200 transits an inquiry regarding whether container orchestration is available (block 306). For example, although the client application 200 may determine that the workload should be executed locally, the computing device 102 may not have a container downloaded to be able to execute the workload. Accordingly, the example client application 200 transmits the container orchestration inquiry to the example client circuitry 214 to determine if one of the service container circuitry 212a-212n can execute a container to execute the workload.
At block 308, after the example client circuitry 214 obtains the inquiry, the client circuitry 214 determines if container orchestration is available. For example, the client circuitry 214 determines if a container corresponding to the request has been deployed, downloaded, and/or implemented by one or more of the service container circuitry 212a-212n. If the example client circuitry 214 determines that container orchestration is available (block 308: YES), the example client circuitry 214 transmits a response to the client application 200 indicating that container orchestration is available (block 310). If the example client circuitry 214 determines that container orchestration is not available (block 308: NO), the example client circuitry 214 transmits a response to the client application 200 indicating that container orchestration is not yet available (block 312). After determining that container orchestration is not available, the example client circuitry 214 accesses, requests, and/or downloads the container (block 314). In this manner, the client circuitry 214 can let the client application 200 know when/if container orchestration is available for local execution of a workload. In some examples, the client circuitry 214 can transmit an alert, trigger, interrupt, etc. to the example client application 200 when the container is available. In some examples, the client application 200 may periodically re-inquire about the availability of the container orchestration.
At block 316, the example client application 200 determines if container orchestration is available (e.g., to execute the workload and/or a portion of the workload) based on the response from the client circuitry 214. If the example client application 200 determines that container orchestration is not available (block 316: NO), the example client application 200 uses the browser 202 to transmit an REST API cloud to the cloud server 106 (e.g., to execute a workload or a portion of the workload) (block 318). The example application 200 uses the browser 202 to submit a request with the token using a TLS protocol. In some examples, the client application 200 may, in response to determining that container orchestration is not available, the client application 200 may wait until container orchestration is available. The client application 200 may determine that container orchestration is available based on a subsequent inquiry and/or indication from the client circuitry 214. After block 318, control returns to block 306 (e.g., after a threshold amount of time) to transmit a subsequent container orchestration inquiry. In this manner, if the client application 200 determines that a workload can be executed locally, but the container is not yet available, the client application 200 can start the workload at the cloud-based server 106 and transition to local execution of the workload when the container is available locally.
If the example client application 200 determines that container orchestration is available (block 316: YES), the client application 200 transmits a REST API call to the local API gateway 206 using the example browser 202 based on a system local network stack IP address (block 320). For example, the client application 200 transmits a API call on a URL that corresponds to a system local network stack IP address. As described above, the use of the local API gateway 206 and the system local network stack IP address provides a secure channel for API calls without the cost, complexity, and security risk of a TLS protocol.
At block 322, the example interface 208 of the local API gateway 206 obtains the rest API call from the client application 200. At block 324, the example request routing circuitry 210 determines and/or selects one or more of the service container circuitries 212a-212n that is capable and/or available to implement a container corresponding to the API call (e.g., the container has been downloaded and/or implemented in the one or more of the service container circuitries). For example, the API call may correspond to execution of a particular workload that can be executed using a particular container. Accordingly, the example service container circuitry 212a-212n determines which service container circuitry(ies) 212a-212n implement the container corresponding to the workload that corresponds to the API call. The request routing circuitry 210 determines which container corresponds to the rest API call based on the URL, a header of the URL, and/or any other data provided by the example client application 200. For example, the URL, header of the URL and/or other data may identify a workload and/or container and/or may include data that is may be mapped to a particular workload and/or container. In this manner, the request routing circuitry 210 can determine which container corresponds to the API call and determine which service container circuitry(ies) implements the container.
At block 326, the example request routing circuitry 210 uses (e.g., instructs) the interface 208 to forward a workload execution request corresponding to the REST API call to the determined service container circuitry. After the service container circuitry 212a-n obtains the workload execution request, the service container circuitry 212a-n executes the workload or the portion of the workload. At block 328, the example interface 208 obtains results (e.g., an output) from the service container circuitry 212a-212n that executed the workload. At block 330, the example metering and/or logging circuitry 211 logs data corresponding to the local execution of the workload. For example, the metering and/or logging circuitry 211 may log that the workload was executed locally, a time of when the REST API was obtained, a time when the results were complete, the amount and/or type of resources used to execute the workload, etc. The example metering and/or logging circuitry 211 can store the logging and/or metering data in memory, storage, a database, etc. In some examples, the metering and/or logging circuitry 211 may transmit the logging and/or metering information stored in memory to an external device (e.g., for external tracking, error logging, troubleshooting, etc.). At block 322, the example request routing circuitry 210 uses (e.g., instructs) the interface 208 to forward the results (e.g., output) of the workload execution to the example client application 200.
The processor platform 400 of the illustrated example includes processor circuitry 412. The processor circuitry 412 of the illustrated example is hardware. For example, the processor circuitry 412 can be implemented by one or more integrated circuits, logic circuits, FPGAs, microprocessors, CPUs, GPUs, DSPs, and/or microcontrollers from any desired family or manufacturer. The processor circuitry 412 may be implemented by one or more semiconductor based (e.g., silicon based) devices. In this example, the processor circuitry 412 implements the example client application 200, the example browser 202, the example platform 204, the example local API gateway 206, the example interface 208, the example request routing circuitry 210, the example metering and/or logging circuitry 211, the example service container circuitry 212a-212n, and the example client circuitry 214 of
The processor circuitry 412 of the illustrated example includes a local memory 413 (e.g., a cache, registers, etc.). The processor circuitry 412 of the illustrated example is in communication with a main memory including a volatile memory 414 and a non-volatile memory 416 by a bus 418. The volatile memory 414 may be implemented by Synchronous Dynamic Random Access Memory (SDRAM), Dynamic Random Access Memory (DRAM), RAMBUS® Dynamic Random Access Memory (RDRAM®), and/or any other type of RAM device. The non-volatile memory 416 may be implemented by flash memory and/or any other desired type of memory device. Access to the main memory 414, 416 of the illustrated example is controlled by a memory controller 417.
The processor platform 400 of the illustrated example also includes interface circuitry 420. The interface circuitry 420 may be implemented by hardware in accordance with any type of interface standard, such as an Ethernet interface, a universal serial bus (USB) interface, a Bluetooth® interface, a near field communication (NFC) interface, a Peripheral Component Interconnect (PCI) interface, and/or a Peripheral Component Interconnect Express (PCIe) interface.
In the illustrated example, one or more input devices 422 are connected to the interface circuitry 420. The input device(s) 422 permit(s) a user to enter data and/or commands into the processor circuitry 412. The input device(s) 422 can be implemented by, for example, an audio sensor, a microphone, a camera (still or video), a keyboard, a button, a mouse, a touchscreen, and/or a voice recognition system.
One or more output devices 424 are also connected to the interface circuitry 420 of the illustrated example. The output device(s) 424 can be implemented, for example, by display devices (e.g., a light emitting diode (LED), an organic light emitting diode (OLED), a liquid crystal display (LCD), a cathode ray tube (CRT) display, an in-place switching (IPS) display, a touchscreen, etc.), a tactile output device, a printer, and/or speaker. The interface circuitry 420 of the illustrated example, thus, typically includes a graphics driver card, a graphics driver chip, and/or graphics processor circuitry such as a GPU.
The interface circuitry 420 of the illustrated example also includes a communication device such as a transmitter, a receiver, a transceiver, a modem, a residential gateway, a wireless access point, and/or a network interface to facilitate exchange of data with external machines (e.g., computing devices of any kind) by a network 426. The communication can be by, for example, an Ethernet connection, a digital subscriber line (DSL) connection, a telephone line connection, a coaxial cable system, a satellite system, a line-of-site wireless system, a cellular telephone system, an optical connection, etc.
The processor platform 400 of the illustrated example also includes one or more mass storage devices 428 to store software and/or data. Examples of such mass storage devices 428 include magnetic storage devices, optical storage devices, floppy disk drives, HDDs, CDs, Blu-ray disk drives, redundant array of independent disks (RAID) systems, solid state storage devices such as flash memory devices and/or SSDs, and DVD drives.
The machine readable instructions 432, which may be implemented by the machine readable instructions of
The cores 502 may communicate by a first example bus 504. In some examples, the first bus 504 may be implemented by a communication bus to effectuate communication associated with one(s) of the cores 502. For example, the first bus 504 may be implemented by at least one of an Inter-Integrated Circuit (I2C) bus, a Serial Peripheral Interface (SPI) bus, a PCI bus, or a PCIe bus. Additionally or alternatively, the first bus 504 may be implemented by any other type of computing or electrical bus. The cores 502 may obtain data, instructions, and/or signals from one or more external devices by example interface circuitry 506. The cores 502 may output data, instructions, and/or signals to the one or more external devices by the interface circuitry 506. Although the cores 502 of this example include example local memory 520 (e.g., Level 1 (L1) cache that may be split into an L1 data cache and an L1 instruction cache), the microprocessor 500 also includes example shared memory 510 that may be shared by the cores (e.g., Level 2 (L2 cache)) for high-speed access to data and/or instructions. Data and/or instructions may be transferred (e.g., shared) by writing to and/or reading from the shared memory 510. The local memory 520 of each of the cores 502 and the shared memory 510 may be part of a hierarchy of storage devices including multiple levels of cache memory and the main memory (e.g., the main memory 414, 416 of
Each core 502 may be referred to as a CPU, DSP, GPU, etc., or any other type of hardware circuitry. Each core 502 includes control unit circuitry 514, arithmetic and logic (AL) circuitry (sometimes referred to as an ALU) 516, a plurality of registers 518, the local memory 520, and a second example bus 522. Other structures may be present. For example, each core 502 may include vector unit circuitry, single instruction multiple data (SIMD) unit circuitry, load/store unit (LSU) circuitry, branch/jump unit circuitry, floating-point unit (FPU) circuitry, etc. The control unit circuitry 514 includes semiconductor-based circuits structured to control (e.g., coordinate) data movement within the corresponding core 502. The AL circuitry 516 includes semiconductor-based circuits structured to perform one or more mathematic and/or logic operations on the data within the corresponding core 502. The AL circuitry 516 of some examples performs integer based operations. In other examples, the AL circuitry 516 also performs floating point operations. In yet other examples, the AL circuitry 516 may include first AL circuitry that performs integer based operations and second AL circuitry that performs floating point operations. In some examples, the AL circuitry 516 may be referred to as an Arithmetic Logic Unit (ALU). The registers 518 are semiconductor-based structures to store data and/or instructions such as results of one or more of the operations performed by the AL circuitry 516 of the corresponding core 502. For example, the registers 518 may include vector register(s), SIMD register(s), general purpose register(s), flag register(s), segment register(s), machine specific register(s), instruction pointer register(s), control register(s), debug register(s), memory management register(s), machine check register(s), etc. The registers 518 may be arranged in a bank as shown in
Each core 502 and/or, more generally, the microprocessor 500 may include additional and/or alternate structures to those shown and described above. For example, one or more clock circuits, one or more power supplies, one or more power gates, one or more cache home agents (CHAs), one or more converged/common mesh stops (CMSs), one or more shifters (e.g., barrel shifter(s)) and/or other circuitry may be present. The microprocessor 500 is a semiconductor device fabricated to include many transistors interconnected to implement the structures described above in one or more integrated circuits (ICs) contained in one or more packages. The processor circuitry may include and/or cooperate with one or more accelerators. In some examples, accelerators are implemented by logic circuitry to perform certain tasks more quickly and/or efficiently than can be done by a general purpose processor. Examples of accelerators include ASICs and FPGAs such as those discussed herein. A GPU or other programmable device can also be an accelerator. Accelerators may be on-board the processor circuitry, in the same chip package as the processor circuitry and/or in one or more separate packages from the processor circuitry.
More specifically, in contrast to the microprocessor 500 of
In the example of
The configurable interconnections 610 of the illustrated example are conductive pathways, traces, vias, or the like that may include electrically controllable switches (e.g., transistors) whose state can be changed by programming (e.g., using an HDL instruction language) to activate or deactivate one or more connections between one or more of the logic gate circuitry 608 to program desired logic circuits.
The storage circuitry 612 of the illustrated example is structured to store result(s) of the one or more of the operations performed by corresponding logic gates. The storage circuitry 612 may be implemented by registers or the like. In the illustrated example, the storage circuitry 612 is distributed amongst the logic gate circuitry 608 to facilitate access and increase execution speed.
The example FPGA circuitry 600 of
Although
In some examples, the processor circuitry 412 of
A block diagram illustrating an example software distribution platform 705 to distribute software such as the example machine readable instructions 432 of
Example methods, apparatus, systems, and articles of manufacture to service workloads locally at a computing device are disclosed herein. Further examples and combinations thereof include the following: Example 1 includes an apparatus to service a workload locally, the apparatus comprising interface circuitry to obtain an indication that a container is locally available to execute a workload, and processor circuitry including one or more of at least one of a central processor unit, a graphics processor unit, or a digital signal processor, the at least one of the central processor unit, the graphics processor unit, or the digital signal processor having control circuitry to control data movement within the processor circuitry, arithmetic and logic circuitry to perform one or more first operations corresponding to instructions, and one or more registers to store a result of the one or more first operations, the instructions in the apparatus, a Field Programmable Gate Array (FPGA), the FPGA including logic gate circuitry, a plurality of configurable interconnections, and storage circuitry, the logic gate circuitry and the plurality of the configurable interconnections to perform one or more second operations, the storage circuitry to store a result of the one or more second operations, or Application Specific Integrated Circuitry (ASIC) including logic gate circuitry to perform one or more third operations, the processor circuitry to perform at least one of the first operations, the second operations, or the third operations to instantiate application circuitry to, after determining that the container is locally available to execute the workload, transmit an application programming interface (API) call to local API gateway circuitry using a system local network stack Internet protocol (IP) address, the local API gateway circuitry to identify service container circuitry to execute the workload based on the API call, and the service container circuitry to utilize the container to execute the workload to generate an output, and the local API gateway circuitry to forward the output to the application circuitry.
Example 2 includes the apparatus of example 1, wherein the application circuitry is to transmit an inquiry to client circuitry corresponding to whether the container is locally available to execute the workload.
Example 3 includes the apparatus of example 2, wherein the processor circuitry is to perform at least one of the first operations, the second operations, or the third operations to instantiate the client circuitry to determine whether the container is locally available, and transmit the indication based on the determination.
Example 4 includes the apparatus of example 2, wherein the processor circuitry is to perform at least one of the first operations, the second operations, or the third operations to instantiate the client circuitry to download the container when the container is not available.
Example 5 includes the apparatus of example 1, wherein the API call is a first API call, the application circuitry to, after determining that the container is not locally available to execute the workload, transmit a second API call to a cloud-based server to execute a first portion of the workload at the cloud-based server.
Example 6 includes the apparatus of example 5, wherein the indication is a first indication, the application circuitry to, after determining that the container is locally available to execute the workload based on a second indication, transmit the API call to the local API gateway circuitry using the system local network stack IP address, the API call corresponding to local execution of a second portion of the workload.
Example 7 includes the apparatus of example 1, wherein the workload is scheduled to be executed at a cloud-based server.
Example 8 includes the apparatus of example 1, wherein the local API gateway circuitry is to select the service container circuitry based on a header of a URL used to transmit the API call, the URL corresponding to the system local network stack IP address.
Example 9 includes the apparatus of example 1, wherein the application circuitry is to transmit the API call without using at least one of a key, a token, or transport layer security.
Example 10 includes the apparatus of example 1, wherein the local API gateway circuitry is to log data corresponding to the local execution of the workload, and transmit the logged data to an external device.
Example 11 includes an apparatus to service a workload locally, the apparatus comprising at least one memory, machine readable instructions, and processor circuitry to at least one of instantiate or execute the machine readable instructions to after determining that a container is locally available to execute a workload, transmit an application programming interface (API) call to local API gateway circuitry using a system local network stack Internet protocol (IP) address, select service container circuitry that corresponds to the container to execute the workload based on the API call, and to execute the workload by implementing the container to generate an output, and forward the output to an application that sent the API call.
Example 12 includes the apparatus of example 11, wherein the processor circuitry is to determine whether the container is locally available to execute the workload, and download the container when the container is not locally available.
Example 13 includes the apparatus of example 11, wherein the API call is a first API call, the processor circuitry to after determining that the container is not locally available to execute the workload, transmit a second API call to a cloud-based server to execute a first portion of the workload at the cloud-based server, and after determining that the container is locally available to execute the workload, transmit the API call to the local API gateway circuitry using the system local network stack IP address, the API call corresponding to local execution of a second portion of the workload.
Example 14 includes the apparatus of example 11, wherein the workload is scheduled to be executed at a cloud-based server.
Example 15 includes the apparatus of example 11, wherein the processor circuitry is to select the service container circuitry based on a header of a URL used to transmit the API call, the URL corresponding to the system local network stack IP address.
Example 16 includes the apparatus of example 11, wherein the processor circuitry is to transmit the API call without using at least one of a key, a token, or transport layer security.
Example 17 includes the apparatus of example 11, wherein the processor circuitry is to log data corresponding to the local execution of the workload, and transmit the logged data to an external device.
Example 18 includes a non-transitory machine readable storage medium comprising instructions that, when executed, cause processor circuitry to at least cause transmission of an application programming interface (API) call to local API gateway circuitry using a system local network stack Internet protocol (IP) address based on a determination that a container is locally available to execute a workload, identify service container circuitry that can implement the container to execute the workload based on the API call, and utilize the service container circuitry to execute the workload to generate an output, and forward the output to an application corresponding to the API call.
Example 19 includes the computer readable medium of example 18, wherein the instructions cause the processor circuitry to determine whether the container is locally available to execute the workload, and download the container when the container is not locally available.
Example 20 includes the computer readable medium of example 18, wherein the API call is a first API call, the instructions to cause the processor circuitry to after determining that the container is not locally available to execute the workload, cause transmission of a second API call to a cloud-based server to execute a first portion of the workload at the cloud-based server, and after determining that the container is locally available to execute the workload, cause transmission of the API call to the local API gateway circuitry using the system local network stack IP address, the API call corresponding to local execution of a second portion of the workload.
Example 21 includes the computer readable medium of example 18, wherein the workload is scheduled to be executed at a cloud-based server.
Example 22 includes the computer readable medium of example 18, wherein the instructions cause the processor circuitry to select the service container circuitry based on a header of a URL used to transmit the API call, the URL corresponding to the system local network stack IP address.
Example 23 includes the computer readable medium of example 18, wherein the instructions cause the processor circuitry to cause transmission of the API call without using at least one of a key, a token, or transport layer security.
Example 24 includes an apparatus to service a workload locally, the apparatus comprising means for obtaining an indication that a container is locally available to execute a workload, and means for transmitting an application programming interface (API) call to forwarding means using a system local network stack Internet protocol (IP) address to after determining that the container is locally available to execute the workload, means for identifying execution means to execute the workload based on the API call, and the execution means to utilize the container to execute the workload to generate an output, and the forwarding means to forward the output to the means for transmitting.
Example 25 includes the apparatus or example 24, further including means for determining to determine whether the container is locally available to execute the workload, and download the container when the container is not locally available.
From the foregoing, it will be appreciated that example systems, methods, apparatus, and articles of manufacture have been disclosed that service workloads locally at a computing device. Disclosed systems, methods, apparatus, and articles of manufacture improve the efficiency of using a computing device by facilitating a secure and efficient technique for executing cloud-based workloads and/or portions of workloads locally at a computing device without the use of a TLS session/protocol. Examples disclosed herein including a local API gateway that enables an application to make API calls using a system local network stack to facilitate local execution of a workload without the need of a key exchanging session/protocol such as TLS. By leveraging the system local network stack (e.g., a localhost), examples disclosed herein provide a secure protocol for transmitting API requests that cannot be intercepted by a third party. Additionally, the use of a system local network stack is faster and more efficient than key exchange-based techniques due to a reduction in delay and/or cost of execution of the workloads due to network latency, reducing compute, network, and/or storage costs, etc. Disclosed systems, methods, apparatus, and articles of manufacture are accordingly directed to one or more improvement(s) in the operation of a machine such as a computer or other electronic and/or mechanical device.
The following claims are hereby incorporated into this Detailed Description by this reference. Although certain example systems, methods, apparatus, and articles of manufacture have been disclosed herein, the scope of coverage of this patent is not limited thereto. On the contrary, this patent covers all systems, methods, apparatus, and articles of manufacture fairly falling within the scope of the claims of this patent.