The technology relates to packet data flow control in a radio communications system.
Current cellular systems provide browsing the internet and access to services on the internet. The packet data that the cellular system transmits to the end user in these situations must be handled differently than for circuit-switched speech in that the cellular system should maintain a steady flow of packets between the internet source and the end user so that services are not interrupted. Packet data flow control (referred to simply as flow control) in Wideband Code Division Multiple Access (WCDMA) helps achieve this goal. Flow control in WCDMA is distributed between two nodes: the radio network controller (RNC) and the radio base station (RBS). The RBS is responsible for maintaining a steady flow of packets to the User Equipment (UE) over the air interface in order to provide a satisfactory user experience, e.g., during web browsing.
The RNC is responsible for ensuring that data is available in the RBS for transmission, and to facilitate this, the RNC sends Radio Link Control (RLC) data via a Transport Network (TN) to the RBS. The RNC thereby affects the buffer level in the RBS by sending RLC PDU's to the RBS via a TN Frame Protocol (FP). The RBS sends capacity allocations (CA) as input to the RNC, and the RNC typically responds by sending an appropriate amount of data with the specified rate to the RBS over the Iub interface.
Because the RLC protocol is terminated in the RNC and in the UE, any RLC data residing in an RBS queue is seen as delayed by the RLC entities involved in the data transmission between the RNC and the UE. As a result, the RNC will, at poll timer expiry, poll data that has already been transmitted from the RNC to the RBS but which is still residing in the RBS queue for the UE, and consequently, not yet acknowledged by the UE. Thus, if the amount of data in the RBS Priority Queue (PQ) (a term used in WCDMA) is large and the data rate over the air interface (Uu) is low, then the RLC entity in the RNC will poll the RLC entity in the UE as to whether it has received a particular data packet, even though no data has been lost. Consequently this will lead to unnecessary retransmissions of RLC packet data units (PDU's) with a poll bit set or poll superfields (POLL_SUFI's).
Another problem is posed by RLC retransmissions. RLC retransmissions delayed by data already buffered in the PQ can lead to multiple requests for the same data even though the previously retransmitted data is already in transit, but still buffered in the RBS PQ. In this delayed retransmissions situation, the UE may, due to timer status prohibit expiry or other status reporting trigger, send additional RLC status reports before the initial retransmission even has been transmitted to the UE over the air interface leading to a situation where multiple copies of the same data will be sent both over the TN and the Uu interface. This results in an inefficient use of the TN and air interface resources since the additional copies of retransmitted RLC PDU's do not contribute to the user experienced throughput since they will be discarded as duplicates by the receiving RLC entity in the UE.
In traditional WCDMA downlink flow control, i.e., for High Speed Downlink Packet Access (HSDPA), the RNC arranges received downlink packets in a queue herein referred to as the RNC queue, and transmits packages to the RBS according to the maximum bitrates for transmission over the Iub interface.
A more recent flow control approach, such as Active Queue Management (AQM) flow control or Distributed Active Queue Management (D-AQM), avoids buildup in the RNC queue at the RNC by allowing the RNC to forward data to the RBS as soon as possible. This results in queuing in the RBS and not in the RNC, in contrast to traditional WCDMA flow control which attempts to limit the queue length in the RBS in order to avoid spurious RLC retransmissions. As a result, the RLC Round Trip Time (RTT) can be expected to vary over a greater range for a TN relying on D-AQM flow control as opposed to a TN that uses traditional flow control. One way to handle this would be to increase the RLC timers that are used to monitor the maximum allowed queue delays, but this would result in poor performance due to lower peak throughput and excessive polling delays in certain scenarios, such as short data transmissions when only the last RLC PDU (which carries the poll) is lost.
While D-AQM attempts to adjust the PQ buffer length in the RBS to the Uu rate, typically targeting a certain buffer length or dwell time, the Uu bit rate for services over the radio interface varies significantly over short periods of time, sometimes resulting in large PQ's and low Uu bit rates. In these instances, it takes time for the RBS to shorten the PQ and adjust to the lower Uu bit rate, leading to an increased RLC RTT and subsequent delay of RLC polls and retransmissions. Consequently, D-AQM may have difficulty in maintaining a desired queue (PQ) length which may lead to wasted bandwidth both in the TN and radio network (RAN) due to the unnecessary transmission of polls and multiple copies of RLC retransmissions.
One objective of flow control is to effectively utilize the air interface between the RBS and the UE since radio spectrum is a scarce resource. If the flow of data packets is interrupted or slowed down unnecessarily, then the user or cell throughput suffers. For this reason it is important to keep the priority queues (PQs) of the RBS non-empty with a suitable margin (a typical but example margin is 125 ms) to avoid poor user throughput.
Another important flow control objective is to avoid the amount of data buffered in the PQ becoming too large and the packet dwell time in the PQ becoming too long. Stated differently, flow control should aim to keep the PQ in the RBS as short as possible while ensuring that enough data is available to fully utilize the air interface capacity. In addition to the problems already noted above, a large RBS PQ leads to large losses of data at High Speed-Downlink Shared Channel (HS-DSCH) cell changes, which also leads to a large number of RLC retransmissions.
Yet another problem is that aggressive TCP applications do not always respond to traditional flow control schemes such as Active Queue Management (AQM) congestion control based on premeditated packet drops. An example of an aggressive TCP application is one which starts a large number of TCP flows in parallel, each carrying only a small amount of data. In such scenarios, traditional AQM schemes may fail to maintain the RBS buffer within targeted values, leading to an excessive PQ buffer build-up. The effect is long download times as illustrated in
The technology in this application includes methods and apparatus that provide recovery flow control for recovering data packet flow control between a network node and a radio base station over a radio network interface.
The network node obtains measurement information relating to a data transmission rate over the radio interface from the radio base station to at least one UE and an amount of a downlink packet queue in the base station associated with the UE communication. A process controller in the network node processes the measurement information to determine a desired amount to be stored in the downlink packet queue. The process controller determines a commanded bit rate to transmit data from the network node to the downlink packet queue based on the determined desired amount. The network node transmits data to the radio base station in accordance with the commanded bit rate. The processing, determining, and transmitting steps may be repeated as needed.
In one example embodiment, the obtaining measurement information includes receiving a message from the radio base station with some or all of the measurement information.
In another example embodiment, a used data volume is calculated using the commanded bit rate, e.g., until a next measurement information message is received from the radio base station. One or more data packets that exceed the calculated used data volume are discarded from a buffer in the network node used to store data packets for a data flow associated with the UE.
In example embodiments, the process controller performs linear time invariant process control to determine the commanded bit rate. A reference amount of data is determined using a reference dwell time and the measured bit rate over the radio interface. The determined reference amount of data is provided to the process controller which processes the determined reference amount of data along with the measurement information using linear time invariant process control to determine the commanded bit rate. The commanded bit rate is preferably limited to a non-negative value. The process controller preferably takes into account a first delay associated with transmitting data packets from the network node to the radio base station and a second delay associated with signaling the measurement information from the radio base station to the network node. In one example implementation, the process controller includes a feedback lead-lag controller and a feed forward controller.
The recovery control process is distributed. The radio base station measures information relating to a data transmission rate over the radio interface from the radio base station to the at least one UE and an amount of a downlink packet queue in the base station associated with the UE communication. The base station sends the measurement information to the network node and then receives data from the network node at a commanded bit rate based on the measurement information such that a desired amount of data is stored in the downlink packet queue. Like the network node, the base station may repeat the measuring, sending, and receiving steps one or more times as needed.
In one example embodiment, prior to activating the recovery control method, a normal operation flow control process was used by the radio base station to control the transmission of data to the UE. After deactivating the recovery control method, the base station returns to that normal operation flow control process.
In example embodiments, the recovery control method may be activated when a dwell time for data packets stored in the downlink packet queue exceeds a first dwell time threshold and deactivated when the dwell time for data packets stored in the downlink packet queue is less than a second dwell time threshold or an amount of data in the downlink packet queue is less than a data amount threshold.
In an example implementation, the radio base station communicates with the UE using High Speed Downlink Packet Access (HSDPA), and the other flow control process is based on flow control-based Active Queue Management (AQM) where the radio base station determines the data transmission rate over the radio interface from the radio base station to the at least one UE.
The following sets forth specific details, such as particular embodiments for purposes of explanation and not limitation. But it will be appreciated by one skilled in the art that other embodiments may be employed apart from these specific details. In some instances, detailed descriptions of well known methods, nodes, interfaces, circuits, and devices are omitted so as not obscure the description with unnecessary detail. Those skilled in the art will appreciate that the functions described may be implemented in one or more nodes using hardware circuitry (e.g., analog and/or discrete logic gates interconnected to perform a specialized function, etc.) and/or using software programs and data in conjunction with one or more digital microprocessors or general purpose computers. Nodes that communicate using the air interface also have suitable radio communications circuitry. Moreover, the technology can additionally be considered to be embodied entirely within any form of computer-readable memory, such as solid-state memory, magnetic disk, or optical disk containing an appropriate set of computer instructions that would cause a processor to carry out the techniques described herein.
Hardware implementation may include or encompass, without limitation, digital signal processor (DSP) hardware, a reduced instruction set processor, hardware (e.g., digital or analog) circuitry including but not limited to application specific integrated circuit(s) (ASIC) and/or field programmable gate array(s) (FPGA(s)), and (where appropriate) state machines capable of performing such functions.
In terms of computer implementation, a computer is generally understood to comprise one or more processors or one or more controllers, and the terms computer, processor, and controller may be employed interchangeably. When provided by a computer, processor, or controller, the functions may be provided by a single dedicated computer or processor or controller, by a single shared computer or processor or controller, or by a plurality of individual computers or processors or controllers, some of which may be shared or distributed. Moreover, the term “processor” or “controller” also refers to other hardware capable of performing such functions and/or executing software, such as the example hardware recited above.
It should be understood by the skilled in the art that “UE” is a non-limiting term comprising any wireless device or node equipped with a radio interface allowing at least: transmitting signals in UL and receiving and/or measuring signals in DL. A UE herein may comprise a UE (in its general sense) capable of operating or at least performing measurements in one or more frequencies, carrier frequencies, component carriers or frequency bands. It may be a “UE” operating in single- or multi-RAT or multi-standard mode.
A cell is associated with a base station, where a base station comprises in a general sense any node transmitting radio signals in the downlink (DL) and/or receiving radio signals in the uplink (UL). Some example base stations are eNodeB, eNB, Node B, macro/micro/pico radio base station, home eNodeB (also known as femto base station), relay, repeater, sensor, transmitting-only radio nodes or receiving-only radio nodes. A base station may operate or at least perform measurements in one or more frequencies, carrier frequencies or frequency bands and may be capable of carrier aggregation. It may also be a single-radio access technology (RAT), multi-RAT, or multi-standard node, e.g., using the same or different base band modules for different RATs.
The signaling described is either via direct links or logical links (e.g. via higher layer protocols and/or via one or more network nodes). For example, signaling from a coordinating node may pass another network node, e.g., a radio node.
The example embodiments are described in the non-limiting example context of a WCDMA-based cellular radio system. However, the technology is not limited thereto, and may apply to any radio communications system including for example an Evolved UMTS Terrestrial Radio Access Network (E-UTRAN) LTE type system.
The policing and recovery flow control technology in this application ensures that radio base station buffer (queue) lengths are maintained at acceptable values. Under baseline conditions, a normal operation flow control procedure operates to control packet flow in the downlink direction towards a UE for one or more data packet flows. Although flow control is applied to each data flow, only the flow control for one data flow is described to simplify the description. A recovery flow control is triggered under predetermined conditions so as to avoid an excessive buffer build-up in the radio base station buffer and is preferably removed when the buffer fill state (i.e., the amount of data stored in the buffer for the data flow) reaches an acceptable level. The radio base station first measures the priority queue dwell time (PQT) of packets in the PQ. If the PQT is equal to or below a certain threshold, then no particular action is taken. However, if the PQT is above that threshold, then the following actions are taken. The radio base station measures (1) the amount of data stored in the base station buffer for the data flow, referred to also as Priority Queue Length (PQL), and (2) a transmitted data rate from the base station to the UE associated with that same data flow. The RBS compares the PQL and PQT to a first set of respective predefined threshold values corresponding to a maximum allowed PQL and a maximum allowed PQT. If both the determined PQL and PQT exceed their respective threshold values, then the radio base station conveys measurement information to a core network or a radio network controller (RNC) node via uplink signaling contained in the uplink frame protocol. In the non-limiting WCDMA example, an RNC is used as the example network node. The RNC uses the data rate and the PQL from a measurement message received from the base station to calculate a Priority Queue Time (PQT). The reception of the information triggers the RNC to initiate recovery flow control. A second set of respective predefined threshold values is used to determine when to deactivate recovery flow control and return to the normal flow control, e.g., flow control orchestrated just at the radio base station. Consequently, these first and second sets of threshold values define the ranges within which recovery flow control is active and limits the flow of data from the RNC to the RBS. So in contrast to known flow control techniques where the RBS alone determines the bit rate requested from the RNC via capacity allocation control frame messages, the recovery flow control technology in this application is selectively applied under certain conditions. The interaction between the RNC and the RBS in the recovery flow control technology distributes the recovery flow control between the RNC and the RBS.
Some initial definitions are set forth to assist in the description but are not intended to be limiting. For example, the term priority queue is used with the understanding that priority queue encompasses other terms for a data store such as queue, buffer, memory, etc. that is used to temporarily store data in the base station prior to transmission over the radio interface.
PQL—packet queue length—the current data volume or amount measured in bits stored in a priority queue (PQ) in the RBS.
Uu bitrate—the current data rate measured in bits/s at which data bits are leaving the PQ for transmission over the air interface from the RBS to the UE.
PQT—packet queue time—the amount of time measured in seconds an incoming data packet will spend in the PQ, given the current PQ data volume and the current radio transmission (Uu) bitrate from the RBS to a UE. PQT is also known as dwell time.
Accordingly, a distributed method and apparatus perform recovery control when the PQT becomes too large, and when the PQT returns to a normal value, flow control is switched back to a normal flow control, e.g., flow control-based AQM in some WCDMA systems.
In an example embodiment detailed below, that commanded bit rate determination is made using a process control-based controller algorithm, sometimes denoted to as a servo controller algorithm. In example embodiments, the servo controller algorithm is a lead lag controller designed to guarantee stability for a predetermined range of signaling and control delays in the control loop between the RNC and the RBS. The RNC calculates a used data volume using the commanded bitrate unit a next message with measurement information is received from the base station (step S13). The RNC may then discard from a buffer in the RNC for the data flow the data packets exceeding the determined buffer amount (step S14). For example, packets could be discarded from one end such as the top of that RNC buffer. Next, the RNC schedules transmission of SDUs from the RNC queue to the RBS at the commanded bit rate (step S15). A decision is made in step S16 whether a new measurement report is received from the RBS. If so, then the RNC returns to step S11 to compute a new commanded bit rate based on the new measurement information. If not, then the RNC (and RBS) returns to normal flow control operation, e.g., AQM flow control (step S17).
As illustrated, different protocols or protocol layers may be used to convey data packets between the end devices and the UEs.
The RBS 18 includes priority queues (PQs) 22, measurement controllers 24 and 26 for measuring a Uu data rate over the radio interface to a UE a current volume of an associated PQ 22. An overflow detector 26 detects whether a PQ has too high of an associated packet dwell time, in which case, measurements of Uu rate 24 and data volume 26 are initiated. A message generator 30 generates a measurement message when predetermined flow recover conditions are met, such as those described in conjunction with
The RNC 15 includes packet queues 44 for storing data for the UEs received from the SGSN 16. A message receiver 36 receives measurement messages sent via the TN 34 from the message transmitter 32 and triggers the recovery activator 38 to start recovery flow control for this data flow. The recovery flow controller 40 performs recovery flow control for this flow until deactivated by the recovery activator 38 when the message receiver 36 detects that measurements being sent from the base station message transmitter 32 have stopped. The flow controller 40 sends a commanded data rate determined based on the measurement information using a process control algorithm such as the example described below to the packet transmitter 42. The packet transmitter 42 transmits packets to the RBS 18 at the commanded data rate during recovery flow control for the corresponding data flow. When measurements from the message transmitter 32 have stopped, the normal flow controller 23 is performs normal flow controls.
The inventors designed a recovery flow controller in the context of a process or servo control problem where the controlled signal is steered towards a reference signal. They further determined that the recovery flow controller should also handle a number of constraints of the controlled system, i.e., the PQ in the RBS, that are associated with (1) measurements performed in the RBS, (2) delays associated with signaling these measurements from the RBS to the RNC, (3) the effect of a process control-determined bit rate from the RNC to the RBS, and (4) the need for the process control-determined commanded bit rate to be non-negative.
Constraint (1) concerns a risk that the RBS measurements are subject to some amount of jitter (sampling time instance variations). Delay constraints (2) are associated with the signaling and the effect of the process control-determined bit rate. These delays are not known at the time of design of the recovery flow controller, are time varying, are not measurable within the required on-time of the recovery controller, and have a wide range, e.g., from 10 ms to 130 ms. In fact, the effective delay of the sampling period, the measurement delays, and the commanded data rate signal delay add up, which means that the recovery controller needs to handle an unknown delay. Using non-limiting example delays, the summed delay could be from 10 ms+10 ms+20 ms=40 ms, up to 130 ms+130 ms+20 ms=280 ms. The term handle means that i) performance in terms of settling time to the desired reference signal needs to be as specified for the delays in the above range, and ii) that stability of the controller is ensured for all these delays. Constraint (4) means that any negative control signal needs to be replaced by a nonnegative value. This may adversely impact the recovery controller such that some mitigation may be desirable.
The inventors recognized that the delays are not known and cannot be measured with a high bandwidth, and that there may be jitter. Furthermore, discrete time control builds on accurate sampling or possibly on-line measurement interpolation. Since the former cannot be guaranteed and the latter adds complexity, the example embodiments below employ a continuous time design. The delays, jitter, and sampling are combined together in an effective delay, and then a continuous time controller is designed. This continuous time controller is discretized and operated as if the measurements are not affected by the effective delay, as will be described further below.
Since the delays are unknown and cannot be measured, the recovery controller is designed to be robust to delay variations. Because the delays cause a phase decrease a feedback part of the example recovery controller is designed for a largest delay possible and to ensure stability and performance for lower delays.
As mentioned, the process control objective is to steer the PQT towards a reference PQT value. There is a closed loop feedback control part of the recovery controller that is based on the measured output from the PQ. It will be described below how PQT and PQL are used in this context. The current transmit data rate for the data flow over the radio interface (the Uu bitrate) is also measured. The current transmit data rate over the radio interface has a direct impact on the PQ, however it cannot be manipulated by the recovery controller. In the automatic process control technology field, such a signal is classified as a measurable disturbance, which can enhance performance by application of feed forward or open loop process control.
The controlled system is intentionally designed for linear control. One benefit of this linearity is that the superposition principle allows for separate design of feedback and feed forward parts of the controller. These separate parts are then combined together to form a combined feedback and feed forward servo controller.
where PQTi(t) is the PQT of flow i at time t, qiPQ(t) is the PQ data volume of flow i at time t, and where biuu(t) is the uu bitrate of flow i at time t. This means the feedback from PQTi(t) would have to be based on a time varying continuous time model, which the inventors decided was less desirable than the linear time invariant model. The inventors overcame this problem by embedding a linear time invariant controller design in a time varying one. This embedding allows the use of feedback control from a measured qiPQ(t) (PQL), instead of from a measured PQTi(t) (PQT), the use of a time varying computed PQ data volume reference yi,ref(t) instead of a PQT reference refiPQT:
y
i,ref(t)=refiPQT·biuu(t). (2)
The diagram in
In
The Node B (RBS) implements the PQ as the integrator 90 represented by the Laplace transform 1/s. The difference between the incoming bitrate biTN(t−TiTN,DL)=ui(t) and the radio interface Uu bitrate biuu(t), is integrated to produce the PQ data volume qiPQ(t). The PQT (dwell time) is obtained by division with biuu(t) at divider 92.
In example embodiments, a lead-lag controller is used for the feedback part of the servo controller for flow control recovery.
In (3) and (4), G0(s) denotes the open loop system, yi(s) is the data volume (PQL) and
The controller transfer function C(s) is designed to be a lead lag controller here. The transfer function of this controller structure is given by:
where the controller parameters K, a, M>1, b and N>1 are determined by standard methods to meet the control objectives (settling time and stability).
The standard design procedure may be outlined as follows. First, based on the requirement of meeting the reference value with a certain accuracy in steady state, a desired level of integrating control in the controller is selected by choosing M. The higher the value of M, the more integral action will result. A value close to 10 is used as an example. Second, the parameter a is chosen to be significantly lower than the crossover frequency, e.g., a=0.05ωc, in order to limit phase loss at the crossover frequency. Third, based on the settling time, a preferred crossover frequency is specified which is defined as the frequency where |G0(jωc)|=1. The result of this choice is a closed loop feedback bandwidth close to the selected crossover frequency. This means that the controller parameters are selected so that this constraint is met. Fourth, based on the stability requirement a desired phase margin φm arg in is determined, so that the phase at the crossover frequency is arg(G0(jωc))=−180°+φm arg in. An example value may be
to compensate for the phase loss of the lag link. φm arg in0 is a nominal phase margin, for example 60°. Fifth, the phase advance to be provided by the lead link is computed so that arg(G0(jωc))=−180°+φm arg in. This means that the sum of phases
is determined, followed by a computation of the required phase advance as φadvance=−180−φsum+φm arg in. Then the parameters of the lead link are computed as
The gain K is determined to give |G0(jωc)|=1 to meet the definition of the crossover frequency. This means that
A non-limiting example design is depicted in
The process controller may be implemented in one or more computers. In this case, the continuous time design needs to be transformed to discrete time using a discretization scheme. One example scheme is Tustin's method where a discrete time difference equation is obtained from a continuous time differential equation by the replacement
Here T denotes the sampling period (typically 40 ms in the present application), and q−1 denotes the backward shift operator (q−1x(t)=x(t−T)).
By insertion of (9) into (8) and using the control error
e
i(t)=yi,refPQ(t)−yi(t) (10)
This results in the following difference equation for the controller computation:
u
i,fb(t)=rfb,1ui,fb(t−T)+rfb,2ui,fb(t−2T)+sfb,0e(t)+sfb,1e(t−T)+sfb,2e(t−2T) (11)
The controller parameters are functions of the continuous time parameters and the sampling period via (9) and are not reproduced here.
y
i(s)=G2(s)(G1(s)Ff(s)D(s)−1)biuu(s). (12)
Here yi(s) is again the data volume of the PQ (PQL), and biuu(s) is the (measureable but not controllable) bitrate of flow i. Note that the superposition principle allows neglecting the feedback controller when designing the feed forward part. The objective with the feed forward portion is to cancel the effect of the disturbance on the output; hence, it is desirable that (12) be close to zero. Ideally, this is obtained if the feed forward controller transfer function fulfills.
Inserting (5) and (7) in (13) results in
F
f(s)=es(T
Equation (14) represents an exact shift of the signal ahead in time, i.e., the feed forward controller is non-causal and not feasible. Therefore an approximation is needed. A first order Taylor series expansion gives
Ff(s)≈1+s(TiTN,UL+TiTN,DL), (15)
which replaces the exact shift ahead in time with a prediction ahead in time. Now, as it stands (15) introduces differentiation of the signal (the s) which is undesirable because high frequency disturbances would be amplified. Therefore a final adjustment is introduced where (15) is low pass filtered as
Ff(s)≈(1+s(TiTN,UL+TiTN,DL))L(s), (16)
where L(s) is a low pass filter. In a preferred embodiment a second order filter is used i.e.
In (17), ξ is the damping of the low pass filter, and ω0 denotes the bandwidth in terms of the angular resonance frequency of the second order filter.
An example of the design appears in
Again, discretization is performed with Tustin's method (9) and the resulting feed forward regulator becomes
u
i,ff(t)=rff,1ui,ff(t−T)+rff,2ui,ff(t−2T)+sff,0biuu(t)+sff,1biuu(t−T)+sff,2biuu(t−2T) (14)
The controller parameters are functions of the continuous time parameters and the sampling period via (9) and are not reproduced here.
The feedback controller, the feed forward controller, and the system have so far been assumed linear. As such, the superposition principle applies, and the effect of feedback and feed forward can be added to create the complete servo controller.
One further nonlinear addition is needed. The linear controller may produce negative control commands during the transient phase producing a negative bitrate from the RNC to the Node B, i.e. data transfer in the reverse direction. To avoid this, the following is introduced:
u=max(umin, ui,fb(t)+ui,ff)), (15)
where umin≧0 is a preconfigured small minimum bitrate.
In order to study the performance of the controller, recovery control from an initial high PQ data volume and PQT were studied for a non-limiting example. The results of the simulation appear in
There are many advantage of the recovery flow control technology described in this application. One example advantage is that the technology ensures that excessive RBS PQ buffers are avoided while still ensuring that sufficient data is available to fully utilize the radio interface bandwidth. Another example advantage is that the recovery control flow mechanism is flexible given that the setting of thresholds and rate at which feedback information is sent may be tailored to suit various feedback delays and buffer target conditions. Further example advantages include: a reduced risk of excessive PQ buffers, this in turn maximizing the utilization of the air interface and maintaining a high throughput; a reduced need for buffer memory in the RBS; and an improved throughput and end-user experience. In terms of flexibility and application, the technology described in this application applies to any other radio system that can use distributed queuing.
Although the description above contains many specifics, they should not be construed as limiting but as merely providing illustrations of some presently preferred embodiments. Embodiments described herein may be considered as independent embodiments or may be considered in any combination with each other to describe non-limiting examples. Although non-limiting, example embodiments of the technology were described in a WCDMA context, the principles of the technology described may also be applied to other radio access technologies. Indeed, the technology fully encompasses other embodiments which may become apparent to those skilled in the art. Reference to an element in the singular is not intended to mean “one and only one” unless explicitly so stated, but rather “one or more.” All structural and functional equivalents to the elements of the above-described embodiments that are known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed hereby. Moreover, it is not necessary for a device or method to address each and every problem sought to be solved by the described technology for it to be encompassed hereby.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2013/001381 | 6/28/2013 | WO | 00 |