Methods and apparatuses to increase intraocular lenses positional stability

Information

  • Patent Grant
  • 11707354
  • Patent Number
    11,707,354
  • Date Filed
    Tuesday, September 11, 2018
    5 years ago
  • Date Issued
    Tuesday, July 25, 2023
    9 months ago
Abstract
A multi-piece IOL assembly is provided that includes a platform and an optic. The platform has an inner periphery surrounding an inner zone of the platform. The optic has an optical zone, an outer periphery and a retention mechanism disposed on the outer periphery. The optic is configured to be disposed in the inner zone of the platform and to extend to a location between the inner periphery and the outer periphery of the platform to be secured to the platform at the location. The platform can be secured to an inner periphery of the eye or can be formed into a natural lens by cutting the lens using a laser or other energy source.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

This application is directed to methods and apparatuses to improve positional stability in intraocular lens systems when implanted in the capsular bag.


Description of the Related Art

Cataract is a common cause for vision loss in aging individuals. Cataract is a progressive condition in which the natural lens within the eye becomes opaque. This process can eventually lead to blurred, obscured vision and even blindness as the condition progresses further. The good news for many patients is that a well-known procedure can restore vision to a great extent. The procedure involves removing the natural lens containing the cataract and thereafter replacing the focusing function of the natural lens with a prosthetic lens, commonly referred to as an intraocular lens or an “IOL”. The membrane containing the natural lens, called the “capsular bag”, is not affected by the cataracts and is left intact, except for an opening in the anterior side needed to accommodate removal of the natural lens and insertion of the IOL.


IOLs are usually formed by a single piece that contains the optical part (which provides the focusing function mentioned above) and a device to fixate the IOL in the capsular bag. For example, the TECNIS® family of IOLs has a 13 mm dimension in a larger axis (between ends of the haptics) and the optical part has a 6 mm diameter optical zone. IOLs can be formed by more pieces (e.g., two lenses) and/or more complex platforms (e.g., to provide for displacement of lenses with respect to each other). The device is fixated in the capsular bag by applying force in the inner part of the capsular bag.


Typically the lenses are inserted into the eye in an injector apparatus that is similar to a syringe but with a larger bore and usually with some structure for folding the IOL. More complex, larger IOLs tend to call for larger bore injectors which is counter to most patient and surgeon preference.


SUMMARY OF THE INVENTION

There is a need for a new technology for improving positional stability of IOLs. Rotation in toric IOLs, axial position, tilt and decentration are major causes of residual refractive errors after surgery. Moreover, embodiments disclosed herein enable larger size IOLs which deliver more functionality to be placed in the eye without excessive trauma or other complications. In various embodiments, IOLs can be configured to be assembled within the eye to provide advantageous implantation and performance.


In one embodiment, a multi-piece IOL assembly is provided that includes a platform and an optic. The platform has an outer periphery configured to couple with an inner periphery of an eye (e.g., an inner periphery of a capsular bag, or a periphery of the anterior chamber or the posterior chamber of the eye). The platform has an inner periphery surrounding an inner zone of the platform. The optic has an optical zone, an outer periphery and a retention mechanism disposed on the outer periphery. The optic is configured to be disposed in the inner zone of the platform and to extend to a location between the inner periphery and the outer periphery of the platform to be secured to the platform at the location.


In another embodiment, a method of implanting an IOL in an eye is provided. In the method, an interior space, e.g., an anterior chamber or a posterior chamber, of an eye is accessed. A platform is advanced into the interior space, e.g., into the anterior or posterior chamber. The platform has an outer periphery and an inner periphery surrounding an inner zone of the platform. The platform is coupled with an inner periphery of the eye. An optic is advanced into the interior space, e.g., into the anterior or posterior chamber of the eye after the platform is advanced into the interior space, e.g., into the anterior or posterior chamber. The optic has an optical zone and an outer periphery. The optical zone of the optic is advanced into the inner zone of the platform. The outer periphery of the optic is advanced to a location of the platform between the outer periphery and the inner periphery thereof.


In another embodiment, a platform to place the IOL is created or formed in the capsular bag by femtosecond laser or other segmenting or emulsifying device. During the cataract surgery, an inner part of the crystalline lens disposed about the optical axis of the eye is removed leaving a platform structure in the outer part of the crystalline lens. The outer part can be configured with an inner periphery that is configured for placing and for securing the IOL inside the capsular bag.


In one example, a method of improving a patient's vision is provided. A platform is provided for supporting an optic in an eye of a patient. The platform has a one or a plurality of notches. An optic is coupled with the platform such that an optical zone thereof is central portion of the platform. A retention mechanism of the optic is disposed in the notch or in one of the notches of the plurality of notches in an initial position. Following placement of the optic, an observation is made as to whether a more anterior or more posterior position could provide better optical performance. The platform is modified to allow the optic to move from the initial position to an adjusted position to provide better optical performance.


In the foregoing methods, one or more notches can be formed or eliminated to allow the optic to move from the initial position to the adjusted position.


In another method, cutting energy is directed into an eye to remove a central portion of a natural lens capsule from the eye. Cutting energy is directed into the eye to form an inner periphery in a portion of the lens capsule that is to remain after the central portion thereof has been removed. The inner periphery has one or more notches configured to receive retention structures of an optic to be coupled with the inner periphery of the remaining portion.


In one embodiment, the IOL is fixed in to the capsular bag by photobonding. The photobonding is applied to the outer part of the platform to the inner part of the capsular bag to prevent IOL rotation and displacement.


In another embodiment, the piggyback IOL is fixed in an existing IOL implanted in the capsular bag by photobonding.





BRIEF DESCRIPTION OF THE DRAWINGS

The systems, methods and devices may be better understood from the following detailed description when read in conjunction with the accompanying schematic drawings, which are for illustrative purposes only. The drawings include the following figures:



FIG. 1 is a cephalad-caudal cross-section of the eye taken in the anterior-posterior direction, showing a single-piece IOL placed therein;



FIG. 2 is an anterior side view of a multi-piece IOL assembly;



FIG. 3 is a perspective view of a platform that can be inserted separately into the eye and that can be assembled with one or more powered optics to provide a desired level of optical power;



FIG. 4 is a perspective view of an example of an optic that can be inserted separately from the platform of FIG. 3 but thereafter assembled therewith in the eye;



FIG. 5 is a cross-sectional view of one embodiment of the platform of FIG. 2 showing an optic disposed therein; and



FIG. 5A is a cross-sectional view of one embodiment of the platform of FIG. 2 showing a single-piece IOL disposed therein;



FIGS. 6A and 6B illustrate one embodiment of a method showing cross-sectional view of a natural crystalline lens before and after ablation to create a platform in an inner periphery of an outer part of the crystalline lens;



FIG. 7 is a cross-sectional view illustrating one embodiment of a method of using the platform created in the natural crystalline lens of FIG. 6 showing a single-piece IOL disposed therein;



FIG. 8 is a cross-sectional view illustrating one embodiment of a method of using a piggyback IOL fixed in an existing posterior chamber IOL.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

This application is directed to apparatuses, systems and methods that enable a broader range of IOL design freedom. Broader design freedom is provided at least in part by enabling a more voluminous IOL to be implanted without requiring a much larger incision size. IOL designs have heretofore been limited by a maximum size of a corneal incision that is used to deliver the IOL into the eye, specifically into the capsular bag of the eye. Smaller incisions of a diameter of about 2.75 mm to 3.2 mm are preferred by surgeons in order to reduce the risk of complications during surgery. Examples of complications that can arise from larger incisions are surgically induced astigmatism and post-operative trauma. This small size constrains the possibilities of new IOL designs for example in terms of the optical zone diameter and the central thickness of the optical part of the IOL.


Additionally, this application also addresses methods to increase positional stability inside the capsular bag. Although different platforms are available in the market, rotation in toric IOLs, displacement in the axial position, tilt and decentration, are still major causes of post-operative refractive errors (defocus, astigmatism and higher order aberrations). The methods can be also applied to piggyback IOLs designs that can be used to correct existing post-operative refractive errors from a previous cataract surgery, or to provide new features to an implanted IOL design in pseudophakic patient (e.g. a multifocal design in a patient previously implanted with a monofocal IOL).


I. Single-Piece IOL Placement in an Eye


FIG. 1 shows one approach to treating an eye 10 with a cataract. A cornea 12 encloses an anterior chamber 14 of the eye 10. Light entering the cornea 12 passes through the anterior chamber 14 also passes through an iris 16. The iris 16 is a muscle that constricts and expands to regulate the amount of light passing into the natural lens, which is located between the anterior chamber 14 and the vitreous 32. In an unaltered eye not impaired with cataract the cornea and the natural lens together focus light at the back of the eye. FIG. 1 shows that the natural lens has been removed leaving the capsular bag 18 intact. The capsular bag 18 is supported by zonules 26 which are coupled to the periphery of the bag 18 on one end and to the ciliary body 25 on the other end. The ciliary body 25 can act on the bag 18 directly through the zonules 26. Light entering the eye 10 passes through the cornea 12, an anterior surface 27, a central zone of a lens body 28, and a posterior surface 29 of an IOL 11. An image can be focused by the cornea 12 and the IOL 11 on the retina 22 located at the back of the eye. The focused image is detected by the retina 22 and the information detected is conveyed to the brain by the optic nerve 24. Haptics 30 support the periphery of the lens body 28 at the interior surface of the capsular bag 18.


II. Multi-Piece IOL Capable of Sequential Insertion & Intraocular Assembly


FIG. 2 shows a multi-piece IOL assembly 100 that can be implanted in the eye in separate pieces and assembled therein. The multi-piece IOL assembly 100 includes a platform 104 and an optic 130. The optic 130 provides refractive power to replace a natural or a previously placed lens and/or to supplement either a natural or a previously placed lens.


The platform 104 includes an outer periphery 108 and an inner periphery 112. The outer periphery 108 surrounds the inner periphery 112 and also surrounds an inner zone 116. The outer periphery 108 can be circular with a diameter of 10 mm. In one embodiment, the inner periphery 112 also is circular and has a diameter of between about 4 mm and about 9 mm, in some cases between 5 mm and 8 mm, and in one specific example about 6.5 mm. The inner zone 116 can be a through hole in a central zone of the platform 104. The inner zone 116 can be surrounded by the inner periphery 112 of the platform 104. The outer periphery 108 can be configured to couple with an inner periphery of an eye. For example, the outer periphery 108 can be configured to couple with the inside surface of the capsular bag 18 or with a sulcus S of the eye.


The platform 104 is configured to be assembled with the optic 130 in the eye in certain techniques. The platform 104 can have a location 146 configured for securing the optic 130. The location 146 can be an annular zone of the platform 104 between the outer periphery 108 and the inner periphery 112. The location 146 can comprise one or more grooves or slots that can hold one or more optics. The location 146 can include a mechanical interface such as a projection or protrusion as discussed further below.


The platform 104 and the optic 130 can comprise materials that have different light transmission characteristics. For example, the platform 104 can have zero transmittance in at least the visible wavelengths of light to block transmission of at least visible wavelengths of incident. As another example, the platform 104 can comprise materials that transmit less than or equal to about 10% of the incident light. In some embodiments, the platform 104 can be configured to transmit less than 1% of light in the visible wavelength range, less than 2% of light in the visible wavelength range, less than 3% of light in the visible wavelength range, less than 5% of light in the visible wavelength range.


The optic 130 can comprise materials that transmit substantially all the incident light in the visible wavelength range. For example, the optic 130 can comprise materials that transmit greater than or equal to 80% of the incident light in the visible wavelength range, greater than or equal to 85% of the incident light in the visible wavelength range, greater than or equal to 90% of the incident light in the visible wavelength range, greater than or equal to 95% of the incident light in the visible wavelength range, or greater than or equal to 99% of the incident light in the visible wavelength range.


The optic 130 can be configured to have visible light transmittance in a central vision zone and reduced visible light transmittance towards the periphery of the optic 130. In some embodiments, the visible light transmittance can decrease in a determined manner from the center of the optic 130 to the periphery of the optic 130. The optic 130 can comprise materials that have UV filtering characteristics. For example, the optic 130 can be configured to block incident UV light. As another example, the optic 130 can be configured to transmit less than or equal to 5% (e.g., less than or equal to 3%, less than or equal to 2%, or less than or equal to 1%) of the incident UV.



FIG. 5 shows that the platform 104 can include an annular member 114. The annular member 114 can be defined or disposed between the inner periphery 112 and the outer periphery 108. The annular member 114 can comprise an outer surface 118, an anterior surface 120, and a posterior surface 122. The outer surface 118 can be a continuous surface, e.g., a surface that extends 360 degrees around the inner zone 116. The outer surface 118 can be configured to provide 360 degree contact between the platform 104 and the anatomy, e.g., with an interior periphery of the eye such as with the inside of the capsular bag 18 or with the sulcus. By providing continuous contact about the outer periphery 108, e.g., along the outer surface 118, the platform 104 can be coupled to the anatomy in a manner that reduces, minimizes or eliminates cell migration along the outer surface 118 between the platform 104 and the anatomy, from the anterior surface 120 to the posterior surface 122 of the platform 104, or generally around the multi-piece IOL assembly 100. The outer surface 118 can have a 360 degree square edge design or a 360 degree sharp edge design that provides a 360 degree contact between the platform 104 and the anatomy to reduce, minimize or eliminate migration of epithelial cells.


In certain embodiments, the platform 104 includes at least one slot 124 disposed therein. The slot 124 can be enclosed at a radially outward position by a recessed portion of the inner periphery 112. The recessed portion can be enclosed by the outer surface 118. FIG. 5 shows that in one embodiment of the platform 104 includes a second slot 125. In one embodiment the platform 104 includes a third slot 126. The slot 124 and the additional slots 125, 126 can be aligned in an anterior-posterior direction in one embodiment. In various methods discussed below the slots 124, 125, 126 can be used individually or together to support the optic 130 and/or a second optic 132 and in some cases a third optic. Although three slots and two optics are shown any combination of slots can be provided and the number of optics can be pre-defined or can be surgeon determined based upon factors such as intraoperative aphakic, or pseudophakic measurement. The slot 124 can be enclosed on anterior and posterior sides by recessed portions of the inner periphery 112 and/or by the anterior surface 120 and the posterior surface 122.


Referring to FIGS. 2 and 3, the platform 104 can include various indicia to assist in placement of the platform 104 in the eye. For example, the platform 104 can include indicia 160 for aligning the platform 104 with the eye. The indicia 160 can be configured as anatomical indicia to align with particular ocular anatomy, for example to align to a particular zone of the anterior segment of the eye. The indicia 160 can comprise optic indicia to align the optic 130 within the eye. For example, certain vision disorders arise from rotational variation in the eye system. Astigmatism is an example. For such conditions improved outcomes arise from aligning the optic 130 configured with different powers at different angular positions at the specific angular position requiring such powers.


An aperture 172 can be provided as one example of a structure for rotationally positioning the platform 104. If the indicia 160 are configured as anatomical indicia, it may be desirable to rotate the platform 104 after it has been placed in the eye against the interior periphery to which it is to be coupled. A slender surgical instrument such as a curette can be inserted into the aperture 172 to engage the platform 104 so that the platform 104 can be rotated within the eye. Once positioned, the instrument can disengage the aperture 172 leaving the platform 104 in place. The amount of rotation by engagement with the aperture 172 can be guided by the indicia 160 if configured as anatomical indicia.


It may be possible to use the indicia 160 for both rotationally positioning the platform 104 to the ocular anatomy and for positioning the optic 130. In some embodiments two separate indicia are provided. A first indicia 160a is provided for aligning with the anatomy and a second indicia 160b is provided for aligning the optic 130 to the platform 104 as depicted in FIG. 3. The first and second indicia 160a and 160b can be spaced apart from each other on a surface of the platform 104.


In some embodiments the indicia 160 is/are disposed on the anterior surface (e.g., surface 120 of FIGS. 5 and 5A) of the platform 104 to enhance the visibility of the indicia 160. In some cases, the platform 104 is clear and the indicia 160 can be positioned on the posterior surface (e.g., surface 122 of FIGS. 5 and 5A) of the platform 104.



FIGS. 2, 5 and 5A illustrate embodiments that are configured to be joined along a surface area rather than at discrete spaced apart locations using mechanical anchors. FIG. 5 shows that the outer surface 118 can be placed in directed contact with an inside surface of the capsular bag and the outer surface 118 can thereafter be joined along an interface 119 to the inside surface of the capsular bag 18 by any suitable bonding or securing technique. For example, bonding can be achieved by laser fusion, by chemical gluing, photocuring, or by photobonding the platform 104 in or to the capsular bag 18 along the interface 119.


Photocuring is a technique in which the components to be secured are brought into contact and exposed to UV radiation or visible radiation. The polymer properties of one or both components to be secured can be altered as a result of exposure to UV radiation. For example, one or both components can harden and/or cross-linking of the molecules of the material of one or both components can occur which can facilitate bonding.


An example of ophthalmic applications of photocuring is treatment for keratoconus in which Vitamin B is applied to the cornea, where after it is exposed to UV light causing corneal crosslinking and/or strengthening the cornea.


Some implementations of the platform 104 can comprise materials that can harden and/or exhibit cross linking when exposed to UV radiation and adhere to the capsular bag 18. In some embodiments, a chemical that can harden and/or exhibit cross linking when exposed to UV radiation can be disposed between the platform 104 and the capsular bag 18. The chemical can facilitate bonding between the platform 104 and the capsular bag 18 when exposed to UV radiation. Various materials that can be photocured are described in U.S. Pat. No. 7,276,544 which is incorporated herein by reference in its entirety.


Laser fusion is a technique in which different layers of material are bonded by optical energy. One or more outer layers of material on which the laser light is incident can be configured to transmit the incident laser light and one or more inner layers of material are configured to absorb the light transmitted by the one or more outer layers. The one or more inner layers of material can melt as a result of the absorbed optical energy and fuse with the one or more outer layers. In this manner the different layers or materials are welded or joined together.


Lasers that emit radiation in the far ultraviolet spectral region, such as, for example, an excimer laser or lasers that emit radiation in the far infrared spectral region, such as, for example, a CO2 laser can be used for laser fusion.


If chemical agent (e.g., a dye) is applied to or released from one or both the components that are being fused (e.g., the platform) to facilitate or enhance bonding, then lasers that emit radiation in wavelength ranges which activate the chemical agent can be used.


Other lasers that can be used for laser fusion include an argon ion laser, Nd:YAG laser and/or KTiOPO4 (potassium titanyl phosphate) laser.


Example photobonding techniques that can be used to join the platform 104 along the interface 119 are discussed in WO2016/142490A1, the entire contents of which are hereby incorporated by reference herein. In some embodiments, the platform 104 can be joined to the inside surface of the capsular bag 18 by a surface adherent that can self-adhere to the inside surface of the capsular bag 18. US2011/0029074 provides examples of surface adherents that can be provided on the outer surface 118 of the platform 104. For example, gecko feet microfibers as described in US Publication No. 2011/0029074 which is incorporated herein in its entirety can be used as a surface adherent. These surface adherents preferably provide enhanced positional stability and can be configured to be permanent due to the ability to change the optical properties of the optic 130 and/or add a second lens as a piggyback lens. Although the foregoing discussion has been focused on bonding or securing to the inside surface of the capsular bag 18, these techniques can also be applied to the sulcus S or another stable inner periphery of the inside of the eye 10.



FIG. 3 shows an embodiment of a platform 204 that is similar to the platform 104 except as described differently below. The platform 204 can provide all the same functions discussed above in connection with the platform 104. The platform 204 can also be configured to provide discrete, spaced apart point contact with the inside surface of the eye 10. For example, one or more haptics 212 can be at the provided along the outer periphery 208 of the platform 204. The haptics 212 can comprise anchors that extend from an outer surface 218 of the platform 204. The haptics 212 can have any haptic configuration. In certain embodiments, the haptics 212 comprise short hook-like features that extend only a short distance from the outer surface 218. The outer surface 218 may in fact be in contact with the ocular anatomy to which the haptics 212 engage in the locations of the platform 204 between the spaced apart haptics 212. A contact zone 220 can be along an arcuate portion of the outer surface 218 between two adjacent haptics 212. The arcuate zone 220 can provide for direct contact between the haptics 212 between the two adjacent haptics 212. In the illustrated embodiment, the haptics 212 are spaced apart by equal distances, e.g., each spaced from two adjacent haptics 212 by an approximate arc of 90 degrees. There can be more or fewer than four haptics. For example, there can be two, three, five, six, seven or eight haptics in various embodiments. Also, the haptics 212 can be located other than at equal spacing from one another. As discussed above, the platform 204 can be disposed to contact the inner periphery of the capsular bag and attached to the inner periphery of the capsular bag by bonding such as, for example, by laser fusion, by chemical gluing, photocuring, or by photobonding. When attaching the platform 204 to the inner periphery of the capsular bag, the haptics 212 can be bonded directly to the inner periphery of the capsular bag by bonding such as, for example, by laser fusion, by chemical gluing, photocuring, or by photobonding.



FIG. 4 shows the optic 130 in further detail. The optic 130 includes an optical zone 134. The optical zone 134 is surrounded by an outer periphery 138 of the optic 130. The optical zone 134 is configured to combine with the cornea 12 to provide overall optical power of the eye 10. The optical zone 134 can provide refractive power to replace a nature lens as in the case of a cataract procedure. The optical zone 134 can provide additional ocular benefits, for example including a filter of at least one spectrum of light. The optical zone 134 can provide an ultraviolet (UV) filter for example. The optical zone 134 of an optic can be configured, design, produced or selected to benefit an adjustment procedure. One type of adjustment procedure involves observing during an initial cataract procedure that the power provided by the optic 130 is not as expected. A second optic 132 as depicted in FIG. 5 can be placed in the platform 104 anterior of the first optic 130. The second optic 132 can have an optical zone 134 that is configured to provide the additional power needed by the eye having the first optic 130 or to reduce the power of the eye having the first optic 130. The second optic 132 can have an optical zone 134 that is configured to correct optical aberrations, e.g., glistening or intolerable halos from a multifocal or other advanced optical design.


The first optic 130 or the second optic 132 (or additional optics) can provide therapy other than restoring proper refraction. In one embodiment, the first optic 130 and the second optic 132 are configured along with the platform 104 to provide varying power. One or both of the first optic 130 and the second optic 132 are configured to move transverse to, e.g., perpendicular to, the optical axis OA. Such movement can cause highest power regions of the optical zone 134 of the first and second optics 130, 132 to overlap more (yielding increased power) or to overlap less (yielding decreased optical power). The transverse movement can be provided during the surgery prior to fully engaging the first and second optics 130, 132 to the platform 104 or can be facilitated by configuring the platform 104 to be sufficiently flexible to be moved or deformed by the zonules 26 and/or the ciliary body 25 to provide accommodation. Further details of such power change are discussed in U.S. Pat. No. 3,305,294, which is incorporated by reference herein in its entirety.


In a two optic embodiment, the optic 130 can include a 6.5 mm diameter. The optic 130 can be configured to optically compensate for corneal aberrations. For example, the optic 130 can include an aspheric anterior surface to compensate for corneal spherical aberrations. The power of the optic 130 can be around +10 diopter (D), around +20 D, around +30 D, as examples. The optic 130 can have a spherical posterior surface in some examples. The second optic 132 can include a 6.5 mm diameter. The second optic 132 can have an aspheric anterior surface to provide zero spherical aberration in one embodiment. The second optic 132 can have powers in the range of −5 D to +5 D. The second optic 132 can have a spherical posterior surface. In a kit, a plurality of optics 130 can be provided, e.g., +10 D, +20 D, +30 D, a plurality of second optic 132 can be provided, e.g., −5 D to +5 D in 0.5 D increments, and the platform 104 can be provided.


The optic 130 can also incorporate optics that deflect the focal point of the eye away from the natural focal area, which is referred to as the fovea. In some conditions such as macular degeneration, retinal cells at the fovea do not function properly. Most eyes benefit from additional locations on the retina, sometimes referred to as peripheral retinal locations because these locations are spaced away from the fovea, where a focused image can be detected and interpreted by the brain. Thus, there is an opportunity to configure the optic 130 with the optical zone 134 being able to deflect light away from the fovea to one of these peripheral locations. The optical zone 134 thus can be configured to address macular degeneration and other diseases that reduce or eliminate the ability to detect an image focused at the fovea. Examples of such lenses are discussed in U.S. Publication No. 2015/0250583 which is incorporated herein by reference in its entirety.


Even for patients without any foveal function concern, the optic 130, the second optic 132, or both the optic 130 and the second optic 132 can be configured to provide enhanced image quality for a larger field of view by reducing, e.g., by minimizing or eliminating, peripheral aberrations. Examples of such lens are discussed in U.S. Publication No. 2015/0320547 which is incorporated herein by reference in its entirety.


The optic 130 or the second optic 132 can incorporate any optical design, such as multifocal, extended range of vision, toric, and other designs. Toric lenses are susceptible to rotation after implantation. Since, the astigmatic correction provided by the tonic lens can vary with rotational alignment of the toric lens, rotational stability of toric lenses is advantageous. The platform 104 and/or 204 can advantageously increase the rotational stability of toric lenses.



FIG. 4 shows that the optic 130 (or the second optic 132) can include a retention mechanism 142 disposed along the outer periphery 138. In one embodiment, the outer periphery 138 includes two retention mechanism 142 disposed at opposite, e.g., at diametrically opposed sides, of the outer periphery 138. The retention mechanism 142 can include one or more projections 143 oriented in an anterior-posterior direction (e.g., parallel to the optical axis of the optical zone 134). The projections 143 can be similar to detent features, comprising hemispherical projections. The platform 104 preferably includes mating recesses the can receive the projections 143 of the retention mechanism 142. The platform 104 can have an array of recesses along an arc at the location 146 where the optic 130 engages the platform 104. This array allows the optic 130 to be rotated from one retention site of the platform 104 to another retention site. This allows a rotationally asymmetric optic 130 to be adjusted until the proper alignment results. Also, the array of recesses can be provided in one or in each of the slots 124, 125, 126. These are examples of mechanisms that can be used to provide for displacement and fixation of the optic to control lens positioning within an eye to reduce one or more of tilt aberration, decentration aberration and pseudophakic power estimation error. In some implementations, the optic 130 can be configured to be compressible and have a size that is somewhat larger than the size of the inner periphery 112. The optic 130 can be compressed prior to being inserted into the location 146 of the holder 104. The optic 130 can expand after insertion into the location 146 and held in place be compressive forces applied by the holder 104.


The projection 143 and recess configuration of the retention mechanism 142 and the platform 104 can provide a tactile feedback benefit to the surgeon. For example, if the surgeon moves the optic 130 about the optical axis OA within the platform 104 from a first rotational position to a second rotational position, the surgeon will be able to feel the retention mechanism 142 engaging the recess in the slot 124, the slot 125, or the slot 126 of the platform 104. The engagement of the retention mechanism 142 can assure that a rotationally asymmetric optical zone 134 (e.g., as in a toric lens) will continue to remain at the proper orientation. This is because the platform 104 can be securely affixed to an inner periphery of the eye 10 using any of the techniques discussed herein. The engagement between the retention mechanism 142 with the platform 104, e.g., projections 143 of the retention mechanism 142 with recesses in the platform 104 can assure that the rotational position of the optic 130 (or the second optic 132 or other optics in the platform 104) is maintained.


The platform 104 and the optic 130 can be configured to reduce, minimize or eliminate aberrations around the inner periphery 112. For example, as discussed above, the platform 104 and the optic 130 can have different transmittance characteristics. The platform 104 can be at least partially opaque. The platform 104 can be configured to prevent transmission of substantially all incident light. The platform 104 can be tinted sufficiently to prevent light from propagating out of the optic, e.g., through internal reflection toward the retina or out of the eye through the platform 104. Some embodiments provide a variation, e.g., a gradual change, in transmittance between the optical axis OA and the inner periphery 112 of the platform 104. This allows the platform 104 to block reflected light that could create aberrations due to the optical behavior of the platform 104 but prevent the presence of a drastic difference in opacity between the platform 104 and the optic 130 from creating other aberrations.


III. Formation of a Natural Platform for IOL Implantation in the Crystalline Lens


FIGS. 6A and 6B shows other approaches to improving positional stability in an intraocular lens system by forming a platform P in a natural eye structure. The platform P can have discrete positions for placement of IOLs.



FIG. 6A shows a natural eye 10. The cornea 12 of the eye 10 is intact as is the natural lens L. The iris 16 is shown in a relatively constricted state. As discussed above, a variety of technologies can be used to remove parts of the natural lens L. In a conventional procedure the capsular bag 18 is formed by removing substantially all of the interior volume of the lens L. This normally results in a thin membrane as shown in FIG. 1. The thin membrane has a continuously concave inner surface if the membrane is propped open. A central portion of the lens is removed such that an open zone 308 can be formed in the lens. In some cases, the open zone 308 can be enclosed by a thin wall 300 at a posterior portion thereof. Also, a peripheral portion 304 of the lens can be left intact. The size location and shape of the open zone 308 can be formed by directing a femtosecond laser or a light source directing ultraviolet picosecond pulses through the cornea at precisely planned depths.


The peripheral portion 304 can define an inner periphery 312 of the platform P in the eye. The inner periphery 312 can include a profile not found in the ocular anatomy. The inner periphery 312 can include one or a plurality of notches 316. The notches 316 can be separated along the optical axis OA. In one embodiment, the notches 316 are spaced from each other by a separation distance or spacing that provide a noticeable change in focal point at the retina. Such spacing can be sufficient to provide the equivalent of a change in power, e.g., +/−0.25 diopters, +/−0.5 diopters, +/−0.75 diopters or any other increment but generally less than 1 diopter between adjacent notches.


By preparing the lens L in the foregoing manner with notches 316 built into the peripheral portion 304 greater stability and selectability can be provided for implanting lenses. The peripheral portion 304 can be much thicker in the equatorial plane (e.g., the plane transverse to the optical axis OA that intersects the widest part of the lens L. This greater thickness enables the platform P formed in the eye 10 to retain much more rigidity than a conventional capsular bag 18 formed in an eye using standard techniques such as phacoemulsification or even using a femtosecond laser. The notches 316 can be configured to engage peripheral portions of optics as discussed further below. So in addition to being more rigid than a conventional capsular bag, the platform P can engage optics in a way that provides for their rotational stability.



FIG. 7 shows a modified technique in which a platform P′ is formed in a lens capsule. The platform P′ is similar to the platform P except that rather than having three notches 316 the platform P′ has two notches 316. In certain embodiments where fewer notches are provided a greater spacing may be provided between adjacent notches. A greater spacing can have an effect of increasing a difference in optical performance for a same lens placed in the different notches 316.



FIG. 7 illustrates a part of a method placing the optic 130 in the platform P′. The optic 130 can be placed into the eye by making a small incision peripheral to an optical zone of the cornea 12. The iris 16 can be dilated to move it out of the way during the procedure. Thereafter, an injector can be inserted through the incision into the anterior chamber 14 of the eye 10. The optic 130 can be advanced into the eye through the injector. Thereafter, the optic 130 expand to the shape seen in FIG. 7. The retention mechanism 142 can be coupled with any one of the notches 316. FIG. 7 shows that the optic 130 can be advanced posteriorly in the eye 10 until the retention mechanism 142 is aligned with the posterior-most notch 316. Thereafter the retention mechanism 142 can be advanced into the notches 316. The retention mechanism 142 can provide for mechanical engagement in the notch 316. Other techniques can secure the optic 130 in the notch 316 as discussed below.


IV. Bonding of the IOL in the Capsular Bag or Other Natural Lens Structure

As discussed elsewhere herein, photobonding and related procedures can be used to secure an implanted structure in the eye 10. For example, FIG. 5 shows the outer periphery 108 of the platform 104 bonded to the capsular bag 18 along the interface 119. Photobonding and other similar methods could be used to secure an optic or an IOL directly to what remains of a lens capsule after central portions thereof have been removed (e.g., into a capsular bag, into a platform P formed in a remaining portion of a natural lens capsule, as discussed above).



FIG. 1 shows an IOL placed in a capsular bag 18 formed in a conventional manner. Photobonding can provide for a bonding interface between peripheral haptics and the inside periphery or surface of the eye 10. Such techniques can also be use greatly enhance stability of conventional IOLs in the capsular bag 18. This can provide an advantage for IOLs that have rotationally asymmetric optics, such as toric IOLs.



FIG. 7 shows the optic 130 placed in the platform P′. The optic 130 can be secured in the platform P′, e.g., in one of the plurality of notches 316 using photobonding. A bonding interface can be formed between a periphery of the optic 130 and the concave space in the notches 316. The retention mechanism 142 can be configured to enhance bonding, e.g., by being formed of a material or by having the material disposed thereon, which material is suitable for photocuring, laser fusion or photobonding. Further details of photocuring, laser fusion or photobonding are set forth elsewhere herein and the description thereof is incorporated to supplement this discussion.


V. Bonding of the Piggyback IOL in the Capsular Bag or Other Natural Lens Structure


FIG. 8 illustrates another method in which a second optic 132 is placed in the platform P′ that has been formed in the lens capsule as discussed above. It can be that a patient's optical deficiency is not corrected by the optic 130. In some cases, the optic 130 was properly selected and placed for the patient at the time of initial placement but due to changes in the eye of the patient the optic 130 no longer provides appropriate correction. It can be that the optic 130 was properly selected based on information obtained pre-operatively but that the optic 130 did not perform as expected. Sub-optimal performance can be discovered even during the procedure using intra-operative aberrometry and other pseudophakic diagnostics. For these and other reasons the second optic 132 can be placed in the platform P′ that is formed in the natural lens capsule as discussed above.


The second optic 132 can be provided with optics that cancel any aberrations that arise in the patient due to an advancing condition or that arise due to unexpected sub-optimal performance of the optic 130.


As in the optic 130, the optic 132 can be secured in the platform P′ using a retention mechanism 142. The retention mechanism 142 of the second optic 132 can include a detent or other protrusion that engages a portion of one of the notches 316. In some embodiments, the second optic 132 can be secured using photobonding or another adherent.


VI. Further Methods

The foregoing embodiments can be used in a method of addressing vision problems by implanting the multi-piece IOL assembly 100 using various methods.



FIG. 1 shows the eye with another lens disposed therein. In one variation, the anterior chamber 14 of the eye 10 is accessed. This can be done by conventional methods. The natural lens is removed from the eye 10 preferably leaving the capsular bag 18 intact. For example, a capsulorhexis can be formed and the contents of the capsular bag 18 removed using phaco-emulsification. In some techniques a more precise approach is used. For example, a laser can be used to segment the natural lens allowing for the removal of specific parts of the natural lens. This second approach also can leave the capsular bag 18 intact for placement of the platform 104.


After the capsular bag has been prepared the platform 104 is advanced into the anterior chamber 14. The platform 104 and other components of the IOL assembly 100 can include elastic compression to inject through a small incision, e.g., through an incision of about 2.75 mm to 3.2 mm. Following injection, components of the multi-piece IOL assembly 100 can elastically expand. Thereafter the multi-piece IOL assembly 100 can be assembled in the eye. For example, upon release from the injector apparatus, the outer periphery 108 and the inner periphery 112 of the platform 104 expand to an uncompressed state. The platform 104 can be moved into engagement with an inner periphery of the eye such that the inner zone 116 of the platform 104 is centered on the optical axis OA. FIGS. 5 and 5A shows that the platform 104 can be moved into engagement with the interior surface of the capsular bag 18. The platform 104 can be moved into engagement with the sulcus S in other methods.


The platform is coupled with the sulcus S, the inside surface of the capsular bag 18 or with another inner periphery of the eye 10. Many different methods could be used for such coupling of the platform 104 with the inner periphery of the eye 10. As discussed above, the interface 119 between the outer surface 118 and the inner periphery of the eye 10 can be secured by laser fusion, photocuring, or another form of photobonding. Laser fusion can advantageously be performed at least in part by emitting light from a location outside the eye onto the zone where the interface 119 is to be formed. In at least this respect, laser fusion and other forms of photobonding are among the less invasive approaches to couple the platform 104 to the inner periphery of the eye 10. The interface 119 between the outer surface 118 and the inner periphery of the eye 10 can be secured by chemical gluing. Chemical gluing is advantageous in not requiring a light source to be directed into the eye. This can enhance safety in not requiring high energy light to be directed into the eye and also eliminates the need for this equipment when it is not otherwise in the operating room. Chemical bonding may require a cannula to deliver a chemical adhesive into the eye in a controlled manner. The interface 119 between the outer surface 118 and the inner periphery of the eye 10 can be secured by providing an adherent on the outer surface 118 of the platform 104. Providing an adherent on the outer surface 118 is advantageous in not requiring delivery of any adhesive into the eye via a cannula. An adherent may provide great security immediately upon placement.


After the platform 104 is coupled with the inner periphery of the eye 10, the optic 130 can be advanced into the anterior chamber of the eye. The optic 130 can be elastically compressed in an injector apparatus. The optic 130 can be inserted in the same injector apparatus as the platform 104. The optic 130 and the platform 104 can be injected sequentially without removing the tip of the injector apparatus from the anterior chamber 14.


After the optic 130 has regained an uncompressed state, the optic 130 can be coupled with the platform 104. The optical zone 134 of the optic 130 can be positioned in the inner zone 116 of the platform 104. In one technique, the outer periphery 138 is inserted into one of the slot 124, the slot 125, and the slot 126. In some methods, optical measurements can be used to determine into which of the slots 124, 125, 126 the optic 130 should be inserted. In one approach an aberrometry technique is used to determine the aphakic power of the eye 10. The aphakic power combined with the relative positions of the slots 124, 125, 126, the shape of the eye 10 and other factors can determine which of the slots 124, 125, 126 would provide the best refractive outcome. Thereafter the optic 130 can be placed in the slot that is chosen.


Advantageously the connection between the optic 130 and the platform 104 can be secured but releasable. For example, as discussed above the connection can be similar to a detent mechanism. Accordingly, in some techniques, a pseudophakic aberrometric measurement (with the optic 130 in place) can be made to confirm that the selected position provides the refractive result desired. If the result is not as desired, an action can be taken such as moving the optic 130 to a slot that is anterior or posterior of the initially selected and aberrometrically tested slot. Or, the second optic 132 can be placed in a more anteriorly located slot as discussed further below.


The manner of connecting the optic 130 to the platform 104 can include moving the outer periphery 138 of the optic 130 into one of the slots, e.g., into the slot 124. As the outer periphery 138 of the optic 130 is advanced to the location 146 of the platform 104 between the outer periphery 108 and the inner periphery 112 the optical zone 134 of the optic 130 comes to reset in the inner zone 116 of the platform 104. This position surrounds the optical axis OA of the eye and the multi-piece IOL assembly 100.



FIG. 5A shows another embodiment of an optic 130A in which resilient haptics 138A are coupled with a periphery of the optical zone 134. The haptics 138A can be inserted into one of the slots 124, 125, 126 to secure the optic 130A in the platform 104. The optic 130A can have more traditional haptic structures which may be more familiar to some surgeons or may be the only retention mechanism available for certain optics. The platform 104 and the platform P′ are advantageous in that they are able to mate with the retention mechanism 142 and with other more conventional haptics as needed.


The multi-piece IOL assembly 100 can be assembled within the eye in several ways. They individual components can be completely separate prior to assembly and can thereafter be assembled in the eye using instruments. The platform 104 and the optic 130 and in some cases secondary lenses such as the second optic 132 can be inserted using the same inserter system to reduce, e.g., to minimize, the number of times the surgeon enters the eye. In other embodiment, the platform 104, the optic 130, and if present additional lenses such as the second optic 132, can be semi-assembled during insertion so that they can be inserted at once. Once in place, these components can be fixed together by pulling on strings that couple the components together after implantation.


The above presents a description of systems and methods contemplated for carrying out the concepts disclosed herein, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains to make and use this invention. The systems and methods disclosed herein, however, are susceptible to modifications and alternate constructions from that discussed above which are within the scope of the present disclosure. Consequently, it is not the intention to limit this disclosure to the particular embodiments disclosed. On the contrary, the intention is to cover modifications and alternate constructions coming within the spirit and scope of the disclosure as generally expressed by the following claims, which particularly point out and distinctly claim the subject matter of embodiments disclosed herein.


Although embodiments have been described and pictured in an exemplary form with a certain degree of particularity, it should be understood that the present disclosure has been made by way of example, and that numerous changes in the details of construction and combination and arrangement of parts and steps may be made without departing from the spirit and scope of the disclosure as set forth in the claims hereinafter.

Claims
  • 1. A multi-piece IOL assembly, comprising: a platform comprising an outer periphery configured to at least partially directly engage with an inner periphery of an eye and an inner periphery surrounding an inner zone of the platform;an optic comprising an optical zone, an outer periphery and a retention mechanism disposed on the outer periphery;wherein the optic is configured to be disposed in the inner zone of the platform and to extend to a location between the inner periphery and the outer periphery of the platform to be secured to the platform at the location;wherein the platform comprises an annular member having an outer surface, an anterior surface, a posterior surface and at least two slots enclosed at radially outward portions thereof by the outer surface; each of the at least two slots positioned at an anterior location relative to another of the at least two slots, and each slot corresponding to a change in power of the eye by moving the optic from one of the slots to another of the slots; and wherein each of the at least two slots are spaced apart.
  • 2. The multi-piece IOL of claim 1, wherein the platform and the optic comprise different transmittance characteristics.
  • 3. The multi-piece IOL of claim 2, wherein the platform is opaque.
  • 4. The multi-piece IOL of claim 3, wherein the platform prevents transmission of substantially all incident light.
  • 5. The multi-piece IOL of claim 2, wherein the optic is configured to prevent transmission of light outside the spectrum visible to humans.
  • 6. The multi-piece IOL of claim 2, wherein the optic comprises variation in transmittance from a central zone to a peripheral zone, the central zone overlapping a central portion of the inner zone of the platform and the peripheral zone being adjacent to the inner periphery when the optic is coupled with the platform.
  • 7. The multi-piece IOL of claim 1, where in the optic comprises a first optic and a second optic; wherein the first optic occupies a different slot of the two or more slots than the second optic.
  • 8. The multi-piece IOL of claim 7, where at least one of the first optic and the second optic are moveable transverse to the optical axes thereof after being engaged with the platform to adjust the power of the multi-piece IOL within the eye.
  • 9. The multi-piece IOL of claim 1, wherein one slot can be used for initial vision correction and another slot can be used for an adjustment procedure.
  • 10. The multi-piece IOL of claim 1, wherein a mid-position slot is designated for initial placement of the optic and anterior and posterior slots are designated for adjustment placement to correct errors by effectively increase or decreasing the power of the eye compared to the power when the optic placed in the mid-position slot.
  • 11. The multi-piece IOL of claim 9, further comprising a second optic configured to focus light away from a foveal region of the eye to a peripheral retinal location that is sufficiently sensitive to provide an image to a patient.
  • 12. The multi-piece IOL of claim 9, further comprising a second optic configured to provide a substitute for natural accommodation by providing multifocality, enhanced or adjustable depth of focus.
  • 13. The multi-piece IOL of claim 9, further comprising a second optic configured to correct power errors.
  • 14. The multi-piece IOL of claim 9, further comprising a second optic configured to correct optical aberrations.
  • 15. The multi-piece IOL of claim 1, wherein the at least two slots provide for displacement and fixation of the optic to control lens positioning within an eye to reduce one or more of tilt aberration, decentration aberration and pseudophakic power estimation error.
  • 16. The multi-piece IOL of claim 1, wherein the platform comprises anatomy indicia on an anterior surface thereof, the anatomy indicia configured to align the platform to ocular anatomy.
  • 17. The multi-piece IOL of claim 1, wherein the platform comprises an optic indicia on an anterior surface thereof and the optic indicia configured to rotationally align the optic within the eye to align an asymmetric power profile of the optic to the anatomy.
  • 18. The multi-piece IOL of claim 17, wherein the optic indicia is a first optic indicia, the platform further comprising a second optic indicia, the first optic indicia configured to be rotationally align to the second optic indicia to cause the optic to be rotationally positioned within the eye to align an asymmetric power profile of the optic to the anatomy.
  • 19. The multi-piece IOL of claim 1, wherein the outer periphery of the platform is configured to provide 360 degree contact with the anatomy to which the platform is coupled to reduce, minimize or eliminate cell migration between the platform and the anatomy.
  • 20. The multi-piece IOL of claim 1, wherein the platform comprises three slots aligned in an anterior-posterior direction.
  • 21. The multi-piece IOL of claim 1, wherein the platform comprise an aperture disposed on the anterior surface configured to receive an instrument for rotationally positioning the platform in the eye.
  • 22. The multi-piece IOL of claim 1, wherein the platform is configured to be supported in an interior of a capsular bag of an eye.
  • 23. The multi-piece IOL of claim 1, wherein the platform comprises one or more haptics disposed at the outer periphery.
  • 24. The multi-piece IOL of claim 1, wherein the platform is configured to be supported in a sulcus of an eye.
CROSS REFERENCES TO RELATED APPLICATIONS

This application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application No. 62/556,853, filed Sep. 11, 2017, which is incorporated herein by reference in its entirety.

US Referenced Citations (616)
Number Name Date Kind
1483509 Bugbee Feb 1924 A
2129305 William Sep 1938 A
2274142 Houchin Feb 1942 A
2405989 Beach Aug 1946 A
2511517 Spiegel Jun 1950 A
2834023 Lieb May 1958 A
3004470 Hans Oct 1961 A
3031927 Wesley May 1962 A
3034403 Neefe May 1962 A
RE25286 Carle Nov 1962 E
3210894 Bentley et al. Oct 1965 A
3222432 Grandperret Dec 1965 A
3227507 William Jan 1966 A
3305294 Alvarez Feb 1967 A
3339997 Wesley Sep 1967 A
3415597 Willard Dec 1968 A
3420006 Howard Jan 1969 A
3431327 George Mar 1969 A
3482906 David Dec 1969 A
3507565 Luis et al. Apr 1970 A
3542461 Louis et al. Nov 1970 A
3583790 Baker Jun 1971 A
3617116 Jones Nov 1971 A
3632696 Donald Jan 1972 A
3673616 Fedorov et al. Jul 1972 A
3673816 Kuszaj Jul 1972 A
3693301 Lemaitre Sep 1972 A
3711870 Deitrick Jan 1973 A
3718870 Keller Feb 1973 A
3751138 Humphrey Aug 1973 A
3760045 Thiele et al. Sep 1973 A
3794414 Wesley Feb 1974 A
3827798 Alvarez Aug 1974 A
3866249 Flom Feb 1975 A
3906551 Otter Sep 1975 A
3913148 Potthast Oct 1975 A
3922728 Krasnov Dec 1975 A
3925825 Richards et al. Dec 1975 A
3932148 Krewalk, Sr. Jan 1976 A
3996626 Richards et al. Dec 1976 A
4010496 Neefe Mar 1977 A
4014049 Richards et al. Mar 1977 A
4038088 White et al. Jul 1977 A
4041552 Ganias Aug 1977 A
4053953 Flom et al. Oct 1977 A
4055378 Feneberg et al. Oct 1977 A
4056855 Kelman Nov 1977 A
4062629 Winthrop Dec 1977 A
4073579 Deeg et al. Feb 1978 A
4074368 Levy et al. Feb 1978 A
4087866 Choyce et al. May 1978 A
4102567 Cuffe et al. Jul 1978 A
4110848 Jensen Sep 1978 A
4118808 Poler Oct 1978 A
4159546 Shearing Jul 1979 A
4162122 Cohen Jul 1979 A
4195919 Shelton Apr 1980 A
4199231 Evans Apr 1980 A
4210391 Cohen et al. Jul 1980 A
4240163 Galin Dec 1980 A
4240719 Guilino et al. Dec 1980 A
4244060 Hoffer Jan 1981 A
4244597 Dandl Jan 1981 A
4251887 Anis Feb 1981 A
4253199 Banko Mar 1981 A
4254509 Tennant Mar 1981 A
4261065 Tennant Apr 1981 A
4274717 Davenport Jun 1981 A
4285072 Morcher et al. Aug 1981 A
4298994 Clayman Nov 1981 A
4304012 Richard Dec 1981 A
4307945 Kitchen et al. Dec 1981 A
4315336 Poler Feb 1982 A
4315673 Guilino et al. Feb 1982 A
4316293 Bayers Feb 1982 A
4338005 Cohen Jul 1982 A
4340283 Cohen et al. Jul 1982 A
4340979 Kelman Jul 1982 A
4361913 Streck Dec 1982 A
4363143 Callahan Dec 1982 A
4366582 Faulkner Jan 1983 A
4370760 Kelman Feb 1983 A
4373218 Schachar Feb 1983 A
4377329 Poler Mar 1983 A
4377873 Reichert Mar 1983 A
4402579 Poler Sep 1983 A
4404694 Kelman Sep 1983 A
4409691 Levy Oct 1983 A
4418991 Breger Dec 1983 A
4424597 Schlegel Jan 1984 A
4426741 Bittner Jan 1984 A
4435856 L'Esperance Mar 1984 A
4442553 Hessburg Apr 1984 A
4457592 Baker Jul 1984 A
4463458 Seidner Aug 1984 A
4474751 Haslam et al. Oct 1984 A
4474752 Haslam et al. Oct 1984 A
4474753 Haslam et al. Oct 1984 A
4476591 Arnott Oct 1984 A
4478822 Haslam et al. Oct 1984 A
4503953 Majewski Mar 1985 A
4504981 Walman Mar 1985 A
4504982 Burk Mar 1985 A
4512040 McClure Apr 1985 A
4542542 Wright Sep 1985 A
4551864 Akhavi Nov 1985 A
4560383 Leiske Dec 1985 A
4562600 Ginsberg et al. Jan 1986 A
4573775 Bayshore Mar 1986 A
4573998 Mazzocco Mar 1986 A
4575877 Herrick Mar 1986 A
4575878 Dubroff Mar 1986 A
4576607 Kelman Mar 1986 A
4580882 Nuchman et al. Apr 1986 A
4581033 Callahan Apr 1986 A
4596578 Kelman Jun 1986 A
4601545 Kern Jul 1986 A
4608050 Wright et al. Aug 1986 A
4615701 Woods Oct 1986 A
4617023 Peyman Oct 1986 A
4618228 Baron et al. Oct 1986 A
4618229 Jacobstein et al. Oct 1986 A
4624669 Grendahl Nov 1986 A
4629460 Dyer Dec 1986 A
4636049 Blaker Jan 1987 A
4636210 Hoffer Jan 1987 A
4636211 Nielsen et al. Jan 1987 A
4637697 Freeman Jan 1987 A
4641934 Freeman Feb 1987 A
4642112 Freeman Feb 1987 A
4642114 Rosa Feb 1987 A
4646720 Peyman et al. Mar 1987 A
4648878 Kelman Mar 1987 A
4650292 Baker et al. Mar 1987 A
4655770 Gupta et al. Apr 1987 A
4661108 Grendahl et al. Apr 1987 A
4662882 Hoffer May 1987 A
4664666 Barrett May 1987 A
4666444 Pannu May 1987 A
4666445 Tillay May 1987 A
4676792 Praeger Jun 1987 A
4676793 Bechert, II Jun 1987 A
4687484 Kaplan Aug 1987 A
4693572 Tsuetaki et al. Sep 1987 A
4693716 Mackool Sep 1987 A
RE32525 Pannu Oct 1987 E
4702244 Mazzocco Oct 1987 A
4704016 De Carle Nov 1987 A
4710193 Volk Dec 1987 A
4710194 Kelman Dec 1987 A
4711638 Lindstrom Dec 1987 A
4720286 Bailey et al. Jan 1988 A
4725278 Shearing Feb 1988 A
4731078 Stoy et al. Mar 1988 A
4737322 Bruns et al. Apr 1988 A
4752123 Blaker Jun 1988 A
4759762 Grendahl Jul 1988 A
4769033 Nordan Sep 1988 A
4769035 Kelman Sep 1988 A
4780154 Mori et al. Oct 1988 A
4787903 Grendahl Nov 1988 A
4790847 Woods Dec 1988 A
4808170 Thornton et al. Feb 1989 A
4813955 Achatz et al. Mar 1989 A
4816030 Robinson Mar 1989 A
4816031 Pfoff Mar 1989 A
4816032 Hetland Mar 1989 A
4822360 Deacon Apr 1989 A
4828558 Kelman May 1989 A
4830481 Futhey et al. May 1989 A
4833890 Kelman May 1989 A
4834749 Orlosky May 1989 A
4840627 Blumenthal Jun 1989 A
4842601 Smith Jun 1989 A
4865601 Caldwell et al. Sep 1989 A
4878910 Koziol et al. Nov 1989 A
4878911 Anis Nov 1989 A
4880427 Anis Nov 1989 A
4881804 Cohen Nov 1989 A
4883485 Patel Nov 1989 A
4888012 Horn et al. Dec 1989 A
4888014 Nguyen Dec 1989 A
4888015 Domino Dec 1989 A
4888016 Langerman Dec 1989 A
4890912 Msser Jan 1990 A
4890913 De Carle Jan 1990 A
4892543 Turley Jan 1990 A
4898416 Hubbard et al. Feb 1990 A
4898461 Portney Feb 1990 A
4902293 Feaster Feb 1990 A
4906246 Grendahl Mar 1990 A
4917681 Nordan Apr 1990 A
4919663 Grendahl Apr 1990 A
4921496 Grendahl May 1990 A
4923296 Erickson May 1990 A
4929289 Moriya et al. May 1990 A
4932966 Christie et al. Jun 1990 A
4932968 Caldwell et al. Jun 1990 A
4932971 Kelman Jun 1990 A
4938583 Miller Jul 1990 A
4946469 Sarfarazi Aug 1990 A
4955902 Kelman Sep 1990 A
4961746 Lim et al. Oct 1990 A
4963148 Sulc et al. Oct 1990 A
4976534 Miege et al. Dec 1990 A
4976732 Vorosmarthy Dec 1990 A
4990159 Kraff Feb 1991 A
4994058 Raven et al. Feb 1991 A
4994082 Richards et al. Feb 1991 A
4994083 Sulc et al. Feb 1991 A
4995880 Galib Feb 1991 A
4997442 Barrett Mar 1991 A
5000559 Takahashi et al. Mar 1991 A
5002382 Seidner Mar 1991 A
5002571 O'Donnell et al. Mar 1991 A
5018504 Terbrugge et al. May 1991 A
5019098 Mercier May 1991 A
5019099 Nordan May 1991 A
5026396 Darin Jun 1991 A
5044742 Cohen Sep 1991 A
5047051 Cumming Sep 1991 A
5047052 Dubroff Sep 1991 A
5054905 Cohen Oct 1991 A
5056908 Cohen Oct 1991 A
5066301 Wiley Nov 1991 A
5071432 Baikoff Dec 1991 A
5074877 Nordan Dec 1991 A
5074942 Kearns et al. Dec 1991 A
5078740 Walman Jan 1992 A
5089024 Christie et al. Feb 1992 A
5096285 Silberman Mar 1992 A
5108429 Wiley Apr 1992 A
5112351 Christie et al. May 1992 A
5117306 Cohen May 1992 A
5123921 Werblin et al. Jun 1992 A
5129718 Futhey et al. Jul 1992 A
5133748 Feaster Jul 1992 A
5133749 Nordan Jul 1992 A
5141507 Parekh Aug 1992 A
5147397 Christ et al. Sep 1992 A
5152788 Isaacson et al. Oct 1992 A
5152789 Willis Oct 1992 A
5158572 Nielsen Oct 1992 A
5166711 Portney Nov 1992 A
5166712 Portney Nov 1992 A
5166719 Chinzei et al. Nov 1992 A
5171266 Wiley et al. Dec 1992 A
5171267 Ratner et al. Dec 1992 A
5171320 Nishi Dec 1992 A
5172723 Sturgis Dec 1992 A
5173723 Volk et al. Dec 1992 A
5180390 Drews Jan 1993 A
5192317 Kalb Mar 1993 A
5192318 Schneider et al. Mar 1993 A
5196026 Barre et al. Mar 1993 A
5197981 Southard Mar 1993 A
5201762 Hauber Apr 1993 A
5203788 Wiley Apr 1993 A
5213579 Yamada et al. May 1993 A
5217491 Vanderbilt Jun 1993 A
5225858 Portney Jul 1993 A
5229797 Futhey et al. Jul 1993 A
5236452 Nordan Aug 1993 A
5236970 Christ et al. Aug 1993 A
5258025 Fedorov et al. Nov 1993 A
5260727 Oksman et al. Nov 1993 A
5270744 Portney Dec 1993 A
5275623 Sarfarazi Jan 1994 A
5275624 Hara et al. Jan 1994 A
5296881 Freeman Mar 1994 A
5326347 Cumming Jul 1994 A
5336261 Barre et al. Aug 1994 A
5344448 Schneider et al. Sep 1994 A
5349394 Freeman et al. Sep 1994 A
5354335 Lipshitz et al. Oct 1994 A
5358520 Patel Oct 1994 A
5366499 Py Nov 1994 A
5366502 Patel Nov 1994 A
5376694 Christ et al. Dec 1994 A
5391202 Lipshitz et al. Feb 1995 A
5405386 Rheinish et al. Apr 1995 A
5408281 Zhang Apr 1995 A
5423929 Doyle et al. Jun 1995 A
RE34988 Yang et al. Jul 1995 E
RE34998 Langerman Jul 1995 E
5443506 Garabet Aug 1995 A
5476445 Baerveldt et al. Dec 1995 A
5476514 Cumming Dec 1995 A
5480428 Fedorov et al. Jan 1996 A
5489301 Barber Feb 1996 A
5489302 Skottun Feb 1996 A
5494946 Christ et al. Feb 1996 A
5496366 Cumming Mar 1996 A
5503165 Schachar Apr 1996 A
5521656 Portney May 1996 A
5522891 Klaas Jun 1996 A
5549760 Becker Aug 1996 A
5562731 Cumming Oct 1996 A
5574518 Mercure Nov 1996 A
5578081 McDonald Nov 1996 A
5593436 Langerman Jan 1997 A
5607472 Thompson Mar 1997 A
5608471 Miller Mar 1997 A
5609630 Crozafon Mar 1997 A
5628795 Langerman May 1997 A
5628796 Suzuki May 1997 A
5628797 Richer May 1997 A
5650837 Roffman et al. Jul 1997 A
5652014 Galin et al. Jul 1997 A
5652638 Roffman et al. Jul 1997 A
5653754 Nakajima et al. Aug 1997 A
5657108 Portney Aug 1997 A
5661195 Christ et al. Aug 1997 A
5674282 Cumming Oct 1997 A
5682223 Menezes et al. Oct 1997 A
5684560 Roffman et al. Nov 1997 A
5695509 El Hage Dec 1997 A
5702440 Portney Dec 1997 A
5713958 Weiser Feb 1998 A
5716403 Tran et al. Feb 1998 A
5725576 Fedorov et al. Mar 1998 A
5728155 Anello et al. Mar 1998 A
5760871 Kosoburd et al. Jun 1998 A
5766244 Binder Jun 1998 A
5769890 McDonald Jun 1998 A
5770125 O'Connor et al. Jun 1998 A
5776191 Mazzocco Jul 1998 A
5776192 McDonald Jul 1998 A
5800533 Eggleston Sep 1998 A
5814103 Lipshitz et al. Sep 1998 A
5824074 Koch Oct 1998 A
5843188 McDonald Dec 1998 A
5847802 Menezes et al. Dec 1998 A
5864378 Portney Jan 1999 A
5869549 Christ et al. Feb 1999 A
RE36150 Gupta Mar 1999 E
5876441 Shibuya Mar 1999 A
5876442 Lipshitz et al. Mar 1999 A
5885279 Bretton Mar 1999 A
5895422 Hauber Apr 1999 A
5898473 Seidner et al. Apr 1999 A
5928283 Gross et al. Jul 1999 A
5929969 Roffman Jul 1999 A
5968094 Werblin et al. Oct 1999 A
5984962 Anello et al. Nov 1999 A
6013101 Israel Jan 2000 A
6015435 Valunin et al. Jan 2000 A
6050970 Baerveldt Apr 2000 A
6051024 Cumming Apr 2000 A
6063118 Nagamoto May 2000 A
6083261 Callahan et al. Jul 2000 A
6090141 Lindstrom Jul 2000 A
6096078 McDonald Aug 2000 A
6102946 Nigam Aug 2000 A
6106553 Feingold Aug 2000 A
6106554 Bretton Aug 2000 A
6110202 Barraquer et al. Aug 2000 A
6113633 Portney Sep 2000 A
6117171 Skottun Sep 2000 A
6120538 Rizzo, III et al. Sep 2000 A
6136026 Israel Oct 2000 A
6152958 Nordan Nov 2000 A
6162249 Deacon et al. Dec 2000 A
6176878 Gwon et al. Jan 2001 B1
6186148 Okada Feb 2001 B1
6197058 Portney Mar 2001 B1
6197059 Cumming Mar 2001 B1
6200342 Tassignon Mar 2001 B1
6210005 Portney Apr 2001 B1
6217612 Woods Apr 2001 B1
6221105 Portney Apr 2001 B1
6224628 Callahan et al. May 2001 B1
6228115 Hoffmann et al. May 2001 B1
6231603 Lang et al. May 2001 B1
6238433 Portney May 2001 B1
6241777 Kellan Jun 2001 B1
6251312 Phan et al. Jun 2001 B1
6258123 Young et al. Jul 2001 B1
6261321 Kellan Jul 2001 B1
6277146 Peyman et al. Aug 2001 B1
6277147 Christ et al. Aug 2001 B1
6280471 Peyman et al. Aug 2001 B1
6299641 Woods Oct 2001 B1
6302911 Hanna Oct 2001 B1
6322213 Altieri et al. Nov 2001 B1
6322589 Cumming Nov 2001 B1
6327772 Zadno-Azizi et al. Dec 2001 B1
6342073 Cumming et al. Jan 2002 B1
6358280 Herrick Mar 2002 B1
6364906 Baikoff et al. Apr 2002 B1
6387126 Cumming May 2002 B1
6399734 Hodd et al. Jun 2002 B1
6406494 Laguette et al. Jun 2002 B1
6423094 Sarfarazi Jul 2002 B1
6425917 Blake Jul 2002 B1
6443985 Woods Sep 2002 B1
6450642 Jethmalani et al. Sep 2002 B1
6454802 Bretton et al. Sep 2002 B1
6457826 Lett Oct 2002 B1
6464725 Skottun et al. Oct 2002 B2
6468306 Paul et al. Oct 2002 B1
6474814 Griffin Nov 2002 B1
6475240 Paul Nov 2002 B1
6478821 Laguette et al. Nov 2002 B1
6485516 Boehm Nov 2002 B2
6488708 Sarfarazi Dec 2002 B2
6494911 Cumming Dec 2002 B2
6503276 Lang et al. Jan 2003 B2
6517577 Callahan et al. Feb 2003 B1
6524340 Israel Feb 2003 B2
6533813 Lin et al. Mar 2003 B1
6533814 Jansen Mar 2003 B1
6536899 Fiala Mar 2003 B1
6547822 Lang Apr 2003 B1
6551354 Ghazizadeh et al. Apr 2003 B1
6554859 Lang et al. Apr 2003 B1
6558420 Green May 2003 B2
6559317 Hupperts et al. May 2003 B2
6589550 Hodd et al. Jul 2003 B1
6592621 Domino Jul 2003 B1
6598606 Terwee et al. Jul 2003 B2
6599317 Weinschenk, III Jul 2003 B1
6616691 Tran Sep 2003 B1
6616692 Glick et al. Sep 2003 B1
6638305 Laguette Oct 2003 B2
6638306 Cumming Oct 2003 B2
6645246 Weinschenk, III Nov 2003 B1
6660035 Lang et al. Dec 2003 B1
6685315 De Carle Feb 2004 B1
6695881 Peng et al. Feb 2004 B2
6721104 Schachar et al. Apr 2004 B2
6730123 Klopotek May 2004 B1
6749633 Lorenzo et al. Jun 2004 B1
6749634 Hanna Jun 2004 B2
6761737 Zadno-Azizi et al. Jul 2004 B2
6764511 Zadno-Azizi et al. Jul 2004 B2
6767363 Bandhauer et al. Jul 2004 B1
6786934 Zadno-Azizi et al. Sep 2004 B2
6797004 Brady et al. Sep 2004 B1
6818017 Shu Nov 2004 B1
6818158 Pham et al. Nov 2004 B2
6827738 Willis et al. Dec 2004 B2
6846326 Zadno-Azizi et al. Jan 2005 B2
6855164 Glazier Feb 2005 B2
6858040 Nguyen et al. Feb 2005 B2
6884261 Zadno-Azizi et al. Apr 2005 B2
6884262 Brady et al. Apr 2005 B2
6884263 Valyunin et al. Apr 2005 B2
6899732 Zadno-Azizi et al. May 2005 B2
6926736 Peng et al. Aug 2005 B2
6930838 Schachar Aug 2005 B2
6942695 Chapoy et al. Sep 2005 B1
7018409 Glick et al. Mar 2006 B2
7021760 Newman Apr 2006 B2
7025783 Brady et al. Apr 2006 B2
7041134 Nguyen et al. May 2006 B2
7073906 Portney Jul 2006 B1
7087080 Zadno-Azizi et al. Aug 2006 B2
7097660 Portney Aug 2006 B2
7118596 Zadno-Azizi et al. Oct 2006 B2
7118597 Miller et al. Oct 2006 B2
7122053 Esch Oct 2006 B2
7125422 Woods et al. Oct 2006 B2
7150759 Paul et al. Dec 2006 B2
7179292 Worst et al. Feb 2007 B2
7182780 Terwee et al. Feb 2007 B2
7186266 Peyman Mar 2007 B2
7188949 Bandhauer et al. Mar 2007 B2
7198640 Nguyen Apr 2007 B2
7217288 Esch et al. May 2007 B2
7220279 Nun May 2007 B2
7223288 Zhang et al. May 2007 B2
7226478 Ting et al. Jun 2007 B2
7238201 Portney et al. Jul 2007 B2
7247168 Esch et al. Jul 2007 B2
7261737 Esch et al. Aug 2007 B2
7276544 Lai et al. Oct 2007 B2
7344617 Dubrow Mar 2008 B2
7452362 Zadno-Azizi et al. Nov 2008 B2
7452378 Zadno-Azizi et al. Nov 2008 B2
7503938 Phillips Mar 2009 B2
7615056 Ayton et al. Nov 2009 B2
7645300 Tsai Jan 2010 B2
7662180 Paul et al. Feb 2010 B2
7744603 Zadno-Azizi et al. Jun 2010 B2
7744646 Zadno-Azizi et al. Jun 2010 B2
7815678 Ben Nun Oct 2010 B2
7922326 Bandhauer et al. Apr 2011 B2
8034108 Bumbalough Oct 2011 B2
8052752 Woods et al. Nov 2011 B2
9095424 Kahook et al. Aug 2015 B2
9358103 Wortz et al. Jun 2016 B1
20010001836 Cumming May 2001 A1
20010004708 Nagai Jun 2001 A1
20010018612 Carson et al. Aug 2001 A1
20010039451 Barnett Nov 2001 A1
20010044657 Kellan Nov 2001 A1
20020004682 Zhou et al. Jan 2002 A1
20020011167 Figov et al. Jan 2002 A1
20020072796 Hoffmann et al. Jun 2002 A1
20020103536 Landreville et al. Aug 2002 A1
20020120329 Lang et al. Aug 2002 A1
20020151973 Arita et al. Oct 2002 A1
20020161434 Laguette et al. Oct 2002 A1
20020193876 Lang et al. Dec 2002 A1
20030002404 Maekawa Jan 2003 A1
20030004569 Haefliger Jan 2003 A1
20030013073 Duncan et al. Jan 2003 A1
20030020425 Ricotti Jan 2003 A1
20030033013 Callahan et al. Feb 2003 A1
20030050696 Cumming Mar 2003 A1
20030050697 Paul Mar 2003 A1
20030060878 Shadduck Mar 2003 A1
20030060881 Glick et al. Mar 2003 A1
20030078657 Zadno-Azizi et al. Apr 2003 A1
20030078658 Zadno-Azizi Apr 2003 A1
20030083744 Khoury May 2003 A1
20030086057 Cleveland May 2003 A1
20030105522 Glazier Jun 2003 A1
20030109925 Ghazizadeh et al. Jun 2003 A1
20030114927 Nagamoto Jun 2003 A1
20030130732 Sarfarazi Jul 2003 A1
20030149480 Shadduck Aug 2003 A1
20030158599 Brady et al. Aug 2003 A1
20030187504 Weinschenk et al. Oct 2003 A1
20030187505 Liao Oct 2003 A1
20040002757 Lai et al. Jan 2004 A1
20040010496 Behrendt et al. Jan 2004 A1
20040014049 Cowsert et al. Jan 2004 A1
20040015236 Sarfarazi Jan 2004 A1
20040034415 Terwee Feb 2004 A1
20040039446 McNicholas Feb 2004 A1
20040082993 Woods Apr 2004 A1
20040082995 Woods Apr 2004 A1
20040106992 Lang et al. Jun 2004 A1
20040117013 Schachar Jun 2004 A1
20040148023 Shu Jul 2004 A1
20040156014 Piers et al. Aug 2004 A1
20040158322 Shen Aug 2004 A1
20040167621 Peyman Aug 2004 A1
20040181279 Nun Sep 2004 A1
20040215340 Messner et al. Oct 2004 A1
20040230299 Simpson et al. Nov 2004 A1
20040230300 Bandhauer et al. Nov 2004 A1
20040236423 Zhang et al. Nov 2004 A1
20040249456 Cumming Dec 2004 A1
20050018504 Marinelli et al. Jan 2005 A1
20050021139 Shadduck Jan 2005 A1
20050021140 Liao Jan 2005 A1
20050027354 Brady et al. Feb 2005 A1
20050038510 Portney et al. Feb 2005 A1
20050060032 Magnante et al. Mar 2005 A1
20050085906 Hanna Apr 2005 A1
20050085907 Hanna Apr 2005 A1
20050099597 Sandstedt et al. May 2005 A1
20050125056 Deacon et al. Jun 2005 A1
20050125057 Cumming Jun 2005 A1
20050125058 Cumming et al. Jun 2005 A1
20050125059 Pinchuk et al. Jun 2005 A1
20050131535 Woods Jun 2005 A1
20050137703 Chen Jun 2005 A1
20050234547 Nguyen et al. Oct 2005 A1
20050246019 Blake et al. Nov 2005 A1
20050267575 Nguyen et al. Dec 2005 A1
20050288785 Portney et al. Dec 2005 A1
20060030938 Altmann Feb 2006 A1
20060064162 Klima Mar 2006 A1
20060069432 Tran Mar 2006 A1
20060095127 Feingold et al. May 2006 A1
20060098162 Bandhauer et al. May 2006 A1
20060100703 Evans et al. May 2006 A1
20060111776 Glick et al. May 2006 A1
20060116764 Simpson Jun 2006 A1
20060116765 Blake et al. Jun 2006 A1
20060178741 Zadno-Azizi et al. Aug 2006 A1
20060184244 Nguyen et al. Aug 2006 A1
20060209430 Spivey Sep 2006 A1
20060209431 Spivey Sep 2006 A1
20060238702 Glick et al. Oct 2006 A1
20060259139 Zadno-Azizi et al. Nov 2006 A1
20060271187 Zadno-Azizi et al. Nov 2006 A1
20070032866 Portney Feb 2007 A1
20070050025 Nguyen et al. Mar 2007 A1
20070067872 Mittendorf et al. Mar 2007 A1
20070078515 Brady Apr 2007 A1
20070088433 Esch et al. Apr 2007 A1
20070100444 Brady et al. May 2007 A1
20070100445 Shadduck May 2007 A1
20070106377 Smith et al. May 2007 A1
20070106379 Messner May 2007 A1
20070106381 Blake May 2007 A1
20070108643 Zadno-Azizi et al. May 2007 A1
20070123591 Kuppuswamy et al. May 2007 A1
20070129798 Chawdhary Jun 2007 A1
20070135915 Klima Jun 2007 A1
20070156236 Stenger Jul 2007 A1
20070213817 Esch et al. Sep 2007 A1
20070258143 Portney Nov 2007 A1
20070260309 Richardson Nov 2007 A1
20070282247 Desai et al. Dec 2007 A1
20070299487 Shadduck Dec 2007 A1
20080004699 Ben Nun Jan 2008 A1
20080125790 Tsai et al. May 2008 A1
20080140192 Humayun et al. Jun 2008 A1
20080161913 Brady et al. Jul 2008 A1
20080161914 Brady et al. Jul 2008 A1
20080300680 Joshua Dec 2008 A1
20090012609 Geraghty et al. Jan 2009 A1
20090234448 Weeber et al. Sep 2009 A1
20100057203 Glick et al. Mar 2010 A1
20100228346 Esch Sep 2010 A1
20110029074 Reisin et al. Feb 2011 A1
20110035001 Woods Feb 2011 A1
20120046744 Woods et al. Feb 2012 A1
20150250583 Rosen et al. Sep 2015 A1
20150320547 Rosen et al. Nov 2015 A1
Foreign Referenced Citations (170)
Number Date Country
3225789 Oct 1989 AU
3002085 May 2017 CA
681687 May 1993 CH
2702117 Jul 1978 DE
3246306 Jun 1984 DE
4038088 Jun 1992 DE
19501444 Jul 1996 DE
19951148 Apr 2001 DE
20109306 Aug 2001 DE
10059482 Jun 2002 DE
10125829 Nov 2002 DE
64812 Nov 1982 EP
0162573 Nov 1985 EP
212616 Mar 1987 EP
246216 Nov 1987 EP
328117 Aug 1989 EP
0329981 Aug 1989 EP
331457 Sep 1989 EP
336877 Oct 1989 EP
0337390 Oct 1989 EP
342895 Nov 1989 EP
351471 Jan 1990 EP
356050 Feb 1990 EP
337390 May 1990 EP
402825 Dec 1990 EP
420549 Apr 1991 EP
470811 Feb 1992 EP
478929 Apr 1992 EP
480748 Apr 1992 EP
488835 Jun 1992 EP
492126 Jul 1992 EP
507292 Oct 1992 EP
566170 Oct 1993 EP
601845 Jun 1994 EP
605841 Jul 1994 EP
691109 Jan 1996 EP
779063 Jun 1997 EP
0780718 Jun 1997 EP
0897702 Feb 1999 EP
766540 Aug 1999 EP
1108402 Jun 2001 EP
1321112 Jun 2003 EP
1647241 Apr 2006 EP
1424049 Jun 2009 EP
2629698 May 2018 EP
488835 Nov 1918 FR
2666504 Mar 1992 FR
2666735 Mar 1992 FR
2681524 Mar 1993 FR
2745711 Sep 1997 FR
2778093 Nov 1999 FR
2784575 Apr 2000 FR
939016 Oct 1963 GB
2058391 Apr 1981 GB
2124500 Feb 1984 GB
2129155 May 1984 GB
2146791 Apr 1985 GB
2192291 Jan 1988 GB
2215076 Sep 1989 GB
0211134 Jan 1990 JP
H02126847 May 1990 JP
H06508279 Sep 1994 JP
7005399 Jan 1995 JP
7222760 Aug 1995 JP
H09501856 Feb 1997 JP
H09502542 Mar 1997 JP
10000211 Jan 1998 JP
H11500030 Jan 1999 JP
11047168 Feb 1999 JP
2000508588 Jul 2000 JP
2003513704 Apr 2003 JP
2003190193 Jul 2003 JP
2003522592 Jul 2003 JP
2003525694 Sep 2003 JP
2014038 Jun 1994 RU
2014039 Jun 1994 RU
8404449 Nov 1984 WO
8603961 Jul 1986 WO
8700299 Jan 1987 WO
8707496 Dec 1987 WO
8803961 Jun 1988 WO
8902251 Mar 1989 WO
8911672 Nov 1989 WO
8911872 Dec 1989 WO
9000889 Feb 1990 WO
9109336 Jun 1991 WO
9302639 Feb 1993 WO
9305733 Apr 1993 WO
9416648 Aug 1994 WO
9503783 Feb 1995 WO
9610968 Apr 1996 WO
9615734 May 1996 WO
9625126 Aug 1996 WO
9635398 Nov 1996 WO
9712272 Apr 1997 WO
9727825 Aug 1997 WO
9743984 Nov 1997 WO
9805273 Feb 1998 WO
9821621 May 1998 WO
9849594 Nov 1998 WO
9856315 Dec 1998 WO
9903427 Jan 1999 WO
9907309 Feb 1999 WO
9920206 Apr 1999 WO
9921491 May 1999 WO
9929266 Jun 1999 WO
0021467 Apr 2000 WO
0027315 May 2000 WO
0035379 Jun 2000 WO
0046629 Aug 2000 WO
0059407 Oct 2000 WO
0061036 Oct 2000 WO
0066037 Nov 2000 WO
0066039 Nov 2000 WO
0066040 Nov 2000 WO
0066041 Nov 2000 WO
0108605 Feb 2001 WO
0119288 Mar 2001 WO
0119289 Mar 2001 WO
0128144 Apr 2001 WO
0134061 May 2001 WO
0134066 May 2001 WO
0134067 May 2001 WO
0156510 Aug 2001 WO
0160286 Aug 2001 WO
0164135 Sep 2001 WO
0164136 Sep 2001 WO
0166042 Sep 2001 WO
0182839 Nov 2001 WO
0189816 Nov 2001 WO
0209620 Feb 2002 WO
0212523 Feb 2002 WO
0219949 Mar 2002 WO
02058391 Jul 2002 WO
02071983 Sep 2002 WO
02098328 Dec 2002 WO
03009051 Jan 2003 WO
03015657 Feb 2003 WO
03015669 Feb 2003 WO
03034949 May 2003 WO
03049646 Jun 2003 WO
03057081 Jul 2003 WO
03059196 Jul 2003 WO
03059208 Jul 2003 WO
03075810 Sep 2003 WO
03084441 Oct 2003 WO
03092552 Nov 2003 WO
2004000171 Dec 2003 WO
04020549 Mar 2004 WO
04037127 May 2004 WO
04073559 Sep 2004 WO
05011531 Feb 2005 WO
05018504 Mar 2005 WO
2005019871 Mar 2005 WO
03082147 Aug 2005 WO
05084587 Sep 2005 WO
2005115278 Dec 2005 WO
06025726 Mar 2006 WO
06118452 Nov 2006 WO
2007040964 Apr 2007 WO
2007067872 Jun 2007 WO
2008077795 Jul 2008 WO
2008079671 Jul 2008 WO
2008108524 Sep 2008 WO
2009021327 Feb 2009 WO
2010093823 Aug 2010 WO
2016142490 Sep 2016 WO
2017079449 May 2017 WO
2017096087 Jun 2017 WO
8808414 Jul 1989 ZA
Non-Patent Literature Citations (46)
Entry
International Search Report and Written Opinion for Application No. PCT/EP2018/074496, dated Dec. 21, 2018, 17 pages.
Khng C., et al., “Evaluation of the Relationship between Comeal Diameter and Lens Diameter,” Journal of Cataract & Relactive Surgery, Mar. 2008, vol. 34 (3), pp. 475-479.
Lovisolo C.F., et al., “Phakic Intraocular Lenses,” Survey of Ophthalmology, Nov.-Dec. 2005, vol. 50 (6), pp. 549-587.
Vass C., et al., “Prediction of Pseudophakic Capsular bag Diameter based on Biometric Variables,” Journal of Cataract and Refractive Surgery, Oct. 1999, vol. 25 (10), pp. 1376-1381.
Vogel A., et al., “[Alternatives to Femtosecond Laser Technology: Subnanosecond UV Pulse and Ring Foci for Creation of LASIK Flaps],” Ophthalmology, Jun. 2014, vol. 111 (6), pp. 531-538.
Adler-Grinberg D., “Questioning Our Classical Understanding of Accommodation and Presbyopia,” American Journal of Optometry & Physiological Optics, Jul. 1986, vol. 63 (7), pp. 571-580.
Altan-Yaycioglu R., et al., “Pseudo-accommodation with Intraocular Lenses Implanted in the Bag,” Journal of Refractive Surgery, May/Jun. 2002, vol. 18 (3), pp. 271-275.
Amo Specs Model AC-21 B, AMO Classic Series, 1992, 1 page.
Chauvin-Opsia, Azurite ACL (0459), 6 pages.
Chiron, Clemente Optfit Model SP525, Brochure Translation, Jul. 12, 1998.
Chrion Vision, Nuvita MA20, 1997, 1 page.
Cohen A.L., “Diffractive Bifocal Lens Design,” Optometry and Vision Science, Jun. 1993, vol. 70 (6), pp. 461-468.
Cohen A.L., “Practical Design of a Bifocal Hologram Contact Lens or Intraocular Lens,” Applied Optics, Jul. 1, 1992, vol. 31 (19), pp. 3750-3754.
Contact Lens Practice, 1998, pp. 211, 212, 403, 404, 491 and 792.
Fechner P.U., et al., “Iris-Claw Lens In Phakic Eyes to Correct Hyperopia: Preliminary Study,” Journal of Cataract and Refractive Surgery, Jan. 1998, vol. 24 (1), pp. 48-56.
Foldable Inliaocular Lens Implants and Small Incision Cataract Surgery, Ohio Valley Eye Physicians, 2004, 4 pages.
Hanita Lenses, Souice Ocular Surgery News International, 1 page.
Hara T., et al., “Accommodative Inliaocular Lens with Spring Action Part 1 Design and Placement in an Excised Animal Eye,” Ophthalmic Surgery, Feb. 1990, vol. 21 (2), pp. 128-133.
Hecht E., et al., “Optics”, 4th Edition, Addison-Wesley Publishing Company, Feb. 1979, pp. 188-190.
Holladay J.T., et al., “A Three-Part System for Refining Intraocular Lens Power Calculations,” Journal of Cataract and Refractive Surgery, Jan. 1988, vol. 14 (1), pp. 17-24.
Holladay J.T., et al., “Analysis of Edge Glare Phenomena in Inliaocular Lens Edge Designs,” Journal of Cataract and Refractive Surgery, Jun. 1999, vol. 25 (6), pp. 748-752.
Iolab Corp., Source Ophthalmology Times, Mar. 15, 1995, 1 page.
Jacobi F.K., et al., “Bilateral Implantation of Asymmetrical Diffractive Multifocal Intraocular Lenses,” Archives of Ophthalmology, Jan. 1999, vol. 117 (1), pp. 17-23.
Klien S.A., “Understanding the Diffractive Bifocal Contact Lens,” Optometry and Vision Science, Jun. 1993, vol. 70 (6), pp. 439-460.
Kuchle M., et al., “Implantation of a New Accommodative Posterior Chamber Intraocular Lens,” Journal of Refractive Surgery, May/Jun. 2002, vol. 18 (3), pp. 208-216.
Lane S.S., et al., “Polysulfone Inliacomeal Lenses,” International Ophthalmology Clinics, Winter 1991, vol. 31 (1), pp. 37-46.
Mandell R.B., “Contact Lens Practice”, 4th Edition, Charles C. Thomas Publishers, 1988, 11 pages.
Mandell R.B., et al., “Mathematical Model of the Corneal Contour,” 1965, School of Optometry, University of California, Berkeley, pp. 183-197.
Marron J.C., et al., “Higher-order Kinoforms,” Computer and Optically Formed Holographic Optics, May 1, 1990, vol. 1211, pp. 62-66.
McCarey B.E., et al., “Modeling Glucose Distribution in The Cornea,” Current Eye Research, Oct. 1990, vol. 9 (11), pp. 1025-1039.
Mediphacos Ltda, Ocular Surgery News International.
Menezo J.L., et al., “Endothelial Study of Iris-Claw Phakic Lens: Four Year Follow-Up,” Journal of Cataract Refractive Surgery, Aug. 1998, vol. 24 (8), pp. 1039-1049.
Office Action dated Jul. 19, 2011 for Japanese Application No. 2006526344 filed Sep. 10, 2004.
Opthalmed Inc., OMAC-260.
Pending Claims mailed Jul. 29, 2009 for U.S. Appl. No. 11/618,411, filed Dec. 29, 2006.
Prosecution History for U.S. Appl. No. 11/057,705 (U.S. Appl. No. 11/057,705) filed Feb. 14, 2005.
Prosecution History for U.S. Appl. No. 11/426,888, filed Jun. 27, 2006.
Ramocki J.M., et al., “Foldable Posterior Chamber Intraocular Lens Implantation in the Absence of Capsular and Zonular Support,” American Journal of Ophthalmology, Feb. 1999, vol. 127 (2), pp. 213-216.
Simonov A.N., et al., “Cubic Optical Elements for an Accommodative Intraocular Lens,” Optics Express, Aug. 2006, vol. 14 (17), pp. 7757-7775.
Storz Opthalmics Inc., Model L122UV ACL.
Taylor B.N., ed., The International System of Units (SI), Aug. 1991, NIST Special Publication 330, 4 pages.
Tetz M., et al., “Evaluating and Defining the Sharpness of Inliaocular Lenses: Part 1: Influence of Optic Design on the Growth of the Lens Epithelial Cells in Vitro,” Journal of Cataract and Refiactive Surgery, Nov. 2005, vol. 31 (11), pp. 2172-2179.
Thornton S., “Accommodation in Pseudophakia,” in: Percival SPB Color atlas of lens implantation, Chap. 25, St Louis, ed., Mosby, United States, 1991, pp. 159-162.
Universe IOL Center, Ocular Surgery News International.
Video presented by ASCRS Symposium of Cataracts IOL and Refiactive Surgery at the ASOA Congress on Ophthalmic Practice Management. Clinical & Surgical Staff Program on Apr. 10-14, 1999 (VHS Tape).
World Optics Inc., Ophthalmology Times, Mar. 15, 1995.
Related Publications (1)
Number Date Country
20190076241 A1 Mar 2019 US
Provisional Applications (1)
Number Date Country
62556853 Sep 2017 US