Methods and apparatuses for reducing bleeding via coordinated trigeminal and vagal nerve stimulation

Information

  • Patent Grant
  • 11857788
  • Patent Number
    11,857,788
  • Date Filed
    Wednesday, January 4, 2023
    a year ago
  • Date Issued
    Tuesday, January 2, 2024
    11 months ago
Abstract
Disclosed are apparatuses and methods for reducing or limiting blood loss and reducing bleed time in a subject by combined vagus and trigeminal stimulation. The apparatuses and methods may activate (e.g., electrically) one or more branches of the trigeminal nerve and may concurrently (at overlapping or near-overlapping time) independently activate the vagus nerve. This activation may be invasive or non-invasive.
Description
INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this specification are herein incorporated by reference in their entirety to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.


FIELD

This disclosure is generally related to preventing and/or treating bleeding in a subject. More specifically, this disclosure is related to apparatuses (devices, systems, and methods) for preventing and/or treating bleeding and decreasing bleed time in a patient through stimulation of both the trigeminal and vagus nerves, such as through electrical and/or mechanical stimulation of the trigeminal and vagal nerve.


BACKGROUND

Blood is an essential component of an animal's body to transport oxygen, nutrients and waste, protect the body with white blood cells and other immune system functions, and regulate body functions such as pH and hydration within critical ranges. Blood loss may lead to a variety of problems, including dysregulation or ultimately death. Blood loss can occur due to a various causes. For example, there are approximately 100,000,000 surgeries performed annually in the United States, with millions more worldwide (CDC, National Center for Health Statistics) and these generally have an inherent risk of bleeding, from minor to potentially life threatening. Aside from administration of tranexamic acid for select orthopedic procedures, there are no prophylactic systemic therapies available to administer to help improve hemostasis and minimize surgical bleeding.


Trauma is the third leading cause of death in the United States (CDC, National Center for Health Statistics). A common cause of death following traumatic injury is uncontrolled bleeding (CDC, National Center for Health Statistics). While modern tourniquets are sometimes available to help staunch hemorrhage following extremity trauma, these injuries are still dangerous. Approaches to control non-compressible torso hemorrhage remain even more limited and this is a common cause of death of U.S. soldiers on the battlefield.


Postpartum hemorrhage (PPH) is the leading cause of maternal deaths worldwide. The most common cause is poor contraction of the uterus. Other causes include uterine tears, retained placenta, and inadequate blood clotting. In the United States, approximately 11% of maternal deaths result from PPH, whereas in the developing world approximately 60% of maternal deaths result from PPH. This equates to 100,000 to 140,000 deaths per year. Existing treatments include medications such as oxytocin, misoprostol, and ergotamine, intravenous fluids, blood transfusions, and uterine massage. Surgery to repair cervical or vaginal lacerations or uterine rupture is sometimes necessary as well. Many of these therapeutic options are risky or unavailable in resource-poor areas, resulting in dramatically higher mortality rates.


Hemophilia A is an X-linked recessive disorder associated with spontaneous and prolonged bleeding episodes secondary to deficiencies in clotting factor VIII. More than 20,000 individuals in the United States suffer from this life-long disease. Up to 30% of children with severe hemophilia cannot receive standard factor VIII concentrates due to the development of inhibitor antibodies. Maintaining hemostasis then requires bypassing agents, such as activated prothrombin complex concentrate and recombinant factor VIIa, to help generate clot via alternative pathways. These costly therapies are associated with serious systemic thrombotic side effects, including myocardial ischemia, deep venous thrombosis, and pulmonary embolism. Thus there is a need for new devices, methods, and systems to prevent and treat bleeding problems.


Described herein are devices, methods, and systems that may address the issues identified above.


SUMMARY OF THE DISCLOSURE

The present invention relates to controlling bleeding in a patient. More specifically, this disclosure is related to apparatuses (devices, systems) and methods for controlling bleeding and bleed time in a patient through coordinated neural stimulation, such as through electrical and/or mechanical stimulation of both the trigeminal and vagal nerves. The apparatus may provide invasive or, preferably, non-invasive stimulation. The stimulation of the vagus nerve may be overlapping, including concurrent, with the trigeminal never, or the trigeminal nerve and vagus nerve may be alternately (with or without overlap) stimulated. The same amount (one or more of: duration, frequency and/or intensity) of stimulation may be applied to both the vagus nerve and the trigeminal nerve, or the amounts (one or more of: duration, frequency and/or intensity) may be different. In some variations Controlling bleeding may include preventing and/or treating bleeding (e.g., surgical bleeding, traumatic bleeding, bleeding related to other medical procedures or conditions, and inherited or acquired bleeding disorders).


For example, described herein methods of reducing bleed time in a subject that include: applying one or more of mechanical or electrical activation to the subject's trigeminal nerve and the subject's vagus nerve; and reducing bleed time of the bleeding by at least 20%.


Also described herein are methods of reducing bleed time in a subject that has been treated with an anticoagulant, the method comprising: applying one or more of mechanical or electrical activation to the subject's trigeminal nerve; and reducing bleed time of the bleeding by at least 20%.


A method of reducing or limiting blood loss in a hemorrhaging subject may include: applying one or more of mechanical or electrical activation to the subject's trigeminal nerve and the subject's vagus nerve; and reducing blood loss from the hemorrhage by at least 10%.


Also described herein are methods of treating a hemophiliac subject, the method comprising: determining when the subject is bleeding; and applying one or more of mechanical or electrical activation to the subject's trigeminal nerve and the subject's vagus nerve to reduce the blood loss and/or bleeding volume.


In any of these methods, the mechanical and/or electrical stimulation may be applied concurrently (e.g., at the same time), or overlapping in time (partially or completely overlapping) and/or within a few second (e.g., within 1 second, 2 seconds, 3 seconds, 4 seconds, 5 seconds, 6 seconds, 10 seconds, etc.). In some variations the intensity of the vagus nerve stimulation may be less than the stimulation of the trigeminal stimulation (e.g., x% or less, where x is 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, or 5% of the trigeminal stimulation). In some variations the intensity of the trigeminal nerve stimulation may be less than the stimulation of the vagus stimulation (e.g., x% or less, where x is 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, or 5% of the vagus stimulation). Specifically, the intensity may refer to one or more of the applied voltage or current (e.g., when electrical energy is applied), and/or applied force or pressure (when mechanical stimulation is applied). In some variations the intensity may refer to the duration (e.g., the percentage of the total treatment time that the trigeminal stimulation is active vs. the percentage of the total treatment time that the vagus stimulation is active). In some variations intensity may refer to both the applied energy (voltage, force) and the duration of time energy is applied.


In any of these methods, applying may comprise non-invasively applying one or more of mechanical or electrical activation. Although the methods and apparatuses described herein typically refer to non-invasive application of vagus and/or trigeminal stimulation, alternatively, in any of these methods applying may comprise applying from an implant (e.g., implanted neuromodulator that is in communication with the trigeminal and/or vagus nerve).


In any of these methods, the subject may be human or non-human.


Applying may include applying one or more of mechanical or electrical activation to one or more of an ophthalmic, maxillary and/or mandibular branch of the subject's trigeminal nerve in addition to applying one or more of mechanical or electrical activation to the vagus nerve. For example, applying may comprise applying one or more of mechanical or electrical activation to sensory fibers of the patient's trigeminal nerve. In some variation, applying may be limited to applying via the sensory fibers. In some variations, applying comprises applying unilateral activation to the subject's trigeminal nerve. Alternatively, applying may comprise applying bilateral activation to the subject's trigeminal nerve and/or vagus nerve.


Any of these methods may include reducing bleeding time. For example, reducing bleeding time may comprises reducing bleeding time from of one or more of an internal hemorrhage or an external hemorrhage. Bleeding time may be reduced (e.g., the application of electrical and/or mechanical energy may be applied until the bleeding time is reduced) by more than 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, etc.


Similarly, blood loss may be reduced (e.g., the application of electrical and/or mechanical energy which may be applied until the blood loss is reduced) by more than 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, etc.


Applying may comprise applying electrical stimulation to both the vagus nerve and the trigeminal nerve. For example, applying may comprise applying electrical stimulation at between 1-50 Hz and between 0.5-15 V having a pulse width of between 0.5 ms and 10 ms to the trigeminal nerve and applying electrical stimulation of between 0.5-100 Hz and between 0.2-15 V having a pulse width of between 0.2 ms and 15 ms. Applying may comprise applying for between 1 minute and 45 minutes. Applying may comprise applying electrical stimulation to the trigeminal nerve and mechanical stimulation to the vagus nerve (e.g., in some variations, via the auricular branch).


In any of these methods, applying may comprise applying without triggering a diver's reflex.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the claims that follow. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:



FIG. 1 schematically illustrates a system for stimulation both the trigeminal nerve and the vagus nerve. In FIG. 1, the regions (e.g., dermatomes) innervated by the trigeminal nerve are shown one or more of which may be stimulated by the apparatus along with the vagus nerve, shown here schematically applying stimulation to the auricular branch of the vagus nerve.



FIGS. 2A-2H illustrate examples of stimulation patterns for simultaneously stimulating both the vagus nerve and the trigeminal nerve.



FIGS. 3A-3D illustrate examples of systems that may be used to simultaneously stimulate both the vagus nerve and the trigeminal nerve to reduce bleed time.



FIG. 4 is an example of a device for reducing bleed time by simultaneously stimulating both the vagus nerve and the trigeminal nerve.



FIG. 5 schematically illustrates a system for reducing bleed time by simultaneously stimulating both the vagus nerve and the trigeminal nerve.





DETAILED DESCRIPTION

The present invention relates to controlling (treating and/or preventing) bleeding in a patient. More specifically, this disclosure is related to apparatuses (devices, systems, and methods) for controlling bleeding and controlling (reducing) bleed time in a patient through neural stimulation, such as through electrical and/or mechanical and/or other stimulation of both (e.g., simultaneously) the trigeminal nerve and the vagus nerve. Controlling bleeding may include preventing and/or treating bleeding (e.g., surgical bleeding, traumatic bleeding, bleeding related to childbirth, bleeding related to other medical procedures or conditions, bleeding mediated or increased by anticoagulants, inherited or acquired bleeding disorders such as hemophilia, and so forth).


“Treatment” as used herein includes prophylactic and therapeutic treatment. “Prophylactic treatment” refers to treatment before onset of a condition (e.g., bleeding, an inflammatory condition, etc.) is present, to prevent, inhibit or reduce its occurrence.


As used herein, a patient or subject may be any animal, preferably a mammal, including a human, but can also be a companion animal (e.g., a cat or dog), a farm animal (e.g., a cow, a goat, a horse, a sheep) or a laboratory animal (e.g., a guinea pig, a mouse, a rat), or any other animal.


“Bleed time” or “bleeding time” as used herein refers to the length of time it takes to for bleeding to stop. In general, it is controlled or influenced by how well blood platelets work to form a platelet plug. Bleed time is generally increased by the administration of anticoagulant, such as aspirin, heparin, and warfarin.


As used herein, the terms “reduce” or “reducing” when referring to bleed time in a subject, encompass at least a small but measurable reduction in bleed time over non-treated controls. Reduction may be at least 5%, at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, or more than 60% or anything in between these ranges. For example, a value between these ranges may be chosen so as to use a protocol or apparatus configured to reduce bleeding while minimizing side effects due to applied trigeminal and vagus nerve stimulation.


The nervous system controls nearly every cell and organ in the body through electrical signals carried by nerves. Such electrical connections allow the nervous system to monitor for tissue injury and then to initiate a healing process. Described herein are apparatuses and methods configured for harnessing such electrical connections via targeted electrical nerve stimulation to effectively treat a variety of conditions. Combined vagus and trigeminal nerve stimulation (VNS/TNS) as described herein is a method to reduce bleeding or bleed time following tissue injury or other bleeding event. Combined vagus and trigeminal nerve stimulation (VNS/TNS) as described herein may be non-invasive or minimally invasive. In some examples, VNS/TNS may be a non-invasive or minimally invasive method to activate the vagus nerve and previously described Neural Tourniquet. The combination of vagus nerve stimulation and trigeminal nerve stimulation may reduce the amount of one or both vagus and trigeminal nerve stimulation necessary for robust reduction of bleed time.


“Combined” vagus and trigeminal nerve stimulation (“VNS/TNS”) may refer to the simultaneous (e.g., at the same time), overlapping or near-overlapping (e.g., within about 10 seconds or less, e.g., within 9 sec or less, 8 sec or less, 7 sec or less, 5 sec or less, 2 sec or less, 1 second or less, 0.5 seconds or less, etc.) vagus and trigeminal stimulation.


“Non-invasive stimulation” typically means stimulation that does not require a surgery, exposure of the nerve fiber or direct contact with the nerve fiber. As used herein, “non-invasive stimulation” also does not include administration of pharmacological agents. For example, non-invasive trigeminal nerve stimulation can be achieved, for example, by mechanical (e.g., vibration) or electrical (e.g., electromagnetic radiation) means applied externally to the subject. Similarly non-invasive vagus nerve stimulation may be achieved, for example, by electrical or mechanical (e.g., vibration) stimulation applied externally (e.g., to the auricular region of the ear, over the auricular branch of the vagus nerve.


Although in some examples, a non-invasive or minimally invasive approach as described herein may be used in conjunction with a pharmacological approach (e.g., for an additive or a synergistic benefit), in general an approach described herein may be more efficacious, safer, and less costly than traditional pharmacological therapies. Advantages of this method over pharmacological approaches may include higher specificity, fewer side effects, lower costs, and improved compliance. Advantages over implantable pulse generators for chronic nerve stimulation applications may include avoidance of surgery and associated complications, both for the initial procedure and subsequent procedures for battery changes, and lower costs.


The trigeminal nerve (cranial nerve V) is the largest of the cranial nerves, and has three different branches or nerve distributions (V1, V2, V3; also referred to as the ophthalmic nerve, maxillary nerve and mandibular nerve, respectively) that converge on the trigeminal ganglion. The trigeminal nerve is paired and present on both sides of the body. The trigeminal nerve relays sensory (and motor) information from the head and face. Trigeminal nerve stimulation (TNS) is thought to activate multiple structures in the brain and brainstem, such as the locus coeruleus (LC) and nucleus tractus solitarius (NTS). FIG. 1 shows a schematic of the different skin regions corresponding to the different branches of the trigeminal nerve. The vagus nerve (cranial nerve X) is the longest of the cranial nerves, extending from the brainstem down into the peritoneal cavity. The vagus nerve is the main parasympathetic output of the autonomic nervous system, and interfaces with nearly every organ of the thorax and abdomen, including the heart, lungs, liver, and spleen. Vagus nerve stimulation (VNS) is clinically approved for the treatment of medically refractory epilepsy and depression. Activation of the LC and NTS appears important to the antiepileptic effects of VNS. To date, more than 100,000 patients have received VNS. Technological advances may allow for nerve stimulation without surgical implantation of a pulse generator. For example, transcutaneous auricular stimulation demonstrates anticonvulsive effects similar to invasive VNS.


Direct electrical stimulation of the cervical vagus nerve significantly shortens the duration of bleeding and decreases total blood loss during tissue trauma in swine. Rotational thromboelastography (RoTEG) revealed that VNS significantly shortens the reaction (r) time of blood to initiate clot formation. Moreover, VNS significantly increases thrombin generation at the injury site, whereas systemic thrombin production remains unchanged. Taken together, VNS improves hemostasis by accelerating clot formation specifically at the site of tissue injury.


As described herein VNS/TNS (combined vagus and trigeminal stimulation) may include activating the trigeminal nerve (e.g., by electrical or mechanical or other stimulation) and activating the vagal nerve directly. For example, the vagus nerve may be activated directly in combination with trigeminal nerve activation. Thus a step of controlling bleeding or activating the trigeminal nerve may include a step of directly activating the vagal nerve. Activating the trigeminal nerve may include activating the cholinergic anti-inflammatory pathway and/or any other steps to control bleeding or bleed time in a subject as described in U.S. Pat. No. 8,729,129, while concurrently directly stimulating the vagus nerve. The vagal nerve may be activated either directly or indirectly. In some particular examples, activating the vagus nerve-mediated reduced bleed-time safely and efficaciously may be through stimulation of the trigeminal nerve and the vagus nerve, utilizing precise and specific electrical stimulation parameters. Trigeminal nerve and vagus nerve stimulation may include improving hemostasis via accelerated clot formation such as at the site of tissue injury. This may lead to less blood loss and a shorter duration of bleeding following tissue trauma and hemorrhage.



FIG. 1 shows one example of a schematic for a system configured for the combined stimulation of the vagus and trigeminal nerves. In FIG. 1, the system may include a controller 101 that may include control logic and/or circuitry for driving combined stimulation of the vagus nerve using a vagus nerve stimulation output 107 and a trigeminal nerve stimulation output. In FIG. 1, the trigeminal nerve is shown with three alternatively stimulation outputs 105, 109, 113. One or more branch of the trigeminal nerve may be stimulated by the system; for example, in FIG. 1, the V1 branch of the trigeminal nerve may be mechanically or electrically stimulated by a stimulation output 105 of the system. The V2 branch of the trigeminal nerve may be mechanically or electrically stimulated by a stimulation output 113 of the system. The V3 branch of the trigeminal nerve may be mechanically or electrically stimulated by a stimulation output 109 of the system. For example, one or more electrodes configured to contact the patient's skin over the V1, V2 or V3 branch of the trigeminal nerve may be included. Electrical stimulation may be applied (e.g., pulsed electrical stimulation of between 1-4 kHz at a current of between 0.1 mA to 100 mA). Similarly, the system may include a vagus nerve stimulator 107 that may be connected to the controller 101 to drive stimulation of the vagus nerve. The vagus nerve stimulation may be mechanical stimulator (e.g., configured to apply mechanical force/pressure to the vagus nerve from outside of the body, e.g., by applying against the patient's ear) or an electrical stimulator. For example, the electrical vagus nerve stimulators may apply electrical stimulation from one or more electrodes on the surface of the patient's skin (e.g., the auricular region of the ear). In some variations the electrode may be one or more tissue penetrating electrodes (e.g., needles) inserted into the skin.


In either the vagus or trigeminal stimulators, the apparatus may include a patch (e.g., patch electrode) for contacting part of the body (e.g., head, ear, face, etc.) of a subject and delivering a pulse and a stimulator for providing an electrical stimulus to be delivered through the patch.


Any appropriate electrical or mechanical stimulation may be applied. For example, when applying electrical stimulation to the trigeminal nerve (e.g., through the face), a voltage stimuli (e.g., between 0.2 V to 5 V, at between 0.1-50 Hz, between 0.1 ms and 5 ms pulse width, monophasic and/or biphasic) may be applied for x min (e.g., where x is 2 min, 5 min, 10 minutes, 20 minutes, or 30 minutes, etc.) duration. Vagus nerve stimulation may be applied at approximately or exactly the same time. For example, one complete operational cycle (“dose”) may include a 0.2 V-5 V monophasic pulses (e.g., sinusoidal, rectangular, etc. pulses) for a burst duration that is continuous or repeating, with pulses having a duration of between 0.1 ms and 10 ms (e.g., 2 milliseconds). This cycle may be repeated at a repetition rate of between about 0.1 Hz and 1000 Hz (e.g., 30 Hz) for a treatment duration of between 1 min and 40 min (e.g., 10 minutes, 20 minutes, or 30 minutes, etc.). Concurrently stimulation of the vagus nerve may be applied, e.g., through the ear. For example, stimulation of between about 0.1-10 V, 0.1-10 mA, pulsed, e.g., rectangular pulses, for a burst duration that is continuous or repeating, with pulses having a duration of between 0.1 ms and 10 ms (e.g., 2 milliseconds). This cycle may be repeated at a repetition rate of between about 0.1 Hz and 1000 Hz (e.g., 30 Hz) for a treatment duration of between 1 min and 40 min (e.g., 10 minutes, 20 minutes, or 30 minutes, etc.).


The pattern of concurrent stimulation for the vagus and the trigeminal may be arranged in a variety of different ways. For example, FIGS. 2A-2H illustrate variations of the combined vagus and trigeminal stimulation. In FIG. 2A, the vagus and trigeminal nerve are stimulated at the same time (e.g., same start and stop). This simulation may be identical in frequency (e.g., puling, etc.), and/or intensity (e.g., amplitude, burst duration, etc.). For example, in variations in which both vagus and trigeminal are stimulated electrically by pulsed electrical stimulation, the stimulation may occur at the same time, as shown (e.g., having the same start/stop). Alternatively, in some variations combined vagus nerve and trigeminal nerve stimulation to reduce bleed time may include first stimulating the trigeminal nerve followed by stimulation of the vagus nerve, or by first stimulating the vagus nerve, followed by stimulation of the trigeminal nerve, as shown in FIG. 2A. This alternating stimulation may be repeated for the entire dose duration. In FIG. 2A there is no significant gap between the vagus stimulation and the trigeminal stimulation; in some variations, as shown in FIG. 2D, the combined vagus/trigeminal stimulation includes a gap 217 between the vagus and trigeminal nerve stimulation. As mentioned, this gap may be less than a few second (e.g., 10 seconds or less, 9 seconds or less, 8 seconds or less, 7 seconds or less, 6 seconds or less, 5 seconds or less, 4 seconds or less, 3 seconds or less, 2 seconds or less, 1 seconds or less, 0.5 seconds or less, etc.). The vagus/trigeminal nerve stimulation may therefore alternate and may be repeated for the entire dose duration.


Alternatively, in some variations, as shown in FIG. 2C, the combined vagus and trigeminal stimulation may include overlapping 215 stimulation of the trigeminal and vagus nerve, as shown. In any of these variations, vagus nerve stimulation may begin before trigeminal nerve stimulation (as shown) or in some variations, trigeminal nerve stimulation may begin before vagus nerve stimulation.


In some variations, either vagus nerve stimulation or trigeminal nerve stimulation may be intermittent and overlap with constant stimulation of the trigeminal (when vagus is intermittent) or vagus (when trigeminal stimulation is intermittent). In FIG. 2E the trigeminal nerve is stimulated continuously (although this may include pulsed or burst of pulses) while the vagus nerve stimulation is intermittent (e.g., turned “on” and “off” with an intermittence frequency) during the dose duration.


In some variations, as shown in FIG. 2F-2H, combined vagus and trigeminal nerve stimulation to reduce bleeding (e.g., reduce bleed time) may include both vagus nerve stimulation and trigeminal nerve stimulation being pulsed on/off at the same or different frequencies. In FIG. 2F, the vagus nerve stimulation may be performed at an on/off frequency (intermittence frequency) that is different than the trigeminal nerve stimulation frequency; in this example the vagus nerve stimulation has a duty cycle of approximately 50%, while the trigeminal nerve stimulation has a duty cycle of >50% (e.g., >60%, approximately 75%). The vagus nerve stimulation may partially overlap with the trigeminal nerve stimulation during the dose duration, or may not.


In FIG. 2G the combined vagus and trigeminal stimulation to reduce bleeding may include alternating periods of vagus and trigeminal stimulation in which either the vagus nerve stimulation is on for longer than the trigeminal nerve stimulation or the trigeminal nerve stimulation is on for longer than the vagus nerve stimulation (as shown in FIG. 2G). In FIG. 2H, both trigeminal and vagus nerve stimulation are on for the same duration, and the trigeminal and vagus nerve stimulation ‘on’ times overlap.


In general, the non-invasive stimulation described herein may be non-invasive electrical stimulation applied at a predetermined range of intensities and frequencies. However, other types of non-invasive stimulation may also be used (e.g. non-invasive mechanical stimulation) and can minimally invasive, subcutaneous stimulation. Non-invasive stimulation may be performed by one or more electrodes or actuators that do not contact the nerve. Electrical stimulation may be in the range of 10 mV to 5 V at a frequency of 0.1 Hz to 100 Hz, with a duration of stimulus between from 1 ms to 10 min.


Mechanical stimulation may be oscillatory, repeated, pulsatile, or the like. In some variations the non-invasive stimulation may the repeated application of a mechanical force against the subject's skin at a predetermined frequency for a predetermined period of time. For example, the non-invasive mechanical stimulation may be a mechanical stimulation with a spectral range from 50 to 500 Hz, at an amplitude that ranges between 0.0001-5 mm displacement. The temporal characteristics of the mechanical stimulation may be specific to the targeted disease. In some variations the frequency of stimulation is varying or non-constant. The frequency may be varied between 50 and 500 Hz. In some variations the frequency is constant. In general the frequency refers to the frequency of the pulsatile stimulation within an “on period” of stimulation. Multiple stimulation periods may be separated by an “off period” extending for hours or even days, as mentioned above.


The force with which the mechanical stimulation is applied may also be constant, or it may be variably. Varying the force and/or frequency may be beneficial to ensure that the mechanical stimulation is effective during the entire period of stimulation, particularly if the effect of non-invasive stimulation operates at least in part through mechanoreceptors such as the rapidly acclimating Pacinian corpuscles.


In performing any of the therapies described herein, the non-invasive stimulation may be scheduled or timed in a specific manner. For example, a period of stimulation (“on stimulation”) may be followed by a period during which stimulation is not applied (“off period”). The off period may be much longer than the on period. For example, the off period may be greater than an hour, greater than two hours, greater than four hours, greater than 8 hours, greater than 12 hours, greater than 24 hours, or greater than 2 days. The on period is the duration of a stimulation (which may include a frequency component), and may be less than 10 minutes, less than 5 minutes, less than 2 minutes, less than 1 minute, etc. The ratio of the on period and the off period may partially determine the duty cycle of stimulation.


In some examples, either one (e.g., left or right) of the two paired trigeminal nerves may be activated (e.g., unilateral activation). In some examples, the paired trigeminal nerves may be both be activated in a subject (e.g., bilateral activation). In some examples, part or all of the trigeminal nerve may be activated. For example, any one, two or three of the three different branches or nerve distributions (V1, V2, V3; also referred to as the ophthalmic nerve, maxillary nerve and mandibular nerve, respectively) may be activated. In some examples, sensory fibers of the trigeminal nerve are stimulated. Additionally, the trigeminal ganglion may also or instead be stimulated. Additionally or instead, associated neurons that are connected to the trigeminal nerve may be stimulated.


Stimulation may be performed using one or more patches configured to cover part of the body each containing one or more electrodes (an array of 2, 3, 4, 5, 10, or more electrodes) configured to cover part of the body (e.g. cheek, forehead, head, neck, nose, scalp, etc.) in a position sufficient to provide stimulation one or more parts of a trigeminal nerve. Stimulation may be performed using one or more electrodes configured to be placed under the skin, such as in a muscle and 1, 2, 3, 4, 5, 10, or more electrodes) may be placed in a muscle.


Also described herein are apparatuses (devices, systems, and methods) for activating the trigeminal nerve and the vagal nerve. In some embodiments, both the trigeminal nerve and the vagal nerve may be directly activated (e.g., by electrical, mechanical or other stimulation such as magnetic, thermal, etc.).


Further, in some variations, the trigeminal stimulation described herein may not activate the dive reflex. The dive reflex in general can activated, for example, by submerging the body in cold water (and holding the breath) wherein the body overrides basic homeostatic functions. The dive reflex is a physiological adaptation that regulates respiration, heart rate, and arterial blood pressure in a particular way. Although all mammals control breathing, heart rate, and arterial blood pressure during their lives, these controls are strongly altered during diving and activation of the dive reflex. In general, trigeminal stimulation parameters may be chosen so as to not activate the dive reflex (e.g., trigeminal stimulation without inducing a dive reflex). Failure to induce a dive reflex may be failure to invoke a percentage change in heart rate and/or respiration and/or arterial blood pressure by more than a predetermined amount. For example, failure to induce a dive reflex may be failure to reduce one or more of heart rate and/or respiration and/or arterial blood pressure by greater than about 2%, 5%, 7%, 10%, 15%, 20%, 25%, 30%, 40%, etc.


The apparatuses and methods described herein may be suitable for therapeutically or prophylactically treating subjects suffering from or at risk from suffering from unwanted bleeding from any cause such as: bleeding disorders including but not limited to afibrinogenemia, Factor II deficiency, Factor VII deficiency, fibrin stabilizing factor deficiency, Hageman Factor deficiency, hemophilia A, hemophilia B, hereditary platelet function disorders (e.g., Alport syndrome, Bernard-Soulier Syndrome, Glanzmann thrombasthenia, gray platelet syndrome, May-Hegglin anomaly, Scott syndrome, and Wiskott-Aldrich syndrome), parahemophilia, Stuart Power Factor deficiency, von Willebrand disease, thrombophilia, or acquired platelet disorders (such as those caused by common drugs: antibiotics, and anesthetics, blood thinners, and those caused by medical conditions such as: chronic kidney disease, heart bypass surgery, and leukemia), childbirth, injury, menstruation, and surgery. An unwanted bleeding treated using any of the apparatuses or methods described herein may include an internal hemorrhage or an external hemorrhage. An internal hemorrhage includes a hemorrhage in which blood is lost from the vascular system inside the body, such as into a body cavity or space. An external hemorrhage includes blood loss outside the body.


EXAMPLES


FIG. 3A illustrates one example of a combined trigeminal and vagus nerve stimulator for treating bleeding (e.g., for reducing bleed time) as described. In FIG. 3A, the apparatus includes a housing that is configured or adapted to fit over, behind and at least partially into the patient's auricle region of the ear. The housing may include an ear retainer 312 for holding the device in/on the ear 360, and may at least partially enclose a controller (e.g., control circuitry, a battery, power control circuitry, waveform generator, a trigeminal stimulation drive and vagus stimulation drive). The apparatus also includes a vagus stimulator 307 that is coupled to the housing in this example, to be applied against the patient's ear. A connector (e.g., cable, wire, etc.) connects a trigeminal stimulator 308 that may be worn on the patient's face (e.g., in the V1, V2 and/or V3 region, as shown in FIG. 1). The controller may be connected (via a wire or wireless connection) to a user interface that may control starting/stopping of the dose, or in some variations the housing may include a control (e.g., button, dial, etc.). The dose may be preprogrammed into the controller and/or it may be adjusted.



FIG. 3B shows another example of a combined trigeminal and vagus nerve stimulator for treating bleeding (e.g., for reducing bleed time) as described. In FIG. 3B, the apparatus includes a housing that is configured or adapted to fit at least partially into the patient's ear, as shown. The housing may be held in the ear 360, and may include a foam or other expandable material to help secure it in place. Alternatively a separate retainer may be used to hold it in/on the ear (not shown). The housing may at least partially enclose a controller (e.g., control circuitry, a battery, power control circuitry, waveform generator, a trigeminal stimulation drive and vagus stimulation drive). The apparatus may also include a vagus stimulator 307 that is coupled to the housing in this example, to be applied against the patient's ear. A connector (e.g., cable, wire, etc.) connects a trigeminal stimulator 308 that may be worn on the patient's face (e.g., in the V1, V2 and/or V3 region, as shown in FIG. 1). The controller may be connected (via a wire or wireless connection) to a user interface that may control starting/stopping of the dose, or in some variations the housing may include a control (e.g., button, dial, etc.). The dose may be preprogrammed into the controller and/or it may be adjusted.



FIG. 3C is another example of a combined trigeminal and vagus nerve stimulator for treating bleeding (e.g., for reducing bleed time) as described. In FIG. 3C, the apparatus include an ear retainer 312 that is configured or adapted to fit at least partially over the patient's ear, as shown. The retainer holds the device over the patient's ear 360, so that the vagus stimulator 307 is in contact with the region of the ear over the vagus nerve. The retainer also holds the controller 302 and may be formed of a material (e.g., mesh, etc.) that fits over the ear to help secure it in place. The controller (e.g., control circuitry, a battery, power control circuitry, waveform generator, a trigeminal stimulation drive and vagus stimulation drive) may be held by the retainer; the vagus nerve stimulator may include a biocompatible adhesive (e.g., hydrogel, etc.) for making electrical contact with the ear. A connector (e.g., cable, wire, etc.) connects the controller with a trigeminal stimulator 308 that may be worn on the patient's face (e.g., in the V1, V2 and/or V3 region, as shown in FIG. 1). The controller may be connected (via a wire or wireless connection) to a user interface that may control starting/stopping of the dose, or in some variations the housing may include a control (e.g., button, dial, etc.). The dose may be preprogrammed into the controller and/or it may be adjusted.



FIG. 3D is another example of a combined trigeminal and vagus nerve stimulator for treating bleeding (e.g., for reducing bleed time) as described. In FIG. 3D, the apparatus is configured or adapted to fit at least partially into the patient's ear, as shown. The apparatus may be held in the ear 360 by an ear retainer 312 to secure it in place. The retainer may fit over the back of the ear and/or partially under the ear to hold the apparatus in/on the ear. In FIG. 3D, the controller (e.g., control circuitry, a battery, power control circuitry, waveform generator, a trigeminal stimulation drive and vagus stimulation drive) is shown on the front; in some variations the controller may be on the back of the apparatus (e.g., held behind the ear). The apparatus may also include a vagus stimulator 307 that is configured to contact the ear. A connector (e.g., cable, wire, etc.) connects the controller to a first trigeminal stimulator 308 that may be worn on the patient's face (e.g., in the V1, V2 and/or V3 region, as shown in FIG. 1). One or more additional trigeminal stimulators 308′ may be connected as well (e.g., in parallel or in series with the first trigeminal stimulator). Thus, multiple sites may be used for trigeminal stimulation. The controller may be connected (via a wire or wireless connection) to a user interface that may control starting/stopping of the dose, or in some variations the housing may include a control (e.g., button, dial, etc.). The dose may be preprogrammed into the controller and/or it may be adjusted.


In any of these apparatuses, the vagus stimulator (vagus nerve stimulator) may be an electrical or a mechanical stimulator. In variations in which the apparatus is an electrical stimulator, the vagus stimulator may include one or more electrodes that may be coupled to the patient's skin and/or may penetrate into the skin (e.g., as shallow needle electrodes). The electrodes may apply electrical energy to modulate the vagus nerve, as descried herein. Mechanical stimulators may apply mechanical energy as described above. Similarly, any of these apparatuses may include one or more trigeminal stimulators that may be configured to apply electrical stimulation (e.g., including one or more electrodes, which may include a hydrogel for making skin contact). The trigeminal stimulators may alternatively be mechanical stimulators.


In any of the methods and apparatuses described herein, VNS/TNS can modulate both the patient's sympathetic nervous system (SNS) and parasympathetic nervous system (PNS) activities to reduce bleed time.


As mentioned above, any of these methods and apparatuses may be configured to non-invasively applying neuromodulation of the trigeminal nerve and vagus nerve. Alternatively or additionally, invasive (e.g., using a needle electrode, implant, etc.) may be used for either VNS, TNS or both VNS and TNS.


For example, non-invasive trigeminal stimulation may be applied via one or more skin surface electrodes that apply trigeminal stimulation to one or more of the subject's forehead, cheek(s), nose, tongue, or other facial skin. In some embodiments, applying the non-invasive neurostimulation to the subject's trigeminal nerve includes targeting at least one of the ophthalmic nerve, maxillary nerve, or mandibular nerve. Alternatively, in some variations, applying non-invasive neurostimulation to the subject's trigeminal nerve includes avoiding targeting at least one of the ophthalmic nerve, maxillary nerve, or mandibular nerve.


Any appropriate frequency and/or amplitude and/or duration may be used. In some embodiments, applying the non-invasive neurostimulation to the subject's trigeminal nerve comprises non-invasive neurostimulation has a frequency of 1-300 (e.g., between 10-60 Hz, etc.). In some embodiments, the non-invasive neurostimulation has an intensity of 2 mV-20 V (e.g., between 0.5 V and 15 V, between 1 V and 12 V, etc.). In some embodiments, the non-invasive neurostimulation has a duty cycle of between about 20% to 70% (e.g., 1 second “on” and 1-2 seconds “off”). In some embodiments, the non-invasive neurostimulation includes a pulse width of between about 0.1 ms to 10 ms (e.g., between about .1 ms to 5 ms, between about 0.25 to 5 ms, etc.). In some embodiments, at least one of a stimulation voltage or a current is increased gradually (e.g., steps of 0.1 V). In some embodiments, the closed-loop trigeminal and/or vagus nerve stimulation is conducted based on a heart rate of the patient (e.g., subject). In some embodiments, the closed-loop trigeminal nerve stimulation is conducted based on a heart rate variability (HRV) of the patient. In some embodiments, certain parameters of the stimulation are modulated to maintain values of the parameters within a target range (e.g., preventing a hear rate or blood pressure effect, etc.).



FIG. 4 is another example of a combined vagus and trigeminal nerve stimulator for reducing bleeding (e.g., reducing bleed time). In FIG. 4, the apparatus includes a housing 401 enclosing a controller 402 (e.g., control circuitry) and a battery 404. The housing is configured to fit behind a patient's ear (not shown), and insert a vagus stimulator 407 into the ear so that it is in contact with the region above the auricular branch of the vagus nerve. In FIG. 4 the apparatus also includes an additional retainer 412 to help anchor the vagus stimulator. A trigeminal stimulator 408 is connected to the controller as well (the connection shown in a wire). The trigeminal stimulator may be an electrode pad that is in electrical communication with the controller (e.g., driver, waveform generator, etc.); similarly the vagus stimulator may include an electrode (or electrode pad) that is in electrical communication with the controller.



FIG. 5 schematically illustrates some of the components of an apparatus for combined vagus and trigeminal stimulation to reduce bleeding as described above in FIGS. 3A-4. In the schematic of FIG. 5, the controller 502 may be separate from or integrated with one or more drivers 510 and waveform generators 506 that may generate and provide power to the trigeminal stimulator (e.g., shown here as a trigeminal electrode 508) and vagus stimulator (shown as a vagus electrode 507). The controller may also be connected to or include wireless communication circuitry 514 for wirelessly communicating 522 with one or more external devices 520 (shown in this example as a smartphone, though any external processor may be used). In FIG. 5, the controller (including control circuitry) may be housed within a housing 501. In some variations this housing may be configured or adapted to fit into, on and/or over a patient's ear (generically referred to as on the patient's ear).


When a feature or element is herein referred to as being “on” another feature or element, it can be directly on the other feature or element or intervening features and/or elements may also be present. In contrast, when a feature or element is referred to as being “directly on” another feature or element, there are no intervening features or elements present. It will also be understood that, when a feature or element is referred to as being “connected”, “attached” or “coupled” to another feature or element, it can be directly connected, attached or coupled to the other feature or element or intervening features or elements may be present. In contrast, when a feature or element is referred to as being “directly connected”, “directly attached” or “directly coupled” to another feature or element, there are no intervening features or elements present. Although described or shown with respect to one embodiment, the features and elements so described or shown can apply to other embodiments. It will also be appreciated by those of skill in the art that references to a structure or feature that is disposed “adjacent” another feature may have portions that overlap or underlie the adjacent feature.


Terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. For example, as used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items and may be abbreviated as “/”.


Spatially relative terms, such as “under”, “below”, “lower”, “over”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if a device in the figures is inverted, elements described as “under” or “beneath” other elements or features would then be oriented “over” the other elements or features. Thus, the exemplary term “under” can encompass both an orientation of over and under. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly. Similarly, the terms “upwardly”, “downwardly”, “vertical”, “horizontal” and the like are used herein for the purpose of explanation only unless specifically indicated otherwise.


Although the terms “first” and “second” may be used herein to describe various features/elements (including steps), these features/elements should not be limited by these terms, unless the context indicates otherwise. These terms may be used to distinguish one feature/element from another feature/element. Thus, a first feature/element discussed below could be termed a second feature/element, and similarly, a second feature/element discussed below could be termed a first feature/element without departing from the teachings of the present invention.


Throughout this specification and the claims which follow, unless the context requires otherwise, the word “comprise”, and variations such as “comprises” and “comprising” means various components can be co-jointly employed in the methods and articles (e.g., compositions and apparatuses including device and methods). For example, the term “comprising” will be understood to imply the inclusion of any stated elements or steps but not the exclusion of any other elements or steps.


In general, any of the apparatuses and methods described herein should be understood to be inclusive, but all or a sub-set of the components and/or steps may alternatively be exclusive, and may be expressed as “consisting of” or alternatively “consisting essentially of” the various components, steps, sub-components or sub-steps.


As used herein in the specification and claims, including as used in the examples and unless otherwise expressly specified, all numbers may be read as if prefaced by the word “about” or “approximately,” even if the term does not expressly appear. The phrase “about” or “approximately” may be used when describing magnitude and/or position to indicate that the value and/or position described is within a reasonable expected range of values and/or positions. For example, a numeric value may have a value that is +/−0.1% of the stated value (or range of values), +/−1% of the stated value (or range of values), +/−2% of the stated value (or range of values), +/−5% of the stated value (or range of values), +/−10% of the stated value (or range of values), etc. Any numerical values given herein should also be understood to include about or approximately that value, unless the context indicates otherwise. For example, if the value “10” is disclosed, then “about 10” is also disclosed. Any numerical range recited herein is intended to include all sub-ranges subsumed therein. It is also understood that when a value is disclosed that “less than or equal to” the value, “greater than or equal to the value” and possible ranges between values are also disclosed, as appropriately understood by the skilled artisan. For example, if the value “X” is disclosed the “less than or equal to X” as well as “greater than or equal to X” (e.g., where X is a numerical value) is also disclosed. It is also understood that the throughout the application, data is provided in a number of different formats, and that this data, represents endpoints and starting points, and ranges for any combination of the data points. For example, if a particular data point “10” and a particular data point “15” are disclosed, it is understood that greater than, greater than or equal to, less than, less than or equal to, and equal to 10 and 15 are considered disclosed as well as between 10 and 15. It is also understood that each unit between two particular units are also disclosed. For example, if 10 and 15 are disclosed, then 11, 12, 13, and 14 are also disclosed.


Although various illustrative embodiments are described above, any of a number of changes may be made to various embodiments without departing from the scope of the invention as described by the claims. For example, the order in which various described method steps are performed may often be changed in alternative embodiments, and in other alternative embodiments one or more method steps may be skipped altogether. Optional features of various device and system embodiments may be included in some embodiments and not in others. Therefore, the foregoing description is provided primarily for exemplary purposes and should not be interpreted to limit the scope of the invention as it is set forth in the claims.


The examples and illustrations included herein show, by way of illustration and not of limitation, specific embodiments in which the subject matter may be practiced. As mentioned, other embodiments may be utilized and derived there from, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. Such embodiments of the inventive subject matter may be referred to herein individually or collectively by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept, if more than one is, in fact, disclosed. Thus, although specific embodiments have been illustrated and described herein, any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.

Claims
  • 1. A system for accelerating clot formation at an injury site of a patient using non-invasive electrical stimulation, the system comprising: an apparatus configured to be worn upon a portion of a head and/or neck of a patient, wherein the apparatus comprises at least two electrodes,a first electrode of the at least two electrodes configured to be disposed in a region of a branch of the trigeminal nerve, anda second electrode of the at least two electrodes configured to be disposed in a region of a branch of the vagus nerve; anda controller in electrical communication with the at least two electrodes, the controller being configured to deliver, via the apparatus, electrical stimulation for accelerating clot formation, wherein the electrical stimulation comprises, over a time period of at least five minutes,applying electrical trigeminal nerve stimulation (TNS) pulses to the trigeminal nerve via the first electrode, andsimultaneous with, overlapping with, and/or near-overlapping with application of the electrical TNS pulses, applying electrical vagal nerve stimulation (VNS) pulses to the vagus nerve via the second electrode, andthe electrical stimulation is configured to significantly accelerate clot formation at an injury site of the patient.
  • 2. The system of claim 1, wherein the electrical stimulation is repeated approximately every 24 hours.
  • 3. The system of claim 1, wherein the branch of the trigeminal nerve is a maxillary branch.
  • 4. The system of claim 1, wherein the branch of the vagus nerve is an auricular branch.
  • 5. The system of claim 1, wherein the controller comprises wireless communication circuitry for wirelessly communicating with one or more external devices.
  • 6. The system of claim 1, wherein the apparatus comprises a housing configured for positioning such that portions of the housing contact skin of an ear of the patient and/or skin proximate to the ear, wherein the at least two electrodes are mounted to one or more surfaces of the housing.
  • 7. The system of claim 1, wherein the apparatus comprises a connector for electrically connecting the apparatus to the controller.
  • 8. The system of claim 1, wherein the electrical stimulation is delivered prophylactically to the patient due to risk of future bleeding.
  • 9. The system of claim 8, wherein the electrical stimulation is applied prior to a medical procedure.
  • 10. The system of claim 9, wherein the medical procedure is a surgical procedure.
  • 11. The system of claim 8, wherein the risk of future bleeding is due at least in part to a bleeding disorder of the patient.
  • 12. The system of claim 11, wherein the bleeding disorder is hemophilia or Von Willebrand Disease.
  • 13. The system of claim 1, wherein accelerating clot formation comprises increasing thrombin generation at the injury site of the patient in comparison to thrombin generation in a non-treated patient, while systemic thrombin generation remains unchanged.
  • 14. The system of claim 1, wherein the electrical stimulation is configured to modulate parasympathetic nervous system (PNS) activities.
  • 15. The system of claim 1, wherein the controller comprises a user interface configured to enable a user to adjust the electrical stimulation.
  • 16. The system of claim 1, wherein: applying the electrical VNS stimulation comprises applying the electrical TNS stimulation at a first frequency between 31 and 150 Hz; andapplying the electrical TNS stimulation comprises applying the electrical VNS stimulation at a second frequency between 1 and 30 Hz.
  • 17. The system of claim 1, wherein the electrical stimulation is configured to reduce a bleed time and/or bleed volume of a current or future bleeding event of the patient by at least 10%.
  • 18. The system of claim 17, wherein the risk of future bleeding is due to menstruation in the patient.
  • 19. The system of claim 1, wherein the first electrode and the second electrode are in non-penetrating contact with skin of the patient.
  • 20. A method for accelerating clot formation, comprising: providing an apparatus to be worn upon a portion of a head and/or neck of a patient, the apparatus comprising at least two electrodes, wherein, when the apparatus is worn by the patient, a first electrode of the at least two electrodes is disposed in a region of a branch of the trigeminal nerve, anda second electrode of the at least two electrodes is disposed in a region of a branch of the vagus nerve; anddelivering, via a controller in electrical communication with the at least two electrodes, electrical stimulation for accelerating clot formation, wherein the electrical stimulation comprises, over a time period of at least five minutes, applying electrical trigeminal nerve stimulation (TNS) pulses to the trigeminal nerve via the first electrode, andsimultaneous with, overlapping with, and/or near-overlapping with application of the electrical TNS pulses, applying electrical vagal nerve stimulation (VNS) pulses to the vagus nerve via the second electrode, andthe electrical stimulation is configured to significantly accelerate clot formation at a current or future injury site of the patient.
  • 21. The method of claim 20, wherein the electrical stimulation is configured to significantly increase thrombin generation at an injury site of the patient in comparison to thrombin generation in a non-treated patient, while systemic thrombin generation remains unchanged.
  • 22. The method of claim 20, wherein the at least two electrodes are non-penetrating electrodes.
  • 23. The method of claim 20, wherein the VNS pulses are applied such that the cervical branch of the vagus nerve is stimulated.
  • 24. The method of claim 20, wherein the at least two electrodes are configured to penetrate tissue.
  • 25. The method of claim 20, wherein the VNS pulses are applied such that an auricular branch of the vagus nerve is stimulated.
  • 26. The method of claim 20, wherein the TNS pulses are applied such that an auriculotemporal branch of the trigeminal nerve is stimulated.
  • 27. The method of claim 20, wherein the electrical stimulation is delivered prophylactically to the patient due to risk of future bleeding.
  • 28. The method of claim 27, wherein the risk of future bleeding is due at least in part to a bleeding disorder of the patient.
  • 29. The method of claim 28, wherein the bleeding disorder is hemophilia or Von Willebrand Disease.
  • 30. The method of claim 20, wherein the electrical stimulation is configured to reduce a bleed time and/or bleed volume of a current or future bleeding event of the patient by at least 10%.
CROSS REFERENCE TO RELATED APPLICATIONS

This patent application is a continuation of U.S. patent application Ser. No. 17/578,339, filed Jan. 18, 2022, now U.S. patent application Publication No. 2022/0212012, which is a continuation of U.S. patent application Ser. No. 16/582,726, filed Sep. 25, 2019, now U.S. Pat. No. 11,260,229, which claims priority to U.S. Provisional Patent Application No. 62/736,447, filed on Sep. 25, 2018, which are herein incorporated by reference in their entirety.

US Referenced Citations (704)
Number Name Date Kind
2164121 Pescador Jun 1939 A
3363623 Atwell Jan 1968 A
3631534 Hirota et al. Dec 1971 A
3709228 Barker Jan 1973 A
4073296 McCall Feb 1978 A
4098277 Mendell Jul 1978 A
4305402 Katims Dec 1981 A
4503863 Katims Mar 1985 A
4573481 Bullara Mar 1986 A
4590946 Loeb May 1986 A
4632095 Libin Dec 1986 A
4649936 Ungar et al. Mar 1987 A
4702254 Zabara Oct 1987 A
4840793 Todd, III et al. Jun 1989 A
4867164 Zabara Sep 1989 A
4929734 Coughenour et al. May 1990 A
4930516 Alfano et al. Jun 1990 A
4935234 Todd, III et al. Jun 1990 A
4979511 Terry, Jr. Dec 1990 A
4991578 Cohen Feb 1991 A
5019648 Schlossman et al. May 1991 A
5025807 Zabara Jun 1991 A
5038781 Lynch Aug 1991 A
5049659 Cantor et al. Sep 1991 A
5073560 Wu et al. Dec 1991 A
5106853 Showell et al. Apr 1992 A
5111815 Mower May 1992 A
5154172 Terry, Jr. et al. Oct 1992 A
5175166 Dunbar et al. Dec 1992 A
5179950 Stanislaw Jan 1993 A
5186170 Varrichio et al. Feb 1993 A
5188104 Wernicke et al. Feb 1993 A
5203326 Collins Apr 1993 A
5205285 Baker, Jr. Apr 1993 A
5215086 Terry, Jr. et al. Jun 1993 A
5215089 Baker, Jr. Jun 1993 A
5222494 Baker, Jr. Jun 1993 A
5231988 Wernicke et al. Aug 1993 A
5235980 Varrichio et al. Aug 1993 A
5237991 Baker et al. Aug 1993 A
5251634 Weinberg Oct 1993 A
5263480 Wernicke et al. Nov 1993 A
5269303 Wernicke et al. Dec 1993 A
5299569 Wernicke et al. Apr 1994 A
5304206 Baker, Jr. et al. Apr 1994 A
5330507 Schwartz Jul 1994 A
5330515 Rutecki et al. Jul 1994 A
5335657 Terry, Jr. et al. Aug 1994 A
5344438 Testerman et al. Sep 1994 A
5351394 Weinberg Oct 1994 A
5403845 Dunbar et al. Apr 1995 A
5458625 Kendall Oct 1995 A
5472841 Jayasena et al. Dec 1995 A
5487756 Kallesoe et al. Jan 1996 A
5496938 Gold et al. Mar 1996 A
5503978 Schneider et al. Apr 1996 A
5514168 Friedman May 1996 A
5531778 Maschino et al. Jul 1996 A
5540730 Terry, Jr. et al. Jul 1996 A
5540734 Zabara Jul 1996 A
5567588 Gold et al. Oct 1996 A
5567724 Kelleher et al. Oct 1996 A
5571150 Wernicke et al. Nov 1996 A
5580737 Polisky et al. Dec 1996 A
5582981 Toole et al. Dec 1996 A
5604231 Smith et al. Feb 1997 A
5607459 Paul et al. Mar 1997 A
5611350 John Mar 1997 A
5618818 Ojo et al. Apr 1997 A
5629285 Black et al. May 1997 A
5637459 Burke et al. Jun 1997 A
5651378 Matheny et al. Jul 1997 A
5654151 Allen et al. Aug 1997 A
5683867 Biesecker et al. Nov 1997 A
5690681 Geddes et al. Nov 1997 A
5700282 Zabara Dec 1997 A
5705337 Gold et al. Jan 1998 A
5707400 Terry, Jr. et al. Jan 1998 A
5709853 Iino et al. Jan 1998 A
5712375 Jensen et al. Jan 1998 A
5718912 Thompson et al. Feb 1998 A
5726017 Lochrie et al. Mar 1998 A
5726179 Messer, Jr. et al. Mar 1998 A
5727556 Weth et al. Mar 1998 A
5733255 Dinh et al. Mar 1998 A
5741802 Kem et al. Apr 1998 A
5773598 Burke et al. Jun 1998 A
5786462 Schneider et al. Jul 1998 A
5788656 Mino Aug 1998 A
5792210 Wamubu et al. Aug 1998 A
5824027 Hoffer et al. Oct 1998 A
5853005 Scanlon Dec 1998 A
5854289 Bianchi et al. Dec 1998 A
5902814 Gordon et al. May 1999 A
5913876 Taylor et al. Jun 1999 A
5916239 Geddes et al. Jun 1999 A
5919216 Houben et al. Jul 1999 A
5928272 Adkins et al. Jul 1999 A
5964794 Bolz et al. Oct 1999 A
5977144 Meyer et al. Nov 1999 A
5994330 El Khoury Nov 1999 A
6002964 Feler et al. Dec 1999 A
6006134 Hill et al. Dec 1999 A
6017891 Eibl et al. Jan 2000 A
6028186 Tasset et al. Feb 2000 A
6051017 Loeb et al. Apr 2000 A
6083696 Biesecker et al. Jul 2000 A
6083905 Voorberg et al. Jul 2000 A
6096728 Collins et al. Aug 2000 A
6104956 Naritoku et al. Aug 2000 A
6110900 Gold et al. Aug 2000 A
6110914 Phillips et al. Aug 2000 A
6117837 Tracey et al. Sep 2000 A
6124449 Gold et al. Sep 2000 A
6127119 Stephens et al. Oct 2000 A
6140490 Biesecker et al. Oct 2000 A
6141590 Renirie et al. Oct 2000 A
6147204 Gold et al. Nov 2000 A
6159145 Satoh Dec 2000 A
6164284 Schulman et al. Dec 2000 A
6166048 Bencherif Dec 2000 A
6168778 Janjic et al. Jan 2001 B1
6171795 Korman et al. Jan 2001 B1
6205359 Boveja Mar 2001 B1
6208894 Schulman et al. Mar 2001 B1
6208902 Boveja Mar 2001 B1
6210321 Di Mino et al. Apr 2001 B1
6224862 Turecek et al. May 2001 B1
6233488 Hess May 2001 B1
6266564 Hill et al. Jul 2001 B1
6269270 Boveja Jul 2001 B1
6304775 Iasemidis et al. Oct 2001 B1
6308104 Taylor et al. Oct 2001 B1
6337997 Rise Jan 2002 B1
6339725 Naritoku et al. Jan 2002 B1
6341236 Osorio et al. Jan 2002 B1
6356787 Rezai et al. Mar 2002 B1
6356788 Boveja Mar 2002 B2
6381499 Taylor et al. Apr 2002 B1
6405732 Edwards et al. Jun 2002 B1
6407095 Lochead et al. Jun 2002 B1
6428484 Battmer et al. Aug 2002 B1
6429217 Puskas Aug 2002 B1
6447443 Keogh et al. Sep 2002 B1
6449507 Hill et al. Sep 2002 B1
6473644 Terry, Jr. et al. Oct 2002 B1
6479523 Puskas Nov 2002 B1
6487446 Hill et al. Nov 2002 B1
6511500 Rahme Jan 2003 B1
6528529 Brann et al. Mar 2003 B1
6532388 Hill et al. Mar 2003 B1
6542774 Hill et al. Apr 2003 B2
6556868 Naritoku et al. Apr 2003 B2
6564102 Boveja May 2003 B1
6587719 Barrett et al. Jul 2003 B1
6587727 Osorio et al. Jul 2003 B2
6600956 Maschino et al. Jul 2003 B2
6602891 Messer et al. Aug 2003 B2
6609025 Barrett et al. Aug 2003 B2
6610713 Tracey Aug 2003 B2
6611715 Boveja Aug 2003 B1
6615081 Boveja Sep 2003 B1
6615085 Boveja Sep 2003 B1
6622038 Barrett et al. Sep 2003 B2
6622041 Terry, Jr. et al. Sep 2003 B2
6622047 Barrett et al. Sep 2003 B2
6628987 Hill et al. Sep 2003 B1
6633779 Schuler et al. Oct 2003 B1
6656960 Puskas Dec 2003 B2
6668191 Boveja Dec 2003 B1
6671556 Osorio et al. Dec 2003 B2
6684105 Cohen et al. Jan 2004 B2
6690973 Hill et al. Feb 2004 B2
6718208 Hill et al. Apr 2004 B2
6721603 Zabara et al. Apr 2004 B2
6735471 Hill et al. May 2004 B2
6735475 Whitehurst et al. May 2004 B1
6760626 Boveja Jul 2004 B1
6762032 Nelson et al. Jul 2004 B1
6778854 Puskas Aug 2004 B2
6804558 Haller et al. Oct 2004 B2
RE38654 Hill et al. Nov 2004 E
6826428 Chen et al. Nov 2004 B1
6832114 Whitehurst et al. Dec 2004 B1
6838471 Tracey Jan 2005 B2
RE38705 Hill et al. Feb 2005 E
6879859 Boveja Apr 2005 B1
6885888 Rezai Apr 2005 B2
6901294 Whitehurst et al. May 2005 B1
6904318 Hill et al. Jun 2005 B2
6920357 Osorio et al. Jul 2005 B2
6928320 King Aug 2005 B2
6934583 Weinberg et al. Aug 2005 B2
6937903 Schuler et al. Aug 2005 B2
6961618 Osorio et al. Nov 2005 B2
6978787 Broniatowski Dec 2005 B1
7011638 Schuler et al. Mar 2006 B2
7054686 MacDonald May 2006 B2
7054692 Whitehurst et al. May 2006 B1
7058447 Hill et al. Jun 2006 B2
7062320 Ehlinger, Jr. Jun 2006 B2
7069082 Lindenthaler Jun 2006 B2
7072720 Puskas Jul 2006 B2
7076307 Boveja et al. Jul 2006 B2
7117033 Shalev et al. Oct 2006 B2
7142910 Puskas Nov 2006 B2
7142917 Fukui Nov 2006 B2
7149574 Yun et al. Dec 2006 B2
7155279 Whitehurst et al. Dec 2006 B2
7155284 Whitehurst et al. Dec 2006 B1
7167750 Knudson et al. Jan 2007 B2
7167751 Whitehurst et al. Jan 2007 B1
7174218 Kuzma Feb 2007 B1
7184828 Hill et al. Feb 2007 B2
7184829 Hill et al. Feb 2007 B2
7191012 Boveja et al. Mar 2007 B2
7204815 Connor Apr 2007 B2
7209787 DiLorenzo Apr 2007 B2
7225019 Jahns et al. May 2007 B2
7228167 Kara et al. Jun 2007 B2
7238715 Tracey et al. Jul 2007 B2
7242984 DiLorenzo Jul 2007 B2
7269457 Shafer et al. Sep 2007 B2
7345178 Nunes et al. Mar 2008 B2
7373204 Gelfand et al. May 2008 B2
7389145 Kilgore et al. Jun 2008 B2
7454245 Armstrong et al. Nov 2008 B2
7467016 Colborn Dec 2008 B2
7544497 Sinclair et al. Jun 2009 B2
7561918 Armstrong et al. Jul 2009 B2
7711432 Thimineur et al. May 2010 B2
7729760 Patel et al. Jun 2010 B2
7751891 Armstrong et al. Jul 2010 B2
7776326 Milbrandt et al. Aug 2010 B2
7797058 Mrva et al. Sep 2010 B2
7819883 Westlund et al. Oct 2010 B2
7822486 Foster et al. Oct 2010 B2
7829556 Bemis et al. Nov 2010 B2
7869885 Begnaud et al. Jan 2011 B2
7937145 Dobak May 2011 B2
7962220 Kolafa et al. Jun 2011 B2
7974701 Armstrong Jul 2011 B2
7974707 Inman Jul 2011 B2
7996088 Marrosu et al. Aug 2011 B2
7996092 Mrva et al. Aug 2011 B2
8010189 Shalev Aug 2011 B2
8019419 Panescu et al. Sep 2011 B1
8060208 Kilgore et al. Nov 2011 B2
8103349 Donders et al. Jan 2012 B2
8165668 Dacey, Jr. et al. Apr 2012 B2
8180446 Dacey, Jr. et al. May 2012 B2
8180447 Dacey et al. May 2012 B2
8195287 Dacey, Jr. et al. Jun 2012 B2
8214056 Hoffer et al. Jul 2012 B2
8233982 Libbus Jul 2012 B2
8380315 DeGiorgio et al. Feb 2013 B2
8391970 Tracey et al. Mar 2013 B2
8412338 Faltys Apr 2013 B2
8504161 Kornet et al. Aug 2013 B1
8506469 Dietrich et al. Aug 2013 B2
8571654 Libbus et al. Oct 2013 B2
8577458 Libbus et al. Nov 2013 B1
8600505 Libbus et al. Dec 2013 B2
8606371 Garfield et al. Dec 2013 B2
8612002 Faltys et al. Dec 2013 B2
8630709 Libbus et al. Jan 2014 B2
8688212 Libbus et al. Apr 2014 B2
8688220 DeGiorgio et al. Apr 2014 B2
8696724 Rogers Apr 2014 B2
8700150 Libbus et al. Apr 2014 B2
8729129 Tracey et al. May 2014 B2
8788034 Levine et al. Jul 2014 B2
8843210 Simon et al. Sep 2014 B2
8855767 Faltys et al. Oct 2014 B2
8886339 Faltys et al. Nov 2014 B2
8914114 Tracey et al. Dec 2014 B2
8918178 Simon et al. Dec 2014 B2
8918191 Libbus et al. Dec 2014 B2
8923964 Libbus et al. Dec 2014 B2
8958880 DeGiorgio et al. Feb 2015 B2
8983628 Simon et al. Mar 2015 B2
8983629 Simon et al. Mar 2015 B2
8996116 Faltys et al. Mar 2015 B2
9101766 Nekhendzy Aug 2015 B2
9114262 Libbus et al. Aug 2015 B2
9162064 Faltys et al. Oct 2015 B2
9174041 Faltys et al. Nov 2015 B2
9211409 Tracey et al. Dec 2015 B2
9211410 Levine et al. Dec 2015 B2
9254383 Simon et al. Feb 2016 B2
9272143 Libbus et al. Mar 2016 B2
9358381 Simon et al. Jun 2016 B2
9399134 Simon et al. Jul 2016 B2
9403001 Simon et al. Aug 2016 B2
9409024 KenKnight et al. Aug 2016 B2
9415224 Libbus et al. Aug 2016 B2
9452290 Libbus et al. Sep 2016 B2
9504832 Libbus et al. Nov 2016 B2
9511228 Amurthur et al. Dec 2016 B2
9533153 Libbus et al. Jan 2017 B2
9572983 Levine et al. Feb 2017 B2
9579507 Cakmak Feb 2017 B2
9656069 Danilov et al. May 2017 B1
9656078 Danilov et al. May 2017 B1
9662490 Tracey et al. May 2017 B2
9700716 Faltys et al. Jul 2017 B2
9789306 Sabourin et al. Oct 2017 B2
9833621 Levine Dec 2017 B2
9849286 Levine et al. Dec 2017 B2
9987492 Tracey et al. Jun 2018 B2
9993651 Faltys et al. Jun 2018 B2
10166395 Tracey et al. Jan 2019 B2
10220203 Faltys et al. Mar 2019 B2
10449358 Levine et al. Oct 2019 B2
10561846 Tracey et al. Feb 2020 B2
10583304 Faltys et al. Mar 2020 B2
10596367 Faltys et al. Mar 2020 B2
10695569 Levine et al. Jun 2020 B2
10716936 Faltys et al. Jul 2020 B2
10912712 Tracey et al. Feb 2021 B2
11051744 Levine et al. Jul 2021 B2
11110287 Faltys et al. Sep 2021 B2
11173307 Levine et al. Nov 2021 B2
11207518 Huston et al. Dec 2021 B2
11260229 Manogue Mar 2022 B2
11278718 Faltys et al. Mar 2022 B2
11311725 Levine et al. Apr 2022 B2
11344724 Huston et al. May 2022 B2
11383091 Faltys et al. Jul 2022 B2
11406833 Faltys et al. Aug 2022 B2
11471681 Zitnik et al. Oct 2022 B2
11547852 Levine et al. Jan 2023 B2
20010002441 Boveja May 2001 A1
20010034542 Mann Oct 2001 A1
20020026141 Houben et al. Feb 2002 A1
20020040035 Myers et al. Apr 2002 A1
20020077675 Greenstein Jun 2002 A1
20020086871 O'Neill et al. Jul 2002 A1
20020095139 Keogh et al. Jul 2002 A1
20020099417 Naritoku et al. Jul 2002 A1
20020138075 Edwards et al. Sep 2002 A1
20020138109 Keogh et al. Sep 2002 A1
20020193859 Schulman et al. Dec 2002 A1
20020198570 Puskas Dec 2002 A1
20030018367 DiLorenzo Jan 2003 A1
20030032852 Perreault et al. Feb 2003 A1
20030045909 Gross et al. Mar 2003 A1
20030088301 King May 2003 A1
20030191404 Klein Oct 2003 A1
20030194752 Anderson et al. Oct 2003 A1
20030195578 Perron et al. Oct 2003 A1
20030212440 Boveja Nov 2003 A1
20030229380 Adams et al. Dec 2003 A1
20030236557 Whitehurst et al. Dec 2003 A1
20030236558 Whitehurst et al. Dec 2003 A1
20040002546 Altschuler Jan 2004 A1
20040015202 Chandler et al. Jan 2004 A1
20040015204 Whitehurst et al. Jan 2004 A1
20040015205 Whitehurst et al. Jan 2004 A1
20040024422 Hill et al. Feb 2004 A1
20040024428 Barrett et al. Feb 2004 A1
20040024439 Riso Feb 2004 A1
20040030362 Hill et al. Feb 2004 A1
20040039427 Barrett et al. Feb 2004 A1
20040048795 Ivanova et al. Mar 2004 A1
20040049121 Yaron Mar 2004 A1
20040049240 Gerber et al. Mar 2004 A1
20040059383 Puskas Mar 2004 A1
20040111139 McCreery et al. Jun 2004 A1
20040138517 Osorio et al. Jul 2004 A1
20040138518 Rise et al. Jul 2004 A1
20040138536 Frei et al. Jul 2004 A1
20040146949 Tan et al. Jul 2004 A1
20040153127 Gordon et al. Aug 2004 A1
20040158119 Osorio et al. Aug 2004 A1
20040162584 Hill et al. Aug 2004 A1
20040172074 Yoshihito Sep 2004 A1
20040172085 Knudson et al. Sep 2004 A1
20040172086 Knudson et al. Sep 2004 A1
20040172088 Knudson et al. Sep 2004 A1
20040172094 Cohen et al. Sep 2004 A1
20040176812 Knudson et al. Sep 2004 A1
20040178706 D'Orso Sep 2004 A1
20040193231 David et al. Sep 2004 A1
20040199209 Hill et al. Oct 2004 A1
20040199210 Shelchuk Oct 2004 A1
20040204355 Tracey et al. Oct 2004 A1
20040215272 Haubrich et al. Oct 2004 A1
20040215287 Swoyer et al. Oct 2004 A1
20040236381 Dinsmoor et al. Nov 2004 A1
20040236382 Dinsmoor et al. Nov 2004 A1
20040240691 Grafenberg Dec 2004 A1
20040243182 Cohen et al. Dec 2004 A1
20040254612 Ezra et al. Dec 2004 A1
20040267152 Pineda Dec 2004 A1
20050021092 Yun et al. Jan 2005 A1
20050021101 Chen et al. Jan 2005 A1
20050027328 Greenstein Feb 2005 A1
20050043774 Devlin et al. Feb 2005 A1
20050049655 Boveja et al. Mar 2005 A1
20050065553 Ben Ezra et al. Mar 2005 A1
20050065573 Rezai Mar 2005 A1
20050065575 Dobak Mar 2005 A1
20050070970 Knudson et al. Mar 2005 A1
20050070974 Knudson et al. Mar 2005 A1
20050075701 Shafer Apr 2005 A1
20050075702 Shafer Apr 2005 A1
20050095246 Shafer May 2005 A1
20050096707 Hill et al. May 2005 A1
20050103351 Stomberg et al. May 2005 A1
20050113894 Zilberman et al. May 2005 A1
20050131467 Boveja Jun 2005 A1
20050131486 Boveja et al. Jun 2005 A1
20050131487 Boveja Jun 2005 A1
20050131493 Boveja et al. Jun 2005 A1
20050137644 Boveja et al. Jun 2005 A1
20050137645 Voipio et al. Jun 2005 A1
20050143781 Carbunaru et al. Jun 2005 A1
20050143787 Boveja et al. Jun 2005 A1
20050149126 Libbus Jul 2005 A1
20050149129 Libbus et al. Jul 2005 A1
20050149131 Libbus et al. Jul 2005 A1
20050149145 Coulter Jul 2005 A1
20050153885 Yun et al. Jul 2005 A1
20050154425 Boveja et al. Jul 2005 A1
20050154426 Boveja et al. Jul 2005 A1
20050165458 Boveja et al. Jul 2005 A1
20050165459 Coulter Jul 2005 A1
20050177200 George et al. Aug 2005 A1
20050182288 Zabara Aug 2005 A1
20050182467 Hunter et al. Aug 2005 A1
20050187584 Denker et al. Aug 2005 A1
20050187586 David et al. Aug 2005 A1
20050187590 Boveja et al. Aug 2005 A1
20050191661 Gatanaga et al. Sep 2005 A1
20050192644 Boveja et al. Sep 2005 A1
20050197600 Schuler et al. Sep 2005 A1
20050197675 David et al. Sep 2005 A1
20050197678 Boveja et al. Sep 2005 A1
20050203501 Aldrich et al. Sep 2005 A1
20050209654 Boveja et al. Sep 2005 A1
20050216064 Heruth et al. Sep 2005 A1
20050216070 Boveja et al. Sep 2005 A1
20050216071 Devlin et al. Sep 2005 A1
20050240229 Whitehurst et al. Oct 2005 A1
20050240231 Aldrich et al. Oct 2005 A1
20050240241 Yun et al. Oct 2005 A1
20050240242 DiLorenzo Oct 2005 A1
20050251220 Barrett et al. Nov 2005 A1
20050251222 Barrett et al. Nov 2005 A1
20050267542 David et al. Dec 2005 A1
20050267547 Knudson et al. Dec 2005 A1
20050277912 John Dec 2005 A1
20050283198 Haubrich et al. Dec 2005 A1
20060009815 Boveja et al. Jan 2006 A1
20060015151 Aldrich Jan 2006 A1
20060025828 Armstrong et al. Feb 2006 A1
20060036293 Whitehurst et al. Feb 2006 A1
20060052657 Zabara Mar 2006 A9
20060052831 Fukui Mar 2006 A1
20060052836 Kim et al. Mar 2006 A1
20060058851 Cigaina Mar 2006 A1
20060064137 Stone Mar 2006 A1
20060064139 Chung et al. Mar 2006 A1
20060074450 Boveja et al. Apr 2006 A1
20060074473 Gertner Apr 2006 A1
20060079936 Boveja et al. Apr 2006 A1
20060085046 Rezai et al. Apr 2006 A1
20060095081 Zhou et al. May 2006 A1
20060095090 De Ridder May 2006 A1
20060100668 Ben-David et al. May 2006 A1
20060106755 Stuhec May 2006 A1
20060111644 Guttag et al. May 2006 A1
20060111754 Rezai et al. May 2006 A1
20060111755 Stone et al. May 2006 A1
20060116739 Betser et al. Jun 2006 A1
20060122675 Libbus et al. Jun 2006 A1
20060129200 Kurokawa Jun 2006 A1
20060129202 Armstrong Jun 2006 A1
20060135998 Libbus et al. Jun 2006 A1
20060136024 Cohen et al. Jun 2006 A1
20060142802 Armstrong Jun 2006 A1
20060142822 Tulgar Jun 2006 A1
20060149337 John Jul 2006 A1
20060155495 Osorio et al. Jul 2006 A1
20060161216 John et al. Jul 2006 A1
20060161217 Jaax et al. Jul 2006 A1
20060167497 Armstrong et al. Jul 2006 A1
20060167498 DiLorenzo Jul 2006 A1
20060167501 Ben-David et al. Jul 2006 A1
20060173493 Armstrong et al. Aug 2006 A1
20060173508 Stone et al. Aug 2006 A1
20060178691 Binmoeller Aug 2006 A1
20060178706 Lisogurski et al. Aug 2006 A1
20060190044 Libbus et al. Aug 2006 A1
20060200208 Terry, Jr. et al. Sep 2006 A1
20060200219 Thrope et al. Sep 2006 A1
20060206155 Ben-David et al. Sep 2006 A1
20060206158 Wu et al. Sep 2006 A1
20060229677 Moffitt et al. Oct 2006 A1
20060229681 Fischell Oct 2006 A1
20060241697 Libbus et al. Oct 2006 A1
20060241699 Libbus et al. Oct 2006 A1
20060247719 Maschino et al. Nov 2006 A1
20060247721 Maschino et al. Nov 2006 A1
20060247722 Maschino et al. Nov 2006 A1
20060259077 Pardo et al. Nov 2006 A1
20060259084 Zhang et al. Nov 2006 A1
20060259085 Zhang et al. Nov 2006 A1
20060259107 Caparso et al. Nov 2006 A1
20060271115 Ben-Ezra et al. Nov 2006 A1
20060282121 Payne et al. Dec 2006 A1
20060282131 Caparso et al. Dec 2006 A1
20060282145 Caparso et al. Dec 2006 A1
20060287678 Shafer Dec 2006 A1
20060287679 Stone Dec 2006 A1
20060292099 Milburn et al. Dec 2006 A1
20060293720 DiLorenzo Dec 2006 A1
20060293721 Tarver et al. Dec 2006 A1
20060293723 Whitehurst et al. Dec 2006 A1
20070016262 Gross et al. Jan 2007 A1
20070016263 Armstrong et al. Jan 2007 A1
20070021785 Inman et al. Jan 2007 A1
20070021786 Parnis et al. Jan 2007 A1
20070021814 Inman et al. Jan 2007 A1
20070025608 Armstrong Feb 2007 A1
20070027482 Parnis et al. Feb 2007 A1
20070027483 Maschino et al. Feb 2007 A1
20070027484 Guzman et al. Feb 2007 A1
20070027486 Armstrong Feb 2007 A1
20070027492 Maschino et al. Feb 2007 A1
20070027496 Parnis et al. Feb 2007 A1
20070027497 Parnis Feb 2007 A1
20070027498 Maschino et al. Feb 2007 A1
20070027499 Maschino et al. Feb 2007 A1
20070027500 Maschino et al. Feb 2007 A1
20070027504 Barrett et al. Feb 2007 A1
20070055324 Thompson et al. Mar 2007 A1
20070067004 Boveja et al. Mar 2007 A1
20070083242 Mazgalev et al. Apr 2007 A1
20070093434 Rossetti et al. Apr 2007 A1
20070093870 Maschino Apr 2007 A1
20070093875 Chavan et al. Apr 2007 A1
20070100263 Merfeld May 2007 A1
20070100377 Armstrong et al. May 2007 A1
20070100378 Maschino May 2007 A1
20070100380 Fukui May 2007 A1
20070100392 Maschino et al. May 2007 A1
20070106339 Errico et al. May 2007 A1
20070112404 Mann et al. May 2007 A1
20070118177 Libbus et al. May 2007 A1
20070118178 Fukui May 2007 A1
20070129767 Wahlstrand Jun 2007 A1
20070129780 Whitehurst et al. Jun 2007 A1
20070135846 Knudson et al. Jun 2007 A1
20070135856 Knudson et al. Jun 2007 A1
20070135857 Knudson et al. Jun 2007 A1
20070135858 Knudson et al. Jun 2007 A1
20070136098 Smythe et al. Jun 2007 A1
20070142870 Knudson et al. Jun 2007 A1
20070142871 Libbus et al. Jun 2007 A1
20070142874 John Jun 2007 A1
20070150006 Libbus et al. Jun 2007 A1
20070150011 Meyer et al. Jun 2007 A1
20070150021 Chen et al. Jun 2007 A1
20070150027 Rogers Jun 2007 A1
20070156180 Jaax et al. Jul 2007 A1
20070198063 Hunter et al. Aug 2007 A1
20070239243 Moffitt et al. Oct 2007 A1
20070244522 Overstreet Oct 2007 A1
20070250145 Kraus et al. Oct 2007 A1
20070255320 Inman et al. Nov 2007 A1
20070255333 Giftakis Nov 2007 A1
20070255339 Torgerson Nov 2007 A1
20080021517 Dietrich Jan 2008 A1
20080021520 Dietrich Jan 2008 A1
20080046055 Durand et al. Feb 2008 A1
20080051852 Dietrich et al. Feb 2008 A1
20080058871 Libbus et al. Mar 2008 A1
20080103407 Bolea et al. May 2008 A1
20080140138 Ivanova et al. Jun 2008 A1
20080183226 Buras et al. Jul 2008 A1
20080183246 Patel et al. Jul 2008 A1
20080195171 Sharma Aug 2008 A1
20080208266 Lesser et al. Aug 2008 A1
20080213331 Gelfand et al. Sep 2008 A1
20080234790 Bayer et al. Sep 2008 A1
20080281197 Wiley et al. Nov 2008 A1
20080281365 Tweden et al. Nov 2008 A1
20080281372 Libbus et al. Nov 2008 A1
20090012590 Inman et al. Jan 2009 A1
20090048194 Aerssens et al. Feb 2009 A1
20090082832 Carbunaru et al. Mar 2009 A1
20090088821 Abrahamson Apr 2009 A1
20090105782 Mickle et al. Apr 2009 A1
20090112291 Wahlstrand et al. Apr 2009 A1
20090123521 Weber et al. May 2009 A1
20090125076 Shuros et al. May 2009 A1
20090125079 Armstrong et al. May 2009 A1
20090171405 Craig Jul 2009 A1
20090177112 Gharib et al. Jul 2009 A1
20090187231 Errico et al. Jul 2009 A1
20090210042 Kowalczewski Aug 2009 A1
20090248097 Tracey et al. Oct 2009 A1
20090254143 Tweden et al. Oct 2009 A1
20090275997 Faltys et al. Nov 2009 A1
20090276019 Perez et al. Nov 2009 A1
20090281593 Errico et al. Nov 2009 A9
20090312817 Hogle et al. Dec 2009 A1
20100003656 Kilgard et al. Jan 2010 A1
20100004709 Mische Jan 2010 A1
20100010556 Zhao et al. Jan 2010 A1
20100010571 Skelton et al. Jan 2010 A1
20100010581 Goetz et al. Jan 2010 A1
20100010603 Ben-David et al. Jan 2010 A1
20100016746 Hampton et al. Jan 2010 A1
20100042186 Ben-David et al. Feb 2010 A1
20100063563 Craig Mar 2010 A1
20100074934 Hunter Mar 2010 A1
20100191304 Scott Jul 2010 A1
20100215632 Boss et al. Aug 2010 A1
20100241183 DiLorenzo Sep 2010 A1
20100241207 Bluger Sep 2010 A1
20100249859 DiLorenzo Sep 2010 A1
20100280562 Pi et al. Nov 2010 A1
20100280569 Bobillier et al. Nov 2010 A1
20110004266 Sharma Jan 2011 A1
20110054569 Zitnik et al. Mar 2011 A1
20110066208 Pasricha et al. Mar 2011 A1
20110082515 Libbus et al. Apr 2011 A1
20110092882 Firlik et al. Apr 2011 A1
20110144717 Burton et al. Jun 2011 A1
20110145588 Stubbs et al. Jun 2011 A1
20110152967 Simon et al. Jun 2011 A1
20110224749 Ben-David et al. Sep 2011 A1
20110247620 Armstrong et al. Oct 2011 A1
20110275927 Wagner et al. Nov 2011 A1
20110301658 Yoo et al. Dec 2011 A1
20110307027 Sharma et al. Dec 2011 A1
20120053657 Parker et al. Mar 2012 A1
20120065706 Vallapureddy et al. Mar 2012 A1
20120179219 Kisker et al. Jul 2012 A1
20120185009 Kornet et al. Jul 2012 A1
20120185020 Simon et al. Jul 2012 A1
20120203301 Cameron et al. Aug 2012 A1
20120296176 Herbst Nov 2012 A1
20130013016 Diebold Jan 2013 A1
20130018439 Chow et al. Jan 2013 A1
20130066392 Simon et al. Mar 2013 A1
20130066395 Simon et al. Mar 2013 A1
20130071390 Stadheim et al. Mar 2013 A1
20130150756 Vitek et al. Jun 2013 A1
20130245718 Birkholz et al. Sep 2013 A1
20130317580 Simon et al. Nov 2013 A1
20140046407 Ben-Ezra et al. Feb 2014 A1
20140106430 Hargrave et al. Apr 2014 A1
20140206945 Liao Jul 2014 A1
20140257425 Arcot-Krishnamurthy et al. Sep 2014 A1
20140277260 Khalil et al. Sep 2014 A1
20140288551 Bharmi et al. Sep 2014 A1
20140330335 Errico et al. Nov 2014 A1
20140343599 Smith et al. Nov 2014 A1
20150018728 Gross et al. Jan 2015 A1
20150119956 Libbus et al. Apr 2015 A1
20150133717 Ghiron et al. May 2015 A1
20150180271 Angara et al. Jun 2015 A1
20150233904 Nayak Aug 2015 A1
20150241447 Zitnik et al. Aug 2015 A1
20160089540 Bolea Mar 2016 A1
20160158534 Guarraia et al. Jun 2016 A1
20160250097 Tracey et al. Sep 2016 A9
20160310315 Smith Oct 2016 A1
20160331952 Faltys et al. Nov 2016 A1
20160367808 Simon et al. Dec 2016 A9
20170007820 Simon et al. Jan 2017 A9
20170197081 Charlesworth et al. Jul 2017 A1
20170202467 Zitnik et al. Jul 2017 A1
20170245379 Kang Aug 2017 A1
20170304621 Malbert et al. Oct 2017 A1
20170361093 Yoo et al. Dec 2017 A1
20170361094 Cartledge et al. Dec 2017 A1
20180021580 Tracey et al. Jan 2018 A1
20180085578 Rennaker, II et al. Mar 2018 A1
20180117320 Levine et al. May 2018 A1
20180289970 Faltys et al. Oct 2018 A1
20190010535 Pujol Onofre et al. Jan 2019 A1
20190022389 Leonhardt Jan 2019 A1
20190192847 Faltys et al. Jun 2019 A1
20190290902 Romero-Ortega et al. Sep 2019 A1
20200402656 DeBates et al. Dec 2020 A1
20210251848 Tracey et al. Aug 2021 A1
20210315505 Levine et al. Oct 2021 A1
20210353949 Faltys et al. Nov 2021 A1
20220040483 Levine et al. Feb 2022 A1
20220072309 Levine et al. Mar 2022 A9
20220118257 Huston et al. Apr 2022 A1
20220193413 Levine et al. Jun 2022 A1
20220212001 Faltys et al. Jul 2022 A1
20220212012 Manogue Jul 2022 A1
20220257941 Levine et al. Aug 2022 A1
20220280797 Faltys et al. Sep 2022 A1
20220362555 Zitnik et al. Nov 2022 A1
20230019961 Huston et al. Jan 2023 A1
20230117074 Zanos et al. Apr 2023 A1
Foreign Referenced Citations (41)
Number Date Country
201230913 May 2009 CN
101528303 Sep 2009 CN
101578067 Nov 2009 CN
101868280 Oct 2010 CN
104220129 Dec 2014 CN
2628045 Jan 1977 DE
3736664 May 1989 DE
20316509 Apr 2004 DE
0438510 Aug 1996 EP
0726791 Jun 2000 EP
1001827 Jan 2004 EP
2213330 Aug 2010 EP
2073896 Oct 2011 EP
2996764 Jul 2017 EP
3470111 Apr 2019 EP
04133 Feb 1910 GB
2073428 Oct 1981 GB
4961558 Jun 2012 JP
2017035494 Feb 2017 JP
20050039445 Apr 2005 KR
2016029274 Mar 2016 KR
WO9301862 Feb 1993 WO
WO9730998 Aug 1997 WO
WO9820868 May 1998 WO
WO0027381 May 2000 WO
WO0047104 Aug 2000 WO
WO0100273 Jan 2001 WO
WO0108617 Feb 2001 WO
WO0189526 Nov 2001 WO
WO0244176 Jun 2002 WO
WO02057275 Jul 2002 WO
WO03072135 Sep 2003 WO
WO2004000413 Dec 2003 WO
WO2004064918 Aug 2004 WO
WO2006073484 Jul 2006 WO
WO2006076681 Jul 2006 WO
WO2007133718 Nov 2007 WO
WO2010005482 Jan 2010 WO
WO2010067360 Jun 2010 WO
WO2010118035 Oct 2010 WO
WO2016134197 Aug 2016 WO
Non-Patent Literature Citations (248)
Entry
US 6,184,239 B1, 02/2001, Puskas (withdrawn)
Abraham, Coagulation abnormalities in acute lung injury and sepsis, Am. J. Respir. Cell Mol. Biol., vol. 22(4), pp. 401-404, Apr. 2000.
Aekerlund et al., Anti-inflammatory effects of a new tumour necrosis factor-alpha (TNF-Alpha) inhibitor (CNI-1493) in collagen-induced arthritis (CIA) in rats, Clinical & Experimental Immunology, vol. 115, No. 1, pp. 32-41, Jan. 1, 1999.
Anderson et al.; Reflex principles of immunological homeostasis; Annu. Rev. Immunol .; 30; pp. 313-335; Apr. 2012.
Antonica, A., et al., Vagal control of lymphocyte release from rat thymus, J. Auton. Nerv. Syst., vol. 48(3), pp. 187-197, Aug. 1994.
Asakura et al., Non-surgical therapy for ulcerative colitis, Nippon Geka Gakkai Zasshi, vol. 98, No. 4, pp. 431-437, Apr. 1997 (abstract only).
Beliavskaia et al., “On the effects of prolonged stimulation of the peripheral segment of the vagus nerve . . . ,” Fiziologicheskii Zhurnal SSSR Imeni I.M. Sechenova., vol. 52(11); p. 1315-1321, Nov. 1966.
Ben-Noun et al.; Neck circumference as a simple screening measure for identifying overweight and obese patients; Obesity Research; vol. 9; No. 8; pp. 470-477; Aug. 8, 2001.
Benoist, et al., “Mast cells in autoimmune disease” Nature., vol. 420(19): pp. 875-878, Dec. 2002.
Benthem et al.; Parasympathetic inhibition of sympathetic neural activity to the pancreas; Am.J.Physiol Endocrinol.Metab; 280(2); pp. E378-E381; Feb. 2001.
Bernik et al., Vagus nerve stimulation attenuates cardiac TNF production in endotoxic shock, (supplemental to Shock, vol. 15, 2001, Injury, inflammation and sepsis: laboratory and clinical approaches, Shock, Abstracts, 24th Annual Conference on Shock, Marco Island, FL, Jun. 9-12, 2001), Abstract No. 81.
Bernik et al., Vagus nerve stimulation attenuates endotoxic shock and cardiac TNF production, 87th Clinical Congress of the American College of Surgeons, New Orleans, LA, Oct. 9, 2001.
Bernik et al., Vagus nerve stimulation attenuates LPS-induced cardiac TNF production and myocardial depression In shock, New York Surgical Society, New York, NY, Apr. 11, 2001.
Bernik, et al., Pharmacological stimulation of the cholinergic anti-inflammatory pathway, The Journal of Experimental Medicine, vol. 195, No. 6, pp. 781-788, Mar. 18, 2002.
Besedovsky, H., et al., Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones, Science, vol. 233, No. 4764, pp. 652-654, Aug. 1986.
Bhattacharya, S.K. et al., Central muscarinic receptor subtypes and carrageenin-induced paw oedema in rats, Res. Esp. Med. vol. 191(1), pp. 65-76, Dec. 1991.
Bianchi et al., Suppression of proinflammatory cytokines in monocytes by a tetravalent guanylhydrazone, Journal of Experimental Medicine, vol. 183, pp. 927-936, Mar. 1996.
Biggio et al.; Chronic vagus nerve stimulation induces neuronal plasticity in the rat hippocampus; Int. J. Neurpsychopharmacol.; vol. 12; No. 9; pp. 1209-1221; Oct. 2009.
Blackwell, T. S. et al., Sepsis and cytokines: current status, Br. J. Anaesth., vol. 77(1), pp. 110-117, Jul. 1996.
Blum, A. et al., Role of cytokines in heart failure, Am. Heart J., vol. 135(2), pp. 181-186, Feb. 1998.
Boldyreff, Gastric and intestinal mucus, its properties and physiological importance, Acta Medica Scandinavica (journal), vol. 89, Issue 1-2, pp. 1-14, Jan./Dec. 1936.
Borovikova et al., Acetylcholine inhibition of immune response to bacterial endotoxin in human macrophages, Abstracts, Society for Neuroscience, 29th Annual Meeting, Miami Beach, FL, (Abs. No. 624.6); Oct. 23-28, 1999.
Borovikova et al., Efferent vagus nerve activity attenuates cytokine-mediated inflammation, Society for Neuroscience Abstracts, vol. 26, No. 102, Nov. 4-9, 2000 (abstract only).
Borovikova et al., Intracerebroventricular CNI-1493 prevents LPS-induced hypotension and peak serum TNF at a four-log lower dose than systemic treatment, 21st Annual Conference on Shock, San Antonio, TX, Jun. 14-17, 1998, Abstract No. 86.
Borovikova et al., Role of the efferent vagus nerve signaling in the regulation of the innate immune response to LPS, (supplemental to Shock, vol. 13, 2000, Molecular, cellular, and systemic pathobiological aspects and therapeutic approaches, abstracts, 5th World Congress on Trauma, Shock inflammation and sepsis-pathophysiology, immune consequences and therapy, Feb. 29, 2000-Mar. 4, 2000, Munich, DE), Abstract No. 166.
Borovikova et al., Role of the vagus nerve in the anti-inflammatory effects of CNI-1493, the FASEB journal, vol. 14, No. 4, 2000 (Experimental Biology 2000, San Diego, CA, Apr. 15-18, 2000, Abstract No. 97.9).
Borovikova et al., Vagotomy blocks the protective effects of I.C.V. CNI-1493 against LPS-induced shock, (Supplemental to Shock, vol. 11, 1999, Molecular, cellular, and systemic pathobioloigal aspects and therapeutic approaches, abstacts and program, Fourth International Shock Congress and 22nd Annual Conference on Shock, Philadelphia, PA, Jun. 12-16, 1999), Abstract No. 277.
Borovikova, L. V., et al., Role of vagus nerve signaling in CNI-1493-mediated suppression of acute inflammation, Autonomic Neuroscience, vol. 85, No. 1-3, pp. 141-147, Dec. 20, 2000.
Borovikova, L. V., et al., Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin, Nature, vol. 405, No. 6785: pp. 458-462, May 25, 2000.
Bruchfeld et al.; Whole blood cytokine attenuation by cholinergic agonists ex vivo and relationship to vagus nerve activity in rheumatoid arthritis; J. Int. Med.; 268(1); pp. 94-101; Jul. 2010.
Bulloch et al.; Characterization of choline O-acetyltransferase (ChAT) in the BALB/C mouse spleen; Int.J.Neurosci.; 76(1-2); pp. 141-149; May 1994.
Bumgardner, G. L. et al., Transplantation and cytokines, Seminars in Liver Disease, vol. 19, No. 2, Thieme Medical Publishers; pp. 189-204, © 1999.
Burke et al., Bent pseudoknots and novel RNA inhibitors of type 1 human immunodeficiency virus (HIV-1) reverse transcriptase, J. Mol. Biol., vol. 264(4); pp. 650-666, Dec. 1996.
Bushby et al; Centiles for adult head circumference; Archives of Disease in Childhood; vol. 67(10); pp. 1286-1287; Oct. 1992.
Cano et al.; Characterization of the central nervous system innervation of the rat spleen using viral transneuronal tracing; J.Comp Neurol.; 439(1); pp. 1-18; Oct. 2001.
Caravaca et al.; A novel flexible cuff-like microelectrode for dual purpose, acute and chronic electrical interfacing with the mouse cervical vagus nerve; Journal of Neural Engineering: 14(6);066005; Nov. 1, 2017.
Carteron, N. L., Cytokines in rheumatoid arthritis: trials and tribulations, Mol. Med. Today, vol. 6(8), pp. 315-323, Aug. 2000.
Cavaillon et al.; The pro-inflammatory cytokine casade; Immune Response in the Critically Ill; Springer-Verlag Berlin Hiedelberg; pp. 37-66; Jan. 21, 2002.
Cheyuo et al.; The parasympathetic nervous system in the quest for stroke therapeutics; J. Cereb. Blood Flow Metab.; 31(5); pp. 1187-1195; May 2011.
Cicala et al., “Linkage between inflammation and coagulation: An update on the molecular basis of the crosstalk,” Life Sciences, vol. 62(20); pp. 1817-1824. Apr. 1998.
Clark et al.; Enhanced recognition memory following vagus nerve stimulation in human subjects; Nat. Neurosci.; 2(1); pp. 94-98; Jan. 1999.
Cohen, “The immunopathogenesis of sepsis,” Nature., vol. 420(6917): pp. 885-891, Dec. 2002.
Corcoran, et al., The effects of vagus nerve stimulation on pro- and anti-inflammatory cytokines in humans: a preliminary report, NeuroimmunoModulation, vol. 12(5), pp. 307-309, Sep. 2005.
Crusz et al.; Inflammation and cancer; advances and new agents; Nature reviews Clinical Oncology; 12(10); pp. 584-596; doi: 10.1038/nrclinonc.2015.105; Jun. 30, 2015.
Dake; Chronic cerebrospinal venous insufficiency and multiple sclerosis: Hostory and background; Techniques Vasc. Intervent. Radiol.; 15(2); pp. 94-100; Jun. 2012.
Das, Critical advances in spticemia and septic shock, Critical Care, vol. 4, pp. 290-296, Sep. 7, 2000.
De Jonge et al.; Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway; Nature Immunology; 6(8); pp. 844-851; Aug. 2005.
Del Signore et al; Nicotinic acetylcholine receptor subtypes in the rat sympathetic ganglion: pharmacological characterization, subcellular distribution and effect of pre- and postganglionic nerve crush; J.Neuropathol.Exp.Neurol.; 63(2); pp. 138-150; Feb. 2004.
Diamond et al.; Mapping the immunological homunculus; Proc. Natl. Acad. Sci. USA; 108(9); pp. 3461-3462; Mar. 1, 2011.
Dibbs, Z., et al., Cytokines in heart failure: pathogenetic mechanisms and potential treatment, Proc. Assoc. Am. Physicians, vol. 111, No. 5, pp. 423-428, Sep.-Oct. 1999.
Dinarello, C. A., The interleukin-1 family: 10 years of discovery, FASEB J., vol. 8, No. 15, pp. 1314-1325, Dec. 1994.
Dorr et al.; Effect of vagus nerve stimulation on serotonergic and noradrenergic transmission; J. Pharmacol. Exp. Ther.; 318(2); pp. 890-898; Aug. 2006.
Doshi et al., Evolving role of tissue factor and its pathway inhibitor, Crit. Care Med., vol. 30, suppl. 5, pp. S241-S250, May 2002.
Elenkov et al.; Stress, corticotropin-releasing hormone, glucocorticoids, and the immune / inflammatory response: acute and chronic effects; Ann. N.Y. Acad. Sci.; 876; pp. 1-13; Jun. 22, 1999.
Ellington et al., In vitro selection of RNA molecules that bind specific ligands, Nature, vol. 346, pp. 818-822, Aug. 30, 1990.
Ellrich et al.; Transcutaneous vagus nerve stimulation; Eur. Neurological Rev.; 6(4); pp. 254-256; Winter 2011.
Emery et al.; Rituximab versus an alternative TNF inhibitor in patients with rheumatoid arthritis who failed to respond to a single previous TNF inhibitor: switch-ra, a global, oberservational, comparative effectiveness study; Annals of the Rheumatic Diseases; 4(6); pp. 979-984; Jun. 2015.
Engineer et al.; Directing neural plasticity to understand and treat tinnitus; Hear. Res.; 295; pp. 58-66; Jan. 2013.
Engineer et al.; Reversing pathological neural activity using targeted plasticity; Nature; 470(7332); pp. 101-104; Feb. 3, 2011 (Author Manuscript).
Esmon, The protein C pathway, Crit. Care Med., vol. 28, suppl. 9, pp. S44-S48, Sep. 2000.
Fields; New culprits in chronic pain; Scientific American; pp. 50-57; Nov. 2009.
Fleshner, M., et al., Thermogenic and corticosterone responses to intravenous cytokines (IL-1? and TNF-? ) are attenuated by subdiaphragmatic vagotomy, J. Neuroimmunol., vol. 86(2), pp. 134-141, Jun. 1998.
Fox, D. A., Cytokine blockade as a new strategy to treat rheumatoid arthritis, Arch. Intern. Med., vol. 160, pp. 437-444, Feb. 28, 2000.
Fox, et al., Use of muscarinic agonists in the treatment of Sjorgren' syndrome, Clin. Immunol., vol. 101, No. 3; pp. 249-263, Dec. 2001.
Fujii et al.; Simvastatin regulates non-neuronal cholinergic activity in T lymphocytes via CD11a-mediated pathways; J. Neuroimmunol.; 179(1-2); pp. 101-107; Oct. 2006.
Gao et al.; Investigation of specificity of auricular acupuncture points in regulation of autonomic function in anesthetized rats; Autonomic Neurosc.; 138(1-2); pp. 50-56; Feb. 29, 2008.
Gattorno, M., et al., Tumor necrosis factor induced adhesion molecule serum concentrations in henoch-schoenlein purpura and pediatric systemic lupus erythematosus, J. Rheumatol., vol. 27, No. 9, pp. 2251-2255, Sep. 2000.
Gaykema, R. P., et al., Subdiaphragmatic vagotomy suppresses endotoxin-induced activation of hypothalamic corticotropin-releasing hormone neurons and ACTH secretion, Endocrinology, vol. 136, No. 10, pp. 4717-4720, Oct. 1995.
Ghelardini et al., S-(−)-ET 126: A potent and selective M1 antagonist in vitro and in vivo, Life Sciences, vol. 58, No. 12, pp. 991-1000, Feb. 1996.
Ghia, et al., The vagus nerve: a tonic inhibitory influence associated with inflammatory bowel disease in a murine model, Gastroenterology, vol. 131, No. 4, pp. 1122-1130, Oct. 2006.
Giebelen, et al., Stimulation of ?7 cholinergic receptors inhibits lipopolysaccharide-induced neutrophil recruitment by a tumor necrosis factor ?-independent mechanism, Shock, vol. 27, No. 4, pp. 443-447, Apr. 2007.
Gottenberg et al.; Non-TNF-targeted biologic vs a second anti-TNF drug to treat theumatoid arthritis in patients with insufficient response to a first anti TNF drug: a randomized clinical trial; JAMA; 316(11); pp. 1172-1180; Sep. 2016.
Goyal et al., Nature of the vagal inhibitory innervation to the lower esophageal sphincter, Journal of Clinical Investigation, vol. 55, pp. 1119-1126, May 1975.
Gracie, J. A., et al., A proinflammatory role for IL-18 in rheumatoid arthritis, J. Clin. Invest., vol. 104, No. 10, pp. 1393-1401, Nov. 1999.
Granert et al., Suppression of macrophage activation with CNI-1493 increases survival in infant rats with systemic haemophilus influenzae infection, Infection and Immunity, vol. 68, No. 9, pp. 5329-5334, Sep. 2000.
Green et al., Feedback technique for deep relaxation, Psycophysiology, vol. 6, No. 3, pp. 371-377, Nov. 1969.
Gregory et al., Neutrophil-kupffer-cell interaction in host defenses to systemic infections, Immunology Today, vol. 19, No. 11, pp. 507-510, Nov. 1998.
Groves et al.; Recordings from the rat locus coeruleus during acute vagal nerve stimulation in the anaesthetised rat; Neuroscience Letters; 379(3); pp. 174-179; May 13, 2005.
Guarente, Leonard, Ph. D.; Sirtuins, Aging, and Medicine; N Engl J Med ; vol. 364:pp. 2235-2244; Jun. 2011.
Guslandi, M., Nicotine treatment for ulcerative colitis, Br. J. Clin. Pharmacol., vol. 48(4), pp. 481-484, Oct. 1999.
Hansson, E.; Could chronic pain and spread of pain sensation be induced and maintained by glial activation?. Acta Physiologica, vol. 187, Issue 1-2; pp. 321R327, May/Jun. 2006.
Harrison's Principles of Internal Medicine, 13th Ed., pp. 511-515 and 1433-1435, Mar. 1994.
Hatton et al.; Vagal nerve stimulation: overview and implications for anesthesiologists; Int'l Anesthesia Research Society; vol. 103; No. 5; pp. 1241-1249; Nov. 2006.
Hirano, T., Cytokine suppresive agent improves survival rate in rats with acute pancreatitis of closed duodenal loop, J. Surg. Res., vol. 81, No. 2, pp. 224-229, Feb. 1999.
Hirao et al., The limits of specificity: an experimental analysis with RNA aptamers to MS2 coat protein variants, Mol. Divers., vol. 4, No. 2, pp. 75-89, 1999 (Accepted Jan. 13, 1999).
Hoffer et al.; Implantable electrical and mechanical interfaces with nerve and muscle; Annals of Biomedical Engineering; vol. 8; pp. 351-360; Jul. 1980.
Holladay et al., Neuronal nicotinic acetylcholine receptors as targets for drug discovery, Journal of Medicinal Chemistry, 40(26), pp. 4169-4194, Dec. 1997.
Hommes, D. W. et al., Anti- and Pro-inflammatory cytokines in the pathogenesis of tissue damage in Crohn's disease, Current Opinion in Clinical Nutrition and Metabolic Care, vol. 3(3), pp. 191-195, May 2000.
Housley et al.; Biomarkers in multiple sclerosis; Clinical Immunology; 161(1); pp. 51-58; Nov. 2015.
Hsu, et al., Analysis of efficiency of magnetic stimulation, IEEE Trans. Biomed. Eng., vol. 50(11), pp. 1276-1285, Nov. 2003.
Hsu, H. Y., et al., Cytokine release of peripheral blood monoculear cells in children with chronic hepatitis B virus infection, J. Pediatr. Gastroenterol., vol. 29, No. 5, pp. 540-545, Nov. 1999.
Hu, et al., The effect of norepinephrine on endotoxin-mediated macrophage activation, J. Neuroimmunol., vol. 31(1), pp. 35-42, Jan. 1991.
Huston et al.; Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis; J. Exp. Med. 2006; vol. 203, No. 7; pp. 1623-1628; Jun. 19, 2006.
Huston et al.; Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis; Crit. Care Med.; 35(12); pp. 2762-2768; Dec. 2007.
Hutchinson et al.; Proinflammatory cytokines oppose opioid induced acute and chronic analgesia; Brain Behav Immun.; vol. 22; No. 8; pp. 1178-1189; Nov. 2008.
Ilton et al., “Differential expression of neutrophil adhesion molecules during coronary artery surgery with cardiopulmonary bypass” Journal of Thoracic and Cardiovascular Surgery, Mosby—Year Book, inc., St. Louis, MO, US, pp. 930-937, Nov. 1, 1999.
Jacob et al.; Detrimental role of granulocyte-colony stimulating factor in neuromyelitis optica: clinical case and histological evidence; Multiple Sclerosis Journal; 18(12); pp. 1801-1803; Dec. 2012.
Jaeger et al., The structure of HIV-1 reverse transcriptase complexed with an RNA pseudoknot inhibitor, The EMBO Journal, 17(15), pp. 4535-4542, Aug. 1998.
Jander, S. et al., Interleukin-18 is induced in acute inflammatory demyelinating polymeuropathy, J. Neuroimmunol., vol. 114, pp. 253-258, Mar. 2001.
Joshi et al., Potent inhibition of human immunodeficiency virus type 1 replection by template analog reverse transcriptase , J. Virol., 76(13), pp. 6545-6557, Jul. 2002.
Kalishevskaya et al. “The character of vagotomy-and atropin-induced hypercoagulation,” Sechenov Physiological Journal of the USSR, 65(3): pp. 398-404, Mar. 1979.
Kalishevskaya et al.; Nervous regulation of the fluid state of the blood; Usp. Fiziol. Nauk;, vol. 13; No. 2; pp. 93-122; Apr.-Jun. 1982.
Kanai, T. et al., Interleukin-18 and Crohn's disease, Digestion, vol. 63, suppl. 1, pp. 37-42; 2001 (year of pub. sufficiently earlier than effective US filing date and any foreign priority date).
Katagiri, M., et al., Increased cytokine production by gastric mucosa in patients with helicobacter pylori infection, J. Clin, Gastroenterol., vol. 25, Suppl. 1, pp. S211-S214, 1997.
Katsavos et al.; Biomarkers in multiple sclerosis: an up-to-date overview; Multiple Sclerosis International; vol. 2013, Article ID 340508, 20 pages; Jan. 1, 2013.
Kawahara et al.; SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span.; Cell. ; vol. 136; No. 1; pp. 62-74; Jan. 2009.
Kawashima, et al., Extraneuronal cholinergic system in lymphocytes, Pharmacology & Therapeutics, vol. 86, pp. 29-48, Apr. 2000.
Kees et al; Via beta-adrenoceptors, stimulation of extrasplenic sympathetic nerve fibers inhibits lipopolysaccharide-induced TNF secretion in perfused rat spleen; J.Neuroimmunol.; 145(1-2); pp. 77-85; Dec. 2003.
Kensch et al., HIV-1 reverse transcriptase-pseudoknot RNA aptamer interaction has a binding affinity in the low picomolar range coupled with high specificity, J. Biol. Chem., 275(24), pp. 18271-18278, Jun. 16, 2000.
Khatun, S., et al., “Induction of hypercoagulability condition by chronic localized cold stress in rabbits,” Thromb. and Haemost., 81(3): pp. 449-455, Mar. 1999.
Kimball, et al., Levamisole causes differential cytokine expression by elicited mouse peritoneal macrophases, Journal of Leukocyte Biology, vo. 52, No. 3, pp. 349-356, Sep. 1992 (abstract only).
Kimmings, A. N., et al., Systemic inflammatory response in acute cholangitis and after subsequent treatment, Eur. J. Surg., vol. 166, pp. 700-705, Sep. 2000.
Kirchner et al.; Left vagus nerve stimulation suppresses experimentally induced pain; Neurology; vol. 55; pp. 1167-1171; Oct. 2000.
Kokkula, R. et al., Successful treatment of collagen-induced arthritis in mice and rats by targeting extracellular high mobility group box chromosomal protein 1 activity, Arthritis Rheum., 48(7), pp. 2052-2058, Jul. 2003.
Koopman et al.; Pilot study of stimulation of the cholinergic anti-inflammatory pathway with an implantable vagus nerve stimulation device in patients with rheumatoid arthritis; Arth. Rheum.; 64(10 suppl.); pp. S195; Oct. 2012.
Koopman et al.; Pilot study of stimulation of the cholinergic anti-inflammatory pathway with an implantable vagus nerve stimulation device in patients with rheumatoid arthritis; 2012 ACR/ARHP Annual Meeting, Abstract No. 451; 4 pages; retrieved from the internet (https://acrabstracts.org/abstract/pilot-study-of-stimulation-of-the-cholinergic-anti-inflammatory-pathway-with-an-implantable-vagus-nerve-stimulation-device-in-patients-with-rheumatoid-arthritis); (Abstract Only): on Sep. 24, 2020.
Koopman et al.; THU0237 first-in-human study of vagus nerve stimulation for rheumatoid arthritis: clinical and biomarker results through day 84; Annals of the Rheumatic Diseases; 72(Suppl 3):A245; Jun. 1, 2013 (Abstract Only).
Koopman et al.; Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis; Proceedings of the National Academy of Sciences: 113(29); pp. 8284-8289; Jul. 19, 2016.
Krarup et al; Conduction studies in peripheral cat nerve using implanted electrodes: I. methods and findings in controls; Muscle & Nerve; vol. 11; pp. 922-932; Sep. 1988.
Kudrjashov, et al. “Reflex nature of the physiological anticoagulating system,” Nature, vol. 196(4855): pp. 647-649; Nov. 17, 1962.
Kumins, N. H., et al., Partial hepatectomy reduces the endotoxin-induced peak circulating level of tumor necrosis factor in rats, Shock, vol. 5, No. 5, pp. 385-388, May 1996.
Kuznik, “Role of the vascular wall in the process of hemostatis,” Usp Sovrem Biol., vol. 75(1): pp. 61-85; 1973 (the year of publication is sufficiently earlier than the effective U.S. filing date and any foreign priority date so that the particular month of publication is not in issue).
Kuznik, et al., “Blood Coagulation in stimulation of the vagus nerve in cats,” Biull. Eskp. Biol. Med., vol. 78(7): pp. 7-9; 1974 (the year of publication is sufficiently earlier than the effective U.S. filing date and any foreign priority date so that the particular month of publication is not in issue).
Kuznik, et al., “Heart as an efferent regulator of the process of blood coagulation and fibrinolysis,” Kardiologiia, vol. 13(3): pp. 10-17; 1973 (the year of publication is sufficiently earlier than the effective U.S. filing date and any foreign priority date so that the particular month of publication is not in issue).
Kuznik, et al., “Role of the heart and vessels in regulating blood coagulation and fibrinolysis,” Kagdiologila, vol. 13(4): pp. 145-154, Apr. 1973.
Kuznik, et al., “Secretion of blood coagulation factors into saliva under conditions of hypo-and hypercoagulation,” Voprosy Meditsinskoi Khimii, vol. 19(1): pp. 54-57; 1973(the year of publication is sufficiently earlier than the effective U.S. filing date and any foreign priority date so that the particular month of publication is not in issue).
Kuznik, et al., “The dynamics of procoagulatible and fibrinolytic activities during electrical stimulation of peripheral nerves,” Sechenov Physiological Journal of the USSR, vol. 65; No. 3: pp. 414-420, Mar. 1979.
Kuznik, et al., “The role of the vascular wall in the mechanism of control of blood coagulation and fibrinolysis on stimulation of the vagus nerve,” Cor Vasa, vol. 17(2): pp. 151-158; 1975 (the year of publication is sufficiently earlier than the effective U.S. filing date and any foreign priority date so that the particular month of publication is not in issue).
Lang, et al., “Neurogienic control of cerebral blood flow,” Experimental Neurology, 43(1): pp. 143-161, Apr. 1974.
Lee, H. G., et al., Peritoneal lavage fluids stimulate NIH3T3 fibroblast proliferation and contain increased tumour necrosis factor and IL6 in experimental silica-induced rat peritonitis, Clin. Exp. Immunol., vol. 100, pp. 139-144, Apr. 1995.
LeNovere, N. et al., Molecular evolution of the nicotinic acetylcholine receptor: an example of multigene family in excitable cells, J. Mol. Evol., 40, pp. 155-172, Feb. 1995.
Leonard, S. et al., Neuronal nicotinic receptors: from structure to function, Nicotine & Tobacco Res. 3:203-223, Aug. 2001.
Lips et al.; Coexpression and spatial association of nicotinic acetylcholine receptor subunits alpha7 and alpha10 in rat sympathetic neurons; J.Mol.Neurosci.; 30; pp. 15-16; Feb. 2006.
Lipton, J. M et al.; Anti-inflammatory actions of the neuroimmunomodulator ?-MSH, Immunol. Today, vol. 18, pp. 140-145, Mar. 1997.
Loeb et al.; Cuff electrodes for chronic stimulation and recording of peripheral nerve activity; Journal of Neuroscience Methods; vol. 64; pp. 95-103; Jan. 1996.
Madretsma, G. S., et al., Nicotine inhibits the in vitro production of interleukin 2 and tumour necrosis factor-alpha by human monocuclear cells, Immunopharmacology, vol. 35, No. 1, pp. 47-51, Oct. 1996.
Manta et al.; Optimization of vagus nerve stimulation parameters using the firing activity of serotonin neurons in the rat dorsal raphe; European Neuropsychopharmacology; vol. 19; pp. 250-255; Jan. 2009 (doi: 10.1016/j.euroneuro.2008.12.001).
Martindale: The Extra Pharmacopoeia; 28th Ed. London; The Pharmaceutical Press; pp. 446-485; © 1982.
Martiney et al., Prevention and treatment of experimental autoimmune encephalomyelitis by CNI-1493, a macrophage-deactivating agent, Journal of Immunology, vol. 160, No. 11, pp. 5588-5595, Jun. 1, 1998.
Mayo Clinic; The factsheet of vagus nerve stimulation from the Mayo Clinic website: www.mayoclinic.org/tests-procedures/vagus-nerve-sti mulation/about/pac-20384565; retrieved from the internet on Sep. 28, 2021.
McGuinness, P. H., et al., Increases in intrahepatic CD68 positive cells, MAC387 positive cells, and proinflammatory cytokines (particulary interleukin 18) in chronic hepatitis C infection, Gut, vol. 46(2), pp. 260-269, Feb. 2000.
Miguel-Hidalgo, J.J.; The role of glial cells in drug abuse; Current Drug Abuse Reviews; vol. 2; No. 1; pp. 76-82; Jan. 2009.
Milligan et al.; Pathological and protective roles of glia in chronic pain; Nat Rev Neurosci.; vol. 10; No. 1; pp. 23-26; Jan. 2009.
Minnich et al.; Anti-cytokine and anti-inflammatory therapies for the treatment of severe sepsis: progress and pitfalls; Proceedings of the Nutrition Society; vol. 63(3); pp. 437-441; Aug. 2004.
Mishchenko, et al., “Coagulation of the blood and fibrinolysos in dogs during vagal stimulation,” Sechenov Physiological Journal of the USSR, vol. 61(1): pp. 101-107, 1975.
Mishchenko, “The role of specific adreno-and choline-receptors of the vascular wall in the regulation of blood coagulation in the stimulation of the vagus nerve,” Biull. Eskp. Biol. Med., vol. 78(8): pp. 19-22, 1974.
Molina et al., CNI-1493 attenuates hemodynamic and pro-inflammatory responses to LPS, Shock, vol. 10, No. 5, pp. 329-334, Nov. 1998.
Monaco et al.; Anti-TNF therapy:past,present, and future; International Immunology; 27(1); pp. 55-62; Jan. 2015.
Nadol et al., “Surgery of the Ear and Temporal Bone,” Lippinkott Williams & Wilkins, 2nd Ed., 2005, (Publication date: Sep. 21, 2004), p. 580.
Nagashima et al., Thrombin-activatable fibrinolysis inhibitor (TAFI) deficiency is compatible with murine life, J. Clin. Invest., 109, pp. 101-110, Jan. 2002.
Nathan, C. F., Secretory products of macrophages, J. Clin. Invest., vol. 79(2), pp. 319-326, Feb. 1987.
Navalkar et al.; Irbesartan, an angiotensin type 1 receptor inhibitor, regulates markers of inflammation in patients with premature atherosclerosis; Journal of the American College of Cardiology; vol. 37; No. 2; pp. 440-444; Feb. 2001.
Navzer et al.; Reversing pathological neural activity using targeted plasticity; Nature; 470(7332); pp. 101-104; Feb. 3, 2011.
Neuhaus et al.; P300 is enhanced in responders to vagus nerve stimulation for treatment of major depressive disorder; J. Affect. Disord.; 100(1-3); pp. 123-128; Jun. 2007.
Noguchi et al., Increases in Gastric acidity in response to electroacupuncture stimulation of hindlimb of anesthetized rats, Jpn. J. Physiol., 46(1), pp. 53-58, Feb. 1996.
Norton, Can ultrasound be used to stimulate nerve tissue, BioMedical Engineering OnLine, 2(1), pp. 6, Mar. 4, 2003.
Olofsson et al.; Rethinking inflammation: neural circuits in the regulation of immunity; Immunological Reviews; 248(1); pp. 188-204; Jul. 2012.
Olofsson et al.; Single-pulse and unidirectional electrical activation of the cervical vagus nerve reduces tumor necrosis factor in endotoxemia; Bioelectronic Medicine; 2(1); pp. 37-42; Jun. 2015.
Oshinsky et al.; Non-invasive vagus nerve stimulation as treatment for trigeminal allodynia; Pain; 155(5); pp. 1037-1042; May 2014.
Palmblad et al., Dynamics of early synovial cytokine expression in rodent collagen-induced arthritis: a thereapeutic study unding a macrophage-deactivation compound, American Journal of Pathology, vol. 158, No. 2, pp. 491-500, Feb. 2, 2001.
Palov et al.; The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation; Molecular Medicine; 9(5); pp. 125-134; May 2003.
Pateyuk, et al., “Treatment of Botkin's disease with heparin,” Klin. Med., vol. 51(3): pp. 113-117, Mar. 1973.
Pavlov et al.; The cholinergic anti-inflammatory pathway; Brain, Behavior, and Immunity; 19; p. 493-499; Nov. 2005.
Pavlov et al; Controlling inflammation: the cholinergic anti-inflammatory pathway; Biochem. Soc. Trans.; 34(Pt 6); pp. 1037-1040; Dec. 2006.
Payne, J. B. et al., Nicotine effects on PGE2 and IL-1 beta release by LPS-treated human monocytes, J. Perio. Res., vol. 31, No. 2, pp. 99-104, Feb. 1996.
Peuker; The nerve supply of the human auricle; Clin. Anat.; 15(1); pp. 35-37; Jan. 2002.
Pongratz et al.; The sympathetic nervous response in inflammation; Arthritis Research and Therapy; 16(504): 12 pages; retrieved from the internet (http://arthritis-research.com/content/16/6/504) ; Jan. 2014.
Prystowsky, J. B. et al., Interleukin-1 mediates guinea pig gallbladder inflammation in vivo, J. Surg. Res., vol. 71, No. 2, pp. 123-126, Aug. 1997.
Pulkki, K. J., Cytokines and cardiomyocyte death, Ann. Med., vol. 29(4), pp. 339-343, Aug. 1997.
Pullan, R. D., et al., Transdermal nicotine for active ulcerative colitis, N. Engl. J. Med., vol. 330, No. 12, pp. 811-815, Mar. 24, 1994.
Pulvirenti et al; Drug dependence as a disorder of neural plasticity:focus on dopamine and glutamate; Rev Neurosci.; vol. 12; No. 2; pp. 141-158; Apr./Jun. 2001.
Rahman et al.; Mammalian Sirt 1: Insights on its biological functions; Cell Communications and Signaling; vol. 9; No. 11; pp. 1-8; May 2011.
Rayner, S. A. et al., Local bioactive tumour necrosis factor (TNF) in corneal allotransplantation, Clin. Exp. Immunol., vol. 122, pp. 109-116, Oct. 2000.
Reale et al.; Treatment with an acetylcholinesterase inhibitor in alzheimer patients modulates the expression and production of the pro-inflammatory and anti-inflammatory cytokines; J. Neuroimmunology; 148(1-2); pp. 162-171; Mar. 2004.
Rendas-Baum et al.; Evaluating the efficacy of sequential biologic therapies for rheumatoid arthritis patients with an inadequate response to tumor necrosis factor—alpha inhibitors; Arthritis research and therapy: 13; R25; 15 pages; ; Feb. 2011.
Rinner et al.; Rat lymphocytes produce and secrete acetylcholine in dependence of differentiation and activation; J.Neuroimmunol.; 81(1-2); pp. 31-37; Jan. 1998.
Robinson et al.; Studies with the Electrocardiograma Action of the Vagus Nerve on the Human Heart; J Exp Med; 14(3):217-234; Sep. 1911.
Romanovsky, A. A., et al., The vagus nerve in the thermoregulatory response to systemic inflammation, Am. J. Physiol., vol. 273, No. 1 (part 2), pp. R407-R413, Jul. 1, 1997.
Rosas-Ballina et al.; Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit Science; 334(6052); pp. 98-101; 10 pages; (Author Manuscript); Oct. 2011.
Saghizadeh et al.; The expression of TNF? by human muscle; J. Clin. Invest.; vol. 97; No. 4; pp. 1111-1116; Feb. 15, 1996.
Saindon et al.; Effect of cervical vagotomy on sympathetic nerve responses to peripheral interleukin-1beta; Auton.Neuroscience Basic and Clinical; 87; pp. 243-248; Mar. 23, 2001.
Saito, Involvement of muscarinic M1 receptor in the central pathway of the serotonin-induced bezold-jarisch reflex in rats, J. Autonomic Nervous System, vol. 49, pp. 61-68, Sep. 1994.
Sandborn, W. J., et al., Transdermal nicotine for mildly to moderately active ulcerative colitis, Ann. Intern. Med, vol. 126, No. 5, pp. 364-371, Mar. 1, 1997.
Sato, E., et al., Acetylcholine stimulates alveolar macrophages to release inflammatory cell chemotactic activity, Am. J. Physiol., vol. 274, pp. L970-L979, Jun. 1998.
Sato, K.Z., et al., Diversity of mRNA expression for muscarinic acetylcholine receptor subtypes and neuronal nicotinic acetylcholine receptor subunits in human mononuclear leukosytes and leukemic cell lines, Neuroscience Letters, vol. 266, pp. 17-20, Apr. 30, 1999.
Scheinman, R. I., et al., Role of transcriptional activation of I?B? in mediation of immunosuppression by glucocorticoids, Science, vol. 270, No. 5234, pp. 283-286, Oct. 13, 1995.
Schneider et al., High-affinity ssDNA inhibitors of the review transcriptase of type 1 human immunodeficiency virus, Biochemistry, 34(29), pp. 9599-9610, Jul. 1995.
Shafer, Genotypic testing for human immunodeficiency virus type 1 drug resistance, Clinical Microbiology Reviews, vol. 15, pp. 247-277, Apr. 2002.
Shapiro et al.; Prospective, randomised trial of two doses of rFVIIa (NovoSeven) in haemophilia patients with inhibitors undergoing surgery; Thromb Haemost; vol. 80(5); pp. 773-778; Nov. 1998.
Sher, M. E., et al., The influence of cigarette smoking on cytokine levels in patients with inflammatory bowel disease, Inflamm. Bowel Dis., vol. 5, No. 2, pp. 73-78, May 1999.
Shi et al.; Effects of efferent vagus nerve excitation on inflammatory response in heart tissue in rats with endotoxemia; vol. 15, No. 1; pp. 26-28; Jan. 2003 (Eng. Abstract).
Snyder et al., Correction of hemophilia B in canine and murine models using recombinant adeno-associated viral vectors; Nature Medicine, 5(1), pp. 64-70, Jan. 1999.
Sokratov, et al. “The role of choline and adrenegic structures in regulation of renal excretion of hemocoagulating compounds into the urine,” Sechenov Physiological Journal of the USSR, vol. 63(12): pp. 1728-1732, 1977.
Stalcup et al., Endothelial cell functions in the hemodynamic responses to stress, Annals of the New York Academy of Sciences, vol. 401, pp. 117-131, Dec. 1982.
Steinlein, New functions for nicotine acetylcholine receptors?, Behavioural Brain Res., vol. 95(1), pp. 31-35, Sep. 1998.
Sternberg, E. M., Perspectives series: cytokines and the brain ‘neural-immune interactions in health and disease,’ J. Clin. Invest., vol. 100, No. 22, pp. 2641-2647, Dec. 1997.
Stevens et al.; The anti-inflammatory effect of some immunosuppressive agents; J. Path.; 97(2); pp. 367-373; Feb. 1969.
Strojnik et al.; Treatment of drop foot using and implantable peroneal underknee stimulator; Scand. J. Rehab. Med.; vol. 19(1); pp. 37R43; Dec. 1986.
Strowig et al.; Inflammasomes in health and disease; Nature; vol. 481; pp. 278-286; doi: 10.1038/nature10759; Jan. 19, 2012.
Sugano et al., Nicotine inhibits the production of inflammatory mediators in U937 cells through modulation of nuclear factor-kappaß activation, Biochemical and Biophysical Research Communications, vol. 252, No. 1, pp. 25-28, Nov. 9, 1998.
Suter et al.; Do glial cells control pain?; Neuron Glia Biol.; vol. 3; No. 3; pp. 255-268; Aug. 2007.
Swick et al.; Locus coeruleus neuronal activity in awake monkeys: relationship to auditory P300-like potentials and spontaneous EEG. Exp. Brain Res.; 101(1); pp. 86-92; Sep. 1994.
Sykes, et al., An investigation into the effect and mechanisms of action of nicotine in inflammatory bowel disease, Inflamm. Res., vol. 49, pp. 311-319, Jul. 2000.
Takeuchi et al., A comparison between chinese blended medicine “Shoseiryuto” tranilast and ketotifen on the anit-allergic action in the guinea pigs, Allergy, vol. 34, No. 6, pp. 387-393, Jun. 1985 (eng. abstract).
Tekdemir et al.; A clinico-anatomic study of the auricular branch of the vagus nerve and arnold's ear-cough reflex; Surg. Radiol. Anat.; 20(4); pp. 253-257; Mar. 1998.
Toyabe, et al., Identification of nicotinic acetylcholine receptors on lymphocytes in the periphery as well as thymus in mice, Immunology, vol. 92(2), pp. 201-205, Oct. 1997.
Tracey et al., Mind over immunity, Faseb Journal, vol. 15, No. 9, pp. 1575-1576, Jul. 2001.
Tracey, K. J. et al., Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia; Nature, 330: pp. 662-664, Dec. 23, 1987.
Tracey, K. J. et al., Physiology and immunology of the cholinergic antiinflammatory pathway; J Clin Invest.; vol. 117: No. 2; pp. 289-296; Feb. 2007.
Tracey, K. J. et al., Shock and tissue injury induced by recombinant human cachectin, Science, vol. 234, pp. 470-474, Oct. 24, 1986.
Tracey, K. J.; Reflex control of immunity; Nat Rev Immunol; 9(6); pp. 418-428; Jun. 2009.
Tracey, K.J., The inflammatory reflex, Nature, vol. 420, pp. 853-859, Dec. 19-26, 2002.
Tsutsui, H., et al., Pathophysiolocical roles of interleukin-18 in inflammatory liver diseases; Immunol. Rev., 174:192-209, Apr. 2000.
Tuerk et al., RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase; Proc. Natl. Acad. Sci. USA, 89, pp. 6988-6992, Aug. 1992.
Tuerk et al., Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase; Science, 249(4968), pp. 505-510, Aug. 3, 1990.
Van Der Horst et al.; Stressing the role of FoxO proteins in lifespan and disease; Nat Rev Mol Cell Biol.; vol. 8; No. 6; pp. 440-450; Jun. 2007.
Van Dijk, A. P., et al., Transdermal nictotine inhibits interleukin 2 synthesis by mononuclear cells derived from healthy volunteers, Eur. J. Clin. Invest, vol. 28, pp. 664-671, Aug. 1998.
Vanhoutte, et al., Muscarinic and beta-adrenergic prejunctional modulation of adrenergic neurotransmission in the blood vessel wall, Gen Pharmac., vol. 14(1), pp. 35-37, Jan. 1983.
VanWesterloo, et al., The cholinergic anti-inflammatory pathway regulates the host response during septic peritonitis, The Journal of Infectious Diseases, vol. 191, pp. 2138-2148, Jun. 15, 2005.
Ventureyra, Transcutaneous vagus nerve stimulation for partial onset seizure therapy, Child's Nerv Syst, vol. 16(2), pp. 101-102, Feb. 2000.
Vida et al.; Aplha 7-cholinergic receptor mediates vagal induction of splenic norepinephrine; Journal of Immunology; 186(7); pp. 4340-4346; 16 pages; (Author Manuscript); Apr. 2011.
Vijayaraghavan, S.; Glial-neuronal interactions-implications for plasticity anddrug addictionl AAPS J.; vol. 11; No. 1; pp. 123-132; Mar. 2009.
Villa et al., Protection against lethal polymicrobial sepsis by CNI-1493, an inhibitor of pro-inflammatory cytokine synthesis, Journal of Endotoxin Research, vol. 4, No. 3, pp. 197-204, Jun. 1997.
Von Känel, et al., Effects of non-specific ?-adrenergic stimulation and blockade on blood coagulation in hypertension, J. Appl. Physiol., vol. 94, pp. 1455-1459, Apr. 2003.
Von Känel, et al., Effects of sympathetic activation by adrenergic infusions on hemostasis in vivo, Eur. J. Haematol., vol. 65: pp. 357-369, Dec. 2000.
Walland et al., Compensation of muscarinic brochlal effects of talsaclidine by concomitant sympathetic activation in guinea pigs; European Journal of Pharmacology, vol. 330(2-3), pp. 213-219, Jul. 9, 1997.
Wang et al; Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation; Nature; 421; 384-388; Jan. 23, 2003.
Wang, H., et al., HMG-1 as a late mediator of endotoxin lethality in mice, Science, vol. 285, pp. 248-251, Jul. 9, 1999.
Waserman, S. et al., TNF-? dysregulation in asthma: relationship to ongoing corticosteroid therapy, Can. Respir. J., vol. 7, No. 3, pp. 229-237, May-Jun. 2000.
Watanabe, H. et al., The significance of tumor necrosis factor (TNF) levels for rejection of joint allograft, J. Reconstr. Microsurg., vol. 13, No. 3, pp. 193-197, Apr. 1997.
Wathey, J.C. et al., Numerical reconstruction of the quantal event at nicotinic synapses; Biophys. J., vol. 27: pp. 145-164, Jul. 1979.
Watkins, L.R. et al., Blockade of interleukin-1 induced hyperthermia by subdiaphragmatic vagotomy: evidence for vagal mediation of immune-brain communication, Neurosci. Lett., vol. 183(1-2), pp. 27-31, Jan. 1995.
Watkins, L.R. et al., Implications of immune-to-brain communication for sickness and pain, Proc. Natl. Acad. Sci. U.S.A., vol. 96(14), pp. 7710-7713, Jul. 6, 1999.
Webster's Dictionary, definition of “intrathecal”, online version accessed Apr. 21, 2009.
Weiner, et al., “Inflammation and therapeutic vaccination in CNS diseases,” Nature., vol. 420(6917): pp. 879-884, Dec. 19-26, 2002.
Westerheide et al.; Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1.; Science; Vo. 323; No. 5717; pp. 1063-1066; Feb. 2009.
Whaley, K. et al., C2 synthesis by human monocytes is modulated by a nicotinic cholinergic receptor, Nature, vol. 293, pp. 580-582, Oct. 15, 1981.
Woiciechowsky, C. et al., Sympathetic activation triggers systemic interleukin-10 release in immunodepression induced by brain injury, Nature Med., vol. 4, No. 7, pp. 808-813, Jul. 1998.
Yang et al.; Acetylcholine inhibits LPS-induced MMP-9 production and ccell migration via the alpha7 nAChR-JAK2/STAT3 pathway in RAW264.7 cells; Cellular Physiology and Biochemistry; 36(5); pp. 2025-2038; (the year of publication is sufficiently earlier than the effective U.S. filing date and any foreign priority date so that the particular month of publication is not in issue) 2015.
Yeh, S.S. et al., Geriatric cachexia: the role of cytokines, Am. J. Clin. Nutr., vol. 70(2), pp. 183-197, Aug. 1999.
Yu et al.; Low-level transcutaneous electrical stimulation of the auricular branch of the vagus nerve: a non-invasive approach to treat the initial phase of atrial fibrillation; Heart Rhythm; 10(3); pp. 428-435; Mar. 2013.
Zamotrinsky et al.; Vagal neurostimulation in patients with coronary artery disease; Auton. Neurosci.; 88(1-2); pp. 109-116; Apr. 2001.
Zhang et al., Tumor necrosis factor, The Cytokine Handbook, 3rd ed., Ed. Thompson, Academic Press, pp. 517-548, Jul. 1, 1998.
Zhang et al.; Chronic vagus nerve stimulation improves autonomic control and attenuates systemic inflammation and heart failure progression in a canine high-rate pacing model; Circulation Heart Fail.; 2; pp. 692-699; Nov. 2009.
Zhang et al.; Roles of SIRT1 in the acute and restorative phases following induction of inflammation.; J Biol Chem.; vol. 285; No. 53; pp. 41391-41401; Dec. 2010.
Zhao et al.; Transcutaneous auricular vagus stimulation protects endotoxemnic rat from lipopolysaccharide-induced inflammation; Evid. Based Complement Alternat. Med.; vol. 2012; Article ID 627023; 10 pages; Dec. 29, 2012.
Zitnik et al.; Treatment of chronic inflammatory diseases with implantable medical devices; Cleveland Clinic Journal of Medicine; 78(Suppl 1); pp. S30-S34; Aug. 2011.
Levine et al.; U.S. Appl. No. 18/151,407 entitled “Control of vagal stimulation,” filed Jan. 6, 2023.
Related Publications (1)
Number Date Country
20230144580 A1 May 2023 US
Provisional Applications (1)
Number Date Country
62736447 Sep 2018 US
Continuations (2)
Number Date Country
Parent 17578339 Jan 2022 US
Child 18150177 US
Parent 16582726 Sep 2019 US
Child 17578339 US