Methods and apparatuses for universal interface between parts in transport structures

Information

  • Patent Grant
  • 11548236
  • Patent Number
    11,548,236
  • Date Filed
    Tuesday, March 2, 2021
    3 years ago
  • Date Issued
    Tuesday, January 10, 2023
    2 years ago
Abstract
Techniques for providing universal interfaces between parts of a transport structure are disclosed. In one aspect of the disclosure, an apparatus for joining first and second parts of a transport structure includes an additively manufactured body having first and second surfaces. The first surface may connect to a first part such as, for example, a panel. The second surface may include a fitting for mating with a complementary fitting on a second part.
Description
BACKGROUND
Field

The present disclosure relates generally to parts used in transport structures, and more specifically to additively manufactured techniques for providing an interface between different parts.


Background

Transport structures conventionally use body panels or outer shells that are configured to bear structural loads. The panels in these configurations require brackets and other comparatively sophisticated mechanical attachments to interface with other components. The mechanical attachments are conventionally produced using traditional machining techniques, which have limited versatility in their ability to produce complex structures. Thus, such mechanical interfaces between components can be expensive, and their manufacture time-consuming.


Manufacturers have increasingly used additive manufacturing (“AM”) as a means to produce more complex and cost-efficient components. AM systems, also described as three-dimensional (3-D) printers, can produce structures having geometrically complex shapes, including some shapes that are difficult or impossible to create using conventional manufacturing processes. While these AM capabilities have broad application, they are particularly widespread in industries involving vehicles, boats, aircraft, motorcycles, trucks, trains, busses, subways, and other transport structures.


The present disclosure addresses challenges associated with providing interfaces for different components in a transport structure.


SUMMARY

Several aspects of a universal parts interface will be described more fully hereinafter.


One aspect of an apparatus for joining parts of a transport structure includes an additively manufactured body configured to be co-molded with a first part and including a first surface for connecting to the first part, and a second surface comprising a fitting for mating with a complementary fitting disposed on a second part.


Another aspect of an apparatus includes an additively manufactured node for a transport structure, including a joint member configured to provide at least one structural connection, and an extended structure coupled to the joint member and comprising a fitting for connecting to a complementary fitting arranged on a part.


One aspect of a method for providing an interface between first and second parts of a transport structure includes additively manufacturing an interface structure having a first section coupled to a second section, the second section comprising a fitting, and co-molding the interface structure with the first part, wherein the first section is coupled to the first part.


It will be understood that other aspects of providing interfaces using AM components will become readily apparent to those skilled in the art from the following detailed description, wherein it is shown and described only several embodiments by way of illustration. As will be realized by those skilled in the art, the subject matter presented herein is capable of other and different embodiments and its several details are capable of modification in various other respects, all without departing from the invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not as restrictive.





BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects of interfaces between parts of a transport structure will now be presented in the detailed description by way of example, and not by way of limitation, in the accompanying drawings, wherein:



FIG. 1 is a flow diagram illustrating an exemplary process of initiating 3-D printing.



FIGS. 2A-D illustrate an exemplary powder bed fusion (PBF) system during different stages of operation.



FIG. 3 is a front illustration of an interface structure affixed to a part.



FIG. 4 is a top-down illustration of the interface structure of FIG. 3 affixed to the part.



FIG. 5 is a front illustration of an interface structure.



FIG. 6 is an illustration of a ball for receptacle fitting for use on the interface structure.



FIG. 7 is an illustration of a horizontal threaded mounting plate fitting for use on the interface structure.



FIG. 8 is an illustration of a vertical threaded mounting plate fitting for use on the interface structure.



FIG. 9 is an illustration of a floating nut fitting for use on the interface structure.



FIG. 10 is an illustration of a side view of an interface structure having a porous open cell matrix at a surface.



FIG. 11 is an illustration of a side view of a part being co-molded with an interface structure.



FIG. 12 is an illustration of a side view of a part being oven molded with an interface structure.



FIG. 13 is a perspective view of a Blade vehicle chassis having a partial set of body panels attached thereto.



FIG. 14 is a side view of an additively manufactured node having a joint coupled to an extended structure for connecting the joint to a front hood via an extended structure.



FIG. 15 is a side view of the additively manufactured node of FIG. 14.



FIG. 16 is a side view of the additively manufactured node having an interface with an interface structure disposed on a vehicle hood.



FIG. 17 is a flow diagram of an exemplary method for providing an interface between first and second parts of a transport structure.





DETAILED DESCRIPTION

The detailed description set forth below in connection with the appended drawings is intended to provide a description of various exemplary embodiments of interfaces between parts of a transport structure and is not intended to represent the only embodiments in which the invention may be practiced. The term “exemplary” used throughout this disclosure means “serving as an example, instance, or illustration,” and should not necessarily be construed as preferred or advantageous over other embodiments presented in this disclosure. The detailed description includes specific details for the purpose of providing a thorough and complete disclosure that fully conveys the scope of the invention to those skilled in the art. However, the invention may be practiced without these specific details. In some instances, well-known structures and components may be shown in block diagram form, or omitted entirely, in order to avoid obscuring the various concepts presented throughout this disclosure.


The use of 3-D printing in the context of transport structures provides significant flexibility for enabling manufacturers of mechanical structures and mechanized assemblies to manufacture parts with complex geometries. For example, 3-D printing techniques provide manufacturers with the flexibility to design and build parts having intricate internal lattice structures and/or profiles that are not possible to manufacture via traditional manufacturing processes.



FIG. 1 is a flow diagram 100 illustrating an exemplary process of initiating an AM process. A data model of the desired 3-D object to be printed is rendered (step 110). A data model is a virtual design of the 3-D object. Thus, the data model may reflect the geometrical and structural features of the 3-D object, as well as its material composition. The data model may be created using a variety of methods, including CAE-based optimization, 3D modeling, photogrammetry software, and camera imaging. CAE-based optimization may include, for example, cloud-based optimization, fatigue analysis, linear or non-linear finite element analysis (FEA), and durability analysis.


3-D modeling software, in turn, may include one of numerous commercially available 3-D modeling software applications. Data models may be rendered using a suitable computer-aided design (CAD) package, for example in an STL format. STL is one example of a file format associated with commercially available CAD software. A CAD program may be used to create the data model of the 3-D object as an STL file. Thereupon, the STL file may undergo a process whereby errors in the file are identified and resolved.


Following error resolution, the data model can be “sliced” by a software application known as a slicer to thereby produce a set of instructions for 3-D printing the object, with the instructions being compatible and associated with the particular 3-D printing technology to be utilized (step 120). Numerous slicer programs are commercially available. Slicer programs convert the data model into a series of individual layers representing thin slices (e.g., 100 microns thick) of the object be printed, along with a file containing the printer-specific instructions for 3-D printing these successive individual layers to produce an actual 3-D printed representation of the data model.


A common type of file used for this purpose is a G-code file, which is a numerical control programming language that includes instructions for 3-D printing the object. The G-code file, or other file constituting the instructions, is uploaded to the 3-D printer (step 130). Because the file containing these instructions is typically configured to be operable with a specific 3-D printing process, it will be appreciated that many formats of the instruction file are possible depending on the 3-D printing technology used.


In addition to the printing instructions that dictate what and how an object is to be rendered, the appropriate physical materials necessary for use by the 3-D printer in rendering the object are loaded into the 3-D printer using any of several conventional and often printer-specific methods (step 140). Powder bed fusion (PBF), for example, is an AM technique that uses a laser or other power source, along with a deflector, to fuse powdered material by aiming the laser or power source automatically at points in space defined by a 3-D model and binding the material together to create a solid structure. PBF includes within its scope various specific types of AM methods. Selective laser melting (SLM) and selective laser sintering (SLS), for instance, are PBF techniques in which print materials may be loaded as powders into a powder bed defined by a build plate and bordering walls (see FIGS. 2A-D). Layers of powder are deposited in a controlled manner into the powder bed for the power source to selectively manipulate on a layer-by-layer basis. Depending on the type of 3-D printer, other techniques for loading printing materials may be used. For example, in fused deposition modelling (FDM) 3-D printers, materials are often loaded as filaments on spools, which are placed on one or more spool holders. The filaments are typically fed into an extruder apparatus which, in operation, heats the filament into a melted form before ejecting the material onto a build plate or other substrate.


Referring back to FIG. 1, the respective data slices of the 3-D object are then printed based on the provided instructions using the material(s) (step 150). In 3-D printers that use laser sintering, a laser scans a powder bed and melts the powder together where structure is desired, and avoids scanning areas where the sliced data indicates that nothing is to be printed. This process may be repeated thousands of times until the desired structure is formed, after which the printed part is removed from a fabricator. In fused deposition modelling, parts are printed by applying successive layers of model and support materials to a substrate. In general, any suitable 3-D printing technology may be employed for purposes of this disclosure.



FIGS. 2A-D illustrate respective side views of an exemplary PBF system 200 during different stages of operation. As noted above, the particular embodiment illustrated in FIGS. 2A-D is one of many suitable examples of a PBF system employing principles of this disclosure. It should also be noted that elements of FIGS. 2A-D and the other figures in this disclosure are not necessarily drawn to scale, but may be drawn larger or smaller for the purpose of better illustration of concepts described herein. PBF system 200 can include a depositor 201 that can deposit each layer of metal powder, an energy beam source 203 that can generate an energy beam, a deflector 205 that can apply the energy beam to fuse the powder, and a build plate 207 that can support one or more build pieces, such as a build piece 209. PBF system 200 can also include a build floor 211 positioned within a powder bed receptacle. The walls of the powder bed receptacle 212 generally define the boundaries of the powder bed receptacle, which is sandwiched between the walls 212 from the side and abuts a portion of the build floor 211 below. Build floor 211 can progressively lower build plate 207 so that depositor 201 can deposit a next layer. The entire mechanism may reside in a chamber 213 that can enclose the other components, thereby protecting the equipment, enabling atmospheric and temperature regulation and mitigating contamination risks. Depositor 201 can include a hopper 215 that contains a powder 217, such as a metal powder, and a leveler 219 that can level the top of each layer of deposited powder.


Referring specifically to FIG. 2A, this figure shows PBF system 200 after a slice of build piece 209 has been fused, but before the next layer of powder has been deposited. In fact, FIG. 2A illustrates a time at which PBF system 200 has already deposited and fused slices in multiple layers, e.g., 150 layers, to form the current state of build piece 209, e.g., formed of 150 slices. The multiple layers already deposited have created a powder bed 221, which includes powder that was deposited but not fused.



FIG. 2B shows PBF system 200 at a stage in which build floor 211 can lower by a powder layer thickness 232. The lowering of build floor 211 causes build piece 209 and powder bed 221 to drop by powder layer thickness 232, so that the top of the build piece and powder bed are lower than the top of powder bed receptacle wall 212 by an amount equal to the powder layer thickness. In this way, for example, a space with a consistent thickness equal to powder layer thickness 232 can be created over the tops of build piece 209 and powder bed 221.



FIG. 2C shows PBF system 200 at a stage in which depositor 201 is positioned to deposit powder 217 in a space created over the top surfaces of build piece 209 and powder bed 221 and bounded by powder bed receptacle walls 212. In this example, depositor 201 progressively moves over the defined space while releasing powder 217 from hopper 215. Leveler 219 can level the released powder to form a powder layer 225 that has a thickness substantially equal to the powder layer thickness 232 (see FIG. 2B). Thus, the powder in a PBF system can be supported by a powder support structure, which can include, for example, a build plate 207, a build floor 211, a build piece 209, walls 212, and the like. It should be noted that the illustrated thickness of powder layer 225 (i.e., powder layer thickness 232 (FIG. 2B)) is greater than an actual thickness used for the example involving 150 previously-deposited layers discussed above with reference to FIG. 2A.



FIG. 2D shows PBF system 200 at a stage in which, following the deposition of powder layer 225 (FIG. 2C), energy beam source 203 generates an energy beam 227 and deflector 205 applies the energy beam to fuse the next slice in build piece 209. In various exemplary embodiments, energy beam source 203 can be an electron beam source, in which case energy beam 227 constitutes an electron beam. Deflector 205 can include deflection plates that can generate an electric field or a magnetic field that selectively deflects the electron beam to cause the electron beam to scan across areas designated to be fused. In various embodiments, energy beam source 203 can be a laser, in which case energy beam 227 is a laser beam. Deflector 205 can include an optical system that uses reflection and/or refraction to manipulate the laser beam to scan selected areas to be fused.


In various embodiments, the deflector 205 can include one or more gimbals and actuators that can rotate and/or translate the energy beam source to position the energy beam. In various embodiments, energy beam source 203 and/or deflector 205 can modulate the energy beam, e.g., turn the energy beam on and off as the deflector scans so that the energy beam is applied only in the appropriate areas of the powder layer. For example, in various embodiments, the energy beam can be modulated by a digital signal processor (DSP).


Components such as load-bearing panels often require complex interfaces and connections that are machined using conventional methods. These methods are often costly and time-consuming, if possible at all, given that traditional manufacturing techniques typically are not optimal for producing geometrically complex components. Moreover, because many conventional transport structures rely on body parts and outer shells that must be engineered to provide resistance to significant structural loads, sophisticated brackets, clamps, and other secure structures are often necessary to provide a sufficiently strong interface between these body panels and other components within the transport structure.


In more modern manufacturing techniques that use AM solutions in the production of transport structure such as automobiles, the body panels and outer shells of these automobiles are often no longer responsible for bearing the principal structural loads. As such, the practical requirements for increased strength and sophistication in the attachments and connections used with such panels and similar parts may no longer be applicable. As the demands for these mechanical attachments are relaxed, new solutions for providing interfaces between parts may become available.


Accordingly, in one aspect of the disclosure, an additively manufactured structure for providing an interface between parts in a transport structure is disclosed. The interface structure as proposed herein may, among other benefits, simplify interchangeability, eliminate the need for tooling and other conventional manufacturing techniques, and capitalize on the flexibility offered by AM technology. The interface structures as described herein can reduce or eliminate the need for brackets or other more complex interface structures. The interface structures as proposed herein may include functionality that can be integrated into existing parts where possible. Additionally, the interface structures can be modified and tailored to adapt to provide interfaces in new or custom situations where necessary.


The interface structures as disclosed herein may, in an embodiment, integrate porous bond faces at their surfaces for facilitating straightforward molding or co-molding with existing panels and other parts. The interface structures may, in another embodiment, incorporate co-printed adjustability. The interface structures may, in still another embodiment, enable the use of common “in-mold” attachment points for various open and mold processes that may be used for producing a part (e.g., a panel) that will be used in conjunction with the interface structure.



FIG. 3 is a front illustration of an interface structure 304 affixed to a part 302. In an exemplary embodiment, the interface structure 304 may be additively manufactured. Further, in an exemplary embodiment, the part 302 may be a panel. The panel may be an exterior or outer panel of a transport structure, or it may be an interior panel. The part 302 may, alternatively, be another type of part for use within the transport structure. The interface structure 304 may be connected to part 302. In an embodiment, the interface structure 304 constitutes a body having opposing surfaces 310A and 310B (310B is obscured from view). The part 302 may have a surface 308 to which a corresponding surface 310B of the body of interface structure 304 may be affixed. For example, if the part 302 is a panel, an interior or Class-B side surface 308 of the panel may be affixed to a surface 310B (obscured from view) of the interface structure 304. If the part 302 is a part other than a panel, then to effect this surface-surface connection, the part 302 may have a flat or approximately flat surface having a surface area adequate to effect the surface-surface connection with interface structure 304. However, in other embodiments, the interface structure 304 may be curved or contoured to match a corresponding contour of the part 302. Thus, neither the interface structure 304 nor the part 302 need be flat in those embodiments. In still other embodiments, the body of the interface structure 302 may be coupled to the part 302 in ways other than a surface-to-surface connection.


Referring still to FIG. 3, the surface 310B of the interface structure 304 may be affixed to the surface 308 of the part 302 through various means. For example, an adhesive may be used to between surfaces 310B and 308 to secure the connection between interface structure 304 and part 302. Alternatively, a mechanical connection may be used in some embodiments, such as fixtures, clamps, screws, etc. In an embodiment, interface structure 304 and corresponding surface 310B are co-molded onto surface 308 of part 302.


Interface structure 304 may include on the surface 310A a fitting 312. The fitting 312 may extend from surface 310A of the interface structure 304. In an embodiment, the fitting 312 includes a pair of flex legs 306A and 306B and a partial circular shaped receptacle 323 for assembly (mating) with a complementary fitting on another part (not shown) to which the interface structure 304 provides an interface. A complementary fitting as used in this disclosure broadly includes any type of standard or non-standard hardware that enables a connection between two parts, including a male-female fitting, threaded fasteners with apertures, or any fitting wherein the respective structures on two components can be positioned and oriented to enable a connection. As used herein, the fitting of one component (e.g., fitting 312 of interface structure 104) is broadly deemed to mate with the complementary fitting of another component (e.g., a complementary fitting disposed on another panel) when the connection for which the fittings are designed is realized. In the exemplary embodiment shown, the pair of flex legs 306A and 306B may be used to fit into a complementary fitting, such as a pair of slots having the appropriate dimensions designed to receive flex legs 306A and 306B, wherein the slots are disposed on another part. Alternatively or additionally, fitting 312 may be configured to receive a circular member that can slide in between flex legs 306A and 306B in a direction orthogonal to a surface of fitting 312 and engage with the circular area 323 of the fitting 312. The circular nature 323 of the fitting 312 may enable the connection to provide a three way location, since a circular member inserted into circular area 323 may be able to rotate.



FIG. 4 is a top-down illustration of the interface structure 304 affixed to the part 302. The fitting 312 includes an extension piece 406 extending from the surface 310A of interface structure 304. This extension piece 406 is simply a member that extends orthogonally to the interface structure 304 to separate the fitting 312 from the surface 310A and to provide room for the extension legs 306A and 306B to mate with an appropriate complementary fitting, e.g., to allow a circular member to slide into the area 323 as described above, or to enable flex legs 306A and 306B to engage with respective slots on another part.


As indicated above, the interface structure 304 may be affixed to the part 302 using different methods. In an embodiment, the interface structure 304 is co-molded onto the part 302. For example, where the part 302 is a panel and it is desirable to produce the panel 302 using a molding process, such as a composite panel, the interface structure 304 may be included in the molding process and co-molded to the composite panel contemporaneously with the panel being molded. This technique is described further below with reference to FIGS. 10-12. In an exemplary embodiment, prior to co-molding, the interface structure 304 is additively manufactured to include porous or matrix printed material 404 on the surface 310B. The addition of porous material 404 on surface 310B enables resin from prepreg plies to flow into the porous openings, thereby enabling a stronger connection between surface 310B and the composite part 302 (e.g., the panel) during the co-molding process.


Unlike conventional dedicated fittings or complex fittings designed to have a single use, the AM of the interface structure 304 means that the fittings of interface structure 304 may be varied widely. The use of different fittings may have different advantages, some of which are as simple as to provide a universal fitting that connects to the complementary fittings for a number of different parts.



FIG. 5 is a front illustration of an interface structure 500. The interface structure 500 is similar to the interface structure 304, except that in contrast to the fitting 304 of FIG. 3 which uses a partial circular shape 325, the fitting 512 of FIG. 5 uses a partial octagonal shape 425. Otherwise, the interface structure 500 includes a pair of flex legs 506A and 506B and a viewable surface 510. In embodiment, interface structure 500 may be suitable for a four (4) way location, whereas the interface structure 304 (FIG. 3) may be suitable for a three (3) way location. For example, a complementary fitting may include an elongated octagonal member engaging with octagonal area 523. The ridges from the octagonal shape may be used to prevent the member from rotating, eliminating the degree of freedom in the rotational direction.


It should be understood that the bodies of the various interface structures need not be limited to flat or curved body having a pair of opposing surfaces, but rather can equally well be composed of a variety of geometries. The interface structure can essentially include any shape suitable for providing the appropriate interface. By way of example, the interface structure may be composed of one or more protrusions or extensions, with one protrusion directly coupled to an appropriate fitting. The interface structure need not include an essentially flat rectangular body but instead can be composed of any suitable shape to enable it to interface between the parts. In some embodiments, a longer body may be desired where, for example, more space is desired between the two parts for which the interface is provided.



FIG. 6 is an illustration of a ball 604 for receptacle fitting 600 for use on the interface structure. Thus, in lieu of the structure 312 (FIG. 3) or 512 (FIG. 5), the fitting may include a ball 605 for insertion into a corresponding receptacle of a complementary fitting. As an example, in the case where the interface structure has a body including at least two surfaces or other structural sections (e.g., protrusions), the surface 602 of the fitting 600 may be arranged on a surface of the body or otherwise coupled to a structural section of the associated interface structure. Alternatively, the fitting to be attached on the body may not be the ball itself, but rather may be a receptacle that is configured to receive a ball disposed on a separate complementary fitting.



FIG. 7 is an illustration of a horizontal threaded mounting plate fitting 700 for use on the interface structure. In this case, surface 702 may be arranged on the body of the interface structure. A complementary fitting disposed on another structure in this embodiment may include any structure that can be used in conjunction with a horizontal threaded mounting plate. For example, among numerous other applications, the horizontal threaded mounting plate fitting 700 may be used in combination with a threaded rod for supporting a particular fixture.


Numerous other fittings may be contemplated for use. FIG. 8 is an illustration of a vertical threaded mounting plate fitting 800 for use on the interface structure. This fitting 800 may be used for suspending structures from vertical surfaces, in addition to uses in other applications.



FIG. 9 is an illustration of an AM floating nut fitting 900 for use on the interface structure. In an embodiment, the captive nut 902 of the floating nut fitting 900 may be contained within the component 906 and may float within the component 906. The captive nut 902 may be co-printed with component 906. By virtue of being 3-D printed, the interface structures can be arranged to have any number of possible fitting types and their complementary counterparts. The use of AM significantly increases the flexibility in producing the interface structures with virtually any degree of geometrical sophistication suitable for the application at issue.


In an aspect of the disclosure, the AM interface structure may be co-molded with a part, such as a panel. The interface structure is first additively manufactured. FIG. 10 is an illustration of a side view of an AM interface structure 1000 having a porous open cell matrix 1004 at a surface. As before, the interface structure 1000 includes surface 1002 defined by open and porous matrix material 1004 which was incorporated during the AM process. The interface structure 1000 further includes opposing surfaces 1002 and 1008. An appropriate fitting 1010 is arranged on surface 1008 via an extension pieces 1006. The resulting interface structure may be used in subsequent co-molding steps as described in the exemplary embodiments that follow.



FIG. 11 is an illustration of a side view of a panel 1106 being co-molded with an interface structure. An AM interface structure 1000 is provided as discussed above. In addition, two tooling shells 1102 and 1104 are placed together for forming a panel 1106. Sandwiched between the tooling shells 1102 and 1104 is a material that will be molded and cured to produce the panel 1106. In an embodiment, the material is a composite material. For example, prior to closing the mold, the space between the mold may have been populated with prepreg plies of carbon fiber or another composite material, with additional steps performed as appropriate. In another embodiment, tooling shells 1102 and 1104 each constitute a platen and the panel is being formed in a platen press.


In an exemplary embodiment, the material used to produce the panel 1106 is carbon fiber reinforced polymer (CFRP). During layup, prepregs of a CFRP may be inserted into the mold. In addition to the composite material for the panel 1106, the tooling shell 1104 may be constructed to provide a space for insertion of the interface structure 1000 into the assembly. In an embodiment, tooling shell 1104 is additively manufactured to include a geometry to accommodate the interface structure 1000. In another embodiment, tooling shell 1104 and interface structure 1000 are co-printed. As noted previously, interface structure 1000 is 3-D printed with open and porous material 1004 to enable the interface structure 1000 to adhere more strongly to the panel 1106 to be formed.


After the tooling shells 1102 and 1104 are formed, the interface structure 1000 may be inserted into a cavity of tooling shell 1104 with the fitting portion 1010 of the interface structure disposed in a downward direction. The material for the panel 1106 is then added and the mold is closed. An aperture 1117 present in the interface structure 1000, or another reference point, may be used as a locating feature to ensure an accurate fit of the interface structure 1000 onto the panel 1106. Once the interface structure 1000 is positioned in the downward direction and properly located, the porous material can face the cavity where panel 1106 resides. Conventional molding techniques may be used at this point, including, for example and depending on the application, the use of adhesive and the drawing of a vacuum, and the application of heat. During this process, the interface structure 1000 may be permanently co-molded onto the panel 1106 at surface 1002. The panel, for example, may include the composite material (e.g., CFRP) in the form of prepreg plies in which the resin pre-incorporated into the CRFP flows into and occupies the spaces of the porous structure. When cured, a strong bond may form between interface structure 1000 and panel 1106 as a result of this process. The end result in this embodiment is that panel 1106 is formed to include the interface structure 1000 coupled to a surface of the panel at one end, and configured to interface with another component via fitting 1010 at the other end. As indicated above, the panel 1106 may be an exterior panel of a transport structure. Alternatively, the panel may be an interior panel, e.g., an interior door panel of a vehicle.


In other exemplary embodiments, the technique for co-molding the interface structure 1000 with the panel 1106 may be automated in whole or in part. For example, an automated constructor such as a robot, robotic arm, etc., may receive instructions from a processing system for performing relevant tasks such as placement of interface structure 1000 onto the panel 1106 using locating feature 1117. The 3-D printer itself may be part of a larger automated system in which the interface structure 1000 is 3-D printed, automatedly removed from the 3-D printer, transported as necessary using a mobile automated constructor or a vehicle, and placed into the mold. The automated molding process may in some embodiments be included as a part of the automated AM process, where the steps are performed sequentially. Alternatively, the molding may be performed automatedly under the control of a separate processing system.


In an embodiment, all of these tasks may be performed under the general control of a central controller, which may coordinate the construction of the co-molded panel as shown in FIG. 11, possibly along with simultaneous processes for manufacturing other parts. Alternatively, software control of the various procedures may be segmented, for example with control of the AM process relegated to the 3-D printer, control of the placement process (i.e., removing the part from the 3-D printer and placing the part on the mold) provided to another processing system, and the co-molding performed manually, or provided to yet another processing system, etc.



FIG. 12 is an illustration of a side view of a panel 1202 being oven molded with an interface structure. In the oven molding process, prepregs of carbon fiber plies may be inserted over the tooling shell 1212 during layup. The area over the tooling shell 1212 where the layup occurs is ultimately the area where the composite panel 1202 will be cured. In other embodiments, another type of composite material may be used. Thereupon, a vacuum bag 1210 may then be used to cover the assembly. The purpose of the vacuum bag 1210 is to evacuate air to thereby create mechanical pressure on the material during its cure cycle and to compact and conform the plies in the tooling shell 1212. It will be appreciated that the use of prepreg plies in both molding examples above is that they provide greater control over the fiber percentage in the final part. In addition, prepregs generally have a shorter cure time than other methods involving non-prepreg plies of composites. It should be understood, however, that other materials may be used during the layup process, and different composites are equally possible.


After the prepreg plies are draped over the tooling shell 1212, in some embodiments pressure is applied to the surface of the tooling shell 1212 over the plies to ensure a uniform fit of the plies in panel cavity 1202. In other embodiments, an autoclave may be used to achieve this purpose. Seals 1204 and 1216 are used to ensure that air does not escape during the process. Thereupon, the interface structure 1200 is placed over the composite material such that the porous material 1214 is facing the composite material. Locator 1208 may be used in conjunction with locator puck 1206 arranged over the interface structure 1200 in order to ensure that the interface structure 1200 is accurately placed over the surface of the composite material, thereby assuring that it will be in the proper place on the resulting panel 1202. The assembly is then placed in an oven mold, where a ramp up process occurs as the temperature is increased at some number of degrees Kelvin (or other unit) per minute. Once the target temperature is reached, a dwelling process may ensue where the temperature is maintained at a constant target level for a predetermined time period. Thereafter the temperature is decreased in a ramp down process. The curing process generally causes the polymers in the prepreg to cross link as the composite part solidifies. At this point, the AM interface structure in both processes as described in FIGS. 12 and 13 is connected to the panels or parts 1106 or 1202. Thereupon, the panel or part is now configured to be connected to another part via the fitting on the interface structure.


As described above, while in some embodiments the interface structure may have a flat, curved, or other shaped with opposing surfaces to enable connections on either side, the geometry of the interface structure is not so limited. In other embodiments, including in the examples below, the interface structure may include other sub-structures, sections, elongations and generally other geometries that are most readily adapted to the application at issue.


In another aspect of the disclosure, an interface structure as generally described above may be embodied in an additively manufactured node. A node is an AM structure that includes a feature, e.g., a socket, a receptacle, etc., for accepting another structure, e.g., a tube, a panel, etc. Nodes may be used, for example for forming vehicle chassis using connections to a plurality of connecting tubes. In an embodiment, a node includes a joint for providing one or more conventional structural connections to other components in the transport structure. By way of example, a joint may include protrusions for providing connections to a plurality of connecting tubes that may be used in combination with other joints to form a chassis. Joints are not so limited, however, in their application, and may generally be used to connect many different types of components together. Non-exhaustive examples may include the use of joints in connecting suspension systems to wheel systems, in connecting electronics to dash assemblies, and many other applications.


In an embodiment herein, an AM node incorporates a joint for providing one or more conventional structural connections. The node further includes an extended structure coupled to the joint for interfacing the joint with another part, such as a panel. FIG. 13 is a perspective view of a vehicle chassis, i.e., Blade supercar chassis 1300 built by Divergent Technologies, Inc., having a partial set of body panels and other various parts, e.g. panels 1302, attached thereto. Automobile chassis and corresponding panels, such as Blade supercar chassis 1300 and panel 1302, are examples of structures in which aspects of the disclosure can be practiced. In particular, a universal panel interface structure is demonstrated according to another aspect of the disclosure using an exemplary portion of the Blade supercar chassis 1300 and corresponding panels. Exemplary section 1304 of the vehicle includes an interface between front hood 1306 (shown only in part) and an “A-pillar” of the vehicle, and a portion of a windshield to be installed near the upper surface of circle 1304.



FIG. 14 is a side view of an additively manufactured node 1400 having a joint 1412 coupled to an extended structure 1416. The joint 1412 is connected at structural region 1406 to other structures in the vehicle. The joint 1412 is further coupled to a lower portion of a windshield 1402 via an A-pillar. More specifically, joint 1412 includes a well or recessed area 1410 in which the base of one of A-pillars 1408 is situated and connected, mechanically via fixtures such as a clamp, mount, screws, protrusions, etc., via an adhesive, or through other connection means. In another embodiment, the A-pillar may be co-printed with the joint 1412. The joint 1412 may be used to provide a partial interface to windshield 1402 via A-pillar 1408—i.e., to provide an interface on the side of the windshield interior to the vehicle. For example, a portion of the right side of windshield 1402 near the joint 1400 may rest flush against A-pillar 1408.


The AM node 1400 may also include an extended structure 1416, which in this embodiment, is coupled to the joint 1412 via a network of metallic members. In some embodiments, the connection between the joint 1412 and extended structure 1416 is such that the two structures appear substantially as one, without any particular demarcation line. In an embodiment, the joint 1412 and extended structure are 3-D printed as a single structure. The extended structure 1416 is configured in this exemplary embodiment to provide an interface with vehicle hood 1404 via the fitting 1420 of the extended structure 1416 and the hood's complementary fitting 1422 (shown more clearly in FIG. 15). The hood 1404 can also be configured to interface with the lower portion of windshield 1402 using the extended structure 1416, the joint 1412, A-pillar 1408 and fitting 1420, along with other components. Accordingly, in one embodiment, node 1400, in addition to providing an interface between hood 1404 and joint 1412 via extended structure 1416 and fitting 1420, can also provide a number of additional interconnections to various other portions of the vehicle. According, AM node 1400 advantageously incorporates the aforedescribed interface structure as an extended structure coupled with a fully functional joint.



FIG. 15 is an enlarged side view of the additively manufactured node 1500 including joint 1512 having extended structure 1516 for achieving the connections and interfaces described above with reference to FIG. 14. As shown in FIG. 15, extended structure 1516 in this exemplary embodiment is composed of a network of members, such as elongated member 1540 and members 1542. These structures may be chosen for design reasons, as other geometries may be equally suitable for other nodes. As before, joint 1512 of node 1500 may include a connection via recessed area 1510 to A-pillar 1508 for interfacing with windshield 1502, as well as another connection 1506 to other parts of the vehicle.


In the embodiment shown, elongated member 1540 of extended structure 1516 includes an upper area in which a fitting is situated for providing an interface, in this example, with hood 1504. In the example shown, member 1540 may include an aperture or protrusion generally disposed along the horizontal axis 1580 (or in other embodiments, a cut-out area along a surface of the member). A threaded fastener 1538 having a tightening knob 1536 may be provided through the protrusion through axis 1580. Fastener 1538 may extend through the protrusion and may be tightened by tightening knob 1536. At an area 1530 close to an end of the fastener 1538 that extends out of the protrusion, fastener 1538 may include a vertically disposed aperture for receiving a vertical rod or other member arranged on a surface 1534 adjacent hood 1504. In an exemplary embodiment, fastener 1538 and rod 1532 may constitute complementary fittings with respect to one another, with fastener 1538 being a fitting associated with extended structure 1516 and therefore node 1500, and with rod 1532 being associated with surface structure 1534 and hood 1505.


In an exemplary embodiment, surface structure 1534 may constitute an interface structure as described in previous embodiments, in which rod 1534 constitutes a fitting that extends from a first surface of structure 1534 and with the second, opposing surface of 1534 affixed to the hood 1504. In an embodiment, structure 1534 may be co-molded with the hood 1504 using techniques previously described. Structure 1534 in this respect may constitute a body of an interface structure for interfacing a panel (hood 1504) with a node (node 1500).



FIG. 16 is a side view of the additively manufactured node 1600 connected with an interface structure 1634 disposed on a vehicle hood 1604. Similar to the previous illustrations, FIG. 16 shows node 1600 composed of joint 1612 for providing a connection 1606 to another structure (not shown), for providing a connection to windshield 1602 via A-pillar 1608 secured into the joint 1612, and for providing an extended structure 1616 having a network of members 1626 that connect at an end to a receptacle 1631 for a ball structure. Secured to a surface hood 1604 via a co-molding process or other affixation means (adhesive or mechanical connectors, etc.) is the corresponding surface of interface structure 1634. As in the previous illustrations, the body of interface structure 1634 is curved to match the contour of hood 1604. Extending from an opposing surface of interface structure 1634 (i.e., away from the hood 1604) is a small network of three converging members 1635 that terminate in a ball 1633 configured to fit into the receptacle 1631. Accordingly, body 1634 may be used to provide a simple and universal interface between the hood 1604 (or another part) and node 1600.



FIG. 17 is a flow diagram of an exemplary method for providing an interface between first and second parts of a transport structure. In step 1702, an interface structure is additively manufactured. The interface structure has a first and second section and may further include first and second surfaces respectively associated with each section. The sections may include, for example, elongated members or chunks of materials, or rods that are narrow but that widen at the end to provide a wider surface area to accommodate a surface connection or a fitting. In some embodiments, the second section may extend directly into a fitting without the need for a predefined surface. For example, the second section may include an elongate rod having a ball at its end. As another illustration, the second section may include a threaded fastener.


In step 1704, the first surface is co-molded or otherwise affixed, through an adhesive or other means to a surface of the panel or other part to which will provide an interface. Here again, in some embodiments the first section may be geometrically oriented such that a flat first surface is not needed to effect the attachment to the part at issue.


In step 1706, the fitting is mated with a complementary fitting arranged on a second part. The interface structure is thereby able to provide the interface with the first and second parts.


The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these exemplary embodiments presented throughout this disclosure will be readily apparent to those skilled in the art, and the concepts disclosed herein may be applied to other techniques for providing interfaces between parts. Thus, the claims are not intended to be limited to the exemplary embodiments presented throughout the disclosure, but are to be accorded the full scope consistent with the language claims. All structural and functional equivalents to the elements of the exemplary embodiments described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. § 112(f), or analogous law in applicable jurisdictions, unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for.”

Claims
  • 1. An apparatus for joining parts of a transport structure, comprising: an additively manufactured body configured to be co-molded with a first part of the transport structure, wherein the additively manufactured body includes,a first surface configured to be connected to a surface of the first part of the transport structure during co-molding, wherein the first surface comprises a porous material, anda second surface that comprises a fitting configured to be mated with a complementary fitting disposed on a second part of the transport structure that is configured to be received by the fitting of the additively manufactured body.
  • 2. The apparatus of claim 1, wherein the first surface is shaped to conform to the surface of the first part.
  • 3. The apparatus of claim 1, wherein the first part comprises a panel.
  • 4. The apparatus of claim 1, wherein the second part comprises a node.
  • 5. The apparatus of claim 1, wherein the first surface is arranged substantially opposite the second surface.
  • 6. The apparatus of claim 1, wherein the fitting comprises a ball receptacle or a socket for a ball receptacle.
  • 7. The apparatus of claim 1, wherein the fitting comprises a mounting plate or a receptacle for a mounting plate.
  • 8. The apparatus of claim 1, wherein the fitting comprises a co-printed floating nut.
  • 9. The apparatus of claim 1, wherein the fitting comprises one or more flex legs.
  • 10. The apparatus of claim 1, wherein the fitting comprises one of a three-way location or a four-way location.
  • 11. An additively manufactured node for a transport structure, comprising: a joint member comprising a porous material and configured to provide at least one structural connection; andan extended structure coupled to the joint member and comprising a fitting for connecting to a complementary fitting arranged on a part,wherein the extended structure comprises at least one member coupled to the joint member.
  • 12. The node of claim 11, wherein the joint member comprises a protrusion configured to support the fitting.
  • 13. The node of claim 11, wherein the joint member comprises a recessed section configured to support the fitting.
  • 14. The node of claim 11, wherein the fitting comprises a threaded fastener.
  • 15. The node of claim 14, wherein the threaded fastener comprises a protrusion for receiving a rod coupled to the part.
  • 16. The node of claim 11, wherein the part comprises a panel.
  • 17. The node of claim 16, wherein the panel comprises a vehicle hood.
  • 18. The node of claim 11, wherein the fitting comprises one of a ball receptacle or a socket for a ball receptacle.
  • 19. The node of claim 11, wherein the fitting comprises one of a mounting plate or a receptacle for a mounting plate.
  • 20. The node of claim 11, wherein the fitting comprises a co-printed floating nut.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/697,396, filed on Sep. 6, 2017, the contents of which are incorporated herein by reference in their entirety.

US Referenced Citations (358)
Number Name Date Kind
4718712 Nakatani Jan 1988 A
5203226 Hongou et al. Apr 1993 A
5443673 Fisher Aug 1995 A
5540970 Banfield Jul 1996 A
5742385 Champa Apr 1998 A
5990444 Costin Nov 1999 A
6010155 Rinehart Jan 2000 A
6096249 Yamaguchi Aug 2000 A
6140602 Costin Oct 2000 A
6250533 Otterbein et al. Jun 2001 B1
6252196 Costin et al. Jun 2001 B1
6318642 Goenka et al. Nov 2001 B1
6365057 Whitehurst et al. Apr 2002 B1
6391251 Keicher et al. May 2002 B1
6409930 Whitehurst et al. Jun 2002 B1
6468439 Whitehurst et al. Oct 2002 B1
6554345 Jonsson Apr 2003 B2
6585151 Ghosh Jul 2003 B1
6644721 Miskech et al. Nov 2003 B1
6811744 Keicher et al. Nov 2004 B2
6866497 Saiki Mar 2005 B2
6919035 Clough Jul 2005 B1
6926970 James et al. Aug 2005 B2
7076919 Katakura et al. Jul 2006 B2
7152292 Hohmann et al. Dec 2006 B2
7344186 Hausler et al. Mar 2008 B1
7500373 Quell Mar 2009 B2
7586062 Heberer Sep 2009 B2
7637134 Burzlaff et al. Dec 2009 B2
7710347 Gentilman et al. May 2010 B2
7716802 Stern et al. May 2010 B2
7745293 Yamazaki et al. Jun 2010 B2
7766123 Sakurai et al. Aug 2010 B2
7852388 Shimizu et al. Dec 2010 B2
7908922 Zarabadi et al. Mar 2011 B2
7951324 Naruse et al. May 2011 B2
8094036 Heberer Jan 2012 B2
8163077 Eron et al. Apr 2012 B2
8286236 Jung et al. Oct 2012 B2
8289352 Vartanian et al. Oct 2012 B2
8297096 Mizumura et al. Oct 2012 B2
8354170 Henry et al. Jan 2013 B1
8383028 Lyons Feb 2013 B2
8408036 Reith et al. Apr 2013 B2
8429754 Jung et al. Apr 2013 B2
8437513 Derakhshani et al. May 2013 B1
8444903 Lyons et al. May 2013 B2
8452073 Taminger et al. May 2013 B2
8599301 Dowski, Jr. et al. Dec 2013 B2
8606540 Haisty et al. Dec 2013 B2
8610761 Haisty et al. Dec 2013 B2
8631996 Quell et al. Jan 2014 B2
8675925 Derakhshani et al. Mar 2014 B2
8678060 Dietz et al. Mar 2014 B2
8686314 Schneegans et al. Apr 2014 B2
8686997 Radet et al. Apr 2014 B2
8694284 Berard Apr 2014 B2
8720876 Reith et al. May 2014 B2
8752166 Jung et al. Jun 2014 B2
8755923 Farahani et al. Jun 2014 B2
8787628 Derakhshani et al. Jul 2014 B1
8818771 Gielis et al. Aug 2014 B2
8873238 Wilkins Oct 2014 B2
8978535 Ortiz et al. Mar 2015 B2
9006605 Schneegans et al. Apr 2015 B2
9071436 Jung et al. Jun 2015 B2
9101979 Hofmann et al. Aug 2015 B2
9104921 Derakhshani et al. Aug 2015 B2
9126365 Mark et al. Sep 2015 B1
9128476 Jung et al. Sep 2015 B2
9138924 Yen Sep 2015 B2
9149988 Mark et al. Oct 2015 B2
9156205 Mark et al. Oct 2015 B2
9186848 Mark et al. Nov 2015 B2
9244986 Karmarkar Jan 2016 B2
9248611 Divine et al. Feb 2016 B2
9254535 Buller et al. Feb 2016 B2
9266566 Kim Feb 2016 B2
9269022 Rhoads et al. Feb 2016 B2
9327452 Mark et al. May 2016 B2
9329020 Napoletano May 2016 B1
9332251 Haisty et al. May 2016 B2
9346127 Buller et al. May 2016 B2
9389315 Bruder et al. Jul 2016 B2
9399256 Buller et al. Jul 2016 B2
9403235 Buller et al. Aug 2016 B2
9418193 Dowski, Jr. et al. Aug 2016 B2
9457514 Schwärzler Oct 2016 B2
9469057 Johnson et al. Oct 2016 B2
9478063 Rhoads et al. Oct 2016 B2
9481402 Muto et al. Nov 2016 B1
9486878 Buller et al. Nov 2016 B2
9486960 Paschkewitz et al. Nov 2016 B2
9502993 Deng Nov 2016 B2
9525262 Stuart et al. Dec 2016 B2
9533526 Nevins Jan 2017 B1
9555315 Aders Jan 2017 B2
9555580 Dykstra et al. Jan 2017 B1
9557856 Send et al. Jan 2017 B2
9566742 Keating et al. Feb 2017 B2
9566758 Cheung et al. Feb 2017 B2
9573193 Buller et al. Feb 2017 B2
9573225 Buller et al. Feb 2017 B2
9586290 Buller et al. Mar 2017 B2
9595795 Lane et al. Mar 2017 B2
9597843 Stauffer et al. Mar 2017 B2
9600929 Young et al. Mar 2017 B1
9609755 Coull et al. Mar 2017 B2
9610737 Johnson et al. Apr 2017 B2
9611667 GangaRao et al. Apr 2017 B2
9616623 Johnson et al. Apr 2017 B2
9626487 Jung et al. Apr 2017 B2
9626489 Nilsson Apr 2017 B2
9643361 Liu May 2017 B2
9662840 Buller et al. May 2017 B1
9665182 Send et al. May 2017 B2
9672389 Mosterman et al. Jun 2017 B1
9672550 Apsley et al. Jun 2017 B2
9676145 Buller et al. Jun 2017 B2
9684919 Apsley et al. Jun 2017 B2
9688032 Kia et al. Jun 2017 B2
9690286 Hovsepian et al. Jun 2017 B2
9700966 Kraft et al. Jul 2017 B2
9703896 Zhang et al. Jul 2017 B2
9713903 Paschkewitz et al. Jul 2017 B2
9718302 Young et al. Aug 2017 B2
9718434 Hector, Jr. et al. Aug 2017 B2
9724877 Flitsch et al. Aug 2017 B2
9724881 Johnson et al. Aug 2017 B2
9725178 Wang Aug 2017 B2
9731730 Stiles Aug 2017 B2
9731773 Gami et al. Aug 2017 B2
9741954 Bruder et al. Aug 2017 B2
9747352 Karmarkar Aug 2017 B2
9764415 Seufzer et al. Sep 2017 B2
9764520 Johnson et al. Sep 2017 B2
9765226 Dain Sep 2017 B2
9770760 Liu Sep 2017 B2
9773393 Velez Sep 2017 B2
9776234 Schaafhausen et al. Oct 2017 B2
9782936 Glunz et al. Oct 2017 B2
9783324 Embler et al. Oct 2017 B2
9783977 Alqasimi et al. Oct 2017 B2
9789548 Golshany et al. Oct 2017 B2
9789922 Dosenbach et al. Oct 2017 B2
9796137 Zhang et al. Oct 2017 B2
9802108 Aders Oct 2017 B2
9809977 Carney et al. Nov 2017 B2
9817922 Glunz et al. Nov 2017 B2
9818071 Jung et al. Nov 2017 B2
9821339 Paschkewitz et al. Nov 2017 B2
9821411 Buller et al. Nov 2017 B2
9823143 Twelves, Jr. et al. Nov 2017 B2
9829564 Bruder et al. Nov 2017 B2
9846933 Yuksel Dec 2017 B2
9854828 Langeland Jan 2018 B2
9858604 Apsley et al. Jan 2018 B2
9862833 Hasegawa et al. Jan 2018 B2
9862834 Hasegawa et al. Jan 2018 B2
9863885 Zaretski et al. Jan 2018 B2
9870629 Cardno et al. Jan 2018 B2
9879981 Dehghan Niri et al. Jan 2018 B1
9884663 Czinger et al. Feb 2018 B2
9898776 Apsley et al. Feb 2018 B2
9914150 Pettersson et al. Mar 2018 B2
9919360 Buller et al. Mar 2018 B2
9931697 Levin et al. Apr 2018 B2
9933031 Bracamonte et al. Apr 2018 B2
9933092 Sindelar Apr 2018 B2
9957031 Golshany et al. May 2018 B2
9958535 Send et al. May 2018 B2
9962767 Buller et al. May 2018 B2
9963978 Johnson et al. May 2018 B2
9971920 Derakhshani et al. May 2018 B2
9976063 Childers et al. May 2018 B2
9987792 Flitsch et al. Jun 2018 B2
9988136 Tiryaki et al. Jun 2018 B2
9989623 Send et al. Jun 2018 B2
9990565 Rhoads et al. Jun 2018 B2
9994339 Colson et al. Jun 2018 B2
9996890 Cinnamon et al. Jun 2018 B1
9996945 Holzer et al. Jun 2018 B1
10002215 Dowski et al. Jun 2018 B2
10006156 Kirkpatrick Jun 2018 B2
10011089 Lyons et al. Jul 2018 B2
10011685 Childers et al. Jul 2018 B2
10012532 Send et al. Jul 2018 B2
10013777 Mariampillai et al. Jul 2018 B2
10015908 Williams et al. Jul 2018 B2
10016852 Broda Jul 2018 B2
10016942 Mark et al. Jul 2018 B2
10017384 Greer et al. Jul 2018 B1
10018576 Herbsommer et al. Jul 2018 B2
10022792 Srivas et al. Jul 2018 B2
10022912 Kia et al. Jul 2018 B2
10027376 Sankaran et al. Jul 2018 B2
10029415 Swanson et al. Jul 2018 B2
10040239 Brown, Jr. Aug 2018 B2
10046412 Blackmore Aug 2018 B2
10048769 Selker et al. Aug 2018 B2
10052712 Blackmore Aug 2018 B2
10052820 Kemmer et al. Aug 2018 B2
10055536 Maes et al. Aug 2018 B2
10058764 Aders Aug 2018 B2
10058920 Buller et al. Aug 2018 B2
10061906 Nilsson Aug 2018 B2
10065270 Buller et al. Sep 2018 B2
10065361 Susnjara et al. Sep 2018 B2
10065367 Brown, Jr. Sep 2018 B2
10068316 Holzer et al. Sep 2018 B1
10071422 Buller et al. Sep 2018 B2
10071525 Susnjara et al. Sep 2018 B2
10072179 Drijfhout Sep 2018 B2
10074128 Colson et al. Sep 2018 B2
10076875 Mark et al. Sep 2018 B2
10076876 Mark et al. Sep 2018 B2
10081140 Paesano et al. Sep 2018 B2
10081431 Seack et al. Sep 2018 B2
10086568 Snyder et al. Oct 2018 B2
10087320 Simmons et al. Oct 2018 B2
10087556 Gallucci et al. Oct 2018 B2
10099427 Mark et al. Oct 2018 B2
10100542 GangaRao et al. Oct 2018 B2
10100890 Bracamonte et al. Oct 2018 B2
10107344 Bracamonte et al. Oct 2018 B2
10108766 Druckman et al. Oct 2018 B2
10113600 Bracamonte et al. Oct 2018 B2
10118347 Stauffer et al. Nov 2018 B2
10118579 Lakic Nov 2018 B2
10120078 Bruder et al. Nov 2018 B2
10124546 Johnson et al. Nov 2018 B2
10124570 Evans et al. Nov 2018 B2
10137500 Blackmore Nov 2018 B2
10138354 Groos et al. Nov 2018 B2
10144126 Krohne et al. Dec 2018 B2
10145110 Carney et al. Dec 2018 B2
10151363 Bracamonte et al. Dec 2018 B2
10152661 Kieser Dec 2018 B2
10160278 Coombs et al. Dec 2018 B2
10161021 Lin et al. Dec 2018 B2
10166752 Evans et al. Jan 2019 B2
10166753 Evans et al. Jan 2019 B2
10171578 Cook et al. Jan 2019 B1
10173255 TenHouten et al. Jan 2019 B2
10173327 Kraft et al. Jan 2019 B2
10178800 Mahalingam et al. Jan 2019 B2
10179640 Wilkerson Jan 2019 B2
10183330 Buller et al. Jan 2019 B2
10183478 Evans et al. Jan 2019 B2
10189187 Keating et al. Jan 2019 B2
10189240 Evans et al. Jan 2019 B2
10189241 Evans et al. Jan 2019 B2
10189242 Evans et al. Jan 2019 B2
10190424 Johnson et al. Jan 2019 B2
10195693 Buller et al. Feb 2019 B2
10196539 Boonen et al. Feb 2019 B2
10197338 Melsheimer Feb 2019 B2
10200677 Trevor et al. Feb 2019 B2
10201932 Flitsch et al. Feb 2019 B2
10201941 Evans et al. Feb 2019 B2
10202673 Lin et al. Feb 2019 B2
10204216 Nejati et al. Feb 2019 B2
10207454 Buller et al. Feb 2019 B2
10209065 Estevo, Jr. et al. Feb 2019 B2
10210662 Holzer et al. Feb 2019 B2
10213837 Kondoh Feb 2019 B2
10214248 Hall et al. Feb 2019 B2
10214252 Schellekens et al. Feb 2019 B2
10214275 Goehlich Feb 2019 B2
10220575 Reznar Mar 2019 B2
10220881 Tyan et al. Mar 2019 B2
10221530 Driskell et al. Mar 2019 B2
10226900 Nevins Mar 2019 B1
10232550 Evans et al. Mar 2019 B2
10234342 Moorlag et al. Mar 2019 B2
10237477 Trevor et al. Mar 2019 B2
10252335 Buller et al. Apr 2019 B2
10252336 Buller et al. Apr 2019 B2
10254499 Cohen et al. Apr 2019 B1
10257499 Hintz et al. Apr 2019 B2
10259044 Buller et al. Apr 2019 B2
10268181 Nevins Apr 2019 B1
10269225 Velez Apr 2019 B2
10272860 Mohapatra et al. Apr 2019 B2
10272862 Whitehead Apr 2019 B2
10275564 Ridgeway et al. Apr 2019 B2
10279580 Evans et al. May 2019 B2
10285219 Fetfatsidis et al. May 2019 B2
10286452 Buller et al. May 2019 B2
10286603 Buller et al. May 2019 B2
10286961 Hillebrecht et al. May 2019 B2
10289263 Troy et al. May 2019 B2
10289875 Singh et al. May 2019 B2
10291193 Dandu et al. May 2019 B2
10294552 Liu et al. May 2019 B2
10294982 Gabrys et al. May 2019 B2
10295989 Nevins May 2019 B1
10303159 Czinger et al. May 2019 B2
10307824 Kondoh Jun 2019 B2
10310197 Droz et al. Jun 2019 B1
10313651 Trevor et al. Jun 2019 B2
10315252 Mendelsberg et al. Jun 2019 B2
10336050 Susnjara Jul 2019 B2
10337542 Hesslewood et al. Jul 2019 B2
10337952 Bosetti et al. Jul 2019 B2
10339266 Urick et al. Jul 2019 B2
10343330 Evans et al. Jul 2019 B2
10343331 McCall et al. Jul 2019 B2
10343355 Evans et al. Jul 2019 B2
10343724 Polewarczyk et al. Jul 2019 B2
10343725 Martin et al. Jul 2019 B2
10350823 Rolland et al. Jul 2019 B2
10356341 Holzer et al. Jul 2019 B2
10356395 Holzer et al. Jul 2019 B2
10357829 Spink et al. Jul 2019 B2
10357957 Buller et al. Jul 2019 B2
10359756 Newell et al. Jul 2019 B2
10369629 Mendelsberg et al. Aug 2019 B2
10382739 Rusu et al. Aug 2019 B1
10384393 Xu et al. Aug 2019 B2
10384416 Cheung et al. Aug 2019 B2
10389410 Brooks et al. Aug 2019 B2
10391710 Mondesir Aug 2019 B2
10392097 Pham et al. Aug 2019 B2
10392131 Deck et al. Aug 2019 B2
10393315 Tyan Aug 2019 B2
10400080 Ramakrishnan et al. Sep 2019 B2
10401832 Snyder et al. Sep 2019 B2
10403009 Mariampillai et al. Sep 2019 B2
10406750 Barton et al. Sep 2019 B2
10412283 Send et al. Sep 2019 B2
10416095 Herbsommer et al. Sep 2019 B2
10421496 Swayne et al. Sep 2019 B2
10421863 Hasegawa et al. Sep 2019 B2
10422478 Leachman et al. Sep 2019 B2
10425793 Sankaran et al. Sep 2019 B2
10427364 Alves Oct 2019 B2
10429006 Tyan et al. Oct 2019 B2
10434573 Buller et al. Oct 2019 B2
10435185 Divine et al. Oct 2019 B2
10435773 Liu et al. Oct 2019 B2
10436038 Buhler et al. Oct 2019 B2
10438407 Pavanaskar et al. Oct 2019 B2
10440351 Holzer et al. Oct 2019 B2
10442002 Benthien et al. Oct 2019 B2
10442003 Symeonidis et al. Oct 2019 B2
10449696 Elgar et al. Oct 2019 B2
10449737 Johnson et al. Oct 2019 B2
10461810 Cook et al. Oct 2019 B2
20060108783 Ni et al. May 2006 A1
20090129885 Csik May 2009 A1
20100247869 Meyer Sep 2010 A1
20110176863 Hanley Jul 2011 A1
20140086704 Hemingway Mar 2014 A1
20140277669 Nardi et al. Sep 2014 A1
20170057558 Hillebrecht et al. Mar 2017 A1
20170113344 Schönberg Apr 2017 A1
20170341309 Piepenbrock et al. Nov 2017 A1
Foreign Referenced Citations (39)
Number Date Country
1019980057773 Sep 1998 KR
1996036455 Nov 1996 WO
1996036525 Nov 1996 WO
1996038260 Dec 1996 WO
2003024641 Mar 2003 WO
2004108343 Dec 2004 WO
2005093773 Oct 2005 WO
2007003375 Jan 2007 WO
2007110235 Oct 2007 WO
2007110236 Oct 2007 WO
2008019847 Feb 2008 WO
2007128586 Jun 2008 WO
2008068314 Jun 2008 WO
2008086994 Jul 2008 WO
2008087024 Jul 2008 WO
2008107130 Sep 2008 WO
2008138503 Nov 2008 WO
2008145396 Dec 2008 WO
2009083609 Jul 2009 WO
2009098285 Aug 2009 WO
2009112520 Sep 2009 WO
2009135938 Nov 2009 WO
2009140977 Nov 2009 WO
2010125057 Nov 2010 WO
2010125058 Nov 2010 WO
2010142703 Dec 2010 WO
2011032533 Mar 2011 WO
2014016437 Jan 2014 WO
2014187720 Nov 2014 WO
2014195340 Dec 2014 WO
2015193331 Dec 2015 WO
2016116414 Jul 2016 WO
2017036461 Mar 2017 WO
2019030248 Feb 2019 WO
2019042504 Mar 2019 WO
2019048010 Mar 2019 WO
2019048498 Mar 2019 WO
2019048680 Mar 2019 WO
2019048682 Mar 2019 WO
Non-Patent Literature Citations (5)
Entry
US 9,202,136 B2, 12/2015, Schmidt et al. (withdrawn)
US 9,809,265 B2, 11/2017, Kinjo (withdrawn)
US 10,449,880 B2, 10/2019, Mizobata et al. (withdrawn)
International Search Report and Written Opinion dated Nov. 26, 2018 regarding PCT/US2018/044947.
Chinese version of the Notification of the first Office Action issued for corresponding Application No. CN 201811024935.8, dated Jun. 30, 2021, 7 pages.
Related Publications (1)
Number Date Country
20210252801 A1 Aug 2021 US
Continuations (1)
Number Date Country
Parent 15697396 Sep 2017 US
Child 17190153 US