METHODS AND APPARATUS TO STIMULATE HEART ATRIA

Abstract
A method and apparatus for treatment of hypertension and heart failure by increasing vagal tone and secretion of endogenous atrial hormones by excitory pacing of the heart atria. Atrial pacing is done during the ventricular refractory period resulting in atrial contraction against closed AV valves, and atrial contraction rate that is higher than the ventricular contraction rate. Pacing results in the increased atrial wall stress. An implantable device is used to monitor ECG and pace the atria in a nonphysiologic manner.
Description

SUMMARY OF THE DRAWINGS

A preferred embodiment and best mode of the invention is illustrated in the attached drawings that are described as follows:



FIG. 1 illustrates the electric excitory pathways and chambers of a human heart.



FIG. 2 illustrates the embodiment of the invention with a two lead pacing system.



FIG. 3 illustrates one sequence of natural and induced stimulation pulses.



FIG. 4 illustrates intermittent asynchronous pacing.



FIG. 5 illustrates timing of the refractory period pacing.





DETAILED DESCRIPTION


FIG. 1 shows a normal heart. Electrical pulses in the heart are controlled by special groups of cells called nodes. The rhythm of the heart is normally determined by a pacemaker site called the sinoatrial (SA) node 107 located in the posterior wall of the right atrium 102 near the superior vena cava (SVC) 101. The SA node consists of specialized cells that undergo spontaneous generation of action potentials at a rate of 100-110 action potentials (“beats”) per minute. This intrinsic rhythm is strongly influenced by autonomic nerves, with the vagus nerve being dominant over sympathetic influences at rest. This “vagal tone” brings the resting heart rate down to 60-80 beats/minute in a healthy person. Sinus rates below this range are termed sinus bradycardia and sinus rates above this range are termed sinus tachycardia.


The sinus rhythm normally controls both atrial and ventricular rhythm. Action potentials generated by the SA 107 node spread throughout the atria, depolarizing this tissue and causing right atrial 102 and left atrial 106 contraction. The impulse then travels into the ventricles via the atrioventricular node (AV node) 108. Specialized conduction pathways that follow the ventricular septum 104 within the ventricles rapidly conduct the wave of depolarization throughout the right 103 and left 105 ventricles to elicit the ventricular contraction. Therefore, normal cardiac rhythm is controlled by the pacemaker activity of the SA node and the delay in the AV node. Abnormal cardiac rhythms may occur when the SA node fails to function normally, when other pacemaker sites (e.g., ectopic pacemakers) trigger depolarization, or when normal conduction pathways are not followed.



FIG. 2 shows a heart treated with one embodiment of the invention. Pulse generator (pacemaker) 201 is implanted in a tissue pocket in the patient's chest under the skin. In this embodiment the generator 201 is connected to the heart muscle by two electrode leads. The ventricular lead 202 is in contact with the excitable heart tissue of the right ventricle 103. The atrial lead 203 is in contact with the excitable heart tissue of the right atrium 102. It is understood that the pacemaker can have more leads such as a third lead to pace the left ventricle 105. It is expected that in future cardiac pacemakers will have even more leads connecting them to various parts of the anatomy.


Leads 203 and 202 can combine sensing and pacing electrodes as known and common in the field. The atrial lead 203 can therefore sense the natural intrinsic contractions of the atria before they occur and communicate them to the generator 201. The generator is equipped with the programmable logic that enables it to sense signals, process the information, execute algorithms and send out electric signals to the leads.


In this embodiment the natural conduction path between the SA node 107 and the AV node 108 is blocked. The patient may already have a natural complete AV block. In this case no intervention is needed. If the patient has functional electric pathways from atria to ventricles, the patient's AV node can be disabled (blocked) by tissue ablation. It is understood that many irreversible and reversible methods of selectively blocking conduction in the heart are known. These include treatment with chemical agents and blocking with subthreshold electric stimulation (non-excitatory stimulation that does not cause muscle fibers to contract). Ablation of the AV node is used as an example since it is widely accepted and easily performed using RF energy catheters. Other devices that use cold, laser and ultrasound energy to perform ablation are also known.



FIG. 3 illustrates one possible embodiment of the invention with a sequence of stimulation pulses. Pulses are simplified and presented as rectangular blocks spaced in time as represented by the X-axis.


Trace 301 illustrates the natural or intrinsic rate generated by the SA node of the heart. The SA node generates pulses 304, 305, 306 and 307. These pulses can be sensed by the atrial lead 203.


In response to the sensing of intrinsic atrial pulses, the pulse generator 201 generates a series of pulses represented by the trace 302. Pulses are conducted to the atria by the atrial lead 203. Device generated atrial stimulation pulses 311, 313, 315 and 317 are in synchrony with the SA node pulses 304, 305, 306 and 307. They represent the intrinsic heart rate. The generator 201 (based on an embedded algorithm) also generates extra atrial pulses 312, 314 and 316. Together synchronous pulses 311, 313, 315, 317 and asynchronous pulses 312, 314, 316 determine the atrial rate of the heart.


Trace 303 represents ventricular stimulation pulses 321, 322, 323 and 324 conducted to the ventricle of the heart by the ventricular lead 202. The AV node of the heart in this embodiment is blocked. Therefore the ventricular stimulation is generated by the generator 201 based on an embedded algorithm. To ensure better performance of the heart ventricular pulses 321, 322, 323 and 324 are synchronized to the synchronous atrial pulses 311, 313, 315 and 317 with a short delay 308 determined by the embedded algorithm that simulates the natural delay of the AV node conduction.


The algorithm illustrated by the FIG. 3 can be described as a following sequence:


a. sensing an intrinsic SA node pulse (P-wave),


b. generating a synchronous atrial pacing pulse,


c. calculating the intrinsic atrial rate based on previous SA node pulse intervals,


d. generating synchronous ventricular pacing signal delayed from the synchronous atrial pacing signal at the ventricular rate equal to the intrinsic SA node excitation rate (sinus rhythm),


d. calculating the desired increased atrial rate, such as for example, a 2:1 (A:V) rate,


e. generating asynchronous atrial pacing signal based on the calculated increased atrial rate, and


f. waiting for the next intrinsic SA node pulse (P-wave).


It is understood that this example of an algorithm is an illustration and many other embodiments of the invention can be proposed. It can be envisioned that more than 2:1 (atrial:ventricular) rate can be tolerated by the patient or that less than 2:1 rate is desired such as accelerating every second atrial beat.


It may be not essential to preserve the natural sinus rhythm (from the SA node) is preserved. In some patients it may be desired for the algorithm to take over the heart rate and force all the atrial contraction. Pacing modalities that do not rely on the SA node to generate the heart rate are known and used to treat bradycardia. The SA node of a patient can be ablated similar to the AV node and the embedded pacemaker algorithm will pace the atria. Alternatively, atria may be paced if the natural SA node pulse is not senses within the expected time from the last ventricular contraction. Various activity sensors such as accelerometers can be used to accelerate the heart rate as needed.



FIG. 4 illustrates intermittent application of the proposed therapy. It is possible that some patients will not need or will not be able to tolerate continuous asynchronous A-V (atria-ventricular) pacing. In such patient period of normal (synchronous) pacing 401 is followed by the period of asynchronous (accelerated atrial) pacing 402 followed again by the period of synchronous pacing 403. The ventricular pacing rate 405 in this example stays the same. Switching between rates can be based on timing, patient's activity or physiologic feedbacks. For example, the pattern of therapy using electrical stimuli to generate high atrial rates can be intermittent of varying duration of accelerated atrial pacing in intervals of 10-60 minute durations occurring, for example, 3 times per day.


Commonly, in comparison to previous devices, this embodiment of the invention purposefully creates ratios of atrial to ventricular contraction higher than 1:1, such as for example in the range of 1:1 to 4:1. In addition, any previous device that allowed more that a 1:1 ratio of contraction based this relationship on sensing native atrial depolarization and deferring generation of a ventricular pacing stimulus (skipping premature ventricular beats). In contrast, in the illustrated embodiment, the higher than 1:1 rate is intentionally and controllably initiated by the implantable generator. As a result the atrial rate is increased to a rate which causes the release of sufficient endogenous naturetic hormone to result in a therapeutically beneficial increase in blood plasma levels of the hormones or increased levels in any other vascular or non-vascular space in which these hormones a found.


It is desirable to cause a therapeutic increase of blood plasma ANP and BNP via an increased endogenous release of ANP and BNP from the atria of the patient's heart. Atrial release is mediated via increase of atrial wall stress. The best embodiment of the invention known to the inventors at the time of the invention is rapid pacing of the atria that is expected to increase the rate of contractions of the atria and release ANP and BNP. The invention has been described in connection with the best mode now known to the applicant inventors. The invention is not to be limited to the disclosed embodiment. Rather, the invention covers all of various modifications and equivalent arrangements included within the spirit and scope of the appended claims.



FIG. 5 illustrates the refractory period atrial pacing of the heart. The heart (See FIG. 1) has intact electric conduction including substantially normal physiologic intact A-V node conduction delay. Pacing in this embodiment is implemented by electric stimulation with an atrial lead 203 (See FIG. 2). Sensing of electric activity can be performed with the atrial lead 203 or ventricular lead 202.


Natural pacemaker or SA node of the heart initiates the Heart cycle with the P wave 501 of the ECG that corresponds to the beginning of atrial contraction. It is also the beginning of the heart systole. Atrial pressure 502 increases and atrial volume 503 decreases. This time corresponds to the beginning of the atrial refractory period 508. During this period atria can not be paced to contract.


The P wave of the ECG is followed by the Q wave 505 that signifies the beginning of the isovolumic contraction of the ventricle. Ventricular pressure 504 rise begins rapidly. In response the Tricuspid and Mitral valves of the heart close. Ventricular refractory period 510 begins. At the end of isovolumic contraction 509 Pulmonary and Aortic valves open and the ejection of blood from the ventricle begins. Ventricular pressure reaches its peak in the middle of systole 519. Atrium is passively filled with blood as it relaxes 513. Approximately by the middle of systole both heart atria are filled with blood 511 and their refractory period is over. Atria are primed for a new contraction while the ventricle is ejecting blood. A-V valves are closed. At the same time the ventricle is still refractory and will not start another contraction in response to a natural or artificial pacing stimulus. Heart waves Q 505, R 506 and S 507 are commonly used markers of the beginning of the isovolumic contraction and the beginning of ventricular ejection (S wave). All modern pacemakers are equipped with meant to read and analyze the ECG that are suitable for this embodiment of the invention.


Systole ends when the aortic valve closes 512. Isovolumic relaxation of the ventricle starts. This point also corresponds to the middle of the T wave 514 of the ECG. Importantly for the invention, the middle of T wave 514 corresponds to the end of the absolute refractory period of the ventricle. At the end of the T-wave Tricuspid and Mitral valves open and the atrium volume starts to drop 520 as the blood starts to flow from the atria into ventricles to prime them for the next ventricular contraction and ejection.


For this embodiment of the invention the window of pacing opportunity 515 starts after the end of the atrial refractory period 508 and preferably but not exclusively after the atrium is filled with blood 511 and extended. During this window the atrium is primed and can be paced with a pacemaker pulse 516 that can occur at approximately the middle of systole or approximately 100-150 ms following the detected R wave 506 and/or 300 ms after P wave 501 is detected. Both P-wave and R-wave can be used by themselves or in combination to trigger pacing 516. In response to pacing 516 atrium contracts generating a pressure rise 517 that results in the desired increased stress of the atrial wall muscle, release of atrial hormones and vagal neuro activation. Significantly the window 515 overlaps the ventricular refractory period 510. Pacing atria outside of that time period is not desired since it can cause an arrhythmia and a premature ventricular beat.


As a result of the proposed therapy heart atria will beat at the rate 2:1 in relation to the heart ventricles. First physiologic atrial contraction 502 will be initiated by the natural pacemaker of the heart. Second non-physiologic atrial contraction 517 will occur during the heart systole, when the ventricle is refractory to stimulation. It may not be necessary to pace during every natural heart beat. Pacing can be applied only during part of the day or very second or third beat to give heart the needed rest and prevent of delay potential chronic dilation of the double-paced atria and potential heart failure.



FIG. 6 Further illustrates relationship between the electric activity of the heart and the proposed novel pacing method. Atrial refractory period corresponds to the depolarization of cells in the atrium muscle 601. Ventricular refractory period corresponds to the depolarization of cells in the muscle of the ventricle 510. Pacing 516 generates second atrial contraction during the window 515. Appropriate trigger points such as P-Q-R-S waves of the ECG 603 can be used by the embedded pacemaker software to generate the pacing spike 516 after an appropriate delay has elapsed from the selected P or R wave or both. This delay can be adjusted by the physician by reprogramming the pacemaker or automatically corrected based on the patient's heart rate. In most general terms pacing should occur after the R wave and before the T wave of the ECG 603. A delay of approximately 100-150 ms can be implemented after the R wave to allow atria to safely exit the relative refractory period and to allow atria to distend and fill with blood.


The invention has been described in connection with the best mode now known to the applicant inventors. The invention is not to be limited to the disclosed embodiment. Rather, the invention covers all of various modifications and equivalent arrangements included within the spirit and scope of the appended claims.

Claims
  • 1. A method for pacing a heart of a patient comprising: artificially pacing an atria of the heart during a period between a end of an atrial refractory period and an end of a ventricular refractory period of the heart.
  • 2. The method in claim 1 wherein pacing includes excitory simulation to the atria of the heart.
  • 3. The method in claim 1 wherein the pacing is applied to multiple atria of the heart.
  • 4. The method in claim 1 further comprising contraction of the atria due to pacing.
  • 5. The method in claim 1 wherein the artificial pacing is performed solely during the period.
  • 6. A method in claim 1 where the pacing stimulates the heart to contract the atria without an immediately following contraction of a ventricle of the heart.
  • 7. The method in claim 6 where the stimulation contracts the atria against a closed heart valve.
  • 8. The method in claim 6 where the contraction of the atria against the closed heart valve distends walls of the atria.
  • 9. the method in claim 1 further comprising detecting a P wave of the heart.
  • 10. A method as in claim 1 including detection of heat T wave.
  • 11. A method as in claim 1 where pacing occurs during Absolute refractory phase of the ventricle of the heart.
  • 12. A method for stressing walls of an atrium of a heart of a patient comprising: detecting an end of an atrial refractory period of the heart,predicting an end of the ventricular refractory period,pacing an atria of the heart between the detected end of the atrial refractory period and the predicted end of the ventricular refractory period.
  • 13. The method in claim 12 further comprising achieving a rate of atrial contractions faster than a rate of ventricular contractions of the heart due to the pacing.
  • 14. The method in claim 12 wherein the pacing yields an atrial contraction and a subsequent atrial contraction occurs naturally without pacing.
  • 15. The method in claim 14 wherein the pacing is performed on alternative atrial contractions and intervening atrial contractions occur naturally.
  • 16. The method in claim 12 wherein in four successive atrial contractions pacing is applied to yield two successive atrial contractions and the other two successive contractions occur naturally without pacing.
Parent Case Info

This application claims the benefit of the U.S. Provisional Patent Application 60/826,847, filed Sep. 25, 2006, the entirety of which is incorporated by reference herein.

Provisional Applications (1)
Number Date Country
60826847 Sep 2006 US