Methods and apparatuses for providing a holographic waveguide display using integrated gratings

Information

  • Patent Grant
  • 11543594
  • Patent Number
    11,543,594
  • Date Filed
    Monday, May 24, 2021
    2 years ago
  • Date Issued
    Tuesday, January 3, 2023
    a year ago
Abstract
Systems and methods for providing holographic waveguide display using integrated gratings in accordance with various embodiments of the invention are illustrated. One embodiment includes a waveguide display including a source of light, and a first waveguide including a grating structure including first and second gratings, and an input coupler configured to couple a first field-of-view portion of light, and couple a second field-of-view portion of light, wherein the first grating is configured to provide beam expansion in a first direction for the first field-of-view portion of light, and provide beam expansion in the first direction and beam extraction towards a viewer for the second field-of-view portion of light, the second grating is configured to provide beam expansion in a second direction for the second field-of-view portion of light, and provide beam expansion in the second direction and beam extraction towards a viewer for the first field-of-view portion of light.
Description
FIELD OF THE INVENTION

The present invention generally relates to waveguide devices and, more specifically, to holographic waveguide displays.


BACKGROUND

Waveguides can be referred to as structures with the capability of confining and guiding waves (i.e., restricting the spatial region in which waves can propagate). One subclass includes optical waveguides, which are structures that can guide electromagnetic waves, typically those in the visible spectrum. Waveguide structures can be designed to control the propagation path of waves using a number of different mechanisms. For example, planar waveguides can be designed to utilize diffraction gratings to diffract and couple incident light into the waveguide structure such that the in-coupled light can proceed to travel within the planar structure via total internal reflection (TIR).


Fabrication of waveguides can include the use of material systems that allow for the recording of holographic optical elements within the waveguides. One class of such material includes polymer dispersed liquid crystal (PDLC) mixtures, which are mixtures containing photopolymerizable monomers and liquid crystals. A further subclass of such mixtures includes holographic polymer dispersed liquid crystal (HPDLC) mixtures. Holographic optical elements, such as volume phase gratings, can be recorded in such a liquid mixture by illuminating the material with two mutually coherent laser beams. During the recording process, the monomers polymerize, and the mixture undergoes a photopolymerization-induced phase separation, creating regions densely populated by liquid crystal micro-droplets, interspersed with regions of clear polymer. The alternating liquid crystal-rich and liquid crystal-depleted regions form the fringe planes of the grating. The resulting grating, which is commonly referred to as a switchable Bragg grating (SBG), has all the properties normally associated with volume or Bragg gratings but with much higher refractive index modulation ranges combined with the ability to electrically tune the grating over a continuous range of diffraction efficiency (the proportion of incident light diffracted into a desired direction). The latter can extend from non-diffracting (cleared) to diffracting with close to 100% efficiency.


Waveguide optics, such as those described above, can be considered for a range of display and sensor applications. In many applications, waveguides containing one or more grating layers encoding multiple optical functions can be realized using various waveguide architectures and material systems, enabling new innovations in near-eye displays for augmented reality (AR) and virtual reality (VR), compact head-up displays (HUDs) and helmet-mounted displays or head-mounted displays (HMDs) for road transport, aviation, and military applications, and sensors for biometric and laser radar (LIDAR) applications.


SUMMARY OF THE INVENTION

Systems and methods for providing holographic waveguide display using integrated gratings in accordance with various embodiments of the invention are illustrated. One embodiment includes a waveguide display including a source of light, and a first waveguide including a grating structure including first and second gratings, and an input coupler configured to couple a first field-of-view portion of light from the source of light into the first waveguide and towards the first grating, and couple a second field-of-view portion of light from the source of light into the first waveguide and towards the second grating, wherein the first grating is configured to provide beam expansion in a first direction for the first field-of-view portion of light, and provide beam expansion in the first direction and beam extraction towards a viewer for the second field-of-view portion of light, the second grating is configured to provide beam expansion in a second direction for the second field-of-view portion of light, and provide beam expansion in the second direction and beam extraction towards a viewer for the first field-of-view portion of light, the input coupler, the first grating, and the second grating each includes a grating vector, and the grating vectors of the input coupler, the first grating, and the second grating provide a resultant vector with substantially zero magnitude.


In another embodiment, the first grating includes first and second grating prescriptions, and the second grating includes third and fourth grating prescriptions, wherein the first grating prescription is configured to provide the beam expansion in the first direction for the first field-of-view portion of light, the second grating prescription is configured to provide beam expansion in the first direction and beam extraction towards a viewer for the second field-of-view portion of light, the third grating prescription is configured to provide the beam expansion in the second direction for the second field-of-view portion of light, and the fourth grating prescription is configured to provide the beam expansion in the second direction and beam extraction towards a viewer for the first field-of-view portion of light.


In a further embodiment, the first and second grating prescriptions are at least partially multiplexed, and the third and fourth grating prescriptions are at least partially multiplexed.


In still another embodiment, the first grating at least partially overlaps the second grating.


In a still further embodiment, the first waveguide includes first and second grating layers, the first grating is disposed within the first grating layer, and the second grating is disposed within the second grating layer.


In yet another embodiment, the first waveguide further includes a transparent layer disposed between and adjacent the first and second grating layers.


In a yet further embodiment, the waveguide display further includes a second waveguide, wherein the first waveguide is configured to couple in a first spectral band of light, and the second waveguide is configured to couple in a second spectral band of light.


In another additional embodiment, wherein the input coupler includes an input configuration selected from at least one of an input prism, an input grating, first and second input gratings, and an input grating including two multiplexed grating prescriptions.


In a further additional embodiment, the grating vector of the input coupler has a different magnitude than the grating vector of the first grating.


In another embodiment again, the source of light provides at least two different wavelengths of light.


In a further embodiment again, a method of displaying an image, the method including providing a waveguide display including a first waveguide supporting an input coupler and a grating structure including first and second gratings, wherein the input coupler, the first grating, and the second grating each includes a grating vector, wherein the grating vectors of the input coupler, the first grating, and the second grating provide a resultant vector with substantially zero magnitude, coupling a first field of view portion into the waveguide via the input coupler, coupling a second field-of-view portion into the waveguide via the input coupler, expanding the first field-of-view portion light in a first direction using the first grating, expanding the first field-of-view portion light in a second direction and extracting it from the waveguide using the second grating, expanding the second field-of-view portion light in the second direction using the second grating, and expanding the second field of view portion light in the first direction and extracting it from the waveguide using the first grating.


In still yet another embodiment, the first grating includes first and second grating prescriptions, and the second grating includes third and fourth grating prescriptions, wherein the first field-of-view portion light is expanded in the first direction using the first grating prescription, the second field-of-view portion light is expanded in the first direction and extracted from the waveguide using the second grating prescription, the second field-of-view portion light is expanded in the second direction using the third grating prescription, and the first field-of-view portion light is expanded in the second direction and extracted from the waveguide using the fourth grating prescription.


In a still yet further embodiment, the first and second grating prescriptions are at least partially multiplexed, and the third and fourth grating prescriptions are at least partially multiplexed.


In still another additional embodiment, the first grating at least partially overlaps the second grating.


In a still further additional embodiment, the first waveguide includes first and second grating layers, the first grating is disposed within the first grating layer, and the second grating is disposed within the second grating layer.


In still another embodiment again, the first waveguide further includes a transparent layer disposed between and adjacent the first and second grating layers.


In a still further embodiment again, the waveguide display further includes a second waveguide, wherein the first waveguide is configured to couple in a first spectral band of light, and the second waveguide is configured to couple in a second spectral band of light.


In yet another additional embodiment, the input coupler includes an input configuration selected from at least one of an input prism, an input grating, first and second input gratings, and an input grating comprising two multiplexed grating prescriptions.


In a yet further additional embodiment, the grating vector of the input coupler has a different magnitude than the grating vector of the first grating.


In yet another embodiment again, the source of light provides at least two different wavelengths of light.


Additional embodiments and features are set forth in part in the description that follows, and in part will become apparent to those skilled in the art upon examination of the specification or may be learned by the practice of the invention. A further understanding of the nature and advantages of the present invention may be realized by reference to the remaining portions of the specification and the drawings, which forms a part of this disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS

The description will be more fully understood with reference to the following figures and data graphs, which are presented as exemplary embodiments of the invention and should not be construed as a complete recitation of the scope of the invention.



FIG. 1 conceptually illustrates a waveguide display in accordance with an embodiment of the invention.



FIG. 2 conceptually illustrates a color waveguide display having two blue-green diffracting waveguides and two green-red diffracting waveguides in accordance with an embodiment of the invention.



FIGS. 3A-3C conceptually illustrate integrated gratings in accordance with various embodiments of the invention.



FIGS. 4A-4C schematically illustrate ray propagation through a grating structure having an input grating and two integrated gratings in accordance with an embodiment of the invention.



FIGS. 5A-5E conceptually illustrate various grating vector configurations in accordance with various embodiments of the invention.



FIG. 6 conceptually illustrates a schematic plan view of a grating architecture having an input grating and integrated gratings in accordance with an embodiment of the invention.



FIG. 7 shows a flow diagram conceptually illustrating a method of displaying an image in accordance with an embodiment of the invention.



FIG. 8 shows a flow diagram conceptually illustrating a method of displaying an image utilizing integrated gratings containing multiple gratings in accordance with an embodiment of the invention.



FIG. 9 conceptually illustrates a profile view of two overlapping waveguide portions implementing integrated gratings in accordance with an embodiment of the invention.



FIG. 10 conceptually illustrates a schematic plan view of a grating architecture having two sets of integrated gratings in accordance with an embodiment of the invention.



FIG. 11 conceptually illustrates a plot of diffraction efficiency versus angle for a waveguide for diffractions occurring at different field-of-view angles in accordance with an embodiment of the invention.



FIG. 12 shows the viewing geometry provided by a waveguide in accordance with an embodiment of the invention.



FIG. 13 conceptually illustrates the field-of-view geometry for a binocular display with binocular overlap between the left and right eye images provided by a waveguide in accordance with an embodiment of the invention.





DETAILED DESCRIPTION

For the purposes of describing embodiments, some well-known features of optical technology known to those skilled in the art of optical design and visual displays have been omitted or simplified in order to not obscure the basic principles of the invention. Unless otherwise stated, the term “on-axis” in relation to a ray or a beam direction refers to propagation parallel to an axis normal to the surfaces of the optical components described in relation to the invention. In the following description the terms light, ray, beam, and direction may be used interchangeably and in association with each other to indicate the direction of propagation of electromagnetic radiation along rectilinear trajectories. The term light and illumination may be used in relation to the visible and infrared bands of the electromagnetic spectrum. Parts of the following description will be presented using terminology commonly employed by those skilled in the art of optical design. As used herein, the term grating may encompass a grating comprised of a set of gratings in some embodiments. For illustrative purposes, it is to be understood that the drawings are not drawn to scale unless stated otherwise.


Waveguide displays in accordance with various embodiments of the invention can be implemented using many different techniques. Waveguide technology can enable low cost, efficient, and versatile diffractive optical solutions for many different applications. One commonly used waveguide architecture includes an input grating for coupling light from an image source into a TIR path in the waveguide, a fold grating for providing beam expansion in a first direction, and an output grating for providing a second beam expansion in a direction orthogonal to the first direction and extracting the pupil-expanded beam from the waveguide for viewing from an exit pupil or eyebox. While effective at two-dimensional beam expansion and extraction, this arrangement typically demands a large grating area. When used with birefringent gratings, this architecture can also suffer from haze that arises from millions of grating interactions in the fold. A further issue is image nonuniformity due to longer light paths incurring more beam interactions with the substrates of the waveguide. As such, many embodiments of the invention are directed towards wide angle, low cost, efficient, and compact waveguide displays.


In many embodiments, the waveguide display includes at least one input grating and at least two integrated gratings, each capable of performing the functions of traditional fold and output gratings. In further embodiments, a single multiplexed input grating is implemented to provide input light with two bifurcated paths. In other embodiments, two input gratings are implemented to provide bifurcated optical paths. In addition to the different configurations of the input grating(s), the integrated gratings can also be configured in various ways. In some embodiments, the integrated gratings contain crossed grating vectors and can be configured to provide beam expansion in two directions and beam extraction for light coming from the input grating(s). In several embodiments, the integrated gratings are configured as overlapping gratings with crossed grating vectors. The integrated nature of the grating architecture can allow for a compact waveguide display that is suitable for various applications, including but not limited to AR, VR, HUD, and LIDAR applications. As can readily be appreciated, the specific architecture and implementation of the waveguide display can depend on the specific requirements of a given application. For example, in some embodiments, the waveguide display is implemented with integrated gratings to provide a binocular field-of-view of at least 50° diagonal. In further embodiments, the waveguide display is implemented with integrated gratings to provide a binocular field-of-view of at least ˜100° diagonal. Waveguide displays, grating architecture, HPDLC materials, and manufacturing processes in accordance with various embodiments of the invention are discussed below in further detail.


Optical Waveguide and Grating Structures


Optical structures recorded in waveguides can include many different types of optical elements, such as but not limited to diffraction gratings. Gratings can be implemented to perform various optical functions, including but not limited to coupling light, directing light, and preventing the transmission of light. In many embodiments, the gratings are surface relief gratings that reside on the outer surface of the waveguide. In other embodiments, the grating implemented is a Bragg grating (also referred to as a volume grating), which are structures having a periodic refractive index modulation. Bragg gratings can be fabricated using a variety of different methods. One process includes interferential exposure of holographic photopolymer materials to form periodic structures. Bragg gratings can have high efficiency with little light being diffracted into higher orders. The relative amount of light in the diffracted and zero order can be varied by controlling the refractive index modulation of the grating, a property that can be used to make lossy waveguide gratings for extracting light over a large pupil.


One class of Bragg gratings used in holographic waveguide devices is the Switchable Bragg Grating (SBG). SBGs can be fabricated by first placing a thin film of a mixture of photopolymerizable monomers and liquid crystal material between substrates. The substrates can be made of various types of materials, such glass and plastics. In many cases, the substrates are in a parallel configuration. In other embodiments, the substrates form a wedge shape. One or both substrates can support electrodes, typically transparent tin oxide films, for applying an electric field across the film. The grating structure in an SBG can be recorded in the liquid material (often referred to as the syrup) through photopolymerization-induced phase separation using interferential exposure with a spatially periodic intensity modulation. Factors such as but not limited to control of the irradiation intensity, component volume fractions of the materials in the mixture, and exposure temperature can determine the resulting grating morphology and performance. As can readily be appreciated, a wide variety of materials and mixtures can be used depending on the specific requirements of a given application. In many embodiments, HPDLC material is used. During the recording process, the monomers polymerize, and the mixture undergoes a phase separation. The LC molecules aggregate to form discrete or coalesced droplets that are periodically distributed in polymer networks on the scale of optical wavelengths. The alternating liquid crystal-rich and liquid crystal-depleted regions form the fringe planes of the grating, which can produce Bragg diffraction with a strong optical polarization resulting from the orientation ordering of the LC molecules in the droplets.


The resulting volume phase grating can exhibit very high diffraction efficiency, which can be controlled by the magnitude of the electric field applied across the film. When an electric field is applied to the grating via transparent electrodes, the natural orientation of the LC droplets can change, causing the refractive index modulation of the fringes to lower and the hologram diffraction efficiency to drop to very low levels. Typically, the electrodes are configured such that the applied electric field will be perpendicular to the substrates. In a number of embodiments, the electrodes are fabricated from indium tin oxide (ITO). In the OFF state with no electric field applied, the extraordinary axis of the liquid crystals generally aligns normal to the fringes. The grating thus exhibits high refractive index modulation and high diffraction efficiency for P-polarized light. When an electric field is applied to the HPDLC, the grating switches to the ON state wherein the extraordinary axes of the liquid crystal molecules align parallel to the applied field and hence perpendicular to the substrate. In the ON state, the grating exhibits lower refractive index modulation and lower diffraction efficiency for both S- and P-polarized light. Thus, the grating region no longer diffracts light. Each grating region can be divided into a multiplicity of grating elements such as for example a pixel matrix according to the function of the HPDLC device. Typically, the electrode on one substrate surface is uniform and continuous, while electrodes on the opposing substrate surface are patterned in accordance to the multiplicity of selectively switchable grating elements.


Typically, the SBG elements are switched clear in 30 μs with a longer relaxation time to switch ON. The diffraction efficiency of the device can be adjusted, by means of the applied voltage, over a continuous range. In many cases, the device exhibits near 100% efficiency with no voltage applied and essentially zero efficiency with a sufficiently high voltage applied. In certain types of HPDLC devices, magnetic fields can be used to control the LC orientation. In some HPDLC applications, phase separation of the LC material from the polymer can be accomplished to such a degree that no discernible droplet structure results. An SBG can also be used as a passive grating. In this mode, its chief benefit is a uniquely high refractive index modulation. SBGs can be used to provide transmission or reflection gratings for free space applications. SBGs can be implemented as waveguide devices in which the HPDLC forms either the waveguide core or an evanescently coupled layer in proximity to the waveguide. The substrates used to form the HPDLC cell provide a total internal reflection (TIR) light guiding structure. Light can be coupled out of the SBG when the switchable grating diffracts the light at an angle beyond the TIR condition.


In some embodiments, LC can be extracted or evacuated from the SBG to provide a surface relief grating (SRG) that has properties very similar to a Bragg grating due to the depth of the SRG structure (which is much greater than that practically achievable using surface etching and other conventional processes commonly used to fabricate SRGs). The LC can be extracted using a variety of different methods, including but not limited to flushing with isopropyl alcohol and solvents. In many embodiments, one of the transparent substrates of the SBG is removed, and the LC is extracted. In further embodiments, the removed substrate is replaced. The SRG can be at least partially backfilled with a material of higher or lower refractive index. Such gratings offer scope for tailoring the efficiency, angular/spectral response, polarization, and other properties to suit various waveguide applications.


Waveguides in accordance with various embodiments of the invention can include various grating configurations designed for specific purposes and functions. In many embodiments, the waveguide is designed to implement a grating configuration capable of preserving eyebox size while reducing lens size by effectively expanding the exit pupil of a collimating optical system. The exit pupil can be defined as a virtual aperture where only the light rays which pass though this virtual aperture can enter the eyes of a user. In some embodiments, the waveguide includes an input grating optically coupled to a light source, a fold grating for providing a first direction beam expansion, and an output grating for providing beam expansion in a second direction, which is typically orthogonal to the first direction, and beam extraction towards the eyebox. As can readily be appreciated, the grating configuration implemented waveguide architectures can depend on the specific requirements of a given application. In some embodiments, the grating configuration includes multiple fold gratings. In several embodiments, the grating configuration includes an input grating and a second grating for performing beam expansion and beam extraction simultaneously. The second grating can include gratings of different prescriptions, for propagating different portions of the field-of-view, arranged in separate overlapping grating layers or multiplexed in a single grating layer. Furthermore, various types of gratings and waveguide architectures can also be utilized.


In several embodiments, the gratings within each layer are designed to have different spectral and/or angular responses. For example, in many embodiments, different gratings across different grating layers are overlapped, or multiplexed, to provide an increase in spectral bandwidth. In some embodiments, a full color waveguide is implemented using three grating layers, each designed to operate in a different spectral band (red, green, and blue). In other embodiments, a full color waveguide is implemented using two grating layers, a red-green grating layer and a green-blue grating layer. As can readily be appreciated, such techniques can be implemented similarly for increasing angular bandwidth operation of the waveguide. In addition to the multiplexing of gratings across different grating layers, multiple gratings can be multiplexed within a single grating layer—i.e., multiple gratings can be superimposed within the same volume. In several embodiments, the waveguide includes at least one grating layer having two or more grating prescriptions multiplexed in the same volume. In further embodiments, the waveguide includes two grating layers, each layer having two grating prescriptions multiplexed in the same volume. Multiplexing two or more grating prescriptions within the same volume can be achieved using various fabrication techniques. In a number of embodiments, a multiplexed master grating is utilized with an exposure configuration to form a multiplexed grating. In many embodiments, a multiplexed grating is fabricated by sequentially exposing an optical recording material layer with two or more configurations of exposure light, where each configuration is designed to form a grating prescription. In some embodiments, a multiplexed grating is fabricated by exposing an optical recording material layer by alternating between or among two or more configurations of exposure light, where each configuration is designed to form a grating prescription. As can readily be appreciated, various techniques, including those well known in the art, can be used as appropriate to fabricate multiplexed gratings.


In many embodiments, the waveguide can incorporate at least one of: angle multiplexed gratings, color multiplexed gratings, fold gratings, dual interaction gratings, rolled K-vector gratings, crossed fold gratings, tessellated gratings, chirped gratings, gratings with spatially varying refractive index modulation, gratings having spatially varying grating thickness, gratings having spatially varying average refractive index, gratings with spatially varying refractive index modulation tensors, and gratings having spatially varying average refractive index tensors. In some embodiments, the waveguide can incorporate at least one of: a half wave plate, a quarter wave plate, an anti-reflection coating, a beam splitting layer, an alignment layer, a photochromic back layer for glare reduction, and louvre films for glare reduction. In several embodiments, the waveguide can support gratings providing separate optical paths for different polarizations. In various embodiments, the waveguide can support gratings providing separate optical paths for different spectral bandwidths. In a number of embodiments, the gratings can be HPDLC gratings, switching gratings recorded in HPDLC (such switchable Bragg Gratings), Bragg gratings recorded in holographic photopolymer, or surface relief gratings. In many embodiments, the waveguide operates in a monochrome band. In some embodiments, the waveguide operates in the green band. In several embodiments, waveguide layers operating in different spectral bands such as red, green, and blue (RGB) can be stacked to provide a three-layer waveguiding structure. In further embodiments, the layers are stacked with air gaps between the waveguide layers. In various embodiments, the waveguide layers operate in broader bands such as blue-green and green-red to provide two-waveguide layer solutions. In other embodiments, the gratings are color multiplexed to reduce the number of grating layers. Various types of gratings can be implemented. In some embodiments, at least one grating in each layer is a switchable grating.


Waveguides incorporating optical structures such as those discussed above can be implemented in a variety of different applications, including but not limited to waveguide displays. In various embodiments, the waveguide display is implemented with an eyebox of greater than 10 mm with an eye relief greater than 25 mm. In some embodiments, the waveguide display includes a waveguide with a thickness between 2.0-5.0 mm. In many embodiments, the waveguide display can provide an image field-of-view of at least 50° diagonal. In further embodiments, the waveguide display can provide an image field-of-view of at least 70° diagonal. The waveguide display can employ many different types of picture generation units (PGUs). In several embodiments, the PGU can be a reflective or transmissive spatial light modulator such as a liquid crystal on Silicon (LCoS) panel or a micro electromechanical system (MEMS) panel. In a number of embodiments, the PGU can be an emissive device such as an organic light emitting diode (OLED) panel. In some embodiments, an OLED display can have a luminance greater than 4000 nits and a resolution of 4kx4k pixels. In several embodiments, the waveguide can have an optical efficiency greater than 10% such that a greater than 400 nit image luminance can be provided using an OLED display of luminance 4000 nits. Waveguides implementing P-diffracting gratings (i.e., gratings with high efficiency for P-polarized light) typically have a waveguide efficiency of 5%-6.2%. Since P-diffracting or S-diffracting gratings can waste half of the light from an unpolarized source such as an OLED panel, many embodiments are directed towards waveguides capable of providing both S-diffracting and P-diffracting gratings to allow for an increase in the efficiency of the waveguide by up to a factor of two. In some embodiments, the S-diffracting and P-diffracting gratings are implemented in separate overlapping grating layers. Alternatively, a single grating can, under certain conditions, provide high efficiency for both p-polarized and s-polarized light. In several embodiments, the waveguide includes Bragg-like gratings produced by extracting LC from HPDLC gratings, such as those described above, to enable high S and P diffraction efficiency over certain wavelength and angle ranges for suitably chosen values of grating thickness (typically, in the range 2-5 μm).


Optical Recording Material Systems


HPDLC mixtures generally include LC, monomers, photoinitiator dyes, and coinitiators. The mixture (often referred to as syrup) frequently also includes a surfactant. For the purposes of describing the invention, a surfactant is defined as any chemical agent that lowers the surface tension of the total liquid mixture. The use of surfactants in PDLC mixtures is known and dates back to the earliest investigations of PDLCs. For example, a paper by R. L Sutherland et al., SPIE Vol. 2689, 158-169, 1996, the disclosure of which is incorporated herein by reference, describes a PDLC mixture including a monomer, photoinitiator, coinitiator, chain extender, and LCs to which a surfactant can be added. Surfactants are also mentioned in a paper by Natarajan et al, Journal of Nonlinear Optical Physics and Materials, Vol. 5 No. I 89-98, 1996, the disclosure of which is incorporated herein by reference. Furthermore, U.S. Pat. No. 7,018,563 by Sutherland; et al., discusses polymer-dispersed liquid crystal material for forming a polymer-dispersed liquid crystal optical element having: at least one acrylic acid monomer; at least one type of liquid crystal material; a photoinitiator dye; a coinitiator; and a surfactant. The disclosure of U.S. Pat. No. 7,018,563 is hereby incorporated by reference in its entirety.


The patent and scientific literature contains many examples of material systems and processes that can be used to fabricate SBGs, including investigations into formulating such material systems for achieving high diffraction efficiency, fast response time, low drive voltage, and so forth. U.S. Pat. No. 5,942,157 by Sutherland, and U.S. Pat. No. 5,751,452 by Tanaka et al. both describe monomer and liquid crystal material combinations suitable for fabricating SBG devices. Examples of recipes can also be found in papers dating back to the early 1990s. Many of these materials use acrylate monomers, including:

    • R. L. Sutherland et al., Chem. Mater. 5, 1533 (1993), the disclosure of which is incorporated herein by reference, describes the use of acrylate polymers and surfactants. Specifically, the recipe comprises a crosslinking multifunctional acrylate monomer; a chain extender N-vinyl pyrrolidinone, LC E7, photo-initiator rose Bengal, and coinitiator N-phenyl glycine. Surfactant octanoic acid was added in certain variants.
    • Fontecchio et al., SID 00 Digest 774-776, 2000, the disclosure of which is incorporated herein by reference, describes a UV curable HPDLC for reflective display applications including a multi-functional acrylate monomer, LC, a photoinitiator, a coinitiators, and a chain terminator.
    • Y. H. Cho, et al., Polymer International, 48, 1085-1090, 1999, the disclosure of which is incorporated herein by reference, discloses HPDLC recipes including acrylates.
    • Karasawa et al., Japanese Journal of Applied Physics, Vol. 36, 6388-6392, 1997, the disclosure of which is incorporated herein by reference, describes acrylates of various functional orders.
    • T. J. Bunning et al., Polymer Science: Part B: Polymer Physics, Vol. 35, 2825-2833, 1997, the disclosure of which is incorporated herein by reference, also describes multifunctional acrylate monomers.
    • G. S. Iannacchione et al., Europhysics Letters Vol. 36 (6). 425-430, 1996, the disclosure of which is incorporated herein by reference, describes a PDLC mixture including a penta-acrylate monomer, LC, chain extender, coinitiators, and photoinitiator.


Acrylates offer the benefits of fast kinetics, good mixing with other materials, and compatibility with film forming processes. Since acrylates are cross-linked, they tend to be mechanically robust and flexible. For example, urethane acrylates of functionality 2 (di) and 3 (tri) have been used extensively for HPDLC technology. Higher functionality materials such as penta and hex functional stems have also been used.


Modulation of Material Composition


High luminance and excellent color fidelity are important factors in AR waveguide displays. In each case, high uniformity across the FOV can be desired. However, the fundamental optics of waveguides can lead to non-uniformities due to gaps or overlaps of beams bouncing down the waveguide. Further non-uniformities may arise from imperfections in the gratings and non-planarity of the waveguide substrates. In SBGs, there can exist a further issue of polarization rotation by birefringent gratings. In applicable cases, the biggest challenge is usually the fold grating where there are millions of light paths resulting from multiple intersections of the beam with the grating fringes. Careful management of grating properties, particularly the refractive index modulation, can be utilized to overcome non-uniformity.


Out of the multitude of possible beam interactions (diffraction or zero order transmission), only a subset contributes to the signal presented at the eye box. By reverse tracing from the eyebox, fold regions contributing to a given field point can be pinpointed. The precise correction to the modulation that is needed to send more into the dark regions of the output illumination can then be calculated. Having brought the output illumination uniformity for one color back on target, the procedure can be repeated for other colors. Once the index modulation pattern has been established, the design can be exported to the deposition mechanism, with each target index modulation translating to a unique deposition setting for each spatial resolution cell on the substrate to be coated/deposited. The resolution of the deposition mechanism can depend on the technical limitations of the system utilized. In many embodiments, the spatial pattern can be implemented to 30 micrometers resolution with full repeatability.


Compared with waveguides utilizing surface relief gratings (SRGs), SBG waveguides implementing manufacturing techniques in accordance with various embodiments of the invention can allow for the grating design parameters that impact efficiency and uniformity, such as but not limited to refractive index modulation and grating thickness, to be adjusted dynamically during the deposition process without the need for a different master. With SRGs where modulation is controlled by etch depth, such schemes would not be practical as each variation of the grating would entail repeating the complex and expensive tooling process. Additionally, achieving the required etch depth precision and resist imaging complexity can be very difficult.


Deposition processes in accordance with various embodiments of the invention can provide for the adjustment of grating design parameters by controlling the type of material that is to be deposited. Various embodiments of the invention can be configured to deposit different materials, or different material compositions, in different areas on the substrate. For example, deposition processes can be configured to deposit HPDLC material onto an area of a substrate that is meant to be a grating region and to deposit monomer onto an area of the substrate that is meant to be a non-grating region. In several embodiments, the deposition process is configured to deposit a layer of optical recording material that varies spatially in component composition, allowing for the modulation of various aspects of the deposited material. The deposition of material with different compositions can be implemented in several different ways. In many embodiments, more than one deposition head can be utilized to deposit different materials and mixtures. Each deposition head can be coupled to a different material/mixture reservoir. Such implementations can be used for a variety of applications. For example, different materials can be deposited for grating and non-grating areas of a waveguide cell. In some embodiments, HPDLC material is deposited onto the grating regions while only monomer is deposited onto the non-grating regions. In several embodiments, the deposition mechanism can be configured to deposit mixtures with different component compositions.


In some embodiments, spraying nozzles can be implemented to deposit multiple types of materials onto a single substrate. In waveguide applications, the spraying nozzles can be used to deposit different materials for grating and non-grating areas of the waveguide. In many embodiments, the spraying mechanism is configured for printing gratings in which at least one the material composition, birefringence, and/or thickness can be controlled using a deposition apparatus having at least two selectable spray heads. In some embodiments, the manufacturing system provides an apparatus for depositing grating recording material optimized for the control of laser banding. In several embodiments, the manufacturing system provides an apparatus for depositing grating recording material optimized for the control of polarization non-uniformity. In several embodiments, the manufacturing system provides an apparatus for depositing grating recording material optimized for the control of polarization non-uniformity in association with an alignment control layer. In a number of embodiments, the deposition workcell can be configured for the deposition of additional layers such as beam splitting coatings and environmental protection layers. Inkjet print heads can also be implemented to print different materials in different regions of the substrate.


As discussed above, deposition processes can be configured to deposit optical recording material that varies spatially in component composition. Modulation of material composition can be implemented in many different ways. In a number of embodiments, an inkjet print head can be configured to modulate material composition by utilizing the various inkjet nozzles within the print head. By altering the composition on a “dot-by-dot” basis, the layer of optical recording material can be deposited such that it has a varying composition across the planar surface of the layer. Such a system can be implemented using a variety of apparatuses including but not limited to inkjet print heads. Similar to how color systems use a palette of only a few colors to produce a spectrum of millions of discrete color values, such as the CMYK system in printers or the additive RGB system in display applications, inkjet print heads in accordance with various embodiments of the invention can be configured to print optical recording materials with varying compositions using only a few reservoirs of different materials. Different types of inkjet print heads can have different precision levels and can print with different resolutions. In many embodiments, a 300 DPI (“dots per inch”) inkjet print head is utilized. Depending on the precision level, discretization of varying compositions of a given number of materials can be determined across a given area. For example, given two types of materials to be printed and an inkjet print head with a precision level of 300 DPI, there are 90,001 possible discrete values of composition ratios of the two types of materials across a square inch for a given volume of printed material if each dot location can contain either one of the two types of materials. In some embodiments, each dot location can contain either one of the two types of materials or both materials. In several embodiments, more than one inkjet print head is configured to print a layer of optical recording material with a spatially varying composition. Although the printing of dots in a two-material application is essentially a binary system, averaging the printed dots across an area can allow for discretization of a sliding scale of ratios of the two materials to be printed. For example, the amount of discrete levels of possible concentrations/ratios across a unit square is given by how many dot locations can be printed within the unit square. As such, there can be a range of different concentration combinations, ranging from 100% of the first material to 100% of the second material. As can readily be appreciated, the concepts are applicable to real units and can be determined by the precision level of the inkjet print head. Although specific examples of modulating the material composition of the printed layer are discussed, the concept of modulating material composition using inkjet print heads can be expanded to use more than two different material reservoirs and can vary in precision levels, which largely depends on the types of print heads used.


Varying the composition of the material printed can be advantageous for several reasons. For example, in many embodiments, varying the composition of the material during deposition can allow for the formation of a waveguide with gratings that have spatially varying diffraction efficiencies across different areas of the gratings. In embodiments utilizing HPDLC mixtures, this can be achieved by modulating the relative concentration of liquid crystals in the HPDLC mixture during the printing process, which creates compositions that can produce gratings with varying diffraction efficiencies when the material is exposed. In several embodiments, a first HPDLC mixture with a certain concentration of liquid crystals and a second HPDLC mixture that is liquid crystal-free are used as the printing palette in an inkjet print head for modulating the diffraction efficiencies of gratings that can be formed in the printed material. In such embodiments, discretization can be determined based on the precision of the inkjet print head. A discrete level can be given by the concentration/ratio of the materials printed across a certain area. In this example, the discrete levels range from no liquid crystal to the maximum concentration of liquid crystals in the first PDLC mixture.


The ability to vary the diffraction efficiency across a waveguide can be used for various purposes. A waveguide is typically designed to guide light internally by reflecting the light many times between the two planar surfaces of the waveguide. These multiple reflections can allow for the light path to interact with a grating multiple times. In many embodiments, a layer of material can be printed with varying composition of materials such that the gratings formed have spatially varying diffraction efficiencies to compensate for the loss of light during interactions with the gratings to allow for a uniform output intensity. For example, in some waveguide applications, an output grating is configured to provide exit pupil expansion in one direction while also coupling light out of the waveguide. The output grating can be designed such that when light within the waveguide interact with the grating, only a percentage of the light is refracted out of the waveguide. The remaining portion continues in the same light path, which remains within TIR and continues to be reflected within the waveguide. Upon a second interaction with the same output grating again, another portion of light is refracted out of the waveguide. During each refraction, the amount of light still traveling within the waveguide decreases by the amount refracted out of the waveguide. As such, the portions refracted at each interaction gradually decreases in terms of total intensity. By varying the diffraction efficiency of the grating such that it increases with propagation distance, the decrease in output intensity along each interaction can be compensated, allowing for a uniform output intensity.


Varying the diffraction efficiency can also be used to compensate for other attenuation of light within a waveguide. All objects have a degree of reflection and absorption. Light trapped in TIR within a waveguide are continually reflected between the two surfaces of the waveguide. Depending on the material that makes up the surfaces, portions of light can be absorbed by the material during each interaction. In many cases, this attenuation is small, but can be substantial across a large area where many reflections occur. In many embodiments, a waveguide cell can be printed with varying compositions such that the gratings formed from the optical recording material layer have varying diffraction efficiencies to compensate for the absorption of light from the substrates. Depending on the substrates, certain wavelengths can be more prone to absorption by the substrates. In a multi-layered waveguide design, each layer can be designed to couple in a certain range of wavelengths of light. Accordingly, the light coupled by these individual layers can be absorbed in different amounts by the substrates of the layers. For example, in a number of embodiments, the waveguide is made of a three-layered stack to implement a full color display, where each layer is designed for one of red, green, and blue. In such embodiments, gratings within each of the waveguide layers can be formed to have varying diffraction efficiencies to perform color balance optimization by compensating for color imbalance due to loss of transmission of certain wavelengths of light.


In addition to varying the liquid crystal concentration within the material in order to vary the diffraction efficiency, another technique includes varying the thickness of the waveguide cell. This can be accomplished through the use of spacers. In many embodiments, spacers are dispersed throughout the optical recording material for structural support during the construction of the waveguide cell. In some embodiments, different sizes of spacers are dispersed throughout the optical recording material. The spacers can be dispersed in ascending order of sizes across one direction of the layer of optical recording material. When the waveguide cell is constructed through lamination, the substrates sandwich the optical recording material and, with structural support from the varying sizes of spacers, create a wedge-shaped layer of optical recording material. spacers of varying sizes can be dispersed similar to the modulation process described above. Additionally, modulating spacer sizes can be combined with modulation of material compositions. In several embodiments, reservoirs of HPDLC materials each suspended with spacers of different sizes are used to print a layer of HPDLC material with spacers of varying sizes strategically dispersed to form a wedge-shaped waveguide cell. In a number of embodiments, spacer size modulation is combined with material composition modulation by providing a number of reservoirs equal to the product of the number of different sizes of spacers and the number of different materials used. For example, in one embodiment, the inkjet print head is configured to print varying concentrations of liquid crystal with two different spacer sizes. In such an embodiment, four reservoirs can be prepared: a liquid crystal-free mixture suspension with spacers of a first size, a liquid crystal-free mixture-suspension with spacers of a second size, a liquid crystal-rich mixture-suspension with spacers of a first size, and a liquid crystal-rich mixture-suspension with spacers of a second size. Further discussion regarding material modulation can be found in U.S. application Ser. No. 16/203,071 filed Nov. 18, 2018 entitled “SYSTEMS AND METHODS FOR MANUFACTURING WAVEGUIDE CELLS.” The disclosure of U.S. application Ser. No. 16/203,491 is hereby incorporated by reference in its entirety for all purposes.


Multi-Layered Waveguide Fabrication


Waveguide manufacturing in accordance with various embodiments of the invention can be implemented for the fabrication of multi-layered waveguides. Multi-layered waveguides refer to a class of waveguides that utilizes two or more layers having gratings or other optical structures. Although the discussions below may pertain to gratings, any type of holographic optical structure can be implemented and substituted as appropriate. Multi-layered waveguides can be implemented for various purposes, including but not limited to improving spectral and/or angular bandwidths. Traditionally, multi-layered waveguides are formed by stacking and aligning waveguides having a single grating layer. In such cases, each grating layer is typically bounded by a pair of transparent substrates. To maintain the desired total internal reflection characteristics, the waveguides are usually stacked using spacers to form air gaps between the individual waveguides.


In contrast to traditional stacked waveguides, many embodiments of the invention are directed to the manufacturing of multi-layered waveguides having alternating substrate layers and grating layers. Such waveguides can be fabricated with an iterative process capable of sequentially forming grating layers for a single waveguide. In several embodiments, the multi-layered waveguide is fabricated with two grating layers. In a number of embodiments, the multi-layered waveguide is fabricated with three grating layers. Any number of grating layers can be formed, limited by the tools utilized and/or waveguide design. Compared to traditional multi-layered waveguides, this allows for a reduction in thickness, materials, and costs as fewer substrates are needed. Furthermore, the manufacturing process for such waveguides allow for a higher yield in production due to simplified alignment and substrate matching requirements.


Manufacturing processes for multi-layered waveguides having alternating transparent substrate layers and grating layers in accordance with various embodiments of the invention can be implemented using a variety of techniques. In many embodiments, the manufacturing process includes depositing a first layer of optical recording material onto a first transparent substrate. Optical recording material can include various materials and mixtures, including but not limited to HPDLC mixtures and any of the material formulations discussed in the sections above. Similarly, any of a variety of deposition techniques, such as but not limited to spraying, spin coating, inkjet printing, and any of the techniques described in the sections above, can be utilized. Transparent substrates of various shapes, thicknesses, and materials can be utilized. Transparent substrates can include but are not limited to glass substrates and plastic substrates. Depending on the application, the transparent substrates can be coated with different types of films for various purposes. Once the deposition process is completed, a second transparent substrate can then be placed onto the deposited first layer of optical recording material. In some embodiments, the process includes a lamination step to form the three-layer composite into a desired height/thickness. An exposure process can be implemented to form a set of gratings within the first layer of optical recording material. Exposure processes, such as but not limited to single-beam interferential exposure and any of the other exposure processes described in the sections above, can be utilized. In essence, a single-layered waveguide is now formed. The process can then repeat to add on additional layers to the waveguide. In several embodiments, a second layer of optical recording material is deposited onto the second transparent substrate. A third transparent substrate can be placed onto the second layer of optical recording material. Similar to the previous steps, the composite can be laminated to a desired height/thickness. A second exposure process can then be performed to form a set of gratings within the second layer of optical recording material. The result is a waveguide having two grating layers. As can readily be appreciated, the process can continue iteratively to add additional layers. The additional optical recording layers can be added onto either side of the current laminate. For instance, a third layer of optical recording material can be deposited onto the outer surface of either the first transparent substrate or the third transparent substrate.


In many embodiments, the manufacturing process includes one or more post processing steps. Post processing steps such as but not limited to planarization, cleaning, application of protective coats, thermal annealing, alignment of LC directors to achieve a desired birefringence state, extraction of LC from recorded SBGs and refilling with another material, etc. can be carried out at any stage of the manufacturing process. Some processes such as but not limited to waveguide dicing (where multiple elements are being produced), edge finishing, AR coating deposition, final protective coating application, etc. are typically carried out at the end of the manufacturing process.


In many embodiments, spacers, such as but not limited to beads and other particles, are dispersed throughout the optical recording material to help control and maintain the thickness of the layer of optical recording material. The spacers can also help prevent the two substrates from collapsing onto one another. In some embodiments, the waveguide cell is constructed with an optical recording layer sandwiched between two planar substrates. Depending on the type of optical recording material used, thickness control can be difficult to achieve due to the viscosity of some optical recording materials and the lack of a bounding perimeter for the optical recording layer. In a number of embodiments, the spacers are relatively incompressible solids, which can allow for the construction of waveguide cells with consistent thicknesses. The spacers can take any suitable geometry, including but not limited to rods and spheres. The size of a spacer can determine a localized minimum thickness for the area around the individual spacer. As such, the dimensions of the spacers can be selected to help attain the desired optical recording layer thickness. The spacers can take any suitable size. In many cases, the sizes of the spacers range from 1 to 30 μm. The spacers can be made of any of a variety of materials, including but not limited to plastics (e.g., divinylbenzene), silica, and conductive materials. In several embodiments, the material of the spacers is selected such that its refractive index does not substantially affect the propagation of light within the waveguide cell.


In many embodiments, the first layer of optical recording material is incorporated between the first and second transparent substrates using vacuum filling methods. In a number of embodiments, the layer of optical recording materials is separated in different sections, which can be filled or deposited as appropriate depending on the specific requirements of a given application. In some embodiments, the manufacturing system is configured to expose the optical recording material from below. In such embodiments, the iterative multi-layered fabrication process can include turning over the current device such that the exposure light is incident on a newly deposited optical recording layer before it is incident on any formed grating layers.


In many embodiments, the exposing process can include temporarily “erasing” or making transparent the previously formed grating layer such that they will not interfere with the recording process of the newly deposited optical recording layer. Temporarily “erased” gratings or other optical structures can behave similar to transparent materials, allowing light to pass through without affecting the ray paths. Methods for recording gratings into layers of optical recording material using such techniques can include fabricating a stack of optical structures in which a first optical recording material layer deposited on a substrate is exposed to form a first set of gratings, which can be temporarily erased so that a second set of gratings can be recorded into a second optical recording material layer using optical recording beams traversing the first optical recording material layer. Although the recording methods are discussed primarily with regards to waveguides with two grating layers, the basic principle can be applied to waveguides with more than two grating layers.


Multi-layered waveguide fabrication processes incorporating steps of temporarily erasing a grating structure can be implemented in various ways. Typically, the first layer is formed using conventional methods. The recording material utilized can include material systems capable of supporting optical structures that can be erased in response to a stimulus. In embodiments in which the optical structure is a holographic grating, the exposure process can utilize a crossed-beam holographic recording apparatus. In a number of embodiments, the optical recording process uses beams provided by a master grating, which may be a Bragg hologram recorded in a photopolymer or an amplitude grating. In some embodiments, the exposure process utilizes a single recording beam in conjunction with a master grating to form an interferential exposure beam. In addition to the processes described, other industrial processes and apparatuses currently used in the field to fabricate holograms can be used.


Once a first set of gratings is recorded, additional material layers can be added similar to the processes described above. During the exposure process of any material layer after the first material layer, an external stimulus can be applied to any previously formed gratings to render them effectively transparent. The effectively transparent grating layers can allow for light to pass through to expose the new material layer. External stimulus/stimuli can include optical, thermal, chemical, mechanical, electrical, and/or magnetic stimuli. In many embodiments, the external stimulus is applied at a strength below a predefined threshold to produce optical noise below a predefined level. The specific predefined threshold can depend on the type of material used to form the gratings. In some embodiments, a sacrificial alignment layer applied to the first material layer can be used to temporarily erase the first set of gratings. In some embodiments, the strength of the external stimulus applied to the first set of gratings is controlled to reduced optical noise in the optical device during normal operation. In several embodiments, the optical recording material further includes an additive for facilitating the process of erasing the gratings, which can include any of the methods described above. In a number of embodiments, a stimulus is applied for the restoration of an erased layer.


The clearing and restoration of a recorded layer described in the process above can be achieved using many different methods. In many embodiments, the first layer is cleared by applying a stimulus continuously during the recording of the second layer. In other embodiments, the stimulus is initially applied, and the grating in the cleared layer can naturally revert to its recorded state over a timescale that allows for the recording of the second grating. In other embodiments, the layer stays cleared after application of an external stimulus and reverts in response to another external stimulus. In several embodiments, the restoration of the first optical structure to its recorded state can be carried out using an alignment layer or an external stimulus. An external stimulus used for such restoration can be any of a variety of different stimuli, including but not limited to the stimulus/stimuli used to clear the optical structure. Depending on the composition material of the optical structure and layer to be cleared, the clearing process can vary. Further discussion regarding the multi-layered waveguide fabrication utilizing external stimuli can be found in U.S. application Ser. No. 16/522,491 filed Jul. 25, 2019 entitled “Systems and Methods for Fabricating a Multilayer Optical Structure.” The disclosure of U.S. application Ser. No. 16/522,491 is hereby incorporated by reference in its entirety for all purposes.


Waveguides Incorporating Integrated Gratings


Waveguides in accordance with various embodiments of the invention can include different grating configurations. In many embodiments, the waveguide includes at least one input coupler and at least two integrated gratings. In some embodiments, at least two integrated gratings can be implemented to work in combination to provide beam expansion and beam extraction for light coupled into the waveguide by the input coupler. Multiple integrated gratings can be implemented by overlapping integrated gratings across different grating layers or by multiplexing the integrated gratings. In a number of embodiments, the integrated gratings are partially overlapped or multiplexed. Multiplexed gratings can include the superimposition of at least two gratings having different grating prescriptions within the same volume. Gratings having different grating prescriptions can have different grating vectors and/or grating slant with respect to the waveguide's surface. The magnitude of the grating vector of a grating can be defined as the inverse of the grating period while its direction can be defined as the direction orthogonal to the fringes of the grating.


In several embodiments, an integrated can be implemented to perform both beam expansion and beam extraction. An integrated grating can be implemented with one or more grating prescriptions. In a number of embodiments, the integrated grating is implemented with at least two grating prescriptions. In further embodiments, the integrated grating is implemented with at least three grating prescriptions. In many embodiments, two grating prescriptions within the integrated grating have similar clock angles. In some embodiments, the two grating prescriptions have different slant angles. An integrated grating in accordance with various embodiments of the invention can be implemented using a variety of types of gratings, such as but not limited to SRGs, SBGs, holographic gratings, and other types of gratings including those described in the sections above. In a number of embodiments, the integrated grating includes two surface relief gratings. In other embodiments, the integrated grating includes two holographic gratings.


The integrated grating can include at least two grating prescriptions that are at least partially overlapped or multiplexed. In further embodiments, the integrate grating includes at least two grating prescriptions that are fully overlapped or multiplexed. In a number of embodiments, the integrated grating includes multiplexed or overlapping gratings that have different sizes and/or shapes—i.e., one grating may be larger than the other, resulting in only partial multiplexing of the larger grating. As can readily be appreciated, various multiplexed and overlapping configurations may be implemented as appropriate depending on the specific requirements of a given application. Although the discussions below may describe configurations as implementing multiplexed or overlapping gratings, such gratings can be substituted for one another as appropriate depending on the application. In several embodiments, the integrated gratings are implemented by a combination of both multiplexed and overlapping gratings. For example, two or more sets of multiplexed gratings can be overlapped across two or more grating layers.


Integrated gratings in accordance with various embodiments of the invention can be utilized for various purposes including but not limited to implementing full color waveguides and addressing some key problems in conventional waveguide architectures. Other advantages include reduced material and waveguide refractive index requirements and reduced waveguide dimensions resulting from the overlapping and/or multiplexing nature of the integrated gratings. Such configurations can allow for large field-of-view waveguides, which would ordinarily incur unacceptable increases in waveguide form factor and refractive index requirements. In many embodiments, a waveguide is implemented with at least one substrate having a low refractive index. In some embodiments, the waveguide is implemented with a substrate having a refractive index of lower than 1.8. In further embodiments, the waveguide is implemented with a substrate having a refractive index of not more than ˜1.5.


Integrated gratings that can provide beam expansion and beam extraction—i.e., the functions of conventional fold and output gratings—can result in a much smaller grating area, enabling a small form factor and lower fabrication cost. By integrating the functions of beam expansion and extraction, instead of performing them serially as in traditional waveguides, beam expansion and extraction can be accomplished with ˜50% of the grating interactions normally required, cutting down haze in the same proportion in the case of birefringent gratings. A further advantage is that, as a result of the greatly shortened light paths, the number of beam bounces at glass/air interface(s) is reduced, rendering the output image less sensitive to substrate nonuniformities. This can enable higher quality images and the potential to use less expensive, lower specification substrates.


In many embodiments, the grating vectors of the input coupler and integrated gratings are arranged to provide a substantially zero resultant vector. The grating vectors of the input coupler and integrated gratings can be arranged to form a triangular configuration. In several embodiments, the grating vectors can be arranged in an equilateral triangular configuration. In some embodiments, the grating vectors can be arranged in an isosceles triangular configuration where at least two grating vectors have equal magnitudes. In further embodiments, the grating vectors are arranged in an isosceles right triangular configuration. In a number of embodiments, the grating vectors are arranged in a scalene triangular configuration. Another waveguide architecture includes integrated diffractive elements with grating vectors aligned in the same direction for providing horizontal expansion for one set of angles and extraction for a separate set of angles. In several embodiments, one or more of the integrated gratings are asymmetrical in their general shape. In some embodiments, one or more of the integrated gratings has at least one axis of symmetry in their general shape. In a number of embodiments, the gratings are designed to sandwich an electro-active material, enabling switching between clear and diffracting states for certain types of gratings such as but not limited to HPDLC gratings. The gratings can be a surface relief or a holographic type.


In many embodiments, a waveguide supporting at least one input coupler and first and second integrated gratings is implemented. The grating structures can be implemented in single- or multi-layered waveguide designs. In single-layered designs, the integrated gratings can be multiplexed. In embodiments where each integrated grating contains at least two multiplexed gratings, the multiplexed integrated gratings can contain at least four multiplexed gratings. As described above, any individual multiplexed grating can be partially or completely multiplexed with the other gratings. In some embodiments, a multi-layered waveguide is implemented with overlapping integrated gratings. In further embodiments, the integrated gratings are partially overlapped. Each of the integrated gratings can be a separate grating or multiplexed gratings.


In many embodiments, the waveguide architecture is designed to couple the input light into two bifurcated paths using an input coupler. Such configurations can be implemented in various ways. In some embodiments, a multiplexed input grating is implemented to couple input light into two bifurcated paths. In other embodiments, two input gratings are implemented to separately couple input light into two bifurcated paths. The two input gratings can be implemented in the same layer or separately in two layers. In a number of embodiments, two overlapping or partially overlapping input gratings are implemented to couple input light into two bifurcated paths. In many embodiments, the input coupler includes a prism. In further embodiments, the input coupler includes a prism and any of the input grating configuration described above.


In addition to various input coupler architectures, the first and second integrated gratings can be implemented in a variety of configurations. Integrated gratings in accordance with various embodiments of the invention can be incorporated into waveguides to perform the dual function of two-dimensional beam expansion and beam extraction. In several embodiments, the first and second integrated gratings are crossed gratings. As described above, some waveguide architectures include designs in which input light is coupled into two bifurcated paths. In such designs, the two bifurcated paths are each directed towards a different integrated grating. As can readily be appreciated, such configurations can be designed to bifurcate the input light based on various light characteristics, including but not limited to angular and spectral bandwidths. In some embodiments, light can be bifurcated based on polarization states—e.g., input unpolarized light can be bifurcated into S and P polarization paths. In many embodiments, each of the integrated gratings performs either beam expansion in a first direction or beam expansion in a second direction different from the first direction according to the field-of-view portion being propagated through the waveguide. The first and second directions can be orthogonal to one another. In other embodiments, the first and second directions are not orthogonal to one another. Each integrated grating can provide expansion of the light in a first dimension while directing the light towards the other integrated grating, which provides expansion of the light in a second dimension and extraction. For example, many grating architectures in accordance with various embodiments of the invention include an input configuration for bifurcating input light into first and second portions of light. A first integrated grating can be configured to provide beam expansion in a first direction for the first and second portions of light and to provide beam extraction for the second portion of light. Conversely, the second integrated grating can be configured to provide beam expansion in a second direction for the first and second portions of light and to provide beam extraction for the first portion of light.


In a number of embodiments, the first integrated grating includes multiplexed first and second grating prescriptions, and the second integrated grating includes multiplexed third and fourth grating prescriptions. In such embodiments, the first grating prescription can be configured to provide beam expansion in a first direction for the first portion of light and to redirect the expanded light towards the fourth grating prescription. The second grating prescription can be configured to provide beam expansion in the first direction for the second portion of light and to extract the light out of the waveguide. The third grating prescription can be configured to provide beam expansion in a second direction for the second portion of light and to redirect the expanded light towards the second grating prescription. The fourth grating prescription can be configured to provide beam expansion in the second direction for the first portion of light and to extract the light out of the waveguide. As can readily be appreciated, the integrated gratings can be implemented with overlapping grating prescriptions instead of multiplexed grating prescriptions. In many embodiments, the first and second grating prescriptions have the same clock angle but different grating slants. In some embodiments, the third and fourth grating prescriptions have the same clock angle, which is different from the clock angles of the first and second grating prescriptions. In a number of embodiments, the first, second, third, and fourth grating prescriptions all have different clock angles. In several embodiments, the first, second, third, and fourth grating prescriptions all have different grating periods. In a number of embodiments, the first and third grating prescriptions have the same grating period, and the second and fourth grating prescriptions have the same grating period.



FIG. 1 conceptually illustrates a waveguide display in accordance with an embodiment of the invention. As shown, the apparatus 100 includes a waveguide 101 supporting an input grating 102 and a grating structure 103. Each grating can be characterized by a grating vector defining the orientation of the grating fringes in the plane of the waveguide. A grating can also be characterized by a K-vector in 3D space, which in the case of a Bragg grating is defined as the vector normal to the grating fringes. The waveguide reflecting surfaces are parallel to the XY plane of the Cartesian reference frame inset into the drawing. In some embodiments, the X and Y axes can correspond to global horizontal and vertical axes in the reference frame of a user of the display.


In the illustrative embodiment of FIG. 1, the input grating 102 includes a Bragg grating 104. In other embodiments, the input grating 102 is a surface relief grating. The input grating 102 can be implemented to bifurcate input light into two different portions. In further embodiments, the input grating 102 includes two multiplexed gratings having different grating prescriptions. In other embodiments, the input grating 102 includes two overlaid surface relief gratings. The grating structure 103 includes two effective gratings 105,106 that have different grating vectors. The gratings 105,106 can be integrated gratings implemented as surface relief gratings or volume gratings. In many embodiments, the gratings 105,106 are multiplexed in a single layer. In several embodiments, the waveguide 101 provides two effective gratings at all points across the grating structure 103 by overlaying more than two separated gratings in the grating structure. For ease of clarity, the gratings 105,106 that form the grating structure 103 will be referred to as first and second integrated gratings since their role in the grating structure includes providing beam expansion by changing the direction of the guided beam in the plane of the waveguide and beam extraction. In various embodiments, the integrated gratings 105,106 perform two-dimensional beam expansion and extraction of light from the waveguide 101. The field-of-view coupled into the waveguide can be partitioned into first and second portions, which can be bifurcated as such by the input grating 102. In many embodiments, the first and second portions correspond to positive and negative angles, vertically or horizontally. In some embodiments, the first and second portions may overlap in angle space. In a number of embodiments, the first portion of the field-of-view is expanded in a first direction by the first integrated grating and, in a parallel operation, expanded in a second direction and extracted by the second integrated grating. When a ray interacts with a grating fringe, some of the light that meets the Bragg condition is diffracted while non-diffracted light proceeds along its TIR path up to the next fringe, continuing the expansion and extraction process. Considering next the second portion of the field-of-view, the role of the gratings is reversed such that the second portion of the field is expanded in the second direction by the second integrated grating and expanded in the first direction and extracted by the first integrated grating.


In many embodiments, the integrated gratings 105,106 in the grating structure 103 can be asymmetrically disposed. In some embodiments, the integrated gratings 105,106 have grating vectors of different magnitudes. In several embodiments, the input grating 102 can have a grating vector offset from the Y-axis. In a number of embodiments, it is desirable that the vector combination of the grating vectors of the input grating 102 and the integrated gratings 105,106 in the grating structures 103 gives a resultant vector of substantially zero magnitude. As described above, the grating vectors can be arranged in an equilateral, isosceles, or scalene triangular configuration. Depending on the application, certain configurations may be more desirable.


In many embodiments, at least one grating parameter selected from the group of grating vector direction, K-vector direction, grating refractive index modulation, and grating spatial frequency can vary spatially across at least one grating implemented in the waveguide for the purposes of optimizing angular bandwidth, waveguide efficiency, and output uniformity to increase the angular response and/or efficiency. In some embodiments, at least one of the gratings implemented in the waveguide can employ rolled K-vectors—i.e., spatially varying K-vectors. In several embodiments, the spatial frequencies of the grating(s) are matched to overcome color dispersion.


The apparatus 100 of FIG. 1 further includes an input image generator. In the illustrative embodiment, the input image generator includes a laser scanning projector 107 that provides a scanned beam 107A over a field-of-view that is coupled into total internal reflection paths (TIR paths) (108A,108B, for example) in the waveguide by the input grating 102 and is directed towards the integrated gratings 105,106 to be expanded and extracted (as shown by rays 109A,109B, for example). In some embodiments, the laser projector 107 is configured to inject a scanned beam into the waveguide. In several embodiments, the laser projector 107 can have a scan pattern modified to compensate for optical distortions in the waveguide. In a number of embodiments, the laser scanning pattern and/or grating prescriptions in the input grating 102 and grating structure 103 can be modified to overcome illumination banding. In various embodiments, the laser scanning projector 107 can be replaced by an input image generator based on a microdisplay illuminated by a laser or an LED. In many embodiments, the input image can be provided by an emissive display. A laser projector can offer the advantages of improved color gamut, higher brightness, wider field-of-view, high resolution, and a very compact form factor. In some embodiments, the apparatus 100 can further include a despeckler. In further embodiments, the despeckler can be implemented as a waveguide device. Although FIG. 1 shows a specific waveguide application implementing integrated gratings, such structures and grating architectures can be utilized for various applications. In a number of embodiments, a waveguide having integrated gratings can be implemented in a single grating layer for a full color application. In many embodiments, more than one grating layer implementing integrated gratings are implemented. Such configurations can be implemented to provide wider angular or spectral bandwidth operation. In some embodiments, a multi-layered waveguide is implemented to provide a full color application. In several embodiments, a multi-layered waveguide is implemented to provide a wider field-of-view. In many embodiments, a full color waveguide having at least a ˜50° diagonal field-of-view is implemented using integrated gratings. In some embodiments, a full color waveguide having at least a ˜100° diagonal field-of-view is implemented using integrated gratings.



FIG. 2 conceptually illustrates a color waveguide display having two blue-green diffracting waveguides and two green-red diffracting waveguides in accordance with an embodiment of the invention. FIG. 2 schematically illustrates an apparatus 200 with an architecture similar to that of FIG. 1 but includes the use of four stacked waveguides 201A-201D, including two blue-green diffracting waveguides and two green-red diffracting waveguides. As shown, the apparatus 200 includes a laser scanning projector 202 that provides scanning beams 202A-202D. In the illustrative embodiment, the waveguides providing each color band can be configured to propagate different field-of-view portions. For example, in some embodiments, each of the waveguides operating in a given color band provides a field-of-view of 35° h×35° v (50° diagonal), yielding 70° h×35° v (78° diagonal) field-of-view for each color band when the two fields of view are combined. In many embodiments, the scanning beams can be generated using red, green, and blue laser emitters with each light of two laser wavelengths selected from red, green, and blue being injected into each waveguide according to the color band intended to be propagated by the waveguide. The laser beam intensities can be modulated for the purposed of color balancing. The stacked waveguides can be arranged in any order. In several embodiments, consideration of factors such as but not limited to color crosstalk can influence the stack order. In a number of embodiments, the integrated gratings of one waveguide are partially or completely overlapped with the integrated gratings of another waveguide. As described above, the integrated gratings can be implemented in various configurations. In some embodiments, the integrated gratings are implemented across more than one grating layer. In several embodiments, each of the integrated gratings includes two multiplexed grating prescriptions.


In many embodiments, the optical geometrical requirements for combining waveguide paths for more than one field-of-view or color band can dictate an asymmetric arrangement of the gratings used in the input grating(s) and the integrated gratings. In other words, the grating vectors of the input grating and the integrated gratings are not equilaterally disposed or symmetrically disposed about the Y axis.


Although FIGS. 1 and 2 show specific configurations of waveguide architectures, various structures can be implemented as appropriate depending on the specific requirements of a given application. In some embodiments, a six-layered waveguide is implemented for full color applications. The six-layered waveguide can be implemented with three pairs of layers configured for color bands of red, green, and blue, respectively. In such embodiments, waveguides within each pair can be configured for different field-of-view portions.


In some embodiments, to perform beam expansion and extraction, the waveguide is designed such that each point of interaction of a ray with a grating structure occurs in a region of overlapping effective gratings. In a non-fully overlapped grating configuration, the grating structures will have regions in which the first and second effective gratings only partially overlap such that some rays interact with only one of the effective gratings. In many embodiments, the grating structures are formed from two multiplexed gratings. The first of the multiplexed grating 300, which is shown in FIG. 3A, multiplexes a first effective grating 301 with one 302 having a different effective grating vector (or clock angle). The second multiplexed grating 310, which is shown in FIG. 3B, multiplexes a second effective grating 311 with one 312 having a different effective grating vector. FIGS. 3A-3B are intended to illustrate the relative orientations of the multiplexed gratings and do not represent the shapes of the gratings as implemented. In some embodiments, the gratings 301,302 and 311,312 may differ in shape from each other. In the embodiments of FIGS. 3A-3B, the grating vector (clock angle) of the second multiplexed grating is identical to the first grating vector of the first multiplexed grating. Likewise, the grating vector of the first multiplexed grating is identical to the second grating vector of the second multiplexed grating. Turning now to FIG. 3C, it should be apparent that when the gratings are overlapped 320, there are two gratings of different clock angles at any point in the grating structures (e.g., in the regions of partial overlap—labeled by numerals 2-4 in FIG. 3C) of the effective gratings. In the regions of full overlap (labelled by numeral 1 in FIG. 3C) of the effective gratings, there will be four gratings overlapping any point in the grating structures. However, in such regions, each pair of gratings having the same clock angle results in only two overlapping effective gratings. It should be appreciated from the above description that, in many embodiments, the two pairs of multiplexed gratings could be implemented as one multiplexed grating formed from the four gratings 301,302 and 311, 312.



FIGS. 4A-4C schematically illustrate ray propagation through a grating structure 400 having an input grating 401 and two integrated gratings 402,403 in accordance with an embodiment of the invention. The ray propagation is illustrated using unfolded ray paths to clarify the interaction between the rays and gratings. As shown in the schematic diagram of FIG. 4A, light from a first portion of the FOV shows a ray 404A coupled into a TIR path in the waveguide by the input grating 401, a TIR ray 405A leading to the first integrated grating 402, a TIR ray 406A diffracted by the first integrated grating 403 (which also provides beam expansion in a first direction), and a ray 407A diffracted out of the waveguide by the second integrated grating 403 (which also provides beam expansion in a second direction). Turning now to the propagation of the second portion of the FOV, which is shown in FIG. 4B, the ray path includes a ray 404B coupled into a TIR path in the waveguide by the input grating 401, a TIR ray 405B leading to the second integrated grating 403, a TIR ray 406B diffracted by the second integrated grating 403 (which also provides beam expansion in the second direction), and a TIR ray 407B diffracted out of the waveguide by the first integrated grating 402 (which also provides beam expansion in the first direction). FIG. 4C shows the combined paths of FIGS. 4A-4B with the integrated gratings overlaid. FIG. 4C also shows the partial overlapping nature of the integrated gratings along the paths of the rays. As can readily be appreciated, such configurations can be modified as appropriate depending on the specific requirements of a given application. Gratings of various shapes can be utilized. An integrated grating can include two multiplexed gratings, one providing the function of a traditional fold grating and another for extracting the light similar to a traditional output grating. Each of the two multiplexed gratings within a single integrated grating can be configured to act on different portions of light bifurcated by the input configuration. In a number of embodiments, the two multiplexed gratings within a single integrated grating can have different shapes—i.e., certain areas of one or both of the gratings are not multiplexed. In some embodiments, more than two gratings are multiplexed for a single integrated grating. In many embodiments, the integrated gratings are multiplexed in a single grating layer. In several embodiments, the integrated gratings are fully multiplexed or overlapped. In other embodiments, only portions of the integrated gratings are multiplexed overlapped.


As described above, grating architectures including those implementing integrated gratings can be described and visualized using grating vectors. In many embodiments, three grating vectors, which can represent traditional input, fold, and output functions, can be implemented with a substantially zero resultant vector. FIG. 5A conceptually illustrates a grating vector configuration with a substantially zero resultant vector in accordance with an embodiment of the invention. As shown, the configuration 500 includes three grating vectors 501-503 represented as k1, k2, and k3, respectively. With three grating vectors, configurations having a substantially zero resultant vector can provide various triangular configurations, such as but not limited to equilateral triangles, isosceles triangles, and scalene triangles. In the case of architectures utilizing integrated gratings, more than one triangular configuration can be visualized. FIG. 5B conceptually illustrates one such embodiment. As shown, the configuration 510 illustrates two triangular configurations. One triangular configuration is formed by grating vectors k1, k2, and k3 (511-513), and a second configuration is formed by grating vectors k1, k4, and k5 (511, 514, and 515). In the illustrative embodiment, grating vector k1 represents the function of the input coupler, grating vectors k2 and k5 represent the functions of a first integrated grating, and grating vectors k4 and k3 represent the functions of a second integrated grating.


In many embodiments, the grating vector configuration implemented can include various triangular configurations. Typically, the magnitudes of the grating vectors can dictate the resulting triangular configuration. In some embodiments, an equilateral triangular configuration is implemented where all grating vectors are of similar, or substantially similar, magnitude. In cases where integrated gratings are implemented, the configuration can include two triangular configurations. In a number of embodiments, the grating vector configuration includes at least one isosceles triangle where at least two of the grating vectors have similar, or substantially similar, magnitudes. FIG. 5C conceptually illustrates a grating vector configuration with two isosceles triangles in accordance with an embodiment of the invention. As shown, the configuration 520 forms two isosceles triangles due to grating vectors k2-k5 having similar magnitudes. In several embodiments, the grating configuration includes at least one scalene triangle. FIG. 5D conceptually illustrates a grating vector configuration with two scalene triangles in accordance an embodiment of the invention. As shown, the configuration 530 forms two scalene triangles. In the illustrative embodiment, the two scalene triangles are mirrored—i.e., grating vectors k2 and k4 are equal in magnitude, and grating vectors k3 and k5 are equal in magnitude. FIG. 5E conceptually illustrates a grating vector configuration with two different scalene triangles in accordance with an embodiment of the invention. As shown, the configuration 540 includes two different scalene triangles with grating vectors k2-k5 having different magnitudes.


Although FIGS. 5A-5E illustrate specific grating vector configurations, various other configurations can be implemented as appropriate depending on the specific requirements of a given application. For example, in some embodiments, the input coupler is implemented to have two different grating vectors. Such configurations utilize an input grating having two different grating prescriptions, which can implemented using overlapping or multiplexed grating prescriptions. In the embodiments illustrated in FIGS. 5B-5E, the configurations shown can be due to the implementation of integrated gratings. In many embodiments, grating vectors k2 and k5 represent the functions of a first integrated grating, and grating vectors k4 and k3 represent the functions of a second integrated grating. In several embodiments, each grating vector k1 represent a different grating prescription. For example, many grating architectures in accordance with various embodiments of the invention can implement integrated gratings that each contain two different grating prescriptions. In such cases, grating vectors k2 and k5 can respectively represent the two different grating prescriptions of a first integrated grating, and grating vectors k4 and k3 can respectively represent the two different grating prescriptions of a second integrated grating.



FIG. 6 conceptually illustrates a schematic plan view of a grating architecture 600 having an input grating and integrated gratings in accordance with an embodiment of the invention. As shown, the grating architecture 600 includes an input coupler 601. The input coupler 601 can be a Bragg grating or a surface relief grating. In many embodiments, the input coupler 601 includes at least two gratings. In such embodiments, individual input gratings can be configured to couple in different portions of input light, which can be based on angular or spectral characteristics. In some embodiments, the input couple 601 includes two overlapped gratings. In other embodiments, the input coupler 601 includes two multiplexed gratings. The grating architecture 600 further includes first (bold lines) and second (dashed lines) integrated gratings. In the illustrative embodiment, the first integrated grating includes a first grating 602 having a first grating prescription and a second grating 603 having a second grating prescription. As shown, the second grating 603 is smaller than the first grating 602 and can be entirely multiplexed within the volume of the first grating 602. In some embodiments, the first and second gratings 602,603 are overlapped across different grating layers. In several embodiments, the first and second gratings 602,603 are adjacent or nearly adjacent one another and are neither overlapped nor multiplexed. In a number of embodiments, the first and second gratings 602,603 have the same clock angles but different grating prescriptions.


In many embodiments, the configuration of the first integrated grating is applied similarly to the second integrated grating but flipped about an axis. For example, the illustrative embodiment in FIG. 6 shows the second integrated grating having third 604 and fourth 605 gratings with shapes corresponding to the first and second gratings 602,603, respectively. The third grating 604 has a third grating prescription, and the fourth grating 605 has a fourth grating prescription. Similar to the first integrated grating, the third and fourth gratings 604,605 can have the same clock angles but different grating prescriptions. In a number of embodiments, the first and second gratings 602,603 are clocked at an angle different from the third and fourth gratings 604,605. Again, the overlapping and multiplexing nature of the third and fourth gratings 604,605 can be implemented in a similar manner as the first and second gratings 602,603.


In the illustrative embodiment of FIG. 6, the first and third integrated gratings are partially overlapped with one another such that the second and fourth gratings 603,605 are also partially overlapped. In the illustrative embodiment, the second and fourth gratings 603,605 are multiplexed within the first and third gratings 602,604, and, as such, the waveguide architecture includes an area 606 where four grating prescriptions are active. In embodiments where the first and second integrated gratings are implemented in a single layer, area 606 would contain four multiplexed gratings. In other embodiments, the first and second integrated gratings are implemented across different grating layers.


During operation, input light incident on the input grating 601 can be bifurcated into two portions of light traveling in TIR paths within the waveguide. One portion can be directed towards the first grating 602 while the other portion can be directed towards the third grating 604. The first grating 602 can be configured to provide beam expansion in a first direction for incident light and to redirect the incident light towards the fourth grating 605. The fourth grating 605 can be configured to provide beam expansion in a second direction for incident light and to extract the light out of the waveguide. On the other hand, the third grating 604 can be configured to provide beam expansion in the second direction for incident light and to redirect the incident light towards the second grating 603. The second grating 603 can be configured to provide beam expansion in the first direction for incident light and to extract the light out of the waveguide.



FIG. 7 shows a flow diagram conceptually illustrating a method of displaying an image in accordance with an embodiment of the invention. Referring to the flow diagram, the method 700 includes providing (701) a waveguide supporting an input grating, a first integrated grating, and a second integrated grating. In many embodiments, the first integrated grating partially overlaps the second integrated grating. In some embodiments, the integrated gratings are fully overlapped. The first and second integrated gratings can include multiplexed pairs of different K-vector gratings. A first field-of-view portion can be coupled (702) into the waveguide via the input grating and directed towards the first integrated grating. A second field-of-view portion can be coupled (703) into the waveguide via the input grating and directed towards the second integrated grating. The first field-of-view portion light can be expanded (704) in a first direction using the first integrated grating. The first field-of-view portion light can be expanded in a second direction and extracted (705) from the waveguide using the second integrated grating. The second field-of-view portion light can be expanded in the second direction (706) using the second integrated grating. The second field-of-view portion light can be expanded in the first direction and extracted (707) from the waveguide using the first integrated grating.


As described in the sections above, integrated gratings can be implemented in a variety of different ways. In many embodiments, an integrated grating is implemented with two gratings that have the same clock angle but different grating prescriptions. In further embodiments, the two gratings are multiplexed. FIG. 8 shows a flow diagram conceptually illustrating a method of displaying an image utilizing integrated gratings containing multiple gratings in accordance with an embodiment of the invention. Referring to the flow diagram, the method 800 includes providing (801) a waveguide supporting an input grating, first and second gratings having a first clock angle, and third and fourth gratings having a second clock angle, where the first and third grating at least partially overlaps. In many embodiments, the first integrated grating partially overlaps the second integrated grating. In some embodiments, the integrated gratings are fully overlapped. The first and second integrated gratings can include multiplexed pairs of different K-vector gratings. A first field-of-view portion can be coupled (802) into the waveguide via the input grating and directed towards the first grating. A second field-of-view portion can be coupled (803) into the waveguide via the input grating and directed towards the third grating. The first field-of-view portion light can be expanded (804) in a first direction using the first grating and redirected towards the fourth grating. The first field-of-view portion light can be expanded in a second direction and extracted (805) from the waveguide using the fourth grating. The second field-of-view portion light can be expanded in the second direction (806) using the third grating and redirected towards the second grating. The second field-of-view portion light can be expanded in the first direction and extracted (807) from the waveguide using the second grating.


Although FIGS. 6-8 illustrate specific waveguide configurations and methods of displaying an image, many different methods can be implemented in accordance with various embodiments of the invention. For example, in some embodiments, more than one input grating is utilized. In other embodiments, the input configuration includes a prism. Such methods and implemented waveguides can also be configured to improve performance and/or provide various different functions. In many embodiments, the waveguide apparatus includes at least one grating with spatially-varying pitch. In some embodiments, each grating has a fixed K vector. In a number of embodiments, at least one of the gratings is a rolled k-vector grating according to the embodiments and teachings disclosed in the cited references. Rolling the K-vectors can allow the angular bandwidth of the grating to be expanded without the need to decrease the grating thickness or to utilize multiple grating layers. In some embodiments a rolled K-vector grating includes a waveguide portion containing discrete grating elements having differently aligned K-vectors. In some embodiments, a rolled K-vector grating comprises a waveguide portion containing a single grating element within which the K-vectors undergo a smooth monotonic variation in direction. In some of the embodiments describe rolled K-vector gratings are used to input light into the waveguide. In some embodiments, waveguides having two integrated gratings can be implemented as single-layered or multi-layered waveguides. In several embodiments, a multi-layered waveguide is implemented with more than two integrated gratings. As can readily be appreciated, the specific architecture and configuration implemented can depend on a number of different factors. In some embodiments, the position of the input grating relative to the integrated gratings can be dictated by various factors, including but not limited to projector relief and the input pupil diameter and vergence. In many applications, it is desirable for the distance between the input grating and the integrated gratings to be minimized to provide a waveguide having a small form factor. The field ray angle paths required to fill the eyebox typically dominate the waveguide height. In many cases, the height of waveguide grows non-linearly with projector relief. In some embodiments, the pupil diameter does not have a significant impact on the footprint of the waveguide. A converging or diverging pupil can be used to reduce the local angle response at any location on the input grating.


In some embodiments, the waveguide configuration implemented can depend on the configuration of the input image generator/projector. FIG. 9 conceptually illustrates a profile view 900 of two overlapping waveguide portions implementing integrated gratings in accordance with an embodiment of the invention. In the illustrative embodiment, the two-layered waveguide is designed for a high field-of-view application implemented with a converging projector pupil input beam, indicated by rays 901. As shown, the apparatus includes a first waveguide 902 containing a first grating layer 903 having a first set of two integrated gratings and a second waveguide 904 containing a second grating layer 905 having a second set of two integrated gratings that partially overlaps the first set of two integrated gratings. The grating layers 903,905 having integrated gratings can operate according to the principles discussed in the sections above. The output beam from the waveguides is generally indicated by rays 906 intersecting the eyebox 907. In the illustrated embodiment, the eyebox has dimensions 10.5 mm.×9.5 mm., an eye relief of 13.5 mm, and a laser projector to waveguide separation of 12 mm. As can readily be appreciated, such dimensions and specifications can be specifically tailored depending on the requirements of a given application.



FIG. 10 conceptually illustrates a schematic plan view 1000 of a grating architecture having two sets of integrated gratings in accordance with an embodiment of the invention. As shown, the grating configuration includes first and second input gratings 1001,1002, forming the combined input grating area 1003 indicated by the shaded area. In some embodiments, each of the input gratings includes a set of multiplexed or overlapping gratings. The grating configuration further includes a first set of grating structures having first and second integrated gratings 1004,1005 and a second set of grating structures having third and fourth integrated gratings 1006,1007. In the illustrative embodiment, each set of integrated gratings is shaped and disposed asymmetrically. Such configurations can be implemented as appropriate depending on several factors. In the embodiment of FIG. 10, the asymmetrical grating architecture can be implemented for operation with a converging projector pupil configuration, such as the one shown in FIG. 9. Furthermore, different grating characteristics can be implemented and tuned for different applications. FIG. 11 conceptually illustrates a plot 1100 of diffraction efficiency versus angle for a waveguide for diffractions occurring at different field-of-view angles in accordance with an embodiment of the invention. As shown, the waveguide is tuned to have three different peak diffraction efficiencies, with two different peaks 1101,1102 for the “fold” interaction and one 1103 for the “output.” In some embodiments, light undergoes a dual interaction within the grating. Such gratings can be designed to have high diffraction efficiencies for two different incident angles. Turning back to FIG. 10, the first and second set of grating structures can be implemented as partially overlapping structures, forming a combined output grating area 1008 as indicated by the shaded area. The eyebox 1009 is overlaid on the drawing and is indicated by the dark shaded area. In the illustrative embodiment, the waveguide apparatus is configured to provide a FOV of 120 degrees diagonal. As shown in FIGS. 9-10, in some embodiments, displays providing a FOV of 120 degrees diagonal can be configured with a projector to waveguide distance of 12 mm and an eye relief of 13.5 mm., which is compatible with many glasses inserts. In some embodiments, the display provides an eyebox of 10.5 mm.×9.5 mm., which can provide easy wearability. FIG. 12 shows the viewing geometry of such a waveguide. As can readily be appreciated, the grating configuration illustrated by FIG. 10 can be implemented in a variety of waveguide architectures. In some embodiments, both input gratings and both sets of grating structures are implemented in a single grating layer, with the overlapping portions multiplexed. In several embodiments, the first input grating and the first set of grating structures are implemented in a first grating layer while the second input grating and the second set of grating structures are implemented in a second grating layer. In a number of embodiments, the first, second, third, and fourth integrated gratings are implemented across four grating layers.



FIG. 13 conceptually illustrates the field-of-view geometry for a binocular display with binocular overlap between the left and right eye images provided by a waveguide in accordance with an embodiment of the invention. Binocular displays utilizing various grating architectures, such as the one described in FIGS. 9-10. can be implemented. In the illustrated embodiment, the waveguide is a color waveguide that includes a stack of four waveguides: two blue-green layers and two green-red layers. Each of the waveguides can provide a field-of-view of 35° h×35° v (˜50° diagonal) for a single-color band, yielding 70° h×35° v (˜78° diagonal) field-of-view for each color band. Each waveguide set for the left and right eyes can be overlapped by 50° horizontally to achieve ˜100° diagonal binocular field-of-view. As can readily be appreciated, various binocular configurations can be implemented as appropriated depending on the specific requirements of a given application. In many embodiments, the waveguide is raked at an angle of at least 5°, which can facilitate the implementation of some binocular overlapped field-of-view applications. In further embodiments, the waveguide is raked at an angle of at least 10°. In some embodiments, the field-of-views for both the left and right eyes are completely overlapped.


Other Waveguide Embodiments


In some embodiments, a prism may be used as an alternative to the input grating. In many embodiments, this can require that an external grating is provided for grating vector closure purposes. In several embodiments, the external grating may be disposed on the surface of the prism. In some embodiments, the external grating may form part of a laser despeckler disposed in the optical train between the laser projector and the input prims. The use of a prism to couple light into a waveguide has the advantage of avoiding the significant light loss and restricted angular bandwidth resulting from the use of a rolled K-vector grating. A practical rolled K-vector input grating typically cannot match the much large angular bandwidth of the fold grating, which can be around 40 degrees or more.


Although the drawings may indicate a high degree of symmetry in the grating geometry and layout of the gratings in the different wavelength channels, the grating prescriptions and footprints can be asymmetric. The shapes of the input, fold, or output gratings can depend on the waveguide application and could be of any polygonal geometry subject to factors such as the required beam expansion, output beam geometry, beam uniformity, and ergonomic factors.


In some embodiments, directed at displays using unpolarized light sources, the input gratings can combine gratings orientated such that each grating diffracts a particular polarization of the incident unpolarized light into a waveguide path. Such embodiments may incorporate some of the embodiments and teachings disclosed in the PCT application PCT/GB2017/000040 “METHOD AND APPARATUS FOR PROVIDING A POLARIZATION SELECTIVE HOLOGRAPHIC WAVGUIDE DEVICE” by Waldern et al., the disclosure of which is incorporated herein in by reference in its entirety. The output gratings can be configured in a similar fashion so that the light from the waveguide paths is combined and coupled out of the waveguide as unpolarized light. For example, in some embodiments, the input grating and output grating each combine crossed gratings with peak diffraction efficiency for orthogonal polarizations states. In a number of embodiments, the polarization states are S-polarized and P-polarized. In several embodiments, the polarization states are opposing senses of circular polarization. The advantage of gratings recorded in liquid crystal polymer systems, such as SBGs, in this regard is that owing to their inherent birefringence, they exhibit strong polarization selectivity. However, other grating technologies that can be configured to provide unique polarization states can also be used.


In some embodiments using gratings recorded in liquid crystal polymer material systems, at least one polarization control layer overlapping at least one of the fold gratings, input gratings, or output gratings may be provided for the purposes of compensating for polarization rotation in any the gratings, particularly the fold gratings, which can result in polarization rotation. In many embodiments, all of the gratings are overlaid by polarization control layers. In a number of embodiments, polarization control layers are applied to the fold gratings only or to any other subset of the gratings. The polarization control layer may include an optical retarder film. In some embodiments based on HPDLC materials, the birefringence of the gratings may be used to control the polarization properties of the waveguide device. The use of the birefringence tensor of the HPDLC grating, K-vectors, and grating footprints as design variables opens up the design space for optimizing the angular capability and optical efficiency of the waveguide device. In some embodiments, a quarter wave plate can be disposed on a glass-air interface of the wave guide rotates polarization of a light ray to maintain efficient coupling with the gratings. In further embodiments, the quarter wave plate is a coating that is applied to substrate waveguide. In some waveguide display embodiments, applying a quarter wave coating to a substrate of the waveguide may help light rays retain alignment with the intended viewing axis by compensating for skew waves in the waveguide. In some embodiments, the quarter wave plate may be provided as a multi-layer coating.


As used in relation to any of the embodiments described herein, the term grating may encompass a grating that includes a set of gratings. For example, in some embodiments, the input grating and output grating each include two or more gratings multiplexed into a single layer. It is well established in the literature of holography that more than one holographic prescription can be recorded into a single holographic layer. Methods for recording such multiplexed holograms are well known to those skilled in the art. In some embodiments, the input grating and output grating may each include two overlapping gratings layers that are in contact or vertically separated by one or more thin optical substrate. In several embodiments, the grating layers are sandwiched between glass or plastic substrates. In a number of embodiments, two or more such gratings layers may form a stack within which total internal reflection occurs at the outer substrate and air interfaces. In some embodiments, the waveguide may include just one grating layer. In many embodiments, electrodes may be applied to faces of the substrates to switch gratings between diffracting and clear states. The stack may further include additional layers such as beam splitting coatings and environmental protection layers.


In some embodiments, the fold grating angular bandwidth can be enhanced by designing the grating prescription to facilitate dual interaction of the guided light with the grating. Exemplary embodiments of dual interaction fold gratings are disclosed in U.S. patent application Ser. No. 14/620,969 entitled “WAVEGUIDE GRATING DEVICE.”


Advantageously, to improve color uniformity, gratings for use in the invention can be designed using reverse ray tracing from the eyebox to the input grating via the output grating and fold grating. This process allows the required physical extent of the gratings, in particular the fold grating, to be identified. Unnecessary grating real-state which contribute to haze can be eliminated. Ray paths can be optimized for red, green, and blue, each of which follow slightly different paths because of dispersion effects between the input and output gratings via the fold grating.


In many embodiments, the gratings are holographic gratings, such as a switchable or non-switchable Bragg Gratings. In some embodiments, gratings embodied as SBGs can be Bragg gratings recorded in a holographic polymer dispersed liquid crystal (e.g., a matrix of liquid crystal droplets), although SBGs may also be recorded in other materials. In several embodiments, the SBGs are recorded in a uniform modulation material, such as POLICRYPS or POLIPHEM having a matrix of solid liquid crystals dispersed in a liquid polymer. The SBGs can be switching or non-switching in nature. In some embodiments, at least one of the input, fold, and output gratings may be electrically switchable. In many embodiments, it is desirable that all three grating types are passive, that is, non-switching. In its non-switching form, an SBG has the advantage over conventional holographic photopolymer materials of being capable of providing high refractive index modulation due to its liquid crystal component. Exemplary uniform modulation liquid crystal-polymer material systems are disclosed in United State Patent Application Publication No.: US2007/0019152 by Caputo et al and PCT Application No.: PCT/EP2005/006950 by Stumpe et al., both of which are incorporated herein by reference in their entireties. Uniform modulation gratings are characterized by high refractive index modulation (and hence high diffraction efficiency) and low scatter. In some embodiments, the input coupler, the fold grating, and the output grating are recorded in a reverse mode HPDLC material. Reverse mode HPDLC differs from conventional HPDLC in that the grating is passive when no electric field is applied and becomes diffractive in the presence of an electric field. The reverse mode HPDLC may be based on any of the recipes and processes disclosed in PCT Application No.: PCT/GB2012/000680, entitled “IMPROVEMENTS TO HOLOGRAPHIC POLYMER DISPERSED LIQUID CRYSTAL MATERIALS AND DEVICES.” The gratings may be recorded in any of the above material systems but used in a passive (non-switching) mode. The advantage of recording a passive grating in a liquid crystal polymer material is that the final hologram benefits from the high index modulation afforded by the liquid crystal. Higher index modulation translates to high diffraction efficiency and wide angular bandwidth. The fabrication process is identical to that used for switched but with the electrode coating stage being omitted. LC polymer material systems are highly desirable in view of their high index modulation. In some embodiments, the gratings are recorded in HPDLC but are not switched.


In many embodiments, two spatially separated input couplers may be used to provide two separate waveguide input pupils. In some embodiments, the input coupler is a grating. In several embodiments, the input coupler is a prism. In embodiments using an input coupler prism based on prisms only, the conditions for grating reciprocity can be addressed using the pitch and clock angles of the fold and output gratings.


In many embodiments, the source of data modulated light used with the above waveguide embodiments includes an Input Image Node (“IIN”) incorporating a microdisplay. The input grating can be configured to receive collimated light from the IIN and to cause the light to travel within the waveguide via total internal reflection between the first surface and the second surface to the fold grating. Typically, the IIN integrates, in addition to the microdisplay panel, a light source and optical components needed to illuminate the display panel, separate the reflected light, and collimate it into the required FOV. Each image pixel on the microdisplay can be converted into a unique angular direction within the first waveguide. The instant disclosure does not assume any particular microdisplay technology. In some embodiments, the microdisplay panel can be a liquid crystal device or a MEMS device. In several embodiments, the microdisplay may be based on Organic Light Emitting Diode (OLED) technology. Such emissive devices would not require a separate light source and would therefore offer the benefits of a smaller form factor. In some embodiments, the IIN may be based on a scanned modulated laser. The IIN projects the image displayed on the microdisplay panel such that each display pixel is converted into a unique angular direction within the substrate waveguide according to some embodiments. The collimation optics contained in the IIN may include lens and mirrors, which may be diffractive lenses and mirrors. In some embodiments, the IIN may be based on the embodiments and teachings disclosed in U.S. patent application Ser. No. 13/869,866 entitled “HOLOGRAPHIC WIDE-ANGLE DISPLAY,” and U.S. patent application Ser. No. 13/844,456 entitled “TRANSPARENT WAVEGUIDE DISPLAY.” In several embodiments, the IIN contains beamsplitter for directing light onto the microdisplay and transmitting the reflected light towards the waveguide. In many embodiments, the beamsplitter is a grating recorded in HPDLC and uses the intrinsic polarization selectivity of such gratings to separate the light illuminating the display and the image modulated light reflected off the display. In some embodiments, the beam splitter is a polarizing beam splitter cube. In a number of embodiments, the IIN incorporates a despeckler. The despeckler can be a holographic waveguide device based on the embodiments and teachings of U.S. Pat. No. 8,565,560 entitled “LASER ILLUMINATION DEVICE.” The light source can be a laser or LED and can include one or more lenses for modifying the illumination beam angular characteristics. The image source can be a micro-display or laser-based display. LED can provide better uniformity than laser. If laser illumination is used, there is a risk of illumination banding occurring at the waveguide output. In some embodiments, laser illumination banding in waveguides can be overcome using the techniques and teachings disclosed in U.S. Provisional Patent Application No. 62/071,277 entitled “METHOD AND APPARATUS FOR GENERATING INPUT IMAGES FOR HOLOGRAPHIC WAVEGUIDE DISPLAYS.” In some embodiments, the light from the light source is polarized. In one or more embodiments, the image source is a liquid crystal display (LCD) micro display or liquid crystal on silicon (LCoS) micro display.


The principles and teachings of the invention in combination with other waveguide inventions by the inventors as disclosed in the reference documents incorporated by reference herein may be applied in many different display and sensor devices. In some embodiments directed at displays, a waveguide display according to the principles of the invention can be combined with an eye tracker. In some embodiments, the eye tracker is a waveguide device overlaying the display waveguide and is based on the embodiments and teachings of PCT/GB2014/000197 entitled “HOLOGRAPHIC WAVEGUIDE EYE TRACKER,” PCT/GB2015/000274 entitled “HOLOGRAPHIC WAVEGUIDE OPTICALTRACKER,” and PCT Application No.:GB2013/000210 entitled “APPARATUS FOR EYE TRACKING.”


In some embodiments of the invention directed at displays, a waveguide display according to the principles of the invention further includes a dynamic focusing element. The dynamic focusing element may be based on the embodiments and teachings of U.S. Provisional Patent Application No. 62/176,572 entitled “ELECTRICALLY FOCUS TUNABLE LENS.” In some embodiments, a waveguide display according to the principles of the invention can further include a dynamic focusing element and an eye tracker, which can provide a light field display based on the embodiments and teachings disclosed in U.S. Provisional Patent Application No. 62/125,089 entitled “HOLOGRAPHIC WAVEGUIDE LIGHT FIELD DISPLAYS.”


In some embodiments of the invention directed at displays, a waveguide according to the principles of the invention may be based on some of the embodiments of U.S. patent application Ser. No. 13/869,866 entitled “HOLOGRAPHIC WIDEANGLE DISPLAY,” and U.S. patent application Ser. No. 13/844,456 entitled “TRANSPARENT WAVEGUIDE DISPLAY.” In some embodiments, a waveguide apparatus according to the principles of the invention may be integrated within a window, for example a windscreen-integrated HUD for road vehicle applications. In some embodiments, a window-integrated display may be based on the embodiments and teachings disclosed in U.S. Provisional Patent Application No.: PCT Application No.: PCT/GB2016/000005 entitled “ENVIRONMENTALLY ISOLATED WAVEGUIDE DISPLAY.” In some embodiments, a waveguide apparatus may include gradient index (GRIN) wave-guiding components for relaying image content between the IIN and the waveguide. Exemplary embodiments are disclosed in PCT Application No.: PCT/GB2016/000005 entitled “ENVIRONMENTALLY ISOLATED WAVEGUIDE DISPLAY.” In some embodiments, the waveguide apparatus may incorporate a light pipe for providing beam expansion in one direction based on the embodiments disclosed in U.S. Provisional Patent Application No. 62/177,494 entitled “WAVEGUIDE DEVICE INCORPORATING A LIGHT PIPE.”


In many embodiments, a waveguide according to the principles of the invention provides an image at infinity. In some embodiments, the image may be at some intermediate distance. In some embodiments, the image may be at a distance compatible with the relaxed viewing range of the human eye. In many embodiments, this may cover viewing ranges from about 2 meters up to about 10 meters.


The construction and arrangement of the systems and methods as shown in the various exemplary embodiments are illustrative only. Although only a few embodiments have been described in detail in this disclosure, many modifications are possible (for example, variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.). For example, the position of elements may be reversed or otherwise varied, and the nature or number of discrete elements or positions may be altered or varied. The present invention can incorporate the embodiments and teachings disclosed in U.S. Provisional Patent Application No. 62/778,239 “METHODS AND APPARATUSES FOR PROVIDING A SINGLE GRATING LAYER COLOR HOLOGRAPHIC WAVEGUIDE DISPLAY”, and the following US filings: U.S. Ser. No. 14/620,969 “WAVEGUIDE GRATING DEVICE”; U.S. Ser. No. 15/468,536 “WAVEGUIDE GRATING DEVICE”; U.S. Ser. No. 15/807,149 “WAVEGUIDE GRATING DEVICE”; and U.S. Ser. No. 16/178,104 “WAVEGUIDE GRATING DEVICE”, by Popovich et al., which are incorporated herein in by reference in their entireties. Accordingly, all such modifications are intended to be included within the scope of the present disclosure. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions and arrangement of the exemplary embodiments without departing from the scope of the present disclosure.


Doctrine of Equivalents


While the above description contains many specific embodiments of the invention, these should not be construed as limitations on the scope of the invention, but rather as an example of one embodiment thereof. It is therefore to be understood that the present invention may be practiced in ways other than specifically described, without departing from the scope and spirit of the present invention. Thus, embodiments of the present invention should be considered in all respects as illustrative and not restrictive. Accordingly, the scope of the invention should be determined not by the embodiments illustrated, but by the appended claims and their equivalents.

Claims
  • 1. A waveguide display, comprising: a source of light; anda first waveguide comprising: a grating structure comprising first and second gratings; andan input coupler configured to: couple a first field-of-view portion of light from said source of light into said first waveguide and towards said first grating; andcouple a second field-of-view portion of light from said source of light into said first waveguide and towards said second grating;wherein: said first grating is configured to: provide beam expansion in a first direction for said first field-of-view portion of light; andprovide beam expansion in said first direction and beam extraction towards a viewer for said second field-of-view portion of light;said second grating is configured to: provide beam expansion in a second direction for said second field-of-view portion of light; andprovide beam expansion in said second direction and beam extraction towards a viewer for said first field-of-view portion of light;said input coupler, said first grating, and said second grating each comprises a grating vector; andsaid grating vectors of said input coupler, said first grating, and said second grating provide a resultant vector with substantially zero magnitude.
  • 2. The waveguide display of claim 1, wherein: said first grating comprises first and second grating prescriptions; andsaid second grating comprises third and fourth grating prescriptions; wherein: said first grating prescription is configured to provide said beam expansion in said first direction for said first field-of-view portion of light;said second grating prescription is configured to provide beam expansion in said first direction and beam extraction towards a viewer for said second field-of-view portion of light;said third grating prescription is configured to provide said beam expansion in said second direction for said second field-of-view portion of light; andsaid fourth grating prescription is configured to provide said beam expansion in said second direction and beam extraction towards a viewer for said first field-of-view portion of light.
  • 3. The waveguide display of claim 2, wherein said first and second grating prescriptions are at least partially multiplexed; and said third and fourth grating prescriptions are at least partially multiplexed.
  • 4. The waveguide display of claim 3, wherein said first grating at least partially overlaps said second grating.
  • 5. The waveguide display of claim 4, wherein: said first waveguide comprises first and second grating layers;said first grating is disposed within said first grating layer; andsaid second grating is disposed within said second grating layer.
  • 6. The waveguide display of claim 5, wherein said first waveguide further comprises a transparent layer disposed between and adjacent said first and second grating layers.
  • 7. The waveguide display of claim 6, further comprising a second waveguide; wherein said first waveguide is configured to couple in a first spectral band of light; and said second waveguide is configured to couple in a second spectral band of light.
  • 8. The waveguide display of claim 1, wherein said input coupler comprises an input configuration selected from the group consisting of: an input prism; an input grating; first and second input gratings; and an input grating comprising two multiplexed grating prescriptions.
  • 9. The waveguide display of claim 1, wherein said grating vector of said input coupler has a different magnitude than said grating vector of said first grating.
  • 10. The waveguide display of claim 1, wherein said source of light provides at least two different wavelengths of light.
  • 11. A method of displaying an image, the method comprising: providing a waveguide display comprising a first waveguide supporting an input coupler and a grating structure comprising first and second gratings, wherein said input coupler, said first grating, and said second grating each comprises a grating vector, wherein said grating vectors of said input coupler, said first grating, and said second grating provide a resultant vector with substantially zero magnitude;coupling a first field of view portion light into said waveguide via said input coupler;coupling a second field-of-view portion light into said waveguide via said input coupler;expanding said first field-of-view portion light in a first direction using said first grating;expanding said first field-of-view portion light in a second direction and extracting it from said waveguide using said second grating;expanding said second field-of-view portion light in said second direction using said second grating; andexpanding said second field of view portion light in said first direction and extracting it from said waveguide using said first grating.
  • 12. The method of claim 11, wherein: said first grating comprises first and second grating prescriptions; andsaid second grating comprises third and fourth grating prescriptions; wherein: said first field-of-view portion light is expanded in said first direction using said first grating prescription;said second field-of-view portion light is expanded in said first direction and extracted from said waveguide using said second grating prescription;said second field-of-view portion light is expanded in said second direction using said third grating prescription; andsaid first field-of-view portion light is expanded in said second direction and extracted from said waveguide using said fourth grating prescription.
  • 13. The method of claim 12, wherein said first and second grating prescriptions are at least partially multiplexed; and said third and fourth grating prescriptions are at least partially multiplexed.
  • 14. The method of claim 13, wherein said first grating at least partially overlaps said second grating.
  • 15. The method of claim 14, wherein: said first waveguide comprises first and second grating layers;said first grating is disposed within said first grating layer; andsaid second grating is disposed within said second grating layer.
  • 16. The method of claim 15, wherein said first waveguide further comprises a transparent layer disposed between and adjacent said first and second grating layers.
  • 17. The method of claim 16, wherein said waveguide display further comprises a second waveguide; wherein said first waveguide is configured to couple in a first spectral band of light; and said second waveguide is configured to couple in a second spectral band of light.
  • 18. The method of claim 11, wherein said input coupler comprises an input configuration selected from the group consisting of: an input prism; an input grating; first and second input gratings; and an input grating comprising two multiplexed grating prescriptions.
  • 19. The method of claim 11, wherein said grating vector of said input coupler has a different magnitude than said grating vector of said first grating.
  • 20. The method of claim 11, further comprising a source of light which provides at least two different wavelengths of light.
CROSS-REFERENCE TO RELATED APPLICATIONS

The current application is a continuation of U.S. application Ser. No. 16/794,071 entitled “Methods and Apparatuses for Providing a Holographic Waveguide Display Using Integrated Gratings,” filed Feb. 18, 2020, which claims the benefit of and priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application No. 62/806,665 entitled “Methods and Apparatuses for Providing a Color Holographic Waveguide Display Using Overlapping Bragg Gratings,” filed Feb. 15, 2019 and U.S. Provisional Patent Application No. 62/813,373 entitled “Improvements to Methods and Apparatuses for Providing a Color Holographic Waveguide Display Using Overlapping Bragg Gratings,” filed Mar. 4, 2019, the disclosures of which are incorporated herein by reference in their entireties.

US Referenced Citations (1777)
Number Name Date Kind
1043938 Huttenlocher Nov 1912 A
2141884 Sonnefeld Dec 1938 A
3482498 Becker Dec 1969 A
3620601 Leonard et al. Nov 1971 A
3741716 Johne et al. Jun 1973 A
3804496 Crane et al. Apr 1974 A
3843231 Borel et al. Oct 1974 A
3851303 Muller Nov 1974 A
3885095 Wolfson et al. May 1975 A
3940204 Withrington Feb 1976 A
3965029 Arora Jun 1976 A
3975711 McMahon Aug 1976 A
4035068 Rawson Jul 1977 A
4066334 Fray et al. Jan 1978 A
4082432 Kirschner Apr 1978 A
4099841 Ellis Jul 1978 A
4133152 Penrose Jan 1979 A
4178074 Heller Dec 1979 A
4218111 Withrington et al. Aug 1980 A
4232943 Rogers Nov 1980 A
4248093 Andersson et al. Feb 1981 A
4251137 Knop et al. Feb 1981 A
4309070 St. Leger Searle Jan 1982 A
4322163 Schiller Mar 1982 A
4386361 Simmonds May 1983 A
4389612 Simmonds et al. Jun 1983 A
4403189 Simmonds Sep 1983 A
4403827 Bryan et al. Sep 1983 A
4418993 Lipton Dec 1983 A
4472037 Lipton Sep 1984 A
4523226 Lipton et al. Jun 1985 A
4544267 Schiller Oct 1985 A
4562463 Lipton Dec 1985 A
4566758 Bos et al. Jan 1986 A
4583117 Lipton et al. Apr 1986 A
4643515 Upatnieks Feb 1987 A
4647967 Kirschner et al. Mar 1987 A
4688900 Doane et al. Aug 1987 A
4711512 Upatnieks Dec 1987 A
4714320 Banbury Dec 1987 A
4728547 Vaz et al. Mar 1988 A
4729640 Sakata et al. Mar 1988 A
4743083 Schimpe May 1988 A
4749256 Bell et al. Jun 1988 A
4765703 Suzuki et al. Aug 1988 A
4775218 Wood et al. Oct 1988 A
4791788 Simmonds et al. Dec 1988 A
4792850 Liptoh et al. Dec 1988 A
4799765 Ferrer Jan 1989 A
4811414 Fishbine et al. Mar 1989 A
4848093 Simmonds et al. Jul 1989 A
4854688 Hayford et al. Aug 1989 A
4860294 Winzer et al. Aug 1989 A
4884876 Lipton et al. Dec 1989 A
4890902 Doane et al. Jan 1990 A
4928301 Smoot May 1990 A
4933976 Fishbine et al. Jun 1990 A
4938568 Margerum et al. Jul 1990 A
4946245 Chamberlin et al. Aug 1990 A
4960311 Moss et al. Oct 1990 A
4964701 Dorschner et al. Oct 1990 A
4967268 Lipton et al. Oct 1990 A
4970129 Ingwall et al. Nov 1990 A
4971719 Vaz et al. Nov 1990 A
4994204 Doane et al. Feb 1991 A
5004323 West Apr 1991 A
5007711 Wood et al. Apr 1991 A
5009483 Rockwell et al. Apr 1991 A
5011624 Yamagishi et al. Apr 1991 A
5016953 Moss et al. May 1991 A
5033814 Brown et al. Jul 1991 A
5035734 Honkanen et al. Jul 1991 A
5053834 Simmonds Oct 1991 A
5063441 Lipton et al. Nov 1991 A
5076664 Migozzi Dec 1991 A
5079416 Filipovich Jan 1992 A
5096282 Margerum et al. Mar 1992 A
5099343 Margerum et al. Mar 1992 A
5109465 Klopotek Apr 1992 A
5110034 Simmonds et al. May 1992 A
5117285 Nelson et al. May 1992 A
5117302 Lipton May 1992 A
5119454 McMahon et al. Jun 1992 A
5124821 Antier et al. Jun 1992 A
5138687 Horie et al. Aug 1992 A
5139192 Simmonds et al. Aug 1992 A
5142357 Lipton et al. Aug 1992 A
5142644 Vansteenkiste et al. Aug 1992 A
5148302 Nagano et al. Sep 1992 A
5150234 Takahashi et al. Sep 1992 A
5151958 Honkanen Sep 1992 A
5153751 Ishikawa et al. Oct 1992 A
5159445 Gitlin et al. Oct 1992 A
5160523 Honkanen et al. Nov 1992 A
5181133 Lipton Jan 1993 A
5183545 Branca et al. Feb 1993 A
5187597 Kato et al. Feb 1993 A
5193000 Lipton et al. Mar 1993 A
5198912 Ingwall et al. Mar 1993 A
5200861 Moskovich et al. Apr 1993 A
5210624 Matsumoto et al. May 1993 A
5210801 Fournier et al. May 1993 A
5218360 Goetz et al. Jun 1993 A
5218480 Moskovich et al. Jun 1993 A
5224198 Jachimowicz et al. Jun 1993 A
5239372 Lipton Aug 1993 A
5240636 Doane et al. Aug 1993 A
5241337 Betensky et al. Aug 1993 A
5242476 Bartel et al. Sep 1993 A
5243413 Gitlin et al. Sep 1993 A
5251048 Doane et al. Oct 1993 A
5264950 West et al. Nov 1993 A
5268792 Kreitzer et al. Dec 1993 A
5284499 Harvey et al. Feb 1994 A
5289315 Makita et al. Feb 1994 A
5295208 Caulfield et al. Mar 1994 A
5296967 Moskovich et al. Mar 1994 A
5299289 Omae et al. Mar 1994 A
5303085 Rallison Apr 1994 A
5306923 Kazmierski et al. Apr 1994 A
5309283 Kreitzer et al. May 1994 A
5313330 Betensky May 1994 A
5315324 Kubelik et al. May 1994 A
5315419 Saupe et al. May 1994 A
5315440 Betensky et al. May 1994 A
5317405 Kuriki et al. May 1994 A
5327269 Tilton et al. Jul 1994 A
5329363 Moskovich et al. Jul 1994 A
5341230 Smith Aug 1994 A
5343147 Sager et al. Aug 1994 A
5351151 Levy Sep 1994 A
5359362 Lewis et al. Oct 1994 A
5363220 Kuwayama et al. Nov 1994 A
5368770 Saupe et al. Nov 1994 A
5369511 Amos Nov 1994 A
5371626 Betensky Dec 1994 A
5400069 Braun et al. Mar 1995 A
5408346 Trissei et al. Apr 1995 A
5410370 Janssen Apr 1995 A
5410376 Cornsweet et al. Apr 1995 A
5416510 Lipton et al. May 1995 A
5416514 Janssen et al. May 1995 A
5418584 Larson May 1995 A
5418871 Revelli et al. May 1995 A
5428480 Betensky et al. Jun 1995 A
5437811 Doane et al. Aug 1995 A
5438357 McNelley Aug 1995 A
5452385 Izumi et al. Sep 1995 A
5453863 West et al. Sep 1995 A
5455693 Wreede et al. Oct 1995 A
5455713 Kreitzer et al. Oct 1995 A
5462700 Beeson et al. Oct 1995 A
5463428 Lipton et al. Oct 1995 A
5465311 Caulfield et al. Nov 1995 A
5471326 Hall et al. Nov 1995 A
5473222 Thoeny et al. Dec 1995 A
5476611 Nolan et al. Dec 1995 A
5481321 Lipton Jan 1996 A
5481385 Zimmerman et al. Jan 1996 A
5485313 Betensky Jan 1996 A
5493430 Lu et al. Feb 1996 A
5493448 Betensky et al. Feb 1996 A
5496621 Makita et al. Mar 1996 A
5499140 Betensky Mar 1996 A
5500671 Andersson et al. Mar 1996 A
5500769 Betensky Mar 1996 A
5510913 Hashimoto et al. Apr 1996 A
5515184 Caulfield et al. May 1996 A
5516455 Jacobine et al. May 1996 A
5524272 Podowski et al. Jun 1996 A
5528720 Winston et al. Jun 1996 A
5530566 Kumar Jun 1996 A
5532736 Kuriki et al. Jul 1996 A
5532875 Betemsky Jul 1996 A
5537232 Biles Jul 1996 A
RE35310 Moskovich Aug 1996 E
5543950 Lavrentovich et al. Aug 1996 A
5559637 Moskovich et al. Sep 1996 A
5572248 Allen et al. Nov 1996 A
5572250 Lipton et al. Nov 1996 A
5576888 Betensky Nov 1996 A
5579026 Tabata Nov 1996 A
5583795 Smyth Dec 1996 A
5585035 Nerad et al. Dec 1996 A
5593615 Nerad et al. Jan 1997 A
5604611 Saburi et al. Feb 1997 A
5606433 Yin et al. Feb 1997 A
5612733 Flohr Mar 1997 A
5612734 Nelson et al. Mar 1997 A
5619254 McNelley Apr 1997 A
5619586 Sibbald et al. Apr 1997 A
5621529 Gordon et al. Apr 1997 A
5621552 Coates et al. Apr 1997 A
5625495 Moskovich et al. Apr 1997 A
5629259 Akada et al. May 1997 A
5631107 Tarumi et al. May 1997 A
5633100 Mickish et al. May 1997 A
5646785 Gilboa et al. Jul 1997 A
5648857 Ando et al. Jul 1997 A
5661577 Jenkins et al. Aug 1997 A
5661603 Hanano et al. Aug 1997 A
5665494 Kawabata et al. Sep 1997 A
5668614 Chien et al. Sep 1997 A
5668907 Veligdan Sep 1997 A
5677797 Betensky et al. Oct 1997 A
5680231 Grinberg et al. Oct 1997 A
5680411 Ramdane et al. Oct 1997 A
5682255 Friesem et al. Oct 1997 A
5686931 Fuenfschilling et al. Nov 1997 A
5686975 Lipton Nov 1997 A
5691795 Doane et al. Nov 1997 A
5694230 Welch Dec 1997 A
5695682 Doane et al. Dec 1997 A
5701132 Kollin et al. Dec 1997 A
5706108 Ando et al. Jan 1998 A
5706136 Okuyama et al. Jan 1998 A
5707925 Akada et al. Jan 1998 A
5710645 Phillips et al. Jan 1998 A
5724189 Ferrante Mar 1998 A
5724463 Deacon et al. Mar 1998 A
5726782 Kato et al. Mar 1998 A
5727098 Jacobson Mar 1998 A
5729242 Margerum et al. Mar 1998 A
5731060 Hirukawa et al. Mar 1998 A
5731853 Taketomi et al. Mar 1998 A
5742262 Tabata et al. Apr 1998 A
5745266 Smith et al. Apr 1998 A
5745301 Betensky et al. Apr 1998 A
5748272 Tanaka et al. May 1998 A
5748277 Huang et al. May 1998 A
5751452 Tanaka et al. May 1998 A
5757546 Lipton et al. May 1998 A
5760931 Saburi et al. Jun 1998 A
5760960 Lin et al. Jun 1998 A
5764414 King et al. Jun 1998 A
5771320 Stone Jun 1998 A
5790288 Jager et al. Aug 1998 A
5790314 Duck et al. Aug 1998 A
5798641 Spagna et al. Aug 1998 A
5804609 Ohnishi et al. Sep 1998 A
5808804 Moskovich Sep 1998 A
5812608 Valimaki et al. Sep 1998 A
5822089 Phillips et al. Oct 1998 A
5822127 Chen et al. Oct 1998 A
5825448 Bos et al. Oct 1998 A
5831700 Li et al. Nov 1998 A
5835661 Tai et al. Nov 1998 A
5841507 Barnes Nov 1998 A
5841587 Moskovich et al. Nov 1998 A
5847787 Fredley et al. Dec 1998 A
5856842 Tedesco Jan 1999 A
5857043 Cook et al. Jan 1999 A
5867238 Miller et al. Feb 1999 A
5867618 Ito et al. Feb 1999 A
5868951 Schuck, III et al. Feb 1999 A
5870228 Kreitzer et al. Feb 1999 A
5875012 Crawford et al. Feb 1999 A
5877826 Yang et al. Mar 1999 A
5886822 Spitzer Mar 1999 A
5892598 Asakawa et al. Apr 1999 A
5892599 Bahuguna Apr 1999 A
5898511 Mizutani et al. Apr 1999 A
5900987 Kreitzer et al. May 1999 A
5900989 Kreitzer May 1999 A
5903395 Rallison et al. May 1999 A
5903396 Rallison May 1999 A
5907416 Hegg et al. May 1999 A
5907436 Perry et al. May 1999 A
5917459 Son et al. Jun 1999 A
5926147 Sehm et al. Jul 1999 A
5929946 Sharp et al. Jul 1999 A
5929960 West et al. Jul 1999 A
5930433 Williamson et al. Jul 1999 A
5936776 Kreitzer Aug 1999 A
5937115 Domash Aug 1999 A
5942157 Sutherland et al. Aug 1999 A
5945893 Plessky et al. Aug 1999 A
5949302 Sarkka Sep 1999 A
5949508 Kumar et al. Sep 1999 A
5956113 Crawford Sep 1999 A
5962147 Shalhub et al. Oct 1999 A
5963375 Kreitzer Oct 1999 A
5966223 Friesem et al. Oct 1999 A
5969874 Moskovich Oct 1999 A
5969876 Kreitzer et al. Oct 1999 A
5973727 McGrew et al. Oct 1999 A
5974162 Metz et al. Oct 1999 A
5985422 Krauter Nov 1999 A
5986746 Metz et al. Nov 1999 A
5991087 Rallison Nov 1999 A
5999089 Carlson et al. Dec 1999 A
5999282 Suzuki et al. Dec 1999 A
5999314 Asakura et al. Dec 1999 A
6014187 Taketomi et al. Jan 2000 A
6023375 Kreitzer Feb 2000 A
6042947 Asakura et al. Mar 2000 A
6043585 Plessky et al. Mar 2000 A
6046585 Simmonds Apr 2000 A
6052540 Koyama Apr 2000 A
6061107 Yang May 2000 A
6061463 Metz et al. May 2000 A
6069728 Huignard et al. May 2000 A
6075626 Mizutani et al. Jun 2000 A
6078427 Fontaine et al. Jun 2000 A
6084998 Straayer Jul 2000 A
6094311 Moskovich Jul 2000 A
6097551 Kreitzer Aug 2000 A
6104448 Doane et al. Aug 2000 A
6107943 Schroeder Aug 2000 A
6115152 Popovich et al. Sep 2000 A
6118908 Bischel et al. Sep 2000 A
6121899 Theriault Sep 2000 A
6127066 Ueda et al. Oct 2000 A
6128058 Walton et al. Oct 2000 A
6133971 Silverstein et al. Oct 2000 A
6133975 Li et al. Oct 2000 A
6137630 Tsou et al. Oct 2000 A
6141074 Bos et al. Oct 2000 A
6141154 Kreitzer et al. Oct 2000 A
6151142 Phillips et al. Nov 2000 A
6154190 Yang et al. Nov 2000 A
6156243 Kosuga et al. Dec 2000 A
6167169 Brinkman et al. Dec 2000 A
6169594 Aye et al. Jan 2001 B1
6169613 Amitai et al. Jan 2001 B1
6169636 Kreitzer et al. Jan 2001 B1
6172792 Jepsen et al. Jan 2001 B1
6176837 Foxlin Jan 2001 B1
6185015 Reinhorn et al. Feb 2001 B1
6185016 Popovich Feb 2001 B1
6188462 Lavrentovich et al. Feb 2001 B1
6191887 Michaloski et al. Feb 2001 B1
6195206 Yona et al. Feb 2001 B1
6195209 Kreitzer et al. Feb 2001 B1
6204835 Yang et al. Mar 2001 B1
6211976 Popovich et al. Apr 2001 B1
6222297 Perdue Apr 2001 B1
6222675 Mall et al. Apr 2001 B1
6222971 Veligdan et al. Apr 2001 B1
6249386 Yona et al. Jun 2001 B1
6259423 Tokito et al. Jul 2001 B1
6259559 Kobayashi et al. Jul 2001 B1
6268839 Yang et al. Jul 2001 B1
6269203 Davies et al. Jul 2001 B1
6275031 Simmonds et al. Aug 2001 B1
6278429 Ruth et al. Aug 2001 B1
6285813 Schultz et al. Sep 2001 B1
6297860 Moskovich et al. Oct 2001 B1
6301056 Kreitzer et al. Oct 2001 B1
6301057 Kreitzer et al. Oct 2001 B1
6317083 Johnson et al. Nov 2001 B1
6317227 Mizutani et al. Nov 2001 B1
6317228 Popovich et al. Nov 2001 B2
6317528 Gadkaree et al. Nov 2001 B1
6320563 Yang et al. Nov 2001 B1
6321069 Piirainen Nov 2001 B1
6323970 Popovich Nov 2001 B1
6323989 Jacobson et al. Nov 2001 B1
6324014 Moskovich et al. Nov 2001 B1
6327089 Hosaki et al. Dec 2001 B1
6330109 Ishii et al. Dec 2001 B1
6333819 Svedenkrans Dec 2001 B1
6335224 Peterson et al. Jan 2002 B1
6339486 Popovich Jan 2002 B1
6340540 Ueda et al. Jan 2002 B1
6351273 Lemelson et al. Feb 2002 B1
6351333 Araki et al. Feb 2002 B2
6356172 Koivisto et al. Mar 2002 B1
6356674 Davis et al. Mar 2002 B1
6359730 Tervonen Mar 2002 B2
6359737 Stringfellow Mar 2002 B1
6366281 Lipton et al. Apr 2002 B1
6366369 Ichikawa et al. Apr 2002 B2
6366378 Tervonen et al. Apr 2002 B1
6377238 McPheters Apr 2002 B1
6377321 Khan et al. Apr 2002 B1
6388797 Lipton et al. May 2002 B1
6392812 Howard May 2002 B1
6407724 Waldern et al. Jun 2002 B2
6409687 Foxlin Jun 2002 B1
6411444 Moskovich et al. Jun 2002 B1
6414760 Lopez et al. Jul 2002 B1
6417971 Moskovich et al. Jul 2002 B1
6437563 Simmonds et al. Aug 2002 B1
6445512 Moskovich et al. Sep 2002 B1
6449095 Ohtaki et al. Sep 2002 B1
6456584 Nagata et al. Sep 2002 B1
6470132 Nousiainen et al. Oct 2002 B1
6473209 Popovich Oct 2002 B1
6476974 Kreitzer et al. Nov 2002 B1
6483303 Simmonds et al. Nov 2002 B2
6486997 Bruzzone et al. Nov 2002 B1
6504518 Kuwayama et al. Jan 2003 B1
6504629 Popovich et al. Jan 2003 B1
6509937 Moskovich et al. Jan 2003 B1
6510263 Maisenhoelder et al. Jan 2003 B1
6518747 Sager et al. Feb 2003 B2
6519088 Lipton Feb 2003 B1
6522794 Bischel et al. Feb 2003 B1
6522795 Jordan et al. Feb 2003 B1
6524771 Maeda et al. Feb 2003 B2
6529336 Kreitzer et al. Mar 2003 B1
6534977 Duncan et al. Mar 2003 B1
6545778 Ono et al. Apr 2003 B2
6545808 Ehbets et al. Apr 2003 B1
6550949 Bauer et al. Apr 2003 B1
6552789 Modro Apr 2003 B1
6557413 Nieminen et al. May 2003 B2
6559813 DeLuca et al. May 2003 B1
6560019 Nakai May 2003 B2
6563648 Gleckman et al. May 2003 B2
6563650 Moskovich et al. May 2003 B2
6567014 Hansen et al. May 2003 B1
6567573 Domash et al. May 2003 B1
6577411 David et al. Jun 2003 B1
6577429 Kurtz et al. Jun 2003 B1
6580529 Amitai et al. Jun 2003 B1
6583838 Hoke et al. Jun 2003 B1
6583873 Goncharov et al. Jun 2003 B1
6587619 Kinoshita Jul 2003 B1
6594090 Kruschwitz et al. Jul 2003 B2
6596193 Coates et al. Jul 2003 B2
6597176 Simmonds et al. Jul 2003 B2
6597475 Shirakura et al. Jul 2003 B1
6598987 Parikka Jul 2003 B1
6600590 Roddy et al. Jul 2003 B2
6608720 Freeman Aug 2003 B1
6611253 Cohen Aug 2003 B1
6618104 Date et al. Sep 2003 B1
6624943 Nakai et al. Sep 2003 B2
6625381 Roddy et al. Sep 2003 B2
6646772 Popovich et al. Nov 2003 B1
6646810 Harter, Jr. et al. Nov 2003 B2
6661578 Hedrick Dec 2003 B2
6667134 Sutherland et al. Dec 2003 B1
6674578 Sugiyama et al. Jan 2004 B2
6677086 Sutehrland et al. Jan 2004 B1
6686815 Mirshekarl-Syahkal et al. Feb 2004 B1
6690516 Aritake et al. Feb 2004 B2
6692666 Sutherland et al. Feb 2004 B2
6699407 Sutehrland et al. Mar 2004 B1
6706086 Emig et al. Mar 2004 B2
6706451 Sutherland et al. Mar 2004 B1
6721096 Bruzzone et al. Apr 2004 B2
6730442 Sutherland et al. May 2004 B1
6731434 Hua et al. May 2004 B1
6738105 Hannah et al. May 2004 B1
6741189 Gibbons, II et al. May 2004 B1
6744478 Asakura et al. Jun 2004 B1
6747781 Trisnadi et al. Jun 2004 B2
6748342 Dickhaus Jun 2004 B1
6750941 Satoh et al. Jun 2004 B2
6750995 Dickson Jun 2004 B2
6750996 Jagt et al. Jun 2004 B2
6757105 Niv et al. Jun 2004 B2
6771403 Endo et al. Aug 2004 B1
6776339 Piikivi Aug 2004 B2
6781701 Sweetser et al. Aug 2004 B1
6791629 Moskovich et al. Sep 2004 B2
6791739 Ramanujan et al. Sep 2004 B2
6804066 Ha et al. Oct 2004 B1
6805490 Levola Oct 2004 B2
6821457 Natarajan et al. Nov 2004 B1
6822713 Yaroshchuk et al. Nov 2004 B1
6825987 Repetto et al. Nov 2004 B2
6829095 Amitai Dec 2004 B2
6830789 Doane et al. Dec 2004 B2
6833955 Niv Dec 2004 B2
6836369 Fujikawa et al. Dec 2004 B2
6842563 Zhang et al. Jan 2005 B2
6844212 Bond et al. Jan 2005 B2
6844980 He et al. Jan 2005 B2
6844989 Jo et al. Jan 2005 B1
6847274 Salmela et al. Jan 2005 B2
6847488 Travis Jan 2005 B2
6850210 Lipton et al. Feb 2005 B1
6853491 Ruble et al. Feb 2005 B1
6853493 Kreitzer et al. Feb 2005 B2
6861107 Klasen-Memmer et al. Mar 2005 B2
6864861 Schehrer et al. Mar 2005 B2
6864927 Cathey Mar 2005 B1
6864931 Kumar et al. Mar 2005 B1
6867888 Sutherland et al. Mar 2005 B2
6873443 Joubert et al. Mar 2005 B1
6876791 Murashima et al. Apr 2005 B2
6878494 Sutehrland et al. Apr 2005 B2
6885483 Takada Apr 2005 B2
6903872 Schrader Jun 2005 B2
6909345 Salmela et al. Jun 2005 B1
6917375 Akada et al. Jul 2005 B2
6919003 Ikeda et al. Jul 2005 B2
6922267 Endo et al. Jul 2005 B2
6926429 Barlow et al. Aug 2005 B2
6927570 Simmonds et al. Aug 2005 B2
6927694 Smith et al. Aug 2005 B1
6940361 Jokio et al. Sep 2005 B1
6943788 Tomono Sep 2005 B2
6950173 Sutherland et al. Sep 2005 B1
6950227 Schrader Sep 2005 B2
6951393 Koide Oct 2005 B2
6952312 Weber et al. Oct 2005 B2
6952435 Lai et al. Oct 2005 B2
6958662 Salmela et al. Oct 2005 B1
6958868 Pender Oct 2005 B1
6963454 Martins et al. Nov 2005 B1
6972788 Robertson et al. Dec 2005 B1
6975345 Lipton et al. Dec 2005 B1
6980365 Moskovich Dec 2005 B2
6985296 Lipton et al. Jan 2006 B2
6987908 Bond et al. Jan 2006 B2
6999239 Martins et al. Feb 2006 B1
7002618 Lipton et al. Feb 2006 B2
7002753 Moskovich et al. Feb 2006 B2
7003075 Miyake et al. Feb 2006 B2
7003187 Frick et al. Feb 2006 B2
7006732 Gunn, III et al. Feb 2006 B2
7009773 Chaoulov et al. Mar 2006 B2
7018563 Sutherland et al. Mar 2006 B1
7018686 Sutehrland et al. Mar 2006 B2
7018744 Otaki et al. Mar 2006 B2
7019793 Moskovich et al. Mar 2006 B2
7021777 Amitai Apr 2006 B2
7026892 Kajiya Apr 2006 B2
7027671 Huck et al. Apr 2006 B2
7034748 Kajiya Apr 2006 B2
7046439 Kaminsky et al. May 2006 B2
7050674 Lee et al. May 2006 B2
7053735 Salmela et al. May 2006 B2
7053991 Sandusky May 2006 B2
7054045 McPheters et al. May 2006 B2
7058434 Wang et al. Jun 2006 B2
7068405 Sutherland et al. Jun 2006 B2
7068898 Buretea et al. Jun 2006 B2
7072020 Sutherland et al. Jul 2006 B1
7075273 O'Gorman et al. Jul 2006 B2
7077984 Natarajan et al. Jul 2006 B1
7081215 Natarajan et al. Jul 2006 B2
7088457 Zou et al. Aug 2006 B1
7088515 Lipton Aug 2006 B2
7095562 Peng et al. Aug 2006 B1
7099080 Lipton et al. Aug 2006 B2
7101048 Travis Sep 2006 B2
7108383 Mitchell et al. Sep 2006 B1
7110184 Yona et al. Sep 2006 B1
7119965 Rolland et al. Oct 2006 B1
7123418 Weber et al. Oct 2006 B2
7123421 Moskovich et al. Oct 2006 B1
7126418 Hunton et al. Oct 2006 B2
7126583 Breed Oct 2006 B1
7132200 Ueda et al. Nov 2006 B1
7133084 Moskovich et al. Nov 2006 B2
7139109 Mukawa Nov 2006 B2
RE39424 Moskovich Dec 2006 E
7145729 Kreitzer et al. Dec 2006 B2
7149385 Parikka et al. Dec 2006 B2
7151246 Fein et al. Dec 2006 B2
7158095 Jenson et al. Jan 2007 B2
7167286 Anderson et al. Jan 2007 B2
7167616 Ling et al. Jan 2007 B2
7175780 Sutherland et al. Feb 2007 B1
7181105 Teramura et al. Feb 2007 B2
7181108 Levola Feb 2007 B2
7184002 Lipton et al. Feb 2007 B2
7184615 Levola Feb 2007 B2
7186567 Sutherland et al. Mar 2007 B1
7190849 Katase Mar 2007 B2
7198737 Natarajan et al. Apr 2007 B2
7199934 Yamasaki Apr 2007 B2
7205960 David Apr 2007 B2
7205964 Yokoyama et al. Apr 2007 B1
7206107 Levola Apr 2007 B2
7212175 Magee et al. May 2007 B1
7218817 Magnusson et al. May 2007 B2
7230767 Walck et al. Jun 2007 B2
7230770 Kreitzer et al. Jun 2007 B2
7242527 Spitzer et al. Jul 2007 B2
7248128 Mattila et al. Jul 2007 B2
7248765 Lee et al. Jul 2007 B2
7256915 Sutherland et al. Aug 2007 B2
7259906 Islam Aug 2007 B1
7265882 Sutherland et al. Sep 2007 B2
7265903 Sutherland et al. Sep 2007 B2
7268946 Wang Sep 2007 B2
7285903 Cull et al. Oct 2007 B2
7286272 Mukawa Oct 2007 B2
7289069 Ranta Oct 2007 B2
RE39911 Moskovich Nov 2007 E
7299983 Piikivi Nov 2007 B2
7301601 Lin et al. Nov 2007 B2
7312906 Sutherland et al. Dec 2007 B2
7313291 Okhotnikov et al. Dec 2007 B2
D559250 Pombo Jan 2008 S
7319573 Nishiyama Jan 2008 B2
7320534 Sugikawa et al. Jan 2008 B2
7323275 Otaki et al. Jan 2008 B2
7333685 Stone et al. Feb 2008 B2
7336271 Ozeki et al. Feb 2008 B2
7339737 Urey et al. Mar 2008 B2
7339742 Amitai et al. Mar 2008 B2
7349612 Nishii et al. Mar 2008 B2
7356218 Kato et al. Apr 2008 B2
7356224 Levner et al. Apr 2008 B2
7369911 Volant et al. May 2008 B1
7375870 Schorpp May 2008 B2
7375886 Lipton et al. May 2008 B2
7376068 Khoury May 2008 B1
7376307 Singh et al. May 2008 B2
7389023 Yeo et al. Jun 2008 B2
7391573 Amitai Jun 2008 B2
7394865 Borran et al. Jul 2008 B2
7394961 Kornilovich et al. Jul 2008 B2
7395181 Foxlin Jul 2008 B2
7397606 Peng et al. Jul 2008 B1
7401920 Kranz et al. Jul 2008 B1
7404644 Evans et al. Jul 2008 B2
7410286 Travis Aug 2008 B2
7411637 Weiss Aug 2008 B2
7413678 Natarajan et al. Aug 2008 B1
7413679 Sutherland et al. Aug 2008 B1
7415173 Kassamakov et al. Aug 2008 B2
7416818 Sutherland et al. Aug 2008 B2
7418170 Mukawa et al. Aug 2008 B2
7420733 Natarajan et al. Sep 2008 B1
7433116 Islam Oct 2008 B1
7436568 Kuykendall, Jr. Oct 2008 B1
D581447 Yee Nov 2008 S
7447967 Onggosanusi et al. Nov 2008 B2
7453612 Mukawa Nov 2008 B2
7454103 Parriaux Nov 2008 B2
7457040 Amitai Nov 2008 B2
7466994 Pihlaja et al. Dec 2008 B2
7477206 Cowan et al. Jan 2009 B2
7479354 Ueda et al. Jan 2009 B2
7480215 Makela et al. Jan 2009 B2
7482996 Larson et al. Jan 2009 B2
7483604 Levola Jan 2009 B2
7492512 Niv et al. Feb 2009 B2
7496293 Shamir et al. Feb 2009 B2
7499217 Cakmakci et al. Mar 2009 B2
7500104 Goland Mar 2009 B2
7511891 Messerschmidt Mar 2009 B2
7513668 Peng et al. Apr 2009 B1
7522344 Curatu et al. Apr 2009 B1
7525448 Wilson et al. Apr 2009 B1
7528385 Volodin et al. May 2009 B2
7542210 Chirieleison, Sr. Jun 2009 B2
7545429 Travis Jun 2009 B2
7550234 Otaki et al. Jun 2009 B2
7558446 Wimberger-Friedl et al. Jul 2009 B2
7567372 Schorpp Jul 2009 B2
7570322 Sutherland et al. Aug 2009 B1
7570405 Sutherland et al. Aug 2009 B1
7570429 Maliah et al. Aug 2009 B2
7572555 Takizawa et al. Aug 2009 B2
7573640 Nivon et al. Aug 2009 B2
7576916 Amitai Aug 2009 B2
7577326 Amitai Aug 2009 B2
7579119 Ueda et al. Aug 2009 B2
7583423 Sutherland et al. Sep 2009 B2
7587110 Singh et al. Sep 2009 B2
7588863 Takizawa et al. Sep 2009 B2
7589900 Powell Sep 2009 B1
7589901 DeJong et al. Sep 2009 B2
7592988 Katase Sep 2009 B2
7593575 Houle et al. Sep 2009 B2
7597447 Larson et al. Oct 2009 B2
7599012 Nakamura et al. Oct 2009 B2
7600893 Laino et al. Oct 2009 B2
7602552 Blumenfeld Oct 2009 B1
7605719 Wenger et al. Oct 2009 B1
7605774 Brandt et al. Oct 2009 B1
7605882 Sutherland et al. Oct 2009 B1
7616270 Hirabayashi et al. Nov 2009 B2
7617022 Wood et al. Nov 2009 B1
7618750 Ueda et al. Nov 2009 B2
7619739 Sutherland et al. Nov 2009 B1
7619825 Peng et al. Nov 2009 B1
7629086 Otaki et al. Dec 2009 B2
7639208 Ha et al. Dec 2009 B1
7639911 Lee et al. Dec 2009 B2
7643214 Amitai Jan 2010 B2
7643225 Tsai Jan 2010 B1
7656585 Powell et al. Feb 2010 B1
7660047 Travis et al. Feb 2010 B1
7672055 Amitai Mar 2010 B2
7672549 Ghosh et al. Mar 2010 B2
7675684 Weissman et al. Mar 2010 B1
7691248 Ikeda et al. Apr 2010 B2
7710622 Takabayashi et al. May 2010 B2
7710654 Ashkenazi et al. May 2010 B2
7711228 Noda et al. May 2010 B2
7724441 Amitai May 2010 B2
7724442 Amitai May 2010 B2
7724443 Amitai May 2010 B2
7733571 Li Jun 2010 B1
7733572 Brown et al. Jun 2010 B1
7740387 Schultz et al. Jun 2010 B2
7747113 Mukawa et al. Jun 2010 B2
7751122 Amitai Jul 2010 B2
7751662 Kleemann et al. Jul 2010 B2
7764413 Levola Jul 2010 B2
7777819 Simmonds Aug 2010 B2
7778305 Parriaux et al. Aug 2010 B2
7778508 Hirayama Aug 2010 B2
7843642 Shaoulov et al. Nov 2010 B2
7847235 Krupkin et al. Dec 2010 B2
7864427 Korenaga et al. Jan 2011 B2
7865080 Hecker et al. Jan 2011 B2
7866869 Karakawa Jan 2011 B2
7872707 Sutherland et al. Jan 2011 B1
7872804 Moon et al. Jan 2011 B2
7884593 Simmonds et al. Feb 2011 B2
7884985 Amitai et al. Feb 2011 B2
7887186 Watanabe Feb 2011 B2
7903921 Ostergard Mar 2011 B2
7907342 Simmonds et al. Mar 2011 B2
7920787 Gentner et al. Apr 2011 B2
7928862 Matthews Apr 2011 B1
7936513 Wu et al. May 2011 B2
7936519 Mukawa et al. May 2011 B2
7944428 Travis May 2011 B2
7944616 Mukawa May 2011 B2
7949214 DeJong et al. May 2011 B2
D640310 Suzuki et al. Jun 2011 S
7961117 Zimmerman et al. Jun 2011 B1
7969644 Tilleman et al. Jun 2011 B2
7969657 Cakmakci et al. Jun 2011 B2
7970246 Travis et al. Jun 2011 B2
7976208 Travis Jul 2011 B2
7984884 Iliev et al. Jul 2011 B1
7999982 Endo et al. Aug 2011 B2
8000020 Amitai et al. Aug 2011 B2
8000491 Brodkin et al. Aug 2011 B2
8004765 Amitai Aug 2011 B2
8014050 McGrew Sep 2011 B2
8016475 Travis Sep 2011 B2
8018579 Krah Sep 2011 B1
8022942 Bathiche et al. Sep 2011 B2
8023783 Mukawa et al. Sep 2011 B2
RE42992 David Dec 2011 E
8073296 Mukawa et al. Dec 2011 B2
8077274 Sutherland et al. Dec 2011 B2
8079713 Ashkenazi Dec 2011 B2
8082222 Rangarajan et al. Dec 2011 B2
8086030 Gordon et al. Dec 2011 B2
8089568 Brown et al. Jan 2012 B1
8093451 Spangenberg et al. Jan 2012 B2
8098439 Amitai et al. Jan 2012 B2
8105662 Cherkaoui et al. Jan 2012 B2
8107023 Simmonds et al. Jan 2012 B2
8107780 Simmonds Jan 2012 B2
8120548 Barber Feb 2012 B1
8120848 Isano Feb 2012 B2
8132948 Owen et al. Mar 2012 B2
8132976 Odell et al. Mar 2012 B2
8134434 Diederichs et al. Mar 2012 B2
8136690 Fang et al. Mar 2012 B2
8137981 Andrew et al. Mar 2012 B2
8142016 Legerton et al. Mar 2012 B2
8149086 Klein et al. Apr 2012 B2
8152315 Travis et al. Apr 2012 B2
8152353 Yang et al. Apr 2012 B2
8155489 Saarikko et al. Apr 2012 B2
8159752 Wertheim et al. Apr 2012 B2
8160409 Large Apr 2012 B2
8160411 Levola et al. Apr 2012 B2
D659137 Matsumoto May 2012 S
8167173 Simmonds et al. May 2012 B1
8186874 Sinbar et al. May 2012 B2
8188925 DeJean May 2012 B2
8189263 Wang et al. May 2012 B1
8189973 Travis et al. May 2012 B2
D661334 Cho et al. Jun 2012 S
D661335 Jeon Jun 2012 S
8194325 Levola et al. Jun 2012 B2
8199803 Hauske et al. Jun 2012 B2
8202405 Meneghini et al. Jun 2012 B2
8213065 Mukawa Jul 2012 B2
8213755 Mukawa et al. Jul 2012 B2
8220966 Mukawa Jul 2012 B2
8224133 Popovich et al. Jul 2012 B2
8233204 Robbins et al. Jul 2012 B1
8253914 Kajiya et al. Aug 2012 B2
8254031 Levola Aug 2012 B2
8264498 Vanderkamp et al. Sep 2012 B1
8294749 Cable Oct 2012 B2
8295710 Marcus Oct 2012 B2
8301031 Gentner et al. Oct 2012 B2
8305577 Kivioja et al. Nov 2012 B2
8306423 Gottwald et al. Nov 2012 B2
8310327 Willers et al. Nov 2012 B2
8314819 Kimmel et al. Nov 2012 B2
8314993 Levola et al. Nov 2012 B2
8320032 Levola Nov 2012 B2
8321810 Heintze Nov 2012 B2
8325166 Akutsu et al. Dec 2012 B2
8329773 Fäcke et al. Dec 2012 B2
8335040 Mukawa et al. Dec 2012 B2
8335414 Zinoviev et al. Dec 2012 B2
D673996 Kim et al. Jan 2013 S
8351744 Travis et al. Jan 2013 B2
8354640 Hamre et al. Jan 2013 B2
8354806 Travis et al. Jan 2013 B2
8355610 Simmonds Jan 2013 B2
8369019 Baker et al. Feb 2013 B2
8376548 Schultz Feb 2013 B2
8382293 Phillips, III et al. Feb 2013 B2
8384504 Diederichs et al. Feb 2013 B2
8384694 Powell et al. Feb 2013 B2
8384730 Vanderkamp et al. Feb 2013 B1
8396339 Mukawa et al. Mar 2013 B2
8396341 Lee et al. Mar 2013 B2
8398242 Yamamoto et al. Mar 2013 B2
8403490 Sugiyama et al. Mar 2013 B2
8422840 Large Apr 2013 B2
8427439 Larsen et al. Apr 2013 B2
8432363 Saarikko et al. Apr 2013 B2
8432372 Butler et al. Apr 2013 B2
8432614 Amitai Apr 2013 B2
8441731 Sprague May 2013 B2
8447365 Imanuel May 2013 B1
8466953 Levola Jun 2013 B2
8472119 Kelly Jun 2013 B1
8472120 Border et al. Jun 2013 B2
8477261 Travis et al. Jul 2013 B2
8481130 Harding et al. Jul 2013 B2
8482858 Sprague Jul 2013 B2
8488246 Border et al. Jul 2013 B2
8491121 Tilleman et al. Jul 2013 B2
8491136 Travis et al. Jul 2013 B2
8493366 Bathiche et al. Jul 2013 B2
8493662 Noui Jul 2013 B2
8494229 Jarvenpaa et al. Jul 2013 B2
8508848 Saarikko Aug 2013 B2
8520309 Sprague Aug 2013 B2
D691192 Stanley et al. Oct 2013 S
8547638 Levola Oct 2013 B2
8548290 Travers et al. Oct 2013 B2
8565560 Popovich et al. Oct 2013 B2
D694310 Cho et al. Nov 2013 S
D694311 Cho et al. Nov 2013 S
8578038 Kaikuranta et al. Nov 2013 B2
8581831 Travis Nov 2013 B2
8582206 Travis Nov 2013 B2
8593734 Laakkonen Nov 2013 B2
8611014 Valera et al. Dec 2013 B2
8619062 Powell et al. Dec 2013 B2
D697130 Lövgren Jan 2014 S
8633786 Ermolov et al. Jan 2014 B2
8634120 Popovich et al. Jan 2014 B2
8634139 Brown et al. Jan 2014 B1
8639072 Popovich et al. Jan 2014 B2
8643691 Rosenfeld et al. Feb 2014 B2
8643948 Amitai et al. Feb 2014 B2
8649099 Schultz et al. Feb 2014 B2
8654420 Simmonds Feb 2014 B2
8659826 Brown et al. Feb 2014 B1
D701206 Luckey et al. Mar 2014 S
8670029 McEldowney Mar 2014 B2
8693087 Nowatzyk et al. Apr 2014 B2
8698705 Burke Apr 2014 B2
8731350 Lin et al. May 2014 B1
8736802 Kajiya et al. May 2014 B2
8736963 Robbins et al. May 2014 B2
8742952 Bold Jun 2014 B1
8746008 Mauritsen et al. Jun 2014 B1
8749886 Gupta Jun 2014 B2
8749890 Wood et al. Jun 2014 B1
8767294 Chen et al. Jul 2014 B2
8786923 Chuang et al. Jul 2014 B2
8810600 Bohn et al. Aug 2014 B2
8810913 Simmonds et al. Aug 2014 B2
8810914 Amitai Aug 2014 B2
8814691 Haddick et al. Aug 2014 B2
8816578 Peng et al. Aug 2014 B1
8817350 Robbins et al. Aug 2014 B1
8824836 Sugiyama Sep 2014 B2
8830143 Pitchford et al. Sep 2014 B1
8830584 Saarikko et al. Sep 2014 B2
8830588 Brown et al. Sep 2014 B1
8842368 Simmonds et al. Sep 2014 B2
8859412 Jain Oct 2014 B2
8872435 Kreitzer et al. Oct 2014 B2
8873149 Bohn et al. Oct 2014 B2
8873150 Amitai Oct 2014 B2
D718304 Heinrich Nov 2014 S
D718366 Mehin et al. Nov 2014 S
8885112 Popovich et al. Nov 2014 B2
8885997 Nguyen et al. Nov 2014 B2
8903207 Brown et al. Dec 2014 B1
8906088 Pugh et al. Dec 2014 B2
8913324 Schrader Dec 2014 B2
8913865 Bennett Dec 2014 B1
8917453 Bohn Dec 2014 B2
8929589 Publicover et al. Jan 2015 B2
8933144 Enomoto et al. Jan 2015 B2
8934743 Nishiwaki et al. Jan 2015 B2
8937771 Robbins et al. Jan 2015 B2
8937772 Burns et al. Jan 2015 B1
8938141 Magnusson Jan 2015 B2
8950867 Macnamara Feb 2015 B2
8964298 Haddick et al. Feb 2015 B2
8965152 Simmonds Feb 2015 B2
D725102 Lee et al. Mar 2015 S
8985803 Bohn Mar 2015 B2
8989535 Robbins Mar 2015 B2
D726180 Roat et al. Apr 2015 S
9019595 Jain Apr 2015 B2
9025253 Hadad et al. May 2015 B2
9035344 Jain May 2015 B2
D733709 Kawai Jul 2015 S
9075184 Popovich et al. Jul 2015 B2
9081178 Simmonds et al. Jul 2015 B2
9097890 Miller et al. Aug 2015 B2
9103978 Nishiwaki et al. Aug 2015 B2
9122015 Shimizu Sep 2015 B2
9128226 Fattal et al. Sep 2015 B2
9129295 Border et al. Sep 2015 B2
9164290 Robbins et al. Oct 2015 B2
9176324 Scherer et al. Nov 2015 B1
9188717 Nishiwaki Nov 2015 B2
9201270 Fattal et al. Dec 2015 B2
9215293 Miller Dec 2015 B2
D746896 Markovitz et al. Jan 2016 S
9239507 Chen et al. Jan 2016 B2
9244275 Li Jan 2016 B1
9244280 Tiana et al. Jan 2016 B1
9244281 Zimmerman et al. Jan 2016 B1
D749074 Cazalet et al. Feb 2016 S
9253359 Takahashi Feb 2016 B2
9269854 Jain Feb 2016 B2
D751551 Ho et al. Mar 2016 S
D752129 Lee et al. Mar 2016 S
9274338 Robbins et al. Mar 2016 B2
9274339 Brown et al. Mar 2016 B1
9274349 Popovich et al. Mar 2016 B2
D754782 Kokinakis et al. Apr 2016 S
9310566 Valera et al. Apr 2016 B2
9316786 Nishiwaki et al. Apr 2016 B2
9329325 Simmonds et al. May 2016 B2
9335548 Cakmakci et al. May 2016 B1
9335604 Popovich et al. May 2016 B2
9341846 Popovich et al. May 2016 B2
9354366 Jain May 2016 B2
9366862 Haddick et al. Jun 2016 B2
9366864 Brown et al. Jun 2016 B1
9372347 Levola et al. Jun 2016 B1
9377623 Robbins et al. Jun 2016 B2
9377852 Shapiro et al. Jun 2016 B1
9389415 Fattal et al. Jul 2016 B2
9400395 Travers et al. Jul 2016 B2
9423360 Kostamo et al. Aug 2016 B1
9429692 Saarikko et al. Aug 2016 B1
9431794 Jain Aug 2016 B2
9435961 Jiang Sep 2016 B2
9456744 Popovich et al. Oct 2016 B2
9459451 Saarikko et al. Oct 2016 B2
9464779 Popovich et al. Oct 2016 B2
9465213 Simmonds Oct 2016 B2
9465227 Popovich et al. Oct 2016 B2
9484482 Hsu et al. Nov 2016 B2
9494799 Robbins et al. Nov 2016 B2
9507150 Stratton et al. Nov 2016 B1
9513480 Saarikko et al. Dec 2016 B2
9519089 Brown et al. Dec 2016 B1
9523852 Brown et al. Dec 2016 B1
9535253 Levola et al. Jan 2017 B2
9541383 Abovitz et al. Jan 2017 B2
9541763 Heberlein et al. Jan 2017 B1
9547174 Gao et al. Jan 2017 B2
9551468 Jones Jan 2017 B2
9551874 Amitai Jan 2017 B2
9551880 Amitai Jan 2017 B2
9599813 Stratton et al. Mar 2017 B1
9612403 Abovitz et al. Apr 2017 B2
9632226 Waldern et al. Apr 2017 B2
9635352 Henry et al. Apr 2017 B1
9648313 Henry et al. May 2017 B1
9651368 Abovitz et al. May 2017 B2
9664824 Simmonds et al. May 2017 B2
9664910 Mansharof et al. May 2017 B2
9671612 Kress et al. Jun 2017 B2
9674413 Tiana et al. Jun 2017 B1
9678345 Melzer et al. Jun 2017 B1
9679367 Wald Jun 2017 B1
9715067 Brown et al. Jul 2017 B1
9715110 Brown et al. Jul 2017 B1
D793468 Yu et al. Aug 2017 S
D795865 Porter et al. Aug 2017 S
D795866 Porter et al. Aug 2017 S
9726540 Popovich et al. Aug 2017 B2
9727772 Popovich et al. Aug 2017 B2
9733475 Brown et al. Aug 2017 B1
9739950 Sqalli et al. Aug 2017 B2
9746688 Popovich et al. Aug 2017 B2
9754507 Wenger et al. Sep 2017 B1
9762895 Henry et al. Sep 2017 B1
9766465 Tiana et al. Sep 2017 B1
9785231 Zimmerman Oct 2017 B1
9791694 Haverkamp et al. Oct 2017 B1
9791696 Woltman et al. Oct 2017 B2
9791703 Vallius et al. Oct 2017 B1
9804316 Drolet et al. Oct 2017 B2
9804389 Popovich et al. Oct 2017 B2
9823423 Waldern et al. Nov 2017 B2
9857605 Popovich et al. Jan 2018 B2
9874931 Koenck et al. Jan 2018 B1
9899800 Ferrotti et al. Feb 2018 B2
9915825 Robbins et al. Mar 2018 B2
9933684 Brown et al. Apr 2018 B2
9939577 Inoue et al. Apr 2018 B2
9939628 Basset et al. Apr 2018 B2
9977247 Brown et al. May 2018 B1
D827641 Morisawa Sep 2018 S
10088686 Robbins et al. Oct 2018 B2
10089516 Popovich et al. Oct 2018 B2
10107966 Horibe et al. Oct 2018 B1
10114220 Grey et al. Oct 2018 B2
10156681 Waldern et al. Dec 2018 B2
10162181 Webster et al. Dec 2018 B2
10185154 Popovich et al. Jan 2019 B2
D840454 Han et al. Feb 2019 S
10197804 Stenberg et al. Feb 2019 B2
10209517 Popovich et al. Feb 2019 B2
10216061 Popovich et al. Feb 2019 B2
10234696 Popovich et al. Mar 2019 B2
10241330 Popovich et al. Mar 2019 B2
10241332 Vallius Mar 2019 B2
10281725 Yokoyama May 2019 B2
10330777 Popovich et al. Jun 2019 B2
10345519 Miller et al. Jul 2019 B1
10359736 Popovich et al. Jul 2019 B2
D855687 Villalpando Aug 2019 S
D859510 Harmon et al. Sep 2019 S
10409144 Popovich et al. Sep 2019 B2
10423222 Popovich et al. Sep 2019 B2
10423813 Popovich et al. Sep 2019 B2
10437051 Popovich et al. Oct 2019 B2
10437064 Popovich et al. Oct 2019 B2
10444510 Lee et al. Oct 2019 B1
10459145 Popovich et al. Oct 2019 B2
10459311 Popovich et al. Oct 2019 B2
D871494 Yamada et al. Dec 2019 S
D872170 Evans et al. Jan 2020 S
D872794 Wilkins Jan 2020 S
10527797 Waldern et al. Jan 2020 B2
10532594 Akahane et al. Jan 2020 B2
10545346 Waldern et al. Jan 2020 B2
10569449 Curts et al. Feb 2020 B1
10578876 Lam et al. Mar 2020 B1
10598938 Huang et al. Mar 2020 B1
D880575 Thixton Apr 2020 S
10613268 Colburn et al. Apr 2020 B1
10642058 Popovich et al. May 2020 B2
10649119 Mohanty et al. May 2020 B2
10670876 Popovich et al. Jun 2020 B2
10678053 Waldern et al. Jun 2020 B2
10690831 Calafiore Jun 2020 B2
10690915 Popovich et al. Jun 2020 B2
10690916 Popovich et al. Jun 2020 B2
10705281 Fattal et al. Jul 2020 B2
10725312 Popovich et al. Jul 2020 B2
10732351 Colburn et al. Aug 2020 B2
10732569 Waldern et al. Aug 2020 B2
10823887 Calafiore et al. Nov 2020 B1
10859768 Popovich et al. Dec 2020 B2
10890707 Waldern et al. Jan 2021 B2
10942430 Waldern et al. Mar 2021 B2
10983257 Colburn et al. Apr 2021 B1
11103892 Liao et al. Aug 2021 B1
11106048 Popovich et al. Aug 2021 B2
11107972 Diest et al. Aug 2021 B2
11137603 Zhang Oct 2021 B2
11231544 Lin et al. Jan 2022 B2
11243333 Ouderkirk et al. Feb 2022 B1
11306193 Lane et al. Apr 2022 B1
11307357 Mohanty Apr 2022 B2
11307432 Popovich et al. Apr 2022 B2
11340386 Ouderkirk et al. May 2022 B1
11391950 Calafiore Jul 2022 B2
11487131 Popovich et al. Nov 2022 B2
20010024177 Popovich Sep 2001 A1
20010036012 Nakai et al. Nov 2001 A1
20010043163 Waldern et al. Nov 2001 A1
20010046142 Van Santen et al. Nov 2001 A1
20010050756 Lipton et al. Dec 2001 A1
20020003509 Lipton et al. Jan 2002 A1
20020009299 Lipton Jan 2002 A1
20020011969 Lipton et al. Jan 2002 A1
20020012064 Yamaguchi Jan 2002 A1
20020021407 Elliott Feb 2002 A1
20020021461 Ono et al. Feb 2002 A1
20020036825 Lipton et al. Mar 2002 A1
20020047837 Suyama et al. Apr 2002 A1
20020071472 Dickson et al. Jun 2002 A1
20020075240 Lieberman et al. Jun 2002 A1
20020093701 Zhang et al. Jul 2002 A1
20020110077 Drobot et al. Aug 2002 A1
20020126332 Popovich Sep 2002 A1
20020127497 Brown et al. Sep 2002 A1
20020131175 Yagi et al. Sep 2002 A1
20020150032 Nishiuchi et al. Oct 2002 A1
20020150337 Fujimaki Oct 2002 A1
20020167462 Lewis et al. Nov 2002 A1
20020196332 Lipton et al. Dec 2002 A1
20030007070 Lipton et al. Jan 2003 A1
20030025881 Hwang Feb 2003 A1
20030030912 Gleckman et al. Feb 2003 A1
20030038912 Broer et al. Feb 2003 A1
20030039442 Bond et al. Feb 2003 A1
20030063042 Friesem et al. Apr 2003 A1
20030063884 Smith et al. Apr 2003 A1
20030067685 Niv Apr 2003 A1
20030076590 Kramer Apr 2003 A1
20030086670 Moridaira et al. May 2003 A1
20030107809 Chen et al. Jun 2003 A1
20030149346 Arnone et al. Aug 2003 A1
20030175004 Garito et al. Sep 2003 A1
20030197154 Manabe et al. Oct 2003 A1
20030197157 Sutherland et al. Oct 2003 A1
20030202247 Niv et al. Oct 2003 A1
20030206329 Ikeda et al. Nov 2003 A1
20030228019 Eichler et al. Dec 2003 A1
20040004767 Song Jan 2004 A1
20040012833 Newswanger et al. Jan 2004 A1
20040047938 Kosuga et al. Mar 2004 A1
20040057138 Tanijiri et al. Mar 2004 A1
20040075830 Miyake et al. Apr 2004 A1
20040089842 Sutehrland et al. May 2004 A1
20040108971 Waldern et al. Jun 2004 A1
20040109234 Levola Jun 2004 A1
20040112862 Willson et al. Jun 2004 A1
20040125454 Kawasaki et al. Jul 2004 A1
20040130797 Leigh Jul 2004 A1
20040141217 Endo et al. Jul 2004 A1
20040156008 Reznikov et al. Aug 2004 A1
20040174348 David Sep 2004 A1
20040175627 Sutherland et al. Sep 2004 A1
20040179764 Melikechi et al. Sep 2004 A1
20040184156 Gunn, III et al. Sep 2004 A1
20040188617 Devitt et al. Sep 2004 A1
20040208446 Bond et al. Oct 2004 A1
20040208466 Mossberg et al. Oct 2004 A1
20040225025 Sullivan et al. Nov 2004 A1
20040263969 Lipton et al. Dec 2004 A1
20040263971 Lipton et al. Dec 2004 A1
20050018304 Lipton et al. Jan 2005 A1
20050047705 Domash et al. Mar 2005 A1
20050079663 Masutani et al. Apr 2005 A1
20050083564 Mallya et al. Apr 2005 A1
20050105909 Stone May 2005 A1
20050122395 Lipton et al. Jun 2005 A1
20050134404 Kajiya et al. Jun 2005 A1
20050135747 Greiner et al. Jun 2005 A1
20050136260 Garcia Jun 2005 A1
20050141066 Ouchi Jun 2005 A1
20050141811 Yang et al. Jun 2005 A1
20050174321 Ikeda et al. Aug 2005 A1
20050180687 Amitai Aug 2005 A1
20050195276 Lipton et al. Sep 2005 A1
20050218377 Lawandy Oct 2005 A1
20050231774 Hayashi et al. Oct 2005 A1
20050232530 Kekas Oct 2005 A1
20050254752 Domash et al. Nov 2005 A1
20050259217 Lin et al. Nov 2005 A1
20050259302 Metz et al. Nov 2005 A9
20050259944 Anderson et al. Nov 2005 A1
20050265585 Rowe Dec 2005 A1
20050269481 David et al. Dec 2005 A1
20050271258 Rowe Dec 2005 A1
20050286133 Lipton Dec 2005 A1
20060002274 Kihara et al. Jan 2006 A1
20060012878 Lipton et al. Jan 2006 A1
20060013977 Duke et al. Jan 2006 A1
20060043938 O'Gorman et al. Mar 2006 A1
20060055993 Kobayashi et al. Mar 2006 A1
20060093012 Singh et al. May 2006 A1
20060093793 Miyakawa et al. May 2006 A1
20060114564 Sutherland et al. Jun 2006 A1
20060119837 Raguin et al. Jun 2006 A1
20060119916 Sutherland et al. Jun 2006 A1
20060126179 Levola Jun 2006 A1
20060132914 Weiss et al. Jun 2006 A1
20060142455 Agarwal et al. Jun 2006 A1
20060146422 Koike Jul 2006 A1
20060159864 Natarajan et al. Jul 2006 A1
20060164593 Peyghambarian et al. Jul 2006 A1
20060171647 Ye et al. Aug 2006 A1
20060177180 Tazawa et al. Aug 2006 A1
20060181683 Bhowmik et al. Aug 2006 A1
20060191293 Kuczma Aug 2006 A1
20060215244 Yosha et al. Sep 2006 A1
20060215976 Singh et al. Sep 2006 A1
20060221063 Ishihara Oct 2006 A1
20060221448 Nivon et al. Oct 2006 A1
20060228073 Mukawa et al. Oct 2006 A1
20060262250 Hobbs Nov 2006 A1
20060268104 Cowan et al. Nov 2006 A1
20060268412 Downing et al. Nov 2006 A1
20060279662 Kapellner et al. Dec 2006 A1
20060284974 Lipton et al. Dec 2006 A1
20060285205 Lipton et al. Dec 2006 A1
20060291021 Mukawa Dec 2006 A1
20060291052 Lipton et al. Dec 2006 A1
20060292493 Shinotsuka et al. Dec 2006 A1
20070012777 Tsikos et al. Jan 2007 A1
20070019152 Caputo et al. Jan 2007 A1
20070019297 Stewart et al. Jan 2007 A1
20070041684 Popovich et al. Feb 2007 A1
20070045596 King et al. Mar 2007 A1
20070052929 Allman et al. Mar 2007 A1
20070053032 Popovich Mar 2007 A1
20070070476 Yamada et al. Mar 2007 A1
20070070504 Akutsu et al. Mar 2007 A1
20070089625 Grinberg et al. Apr 2007 A1
20070097502 Lipton et al. May 2007 A1
20070109400 Woodgate et al. May 2007 A1
20070109401 Lipton et al. May 2007 A1
20070115553 Chang-Hasnain et al. May 2007 A1
20070116409 Bryan et al. May 2007 A1
20070127348 Ooi et al. Jun 2007 A1
20070133089 Lipton et al. Jun 2007 A1
20070133920 Lee et al. Jun 2007 A1
20070133983 Traff Jun 2007 A1
20070146624 Duston et al. Jun 2007 A1
20070146625 Ooi et al. Jun 2007 A1
20070154153 Fomitchov et al. Jul 2007 A1
20070160325 Son et al. Jul 2007 A1
20070177007 Lipton et al. Aug 2007 A1
20070182915 Osawa et al. Aug 2007 A1
20070183650 Lipton et al. Aug 2007 A1
20070188602 Cowan et al. Aug 2007 A1
20070188837 Shimizu et al. Aug 2007 A1
20070195409 Yun et al. Aug 2007 A1
20070206155 Lipton Sep 2007 A1
20070211164 Olsen et al. Sep 2007 A1
20070236560 Lipton et al. Oct 2007 A1
20070237456 Blauvelt et al. Oct 2007 A1
20070247687 Handschy et al. Oct 2007 A1
20070258138 Cowan et al. Nov 2007 A1
20070263169 Lipton Nov 2007 A1
20080001909 Lim Jan 2008 A1
20080018851 Lipton et al. Jan 2008 A1
20080024598 Perlin et al. Jan 2008 A1
20080043334 Itzkovitch et al. Feb 2008 A1
20080049100 Lipton et al. Feb 2008 A1
20080062259 Lipton et al. Mar 2008 A1
20080089073 Hikmet Apr 2008 A1
20080106775 Amitai et al. May 2008 A1
20080106779 Peterson et al. May 2008 A1
20080117289 Schowengerdt et al. May 2008 A1
20080136916 Wolff Jun 2008 A1
20080136923 Inbar et al. Jun 2008 A1
20080138013 Parriaux Jun 2008 A1
20080143964 Cowan et al. Jun 2008 A1
20080143965 Cowan et al. Jun 2008 A1
20080149517 Lipton et al. Jun 2008 A1
20080151370 Cook et al. Jun 2008 A1
20080151379 Amitai Jun 2008 A1
20080186573 Lipton Aug 2008 A1
20080186574 Robinson et al. Aug 2008 A1
20080186604 Amitai Aug 2008 A1
20080193085 Singh et al. Aug 2008 A1
20080198471 Amitai Aug 2008 A1
20080225187 Yamanaka Sep 2008 A1
20080226281 Lipton Sep 2008 A1
20080239067 Lipton Oct 2008 A1
20080239068 Lipton Oct 2008 A1
20080273081 Lipton Nov 2008 A1
20080278812 Amitai Nov 2008 A1
20080285137 Simmonds et al. Nov 2008 A1
20080285140 Amitai Nov 2008 A1
20080297731 Powell et al. Dec 2008 A1
20080297807 Feldman et al. Dec 2008 A1
20080298649 Ennis et al. Dec 2008 A1
20080298740 Hlousek et al. Dec 2008 A1
20080303895 Akka et al. Dec 2008 A1
20080303896 Lipton et al. Dec 2008 A1
20080304111 Queenan et al. Dec 2008 A1
20080309586 Vitale Dec 2008 A1
20080316303 Chiu et al. Dec 2008 A1
20080316375 Lipton et al. Dec 2008 A1
20090001632 Stumpe et al. Jan 2009 A1
20090010135 Ushiro et al. Jan 2009 A1
20090017424 Yoeli et al. Jan 2009 A1
20090019222 Verma et al. Jan 2009 A1
20090052017 Sasaki Feb 2009 A1
20090052046 Amitai Feb 2009 A1
20090052047 Amitai Feb 2009 A1
20090067774 Magnusson Mar 2009 A1
20090074356 Sanchez et al. Mar 2009 A1
20090097122 Niv Apr 2009 A1
20090097127 Amitai Apr 2009 A1
20090116790 Mossberg et al. May 2009 A1
20090121301 Chang May 2009 A1
20090122413 Hoffman et al. May 2009 A1
20090122414 Amitai May 2009 A1
20090128495 Kong et al. May 2009 A1
20090128781 Li May 2009 A1
20090128902 Niv et al. May 2009 A1
20090128911 Itzkovitch et al. May 2009 A1
20090136246 Murakami May 2009 A1
20090141324 Mukawa Jun 2009 A1
20090153437 Aharoni Jun 2009 A1
20090169152 Oestergard Jul 2009 A1
20090190222 Simmonds et al. Jul 2009 A1
20090213208 Glatt Aug 2009 A1
20090237804 Amitai et al. Sep 2009 A1
20090242021 Petkie et al. Oct 2009 A1
20090296218 Ryytty Dec 2009 A1
20090303599 Levola Dec 2009 A1
20090316246 Asai et al. Dec 2009 A1
20100014312 Travis et al. Jan 2010 A1
20100039796 Mukawa Feb 2010 A1
20100053565 Mizushima et al. Mar 2010 A1
20100060551 Sugiyama et al. Mar 2010 A1
20100060990 Wertheim et al. Mar 2010 A1
20100065726 Zhong et al. Mar 2010 A1
20100079841 Levola Apr 2010 A1
20100079865 Saarikko et al. Apr 2010 A1
20100084261 Lee et al. Apr 2010 A1
20100086256 Ben Bakir et al. Apr 2010 A1
20100092124 Magnusson et al. Apr 2010 A1
20100096562 Klunder et al. Apr 2010 A1
20100097674 Kasazumi et al. Apr 2010 A1
20100097820 Owen et al. Apr 2010 A1
20100103078 Mukawa et al. Apr 2010 A1
20100134534 Seesselberg et al. Jun 2010 A1
20100135615 Ho et al. Jun 2010 A1
20100136319 Imai et al. Jun 2010 A1
20100141555 Rorberg et al. Jun 2010 A1
20100141905 Burke Jun 2010 A1
20100149073 Chaum et al. Jun 2010 A1
20100165465 Levola Jul 2010 A1
20100165660 Weber et al. Jul 2010 A1
20100171680 Lapidot et al. Jul 2010 A1
20100177388 Cohen et al. Jul 2010 A1
20100202725 Popovich et al. Aug 2010 A1
20100214659 Levola Aug 2010 A1
20100220293 Mizushima et al. Sep 2010 A1
20100225834 Li Sep 2010 A1
20100225876 Escuti et al. Sep 2010 A1
20100231532 Nho et al. Sep 2010 A1
20100231693 Levola Sep 2010 A1
20100231705 Yahav et al. Sep 2010 A1
20100232003 Baldy et al. Sep 2010 A1
20100232016 Landa et al. Sep 2010 A1
20100245756 Sugihara et al. Sep 2010 A1
20100245757 Sugihara et al. Sep 2010 A1
20100246003 Simmonds et al. Sep 2010 A1
20100246004 Simmonds Sep 2010 A1
20100246993 Rieger et al. Sep 2010 A1
20100260030 Yuyama et al. Oct 2010 A1
20100265117 Weiss Oct 2010 A1
20100277803 Pockett et al. Nov 2010 A1
20100284085 Laakkonen Nov 2010 A1
20100284090 Simmonds Nov 2010 A1
20100284180 Popovich et al. Nov 2010 A1
20100296163 Saarikko Nov 2010 A1
20100299814 Celona et al. Dec 2010 A1
20100315719 Saarikko et al. Dec 2010 A1
20100321781 Levola et al. Dec 2010 A1
20100322555 Vermeulen et al. Dec 2010 A1
20110001895 Dahl Jan 2011 A1
20110002143 Saarikko et al. Jan 2011 A1
20110013423 Selbrede et al. Jan 2011 A1
20110019250 Aiki et al. Jan 2011 A1
20110019874 Jarvenpaa et al. Jan 2011 A1
20110026128 Baker et al. Feb 2011 A1
20110026774 Flohr et al. Feb 2011 A1
20110032602 Rothenberg et al. Feb 2011 A1
20110032618 Handerek et al. Feb 2011 A1
20110032706 Mukawa Feb 2011 A1
20110038024 Wang et al. Feb 2011 A1
20110050548 Blumenfeld et al. Mar 2011 A1
20110063604 Hamre et al. Mar 2011 A1
20110096401 Levola Apr 2011 A1
20110102711 Sutherland et al. May 2011 A1
20110103762 Lee et al. May 2011 A1
20110109880 Nummela May 2011 A1
20110157707 Tilleman et al. Jun 2011 A1
20110164221 Tilleman et al. Jul 2011 A1
20110187293 Travis et al. Aug 2011 A1
20110211239 Mukawa et al. Sep 2011 A1
20110216255 Miyauchi et al. Sep 2011 A1
20110221656 Haddick et al. Sep 2011 A1
20110232211 Farahi Sep 2011 A1
20110235179 Simmonds Sep 2011 A1
20110235365 McCollum et al. Sep 2011 A1
20110236803 Weiser et al. Sep 2011 A1
20110238399 Ophir et al. Sep 2011 A1
20110242349 Izuha et al. Oct 2011 A1
20110242661 Simmonds Oct 2011 A1
20110242670 Simmonds Oct 2011 A1
20110249309 McPheters et al. Oct 2011 A1
20110274435 Fini et al. Nov 2011 A1
20110299075 Meade et al. Dec 2011 A1
20110310356 Vallius Dec 2011 A1
20120007979 Schneider et al. Jan 2012 A1
20120027347 Mathal et al. Feb 2012 A1
20120033306 Valera et al. Feb 2012 A1
20120044572 Simmonds et al. Feb 2012 A1
20120044573 Simmonds et al. Feb 2012 A1
20120062850 Travis Mar 2012 A1
20120062998 Schultz et al. Mar 2012 A1
20120075168 Osterhout et al. Mar 2012 A1
20120081789 Mukawa et al. Apr 2012 A1
20120092632 McLeod et al. Apr 2012 A1
20120099203 Boubis et al. Apr 2012 A1
20120105634 Meidan et al. May 2012 A1
20120105740 Jannard et al. May 2012 A1
20120120493 Simmonds et al. May 2012 A1
20120127577 Desserouer May 2012 A1
20120162549 Gao et al. Jun 2012 A1
20120162764 Shimizu Jun 2012 A1
20120176665 Song et al. Jul 2012 A1
20120183888 Oliveira et al. Jul 2012 A1
20120194420 Osterhout et al. Aug 2012 A1
20120200532 Powell et al. Aug 2012 A1
20120206811 Mukawa et al. Aug 2012 A1
20120206937 Travis et al. Aug 2012 A1
20120207432 Travis et al. Aug 2012 A1
20120207434 Large Aug 2012 A1
20120214089 Hödnel et al. Aug 2012 A1
20120214090 Weiser et al. Aug 2012 A1
20120218481 Popovich et al. Aug 2012 A1
20120224062 Lacoste et al. Sep 2012 A1
20120235884 Miller et al. Sep 2012 A1
20120235886 Border et al. Sep 2012 A1
20120235900 Border et al. Sep 2012 A1
20120242661 Takagi et al. Sep 2012 A1
20120280956 Yamamoto et al. Nov 2012 A1
20120281943 Popovich et al. Nov 2012 A1
20120290973 Robertson et al. Nov 2012 A1
20120294037 Holman et al. Nov 2012 A1
20120300311 Simmonds et al. Nov 2012 A1
20120320460 Levola Dec 2012 A1
20120326950 Park et al. Dec 2012 A1
20120328234 Lu et al. Dec 2012 A1
20130016324 Travis Jan 2013 A1
20130016362 Gong et al. Jan 2013 A1
20130021392 Travis Jan 2013 A1
20130021586 Lippey Jan 2013 A1
20130027006 Holloway et al. Jan 2013 A1
20130033485 Kollin et al. Feb 2013 A1
20130039619 Laughlin Feb 2013 A1
20130044376 Valera et al. Feb 2013 A1
20130059233 Askham Mar 2013 A1
20130069850 Mukawa et al. Mar 2013 A1
20130077049 Bohn Mar 2013 A1
20130088637 Duparre Apr 2013 A1
20130093893 Schofield et al. Apr 2013 A1
20130101253 Popovich et al. Apr 2013 A1
20130107186 Ando et al. May 2013 A1
20130117377 Miller May 2013 A1
20130125027 Abovitz et al. May 2013 A1
20130128230 Macnamara May 2013 A1
20130138275 Nauman et al. May 2013 A1
20130141937 Katsuta et al. Jun 2013 A1
20130143336 Jain Jun 2013 A1
20130163089 Bohn Jun 2013 A1
20130163928 Wang et al. Jun 2013 A1
20130170031 Bohn et al. Jul 2013 A1
20130176704 Lanman et al. Jul 2013 A1
20130184904 Gadzinski Jul 2013 A1
20130200710 Robbins Aug 2013 A1
20130207887 Raffle et al. Aug 2013 A1
20130224634 Berneth et al. Aug 2013 A1
20130229717 Amitai Sep 2013 A1
20130249895 Westerinen et al. Sep 2013 A1
20130250207 Bohn Sep 2013 A1
20130250380 Fujikawa et al. Sep 2013 A1
20130250430 Robbins et al. Sep 2013 A1
20130250431 Robbins et al. Sep 2013 A1
20130257848 Westerinen et al. Oct 2013 A1
20130258701 Westerinen et al. Oct 2013 A1
20130267309 Robbins et al. Oct 2013 A1
20130271731 Popovich et al. Oct 2013 A1
20130277890 Bowman et al. Oct 2013 A1
20130286053 Fleck et al. Oct 2013 A1
20130300997 Popovich et al. Nov 2013 A1
20130301014 DeJong et al. Nov 2013 A1
20130305437 Weller et al. Nov 2013 A1
20130312811 Aspnes et al. Nov 2013 A1
20130314789 Saarikko et al. Nov 2013 A1
20130314793 Robbins et al. Nov 2013 A1
20130322810 Robbins Dec 2013 A1
20130328948 Kunkel et al. Dec 2013 A1
20130342525 Benko et al. Dec 2013 A1
20140002514 Richards Jan 2014 A1
20140003762 Macnamara Jan 2014 A1
20140009809 Pyun et al. Jan 2014 A1
20140022616 Popovich et al. Jan 2014 A1
20140024159 Jain Jan 2014 A1
20140027006 Foley et al. Jan 2014 A1
20140037242 Popovich et al. Feb 2014 A1
20140043672 Clarke et al. Feb 2014 A1
20140043689 Mason Feb 2014 A1
20140055845 Jain Feb 2014 A1
20140063055 Osterhout et al. Mar 2014 A1
20140064655 Nguyen et al. Mar 2014 A1
20140071538 Muller Mar 2014 A1
20140098010 Travis Apr 2014 A1
20140104665 Popovich et al. Apr 2014 A1
20140104685 Bohn et al. Apr 2014 A1
20140118647 Momonoi et al. May 2014 A1
20140126029 Fuetterer May 2014 A1
20140126175 Amitai et al. May 2014 A1
20140130132 Cahill et al. May 2014 A1
20140140653 Brown et al. May 2014 A1
20140140654 Brown et al. May 2014 A1
20140146394 Tout et al. May 2014 A1
20140152778 Ihlenburg et al. Jun 2014 A1
20140154614 Xie et al. Jun 2014 A1
20140160576 Robbins et al. Jun 2014 A1
20140168055 Smith Jun 2014 A1
20140168260 O'Brien et al. Jun 2014 A1
20140168735 Yuan et al. Jun 2014 A1
20140168783 Luebke et al. Jun 2014 A1
20140172296 Shtukater Jun 2014 A1
20140176528 Robbins Jun 2014 A1
20140177023 Gao et al. Jun 2014 A1
20140185286 Popovich et al. Jul 2014 A1
20140198128 Hong et al. Jul 2014 A1
20140198896 Hemmendorff et al. Jul 2014 A1
20140204455 Popovich et al. Jul 2014 A1
20140211322 Bohn et al. Jul 2014 A1
20140218468 Gao et al. Aug 2014 A1
20140218801 Simmonds et al. Aug 2014 A1
20140232759 Simmonds et al. Aug 2014 A1
20140240834 Mason Aug 2014 A1
20140240842 Nguyen et al. Aug 2014 A1
20140255662 Enomoto et al. Sep 2014 A1
20140267420 Schowengerdt et al. Sep 2014 A1
20140268017 Sweis et al. Sep 2014 A1
20140268353 Fujimura et al. Sep 2014 A1
20140300947 Fattal et al. Oct 2014 A1
20140300960 Santori et al. Oct 2014 A1
20140300966 Travers et al. Oct 2014 A1
20140327970 Bohn et al. Nov 2014 A1
20140330159 Costa et al. Nov 2014 A1
20140367719 Jain Dec 2014 A1
20140375542 Robbins et al. Dec 2014 A1
20140375789 Lou et al. Dec 2014 A1
20140375790 Robbins et al. Dec 2014 A1
20150001677 Palumbo et al. Jan 2015 A1
20150003796 Bennett Jan 2015 A1
20150010265 Popovich et al. Jan 2015 A1
20150015946 Muller Jan 2015 A1
20150016777 Abovitz et al. Jan 2015 A1
20150035744 Robbins et al. Feb 2015 A1
20150036068 Fattal et al. Feb 2015 A1
20150058791 Robertson et al. Feb 2015 A1
20150062675 Ayres et al. Mar 2015 A1
20150062707 Simmonds et al. Mar 2015 A1
20150086163 Valera et al. Mar 2015 A1
20150086907 Mizuta et al. Mar 2015 A1
20150107671 Bodan et al. Apr 2015 A1
20150109763 Shinkai et al. Apr 2015 A1
20150125109 Robbins et al. May 2015 A1
20150148728 Sallum et al. May 2015 A1
20150160529 Popovich et al. Jun 2015 A1
20150167868 Boncha Jun 2015 A1
20150177443 Faecke et al. Jun 2015 A1
20150177686 Lee et al. Jun 2015 A1
20150177688 Popovich et al. Jun 2015 A1
20150185475 Saarikko et al. Jul 2015 A1
20150211960 Shimizu Jul 2015 A1
20150219834 Nichol et al. Aug 2015 A1
20150235447 Abovitz et al. Aug 2015 A1
20150235448 Schowengerdt et al. Aug 2015 A1
20150243068 Solomon Aug 2015 A1
20150247975 Abovitz et al. Sep 2015 A1
20150260994 Akutsu et al. Sep 2015 A1
20150262424 Tabaka et al. Sep 2015 A1
20150268399 Futterer Sep 2015 A1
20150268415 Schowengerdt et al. Sep 2015 A1
20150277375 Large et al. Oct 2015 A1
20150285682 Popovich et al. Oct 2015 A1
20150288129 Jain Oct 2015 A1
20150289762 Popovich et al. Oct 2015 A1
20150309264 Abovitz et al. Oct 2015 A1
20150316768 Simmonds Nov 2015 A1
20150338689 Min et al. Nov 2015 A1
20150346490 Tekolste et al. Dec 2015 A1
20150346495 Welch et al. Dec 2015 A1
20150355394 Leighton et al. Dec 2015 A1
20160003847 Ryan et al. Jan 2016 A1
20160004090 Popovich et al. Jan 2016 A1
20160018673 Wang Jan 2016 A1
20160026253 Bradski et al. Jan 2016 A1
20160033705 Fattal Feb 2016 A1
20160033706 Fattal et al. Feb 2016 A1
20160038992 Arthur et al. Feb 2016 A1
20160041387 Valera et al. Feb 2016 A1
20160077338 Robbins et al. Mar 2016 A1
20160085008 Banerjee et al. Mar 2016 A1
20160085300 Robbins et al. Mar 2016 A1
20160097959 Bruizeman et al. Apr 2016 A1
20160116739 TeKolste et al. Apr 2016 A1
20160124223 Shinbo et al. May 2016 A1
20160124241 Popovich et al. May 2016 A1
20160132025 Taff et al. May 2016 A1
20160147067 Hua et al. May 2016 A1
20160170226 Popovich et al. Jun 2016 A1
20160178901 Ishikawa Jun 2016 A1
20160195664 Fattal et al. Jul 2016 A1
20160209648 Haddick et al. Jul 2016 A1
20160209657 Popovich et al. Jul 2016 A1
20160231568 Saarikko et al. Aug 2016 A1
20160231570 Levola et al. Aug 2016 A1
20160238772 Waldern et al. Aug 2016 A1
20160266398 Poon et al. Sep 2016 A1
20160274356 Mason Sep 2016 A1
20160274362 Tinch et al. Sep 2016 A1
20160283773 Popovich et al. Sep 2016 A1
20160291328 Popovich et al. Oct 2016 A1
20160299344 Dobschal et al. Oct 2016 A1
20160320536 Simmonds et al. Nov 2016 A1
20160327705 Simmonds et al. Nov 2016 A1
20160336033 Tanaka Nov 2016 A1
20160341964 Amitai Nov 2016 A1
20160363840 Mizoguchi et al. Dec 2016 A1
20160370615 Wu et al. Dec 2016 A1
20160377879 Popovich et al. Dec 2016 A1
20170003505 Vallius et al. Jan 2017 A1
20170010466 Klug et al. Jan 2017 A1
20170010488 Klug et al. Jan 2017 A1
20170030550 Popovich et al. Feb 2017 A1
20170031160 Popovich et al. Feb 2017 A1
20170031171 Vallius et al. Feb 2017 A1
20170032166 Raguin et al. Feb 2017 A1
20170034435 Vallius Feb 2017 A1
20170038579 Yeoh et al. Feb 2017 A1
20170052374 Waldern et al. Feb 2017 A1
20170052376 Amitai et al. Feb 2017 A1
20170059759 Ayres et al. Mar 2017 A1
20170059775 Coles et al. Mar 2017 A1
20170102543 Vallius Apr 2017 A1
20170115487 Travis et al. Apr 2017 A1
20170123208 Vallius May 2017 A1
20170131460 Lin et al. May 2017 A1
20170131545 Wall et al. May 2017 A1
20170131546 Woltman et al. May 2017 A1
20170131551 Robbins et al. May 2017 A1
20170138789 Ivanov May 2017 A1
20170160546 Bull et al. Jun 2017 A1
20170176747 Vallius et al. Jun 2017 A1
20170180404 Bersch et al. Jun 2017 A1
20170180408 Yu et al. Jun 2017 A1
20170192246 Popovich et al. Jul 2017 A9
20170192499 Trail Jul 2017 A1
20170199333 Waldern et al. Jul 2017 A1
20170212295 Vasylyev Jul 2017 A1
20170219841 Popovich et al. Aug 2017 A1
20170255257 Tiana et al. Sep 2017 A1
20170270637 Perreault et al. Sep 2017 A1
20170276940 Popovich et al. Sep 2017 A1
20170299793 Fattal Oct 2017 A1
20170299794 Fattal Oct 2017 A1
20170299860 Wall et al. Oct 2017 A1
20170307800 Fattal Oct 2017 A1
20170322426 Tervo Nov 2017 A1
20170356801 Popovich et al. Dec 2017 A1
20170357841 Popovich et al. Dec 2017 A1
20180011324 Popovich et al. Jan 2018 A1
20180052277 Schowengerdt et al. Feb 2018 A1
20180059305 Popovich et al. Mar 2018 A1
20180067251 Baldwin et al. Mar 2018 A1
20180067318 St. Hilaire Mar 2018 A1
20180074265 Waldern et al. Mar 2018 A1
20180074352 Popovich et al. Mar 2018 A1
20180081190 Lee et al. Mar 2018 A1
20180107011 Lu et al. Apr 2018 A1
20180112097 Raghavanpillai et al. Apr 2018 A1
20180113303 Popovich et al. Apr 2018 A1
20180120669 Popovich et al. May 2018 A1
20180129060 Lee et al. May 2018 A1
20180143438 Oh May 2018 A1
20180143449 Popovich et al. May 2018 A1
20180172995 Lee et al. Jun 2018 A1
20180188542 Waldern et al. Jul 2018 A1
20180188691 Fattal Jul 2018 A1
20180203230 Vallius et al. Jul 2018 A1
20180210198 Brown et al. Jul 2018 A1
20180210396 Popovich et al. Jul 2018 A1
20180232048 Popovich et al. Aug 2018 A1
20180246354 Popovich et al. Aug 2018 A1
20180252869 Ayres et al. Sep 2018 A1
20180265774 Huang et al. Sep 2018 A1
20180275350 Oh et al. Sep 2018 A1
20180275402 Popovich et al. Sep 2018 A1
20180284440 Popovich et al. Oct 2018 A1
20180373115 Brown et al. Dec 2018 A1
20190041634 Popovich et al. Feb 2019 A1
20190042827 Popovich et al. Feb 2019 A1
20190064735 Waldern et al. Feb 2019 A1
20190072723 Waldern et al. Mar 2019 A1
20190094548 Nicholson et al. Mar 2019 A1
20190113751 Waldern et al. Apr 2019 A9
20190113829 Waldern et al. Apr 2019 A1
20190114484 Keech et al. Apr 2019 A1
20190121027 Popovich et al. Apr 2019 A1
20190129085 Waldern et al. May 2019 A1
20190162962 Leighton et al. May 2019 A1
20190162963 Leighton et al. May 2019 A1
20190171031 Popovich et al. Jun 2019 A1
20190179153 Popovich et al. Jun 2019 A1
20190187538 Popovich et al. Jun 2019 A1
20190212195 Popovich et al. Jul 2019 A9
20190212557 Waldern et al. Jul 2019 A1
20190212573 Popovich et al. Jul 2019 A1
20190212588 Waldern et al. Jul 2019 A1
20190212589 Waldern et al. Jul 2019 A1
20190212596 Waldern et al. Jul 2019 A1
20190212597 Waldern et al. Jul 2019 A1
20190212698 Waldern et al. Jul 2019 A1
20190212699 Waldern et al. Jul 2019 A1
20190219822 Popovich et al. Jul 2019 A1
20190226830 Edwin et al. Jul 2019 A1
20190243142 TeKolste et al. Aug 2019 A1
20190265486 Hansotte et al. Aug 2019 A1
20190278224 Schlottau et al. Sep 2019 A1
20190285796 Waldern et al. Sep 2019 A1
20190293880 Nishiwaki et al. Sep 2019 A1
20190319426 Lu et al. Oct 2019 A1
20190339558 Waldern et al. Nov 2019 A1
20200026074 Waldern et al. Jan 2020 A1
20200033190 Popovich et al. Jan 2020 A1
20200033801 Waldern et al. Jan 2020 A1
20200033802 Popovich et al. Jan 2020 A1
20200057353 Popovich et al. Feb 2020 A1
20200064637 Popovich et al. Feb 2020 A1
20200081317 Popovich et al. Mar 2020 A1
20200103661 Kamakura Apr 2020 A1
20200142131 Waldern et al. May 2020 A1
20200159023 Bhargava et al. May 2020 A1
20200159026 Waldern et al. May 2020 A1
20200183163 Waldern et al. Jun 2020 A1
20200201042 Wang et al. Jun 2020 A1
20200201051 Popovich et al. Jun 2020 A1
20200225471 Waldern et al. Jul 2020 A1
20200241304 Popovich et al. Jul 2020 A1
20200247016 Calafiore Aug 2020 A1
20200249484 Waldern et al. Aug 2020 A1
20200249491 Popovich et al. Aug 2020 A1
20200249568 Rao et al. Aug 2020 A1
20200264378 Grant et al. Aug 2020 A1
20200271973 Waldern et al. Aug 2020 A1
20200292745 Waldern et al. Sep 2020 A1
20200292840 Popovich et al. Sep 2020 A1
20200341194 Waldern et al. Oct 2020 A1
20200348519 Waldern et al. Nov 2020 A1
20200348531 Popovich et al. Nov 2020 A1
20200363771 Waldern et al. Nov 2020 A1
20200386947 Waldern et al. Dec 2020 A1
20210033857 Waldern et al. Feb 2021 A1
20210063634 Waldern et al. Mar 2021 A1
20210088705 Drazic et al. Mar 2021 A1
20210109285 Jiang et al. Apr 2021 A1
20210191122 Yaroshchuk et al. Jun 2021 A1
20210199873 Shi et al. Jul 2021 A1
20210199971 Lee et al. Jul 2021 A1
20210238374 Ye et al. Aug 2021 A1
20210247620 Popovich et al. Aug 2021 A1
20210278739 Brown et al. Sep 2021 A1
20210349328 Popovich et al. Nov 2021 A1
20210405514 Waldern et al. Dec 2021 A1
20220019015 Calafiore et al. Jan 2022 A1
20220082739 Franke et al. Mar 2022 A1
20220091323 Yaroshchuk et al. Mar 2022 A1
20220099898 Waldern et al. Mar 2022 A1
20220155623 Waldern et al. May 2022 A1
20220204790 Zhang et al. Jun 2022 A1
20220206232 Zhang et al. Jun 2022 A1
20220214503 Waldern et al. Jul 2022 A1
20220317356 Popovich et al. Oct 2022 A1
Foreign Referenced Citations (420)
Number Date Country
PI0720469 Jan 2014 BR
2889727 Jun 2014 CA
1320217 Oct 2001 CN
1886680 Dec 2006 CN
200944140 Sep 2007 CN
101103297 Jan 2008 CN
101151562 Mar 2008 CN
101263412 Sep 2008 CN
100492099 May 2009 CN
101589326 Nov 2009 CN
101688977 Mar 2010 CN
101726857 Jun 2010 CN
101793555 Aug 2010 CN
101881936 Nov 2010 CN
101910900 Dec 2010 CN
101945612 Jan 2011 CN
102314092 Jan 2012 CN
102360093 Feb 2012 CN
102498425 Jun 2012 CN
102608762 Jul 2012 CN
102782563 Nov 2012 CN
102928981 Feb 2013 CN
103000188 Mar 2013 CN
103031557 Apr 2013 CN
103562802 Feb 2014 CN
103777282 May 2014 CN
103823267 May 2014 CN
103959133 Jul 2014 CN
104040308 Sep 2014 CN
104040410 Sep 2014 CN
104204901 Dec 2014 CN
303019849 Dec 2014 CN
104520751 Apr 2015 CN
303217936 May 2015 CN
104956252 Sep 2015 CN
105074537 Nov 2015 CN
105074539 Nov 2015 CN
105190407 Dec 2015 CN
105229514 Jan 2016 CN
105393159 Mar 2016 CN
105408801 Mar 2016 CN
105408802 Mar 2016 CN
105408803 Mar 2016 CN
105531716 Apr 2016 CN
105705981 Jun 2016 CN
106125308 Nov 2016 CN
106716223 May 2017 CN
106842397 Jun 2017 CN
106950744 Jul 2017 CN
107466372 Dec 2017 CN
107873086 Apr 2018 CN
108107506 Jun 2018 CN
108474945 Aug 2018 CN
108780224 Nov 2018 CN
109073889 Dec 2018 CN
109154717 Jan 2019 CN
208621784 Mar 2019 CN
103823267 May 2019 CN
110383117 Oct 2019 CN
107873086 Mar 2020 CN
111025657 Apr 2020 CN
111323867 Jun 2020 CN
111386495 Jul 2020 CN
305973971 Jul 2020 CN
111566571 Aug 2020 CN
111615655 Sep 2020 CN
111684362 Sep 2020 CN
111902768 Nov 2020 CN
107466372 Jan 2021 CN
113424095 Sep 2021 CN
113692544 Nov 2021 CN
114207492 Mar 2022 CN
114450608 May 2022 CN
19751190 May 1999 DE
10221837 Dec 2003 DE
102006003785 Jul 2007 DE
102006036831 Feb 2008 DE
102012108424 Mar 2014 DE
102013209436 Nov 2014 DE
17475510002 Aug 2012 EM
72341900001 Nov 2019 EM
0795775 Sep 1997 EP
0822441 Feb 1998 EP
1347641 Sep 2003 EP
1413972 Apr 2004 EP
1526709 Apr 2005 EP
1748305 Jan 2007 EP
1938152 Jul 2008 EP
1413972 Oct 2008 EP
2110701 Oct 2009 EP
2196729 Jun 2010 EP
2225592 Sep 2010 EP
2244114 Oct 2010 EP
2326983 Jun 2011 EP
2381290 Oct 2011 EP
1828832 May 2013 EP
2733517 May 2014 EP
1573369 Jul 2014 EP
2748670 Jul 2014 EP
2634605 Oct 2015 EP
2929378 Oct 2015 EP
2748670 Nov 2015 EP
2995986 Mar 2016 EP
2995986 Apr 2017 EP
3198192 Aug 2017 EP
3245444 Nov 2017 EP
3245551 Nov 2017 EP
3256888 Dec 2017 EP
3359999 Aug 2018 EP
2494388 Nov 2018 EP
3398007 Nov 2018 EP
3433658 Jan 2019 EP
3433659 Jan 2019 EP
2842003 Feb 2019 EP
3499278 Jun 2019 EP
3245551 Sep 2019 EP
3548939 Oct 2019 EP
3698214 Aug 2020 EP
3710876 Sep 2020 EP
3710887 Sep 2020 EP
3710893 Sep 2020 EP
3710894 Sep 2020 EP
3894938 Oct 2021 EP
3924759 Dec 2021 EP
3980825 Apr 2022 EP
4022370 Jul 2022 EP
20176157 Jun 2019 FI
20176158 Jun 2019 FI
20176161 Jun 2019 FI
2677463 Dec 1992 FR
2975506 Nov 2012 FR
2115178 Sep 1983 GB
2140935 Dec 1984 GB
2508661 Jun 2014 GB
2509536 Jul 2014 GB
2512077 Sep 2014 GB
2514658 Dec 2014 GB
1204684 Nov 2015 HK
1205563 Dec 2015 HK
1205793 Dec 2015 HK
1206101 Dec 2015 HK
57089722 Jun 1982 JP
02186319 Jul 1990 JP
03239384 Oct 1991 JP
06294952 Oct 1994 JP
07098439 Apr 1995 JP
0990312 Apr 1997 JP
2689851 Dec 1997 JP
10096903 Apr 1998 JP
11109320 Apr 1999 JP
11142806 May 1999 JP
2953444 Sep 1999 JP
2000056259 Feb 2000 JP
2000511306 Aug 2000 JP
2000261706 Sep 2000 JP
2000267042 Sep 2000 JP
2001027739 Jan 2001 JP
2001296503 Oct 2001 JP
2002090858 Mar 2002 JP
2002122906 Apr 2002 JP
2002156617 May 2002 JP
2002162598 Jun 2002 JP
2002523802 Jul 2002 JP
2002529790 Sep 2002 JP
2002311379 Oct 2002 JP
2003066428 Mar 2003 JP
2003270419 Sep 2003 JP
2003315540 Nov 2003 JP
2004157245 Jun 2004 JP
2006350129 Dec 2006 JP
2007011057 Jan 2007 JP
2007094175 Apr 2007 JP
2007219106 Aug 2007 JP
2008112187 May 2008 JP
2009036955 Feb 2009 JP
2009132221 Jun 2009 JP
2009133999 Jun 2009 JP
2009211091 Sep 2009 JP
4367775 Nov 2009 JP
2010256631 Nov 2010 JP
2012137616 Jul 2012 JP
2012533089 Dec 2012 JP
5303928 Oct 2013 JP
2013235256 Nov 2013 JP
2014132328 Jul 2014 JP
5588794 Sep 2014 JP
5646748 Dec 2014 JP
2015053163 Mar 2015 JP
2015523586 Aug 2015 JP
2015172713 Oct 2015 JP
2016030503 Mar 2016 JP
2018508037 Mar 2018 JP
2018533069 Nov 2018 JP
2019512745 May 2019 JP
2019520595 Jul 2019 JP
6598269 Oct 2019 JP
6680793 Apr 2020 JP
6734933 May 2020 JP
2020514783 May 2020 JP
1664536 Jul 2020 JP
2020537187 Dec 2020 JP
2021509736 Apr 2021 JP
2022513896 Feb 2022 JP
2022-520472 Mar 2022 JP
20060132474 Dec 2006 KR
100803288 Feb 2008 KR
20100092059 Aug 2010 KR
20140140063 Dec 2014 KR
20140142337 Dec 2014 KR
20170031357 Mar 2017 KR
301061010 May 2020 KR
20200104402 Sep 2020 KR
20200106170 Sep 2020 KR
1020200106932 Sep 2020 KR
1020200108030 Sep 2020 KR
20210100174 Aug 2021 KR
1020210138609 Nov 2021 KR
20220054386 May 2022 KR
200535633 Nov 2005 TW
200801583 Jan 2008 TW
201314263 Apr 2013 TW
201600943 Jan 2016 TW
201604601 Feb 2016 TW
1997001133 Jan 1997 WO
1997027519 Jul 1997 WO
1998004650 Feb 1998 WO
1999009440 Feb 1999 WO
9931658 Jun 1999 WO
1999052002 Oct 1999 WO
2000016136 Mar 2000 WO
0023832 Apr 2000 WO
2000023830 Apr 2000 WO
2000023832 Apr 2000 WO
2000023847 Apr 2000 WO
2000028369 May 2000 WO
2000028369 Oct 2000 WO
2001050200 Jul 2001 WO
2001090822 Nov 2001 WO
2002082168 Oct 2002 WO
2003081320 Oct 2003 WO
2004023174 Mar 2004 WO
2004053531 Nov 2004 WO
2004102226 Nov 2004 WO
2004109349 Dec 2004 WO
2004109349 Jan 2005 WO
2005001753 Jan 2005 WO
2005006065 Jan 2005 WO
2005006065 Feb 2005 WO
2005073798 Aug 2005 WO
2006002870 Jan 2006 WO
2006064301 Jun 2006 WO
2006064325 Jun 2006 WO
2006064334 Jun 2006 WO
2006102073 Sep 2006 WO
2006132614 Dec 2006 WO
2006102073 Jan 2007 WO
2007015141 Feb 2007 WO
2007029032 Mar 2007 WO
2007085682 Aug 2007 WO
2007130130 Nov 2007 WO
2007141587 Dec 2007 WO
2007141589 Dec 2007 WO
2008011066 Jan 2008 WO
2008011066 May 2008 WO
2008081070 Jul 2008 WO
2008100545 Aug 2008 WO
2008011066 Dec 2008 WO
2009013597 Jan 2009 WO
2009013597 Jan 2009 WO
2009077802 Jun 2009 WO
2009077803 Jun 2009 WO
2009101238 Aug 2009 WO
2007130130 Sep 2009 WO
2009155437 Dec 2009 WO
2009155437 Mar 2010 WO
2010023444 Mar 2010 WO
2010057219 May 2010 WO
2010067114 Jun 2010 WO
2010067117 Jun 2010 WO
2010078856 Jul 2010 WO
2010104692 Sep 2010 WO
2010122330 Oct 2010 WO
2010125337 Nov 2010 WO
2010125337 Nov 2010 WO
2010131046 Nov 2010 WO
2011012825 Feb 2011 WO
2011032005 Mar 2011 WO
2011042711 Apr 2011 WO
2011051660 May 2011 WO
2011055109 May 2011 WO
2011042711 Jun 2011 WO
2011073673 Jun 2011 WO
2011107831 Sep 2011 WO
2011110821 Sep 2011 WO
2011131978 Oct 2011 WO
2012052352 Apr 2012 WO
2012062658 May 2012 WO
2012136970 Oct 2012 WO
2012158950 Nov 2012 WO
2012172295 Dec 2012 WO
2013027004 Feb 2013 WO
2013027006 Feb 2013 WO
2013033274 Mar 2013 WO
2013034879 Mar 2013 WO
2013049012 Apr 2013 WO
2013054972 Apr 2013 WO
2013102759 Jul 2013 WO
2013163347 Oct 2013 WO
2013167864 Nov 2013 WO
2013190257 Dec 2013 WO
2014064427 May 2014 WO
2014080155 May 2014 WO
2014085734 Jun 2014 WO
2014090379 Jun 2014 WO
2014091200 Jun 2014 WO
2014093601 Jun 2014 WO
2014100182 Jun 2014 WO
2014113506 Jul 2014 WO
2014116615 Jul 2014 WO
2014130383 Aug 2014 WO
2014144526 Sep 2014 WO
2014159621 Oct 2014 WO
2014164901 Oct 2014 WO
2014176695 Nov 2014 WO
2014179632 Nov 2014 WO
2014188149 Nov 2014 WO
2014209733 Dec 2014 WO
2014209819 Dec 2014 WO
2014209820 Dec 2014 WO
2014209821 Dec 2014 WO
2014210349 Dec 2014 WO
2015006784 Jan 2015 WO
2015015138 Feb 2015 WO
2015017291 Feb 2015 WO
2015069553 May 2015 WO
2015081313 Jun 2015 WO
2015117039 Aug 2015 WO
2015145119 Oct 2015 WO
2016010289 Jan 2016 WO
2016020630 Feb 2016 WO
2016020643 Feb 2016 WO
2016025350 Feb 2016 WO
2016020630 Mar 2016 WO
2016042283 Mar 2016 WO
2016044193 Mar 2016 WO
2016046514 Mar 2016 WO
2016054092 Apr 2016 WO
2016069606 May 2016 WO
2016087442 Jun 2016 WO
2016103263 Jun 2016 WO
2016111706 Jul 2016 WO
2016111707 Jul 2016 WO
2016111708 Jul 2016 WO
2016111709 Jul 2016 WO
2016113533 Jul 2016 WO
2016113534 Jul 2016 WO
2016116733 Jul 2016 WO
2016118107 Jul 2016 WO
2016122679 Aug 2016 WO
2016130509 Aug 2016 WO
2016135434 Sep 2016 WO
2016113533 Oct 2016 WO
2016156776 Oct 2016 WO
2016181108 Nov 2016 WO
2016046514 Apr 2017 WO
2017060665 Apr 2017 WO
2017094129 Jun 2017 WO
2017120320 Jul 2017 WO
2017134412 Aug 2017 WO
2017160367 Sep 2017 WO
2017162999 Sep 2017 WO
2017162999 Sep 2017 WO
2017178781 Oct 2017 WO
2017180403 Oct 2017 WO
2017182771 Oct 2017 WO
2017203200 Nov 2017 WO
2017203201 Nov 2017 WO
2017207987 Dec 2017 WO
2018102834 Jun 2018 WO
2018102834 Jun 2018 WO
2018096359 Jul 2018 WO
2018129398 Jul 2018 WO
2018150163 Aug 2018 WO
2018206487 Nov 2018 WO
2019046649 Mar 2019 WO
2019077307 Apr 2019 WO
2019079350 Apr 2019 WO
2019079350 Apr 2019 WO
2019046649 May 2019 WO
2019122806 Jun 2019 WO
2019135784 Jul 2019 WO
2019135796 Jul 2019 WO
2019135837 Jul 2019 WO
2019136470 Jul 2019 WO
2019136471 Jul 2019 WO
2019136473 Jul 2019 WO
2019171038 Sep 2019 WO
2019185973 Oct 2019 WO
2019185975 Oct 2019 WO
2019185976 Oct 2019 WO
2019185977 Oct 2019 WO
2019217453 Nov 2019 WO
2020023779 Jan 2020 WO
2020123506 Jun 2020 WO
2020149956 Jul 2020 WO
2020168348 Aug 2020 WO
2020172681 Aug 2020 WO
2020186113 Sep 2020 WO
2020212682 Oct 2020 WO
2020219092 Oct 2020 WO
2020227236 Nov 2020 WO
2020247930 Dec 2020 WO
2021021926 Feb 2021 WO
2021032982 Feb 2021 WO
2021032983 Feb 2021 WO
2021041949 Mar 2021 WO
2021044121 Mar 2021 WO
2021262759 Dec 2021 WO
2022109615 May 2022 WO
2022150841 Jul 2022 WO
Non-Patent Literature Citations (475)
Entry
Extended European Search Report for EP Application No. 13192383.1, dated Apr. 2, 2014, 7 pgs.
Extended European Search Report for European Application No. 13765610.4 dated Feb. 16, 2016, 6 pgs.
Extended European Search Report for European Application No. 15187491.4, search completed Jan. 15, 2016, dated Jan. 28, 2016, 5 pgs.
International Preliminary Report on Patentability for International Application No. PCT/GB2010/000835, dated Nov. 1, 2011, dated Nov. 10, 2011, 9 pgs.
International Preliminary Report on Patentability for International Application No. PCT/GB2010/001920, dated Apr. 11, 2012, dated Apr. 19, 2012, 10 pgs.
International Preliminary Report on Patentability for International Application No. PCT/GB2010/001982, report dated May 1, 2012, dated May 10, 2012, 7 pgs.
International Preliminary Report on Patentability for International Application No. PCT/GB2013/000273, dated Dec. 23, 2014, dated Dec. 31, 2014, 8 pgs.
International Preliminary Report on Patentability for International Application No. PCT/GB2015/000203, dated Mar. 21, 2017, dated Mar. 30, 2017, 8 pgs.
International Preliminary Report on Patentability for International Application No. PCT/GB2016/000036, dated Aug. 29, 2017, dated Sep. 8, 2017, 8 pgs.
International Preliminary Report on Patentability for International Application No. PCT/GB2016/000051, Report dated Sep. 19, 2017, dated Sep. 28, 2017, 7 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/GB2016/000065, dated Oct. 3, 2017, dated Oct. 12, 2017, 8 pgs.
International Preliminary Report on Patentability for International Application No. PCT/IB2008/001909, Report dated Jan. 26, 2010, dated Jan. 26, 2010, 5 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2018/012227, Report dated Jul. 30, 2019, dated Aug. 8, 2019, 7 Pgs.
International Preliminary Report on Patentability for International Application PCT /US2018/015553, Report dated Jun. 4, 2019, dated Jun. 13, 2019, 6 Pgs.
International Preliminary Report on Patentability for International Application PCT/GB2009/051676, dated Jun. 14, 2011, dated Jun. 23, 2011, 6 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2011/000349, dated Sep. 18, 2012, dated Sep. 27, 2012, 10 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2012/000331, dated Oct. 8, 2013, dated Oct. 17, 2013, 8 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2012/000677, dated Feb. 25, 2014, dated Mar. 6, 2014, 5 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2013/000005, dated Jul. 8, 2014, dated Jul. 17, 2014, 12 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2014/000295, dated Feb. 2, 2016, dated Feb. 11, 2016, 4 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2015/000225, dated Feb. 14, 2017, dated Feb. 23, 2017, 8 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2015/000228, dated Feb. 14, 2017, dated Feb. 23, 2017, 11 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2015/000274, dated Mar. 28, 2017, dated Apr. 6, 2017, 8 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2016/000014, dated Jul. 25, 2017, dated Aug. 3, 2017, 7 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2017/000055, dated Oct. 16, 2018, dated Oct. 25, 2018, 9 pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/011736, dated Jul. 21, 2015, dated Jul. 30, 2015, 9 pgs.
International Preliminary Report on Patentability for International Application PCT/US2016/017091, dated Aug. 15, 2017, dated Aug. 24, 2017, 5 pgs.
International Preliminary Report on Patentability for International Application PCT/US2018/012691, dated Jul. 9, 2019, dated Jul. 18, 2019, 10 pgs.
International Preliminary Report on Patentability for International Application PCT/US2018/056150, Report dated Apr. 21, 2020, dated Apr. 30, 2020, 6 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2020/018686, Report dated Aug. 10, 2021, dated Aug. 26, 2021, 6 Pgs.
International Preliminary Report on Patentability for International Application PCT/GB2017/000040, Report dated Sep. 25, 2018, dated Oct. 4, 2018, 7 pgs.
International Preliminary Report on Patentability for International Application PCT/US2019/064765, Report dated Oct. 19, 2020, dated Oct. 28, 2020, 27 Pgs.
International Preliminary Report on Patentability for PCT Application No. PCT/US2013/038070, dated Oct. 28, 2014, 6 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2019/031163, Search completed Jul. 9, 2019, dated Jul. 29, 2019, 11 Pgs.
International Search Report and Written Opinion for International Application No. PCT/US2020/048590, Search completed Dec. 7, 2020, dated Jan. 11, 2021, 19 Pgs.
International Search Report and Written Opinion for International Application No. PCT/GB2010/000835, completed Oct. 26, 2010, dated Nov. 8, 2010, 12 pgs.
International Search Report and Written Opinion for International Application No. PCT/GB2010/001920, completed Mar. 29, 2011, dated Apr. 6, 2011, 15 pgs.
International Search Report and Written Opinion for International Application No. PCT/GB2015/000228, Search completed May 4, 2011, dated Jul. 15, 2011, 15 Pgs.
International Search Report and Written Opinion for International Application No. PCT/GB2016/000036, completed Jul. 4, 2016, dated Jul. 13, 2016, 10 pgs.
International Search Report and Written Opinion for International Application No. PCT/GB2016/000065, completed Jul. 14, 2016, dated Jul. 27, 2016, 10 pgs.
International Search Report and Written Opinion for International Application No. PCT/GB2017/000055, Search completed Jul. 19, 2017, dated Jul. 26, 2017, 12 pgs.
International Search Report and Written Opinion for International Application No. PCT/IB2008/001909, Search completed Feb. 4, 2009, dated Feb. 17, 2009, 6 Pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/038070, completed Aug. 12, 2013, dated Aug. 14, 2013, 12 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2014/011736, completed Apr. 18, 2014, dated May 8, 2014, 10 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2018/012227, Search completed Feb. 28, 2018, dated Mar. 14, 2018, 8 Pgs.
International Search Report and Written Opinion for International Application No. PCT/US2018/012691, completed Mar. 10, 2018, dated Mar. 28, 2018, 16 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2018/015553, completed Aug. 6, 2018, dated Sep. 19, 2018, 12 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2018/037410, Search completed Aug. 16, 2018, dated Aug. 30, 2018, 11 Pgs.
International Search Report and Written Opinion for International Application No. PCT/US2018/048636, Search completed Nov. 1, 2018, dated Nov. 15, 2018, 16 Pgs.
International Search Report and Written Opinion for International Application No. PCT/US2018/056150, Search completed Dec. 4, 2018, dated Dec. 26, 2018, 10 Pgs.
International Search Report and Written Opinion for International Application No. PCT/US2018/062835, Search completed Jan. 14, 2019, dated Jan. 31, 2019, 14 Pgs.
International Search Report and Written Opinion for International Application No. PCT/US2019/012758, completed Mar. 12, 2019, dated Mar. 27, 2019, 9 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2019/012764, completed Mar. 1, 2019, dated Mar. 18, 2019, 9 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2019/064765, Search completed Feb. 3, 2020, dated Mar. 18, 2020, 11 Pgs.
International Search Report and Written Opinion for International Application No. PCT/US2020/018686, Search completed Apr. 25, 2020, dated May 22, 2020, 11 Pgs.
International Search Report and Written Opinion for International Application No. PCT/US2020/036654, Search completed Aug. 21, 2020, dated Sep. 4, 2020, 14 Pgs.
International Search Report and Written Opinion for International Application No. PCT/US2019/065478, Search completed Jan. 29, 2020, dated Feb. 11.2020, 14 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2018/048960, Search completed Dec. 14, 2018, dated Jan. 8, 2019, 14 Pgs.
International Search Report and Written Opinion for International Application PCT/GB2009/051676, completed May 10, 2010, dated May 18, 2010, 7 pgs.
International Search Report and Written Opinion for International Application PCT/GB2016/000181, completed Dec. 21, 2016, dated Feb. 27, 2017, 21 pgs.
International Search Report and Written Opinion for International Application PCT/US2015/047097, completed Nov. 22, 2015, dated Dec. 16, 2019, 10 pgs.
International Search Report and Written Opinion for International Application PCT/US2016/017091, completed by the European Patent Office dated Apr. 20, 2016, 7 pgs.
International Search Report and Written Opinion for International Application PCT/US2019/012759, completed Mar. 14, 2019, dated Apr. 15, 2019, 12 pgs.
International Search Report for International Application No. PCT/GB2014/000295, completed Nov. 18, 2014, dated Jan. 5, 2015, 4 pgs.
International Search Report for International Application PCT/GB2017/000040, dated Jul. 18, 2017, completed Jul. 10, 2017, 3 pgs.
International Search Report for PCT/GB2010/001982, completed by the European Patent Office dated Feb. 24, 2011, 4 pgs.
International Search Report for PCT/GB2011/000349, completed by the European Patent Office dated Aug. 17, 2011, 4 pgs.
International Search Report for PCT/GB2012/000331, completed by the European Patent Office dated Aug. 29, 2012, 4 pgs.
International Search Report for PCT/GB2012/000677, completed by the European Patent Office dated Dec. 10, 2012, 4 pgs.
International Search Report for PCT/GB2013/000005, completed by the European Patent Office dated Jul. 16, 2013, 3 pgs.
International Search Report for PCT/GB2013/000273, completed by the European Patent Office dated Aug. 30, 2013, 4 pgs.
International Search Report for PCT/GB2015/000203, completed by the European Patent Office dated Oct. 9, 2015, 4 pgs.
International Search Report for PCT/GB2015/000225, completed by the European Patent Office dated Nov. 10, 2015, dated Dec. 2, 2016, 5 pgs.
International Search Report for PCT/GB2015/000274, completed by the European Patent Office dated Jan. 7, 2016, 4 pgs.
International Search Report for PCT/GB2016/000014, completed by the European Patent Office dated Jun. 27, 2016, 4 pgs.
International Search Report for PCT/GB2016/000051, Completed Aug. 11, 2016, 3 Pgs.
Written Opinion for International Application No. PCT/GB2010/001982, search completed Feb. 24, 2011, dated Mar. 8, 2011, 6 pgs.
Written Opinion for International Application No. PCT/GB2011/000349, completed Aug. 17, 2011, dated Aug. 25, 2011, 9 pgs.
Written Opinion for International Application No. PCT/GB2012/000331, completed Aug. 29, 2012, dated Sep. 6, 2012, 7 pgs.
Written Opinion for International Application No. PCT/GB2012/000677, completed Dec. 10, 2012, dated Dec. 17, 2012, 4 pgs.
Written Opinion for International Application No. PCT/GB2013/000005, search completed Jul. 16, 2013, dated Jul. 24, 2013, 11 pgs.
Written Opinion for International Application No. PCT/GB2013/000273, completed Aug. 30, 2013, dated Sep. 9, 2013, 7 pgs.
Written Opinion for International Application No. PCT/GB2014/000295, search completed Nov. 18, 2014, dated Jan. 5, 2015, 3 pgs.
Written Opinion for International Application No. PCT/GB2015/000203, completed Oct. 29, 2015, dated Nov. 16, 2015, 7 pgs.
Written Opinion for International Application No. PCT/GB2015/000225, search completed Nov. 10, 2015, dated Feb. 4, 2016, 7 pgs.
Written Opinion for International Application No. PCT/GB2015/000274, search completed Jan. 7, 2016, dated Jan. 19, 2016, 7 pgs.
Written Opinion for International Application No. PCT/GB2016/000014, search completed Jun. 27, 2016, dated Jul. 7, 2016, 6 pgs.
Written Opinion for International Application No. PCT/GB2016/000051, Search completed Aug. 11, 2016 , dated Aug. 22, 2016, 6 Pgs.
Written Opinion for International Application No. PCT/GB2017/000040, search completed Jul. 10, 2017, dated Jul. 18, 2017, 6 pgs.
Written Opinion for International Application PCT/GB2016/000003, completed May 31, 2016, dated Aug. 12, 2016, 10 pgs.
“Agilent ADNS-2051 Optical Mouse Sensor: Data Sheet”, Agilent Technologies, Jan. 9, 2002, 40 pgs.
“Application Note—MOXTEK ProFlux Polarizer use with LCOS displays”, CRL Opto Limited, http://www.crlopto.com, 2003, 6 pgs.
“Application Note AN 16: Optical Considerations for Bridgelux LED Arrays”, BridgeLux, Jul. 31, 2010, 23 pgs.
“Application Note: Variable Attenuator for Lasers”, Technology and Applications Center, Newport Corporation, www.newport.com, 2006, DS-08067, 6 pgs.
“Bae Systems to Unveil Q-Sight Family of Helmet-Mounted Display at AUSA Symposium”, Released on Tuesday, Oct. 9, 2007, 1 pg.
“Beam Steering Using Liquid Crystals”, Boulder Nonlinear Systems, Inc., info@bnonlinear.com, May 8, 2001, 4 pgs.
“BragGrate—Deflector: Transmitting Volume Bragg Grating for angular selection and magnification”, 2015, www.OptiGrate.com.
“Cree XLamp XP-E LEDs”, Cree, Inc., Retrieved from www.cree.com/Xlamp, CLD-DS18 Rev 17, 2013, 17 pgs.
“Desmodur N 3900”, Bayer Materialscience AG, Mar. 18, 2013, www.bayercoatings.com, 4 pgs.
“Digilens—Innovative Augmented Reality Display and Sensor Solutions for OEMs”, Jun. 6, 2017, 31 pgs.
“Exotic Optical Components”, Building Electro-Optical Systems, Making It All Work, Chapter 7, John Wiley & Sons, Inc., pp. 233-261.
“FHS Lenses Series”, Fraen Corporation, www.fraen.com, Jun. 16, 2003, 10 pgs.
“FLP Lens Series for LUXEONTM Rebel and Rebel ES LEDs”, Fraen Corporation, www.fraensrl.com, Aug. 7, 2015, 8 pgs.
“Head-up Displays, See-through display for military aviation”, BAE Systems, 2016, 3 pgs.
“Holder for LUXEON Rebel—Part No. 180”, Polymer Optics Ltd., 2008, 12 pgs.
“LED 7-Segment Displays”, Lumex, uk.digikey.com, 2003, UK031, 36 pgs.
“LED325W UVTOP UV LED with Window”, Thorlabs, Specifications and Documentation, 21978-S01 Rev. A, Apr. 8, 2011, 5 pgs.
“Liquid Crystal Phases”, Phases of Liquid Crystals, http://plc.cwru.edu/tutorial/enhanced/files/lc/phase, Retrieved on Sep. 21, 2004, 6 pgs.
“LiteHUD Head-up display”, BAE Systems, 2016, 2 pgs.
“LiteHUD Head-up display infographic”, BAE Systems, 2017, 2 pgs.
“Luxeon C: Power Light Source”, Philips Lumileds, www.philipslumileds.com, 2012, 18 pgs.
“Luxeon Rebel ES: Leading efficacy and light output, maximum design flexibility”, LUXEON Rebel ES Datasheet DS61 20130221, www.philipslumileds.com, 2013, 33 pgs.
“Mobile Display Report”, Insight Media, LLC, Apr. 2012, vol. 7, No. 4, 72 pgs.
“Molecular Imprints IMPRIO 55”, Engineering at Illinois, Micro + Nanotechnology Lab, Retrieved from https://mntl.illinois.edu/facilities/cleanrooms/equipment/Nano-Imprint.asp, Dec. 28, 2015, 2 pgs.
“Navy awards SGB Labs a contract for HMDs for simulation and training”, Press releases, DigiLens, Oct. 2012, pp. 1-2.
“Optical measurements of retinal flow”, Industrial Research Limited, Feb. 2012, 18 pgs.
“Osterhout Design Group Develops Next-Generation, Fully-integrated Smart Glasses Using Qualcomm Technologies”, ODG, www.osterhoutgroup.com, Sep. 18, 2014, 2 pgs.
“Plastic has replaced glass in photochromic lens”, www.plastemart.com, 2003, 1 page.
“Range Finding Using Pulse Lasers”, OSRAM, Opto Semiconductors, Sep. 10, 2004, 7 pgs.
“Response time in Liquid-Crystal Variable Retarders”, Meadowlark Optics, Inc., 2005, 4 pgs.
“Secondary Optics Design Considerations for SuperFlux LEDs”, Lumileds, application brief AB20-5, Sep. 2002, 23 pgs.
“Solid-State Optical Mouse Sensor with Quadrature Outputs”, IC Datasheet, UniqueICs, Jul. 15, 2004, 11 pgs.
“SVGA TransparentVLSITM Microdisplay Evaluation Kit”, Radiant Images, Inc., Product Data Sheet, 2003, 3 pgs.
“Technical Data Sheet LPR1”, Luminus Devices, Inc., Luminus Projection Chipset, Release 1, Preliminary, Revision B, Sep. 21, 2004, 9 pgs.
“The Next Generation of TV”, SID Information Display, Nov./Dec. 2014, vol. 30, No. 6, 56 pgs.
“Thermal Management Considerations for SuperFlux LEDs”, Lumileds, application brief AB20-4, Sep. 2002, 14 pgs.
“USAF Awards SBG Labs an SBIR Contract for Wide Field of View HUD”, Press Release ,SBG Labs DigiLens, Apr. 2014, 2 pgs.
“UVTOP240”, Roithner LaserTechnik GmbH, v 2.0, Jun. 24, 2013, 6 pgs.
“UVTOP310”, Roithner LaserTechnik GmbH, v 2.0, Jun. 24, 2013, 6 pgs.
“Velodyne's HDL-64E: A High Definition Lidar Sensor for 3-D Applications”, High Definition Lidar, white paper, Oct. 2007, 7 pgs.
“VerLASE Gets Patent for Breakthrough Color Conversion Technology That Enables Full Color MicroLED Arrays for Near Eye Displays”, Cision PRweb, Apr. 28, 2015, Retrieved from the Internet http://www.prweb.com/releases/2015/04/prweb12681038.htm, 3 pgs.
“Webster's Third New International Dictionary 433”, (1986), 3 pages.
“X-Cubes—Revisited for Lcos”, BASID, RAF Electronics Corp. Rawson Optics, Inc., Oct. 24, 2002, 16 pgs.
Aachen, “Design of plastic optics for LED applications”, Optics Colloquium 2009, Mar. 19, 2009, 30 pgs.
Abbate et al., “Characterization of LC-polymer composites for opto-electronic application”, Proceedings of OPTOEL'03, Leganes-Madrid, Spain, Jul. 14-16, 2003, 4 pgs.
Al-Kalbani et al., “Ocular Microtremor laser speckle metrology”, Proc, of SPIE, 2009, vol. 7176 717606-1, 12 pgs.
Almanza-Workman et al., “Planarization coating for polyimide substrates used in roll-to-roll fabrication of active matrix backplanes for flexible displays”, HP Laboratories, HPL-2012-23, Feb. 6, 2012, 12 pgs.
Amitai et al., “Visor-display design based on planar holographic optics”, Applied Optics, vol. 34, No. 8, Mar. 10, 1995, pp. 1352-1356.
Amundson et al., “Morphology and electro-optic properties of polymer-dispersed liquid-crystal films”, Physical Review E, Feb. 1997, vol. 55. No. 2, pp. 1646-1654.
An et al., “Speckle suppression in laser display using several partially coherent beams”, Optics Express, Jan. 5, 2009, vol. 17, No. 1, pp. 92-103.
Apter et al., “Electrooptical Wide-Angle Beam Deflector Based on Fringing-Field-Induced Refractive Inhomogeneity in a Liquid Crystal Layer”, 23rd IEEE Convention of Electrical and Electronics Engineers in Israel, Sep. 6-7, 2004, pp. 240-243.
Arnold et al., “52.3: An Improved Polarizing Beamsplitter LCOS Projection Display Based on Wire-Grid Polarizers”, Society for Information Display, Jun. 2001, pp. 1282-1285.
Ayras et al., “Exit pupil expander with a large field of view based on diffractive optics”, Journal of the SID, May 18, 2009, 17/8, pp. 659-664.
Baets et al., “Resonant-Cavity Light-Emitting Diodes: a review”, Proceedings of SPIE, 2003, vol. 4996, pp. 74-86.
Bayer et al., “Introduction to Helmet-Mounted Displays”, 2016, pp. 47-108.
Beckel et al., “Electro-optic properties of thiol-ene polymer stabilized ferroelectric liquid crystals”, Liquid Crystals, vol. 30, No. 11, Nov. 2003, pp. 1343-1350, DOI: 10.1080/02678290310001605910.
Bergkvist, “Biospeckle-based Study of the Line Profile of Light Scattered in Strawberries”, Master Thesis, Lund Reports on Atomic Physics, LRAP-220, Lund 1997, pp. 1-62.
Bernards et al., “Nanoscale porosity in polymer films: fabrication and therapeutic applications”, Soft Matter, Jan. 1, 2010, vol. 6, No. 8, pp. 1621-1631, doi:10.1039/B922303G.
Bhuvaneshwaran et al., “Spectral response of Bragg gratings in multimode polymer waveguides”, Applied Optics, Dec. 1, 2017, vol. 56. No. 34, pp. 9573-9582, doi: 10.1364/AO.56.009573.
Bleha et al., “Binocular Holographic Waveguide Visor Display”, SID Symposium Digest of Technical Papers, Holoeye Systems Inc., Jun. 2014, San Diego, CA, 4 pgs.
Bleha et al., “D-ILA Technology For High Resolution Projection Displays”, Sep. 10, 2003, Proceedings, vol. 5080, doi: 10.1117/12.497532, 11 pgs.
Bone, “Design Obstacles for LCOS Displays in Projection Applications “Optics architectures for LCOS are still evolving””, Aurora Systems Inc., Bay Area SID Seminar, Mar. 27, 2001, 22 pgs.
Born et al., “Optics of Crystals”, Principles of Optics 5th Edition 1975, pp. 705-707.
Bourzac, “Magic Leap Needs to Engineer a Miracle”, Intelligent Machines, Jun. 11, 2015, 7 pgs.
Bowen et al., “Optimisation of interdigitated electrodes for piezoelectric actuators and active fibre composites”, J Electroceram, Jul. 2006, vol. 16, pp. 263-269, DOI 10.1007/s10832-006-9862-8.
Bowley et al., “Variable-wavelength switchable Bragg gratings formed in polymer-dispersed liquid crystals”, Applied Physics Letters, Jul. 2, 2001, vol. 79, No. 1, pp. 9-11.
Bronnikov et al., “Polymer-Dispersed Liquid Crystals: Progress in Preparation, Investigation and Application”, Journal of Macromolecular Science Part B, published online Sep. 30, 2013, vol. 52, pp. 1718-1738.
Brown, “Waveguide Displays”, Rockwell Collins, 2015, 11 pgs.
Bruzzone et al., “Compact, high-brightness LED illumination for projection systems”, Journal of the SID 17/12, Dec. 2009, pp. 1043-1049.
Buckley, “Colour holographic laser projection technology for heads-up and instrument cluster displays”, Conference: Proc. SID Conference 14th Annual Symposium on Vehicle Displays, Jan. 2007, 5 pgs.
Buckley, “Pixtronix DMS technology for head-up displays”, Pixtronix, Inc., Jan. 2011, 4 pgs.
Buckley et al., “Full colour holographic laser projector HUD”, Light Blue Optics Ltd., Aug. 10, 2015, 5 pgs.
Buckley et al., “Rear-view virtual image displays”, in Proc. SID Conference 16th Annual Symposium on Vehicle Displays, Jan. 2009, 5 pgs.
Bunning et al., “Effect of gel-point versus conversion on the real-time dynamics of holographic polymer-dispersed liquid crystal (HPDLC) formation”, Proceedings of SPIE—vol. 5213, Liquid Crystals VII, Iam-Choon Khoo, Editor, Dec. 2003, pp. 123-129.
Bunning et al., “Electro-optical photonic crystals formed in H-PDLCs by thiol-ene photopolymerization”, American Physical Society, Annual APS, Mar. 3-7, 2003, abstract #R1.135.
Bunning et al., “Holographic Polymer-Dispersed Liquid Crystals (H-PDLCs)1”, Annu. Rev. Mater. Sci., 2000, vol. 30, pp. 83-115.
Bunning et al., “Morphology of Anisotropic Polymer Dispersed Liquid Crystals and the Effect of Monomer Functionality”, Polymer Science: Part B: Polymer Physics, Jul. 30, 1997, vol. 35, pp. 2825-2833.
Busbee et al., “SiO2 Nanoparticle Sequestration via Reactive Functionalization in Holographic Polymer-Dispersed Liquid Crystals”, Advanced Materials, Sep. 2009, vol. 21, pp. 3659-3662.
Butler et al., “Diffractive Properties of Highly Birefringent Volume Gratings: Investigation”, Journal of Optical Society of America, Feb. 2002, vol. 19, No. 2, pp. 183-189.
Cai et al., “Recent advances in antireflective surfaces based on nanostructure arrays”, Mater. Horiz., 2015, vol. 2, pp. 37-53.
Cameron, “Optical Waveguide Technology & Its Application In Head Mounted Displays”, Proc. of SPIE, May 22, 2012, vol. 8383, pp. 83830E-1-83830E-11.
Cameron, “The Application of Holographic Optical Waveguide Technology to Q-Sight™ Family of Helmet Mounted Displays”, Proc. of SPIE, 2009, vol. 7326, 11 pages, doi:10.1117/12.818581.
Caputo et al., “POLICRYPS Composite Materials: Features and Applications”, Advances in Composite Materials—Analysis of Natural and Man-Made Materials, www.intechopen.com, Sep. 2011, pp. 93-118.
Caputo et al., “POLICRYPS Switchable Holographic Grating: A Promising Grating Electro-Optical Pixel for High Resolution Display Application”, Journal of Display Technology, Mar. 2006, vol. 2, No. 1, pp. 38-51.
Caputo et al., “POLICRYPS: a liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications”, Journal of Optics A: Pure and Applied Optics, Jan. 15, 2009, vol. 11, No. 2, 13 pgs., doi: 10.1088/1464-4258/11/2/024017.
Carclo Optics, “Guide to choosing secondary optics”, Carclo Optics, Dec. 15, 2014, www.carclo-optics.com, 48 pgs.
Carothers, “Polymers and polyfunctionality”, Transactions of the Faraday Society, 1936, vol. 32, pp. 39-49.
Chen et al., “Polarization rotators fabricated by thermally-switched liquid crystal alignments based on rubbed poly(N-vinyl carbazole) films”, Optics Express, Apr. 11, 2011, vol. 19, No. 8, pp. 7553-7558.
Cheng et al., “Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics”, Optics Express, Aug. 2014, 16 pgs.
Chi et al., “Ultralow-refractive-index optical thin films through nanoscale etching of ordered mesoporous silica films”, Optic Letters, May 1, 2012, vol. 37, No. 9, pp. 1406-1408.
Chigrinov et al., “Photo-aligning by azo-dyes: Physics and applications”, Liquid Crystals Today, Sep. 6, 2006, http://www.tandfonline.com/action/journalInformation?journalCode=tlcy20, 15 pgs.
Cho et al., “Electro-optic Properties of CO2 Fixed Polymer/Nematic LC Composite Films”, Journal of Applied Polymer Science, Nov. 5, 2000, vol. 81, Issue 11, pp. 2744-2753.
Cho et al., “Optimization of Holographic Polymer Dispersed Liquid Crystals for Ternary Monomers”, Polymer International, Nov. 1999, vol. 48, pp. 1085-1090.
Colegrove et al., “P-59: Technology of Stacking HPDLC for Higher Reflectance”, SID 00 DIGEST, May 2000, pp. 770-773.
Crawford, “Electrically Switchable Bragg Gratings”, Optics & Photonics News, Apr. 2003, pp. 54-59.
Cruz-Arreola et al., “Diffraction of beams by infinite or finite amplitude-phase gratings”, Investigacio' N Revista Mexicana De Fi'Sica, Feb. 2011, vol. 57, No. 1, pp. 6-16.
Dabrowski, “High Birefringence Liquid Crystals”, Crystals, Sep. 3, 2013, vol. 3, No. 3, pp. 443-482.
Dainty, “Some statistical properties of random speckle patterns in coherent and partially coherent illumination”, Optica Acta, Mar. 12, 1970, vol. 17, No. 10, pp. 761-772.
Date, “Alignment Control in Holographic Polymer Dispersed Liquid Crystal”, Journal of Photopolymer Science and Technology, Nov. 2, 2000, vol. 13, pp. 289-284.
Date et al., “52.3: Direct-viewing Display Using Alignment-controlled PDLC and Holographic PDLC”, Society for Information Display Digest, May 2000, pp. 1184-1187, DOI: 10.1889/1.1832877.
Date et al., “Full-color reflective display device using holographically fabricated polymer-dispersed liquid crystal (HPDLC)”, Journal of the SID, 1999, vol. 7, No. 1, pp. 17-22.
De Bitetto, “White light viewing of surface holograms by simple dispersion compensation”, Applied Physics Letters, Dec. 15, 1966, vol. 9, No. 12, pp. 417-418.
Developer World, “Create customized augmented reality solutions”, printed Oct. 19, 2017, LMX-001 holographic waveguide display, Sony Developer World, 3 pgs.
Dhar et al., “Recording media that exhibit high dynamic range for digital holographic data storage”, Optics Letters, Apr. 1, 1999, vol. 24, No. 7, pp. 487-489.
Domash et al., “Applications of switchable Polaroid holograms”, SPIE Proceedings, vol. 2152, Diffractive and Holographic Optics Technology, Jan. 23-29, 1994, Los Angeles, CA, pp. 127-138, ISBN: 0-8194-1447-6.
Doolittle, “Studies in Newtonian Flow. II. The Dependence of the Viscosity of Liquids on Free-Space”, Journal of Applied Physics, 1951, vol. 22, Issue 12, pp. 1471-1475, published online Apr. 29, 2004, https://doi.org/10.1063/1.1699894.
Drake et al., “Waveguide Hologram Fingerprint Entry Device”, Optical Engineering, Sep. 1996, vol. 35, No. 9, pp. 2499-2505.
Drevensek-Olenik et al., “In-Plane Switching of Holographic Polymer-Dispersed Liquid Crystal Transmission Gratings”, Mol. Cryst. Liq. Cryst., 2008, vol. 495, p. 177/[529]-185/[537].
Drevensek-Olenik et al., “Optical diffraction gratings from polymer-dispersed liquid crystals switched by interdigitated electrodes”, Journal of Applied Physics, Dec. 1, 2004, vol. 96, No. 11, pp. 6207-6212.
Ducharme, “Microlens diffusers for efficient laser speckle generation”, Optics Express, Oct. 29, 2007, vol. 15, No. 22, pp. 14573-14579.
Duong et al., “Centrifugal Deposition of Iron Oxide Magnetic Nanorods for Hyperthermia Application”, Journal of Thermal Engineering, Yildiz Technical University Press, Istanbul, Turkey, Apr. 2015, vol. 1, No. 2, pp. 99-103.
Escuti et al., “Holographic photonic crystals”, Society of Photo-Optical Instrumentation Engineers, Sep. 2004, vol. 43, No. 9, pp. 1973-1987, DOI: 10.1117/1.1773773.
Fattal et al., “A multi directional backlight for a wide-angle glasses-free three-dimensional display”, Nature, Mar. 21, 2012, vol. 495, pp. 348-351.
Flory, “Molecular size distribution in three-dimensional polymers. I. Gelation”, J. Am. Chem. Soc., Nov. 1941, vol. 63, pp. 3083-3090.
Fontecchio et al., “Spatially Pixelated Reflective Arrays from Holographic Polymer Dispersed Liquid Crystals”, SID 00 Digest, May 2000, pp. 774-776.
Forman et al., “Materials development for PhotoINhibited SuperResolution (PINSR) lithography”, Proc. of SPIE, 2012, vol. 8249, 824904, doi: 10.1117/12.908512, pp. 824904-1-824904-9.
Forman et al., “Radical diffusion limits to photoinhibited superresolution Tithography”, Phys.Chem. Chem. Phys., May 31, 2013, vol. 15, pp. 14862-14867.
Friedrich-Schiller, “Spatial Noise and Speckle”, Version 1.12.2011, Dec. 2011, Abbe School of Photonics, Jena, Germany, 27 pgs.
Fries et al., “Real-time beam shaping without additional optical elements”, Light Science & Applications, Jun. 20, 2018, vol. 7, No. 18, doi: 10.1038/s41377-018-0014-0.
Fujii et al., “Nanoparticle-polymer-composite volume gratings incorporating chain-transfer agents for holography and slow-neutron optics”, Optics Letters, Apr. 25, 2014, vol. 39, Issue 12, 5 pgs.
Funayama et al., “Proposal of a new type thin film light-waveguide display device using”, The International Conference on Electrical Engineering, 2008, No. P-044, 5 pgs.
Gabor, “Laser Speckle and its Elimination”, BM Research and Development, Eliminating Speckle Noise, Sep. 1970, vol. 14, No. 5, pp. 509-514.
Gardiner et al., “Bistable liquid-crystals reduce power consumption for high-efficiency smart glazing”, SPIE, 2009, 10.1117/2.1200904.1596, 2 pgs.
Gerritsen et al., “Application of Kogelnik's two-wave theory to deep, slanted, highly efficient, relief transmission gratings”, Applied Optics, Mar. 1, 1991, vol. 30; No. 7, pp. 807-814.
Giancola, “Holographic Diffuser, Makes Light Work of Screen Tests”, Photonics Spectra, 1996, vol. 30, No. 8, pp. 121-122.
Golub et al., “Bragg properties of efficient surface relief gratings in the resonance domain”, Optics Communications, Feb. 24, 2004, vol. 235, pp. 261-267, doi: 10.1016/j.optcom.2004.02.069.
Goodman, “Introduction to Fourier Optics”, Second Edition, Jan. 1996, 457 Pages.
Goodman, “Some fundamental properties of speckle”, J. Opt. Soc. Am., Nov. 1976, vol. 66, No. 11, pp. 1145-1150.
Goodman, “Statistical Properties of Laser Speckle Patterns”, Applied Physics, 1975, vol. 9, Chapter 2, Laser Speckle and Related Phenomena, pp. 9-75.
Goodman et al., “Speckle Reduction by a Moving Diffuser in Laser Projection Displays”, The Optical Society of America, 2000, 15 pgs.
Guldin et al., “Self-Cleaning Antireflective Optical Coatings”, Nano Letters, Oct. 14, 2013, vol. 13, pp. 5329-5335.
Guo et al., “Analysis of the effects of viscosity, volume, and temperature in photopolymer material for holographic applications”, Proc. SPIE, May 2013, vol. 8776, pp. 87760J-1-87760-J15, DOI: 10.1117/12.2018330.
Guo et al., “Review Article: A Review of the Optimisation of Photopolymer Materials for Holographic Data Storage”, Physics Research International, vol. 2012, Article ID 803439, Academic Editor: Sergi Gallego, 16 pages, http://dx.doi.org/10.1155/2012/803439, May 4, 2012.
Han et al., “Study of Holographic Waveguide Display System”, Advanced Photonics for Communications, 2014, 4 pgs.
Harbers et al., “I-15.3: LED Backlighting for LCD-HDTV”, Journal of the Society for Information Display, 2002, vol. 10, No. 4, pp. 347-350.
Harbers et al., “Performance of High Power LED Illuminators in Color Sequential Projection Displays”, Lumileds Lighting, 2007, 4 pgs.
Harbers et al., “Performance of High Power LED Illuminators in Color Sequential Projection Displays”, Lumileds, Aug. 7, 2001, 11 pgs.
Harbers et al., “Performance of High-Power LED illuminators in Projection Displays”, Proc. Int. Disp. Workshops, Japan. vol. 10, pp. 1585-1588, 2003.
Harding et al., “Reactive Liquid Crystal Materials for Optically Anisotropic Patterned Retarders”, Merck, Iicrivue, 2008, ME-GR-RH-08-010, 20 pgs.
Harding et al., “Reactive Liquid Crystal Materials for Optically Anisotropic Patterned Retarders”, SPIE Lithography Asia—Taiwan, 2008, Proceedings vol. 7140, Lithography Asia 2008; 71402J, doi: 10.1117/12.805378.
Hariharan, “Optical Holography: Principles, techniques and applications”, Cambridge University Press, 1996, pp. 231-233.
Harris, “Photonic Devices”, EE 216 Principals and Models of Semiconductor Devices, Autumn 2002, 20 pgs.
Harrold et al., “3D Display Systems Hardware Research at Sharp Laboratories of Europe: an update”, Sharp Laboratories of Europe, Ltd., received May 21, 1999, 7 pgs.
Harthong et al., “Speckle phase averaging in high-resolution color holography”, J. Opt. Soc. Am. A, Feb. 1997, vol. 14, No. 2, pp. 405-409.
Hasan et al., “Tunable-focus lens for adaptive eyeglasses”, Optics Express, Jan. 23, 2017, vol. 25, No. 2, 1221, 13 pgs.
Hasman et al., “Diffractive Optics: Design, Realization, and Applications”, Fiber and Integrated Optics, vol. 16, pp. 1-25, 1997.
Hata et al., “Holographic nanoparticle-polymer composites based on step-growth thiol-ene photopolymerization”, Optical Materials Express, Jun. 1, 2011, vol. 1, No. 2, pp. 207-222.
He et al., “Dynamics of peristrophic multiplexing in holographic polymer-dispersed liquid crystal”, Liquid Crystals, Mar. 26, 2014, vol. 41, No. 5, pp. 673-684.
He et al., “Holographic 3D display based on polymer-dispersed liquid-crystal thin films”, Proceedings of China Display/Asia Display 2011, pp. 158-160.
He et al., “Properties of Volume Holograms Recording in Photopolymer Films with Various Pulse Exposures Repetition Frequencies”, Proceedings of SPIE vol. 5636, Bellingham, WA, 2005, doi: 10.1117/12.580978, pp. 842-848.
Herman et al., “Production and Uses of Diffractionless Beams”, J. Opt. Soc. Am. A., Jun. 1991, vol. 8, No. 6, pp. 932-942.
Hisano, “Alignment layer-free molecular ordering induced by masked photopolymerization with nonpolarized light”, Appl. Phys. Express 9, Jun. 6, 2016, pp. 072601-1-072601-4.
Hoepfner et al., “LED Front Projection Goes Mainstream”, Luminus Devices, Inc., Projection Summit, 2008, 18 pgs.
Holmes et al., “Controlling The Anisotropy of Holographic Polymer-Dispersed Liquid-Crystal Gratings”, Physical Review E, Jun. 11, 2002, vol. 65, 066603-1-066603-4.
Hoyle et al., “Advances in the Polymerization of Thiol-Ene Formulations”, Heraeus Noblelight Fusion UV Inc., 2003 Conference, 6 pgs.
Hua, “Sunglass-like displays become a reality with free-form optical technology”, Illumination & Displays 3D Visualization and Imaging Systems Laboratory (3DVIS) College of Optical Sciences University of Arizona Tucson, AZ. 2014, 3 pgs.
Huang et al., “Diffraction properties of substrate guided-wave holograms”, Optical Engineering, Oct. 1995, vol. 34, No. 10, pp. 2891-2899.
Huang et al., “Theory and characteristics of holographic polymer dispersed liquid crystal transmission grating with scaffolding morphology”, Applied Optics, Jun. 20, 2012, vol. 51, No. 18, pp. 4013-4020.
Iannacchione et al., “Deuterium NMR and morphology study of copolymer-dispersed liquid-crystal Bragg gratings”, Europhysics Letters, 1996, vol. 36, No. 6, pp. 425-430.
Irie, “Photochromic diarylethenes for photonic devices”, Pure and Applied Chemistry, 1996, pp. 1367-1371, vol. 68, No. 7, IUPAC.
Jeng et al., “Aligning liquid crystal molecules”, SPIE, 2012, 10.1117/2.1201203.004148, 2 pgs.
Jo et al., “Control of Liquid Crystal Pretilt Angle using Polymerization of Reactive Mesogen”, IMID 2009 Digest, P1-25, 2009, pp. 604-606.
Juhl, “Interference Lithography for Optical Devices and Coatings”, Dissertation, University of Illinois at Urbana-Champaign, 2010.
Juhl et al., “Holographically Directed Assembly of Polymer Nanocomposites”, ACS Nano, Oct. 7, 2010, vol. 4, No. 10, pp. 5953-5961.
Jurbergs et al., “New recording materials for the holographic industry”, Proc. of SPIE, 2009 vol. 7233, pp. 72330K-1-72330L-10, doi: 10.1117/12.809579.
Kahn et al., “Private Line Reporton Large Area Display”, Kahn International, Jan. 7, 2003, vol. 8, No. 10, 9 pgs.
Karasawa et al., “Effects of Material Systems on the Polarization Behavior of Holographic Polymer Dispersed Liquid Crystal Gratings”, Japanese Journal of Applied Physics, Oct. 1997, vol. 36, No. 10, pp. 6388-6392.
Karp et al., “Planar micro-optic solar concentration using multiple imaging lenses into a common slab waveguide”, Proc. of SPIE vol. 7407, 2009 SPIE, CCC code: 0277-786X/09, doi: 10.1117/12.826531, pp. 74070D-1-74070D-11.
Karp et al., “Planar micro-optic solar concentrator”, Optics Express, Jan. 18, 2010, vol. 18, No. 2, pp. 1122-1133.
Kato et al., “Alignment-Controlled Holographic Polymer Dispersed Liquid Crystal (HPDLC) for Reflective Display Devices”, SPIE,1998, vol. 3297, pp. 52-57.
Kessler, “Optics of Near to Eye Displays (NEDs)”, Oasis 2013, Tel Aviv, Feb. 19, 2013, 37 pgs.
Keuper et al., “26.1: RGB LED Illuminator for Pocket-Sized Projectors”, SID 04 Digest, 2004, ISSN/0004-0966X/04/3502, pp. 943-945.
Keuper et al., “P-126: Ultra-Compact LED based Image Projector for Portable Applications”, SID 03 DIGEST, 2003, ISSN/0003-0966X/03/3401-0713, pp. 713-715.
Kim et al., “Effect of Polymer Structure on the Morphology and Electro optic Properties of UV Curable PNLCs”, Polymer, Feb. 2000, vol. 41, pp. 1325-1335.
Kim et al., “Enhancement of electro-optical properties in holographic polymer-dispersed liquid crystal films by incorporation of multiwalled carbon nanotubes into a polyurethane acrylate matrix”, Polym. Int., Jun. 16, 2010, vol. 59, pp. 1289-1295.
Kim et al., “Fabrication of Reflective Holographic PDLC for Blue”, Molecular Crystals and Liquid Crystals Science, 2001, vol. 368, pp. 3845-3853.
Kim et al., “Optimization of Holographic PDLC for Green”, Mol. Cryst. Liq. Cryst., vol. 368, pp. 3855-3864, 2001.
Klein, “Optical Efficiency for Different Liquid Crystal Colour Displays”, Digital Media Department, HPL-2000-83, Jun. 29, 2000, 18 pgs.
Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings”, The Bell System Technical Journal, vol. 48, No. 9, pp. 2909-2945, Nov. 1969.
Kotakonda et al., “Electro-optical Switching of the Holographic Polymer-dispersed Liquid Crystal Diffraction Gratings”, Journal of Optics A: Pure and Applied Optics, Jan. 1, 2009, vol. 11, No. 2, 11 pgs.
Kress et al., “Diffractive and Holographic Optics as Optical Combiners in Head Mounted Displays”, UbiComp '13, Sep. 9-12, 2013, Session: Wearable Systems for Industrial Augmented Reality Applications, pp. 1479-1482.
Kwon et al., “Polymer waveguide notch filter using two stacked thermooptic Tong-period gratings”, IEEE Photonics Technology Letters, Apr. 4, 2005, vol. 17, Issue 4, pp. 792-794, DOI: 10.1109/LPT.2005.844008.
Lauret et al., “Solving the Optics Equation for Effective LED Applications”, Gaggione North America, LLFY System Design Workshop 2010, Oct. 28, 2010, 26 pgs.
Lee, “Patents Shows Widespread Augmented Reality Innovation”, PatentVue, May 26, 2015, 5 pgs.
Levin et al., “A Closed Form Solution To Natural Image Matting”, Illumination & Displays 3D Visualization and Imaging Systems Laboratory (3DVIS) College of Optical Sciences University of Arizona Tucson, 2014, 8 pgs.
Levola, “Diffractive optics for virtual reality displays”, Journal of the SID, 2006, 14/5, pp. 467-475.
Levola et al., “Near-to-eye display with diffractive exit pupil expander having chevron design”, Journal of the SID, 2008, 16/8, pp. 857-862.
Levola et al., “Replicated slanted gratings with a high refractive index material for in and outcoupling of light”, Optics Express, vol. 15, Issue 5, pp. 2067-2074 (2007).
Li et al., “A low cost, label-free biosensor based on a novel double-sided grating waveguide coupler with sub-surface cavities”, Sensors and Actuators B Chemical, Jan. 2015, vol. 206, pp. 371-380, https://doi.org/10.1016/j.snb.2014.09.065.
Li et al., “Design and Optimization of Tapered Light Pipes”, Proceedings vol. 5529, Nonimaging Optics and Efficient Illumination Systems, Sep. 29, 2004, doi: 10.1117/12.559844, 10 pgs.
Li et al., “Dual Paraboloid Reflector and Polarization Recycling Systems for Projection Display”, Proceedings vol. 5002, Projection Displays IX, Mar. 28, 2003, doi: 10.1117/12.479585, 12 pgs.
Li et al., “Light Pipe Based Optical Train and its Applications”, Proceedings vol. 5524, Novel Optical Systems Design and Optimization VII, Oct. 24, 2004, doi: 10.1117/12.559833, 10 pgs.
Li et al., “Novel Projection Engine with Dual Paraboloid Reflector and Polarization Recovery Systems”, Wavien Inc., SPIE EI 5289-38, Jan. 21, 2004, 49 pgs.
Li et al., “Polymer crystallization/melting induced thermal switching in a series of holographically patterned Bragg reflectors”, Soft Matter, Jul. 11, 2005, vol. 1, pp. 238-242..
Lin et al., “Ionic Liquids in Photopolymerizable Holographic Materials”, in book: Hologram—Recording Materials and Applications, Nov. 9, 2011, 21 pgs.
Liu et al., “Holographic Polymer Dispersed Liquid Crystals” Materials, Formation and Applications, Advances in OptoElectronics, Nov. 30, 2008, vol. 2008, Article ID 684349, 52 pgs.
Liu et al., “Realization and Optimization of Holographic Waveguide Display System”, Acta Optica Sinica, vol. 37, Issue 5, Issuing date—May 10, 2017, pp. 310-317.
Lorek, “Experts Say Mass Adoption of augmented and Virtual Reality is Many Years Away”, Siliconhills, Sep. 9, 2017, 4 pgs.
Lougnot et al., “Polymers for holographic recording: VI. Some basic ideas for modelling the kinetics of the recording process”, Pure and Applied Optics Journal of the European Optical Society Part A, 1997, vol. 6, No. 2, pp. 225-245, https://doi.org/10.1088/0963-9659/6/2/007.
Lowenthal et al., “Speckle Removal by a Slowly Moving Diffuser Associated with a Motionless Diffuser”, Journal of the Optical Society of America, Jul. 1971, vol. 61, No. 7, pp. 847-851.
Lu et al., “Polarization switch using thick holographic polymer-dispersed liquid crystal grating”, Journal of Applied Physics, Feb. 1, 2004, vol. 95, No. 3, pp. 810-815.
Lu et al., “The Mechanism of electric-field-induced segregation of additives in a liquid-crystal host”, Phys Rev E Stat Nonlin Soft Matter Phys., Nov. 27, 2012, 14 pgs.
Ma et al., “Holographic Reversed-Mode Polymer-Stabilized Liquid Crystal Grating”, Chinese Phys. Lett., 2005, vol. 22, No. 1, pp. 103-106.
Mach et al., “Switchable Bragg diffraction from liquid crystal in colloid-templated structures”, Europhysics Letters, Jun. 1, 2002, vol. 58, No. 5, pp. 679-685.
Magarinos et al., “Wide Angle Color Holographic infinity optics display”, Air Force Systems Command, Brooks Air Force Base, Texas, AFHRL-TR-80-53, Mar. 1981, 100 pgs.
Marino et al., “Dynamical Behaviour of Policryps Gratings”, Electronic-Liquid Crystal Communications, Feb. 5, 2004, 10 pgs.
Massenot et al., “Multiplexed holographic transmission gratings recorded in holographic polymer-dispersed liquid crystals: static and dynamic studies”, Applied Optics, 2005, vol. 44, Issue 25, pp. 5273-5280.
Matay et al., “Planarization of Microelectronic Structures by Using Polyimides”, Journal of Electrical Engineering, 2002, vol. 53, No. 3-4, pp. 86-90.
Mathews, “The LED FAQ Pages”, Jan. 31, 2002, 23 pgs.
Matic, “Blazed phase liquid crystal beam steering”, Proc. of the SPIE, 1994, vol. 2120, pp. 194-205.
McLeod, “Axicons and Their Uses”, Journal of the Optical Society of America, Feb. 1960, vol. 50, No. 2, pp. 166-169.
McManamon et al., “A Review of Phased Array Steering for Narrow-Band Electrooptical Systems”, Proceedings of the IEEE, Jun. 2009, vol. 97, No. 6, pp. 1078-1096.
McManamon et al., “Optical Phased Array Technology”, Proceedings of the IEEE, Feb. 1996, vol. 84, Issue 2, pp. 268-298.
Miller, “Coupled Wave Theory and Waveguide Applications”, The Bell System Technical Journal, Short Hills, NJ, Feb. 2, 1954, 166 pgs.
Missinne et al., “Flexible thin polymer waveguide Bragg grating sensor foils for strain sensing”, Proc. SPIE, 10101, Organic Photonic Materials and Devices, Feb. 16, 2017, https://doi.org/10.1117/12.2250823.
Moffitt, “Head-Mounted Display Image Configurations”, retrieved from the internet on Dec. 19, 2014, dated May 2008, 25 pgs.
Moharam et al., “Diffraction characteristics of photoresist surface-relief gratings”, Applied Optics, Sep. 15, 1984, vol. 23, pp. 3214-3220.
Nair et al., “Enhanced Two-Stage Reactive Polymer Network Forming Systems”, Polymer (Guildf). May 25, 2012, vol. 53, No. 12, pp. 2429-2434, doi:10.1016/j.polymer.2012.04.007.
Nair et al., “Two-Stage Reactive Polymer Network Forming Systems”, Advanced Functional Materials, 2012, pp. 1-9, DOI: 10.1002/adfm.201102742.
Naqvi et al., “Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress”, International Journal of Nanomedicine, Dovepress, Nov. 13, 2010, vol. 5, pp. 983-989.
Natarajan et al., “Electro Optical Switching Characteristics of Volume Holograms in Polymer Dispersed Liquid Crystals”, Journal of Nonlinear Optical Physics and Materials, 1997, vol. 5, No. 1, pp. 666-668.
Natarajan et al., “Electro-Optical Switching Characteristics of Volume Holograms in Polymer Dispersed Liquid Crystals”, J. of Nonlinear Optical Physics Materials, Jan. 1996, vol. 5, No. 1, pp. 89-98.
Natarajan et al., “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization”, Polymer, vol. 47, May 8, 2006, pp. 4411-4420.
Naydenova et al., “Low-scattering Volume Holographic Material”, DIT PhD Project, http://www.dit.ie/ieo/, Oct. 2017, 2 pgs.
Neipp et al., “Non-local polymerization driven diffusion based model: general dependence of the polymerization rate to the exposure intensity”, Optics Express, Aug. 11, 2003, vol. 11, No. 16, pp. 1876-1886.
Nielsen et al., “Grating Couplers for Fiber-to-Fiber Characterizations of Stand-Alone Dielectric Loaded Surface Plasmon Waveguide Components”, Journal of Lightwave Technology, Oct. 1, 2012, vol. 30, No. 19, pp. 3118-3125, DOI: 10.1109/JLT.2012.2212418.
Nishikawa et al., “Mechanically and Light Induced Anchoring of Liquid Crystal on Polyimide Film”, Mol. Cryst. Liq. Cryst., Aug. 1999, vol. 329, 8 pgs.
Nishikawa et al., “Mechanism of Unidirectional Liquid-Crystal Alignment on Polyimides with Linearly Polarized Ultraviolet Light Exposure”, Applied Physics Letters, May 11, 1998, vol. 72, No. 19, 4 pgs.
Nordin et al., “Diffraction Properties of Stratified Volume Holographic Optical Elements”, Journal of the Optical Society of America A., vol. 9, No. 12, Dec. 1992, pp. 2206-2217.
Oh et al., “Achromatic diffraction from polarization gratings with high efficiency”, Optic Letters, Oct. 15, 2008, vol. 33, No. 20, pp. 2287-2289.
Olson et al., “Templating Nanoporous Polymers with Ordered Block Copolymers”, Chemistry of Materials, Web publication Nov. 27, 2007, vol. 20, pp. 869-890.
Ondax, Inc., “Volume Holographic Gratings (VHG)”, 2005, 7 pgs.
Orcutt, “Coming Soon: Smart Glasses That Look Like Regular Spectacles”, Intelligent Machines, Jan. 9, 2014, 4 pgs.
Osredkar, “A study of the limits of spin-on-glass planarization process”, Informacije MIDEM, 2001, vol. 31, 2, ISSN0352-9045, pp. 102-105.
Osredkar et al., “Planarization methods in IC fabrication technologies”, Informacije MIDEM, 2002, vol. 32, 3, ISSN0352-9045, 5 pgs.
Ou et al., “A Simple LCOS Optical System (Late News)”, Industrial Technology Research Institute/OES Lab. Q100/Q200, SID 2002, Boston, USA, 2 pgs.
Paolini et al., “High-Power LED Illuminators in Projection Displays”, Lumileds, Aug. 7, 2001, 19 pgs.
Park et al., “Aligned Single-Wall Carbon Nanotube Polymer Composites Using an Electric Field”, Journal of Polymer Science: Part B: Polymer Physics, Mar. 24, 2006, DOI 10.1002/polb.20823, pp. 1751-1762.
Park et al., “Fabrication of Reflective Holographic Gratings with Polyurethane Acrylates (PUA)”, Current Applied Physics, Jun. 2002, vol. 2, pp. 249-252.
Pierantoni et al., “Efficient modeling of 3-D photonic crystals for integrated optical devices”, IEEE Photonics Technology Letters, Feb. 2006, vol. 18, No. 2, pp. 319-321, DOI: 10.1109/LPT.2005.861991.
Plawsky et al., “Engineered nanoporous and nanostructured films”, MaterialsToday, Jun. 2009, vol. 12, No. 6, pp. 36-45.
Pogue et al., “Electrically Switchable Bragg Gratings from Liquid Crystal/Polymer Composites”, Applied Spectroscopy, 2000, vol. 54, Issue 1, pp. 12A-28A.
Potenza, “These smart glasses automatically focus on what you're looking at”, The Verge, Voc Media, Inc., Jan. 29, 2017, https://www.theverge.com/2017/1/29/14403924/smart-glasses-automatic-focus-presbyopia-ces-2017, 6 pgs.
Presnyakov et al., “Electrically tunable polymer stabilized liquid-crystal lens”, Journal of Applied Physics, Apr. 29, 2005, vol. 97, pp. 103101-1-103101-6.
Prokop et al., “Air-Suspended SU-8 Polymer Waveguide Grating Couplers”, Journal of Lightwave Technology, Sep. 1, 2016, vol. 34, No. 17, pp. 3966-3971, DOI: 10.1109/JLT.2016.2593025.
Qi et al., “P-111: Reflective Display Based on Total Internal Reflection and Grating-Grating Coupling”, Society for Information Display Digest, May 2003, pp. 648-651, DOI: 10.1889/1.1832359.
Ramón, “Formation of 3D micro- and nanostructures using liquid crystals as a template”, Technische Universiteit Eindhoven, Apr. 17, 2008, Thesis, 117 pgs., DOI:http://dx.doi.org/10.6100/IR634422.
Ramsey, “Holographic Patterning of Polymer Dispersed Liquid Crystal Materials for Diffractive Optical Elements”, Thesis, The University of Texas at Arlington, Dec. 2006, 166 pgs.
Ramsey et al., “Holographically recorded reverse-mode transmission gratings in polymer-dispersed liquid crystal cells”, Applied Physics B: Laser and Optics, Sep. 10, 2008, vol. 93, Nos. 2-3, pp. 481-489.
Reid, “Thin film silica nanocomposites for anti-reflection coatings”, Oxford Advance Surfaces, www.oxfordsurfaces.com, Oct. 18, 2012, 23 pgs.
Riechert, “Speckle Reduction in Projection Systems”, Dissertation, University Karlsruhe, 2009, 178 pgs.
Rossi et al., “Diffractive Optical Elements for Passive Infrared Detectors”, Submitted to OSA Topical Meeting “Diffractive Optics and Micro-Optics”, Quebec, Jun. 18-22, 2000, 3 pgs.
Sabel et al., “Simultaneous formation of holographic surface relief gratings and volume phase gratings in photosensitive polymer”, Materials Research Letters, May 30, 2019, vol. 7, No. 10, pp. 405-411, doi: 10.1080/21663831.2019.1621956.
Sagan et al., “Electrically Switchable Bragg Grating Technology for Projection Displays”, Proc. SPIE. vol. 4294, Jan. 24, 2001, pp. 75-83.
Sakhno et al., “Deep surface relief grating in azobenzene-containing materials using a low-intensity 532 nm laser”, Optical Materials: X, Jan. 23, 2019, 100006, pp. 3-7, doi: 10.1016/j.omx.2019.100006.
Saleh et al., “Fourier Optics: 4.1 Propagation of light in free space, 4.2 Optical Fourier Transform, 4.3 Diffraction of Light, 4.4 Image Formation, 4.5 Holography”, Fundamentals of Photonics 1991, Chapter 4, pp. 108-143.
Saraswat, “Deposition & Planarization”, EE 311 Notes, Aug. 29, 2017, 28 pgs.
Schechter et al., “Compact beam expander with linear gratings”, Applied Optics, vol. 41, No. 7, Mar. 1, 2002, pp. 1236-1240.
Schreiber et al., “Laser display with single-mirror MEMS scanner”, Journal of the SID 17/7, 2009, pp. 591-595.
Seiberle et al., “Photo-aligned anisotropic optical thin films”, Journal of the SID 12/1, 2004, 6 pgs.
Serebriakov et al., “Correction of the phase retardation caused by intrinsic birefringence in deep UV lithography”, Proc. of SPIE, May 21, 2010, vol. 5754, pp. 1780-1791.
Shi et al., “Design considerations for high efficiency liquid crystal decentered microlens arrays for steering light”, Applied Optics, vol. 49, No. 3, Jan. 20, 2010, pp. 409-421.
Shriyan et al., “Analysis of effects of oxidized multiwalled carbon nanotubes on electro-optic polymer/liquid crystal thin film gratings”, Optics Express, Nov. 12, 2010, vol. 18, No. 24, pp. 24842-24852.
Simonite, “How Magic Leap's Augmented Reality Works”, Intelligent Machines, Oct. 23, 2014, 7 pgs.
Smith et al., “RM-PLUS—Overview”, Licrivue, Nov. 5, 2013, 16 pgs.
Sony Global, “Sony Releases the Transparent Lens Eyewear ‘SmartEyeglass Developer Edition’”, printed Oct. 19, 2017, Sony Global—News Releases, 5 pgs.
Steranka et al., “High-Power LEDs—Technology Status and Market Applications”, Lumileds, Jul. 2002, 23 pgs.
Stumpe et al., “Active and Passive LC Based Polarization Elements”, Mol. Cryst. Liq. Cryst., 2014, vol. 594: pp. 140-149.
Stumpe et al., “New type of polymer-LC electrically switchable diffractive devices—POLIPHEM”, May 19, 2015, p. 97.
Subbarayappa et al., “Bistable Nematic Liquid Crystal Device”, Jul. 30, 2009, 14 pgs.
Sun et al., “Effects of multiwalled carbon nanotube on holographic polymer dispersed liquid crystal”, Polymers Advanced Technologies, Feb. 19, 2010, DOI: 10.1002/pat.1708, 8 pgs.
Sun et al., “Low-birefringence lens design for polarization sensitive optical systems”, Proceedings of SPIE, 2006, vol. 6289, doi: 10.1117/12.679416, pp. 6289DH-1-6289DH-10.
Sun et al., “Transflective multiplexing of holographic polymer dispersed liquid crystal using Si additives”, eXPRESS Polymer Letters, 2011, vol. 5, No. 1, pp. 73-81.
Sutherland et al., “Bragg Gratings in an Acrylate Polymer Consisting of Periodic Polymer—Dispersed Liquid-Crystal Planes”, Chem. Mater., 1993, vol. 5, pp. 1533-1538.
Sutherland et al., “Electrically switchable volume gratings in polymer-dispersed liquid crystals”, Applied Physics Letters, Feb. 28, 1994, vol. 64, No. 9, pp. 1074-1076.
Sutherland et al., “Enhancing the electro-optical properties of liquid crystal nanodroplets for switchable Bragg gratings”, Proc. of SPIE, 2008, vol. 7050, pp. 705003-1-705003-9, doi: 10.1117/12.792629.
Sutherland et al., “Liquid crystal bragg gratings: dynamic optical elements for spatial light modulators”, Hardened Materials Branch, Hardened Materials Branch, AFRL-ML-WP-TP-2007-514, Jan. 2007, Wright-Patterson Air Force Base, OH, 18 pgs.
Sutherland et al., “Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures”, Journal of Applied Physics, Jun. 30, 2004, vol. 96, No. 2, pp. 951-965, https://doi.org/10.1063/1.1762713.
Sutherland et al., “The physics of photopolymer liquid crystal composite holographic gratings”, presented at SPIE: Diffractive and Holographic Optics Technology San Jose, CA, 1996, SPIE, vol. 2689, pp. 158-169.
Sweatt, “Achromatic triplet using holographic optical elements”, Applied Optics, May 1977, vol. 16, No. 5, pp. 1390-1391.
Talukdar, “Technology Forecast: Augmented reality”, Changing the economics of Smartglasses, Issue 2, 2016, 5 pgs.
Tao et al., “TiO2 nanocomposites with high refractive index and transparency”, J. Mater. Chem., Oct. 4, 2011, vol. 21, pp. 18623-18629.
Titus et al., “Efficient, Accurate Liquid Crystal Digital Light Deflector”, Proc. SPIE 3633, Diffractive and Holographic Technologies, Systems, and Spatial Light Modulators VI, 1 Jun. 1, 1999, doi: 10.1117/12.349334, 10 pgs.
Tiziani, “Physical Properties of Speckles”, Speckle Metrology, Chapter 2, Academic Press, Inc., 1978, pp. 5-9.
Tominaga et al., “Fabrication of holographic polymer dispersed liquid crystals doped with gold nanoparticles”, 2010 Japanese Liquid Crystal Society Annual Meeting, 2 pgs.
Tomita, “Holographic assembly of nanoparticles in photopolymers for photonic applications”, The International Society for Optical Engineering, SPIE Newsroom, 2006, 10.1117/2.1200612.0475, 3 pgs.
Tondiglia et al., “Holographic Formation of Electro-Optical Polymer-Liquid Crystal Photonic Crystals”, Advanced Materials, 2002, Published Online Nov. 8, 2001, vol. 14, No. 3, pp. 187-191.
Trisnadi, “Hadamard Speckle Contrast Reduction”, Optics Letters, Jan. 1, 2004, vol. 29, No. 1, pp. 11-13.
Trisnadi, “Speckle contrast reduction in laser projection displays”, Proc. SPIE 4657, 2002, 7 pgs.
Tzeng et al., “Axially symmetric polarization converters based on photoaligned liquid crystal films”, Optics Express, Mar. 17, 2008, vol. 16, No. 6, pp. 3768-3775.
Upatnieks et al., “Color Holograms for white light reconstruction”, Applied Physics Letters, Jun. 1, 1996, vol. 8, No. 11, pp. 286-287.
Urey, “Diffractive exit pupil expander for display applications”, Applied Optics, vol. 40, Issue 32, pp. 5840-5851 (2001).
Ushenko, “The Vector Structure of Laser Biospeckle Fields and Polarization Diagnostics of Collagen Skin Structures”, Laser Physics, 2000, vol. 10, No. 5, pp. 1143-1149.
Valoriani, “Mixed Reality: Dalle demo a un prodotto”, Disruptive Technologies Conference, Sep. 23, 2016, 67 pgs.
Van Gerwen et al., “Nanoscaled interdigitated electrode arrays for biochemical sensors”, Sensors and Actuators, Mar. 3, 1998, vol. B 49, pp. 73-80.
Vecchi, “Studi Esr Di Sistemi Complessi Basati Su Cristalli Liquidi”, Thesis, University of Bologna, Department of Physical and Inorganic Chemistry, 2004-2006, 110 pgs.
Veltri et al., “Model for the photoinduced formation of diffraction gratings in liquid-crystalline composite materials”, Applied Physics Letters, May 3, 2004, vol. 84, No. 18, pp. 3492-3494.
Vita, “Switchable Bragg Gratings”, Thesis, Universita degli Studi di Napoli Federico II, Nov. 2005, 103 pgs.
Vuzix, “M3000 Smart Glasses, Advanced Waveguide Optics”, brochure, Jan. 1, 2017, 2 pgs.
Waldern et al., “Waveguide Optics for All Day Wearable Displays”, Jun. 20, 2017, 35 pgs.
Wang et al., “Liquid-crystal blazed-grating beam deflector”, Applied Optics, Dec. 10, 2000, vol. 39, No. 35, pp. 6545-6555.
Wang et al., “Optical Design of Waveguide Holographic Binocular Display for Machine Vision”, Applied Mechanics and Materials, Sep. 27, 2013, vols. 427-429, pp. 763-769.
Wang et al., “Speckle reduction in laser projection systems by diffractive optical elements”, Applied Optics, Apr. 1, 1998, vol. 37, No. 10, pp. 1770-1775.
Weber et al., “Giant Birefringent Optics in Multilayer Polymer Mirrors”, Science, Mar. 31, 2000, vol. 287, pp. 2451-2456.
Wei An, “Industrial Applications of Speckle Techniques”, Doctoral Thesis, Royal Institute of Technology, Department of Production Engineering, Chair of Industrial Metrology & Optics, Stockholm, Sweden 2002, 76 pgs.
Welde et al., “Investigation of methods for speckle contrast reduction”, Master of Science in Electronics, Jul. 2010, Norwegian University of Science and Technology, Department of Electronics and Telecommunications, 127 pgs.
White, “Influence of thiol-ene polymer evolution on the formation and performance of holographic polymer dispersed liquid crystals”, The 232nd ACS National Meeting, San Francisco, CA, Sep. 10-14, 2006, 1 pg.
Wight et al., “Nanoporous Films with Low Refractive Index for Large-Surface Broad-Band Anti-Reflection Coatings”, Macromol. Mater. Eng., 2010, 295, DOI: 10.1002/mame.201000045, 9 pgs.
Wilderbeek et al., “Photoinitiated Bulk Polymerization of Liquid Crystalline Thiolene Monomers”, Macromolecules, 2002, vol. 35, pp. 8962-8969.
Wilderbeek et al., “Photo-Initiated Polymerization of Liquid Crystalline Thiol-Ene Monomers in Isotropic and Anisotropic Solvents”, J. Phys. Chem. B, 2002, vol. 106, No. 50, pp. 12874-12883.
Wisely, “Head up and head mounted display performance improvements through advanced techniques in the manipulation of light”, Proc. of SPIE, 2009, 10 pages, vol. 7327.
Wofford et al., “Liquid crystal bragg gratings: dynamic optical elements for spatial light modulators”, Hardened Materials Branch, Survivability and Sensor Materials Division, AFRL-ML-WP-TP-2007-551, Air Force Research Laboratory, Jan. 2007, Wright-Patterson Air Force Base, OH, 17 pgs.
Yang et al., “Robust and Accurate Surface Measurement Using Structured Light”, IEEE, Apr. 30, 2008, vol. 57, Issue 6, pp. 1275-1280, DOI:10.1109/TIM.2007.915103.
Yaqoob et al., “High-speed two-dimensional laser scanner based on Bragg grating stored in photothermorefractive glass”, Applied Optics, Sep. 10, 2003, vol. 42, No. 26, pp. 5251-5262.
Yaroshchuk et al., “Stabilization of liquid crystal photoaligning layers by reactive mesogens”, Applied Physics Letters, Jul. 14, 2009, vol. 95, pp. 021902-1-021902-3.
Ye, “Three-dimensional Gradient Index Optics Fabricated in Diffusive Photopolymers”, Thesis, Department of Electrical, Computer and Energy Engineering, University of Colorado, 2012, 224 pgs.
Yemtsova et al., “Determination of liquid crystal orientation in holographic polymer dispersed liquid crystals by linear and nonlinear optics”, Journal of Applied Physics, Oct. 13, 2008, vol. 104, pp. 073115-1-073115-4.
Yeralan et al., “Switchable Bragg grating devices for telecommunications applications”, Opt. Eng., Aug. 2012, vol. 41, No. 8, pp. 1774-1779.
Yokomori, “Dielectric surface-re lief gratings with high diffraction efficiency”, Applied Optics, Jul. 15, 1984, vol. 23; No. 14, pp. 2303-2310.
Yoshida et al., “Nanoparticle-Dispersed Liquid Crystals Fabricated by Sputter Doping”, Adv. Mater., 2010, vol. 22, pp. 622-626.
Zeller et al., “Laminated Air Structured and Fluid Infiltrated Polymer Waveguides”, in IEEE Photonics Technology Letters, Nov. 2, 2011, vol. 23, Issue: 21, pp. 1564-1566, first published Aug. 12, 2011, DOI: 10.1109/LPT.2011.2164396.
Zhang et al., “Dynamic Holographic Gratings Recorded by Photopolymerization of Liquid Crystalline Monomers”, J. Am. Chem. Soc., 1994, vol. 116, pp. 7055-7063.
Zhang et al., “Switchable Liquid Crystalline Photopolymer Media for Holography”, J. Am. Chem. Soc., 1992, vol. 114, pp. 1506-1507.
Zhao et al., “Designing Nanostructures by Glancing Angle Deposition”, Proc. of SPIE, Oct. 27, 2003, vol. 5219, pp. 59-73.
Zhao et al., “Diffusion Model of Hologram Formation in Dry Photopolymer Materials”, Journal of Modern Optics, 1994. vol. 41, No. 10, pp. 1929-1939, https://doi.org/10.1080/09500349414551831.
Zhao et al., “Extension of a diffusion model for holographic photopolymers”, Journal of Modern Optics, 1995, vol. 42, No. 12, pp. 2571-2573, https://doi.org/10.1080/713824349.
Zlębacz, “Dynamics of nano and micro objects in complex liquids”, Ph.D. dissertation, Institute of Physical Chemistry of the Polish Academy of Sciences, Warsaw 2011, 133 pgs.
Zou et al., “Functionalized nano interdigitated electrodes arrays on polymer with integrated microfluidics for direct bio-affinity sensing using impedimetric measurement”, Sensors and Actuators A, Jan. 16, 2007, vol. 136, pp. 518-526.
Zyga, “Liquid crystals controlled by magnetic fields may lead to new optical applications”, Nanotechnology, Nanophysics, Retrieved from http://phys.org/news/2014-07-liquid-crystals-magnetic-fields-optical.html, Jul. 9, 2014, 3 pgs.
Digi Lens: Waveguides, announced unknown, [online], [site visited Nov. 6, 2020], Available from Internet, <URL: https://www.digilens.com/technology/waveguides/> (Year: 2020).
Extended European Search Report for European Application No. 18867522.7, Search completed Sep. 15, 2021, dated Sep. 24, 2021, 9 pgs.
Extended European Search Report for European Application No. 18727645.6, Search completed Oct. 14, 2020, dated Oct. 23, 2020, 13 pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2019/047097 Report dated Sep. 28, 2021, dated Nov. 4, 2021, 7 pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2019/065478, Report dated Jun. 8, 2021, dated Jun. 24, 2021, 9 pgs.
International Preliminary Report on Patentability for International Application No. PCT/GB2016/000005, Report dated Jul. 18, 2017, dated Jul. 27, 2017, 7 pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2018/037410, Report dated Jul. 14, 2020, dated Jul. 23, 2020, 7 pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2018/048636, Report dated Jul. 14, 2020, dated Jul. 23, 2020, 9 pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2018/062835, Report dated Jul. 14, 2020, dated Jul. 23, 2020, 7 pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2019/012758, Report dated Jul. 14, 2020, dated Jul. 23, 2020, 4 pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2019/012759, Report dated Jul. 14, 2020, dated Jul. 23, 2020, 6 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2013/000210, Report dated Nov. 11, 2014, dated Nov. 20, 2014, 6 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2014/000197, dated Nov. 24, 2015, dated Dec. 3, 2015, 7 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2016/000003, dated Jul. 18, 2017, dated Jul. 27, 2017, 11 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2017/000015, Report completed Aug. 7, 2018, dated Aug. 16, 2018, 7 pgs.
International Preliminary Report on Patentability for International Application PCT/US2018/048960, Report dated Mar. 3, 2020, dated Mar. 12, 2020, 7 pgs.
International Preliminary Report on Patentability for International Application PCT/US2019/012764, Report dated Jul. 14, 2020, dated Jul. 23, 2020, 5 pgs.
International Preliminary Report on Patentability for International Application PCT/US2019/031163, Report dated Nov. 10, 2020, dated Nov. 19, 2020, 6 pgs.
International Preliminary Report on Patentability for International Application PCT/US2020/036654, Report dated Dec. 7, 2021, dated Dec. 16, 2021, 9 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2020/044060, Search completed Oct. 9, 2020, dated Nov. 9, 2020, 12 pgs.
International Search Report and Written Opinion for International Application No. PCT/GB2017/000015, Search completed Apr. 25, 2017, dated May 8, 2017, 10 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2019/043496, Search completed Sep. 28, 2019, dated Nov. 14, 2019, 12 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2020/019549, Search completed Apr. 14, 2020, dated May 22, 2020, 12 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2020/022482, Search completed May 12, 2020, dated Jun. 9, 2020, 11 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2020/031363, completed May 28, 2020, dated Jun. 10, 2020, 8 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2020/043107, Search completed Sep. 28, 2020, dated Oct. 15, 2020, 12 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2021/038542, search Completed Sep. 21, 2021, dated Oct. 20, 2021, 16 pgs.
International Search Report for PCT/GB2013/000210, Completed by the European Patent Office dated Aug. 12, 2013, 3 pgs.
International Search Report for PCT/GB2014/000197, Completed by the European Patent Office dated Jul. 31, 2014, 3 pgs.
International Search Report for PCT/GB2016/000003, Completed by the European Patent Office dated May 31, 2016, 6 pgs.
International Search Report for PCT/GB2016/000005, Completed by the European Patent Office dated May 27, 2016, 4 pgs.
Supplementary Partial European Search Report for European Application No. 18727645.6, Search completed Jul. 2, 2020, dated Jul. 13, 2020, 13 pgs.
Written Opinion for International Application No. PCT/GB2014/000197, Search completed Jul. 31, 2014, dated Aug. 7, 2014, 6 pgs.
Written Opinion for International Application PCT/GB2013/000210, completed Aug. 12, 2013, dated Aug. 20, 2013, 5 pgs.
Written Opinion for International Application PCT/GB2016/000005, search completed May 27, 2016, dated Jun. 6, 2016, 6 pgs.
Google search: “Digilens Waveguide” [site visited Sep. 14, 2020], URL: https://www.google.com/search?q-digilens+waveguide&sxsrf-ALeKk02RFwZAZ0vrlxVH0M_2fiXFkhW1%20FA:1604777621684&source=Inms&tbm=isch&sa=X&ved=2ah%20U%20KEwjjyNXAIvHsAh%20U%20Rh%20HI%20EHTufCvsQ_AUoAnoECBwQBA&biw=%201200&bih=%201777, 15 pgs.
Google search: “Eyewear Display Devices” [site visited Sep. 14, 2020], https://www.google.com/search?q=eyewear+display+devices&sxsrf=ALeKk0%201%20WWfnOAgsQR_bhydJaYK3e37r%20J%20Lg:%201604779001617%20&source=Inms&tbm=isch&sa=X&ved=2ah%20U%20KEwi99txSm_HsAhVaoH%20I%20EHawtD8QQ_AUoAnoECC8QBA&biw=%201200&bih=%201777, 14 pgs.
Google search: “Smart Glasses” [site visited Sep. 14, 2020], https://www.google.com/search?q=smart+glasses&sxsrf=ALeKk01%20KN%201wj23-NqP%20-KCnrcsUpCgxyKA:1604779046920&source=Inms&tbm=isch&sa=X&ved=2ah%20U%20KEwipkq%20Pom_HsAhVKhXI%20EHQGFBp8Q_AUoBHoECCgQBg&biw=%201200&bih=%201777, 15 pgs.
De Sarkar et al., “Effect of Monomer Functionality on the Morphology and Performance of Holographic Transmission Gratings Recorded on Polymer Dispersed Liquid Crystals”, Macromolecules, vol. 36, No. 3, 2003, pp. 630-638.
Fuh et al., “Thermally and Electrically Switchable Gratings Based Upon the Polymer-Balls Type Polymer-Dispersed Liquid Crystal Films”, Applied Optics, vol. 41, No. 22, Aug. 1, 2002, pp. 4585-4589.
He et al., “Transmission Holographic Gratings Using Siloxane Containing Liquid Crystalline Compounds, Importance of Chemical Structure of Polymer Matrix Components”, Polymer Journal, vol. 38, No. 7, Jun. 9, 2006, pp. 678-685.
Jang et al., “Low Driving Voltage Holographic Polymer Dispersed Liquid Crystals with Chemically Incorporated Graphene Oxide”, Journal of Materials Chemistry, vol. 21, 2011, pp. 19226-19232, doi.10.1039/1jm13827h.
Jeong et al., “Memory Effect of Polymer Dispersed Liquid Crystal by Hybridization with Nanoclay”, express Polymer Letters, vol. 4, No. 1, 2010, pp. 39-46.
Kakiuchida et al., “Multiple Bragg Diffractions with Different Wavelengths and Polarizations Composed of Liquid Crystal/Polymer Periodic Phases”, ACS Omega, Sep. 22, 2017, pp. 6081-6090, doi: 10.1021/acsomega.7b01149.
Liu et al., “Effect of Surfactant on the Electro-Optical Properties of Holographic Polymer Dispersed Liquid Crystal Bragg Gratings”, Optical Materials, vol. 27, 2005, pp. 1451-1455, available online Dec. 25, 2004, doi: 10.1016/j.optmat.2004.10.010.
Ogiwara et al., “Temperature Dependence of Anisotropic Diffraction in Holographic Polymer-Dispersed Liquid Crystal Memory”, Applied Optics, vol. 52, No. 26, Sep. 10, 2013, pp. 6529-6536.
Ogiwara et al., “Thermo-Driven Light Controller by Using Thermal Modulation of Diffraction Wavelength in Holographic Polymer Dispersed Liquid Crystal Grating”, Proc SPIE, Feb. 19, 2014, 9004, Article 90040Q, 8 pgs., doi: 10.1117/12.2039104.
Peng et al., “Low Voltage Driven and Highly Diffractive Holographic Polymer Dispersed Liquid Crystals with Spherical Morphology”, RSC Advances, vol. 7, 2017, pp. 51847-51857, doi: 10.1039/c7ra08949.
Roussel et al., “Photopolymerization Kinetics and Phase Behavior of Acrylate Based Polymers Dispersed Liquid Crystals”, Liquid Crystals, vol. 24, Issue 4, 1998, pp. 555-561.
Tahata et al., “Effects of Polymer Matrix on Electro-Optic Properties of Liquid Crystal Mixed with Polymer”, Proc SPIE, vol. 2651, Mar. 11, 1996, pp. 101-106, doi: 10.1117/12.235342.
Youcef et al., “Phase Behavior of Poly(N-Butyl Acrylate) And Poly(2-Ethylhexyl Acrylate) in Nematic Liquid Crystal E7”, Macromol. Symp., vol. 303, 2011, pp. 10-16, doi: 10.1002/masy.201150502.
Zheng et al., “Holographic Polymer-Dispersed Liquid Crystal Grating with Low Scattering Losses”, Liquid Crystals, vol. 39, Issue 3, Mar. 2012, pp. 387-391.
Extended European Search Report for European Application No. 19897355.4, Search completed Jul. 12, 2022, dated Jul. 21, 2022, 08 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2020/048590, Report dated Mar. 1, 2022, dated Mar. 10, 2022, 12 Pgs.
International Search Report and Written Opinion for International Application No. PCT/US2021/072548, Search completed Jan. 25, 2022, dated Feb. 8, 2022, 15 Pgs.
International Search Report and Written Opinion for International Application No. PCT/US2022/070095, Search completed Mar. 10, 2022, dated Mar. 22, 2022, 13 pgs.
Related Publications (1)
Number Date Country
20210405299 A1 Dec 2021 US
Provisional Applications (2)
Number Date Country
62813373 Mar 2019 US
62806665 Feb 2019 US
Continuations (1)
Number Date Country
Parent 16794071 Feb 2020 US
Child 17328727 US