Methods and apparatuses for laser processing materials

Information

  • Patent Grant
  • 11697178
  • Patent Number
    11,697,178
  • Date Filed
    Friday, October 6, 2017
    7 years ago
  • Date Issued
    Tuesday, July 11, 2023
    a year ago
Abstract
Methods of laser processing a transparent material are disclosed. The method may include positioning the transparent material on a carrier and transmitting a laser beam through the transparent material, where the laser beam may be incident on a side of the transparent material opposite the carrier. The transparent material may be substantially transparent to the laser beam and the carrier may include a support base and a laser disruption element. The laser disruption element may disrupt the laser beam transmitted through the transparent material such that the laser beam may not have sufficient intensity below the laser disruption element to damage the support base.
Description
TECHNICAL FIELD

The present specification relates generally to the manufacture of materials and, more specifically, to laser processing of materials.


BACKGROUND

In recent years, customer demand to reduce the size, weight, and material cost of devices has led to considerable technological growth in flat panel displays for touch screens, tablets, smartphones, and TVs. Industrial lasers are becoming important tools for applications requiring high precision cutting of these materials. However, laser processing can be difficult because the high intensity laser may damage the components utilized in laser processing of the materials.


Accordingly, a need exists for alternative methods and apparatuses for laser processing materials.


SUMMARY

The embodiments described herein relate to methods and apparatuses for laser processing materials. According to one embodiment, transparent material may be laser processed. The method may comprise positioning the transparent material on a carrier and transmitting a laser beam through the transparent material, where the laser beam may be incident on a side of the transparent material opposite the carrier. The transparent material may be substantially transparent to the laser beam and the carrier may comprise a support base and a laser disruption element. The laser disruption element may disrupt the laser beam transmitted through the transparent material such that the laser beam may not have sufficient intensity below the laser disruption element to damage the support base.


In another embodiment, a multilayer stack for laser processing may comprise a carrier comprising a support base and a laser disruption element, and a transparent material positioned on the carrier. The laser disruption element may be positioned on top of the support base. The transparent material may comprise a substantially flat top surface and a substantially flat bottom surface, wherein the transparent material may be substantially transparent to a laser beam incident on a surface of the transparent material opposite the carrier. The laser disruption element may optically disrupt the laser beam transmitted through the transparent material such that the laser beam may not have sufficient intensity below the laser disruption element to damage the support base.


In yet another embodiment, a carrier may be protected when a transparent material positioned on the carrier is laser processed. The method may comprise positioning the transparent material on top of the carrier, transmitting a laser beam through the transparent material, and positioning a laser disruption element between the support base and the transparent material. The carrier may comprise a support base. The laser beam may be incident on a surface of the transparent material opposite the carrier and the laser beam may comprise a focal area having an intensity sufficient to damage the carrier. The laser disruption element may optically disrupt the laser beam transmitted through the transparent material such that the laser beam may not have sufficient intensity at any point below the laser disruption element to damage the support base.


Additional features and advantages of the embodiments described herein will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the embodiments described herein, including the detailed description which follows, the claims, as well as the appended drawings.


It is to be understood that both the foregoing general description and the following detailed description describe various embodiments and are intended to provide an overview or framework for understanding the nature and character of the claimed subject matter. The accompanying drawings are included to provide a further understanding of the various embodiments, and are incorporated into and constitute a part of this specification. The drawings illustrate the various embodiments described herein, and together with the description serve to explain the principles and operations of the claimed subject matter.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 schematically depicts a cross-sectional diagram of a multilayered stack undergoing laser processing, according to one or more embodiments shown and described herein.





DETAILED DESCRIPTION

Reference will now be made in detail to embodiments of apparatuses and methods for laser processing materials, examples of which are illustrated in the accompanying drawings. Whenever possible, the same reference numerals will be used throughout the drawings to refer to the same or like parts. One embodiment of a multilayered stack for laser processing is schematically depicted in FIG. 1. Generally, the laser processing may perforate a material that is transparent to the laser, sometimes referred to herein as the “transparent material,” and the perforation may cause or contribute to cutting the transparent material at the perforation. The multilayered stack generally includes a transparent material which can be perforated or otherwise mechanically deformed by a laser beam incident on the top surface of the transparent material. The transparent material is positioned on a carrier, where at least a portion of the carrier is non- transparent to the laser beam. The carrier generally includes a support base and a laser disruption element positioned between the support base and the transparent material. The support base supports the transparent material and may be utilized to transport the transparent material to be laser processed. In one embodiment, the support base material may be non-transparent to the laser beam and may be damaged if contacted by a portion of a laser beam having an intensity great enough to damage the carrier, such as a focused area of a laser beam. However, the laser disruption element positioned between the transparent material and the support base may disrupt and diffuse a laser beam exiting the transparent material before it can contact the support base, such that upon optical disruption of the laser beam by the laser disruption element, the laser beam does not have sufficient intensity below the laser disruption element to damage the support base. As such, the laser disruption element may act as a shield to protect the support base from damage associated with contact with a portion of a laser beam with sufficient intensity to damage the support base. Various embodiments of methods and apparatuses for use in laser processing transparent materials will be described herein with specific references to the appended claims.


Referring to FIG. 1, a multilayer stack 100 is schematically depicted. Generally, the multilayer stack 100 comprises a transparent material 160 and a carrier 110 which comprises a laser disruption element 140 and a support base 120. In embodiments described herein, the transparent material 160 is positioned on top of the laser disruption element 140, which is positioned on top of the support base 120. As used herein, reference to a position above or on top of another position assumes that the top or uppermost position is the surface of the multilayer stack 100 upon which the laser beam 180 is first incident. For example, in FIG. 1, the surface of the transparent material 160 that is closest to the source laser 188 is the top surface 162 and placement of the laser disruption element 140 below the transparent material 160 means that the laser beam 180 traverses the transparent material 160 before interacting with the laser disruption element 140. As shown in FIG. 1, the source laser 188 in transmitted through an optical element 184 which forms a focused area of the laser beam 180, such as a focal line 182, which is incident upon the transparent material 160.


The transparent material 160 may be laser processed with a laser beam 180 which may alone, or with other manufacturing steps, be utilized to cut the transparent material 160. As used herein, laser processing refers to cutting, perforating, ablating, or otherwise altering the mechanical integrity of a material with a laser beam 180. Generally, the laser beam 180 must have a certain intensity at a particular area of the transparent material 160 to alter the mechanical integrity of the transparent material 160. As such, a defocused or disrupted laser beam may not have sufficient intensity to mechanically affect a material at a selected area while a focused laser beam may have sufficient intensity to cut, perforate, or ablate an area of a laser processed material. However, a focused area of a laser beam, such as a laser beam with a focused focal line 182, may have sufficient intensity to perforate the transparent material 160 as well as to damage a support base 120 directly contacted by the focal line 182. A focal line 182 of a laser beam 180 may be produced by an optical assembly 184 which can optically alter the path of a source laser 188. Also, as used herein, in the context of laser beams, “intensity” may be referred to as “energy density” and the two terms are interchangeable. The laser beam 180 has a wavelength, and as used herein, a material that is “transparent” is substantially transparent to electromagnetic radiation of the wavelength of the laser such that the absorption by the transparent material 160 is less than about 10%, less than about 5%, or even less than about 1% per mm of material depth at the wavelength of the laser. “Electromagnetic radiation” may be referred to herein as “light” and the two te1ms are interchangeable and may correspond with electromagnetic radiation both inside and outside of the visible spectrum.


The support base 120 is generally any structure capable of supporting the transparent material 160 which will be laser processed by the laser beam 180. The support base 120 may act as a carrying tray for the transparent material 160 and may have a substantially flat top surface 122, for interaction with a flat transparent material 160, and a substantially flat bottom surface 124, for interaction with a substantially flat work table upon which the support base 120 may be positioned. The support base 120 may be positioned on a table or other workspace for stability during laser processing. In one embodiment, the support base 120 may comprise aluminum. For example, the support base 120 may comprise greater than about 50%, greater than about 70%, greater than about 90%, greater than about 95%, or even greater than about 99% aluminum. In one embodiment, the support base 120 may comprise a honeycomb aluminum structure, such as ALUCORE®, commercially available from 3A Composites International AG. In another embodiment, the support base 120 may comprise polyoxmethylene. If non-transparent materials, such as the materials of the support base 120, are contacted by the focal line 182, the support base 120 can be damaged, which may result in contamination of the laser processed transparent material 160. As used herein, damage to the support base 120 includes, without limitation scratching, ablating, cutting, slashing, abrasion, scoring, or other disruption in the mechanical integrity of the top surface 122 of the support base 120.


In one embodiment, the support base 120 may be placed on a table or other work station during the laser processing. The table or workstation may have a vacuum system which creates suction upon the surface of the table or workstation. For example, the table or workstation may have vacuum holes in its surface, and the support base 120 and laser disruption element 140 may have corresponding holes through which the vacuum may create suction and secure materials positioned on top of the laser disruption element 140. For example, the transparent material 160 may be secured to the disruption element 140 by vacuum suction which permeates through holes in the disruption element 140, support base 120, and workstation. The support base 120 and the laser disruption element 140 may be mechanically fastened to one another such as with screws, fasteners, pins, or other suitable means. As such, the transparent material 160 can rest upon the laser disruption element 140 and be secured by the vacuum system while laser processed.


The transparent material 160 may be any material substantially transparent to the electromagnetic radiation of the laser beam 180. For example, the transparent material 160 may be, without limitation, glass, sapphire, silicon, silicon-arbide, quartz, alumina (AbO3), aluminum nitride (AIN), Zirconia (ZrO2), gallium-Nitride, gallium-arsenide (GaAs), gallium-phosphide (GaP), gallium-antimonide (GaSh), indium-arsenide (InAs), indium-phosphide (InP), indium-ntimonide (InSb), cadmium-sulphide (CdS), cadmium-selenide (CdSe), cadmium-telluride (CdTe), zinc-sulfide (ZnS), zink-selenide (ZnSe), zink-telluride (ZnTe), germanium (Ge), lithium-niobate (LiNbO3), lithium-tantalate (LiTaO3), or combinations thereof. The transparent material 160 may have a substantially flat top surface 162 and a substantially flat bottom surface 164, such as would be suitable for cover glass for an electronic device. The top surface 162 and/or the bottom surface 164 may be polished. In another embodiment, the transparent material 160 may be a wafer material for semiconductor manufacturing. If glass is utilized as the transparent material 160, the glass may generally be any glass suitable for formation as a sheet. In some embodiments, the glass may be ion-exchangeable aluminosilicate glass. Examples of such ion-exchangeable aluminosilicate glass include, but are not limited to, Gorilla Glass® and Gorilla Glass II® (commercially available from Corning, Inc.). Such glass, especially after laser processing, may be well suited for many uses, such as, for example, as cover glass for hand-held consumer electronic devices.


The laser beam 180 may be operable to create small (micron and smaller) “holes” in the transparent material 160 for the purpose of drilling, cutting, separating, perforating, or otherwise processing the transparent material 160 at the focal line 182. More particularly, an ultrashort (i.e., from 10-10 to 10-15 second) pulse laser beam 180 having wavelengths such as 1064 nm, 532 nm, 355 nm, or 266 nm is focused, as the focal line 182, to an energy density above the threshold needed to create a defect in the region of focus at the surface of or within the transparent material 160. The laser beam 180 may have a repetition rate in a range of between about 1 kHz and 2 MHz, or in another embodiment, between about 10 kHz and about 650 kHz. By repeating the process, a series of laser-induced defects aligned along a predetermined path can be created in the transparent material 160. By spacing the laser-induced features sufficiently close together, a controlled region of mechanical weakness within the transparent material 160 can be created and the transparent material 160 can be precisely fractured or separated (mechanically or thermally) along the path defined by the series of laser-induced defects (shown in FIG. 1 as the area of the transparent material 160 proximate the focal line 182). The ultrashort laser pulse(s) may be optionally followed by a carbon dioxide (CO2) laser or other source of thermal stress to effect fully automated separation of the transparent material 160. Representative laser beam 180 characteristics, which can be applied to laser process a transparent substrate, are described in detail in U.S. Patent Application 61/917,092 TITLED “METHOD AND DEVICE FOR THE LASER-BASED MACHINING OF SHEET-LIKE SUBSTRATES, the teachings of which are incorporated herein by reference in their entirety.


The wavelength of the laser beam 180 may be selected so that the material to be laser processed (drilled, cut, ablated, damaged or otherwise appreciably modified by the laser) is transparent to the wavelength of the laser. The selection of the laser source may also depend on the ability to induce multi-photon absorption (MPA) in the transparent material 160. MPA is the simultaneous absorption of multiple photons of identical or different frequencies in order to excite a material from a lower energy state (usually the ground state) to a higher energy state (excited state). The excited state may be an excited electronic state or an ionized state. The energy difference between the higher and lower energy states of the material is equal to the sum of the energies of the two photons. MPA is a third-order nonlinear process that is several orders of magnitude weaker than linear absorption. It differs from linear absorption in that the strength of absorption depends on the square of the light intensity, thus making it a nonlinear optical process. At ordinary light intensities, MPA is negligible. If the light intensity (energy density) is extremely high, such as in the region of the focal line 182 of a laser beam 180 (particularly a pulsed laser source), MPA becomes appreciable and leads to measurable effects in the material within the region where the energy density of the laser beam 180 is sufficiently high (i.e. the focal line 182). Within the region of the focal line 182, the energy density may be sufficiently high to result in ionization.


At the atomic level, the ionization of individual atoms has discrete energy requirements. Several elements commonly used in glass (e.g., Si, Na, K) have relatively low ionization energies, such as about 5 eV. Without the phenomenon of MPA, a laser wavelength of about 248 nm would be required to create linear ionization at about 5 eV. With MPA, ionization or excitation between states separated in energy by about 5 eV can be accomplished with wavelengths longer than 248 nm. For example, photons with a wavelength of 532 nm have an energy of about 2.33 eV, so two photons with wavelengths of 532 nm can induce a transition between states separated in energy by about 4.66 eV in two-photon absorption (TPA).


Thus, atoms and bonds may be selectively excited or ionized in the regions of the transparent material 160 where the energy density of the laser beam 180 is sufficiently high to induce nonlinear TPA of a laser wavelength having half the required excitation energy. MPA can result in a local reconfiguration and separation of the excited atoms or bonds from adjacent atoms or bonds. The resulting modification in the bonding or configuration can result in non-thermal ablation and removal of matter from the region of the material in which MPA occurs. This removal of matter creates a structural defect (e.g. a defect line or “perforation”) that mechanically weakens the transparent material 160 and renders it more susceptible to cracking or fracturing upon application of mechanical or thermal stress. By controlling the placement of perforations, a contour or path along which cracking occurs can be precisely defined and precise micromachining of the material can be accomplished. The contour defined by a series of perforations may be regarded as a fault line and corresponds to a region of structural weakness in the transparent material 160. In one embodiment, laser processing includes separation of a part from the transparent material160 processed by the laser beam 180, where the part has a precisely defined shape or perimeter determined by a closed contour of perforations formed through MPA effects induced by the laser. As used herein, the term closed contour refers to a perforation path formed by the laser line, where the path intersects with itself at some location. An internal contour is a path formed where the resulting shape is entirely surrounded by an outer portion of material.


According to some embodiments perforations can be accomplished with the use of an ultra-short pulse laser in combination with optics that generates a focal line to fully perforate the body of a range of glass compositions. In some embodiments, the pulses are single pulses (i.e., the laser provides equally separated single pulses rather than pulse bursts (closely spaced single pulses that are grouped together), with the pulse duration of the individual pulses is in a range of between greater than about 1 picoseconds and less than about 100 picoseconds, such as greater than about 5 picoseconds and less than about 20 picoseconds, and the repetition rate of the individual pulses can be in a range of between about 1 kHz and 4 MHz, such as in a range of between about 10 kHz and 650 kHz. Perforations can also be accomplished with a single “burst” of high energy short duration pulses spaced close together in time. Such pulses can be produced in bursts of two pulses, or more (such as, for example, 3 pulses, 4, pulses, 5 pulses, 10 pulses, 15 pulses, 20 pulses, or more) separated by a duration between the individual pulses within the burst that is in a range of between about 1 nsec and about 50 nsec, for example, 10 to 30 nsec, such as about 20 nsec, and the burst repetition frequency can be in a range of between about 1 kHz and about 200 kHz. (Bursting or producing pulse bursts is a type of laser operation where the emission of pulses is not in a uniform and steady stream but rather in tight clusters of pulses.) The pulse burst laser beam can have a wavelength selected such that the material is substantially transparent at this wavelength. The laser pulse duration may be 10−I0 s or less, or 10−II s or less, or 10I2 s or less, or 10I3 s or less. For example, the laser pulse duration may be between about 1 picosecond and about 100 picoseconds, or in another embodiment, between about 5 picoseconds and about 20 picoseconds. These “bursts” may be repeated at high repetition rates(e.g. kHz or MHz). The average laser power per burst measured (if burst pulses are utilized) at the material can be greater than 40 microJoules per mm thickness of material, for example between 40 microJoules/mm and 2500 microJoules/mm, or between 500 and 2250 microJoules/mm. For example, for one embodiment when using f 0.1 mm-0.2 mm thick glass one may use 200 μJ pulse bursts to cut and separate the glass, which gives an exemplary range of 1000-2000 μJ/mm. For example, for an examplary 0.5-0.7 mm thick glass, one may use 400-700 μJ pulse bursts to cut and separate the glass, which corresponds to an exemplary range of 570 μJ/mm (400 μJ/0.7 mm) to 1400 μJ/mm (700 μJ/0.5 mm). The perforations may be spaced apart and precisely positioned by controlling the velocity of a substrate or stack relative to the laser through control of the motion of the laser and/or the substrate or stack. In one embodiment, in a single pass, a laser can be used to create highly controlled full line perforation through the material, with extremely little (less than about 75 m, or even less than about 50 m) subsurface damage and debris generation. This is in contrast to the typical use of spot-focused laser to ablate material, where multiple passes are often necessary to completely perforate the glass thickness, large amounts of debris are formed from the ablation process, and more extensive sub-surface damage (less than about 100 m) and edge chipping occur. These perforations, defect regions, damage tracks, or defect lines are generally spaced from 1 to 25 microns apart (for example, 3-12 microns, or 5-20 microns). According to some embodiments the pulsed laser has laser power of 10 W-150 W and produces pulse bursts with at least 2 pulses per pulse burst. According to some embodiments the pulsed laser has laser power of 10 W-100 W and produces pulse bursts with at least 2-25 pulses per pulse burst. According to some embodiments the pulsed laser has laser power of 25 W-60 W, and produces pulse bursts with at least 2-25 pulses per burst and the periodicity between the defect lines is 2-20 microns, or 2 to 15 microns, or 2-10 microns. The pulse burst laser beam can have a wavelength selected such that the material is substantially transparent at this wavelength. According to some embodiments the pulsed has a pulse duration of less than 10 picoseconds. According to some embodiments the pulsed laser has a pulse repetition frequency of between 10 kHz and 1000 kHz.


Thus, it is possible to create a microscopic (i.e., less than about 1 μm, less than 0.5 nm (for example ≤400 nm, or ≤300 nm) or even less than about 100 nm in diameter (e.g, 50 nm-100 nm)) elongated “hole” (also called a perforation or a defect line) in a transparent material 160 using a single high energy burst pulse. These individual perforations can be created at rates of several hundred kilohertz (several hundred thousand perforations per second, for example). Thus, with relative motion between the source and the material these perforations can be placed adjacent to one another (spatial separation varying from sub-micron to several microns as desired). This spatial separation is selected in order to facilitate cutting. In some embodiments the defect line is a “through hole”, which is a hole or an open channel that extends from the top to the bottom of the transparent material 160. Furthermore, the internal diameter of a defect line can be as large as the spot diameter of the laser beam focal line, for example. The laser beam focal line can have an average spot diameter in a range of between about 0.1 micron and about 5 microns, for example 1.5 to 3.5 microns.


To form a focal line 182, a source laser 188 may be transmitted through an optical assembly 184. Suitable optical assemblies, which can optical assemblies can be applied, are described in detail in U.S. Patent Application No. 61/917,092 TITLED “STACKED TRANSPARENT MATERIAL CUTTING WITH ULTRAFAST LASER BEAM OPTICS, DISRUPTIVE LAYERS AND OTHER LAYERS, the teachings of which are incorporated herein by reference in their entirety. For example, an optical assembly 184 positioned in the beam path of the source laser 188 is configured to transform the source laser 188 into a focal line 182, viewed along the beam propagation direction, the laser beam focal line 182 having a length in a range of between 0.1 mm and 100 mm, for example, 0.1 to 10 nm. The laser beam focal line can have a length in a range of between about 0.1 mm and about 10 mm, or between about 0.5 mm and about 5 mm, such as about 1 mm, about 2 mm, about 3 mm, about 4 mm, about 5 mm, about 6 mm, about 7 mm, about 8 mm, or about 9 mm, or a length in a range of between about 0.1 mm and about 1 mm, and an average spot diameter in a range of between about 0.1 micron and about 5 microns. The holes or defect lines each can have a diameter between 0.1 microns and 10 microns, for example 0.25 to 5 microns (e.g., 0.2-0.75 microns). For example, as shown in FIG. 1, a spherical or disc shaped optical assembly 184 may be utilized to focus the source laser 188 and form a focal line 182 of a defined length.


Note that typical operation of such a picosecond laser described herein creates a “burst” 500 of pulses 500A. Each “burst” (also referred to herein as a “pulse burst” 500) contains multiple individual pulses 500A (such as at least 2 pulses, at least 3 pulses, at least 4 pulses, at least 5 pulses, at least 10 pulses, at least 15 pulses, at least 20 pulses, or more) of very short duration. That is, a pulse burst is a “pocket” of pulses, and the bursts are separated from one another by a longer duration than the separation of individual adjacent pulses within each burst. Pulses 500A have pulse duration Td of up to 100 psec (for example, 0.1 psec, 5 psec, 10 psec, 15 psec, 18 psec, 20 psec, 22 psec, 25 psec, 30 psec, 50 psec, 75 psec, or therebetween). The energy or intensity of each individual pulse 500A within the burst may not be equal to that of other pulses within the burst, and the intensity distribution of the multiple pulses within a burst 500 often follows an exponential decay in time governed by the laser design. Preferably, each pulse 500A within the burst 500 of the exemplary embodiments described herein is separated in time from the subsequent pulse in the burst by a duration Tp from 1 nsec to 50 nsec (e.g. 10-50 nsec, or 10-30 nsec, with the time often governed by the laser cavity design). For a given laser, the time separation Tp between adjacent pulses (pulse -to- pulse separation) within a burst 500 is relatively uniform (±10%). For example, in some embodiments, each pulse within a burst is separated in time from the subsequent pulse by approximately 20 nsec (50 MHz). For example, for a laser that produces pulse separation Tp of about 20 nsec, the pulse to pulse separation Tp within a burst is maintained within about ±10%, or about ±2 nsec. The time between each “burst” of pulses (i.e., time separation Tb between bursts) will be much longer (e.g., 0.25≤Tb≤1000 microseconds, for example 1-10 microseconds, or 3-8 microseconds). In some of the exemplary embodiments of the laser described herein the time separation Tb is around 5 microseconds for a laser with burst repetition rate or frequency of about 200 kHz. The laser burst repetition rate is relates to the time Tb between the first pulse in a burst to the first pulse in the subsequent burst (laser burst repetition rate=1/Tb). In some embodiments, the laser burst repetition frequency may be in a range of between about 1 kHz and about 4 MHz. More preferably, the laser burst repetition rates can be, for example, in a range of between about 10 kHz and 650 kHz. The time Tb between the first pulse in each burst to the first pulse in the subsequent burst may be 0.25 microsecond (4 MHz burst repetition rate) to 1000 microseconds (1 kHz burst repetition rate), for example 0.5 microseconds (2 MHz burst repetition rate) to 40 microseconds (25 kHz burst repetition rate), or 2 microseconds (500 kHz burst repetition rate) to 20 microseconds (50 k Hz burst repetition rate). The exact timings, pulse durations, and burst repetition rates can vary depending on the laser design, but short pulses (Td<20 psec and preferably Td≤15 psec) of high intensity have been shown to work particularly well.


The energy required to modify or perforate the material (e.g., glass) can be described in terms of the burst energy—the energy contained within a burst (each burst 500 contains a series of pulses 500A), or in terms of the energy contained within a single laser pulse (many of which may comprise a burst). For these applications, the energy per burst can be from 25-750 μJ, more preferably 50-500 μJ, or 50-250 μJ. In some embodiments the energy per burst is 100-250 μJ. The energy of an individual pulse within the pulse burst will be less, and the exact individual laser pulse energy will depend on the number of pulses 500A within the pulse burst 500 and the rate of decay (e.g., exponential decay rate) of the laser. For example, for a constant energy/burst, if a pulse burst contains 10 individual laser pulses 500A, then each individual laser pulse 500A will contain less energy than if the same pulse burst 500 had only 2 individual laser pulses.


Laser “ablative” cutting of thin glasses, as described in some embodiments herein, has advantages that include no minimization or prevention of crack creation at or near the region of ablation and the ability to perform free form cuts of arbitrary shape. It is beneficial to avoid edge cracking and residual edge stress in glass substrates for flat panel displays because flat panel displays have a pronounced propensity to break from an edge, even when stress is applied to the center. The high peak power of ultrafast lasers combined with tailored beam delivery in the method described herein can avoid these problems because the present method is a “cold” ablation technique that cuts without a deleterious heat effect. Laser cutting by ultrafast lasers according to the present method produces essentially no residual s tress in the glass. However, it should be understood that any type of laser may be utilized in the laser processing methods and apparatus described herein.


Still referring to FIG. 1, positioned on top of the support base 120 and between the support base 120 and the transparent material 160 is the laser disruption element 140. In one embodiment, the laser disruption element 140 may be a substantially flat sheet with a substantially flat top surface 142 and bottom surface 144 which correspond with the flat surface of the top surface 122 of the support base 120 and the bottom surface 164 of the transparent material 160, respectively. Generally, the laser disruption element 140 optically disrupts a laser beam 180 transmitted through the transparent material 160 such that the laser beam 180 does not have sufficient intensity (i.e., at the focal line 182) below the laser disruption element 140 to damage the support base 120. For example, optical disruption may include reflection, absorption, scattering, defocusing or otherwise interfering with the laser beam 180. The disruption element 140 may reflect, absorb, scatter, defocus or otherwise interfere with an incident laser beam 180 to inhibit or prevent the laser beam 180 from damaging or otherwise modifying underlying layers in the multilayer stack 100, such as the support base 120.


In one embodiment, the laser disruption element 140 is positioned immediately below the transparent material 160 which is laser processed. Such a configuration is shown in FIG. 1, where the beam disruption element 140 is a substantially flat sheet positioned immediately below the transparent material 160 in which the laser processing described herein will occur. In some embodiments, the laser disruption element 140 may be positioned in direct contact with the support base 120, but in other embodiments another layer of material may be disposed between the support base 120 and the laser disruption element 140. In one embodiment, the laser disruption element 140 may have a thickness as measured from its top surface 142 to its bottom surface 144 from about 0.5 mm to about 3 mm. The edges of the laser disruption element 140 may have a rounded shape with beveled comers, substantially free of sharp comers.


The laser disruption element 140 has different optical properties than the transparent material 160 to be cut by laser processing. For example, the beam disruption element 140 may comprise a defocusing element, a scattering element, a translucent element, or a reflective element. A defocusing element is an interface or a layer comprising a material that prevents the laser beam light 180 from forming the laser beam focal line 182 on or below the defocusing element. The defocusing element may comprise a material or interface with refractive index inhomogeneities that scatter or perturb the wavefront of the laser beam 180. In embodiments where the laser disruption element is a translucent element, the translucent element is an interface or layer of material that allows light to pass through, but only after scattering or attenuating the laser beam 180 to lower the energy density sufficiently to prevent formation of a laser beam focal line 182 in portions of the multilayer stack 100 on the side of the translucent element that are opposite from the laser beam 180.


As shown in FIG. 1, a laser beam 180 may pass into and through the transparent material 160 and contact the top surface 142 of the laser disruption element 140. The laser disruption element 140 may disrupt the laser beam 180 such that the intensity of the laser beam 180 is reduced before it reaches the support base 120. More specifically, the reflectivity, absorptivity, defocusing, attenuation, and/or scattering of the disruption element 140 can be utilized to create a barrier or impediment to the laser radiation. It is not necessary that the absorption, reflection scattering, attenuation, defocusing etc. of the laser beam 180 by the disruption element 140 be complete. The effect of the disruption element 140 on the laser beam 180 may be sufficient to reduce the energy density or intensity of the focal line 182 to a level below the threshold required for cutting, ablation, perforating etc. of the support base 120. In one embodiment, the disruption element 140 reduces the energy density or intensity of the focal line 182 to a level below the threshold needed to damage the support base 120. The laser disruption element 140 may be a layer or an interface and may be configured to absorb, reflect, or scatter the laser beam 180, where the absorption, reflection, or scattering are sufficient to reduce the energy density or intensity of the laser beam 180 transmitted to the support base 120 (or other underlying layer) to a level below that required to cause damage to the support base 120 or other underlying layers.


In one embodiment, the laser disruption element 140 may optically disrupt the laser beam 180 at the top surface 142 of the laser disruption element 140. For example, in one embodiment, the laser disruption element 140 may comprise a film on its top layer 142 or a surface modified top surface 142. For example, the disruption element 140 may comprise a roughened top surface 142 (surface nearest the transparent material 160) which is modified to be substantially rough to scatter incident light. Additionally, if the top surface 142 of the laser disruption element 140 acts to interfere with the laser beam 180, the bulk material of the laser disruption layer may be substantially the same material as the transparent substrate since no focal line 182 is formed below the top surface 142 of the laser disruption element 140. For example, in one embodiment, the transparent material 160 may be glass and the disruption element 140 may be glass. Furthermore, a laser disruption element 140 that has a bulk material transparent to the laser wavelength can transmit the laser and substantially disperse the intensity throughout the bulk material structure of the disruption element 140. In such an embodiment, the laser disruption element 140 is not damaged by a laser beam 180 transmitted through the transparent material 160.


In one embodiment, the laser disruption element 140 may comprise frosted glass, such as, for example, a sheet of frosted glass. The frosted glass, sometimes referred to as iced glass, may be substantially translucent. The relatively rough top surface 142 may act as a translucent element which scatters an incident laser beam 180. The frosted glass may be chemically etched, sand blasted, or otherwise manufactured to have a translucent appearance that operates to disrupt incident light. However, in one embodiment, the frosted glass may be substantially smooth so as to not damage a transparent material 160 which is resting its top surface 142 during laser processing. For example, sand blasted frosted glass may be rough enough to damage a laser processed transparent material 160 by scratching when the transparent material 160 is placed on the laser disruption element 140. However, chemically etched glass may provide suitable optical characteristics while still being sufficiently smooth to not damage the transparent material 160. As used herein, damage to the transparent material 160 means damage that is detectable by a human eye, such as scratches, cuts, or other abrasions.


In one embodiment, the average roughness (Ra) of the top surface 142 may be greater than or equal to about 0.5 microns, greater than or equal to about 0.8 microns, greater than or equal to about 1.0 microns, greater than or equal to about 1.5 microns, or even greater than or equal to about 2.0 microns, As used herein, Ra is defined as the arithmetic average of the differences between the local surface heights and the average surface height and can be described by the following equation:







R
a

=


1
n






i
=
1

n





y
i










where Yi is the local surface height relative to the average surface height. In other embodiments Ra may be from about 0.5 microns to about 2.0 microns, from about 0.5 microns to about 1.5 microns, or from about 0.5 microns to about 1.0 micron. For example, in one embodiment, the frosted glass may be EagleEtch® acid etched glass commercially available from EuropTec USA of Clarksburg, W. Va.


In another embodiment, the laser disruption element 140 may comprise a surface film layer that acts to disrupt the laser beam 180 and substantially protect underlying layers such as the support base 120. The optically disrupting film layer may be deposited by thermal evaporation, physical vapor deposition, and/or sputtering, where the thickness may be a function of the wavelength of the utilized laser. The thin films may comprise, without limitation, MgF2, CaF2, poly(methyl methacrylate), PMMI, polycarbonates, styrene-acrylonitrile copolymers, polystyrenes, cyclic olefin polymer, cyclic olefin copolymers, and combinations thereof.


It will be apparent to those skilled in the art that various modifications and variations can be made to the embodiments described herein without departing from the spirit and scope of the claimed subject matter. Thus it is intended that the specification cover the modifications and variations of the various embodiments described herein provided such modification and variations come within the scope of the appended claims and their equivalents.

Claims
  • 1. A method of laser processing a transparent material, the method comprising: positioning the transparent material on a carrier; andtransmitting a laser beam through the transparent material, the laser beam incident on a side of the transparent material opposite the carrier, wherein:the transparent material is substantially transparent to the laser beam;the carrier comprises a support base and a laser disruption element, wherein a first layer of material is disposed between the support base and the laser disruption element, and wherein the laser disruption element is a chemically etched glass having a rounded shape with beveled corners disposed over a portion of the support base that is greater than a width of the transparent material and less than a width of the support base, and wherein the laser disruption element has a thickness of from about 0.5 mm to about 3 mm; andthe laser disruption element optically disrupts the laser beam transmitted through the transparent material such that the laser beam does not have sufficient intensity below the laser disruption element to damage the support base; and the laser disruption element comprises at least one of: (i) a diffusive material, (ii) a translucent material, (iii) a material or interface with refractive index inhomogeneities that scatter wavefront of the laser beam.
  • 2. The method of claim 1, wherein the laser disruption element comprises a top surface with average surface roughness (Ra) greater than or equal to about 0.5 microns.
  • 3. The method of claim 2, wherein the average surface roughness (Ra) is greater than or equal to about 1.5 microns.
  • 4. The method of claim 2, wherein the average surface roughness (Ra) is greater than or equal to about 2.0 microns.
RELATED APPLICATIONS

This is a divisional application of U.S. application Ser. No. 14/974,181 filed on Jul. 8, 2015 which claims the benefit of priority to U.S. Provisional Application No. 62/021917, filed on Jul. 8, 2014. The entire teachings of the above applications are incorporated herein by reference.

US Referenced Citations (602)
Number Name Date Kind
1529243 Drake et al. Mar 1925 A
1626396 Drake Apr 1927 A
1790397 Woods et al. Jan 1931 A
2682134 Stookey Jun 1954 A
2749794 O'Leary Jun 1956 A
2754956 Sommer Jul 1956 A
3647410 Heaton et al. Mar 1972 A
3673900 Jendrisak et al. Jul 1972 A
3695497 Dear Oct 1972 A
3695498 Dear Oct 1972 A
3729302 Heaton Apr 1973 A
3775084 Heaton Nov 1973 A
3947093 Goshima et al. Mar 1976 A
4076159 Farragher Feb 1978 A
4226607 Domken Oct 1980 A
4441008 Chan Apr 1984 A
4546231 Gresser et al. Oct 1985 A
4618056 Cutshall Oct 1986 A
4623776 Buchroeder et al. Nov 1986 A
4642439 Miller et al. Feb 1987 A
4646308 Kafka et al. Feb 1987 A
4764930 Bille et al. Aug 1988 A
4891054 Bricker et al. Jan 1990 A
4907586 Bille et al. Mar 1990 A
4918751 Pessot et al. Apr 1990 A
4929065 Hagerty et al. May 1990 A
4951457 Deal Aug 1990 A
4997250 Ortiz, Jr. Mar 1991 A
5035918 Vyas Jul 1991 A
5040182 Spinelli et al. Aug 1991 A
5104210 Tokas Apr 1992 A
5104523 Masaharu et al. Apr 1992 A
5108857 Kitayama et al. Apr 1992 A
5112722 Tsujino et al. May 1992 A
5114834 Nachshon May 1992 A
5221034 Bando Jun 1993 A
5256853 McIntyre Oct 1993 A
5265107 Delfyett Nov 1993 A
5326956 Lunney Jul 1994 A
5400350 Galvanauskas et al. Mar 1995 A
5410567 Brundage et al. Apr 1995 A
5418803 Zhiglinsky et al. May 1995 A
5434875 Rieger et al. Jul 1995 A
5436925 Lin et al. Jul 1995 A
5475197 Wrobel et al. Dec 1995 A
5521352 Lawson May 1996 A
5541774 Blankenbecler Jul 1996 A
5553093 Ramaswamy et al. Sep 1996 A
5574597 Kataoka et al. Nov 1996 A
5578229 Barnekov et al. Nov 1996 A
5586138 Yokoyama Dec 1996 A
5656186 Mourou et al. Aug 1997 A
5676866 In Den Baumen et al. Oct 1997 A
5684642 Zumoto et al. Nov 1997 A
5692703 Murphy et al. Dec 1997 A
5696782 Harter et al. Dec 1997 A
5715346 Liu Feb 1998 A
5736061 Fukada et al. Apr 1998 A
5736709 Neiheisel Apr 1998 A
5776220 Allaire et al. Jul 1998 A
5781684 Liu Jul 1998 A
5796112 Ichie Aug 1998 A
5854490 Ooaeh et al. Dec 1998 A
5854751 Di et al. Dec 1998 A
5878866 Lisec Mar 1999 A
5968441 Seki Oct 1999 A
6003418 Bezama et al. Dec 1999 A
6016223 Suzuki et al. Jan 2000 A
6016324 Rieger et al. Jan 2000 A
6027062 Bacon et al. Feb 2000 A
6033583 Musket et al. Mar 2000 A
6038055 Hansch et al. Mar 2000 A
6055829 Witzmann et al. May 2000 A
6078599 Everage et al. Jun 2000 A
6137632 Bernacki Oct 2000 A
6156030 Neev Dec 2000 A
6160835 Kwon Dec 2000 A
6185051 Chen et al. Feb 2001 B1
6186384 Sawada Feb 2001 B1
6191880 Schuster Feb 2001 B1
6210401 Lai Apr 2001 B1
6256328 Delfyett et al. Jul 2001 B1
6259058 Hoekstra Jul 2001 B1
6259151 Morrison Jul 2001 B1
6259512 Mizouchi Jul 2001 B1
6272156 Reed et al. Aug 2001 B1
6301932 Allen et al. Oct 2001 B1
6308055 Welland et al. Oct 2001 B1
6322958 Hayashi Nov 2001 B1
6339208 Rockstroh et al. Jan 2002 B1
6373565 Kafka et al. Apr 2002 B1
6381391 Islam et al. Apr 2002 B1
6396856 Sucha et al. May 2002 B1
6407360 Choo et al. Jun 2002 B1
6438996 Cuvelier Aug 2002 B1
6445491 Sucha et al. Sep 2002 B2
6449301 Wu et al. Sep 2002 B1
6461223 Bando Oct 2002 B1
6484052 Visuri et al. Nov 2002 B1
6489589 Alexander Dec 2002 B1
6501576 Seacombe Dec 2002 B1
6501578 Bernstein et al. Dec 2002 B1
6520057 Steadman Feb 2003 B1
6552301 Herman et al. Apr 2003 B2
6573026 Aitken et al. Jun 2003 B1
6592703 Habeck et al. Jul 2003 B1
6611647 Berkey et al. Aug 2003 B2
6635849 Okawa et al. Oct 2003 B1
6635850 Amako et al. Oct 2003 B2
6720519 Liu et al. Apr 2004 B2
6729151 Thompson May 2004 B1
6729161 Miura et al. May 2004 B1
6737345 Lin et al. May 2004 B1
6744009 Xuan et al. Jun 2004 B1
6787732 Xuan et al. Sep 2004 B1
6791935 Hatano et al. Sep 2004 B2
6800237 Yamamoto et al. Oct 2004 B1
6800831 Hoetzel Oct 2004 B1
6856379 Schuster Feb 2005 B2
6885502 Schuster Apr 2005 B2
6904218 Sun et al. Jun 2005 B2
6958094 Ohmi et al. Oct 2005 B2
6992026 Fukuyo et al. Jan 2006 B2
7009138 Amako et al. Mar 2006 B2
7061583 Mulkens et al. Jun 2006 B2
7102118 Acker et al. Sep 2006 B2
7187833 Mishra Mar 2007 B2
7196841 Melzer et al. Mar 2007 B2
7259354 Pailthorp et al. Aug 2007 B2
7353829 Wachter et al. Apr 2008 B1
7402773 Nomaru Jul 2008 B2
7408616 Gruner et al. Aug 2008 B2
7408622 Fiolka et al. Aug 2008 B2
7511886 Schultz et al. Mar 2009 B2
7535634 Savchenkov et al. May 2009 B1
7555187 Bickham et al. Jun 2009 B2
7565820 Foster et al. Jul 2009 B2
7633033 Thomas et al. Dec 2009 B2
7642483 You et al. Jan 2010 B2
7649153 Haight et al. Jan 2010 B2
7726532 Gonoe Jun 2010 B2
7794904 Brueck Sep 2010 B2
7800734 Komatsuda Sep 2010 B2
7832675 Bumgarner et al. Nov 2010 B2
7901967 Komura et al. Mar 2011 B2
7920337 Perchak Apr 2011 B2
7978408 Sawabe et al. Jul 2011 B2
8035803 Fiolka Oct 2011 B2
8035882 Fanton et al. Oct 2011 B2
8035901 Abramov et al. Oct 2011 B2
8041127 Whitelaw Oct 2011 B2
8068279 Schuster et al. Nov 2011 B2
8104385 Hayashi Jan 2012 B2
8118971 Hori et al. Feb 2012 B2
8123515 Schleelein Feb 2012 B2
8132427 Brown et al. Mar 2012 B2
8144308 Muramatsu Mar 2012 B2
8158514 Krueger et al. Apr 2012 B2
8164818 Collins et al. Apr 2012 B2
8168514 Garner et al. May 2012 B2
8194170 Golub et al. Jun 2012 B2
8211259 Sato et al. Jul 2012 B2
8218929 Bickham et al. Jul 2012 B2
8237918 Totzeck et al. Aug 2012 B2
8245539 Lu et al. Aug 2012 B2
8245540 Abramov et al. Aug 2012 B2
8248600 Matousek et al. Aug 2012 B2
8259393 Fiolka et al. Sep 2012 B2
8269138 Garner et al. Sep 2012 B2
8279524 Fiolka et al. Oct 2012 B2
8283595 Fukuyo et al. Oct 2012 B2
8283695 Salcedo et al. Oct 2012 B2
8292141 Cox et al. Oct 2012 B2
8296066 Zhao et al. Oct 2012 B2
8327666 Harvey et al. Dec 2012 B2
8339578 Omura Dec 2012 B2
8341976 Dejneka et al. Jan 2013 B2
8347551 Van Der Drift Jan 2013 B2
8347651 Abramov et al. Jan 2013 B2
8358868 Iketani Jan 2013 B2
8358888 Ramachandran Jan 2013 B2
8379188 Mueller et al. Feb 2013 B2
8444905 Li et al. May 2013 B2
8444906 Lee et al. May 2013 B2
8448471 Kumatani et al. May 2013 B2
8475507 Dewey et al. Jul 2013 B2
8482717 Fiolka et al. Jul 2013 B2
8491983 Ono et al. Jul 2013 B2
8518280 Hsu et al. Aug 2013 B2
8549881 Brown et al. Oct 2013 B2
8584354 Cornejo et al. Nov 2013 B2
8584490 Garner et al. Nov 2013 B2
8592716 Abramov et al. Nov 2013 B2
8604380 Howerton et al. Dec 2013 B2
8607590 Glaesemann et al. Dec 2013 B2
8616024 Cornejo et al. Dec 2013 B2
8635857 Crosbie Jan 2014 B2
8635887 Black et al. Jan 2014 B2
8680489 Martinez et al. Mar 2014 B2
8685838 Fukuyo et al. Apr 2014 B2
8687932 Peckham et al. Apr 2014 B2
8697228 Carre Apr 2014 B2
8720228 Li May 2014 B2
8724937 Barwicz et al. May 2014 B2
8826696 Brown et al. Sep 2014 B2
8847112 Panarello et al. Sep 2014 B2
8852698 Fukumitsu Oct 2014 B2
8887529 Lu et al. Nov 2014 B2
8916798 Pluss Dec 2014 B2
8943855 Gomez et al. Feb 2015 B2
8951889 Ryu et al. Feb 2015 B2
8971053 Kariya et al. Mar 2015 B2
9028613 Kim et al. May 2015 B2
9052605 Van et al. Jun 2015 B2
9086509 Knutson Jul 2015 B2
9138913 Arai et al. Sep 2015 B2
9170500 Van et al. Oct 2015 B2
9227868 Matsumoto et al. Jan 2016 B2
9290407 Barefoot et al. Mar 2016 B2
9296066 Hosseini et al. Mar 2016 B2
9324791 Tamemoto Apr 2016 B2
9327381 Lee et al. May 2016 B2
9341912 Shrivastava et al. May 2016 B2
9346706 Bazemore et al. May 2016 B2
9446590 Chen et al. Sep 2016 B2
9477037 Bickham et al. Oct 2016 B1
9481598 Bergh Nov 2016 B2
9499343 Cornelissen et al. Nov 2016 B2
9517929 Hosseini Dec 2016 B2
9517963 Marjanovic et al. Dec 2016 B2
9701581 Kangastupa et al. Jul 2017 B2
9703167 Parker et al. Jul 2017 B2
9815730 Marjanovic et al. Nov 2017 B2
9850160 Marjanovic et al. Dec 2017 B2
9873628 Haloui et al. Jan 2018 B1
9878304 Kotake et al. Jan 2018 B2
10190363 Behmke et al. Jan 2019 B2
10730783 Akarapu et al. Aug 2020 B2
20010019404 Schuster et al. Sep 2001 A1
20010027842 Curcio et al. Oct 2001 A1
20020006765 Michel et al. Jan 2002 A1
20020046997 Nam et al. Apr 2002 A1
20020082466 Han Jun 2002 A1
20020097486 Yamaguchi et al. Jul 2002 A1
20020097488 Hay et al. Jul 2002 A1
20020110639 Bruns Aug 2002 A1
20020126380 Schuster Sep 2002 A1
20020139786 Amako et al. Oct 2002 A1
20030006221 Hong et al. Jan 2003 A1
20030007772 Borrelli et al. Jan 2003 A1
20030007773 Kondo et al. Jan 2003 A1
20030038225 Mulder et al. Feb 2003 A1
20030070706 Fujioka Apr 2003 A1
20030227663 Agrawal et al. Dec 2003 A1
20040051982 Perchak Mar 2004 A1
20040108467 Eurlings et al. Jun 2004 A1
20040144231 Hanada Jul 2004 A1
20040021615 Postupack et al. Nov 2004 A1
20040218882 Bickham et al. Nov 2004 A1
20040221615 Postupack et al. Nov 2004 A1
20040228593 Sun et al. Nov 2004 A1
20050024743 Camy-Peyret Feb 2005 A1
20050098458 Gruetzmacher et al. May 2005 A1
20050098548 Kobayashi et al. May 2005 A1
20050115938 Sawaki et al. Jun 2005 A1
20050116938 Ito et al. Jun 2005 A1
20050205778 Kitai et al. Sep 2005 A1
20050209898 Asai et al. Sep 2005 A1
20050231651 Myers et al. Oct 2005 A1
20050274702 Deshi Dec 2005 A1
20050277270 Yoshikawa et al. Dec 2005 A1
20060011593 Fukuyo Jan 2006 A1
20060021385 Cimo et al. Feb 2006 A1
20060028706 Totzeck et al. Feb 2006 A1
20060028728 Li Feb 2006 A1
20060050261 Brotsack Mar 2006 A1
20060109874 Shiozaki et al. May 2006 A1
20060118529 Aoki et al. Jun 2006 A1
20060127679 Gulati et al. Jun 2006 A1
20060146384 Schultz et al. Jul 2006 A1
20060151450 You et al. Jul 2006 A1
20060170617 Latypov et al. Aug 2006 A1
20060213883 Eberhardt et al. Sep 2006 A1
20060227440 Glukstad Oct 2006 A1
20060266744 Nomaru Nov 2006 A1
20060289410 Morita et al. Dec 2006 A1
20060291835 Nozaki et al. Dec 2006 A1
20070021548 Hattori et al. Jan 2007 A1
20070030471 Troost et al. Feb 2007 A1
20070044606 Kang et al. Mar 2007 A1
20070045253 Jordens et al. Mar 2007 A1
20070051706 Bovatsek et al. Mar 2007 A1
20070053632 Popp Mar 2007 A1
20070068648 Hu et al. Mar 2007 A1
20070090180 Griffis et al. Apr 2007 A1
20070091977 Sohn et al. Apr 2007 A1
20070111119 Hu et al. May 2007 A1
20070111390 Komura et al. May 2007 A1
20070111480 Maruyama May 2007 A1
20070119831 Kandt May 2007 A1
20070132977 Komatsuda Jun 2007 A1
20070138151 Tanaka et al. Jun 2007 A1
20070177116 Amako Aug 2007 A1
20070202619 Tamura et al. Aug 2007 A1
20070209029 Ivonin et al. Sep 2007 A1
20070228616 Bang Oct 2007 A1
20070298529 Maeda et al. Dec 2007 A1
20080000884 Sugiura et al. Jan 2008 A1
20080050584 Noguchi et al. Feb 2008 A1
20080079940 Sezerman et al. Apr 2008 A1
20080087629 Shimomura et al. Apr 2008 A1
20080099444 Misawa et al. May 2008 A1
20080158529 Hansen Jul 2008 A1
20080165925 Singer et al. Jul 2008 A1
20080190981 Okajima et al. Aug 2008 A1
20080239268 Mulder et al. Oct 2008 A1
20080309902 Rosenbluth Dec 2008 A1
20080310465 Achtenhagen Dec 2008 A1
20080314879 Bruland et al. Dec 2008 A1
20080318028 Winstanley et al. Dec 2008 A1
20090013724 Koyo et al. Jan 2009 A1
20090032510 Ando et al. Feb 2009 A1
20090033902 Mulder et al. Feb 2009 A1
20090050661 Na et al. Feb 2009 A1
20090060437 Fini et al. Mar 2009 A1
20090091731 Ossmann et al. Apr 2009 A1
20090104721 Hirakata et al. Apr 2009 A1
20090157341 Cheung Jun 2009 A1
20090170286 Tsukamoto et al. Jul 2009 A1
20090176034 Ruuttu et al. Jul 2009 A1
20090183764 Meyer Jul 2009 A1
20090184849 Nasiri et al. Jul 2009 A1
20090188543 Bann Jul 2009 A1
20090199694 Uh et al. Aug 2009 A1
20090212033 Beck et al. Aug 2009 A1
20090242528 Howerton et al. Oct 2009 A1
20090250446 Sakamoto Oct 2009 A1
20090294419 Abramov et al. Dec 2009 A1
20090294422 Lubatschowski et al. Dec 2009 A1
20090323160 Egerton et al. Dec 2009 A1
20090323162 Fanton et al. Dec 2009 A1
20090324899 Feinstein et al. Dec 2009 A1
20090324903 Rumsby Dec 2009 A1
20100020304 Soer et al. Jan 2010 A1
20100024865 Shah et al. Feb 2010 A1
20100025387 Arai et al. Feb 2010 A1
20100027951 Bookbinder et al. Feb 2010 A1
20100029460 Shojiya et al. Feb 2010 A1
20100032087 Takahashi et al. Feb 2010 A1
20100038349 Ke et al. Feb 2010 A1
20100046761 Henn et al. Feb 2010 A1
20100086741 Bovatsek et al. Apr 2010 A1
20100089631 Sakaguchi et al. Apr 2010 A1
20100089682 Martini et al. Apr 2010 A1
20100089882 Tamura Apr 2010 A1
20100102042 Garner et al. Apr 2010 A1
20100129603 Buck et al. May 2010 A1
20100145620 Georgi et al. Jun 2010 A1
20100147813 Lei et al. Jun 2010 A1
20100197116 Shah Aug 2010 A1
20100206008 Harvey et al. Aug 2010 A1
20100252538 Zeygerman Oct 2010 A1
20100252540 Lei et al. Oct 2010 A1
20100252959 Lei et al. Oct 2010 A1
20100276505 Smith Nov 2010 A1
20100279067 Sabia et al. Nov 2010 A1
20100287991 Brown et al. Nov 2010 A1
20100291353 Dejneka et al. Nov 2010 A1
20100320179 Morita et al. Dec 2010 A1
20100326138 Kumatani et al. Dec 2010 A1
20100332087 Claffee et al. Dec 2010 A1
20110017716 Rumsby Jan 2011 A1
20110023298 Chujo et al. Feb 2011 A1
20110037149 Fukuyo et al. Feb 2011 A1
20110049764 Lee et al. Mar 2011 A1
20110049765 Lei et al. Mar 2011 A1
20110088324 Wessel Apr 2011 A1
20110094267 Aniolek et al. Apr 2011 A1
20110100401 Fiorentini May 2011 A1
20110111179 Blick et al. May 2011 A1
20110127697 Milne Jun 2011 A1
20110132581 Moss Jun 2011 A1
20110132881 Liu Jun 2011 A1
20110136303 Lee Jun 2011 A1
20110139760 Shah et al. Jun 2011 A1
20110143470 Lee Jun 2011 A1
20110177325 Tomamoto et al. Jul 2011 A1
20110183116 Hung et al. Jul 2011 A1
20110191024 DeLuca Aug 2011 A1
20110210105 Romashko et al. Sep 2011 A1
20110238308 Miller et al. Sep 2011 A1
20110240476 Wang et al. Oct 2011 A1
20110240611 Sandstrom et al. Oct 2011 A1
20110240617 Cheon et al. Oct 2011 A1
20110261429 Sbar et al. Oct 2011 A1
20110277507 Lu et al. Nov 2011 A1
20110300691 Sakamoto et al. Dec 2011 A1
20110318555 Bookbinder et al. Dec 2011 A1
20120017642 Teranishi et al. Jan 2012 A1
20120026573 Collins et al. Feb 2012 A1
20120047951 Dannoux et al. Mar 2012 A1
20120047956 Li Mar 2012 A1
20120047957 Dannoux et al. Mar 2012 A1
20120048604 Cornejo et al. Mar 2012 A1
20120061440 Roell Mar 2012 A1
20120064306 Kang et al. Mar 2012 A1
20120067858 Kangastupa et al. Mar 2012 A1
20120103018 Lu et al. May 2012 A1
20120106117 Sundaram et al. May 2012 A1
20120111310 Ryu et al. May 2012 A1
20120125588 Nam et al. May 2012 A1
20120131961 Dannoux et al. May 2012 A1
20120131962 Mitsugi et al. May 2012 A1
20120135195 Glaesemann et al. May 2012 A1
20120135607 Shimoi et al. May 2012 A1
20120135608 Shimoi et al. May 2012 A1
20120145331 Gomez et al. Jun 2012 A1
20120147449 Bhatnagar et al. Jun 2012 A1
20120196071 Cornejo et al. Aug 2012 A1
20120196454 Shah et al. Aug 2012 A1
20120205356 Pluss Aug 2012 A1
20120211923 Garner et al. Aug 2012 A1
20120214004 Hashimoto et al. Aug 2012 A1
20120216570 Abramov et al. Aug 2012 A1
20120229787 Van et al. Sep 2012 A1
20120234049 Bolton Sep 2012 A1
20120234807 Sercel et al. Sep 2012 A1
20120237731 Boegli et al. Sep 2012 A1
20120255935 Kakui et al. Oct 2012 A1
20120262689 Van et al. Oct 2012 A1
20120293784 Xalter et al. Nov 2012 A1
20120297568 Spezzani Nov 2012 A1
20120299219 Shimoi et al. Nov 2012 A1
20120302139 Darcangelo et al. Nov 2012 A1
20120320458 Knutson Dec 2012 A1
20120324950 Dale et al. Dec 2012 A1
20130019637 Sol et al. Jan 2013 A1
20130031879 Yoshikane et al. Feb 2013 A1
20130034688 Koike et al. Feb 2013 A1
20130044371 Rupp et al. Feb 2013 A1
20130047671 Kohli Feb 2013 A1
20130056450 Lissotschenko et al. Mar 2013 A1
20130061636 Imai et al. Mar 2013 A1
20130068736 Mielke et al. Mar 2013 A1
20130071079 Peckham et al. Mar 2013 A1
20130071080 Peckham et al. Mar 2013 A1
20130071081 Peckham et al. Mar 2013 A1
20130075480 Yokogi et al. Mar 2013 A1
20130078891 Lee et al. Mar 2013 A1
20130091897 Fujii et al. Apr 2013 A1
20130122264 Fujii et al. May 2013 A1
20130126573 Hosseini et al. May 2013 A1
20130126751 Mizoguchi et al. May 2013 A1
20130129947 Harvey et al. May 2013 A1
20130133367 Abramov et al. May 2013 A1
20130136408 Bookbinder et al. May 2013 A1
20130216573 Hosseini et al. May 2013 A1
20130139708 Hotta Jun 2013 A1
20130143416 Norval Jun 2013 A1
20130149434 Oh et al. Jun 2013 A1
20130149494 Koike et al. Jun 2013 A1
20130167590 Teranishi et al. Jul 2013 A1
20130171425 Wang et al. Jul 2013 A1
20130174607 Wootton et al. Jul 2013 A1
20130174610 Teranishi et al. Jul 2013 A1
20130177033 Muro Jul 2013 A1
20130180285 Kariya Jul 2013 A1
20130180665 Gomez et al. Jul 2013 A2
20130189806 Hoshino Jul 2013 A1
20130192305 Black et al. Aug 2013 A1
20130209731 Nattermann et al. Aug 2013 A1
20130210245 Jackl Aug 2013 A1
20130220982 Thomas et al. Aug 2013 A1
20130221053 Zhang Aug 2013 A1
20130222877 Greer et al. Aug 2013 A1
20130224439 Zhang et al. Aug 2013 A1
20130228918 Chen et al. Sep 2013 A1
20130247615 Boek et al. Sep 2013 A1
20130248504 Kusuda Sep 2013 A1
20130266757 Giron et al. Oct 2013 A1
20130270240 Kondo Oct 2013 A1
20130280495 Matsumoto Oct 2013 A1
20130288010 Akarapu et al. Oct 2013 A1
20130291598 Saito et al. Nov 2013 A1
20130312460 Kunishi et al. Nov 2013 A1
20130323469 Abramov et al. Dec 2013 A1
20130334185 Nomaru Dec 2013 A1
20130340480 Nattermann et al. Dec 2013 A1
20130344684 Bowden Dec 2013 A1
20140023087 Czompo Jan 2014 A1
20140027951 Srinivas et al. Jan 2014 A1
20140034730 Lee Feb 2014 A1
20140036338 Bareman et al. Feb 2014 A1
20140042202 Lee Feb 2014 A1
20140047957 Wu Feb 2014 A1
20140076869 Lee et al. Mar 2014 A1
20140083986 Zhang Mar 2014 A1
20140102146 Saito et al. Apr 2014 A1
20140110040 Cok Apr 2014 A1
20140113797 Yamada et al. Apr 2014 A1
20140133119 Kariya et al. May 2014 A1
20140141192 Fernando et al. May 2014 A1
20140141217 Gulati et al. May 2014 A1
20140147623 Shorey et al. May 2014 A1
20140147624 Streltsov et al. May 2014 A1
20140165652 Saito Jun 2014 A1
20140174131 Saito et al. Jun 2014 A1
20140182125 Rozbicki et al. Jul 2014 A1
20140199519 Schillinger et al. Jul 2014 A1
20140216108 Wiegel et al. Aug 2014 A1
20140238962 Nawrodt et al. Aug 2014 A1
20140239034 Cleary et al. Aug 2014 A1
20140239552 Srinivas et al. Aug 2014 A1
20140290310 Green Oct 2014 A1
20140291122 Bando Oct 2014 A1
20140320947 Egerton et al. Oct 2014 A1
20140333929 Sung et al. Nov 2014 A1
20140339207 Sugiyama et al. Nov 2014 A1
20140340730 Bergh et al. Nov 2014 A1
20140352400 Barrilado et al. Dec 2014 A1
20140361463 Desimone et al. Dec 2014 A1
20150014891 Amatucci et al. Jan 2015 A1
20150034612 Hosseini et al. Feb 2015 A1
20150038313 Hosseini Feb 2015 A1
20150044445 Garner et al. Feb 2015 A1
20150059986 Komatsu et al. Mar 2015 A1
20150060402 Burkett et al. Mar 2015 A1
20150075221 Kawaguchi et al. Mar 2015 A1
20150075222 Mader Mar 2015 A1
20150110442 Zimmel et al. Apr 2015 A1
20150118522 Hosseini Apr 2015 A1
20150121960 Hosseini May 2015 A1
20150122656 Hosseini May 2015 A1
20150136743 Hosseini May 2015 A1
20150140241 Hosseini May 2015 A1
20150140735 Hosseini May 2015 A1
20150151380 Hosseini Jun 2015 A1
20150158120 Courvoisier et al. Jun 2015 A1
20150165396 Mattson et al. Jun 2015 A1
20150165548 Marjanovic et al. Jun 2015 A1
20150165560 Hackert et al. Jun 2015 A1
20150165561 Le et al. Jun 2015 A1
20150165562 Marjanovic et al. Jun 2015 A1
20150165563 Manley et al. Jun 2015 A1
20150166391 Marjanovic et al. Jun 2015 A1
20150166393 Marjanovic et al. Jun 2015 A1
20150166394 Marjanovic et al. Jun 2015 A1
20150166395 Marjanovic Jun 2015 A1
20150166396 Marjanovic et al. Jun 2015 A1
20150166397 Marjanovic et al. Jun 2015 A1
20150183679 Saito Jul 2015 A1
20150209922 Yoshikawa Jul 2015 A1
20150232369 Marjanovic et al. Aug 2015 A1
20150299018 Bhuyan et al. Oct 2015 A1
20150311058 Antsiferov et al. Oct 2015 A1
20150350991 Sayadi et al. Dec 2015 A1
20150352671 Darzi Dec 2015 A1
20150360991 Grundmueller et al. Dec 2015 A1
20150362817 Patterson et al. Dec 2015 A1
20150362818 Greer Dec 2015 A1
20150367442 Bovatsek et al. Dec 2015 A1
20160008927 Grundmueller et al. Jan 2016 A1
20160009066 Neiber et al. Jan 2016 A1
20160009585 Bookbinder et al. Jan 2016 A1
20160016257 Hosseini Jan 2016 A1
20160023922 Addiego et al. Jan 2016 A1
20160031737 Hoppe et al. Feb 2016 A1
20160031745 Ortner et al. Feb 2016 A1
20160039044 Kawaguchi Feb 2016 A1
20160059359 Krueger et al. Mar 2016 A1
20160060156 Krueger et al. Mar 2016 A1
20160097960 Dixit et al. Apr 2016 A1
20160138328 Behmke et al. May 2016 A1
20160152516 Bazemore et al. Jun 2016 A1
20160154284 Sano Jun 2016 A1
20160159679 West Jun 2016 A1
20160168396 Letocart et al. Jun 2016 A1
20160279895 Marjanovic et al. Sep 2016 A1
20160280580 Bohme Sep 2016 A1
20160282521 Uchiyama Sep 2016 A1
20160290791 Buono et al. Oct 2016 A1
20160311717 Nieber et al. Oct 2016 A1
20160368100 Marjanovic et al. Dec 2016 A1
20170002601 Bergh et al. Jan 2017 A1
20170008791 Kim et al. Jan 2017 A1
20170052381 Huang et al. Feb 2017 A1
20170169847 Tamaki Jun 2017 A1
20170183168 Jia Jun 2017 A1
20170197868 Gupta et al. Jul 2017 A1
20170225996 Bookbinder et al. Aug 2017 A1
20170252859 Kumkar et al. Sep 2017 A1
20170355634 Thierry Dec 2017 A1
20170368638 Tayebati et al. Dec 2017 A1
20180029919 Schnitzler et al. Feb 2018 A1
20180029920 Marjanovic et al. Feb 2018 A1
20180062342 Comstock et al. Mar 2018 A1
20180118602 Hackert et al. May 2018 A1
20180133837 Greenberg et al. May 2018 A1
20180134606 Wagner et al. May 2018 A1
20180186677 Ito et al. Jul 2018 A1
20180186678 Boeker et al. Jul 2018 A1
20180297887 Spier et al. Oct 2018 A1
Foreign Referenced Citations (364)
Number Date Country
1259924 Jul 2000 CN
2388062 Jul 2000 CN
1473087 Feb 2004 CN
1517313 Aug 2004 CN
1573364 Feb 2005 CN
1619778 May 2005 CN
1735568 Feb 2006 CN
1283409 Nov 2006 CN
1890074 Jan 2007 CN
1920632 Feb 2007 CN
1930097 Mar 2007 CN
101031383 Sep 2007 CN
101043936 Sep 2007 CN
101048255 Oct 2007 CN
101386466 Mar 2009 CN
101502914 Aug 2009 CN
101595554 Dec 2009 CN
101610870 Dec 2009 CN
201357287 Dec 2009 CN
101622722 Jan 2010 CN
101637849 Feb 2010 CN
201471092 May 2010 CN
101862907 Oct 2010 CN
101965242 Feb 2011 CN
101980982 Feb 2011 CN
102046545 May 2011 CN
102060437 May 2011 CN
102105256 Jun 2011 CN
102248302 Nov 2011 CN
102272355 Dec 2011 CN
102326232 Jan 2012 CN
102343631 Feb 2012 CN
102356049 Feb 2012 CN
102356050 Feb 2012 CN
102574246 Jul 2012 CN
102596830 Jul 2012 CN
102642092 Aug 2012 CN
102649199 Aug 2012 CN
102672355 Sep 2012 CN
102674709 Sep 2012 CN
102741012 Oct 2012 CN
102898014 Jan 2013 CN
102916081 Feb 2013 CN
102923939 Feb 2013 CN
102962583 Mar 2013 CN
103013374 Apr 2013 CN
103079747 May 2013 CN
103143841 Jun 2013 CN
103159401 Jun 2013 CN
203021443 Jun 2013 CN
103237771 Aug 2013 CN
103273195 Sep 2013 CN
103316990 Sep 2013 CN
103329035 Sep 2013 CN
103339559 Oct 2013 CN
103359947 Oct 2013 CN
103359948 Oct 2013 CN
103531414 Jan 2014 CN
103746027 Feb 2014 CN
203509350 Apr 2014 CN
103817434 May 2014 CN
103831539 Jun 2014 CN
104108870 Oct 2014 CN
104344202 Feb 2015 CN
204211638 Mar 2015 CN
105081564 Nov 2015 CN
105164581 Dec 2015 CN
105209218 Dec 2015 CN
105246850 Jan 2016 CN
103224117 Feb 2016 CN
105392593 Mar 2016 CN
105517969 Apr 2016 CN
205328860 Jun 2016 CN
106007349 Oct 2016 CN
1020448 Dec 1957 DE
2231330 Jan 1974 DE
10322376 Dec 2004 DE
102006042280 Jun 2007 DE
10200635555 Jan 2008 DE
102011000768 Aug 2012 DE
102012010635 Nov 2013 DE
102012110971 May 2014 DE
102013103370 Oct 2014 DE
102013223637 May 2015 DE
102014213775 Jan 2016 DE
102014116958 May 2016 DE
102016102768 Aug 2017 DE
004167 Feb 2004 EA
0270897 Jun 1988 EP
0609978 Aug 1994 EP
0656241 Jun 1995 EP
0938946 Sep 1999 EP
0949541 Oct 1999 EP
1043110 Oct 2000 EP
1306196 May 2003 EP
1159104 Aug 2004 EP
1609559 Dec 2005 EP
1990125 Nov 2008 EP
2105239 Sep 2009 EP
2133170 Dec 2009 EP
2202545 Jun 2010 EP
2258512 Dec 2010 EP
2398746 Dec 2011 EP
2574983 Apr 2013 EP
2754524 Jul 2014 EP
2781296 Sep 2014 EP
2783784 Oct 2014 EP
2859984 Apr 2015 EP
3311947 Apr 2018 EP
298294 Oct 2013 FR
0768515 Feb 1957 GB
1242172 Aug 1971 GB
2481190 Dec 2011 GB
53-018756 Feb 1978 JP
61-027212 Feb 1986 JP
61-074794 Apr 1986 JP
62-046930 Feb 1987 JP
63-192561 Aug 1988 JP
64-077001 Mar 1989 JP
01-179770 Jul 1989 JP
1179770 Jul 1989 JP
05-274085 Oct 1993 JP
05-300544 Nov 1993 JP
06-082720 Mar 1994 JP
06-318756 Nov 1994 JP
6318756 Nov 1994 JP
08-184581 Jul 1996 JP
09-109243 Apr 1997 JP
09106243 Apr 1997 JP
11-197498 Jul 1999 JP
11269683 Oct 1999 JP
11-330597 Nov 1999 JP
11-347861 Dec 1999 JP
11347758 Dec 1999 JP
2000225485 Aug 2000 JP
2000-327349 Nov 2000 JP
2001-130921 May 2001 JP
2001138083 May 2001 JP
2001-179473 Jul 2001 JP
2002-045985 Feb 2002 JP
2002-205181 Jul 2002 JP
2002-210730 Jul 2002 JP
2002228818 Aug 2002 JP
2002-321081 Nov 2002 JP
2003-025085 Jan 2003 JP
2003-088985 Mar 2003 JP
2003062756 Mar 2003 JP
2003114400 Apr 2003 JP
2003154517 May 2003 JP
2003-181668 Jul 2003 JP
2003238178 Aug 2003 JP
3445250 Sep 2003 JP
2003-340579 Dec 2003 JP
2004-182530 Jul 2004 JP
2004209675 Jul 2004 JP
2004-348137 Dec 2004 JP
2005-000952 Jan 2005 JP
2005104819 Apr 2005 JP
2005-135964 May 2005 JP
2005-144487 Jun 2005 JP
2005-179154 Jul 2005 JP
2005-219960 Aug 2005 JP
2005205440 Aug 2005 JP
2005-263623 Sep 2005 JP
2005288503 Oct 2005 JP
2006-108478 Apr 2006 JP
3775250 May 2006 JP
3775410 May 2006 JP
2006130691 May 2006 JP
2006-150385 Jun 2006 JP
2006-182009 Jul 2006 JP
2006-240948 Sep 2006 JP
3823108 Sep 2006 JP
2006248885 Sep 2006 JP
2006-327711 Dec 2006 JP
2007021548 Feb 2007 JP
2007-196277 Aug 2007 JP
2007253203 Oct 2007 JP
2008-018547 Jan 2008 JP
2008-132616 Jun 2008 JP
2008-168327 Jul 2008 JP
2008-522950 Jul 2008 JP
2008-266046 Nov 2008 JP
2008-288577 Nov 2008 JP
2009056482 Mar 2009 JP
2009-082958 Apr 2009 JP
2009-084089 Apr 2009 JP
2009-126779 Jun 2009 JP
2009-142886 Jul 2009 JP
2009-178725 Aug 2009 JP
2009172633 Aug 2009 JP
2009-255114 Nov 2009 JP
2009-269057 Nov 2009 JP
2010017990 Jan 2010 JP
2010-042424 Feb 2010 JP
4418282 Feb 2010 JP
2010046761 Mar 2010 JP
04592855 Dec 2010 JP
2011-011212 Jan 2011 JP
2011-037707 Feb 2011 JP
2011049398 Mar 2011 JP
2011-512259 Apr 2011 JP
04672689 Apr 2011 JP
2011-517299 Jun 2011 JP
2011-517622 Jun 2011 JP
2011-138083 Jul 2011 JP
2011-520748 Jul 2011 JP
2011-147943 Aug 2011 JP
2011-240291 Dec 2011 JP
04880820 Feb 2012 JP
2012024782 Feb 2012 JP
2012031018 Feb 2012 JP
2012-517957 Aug 2012 JP
2012159749 Aug 2012 JP
2012187618 Oct 2012 JP
2012-232894 Nov 2012 JP
2012-528772 Nov 2012 JP
2013007842 Jan 2013 JP
2013031879 Feb 2013 JP
2013043808 Mar 2013 JP
2013-063863 Apr 2013 JP
2013075802 Apr 2013 JP
2013091578 May 2013 JP
2013-121908 Jun 2013 JP
2013-136075 Jul 2013 JP
2013-144613 Jul 2013 JP
2013-528492 Jul 2013 JP
2013132664 Jul 2013 JP
2013-150990 Aug 2013 JP
2013-168445 Aug 2013 JP
05274085 Aug 2013 JP
2013-536081 Sep 2013 JP
05300544 Sep 2013 JP
2013187247 Sep 2013 JP
2013203630 Oct 2013 JP
2013203631 Oct 2013 JP
2013223886 Oct 2013 JP
2013-245153 Dec 2013 JP
2014-001102 Jan 2014 JP
2014-037006 Feb 2014 JP
2014-117707 Jun 2014 JP
2014104484 Jun 2014 JP
2014-156289 Aug 2014 JP
2015-030040 Feb 2015 JP
2015-091606 May 2015 JP
2015-129076 Jul 2015 JP
2015-519722 Jul 2015 JP
2015-536896 Dec 2015 JP
2015-543336 Feb 2016 JP
2016-021077 Feb 2016 JP
6061193 Jan 2017 JP
10-2002-0031573 May 2002 KR
2009057161 Jun 2009 KR
10-2009-0107417 Oct 2009 KR
2010-0120297 Nov 2010 KR
1020621 Mar 2011 KR
10-2011-0120862 Nov 2011 KR
2011-0121637 Nov 2011 KR
10-2012-0000073 Jan 2012 KR
2012015366 Feb 2012 KR
10-1120471 Mar 2012 KR
2012074508 Jul 2012 KR
2012-0102675 Sep 2012 KR
2013-0031377 Mar 2013 KR
2013031380 Mar 2013 KR
10-1259349 Apr 2013 KR
1269474 May 2013 KR
10-2013-0075651 Jul 2013 KR
2013-0079395 Jul 2013 KR
10-2013-0111269 Oct 2013 KR
2013124646 Nov 2013 KR
10-2013-0135873 Dec 2013 KR
1344368 Dec 2013 KR
2014022980 Feb 2014 KR
2014022981 Feb 2014 KR
1020140064220 May 2014 KR
10-2014-0112652 Sep 2014 KR
10-2015-0009153 Jan 2015 KR
2015-0016176 Feb 2015 KR
2017998 Jun 2018 NL
480550 Mar 2002 TW
201041027 Nov 2010 TW
201139025 Nov 2011 TW
1362370 Apr 2012 TW
201226345 Jul 2012 TW
201311592 Mar 2013 TW
201331136 Aug 2013 TW
201339111 Oct 2013 TW
201436968 Oct 2014 TW
I468354 Jan 2015 TW
I520804 Feb 2016 TW
201612615 Apr 2016 TW
9821154 May 1998 WO
1999029243 Jun 1999 WO
1999063900 Dec 1999 WO
0051778 Sep 2000 WO
0239063 May 2002 WO
2003007370 Jan 2003 WO
2004110693 Dec 2004 WO
2006017583 Feb 2006 WO
2006073098 Jul 2006 WO
2007094160 Aug 2007 WO
2007119740 Oct 2007 WO
2008012186 Jan 2008 WO
2008049389 May 2008 WO
2008080182 Jul 2008 WO
2008102848 Aug 2008 WO
2008108332 Sep 2008 WO
2008126742 Oct 2008 WO
2008128612 Oct 2008 WO
2009012913 Jan 2009 WO
2009114372 Sep 2009 WO
2009114375 Sep 2009 WO
2009119694 Oct 2009 WO
2010035736 Apr 2010 WO
2010096359 Aug 2010 WO
2010111609 Sep 2010 WO
2010129459 Nov 2010 WO
2011025908 Mar 2011 WO
2011056781 May 2011 WO
2012006736 Jan 2012 WO
2012075072 Jun 2012 WO
2012108052 Aug 2012 WO
2013016157 Jan 2013 WO
2013022148 Feb 2013 WO
2013043173 Mar 2013 WO
2013084877 Jun 2013 WO
2013084879 Jun 2013 WO
2013138802 Sep 2013 WO
2013150990 Oct 2013 WO
2013153195 Oct 2013 WO
2014010490 Jan 2014 WO
2014012125 Jan 2014 WO
2014028022 Feb 2014 WO
2014058663 Apr 2014 WO
2014075995 May 2014 WO
2014064492 May 2014 WO
2014079478 May 2014 WO
2014079570 May 2014 WO
2014085663 Jun 2014 WO
2014111385 Jul 2014 WO
2014111794 Jul 2014 WO
2014121261 Aug 2014 WO
2014161534 Oct 2014 WO
2014161535 Oct 2014 WO
2015077113 May 2015 WO
2015094898 Jun 2015 WO
2015095088 Jun 2015 WO
2015095090 Jun 2015 WO
2015095146 Jun 2015 WO
2015095151 Jun 2015 WO
2015114032 Aug 2015 WO
2015128833 Sep 2015 WO
2015132008 Sep 2015 WO
2015127583 Sep 2015 WO
2016005455 Jan 2016 WO
2016010954 Jan 2016 WO
2016079275 May 2016 WO
2016089799 Jun 2016 WO
2016100954 Jun 2016 WO
2016154284 Sep 2016 WO
2017009149 Jan 2017 WO
2017091529 Jun 2017 WO
2017093393 Jun 2017 WO
Non-Patent Literature Citations (102)
Entry
JP 2013-132664 machine translation, Processing method for Object, Iwatsubo et al., Jul. 2013 (Year: 2013).
English Translation of JP2017501187 Office Action dated May 15, 2019; 5 Pages; Japanse Patent Office.
http://www.gtat.com/Collateral/Documents/English-US/Sapphire/12-21-12_GT_TouchScreen_V3_web.pdf.
“What is the difference between Ra and RMS?”; Harrison Electropolishing LP; (http://www.harrisonep.com/electropolishingra.html), Accessed Aug. 8, 2016.
Kerr. “Filamentary tracks formed in transparent optical glass by laser beam self-focusing. II. Theoretical Analysis” Physical Review A. 4(3) 1971, pp. 1196-1218.
Tymon Barwicz, et al., “Assembly of Mechanically Compliant Interfaces between Optical Fibers and Nanophotonic Chips”, Tymon Barwicz (IBM), et al., Electronic Components & Technology Conference, 2014,. 978-1799-2407-3, 2014 IEEE, pp. 179-185.
Amended claims 1 , 2 Amended Claims (Nov. 21, 2018) GMvp4 p. 1.
Case Design Guidelines for Apple Devices; Sep. 13, 2013; pp. 1-58; Apple Inc.
Claim 1—published on Nov. 20, 2019 EP947: Anspruch 1—erteilt am 20. Nov. 2019 GMvp5 p. 1.
Corning Eagle AMLCD Glass Substrates Material Information; Apr. 2005; pp. MIE 201-1-MIE 201-3; Corning Incorporated.
D6 Amended claim 1 EP947: Anspruch 1—geandert am 21. Nov. 2018 GMvp3 p. 1.
Eaton, S. et al.; Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate; Optics Express; Jun. 13, 2005; pp. 4708-4716; vol. 13, No. 12; Optical Society of America.
European Patent Application No. 15745621.1 Office Action dated Nov. 21, 2017; 2 Pages; European Patent Office.
Faccio et al. “Kerr-induced spontaneous Bessel beam formation in the regime of strong two-photon absorption” Optics Express 16(11) 2008, pp. 8213-8218.
Gollier et al., U.S. Appl. No. 62/024,122, “Systems and Methods for Processing Transparent Materials Using Adjustable Laser Beam Focal Lines”, filed Jul. 14, 2014., U.S. Appl. No. 62/024,122.
GT ASF Grown Sapphire Cover and Touch Screen Material; www.gtat.com, 2012; pp. 1-2; GTAT Corporation.
International Search Report and Written Opinion of the International Searching Authority; PCT/US2015/039468; dated Oct. 19, 2015; 9 Pages; European Patent Office.
Perry, M. et al.; Ultrashort-Pulse Laser Machining; International Congress on Applications of Lasers and Electro-Optics; Orlando, Florida; Nov. 16-19, 1998; pp. 1-24.
Polesana (Polesana, P., Dubietis, A., Porras, A. Kucinskas, E. Faccio, D. Couairon, A. and DiTrapani, P.,, “Near-field dynamics of ultrashort pulsed Bessel beams in media with Kerr nonlinearity”, Physical Review E 73, 056612 (2006)).
Product Data Sheet for Corning Eagle XG Slim Glass, Issued Aug. 2013; 2 Pages.
Product data sheet for Corning Eagle XR glass substrate, issued Jan. 2006 (Year: 2006).
Ra & RMS: Calculating Surface Roughness; Harrison Eelectropolishing; 2012.
Sukumaran, “Design, Fabrication, and Characterization of Ultrathin 3-D Glass Interposers with Through-Package-Vias at Same Pitch as TSVs in Silicon.” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 4, No. 5: 786-795, (2014.).
Sukumaran, “Through-Package-Via Formation and Metallization of Glass Interposers.”, Electronic Components and Technology Conference: 557-563, (2010).
Unichains, Engineering Manual: Innovative Belt & Chain solutions for every industry and application, available publically at least as of Jun. 1, 2016 as evidenced at the following hyperlink: https://web.archive.org/web/20160601OOOOOO/http://www.unichains.com/.
Tsai et al. ,“Internal modification for cutting transparent glass using femtosecond Bessel beams”, Optical Engineering, Soc. of Photo-optical Instrumentation Engineering, Bellingham, vol. 53, May 2014, p. 51503.
Korean Patent Application No. 10-2017-7003404, Office Action, dated Nov. 9, 2021, 16 pages (9 pages of English Translation and 7 pages of Original Document), Korean Patent Office.
McGloin et al.“Bessel beams: diffraction in a new light” Contemporary Physics, vol. 46 No. 1 (2005) pp. 15-28.
Merola et al. “Characterization of Bessel beams generated by polymeric microaxicons” Meas. Sci. Technol. 23 (2012) 10 pgs.
Mirkhalaf, M. et al., Overcoming the brittleness of glass through bio-inspiration and micro-achitecture, Nature Communications, 5:3166/ncomm4166(2014).
Perry et al., “Ultrashort-pulse laser machining of dielectric materials”; Journal of Applied Physics, vol. 85, No. 9, May 1, 1999, American Institute of Physics, pp. 6803-6810.
Perry et al., “Ultrashort-pulse laser machining”; UCRL-ID-132159, Sep. 1998, pp. 1-38.
Perry et al., “Ultrashort-pulse laser machining”; UCRL-JC-132159 Rev 1., Jan. 22, 1999, pp. 1-24.
Polynkin et al., “Extended filamentation with temporally chirped femtosecond Bessel-Gauss beams in air”; Optics Express, vol. 17, No. 2, Jan. 19, 2009, OSA, pp. 575-584.
Romero et al. “Theory of optimal beam splitting by phase gratings. II. Square and hexagonal gratings” J. Opt. Soc. Am. A/vol. 24 No. 8 (2007) pp. 2296-2312.
Salleo A et al., Machining of transparent materials using IR and UV nanosecond laser pulses, Appl. Physics A 71, 601-608, 2000.
Serafetinides et al., “Polymer ablation by ultra-short pulsed lasers” Proceedings of SPIE vol. 3885 (2000) http://proceedings.spiedigitallibrary.org/.
Serafetinides et al., “Ultra-short pulsed laser ablation of polymers”; Applied Surface Science 180 (2001) 42-56.
Shah et al. “Micromachining with a high repetition rate femtosecond fiber laser”, Journal of Laser Micro/Nanoengineering vol. 3 No. 3 (2008) pp. 157-162.
Shealy et al. “Geometricoptics-based design of laser beam shapers”,Opt. Eng. 42(11), 3123-3138 (2003). doi:10.1117/1.1617311.
Stoian et al. “Spatial and temporal laser pulse design for material processing on ultrafast scales” Applied Physics A (2014) 114, p. 119-127.
Sundaram et al., “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses”; Nature Miracles, vol. 1, Dec. 2002, Nature Publishing Group (2002), pp. 217-224.
Thiele, “Relation between catalytic activity and size of particle” Industrial and Egineering Chemistry, vol. 31 No. 7, pp. 916-920, Jul. 1939.
Toytman et al. “Optical breakdown in transparent media with adjustable axial length and location”, Optics Express vol. 18 No 24, 24688-24698 (2010).
Vanagas et al., “Glass cutting by femtosecond pulsed irradiation”; J. Micro/Nanolith. MEMS MOEMS. 3(2), 358-363 (Apr. 1, 2004); doi: 10.1117/1.1668274.
Varel et al., “Micromachining of quartz with ultrashort laser pulses”; Applied Physics A 65, 367-373, Springer-Verlag (1997).
Velpula et al.. “Ultrafast imaging of free carriers: controlled excitation with chirped ultrafast laser Bessel beams”, Proc. Of SPIE vol. 8967 896711-1 (2014).
Wang et al., “Investigation on CO2 laser irradiation inducing glass strip peeling for microchannel formation”, Biomicrofluidics 6, 012820 (2012).
Wu et al. “Optimal orientation of the cutting head for enhancing smoothness movement in three-dimensional laser cutting” (2013) Zhongguo Jiguang/Chinese Journal of Lasers, 40 (1), art. No. 0103005.
Xu et al. “Optimization of 3D laser cutting head orientation based on the minimum energy consumption” (2014) International Journal of Advanced Manufacturing Technology, 74 (9-12), pp. 1283-1291.
Yan et al. “Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes” Optics Letters vol. 37 No. 16 (2012) pp. 3294-3296.
Yoshino et al., “Micromachining with a high repetition rate femtosecond fiber laser”; JLMN—Journal of Laser Micro/Nanoengineering vol. 3, No. 3 (2008), pp. 157-162.
Zeng et al. “Characteristic analysis of a refractive axicon system for optical trepanning”; Optical Engineering 45(9), 094302 (Sep. 2006), pp. 094302-1-094302-10.
Zhang et al., “Design of diffractive-phase axicon illuminated by a Gaussian-profile beam”; Acta Physica Sinica (overseas edition), vol. 5, No. 5 (May 1996) Chin. Phys. Soc., 1004-423X/96/05050354-11, pp. 354-364.
“EagleEtch” Product Brochure, EuropeTec USA Inc., pp. 1-8, Aug. 1, 2014.
“PHAROS High-power femtosecond laser system” product brochure; Light Conversion, Vilnius, LT; Apr. 18, 2011, pp. 1-2.
“TruMicro 5000” Product Manual, Trumpf Laser GmbH + Co. KG, pp. 1-4, Aug. 2011.
Abakians et al.“Evaporative Cutting of a Semitransparent Body With a Moving CW Laser”, J. Heat Transfer 110(4a), 924-930 (Nov. 1, 1988) (7 pages) doi: 10.1115/1.3250594.
Abramov et al., “Laser separation of chemically strengthened glass”; Physics Procedia 5 (2010) 285-290, Elsevier.; doi: 10.1016/j.phpro.2010.08.054.
Ahmed et al. “Display glass cutting by femtosecond laser induced single shot periodic void array” Applied Physics A: Materials Science and Proccessing vol. 93 No. 1 (2008) pp. 189-192.
Arimoto et al., “Imaging properties of axicon in a scanning optical system”; Applied Optics, Nov. 1, 1992, vol. 31, No. 31, pp. 6653-6657.
Bagchi et al. “Fast ion beams from intense, femtosecond laser irradiated nanostructured surfaces” Applied Physics B 88 (2007) p. 167-173.
Bhuyan et al. “Laser micro- and nanostructuring using femtosecond Bessel beams”, Eur. Phys. J. Special Topics 199 (2011) p. 101-110.
Bhuyan et al. “Single shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams” Applied Physics Letters 104 (2014) 021107.
Bhuyan et al. “Ultrafast Bessel beams for high aspect ratio taper free micromachining of glass” Proc. Of SPIE vol. 7728 77281V-1, Apr. 2010.
Bhuyan et al., “Femtosecond non-diffracting Bessel beams and controlled nanoscale ablation” by IEEE (2011).
Bhuyan et al., “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams”; Applied Physics Letters 97, 081102 (2010); doi: 10.1063/1.3479419.
Bhuyan et al., “High aspect ratio taper-free microchannel fabrication using femtosecond Bessel beams”; Optics Express (2010) vol. 18, No. 2, pp. 566-574.
Case Design Guidelines for Apple Devices Release R5 (https://web.archive.org/web/20131006050442/https://developer.apple.com/resources/cases/Case-Design-Guidelines.pdf; archived on Oct. 6, 2013).
Chiao et al. 9. “Self-trapping of optical beams,” Phys. Rev. Lett, vol. 13, No. 15, p. 479 (1964).
Corning Inc., “Corning® 1737 AM LCD Glass Substrates Material Information”, issued Aug. 2002.
Corning Inc., “Corning® Eagle2000 TM AMLCD Glass Substrates Material Information”, issued Apr. 2005.
Couairon et al. “Femtosecond filamentation in transparent media” Physics Reports 441 (2007) pp. 47-189.
Courvoisier et al. “Applications of femtosecond Bessel beams to laser ablation” Applied Physics A (2013) 112, p. 29-34.
Courvoisier et al. “Surface nanoprocessing with non-diffracting femtosecond Bessel beams” Optics Letters vol. 34 No. 20, (2009) p. 3163-3165.
Cubeddu et al., “A compact time-resolved reflectance system for dual-wavelength multichannel assessment of tissue absorption and scattering”; Part of the SPIE Conference on Optical Tomography and Spectroscopy of Tissue III, San Jose, CA (Jan. 1999), SPIE vol. 3597, 0277-786X/99, pp. 450-455.
Cubeddu et al., “Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance”; Applied Optics, vol. 38, No. 16, Jun. 1, 1999, pp. 3670-3680.
Ding et al., “High-resolution optical coherence tomography over a large depth range with an axicon lens”; Optic Letters, vol. 27, No. 4, pp. 243-245, Feb. 15, 2002, Optical Society of America.
Dong et al. “On-axis irradiance distribution of axicons illuminated by spherical wave”, Optics & Laser Technology 39 (2007) 1258-1261.
Duocastella et al. “Bessel and annular beams for material processing”, Laser Photonics Rev. 6, 607-621, 2012.
Durnin. “Exact solutions for nondiffracting beams I. The scaler theory” J. Opt. Soc. Am. A. 4(4) pp. 651-654, Apr. 1987.
Eaton et al. “Heat accumulation effects in femtosecond laser written waveguides with variable repetition rates”, Opt. Exp. 5280, vol. 14, No. 23, Jun. 2006.
Gattass et al. “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates” Opt. Exp. 5280, vol. 14, No. 23, Jun. 2006.
Girkin et al., “Macroscopic multiphoton biomedical imaging using semiconductor saturable Bragg reflector modelocked Lasers”; Part of the SPIE Conference on Commercial and Biomedical Applications of Ultrafast Lasers, San Jose, CA (Jan. 1999), SPIE vol. 3616, 0277-786X/99, pp. 92-98.
Glezer et al., “Ultrafast-laser driven micro-explosions in transparent materials”; Applied Physics Letters, vol. 71 (1997), pp. 882-884.
Golub, I., “Fresnei axicon”; Optic Letters, vol. 31, No. 12, Jun. 15, 2006, Optical Society of America, pp. 1890-1892.
Gori et al. “Analytical derivation of the optimum triplicator” Optics Communications 157 (1998) pp. 13-16.
Herman et al., “Laser micromachining of ‘transparent’ fused silica with 1-ps pulses and pulse trains”; Part of the SPIE Conference on Commercial and Biomedical Applications of Ultrafast Lasers, San Jose, CA (Jan. 1999), SPIE vol. 3616, 0277-786X/99, pp. 148-155.
Honda et al. “A Novel Polymer Film that Controls Light Transmission”, Progress in Pacific Polymer Science 3, 159-169 (1994).
Hu et al. “5-axis laser cutting interference detection and correction based on STL model” (2009) Zhongguo Jiguang/Chinese Journal of Lasers, 36 (12), pp. 3313-3317.
Huang et al., “Laser etching of glass substrates by 1064 nm laser irradiation”, Applied Physics, Oct. 2008, vol. 93, Issue 1, pp. 159-162.
Juodkazis S. et al. Laser induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures., Phys. Rev. Lett. 96, 166101, 2006.
Karlsson et al. “The technology of chemical glass strengthening—a review” Glass Technol: Eur. J. Glass Sci. Technol. A (2010) 51 (2) pp. 41-54.
Kosareva et al., “Formation of extended plasma channels in a condensed medium upon axicon focusing of a femtosecond laser pulse”; Quantum Electronics 35 (11) 1013-1014 (2005), Kvantovaya Elektronika and Turpion Ltd.; doi: 10.1070/QE2005v035n11ABEH013031.
Kruger et al., “Femtosecond-pulse visible laser processing of transparent materials”; Applied Surface Science 96-98 (1996) 430-438.
Kruger et al., “Laser micromachining of barium aluminium borosilicate glass with pluse durations between 20 fs and 3 ps”; Applied Surface Science 127-129 (1998) 892-898.
Kruger et al., “Structuring of dielectric and metallic materials with ultrashort laser pulses between 20 fs and 3 ps”; SPIE vol. 2991, 0277-786X/97, pp. 40-47, 1997.
Lapczyna et al., “Ultra high repetition rate (133 MHz) laser ablation of aluminum with 1.2-ps pulses”; Applied Physic A 69 [Suppl.], S883-S886, Springer-Verlag (1999); doi: 10.1007/s003399900300.
Levy et al. “Design, fabrication, and characterization of circular Dammann gratings based on grayscale lithography,” Opt. Lett vol. 35, No. 6, p. 880-882 (2010).
Liu X et al. “laser ablation and micromachining with ultrashort laser pulses”, IEEE J. Quantum Electronics, 22, 1706-1716, 1997.
Maeda et al. “Optical performance of angle-dependent light-control glass”, Proc. SPIE 1536, Optical Materials Technology for Energy Efficiency and Solar Energy Conversion X, 138 (Dec. 1, 1991).
Mbise et al. “Angular selective window coatings: theory and experiments” J. Phys. D: Appl. Phys. 30 2103 (1997).
Related Publications (1)
Number Date Country
20180029165 A1 Feb 2018 US
Provisional Applications (1)
Number Date Country
62021917 Jul 2014 US
Divisions (1)
Number Date Country
Parent 14794181 Jul 2015 US
Child 15727083 US