Methods and apparatuses for using image acquisition data to detect and correct image defects

Information

  • Patent Grant
  • 8212864
  • Patent Number
    8,212,864
  • Date Filed
    Thursday, January 29, 2009
    15 years ago
  • Date Issued
    Tuesday, July 3, 2012
    12 years ago
Abstract
A method and device for detecting a potential defect in an image comprises acquiring a digital image at a time; storing image acquisition data, wherein the image acquisition data includes at least one of a position of a source of light relative to a lens, a distance from the source of light to the lens, a focal length of the lens, a distance from a point on a digital image acquisition device to a subject, an amount of ambient light, or flash intensity; determining dynamic anthropometric data, wherein the dynamic anthropometric data includes one or more dynamically changing human body measurements, of one or more humans represented in the image, captured at the time; and determining a course of corrective action based, at least in part, on the image acquisition data and the dynamic anthropometric data.
Description
FIELD OF THE INVENTION

The present disclosure relates generally to digital image processing and more particularly to error correction in digital photographs.


BACKGROUND OF THE INVENTION

The approaches described in this section are approaches that could be pursued, but are not necessarily approaches that have been previously conceived or pursued. Therefore, unless otherwise indicated, it should not be assumed that any of the approaches described in this section qualify as prior art merely by virtue of their inclusion in this section.


The flashes on many portable cameras can cause undesirable defects in captured images. One of the most common defects is a “Red-eye” phenomenon where a flash is reflected within a subject's eye and appears in a photograph as a red dot where the black pupil of the subject's eye would normally appear. The unnatural glowing red of an eye is due to internal reflections from the vascular membrane behind the retina, which is rich in blood vessels. This undesired defect is well understood to be caused in part by a small angle between the flash of the camera and the lens of the camera. Due to the miniaturization of cameras with integral flash capabilities, the phenomenon can be quite pronounced in many of today's smaller, portable cameras.


The red-eye defect can be minimized by causing the iris to reduce the opening of the pupil, such as with a “pre-flash,” which involves a flash or illumination of light shortly before a flash photograph is taken causing the iris to close. Unfortunately, the pre-flash occurs 0.2 to 0.6 seconds prior to the flash photograph, which is a readily discernible time period within the reaction time of a human subject. Consequently, the subject may believe the pre-flash is the actual photograph and be in a less than desirable position at the time of the actual photograph, or the subject might be informed of the photograph by the pre-flash, typically loosing any spontaneity of the subject that could be captured in the photograph. Therefore, the use of a pre-flash, while somewhat helpful in reducing the red-eye phenomenon, can negatively affect images in other ways.


With the advent of digital cameras and digital image software on computers, techniques for eliminating flash-induced eye defects by processing a captured image with microprocessor-based devices, either external to a camera or built into a camera, have become common place. Most of the algorithms executed by the microprocessor-based devices are quite rudimentary. For example, a common defect removal algorithm involves looking at a digital image for pixels within a color spectrum that form a shape within a range of shapes to identify defect candidates. Techniques exist for narrowing the color spectrum and narrowing the shape range that algorithms use to identify potential defects candidates, but those existing techniques are very limited, and in many cases, are as likely to cause a true-positive to be missed as they are to cause a false-positive to be avoided because such techniques do not account for the physiological variations in human eyes or the conditions under which the image was captured. Therefore, there exists in the art a need for improved flash-induced eye defect detection and correction algorithms.





BRIEF DESCRIPTION OF THE DRAWINGS
Statement Regarding Color Drawings

The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.


The present invention is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings.



FIGS. 1
a-d show examples of common flash-induced eye defects that can occur in captured digital images.



FIG. 2 shows a flow chart illustrating a method embodying aspects of the present invention.



FIGS. 3
a and 3b illustrate two possible configurations for portable digital image acquisition devices.



FIGS. 4
a-b show variations of half-red eye defects.



FIG. 5 shows the various half-red eye phenomenon that occur when a flash is to the right of a lens, to the left of a lens, to the bottom of a lens, to the top of the lens, to the top right of the lens, to the top left of the lens, to the bottom left of the lens, or to the bottom right of the lens.



FIGS. 6
a-b show common color spectrums for red-eye defects for flash-to-lens distances of 2 cm and 5 cm.



FIG. 7 shows a plot of pupil size as a function of ambient lighting.



FIGS. 8
a-c show eyes with various degrees of eye gaze.



FIG. 9 shows the eye gaze angles for an eye pair.



FIG. 10 is a block diagram of a portable image acquisition device.





DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION

In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, that the present invention may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to avoid unnecessarily obscuring the present invention.


Overview



FIGS. 1
a-d show examples of common flash-induced eye defects that can occur in captured digital images. FIG. 1a shows a digital image where an eye is displaying the red-eye phenomenon. FIG. 1b shows a digital image where an eye is displaying golden-eye phenomenon. FIG. 1c shows a digital image where an eye is displaying a half-red eye phenomenon. FIG. 1d shows a digital image where one eye is displaying a red-eye phenomenon, and the other eye is displaying a golden-eye phenomenon. Aspects of the present invention relate to improving algorithms for removing these defects from captured digital images.


U.S. Pat. No. 7,352,394, filed oil Feb. 4, 2004, titled “IMAGE MODIFICATION BASED ON RED-EYE FILTER ANALYSIS,” discusses techniques for removing defects like those shown in FIGS. 1a-d from digital images. The entire disclosure of U.S. Pat. No. 7,352,394 is hereby incorporated by reference for all purposes as if fully set forth herein


Techniques of the present invention include storing image acquisition data when an image is captured or acquired and using the image acquisition data in determining how to correct potential defects like the ones illustrated in FIGS. 1a-d. Examples of image acquisition data can include the position of the flash relative to the lens, the distance from the flash to the lens, a focal length of the lens, the distance from a point on the image acquisition device to a subject being photographed, an amount of ambient light, and flash intensity. The image acquisition data can be used in determining a course of action for how to process the image after capture. For example, image acquisition data corresponding to a certain acquisition condition, such as large ambient light for example, might determine which subset of algorithms from a plurality of defect correction algorithms to apply to a certain image or might determine parameters to be used by a certain defect correction algorithm.


Further techniques of the present invention can include using image acquisition data to determine dynamic anthropometric data to determine which subset of algorithms from a plurality of defect correction algorithms to apply to a certain image or to determine parameters to be used by a certain defect correction algorithm. Further techniques of the present invention can also include using image acquisition data in conjunction with dynamic anthropometric data to determine which subset of algorithms from a plurality of defect correction algorithms to apply to a certain image or to determine parameters to be used by a certain defect correction algorithm.



FIG. 2 shows a flow chart illustrating a method embodying aspects of the present invention. The method comprises capturing a digital image (block 210) with a portable digital image acquisition device such as a camera or smartphone. The method further comprises storing image acquisition data associated with the captured digital image (block 220) and determining dynamic anthropometric data associated with the captured image (block 230). The dynamic anthropometric data can be derived from the image acquisition data, determined from the content of the acquired digital image, or determined in any other manner known in the art. Based on the image acquisition data and dynamic anthropometric data, whether and how to perform corrective action on the digital image can be determined (block 240).


One potential embodiment of the present invention can include one or more processor-readable media having embedded code therein for programming a processor to perform a method including the steps of acquiring a digital image at a time, storing image acquisition data describing a condition at the time, determining an eye gaze angle in the digital image, and determining a course of corrective action based, at least in part, on the image acquisition data and the eye gaze angle.


Another potential embodiment of the present invention can include one or more processor-readable media having embedded code therein for programming a processor to perform a method including the steps of detecting a value indicative of ambient light at a time when the image is acquired, storing the value in association with the image, and determining whether a course of action based, at least in part, on the value.


Another potential embodiment of the present invention can include one or more processor-readable media having embedded code therein for programming a processor to perform a method including the steps of storing a value indicative of a position of a source of light relative to a lens, using the value to identify an expected orientation for a half-red eye defect, and identifying defect candidates in the image at least in part based on the expected orientation.


Another potential embodiment of the present invention can include one or more processor-readable media having embedded code therein for programming a processor to perform a method including the steps of acquiring a digital image at a time; storing image acquisition data, wherein the image acquisition data includes at least one of a position of a source of light relative to a lens, a distance from a source of light to the lens, a focal length of the lens, a distance from a point on a digital image acquisition device to a subject, an amount of ambient light, or flash intensity; determining dynamic anthropometric data, wherein the dynamic anthropometric data includes one or more dynamically changing human body measurements, of one or more humans represented in said image, captured at said time; and, determining a course of corrective action based, at least in part, on the image acquisition data and the dynamic anthropometric data.


Other potential embodiments of the present invention include a portable digital image acquisition device comprising a lens, a digital imaging capturing apparatus, a source of light for providing illumination during image capture, and logic for performing operations stored on processor-readable media having embedded code therein for programming a processor to perform a method.


Image Acquisition Data


Techniques of the present invention include storing, such as in a memory on a portable digital acquisition device, various types of image acquisition data associated with a captured digital image. The image acquisition data can be stored, for example, as metadata associated with an image file. Examples of image acquisition data include but are not necessarily limited to the position of the flash relative to the lens, the distance of the flash from the lens, a focal length of the lens, the distance to a subject being photographed, amount of ambient light, and flash intensity.


One type of image acquisition data that can be stored is the position of a flash relative to the lens that captures a digital image. FIGS. 3a and 3b illustrate two possible configurations for portable digital image acquisition devices 300a-b. In the portable digital image acquisition device 300a of FIG. 3a, the flash 301a is positioned to the side of the lens 302a whereas in the portable digital image acquisition device 300b of FIG. 3b, the flash 301b is positioned directly above the lens 302b. When the portable digital acquisition devices of FIGS. 300a-b are rotated 90 degrees, when taking a profile picture for example, the flash 301a in FIG. 3a will be below the lens 302, and the flash 301b in FIG. 3b will be to the side of the lens 302b. As will be discussed in more detail later, knowing the relative position of the lens to the flash can help identify particular types of eye defect phenomenon. For example, a flash positioned to the side of the lens is more likely to produce a half-red eye phenomenon like the one of FIG. 4a, whereas a flash positioned above the lens is more likely to produce a half-red eye phenomenon like the one shown in FIG. 4b.


Another type of image acquisition data that can be stored is the distance between the lens and the flash. For example, in FIG. 3a, the distance between the lens 302a and flash 301a is shown by dotted line 303a, and in FIG. 3b, the distance between the lens 302b and flash 301b is shown by dotted line 303b. Depending on the configuration of the particular device executing the various defect correction algorithms, the distance between the flash and lens may be constant, in which case the distance can be stored by a device designer without needing to be dynamically calculated with every image acquisition. In other portable digital acquisition devices that have movable lenses or flashes or connection mechanisms for external lenses or flashes, then the distance may be dynamically calculated with every image acquisition.


Another type of image acquisition data that can be stored is ambient lighting as measured by the portable digital image acquisition device at the time a photo is taken. The measurement can be performed by a light sensor such as a charge-coupled device (CCD) sensor or complimentary metal-oxide semiconductor (CMOS) sensor that can transform light information into electronic coding, such as a value indicative of a light value or an exposure value.


Another type of image acquisition data that can be stored is the focal length of a lens. Most digital image acquisition devices have lenses with variable focal lengths. Techniques of the present invention include storing a value indicative of focal length to be used in post-capture image analysis. Another type of image acquisition data that can be stored is the distance between a point on portable digital acquisition device, such as a lens, and a subject being photographed. Most digital image acquisition devices include distance analyzers for use with automatic focusing mechanisms. Techniques of the present invention include storing a value indicative of the distance between a point on the device and a subject to be used in post-capture image analysis.


Using Image Acquisition Data to Determine which Defect Phenomenon to Look for


Techniques of the present invention include using image acquisition data to aid in determining what defect phenomenon to look for. Acquisition data indicating the position of a flash relative to the lens, for example, can be used to determine the orientation of certain defects. For example, if a flash is located above a lens then the yellowish part of a half-red eye will be the lower part of the eye, and vice versa. If a flash is located to the left of a lens, then the yellowish part of the half-red eye will be the right part of the eye, and vice versa. FIG. 5 shows the various half-red eye phenomenon that occur when a flash is to the right of a lens (501), to the left of a lens (502), to the bottom of a lens (503), to the top or the lens (504), to the top right of the lens (505), to the top left of the lens (506), to the bottom left of the lens (507), or to the bottom right of the lens (508).


This information can be used to determine the expected red-yellow gradient of a half-red eye, which can be used to reduce the detection of false positives. Algorithms exist that detect half-red eyes by detecting yellow/red color groupings of pixels that form a certain shape, and thus are indicative of a half-red eye. The red-yellow gradient of a grouping indicative of a half-red eye can be compared to the expected red-yellow gradient to identify false positives. For example, if detected groupings have left-to-right or top-to-bottom red-yellow gradients but the expected red-yellow gradient is right-to-left, then the groups with non-right-to-left gradients can be identified as non-half-red eyes, and thus not be altered. The detected groupings that do have a right-to-left red-yellow gradient can undergo an image alteration to correct the defect.


Techniques of the present invention further include using image acquisition data to determine the color spectrum of a potential defect. For example, the distance between the lens and flash impacts the color spectrum of red-eye defects. FIG. 6a shows a common color spectrum for red-eye defects for flash-to-lens distances of 2 cm, and FIG. 6b shows the resultant defects in captured images for flash-to-lens distances of 5 cm. By knowing the spectrum of colors to expect for a particular defect, algorithms can be refined. For example, in a red-eye removal algorithm configured to look for a spectrum of colors in a range of shapes, the spectrum of colors looked for can be narrowed based on the image acquisition data, thus reducing the number of false positives.


Using Image Acquisition Data to Determine Dynamic Anthropometric Data


Anthropometry is generally defined as the study of human body measurement for use in anthropological classification and comparison. Static anthropometric data, such as the ratio of eye width to eye separation or the ratio of eye size to head size, can provide good indication as to whether an object is an eye, based on analysis of other detected human objects in the image. Much anthropometric data, however, is dynamic and will change depending on the conditions under which an image is captured. For example, pupil size is not constant and changes as a function of light, and eye gaze changes based on how a subject rotates its eyes.


Techniques of the present invention include using image acquisition data to estimate or determine dynamic anthropometric data, such as pupil size. Pupil size can be reasonably estimated based on image acquisition data describing ambient light conditions at the time the image was captured. It is known that pupil size varies as a function of the amount of light in the field of view of the subject. FIG. 7 shows a plot illustrating an example of that variation. Relationship data between a detected value indicative of ambient light and an estimated pupil size can be stored on a digital image acquisition device so that if an amount of ambient light is known, an estimated on-subject pupil size can be determined.


The estimated size of the on-subject pupil can then be implemented into defect correction algorithms in a variety of manners. For example, flash-induced eye defects are due to light originating from a flash bouncing off the retina and reaching the lens. Thus, if the angle between the flash, retina, and lens is small enough, the light cannot reach the lens and no eye defects appear. This typically happens when the subject is very close to the camera or the subject's pupil is very constricted. Flash-induced defects seldom appear in broad daylight in part because the retina is highly constricted. Techniques of the present invention include using this fact in detecting and correcting flash-induced eye defects. Although the critical angle varies slightly with certain physiological characteristics such as eye color, normal upper limits for healthy adults can be estimated. For example, an upper limit for Caucasians might be approximately 3 degrees. For a given on-subject pupil size and flash to lens distance, there exists a minimum distance (also referred to as a critical distance) between the camera and the subject for which a defect in the eye might appear. Using basic geometrical calculus, die following formula can be used to calculate a c critical distance.

CriticalDistance=(FlashLensDistance−OnSubjPupilSize)/[2a tan(critical angle/2)]


As discussed above, FlashLensDistance is the distance between the flash and lens which can be either stored by a device designer or calculated dynamically at the time of image capture. Using the estimated critical angle and estimated oil-subject pupil size, a critical distance can be calculated. Based, at least in part, on the critical distance and the distance between the lens and subject, a course of action can be determined. For example, if the value for the distance between the lens and the subject stored in the image acquisition data is less than a threshold value for the determined critical distance, then no defect correction algorithms need to be applied to the captured image. Not executing an unneeded defect correction algorithm saves a user time, reduces shot-to-shot time, and reduces power consumption. Not executing an unneeded defect correction algorithm further eliminates any chance of the algorithm identifying a false positive and altering a portion of an image that should not be altered.


Dynamic anthropometric data relating to on-subject pupil size can also be used with other image acquisition data, such as lens focal length, to determine an estimate of in-image pupil size. The estimated in-image pupil size can then be used in algorithms that set a maximum defect size. Many algorithms utilize maximum expected defect sizes to aid in determining if a candidate defect is an actual defect or a false positive. A candidate defect otherwise indicative of a flash-induced defect will not be altered if the candidate defect is greater in size than the maximum expected defect size on the assumption that the candidate defect is not actually depicting a human eye or portion of an eye such as a pupil. Most devices utilize absolute maximums so that all possible situations are covered, and defects are not missed. An estimated in-image pupil size determined by anthropometric data and image acquisition data as described in one embodiment of the present invention allows that absolute maximum to be decreased based on conditions when the image was captured, thus significantly reducing the number of false positives detected by a particular defect correction algorithm without reducing the number of true positives detected by the defect correction algorithm.


Using Image Acquisition Data in Conjunction with Eye Gaze Measurements


Techniques of the present invention further include using image acquisition data combined with other determined dynamic anthropometric data, such as eye-gaze measurements, to determine the likelihood that a certain type of defect will be present. Eye gaze can be measured, for example, by superimposing Active Appearance Models (AAMs) onto a detected face region. From the AAMs eye rotation and facial rotation can be measured to determine a total eye gaze. This eye-gaze information can provide advantageous information, particularly with respect to applying red-eye filters to an image, or reconciling differences between two paired red-eye candidates.


Different regions of the eye can cause different types of defects. For example, the retina which contains large amounts of blood vessels is likely to cause a red-eye defect, whereas other regions, not containing blood vessels, might be likely to cause a white or yellow-eye defect. By determining the gaze angle of an eye, the region of the eye that will reflect light back to a lens during image capture can be determined. Armed with that information, it can be determined whether a red-eye filter should or should not be applied, whether a filter in addition to a red-eye filter should be applied, etc.



FIG. 8
a illustrates the normal case where the eye-gaze is directly into a lens and the flash enters the eye at a slight angle, stimulating the blood vessels of the retina, thus creating a condition that could cause a red-eye defect. FIG. 8b shows the axis of the eye aligned directly with the flash, with the subject' eye-gaze being slightly to the left (from the image acquisition device's perspective) but as the flash falls directly on the back of the retina, the flash still stimulates the retinal blood vessels potentially leading to a red-eye defect. In FIG. 8c the gaze angle extends a further few degrees to the left, and the flash is now directly incident on the blind spot region or the eye as opposed to the retinal region


The blind spot tends to be off-axis by a number of degrees and causes a different type of defect than the retina. A more precise calculation of the relationship between the measured eye-gaze angle, the blind-spot offset, and the distance of the subject from the camera is given in FIG. 9.


The blind-spot offset is A2, which can be constant for a particular person, can be estimated based on average values. The eye-gaze angle is A1, and the distance to subject is D. The separation between flash and camera lens is S (not shown). Values for S and D can be obtained from stored image acquisition data.







tan


(


A
1

-

A
2


)


=

S
D





and thus:








A
1

-

A
2


=


tan

-
1




(

S
D

)






or the eye-gaze angle, A1, is related to S, D and A2 as:







A
1

=



tan

-
1




(

S
D

)


+

A
2






A table of example values for the tan−1(S/D) term is given below, where the tan−1(S/D) term represents the Angular contribution (in degrees) of the lens-to-flash distance to the eye-gaze angle.
















D
S = 0.025 m
S = 0.05
S = 0.075
S = 0.15







1 metre
1.43
2.86
4.29
8.53


2 metre
0.72
1.43
2.15
4.29


3 metre
0.48
0.95
1.43
2.86









By combining the image acquisition data with a measurement of eye gaze, it can be determined when to apply filters of a certain type. For example, if an eye gaze measurement and image acquisition data indicate that a flash is likely to impact in a region other than the retina because the total eye gaze is greater than a certain amount, then additional yellow-eye or golden-eye filters might be applied to compliment standard red-eye filters. Eye gaze measurements may be performed on the main acquired image, or on a sequence of preview images (in order to predict or refine the eye gaze measurement on the main image).


Techniques of the present invention further include using eye gaze measurements to assist in the analysis of flash-eye pairs where one eye experiences a first defect and the second eye experiences a different defect. The reasons for this can be seen from FIG. 9 which shows that the eye gaze angles (A1 and A3) for an eye pair are somewhat different because of the distance separating the two eyes. A difference of more than 1-2 degrees in eye gaze angle can cause different forms of defects to occur in each eye of the eye-pair. By using an eye gaze measurement and image acquisition data to predict whether a pair of eyes should both experience a red-eye defect, neither experience a red-eye defect, or one experience a red-eye defect and the other experience something else, defect detection algorithms can be improved to eliminate false positives. For example, if an algorithm detects a candidate pair of eyes where both are indicative of a red-eye defect, but the eye gaze angle and image acquisition data indicate that neither eye or only one eye should experience a red-eye defect, then the candidate pair can be identified as a false positive without incorrectly altering the image. The eye gaze measurement can be used either instead of or in conjunction with other image processing techniques including other techniques mentioned in this disclosure.


Implementation Mechanisms—Hardware Overview



FIG. 10 is a block diagram that illustrates an image acquisition device 1000 upon which an embodiment of the invention may be implemented. The image acquisition device 1000 can include an image capture apparatus 1020 comprising a lens 1022 and a source of light for providing illumination during image capture 1024. The image capture apparatus 1020 can further comprise distance analyzer 1028 for determining a distance between a point on the device 1000 and a subject. The image capture apparatus 1020 can further comprise a light sensor 1026 that can be, for example a CCD, CMOS or any other object that transforms light information into electronic encoding. The image capture apparatus 1020 can further comprise a mechanism 1029 for monitoring parameters of the lens 1022 during image acquisition. Relevant parameters of the lens during acquisition can include the aperture or an f-stop, which primarily determines the depth of field, the focal length which determines the enlargement of the image, and the focusing distance which determines the distance to the objects at which the lens 1022 was focused.


The image acquisition device 1000 may be contained within a single device, such as a lens connected to a personal computer, a portable camera, a smartphone, a video camera with still image capturing capability, etc. Alternatively, various portions of the image acquisition device 1000 might be distributed between multiple devices, such as having some components on a personal computer and some components on a portable digital camera. Image acquisition device 1000 includes a bus 1002 or other communication mechanism for communicating information, and a processor 1004 coupled with bus 1002 for processing information. Image acquisition device 1000 also includes a main memory 1006, such as a random access memory (“RAM”) or other dynamic storage device, coupled to bus 1002 for storing information and instructions to be executed by processor 1004. Main memory 1006 also may be used for storing temporary variables or other intermediate information during execution of instructions to be executed by processor 1004. Image acquisition device 1000 further includes a read only memory (“ROM”) 1008 or other static storage device coupled to bus 1002 for storing static information and instructions for processor 1004. A storage device 1010, such as a magnetic disk or optical disk, is provided and coupled to bus 1002 for storing information and instructions.


Image acquisition device 1000 may be coupled via bus 1002 to a display 1012, such as a liquid crystal display (LCD), for displaying information or images to a user. An input device 1014, including keys, is coupled to bus 1002 for communicating information and command selections to processor 1004. Other types of user input devices, for example cursor controllers 1016 such as a mouse, trackball, stylus, or cursor direction keys for communicating direction information and command selections to processor 1004 can also be used for controlling cursor movement on display 1012 for communicating information and command selections to processor 1004.


The term “computer-readable medium” as used herein refers to any medium that participates in providing instructions to processor 1004 for execution. Such a medium may take many forms, including but not limited to non-volatile media and volatile media. Non-volatile media includes, for example, optical or magnetic disks, such as storage device 1010. Volatile media includes dynamic memory, such as main memory 1006.


Common forms of computer-readable media include, for example, a floppy disk, a flexible disk, hard disk, magnetic tape, or any other magnetic medium, a CD-ROM, any other optical medium, punchcards, papertape, any other physical medium with patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, any other memory chip or cartridge, a carrier wave as described hereinafter, or any other medium from which a computer can read. Any single type or combination of computer-readable media can be used for storing instructions that, when executed by one or more processors, cause the processors to carry out steps corresponding to the techniques of the present invention.


Extensions and Alternatives


In this description certain process steps are set forth in a particular order, and alphabetic and alphanumeric labels may be used to identify certain steps. Unless specifically stated in the description, embodiments of the invention are not necessarily limited to any particular order of carrying out such steps. In particular, the labels are used merely for convenient identification of steps, and are not intended to specify or require a particular order of carrying out such steps.


In the foregoing specification, embodiments of the invention have been described with reference to numerous specific details that may vary from implementation to implementation. Thus, the sole and exclusive indicator of what is the invention, and is intended by the applicants to be the invention, is the set of claims that issue from this application, in the specific form in which such claims issue, including any subsequent correction. Any definitions expressly set forth herein for terms contained in such claims shall govern the meaning of such terms as used in the claims. Hence, no limitation, element, property, feature, advantage or attribute that is not expressly recited in a claim should limit the scope of such claim in any way. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.

Claims
  • 1. A portable digital image acquisition device comprising: a lens;a digital imaging capturing apparatus;a source of light for providing illumination during image capture;logic for performing the following operations: acquiring a digital image at a time;storing image acquisition data describing a condition at the lime;determining an eye gaze angle in the digital image;determining a course of action based, at least in part, on the image acquisition data and the eye gaze angle; anddetermining whether the eye gaze angle is greater than a value, andwherein the course of action comprises performing at least one of the following operations responsive to determining that the eye gaze angle is greater than the value:analyzing the image to identify yellow-eye defect candidates;or analyzing the image to identify golden-eye defect candidates.
  • 2. The portable digital acquisition device of claim 1 wherein the logic includes one or more processors executing software instructions.
  • 3. The portable digital image acquisition device of claim 1, wherein: the image acquisition data comprises a distance from the portable image acquisition device to a subject, and a separation between the source of light and a lens; andthe value is determined based, at least in part, on the distance and the separation.
  • 4. The portable digital acquisition device of claim 3 wherein the logic includes one or more processors executing software instructions.
  • 5. A portable digital image acquisition device comprising: a lens;a digital imaging capturing apparatus;a source of light for providing illumination during image capture;logic for performing the following operations:acquiring a digital image at a time;storing image acquisition data describing a condition at the lime;determining an eye gaze angle in the digital image;determining a course of action based, at least in part, on the image acquisition data and the eye gaze angle; anddetermining whether the eye gaze angle is greater than a value, andwherein the course of action comprises analyzing the image to identify flash-eye defect candidates other than red-eye defect candidates responsive to determining that the eye gaze angle is greater than the value.
  • 6. The portable digital acquisition device of claim 5 wherein the logic includes one or more processors executing software instructions.
  • 7. A portable digital image acquisition device comprising: a lens;a digital imaging capturing apparatus;a source of light for providing illumination during image capture; andlogic for performing the following operations: acquiring a digital image at a time;storing image acquisition data describing a condition at the lime;determining an eye gaze angle in the digital image;determining a course of action based, at least in part, on the image acquisition data and the eye gaze angleidentifying a pair of eyes in the image, the pair of eyes including a first eye and a second eye;determining that the eye gaze angle of the first eye indicates that it is likely that a first type of defect exists;determining that the eye gaze angle of the second eye indicates that it is likely that a second type of defect exists;analyzing the image to determine whether the image contains the first type of defect; andanalyzing the image to determine whether the image contains the second type of defect.
  • 8. The portable digital acquisition device of claim 7 wherein the logic includes one or more processors executing software instructions.
  • 9. A portable digital image acquisition device comprising: a lens;a digital imaging capturing apparatus;a source of light for providing illumination during image capture; andlogic for performing the following operations: acquiring a digital image at a time;storing image acquisition data describing a condition at the time, including detecting a first value indicative of ambient light at the time and storing the first value;determining an eye gaze angle in the digital image;determining a course of action based, at least in part, on the image acquisition data, the first value and the eye gaze angledetermining a second value indicative of a distance between an image capture apparatus and a subject;storing the second value;using the value to determine an on-subject pupil size;using the on-subject pupil size and the second value to determine a critical distance; anddetermining whether to perform a corrective action on the image based, at least in part, on the critical distance.
  • 10. The portable digital image acquisition device of claim 9 further comprising logic for determining whether the eye gaze angle is less than a value, wherein the course of action comprises analyzing the image to identify red-eye defect candidates responsive to determining that the eye gaze angle is less than the value.
  • 11. The portable digital acquisition device of claim 10 wherein the logic includes one or more processors executing software instructions.
  • 12. The portable digital acquisition device of claim 9 wherein the logic includes one or more processors executing software instructions.
  • 13. A portable digital image acquisition device comprising: a lens;a digital imaging capturing apparatus;a source of light for providing illumination during image capture; andlogic for performing the following operations: acquiring a digital image at a time;storing image acquisition data describing a condition at the time, including detecting a first value indicative of ambient light at the time and storing the first value;determining an eye gaze angle in the digital image;determining a course of action based, at least in part, on the image acquisition data, the first value and the eye gaze angledetermining a second value indicative of a distance between an image capture apparatus and a subject;determining a third value indicative of a lens focal length;storing the second value and the third value;using the value, the second value, and the third value to determine an in-image pupil size; andidentifying defects in the image based at least in part on the in-image pupil size.
  • 14. The portable digital acquisition device of claim 13 wherein the logic includes one or more processors executing software instructions.
  • 15. The portable digital image acquisition device of claim 13 further comprising logic for determining whether the eye gaze angle is less than a value, wherein the course of action comprises analyzing the image to identify red-eye defect candidates responsive to determining that the eye gaze angle is less than the value.
  • 16. A portable digital image acquisition device comprising: a lens;a digital imaging capturing apparatus;a source of light for providing illumination during image capture; andlogic for performing the following operations: acquiring a digital image at a time; storing image acquisition data describing a condition at the lime;determining an eye gaze angle in the digital image;determining a course of action based, at least in part, on the image acquisition data and the eye gaze anglestoring a value indicative of a position of the source of light relative to the lens;using the value to identify an expected orientation for a half-red eye defect; andidentifying defect candidates in the image based, at least in part, on the expected orientation.
  • 17. The portable digital acquisition device of claim 16 wherein the logic includes one or more processors executing software instructions.
  • 18. One or more non-transitory processor-readable media having embedded code therein for programming a processor to perform a method comprising: acquiring a digital image at a time;storing image acquisition data describing a condition at the timedetermining an eye gaze angle in the digital image; anddetermining a course of action based, at least in part, on the image acquisition data and the eye gaze angle; anddetermining whether the eye gaze angle is greater than a value, andwherein the course of action comprises performing at least one of the following operations responsive to determining that the eye gaze angle is greater than the value:analyzing the image to identify yellow-eye defect candidates; oranalyzing the image to identify golden-eye defect candidates.
  • 19. The one or more media of claim 18, wherein: the image acquisition data comprises a distance from the portable image acquisition device to a subject, and a separation between a source of light and a lens; andthe value is determined based, at least in part, on the distance and the separation.
  • 20. One or more non-transitory processor-readable media having embedded code therein for programming a processor to perform a method comprising: acquiring a digital image at a time;storing image acquisition data describing a condition at the time;determining an eye gaze angle in the digital image; anddetermining a course of action based, at least in part, on the image acquisition data and the eye gaze angle;identifying a pair of eyes in the image, the pair of eyes including a first eye and a second eye;determining that the eye gaze angle of the first eye indicates that it is likely that a first type of defect exists;determining that the eye gaze angle of the second eye indicates that it is likely that a second type of defect exists;analyzing the image to determine whether the image contains the first type of defect; andanalyzing the image to determine whether the image contains the second type of defect.
  • 21. One or more non-transitory processor-readable media having embedded code therein for programming a processor to perform a method comprising: acquiring a digital image at a time;storing image acquisition data describing a condition at the time including detecting a first value indicative of ambient light at the time and storing the first value;determining an eye gaze angle in the digital image;determining a course of action based, at least in part, on the image acquisition data, the first value, and the eye gaze angle;determining a second value indicative of a distance between an image capture apparatus and a subject;storing the second value;using the value to determine an on-subject pupil size;using the on-subject pupil size and the second value to determine a critical distance; anddetermining whether to perform a corrective action on the image based, at least in part, on the critical distance.
  • 22. The one or more media of claim 21, wherein the method further comprises: determining whether the eye gaze angle is less than a value, wherein the course of action comprises analyzing the image to identify red-eye defect candidates responsive to determining that the eye gaze angle is less than the value.
  • 23. One or more non-transitory processor-readable media having embedded code therein for programming a processor to perform a method comprising: acquiring a digital image at a time;storing image acquisition data describing a condition at the time including detecting a first value indicative of ambient light at the time and storing the first value;determining an eye gaze angle in the digital image;determining a course of action based, at least in part, on the image acquisition data, the first value, and the eye gaze angle;determining a second value indicative of a distance between an image capture apparatus and a subject;determining a third value indicative of a lens focal length;storing the second value and the third value;using the value, the second value, and the third value to determine an in-image pupil size; andidentifying defects in the image based at least in part on the in-image pupil size.
  • 24. One or more non-transitory processor-readable media having embedded code therein for programming a processor perform a method comprising: acquiring a digital image at a time;storing image acquisition data describing a condition at the time;determining an eye gaze angle in the digital image;determining a course of action based, at least in part, on the image acquisition data and the eye gaze angle;storing a value indicative of a position of a source of light relative to a lens;using the value to identify an expected orientation for a half-red eye defect; andidentifying defect candidates in the image based, at least in part, on the expected orientation.
PRIORITY CLAIMS AND RELATED APPLICATIONS

This application claims domestic priority from prior U.S. Provisional Patent Application Ser. No. 61/024,551, filed on Jan. 30, 2008, titled “METHODS AND APPARATUSES FOR EYE GAZE MEASUREMENT,” the entire disclosure of which is hereby incorporated by reference for all purposes as if fully set forth herein.

US Referenced Citations (356)
Number Name Date Kind
4285588 Mir Aug 1981 A
4577219 Klie et al. Mar 1986 A
4646134 Komatsu et al. Feb 1987 A
4777620 Shimoni et al. Oct 1988 A
4881067 Watanabe et al. Nov 1989 A
4978989 Nakano et al. Dec 1990 A
5016107 Sasson et al. May 1991 A
5070355 Inoue et al. Dec 1991 A
5130789 Dobbs et al. Jul 1992 A
5164831 Kuchta et al. Nov 1992 A
5164833 Aoki Nov 1992 A
5202720 Fujino et al. Apr 1993 A
5231674 Cleveland et al. Jul 1993 A
5249053 Jain Sep 1993 A
5274457 Kobayashi et al. Dec 1993 A
5301026 Lee Apr 1994 A
5303049 Ejima et al. Apr 1994 A
5335072 Tanaka et al. Aug 1994 A
5384601 Yamashita et al. Jan 1995 A
5400113 Sosa et al. Mar 1995 A
5426478 Katagiri et al. Jun 1995 A
5432863 Benati et al. Jul 1995 A
5432866 Sakamoto Jul 1995 A
5452048 Edgar Sep 1995 A
5455606 Keeling et al. Oct 1995 A
5537516 Sherman et al. Jul 1996 A
5568187 Okino Oct 1996 A
5568194 Abe Oct 1996 A
5649238 Wakabayashi et al. Jul 1997 A
5671013 Nakao Sep 1997 A
5678073 Stephenson, III et al. Oct 1997 A
5694926 DeVries et al. Dec 1997 A
5708866 Leonard Jan 1998 A
5719639 Imamura Feb 1998 A
5719951 Shackleton et al. Feb 1998 A
5724456 Boyack et al. Mar 1998 A
5734425 Takizawa et al. Mar 1998 A
5748764 Benati et al. May 1998 A
5748784 Sugiyama May 1998 A
5751836 Wildes et al. May 1998 A
5761550 Kancigor Jun 1998 A
5781650 Lobo et al. Jul 1998 A
5805720 Suenaga et al. Sep 1998 A
5805727 Nakano Sep 1998 A
5805745 Graf Sep 1998 A
5815749 Tsukahara et al. Sep 1998 A
5818975 Goodwin et al. Oct 1998 A
5847714 Naqvi et al. Dec 1998 A
5850470 Kung et al. Dec 1998 A
5862217 Steinberg et al. Jan 1999 A
5862218 Steinberg Jan 1999 A
5892837 Luo et al. Apr 1999 A
5949904 Delp Sep 1999 A
5974189 Nicponski Oct 1999 A
5990973 Sakamoto Nov 1999 A
5991456 Rahman et al. Nov 1999 A
5991549 Tsuchida Nov 1999 A
5991594 Froeber et al. Nov 1999 A
5999160 Kitamura et al. Dec 1999 A
6006039 Steinberg et al. Dec 1999 A
6009209 Acker et al. Dec 1999 A
6011547 Shiota et al. Jan 2000 A
6016354 Lin et al. Jan 2000 A
6028611 Anderson et al. Feb 2000 A
6035072 Read Mar 2000 A
6035074 Fujimoto et al. Mar 2000 A
6036072 Lee Mar 2000 A
6101271 Yamashita et al. Aug 2000 A
6104839 Cok et al. Aug 2000 A
6118485 Hinoue et al. Sep 2000 A
6125213 Morimoto Sep 2000 A
6134339 Luo Oct 2000 A
6151403 Luo Nov 2000 A
6172706 Tatsumi Jan 2001 B1
6192149 Eschbach et al. Feb 2001 B1
6195127 Sugimoto Feb 2001 B1
6201571 Ota Mar 2001 B1
6204858 Gupta Mar 2001 B1
6233364 Krainiouk et al. May 2001 B1
6249315 Holm Jun 2001 B1
6252976 Schildkraut et al. Jun 2001 B1
6266054 Lawton et al. Jul 2001 B1
6268939 Klassen et al. Jul 2001 B1
6275614 Krishnamurthy et al. Aug 2001 B1
6278491 Wang et al. Aug 2001 B1
6285410 Marni Sep 2001 B1
6292574 Schildkraut et al. Sep 2001 B1
6295378 Kitakado et al. Sep 2001 B1
6298166 Ratnakar et al. Oct 2001 B1
6300935 Sobel et al. Oct 2001 B1
6381345 Swain Apr 2002 B1
6393148 Bhaskar May 2002 B1
6396963 Shaffer et al. May 2002 B2
6407777 DeLuca Jun 2002 B1
6421468 Ratnakar et al. Jul 2002 B1
6426775 Kurokawa Jul 2002 B1
6429924 Milch Aug 2002 B1
6433818 Steinberg et al. Aug 2002 B1
6438264 Gallagher et al. Aug 2002 B1
6441854 Fellegara et al. Aug 2002 B2
6459436 Kumada et al. Oct 2002 B1
6473199 Gilman et al. Oct 2002 B1
6496655 Malloy Desormeaux Dec 2002 B1
6501911 Malloy Desormeaux Dec 2002 B1
6505003 Malloy Desormeaux Jan 2003 B1
6510520 Steinberg Jan 2003 B1
6516154 Parulski et al. Feb 2003 B1
6614471 Ott Sep 2003 B1
6614995 Tseng Sep 2003 B2
6621867 Sazzad et al. Sep 2003 B1
6628833 Horie Sep 2003 B1
6631208 Kinjo et al. Oct 2003 B1
6700614 Hata Mar 2004 B1
6707950 Burns et al. Mar 2004 B1
6714665 Hanna et al. Mar 2004 B1
6718051 Eschbach Apr 2004 B1
6724941 Aoyama Apr 2004 B1
6728401 Hardeberg Apr 2004 B1
6765686 Maruoka Jul 2004 B2
6786655 Cook et al. Sep 2004 B2
6792161 Imaizumi et al. Sep 2004 B1
6798913 Toriyama Sep 2004 B2
6859565 Baron Feb 2005 B2
6873743 Steinberg Mar 2005 B2
6885766 Held et al. Apr 2005 B2
6895112 Chen et al. May 2005 B2
6900882 Iida May 2005 B2
6912298 Wilensky Jun 2005 B1
6937997 Parulski Aug 2005 B1
6967680 Kagle et al. Nov 2005 B1
6980691 Nesterov et al. Dec 2005 B2
6984039 Agostinelli Jan 2006 B2
7024051 Miller et al. Apr 2006 B2
7027643 Comaniciu et al. Apr 2006 B2
7027662 Baron Apr 2006 B2
7030927 Sasaki Apr 2006 B2
7035461 Luo et al. Apr 2006 B2
7035462 White et al. Apr 2006 B2
7042501 Matama May 2006 B1
7042505 DeLuca May 2006 B1
7062086 Chen et al. Jun 2006 B2
7116820 Luo et al. Oct 2006 B2
7130453 Kondo et al. Oct 2006 B2
7133070 Wheeler et al. Nov 2006 B2
7155058 Gaubatz et al. Dec 2006 B2
7171044 Chen et al. Jan 2007 B2
7216289 Kagle et al. May 2007 B2
7224850 Zhang et al. May 2007 B2
7269292 Steinberg Sep 2007 B2
7289664 Enomoto Oct 2007 B2
7295233 Steinberg et al. Nov 2007 B2
7310443 Kris et al. Dec 2007 B1
7315631 Corcoran et al. Jan 2008 B1
7336821 Ciuc et al. Feb 2008 B2
7352394 DeLuca et al. Apr 2008 B1
7362368 Steinberg et al. Apr 2008 B2
7369712 Steinberg et al. May 2008 B2
7403643 Ianculescu et al. Jul 2008 B2
7436998 Steinberg et al. Oct 2008 B2
7454040 Luo et al. Nov 2008 B2
7515740 Corcoran et al. Apr 2009 B2
7567707 Willamowski et al. Jul 2009 B2
7574069 Setlur et al. Aug 2009 B2
7593603 Wilensky Sep 2009 B1
7613332 Enomoto et al. Nov 2009 B2
7630006 DeLuca et al. Dec 2009 B2
7652695 Halpern Jan 2010 B2
7657060 Cohen et al. Feb 2010 B2
7702149 Ohkubo et al. Apr 2010 B2
7705891 Silverbrook Apr 2010 B2
7747071 Yen et al. Jun 2010 B2
7747160 Thorn Jun 2010 B2
7907786 Fan et al. Mar 2011 B2
20010015760 Fellegara et al. Aug 2001 A1
20010031142 Whiteside Oct 2001 A1
20010052937 Suzuki Dec 2001 A1
20020019859 Watanabe Feb 2002 A1
20020041329 Steinberg Apr 2002 A1
20020051571 Jackway et al. May 2002 A1
20020054224 Wasula et al. May 2002 A1
20020085088 Eubanks Jul 2002 A1
20020089514 Kitahara et al. Jul 2002 A1
20020090133 Kim et al. Jul 2002 A1
20020093577 Kitawaki et al. Jul 2002 A1
20020093633 Milch Jul 2002 A1
20020105662 Patton et al. Aug 2002 A1
20020114513 Hirao Aug 2002 A1
20020126893 Held et al. Sep 2002 A1
20020131770 Meier et al. Sep 2002 A1
20020136450 Chen et al. Sep 2002 A1
20020141661 Steinberg Oct 2002 A1
20020141770 Shimura Oct 2002 A1
20020150292 O'Callaghan Oct 2002 A1
20020150306 Baron Oct 2002 A1
20020159630 Buzuloiu et al. Oct 2002 A1
20020172419 Lin et al. Nov 2002 A1
20020176623 Steinberg Nov 2002 A1
20030007687 Nesterov et al. Jan 2003 A1
20030021478 Yoshida Jan 2003 A1
20030025808 Parulski et al. Feb 2003 A1
20030025811 Keelan et al. Feb 2003 A1
20030039402 Robins et al. Feb 2003 A1
20030044063 Meckes et al. Mar 2003 A1
20030044070 Fuersich et al. Mar 2003 A1
20030044176 Saitoh Mar 2003 A1
20030044177 Oberhardt et al. Mar 2003 A1
20030044178 Oberhardt et al. Mar 2003 A1
20030052991 Stavely et al. Mar 2003 A1
20030058343 Katayama Mar 2003 A1
20030058349 Takemoto Mar 2003 A1
20030086134 Enomoto May 2003 A1
20030086164 Abe May 2003 A1
20030095197 Wheeler et al. May 2003 A1
20030107649 Flickner et al. Jun 2003 A1
20030113035 Cahill et al. Jun 2003 A1
20030118216 Goldberg Jun 2003 A1
20030137597 Sakamoto et al. Jul 2003 A1
20030142285 Enomoto Jul 2003 A1
20030161506 Velazquez et al. Aug 2003 A1
20030190072 Adkins et al. Oct 2003 A1
20030194143 Iida Oct 2003 A1
20030202715 Kinjo Oct 2003 A1
20030231241 Iida Dec 2003 A1
20040017481 Takasumi et al. Jan 2004 A1
20040027593 Wilkins Feb 2004 A1
20040032512 Silverbrook Feb 2004 A1
20040032526 Silverbrook Feb 2004 A1
20040033071 Kubo Feb 2004 A1
20040037460 Luo et al. Feb 2004 A1
20040041924 White et al. Mar 2004 A1
20040046878 Jarman Mar 2004 A1
20040047491 Rydbeck Mar 2004 A1
20040056975 Hata Mar 2004 A1
20040057623 Schuhrke et al. Mar 2004 A1
20040057705 Kohno Mar 2004 A1
20040057715 Tsuchida et al. Mar 2004 A1
20040090461 Adams May 2004 A1
20040093432 Luo et al. May 2004 A1
20040109614 Enomoto et al. Jun 2004 A1
20040114796 Kaku Jun 2004 A1
20040114797 Meckes Jun 2004 A1
20040114829 LeFeuvre et al. Jun 2004 A1
20040114904 Sun et al. Jun 2004 A1
20040119851 Kaku Jun 2004 A1
20040120598 Feng Jun 2004 A1
20040125387 Nagao et al. Jul 2004 A1
20040126086 Nakamura et al. Jul 2004 A1
20040141657 Jarman Jul 2004 A1
20040150743 Schinner Aug 2004 A1
20040160517 Iida Aug 2004 A1
20040165215 Raguet et al. Aug 2004 A1
20040184044 Kolb et al. Sep 2004 A1
20040184670 Jarman et al. Sep 2004 A1
20040196292 Okamura Oct 2004 A1
20040196433 Durnell Oct 2004 A1
20040196503 Kurtenbach et al. Oct 2004 A1
20040213476 Luo et al. Oct 2004 A1
20040223063 DeLuca et al. Nov 2004 A1
20040227978 Enomoto Nov 2004 A1
20040228542 Zhang et al. Nov 2004 A1
20040233299 Ioffe et al. Nov 2004 A1
20040233301 Nakata et al. Nov 2004 A1
20040234156 Watanabe et al. Nov 2004 A1
20040239779 Washisu Dec 2004 A1
20040240747 Jarman et al. Dec 2004 A1
20040258308 Sadovsky et al. Dec 2004 A1
20050001024 Kusaka et al. Jan 2005 A1
20050013602 Ogawa Jan 2005 A1
20050013603 Ichimasa Jan 2005 A1
20050024498 Iida et al. Feb 2005 A1
20050031224 Prilutsky et al. Feb 2005 A1
20050041121 Steinberg et al. Feb 2005 A1
20050046730 Li Mar 2005 A1
20050047655 Luo et al. Mar 2005 A1
20050047656 Luo et al. Mar 2005 A1
20050053279 Chen et al. Mar 2005 A1
20050058340 Chen et al. Mar 2005 A1
20050058342 Chen et al. Mar 2005 A1
20050062856 Matsushita Mar 2005 A1
20050063083 Dart et al. Mar 2005 A1
20050068452 Steinberg et al. Mar 2005 A1
20050074164 Yonaha Apr 2005 A1
20050074179 Wilensky Apr 2005 A1
20050078191 Battles Apr 2005 A1
20050117132 Agostinelli Jun 2005 A1
20050129331 Kakiuchi et al. Jun 2005 A1
20050134719 Beck Jun 2005 A1
20050140801 Prilutsky et al. Jun 2005 A1
20050147278 Rui et al. Jul 2005 A1
20050151943 Iida Jul 2005 A1
20050163498 Battles et al. Jul 2005 A1
20050168965 Yoshida Aug 2005 A1
20050196067 Gallagher et al. Sep 2005 A1
20050200736 Ito Sep 2005 A1
20050207649 Enomoto et al. Sep 2005 A1
20050212955 Craig et al. Sep 2005 A1
20050219385 Terakawa Oct 2005 A1
20050219608 Wada Oct 2005 A1
20050220346 Akahori Oct 2005 A1
20050220347 Enomoto et al. Oct 2005 A1
20050226499 Terakawa Oct 2005 A1
20050232490 Itagaki et al. Oct 2005 A1
20050238217 Enomoto et al. Oct 2005 A1
20050238230 Yoshida Oct 2005 A1
20050243348 Yonaha Nov 2005 A1
20050275734 Ikeda Dec 2005 A1
20050276481 Enomoto Dec 2005 A1
20050280717 Sugimoto Dec 2005 A1
20050286766 Ferman Dec 2005 A1
20060008171 Petschnigg et al. Jan 2006 A1
20060017825 Thakur Jan 2006 A1
20060038916 Knoedgen et al. Feb 2006 A1
20060039690 Steinberg et al. Feb 2006 A1
20060045352 Gallagher Mar 2006 A1
20060050300 Mitani et al. Mar 2006 A1
20060066628 Brodie et al. Mar 2006 A1
20060082847 Sugimoto Apr 2006 A1
20060093212 Steinberg et al. May 2006 A1
20060093213 Steinberg et al. May 2006 A1
20060093238 Steinberg et al. May 2006 A1
20060098867 Gallagher May 2006 A1
20060098875 Sugimoto May 2006 A1
20060119832 Iida Jun 2006 A1
20060120599 Steinberg et al. Jun 2006 A1
20060126938 Lee et al. Jun 2006 A1
20060140455 Costache et al. Jun 2006 A1
20060150089 Jensen et al. Jul 2006 A1
20060203108 Steinberg et al. Sep 2006 A1
20060204052 Yokouchi Sep 2006 A1
20060204110 Steinberg et al. Sep 2006 A1
20060221408 Fukuda Oct 2006 A1
20060257132 Shiffer et al. Nov 2006 A1
20060280361 Umeda Dec 2006 A1
20060280375 Dalton et al. Dec 2006 A1
20060285754 Steinberg et al. Dec 2006 A1
20070098260 Yen et al. May 2007 A1
20070110305 Corcoran et al. May 2007 A1
20070116379 Corcoran et al. May 2007 A1
20070116380 Ciuc et al. May 2007 A1
20070133863 Sakai et al. Jun 2007 A1
20070154189 Harradine et al. Jul 2007 A1
20070201724 Steinberg et al. Aug 2007 A1
20070263104 DeLuca et al. Nov 2007 A1
20070263928 Akahori Nov 2007 A1
20080002060 DeLuca et al. Jan 2008 A1
20080013798 Ionita et al. Jan 2008 A1
20080043121 Prilutsky et al. Feb 2008 A1
20080112599 Nanu et al. May 2008 A1
20080144965 Steinberg et al. Jun 2008 A1
20080186389 DeLuca et al. Aug 2008 A1
20080211937 Steinberg et al. Sep 2008 A1
20080219518 Steinberg et al. Sep 2008 A1
20080232711 Prilutsky et al. Sep 2008 A1
20080240555 Nanu et al. Oct 2008 A1
20110222730 Steinberg et al. Sep 2011 A1
20110254981 Ito Oct 2011 A1
Foreign Referenced Citations (73)
Number Date Country
884694 Dec 1998 EP
911759 Apr 1999 EP
911759 Jun 2000 EP
1199672 Apr 2002 EP
1229486 Aug 2002 EP
1 296 510 Mar 2003 EP
1288858 Mar 2003 EP
1288859 Mar 2003 EP
1288860 Mar 2003 EP
1293933 Mar 2003 EP
1296510 Mar 2003 EP
1429290 Jun 2004 EP
1478169 Nov 2004 EP
1528509 May 2005 EP
979487 Mar 2006 EP
1429290 Jul 2008 EP
2227002 Sep 2008 EP
2 165 523 Apr 2011 EP
2165523 Apr 2011 EP
841609 Jul 1960 GB
3205989 Sep 1991 JP
4192681 Jul 1992 JP
5-224271 Sep 1993 JP
5224271 Sep 1993 JP
7281285 Oct 1995 JP
9214839 Aug 1997 JP
11-284874 Oct 1999 JP
2000-125320 Apr 2000 JP
20134486 May 2000 JP
22247596 Aug 2002 JP
22271808 Sep 2002 JP
2003-030647 Jan 2003 JP
WO-9802844 Jan 1998 WO
WO-9917254 Apr 1999 WO
WO-9933684 Jul 1999 WO
WO-0171421 Sep 2001 WO
WO-0192614 Dec 2001 WO
WO-0245003 Jun 2002 WO
WO03019473 Mar 2003 WO
WO-03026278 Mar 2003 WO
WO-03071484 Aug 2003 WO
WO-2004034696 Apr 2004 WO
2005015896 Feb 2005 WO
WO 2005015896 Feb 2005 WO
WO2005015896 Feb 2005 WO
WO-2005015896 Feb 2005 WO
WO-2005041558 May 2005 WO
WO2005076217 Aug 2005 WO
WO-2005076217 Aug 2005 WO
WO-2005076217 Aug 2005 WO
WO-2005087994 Sep 2005 WO
WO2005076217 Oct 2005 WO
WO-2005109853 Nov 2005 WO
WO-2006011635 Feb 2006 WO
WO-2006018056 Feb 2006 WO
WO2005076217 Apr 2006 WO
WO-2006045441 May 2006 WO
WO-2007057063 May 2007 WO
WO-2007057064 May 2007 WO
WO-2007093199 Aug 2007 WO
WO-2007093199 Aug 2007 WO
WO-2007095553 Aug 2007 WO
WO-2007095553 Aug 2007 WO
WO-2007142621 Dec 2007 WO
WO-2008023280 Feb 2008 WO
WO2008109708 Sep 2008 WO
WO-2008109644 Sep 2008 WO
WO-2008109644 Sep 2008 WO
WO 2009095481 Aug 2009 WO
WO 2009095481 Oct 2009 WO
WO 2010017953 Feb 2010 WO
WO2010017953 Feb 2010 WO
WO 2010025908 Mar 2010 WO
Related Publications (1)
Number Date Country
20090189998 A1 Jul 2009 US
Provisional Applications (1)
Number Date Country
61024551 Jan 2008 US