Field of the Invention
The present invention relates to methods and apparatuses for curing three-dimensionally printed articles.
Background of the Art
Three dimensional printing was developed in the 1990's at the Massachusetts Institute of Technology and is described in several United States patents, including the following United States patents: U.S. Pat. No. 5,490,882 to Sachs et al., U.S. Pat. No. 5,490,962 to Cima et al., U.S. Pat. No. 5,518,680 to Cima et al., U.S. Pat. No. 5,660,621 to Bredt et al., U.S. Pat. No. 5,775,402 to Sachs et al., U.S. Pat. No. 5,807,437 to Sachs et al., U.S. Pat. No. 5,814,161 to Sachs et al., U.S. Pat. No. 5,851,465 to Bredt, 5,869,170 to Cima et al., U.S. Pat. No. 5,940,674 to Sachs et al., U.S. Pat. No. 6,036,777 to Sachs et al., U.S. Pat. No. 6,070,973 to Sachs et al., U.S. Pat. No. 6,109,332 to Sachs et al., 6,112,804 to Sachs et al., U.S. Pat. No. 6,139,574 to Vacanti et al., U.S. Pat. No. 6,146,567 to Sachs et al., U.S. Pat. No. 6,176,874 to Vacanti et al., U.S. Pat. No. 6,197,575 to Griffith et al., U.S. Pat. No. 6,280,771 to Monkhouse et al., U.S. Pat. No. 6,354,361 to Sachs et al., U.S. Pat. No. 6,397,722 to Sachs et al., U.S. Pat. No. 6,454,811 to Sherwood et al., U.S. Pat. No. 6,471,992 to Yoo et al., U.S. Pat. No. 6,508,980 to Sachs et al., U.S. Pat. No. 6,514,518 to Monkhouse et al., U.S. Pat. No. 6,530,958 to Cima et al., U.S. Pat. No. 6,596,224 to Sachs et al., U.S. Pat. No. 6,629,559 to Sachs et al., U.S. Pat. No. 6,945,638 to Teung et al., U.S. Pat. No. 7,077,334 to Sachs et al., U.S. Pat. No. 7,250,134 to Sachs et al., U.S. Pat. No. 7,276,252 to Payumo et al., U.S. Pat. No. 7,300,668 to Pryce et al., U.S. Pat. No. 7,815,826 to Serdy et al., 7,820,201 to Pryce et al., U.S. Pat. No. 7,875,290 to Payumo et al., U.S. Pat. No. 7,931,914 to Pryce et al., U.S. Pat. No. 8,088,415 to Wang et al., U.S. Pat. No. 8,211,226 to Bredt et al., U.S. Pat. No. and 8,465,777 to Wang et al. In essence, three-dimensional printing involves the spreading of a layer of particulate material and then selectively jet-printing a fluid onto that layer to cause selected portions of the particulate layer to bind together. This sequence is repeated for additional layers until the desired article has been constructed. The material making up the particulate layer is often referred as the “build material” and the jetted fluid is often referred to as a “binder”, or in some cases, an “activator”; the term “binder” will be used herein to refer to all types of jetted fluids used in three-dimensional printing. Post-processing of the three-dimensionally printed article is often required in order to strengthen and/or densify the article.
Typically, one of the first steps of the post-processing is to cure the binder contained within the printed article to strengthen the printed article sufficiently so that it can be removed from the powder bed and handled. This curing step also includes the removal of at least some of the carrier portion of the binder by volatilization and removal of the volatilized binder from the powder bed. Conventionally, the curing step is conducted by placing the build box in an oven and applying heat to raise the temperature of the carrier portion of the binder to above its boiling point. This process takes many hours due to the effective thermal mass of the build box and its contents and the insulating effects of the build box and the powder bed. Another factor that slows the removal of the carrier is the resistance the powder bed presents to the flow of the volatized carrier as it permeates through the powder bed to the open top surface of the powder bed and into the oven chamber. Even when the build box was provided with gas-permeable disks in its floor surface to provide additional routes of escape for the volatized carrier, little or no effect on the curing time was noticed. Thus, there exists in the art a need for a shortening the curing step.
The present invention provides methods and apparatuses for curing three-dimensionally printed articles faster than is conventionally accomplished. After the printing of the article is completed, a gas flow is driven in the powder bed that surrounds the article.
In accordance with some method embodiments of the present invention, an article is three-dimensionally printed by selectively inkjet depositing a curable binder onto a layer of powder (also sometimes referred to in the art as “particulate material” or “particles”) in the image of a first cross-sectional slice of the article and then repeating the selective deposition of the binder onto successive layers of the powder for each successive cross-sectional slice of the article until the entire article has been three-dimensionally printed and is surrounded by a powder bed. The powder bed is supported and confined by the floor and sides of a build box. The build box is adapted to be removable from the three-dimensional printing machine. The floor of the build box is vertically movable within the build box. In some embodiments of the present invention, at least one of the floor and the walls of the build box is at least partially gas-permeable. After the printing of the article has been completed, a flow of gas is made to pass through the powder bed to accelerate the curing of the printed article. In some method embodiments of the present invention, the direction of the gas flow is reversed from time to time to promote more uniform exposure of the various surfaces of the printed article to the gas flow and hence a more uniform and faster curing of the article.
In some method embodiments of the present invention, one or more wands or paddles are selectively operated within the powder bed to create a flow of gas to accelerate the curing. Such wands may be selectively inserted into the powder bed or they may be a feature of the build box. The gas flow may be the result of a pressure differential caused by the wand or paddle forcing or withdrawing gas from the powder bed or it may be the result of convective currents induced by a thermal gradient created by the wands in the gas the powder bed or a combination thereof.
In some method embodiments of the present invention, energy is applied to raise the temperature of the printed article to aid the curing of the printed article. In some such embodiments, at least some of the energy is applied as heat from the gas that flows through the powder bed. In some embodiments, the energy is applied directly to the powder bed and/or the printed articles within the powder bed, e.g. by the application of microwave energy, heating wands, cooling wands, etc.
The present invention also includes curing apparatuses which are adapted to operationally receive a build box having an at least partially gas-permeable floor and or walls. These apparatuses include a means for creating a pressure differential across the powder bed that is contained within a build box so as to create a draft through the powder bed, either locally or otherwise.
The criticality of the features and merits of the present invention will be better understood by reference to the attached drawings. It is to be understood, however, that the drawings are designed for the purpose of illustration only and not as a definition of the limits of the present invention.
In this section, some preferred embodiments of the present invention are described in detail sufficient for one skilled in the art to practice the present invention without undue experimentation. It is to be understood, however, that the fact that a limited number of preferred embodiments are described herein does not in any way limit the scope of the present invention as set forth in the claims. It is to be understood that whenever a range of values is described herein or in the claims that the range includes the end points and every point therebetween as if each and every such point had been expressly described. Unless otherwise stated, the word “about” as used herein and in the claims is to be construed as meaning the normal measuring and/or fabrication limitations related to the value which the word “about” modifies. Unless expressly stated otherwise, the term “embodiment” is used herein to mean an embodiment of the present invention.
It is to be understood that the word “curing” as used herein in connection with three-dimensional printed articles is to be construed as “causing the binder to change in a way that results in the strengthening of the printed article or articles sufficiently to permit the printed article or articles to be removed from the powder bed without physical damage.” In instances in which the binder includes a volatilizable solvent or carrier fluid, the curing will involve the removal of a portion or all of the solvent or carrier fluid from the printed article or articles. In some instances, the curing may include a chemical reaction in which one or more components of the binder is a reacting species. In some instances, the curing may involve polymerization and/or cross-linking of one or more components of the binder. In many instances, curing involves changing the temperature of the binder, most often by heating, but in some cases by cooling.
Referring to
The floor 12 is shown apart from the rest of the build box 4 as a schematic perspective view drawing in
It is to be understood that many embodiments involve the use of build boxes of other designs which are able to support and laterally confine the build bed in which the printed article or printed articles reside and at least one of the sides and the floor of the build box is at least partly gas-permeable so that a gas flow may be maintained through the powder bed during the curing operation. In some embodiments, the build box floor is made entirely from a gas-permeable material (e.g. a sintered metal, a metal foam, a polymer, a composite material, etc.) having open porosity where both the top and bottom sides of the floor are featurelessly planar. In some embodiments, such as that depicted in
It is also to be understood that one or more of the walls of the build box may be at least partly gas-permeable. In such embodiments, it is preferably that opposing walls are gas-permeable so as to facilitate a cross-flow of gas through the powder bed. In some embodiments, all of the sidewalls are made gas-permeable so that a gas flow can be made first in one direction and then in a cross-direction to the first direction. In some embodiments, all or a selected portion or portions of the gas-permeable wall is made to be gas-permeable. For example,
In some embodiments, the build box floor is gas-permeable along with one or more of the build box walls. In these embodiments, the direction of gas flow can be changed from vertical to horizontal and from horizontal to vertical.
It is to be understood that although the build box floor is vertically indexible, it is preferable to have stops in the build box upon which the floor rests when it is in its lowest position. These stops must be kept out of way of the lifting devices which vertically indexes the floor during the printing operation. For example, the stops may located in the lower corners of the build box. The stops must be of sufficient strength and rigidity to support the floor and the powder bed once the support of lifting device of the printer is withdrawn.
In some embodiments, after the desired article or articles have been printed, the build box is removed from the three-dimensional printer and subsequently placed into a curing apparatus which is adapted to receive the build box and to subject its powder bed to a gas flow.
It is noted that many embodiments include a “collection device.” That term is to be understood herein as meaning any device, e.g. a condenser, a filter, a molecular filter, etc. or combination of devices, which singly or as a combination is capable of removing some or all of a volatized portion of the binder from the gas that is being used in the curing of the binder. For example, where the curing of a binder involves evaporating a carrier liquid or solvent, the collection device may be a condenser that is operated to condense the vaporized carrier liquid or solvent from the process gas.
Referring to
Referring now to
The use of the curing apparatus 50 in some method embodiments will now be described with reference to
In some embodiments, the heat exchangers and/or the collection devices are used to cool the draft and thereby the printed articles and the powder bed after the heating portion of the curing process has been completed. In some embodiments, the temperature of the printed articles and the powder bed are brought down to room temperature or to near room temperature before the build box is removed from the curing apparatus. In some embodiments, the build box is removed from the curing apparatus while the printed articles and the powder bed are at an elevated temperature.
In some embodiments, the curing involves cooling rather than heating the printed articles from the temperature at which they were when the build box was placed into the curing apparatus. In such cases, the heat exchangers are operated to cool the draft and thereby the printed articles and the powder bed.
In some method embodiments, the direction of the flow of the draft is reversed from time to time to promote a more uniform exposure of the various surfaces of the printed article or articles to the gas flow and hence a more uniform and faster curing of the printed article or articles. The direction change may be controlled by time, e.g., changed every so many minutes, or controlled by the reaching of certain temperatures, or controlled by the measured change in temperature, or controlled by the reaching of certain solvent concentrations in the draft, or controlled by the measured change in solvent concentration in the draft, or controlled by any combination of the foregoing.
It is within the scope of the present invention to control the imposed flow rate of the draft to any desirable magnitude and direction. The imposed flow rate is to be understood to be the flow rate that is caused by the operation of the gas propulsion devices of the curing apparatus and/or the wands and/or paddles which are used in the powder beds (wands and paddles are described below). Preferably, the upper limit of the imposed flow rate is the flow rate at which the powder bed becomes sufficiently fluidized that it is no longer able to perform its function of supporting the printed articles to prevent the printed articles from deforming due to the pull of gravity. It is to be understood that as the curing process progresses, the printed articles strengthen so that the upper limit of the imposed flow rate may be increased correspondingly without resulting in damage to the printed articles. It is also preferred that the magnitude of the imposed flow rate be kept below that which will entrain powder from the powder bed into the internal chamber of the curing apparatus; in embodiments wherein the curing apparatus includes a screen to prevent powder from entering the internal chamber or wherein a screen is used to cover the open top of the build box, it is preferred that the magnitude of the imposed flow rate be kept below that which will entrain powder from the powder bed to the point at which the entrained powder blocks the screen to significantly decrease the effective flow rate of the draft.
The present invention is not limited to use with printed articles in which the binder contains polymers, let alone polymers which strengthen by an entanglement mechanism as was used in the description of the embodiment with regard to
It is to be understood that the curing apparatus described with reference to
Method embodiments which utilize the curing apparatus 100 are similar to those already described with regard to the curing apparatus 50, except that the gas flow is made to traverse horizontally through the build box 102, instead of vertically as in the curing apparatus 50.
In some embodiments, the curing apparatus does not have a receiving cavity that is external to the curing apparatus, such as receiving cavities 52, 106 of the curing apparatuses 50, 100, respectively, but rather, internally receives the build box.
In method embodiments involving the use of the curing apparatus 140, the build box 154 is loaded onto the supporting rail 152 and the other supporting rails of the curing apparatus 140 through the door 150. The position of the baffles 162 and/or the gas propulsion device 160 may be adjusted relative to the build box 154 at this time to enhance the gas flow through the build box 154. After the door 150 has been closed, the gas propulsion device 160 is operated to drive, i.e. to draw or force, the ambient gas through the powder bed 170 and past the printed articles 172 which are contained within the build box 154. The auxiliary gas propulsion device 160 and the heat exchanger 168 may be adjusted at this time to start a heating and/or cooling regime in accordance with the desired curing process. In some embodiments, though, the auxiliary gas propulsion device 160 and the heat exchanger 168 are operated with the intention of maintaining the gas in the internal cavity 142 of the curing apparatus 140 at an essentially constant temperature, even during the loading of the build box 154. The curing apparatus 140 is equipped with a temperature sensor 176 and chemical sensor 178 and these can be used to control the gas temperature, the solvent concentration, etc. as described previously herein. The direction of the gas flow through the build box 154 may be changed from time to time. When the desired endpoint of the curing process has been reached, the build box 154 is removed from the curing apparatus 140 through the door 150.
Referring now to
It is to be understood that the gas used within the curing apparatus in embodiments may be any desired processing gas or combination of process gases, e.g., air, nitrogen, argon, etc. In some instances during the curing process the gas may become laden to some undesirable extent with evaporated portions of the binder. It is within the scope of the present invention to inject a desired process gas into the curing apparatus and/or withdraw the processing gas from the curing apparatus during the curing process to maintain a desired composition to the processing gas which is being made to flow through the powder bed of the build box. The injection may be by way of inlets for pressurized gas or it may be by way of vents to draw gas in by a venturi effect. The withdrawal may be by way of vents or other openings in the curing apparatus to the surrounding atmosphere or conduits to a vacuum source.
In some embodiments, the walls of the curing apparatus are thermally insulated to minimize the heat exchange between the curing apparatus and the surrounding environment. When thermal insulation is employed, it is preferable that the type of thermal insulation be selected to avoid absorption of the volatiles arising from the binder during the curing into the thermal insulation or that a barrier interface material be provided to prevent the absorption of such volatiles by the thermal insulation. In some embodiments wherein the curing apparatus has a receiving cavity, e.g. receiving cavity 52 as shown in
Although in the foregoing descriptions of the present invention have included build boxes which have a gas-permeable floor and/or walls, it is to be understood that the curing apparatuses of the present invention can be used, albeit less effectively, with build boxes which do not include these features. For example, with reference to the schematic vertical cross-sectional view of the curing apparatus 210 shown in
In some embodiments one or more wands or paddles are inserted into the powder bed of the build box to hasten the curing of the binder. Such a wand or paddle may be a heat exchanger which heats or cools the powder bed by giving off or absorbing thermal energy. Alternatively or additionally, such a wand or a paddle may be a gas source or a vacuum source and cause a gas flow through the powder bed. In some embodiments, a gas source wand or paddle is used in proximity to one or more vacuum source paddles to control the direction of gas flow. Preferably, the temperature of the gas emitted by a wand or paddle is controlled so as to selectively heat or cool the powder bed and the printed articles therein. In some embodiments a plurality of wands and/or paddles are used in selected locations in the powder bed to selectively control the curing of the binder. In some embodiments, one or more wands and/or paddles are incorporated into walls and/or floor of the build box.
It is to be understood that when a wand or paddle is used in an embodiment to accelerate curing, the location at which the wand or paddle is inserted into the powder bed must be carefully selected to avoid damaging the printed article or printed articles contained within the powder bed. Damage can result not only from direct impingement of the paddle or wand with a printed article but also by the way the paddle or wand is operated in proximity to a printed article if such operation creates detrimental stresses in the printed article due to excessive temperature change and/or volatilization rate differentials between different parts of the printed article.
In some embodiments using a wand or paddle, no curing apparatus is used which receives the build box into an external or internal receiving cavity, although is to be understood that some embodiments using a wand or paddle utilize a curing apparatus which receives the build box into an external or receiving cavity. Referring to
Referring now to
It is to be understood that although in the embodiments illustrated by the figures herein, e.g. gas propulsion devices 76a, 76b of
It is also to be understood that the depiction of a single build box in the drawings does not limit the invention to embodiments employing single build boxes. Rather, the present invention includes embodiments which employ multiple build boxes. Also, in some embodiments which employ multiple build boxes, the build boxes are not of the same size or design, although their individual sizes and designs are adapted to be compatible with the embodiments in which they are used.
While only a few embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that many changes and modifications may be made thereunto without departing from the spirit and scope of the invention as described in the claims. All United States patents and patent applications, all foreign patents and patent applications, and all other documents identified herein are incorporated herein by reference as if set forth in full herein to the full extent permitted under the law.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/040476 | 7/15/2015 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62025598 | Jul 2014 | US |