The present disclosure pertains to counter-rotating open-rotor (CROR) gas turbine engines; and, more specifically, control system implementations for such CROR gas turbine engines utilizing a differential gearbox mechanically coupling the two counter-rotating rotors. When the two counter rotating rotors of a CROR engine are conditioned by the differential gearbox, a control challenge arises as the two rotors speeds are coupled for given input torque. The current disclosure provides control solutions addressing such problems and relationships.
The current disclosure provides a simple, robust and systematic solution for open rotor control with a differential gearbox. When the two counter rotating rotors of a CROR engine are conditioned by the differential gearbox, the two rotors speeds are coupled for given input torque. A solution provided by the current disclosure mathematically decouples these two rotors by transforming the original individual actuator input and speed output into differential & average input and output. Because the newly formed control system representation of the plant has decoupled input/output mapping, it follows that the simple SISO control can be applied. Furthermore, the current control solutions allow a simple and well-coordinated speed phase synchronizing among the four rotors on a two-engine vehicle.
According to the current disclosure, a counter-rotating open-rotor gas turbine engine includes: a forward un-ducted rotor including a plurality of forward rotor blades and including a forward rotor angle actuator for setting blade pitch angles of the plurality of forward rotor blades; an aft un-ducted rotor including a plurality of aft rotor blades and including an aft rotor angle actuator for setting blade pitch angles of the plurality of aft rotor blades; a differential gearbox mechanically coupled between the forward and aft un-ducted rotors so that rotor speeds of the respective forward and aft un-ducted rotors are coupled for a given input torque; a gas turbine engine driving the differential gearbox and including a fuel actuator for setting the fuel flow to the gas turbine engine; and an open rotor control system including, a forward rotor blade pitch angle command (BetaF) electrically connected to the forward rotor angle actuator, an aft rotor blade pitch angle command (BetaA) electrically connected to the aft rotor angle actuator, a fuel flow command (Wf) electrically connected to the fuel actuator, a forward rotor speed feedback signal (Nf), an aft rotor speed feedback signal (Na), and an engine pressure measurement feedback signal (EPR); where the open rotor control system may include a control algorithm that mathematically decouples the forward rotor speed reference signal (NfR) and aft rotor speed reference signal (NaR) into differential speed reference signal (NdR) and average speed reference signal (NcR) and decouples the forward rotor speed feedback signal (Nf) and aft rotor speed feedback signal (Na) into differential speed feedback signal (Nd) and average speed feedback signal (Nc) and mathematically decouples the forward blade pitch angle command (BetaF) and aft rotor blade pitch angle command (BetaA) into differential blade pitch angle command (BetaD) and average blade pitch angle command (BetaC).
In a more detailed embodiment the open rotor control system may include a differential speed regulator having an input of the differential speed feedback signal (Nd) and an output of the differential blade pitch angle command (BetaD); and an average speed regulator having an input of the average speed feedback signal (Nc) and an output of the average blade pitch angle command (BetaC). In a further detailed embodiment, the open rotor control system may convert the differential blade pitch angle command (BetaD) and average blade pitch angle command (BetaC) into the forward rotor angle blade pitch angle command (BetaF) and the aft rotor blade pitch angle command (BetaA).
In an embodiment, the differential speed regulator and the average speed regulator may be single-input-single-output (SISO) regulators, and the open rotor control system may further include a speed phase synchronizing control architecture positioned between forward and aft rotor phase output signals and input signals to one or more of the differential and average speed regulators.
In an embodiment, the control algorithm of the open rotor control system may treat the fuel flow impact on rotor speeds as a known disturbance and rejected by the average speed regulator.
According to the current disclosure, a counter-rotating open-rotor gas turbine engine includes: a forward un-ducted rotor including a plurality of forward rotor blades and including a forward rotor angle actuator for setting blade pitch angles of the plurality of forward rotor blades; an aft un-ducted rotor including a plurality of aft rotor blades and including an aft rotor angle actuator for setting blade pitch angles of the plurality of aft rotor blades; a differential gearbox mechanically coupled between the forward and aft un-ducted rotors so that rotor speeds of the respective forward and aft un-ducted rotors are coupled for a given input torque; and an open rotor control system that includes forward and aft output signals respectively electrically coupled to the forward rotor angle actuator and the aft rotor angle actuator, and receiving forward and aft feedback input signals; where the open rotor control system may include a control algorithm that mathematically decouples the forward and aft output signals into differential and average output signals and mathematically decouples the forward and aft feedback input signals into differential and average feedback input signals. In a more detailed embodiment, the open rotor control system may include single-input-single-output (SISO) regulators receiving the differential and average feedback input signals, respectively and outputting the differential and average output signals.
Further, according to the current disclosure, a method is disclosed for controlling a counter-rotating open-rotor gas turbine engine, where the counter-rotating open-rotor gas turbine engine includes, (a) a forward un-ducted rotor including a plurality of forward rotor blades and including a forward rotor angle actuator for setting blade pitch angles of the plurality of forward rotor blades, (b) an aft un-ducted rotor including a plurality of aft rotor blades and including an aft rotor angle actuator for setting blade pitch angles of the plurality of aft rotor blades, (c) a differential gearbox mechanically coupled between the forward and aft un-ducted rotors so that rotor speeds of the respective forward and aft un-ducted rotors are coupled for a given input torque. The method may include steps of (not necessarily performed in any specific order): generating forward and aft control signals respectively for the forward rotor angle actuator and the aft rotor angle actuator; and receiving forward and aft feedback input signals; where the step of generating the forward and aft control signals utilizes a control solution that mathematically decouples the forward and aft control signals into differential and average control signals and mathematically decouples the forward and aft feedback input signals into differential and average feedback input signals. In a more detailed embodiment the differential and average control signals may be generated by a single-input-single-output (SISO) regulator based at least upon the differential and average feedback input signals. Alternatively, or in addition, the forward and aft output signals may include a forward blade pitch angle command and an aft blade pitch angle command; the forward and aft feedback input signals may include a forward rotor speed reference signal and an aft rotor speed reference signal; the differential feedback input signal may be a differential speed reference signal and the average speed feedback input signal may be an average speed reference signal; and the differential output signal may be a differential blade pitch angle command and the average output signal may be an average blade pitch angle command. Alternatively, or in addition, the method may further include the step of rejecting fuel flow impact on rotor speeds as a known disturbance. Alternatively, or in addition, the method may further include a step of providing a speed phase synchronizing control architecture positioned between (a) at least one of the forward and aft output signals and (b) at least one of the forward and aft feedback input signals. Alternatively, or in addition, the control solution may mathematically decouple the forward and aft output signals into differential and average output signals utilizing a variable transformation, and may mathematically decouple the forward and aft feedback input signals into differential and average feedback input signals utilizing a variable transformation.
Additionally, the scope of the current disclosure includes any control systems described herein and/or any method described herein.
The current disclosure provides a simple, robust and systematic solution for open rotor control with a differential gearbox. When the two counter rotating rotors of a CROR engine are conditioned by the differential gearbox, the two rotors speeds are coupled for given input torque. The solution provided by the current disclosure mathematically decouples these two rotors by transforming the original individual actuator input and speed output into differential & average input and output. Because the newly formed control system representation of the plant has decoupled input/output mapping, it follows that the simple SISO control can be applied. Furthermore, the current control solutions allow a simple and well-coordinated speed phase synchronizing among the four rotors on a two-engine vehicle. The current disclosure employs a variable transformation to mathematically decouple rotor speeds to allow application of SISO control for the transformed and decoupled rotor speeds. Further, in this solution, fuel flow command Wf can be treated as a known disturbance and rejected.
The basic control system architecture for CROR is presented in
For CROR control, the two counter-rotating rotors are functionally coupled to each other, and their operation is further impacted by fuel flow. For example, the controlled plant input and output mapping for the CROR can be represented in general as shown in
Previous approaches to solve this problem have ignored the interactions between the forward and aft rotor speed signals, Nf and Na, and have attempted to utilize single-input-single-output control to attempt to maintain each rotor speed tracking their own reference. However, as shown in the controlled plant matrix of
Referring back to
BetaD=(BetaF−BetaA)/2
BetaC=(BetaF+BetaA)/2
Nd=(Nf/MaxNf−Na/MaxNa)*NtR
Nc=(Nf/MaxNf+Na/MaxNa)*NtR
Where BetaD is differential blade pitch angle input, BetaC is common/average blade pitch angle input, Nd is differential speed, Nc is common/average speed, and NtR is given target speed for the rotors.
As a result, the new control system architecture can be presented by the control matrix of
The open rotor constant speed control architecture 22 based upon the new defined inputs and outputs presented in
In the case of a rotor failure (which may require the rotor to be frozen in the engine), simple logic may be provided to turn off the differential speed regulator 24, and set the failed rotor speed reference to 0. As a result, the average speed regulator 26 will govern the remaining working rotor to the target speed.
It is to be understood the control system architectures disclosed herein may be provided in any manner known to those of ordinary skill, including software solutions, hardware or firmware solutions, and combinations of such. Such solutions would incorporate the use of appropriate processors, memory (and software embodying any algorithms described herein may be resident in any type of non-transitory memory), circuitry and other components as is known to those of ordinary skill.
Having disclosed the inventions described herein by reference to exemplary embodiments, it will be apparent to those of ordinary skill that alternative arrangements and embodiments may be implemented without departing from the scope of the invention(s) as described herein. Further, it will be understood that it is not necessary to meet any of the objects or advantages of the invention(s) stated herein to fall within the scope of such invention(s), because undisclosed or unforeseen advantages may exist.
The current application claims priority to U.S. Provisional Application Ser. No. 61/595,431, filed Feb. 6, 2012, the entire disclosure of which is incorporated herein by reference. The current application is related to U.S. Non-Provisional Application Methods and Apparatuses for Model Based Control for Counter-Rotating Open-Rotor Gas Turbine Engine which is being filed concurrent to this application on Oct. 11, 2012 under Attorney Docket No. 034569.021501.
Number | Date | Country | |
---|---|---|---|
61595431 | Feb 2012 | US |