Methods and apparatuses for thermally converting biomass

Information

  • Patent Grant
  • 9670413
  • Patent Number
    9,670,413
  • Date Filed
    Thursday, June 28, 2012
    11 years ago
  • Date Issued
    Tuesday, June 6, 2017
    6 years ago
Abstract
Methods and apparatuses for thermally converting or pyrolyzing biomass are provided. In one embodiment, a method of thermally converting biomass includes introducing the biomass to a reactor feed chamber. The method provides for flowing a low oxygen gas into the reactor feed chamber to purge the reactor feed chamber and biomass of oxygen. The method also includes delivering the purged biomass to a thermal conversion reactor and thermally converting the biomass in the thermal conversion reactor.
Description
TECHNICAL FIELD

The present invention generally relates to methods and apparatuses for thermally converting, or pyrolyzing, biomass and more particularly relates to methods and apparatuses for thermally converting biomass that operate at controlled oxygen levels.


BACKGROUND

Renewable energy sources are of increasing importance. They are a means of reducing dependence on oil and they provide a substitute for other fossil fuels. Also, renewable energy resources can provide for basic chemical constituents to be used in other industries, such as chemical monomers for the making of plastics. Biomass is a renewable resource that can supply some of the need for renewables-based chemicals and fuels.


Biomass includes, but is not limited to, lignin, plant parts, fruits, vegetables, plant processing waste, wood chips, chaff, grains, grasses, corn and corn husks, weeds, aquatic plants, hay, recycled and non-recycled paper and paper products, and any cellulose-containing biological material or material of biological origin. The economics of producing oil from biomass depend on the yield of oil produced from a quantity of biomass. When heated in an environment with low or no oxygen, biomass is thermally converted, or pyrolyzed, to generate a liquid known as pyrolysis oil. A modern form of pyrolysis, or rapid thermal conversion, is conducted under moderate temperatures, typically 400° C. to 600° C., and short residence times, such as less than 5 seconds. An example is flash pyrolysis that operates under such conditions and produces a pourable liquid product or pyrolysis oil from the thermal conversion of biomass feedstock or petroleum-based feedstock. Pyrolysis oil thermally converted from biomass feedstock has a higher energy density than the biomass feedstock. Further, the pyrolysis oil thermally converted from biomass feedstock is more easily stored and transported than the biomass feedstock. For economic reasons, it is typically desirable to maximize the yield of pyrolysis oil from the thermal conversion process.


In conventional flash pyrolysis processes, biomass is thermally converted in a reactor during a short contact duration, such as less than about 2 seconds, with a high temperature heat transfer medium, such as a solid heat carrier at about 500° C. This solid heat carrier can be silica sand, low activity catalyst, or other inert material. Typical thermal conversion processes allow oxygen to enter the thermal conversion reactor through the biomass inlet along with the biomass. Further, typical thermal conversion processes utilize equipment or instruments in the reactor system that must be protected from interference by the solid heat carrier or solid product from the thermal conversion of the feedstock. Generally, the instruments are purged with air to dislodge the solid matter or to prevent its intrusion into the instruments. However, the introduction of additional oxygen through the biomass inlet and instrument purge inlets reduces the pyrolysis oil yield proportionally to the amount of oxygen added. As a result, a typical thermal conversion unit exhibits up to about a 2% liquid yield loss due to the ingress of additional oxygen into the thermal conversion reactor.


Accordingly, it is desirable to provide methods and apparatuses for thermally converting biomass with improved pyrolysis oil yield. Further, it is desirable to provide methods and apparatuses for thermally converting biomass which inhibit ingress of oxygen. Also, it is desirable to provide methods and apparatuses for thermally converting biomass which control the oxygen level within a thermal conversion reactor. Furthermore, other desirable features and characteristics will become apparent from the subsequent detailed description and the appended claims, taken in conjunction with the accompanying drawings and the foregoing technical field and background.


BRIEF SUMMARY

Methods and apparatuses for thermally converting biomass are provided. In accordance with an exemplary embodiment, a method of thermally converting biomass includes introducing the biomass to a reactor feed chamber. The method provides for flowing a low oxygen gas into the reactor feed chamber to purge the reactor feed chamber and biomass of oxygen. The method also includes delivering the purged biomass to a reactor and thermally converting the biomass in the reactor.


In accordance with another exemplary embodiment, a method for thermally converting biomass includes delivering the biomass to a thermal conversion reactor and introducing a carrier gas having a selected oxygen content to the thermal conversion reactor. The carrier gas carries the biomass through the thermal conversion reactor. The method includes thermally converting the biomass in the thermal conversion reactor and inhibiting the introduction of additional oxygen to the thermal conversion reactor.


In accordance with another exemplary embodiment, an apparatus for thermally converting biomass includes a reactor feed chamber for holding the biomass. The apparatus further includes a thermal conversion reactor configured to thermally convert the biomass and in communication with the reactor feed chamber for receiving the biomass. An instrument is provided in communication with the thermal conversion reactor and is adapted to monitor conditions in the thermal conversion reactor. Further, the apparatus includes a purge line in communication with the reactor feed chamber and the instrument and adapted to flow low oxygen gas into the reactor feed chamber and into the instrument to inhibit the introduction of oxygen into the thermal conversion reactor.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the methods and apparatuses for thermally converting, or pyrolyzing, biomass will hereinafter be described in conjunction with the following drawing figures, wherein like numerals denote like elements, and wherein:



FIG. 1 is a schematic illustrating an apparatus for thermally converting biomass in accordance with various embodiments herein;



FIG. 2 is a flow chart illustrating an exemplary method for thermally converting biomass which includes purging the biomass feed with an oxygen-free or low oxygen gas in accordance with an embodiment herein;



FIG. 3 is a flow chart illustrating an exemplary method for thermally converting biomass which includes purging process monitoring instruments with an oxygen-free or low oxygen gas in accordance with an embodiment herein;



FIG. 4 is a flow chart illustrating an exemplary method for thermally converting biomass which includes purging the heat transfer medium with an oxygen-free or low oxygen gas in accordance with an embodiment herein;



FIG. 5 is a flow chart illustrating an exemplary method for thermally converting biomass which includes forming an oxygen-free or low oxygen gas purge gas from a recycled flue gas in accordance with an embodiment herein; and



FIG. 6 is a flow chart illustrating an exemplary method for thermally converting biomass which includes generating an oxygen-free or low oxygen purge gas in accordance with an embodiment herein.





DETAILED DESCRIPTION

The following detailed description is merely exemplary in nature and is not intended to limit the methods and apparatuses for thermally converting biomass. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background or brief summary, or in the following detailed description.


It is contemplated herein that the thermal conversion of biomass can be improved under conditions in which oxygen levels are controlled at selected levels. Specifically, the methods and apparatuses for thermally converting biomass described herein can be used to limit the volume of oxygen introduced to a thermal conversion reactor. Conventional thermal conversion processes utilize a carrier gas having a desired oxygen level, such as no more than about 5 vol %, which enters the thermal conversion reactor and carries the biomass through the thermal conversion reactor during the thermal conversion reaction. However, in the conventional thermal conversion processes, additional oxygen enters the thermal conversion reactor, such as through the biomass inlet, through instrument purge inlets, and/or through the heat transfer medium inlet. The methods and apparatuses for thermally converted biomass described herein eliminate or inhibit the introduction of oxygen through the biomass inlet, instrument purge inlets, and/or heat transfer medium inlet through the use of oxygen-free or low oxygen purge gases. As used herein, “oxygen-free” refers to gases containing substantially 0 vol % oxygen, and “low oxygen” refers to gases having an oxygen content lower than that of air, i.e., less than about 20 vol % oxygen.


In accordance with the various embodiments herein, FIG. 1 illustrates an apparatus 10 for thermally converting biomass 12 to produce pyrolysis oil 14. As in a conventional system, the apparatus 10 includes a hopper or feed bin 18 for receiving the biomass 12. The hopper 18 is in communication with a reactor feed chamber 22 formed by, for example, an auger, a screw feed device, a conveyor, or other batch feed device. The reactor feed chamber 22 is further selectively connected to a thermal conversion or pyrolysis reactor 24 configured to thermally convert or pyrolyze the biomass 12. The thermal conversion reactor 24 includes a biomass inlet 26 for receiving the biomass 12 from the reactor feed chamber 22. Further, the thermal conversion reactor 24 includes a carrier gas inlet 28 for receiving a carrier gas 30. The thermal conversion reactor 24 may also include a solid heat transfer medium inlet 31 to receive hot heat transfer medium 32, such as sand, catalyst, or other inert particulate, via line 34. Alternatively, the heat transfer medium 32 may be mixed with and carried by the carrier gas 30 through the carrier gas inlet 28. As shown, the thermal conversion reactor 24 is outfitted with at least one instrument 36, such as temperature or pressure instruments for monitoring conditions within the thermal conversion reactor 24.


As the biomass 12 is heated by the heat transfer medium 32 to the thermal conversion or pyrolysis temperature, typically about 540° C., the thermal conversion or pyrolysis reaction occurs and pyrolysis vapor and char are formed in the thermal conversion reactor 24. The pyrolysis vapor and char, along with the heat transfer medium, are carried out of an outlet 38 in the thermal conversion reactor 24 and through a line 42 to a separator 46, such as, for example, a cyclone. The separator 46 separates the pyrolysis vapor 50 from the char and heat transfer medium 52. As shown, the pyrolysis vapor 50 is directed to a condenser 54 which condenses the pyrolysis vapor 50 to form the pyrolysis oil 14. Uncondensed gas 56 exits the condenser 54 and may be recycled as the carrier gas 30. Typically, the carrier gas 30 includes a low level of oxygen such as no more than about 5 percent by volume (vol %).


The char and heat transfer medium 52 are fed to a combustion unit 58, typically referred to as a reheater, for the purpose of reheating the heat transfer medium. As shown, a blower 60 feeds air 62 or another oxygen-containing gas into the combustion unit 58. Upon contact with the oxygen, the char combusts, heating the heat transfer medium and forming flue gas and ash. The hot heat transfer medium 32 exits the combustion unit 58 and is returned to the thermal conversion reactor 24 via line 34. The flue gas and ash exit the combustion unit 58 through line 64 and are directed to a separator 66, such as a cyclone. The separator 66 then removes the ash 68 which can be disposed of.


In an exemplary embodiment, the separated flue gas 69 exits the separator 66 and a portion 70 can be recycled for use as a low oxygen purge gas for inhibiting the entry of oxygen into the thermal conversion reactor 24. Typically, the recycled flue gas 70 will comprise carbon oxides, specifically carbon dioxide and carbon monoxide, nitrogen, water vapor, and a low level of oxygen, such as less than about 10 vol %, for example about 5 vol %.


Optionally, the recycled flue gas 70 may be fed to a cooler/separator 72 which condenses and removes the water vapor in stream 73. Further, to reduce the amount of oxygen in the recycled flue gas 70, it may be passed through an optional reduction unit 74 such as, for example, a membrane, a pressure swing adsorber or other adsorber, or a combustor. The unit 74 may be operated to remove substantially all oxygen from the recycled flue gas 70, or to reduce the oxygen level to a selected acceptable amount, such as no more than about 5 vol %. As shown, the recycled flue gas 70 is fed to a compressor 76 where it is compressed to an appropriate pressure for use in purging, such as about 20 psig to about 120 psig, for example to about 50 psig. The compressed recycled flue gas 70 is then delivered to a purge gas header 78 for use as the purge gas.


While the purge gas header 78 may be supplied with recycled flue gas 70 as described above, other exemplary embodiments may alternatively or additionally provide the purge gas header 78 with gas 80 supplied by an inert gas source 82. For example, the inert gas source 82 can be a generator, including a separator such as a pressure swing adsorber, a unit for removing reactive gases, or any other apparatus that generates a concentrated inert gas or combination of inert gases, such as nitrogen, argon, helium or others. The inert gas 80 may be delivered to the purge gas header 78 at a selected pressure, such as, for example, 100 psig.


As shown, the purge gas header 78 is connected to the reactor feed chamber 22 by a purge line 84. Therefore, when biomass 12 is received within the reactor feed chamber 22, the oxygen-free or low oxygen purge gas 86 in the purge gas header 78 may be flowed through the purge line 84 into the reactor feed chamber 22 and across the biomass 12 to purge any oxygen therefrom. Further, the instruments 36 within the thermal conversion reactor 24 can become jammed or otherwise impacted with particulate, such as heat transfer medium 32 or char. Apparatus 10 provides the thermal conversion reactor 24 with an instrument inlet 88 for each instrument 36. Each instrument inlet 88 is in communication with the purge gas header 78 via purge line 90. Therefore, the purge gas 86 can be flowed through the purge line 90 and instrument inlets 88 and into or over the instruments 36 to dislodge any heat transfer medium or char or prevent lodging of any heat transfer medium or char, and to maintain proper instrument operation. Also, apparatus 10 further provides a purge line 92 for connecting the purge gas header 78 to the line 34 carrying the reheated heat transfer medium 32 to the thermal conversion reactor 24. With this connection, the purge gas 86 can be flowed through purge line 92 and over the hot heat transfer medium 32 in line 34 to purge any oxygen from the medium's interstitial volume. Purge line 92 is of particular utility when the combustion unit 58 is run with excess air to provide temperature control. As a result of operating the combustion unit 58 with excess air, the oxygen content of recycled flue gas 70 may be as high as about 10 vol % and the heat transfer medium 32 may carry with it a non-insubstantial amount of oxygen. In such circumstances, performance of the thermal conversion reactor 24 is enhanced by purging the heat transfer medium 32.


In summary, the apparatus 10 provides for improved pyrolysis oil yield from biomass by purging the biomass 12, instruments 36, and heat transfer medium 32 with the oxygen-free or low oxygen purge gas 86 before introduction into the thermal conversion reactor 24. As a result, a controlled amount of oxygen enters the thermal conversion reactor 24 through biomass inlet 26, instrument inlet 88 and heat transfer medium inlet 31.


An exemplary method 200 for thermally converting biomass is illustrated in FIG. 2. As shown, method 200 introduces biomass to a feed chamber at step 202. Then, at step 204, the biomass is purged with low oxygen gas (including, in certain embodiments, oxygen-free gas). This purging step removes air from void space in and around the biomass. After the biomass is purged of air, it is delivered to the thermal conversion reactor at step 206. At step 208, the biomass is thermally converted into pyrolysis oil. As the thermal conversion reaction occurs, additional biomass is introduced to the feed chamber, and the process continues.


As discussed above, a carrier gas including a selected amount of oxygen also enters the thermal conversion reactor to carry the biomass through the thermal conversion reactor. As a result of the method 200 for thermally converting biomass, the introduction into the thermal conversion reactor of additional oxygen, i.e., oxygen not present in the carrier gas, is inhibited. Specifically, while a selected amount of oxygen may enter the thermal conversion reactor in the carrier gas through the carrier gas inlet, little or substantially no oxygen enters the thermal conversion reactor through the biomass inlet. In other words, the method 200 for thermally converting biomass purges the biomass of oxygen in the reactor feed chamber such that substantially no, or a limited amount of, oxygen enters the thermal conversion reactor through the biomass inlet.



FIG. 3 illustrates an exemplary method 300 for thermally converting biomass. The method 300 may be performed in addition to method 200 or alternatively to method 200, depending on the specific thermal conversion apparatus design and operation. As shown, method 300 thermally converts biomass in the thermal conversion reactor at step 302. At step 304, conditions within the thermal conversion reactor are monitored with instruments, such as pressure or temperature instruments. Because the instruments may be clogged or otherwise impaired by particulates inside the thermal conversion reactor, the method 300 provides for purging the instruments with low oxygen gas (including oxygen-free gas in certain embodiments) at step 306. By purging the instruments with low oxygen gas, particulates are dislodged from, or prevented from lodging in, the instruments. The thermal conversion, monitoring, and purging steps of the method 300 are continuous and concurrently performed during operation of the apparatus.


As a result of the method 300 for thermally converting biomass, the introduction into the thermal conversion reactor of additional oxygen, i.e., oxygen not present in the carrier gas, is inhibited. Specifically, while a selected amount of oxygen may enter the thermal conversion reactor through the carrier gas inlet, little or substantially no oxygen enters the thermal conversion reactor through the instrument inlets. In other words, the method 300 for thermally converting biomass purges the instrument with low oxygen gas such that substantially no, or a limited amount of, oxygen enters the thermal conversion reactor through the instrument inlets.



FIG. 4 illustrates an exemplary method 400 for thermally converting biomass. The method 400 may be performed in addition to methods 200 and/or 300 or alternatively to methods 200 and/or 300, depending on the specific thermal conversion apparatus design and operation. As shown, method 400 thermally converts biomass in the thermal conversion reactor at step 402. At step 404, char and the heat transfer medium are removed from the thermal conversion reactor. The char and heat transfer medium are fed to a combustion unit where the char is combusted to reheat the heat transfer medium at step 406. The reheated heat transfer medium then exits the combustion unit and is purged with low oxygen purge gas (including oxygen-free purge gas in certain embodiments) at step 408. Step 410 delivers the purged transfer medium to the thermal conversion reactor. As shown, the steps of method 400 are performed continuously and concurrently during a thermal conversion process.


As a result of the method 400 for thermally converting biomass, the introduction into the thermal conversion reactor of additional oxygen, i.e., oxygen not present in the carrier gas, is inhibited. Specifically, while a selected amount of oxygen may enter the thermal conversion reactor through the carrier inlet, little or substantially no oxygen enters the thermal conversion reactor through the heat transfer medium inlet. In other words, the method 400 for thermally converting biomass purges the heat transfer medium with low oxygen gas such that substantially no, or a limited amount of, oxygen enters the thermal conversion reactor through the heat transfer medium inlet.



FIG. 5 illustrates an exemplary method 500 for thermally converting biomass. The method 500 supplies the purge gas for the purging steps of methods 200, 300 and 400. In step 502, biomass is thermally converted in a thermal conversion reactor. Thermal conversion of biomass produces char. The char is removed from the thermal conversion reactor along with the heat transfer medium. Then the char is combusted at step 504 to reheat the heat transfer medium. Combustion of the char produces a flue gas and ash. In step 506, the flue gas is separated from the ash, such as with a cyclone. Optionally, the flue gas is delivered to a condenser where water vapor in the flue gas is condensed and separated from the remaining flue gas at step 508. In optional step 510, the oxygen level in the flue gas is reduced, such as by a membrane, a pressure swing adsorber or other adsorber, or a combustor. The flue gas is compressed at step 512 to a suitable pressure for purging processes, for example, to about 50 psig. Then, the compressed flue gas is delivered to a purge gas header at step 514. Step 516 performs a purge with the compressed flue gas, such as of the biomass, monitoring instruments, or the reheated heat transfer medium as discussed in relation to methods 200, 300 and 400.



FIG. 6 illustrates an exemplary method 600 for thermally converting biomass. The method 600 may be performed in addition to, or alternatively to, the method 500 and supplies the purge gas for the purging steps of methods 200, 300 and 400. In step 602, biomass is thermally converted in a thermal conversion reactor. In step 604, low oxygen gas (including oxygen-free gas) is generated, such as by separation of an external source of inert gas or by any process concentrating an inert gas (including an inert gas formed by multiple inert components). Nitrogen, helium, argon, other low oxygen gases, or a combination thereof may be generated according to known processes. For example, the inert gas may be generated by separating nitrogen from air, or by combusting oxygen out of air. In an exemplary embodiment, the generated gas has a pressure of about 100 psig. The generated gas is delivered to the purge gas header at step 606. Step 608 performs a purge with the generated gas, such as of the biomass, monitoring instruments, or the reheated heat transfer medium as discussed in relation to methods 200, 300 and 400. The method 600 may be repeated continuously during a typical thermal conversion process.


In an exemplary operation of the apparatus 10 of FIG. 1, any or all of methods 200, 300 and 400, and at least one of methods 500 and 600, is performed. For example, the operation begins with biomass 12 being introduced into the reactor feed chamber 22. Then, the purge gas 86 (sourced from recycled flue gas 70 or generated gas 80) is flowed into the reactor feed chamber 22 and purges oxygen from the reactor feed chamber 22 and from the biomass 12. Thereafter, the purged biomass 12 is delivered into the thermal conversion reactor 24 with little or substantially no oxygen. The carrier gas 30 having a selected oxygen content is introduced to the thermal conversion reactor 24 through the carrier gas inlet 28. In order to provide the necessary heat for thermal conversion, the heat transfer medium 32 is fed to the thermal conversion reactor 24 through the heat transfer medium inlet 31. First, however, the heat transfer medium 32 is purged of oxygen by flowing the purge gas 86 over or across the heat transfer medium 32 in line 34. The carrier gas 30 carries the purged biomass 12 and purged heat transfer medium 32 through the thermal conversion reactor 24, and the biomass 12 is thermally converted or pyrolyzed, producing pyrolysis vapor and char. Conditions within the thermal conversion reactor 24 are monitored by at least one instrument 36. In order to enable proper operation of the instrument 36, the purge gas 86 is flowed into or over the instrument 36 to dislodge, or to prevent the lodging of, any particulates, such as heat transfer medium or char.


During the exemplary operation of the apparatus 10 of FIG. 1 to thermally convert biomass, the introduction into the thermal conversion reactor 24 of additional oxygen, i.e., oxygen not present in the carrier gas 30, is inhibited. Specifically, while a selected amount of oxygen may enter the thermal conversion reactor 24 through the carrier gas inlet 28, little or substantially no oxygen enters the thermal conversion reactor 24 through other inlets, e.g., inlets 26, 31, 88. For example, the biomass 12 is purged of oxygen by the purge gas 86 in the reactor feed chamber 22 such that substantially no, or a limited amount of, oxygen enters the thermal conversion reactor 24 through the biomass inlet 26. Instruments 36 in the thermal conversion reactor 24 are purged with the purge gas 86 such that substantially no, or a limited amount of, oxygen enters the thermal conversion reactor 24 through the instrument inlets 88. Also, the heat transfer medium 32 is purged of oxygen by the purge gas 86 before introduction into the thermal conversion reactor 24 such that substantially no, or a limited amount of, oxygen enters the thermal conversion reactor 24 through the heat transfer medium inlet 31.


To briefly summarize, the methods and apparatuses described herein can be used to thermally convert biomass under conditions with a controlled level of oxygen. As a result, the methods and apparatuses herein can be used to efficiently convert biomass into pyrolysis oil with minimized loss in the yield of pyrolysis oil.


While at least one exemplary embodiment has been presented in the foregoing detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or embodiments described herein are not intended to limit the scope, applicability, or configuration of the claimed subject matter in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing the described embodiment or embodiments. It should be understood that various changes can be made in the processes without departing from the scope defined by the claims, which includes known equivalents and foreseeable equivalents at the time of filing this patent application

Claims
  • 1. A method, comprising: i) introducing char and a heat transfer medium into a reheater;ii) combusting at least a portion of the char with an excess amount of an oxygen-containing gas to form an oxygen-containing flue gas and a heated heat transfer medium;iii) adjusting said excess amount of the oxygen containing gas to control the reheater temperature;iv) forming a low-oxygen carrier gas, comprising: passing at least a portion of the oxygen-containing flue gas through an external reduction unit; andv) contacting a biomass with the heated heat transfer medium and a portion of the low-oxygen carrier gas in a fast pyrolysis reactor to form the char,
  • 2. The method of claim 1, further comprising: dewatering the at least a portion of the oxygen-containing flue gas.
  • 3. The method of claim 1, further comprising: compressing the low-oxygen carrier gas.
  • 4. The method of claim 1, wherein the oxygen-containing gas is air.
  • 5. The method of claim 1, wherein the heat transfer medium is sand.
  • 6. The method of claim 1, wherein the reduction unit comprises a combustor.
  • 7. The method of claim 1, wherein the reduction unit comprises a membrane.
  • 8. The method of claim 1, wherein the reduction unit comprises an absorber.
  • 9. The method of claim 1, wherein the oxygen-containing flue gas has an oxygen content of no more than 10 vol %.
  • 10. The method of claim 1, wherein the low-oxygen carrier gas has an oxygen content of no more than 5 vol %.
  • 11. The method of claim 1, wherein a further portion of the low-oxygen carrier gas is used to purge one or more instrument purge inlet components of the biomass flash pyrolysis reactor.
  • 12. The method of claim 1, wherein a further portion of the low-oxygen carrier gas is used to purge the biomass prior to thermal conversion.
  • 13. The method of claim 1, wherein a further portion of the low-oxygen carrier gas is used to purge the heated heat transfer medium prior to introduction of the heated heat transfer medium to the thermal conversion unit.
  • 14. The method of claim 1, further comprising: vi) dewatering the at least a portion of the oxygen-containing flue gas; andvii) compressing the low-oxygen carrier gas to a pressure of between 20 psig and 120 psig,
  • 15. The method of claim 14, wherein the heat transfer medium is sand.
  • 16. The method of claim 1, further comprising: i) dewatering the at least a portion of the oxygen-containing flue gas; andii) compressing the low-oxygen carrier gas to a pressure of between 20 psig and 120 psig,
  • 17. The method of claim 16, wherein the reduction unit is a combustor.
  • 18. The method of claim 16, wherein the reduction unit is a pressure-swing absorber.
US Referenced Citations (403)
Number Name Date Kind
1252072 Abbot Jan 1918 A
2205757 Wheat Jun 1940 A
2318555 Ruthruff May 1943 A
2326525 Diwoky Aug 1943 A
2328202 Doerner Aug 1943 A
2380098 Doerner Jul 1945 A
2492948 Berger Jan 1950 A
2566353 Mills Sep 1951 A
2696979 Berge Dec 1954 A
2884303 William Apr 1959 A
3130007 Breck Apr 1964 A
3309356 Esterer Mar 1967 A
3313726 Campbell et al. Apr 1967 A
3445549 Hakulin May 1969 A
3467502 Davis Sep 1969 A
3694346 Blaser et al. Sep 1972 A
3696022 Hutchings Oct 1972 A
3760870 Guetlhuber Sep 1973 A
3776533 Vlnaty Dec 1973 A
3814176 Seth Jun 1974 A
3853498 Bailie Dec 1974 A
3876533 Myers Apr 1975 A
3890111 Knudsen Jun 1975 A
3907661 Gwyn et al. Sep 1975 A
3925024 Hollingsworth et al. Dec 1975 A
3927996 Knudsen et al. Dec 1975 A
3959420 Geddes et al. May 1976 A
4003829 Burger et al. Jan 1977 A
4032305 Squires Jun 1977 A
4039290 Inada et al. Aug 1977 A
4052265 Kemp Oct 1977 A
4064018 Choi Dec 1977 A
4064043 Kollman Dec 1977 A
4085030 Green et al. Apr 1978 A
4101414 Kim et al. Jul 1978 A
4102773 Green et al. Jul 1978 A
4103902 Steiner et al. Aug 1978 A
4138020 Steiner et al. Feb 1979 A
4145274 Green et al. Mar 1979 A
4153514 Garrett et al. May 1979 A
4157245 Mitchell et al. Jun 1979 A
4165717 Reh et al. Aug 1979 A
4204915 Kurata et al. May 1980 A
4210492 Roberts Jul 1980 A
4219537 Steiner Aug 1980 A
4225415 Mirza et al. Sep 1980 A
4233119 Meyers et al. Nov 1980 A
4245693 Cheng Jan 1981 A
4272402 Mayes Jun 1981 A
4284616 Solbakken et al. Aug 1981 A
4298453 Schoennagel et al. Nov 1981 A
4300009 Haag et al. Nov 1981 A
4301771 Jukkola et al. Nov 1981 A
4306619 Trojani Dec 1981 A
4308411 Frankiewicz Dec 1981 A
4311670 Nieminen et al. Jan 1982 A
4317703 Bowen et al. Mar 1982 A
4321096 Dobbin Mar 1982 A
4324637 Durai-Swamy Apr 1982 A
4324641 Durai-Swamy Apr 1982 A
4324642 Durai-Swamy Apr 1982 A
4324644 Durai-Swamy Apr 1982 A
4325327 Kantesaria et al. Apr 1982 A
4334893 Lang Jun 1982 A
4336128 Tamm Jun 1982 A
4341598 Green Jul 1982 A
4344770 Capener et al. Aug 1982 A
4364796 Ishii et al. Dec 1982 A
4373994 Lee Feb 1983 A
4415434 Hargreaves et al. Nov 1983 A
4422927 Kowalczyk Dec 1983 A
4434726 Jones Mar 1984 A
4443229 Sageman et al. Apr 1984 A
4456504 Spars et al. Jun 1984 A
4482451 Kemp Nov 1984 A
4495056 Venardos et al. Jan 1985 A
4504379 Stuntz et al. Mar 1985 A
4537571 Buxel et al. Aug 1985 A
4548615 Longchamp et al. Oct 1985 A
4552203 Chrysostome et al. Nov 1985 A
4574743 Claus Mar 1986 A
4584064 Ciais et al. Apr 1986 A
4584947 Chittick Apr 1986 A
4595567 Hedrick Jun 1986 A
4615870 Armstrong et al. Oct 1986 A
4617693 Meyers et al. Oct 1986 A
4645568 Kurps et al. Feb 1987 A
4668243 Schulz May 1987 A
4678860 Kuester Jul 1987 A
4684375 Morin et al. Aug 1987 A
4710357 Cetinkaya et al. Dec 1987 A
4714109 Tsao Dec 1987 A
4732091 Gould Mar 1988 A
4795841 Elliott et al. Jan 1989 A
4796546 Herstad et al. Jan 1989 A
4823712 Wormer Apr 1989 A
4828581 Feldmann et al. May 1989 A
4849091 Cabrera et al. Jul 1989 A
4880473 Scott et al. Nov 1989 A
4881592 Cetinkaya Nov 1989 A
4891459 Knight et al. Jan 1990 A
4897178 Best et al. Jan 1990 A
4931171 Piotter Jun 1990 A
4940007 Hiltunen et al. Jul 1990 A
4942269 Chum et al. Jul 1990 A
4968325 Black et al. Nov 1990 A
4983278 Cha et al. Jan 1991 A
4987178 Shibata et al. Jan 1991 A
4988430 Sechrist et al. Jan 1991 A
4992605 Craig et al. Feb 1991 A
5009770 Miller et al. Apr 1991 A
5011592 Owen et al. Apr 1991 A
5018458 Mcintyre et al. May 1991 A
5041209 Cha et al. Aug 1991 A
5059404 Mansour et al. Oct 1991 A
5077252 Owen et al. Dec 1991 A
5093085 Engstrom et al. Mar 1992 A
5136117 Paisley et al. Aug 1992 A
5212129 Lomas May 1993 A
5225044 Breu Jul 1993 A
5236688 Watanabe et al. Aug 1993 A
5239946 Garcia-Mallol Aug 1993 A
5243922 Rehmat et al. Sep 1993 A
5281727 Carver et al. Jan 1994 A
5306481 Mansour et al. Apr 1994 A
5326919 Paisley et al. Jul 1994 A
5343939 Cetinkaya Sep 1994 A
5371212 Moens Dec 1994 A
5376340 Bayer et al. Dec 1994 A
5380916 Rao Jan 1995 A
5395455 Scott et al. Mar 1995 A
5402548 Adair et al. Apr 1995 A
5407674 Gabetta et al. Apr 1995 A
5423891 Taylor Jun 1995 A
5426807 Grimsley et al. Jun 1995 A
5478736 Nair Dec 1995 A
5494653 Paisley Feb 1996 A
5520722 Hershkowitz et al. May 1996 A
5536488 Mansour et al. Jul 1996 A
5578092 Collin Nov 1996 A
5584985 Lomas Dec 1996 A
5605551 Scott et al. Feb 1997 A
5637192 Mansour et al. Jun 1997 A
5654448 Pandey et al. Aug 1997 A
5662050 Angelo, II et al. Sep 1997 A
5686049 Bonifay et al. Nov 1997 A
5703299 Carleton et al. Dec 1997 A
5713977 Kobayashi Feb 1998 A
5725738 Brioni et al. Mar 1998 A
5728271 Piskorz et al. Mar 1998 A
5744333 Cociancich et al. Apr 1998 A
5788784 Koppenhoefer et al. Aug 1998 A
5792340 Freel et al. Aug 1998 A
5853548 Piskorz et al. Dec 1998 A
5879079 Hohmann et al. Mar 1999 A
5879642 Trimble et al. Mar 1999 A
5879650 Kaul et al. Mar 1999 A
5904838 Kalnes et al. May 1999 A
5915311 Muller et al. Jun 1999 A
5961786 Freel et al. Oct 1999 A
5969165 Liu Oct 1999 A
6002025 Page et al. Dec 1999 A
6011187 Horizoe et al. Jan 2000 A
6033555 Chen et al. Mar 2000 A
6106702 Sohn et al. Aug 2000 A
6113862 Jorgensen et al. Sep 2000 A
6133499 Horizoe et al. Oct 2000 A
6149765 Mansour et al. Nov 2000 A
6190542 Comolli et al. Feb 2001 B1
6193837 Agblevor et al. Feb 2001 B1
6237541 Alliston et al. May 2001 B1
6339182 Munson et al. Jan 2002 B1
6398921 Moraski Jun 2002 B1
6452024 Bui-Khac et al. Sep 2002 B1
6455015 Kilroy Sep 2002 B1
6485841 Freel et al. Nov 2002 B1
6497199 Yamada et al. Dec 2002 B2
6547957 Sudhakar et al. Apr 2003 B1
6555649 Giroux et al. Apr 2003 B2
6656342 Smith et al. Dec 2003 B2
6660157 Que et al. Dec 2003 B2
6676828 Galiasso et al. Jan 2004 B1
6680137 Paisley et al. Jan 2004 B2
6743746 Prilutsky et al. Jun 2004 B1
6759562 Gartside et al. Jul 2004 B2
6768036 Lattner et al. Jul 2004 B2
6776607 Nahas et al. Aug 2004 B2
6808390 Fung Oct 2004 B1
6814940 Hiltunen et al. Nov 2004 B1
6844420 Freel et al. Jan 2005 B1
6875341 Bunger et al. Apr 2005 B1
6960325 Kao et al. Nov 2005 B2
6962676 Hyppaenen Nov 2005 B1
6988453 Cole et al. Jan 2006 B2
7004999 Johnson et al. Feb 2006 B2
7022741 Jiang et al. Apr 2006 B2
7026262 Palmas et al. Apr 2006 B1
7202389 Brem Apr 2007 B1
7214252 Krumm et al. May 2007 B1
7226954 Tavasoli et al. Jun 2007 B2
7240639 Hyppaenen et al. Jul 2007 B2
7247233 Hedrick et al. Jul 2007 B1
7262331 van de Beld et al. Aug 2007 B2
7263934 Copeland et al. Sep 2007 B2
7285186 Tokarz Oct 2007 B2
7319168 Sanada Jan 2008 B2
7473349 Keckler et al. Jan 2009 B2
7476774 Umansky et al. Jan 2009 B2
7479217 Pinault et al. Jan 2009 B2
7491317 Meier et al. Feb 2009 B2
7563345 Tokarz Jul 2009 B2
7572362 Freel et al. Aug 2009 B2
7572365 Freel et al. Aug 2009 B2
7578927 Marker et al. Aug 2009 B2
7625432 Gouman et al. Dec 2009 B2
7811340 Bayle et al. Oct 2010 B2
7897124 Gunnerman et al. Mar 2011 B2
7905990 Freel Mar 2011 B2
7943014 Berruti et al. May 2011 B2
7956224 Elliott et al. Jun 2011 B2
7960598 Spilker et al. Jun 2011 B2
7982075 Marker et al. Jul 2011 B2
7998315 Bridgwater et al. Aug 2011 B2
7998455 Abbas et al. Aug 2011 B2
7999142 Kalnes et al. Aug 2011 B2
7999143 Marker et al. Aug 2011 B2
8043391 Dinjus et al. Oct 2011 B2
8057641 Bartek et al. Nov 2011 B2
8097090 Freel et al. Jan 2012 B2
8097216 Beech et al. Jan 2012 B2
8147766 Spilker et al. Apr 2012 B2
8153850 Hall et al. Apr 2012 B2
8202332 Agblevor Jun 2012 B2
8207385 O'Connor et al. Jun 2012 B2
8217211 Agrawal et al. Jul 2012 B2
8277643 Huber et al. Oct 2012 B2
8288600 Bartek et al. Oct 2012 B2
8304592 Luebke Nov 2012 B2
8314275 Brandvold Nov 2012 B2
8329967 Brandvold et al. Dec 2012 B2
8404910 Kocal et al. Mar 2013 B2
8499702 Palmas et al. Aug 2013 B2
8519203 Marinangeli et al. Aug 2013 B2
8519205 Frey et al. Aug 2013 B2
8524087 Frey et al. Sep 2013 B2
8575408 Marker et al. Nov 2013 B2
8715490 Brandvold et al. May 2014 B2
8726443 Freel et al. May 2014 B2
9044727 Kulprathipanja et al. Jun 2015 B2
20020014033 Langer et al. Feb 2002 A1
20020100711 Freel et al. Aug 2002 A1
20020146358 Smith et al. Oct 2002 A1
20030047437 Stankevitch Mar 2003 A1
20030049854 Rhodes Mar 2003 A1
20030202912 Myohanen et al. Oct 2003 A1
20040069682 Freel et al. Apr 2004 A1
20040108251 Gust et al. Jun 2004 A1
20040182003 Bayle et al. Sep 2004 A1
20040200204 Dries et al. Oct 2004 A1
20050167337 Bunger et al. Aug 2005 A1
20050209328 Allgcod et al. Sep 2005 A1
20060010714 Carin et al. Jan 2006 A1
20060016723 Tang et al. Jan 2006 A1
20060070362 Dewitz et al. Apr 2006 A1
20060074254 Zhang et al. Apr 2006 A1
20060101665 Carin et al. May 2006 A1
20060163053 Ershag Jul 2006 A1
20060180060 Crafton et al. Aug 2006 A1
20060185245 Serio et al. Aug 2006 A1
20060201024 Carin et al. Sep 2006 A1
20060254081 Carin et al. Nov 2006 A1
20060264684 Petri et al. Nov 2006 A1
20070000809 Lin et al. Jan 2007 A1
20070010588 Pearson Jan 2007 A1
20070141222 Binder et al. Jun 2007 A1
20070205139 Kulprathipanja et al. Sep 2007 A1
20070272538 Satchell Nov 2007 A1
20080006519 Badger Jan 2008 A1
20080006520 Badger Jan 2008 A1
20080029437 Umansky et al. Feb 2008 A1
20080035526 Hedrick et al. Feb 2008 A1
20080035528 Marker Feb 2008 A1
20080050792 Zmierczak et al. Feb 2008 A1
20080051619 Kulprathipanja et al. Feb 2008 A1
20080081006 Myers et al. Apr 2008 A1
20080086937 Hazlebeck et al. Apr 2008 A1
20080161615 Chapus et al. Jul 2008 A1
20080171649 Jan et al. Jul 2008 A1
20080185112 Argyropoulos Aug 2008 A1
20080189979 Carin et al. Aug 2008 A1
20080193345 Lott et al. Aug 2008 A1
20080194896 Brown et al. Aug 2008 A1
20080199821 Nyberg et al. Aug 2008 A1
20080230440 Graham et al. Sep 2008 A1
20080236043 Dinjus et al. Oct 2008 A1
20080264771 Dam-Johansen et al. Oct 2008 A1
20080274017 Boykin et al. Nov 2008 A1
20080274022 Boykin et al. Nov 2008 A1
20080282606 Plaza et al. Nov 2008 A1
20080312476 McCall Dec 2008 A1
20080318763 Anderson Dec 2008 A1
20090008292 Keusenkothen et al. Jan 2009 A1
20090008296 Sappok et al. Jan 2009 A1
20090077867 Marker et al. Mar 2009 A1
20090077868 Brady et al. Mar 2009 A1
20090078557 Tokarz Mar 2009 A1
20090078611 Marker et al. Mar 2009 A1
20090082603 Kalnes et al. Mar 2009 A1
20090082604 Agrawal et al. Mar 2009 A1
20090084666 Agrawal et al. Apr 2009 A1
20090090046 O'Connor et al. Apr 2009 A1
20090090058 Dam-Johansen et al. Apr 2009 A1
20090113787 Elliott et al. May 2009 A1
20090139851 Freel Jun 2009 A1
20090165378 Agblevor Jul 2009 A1
20090183424 Gorbell et al. Jul 2009 A1
20090188158 Morgan Jul 2009 A1
20090193709 Marker et al. Aug 2009 A1
20090208402 Rossi Aug 2009 A1
20090227823 Huber et al. Sep 2009 A1
20090242377 Honkola et al. Oct 2009 A1
20090250376 Brandvold et al. Oct 2009 A1
20090253947 Brandvold et al. Oct 2009 A1
20090253948 McCall et al. Oct 2009 A1
20090255144 Gorbell et al. Oct 2009 A1
20090259076 Simmons et al. Oct 2009 A1
20090259082 Deluga et al. Oct 2009 A1
20090274600 Jain et al. Nov 2009 A1
20090283442 McCall et al. Nov 2009 A1
20090287029 Anumakonda et al. Nov 2009 A1
20090293344 O'Brien et al. Dec 2009 A1
20090293359 Simmons et al. Dec 2009 A1
20090294324 Brandvold et al. Dec 2009 A1
20090301930 Brandvold et al. Dec 2009 A1
20090308787 O'Connor et al. Dec 2009 A1
20090318737 Luebke Dec 2009 A1
20090321311 Marker et al. Dec 2009 A1
20100043634 Shulfer et al. Feb 2010 A1
20100083566 Frederiksen et al. Apr 2010 A1
20100133144 Kokayeff et al. Jun 2010 A1
20100147743 MacArthur et al. Jun 2010 A1
20100148122 Breton et al. Jun 2010 A1
20100151550 Nunez et al. Jun 2010 A1
20100158767 Mehlberg et al. Jun 2010 A1
20100162625 Mills Jul 2010 A1
20100163395 Henrich et al. Jul 2010 A1
20100222620 O'Connor et al. Sep 2010 A1
20100266464 Sipila et al. Oct 2010 A1
20100325954 Tiwari et al. Dec 2010 A1
20110017443 Collins Jan 2011 A1
20110067438 Bernasconi Mar 2011 A1
20110068585 Dube et al. Mar 2011 A1
20110113675 Fujiyama et al. May 2011 A1
20110120909 Brandvold May 2011 A1
20110123407 Freel May 2011 A1
20110132737 Jadhav Jun 2011 A1
20110139597 Lin Jun 2011 A1
20110146135 Brandvold Jun 2011 A1
20110146140 Brandvold et al. Jun 2011 A1
20110146141 Frey et al. Jun 2011 A1
20110146145 Brandvold et al. Jun 2011 A1
20110160505 McCall Jun 2011 A1
20110182778 Breton et al. Jul 2011 A1
20110201854 Kocal et al. Aug 2011 A1
20110224471 Wormsbecher et al. Sep 2011 A1
20110232166 Kocal Sep 2011 A1
20110239530 Marinangeli et al. Oct 2011 A1
20110253600 Niccum Oct 2011 A1
20110258914 Banasiak et al. Oct 2011 A1
20110284359 Sechrist et al. Nov 2011 A1
20120012039 Palmas Jan 2012 A1
20120017493 Traynor et al. Jan 2012 A1
20120022171 Frey Jan 2012 A1
20120023809 Koch et al. Feb 2012 A1
20120047794 Bartek et al. Mar 2012 A1
20120108860 Daugaard et al. May 2012 A1
20120137939 Kulprathipanja Jun 2012 A1
20120160741 Gong et al. Jun 2012 A1
20120167454 Brandvold et al. Jul 2012 A1
20120172622 Kocal Jul 2012 A1
20120205289 Joshi Aug 2012 A1
20120214114 Kim et al. Aug 2012 A1
20120216448 Ramirez Coredores et al. Aug 2012 A1
20120279825 Freel et al. Nov 2012 A1
20120317871 Frey et al. Dec 2012 A1
20130029168 Trewella et al. Jan 2013 A1
20130062184 Kulprathipanja et al. Mar 2013 A1
20130067803 Kalakkunnath et al. Mar 2013 A1
20130075072 Kulprathipanja et al. Mar 2013 A1
20130078581 Kulprathipanja et al. Mar 2013 A1
20130105356 Dijs et al. May 2013 A1
20130109765 Jiang et al. May 2013 A1
20130118059 Lange et al. May 2013 A1
20130150637 Borremans et al. Jun 2013 A1
20130152453 Baird et al. Jun 2013 A1
20130152454 Baird et al. Jun 2013 A1
20130152455 Baird et al. Jun 2013 A1
20130195727 Bull et al. Aug 2013 A1
20130212930 Naae et al. Aug 2013 A1
20130267743 Brandvold et al. Oct 2013 A1
20140001026 Baird et al. Jan 2014 A1
20140140895 Davydov et al. May 2014 A1
20140142362 Davydov et al. May 2014 A1
Foreign Referenced Citations (77)
Number Date Country
8304158 Jul 1984 BR
8304794 Apr 1985 BR
1312497 Jan 1993 CA
2091373 Sep 1997 CA
2299149 Dec 2000 CA
2521829 Mar 2006 CA
1377938 Nov 2002 CN
1730177 Feb 2006 CN
101045524 Oct 2007 CN
101238197 Aug 2008 CN
101294085 Oct 2008 CN
101318622 Dec 2008 CN
101353582 Jan 2009 CN
101365770 Feb 2009 CN
101381611 Mar 2009 CN
101544901 Sep 2009 CN
101550347 Oct 2009 CN
101745349 Jun 2010 CN
101993712 Mar 2011 CN
105980 Jan 1986 EP
578503 Jan 1994 EP
676023 Jul 1998 EP
718392 Sep 1999 EP
787946 Jun 2000 EP
1420058 May 2004 EP
2325281 May 2011 EP
117512 Nov 2005 FI
879606 Mar 1943 FR
1019133 Feb 1966 GB
1300966 Dec 1972 GB
58150793 Sep 1983 JP
1277196 Nov 1989 JP
11148625 Jun 1999 JP
2001131560 May 2001 JP
2007229548 Sep 2007 JP
9903742-6 Jan 2004 SE
8101713 Jun 1981 WO
9111499 Aug 1991 WO
9207842 May 1992 WO
9218492 Oct 1992 WO
9413827 Jun 1994 WO
9744410 Nov 1997 WO
0109243 Feb 2001 WO
0183645 Nov 2001 WO
0249735 Jun 2002 WO
2006071109 Jul 2006 WO
2007017005 Feb 2007 WO
2007045093 Apr 2007 WO
2007050030 May 2007 WO
2007112570 Oct 2007 WO
2007128798 Nov 2007 WO
2008009643 Jan 2008 WO
2008020167 Feb 2008 WO
2008092557 Aug 2008 WO
2009019520 Feb 2009 WO
2009047387 Apr 2009 WO
2009047392 Apr 2009 WO
2009067350 May 2009 WO
2009099684 Aug 2009 WO
2009118357 Oct 2009 WO
2009118363 Oct 2009 WO
2009126508 Oct 2009 WO
2009131757 Oct 2009 WO
2010002792 Jan 2010 WO
2011146262 Nov 2011 WO
2011159768 Dec 2011 WO
2012009207 Jan 2012 WO
2012012260 Jan 2012 WO
2012018520 Feb 2012 WO
2012062924 May 2012 WO
2012078422 Jun 2012 WO
2012088546 Jun 2012 WO
2012115754 Aug 2012 WO
2013043485 Mar 2013 WO
2013090229 Jun 2013 WO
2014031965 Feb 2014 WO
2014210150 Dec 2014 WO
Non-Patent Literature Citations (142)
Entry
“Flash Pyrolysis for the Continuous Conversion of Reed Into Hydrocarbons,” Mahmood M. Barbooti, Journal of Analytical and Applied Pyrolysis, 13 (1988), 233-241.
AccessScience Dictionary, “ebullating-bed reactor,” http://www.accessscience.com, last visited Jul. 15, 2014.
Adam, J. “Catalytic conversion of biomass to produce higher quality liquid bio-fuels,” PhD Thesis, Department of Energy and Process Engineering, The Norwegian University of Science and Technology, Trondheim (2005).
Adam, J. et al. “Pyrolysis of biomass in the presence of AI-MCM-41 type catalysts,” Fuel, 84 (2005) 1494-1502.
Adjaye, John D. et al. “Catalytic conversion of a biomass-derived oil to fuels and chemicals I: Model compound studies and reaction pathways,” Biomass & Bioenergy, 8:3 (1995) 131-149.
Adjaye, John D. et al. “Catalytic conversion of a biomass-derived oil to fuels and chemicals II: Chemical kinetics, parameter estimation and model predictions,” Biomass & Bioenergy, 8:4 (1995) 265-277.
Adjaye, John D. et al. “Catalytic conversion of wood derived bio-oil to fuels and chemicals,” Studies in Surface Science and Catalysis, 73 (1992) 301-308.
Adjaye, John D. et al. “Production of hydrocarbons by the catalytic upgrading of a fast pyrolysis bio-oil,” Fuel Process Technol, 45:3 (1995) 161-183.
Adjaye, John D. et al. “Upgrading of a wood-derived oil over various catalysts,” Biomass & Bioenergy, 7:1-6 (1994) 201-211.
Aho, A. et al. “Catalytic pyrolysis of woody biomass in a fluidized bed reactor; Influence of zeolites structure, Science Direct,” Fuel, 87 (2008) 2493-2501.
Antonakou, E. et al. “Evaluation of various types of AI-MCM-41 materials as catalysts in biomass pyrolysis for the production of bio-fuels and chemicals,” Fuel, 85 (2006) 2202-2212.
Atutxa, A. et al. “Kinetic Description of the Catalytic Pyrolysis of Biomass in a Conical Spouted Bed Reactor,” Energy Fuels, 19:3 (2005) 765-774.
Baker, E. G. et al. “Catalytic Upgrading of Biomass Pyrolysis Oils,” in Bridgwater, A. V. et al. (eds) Research in Thermochemical Biomass Conversion, Elsevier Science Publishers Ltd., Barking, England (1988) 883-895.
Baldauf, W. et al. “Upgrading of flash pyrolysis oil and utilization in refineries,” Biomass & Bioenergy, 7 (1994) 237-244.
Baumlin, “The continuous self stirred tank reactor: measurement of the cracking kinetics of biomass pyrolysis vapours,” Chemical Engineering Science, 60 (2005) 41-55.
Berg, “Reactor Development for the Ultrapyrolysis Process,” The Canadian Journal of Chemical Engineering, 67 (1989) 96-101.
Bielansky, P. et al. “Catalytic conversion of vegetable oils in a continuous FCC pilot plant,” Fuel Processing Technology, 92 (2011) 2305-2311.
Bimbela, F. et al. “Hydrogen production by catalytic steam reforming of acetic acid, a model compound of biomass pyrolysis liquids,” J. Ana App. Pyrolysis, 79 (2007) 112-120.
Bridgwater et al. (eds) Fast Pyrolysis of Biomass: A Handbook, Newbury Cpl Press, Great Britain (2008) 1-13.
Bridgwater, A.V. “Principles and practices of biomass fast pyrolysis processes for liquids,” Journal of Analytical and Applied Pyrolysis, 51 (1999) 3-22.
Bridgwater, Tony “Production of high grade fuels and chemicals from catalytic pyrolysis of biomass,” Catalysis Today, 29 (1996) 285-295.
Bridgwater, Tony et al. “Transport fuels from biomass by thermal processing,” EU-China Workshop on Liquid Biofuels, Beijing, China (Nov. 4-5, 2004).
Buchsbaum, A. et al. “The Challenge of the Biofuels Directive for a European Refinery,” OMW Refining and Marketing, ERTC 9th Annual Meeting, Prague, Czech Republic (Nov. 15-17, 2004).
Carlson, T. et al. “Aromatic Production from Catalytic Fast Pyrolysis of Biomass-Derived Feedstocks,” Top Catal, 52 (2009) 241-242.
Carlson., T. et al. “Green Gasoline by Catalytic Fast Pyrolysis of Solid Biomass Derived Compounds,” ChemSusChem, 1 (2008) 397-400.
Cass et al. “Challenges in the Isolation of Taxanes from Taxus canadensis by Fast Pyrolysis,” J Analytical and Applied Pyrolysis 57 (2001) 275-285.
Chantal, P. D. et al. “Production of Hydrocarbons from Aspen Poplar Pyrolytic Oils over H-ZSM5,” Applied Catalysis, 10 (1984) 317-332.
Chen, N. Y. et al. “Fluidized Upgrading of Wood Pyrolysis Liquids and Related Compounds,” in Soltes, E. J. et al. (eds) Pyrolysis Oils from Biomass, ACS, Washington, DC (1988) 277-289.
Chinsuwan, A. et al. “An experimental investigation of the effect of longitudinal fin orientation on heat transfer in membrane water wall tubes in a circulating ftuidized bed,” International Journal of Heat and Mass Transfer, 52:5-6 (2009) 1552-1560.
Cornelissen, T. et al., “Flash co-pyrolysis of biomass with polylactic acid. Part 1: Influence on bio-oil yield and heating value,” Fuel 87 (2008) 1031-1041.
Cousins, A. et al. “Development of a bench-scale high-pressure fluidized bed reactor and its sequential modification for studying diverse aspects of pyrolysis and gasification of coal and biomass,” Energy and Fuels, 22:4 (2008) 2491-2503.
Cragg et al. “The Search for New Pharmaceutical Crops: Drug Discovery and Development at the National Cancer Institute,” in Janick, J. and Simon, J.E. (eds) New Crops, Wiley, New York (1993) 161-167.
Czernik, S. et al. “Hydrogen from biomass-production by steam reforming of biomass pyrolysis oil,” Catalysis Today, 129 (2007) 265-168.
Czernik, S. et al. “Hydrogren by Catalytic Steam Reforming of Liquid Byproducts from Biomass Thermoconversion Processes,” Ind. Eng. Chem. Res., 41 (2002) 4209-4215.
Dahmen, “Rapid pyrolysis for the pretreatment of biomass and generation of bioslurry as intermediate fuel”, Chemie-Ingenieur-Technik, 79:9 (2007) 1326-1327. Language: German (Abstract only; Machine translation of Abstract).
Dandik, “Catalytic Conversion of Used Oil to Hydrocarbon Fuels in a Fractionating Pyrolysis Reactor,” Energy & Fuels, 12 (1998) 1148-1152.
Daoust et al. “Canada Yew (Taxus canadensis Marsh.) and Taxanes: a Perfect Species for Field Production and Improvement through Genetic Selection,” Natural Resources Canada, Canadian Forest Service, Sainte-Fov, Quebec (2003).
de Wild, P. et al. “Lignin valorisation for chemicals and (transportation) fuels via (catalytic) pyrolysis and hydrodeoxygenation,” Environ. Prog. Sustainable Energy, 28 (2009) 461-469.
Demirbas, Ayhan “Fuel Conversional Aspects of Palm Oil and Sunflower Oil,” Energy Sources, 25 (2003) 457-466.
Di Blasi, C. et al. “Effects of Potassium Hydroxide Impregnation of Wood Pyrolysis, American Chemical Society,” Energy & Fuels 23(2009) 1045-1054.
Ellioti, D. “Historical Developments in Hydroprocessing Bio-oils,” Energy & Fuels, 21 (2007) 1792-1815.
Ensyn Technologies Inc. “Catalytic de-oxygenation of biomass-derived RTP vapors.” Prepared for ARUSIA, Agenzia Regionale Umbria per lo Sviluppo e L'Innovazione, Perugia, Italy (Mar. 1997).
Filtration, Kirk-Othmer Encyclopedia of Chemical Technology 5th Edition. vol. 11., John Wiley & Sons, Inc., Feb. 2005.
Gayubo, A. G. et al. “Deactivation of a HZSM-5 Zeolite Catalyst in the Transformation of the Aqueous Fraction of Biomass Pyrolysis Oil into Hydrocarbons,” Energy & Fuels, 18:6 (2004) 1640-1647.
Gayubo, A. G. et al. “Undesired components in the transformation of biomass pyrolysis oil into hydrocarbons on an HZSM-5 zeolite catalyst,” J Chem Tech Biotech, 80 (2005) 1244-1251.
Gevert, Börjie S. et al. “Upgrading of directly liquefied biomass to transportation fuels: catalytic cracking,” Biomass 14:3 (1987) 173-183.
Goesele, W. et al., Filtration, Wiley-VCHVerlag GmbH & Co. KGaA, Weinheim, 10.1002/14356007.b0210, 2005.
Grange, P. et al. “Hydrotreatment of pyrolysis oils from biomass: reactivity of the various categories of oxygenated compounds and preliminary techno-economical study,” Catalysis Today, 29 (1996) 297-301.
Hama, “Biodiesel-fuel production in a packed-bed reactor using lipase-producing Rhizopus oryzae cells immobilized within biomass support particles”, Biochemical Engineering Journal, 34 (2007) 273-278.
Hoekstra, E. et al., “Fast Pyrolysis of Biomass in a Fluidized Bed Reactor: In Situ Filtering of the Vapors,” Ind. Eng. Chern. Res., 48:10 (2009) 4744-4756.
Holton et al. “First Total Synthesis of Taxol. 2. Completion of the C and D Rings,” J Am Chem Soc, 116 (1994) 1599-1600.
Horne, Patrick A. et al. “Catalytic coprocessing of biomass-derived pyrolysis vapours and methanol,” J. Analytical and Applied Pyrolysis, 34:1 (1995) 87-108.
Horne, Patrick A. et al. “Premium quality fuels and chemicals from the fluidised bed pyrolysis of biomass with zeolite catalyst upgrading,” Renewable Energy, 5:5-8 (1994) 810-812.
Horne, Patrick A. et al. “The effect of zeolite ZSM-5 catalyst deactivation during the upgrading of biomass-derived pyrolysis vapours,” J Analytical and Applied Pyrolysis, 34:1 (1995) 65-85.
Huang et al. “New Taxanes from Taxus brevifolia,” J of Natural Products, 49 (1986) 665-669.
Huffman, D. R. et al., Ensyn Technologies Inc., “Thermo-Catalytic Cracking of Wood to Transportation Fuels,” DSS Contract No. 38SQ.23440-4-1429, Efficiency and Alternative Energy Technology Branch, Natural Resources Canada, Ottawa, Canada (1997).
Huffman, D. R., Ensyn Technologies Inc., “Thermo-catalytic cracking of wood to transportation fuels using the RTP process,” DSS Contract No. 38SQ.23440-4-1429, Efficiency and Alternative Energy Technology Branch, Natural Resources Canada, Ottawa, Ontario (Jan. 1997).
Hughes, J. et al. “Structural variations in natural F, OH and CI apatites,” American Mineralogist, 74 (1989) 870-876.
Huie, C. W. “A review of modern sample-preparation techniques for the extraction and analysis of medicinal plants,” Anal Bioanal Chem, 373 (2002) 23-30.
International Search Report dated Feb. 22, 2013 for corresponding International Application No. PCT/US2012/68876.
Ioannidou, “Investigating the potential for energy, fuel, materials and chemicals production from corn residues (cobs and stalks) by non-catalytic and catalytic pyrolysis in two reactor configurations,” Renewable and Sustainable Energy Reviews, 13 (2009) 750-762.
Iojoiu, E. et al. “Hydrogen production by sequential cracking of biomass-derived pyrolysis oil over noble metal catalysts supported on ceria-zirconia,” Applied Catalysis A: General, 323 (2007) 147-161.
Jackson, M. et al. “Screening heterogenous catalysts for the pyrolysis of lignin,” J. Anal. Appl. Pyrolysis, 85 (2009) 226-230.
Junming et al. “Bio-oil upgrading by means of ethyl ester production in reactive distillation to remove water and to improve storage and fuel characteristics,” Biomass and Energy, 32 (2008) 1056-1061.
Kalnes, Tom et al. “Feedstock Diversity in the Refining Industry,” UOP Report to NREL and DOE (2004).
Khanal, “Biohydrogen Production in Continuous-Flow Reactor Using Mixed Microbial Culture,” Water Environment Research, 78:2 (2006) 110-117.
Khimicheskaya Entsiklopediya. Pod red. N. S. Zefirov. Moskva, Nauchnoe Izdatelstvo “Bolshaya Rossyskaya Entsiklopediya”, 1995, p. 133-137,529-530.
Kingston et al. “New Taxanes from Taxus brevifolia,” J of Natural Products, 45 (1982) 466-470.
Lappas, A. A. et al. “Biomass pyrolysis in a circulating fluid bed reactor for the production of fuels and chemicals,” Fuel, 81 (2002) 2087-2095.
Lappas, A.A. et al. “Production of Transportation Fuels from Biomass,” Workshop of Chemical Process Engineering Research Institute/Center for Research and Technology Hellas, Thermi-Thessaloniki, Greece (2004).
Lappas, A.A., “Production of biofuels via co-processing in conventional refining process,” Catalysis Today, 145 (2009) 55-62.
Maiti, R.N. et al. “Gas-liquid distributors for trickle-bed reactors: A review”; Industrial and Engineering Chemistry Research, 46:19 (2007) 6164-6182.
Mancosky, “The use of a controlled cavitation reactor for bio-diesel production,” (abstract only), AlChE Spring National Meeting 2007, Houston, Texas.
Marker, Terry L., et al. “Opportunities for Biorenewables in Petroleum Refineries,” Proceedings of the 230th ACS National Meeting, Washington, DC, Paper No. 125, Fuel Division (Aug. 31, 2005) (abstract only).
Marker, Terry L., et al., UOP, “Opportunities for Biorenewables in Oil Refineries,” Final Technical Report, U.S. Department of Energy Award No. DE-FG36-05G015085, Report No. DOEGO15085Final (2005).
Marquevich, “Hydrogen from Biomass: Steam Reforming of Model Compounds of Fast-Pyrolysis Oil,” Energy & Fuels, 13 (1999) 1160-1166.
Masoumifard, N. et al. “Investigation of heat transfer between a horizontal tube and gas-solid ftuidized bed,” International Journal of Heat and Fluid Flow, 29:5 (2008) 1504-1511.
McLaughlin et al. 19-Hydroxybaccatin III, 10-Deacetylcephalo-Mannine, and 10-Deacetyltaxol: New Anti-Tumor Taxanes from Taxus wallichiana, J of Natural Products, 44 (1981) 312-319.
McNeil “Semisynthetic Taxol Goes on Market Amid Ongoing Quest for New Versions,” J of the National Cancer Institute, 87:15 (1995) 1106-1108.
Meier, D. et al. “State of the art of applied fast pyrolysis of lignocellulosic materials—a review,” Bioresource Technology, 68:1 (1999) 71-77.
Meier, D. et al., “Pyrolysis and Hydroplysis of Biomass and Lignins—Activities at the Institute of Wood Chemistry in Hamburg, Germany,” vol. 40, No. 2, Preprints of Papers Presented at the 209th ACS National Meeting, Anaheim, CA (Apr. 2-7, 1995).
Mercader, F. et al. “Pyrolysis oil upgrading by high pressure thermal treatment,” Fuel, 89:10 (2010) 2829-2837.
Miller et al. “Antileukemic Alkaloids from Taxus wallichiana Zucc,” J Org Chem, 46 (1981) 1469-1474.
Mohan, D. et al. “Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review,” Energy Fuels, 20:3 (2006) 848-849.
Newton “Taxol: A Case Study in Natural Products Chemistry,” Lecture Notes, University of Southern Maine, http:/www.usm.maine.edu/ (2009) 1-6.
Nicolaou et al. “Total Synthesis of Taxol,” Nature, 367 (1994) 630-634.
Nowakowski, D. et al. “Potassium catalysis in the pyrolysis behaviour of short rotation willow coppice.” Fuels, 86 (2007) 2389-2402.
Ognisty, T. P. “The direct contact heat transfer performance of a spray nozzle, a notched through distributor, and two inch Pall rings,” AlChE 1990 Spring National Meeting (Orlando Mar. 18-20, 1990) Preprint N. 37c 36P, Mar. 18, 1990.
Ohman “Bed Agglomeration Characteristics during Fluidized Bed Combustion of Biomass Fuels,” Energy & Fuels, 14 (2000) 169-178.
Okumura, Y. et al. “Pyrolysis and gasification experiments of biomass under elevated pressure condition,” Nihon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, vol. 73, No. 7, 2007, pp. 1434-1441.
Olazar, M. et al. “Pyrolysis of Sawdust in a Conical Spouted-Bed Reactor with a HZSM-5 Catalyst,” AlChE Journal, 46:5 (2000) 1025-1033.
Onay “Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed-bed reactor,” Fuel Processing Technology, 88 (2007) 523-531.
Onay, “Production of Bio-Oil from Biomass: Slow Pyrolysis of Rapeseed (Brassica napus L.) in a Fixed-Bed Reactor,” Energy Sources, 25 (2003) 879-892.
Ong et al. “Pressurized hot water extraction of bioactive or marker compounds in botanicals and medicinal plant materials,” J Chromatography A, 1112 (2006) 92-102.
Ooi, Y. S. et al. “Catalytic Cracking of Used Palm Oil and Palm Oil Fatty Acids Mixture for the Production of Liquid Fuel: Kinetic Modeling.” J Am Chem Soc, 18 (2004) 1555-1561.
Otterstedt, J. E. et al. “Catalytic Cracking of Heavy Oils,” in Occelli, Mario L. (ed) Fluid Catalytic Cracking, Chapter 17, ACS, Washington, DC (1988) 266-278.
Padmaja, K.V. et al. “Upgrading of Candelilla biocrude to hydrocarbon fuels by fluid catalytic cracking,” Biomass and Bioenergy, 33 (2009) 1664-1669.
Pavia et al., Intro to Org Labo Techniques (1988) 3d ed. Saunders College Publishing, Washington p. 62-66, 541-587.
PCT/US2012/055384 International Search Report, dated Mar. 28, 2013, and International Preliminary Report on Patentability, dated Mar. 25, 2014.
Pecora, A.A.B. et al., “Heat transfer coefficient in a shallow ftuidized bed heat exchanger with a continuous ftow of solid particles,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, 28:3 (2006) 253-258.
Pecora, A.A.B., et al., “An analysis of process heat recovery in a gas-solid shallow fluidized bed,” Brazilian Journal of Chemical Engineering, 23:4 (2006) 497-506.
Petrik, P.T. et al. “Heat exchange in condensation of R227 coolant on inclined tubes placed in a granular BED,” Journal of Engineering Physics and Thermophysics, 77:4 (2004) 758-761.
Prasad Y. S. et al. “Catalytic conversion of canola oil to fuels and chemical feedstocks. Part II. Effect of co-feeding steam on the performance of HZSM-5 catalyst,” Can J Chem Eng, 64 (1986) 285-292.
Prins, Wolter et al. “Progress in fast pyrolysis technology,” Topsoe Catalysis Forum 2010, Munkerupgaard, Denmark (Aug. 19-20, 2010).
Radlein, D. et al. “Hydrocarbons from the Catalytic Pyrolysis of Biomass,” Energy & Fuels, 5 (1991) 760-763.
Rao “Taxol and Related Taxanes. I. Taxanes of Taxus brevifolia Bark,” Pharm Res 10:4 (1993) 521-524.
Rao et al. “A New Large-Scale Process for Taxol and Related Taxanes from Taxus brevifolia,” Pharm Res, 12:7 (1995) 1003-1010.
Ravindranath, G., et al., “Heat transfer studies of bare tube bundles in gas-solid ftuidized bed”, 9th International Symposium on Fluid Control Measurement and Visualization 2007, FLUCOME 2007, vol. 3, 2007, pp. 1361-1369.
Rodriguez, O.M.H. et al. “Heat recovery from hot solid particles in a shallow ftuidized bed,” Applied Thermal Engineering, 22:2 (2002) 145-160.
Samolada, M. C. et al. “Production of a bio-gasoline by upgrading biomass flash pyrolysis liquids via hydrogen processing and catalytic cracking,” Fuel, 77:14 (1998) 1667-1674.
Sang “Biofuel Production from Catalytic Cracking of Palm Oil,” Energy Sources, 25 (2003) 859-869.
Scahill, J. et al. “Removal of Residual Char Fines from Pyrolysis Vapors by Hot Gas Filtration,” in Bridgwater, A. V. et al. (eds) Developments in Thermochemical Biomass Conversion, Springer Science+Business Media, Dordrecht (1997) 253-266.
Scott, D. et al. Pretreatment of poplar wood for fast pyrolysis: rate of cation removal, Journal of Analytical and Applied Pyrolysis, 57 (2000) 169-176.
Senilh et al. “Mise en Evidence de Nouveaux Analogues du Taxol Extraits de Taxus baccata,” J of Natural Products, 47 (1984) 131-137. (English Abstract included).
Sharma, R. “Upgrading of pyrolytic lignin fraction of fast pyrolysis oil to hydrocarbon fuels over HZSM-5 in a dual reactor system,” Fuel Processing Technology, 35 (1993) 201-218.
Sharma, R. K. et al. “Catalytic Upgrading of Pyrolysis Oil,” Energy & Fuels, 7 (1993) 306-314.
Sharma, R. K. et al. “Upgrading of wood-derived bio-oil over HZSM-5,” Bioresource Technology, 35:1 (1991) 57-66.
Smith R.M. “Extractions with superheated water,” J Chromatography A, 975 (2002) 31-46.
Snader “Detection and Isolation,” in Suffness, M. (ed) Taxol-Science and Applications, CRC Press, Boca Raton, Florida (1995) 277-286.
Srinivas, S.T. et al “Thermal and Catalytic Upgrading of a Biomass-Derived Oil in a Dual Reaction System,” Can. J. Chem. Eng., 78 (2009) 343-354.
Stierle et al. “The Search for Taxol-Producing Microorganism Among the Endophytic Fungi of the Pacific Yew, Taxus brevifolia,” J of Natural Products, 58 (1995) 1315-1324.
Stojanovic, B. et al. “Experimental investigation of thermal conductivity coefficient and heat exchange between ftuidized bed and inclined exchange surface,” Brazilian Journal of Chemical Engineering, 26:2 (2009) 343-352.
Sukhbaatar, B. “Separation of Organic Acids and Lignin Fraction From Bio-Oil and Use of Lignin Fraction in Phenol-Formaldehyde Wood Adhesive Resin,” Master's Thesis, Mississippi State (2008).
Twaiq, A. A. et al. “Performance of composite catalysts in palm oil cracking for the production of liquid fuels and chemicals,” Fuel Processing Technology, 85 (2004) 1283-1300.
Twaiq, F. A. et al. “Liquid hydrocarbon fuels from palm oil by catalytic cracking over aluminosilicate mesoporous catalysts with various Si/Al ratios,” Microporous and Mesoporous Materials, 64 (2003) 95-107.
Tyson, K. et al. “Biomass Oil Analysis: Research Needs and Recommendations,” National Renewable Energy Laboratory, Report No. NREL/TP-510-34796 (Jun. 2004).
Valle, B. et al. “Integration of Thermal Treatment and Catalytic Transformation for Upgrading Biomass Pyrolysis Oil,” International Journal of Chemical Reactor Engineering, 5:1 (2007).
Vasanova, L.K. “Characteristic features of heat transfer of tube bundles in a cross water-air ftow and a three-phase ftuidized bed,” Heat Transfer Research, 34:5-6 (2003) 414-420.
Vitolo, S. et al. “Catalytic upgrading of pyrolytic oils over HZSM-5 zeolite: behaviour of the catalyst when used in repeated upgrading-regenerating cycles,” Fuel, 80 (2001) 17-26.
Vitolo, S. et al. “Catalytic upgrading of pyrolytic oils to fuel over different zeolites,” Fuel, 78:10 (1999) 1147-1159.
Wang, Xianhua et al., “The Influence of Microwave Drying on Biomass Pyrolysis,” Energy & Fuels 22 (2008) 67-74.
Westerhof, Roel J. M. et al., “Controlling the Water Content of Biomass Fast Pyrolysis Oil,” Ind. Eng. Chem. Res. 46 (2007) 9238-9247.
Williams, Paul T. et al. “Characterisation of oils from the fluidised bed pyrolysis of biomass with zeolite catalyst upgrading,” Biomass and Bioenergy, 7:1-6 (1994) 223-236.
Williams, Paul T. et al. “Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks,” Energy, 25:6 (2000) 493-513.
Williams, Paul T. et al. “The influence of catalyst type on the composition of upgraded biomass pyrolysis oils,” J Analytical and Applied Pyrolysis, 31 (1995) 39-61.
Yukimune et al. “Methyl Jasmonate-induced Overproduction of Paclitaxel and Baccatin III in Taxus Cell Suspension Cultures,” Nature Biotechnology 14 (1996) 1129-1132.
Zhang et al. “Investigation on initial stage of rapid pyrolysis at high pressure using Taiheiyo coal in dense phase,” Fuel, 81:9 (2002) 1189-1197.
Zhang, “Hydrodynamics of a Novel Biomass Autothermal Fast Pyrolysis Reactor: Flow Pattern and Pressure Drop,” Chern. Eng. Technol., 32:1 (2009) 27-37.
Graham, R.G. et al. “Thermal and Catalytic Fast Pyrolysis of Lignin by Rapid Thermal Processing (RPT),” Seventh Canadian Bioenergy R&D Seminar, Skyline Hotel, Ottawa, Ontario, Canada, Apr. 24-26, 1989.
Wisner, R. “Renewable Identification Numbers (RINs) and Government Biofuels Blending Mandates,” AgMRC Renewable Energy Newsletter (Apr. 2009), available at http://www.agmrc.org/renewable—energy/biofuelsbiorefining—general/renewable-identification-numbers-rins-and-government-biofuels-blending-mandates/.
Qi et al. “Review of biomass pyrolysis oil properties and upgrading research,” Energy Conversion & Management, 48 (2007) 87-92.
Yoo et al. “Thermo-mechanical extrusion pretreatment for conversion of soybean hulls to fermentable sugars,” Bioresource Technology, 102 (2011) 7583-7590.
Related Publications (1)
Number Date Country
20140001026 A1 Jan 2014 US