This present disclosure relates to apparatuses for opening and closing one or more longitudinal seams. In particular, the present disclosure relates to apparatuses for mechanically opening and closing one or more longitudinal seams pertaining to Pittsburgh locks associated with sheet metal duct sections used to form duct assemblies commonly associated with forced air heating, ventilation, and air conditioning (HVAC) systems.
Sheet metal duct assemblies are used extensively in both commercial and residential applications to transport and distribute heated or cooled air to buildings, personal residences, and other structures. These duct assemblies are commonly formed from different gauges of sheet metal in sections of predetermined length which are then secured together, either at a fabrication shop or at a construction site, to form longer spans as needed and thereby form a continuous duct for distributing air.
Such duct assemblies most often have a rectilinear trunk lines and fittings having four sides which are joined together through the use of one or more commonly employed Pittsburgh seams. For example, with the Pittsburgh seam, one edge of each piece of a duct assembly is formed with a longitudinally extending groove to form the female portion of the joint, while the other edge is bent over along its length to provide the male portion of the joint. The two parts are then assembled by inserting the male portion of each part into the female portion leaving an edge extending beyond the joint from the female portion. The edge is bent over to lock the seam.
This seam can be difficult and inconvenient to assemble, and this time-consuming process can diminish productivity and increase costs. Conventional tools are not sufficient for opening and assembling the lock.
The disclosed embodiments provide for simple, time-saving and cost-effective, convenient, devices and methods to open and close Pittsburgh seams in sheet metal ductwork assemblies.
In some exemplary embodiments, the present disclosure is directed to a handheld tool for opening and closing seams of duct assemblies, comprising: an opening portion including a latching portion and an opening channel recessed into the latching portion, the opening channel being configured to receive and retain a protrusional tab of a first sheet metal portion having a female component of a longitudinal straight seam; and a closing portion including an interior block portion, an exterior block portion, and a closing channel formed between the interior block portion and the exterior block portion, the interior block portion being configured to contact a second sheet metal portion having a male component of the longitudinal straight seam and the closing channel being configured to extend over the protrusional tab when the interior block portion is in contact with the second sheet metal portion.
In some aspects, the opening portion has a top surface having a length of about 2 inches, and a bottom surface having a length of about 1.5 inches, and the top surface and the bottom surface are substantially parallel to one another.
In some aspects, the opening portion has an end surface having a length of about 0.75 inches, and the end surface is substantially perpendicular to the top surface and the bottom surface.
In some aspects, the closing portion has a length of about 5 inches, a height of about 1.25 inches, and a width of about 0.625 inches.
In some aspects, the interior block portion has a length of about 5 inches, a height of about 0.874 inches, and a width of about 0.250 inches.
In some aspects, the exterior block portion has a length of about 5 inches, a height of about 1.25 inches, and a width of about 0.187 inches.
In some aspects, the closing channel has an interior height of about 0.437 inches, and an interior width of about 0.187 inches.
In some aspects, the closing channel extends continuously along the closing portion.
In some exemplary embodiments, the present disclosure is directed to a handheld tool for closing seams of duct assemblies, comprising: a closing portion including an interior block portion, an exterior block portion, and a closing channel formed between the interior block portion and the exterior block portion, the interior block portion being configured to contact a first sheet metal portion having a male component of a longitudinal straight seam and the closing channel being configured to extend over a protrusional tab of a first sheet metal portion having a female component of the longitudinal straight seam when the interior block portion is in contact with the first sheet metal portion; and a handle portion having a tubular shape and including a crown portion, a transition portion, a grip portion between the crown portion and the transition portion, and an end surface adjacent to the crown portion and being perpendicular to a side surface of the handle portion.
In some aspects, the exterior block portion has a first side surface having a length of about 1.5 inches, and a second side surface having a length of about 1.125 inches, the first side surface of the exterior block portion is substantially parallel to the second side surface of the exterior block portion, and the second side surface of the exterior block portion faces the closing channel.
In some aspects, the interior block portion has a first side surface having a length of about 1.0 inches, and a second side surface having a length of about 0.625 inches, the first side surface of the interior block portion is substantially parallel to the second side surface of the interior block portion, and the second side surface of the interior block portion faces the closing channel.
In some aspects, the closing channel has an interior width of about 1.125 inches and an interior height of 0.187 inches, and the interior height is measured from the second side surface of the exterior block portion to the second side surface of the interior block portion.
In some aspects, the handle portion has a diameter of about 0.75 inches, and a length of about 2.187 inches.
In some aspects, the closing channel is configured to receive the protrusional tab of the female component.
In some aspects, the closing portion and the handle portion are formed from a single piece of metal.
In some exemplary embodiments, the present disclosure is directed to a method for using a longitudinal seam closing tool, comprising: inserting a male component of a first sheet metal portion into a female component of a second sheet metal portion; placing the longitudinal seam closing tool over the male and female components, wherein the longitudinal seam closing tool includes an interior block portion, an exterior block portion, and a closing channel formed between the interior block portion and the exterior block portion, the interior block portion being configured to contact the first sheet metal portion and the closing channel being configured to extend over a protrusional tab of the female component when the interior block portion is in contact with the first sheet metal portion; and applying pressure to the longitudinal seam closing tool.
In some aspects, the interior block portion has a length of about 5 inches, a height of about 1.25 inches, and a width of about 0.250 inches, the exterior block portion has a length of about 5 inches, a height of about 0.874 inches, and a width of about 0.187 inches, and the closing channel has a length of about 5 inches, an interior height of about 0.437 inches, and an interior width of about 0.187 inches.
In some aspects, the longitudinal seam closing tool further comprises: an opening portion including a latching portion and an opening channel recessed into the latching portion, the opening channel being configured to receive and retain the protrusional tab of the female component, wherein the opening portion has a top surface having a length of about 2 inches, and a bottom surface having a length of about 1.5 inches, the top surface and the bottom surface being substantially parallel to one another, and wherein the opening portion has an end surface having a length of about 0.75 inches, the end surface being substantially perpendicular to the top surface and the bottom surface.
In some aspects, the exterior block portion has a first side surface having a length of about 1.5 inches, and a second side surface having a length of about 1.125 inches, the first side surface of the exterior block portion being substantially parallel to the second side surface of the exterior block portion, the second side surface of the exterior block portion facing the closing channel, the interior block portion has a first side surface having a length of about 1.0 inches, and a second side surface having a length of about 0.625 inches, the first side surface of the interior block portion being substantially parallel to the second side surface of the interior block portion, and the second side surface of the interior block portion facing the closing channel, and the closing channel has an interior width of about 1.125 inches and an interior height of 0.187 inches, the interior height being measured from the second side surface of the exterior block portion to the second side surface of the interior block portion.
In some aspects, the longitudinal seam closing tool further comprises: a handle portion having a tubular shape and including a crown portion, a transition portion, a grip portion between the crown portion and the transition portion, and an end surface adjacent to the crown portion and being perpendicular to a side surface of the handle portion, wherein the handle portion has a diameter of about 0.75 inches and a length of about 2.187 inches.
The above and other objects and features will become apparent from the following description with reference to the following figures, wherein like reference numerals refer to like parts throughout the various figures unless otherwise specified. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the disclosed embodiments. In the drawings:
Various exemplary embodiments will be described in detail with reference to the accompanying drawings. The inventive concept, however, may be embodied in various different forms, and should not be construed as being limited only to the illustrated embodiments. Accordingly, known processes, elements, and techniques are not described with respect to some of the embodiments of the disclosure. Unless otherwise noted, like reference numerals denote like elements throughout the attached drawings and written description, and thus descriptions will not be repeated. In the drawings, the sizes and relative sizes of layers and regions may be exaggerated for clarity. Though the different figures show variations of exemplary embodiments, these figures are not necessarily intended to be mutually exclusive from each other. Rather, as will be seen from the context of the detailed description below, certain features depicted and described in different figures can be combined with other features from other figures to result in various embodiments, when taking the figures and their description as a whole.
Spatially relative terms, such as “beneath,” “below,” “lower,” “above,” “upper” and the like, may be used herein for ease of description to describe one element's or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising” or “includes” and/or “including,” when used in this specification, specify the presence of stated features, regions, integers, steps, operations, elements, components, and/or groups, but do not preclude the presence or addition of one or more other features, regions, integers, steps, operations, elements, components, and/or groups thereof. In addition, unless the context indicates otherwise, steps described in a particular order need not occur in that order. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
It will be understood that, although the terms “first,” “second,” “third,” etc., may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the disclosure.
As will be understood, for any and all purposes, such as in terms of providing a written description, all ranges disclosed herein also encompass any and all possible subranges and combinations of subranges thereof. Any listed range can be easily recognized as sufficiently describing and enabling the same range being broken down into at least equal halves, thirds, quarters, fifths, tenths, etc. As a non-limiting example, each range discussed herein can be readily broken down into a lower third, middle third and upper third, etc. As will also be understood, all language such as “up to,” “at least,” “greater than,” “less than,” and the like include the number recited and refer to ranges which can be subsequently broken down into subranges as discussed above. Finally, as will be understood, a range includes each individual member. Thus, for example, a group having 1-3 members refers to groups having 1, 2, or 3 members. Similarly, a group having 1-5 members refers to groups having 1, 2, 3, 4, or 5 members, and so forth.
Terms such as “same,” “equal,” “planar,” or “coplanar,” as used herein when referring to orientation, layout, location, shapes, sizes, amounts, or other measures do not necessarily mean an exactly identical orientation, layout, location, shape, size, amount, or other measure, but are intended to encompass nearly identical orientation, layout, location, shapes, sizes, amounts, or other measures within acceptable variations that may occur, for example, due to manufacturing processes. The term “substantially” may be used herein to emphasize this meaning, unless the context or other statements indicate otherwise. For example, items described as “substantially the same,” “substantially equal,” or “substantially planar,” may be exactly the same, equal, or planar, or may be the same, equal, or planar within acceptable variations that may occur, for example, due to manufacturing processes. The term “about,” as used herein when referring to orientation, layout, location, shapes, sizes, amounts, or other measures do not necessarily mean an exactly identical orientation, layout, location, shape, size, amount, or other measure, but is intended to encompass orientations, layouts, locations, shapes, sizes, amounts, or other measures within acceptable variations or ranges of such values.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and/or the present specification and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
As shown in
The female component 120 of the Pittsburgh seam 100 includes a receiving channel or slot 124 for receiving the male component 110. The receiving channel 124 of the female component 120 is formed by bending the entire longitudinal edge of a second sheet metal portion 122 into an S-shaped bend as illustrated in
In order to close and lock the Pittsburgh seam 100 and the corresponding abutting sheet metal portions and thereby form the duct assembly, the protrusional tab 126 is bent and hammered over, either manually or through mechanical means. When fully closed and locked, the protrusional tab 126 will lie against and abut the outer surface of the sheet metal portion 112.
As shown in
The opening channel 212 may be a groove formed in the opening portion 210. The opening channel 212 may be configured to receive and engage with the protrusional tab 126 of the female component 120. The opening channel 212 may have an interior height H212 in the range of 0.25-0.75 inches, and more particularly an interior height H212 of about 0.375 inches. The opening channel 212 may have an interior length L212 in the range of 0.1-0.2 inches, and more particularly an interior length L212 of about 0.125 inches. In some embodiments, the opening channel 212 may have a rounded interior shape, having a radius R212 in the range of 0.05-0.2 inches, and more particularly a radius R212 of about 0.0625 inches. Although not illustrated, the opening channel 212 may have other shapes, such as, for example, a polygonal shape (i.e., triangular, square, pentagonal, etc.).
The latching portion 214 may be that portion of the opening portion that extends over and beyond the opening channel 212. The latching portion 214 may be configured to engage with the protrusional tab 126 and provide leverage when the protrusional tab 126 of a female component 120 is inserted in the opening channel 212. The latching portion 214 may have a surface height H214 in the range of 0.5-1.25 inches, and more particularly a height H214 of about 0.75 inches, and a length L214 in the range of 0.25-0.75 inches, and more particularly a length L214 of about 0.375 inches.
The closing portion 220 may be that portion of the straight seam lock block 200 that is configured to receive pressure and transfer the received pressure to the male component 110 of a Pittsburgh seam, thereby causing the male component 110 to firmly engage with the female component 120 into which it is inserted. The closing portion 220 may include a top section 222, a middle section 224, and a bottom section 226. The closing portion 220 may have a length L220 in the range of 4-6 inches, and more particularly a length L220 of about 5 inches, and a height H220 in the range of 1-2 inches, and more particularly a height H220 of about 1.25 inches. The top section 222 may have a height H222 of about 0.437 inches, the middle section 224 may have a height H224 of about 0.437 inches, and the bottom section 226 may have a height H226 of about 0.375 inches.
Referring to
Although the lengths of the interior block portion 229 and the center block portion 230 are illustrated as being the same length, and the ends of the interior block portion 229 and the center block portion 230 as being even with one another, other embodiments are anticipated. For example, the ends of each of the exterior block portion 228, the interior block portion 229, and the center block portion 230 may be curved such that the ends of each of exterior block portion 228, the interior block portion 229, and the center block portion 230 may gradually increase from a front surface 250 of the interior block portion 229 to a front surface 252 of the exterior block portion 228 (see, e.g.,
Referring to
The exterior block portion 228 may have a height H228 in the range of 0.75-1.50 inches, and more particularly a height H228 of about 1.25 inches. The interior block portion 229 may have a height H229 in the range of 0.5-1.0 inches, and more particularly a height H229 of about 0.875 inches. The center block portion 230 may have a height H230 in the range of 0.25-0.75 inches, and more particularly a height H230 of about 0.437 inches.
The closing portion 220 may further include a closing channel 232. In some embodiments, the closing channel 232 may extend along the entire length of the closing portion. When viewed from the distal end of the straight seam lock block 200, the closing channel 232 may have a rectangular shape or an inverted curved U-shape. The closing channel 232 may be configured such that the protrusional tab 126 can be fully inserted therein without deformation or bending. The closing channel 232 may have an interior height H232 in the range of 0.25-0.75 inches, and more particularly an interior height H232 of about 0.437 inches, and an interior width of W232 in the range of 0.125-0.250 inches, and more particularly an interior width W232 of about 0.187 inches.
In
Referring to
When the male component 110 is fully inserted into the receiving channel 124, the straight seam lock block 200 may be placed over the seam (step 730). As shown in
Next, the seam may be closed by applying force or pressure (step 740). The pressure or force may be applied to the male component 110 and the first sheet metal portion 112 via the straight seam lock block 200. For example, the top or crown of the closing portion 220 of the straight seam lock block 200 may be struck by a hammer or other tool. The force applied to the top or crown of the closing portion 220 may be transferred through the closing portion 220 to the first sheet metal portion 112 via the interior block portion 229. The applied force may cause the male component 110 to be inserted more fully inside the female component 120, thereby closing the seam.
After the seam is closed, the straight seam lock block 200 is removed and the seam is locked (step 750). For example, as shown in
As shown in
The handle portion 910 may include a crown surface 911, a crown portion 912, a grip portion 913, and a transition portion 914. The crown surface 911 may be located at a distal end of the handle portion 910. In the embodiment illustrated in
The crown portion 912 may be adjacent to the crown surface 911 along a perimeter of the crown surface 911. The grip portion 913 may be located between the crown portion 912 and the transition portion 914. In some embodiments, the crown portion 912 and the transition portion 914 may have smooth surfaces, and the grip portion 912 may have a knurled surface. The knurled surface of the grip portion 912 may allow a user to maintain a firm handhold on the punch seam lock block 900. The crown portion 912 may have a length L912 in the range of 0.2-1.0 inches, and more particularly a length L912 of about 0.25 inches. The grip portion 913 may have a length L913 in the range of 1.25-2.5 inches, and more particularly a length L913 of about 1.687 inches. The transition portion 914 may have a length L914 in the range of 0.2-1.0 inches, and more particularly a length L914 of about 0.25 inches
The closing portion 920 may include an angled surface 90, an exterior block portion 922, an interior block portion 923, and a receiving channel 924. The closing portion 920 may have a length L920 in the range of 1-3 inches, and more particularly a length L920 of about 1.687 inches. Referring to
The angled surface 90 may provide a transition from the diameter D910 of the handle portion 910 to the width W920 and the height H920 of the closing portion 920. The angled surface 90 may have an angle A90 relative to the longitudinal axis of the punch seam lock block 900. The angle A90 may be in the range of 25-60 degrees, and more particularly the angle A90 may be about 45 degrees.
The exterior block portion 922 may have an outside surface 921 having a length L921 in the range of 1-2 inches, and more particularly a length L921 of about 1.5 inches, an inside surface 923 having a length L923 in the range of 0.75-1.5 inches, and more particularly a length L923 of about 1.125 inches, and an end surface 928 having a height H928 in the range of 0.2-0.5 inches, and more particularly a length H928 of about 0.34 inches. The outside surface 921 may be a flat milled surface having a width W921 in the range of 0.25 to 0.75 inches, and more particular a width W921 of about 0.484 inches. The outside surface 921 and the inside surface 923 may be substantially parallel to one another and to the longitudinal axis of the punch seam lock block 900, and the end surface 928 may be substantially perpendicular to the outside surface 921 and the inside surface 923.
The interior block portion 926 may have an outside surface 927 having a length L927 in the range of 0.5-1.5 inches, and more particularly a length L927 of about 1.0 inches, an inside surface 925 having a length L925 in the range of 0.3-1.0 inches, and more particularly a length L925 of about 0.625 inches, and an end surface having a height H929 in the range of 0.2-0.5 inches, and more particularly a height H929 of about 0.34 inches. The outside surface 927 may be a flat milled surface having a width that is the same as the width W921 of outside surface 921. The inside surface 925 and the outside surface 927 may be substantially parallel to one another and to the longitudinal axis of the punch seam lock block 900, and the end surface 929 may be substantially perpendicular to the inside surface 925 and the outside surface 927.
Side surfaces 930 of the exterior block portion 922 and the interior block portion may extend continuously from the outside surface 921 of the exterior block portion 922 to the outside surface 927 of the interior block portion 922. The side surface 930 may be rounded and have a smooth surface.
The receiving channel 924 may be formed between portions of the exterior block portion 922 and the interior block portion 924. For example, the receiving channel may extend from the inside surface 923 to the inside surface 925. The receiving channel 924 may have a U-shape. The receiving channel 924 may be configured such that the protrusional tab 126 can be fully inserted therein without deformation or bending. The receiving channel 924 may have a depth that is the same as the length of the inside surface 925 of the interior block portion 926 (i.e., a length L925 in the range of 0.3-1.0 inches, and more particularly a length L925 of about 0.625 inches). The receiving channel 924 may have an interior height H924 in the range of 0.1-0.3 inches, and more particularly a height H924 of about 0.187 inches. The receiving channel 924 may have an interior width that is the same as the width of the closing portion 920 (i.e., width W920 in the range of 1-3 inches, and more particularly a width W920 of about 1.125 inches). In some embodiments, the receiving channel 924 may have an interior round surface. The interior round surface may be formed from portions of the interior surface 923 and interior surface 925. The interior round surface may have a radius R924 in the range of 0.05-0.2 inches, and more particularly a radius R924 of about 0.0935 inches. Although not illustrated, the receiving channel 924 may have other shapes, such as, for example, a polygonal shape (i.e., triangular, square, pentagonal, etc.).
When the male component 110 is fully inserted into the receiving channel 124, the punch seam lock block 900 may be placed over the seam (step 1120). As shown in
Next, the seam may be closed by applying force or pressure (step 1130). The pressure or force may be applied to the male component 110 and the first sheet metal portion 112 via the punch seam lock block 900. For example, as a user holds the punch seam lock block 900 by the handle portion 910, the crown surface 911 of the handle portion 910 may be struck by a hammer or other tool. The force applied to the crown surface 911 may be transferred through the handle portion 910 and the closing portion 920 along the longitudinal direction to the first sheet metal portion 112 via the interior block portion 924 of the punch seam lock block 900. The applied force may cause the male component 110 to be inserted more fully inside the female component 120, thereby closing the seam.
After the seam is closed, the punch seam lock block 900 is removed and the seam is locked (step 1140). For example, as discussed above and shown in
The disclosed embodiments may provide for manual opening of the female portion to allow for easier access prior to assembly, and prevent or minimize disfiguration caused by hammering the male and female pieces together. The disclosed embodiments may make the assembly less time-consuming, and thereby increase productivity, improve quality, and reduce costs.
The present disclosure is not to be limited in terms of the particular embodiments described in this application, which are intended as illustrations of various aspects. Many modifications and variations can be made without departing from its spirit and scope, as will be apparent. Functionally equivalent methods and apparatuses within the scope of the disclosure, in addition to those enumerated herein, will be apparent from the foregoing descriptions. Such modifications and variations are intended to fall within the scope of the appended claims. The present disclosure is to be limited only by the terms of the appended claims, along with the full scope of equivalents to which such claims are entitled. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting.
The foregoing description, along with its associated embodiments, has been presented for purposes of illustration only. It is not exhaustive and does not limit the invention to the precise form disclosed. Those skilled in the art will appreciate from the foregoing description that modifications and variations are possible in light of the above teachings or may be acquired from practicing the disclosed embodiments. For example, the steps described need not be performed in the same sequence discussed or with the same degree of separation. Likewise, various steps may be omitted, repeated, or combined, as necessary, to achieve the same or similar objectives. Accordingly, the invention is not limited to the above-described embodiments, but instead is defined by the appended claims in light of their full scope of equivalents.
This application claims the benefit of priority under 35 U.S.C. § 119 to U.S. Provisional Application No. 62/497,540, filed Nov. 22, 2016, U.S. Provisional Application No. 62/497,541, filed Nov. 22, 2016, U.S. Provisional Application No. 62/497,542, filed Nov. 22, 2016, and U.S. Provisional Application No. 62/497,543, filed Nov. 22, 2016, in the United States Patent and Trademark Office, the entire contents of all of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1324693 | Rush | Dec 1919 | A |
1326907 | Bond | Jan 1920 | A |
1344533 | Cole | Jun 1920 | A |
2938413 | Pauls | May 1960 | A |
3965720 | Goodwin | Jun 1976 | A |
4034595 | Smith | Jul 1977 | A |
4619132 | McBee | Oct 1986 | A |
5389099 | Hartmeister | Feb 1995 | A |
5937695 | Patterson | Aug 1999 | A |
6077271 | Huebner | Jun 2000 | A |
8424361 | Evans | Apr 2013 | B1 |
20180141103 | Holmstock | May 2018 | A1 |
Number | Date | Country | |
---|---|---|---|
20180141103 A1 | May 2018 | US |
Number | Date | Country | |
---|---|---|---|
62497540 | Nov 2016 | US | |
62497541 | Nov 2016 | US | |
62497542 | Nov 2016 | US | |
62497543 | Nov 2016 | US |