The present invention relates generally to tools and methods for extracting and removing fasteners, particularly bolts and nuts. More specifically, the present invention discloses methods for using extractors and dislodging tools to remove damaged fasteners.
Hex bolts, nuts, screws, and other similar threaded devices are used to secure and hold multiple components together by being engaged to a complimentary thread, known as a female thread. The general structure of these types of fasteners is a cylindrical shaft with an external thread and a head at one end of the shaft. The external thread engages a complimentary female thread tapped into a hole or a nut and secures the fastener in place, fastening the associated components together. The head receives an external torque force and is the means by which the fastener is turned, or driven, into the female threading. The head is shaped specifically to allow an external tool like a wrench to apply a torque to the fastener in order to rotate the fastener and engage the complimentary female threading to a certain degree. This type of fastener is simple, extremely effective, cheap, and highly popular in modern construction. One of the most common problems in using these types of fasteners, whether male or female, is the tool slipping in the head portion, or slipping on the head portion. This is generally caused by either a worn fastener or tool, corrosion, overtightening, or damage to the head portion of the fastener. Various methods may be used to remove a fastener, some more aggressive than others. Once a fastener head is damaged, a more aggressive method must be implemented to remove a seized fastener. Drilling out the fastener is a common method used by some users to dislodge the fastener. While this method can prove to be effective in some scenarios there is a high risk of damaging the internal threads of the hole.
The present invention is a method of using a fastener extractor and dislodging tool to eliminate the chance of slippage. The present invention uses a fastener extractor with gripping edges to bite into the head of the fastener and allow for efficient torque transfer between the extractor bit and the head portion of the fastener. The present invention also overcomes another common issue of the traditional bolt extraction, which is material from the fastener heat or the actual fastener being attached or stuck to the extractor tool. More specifically, the present invention allows users to easily dislodge any remaining material and/or the removed fastener from the extracting tool through a dislodging tool.
All illustrations of the drawings are for the purpose of describing selected versions of the present invention and are not intended to limit the scope of the present invention.
The present invention generally relates to methods for using extracting tools and extracting tool accessories. More specifically the present invention discloses a method of using a fastener extractor and dislodging tool apparatus to remove a damage/stripped fastener. Once the damage/stripped fastener is removed through the extracting tool, dislodging of the damaged/stripped fastener from the extractor tool can prove to be a difficult task. The present invention aims to solve this issue by disclosing a release tool that is selectively engaged into the extractor tool. The release tool is used to assist users with removing any pieces of damaged/stripped fasteners which may have been wedged onto the extractor tool during removal. Furthermore, the present invention is compatible with male-member based head designs of fasteners. Fasteners which utilize a male-member head design, also known as male fasteners, use the external lateral surface of the fastener head to engage a tool for tightening or loosening, such fasteners include hex bolts and nuts. The present invention is further useful for internal driven fasteners also known as socket cap screws that utilize an external socket head design. An example of a male fastener is a bolt with a hex shaped head. In addition, the present invention may be used with male fasteners of a right-hand thread and male fasteners of a left-hand thread. In addition, the present invention is compatible with any types of male threaded shafts. Though the extractor tool used in the present invention is described as a female embodiment, the present invention may utilize a male embodiment using the same elements or components and incorporating the same functions described herein in a opposite or reversed male embodiment.
Referring to
In reference to
A traditional socket wrench transfers the majority of the torque to the male fastener 60 through the lateral corners (intersection point of two lateral walls) of the fastener head 61. Over time, the degradation of the lateral corners reduces the efficiency of transferring torque from the socket wrench to the fastener head 61 thus causing slippage. The present invention overcomes this problem by using a fastener extractor that transfers the torque transfer point to the lateral walls 63 of the fastener head 61. This is accomplished through the use of the plurality of engagement features 5. Each of the plurality of engagement features 5 is positioned to engage or “bite” the lateral walls 63 of the fastener head 61 instead of the lateral corner. This ensures an adequate amount of torque is transferred to the fastener head 61 to initiate rotation and, resultantly, extraction of the damaged/stripped fastener 60. When the present invention utilizes the fastener extracor to remove the threaded shaft 62, the plurality of engagement features 5 is positioned to engage or “bite” the radial surface 64 to initiate rotation and, resultantly, extraction of the damaged/stripped fastener 60. This virtually eliminates tool slippage off fasteners, one of the improvements and benefits of the present invention over compared to traditional extracting methods, improving the life expectancy of both the tools and fasteners. This feature is both a cost saving, time saving as well as a safety benefit.
In reference to
In reference to the preferred embodiment of the torque-tool body 1, a gripping edge 40 is delineated in between a pair of engagement features 5 so that the gripping edge 40 is able to cut “bite” into the fastener head 61 or the threaded shaft 62 during the removal of the damaged/stripped fastener 60. More specifically, the plurality of engagement features 5 comprises an arbitrary engagement feature 10 and an adjacent engagement feature 11 as shown in
Furthermore, when the present invention engages the torque-tool body 1 with the fastener head 61 or the threaded shaft 62, only the gripping edge 40, the first slanted sections 6, and the second slanted section 8 are in contact with the fastener surface. The hollow section 7 does not engage with the fastener surface thus delineating an empty or hollow space. In other words, the hollow section 7 is delineated into the empty space as the empty space is configured to be positioned offset from the fastener 60. Further, the shape of the empty space is preferably a curved or radius shape, but the shape of the empty space may be any shape or shapes as preferred by the user.
In reference to
As mentioned above, the torque-tool body 1 may be designed to fit a variety of fastener head designs. This is achieved by varying the number of the plurality of engagement features 5 to compliment different types of fastener head designs. The number of the plurality of engagement features 5 generally corresponds to the number of lateral walls 63 of the fastener head 61. For example, a pentagon shaped fastener head has five lateral walls. In order to remove the male fastener with the pentagon shaped head, a user has to utilize an embodiment of the present invention wherein number of the plurality of engagement features 5 is five engagement features. Preferably, the number of the plurality of engagement features 5 in contact with the fastener head can be eighteen, twelve, six, or four. Although the methods of the present invention are most commonly applied to fasteners having a fastener head 61 with a plurality of lateral walls 63, the methods of the present invention may also be applied to threaded fasteners having a rounded head, such as a wood screw, machine screw, or set screw. Additionally, the methods may be applied to fastener heads radial or angular in shape which have a diameter greater than, equal to, or less than a diameter of the fastener's threaded shaft 62 portion.
In reference to
In reference to the first alternative embodiment of the torque-tool body 1, the gripping edge 40 is delineated in between the proximal section 81 of second slanted section 8 and the distal section 82 of the second slanted section 8 so that the gripping edge 40 is able to cut into the fastener head 61 or the threaded shaft 62 during the removal of the damaged/stripped fastener 60. More specifically, the plurality of engagement features 5 comprises the arbitrary engagement feature 10 and the adjacent engagement feature 11. The arbitrary engagement feature 10 is any feature within the plurality of engagement features 5 in such a way that the adjacent engagement feature 11 is the feature directly next to the arbitrary engagement feature 10. In reference to
In reference to
In reference to the first alternative embodiment of the torque-tool body 1, the gripping edge 40 is delineated within the hollow section 7 so that the gripping edge 40 is able to cut into the fastener head 61 during the removal of the damaged/stripped fastener 60. Furthermore, a first section, a second section, a third section, and a fourth section can be shaped into a plurality of straight sections, a plurality of curved section, or a combination of both the straight and curved sections. More specifically, the plurality of engagement features 5 comprises the arbitrary engagement feature 10 and the adjacent engagement feature 11. The arbitrary engagement feature 10 is any feature within the plurality of engagement features 5 in such a way that the adjacent engagement feature 11 is the feature directly next to the arbitrary engagement feature 10. In reference to
In reference to
In reference to
In reference to
In reference to
In reference to facilitate the engagement between the threaded opening 4 and the release bolt 12, the threaded shaft section 14 is designed to match the respective threads of the threaded opening 4 as shown in
The functionality of the gripping edge 40 with respect to the preferred embodiment, the first alternative embodiment, and the second alternative embodiment remains consistent so that the torque-tool body is able to firmly grip around the fastener head 61 or the threaded shaft 62. More specifically, the gripping edge 40 is preferably an acute (sharp) point but may be a small radial convex portion, flat, or concave portion if preferred by the manufacturer. One of the unique features of the gripping edge 40 is the ability to cut, push and peel subject material away to create a groove or channel into a damaged/stripped fastener 60 as shown in
In reference to
Furthermore, the griping edge 40 engages about the center of the lateral wall 63 of a conventional male hexagonal fastener head 61 as shown in
During engagement and the application of rotational torque to the fastener head 61 or the threaded shaft 62, the first slanted section 6 and the second slanted section 8 are angularly orientated with the lateral wall 63 of the fastener head 61 or radial surface 64 of the threaded shaft 62. As a result, the first slanted section 6 and the second slanted section 8 are preferably symmetrical to the lateral wall 63 of the fastener head 61 or radial surface 64 of the threaded shaft 63. In other words, the first slanted section 6 and the second slanted section 8 are offset and not parallel with the subject planar surface. The angular degrees offset with the fastener head 61 or the threaded shaft 62 are preferably all equal; however, the first slanted section 6 and the second slanted section 8 are not limited to this option.
Each griping edge 40 is symmetrically arranged and equally distanced circumferentially in a vertical direction along the rotational axis as shown in
The first slanted section 6 and the second slanted section 8 are straight and perpendicular to the top surface 35 of the base 3 as shown in
The torque-tool body 1 may further incorporate an intermediate sidewall portion in between a first adjacent pair of the plurality of engagement features 5 and a second adjacent pair of the plurality of engagement features 5 as shown in
In use, a torque-tool body 1 must be chosen that preferably matches the general shape of the fastener 60 to be removed. Choosing the correct torque-tool body 1 for a specific fastener generally requires matching the number of the plurality of engagement features 5 on the torque-tool body 1 with the number of lateral walls 63 on the fastener head 61. Some circumstances such as exceptionally compromised fasteners or asymmetric fasteners, a torque-tool body 1 may be chosen with the best size and fit for the fastener 60, taking into account the ability of the engagement features 5 to interact with the fastener 60. In some embodiments, it may be preferred the minimum diameter of the engagements features 5 is less than a fastener minimum diameter. Once an embodiment of the torque-tool body 1 is chosen, the torque-tool body 1 can be used in removal of the fastener 60.
To remove the damaged/stripped fastener 60 with the present invention, the torque-tool body 1 is positioned around the damaged/stripped fastener 60 so that a significant portion of the plurality of engagement features 5 are positioned around the fastener head 61 or the threaded shaft 62. In other words, the user needs to drive in the plurality of engagement features 5 into the fastener head 61 or the threaded shaft 62. In some embodiments, this is done using percussion blows so that each gripping edge 40 can cut vertical grooves into the fastener head 61 or the threaded shaft 62. In certain cases, these percussion blows may be achieved through the use of a hammer or other striking device. The user then simply applies a torque force to the torque-tool body 1 in the loosening direction using a torque arm 70 by way of attachment body 16, or engagement bore 17, in order to rotate and remove the damaged/stripped fastener 60 from a female thread. When a torque force is applied to the torque-tool body 1, the plurality of engagement features 5 “bite” into the lateral walls 63 of fastener head 61 or the threaded shaft 62, which in turn rotates the fastener 60. In some embodiments of the present method, the user may apply a torque force to the torque arm 70 in the tightening direction to break the fastener 60 loose of corrosion, rust, or any other seized conditions before continuing to rotate the fastener in the loosening direction. In some situations where the fastener is extremely seized or a anti loosening agent was previously applied to fastener 63, the method may include inserting the release bolt 12 into the threaded opening 4 of the torque tool body 1 and applying rotational torque force to the release bolt 12 to push the torque tool body 1 off the fastener 60. Once the torque tool body 1 has been removed from the fastener 60, heat and or anti seizing agents can be applied to the fastener without obstruction from the torque tool body 1 or without causing damage the torque tool body 1. The fastener loosening process can then be resumed and the torque tool body can be driven back into the fastener as previously described. The methods and apparatuses of the present invention may be used to engage new, partially stripped, or fully stripped fastener heads 61. The present invention overcomes slippage of the fastener head 61 through the use of the plurality of engagement features 5 since each pair of the plurality of engagement features 5 delineates the gripping edge 40.
To tighten or insert a damaged/stripped fastener 60, the user may simply reinsert the removed fastener 60 into the female thread body and tighten the fastener using the torque arm 70 to rotate the torque tool body 1 in the tightening direction. If the user needs to insert a damaged/stripped fastener that is detached from the torque tool body, a similar sequence of steps may be used as the method of removing a damaged/stripped fastener 60. The torque-tool body 1 is positioned around the damaged/stripped fastener 60 so that a significant portion of the plurality of engagement features 5 are positioned around the fastener head 61 or the threaded shaft 62. The user drives the plurality of engagement features 5 into the fastener head 61 or the threaded shaft 62. This can again be done using percussion blows so that each gripping edge 40 can cut into the fastener head 61 or the threaded shaft 62. Unlike the removal process, the user then applies a torque force in the tightening direction to the torque-tool body 1 using the torque arm 70 in order to rotate and insert or tighten the damaged/stripped fastener 60.
It is to be further understood that even though the aforementioned method describes the fastener 60 as a male threaded embodiment being removed from a female thread body, the present invention is not limited to this option as the present invention may also be used in an opposite method using the same or similar sequence of steps as previously described wherein the torque tool body 1 is used to rotate and remove a female thread body, commonly known as a threaded nuts, from a male fastener thread body.
The methods described for removing and inserting a damaged/stripped fastener 60 describe a torque force in a loosening direction and tightening direction respectively for removing and inserting the fastener 60. While the directional nature of theses torque force is generally understood to be counter-clockwise for loosening and clockwise for tightening as is the common operation of fasteners, the torque-tool body 1 is bi-directional and a counter-clockwise or clockwise torque force may be applied to the torque-tool body 1 for either insertion or removal of the fastener 60, depending on the nature of the fastener connection.
To dislodge the damaged/stripped fastener 60 from the torque-tool body 1 after removing or tightening the fastener 60, the release bolt 12 is used. The threaded shaft section 14 is engaged with the threaded opening 4 of the torque-tool body 1. The user may then apply appropriate clockwise or counterclockwise torque to the release bolt 12 via the driver section 15. This torque may be applied by hand or through the use of a tool such as the torque arm 70. In certain cases where the fastener cannot be easily dislodged from the torque-tool body, additional steps may be taken such as utilizing a second torque arm 70 to simultaneously apply torque oppositely to the torque-tool body 1 and the release bolt 12. During the fastener dislodging method, the fastener 60 and the release bolt 12 move in the same direction along and parallel to the rotational axis, the fastener 60 is moving vertically away from the torque tool body 1. Additionally, heat and/or lubrication may be applied to the apparatuses of the present method to aid in removal of the damaged/stripped fastener 60 from the torque-tool body 1. It is to be understood that the present invention can be used in the aforementioned method or methods to remove any threaded object or embodiment that is able to be loosened or tightened via a thread method and is not limited in its use on male threaded fasteners, studs or female threaded nuts.
Although the invention has been explained in relation to its preferred embodiment, it is to be understood that many other possible modifications and variations can be made without departing from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
848194 | McMurtry | Mar 1907 | A |
1798944 | Jackman | Mar 1931 | A |
2277945 | Ashleman | Mar 1942 | A |
2811883 | Cleaves | Nov 1957 | A |
3104569 | Davis | Sep 1963 | A |
3405377 | Pierce | Oct 1968 | A |
3495485 | Knudsen | Feb 1970 | A |
3902384 | Ehrler | Sep 1975 | A |
3908489 | Yamamoto et al. | Sep 1975 | A |
3913427 | Brase | Oct 1975 | A |
4074597 | Jansson | Feb 1978 | A |
4507991 | Lemke | Apr 1985 | A |
4536115 | Helderman | Aug 1985 | A |
4598616 | Colvin | Jul 1986 | A |
4607547 | Martus | Aug 1986 | A |
4651596 | Rachanski | Mar 1987 | A |
4777850 | Polonsky | Oct 1988 | A |
4893530 | Warheit | Jan 1990 | A |
4920833 | Rosenthal | May 1990 | A |
4927020 | Randy | May 1990 | A |
4930378 | Colvin | Jun 1990 | A |
5019080 | Hemer | May 1991 | A |
5031487 | Polonsky | Jul 1991 | A |
5219392 | Ruzicka et al. | Jun 1993 | A |
5228570 | Robinson | Jul 1993 | A |
5251521 | Burda et al. | Oct 1993 | A |
5398823 | Anders | Mar 1995 | A |
5481948 | Zerkovitz | Jan 1996 | A |
5501342 | Geibel | Mar 1996 | A |
5519929 | Bleckman | May 1996 | A |
5645177 | Lin | Jul 1997 | A |
5649791 | Connolly | Jul 1997 | A |
5669516 | Horn | Sep 1997 | A |
5725107 | Dembicks | Mar 1998 | A |
5737981 | Hildebrand | Apr 1998 | A |
5743394 | Martin | Apr 1998 | A |
5782148 | Kerkhoven | Jul 1998 | A |
5829327 | Stanton | Nov 1998 | A |
5832792 | Hsieh | Nov 1998 | A |
5904076 | Siwy | May 1999 | A |
6009778 | Hsieh | Jan 2000 | A |
6079299 | Sundstrom | Jun 2000 | A |
6092279 | Shoup | Jul 2000 | A |
6352011 | Fruhm | Mar 2002 | B1 |
6431373 | Blick | Aug 2002 | B1 |
6575057 | Ploeger | Jun 2003 | B1 |
6698316 | Wright | Mar 2004 | B1 |
6755098 | Huang | Jun 2004 | B2 |
6761089 | Bergamo | Jul 2004 | B2 |
6857340 | Wagner | Feb 2005 | B2 |
6951156 | Garg | Oct 2005 | B2 |
7000501 | Chen | Feb 2006 | B1 |
D524615 | Albertson | Jul 2006 | S |
7225710 | Pacheco, Jr. | Jun 2007 | B2 |
7331260 | Cheng | Feb 2008 | B2 |
7434494 | Snider | Oct 2008 | B1 |
7717278 | Kao | Jan 2010 | B2 |
D614931 | Su | May 2010 | S |
7788994 | Wright et al. | Sep 2010 | B2 |
7814814 | Whitehead | Oct 2010 | B2 |
7841480 | Hsieh | Nov 2010 | B2 |
7913593 | Dahar et al. | Mar 2011 | B2 |
8166851 | Pchola | May 2012 | B2 |
8302255 | Lin | Nov 2012 | B2 |
8336709 | Geibel | Dec 2012 | B1 |
D745814 | Hsieh | Dec 2015 | S |
D776505 | Doroslovac | Jan 2017 | S |
D784106 | Doroslovac | Apr 2017 | S |
9687968 | Doroslovac et al. | Jun 2017 | B2 |
D794405 | Doroslovac et al. | Aug 2017 | S |
9718170 | Eggert et al. | Aug 2017 | B2 |
D798682 | Doroslovac et al. | Oct 2017 | S |
9873195 | Buxton | Jan 2018 | B1 |
9878441 | Kao | Jan 2018 | B1 |
D829069 | Doroslovac et al. | Sep 2018 | S |
10081094 | Doroslovac et al. | Sep 2018 | B2 |
10328554 | Todd | Jun 2019 | B2 |
D859944 | Kukucka et al. | Sep 2019 | S |
D859945 | Kukucka et al. | Sep 2019 | S |
D859946 | Kukucka et al. | Sep 2019 | S |
D859947 | Kukucka et al. | Sep 2019 | S |
D867841 | Kukucka et al. | Nov 2019 | S |
D868553 | Kukucka et al. | Dec 2019 | S |
D879577 | Kukucka et al. | Mar 2020 | S |
D880968 | Kukucka et al. | Apr 2020 | S |
D880977 | Kukucka et al. | Apr 2020 | S |
D885149 | Kukucka et al. | May 2020 | S |
D887233 | Kukucka et al. | Jun 2020 | S |
D887711 | Kukucka et al. | Jun 2020 | S |
D889224 | Kukucka et al. | Jul 2020 | S |
D889257 | Kukucka et al. | Jul 2020 | S |
D892578 | Kukucka et al. | Aug 2020 | S |
10780556 | Kukucka et al. | Sep 2020 | B2 |
10786890 | Kukucka et al. | Sep 2020 | B2 |
D899091 | Carboy | Oct 2020 | S |
10828766 | Kukucka et al. | Nov 2020 | B2 |
D904152 | Kukucka et al. | Dec 2020 | S |
D906781 | Kukucka et al. | Jan 2021 | S |
10882162 | Kukucka et al. | Jan 2021 | B2 |
D909842 | Kukucka et al. | Feb 2021 | S |
D910490 | Lim et al. | Feb 2021 | S |
10919133 | Kukucka et al. | Feb 2021 | B2 |
10967488 | Kukucka et al. | Apr 2021 | B2 |
20030209111 | Huang | Nov 2003 | A1 |
20040256263 | Shih | Dec 2004 | A1 |
20050098459 | Gorman | May 2005 | A1 |
20050103664 | Shih | May 2005 | A1 |
20050183548 | Horobec | Aug 2005 | A1 |
20050257357 | Huang | Nov 2005 | A1 |
20050274233 | Lin | Dec 2005 | A1 |
20060130618 | Hsieh | Jun 2006 | A1 |
20060156869 | Hsieh | Jul 2006 | A1 |
20060266168 | Pacheco, Jr. | Nov 2006 | A1 |
20070261519 | Cheng | Nov 2007 | A1 |
20080235930 | English | Oct 2008 | A1 |
20090007732 | Hsieh | Jan 2009 | A1 |
20090120885 | Kao | May 2009 | A1 |
20090220321 | Sakamura | Sep 2009 | A1 |
20110056339 | Su | Mar 2011 | A1 |
20110303052 | Chen | Dec 2011 | A1 |
20120060656 | Chang | Mar 2012 | A1 |
20120132039 | Su | May 2012 | A1 |
20130047798 | Huang | Feb 2013 | A1 |
20140260832 | Chen | Sep 2014 | A1 |
20140311302 | Taguchi et al. | Oct 2014 | A1 |
20140331826 | Campbell | Nov 2014 | A1 |
20140360321 | Steinweg et al. | Dec 2014 | A1 |
20150135910 | Eggert et al. | May 2015 | A1 |
20150266169 | Campbell, II | Sep 2015 | A1 |
20150314429 | Doroslovac | Nov 2015 | A1 |
20150321332 | Lee | Nov 2015 | A1 |
20160067853 | Neto | Mar 2016 | A1 |
20160136792 | Harp | May 2016 | A1 |
20160223005 | Rathmann | Aug 2016 | A1 |
20160271764 | Huang | Sep 2016 | A1 |
20160339564 | Chen | Nov 2016 | A1 |
20170028538 | Lourenco et al. | Feb 2017 | A1 |
20170246733 | Shehab | Aug 2017 | A1 |
20170252905 | Doroslovac | Sep 2017 | A1 |
20170282337 | Johnson et al. | Oct 2017 | A1 |
20170312839 | Asanuma | Nov 2017 | A1 |
20170312897 | Doroslovac et al. | Nov 2017 | A1 |
20180003241 | Goss | Jan 2018 | A1 |
20180141192 | Chang | May 2018 | A1 |
20180354022 | Ross et al. | Dec 2018 | A1 |
20180354102 | Kukucka et al. | Dec 2018 | A1 |
20190001469 | Cho et al. | Jan 2019 | A1 |
20190015961 | Kukucka et al. | Jan 2019 | A1 |
20190152033 | Kukucka et al. | May 2019 | A1 |
20190283233 | Kukucka et al. | Sep 2019 | A1 |
20190337131 | Kukucka et al. | Nov 2019 | A1 |
20190375077 | Kukucka et al. | Dec 2019 | A1 |
20200078908 | Wu et al. | Mar 2020 | A1 |
20200298380 | Eggert et al. | Sep 2020 | A1 |
20200376648 | Kukucka et al. | Dec 2020 | A1 |
20200391360 | Kukucka et al. | Dec 2020 | A1 |
20210039245 | Kukucka et al. | Feb 2021 | A1 |
Number | Date | Country |
---|---|---|
201612229 | Apr 2016 | AU |
201612720 | Jun 2016 | AU |
201612721 | Jun 2016 | AU |
2564093 | Apr 2007 | CA |
168071 | Dec 2016 | CA |
2898480 | Jul 2017 | CA |
2767068 | Mar 2006 | CN |
3630254 | Jun 2006 | CN |
201046555 | Apr 2008 | CN |
102395447 | Mar 2012 | CN |
102554833 | Jul 2012 | CN |
103639950 | Mar 2014 | CN |
303924849 | Nov 2016 | CN |
303956827 | Dec 2016 | CN |
303984883 | Dec 2016 | CN |
3911409 | Oct 1990 | DE |
9403220 | Apr 1994 | DE |
4321325 | Jan 1995 | DE |
29613327 | Sep 1996 | DE |
10321284 | Dec 2004 | DE |
202010006146 | Jul 2010 | DE |
102013021238 | Jun 2015 | DE |
0930132 | Jul 1999 | EP |
0930132 | Nov 2000 | EP |
1371453 | Dec 2003 | EP |
1731774 | Dec 2006 | EP |
0930132 | Apr 2007 | EP |
906839 | Sep 1962 | GB |
1294764 | Nov 1972 | GB |
2366532 | Mar 2002 | GB |
2011143522 | Jul 2011 | JP |
2012157913 | Oct 2011 | JP |
2015180835 | Jul 2017 | JP |
200149097 | Jul 1999 | KR |
2152870 | Jul 2000 | RU |
2225786 | Jan 2001 | RU |
45671 | May 2005 | RU |
58510 | Nov 2006 | RU |
2387533 | Apr 2010 | RU |
116398 | May 2012 | RU |
180548 | Jun 2018 | RU |
16616 | Aug 1930 | SU |
201341127 | Oct 2013 | TW |
1994016862 | Aug 1994 | WO |
1996010932 | Apr 1996 | WO |
1996026870 | Sep 1996 | WO |
1996027745 | Sep 1996 | WO |
1997010926 | Mar 1997 | WO |
1998012982 | Apr 1998 | WO |
WO9812982 | Apr 1998 | WO |
999032264 | Jul 1999 | WO |
1999032264 | Jul 1999 | WO |
2001066312 | Sep 2001 | WO |
2004002687 | Jan 2004 | WO |
2005070621 | Aug 2005 | WO |
2006023374 | Mar 2006 | WO |
2006130490 | Dec 2006 | WO |
2010007402 | Jan 2010 | WO |
2011109040 | Sep 2011 | WO |
2013028875 | Feb 2013 | WO |
WO2015050942 | Apr 2015 | WO |
2015082283 | Jun 2015 | WO |
2015050942 | Sep 2015 | WO |
2016051080 | Apr 2016 | WO |
DM090809 | Apr 2016 | WO |
DM091188 | May 2016 | WO |
DM091189 | May 2016 | WO |
2016174615 | Nov 2016 | WO |
WO2017069953 | Apr 2017 | WO |
2017178997 | Oct 2017 | WO |
2017187388 | Nov 2017 | WO |
2018172831 | Sep 2018 | WO |
2019012486 | Jan 2019 | WO |
2019167032 | Sep 2019 | WO |
2019175652 | Sep 2019 | WO |
2020039281 | Feb 2020 | WO |
2020039285 | Feb 2020 | WO |
2020058777 | Mar 2020 | WO |
2020152516 | Jul 2020 | WO |
2020208608 | Oct 2020 | WO |
2020225800 | Nov 2020 | WO |
2021001696 | Jan 2021 | WO |
2021019500 | Feb 2021 | WO |
2021033152 | Feb 2021 | WO |
Number | Date | Country | |
---|---|---|---|
20220168877 A1 | Jun 2022 | US |
Number | Date | Country | |
---|---|---|---|
62733507 | Sep 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17336236 | Jun 2021 | US |
Child | 17672538 | US | |
Parent | 16514117 | Jul 2019 | US |
Child | 17336236 | US | |
Parent | 16255341 | Jan 2019 | US |
Child | 16514117 | US | |
Parent | 16107842 | Aug 2018 | US |
Child | 16255341 | US | |
Parent | PCT/IB2017/054379 | Jul 2017 | US |
Child | 16107842 | US | |
Parent | 15601864 | May 2017 | US |
Child | PCT/IB2017/054379 | US | |
Parent | PCT/IB2017/052453 | Apr 2014 | US |
Child | 16107842 | US |