Methods and apparatuses for effecting handover in integrated wireless systems

Information

  • Patent Grant
  • 7933598
  • Patent Number
    7,933,598
  • Date Filed
    Monday, March 14, 2005
    19 years ago
  • Date Issued
    Tuesday, April 26, 2011
    13 years ago
Abstract
Embodiments of the invention provide methods and apparatuses for effecting handover between the licensed and unlicensed portions of an integrated wireless network. For one embodiment, prior to hand out of a communication from the unlicensed wireless system (UWS), a cell identifier associated with a user terminal is changed from the cell identifier corresponding to the internet access point to the cell identifier corresponding to the unlicensed network controller. This allows the destination MSC of the licensed wireless system (LWS) to accept and fulfill a handover request from the UWS. In accordance with an alternative embodiment of the invention, after a hand in of a communication to the UWS, a cell identifier associated with the user terminal is changed from the cell identifier corresponding to the UNC to the cell identifier corresponding to the internet access point. This change allows providing location-based services to the UT being serviced by the UWS.
Description
FIELD

Embodiments of the invention relate generally to the field of wireless telecommunications, and more specifically to wireless telecommunications through a system integrating a licensed wireless system and an unlicensed wireless system.


BACKGROUND

Systems exist that integrate licensed wireless systems (LWSs) and unlicensed wireless systems (UWSs) and provide seamless transition between the two.


An LWS refers to public cellular telephone systems and/or Personal Communication Services (PCS) telephone systems, for example, providing service over a licensed spectrum. Such licenses are expensive as is the equipment used to support communications these licensed frequencies, and this expense is passed on to the user.


A UWS, on the other hand, may comprise, for example, a base station with a physical connection to a landline providing service to a handset using an unlicensed, free spectrum (e.g., approximately 2.4 GHz or 5 GHz). Thus, the user of a licensed wireless system pays relatively high fees for relatively low quality service. Systems that integrate an LWS and a UWS allow service to be provided through the UWS, when a user is within an unlicensed wireless service coverage area. The user receives the benefit of the relatively inexpensive, high quality communication service. If the user moves outside of the unlicensed wireless service coverage area, the same communication session can be maintained without interruption by transitioning to the LWS.



FIG. 1 illustrates a system that integrates an LWS and a UWS in accordance with the prior art. System 100, shown in FIG. 1, includes an LWS 110 and a UWS system 150. The LWS 110 typically includes a number of mobile switching centers (MSCs) 112a-112c. Each MSC 112 typically serves multiple base station controllers (BSCs) 114a-114c, each of which, in turn, serves multiple base station transceiver systems (BTSs) 116a-116c. The LWS 110 provides mobile wireless communications to individuals using wireless transceivers, shown for example as user terminal (UT) 118. Wireless transceivers (UTs) include cellular telephones, PCS telephones, wireless-enabled personal digital assistants, wireless modems, and the like. A typical UT may include a display, keypad, and a control circuit. The display may provide a visual indication to a user when the UT is within the service range of the LWS or the UWS, the keypad is used in a conventional manner, and the control circuit may be in the form of a processor, a hardwired circuit, a programmable logic device, an application specific integrated circuit, and the like.


As shown in FIG. 1, UWS 150 is connected to the LWS 110 through an unlicensed network controller (UNC) 154 (also referred to as an IP network controller (INC). The UNC 154 is connected to an MSC (e.g., MSC 112c) of the LWS 110. Instead of one or more BSCs, MSC 112c has the UNC 154 connected to it. The UNC 154 is connected through internet 155 to a plurality of internet access points (IAPB) 156a-156c.


If UT 118 is within the service coverage area of the IAPB 156a-156c, the communication is routed over the higher quality/lower cost UWS 150. If the UT 118 is not within the service coverage area of the IAPB 156a-156c, the communication is routed over the lower quality/higher cost LWS 110.


The system 100 can handover a communication between the LWS and the UWS. That is, while a communication is in progress the communication can be handed over from routing on the LWS to routing on the UWS or vice versa. For example, a user may initiate a communication while moving from one location to another location, and this communication may be routed over the LWS. After arriving at a desired destination, the user may be within the service coverage area of an IAP. The communication is then handed over from routing on the LWS to routing on the UWS so that the user can take advantage of the higher quality/lower cost of the UWS.


Conventional LWSs can provide location-based services because each BTS of the system provides service coverage for a corresponding geographic location. Moreover, each BTS has a unique identification. For example, in a Global System for Mobile Communications (GSM) system, each cell has a unique cell identifier, known as a cell global identifier (CGI). The CGI is comprised of a mobile country code, a mobile network code, a location area code, and a cell ID. In addition there is an absolute radio frequency control mobile (ARFCM) and a base station identity code (BSIC). When a user initiates a communication, the system can determine the general geographic location of the user and can provide location-based services to the user. Such services may include the location of proximate businesses or services of interest to the user, or providing the user's location to emergency services (e.g., medical or automotive assistance).


To maintain the ability to provide such services, the system must be able to effect and monitor a handover from one cell (the area covered by a particular BTS) to another. Typically, to effect handover, information has to be communicated between different nodes within the system. Each MSC and each BSC of a typical LWS has implemented therein, a configuration database containing information about the other elements within the system that the MSC of BSC requires to effect handover. For example, each particular MSC must store the CGIs for all of the cells for which it provides service, as well as the CGIs for each cell for which service is provided by a neighboring MSC (i.e., an MSC which may handover a communication to the particular MSC).


For a typical LWS, this amount of data is manageable because the BTSs are static and are added to the system incrementally. This is not the case with the UWS portion of an integrated system. For the UWS, instead of one BTS providing access to the network for multiple (e.g., hundreds) of UTs, each UT accesses the network through a distinct IAP. Determining and storing identification information for such a large number of access points would be time-consuming and resource intensive. Therefore, the integrated LWS/UWS system in accordance with the prior art, assigns a single cell identifier to the UNC/INC and all of the access points (e.g., IAPs) of the UWS portion of the integrated system. This cell identifier is referred to as the UNC global CGI. In a sense, the entire UWS portion of the integrated system is viewed as a single cell of the network for identification purposes. The single cell identifier associated with the UWS is stored in all of the MSCs of the system. Therefore, communications initiated on the LWS can be handed over to the UWS using the same cell identifier.


This scheme, reduces the time and resources required to store identification information for multiple access points of the UWS on many different MSCs, however, the scheme does not allow for providing location-based services to users on the UWS. To address that issue, each IAP may be assigned a CGI based on geographic location (e.g., longitude and latitude) or some other criteria. The only MSC to store all of the CGI information of the IAPB of the UWS is an interface MSC that connects the LWS to the UWS (e.g., MSC 112c of system 100).


One disadvantage of such a scheme is in the context of a handed out communication (i.e., handed out from the UWS to the LWS). The disadvantage is that a handover request message from the source MSC (i.e., interface MSC) for a particular CGI will be rejected by the destination MSC of the LWS. This rejection is due to the fact that the destination MSC will not recognize the CGI of any given IAP of the UWS because the CGI information is not stored on the destination MSC.


Another disadvantage of the prior art scheme described is in the context of a handed in communication (i.e., handed in from an LWS to a UWS). The disadvantage here is that the destination MSC (i.e., the interface MSC) cannot determine to which particular IAP the communication being handed over from the source MSC of the LWS pertains. Thus, for a handed in communication, location-based services cannot be provided.


SUMMARY

Embodiments of the invention provide methods and apparatuses for effecting a handover between the licensed and unlicensed portions of an integrated wireless network. For one embodiment, an integrated wireless system is implemented, the integrated wireless system including a licensed system and an unlicensed system. A cell identifier associated with a user terminal is changed in conjunction with a handover process between the licensed system and the unlicensed system.


Other features and advantages of embodiments of the present invention will be apparent from the accompanying drawings, and from the detailed description, that follows below.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention may be best understood by referring to the following description and accompanying drawings that are used to illustrate embodiments of the invention. In the drawings:



FIG. 1 illustrates a system that integrates an LWS and a UWS in accordance with the prior art;



FIG. 2 illustrates a process by which handover is effected from a UWS to a LWS in accordance with one embodiment of the invention;



FIG. 3 illustrates the exchange of commands between elements of an integrated wireless system to effect handover from the UWS to the LWS in accordance with one embodiment of the invention;



FIG. 4 illustrates a process by which handover is effected from a LWS to a UWS in accordance with one embodiment of the invention;



FIG. 5 illustrates the exchange of commands between elements of an integrated wireless system to effect handover from the LWS to the UWS in accordance with one embodiment of the invention; and



FIG. 6 is a block diagram illustrating one embodiment of a DPS 601 that may be used in accordance with an embodiment of the present invention.





DETAILED DESCRIPTION

Embodiments of the invention provide methods and apparatuses for effecting handover within a wireless telecommunications system integrating a licensed wireless system and an unlicensed wireless system. One embodiment of the invention effects a hand out from a IAP of an UWS to an MSC of a LWS by indicating to the source MSC (i.e., interface MSC) that a handover has been performed from a cell associated with the IAP to a cell associated with the whole UNC. Such an embodiment, allows the source MSC to request a handover using the CGI of the whole UNC, which allows the destination MSC to accept and fulfill the handover request.


One embodiment of the invention effects a hand in from an LWS to an UWS. Once a handover has been completed from the LWS to a cell representing the whole UNC, another handover is indicated from the cell representing the whole UNC to a cell representing the location of the IAP.


In the following description, numerous specific details are set forth. However, it is understood that embodiments of the invention may be practiced without these specific details. In other instances, well-known circuits, structures and techniques have not been shown in detail in order not to obscure the understanding of this description.


Reference throughout the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearance of the phrases “in one embodiment” or “in an embodiment” in various places throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.


Moreover, inventive aspects lie in less than all features of a single disclosed embodiment. Thus, the claims following the Detailed Description are hereby expressly incorporated into this Detailed Description, with each claim standing on its own as a separate embodiment of this invention.


Process


Handover from UWS to LWS



FIG. 2 illustrates a process by which handover is effected from a UWS to a LWS in accordance with one embodiment of the invention. The process occurs at a point at which a UT has initiated a communication on the UWS at a particular IAP. The communication could be a telephone call, short messaging service (SMS) message, data, etc.


Process 200, shown in FIG. 2, begins at operation 205 in which a determination is made to handover the communication to the LWS.


At operation 210, the cell identifier associated with the UT is changed from the cell identifier corresponding to the IAP to the cell identifier corresponding to the UNC. The UNC functionality may be implemented independently or within a network element (e.g., a BTS, MSC, etc.).


At operation 215, a determination is made as to which MSC of the LWS the communication on the UWS will be handed out to (i.e., the destination MSC is determined). For example, if better service is available from one or more particular cells of the LWS; the MSC serving the optimal cell is determined.


At operation 220, a handover request is forwarded using the cell identifier of the UNC. Because the cell identifier of the UNC is stored on the destination MSC, the destination MSC will accept and fulfill the handover request, thus effecting handover from the UWS to the LWS.



FIG. 3 illustrates the exchange of commands between elements of an integrated wireless system to effect handover from the UWS to the LWS in accordance with one embodiment of the invention. At 301a communication is on-going on a UWS. The UT accesses the UWS through the IAP (i.e., IAP1) having a corresponding CGI (i.e., CGIIAP1). The communication is forwarded from the UT, through the IAP, and the UNC to the interface MSC. The UNC through which this communication passes has a cell identifier corresponding to the UNC area that it covers, the CGIglobal. The interface MSC is aware that the UT is communicating through IAP1 having corresponding CGI, CGIIAP1.


At some point in the duration of the communication, the UT determines that the wireless link from the IAP is not providing as high a quality of service as the LWS and determines that a handover is warranted. This could be due, for example to the deterioration of the communication signal on the UWS.


At 302 the UT forwards a handover required message to the UNC. The handover required message includes the CGI associated with the cell providing higher quality service. Higher quality of service may be available from several cells each having a different CGI. Therefore the UT may provide several CGIs (e.g., CGI1-CGIn).


At 303 the UNC forwards a handover performed message to the interface MSC. The handover performed message indicates to the interface MSC that the UT desires to go to a global cell. The interface MSC then moves the UT from CGIIAP1 to CGIglobal.


AT 304 the UNC forwards a handover required message to the interface MSC. The handover required message includes the destination CGIs. The UNC may alter the list of several CGIs provided by the UT. For example, the UNC may pare down the list down based on a variety of factors including the traffic present on particular cells. In general, the handover required message forwarded form the UNC to the interface MSC will contain several CGIs, CGI1-CGIm, each pertaining to a corresponding cell of the LWS. The interface MSC determines which of these possible cells to handover the communication to having a corresponding CGI, CGIhandover.


At 305 the interface MSC forwards a handover required message to the destination MSC (i.e., the MSC serving the determined cell having CGIhandover). The interface MSC provides the destination CGI, CGIhandover, and the source CGI (i.e., the CGI corresponding to the UT, CGIglobal. Therefore, the handover required message from the interface MSC to the destination MSC no longer includes the CGI corresponding to the IAP (i.e., CGIIAP1), which the destination MSC would reject. Instead, the handover required message from the interface MSC to the destination MSC includes the CGI corresponding to the UNC (i.e., CGIglobal), which the destination MSC is configured to accept. Thus, handover from a UWS to an LWS may be effected.


At 306 the communication is routed on the LWS between the UT through the BTS having corresponding CGI, CGIhandover, and the destination MSC.


Handover from LWS to UWS



FIG. 4 illustrates a process by which handover is effected from an LWS to a UWS in accordance with one embodiment of the invention. The process occurs at a point at which a UT has initiated a communication on the LWS at a particular BTS.


Process 400, shown in FIG. 4, begins at operation 405 in which a determination is made to handover the communication to the UWS. This operation is analogous to operation 205 discussed above in reference to process 200, and is effected for analogous reasons and purposes.


At operation 410, the IAP of the UWS to which the LWS communication will be handed over is determined.


At operation 415, a handover is effected from the BTS of the LWS to the determined IAP of the UWS. The handover is effected using the cell identifier of the INC of the UWS.


At operation 420, the cell identifier associated with the UT is changed from the cell identifier corresponding to the UNC to the cell identifier corresponding to the determined IAP.



FIG. 5 illustrates the exchange of commands between elements of an integrated wireless system to effect handover from the LWS to the UWS in accordance with one embodiment of the invention.


At 501a communication is initiated on an LWS. The UT accesses the LWS through a BTS of the LWS being served by an MSC of the LWS (i.e., source MSC). The BTS may be one of several being served by source MSC.


At some point in the duration of the communication, the UT (or BTS) determines that the wireless link from the BTS is not providing as high a quality of service as the UWS and determines that a handover is warranted. This could be due, for example to the deterioration of the communication signal on the LWS or simply the presence of a viable UWS route for the communication, providing lower cost service.


At 502 the UT (or alternatively the BTS) forwards a handover required message to the source MSC. The handover required message includes the CGI corresponding to the UNC of the UWS (i.e., CGIglobal).


At 503 the source MSC of the LWS forwards a handover required message to the interface MSC connected to the UNC of the UWS.


At 504 the interface MSC forwards a handover request message to the INC of the UWS. The handover request message includes the CGIglobal.


At 505 the UNC forwards a handover request acknowledgement message to the interface MSC.


At 506 the interface MSC forwards a handover request acknowledgement message to the source MSC.


At 507 the source MSC forwards a handover command to the BTS of the LWS.


At 508 the BTS forwards a handover command to the UT. The handover command includes the CGIglobal. At this point the UT forms a connection with the UNC.


At 509 the UT establishes service through the UNC and IAP2; the handover is to CGIglobal.


At 510 the UNC forwards a handover detect message to the interface MSC and subsequently forwards a handover complete message to the interface MSC, as well, at 511.


At this point the handover request is associated with the CGIglobal. The interface MSC stores information indicating that the UT is within the cell identified by CGIglobal.


At 512 the UNC forwards a handover performed message to the interface MSC. The handover performed message includes the CGI corresponding to IAP2 (i.e., CGIIAP2). The interface MSC now stores CGIIAP2. The interface MSC can now determine the location of IAP2, specifically. Thus location-based services can be provided to the UT being serviced through IAP2.


General Matters


Embodiments of the invention provide methods and apparatuses for effecting a handover between the licensed and unlicensed portions of an integrated wireless network. For one embodiment, prior to the hand out of a communication from the UWS, the cell identifier associated with the UT is changed from the cell identifier corresponding to the IAP of the UWS to the cell identifier corresponding to the UNC of the wireless system. This change allows the MSC of the LWS to accept and fulfill a handover request from the UWS. For one such embodiment, this change is effected by forwarding a handover performed message from the UNC to the interface MSC prior to attempting handover of the UT from the UWS to the LWS.


In accordance with an alternative embodiment of the invention, after a hand in of a communication to the UWS, the cell identifier associated with the UT is changed from the cell identifier corresponding to the UNC of the UWS to the cell identifier corresponding to the IAP of the UWS. For one such embodiment, this change is effected by forwarding a handover performed message from the UNC to the interface MSC subsequent to completing handover of the UT from the LWS to the UWS.


Though described for various embodiments in the context of a GSM system, embodiments of the invention are equally applicable to other time division multiple access (TDMA) systems (e.g., iDEN) as well as code division multiple access (CDMA) systems (e.g., cdma2000, cdmaOne, W-CDMA), frequency division multiple access (FDMA) systems, and spatial division multiple access (SDMA) systems, or other comparable systems. CGI is used herein to describe a cell identifier, but could be substituted with any term used for cell identification.


The invention includes various operations. Many of the methods are described in their most basic form, but operations can be added to or deleted from any of the methods without departing from the basic scope of the invention.


The operations of the invention may be performed by hardware components or may be embodied in machine-executable instructions, which may be used to cause a general-purpose or special-purpose processor or logic circuits programmed with the instructions to perform the operations. Alternatively, the operations may be performed by a combination of hardware and software. The invention may be provided as a computer program product that may include a machine-readable medium having stored thereon instructions, which may be used to program a digital processing system (DPS) to perform a process according to the invention. The machine-readable medium may include, but is not limited to, floppy diskettes, optical disks, CD-ROMs, and magneto-optical disks, ROMs, RAMs, EPROMs, EEPROMs, magnet or optical cards, flash memory, or other type of media/machine-readable medium suitable for storing electronic instructions. Moreover, the invention may also be downloaded as a computer program product, wherein the program may be transferred from a remote computer to a requesting computer by way of data signals embodied in a carrier wave or other propagation medium via a communication cell (e.g., a modem or network connection). The operations may be performed at a UNC, BTS, a BSC, a MSC, or performed by a combination of these control devices.



FIG. 6 is a block diagram illustrating one embodiment of a DPS 601 that may be used in accordance with an embodiment of the present invention. For alternative embodiments of the present invention, DPS 601 may be a computer that includes a processor 603 coupled to a bus 607. In one embodiment, memory 605, storage 611, display controller 609, communications interface 613, input/output controller 615 and audio controller 627 are also coupled to bus 607.


DPS 601 interfaces to external systems through communications interface 613. Communications interface 613 may include a radio transceiver compatible with wireless telephone signals or other interfaces for coupling a device to other devices. In one embodiment of the present invention, carrier wave signal 625 is received/transmitted between communications interface 613 and network 650. In one embodiment of the present invention, a communications signal 625 may be used to interface DPS 601 with another computer system, a network hub, router or the like. In one embodiment of the present invention, carrier wave signal 625 is considered to be machine readable media, which may be transmitted through wires, cables, optical fibers or through the atmosphere, or the like.


In one embodiment of the present invention, processor 603 may be a conventional microprocessor, such as for example but not limited to an Intel x86 or Pentium family microprocessor, a Motorola family microprocessor, or the like. Memory 605 may be a machine-readable medium such as dynamic random access memory (DRAM) and may include static random access memory (SRAM). Display controller 609 controls in a conventional manner a display 619, which in one embodiment of the invention may be a cathode ray tube (CRT), a liquid crystal display (LCD), an active matrix display, a television monitor or the like. The input/output device 617 coupled to input/output controller 615 may be a keyboard, disk drive, printer, scanner and other input and output devices (e.g., a mouse). In one embodiment of the present invention, audio controller 627 controls in a conventional manner audio output 631 and audio input 629.


Storage 611 may include machine-readable media such as for example but not limited to a magnetic hard disk, a floppy disk, an optical disk, a smart card or another form of storage for data. In one embodiment of the present invention, storage 611 may include removable media, read-only media, readable/writable media or the like. Some of the data may be written by a direct memory access process into memory 605 during execution of software in computer system 601. It is appreciated that software may reside in storage 611, memory 605 or may be transmitted or received via modem or communications interface 613. For the purposes of the specification, the term “machine readable medium” shall be taken to include any medium that is capable of storing data, information or encoding a sequence of instructions for execution by processor 603 to cause processor 603 to perform the methodologies of the present invention. The term “machine readable medium” shall be taken to include, but is not limited to solid-state memories, optical and magnetic disks, carrier wave signals, and the like.


While the invention has been described in terms of several embodiments, those skilled in the art will recognize that the invention is not limited to the embodiments described, but can be practiced with modification and alteration within the spirit and scope of the appended claims. The description is thus to be regarded as illustrative instead of limiting.

Claims
  • 1. A method for effecting a handover in an integrated wireless system comprising an unlicensed first wireless system and a licensed second wireless system, the method comprising: receiving a handover request to perform the handover for a communication in progress, the handover being from the unlicensed first wireless system to the licensed second wireless system; andprior to effecting the handover, changing a cell identifier associated with a user terminal in conjunction with the handover of the communication in progress, wherein the cell identifier is changed from a cell identifier of a first region of the unlicensed first wireless system to a cell identifier of a second region of the unlicensed first wireless system.
  • 2. The method of claim 1, wherein the cell identifier associated with the user terminal is changed from a cell identifier corresponding to a service region of an access point of the unlicensed first wireless system to a cell identifier corresponding to a service region of an unlicensed network controller of the unlicensed first wireless system.
  • 3. The method of claim 2 further comprising: sending a message indicating that the handover has been performed from the cell identifier corresponding to the service region of the access point to the cell identifier corresponding to the service region of the unlicensed network controller.
  • 4. The method of claim 1, wherein the licensed second wireless system is one of a time division multiple access system, a code division multiple access system, a frequency division multiple access system, and a spatial division multiple access system.
  • 5. The method of claim 4, wherein the licensed second wireless system is a Global System for Mobile communications system, and the cell identifier associated with the user terminal is changed by forwarding a handover performed message from the unlicensed network controller to a mobile switching center, the mobile switching center providing an interface between the licensed second wireless system and the unlicensed first wireless system.
  • 6. The method of claim 1, wherein the communication in progress is one of an active call, a short message service (SMS) communication, and a data transmission.
  • 7. A method for effecting a handover in an integrated wireless system comprising an unlicensed first wireless system and a licensed second wireless system, the method comprising: receiving a handover request to perform the handover for a communication in progress, the handover being from the licensed second wireless system to the unlicensed first wireless system; andsubsequent to effecting the handover, changing a cell identifier associated with a user terminal in conjunction with the handover of the communication in progress, wherein the cell identifier is changed from a cell identifier of a first region of the unlicensed first wireless system to a cell identifier of a second region of the unlicensed first wireless system.
  • 8. The method of claim 7, wherein the cell identifier associated with the user terminal is changed from a cell identifier corresponding to a service region of an unlicensed network controller of the unlicensed first wireless system to a cell identifier corresponding to a service region of an access point of the unlicensed first wireless system.
  • 9. The method of claim 8, wherein the cell identifier corresponding to the service region of the access point indicates a geographic location of the access point.
  • 10. The method of claim 9 further comprising: using the indicated geographic location of the access point to provide location based services to a user of the user terminal.
  • 11. The method of claim 8 further comprising: sending a message indicating that the handover has been performed from a cell associated with the unlicensed network controller to a cell associated with the access point.
  • 12. The method of claim 11, wherein the licensed second wireless system is a Global System for Mobile communications system, and the message is a handover performed message.
  • 13. A non-transitory computer-readable medium storing a computer program for execution by a processor, the computer program for effecting a handover in an integrated wireless system comprising an unlicensed first wireless system and a licensed second wireless system, the computer program comprising sets of instructions for: receiving a handover request to perform the handover for a communication in progress, the handover being from the unlicensed first wireless system to the licensed second wireless system; andprior to effecting the handover, changing a cell identifier associated with a user terminal in conjunction with the handover of the communication in progress, wherein the cell identifier is changed from a cell identifier of a first region of the unlicensed first wireless system to a cell identifier of a second region of the unlicensed first wireless system.
  • 14. The non-transitory computer-readable medium of claim 13, wherein the cell identifier associated with the user terminal is changed from a cell identifier corresponding to a service region of an access point of the unlicensed first wireless system to a cell identifier corresponding to a service region of an unlicensed network controller of the unlicensed first wireless system.
  • 15. The non-transitory computer-readable medium of claim 14, the computer program further comprising a set of instructions for sending a message indicating that the handover has been performed from the cell identifier corresponding to the service region of the access point to the cell identifier corresponding to the service region of the unlicensed network controller.
  • 16. The non-transitory computer-readable medium of claim 13, wherein the licensed second wireless system is one of a time division multiple access system, a code division multiple access system, a frequency division multiple access system, and a spatial division multiple access system.
  • 17. The non-transitory computer-readable medium of claim 16, wherein the licensed second wireless system is a Global System for Mobile communications system, and the cell identifier associated with the user terminal is changed by forwarding a handover performed message from the unlicensed network controller to a mobile switching center, the mobile switching center providing an interface between the licensed second wireless system and the unlicensed first wireless system.
  • 18. A non-transitory computer-readable medium storing a computer program for execution by a processor, the computer program for effecting a handover in an integrated wireless system comprising an unlicensed first wireless system and a licensed second wireless system, the computer program comprising sets of instructions for: receiving a handover request to perform the handover for a communication in progress, the handover being from the licensed second wireless system to the unlicensed first wireless system; andsubsequent to effecting the handover, changing a cell identifier associated with a user terminal in conjunction with the handover of the communication in progress, wherein the cell identifier is changed from a cell identifier of a first region of the unlicensed first wireless system to a cell identifier of a second region of the unlicensed first wireless system.
  • 19. The non-transitory computer-readable medium of claim 18, wherein the cell identifier associated with the user terminal is changed from a cell identifier corresponding to a service region of an unlicensed network controller of the unlicensed first wireless system to a cell identifier corresponding to a service region of an access point of the unlicensed first wireless system.
  • 20. The non-transitory computer-readable medium of claim 19, wherein the cell identifier corresponding to the service region of the access point indicates a geographic location of the access point.
  • 21. The non-transitory computer-readable medium of claim 20, the computer program further comprising a set of instructions for using the indicated geographic location of the access point to provide location based services to a user of the user terminal.
  • 22. The non-transitory computer-readable medium of claim 19, the computer program further comprising a set of instructions for sending a message indicating that the handover has been performed from a cell associated with the unlicensed network controller to a cell associated with the access point.
  • 23. The non-transitory computer-readable medium of claim 22, wherein the licensed second wireless system is a Global System for Mobile communications system, and the message is a handover performed message.
  • 24. A wireless telecommunications system comprising: a licensed first wireless system comprising one or more mobile switching centers, each mobile switching center communicatively coupled to at least one base station controller, each base station controller coupled to at least one base station transceiver system; andan unlicensed second wireless system comprising one or more access points and an unlicensed network controller communicatively coupled to the licensed first wireless system through a particular mobile switching center, the unlicensed network controller communicatively coupled to at least one access point, wherein a handover of a communication in progress from the unlicensed second wireless system to the licensed first wireless system comprises, prior to effecting the handover, changing a cell identifier associated with a user terminal in conjunction with the handover, wherein the cell identifier is changed from a cell identifier of a first region of the unlicensed second wireless system to a cell identifier of a second region of the unlicensed second wireless system.
  • 25. The wireless telecommunications system of claim 24, wherein the cell identifier associated with the user terminal is changed from a cell identifier corresponding to a service region of an access point of the unlicensed second wireless system to a cell identifier corresponding to a service region of the unlicensed network controller.
  • 26. The wireless telecommunications system of claim 25, wherein a message indicating a completion of the handover from the cell identifier corresponding to the service region of the access point to the cell identifier corresponding to the service region of the unlicensed network controller, and the handover is initiated between the unlicensed second wireless system and the licensed first wireless system.
  • 27. The wireless telecommunications system of claim 24, wherein the licensed first wireless system is one of a time division multiple access system, a code division multiple access system, a frequency division multiple access system, and a spatial division multiple access system.
  • 28. The wireless telecommunications system of claim 27 wherein the licensed first wireless system is a Global System for Mobile communications system, and the cell identifier associated with the user terminal is changed by forwarding a handover performed message from the unlicensed network controller to the mobile switching center.
  • 29. A wireless telecommunications system comprising: a licensed first wireless system comprising one or more mobile switching centers, each mobile switching center communicatively coupled to at least one base station controller, each base station controller coupled to at least one base station transceiver system; andan unlicensed second wireless system comprising one or more access points and an unlicensed network controller communicatively coupled to the licensed first wireless system through a particular mobile switching center, the unlicensed network controller communicatively coupled to at least one access point, wherein a handover of a communication in progress from the licensed first wireless system to the unlicensed second wireless system comprises, subsequent to effecting the handover, changing a cell identifier associated with a user terminal in conjunction with the handover, wherein the cell identifier is changed from a cell identifier of a first region of the unlicensed second wireless system to a cell identifier of a second region of the unlicensed second wireless system.
  • 30. The wireless telecommunications system of claim 29, wherein the cell identifier associated with the user terminal is changed from a cell identifier corresponding to a service region of the unlicensed network controller of the unlicensed second wireless system to a cell identifier corresponding to a service region of an access point of the unlicensed second wireless system.
  • 31. The wireless telecommunications system of claim 30, wherein the cell identifier corresponding to the service region of the access point indicates a geographic location of the access point.
  • 32. The wireless telecommunications system of claim 31, wherein the indicated geographic location of the access point is used to provide location-based services to a user of the user terminal.
  • 33. The wireless telecommunications system of claim 30, wherein a message is sent indicating that the handover has been performed from a cell associated with the whole unlicensed network controller to a cell associated with the access point.
  • 34. The wireless telecommunications system of claim 33, wherein the licensed first wireless system is a Global System for Mobile communications system, and the message is a handover performed message.
US Referenced Citations (272)
Number Name Date Kind
5101501 Gilhousen et al. Mar 1992 A
5109528 Uddenfeldt Apr 1992 A
5226045 Chuang Jul 1993 A
5235632 Raith Aug 1993 A
5260944 Tomabechi Nov 1993 A
5260988 Schellinger et al. Nov 1993 A
5267261 Blakeney, II et al. Nov 1993 A
5327578 Breeden et al. Jul 1994 A
5333175 Ariyavisitakul et al. Jul 1994 A
5367558 Gillig et al. Nov 1994 A
5390233 Jensen et al. Feb 1995 A
5392331 Patsiokas et al. Feb 1995 A
5406615 Miller et al. Apr 1995 A
5428601 Owen Jun 1995 A
5442680 Schellinger et al. Aug 1995 A
5448619 Evans et al. Sep 1995 A
5475677 Arnold et al. Dec 1995 A
5488649 Schellinger Jan 1996 A
5507035 Bantz et al. Apr 1996 A
5509052 Chia et al. Apr 1996 A
5515420 Urasaka et al. May 1996 A
5533027 Akerberg et al. Jul 1996 A
5594782 Zicker et al. Jan 1997 A
5610969 McHenry et al. Mar 1997 A
5634193 Ghisler May 1997 A
5640414 Blakeney, II et al. Jun 1997 A
5659598 Byrne et al. Aug 1997 A
5659878 Uchida et al. Aug 1997 A
5664005 Emery et al. Sep 1997 A
5673307 Holland et al. Sep 1997 A
5675629 Raffel et al. Oct 1997 A
5724658 Hasan Mar 1998 A
5732076 Ketseoglou et al. Mar 1998 A
5745852 Khan et al. Apr 1998 A
5758281 Emery et al. May 1998 A
5796727 Harrison et al. Aug 1998 A
5796729 Greaney et al. Aug 1998 A
5812511 Kawamura et al. Sep 1998 A
5815525 Smith Sep 1998 A
5818820 Anderson et al. Oct 1998 A
5822681 Chang et al. Oct 1998 A
5822767 MacWilliams Oct 1998 A
5825759 Liu Oct 1998 A
5852767 Sugita Dec 1998 A
5862345 Okanoue Jan 1999 A
5870677 Takahashi et al. Feb 1999 A
5887020 Smith Mar 1999 A
5887260 Nakata Mar 1999 A
5890055 Chu et al. Mar 1999 A
5890064 Widergen et al. Mar 1999 A
5903834 Wallstedt May 1999 A
5915224 Jonsson Jun 1999 A
5926760 Khan et al. Jul 1999 A
5936949 Pasternak et al. Aug 1999 A
5940512 Tomoike Aug 1999 A
5946622 Bojeryd Aug 1999 A
5949773 Bhalla et al. Sep 1999 A
5960341 LeBlanc et al. Sep 1999 A
5960361 Chen Sep 1999 A
5960364 Dent Sep 1999 A
5987010 Schnizlein Nov 1999 A
5995828 Nishida Nov 1999 A
6016318 Tomoike Jan 2000 A
6035193 Buhrmann Mar 2000 A
6052592 Schellinger Apr 2000 A
6101176 Honkasalo Aug 2000 A
6112080 Anderson Aug 2000 A
6112088 Haartsen Aug 2000 A
6119000 Stephenson et al. Sep 2000 A
6130886 Ketseoglou et al. Oct 2000 A
6134227 Magana Oct 2000 A
6138019 Trompower et al. Oct 2000 A
6198941 Aho et al. Mar 2001 B1
6226515 Pauli May 2001 B1
6236852 Veerasamy et al. May 2001 B1
6243581 Jawanda Jun 2001 B1
6256511 Brown Jul 2001 B1
6263211 Brunner Jul 2001 B1
6269086 Magana Jul 2001 B1
6320673 Motosugi Nov 2001 B1
6320873 Nevo et al. Nov 2001 B1
6327470 Ostling Dec 2001 B1
6359872 Mahany et al. Mar 2002 B1
6374102 Brachman et al. Apr 2002 B1
6381457 Carlsson et al. Apr 2002 B1
6389059 Smith May 2002 B1
6415158 King Jul 2002 B1
6426819 Crimmins Jul 2002 B1
6430395 Arazi et al. Aug 2002 B2
6445921 Bell Sep 2002 B1
6463307 Larsson et al. Oct 2002 B1
6493629 Van Bosch Dec 2002 B1
6498934 Muller Dec 2002 B1
6539237 Sayers et al. Mar 2003 B1
6542516 Vialen et al. Apr 2003 B1
6553219 Vilander et al. Apr 2003 B1
6556822 Matsumoto Apr 2003 B1
6556825 Mansfield Apr 2003 B1
6556830 Lenzo Apr 2003 B1
6574266 Haartsen Jun 2003 B1
6587444 Lenzo Jul 2003 B1
6633614 Barton et al. Oct 2003 B1
6633761 Singhal Oct 2003 B1
6643512 Ramaswamy Nov 2003 B1
6647426 Mohammed Nov 2003 B2
6658250 Ganesan et al. Dec 2003 B1
6665276 Culbertson et al. Dec 2003 B1
6671506 Lee Dec 2003 B1
6675009 Cook Jan 2004 B1
6680923 Leon Jan 2004 B1
6711400 Aura Mar 2004 B1
6766160 Lemilainen et al. Jul 2004 B1
6788656 Smolentzov et al. Sep 2004 B1
6801519 Mangal Oct 2004 B1
6801772 Townend et al. Oct 2004 B1
6801777 Rusch Oct 2004 B2
6807417 Sallinen Oct 2004 B2
6824048 Itabashi et al. Nov 2004 B1
6826154 Subbiah et al. Nov 2004 B2
6829227 Pitt et al. Dec 2004 B1
6842462 Ramjee et al. Jan 2005 B1
6845095 Krishnarajah et al. Jan 2005 B2
6888811 Eaton et al. May 2005 B2
6895255 Bridgelall May 2005 B1
6909705 Lee et al. Jun 2005 B1
6922559 Mohammed Jul 2005 B2
6925074 Vikberg et al. Aug 2005 B1
6937862 Back et al. Aug 2005 B2
6970719 McConnell et al. Nov 2005 B1
6993359 Nelakanti et al. Jan 2006 B1
6996087 Ejzak Feb 2006 B2
7009952 Razavilar et al. Mar 2006 B1
7039027 Bridgelall May 2006 B2
7054627 Hillman May 2006 B1
7069022 Rajaniemi et al. Jun 2006 B2
7127250 Gallagher et al. Oct 2006 B2
7171199 Rahman Jan 2007 B1
7307963 Chow et al. Dec 2007 B2
7356145 Ala-Laurila et al. Apr 2008 B2
7369859 Gallagher May 2008 B2
7640008 Gallagher et al. Dec 2009 B2
20010029186 Canyon et al. Oct 2001 A1
20010031645 Jarrett Oct 2001 A1
20010046214 Kang Nov 2001 A1
20010046860 Lee Nov 2001 A1
20010049790 Faccin et al. Dec 2001 A1
20020045459 Morikawa Apr 2002 A1
20020051431 Choi et al. May 2002 A1
20020059516 Trtiainen May 2002 A1
20020066036 Makineni May 2002 A1
20020082015 Wu Jun 2002 A1
20020775844 Hagen Jun 2002
20020085516 Bridgelall Jul 2002 A1
20020102974 Raith Aug 2002 A1
20020118674 Faccin et al. Aug 2002 A1
20020132630 Arazi et al. Sep 2002 A1
20020142761 Wallstedt et al. Oct 2002 A1
20020147008 Kallio Oct 2002 A1
20020147016 Arazi et al. Oct 2002 A1
20020155829 Proctor, Jr. et al. Oct 2002 A1
20020160811 Jannette et al. Oct 2002 A1
20020164984 Thakker Nov 2002 A1
20020166068 Kilgore Nov 2002 A1
20020187780 Souissi Dec 2002 A1
20020191575 Kalavade et al. Dec 2002 A1
20020191595 Mar et al. Dec 2002 A1
20020196840 Anderson et al. Dec 2002 A1
20020197984 Monin et al. Dec 2002 A1
20030007475 Tsuda et al. Jan 2003 A1
20030031151 Sharma Feb 2003 A1
20030043773 Chang Mar 2003 A1
20030087653 Leung May 2003 A1
20030101356 Miettinen et al. May 2003 A1
20030112789 Heinonen Jun 2003 A1
20030119480 Mohammed Jun 2003 A1
20030119489 Mohammed Jun 2003 A1
20030119490 Mohammed Jun 2003 A1
20030119527 Labun et al. Jun 2003 A1
20030119548 Mohammed Jun 2003 A1
20030130008 Rajaniemi et al. Jul 2003 A1
20030139180 McIntosh et al. Jul 2003 A1
20030142673 Patil Jul 2003 A1
20030172264 Dillon Sep 2003 A1
20030176181 Boesjes Sep 2003 A1
20030176186 Mohammed Sep 2003 A1
20030193952 O'Meill Oct 2003 A1
20030202486 Anton, Jr. et al. Oct 2003 A1
20030210199 Sward et al. Nov 2003 A1
20030219022 Dillon Nov 2003 A1
20030219024 Purnadi et al. Nov 2003 A1
20030226017 Palekar Dec 2003 A1
20040008649 Wybenga Jan 2004 A1
20040009749 Arazi et al. Jan 2004 A1
20040010620 Solo Jan 2004 A1
20040013099 O'Neill Jan 2004 A1
20040025018 Haas Feb 2004 A1
20040037312 Spear Feb 2004 A1
20040053623 Hoff et al. Mar 2004 A1
20040068571 Ahmavaara Apr 2004 A1
20040068653 Fascenda Apr 2004 A1
20040077335 Lee et al. Apr 2004 A1
20040077346 Krenik et al. Apr 2004 A1
20040077354 Jason Apr 2004 A1
20040077355 Krenik et al. Apr 2004 A1
20040077356 Krenik et al. Apr 2004 A1
20040077374 Terry Apr 2004 A1
20040116120 Gallagher et al. Jun 2004 A1
20040147223 Cho Jul 2004 A1
20040162105 Reddy et al. Aug 2004 A1
20040171378 Rautila Sep 2004 A1
20040192211 Gallagher et al. Sep 2004 A1
20040202132 Heinonen Oct 2004 A1
20040203346 Myhre et al. Oct 2004 A1
20040203737 Myhre et al. Oct 2004 A1
20040203800 Myhre et al. Oct 2004 A1
20040203815 Shoemake et al. Oct 2004 A1
20040218563 Porter et al. Nov 2004 A1
20040219948 Jones et al. Nov 2004 A1
20040240525 Karabinis et al. Dec 2004 A1
20040259541 Hicks et al. Dec 2004 A1
20040264410 Sagi et al. Dec 2004 A1
20050026650 Russel Feb 2005 A1
20050064896 Rautiola et al. Mar 2005 A1
20050070283 Hashimoto et al. Mar 2005 A1
20050101245 Ahmavaara May 2005 A1
20050101329 Gallagher May 2005 A1
20050130654 Di Claudio et al. Jun 2005 A1
20050130659 Grech et al. Jun 2005 A1
20050181805 Gallagher Aug 2005 A1
20050184145 Law et al. Aug 2005 A1
20050186948 Gallagher et al. Aug 2005 A1
20050198199 Dowling Sep 2005 A1
20050207395 Mohammed Sep 2005 A1
20050255879 Shi Nov 2005 A1
20050265279 Markovic et al. Dec 2005 A1
20050266853 Gallagher Dec 2005 A1
20050271008 Gallagher Dec 2005 A1
20050272424 Gallagher Dec 2005 A1
20050272449 Gallagher Dec 2005 A1
20060009201 Gallagher Jan 2006 A1
20060009202 Gallagher Jan 2006 A1
20060019656 Gallagher Jan 2006 A1
20060019657 Gallagher Jan 2006 A1
20060019658 Gallagher Jan 2006 A1
20060025143 Gallagher Feb 2006 A1
20060025144 Gallagher Feb 2006 A1
20060025145 Gallagher Feb 2006 A1
20060025146 Gallagher Feb 2006 A1
20060025147 Gallagher Feb 2006 A1
20060079258 Gallagher Apr 2006 A1
20060079259 Gallagher Apr 2006 A1
20060079273 Gallagher Apr 2006 A1
20060079274 Gallagher Apr 2006 A1
20060094431 Saifullah et al. May 2006 A1
20060098598 Gallagher May 2006 A1
20060099935 Gallagher et al. May 2006 A1
20060114871 Buckley et al. Jun 2006 A1
20060153110 Morgan et al. Jul 2006 A1
20060291455 Katz et al. Dec 2006 A1
20070183427 Nylander et al. Aug 2007 A1
20070238448 Gallagher et al. Oct 2007 A1
20080076420 Khetawat et al. Mar 2008 A1
20080101301 Thomas et al. May 2008 A1
20080108319 Gallagher May 2008 A1
20080130564 Gallagher et al. Jun 2008 A1
20080132239 Khetawat et al. Jun 2008 A1
20080207170 Khetawat et al. Aug 2008 A1
20090054070 Gallagher et al. Feb 2009 A1
20090149195 Zhu Jun 2009 A1
20100041387 Khetawat et al. Feb 2010 A1
20100041402 Gallagher et al. Feb 2010 A1
20100041403 Khetawat et al. Feb 2010 A1
Foreign Referenced Citations (31)
Number Date Country
1909726 Feb 2007 CN
0936777 Aug 1999 EP
1207708 May 2002 EP
1207708 Oct 2004 EP
2115946 Nov 2009 EP
2282735 Apr 1995 GB
WO-9204796 Mar 1992 WO
WO-9724004 Jul 1997 WO
WO-9948312 Sep 1999 WO
WO-9948315 Sep 1999 WO
WO-0028762 May 2000 WO
WO-0051387 Aug 2000 WO
WO 0245456 Jun 2002 WO
WO-03039009 May 2003 WO
WO 03039009 May 2003 WO
WO-03092312 Nov 2003 WO
WO-2004002051 Dec 2003 WO
WO-2004034219 Apr 2004 WO
WO-2004036779 Apr 2004 WO
WO-2004039111 May 2004 WO
WO-2005006597 Jan 2005 WO
WO 2005060292 Jun 2005 WO
WO 2005107297 Oct 2005 WO
WO 2005107169 Nov 2005 WO
PCTUS2005040689 Mar 2006 WO
WO 2005114918 Mar 2006 WO
WO 2007015071 Feb 2007 WO
WO 2008106360 Sep 2008 WO
WO 2010019970 Feb 2010 WO
PCTUS2010026883 Mar 2010 WO
WO 2010104992 Sep 2010 WO