The present disclosure relates to methods for manufacturing absorbent articles, and more particularly, to apparatuses and methods for making elastomeric laminates that may be used as components of absorbent articles.
Along an assembly line, various types of articles, such as for example, diapers and other absorbent articles, may be assembled by adding components to and/or otherwise modifying an advancing, continuous web of material. For example, in some processes, advancing webs of material are combined with other advancing webs of material. In other examples, individual components created from advancing webs of material are combined with advancing webs of material, which in turn, are then combined with other advancing webs of material. In some cases, individual components created from an advancing web or webs are combined with other individual components created from other advancing webs. Webs of material and component parts used to manufacture diapers may include: backsheets, topsheets, leg cuffs, waist bands, absorbent core components, front and/or back ears, fastening components, and various types of elastic webs and components such as leg elastics, barrier leg cuff elastics, stretch side panels, and waist elastics. Once the desired component parts are assembled, the advancing web(s) and component parts are subjected to a final knife cut to separate the web(s) into discrete diapers or other absorbent articles.
Some absorbent articles have components that include elastomeric laminates. Such elastomeric laminates may include an elastic material bonded to one or more nonwovens. The elastic material may include an elastic film and/or elastic strands. In some laminates, a plurality of elastic strands are joined to a nonwoven while the plurality of strands are in a stretched condition so that when the elastic strands relax, the nonwoven gathers between the locations where the nonwoven is bonded to the elastic strands, and in turn, forms corrugations. The resulting elastomeric laminate is stretchable to the extent that the corrugations allow the elastic strands to elongate.
In some assembly processes, stretched elastic strands may be advanced in a machine direction and may be adhered between two advancing substrates, wherein the stretched elastic strands are spaced apart from each other in a cross direction. Some assembly processes are also configured with several elastic strands that are very closely spaced apart from each other in the cross direction. In some configurations, close cross directional spacing between elastic strands can be achieved by drawing elastic strands from windings that have been stacked in the cross direction on a beam. For example, various textile manufacturers may utilize beam elastics and associated handling equipment, such as available from Karl Mayer Corporation.
However, problems can be encountered in manufacturing processes when drawing elastic strands stacked on a beam. For example, relatively low decitex elastic strands supplied on a beam may include a coating, sometimes referred to a yarn finish or spin finish, to help prevent the elastics strands from adhering to themselves, each other, and/or downstream handling equipment. When constructing absorbent articles, hot melt adhesives are sometimes used to adhere stretched elastic stands to advancing substrates to create elastic laminates. However, hot melt adhesives used to adhere stretched elastic strands to substrates when constructing absorbent articles may not adhere well to strands having a spin finish. As such, increased amounts of adhesive may be required to adequately adhere the stretched elastic strands to the substrates than would otherwise be required for elastic stands without a spin finish. In turn, relatively larger amounts of adhesives required to bond the elastic strands to the substrates may have a negative impact on aspects of the resulting product, such as with respect to costs, functionality, and aesthetics.
In an attempt to overcome the aforementioned problems associated with adhesives, some assembly processes may be configured to apply mechanical bonds with heat and pressure to trap the stretched elastic strands between two substrates. Such mechanical bonds may be created, for example, by advancing the substrates and elastic strands between an ultrasonic horn and anvil. However, the heat and pressure from the anvil and horn may also sever the elastic strands. In some instances, the runout of the anvil can cause variations in the distance between the ultrasonic horn and anvil during the bonding process. Such distance variations can cause the elastic strands to be severed during the bonding process and/or result in relatively inconsistent bond quality. It may be possible to mitigate problems associated with severing the elastic strands by operating at relatively slow speeds. For example, at relatively slow advancement speeds, relatively less pressure may be exerted on the elastic strands during the bonding process. In addition, the ultrasonic horn may be configured to move toward and away from the anvil during the bonding process in order to compensate for relatively large runout values on the anvil. However, disposable absorbent article manufacturing lines may operate at relatively high speeds. As such, it can be inefficient and/or cost prohibitive to reduce the advancement speeds in high speed manufacturing operations to achieve the desired bond qualities without severing the elastic strands. In addition, ultrasonic horns may not be able to compensate for relatively high anvil runout values at high speeds. In some configurations, grooves may be provided in the horn or anvil for the elastic strands to nest in and to shield the elastic strands from pressure and prevent severing through the bonding process, such as disclosed in U.S. Pat. No. 6,291,039 and European Patent Publication No. EP 3 092 997 B1. However, positioning hundreds of elastic strands drawn from a beam in nesting grooves on an ultrasonic horn and/or anvil may add complexity to the assembly process.
Consequently, it would be beneficial to provide methods and apparatuses for producing elastomeric laminates at relatively high advancement speeds by mechanically bonding elastic strands between substrates without severing the elastics strands, and/or without the need for having to guide elastic strands into designated nesting grooves in a mechanical bonding device.
In one aspect, a method for making absorbent articles comprises steps of: rotating a pattern roll about an axis of rotation extending axially in a cross direction, the pattern roll comprising bonding surfaces extending radially outward from the axis of rotation; providing a pressing surface adjacent the pattern roll to define a nip between the pattern roll and the pressing surface; advancing a first substrate and a second substrate through in a machine direction through the nip at a first speed S1 of at least about 100 meters per minute; providing elastic strands wound onto a beam; rotating the beam to unwind the elastic strands from the beam; advancing the elastic strands from the rotating beam; stretching the elastic strands; and bonding the stretched elastic strands between the first substrate and the second substrate at the nip to form an elastomeric laminate.
In another aspect, a method for making absorbent articles comprises steps of: rotating a pattern roll about an axis of rotation extending axially in a cross direction, the pattern roll comprising bonding surfaces extending radially outward from the axis of rotation; providing an ultrasonic horn comprising an energy transfer surface to define a nip between the pattern roll and the energy transfer surface; advancing a first substrate and a second substrate through in a machine direction through the nip at a first speed S1 of at least about 100 meters per minute; providing elastic strands wound onto a beam; rotating the beam to unwind the elastic strands from the beam; advancing the elastic strands from the rotating beam; stretching the elastic strands; and bonding the stretched elastic strands between the first substrate and the second substrate at the nip to form an elastomeric laminate.
In yet another aspect, a method for making absorbent articles comprises steps of: rotating a pattern roll about an axis of rotation extending axially in a cross direction, the pattern roll comprising bonding surfaces extending radially outward from the axis of rotation; providing an ultrasonic horn comprising an energy transfer surface to define a nip between the pattern roll and the energy transfer surface; advancing a first substrate and a second substrate through in a machine direction through the nip at a first speed S1 of at least about 100 meters per minute; providing elastic strands wound onto a beam; rotating the beam to unwind the elastic strands from the beam; advancing the elastic strands from the rotating beam; stretching the elastic strands; positioning the stretched elastic strands between the first substrate and the second substrate; and welding the first substrate and the second substrate together at the nip to form an elastomeric laminate.
The following term explanations may be useful in understanding the present disclosure:
“Absorbent article” is used herein to refer to consumer products whose primary function is to absorb and retain soils and wastes. Absorbent articles can comprise sanitary napkins, tampons, panty liners, interlabial devices, wound dressings, wipes, disposable diapers including taped diapers and diaper pants, inserts for diapers with a reusable outer cover, adult incontinent diapers, adult incontinent pads, and adult incontinent pants. The term “disposable” is used herein to describe absorbent articles which generally are not intended to be laundered or otherwise restored or reused as an absorbent article (e.g., they are intended to be discarded after a single use and may also be configured to be recycled, composted or otherwise disposed of in an environmentally compatible manner).
An “elastic,” “elastomer” or “elastomeric” refers to materials exhibiting elastic properties, which include any material that upon application of a force to its relaxed, initial length can stretch or elongate to an elongated length more than 10% greater than its initial length and will substantially recover back to about its initial length upon release of the applied force.
As used herein, the term “joined” encompasses configurations whereby an element is directly secured to another element by affixing the element directly to the other element, and configurations whereby an element is indirectly secured to another element by affixing the element to intermediate member(s) which in turn are affixed to the other element.
The term “substrate” is used herein to describe a material which is primarily two-dimensional (i.e. in an XY plane) and whose thickness (in a Z direction) is relatively small (i.e. 1/10 or less) in comparison to its length (in an X direction) and width (in a Y direction). Non-limiting examples of substrates include a web, layer or layers or fibrous materials, nonwovens, films and foils such as polymeric films or metallic foils. These materials may be used alone or may comprise two or more layers laminated together. As such, a web is a substrate.
The term “nonwoven” refers herein to a material made from continuous (long) filaments (fibers) and/or discontinuous (short) filaments (fibers) by processes such as spunbonding, meltblowing, carding, and the like. Nonwovens do not have a woven or knitted filament pattern.
The term “machine direction” (MD) is used herein to refer to the direction of material flow through a process. In addition, relative placement and movement of material can be described as flowing in the machine direction through a process from upstream in the process to downstream in the process.
The term “cross direction” (CD) is used herein to refer to a direction that is generally perpendicular to the machine direction.
The term “taped diaper” (also referred to as “open diaper”) refers to disposable absorbent articles having an initial front waist region and an initial back waist region that are not fastened, pre-fastened, or connected to each other as packaged, prior to being applied to the wearer. A taped diaper may be folded about the lateral centerline with the interior of one waist region in surface to surface contact with the interior of the opposing waist region without fastening or joining the waist regions together. Example taped diapers are disclosed in various suitable configurations U.S. Pat. Nos. 5,167,897, 5,360,420, 5,599,335, 5,643,588, 5,674,216, 5,702,551, 5,968,025, 6,107,537, 6,118,041, 6,153,209, 6,410,129, 6,426,444, 6,586,652, 6,627,787, 6,617,016, 6,825,393, and 6,861,571; and U.S. Patent Publication Nos. 2013/0072887 A1; 2013/0211356 A1; and 2013/0306226 A1, all of which are incorporated by reference herein.
The term “pant” (also referred to as “training pant”, “pre-closed diaper”, “diaper pant”, “pant diaper”, and “pull-on diaper”) refers herein to disposable absorbent articles having a continuous perimeter waist opening and continuous perimeter leg openings designed for infant or adult wearers. A pant can be configured with a continuous or closed waist opening and at least one continuous, closed, leg opening prior to the article being applied to the wearer. A pant can be preformed or pre-fastened by various techniques including, but not limited to, joining together portions of the article using any refastenable and/or permanent closure member (e.g., seams, heat bonds, pressure welds, adhesives, cohesive bonds, mechanical fasteners, etc.). A pant can be preformed anywhere along the circumference of the article in the waist region (e.g., side fastened or seamed, front waist fastened or seamed, rear waist fastened or seamed). Example diaper pants in various configurations are disclosed in U.S. Pat. Nos. 4,940,464; 5,092,861; 5,246,433; 5,569,234; 5,897,545; 5,957,908; 6,120,487; 6,120,489; 7,569,039 and U.S. Patent Publication Nos. 2003/0233082 A1; 2005/0107764 A1, 2012/0061016 A1, 2012/0061015 A1; 2013/0255861 A1; 2013/0255862 A1; 2013/0255863 A1; 2013/0255864 A1; and 2013/0255865 A1, all of which are incorporated by reference herein.
The present disclosure relates to methods for manufacturing absorbent articles, and in particular, to methods for making elastomeric laminates that may be used as components of absorbent articles. The elastomeric laminates may include a first substrate, a second substrate, and an elastic material positioned between the first substrate and second substrate. During the process of making the elastomeric laminate, the elastic material may be advanced and stretched in a machine direction and may be joined with either or both the first and second substrates advancing in the machine direction. The methods and apparatuses according to the present disclosure may be configured with a plurality of elastic strands wound onto a beam, and wherein one or more elastic strands may comprise a spin finish. During assembly of an elastomeric laminate, the beam is rotated to unwind the elastic strands from the beam. The elastic strands may also be stretched while advancing in a machine direction. Discrete mechanical bonds are applied to the first substrate and the second substrate to secure elastic strands therebetween, wherein the discrete bonds are arranged intermittently along the machine direction. As discussed in more detail below, when combining elastic strands having relatively low decitex values with substrates to create bonds having certain ranges of thicknesses, the mechanical bonds can be applied to secure the elastic strands between substrates without severing the elastics strands and without the need for nesting grooves in a mechanical bonding device. The bonding process can be achieved at relatively high substrate advancement speeds when utilizing mechanical bonding devices that require none or relatively small online adjustments, such as for example, patterned and anvil rolls and/or ultrasonic bonding devices with relatively low runout values.
During the bonding process, heat and pressure are applied to the first substrate and the second substrate such that malleable materials of the first and second substrates deform to completely surround an outer perimeter of a discrete length of the stretched elastic strand. After removing the heat and pressure from the first and second substrates, the malleable materials harden to define a bond conforming with a cross sectional shape defined by the outer perimeter of the stretched elastic strand. When the elastic strand is in a stretched state, the stretched elastic strand defines a cross sectional area that is less than a cross sectional area of the elastic strand when in a relaxed state. Thus, when tension is released from the elastic strand, the cross sectional area of the elastic strand is prevented from expanding in the bond by the hardened materials of the first and second substrates, which in turn, creates forces between the elastic strand and the hardened materials. The forces between the elastic strand and the hardened materials increases the friction between the elastic strand and the hardened materials. Thus, a frictional lock may be created between the elastic strand and the hardened materials in the bond region by releasing the tension from the stretched elastic strands. The frictional lock holds the discrete length of the elastic strand in a fixed position in the bond region with the first and second substrates.
To help provide additional context to the subsequent discussion of the process embodiments, the following provides a general description of absorbent articles in the form of diapers that include components including the elastomeric laminates that may be produced with the methods and apparatuses disclosed herein.
With continued reference to
As shown in
As shown in
As previously mentioned, the diaper pant 100P may include a backsheet 136. The backsheet 136 may also define the outer surface 134 of the chassis 102. The backsheet 136 may also comprise a woven or nonwoven material, polymeric films such as thermoplastic films of polyethylene or polypropylene, and/or a multi-layer or composite materials comprising a film and a nonwoven material. The backsheet may also comprise an elastomeric film. An example backsheet 136 may be a polyethylene film having a thickness of from about 0.012 mm (0.5 mils) to about 0.051 mm (2.0 mils). Further, the backsheet 136 may permit vapors to escape from the absorbent core (i.e., the backsheet is breathable) while still preventing exudates from passing through the backsheet 136.
Also described above, the diaper pant 100P may include a topsheet 138. The topsheet 138 may also define all or part of the inner surface 132 of the chassis 102. The topsheet 138 may be liquid pervious, permitting liquids (e.g., menses, urine, and/or runny feces) to penetrate through its thickness. A topsheet 138 may be manufactured from a wide range of materials such as woven and nonwoven materials; apertured or hydroformed thermoplastic films; apertured nonwovens, porous foams;
reticulated foams; reticulated thermoplastic films; and thermoplastic scrims. Woven and nonwoven materials may comprise natural fibers such as wood or cotton fibers; synthetic fibers such as polyester, polypropylene, or polyethylene fibers; or combinations thereof. If the topsheet 138 includes fibers, the fibers may be spunbond, carded, wet-laid, meltblown, hydroentangled, or otherwise processed as is known in the art. Topsheets 138 may be selected from high loft nonwoven topsheets, apertured film topsheets and apertured nonwoven topsheets. Exemplary apertured films may include those described in U.S. Pat. Nos. 5,628,097; 5,916,661; 6,545,197; and 6,107,539.
As mentioned above, the diaper pant 100P may also include an absorbent assembly 140 that is joined to the chassis 102. As shown in
Some absorbent core embodiments may comprise fluid storage cores that contain reduced amounts of cellulosic airfelt material. For instance, such cores may comprise less than about 40%, 30%, 20%, 10%, 5%, or even 1% of cellulosic airfelt material. Such a core may comprise primarily absorbent gelling material in amounts of at least about 60%, 70%, 80%, 85%, 90%, 95%, or even about 100%, where the remainder of the core comprises a microfiber glue (if applicable). Such cores, microfiber glues, and absorbent gelling materials are described in U.S. Pat. Nos. 5,599,335; 5,562,646; 5,669,894; and 6,790,798 as well as U.S. Patent Publication Nos. 2004/0158212 A1 and 2004/0097895 A1.
As previously mentioned, the diaper 100P may also include elasticized leg cuffs 156. It is to be appreciated that the leg cuffs 156 can be and are sometimes also referred to as leg bands, side flaps, barrier cuffs, elastic cuffs or gasketing cuffs. The elasticized leg cuffs 156 may be configured in various ways to help reduce the leakage of body exudates in the leg regions. Example leg cuffs 156 may include those described in U.S. Pat. Nos. 3,860,003; 4,909,803; 4,695,278; 4,795,454; 4,704,115; 4,909,803; and U.S. Patent Publication No. 2009/0312730 A1.
As mentioned above, diaper pants may be manufactured with a ring-like elastic belt 104 and provided to consumers in a configuration wherein the front waist region 116 and the back waist region 118 are connected to each other as packaged, prior to being applied to the wearer. As such, diaper pants may have a continuous perimeter waist opening 110 and continuous perimeter leg openings 112 such as shown in
As previously mentioned, the ring-like elastic belt 104 may be defined by a first elastic belt 106 connected with a second elastic belt 108. As shown in
As shown in
The first and second elastic belts 106, 108 may also each include belt elastic material interposed between the outer substrate layer 162 and the inner substrate layer 164. The belt elastic material may include one or more elastic elements such as strands, ribbons, films, or panels extending along the lengths of the elastic belts. As shown in
In some configurations, the first elastic belt 106 and/or second elastic belt 108 may define curved contours. For example, the inner lateral edges 107b, 109b of the first and/or second elastic belts 106, 108 may include non-linear or curved portions in the first and second opposing end regions. Such curved contours may help define desired shapes to leg opening 112, such as for example, relatively rounded leg openings. In addition to having curved contours, the elastic belts 106, 108 may include elastic strands 168, 172 that extend along non-linear or curved paths that may correspond with the curved contours of the inner lateral edges 107b, 109b.
It is to be appreciated that the apparatuses and methods of assembly of elastomeric laminates and absorbent articles described herein and illustrated in the accompanying drawings are non-limiting example configurations. The features illustrated or described in connection with one non-limiting configuration may be combined with the features of other non-limiting configurations. Such modifications and variations are intended to be included within the scope of the present disclosure.
As previously mentioned, apparatuses and methods according to the present disclosure may be utilized to produce elastomeric laminates that may be used to construct various components of diapers, such as elastic belts, leg cuffs, and the like. For example,
It is to be appreciated that the elastomeric laminates 302 can be used to construct various types of absorbent article components. It also to be appreciated that the methods and apparatuses herein may be adapted to operate with various types of absorbent article assembly processes, such as disclosed for example in U.S. Patent Publication Nos. 2013/0255861 A1; 2013/0255862 A1; 2013/0255863 A1; 2013/0255864 A1; and 2013/0255865 A1. For example, the elastomeric laminates 302 may be used as a continuous length of elastomeric belt material that may be converted into the first and second elastic belts 106, 108 discussed above with reference to
As discussed in more detail below, the converting apparatuses 300 may include metering devices arranged along a process machine direction MD, wherein the metering devices may be configured to stretch the advancing elastic material and/or join stretch elastic material with one or more advancing substrates. In some configurations, a metering device may comprise a beam of elastic strands wound thereon. During operation, elastic material may advance in a machine direction from a rotating beam to a downstream metering device to be joined with one or more advancing substrates. Bonds are applied to the first substrate and the second substrate to secure discrete lengths of the stretched elastic strands between the first and second substrates. The discrete bonds may be arranged intermittently along the machine direction. In some configurations, the bonds extend in the machine direction and may extend in a cross direction across one or more elastic strands. In some configurations, bonds may be separated from each other in a cross direction. It is to be appreciated that the apparatuses and methods of assembly of elastomeric laminates and absorbent articles described herein and illustrated in the accompanying drawings are non-limiting example configurations. The features illustrated or described in connection with one non-limiting configuration may be combined with the features of other non-limiting configurations. Such modifications and variations are intended to be included within the scope of the present disclosure.
As shown in
As shown in
With continued reference to
Still referring to
It is to be appreciated that the beam 314 may be configured in various ways and with various quantities of elastic strands. Example beams, also referred to as warp beams, that may be used with the apparatus and methods herein are disclosed in U.S. Pat. Nos. 4,525,905; 5,060,881; and 5,775,380; and U.S. Patent Publication No. 2004/0219854 A1. Although
With continued reference to
It is to be appreciated that one or more of the elastic strands 316 may include various types of spin finish 320, also referred herein as yarn finish, configured as coating on the elastic strands 316 that may be intended to help prevent the elastics strands from adhering to themselves, each other, and/or downstream handling equipment. In some configurations, a spin finish may include various types of oils and other components, such as disclosed for example in U.S. Pat. Nos. 8,377,554; 8,093,161; and 6,821,301. In some configurations, a spin finish may include various types of silicone oils, such as for example, polydimethylsiloxane. In some configurations, a spin finish may include various types of mineral oils. It is to be appreciated that the amount of spin finish applied to elastic strands may be optimized depending on the process configuration in which the elastic strands may be used. For example, in process configurations wherein elastic strands have limited contact or do not contact downstream handling equipment, such as idlers, the amount of spin finish may be selected to help prevent the elastics strands from adhering to themselves and/or each other while wound on a beam without regard to whether elastic strands would adhere to downstream handling equipment. As such, it is to be appreciated that the elastic strands herein may include various amounts of spin finish that may be expressed in various ways. For example, a quantity of 10 grams of spin finish per 1 kilogram of elastic strand may be expressed as 1% spin finish. In some configurations, an elastic strand may include about 0.1% spin finish. In some configurations, a strand may include from about 0.01% to about 10% spin finish, specifically reciting all 0.01% increments within the above-recited range and all ranges formed therein or thereby.
As shown in
It is to be appreciated that the bond applicator 500 may be configured in various ways, such as for example, heated or unheated patterned and anvil rolls and/or ultrasonic bonding devices. For example, the bond applicator 500 schematically shown in
During the assembly operation, the elastomeric laminate 302 may be partially wrapped onto the pattern roll 502. As shown in
It is to be appreciated that various operational abnormalities may result while elastic strands 316 are advancing from a beam 314 during assembly operations disclosed herein. For example, breakouts may occur during assembly operations, wherein one or more elastic strands 316 unintentionally breaks while advancing from the beam 314 during assembly of the elastomeric laminate 302. The methods and apparatuses herein may be configured to help isolate broken elastic strands and rethread broken elastic strands. For example, as discussed above with reference to
It is to be appreciated that the pressing surface 504 may be configured in various ways. For example, as shown in
It is to be appreciated that the number, size, and shape of some or all the pattern surfaces 510 and/or pattern elements 512 may be different. In some configurations, the shape and size of the pattern surface 510 of each pattern element 512 may be identical or substantially identical to each other. In some configurations, the pattern elements 512 and/or pattern surfaces 510 may have a perimeter that defines circular, square, rectangular, elliptical, and various types of other shapes. In some configurations, the anvil 502 may include a pattern element 512 with a pattern surface 510 that defines a continuous crossing line pattern and/or various other shapes, such as disclosed in U.S. Pat. No. 9,265,672, which is incorporated by reference herein. It is to be appreciated that the choice of pattern surface shape may enable the creation of unique textures and patterns where the location and size of the bonding sites impact local buckling resistance of a nonwoven laminate and may create desired homogeneous textures upon relaxation of the elastics and the resulting nonwoven corrugation. It is also to be appreciated that the pattern elements 512 and comprise pattern surfaces with chamfered or radial, curved edges.
Some bond applicators may be configured to a maintain relatively constant distance between the pressing surface 504 and the pattern surface 510. For example, some ultrasonic bonding devices 518 may be configured to move the horn 520 toward and away from the pattern surface 510 to help maintain a relatively constant distance between them. To help maintain relatively consistent bond quality without cutting the elastic strands 316, the speeds at which such a horn 520 would have to move back and forth increases as speeds at which the substrates 306, 308 and elastic strands 316 advance through the nip 508. Pattern rolls 502 with comprising relatively small runout values may help mitigate requirements for such increased speeds of horn 520 movement. As such, it is to be appreciated that the pattern roll 502 may be configured with pattern surfaces 510 extending for various lengths in the cross direction CD and comprising various total runout values. For example, in some configurations, the pattern roll 502 may include pattern surfaces 510 extending in the cross direction for a length of at least about 100 mm. In some configurations, the pattern roll 502 may include pattern surfaces 510 comprising total runout values ranging from about 0 μm (“microns”) to about 10 μm, specifically reciting all 1 μm increments within the above-recited range and all ranges formed therein or thereby. The term “total runout” refers herein to the total runout as defined in ASME Y14.5-2009.
It is to be appreciated that aspects of the ultrasonic bonding devices 518 may be configured in various ways, such as for example linear or rotary type configurations, and such as disclosed for example in U.S. Pat. Nos. 3,113,225; 3,562,041; 3,733,238; 5,110,403; 6,036,796; 6,508,641; and 6,645,330. In some configurations, the ultrasonic bonding device 518 may be configured as a linear oscillating type sonotrode, such as for example, available from Herrmann Ultrasonic, Inc. In some configurations, the sonotrode may include a plurality of sonotrodes nested together in the cross direction CD. The bond applicator 500 may also be configured in various other ways, such as for example, the mechanical bonding devices and methods disclosed in U.S. Pat. Nos. 4,854,984; 6,248,195; 8,778,127; and 9,005,392; and U.S. Patent Publication Nos. 2014/0377513 A1; and 2014/0377506 A1. Although the bond applicator 500 is shown in
It is to be appreciated that the combined first substrate 306, second substrate 308, and elastic strands 316 may advance at various speeds S1 through the bonding process. For example, in some configurations, the combined first substrate 306, second substrate 308, and elastic strands 316 may advance in the machine direction MD through the nip 508 between the pattern roll 502 and the pressing surface 504 at speeds ranging from about 100 meters per minute to about 450 meters per minute, specifically reciting all 1 meter per minute increments within the above-recited range and all ranges formed therein or thereby.
As previously mentioned, a frictional lock may be applied between a portion of the elastic strand 316 and the hardened first and second materials 354, 356 by releasing tension from the stretched elastic strand 316. The frictional lock acts to hold and/or secure the elastic strand 316 in a fixed position in the bond region 360. For the purposes of a general explanation,
Turning next to
It is also to be appreciated that the elastic strands 316 herein bonded in accordance with the methods described herein may also be constructed from one or more filaments 364. For example,
It is to be appreciated that different components may be used to construct the elastomeric laminates 302 in accordance with the methods and apparatuses herein. For example, the first and/or second substrates 306, 308 may include nonwovens and/or films and may be constructed from various types of materials, such as plastic films; apertured plastic films; woven or nonwoven webs of natural materials, such as wood or cotton fibers; synthetic fibers, such as polyolefins, polyamides, polyester, polyethylene, or polypropylene fibers or a combination of natural and/or synthetic fibers; or coated woven or nonwoven webs; polymeric films such as thermoplastic films of polyethylene or polypropylene, and/or a multi-layer or composite materials comprising a film and a nonwoven material. In some configurations, the first and/or second substrates 306, 308 may include nonwovens configured with basis weight values of at least about 10 gsm, and may include nonwovens configured with basis weight values ranging from about 10 gsm to about 30 gsm, specifically reciting all 1 gsm increments within the above-recited range and all ranges formed therein or thereby.
It is also to be appreciated that the strands 316 and/or filaments 364 herein may define various different cross-sectional shapes. For example, in some configurations, strands 316 or filaments 364 may define circular, oval, or elliptical cross sectional shapes or irregular shapes, such as dog bone and hourglass shapes. In addition, the elastic strands 316 may be configured in various ways and with various decitex values. In some configurations, the elastic strands 316 may be configured with decitex values ranging from about 40 decitex to about 150 decitex, and may be configured with decitex values ranging from about 10 decitex to about 500 decitex, specifically reciting all 1 decitex increments within the above-recited range and all ranges formed therein or thereby.
As previously mentioned, substrates 306, 308 with elastic strands 316 positioned therebetween can be bonded in accordance with methods herein without severing the elastics strands and without the need for nesting grooves in bond applicator 500. For example, as shown in
It is to be appreciated that the apparatuses 300 herein may be configured in various ways with various features described herein to assemble elastomeric laminates 302 having various stretch characteristics. For example, the apparatus 300 may be configured to assemble elastomeric laminates 302 with elastic strands 316 unwound from more than one beam and/or in combination with elastic stands supplied from an overend or surface driven unwinder. For example,
With continued reference to
In another configuration shown in
In another configuration shown in
In some configurations, the speed S2 is less than the speed S1, and as such, the elastic strands 316 are stretched in the machine direction MD. With continued reference to
It is also to be appreciated that in some configurations, the first substrate and second substrate 306, 308 herein may be defined by two discrete substrates or may be defined by folded portions of a single substrate. For example, as shown in
As illustrated herein, the apparatuses and processes may be configured such that elastic strands may be advanced from the beams and directly to the assembly process without having to touch additional machine components, such as for example, guide rollers. It is also to be appreciated that in some configurations, elastic strands may be advanced from beams and may be redirected and/or otherwise touched by and/or redirected before advancing to the assembly process. For example,
It is to be appreciated that the bonding methods and apparatuses herein may be utilized in conjunction with other bonding methods and apparatuses and/or assemble various types of laminates and absorbent articles, such as disclosed in U.S. Patent Application Nos. 62/686,896, filed on Jun. 19, 2018; 62/687,031, filed on Jun. 19, 2018; 62/685,429, filed on Jun. 15, 2018; 62/581,278, filed on Nov. 3, 2017; 62/553,149, filed on Sep. 1, 2017; 62/553,538, filed on Sep. 1, 2017; and 62/553,171, filed on Sep. 1, 2017, and U.S. Patent Publication Nos. 2018/0168880A1; 2018/0170027A1; 2018/0169964A1; 2018/0168879A1; 2018/0170026A1; 2018/0168889A1; 2018/0168874A1; 2018/0168875A1; 2018/0168890A1; 2018/0168887A1; 2018/0168892A1; 2018/0168876A1; and 2018/0168891A1, the entireties of which are all incorporated by reference herein.
This application claims the benefit of U.S. Provisional Application Nos. 62/686,896, filed on Jun. 19, 2018; 62/687,031, filed on Jun. 19, 2018; 62/685,429, filed on Jun. 15, 2018; 62/581,278, filed on Nov. 3, 2017; 62/553,149, filed on Sep. 1, 2017; 62/553,538, filed on Sep. 1, 2017; and 62/553,171, filed on Sep. 1, 2017, the entireties of which are all incorporated herein by reference herein.
Every document cited herein, including any cross referenced or related patent or application and any patent application or patent to which this application claims priority or benefit thereof, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
This application is a continuation of U.S. application Ser. No. 17/409,850, filed on Aug. 24, 2021, which is a continuation of U.S. patent application Ser. No. 16/115,617, filed on Aug. 29, 2018, which claims the benefit, under 35 USC 119(e), to U.S. Provisional Patent Application No. 62/686,896, filed on Jun. 19, 2108 (P&G 15273P); U.S. Provisional Patent Application No. 62/687,031, filed on Jun. 19, 2018 (P&G 15271P); U.S. Provisional Patent Application No. 62/685,429, filed on Jun. 15, 2018 (P&G 15275P); U.S. Provisional Patent Application No. 62/581,278, filed on Nov. 3, 2017 (P&G 15007P); U.S. Provisional Patent Application No. 62/553,149, filed on Sep. 1, 2017 (P&G 14917P); U.S. Provisional Patent Application No. 62/553,538, filed on Sep. 1, 2017 (P&G 14921P); and U.S. Provisional Patent Application No. 62/553,171, filed on Sep. 1, 2017 (P&G 14918P); each of which are herein incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3113225 | Claus | Dec 1963 | A |
3434189 | Buck et al. | Mar 1969 | A |
3508722 | Kohl | Apr 1970 | A |
3562041 | Robertson | Feb 1971 | A |
3575782 | Hansen | Apr 1971 | A |
3733238 | Long | May 1973 | A |
3860003 | Buell | Jan 1975 | A |
3871378 | Duncan et al. | Mar 1975 | A |
4251587 | Mimura et al. | Feb 1981 | A |
4333979 | Sciaraffa | Jun 1982 | A |
4525905 | Bogucki-Land | Jul 1985 | A |
4610678 | Weisman | Sep 1986 | A |
4640859 | Hansen | Feb 1987 | A |
4657539 | Hasse | Apr 1987 | A |
4673402 | Weisman et al. | Jun 1987 | A |
4695278 | Lawson | Sep 1987 | A |
4704115 | Buell | Nov 1987 | A |
4741941 | Englebert | May 1988 | A |
4776911 | Uda et al. | Oct 1988 | A |
4795454 | Dragoo | Jan 1989 | A |
4834735 | Alemany | May 1989 | A |
4854984 | Ball | Aug 1989 | A |
4888231 | Angstadt | Dec 1989 | A |
4909803 | Aziz | Mar 1990 | A |
4940464 | Van | Jul 1990 | A |
4984584 | Hansen | Jan 1991 | A |
5003676 | Mcfalls | Apr 1991 | A |
5060881 | Bogucki-land | Oct 1991 | A |
5092861 | Nomura | Mar 1992 | A |
5110403 | Ehlert | May 1992 | A |
5167897 | Weber | Dec 1992 | A |
5246433 | Hasse | Sep 1993 | A |
5334289 | Trokhan | Aug 1994 | A |
5342341 | Igaue | Aug 1994 | A |
5360420 | Cook | Nov 1994 | A |
5393360 | Bridges | Feb 1995 | A |
5413849 | Austin | May 1995 | A |
5514523 | Trokhan | May 1996 | A |
5531729 | Coles | Jul 1996 | A |
5552013 | Ehlert et al. | Sep 1996 | A |
5558658 | Menard et al. | Sep 1996 | A |
5562646 | Goldman | Oct 1996 | A |
5569234 | Buell | Oct 1996 | A |
5575874 | Griesbach, III | Nov 1996 | A |
5599335 | Goldman | Feb 1997 | A |
5599420 | Yeo | Feb 1997 | A |
5628097 | Benson | May 1997 | A |
5643588 | Roe | Jul 1997 | A |
5643653 | Griesbach, III | Jul 1997 | A |
5669894 | Goldman | Sep 1997 | A |
5674216 | Buell | Oct 1997 | A |
5702551 | Huber | Dec 1997 | A |
5775380 | Roelstraete | Jul 1998 | A |
5827259 | Laux | Oct 1998 | A |
5858504 | Fitting | Jan 1999 | A |
5887322 | Hartzheim | Mar 1999 | A |
5895623 | Trokhan | Apr 1999 | A |
5897545 | Kline | Apr 1999 | A |
5916661 | Benson | Jun 1999 | A |
5957908 | Kline | Sep 1999 | A |
5964973 | Heath et al. | Oct 1999 | A |
5968025 | Roe | Oct 1999 | A |
5993433 | St. Louis | Nov 1999 | A |
5997521 | Robles et al. | Dec 1999 | A |
6036796 | Halbert | Mar 2000 | A |
6043168 | Colman | Mar 2000 | A |
6107537 | Elder | Aug 2000 | A |
6107539 | Palumbo | Aug 2000 | A |
6118041 | Roe | Sep 2000 | A |
6120487 | Ashton | Sep 2000 | A |
6120489 | Johnson | Sep 2000 | A |
6139941 | Jankevics | Oct 2000 | A |
6153209 | Vega | Nov 2000 | A |
6248195 | Schmitz | Jun 2001 | B1 |
6248197 | Nakanishi et al. | Jun 2001 | B1 |
6291039 | Combe | Sep 2001 | B1 |
6319239 | Daniels | Nov 2001 | B1 |
6361638 | Takai | Mar 2002 | B2 |
6383431 | Dobrin | May 2002 | B1 |
6395957 | Chen | May 2002 | B1 |
6410129 | Zhang | Jun 2002 | B2 |
6426444 | Roe | Jul 2002 | B2 |
6475600 | Morman et al. | Nov 2002 | B1 |
6478785 | Ashton et al. | Nov 2002 | B1 |
6482191 | Roe et al. | Nov 2002 | B1 |
6508641 | Kubik | Jan 2003 | B1 |
6545197 | Muller | Apr 2003 | B1 |
6554815 | Umebayashi | Apr 2003 | B1 |
6586652 | Roe | Jul 2003 | B1 |
6617016 | Zhang | Sep 2003 | B2 |
6627787 | Roe | Sep 2003 | B1 |
6632504 | Gillespie | Oct 2003 | B1 |
6645330 | Pargass | Nov 2003 | B2 |
6673418 | Deolivera | Jan 2004 | B1 |
6676054 | Heaney | Jan 2004 | B2 |
6702798 | Christoffel | Mar 2004 | B2 |
6790798 | Suzuki | Sep 2004 | B1 |
6821301 | Azuse | Nov 2004 | B2 |
6825393 | Roe | Nov 2004 | B2 |
6861571 | Roe | Mar 2005 | B1 |
7008685 | Groitzsch | Mar 2006 | B2 |
7118558 | Wu | Oct 2006 | B2 |
7465367 | Day | Dec 2008 | B2 |
7513969 | Ashraf | Apr 2009 | B2 |
7569039 | Matsuda | Aug 2009 | B2 |
7582348 | Ando | Sep 2009 | B2 |
7585348 | Nyberg et al. | Sep 2009 | B2 |
7642398 | Jaerpenberg | Jan 2010 | B2 |
7708849 | Mccabe | May 2010 | B2 |
7777094 | Mori | Aug 2010 | B2 |
7861756 | Jenquin | Jan 2011 | B2 |
7878447 | Hartzheim | Feb 2011 | B2 |
7901393 | Matsuda | Mar 2011 | B2 |
7905446 | Hartzheim | Mar 2011 | B2 |
7954213 | Mizutani | Jun 2011 | B2 |
8043984 | Stadelman et al. | Oct 2011 | B2 |
8093161 | Bansal | Jan 2012 | B2 |
8143177 | Noda | Mar 2012 | B2 |
8186296 | Brown | May 2012 | B2 |
8193407 | Mansfield et al. | Jun 2012 | B2 |
8226625 | Turner | Jul 2012 | B2 |
8277430 | Tabor et al. | Oct 2012 | B2 |
8308706 | Fukae | Nov 2012 | B2 |
8377554 | Martin | Feb 2013 | B2 |
8388594 | Turner | Mar 2013 | B2 |
8440043 | Schneider | May 2013 | B1 |
8551608 | Kawakami et al. | Oct 2013 | B2 |
8585666 | Weisman | Nov 2013 | B2 |
8647319 | Een | Feb 2014 | B2 |
8729332 | Takahashi | May 2014 | B2 |
8778127 | Schneider | Jul 2014 | B2 |
8853108 | Ahoniemi | Oct 2014 | B2 |
8906275 | Davis | Dec 2014 | B2 |
8939957 | Raycheck | Jan 2015 | B2 |
9005392 | Schneider | Apr 2015 | B2 |
9039855 | Schneider | May 2015 | B2 |
9050213 | Lavon | Jun 2015 | B2 |
9156648 | Yamamoto | Oct 2015 | B2 |
9168182 | Hargett | Oct 2015 | B2 |
9198804 | Nakamura | Dec 2015 | B2 |
9226861 | Lavon | Jan 2016 | B2 |
9248054 | Brown | Feb 2016 | B2 |
9265672 | Brown | Feb 2016 | B2 |
9295590 | Brown | Mar 2016 | B2 |
9370775 | Harvey | Jun 2016 | B2 |
9440043 | Arora | Sep 2016 | B2 |
9453303 | Aberg | Sep 2016 | B2 |
9539735 | Ferguson | Jan 2017 | B2 |
9732454 | Davis | Aug 2017 | B2 |
9758339 | Yanez, Jr. | Sep 2017 | B2 |
9795520 | Kaneko | Oct 2017 | B2 |
9862174 | Venkitaraman et al. | Jan 2018 | B2 |
9877876 | Huang | Jan 2018 | B2 |
10190244 | Ashraf | Jan 2019 | B2 |
10596045 | Koshijima | Mar 2020 | B2 |
10792194 | Hohm | Oct 2020 | B2 |
11141322 | Schneider et al. | Oct 2021 | B2 |
11147717 | Schneider et al. | Oct 2021 | B2 |
20010030014 | Kwok | Oct 2001 | A1 |
20020026660 | Goda | Mar 2002 | A1 |
20020046802 | Tachibana | Apr 2002 | A1 |
20020072723 | Ronn | Jun 2002 | A1 |
20020099347 | Chen et al. | Jul 2002 | A1 |
20020103469 | Chen | Aug 2002 | A1 |
20020134067 | Heaney | Sep 2002 | A1 |
20020153271 | Mcmanus | Oct 2002 | A1 |
20020177829 | Fell | Nov 2002 | A1 |
20030044585 | Taylor | Mar 2003 | A1 |
20030070780 | Chen | Apr 2003 | A1 |
20030087056 | Ducker | May 2003 | A1 |
20030089454 | Johnson | May 2003 | A1 |
20030093045 | Erdman | May 2003 | A1 |
20030119404 | Belau | Jun 2003 | A1 |
20030125687 | Gubernick et al. | Jul 2003 | A1 |
20030144643 | Jarpenberg | Jul 2003 | A1 |
20030203162 | Fenwick | Oct 2003 | A1 |
20030233082 | Kline | Dec 2003 | A1 |
20040006323 | Hall | Jan 2004 | A1 |
20040030317 | Torigoshi | Feb 2004 | A1 |
20040059309 | Nortman | Mar 2004 | A1 |
20040097895 | Busam | May 2004 | A1 |
20040127881 | Stevens et al. | Jul 2004 | A1 |
20040133180 | Mori | Jul 2004 | A1 |
20040158212 | Ponomarenko | Aug 2004 | A1 |
20040158217 | Wu | Aug 2004 | A1 |
20040167493 | Jarpenberg et al. | Aug 2004 | A1 |
20040219854 | Groitzsch | Nov 2004 | A1 |
20040230171 | Ando | Nov 2004 | A1 |
20050013975 | Brock | Jan 2005 | A1 |
20050107764 | Matsuda | May 2005 | A1 |
20050133527 | Dullea et al. | Jun 2005 | A1 |
20050148971 | Kuroda et al. | Jul 2005 | A1 |
20050208277 | Harris | Sep 2005 | A1 |
20050230037 | Jenquin | Oct 2005 | A1 |
20050244640 | Riswick et al. | Nov 2005 | A1 |
20050267431 | Sasaki | Dec 2005 | A1 |
20060032578 | Schneider | Feb 2006 | A1 |
20060047260 | Ashton | Mar 2006 | A1 |
20060069373 | Schlinz | Mar 2006 | A1 |
20060087053 | Odonnell | Apr 2006 | A1 |
20060105075 | Otsubo | May 2006 | A1 |
20060137810 | Beck et al. | Jun 2006 | A1 |
20060189954 | Kudo | Aug 2006 | A1 |
20060228969 | Erdman | Oct 2006 | A1 |
20060270302 | Ando | Nov 2006 | A1 |
20070026753 | Neely | Feb 2007 | A1 |
20070045143 | Clough | Mar 2007 | A1 |
20070045144 | Wheeler | Mar 2007 | A1 |
20070131335 | Zhou | Jun 2007 | A1 |
20070141311 | Mleziva | Jun 2007 | A1 |
20070179466 | Tremblay | Aug 2007 | A1 |
20070196650 | Yamamoto et al. | Aug 2007 | A1 |
20080134487 | Hartono | Jun 2008 | A1 |
20080149292 | Scherb | Jun 2008 | A1 |
20080161768 | Baba | Jul 2008 | A1 |
20080287897 | Guzman | Nov 2008 | A1 |
20090177176 | Saito | Jul 2009 | A1 |
20090204093 | Vasic | Aug 2009 | A1 |
20090312730 | Lavon | Dec 2009 | A1 |
20100022151 | Malowaniec | Jan 2010 | A1 |
20100036346 | Hammons | Feb 2010 | A1 |
20100048072 | Kauschke | Feb 2010 | A1 |
20100075103 | Miyamoto | Mar 2010 | A1 |
20100076394 | Hayase | Mar 2010 | A1 |
20100248575 | Malz | Sep 2010 | A1 |
20100307668 | Lange | Dec 2010 | A1 |
20110092943 | Bishop | Apr 2011 | A1 |
20110118689 | Een | May 2011 | A1 |
20110120897 | Takahashi | May 2011 | A1 |
20110250378 | Eaton | Oct 2011 | A1 |
20120004633 | R. Marcelo | Jan 2012 | A1 |
20120061015 | Lavon | Mar 2012 | A1 |
20120061016 | Lavon | Mar 2012 | A1 |
20120071852 | Tsang et al. | Mar 2012 | A1 |
20120095429 | Kobayashi | Apr 2012 | A1 |
20120271267 | Love | Oct 2012 | A1 |
20120277713 | Raycheck | Nov 2012 | A1 |
20120323206 | Mcmorrow | Dec 2012 | A1 |
20130032656 | Yamamoto | Feb 2013 | A1 |
20130072887 | Lavon | Mar 2013 | A1 |
20130102982 | Nakano | Apr 2013 | A1 |
20130112584 | Gaspari | May 2013 | A1 |
20130139960 | Maruyama | Jun 2013 | A1 |
20130171421 | Weisman | Jul 2013 | A1 |
20130199696 | Schneider | Aug 2013 | A1 |
20130199707 | Schneider | Aug 2013 | A1 |
20130211356 | Nishikawa | Aug 2013 | A1 |
20130211363 | Lavon | Aug 2013 | A1 |
20130255861 | Schneider | Oct 2013 | A1 |
20130255862 | Schneider | Oct 2013 | A1 |
20130255863 | Lavon | Oct 2013 | A1 |
20130255864 | Schneider | Oct 2013 | A1 |
20130255865 | Brown | Oct 2013 | A1 |
20130261589 | Fujkawa | Oct 2013 | A1 |
20130306226 | Zink | Nov 2013 | A1 |
20140000794 | Hamilton | Jan 2014 | A1 |
20140005621 | Roe | Jan 2014 | A1 |
20140018759 | Jayasinghe | Jan 2014 | A1 |
20140041797 | Schneider | Feb 2014 | A1 |
20140107605 | Schroer, Jr. | Apr 2014 | A1 |
20140127460 | Xu | May 2014 | A1 |
20140136893 | Xie et al. | May 2014 | A1 |
20140148773 | Brown | May 2014 | A1 |
20140234575 | Mitsuno | Aug 2014 | A1 |
20140235127 | Dejesus | Aug 2014 | A1 |
20140257231 | Wang | Sep 2014 | A1 |
20140276517 | Chester | Sep 2014 | A1 |
20140288521 | Wade | Sep 2014 | A1 |
20140296815 | Takken | Oct 2014 | A1 |
20140302286 | Okuda | Oct 2014 | A1 |
20140305570 | Matsunaga | Oct 2014 | A1 |
20140324009 | Lee | Oct 2014 | A1 |
20140343525 | Roh et al. | Nov 2014 | A1 |
20140377506 | Eckstein | Dec 2014 | A1 |
20140377513 | Galie | Dec 2014 | A1 |
20150083309 | Long | Mar 2015 | A1 |
20150126956 | Raycheck | May 2015 | A1 |
20150136893 | Koskol | May 2015 | A1 |
20150164708 | Hashimoto | Jun 2015 | A1 |
20150167207 | Bongartz et al. | Jun 2015 | A1 |
20150173967 | Kreuzer | Jun 2015 | A1 |
20150230995 | Kaneko | Aug 2015 | A1 |
20150245958 | Chmielewski | Sep 2015 | A1 |
20150257941 | Eckstein | Sep 2015 | A1 |
20150282999 | Arizti | Oct 2015 | A1 |
20150320612 | Seitz | Nov 2015 | A1 |
20150320613 | Seitz | Nov 2015 | A1 |
20150320619 | Seitz | Nov 2015 | A1 |
20150320620 | Seitz | Nov 2015 | A1 |
20150320622 | Seitz | Nov 2015 | A1 |
20150328056 | Een | Nov 2015 | A1 |
20150351972 | Bing-wo | Dec 2015 | A1 |
20160058624 | Hohm | Mar 2016 | A1 |
20160058627 | Barnes | Mar 2016 | A1 |
20160067119 | Weisman | Mar 2016 | A1 |
20160100989 | Seitz | Apr 2016 | A1 |
20160100997 | Seitz | Apr 2016 | A1 |
20160106633 | Nagata | Apr 2016 | A1 |
20160129661 | Arora | May 2016 | A1 |
20160136009 | Weisman | May 2016 | A1 |
20160228305 | Gualtieri | Aug 2016 | A1 |
20160270977 | Surushe et al. | Sep 2016 | A1 |
20160288407 | Ehlert et al. | Oct 2016 | A1 |
20160331600 | Polidori | Nov 2016 | A1 |
20170014281 | Xie | Jan 2017 | A1 |
20170027774 | Ashraf | Feb 2017 | A1 |
20170029993 | Ashraf | Feb 2017 | A1 |
20170029994 | Ashraf | Feb 2017 | A1 |
20170056256 | Smith | Mar 2017 | A1 |
20170065461 | Schneider | Mar 2017 | A1 |
20170079852 | Fujima | Mar 2017 | A1 |
20170119595 | Carla | May 2017 | A1 |
20170191198 | Ashraf | Jul 2017 | A1 |
20170258650 | Rosati | Sep 2017 | A1 |
20170281417 | Ishikawa | Oct 2017 | A1 |
20170319403 | Bewick-sonntag | Nov 2017 | A1 |
20170348163 | Lakso | Dec 2017 | A1 |
20180092784 | Wade | Apr 2018 | A1 |
20180140473 | Koshijima | May 2018 | A1 |
20180154607 | Mitsuno et al. | Jun 2018 | A1 |
20180168874 | Lavon | Jun 2018 | A1 |
20180168875 | Lavon | Jun 2018 | A1 |
20180168876 | Lavon | Jun 2018 | A1 |
20180168877 | Schneider | Jun 2018 | A1 |
20180168878 | Schneider | Jun 2018 | A1 |
20180168879 | Schneider | Jun 2018 | A1 |
20180168880 | Schneider | Jun 2018 | A1 |
20180168885 | Zink, II | Jun 2018 | A1 |
20180168887 | Lavon | Jun 2018 | A1 |
20180168888 | Zink | Jun 2018 | A1 |
20180168889 | Lavon | Jun 2018 | A1 |
20180168890 | Lavon | Jun 2018 | A1 |
20180168891 | Wise | Jun 2018 | A1 |
20180168892 | Lavon | Jun 2018 | A1 |
20180168893 | Ashraf | Jun 2018 | A1 |
20180169964 | Schneider | Jun 2018 | A1 |
20180170026 | Schneider | Jun 2018 | A1 |
20180170027 | Schneider | Jun 2018 | A1 |
20180214318 | Ashraf | Aug 2018 | A1 |
20180214321 | Ashraf | Aug 2018 | A1 |
20180216269 | Ashraf | Aug 2018 | A1 |
20180216270 | Ashraf | Aug 2018 | A1 |
20180216271 | Ashraf | Aug 2018 | A1 |
20180311398 | Neton et al. | Nov 2018 | A1 |
20180333311 | Maki | Nov 2018 | A1 |
20190003079 | Ashraf | Jan 2019 | A1 |
20190003080 | Ashraf | Jan 2019 | A1 |
20190070041 | Schneider | Mar 2019 | A1 |
20190070042 | Beck | Mar 2019 | A1 |
20190112737 | Ashraf | Apr 2019 | A1 |
20190246196 | Han | Aug 2019 | A1 |
20190254881 | Ishikawa | Aug 2019 | A1 |
20190298586 | Ashraf | Oct 2019 | A1 |
20190298587 | Ashraf | Oct 2019 | A1 |
20190374392 | Ninomiya | Dec 2019 | A1 |
20190374404 | Ninomiya | Dec 2019 | A1 |
20200155370 | Ohtsubo | May 2020 | A1 |
20200155371 | Ohtsubo | May 2020 | A1 |
20200206040 | Andrews | Jul 2020 | A1 |
20200214901 | Andrews | Jul 2020 | A1 |
20200298545 | Andrews | Sep 2020 | A1 |
20210205152 | Polidori et al. | Jul 2021 | A1 |
20210378878 | Schneider et al. | Dec 2021 | A1 |
20210401633 | Schneider et al. | Dec 2021 | A1 |
20210401634 | Schneider et al. | Dec 2021 | A1 |
20220000676 | Schneider et al. | Jan 2022 | A1 |
Number | Date | Country |
---|---|---|
2158790 | Mar 1996 | CA |
1257442 | Jun 2000 | CN |
1276196 | Dec 2000 | CN |
1375269 | Oct 2002 | CN |
1461634 | Dec 2003 | CN |
1685099 | Oct 2005 | CN |
1714319 | Dec 2005 | CN |
1756659 | Apr 2006 | CN |
1849187 | Oct 2006 | CN |
101746057 | Jun 2010 | CN |
102046129 | May 2011 | CN |
102300526 | Dec 2011 | CN |
103635167 | Mar 2014 | CN |
104470710 | Mar 2015 | CN |
105147456 | Dec 2015 | CN |
105829072 | Aug 2016 | CN |
105853067 | Aug 2016 | CN |
105997351 | Oct 2016 | CN |
106913422 | Jul 2017 | CN |
107072825 | Aug 2017 | CN |
107106362 | Aug 2017 | CN |
0989218 | Mar 2000 | EP |
1452157 | Sep 2004 | EP |
1473148 | Nov 2004 | EP |
1305248 | Jan 2006 | EP |
1393701 | Jul 2013 | EP |
3056176 | Aug 2016 | EP |
3092997 | Nov 2016 | EP |
3092997 | Aug 2017 | EP |
3251642 | Dec 2017 | EP |
3257488 | Dec 2017 | EP |
3563817 | Nov 2019 | EP |
56099175 | Aug 1981 | JP |
3213543 | Sep 1991 | JP |
H03213543 | Sep 1991 | JP |
H05501210 | Mar 1993 | JP |
H06254117 | Sep 1994 | JP |
8071107 | Mar 1996 | JP |
H08071107 | Mar 1996 | JP |
H08132576 | May 1996 | JP |
2000026015 | Jan 2000 | JP |
2000160460 | Jun 2000 | JP |
3086141 | Sep 2000 | JP |
2001276120 | Oct 2001 | JP |
2002001855 | Jan 2002 | JP |
2002035029 | Feb 2002 | JP |
2002178428 | Jun 2002 | JP |
2002238934 | Aug 2002 | JP |
2002248127 | Sep 2002 | JP |
2003521949 | Jul 2003 | JP |
2004500169 | Jan 2004 | JP |
2004081365 | Mar 2004 | JP |
2004229857 | Aug 2004 | JP |
2004237410 | Aug 2004 | JP |
2004254862 | Sep 2004 | JP |
2004298362 | Oct 2004 | JP |
2005509096 | Apr 2005 | JP |
2005320636 | Nov 2005 | JP |
2006137147 | Jun 2006 | JP |
2006149747 | Jun 2006 | JP |
2006149749 | Jun 2006 | JP |
2006204673 | Aug 2006 | JP |
2007190397 | Aug 2007 | JP |
H04030847 | Jan 2008 | JP |
2008029749 | Feb 2008 | JP |
2008055198 | Mar 2008 | JP |
2008104853 | May 2008 | JP |
2008105425 | May 2008 | JP |
2008148942 | Jul 2008 | JP |
2008154998 | Jul 2008 | JP |
2008179128 | Aug 2008 | JP |
2008194493 | Aug 2008 | JP |
2008229006 | Oct 2008 | JP |
2008229007 | Oct 2008 | JP |
2008253290 | Oct 2008 | JP |
2008260131 | Oct 2008 | JP |
2008264480 | Nov 2008 | JP |
2008272250 | Nov 2008 | JP |
2008272253 | Nov 2008 | JP |
2008296585 | Dec 2008 | JP |
2009000161 | Jan 2009 | JP |
2009039341 | Feb 2009 | JP |
2009056156 | Mar 2009 | JP |
2009106667 | May 2009 | JP |
2009172231 | Aug 2009 | JP |
2009240804 | Oct 2009 | JP |
2009241607 | Oct 2009 | JP |
2010005918 | Jan 2010 | JP |
2013515871 | May 2010 | JP |
2010131833 | Jun 2010 | JP |
2011015707 | Jan 2011 | JP |
2011111165 | Jun 2011 | JP |
2011178124 | Sep 2011 | JP |
2011225000 | Nov 2011 | JP |
2012050882 | Mar 2012 | JP |
2012050883 | Mar 2012 | JP |
2012115358 | Jun 2012 | JP |
2012516203 | Jul 2012 | JP |
2012521498 | Sep 2012 | JP |
5124187 | Nov 2012 | JP |
5124188 | Nov 2012 | JP |
2013138795 | Jul 2013 | JP |
2014097257 | May 2014 | JP |
2014111222 | Jun 2014 | JP |
2014188042 | Oct 2014 | JP |
2015510831 | Apr 2015 | JP |
2015521499 | Jul 2015 | JP |
2015171501 | Oct 2015 | JP |
2016013687 | Jan 2016 | JP |
2016016536 | Feb 2016 | JP |
2016054989 | Apr 2016 | JP |
5942819 | Jun 2016 | JP |
2016193199 | Nov 2016 | JP |
6149635 | Jun 2017 | JP |
2019081304 | May 2019 | JP |
2019166804 | Oct 2019 | JP |
2019181807 | Oct 2019 | JP |
2020054741 | Apr 2020 | JP |
2020054742 | Apr 2020 | JP |
2020054744 | Apr 2020 | JP |
2020054745 | Apr 2020 | JP |
2022117131 | Aug 2022 | JP |
9207531 | May 1992 | WO |
9925296 | May 1999 | WO |
2003015681 | Feb 2003 | WO |
2003059603 | Jul 2003 | WO |
2008123348 | Oct 2008 | WO |
2011137962 | Nov 2011 | WO |
2013084977 | Jun 2013 | WO |
20140084168 | Jun 2014 | WO |
2014196669 | Dec 2014 | WO |
2015165927 | Nov 2015 | WO |
2016047320 | Mar 2016 | WO |
2016063346 | Apr 2016 | WO |
2016067387 | May 2016 | WO |
2016071981 | May 2016 | WO |
2016075974 | May 2016 | WO |
2016098416 | Jun 2016 | WO |
2016104412 | Jun 2016 | WO |
2016104422 | Jun 2016 | WO |
20160056092 | Jun 2016 | WO |
20160056093 | Jun 2016 | WO |
2016158499 | Oct 2016 | WO |
2016158746 | Oct 2016 | WO |
2016208502 | Dec 2016 | WO |
2016208513 | Dec 2016 | WO |
2017105997 | Jun 2017 | WO |
2018061288 | Apr 2018 | WO |
2018084145 | May 2018 | WO |
2018154680 | Aug 2018 | WO |
2018154682 | Aug 2018 | WO |
2018167836 | Sep 2018 | WO |
2019046363 | Mar 2019 | WO |
2019111203 | Jun 2019 | WO |
2019150802 | Aug 2019 | WO |
2020006996 | Jan 2020 | WO |
Entry |
---|
PCT Search Report and Written Opinion for PCT/US2018/048443 dated Oct. 26, 2018, 10 pages. |
3D Nonwovens Developments for textured nonwovens; Sep. 19, 2017, pp. 1-2. |
All Office Actions; U.S. Appl. No. 15/832,929, filed Dec. 6, 2017. |
All Office Actions; U.S. Appl. No. 15/833,057, filed Dec. 6, 2017. |
All Office Actions; U.S. Appl. No. 15/839,896, filed Dec. 13, 2017. |
All Office Actions; U.S. Appl. No. 16/115,617, filed Aug. 29, 2018. |
All Office Actions; U.S. Appl. No. 17/409,850, filed Aug. 24, 2021. |
All Office Actions; U.S. Appl. No. 17/474,423, filed Sep. 14, 2021. |
All Office Actions; U.S. Appl. No. 17/474,528, filed Sep. 14, 2021. |
All Office Actions; U.S. Appl. No. 17/481,441, filed Sep. 22, 2021. |
American Cancer Society—What Cancer Patients Their Families and Caregivers Need to Know About COVID 19—Is Impacting Our Patient Services, dated Mar. 31, 2020, pp. 1-3. |
ASTM “Standard Tables of Body Measurements for Children Infant Size—Preemie to 24 Months”, dated Mar. 30, 2020, pp. 1-6. |
ASTM “Standard Tables of Body Measurements for Adult Females Misses Figure Type Size Range 00-20” dated May 12, pp. 1-7. |
All Office Actions; U.S. Appl. No. 18/298,437, filed Apr. 11, 2023. |
All Office Actions; U.S. Appl. No. 18/298,453, filed Apr. 11, 2023. |
Unpublished U.S. Appl. No. 18/298,437, filed Apr. 11, 2023 to Uwe Schneider et al. |
Unpublished U.S. Appl. No. 18/298,453, filed Apr. 11, 2023 to Uwe Schneider et al. |
Number | Date | Country | |
---|---|---|---|
20230190538 A1 | Jun 2023 | US |
Number | Date | Country | |
---|---|---|---|
62686896 | Jun 2018 | US | |
62687031 | Jun 2018 | US | |
62685429 | Jun 2018 | US | |
62581278 | Nov 2017 | US | |
62553149 | Sep 2017 | US | |
62553538 | Sep 2017 | US | |
62553171 | Sep 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17409850 | Aug 2021 | US |
Child | 18111107 | US | |
Parent | 16115617 | Aug 2018 | US |
Child | 17409850 | US |