1. Field of the Disclosure
The present disclosure relates to methods and apparatuses for attaching soft tissue to orthopaedic implants. More particularly, the present disclosure relates to methods and apparatuses for attaching soft tissue to a proximal tibial implant and a proximal femoral implant.
2. Description of the Related Art
Orthopaedic implants are commonly used to replace at least a portion of a patient's joint in order to restore the use of the joint, or to increase the use of the joint, following deterioration due to aging or illness, injury due to trauma, or disease.
The present disclosure provides methods and apparatuses for attaching soft tissue and/or bone to orthopaedic implants. In one exemplary embodiment, the methods and apparatuses are used to attach soft tissue and/or bone to a proximal tibial implant. In another exemplary embodiment, the methods and apparatuses are used to attach soft tissue and/or bone to a proximal femoral implant.
The above-mentioned and other features of the disclosure, and the manner of attaining them, will become more apparent and will be better understood by reference to the following description of embodiments of the disclosure taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate embodiments of the disclosure and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
Referring now to
Body 32 may be formed from relatively light-weight material, such as titanium, a cobalt chromium alloy, or other suitable biocompatible material, for example, thereby making it easier for the patient to lift and extend the knee joint, particularly in procedures which require extensive removal of muscle proximate the knee joint. In one embodiment, tibial plate 34 may be formed as a modular component of proximal tibial implant 30 to provide more interoperative options. In an exemplary embodiment, tibial plate 34 is formed as a wear-resistant tibial plate to minimize debris from articulation with another component (not shown) of the knee joint. Mating structure 36 may be formed complementary to a meniscal component (not shown) of the knee joint to provide either a mobile or a non-mobile bearing connection between proximal tibial implant 30 and the meniscal component. Proximal tibial implant 30 may also include rotational adjustment tabs 38 at distal end 40 of proximal tibial implant 30 to allow for in vivo rotational adjustment of proximal tibial implant 30 relative to another implant or to the remaining structure of the tibia. Rotational adjustment tabs 38 may generally extend distally from body 32 along a lateral and/or a medial side of implant 30. A plurality of tabs 38 may be utilized or a single tab 38 may be utilized.
In an exemplary embodiment, proximal tibial implant 30 also includes soft tissue attachment plate 44 including a plurality of fastener or suture apertures 46. Attachment plate 44 may be positioned on an anterior surface of proximal tibial implant 30 and may be integrally formed with proximal tibial implant 30. In one embodiment, attachment plate 44 is formed as a modular component of proximal tibial implant 30. In another embodiment, attachment plate 44 is positioned in a recess (not shown) provided on the anterior surface of proximal tibial implant 30. Attachment plate 44 may generally have a relatively thin anterior to posterior thickness, e.g., as low as approximately 1 mm to as high as approximately 5 mm, such as to define a relatively slim profile such that attachment plate 44 does not protrude from proximal tibial implant 30 and consequently potentially interfere with other anatomical structures. For example, in an exemplary embodiment, the anterior surface of attachment plate 44 is substantially flush with the remainder of the anterior surface of proximal tibial implant 30. Apertures 46 may be generally aligned with respective throughbores 48 (
As described further below, attachment plate 44 may include at least one porous surface 45, such as a surface to facilitate ingrowth of soft tissues. In one embodiment, porous surface 45 may be formed of a material having a cellular structure which resembles bone and approximates the physical and mechanical properties of bone, thereby enabling rapid and extensive soft tissue infiltration and strong attachment of soft tissue structures thereto. For example, the material may be a highly porous biomaterial having a porosity as low as 55, 65, or 75 percent and as high as 80, 85, or 90 percent. An example of such a material is produced using Trabecular Metal™ technology generally available from Zimmer, Inc., of Warsaw, Ind. Trabecular Metal™ is a trademark of Zimmer Technology, Inc. Such a material may be formed from a reticulated vitreous carbon foam substrate which is infiltrated and coated with a biocompatible metal, such as tantalum, etc., by a chemical vapor deposition (“CVD”) process in the manner disclosed in detail in U.S. Pat. No. 5,282,861, the disclosure of which is expressly incorporated herein by reference. In addition to tantalum, other metals such as niobium, or alloys of tantalum and niobium with one another or with other metals may also be used.
Generally, the porous tantalum structure includes a large plurality of ligaments defining open spaces therebetween, with each ligament generally including a carbon core covered by a thin film of metal such as tantalum, for example. The open spaces between the ligaments form a matrix of continuous channels having no dead ends, such that growth of cancellous bone through the porous tantalum structure is uninhibited. The porous tantalum may include up to 75%-85% or more void space therein. Thus, porous tantalum is a lightweight, strong porous structure which is substantially uniform and consistent in composition, and closely resembles the structure of natural cancellous bone. The porous tantalum structure may be made in a variety of densities in order to selectively tailor the structure for particular applications. In particular, as discussed in the above-incorporated U.S. Pat. No. 5,282,861, the porous tantalum may be fabricated to virtually any desired porosity and pore size, and can thus be matched with the surrounding natural bone in order to provide an improved matrix for bone ingrowth and mineralization. Such porous material facilitates ingrowth of soft tissue for enhanced attachment of soft tissue structures to proximal tibial implant 30. For example, struts which extend from porous surface 45 are generally rough which facilitates holding a soft tissue structure in such a manner that damage and disengagement of the soft tissue structure is discouraged. The porous material may have a generally corrugated surface to further facilitate biological fixation of soft tissue structures thereto.
As shown in
In operation, a surgeon may attach a soft tissue structure, such as muscle, a ligament, a capsule, and/or a tendon, for example, and/or bone to proximal tibial implant 30. The surgeon positions the soft tissue structure in contact with the anterior surface of attachment plate 44. At least one suture is then threaded through a plurality of apertures 46, 46a and throughbores 48, 48a to maintain contact between the soft tissue structure and attachment plate 44. In contrast to sutures, a surgeon may also use surgical tape or surgical cables, for example. The surgeon may select any or all apertures 46, 46a and throughbores 48, 48a to at least temporarily secure the soft tissue structure to proximal tibial implant 30. In one embodiment, the sutures may be biodegradable after a period of time in which the soft tissue structure is permanently attached to proximal tibial implant 30 via ingrowth of the soft tissue structure into porous surface 45 of attachment plate 44. The close proximity of apertures 46, 46a in relation to contact between the soft tissue structure and attachment plate 44 further facilitates more direct contact between the soft tissue structure and attachment plate 44. Alternatively, the soft tissue structure may be first attached to attachment plate 44 and then attachment plate 44 is attached to body 32, thereby providing potential for tensioning the soft tissue structure prior to securement of attachment plate 44 to body 32.
Referring now to
In operation, a surgeon may attach a soft tissue structure, such as a muscle, a ligament, a capsule, and/or a tendon, for example, and/or bone to proximal tibial implant 30A. The surgeon positions the soft tissue structure in contact with the anterior surface of attachment plate 44. At least one optional washer 50 may then be moved from the first position into the second position to mechanically fixate the soft tissue structure with attachment plate 44. Each washer 50 may include a locking mechanism to lock washer 50 in the second position. In an exemplary procedure, a surgeon may pull or otherwise manipulate a soft tissue structure in close proximity to attachment plate 44, such as a portion of a calf muscle, for example, and use a washer 50 to pull and engage such soft tissue structure into contact with porous surface 45 of attachment plate 44 such that the soft tissue structure is fixated to proximal tibial implant 30A via washer 50. Washers 50 may be positioned to either pull such a soft tissue structure from either a medial or a lateral side of proximal tibial implant 30A. Alternatively, instead of washers 50, a surgeon may suture tissue to tissue to create a “sling” around implant 30A.
Also, at least one suture may be threaded through a plurality of apertures 46, 46a and throughbores 48, 48a to further maintain contact between the soft tissue structure and attachment plate 44. The surgeon may select any or all apertures 46, 46a and throughbores 48, 48a to secure the soft tissue structure to proximal tibial implant 30A. In one embodiment, the sutures may be biodegradable after a period of time in which the soft tissue structure is permanently attached to proximal tibial implant 30A via ingrowth of the soft tissue structure into porous surface 45 of attachment plate 44. The close proximity of apertures 46, 46a in relation to contact between the soft tissue structure and attachment plate 44 further facilitates more direct contact between the soft tissue structure and attachment plate 44 and enhances the ingrowth of the soft tissue structure into porous surface 45. Moreover, washers 50 provide a mechanical fixation between the soft tissue structure and proximal tibial implant 30A. Thus, the soft tissue structure may be both biologically and mechanically affixed to proximal tibial implant 30A. Alternatively, the soft tissue structure may be first attached to attachment plate 44 and then attachment plate 44 is attached to body 32.
Referring now to
In operation, a surgeon may attach a soft tissue structure, such as a muscle, a ligament, a capsule, and/or a tendon, for example, and/or bone to proximal tibial implant 30B. The surgeon positions the soft tissue structure in contact with the anterior surface of attachment plate 44A. At least one suture is then threaded through a plurality of apertures 46, 46a and throughbores 48, 48a to maintain contact between the soft tissue structure and attachment plate 44A. The surgeon may select any or all apertures 46, 46a and throughbores 48, 48a to secure the soft tissue structure to proximal tibial implant 30B. In one embodiment, the sutures may be biodegradable after a period of time in which the soft tissue structure is permanently attached to proximal tibial implant 30B via ingrowth of the soft tissue structure into porous surface 56 of attachment plate 44A. The close proximity of apertures 46, 46a in relation to attachment plate 44A further facilitates more direct contact between the soft tissue structure and attachment plate 44A. Alternatively, the soft tissue structure may be first attached to attachment plate 44A and then attachment plate 44A is attached to body 32.
Referring now to
In operation, a surgeon may attach a soft tissue structure, such as a muscle, a ligament, a capsule, and/or a tendon, for example, and/or bone to proximal tibial implant 30C. The surgeon positions the soft tissue structure in contact with the anterior surface of attachment plate 44B. At least one suture is then threaded through a plurality of apertures 46, 46a and throughbores 48, 48a to maintain contact between the soft tissue structure and attachment plate 44B. The surgeon may select any or all apertures 46, 46a and throughbores 48, 48a to secure the soft tissue structure to proximal tibial implant 30C. Furthermore, the surgeon may thread at least one suture through groove 62 and around extension 61 of attachment plate 44B and through distal aperture 46b in body 32 to further facilitate mechanical fixation and stabilization of either or both of attachment plate 44B to body 32 and/or the soft tissue structure to proximal tibial implant 30C. In one embodiment, the sutures may be biodegradable after a period of time in which the soft tissue structure is permanently attached to proximal tibial implant 30C via ingrowth of the soft tissue structure into porous surface 45 of attachment plate 44B. The close proximity of apertures 46, 46a, 46b in relation to contact between the soft tissue structure and attachment plate 44B further facilitates more direct contact between the soft tissue structure and attachment plate 44B, thereby enhancing the ingrowth of the soft tissue structure into porous surface 45. Alternatively, the soft tissue structure may be first attached to attachment plate 44B and then attachment plate 44B is attached to body 32. In another embodiment, the soft tissue structure is positioned between attachment plate 44B and body 32 and then attachment plate 44B is attached to body 32 via fastener 64. A porous surface on the posterior surface of attachment plate 44B and on the surface of recess 60 facilitates ingrowth of the soft tissue structure into proximal tibial implant 30C. In one embodiment, attachment plate 44B is formed of a material which allows soft tissue and blood vessels to grow through the plate. In this manner, attachment plate 44B may secure a soft tissue structure, such as the patellar tendon, to implant 30C and then a muscle, such as a calf muscle, may be wrapped over the anterior surface of attachment plate 44B to facilitate blood flow through attachment plate 44B, thereby reducing the potential of subcutaneous irritation and necrosis of the soft tissue structure.
Referring now to
In operation, a surgeon may attach a soft tissue structure, such as a muscle, a ligament, a capsule, and/or a tendon, for example, and/or bone to proximal tibial implant 30D. The surgeon positions the soft tissue structure in contact with the anterior surface of attachment plate 44C. At least one suture is then threaded through a plurality of apertures 46 and throughbores 48 to maintain contact between the soft tissue structure and attachment plate 44C. The surgeon may select any or all apertures 46 and throughbores 48 to secure the soft tissue structure to proximal tibial implant 30D. In one embodiment, the sutures may be biodegradable after a period of time in which the soft tissue structure is permanently attached to proximal tibial implant 30D via ingrowth of the soft tissue structure into porous surface 45 of attachment plate 44C. The close proximity of apertures 46 in relation to attachment plate 44C further facilitates more direct contact between the soft tissue structure and attachment plate 44C. Moreover, recesses 68, 70 facilitate easier suture passage through apertures 46 and throughbores 48 and the thinness of width W of throughbore 48 enhances the ability to pass a curved suture needle therethrough. Alternatively, the soft tissue structure may be first attached to attachment plate 44C and then attachment plate 44C is attached to body 32.
Referring now to
Proximal femoral implant 80 may include medial protrusion 86 and lateral protrusion 94. Medial protrusion 86 may include porous surface 96 and a plurality of apertures 98 defining throughbores 99 (
Proximal femoral implant 80 may include lateral ingrowth pads 102, 104 each including porous surface 109, 107, respectively, and attached to body 82 via fasteners 103, 105, respectively. Body 82 may also include lateral proximal porous surface 106 and a plurality of lateral apertures 108 which may define throughbores which extend through body 82 from an anterior side to a posterior side. Body 82 may also include region 95 of porous material which is bonded to body 82. Porous surfaces 106, 109, 107, 95 may be substantially similar to porous surface 45, described above with respect to
As shown in
In operation, a surgeon may attach a plurality of soft tissue structures, such as a muscle, a ligament, a capsule, and/or a tendon, for example, and/or bone to proximal femoral implant 80.
To attach a soft tissue structure to the medial side of proximal femoral implant 80, a surgeon positions the soft tissue structure in contact with porous surface 96 on medial protrusion 86. At least one suture or other surgical fastener, such as surgical tape or surgical cable, is then threaded through one or both apertures 98 and through throughbores 99 to secure the soft tissue structure to implant 80 and to maintain contact between the soft tissue structure and porous surface 96. In one embodiment, the sutures may be biodegradable after a period of time in which the soft tissue structure is permanently attached to proximal femoral implant 80 via ingrowth of the soft tissue structure into porous surface 96. The close proximity of apertures 98 in relation to porous surface 96 further facilitates more direct contact between the soft tissue structure and porous surface 96, thereby enhancing ingrowth of the soft tissue structure into porous surface 96. In an exemplary embodiment, the soft tissue structure is an iliopsoas muscle which, when attached to proximal femoral implant 80, enhances stability of the hip joint.
To attach a soft tissue structure to the lateral side of implant 80, the surgeon positions the soft tissue structure in contact with one or more of porous surfaces 106, 109, and/or 107. At least one suture or other surgical fastener is then threaded through at least one aperture 108 and the associated throughbore proximate to the soft tissue structure attachment to secure the soft tissue structure to proximal femoral implant 80 and to maintain contact between the soft tissue structure and porous surface 106, 109, and/or 107. In one embodiment, the sutures may be biodegradable after a period of time in which the soft tissue structure is permanently attached to proximal femoral implant 80 via ingrowth of the soft tissue structure into either or all of porous surfaces 106, 109, and/or 107. The close proximity of apertures 108 in relation to porous surfaces 106, 107, 109 further facilitates more direct contact between the soft tissue structure and porous surfaces 106, 107, 109. In an exemplary embodiment, the soft tissue structure is an abductor and/or quadriceps muscle which, when attached to proximal femoral implant 80, enhance the kinematics of the hip joint. In one embodiment, at least one suture or other surgical fastener may be threaded through throughbore 101 (
Although not illustrated in
As shown in
Although the methods and apparatuses described in this disclosure describe attachment of natural soft tissue structures to the orthopaedic implants, the methods and apparatuses may also be used to secure artificial soft tissue structures to the orthopaedic implants in substantially similar manners.
While this disclosure has been described as having exemplary designs, the present disclosure can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the disclosure using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this disclosure pertains and which fall within the limits of the appended claims.
This application claims the benefit under Title 35 U.S.C. §119(e) of U.S. Provisional Patent Application Ser. No. 60/916,414, entitled METHODS AND APPARATUSES FOR ATTACHING SOFT TISSUE TO ORTHOPAEDIC IMPLANTS, filed on May 7, 2007, the entire disclosure of which is expressly incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
60916414 | May 2007 | US |