The present invention relates generally to electroplating and, more particularly, ionic liquid bath plating methods for depositing aluminum-containing layers utilizing shaped consumable aluminum anodes, as well as to turbomachine components having three dimensionally-tailored, aluminum-containing coatings produced from aluminum-containing layers.
Aluminum-containing coatings are produced over rotor blades, nozzle vanes, combustor parts, and other turbomachine components for protection from rapid degradation within the high temperature, chemically-harsh turbomachine environment. Aluminide coatings, for example, are often formed over turbomachine components to minimize material loss resulting from oxidation and corrosion. To produce an aluminide (or other aluminum-containing) coating, at least one aluminum-containing layer is deposited onto the surfaces of the turbomachine component over which the aluminide coating is desirably formed. The aluminum-containing layer may be composed of relatively pure aluminum or may instead contain other constituents, such as chromium or platinum, co-deposited with aluminum. In conjunction with or after deposition of the aluminum-containing layer, a diffusion process is carried-out to form aluminides with the superalloy material of the turbomachine component. Over the operational lifespan of the turbomachine component, the aluminide coating gradually recedes or wears away; however, the recession rate of the aluminide coating is significantly less than the rate at which the underlying turbomachine component would otherwise oxidize, corrode, and recede if left uncoated. Thus, through the formation of such a high temperature aluminide coating, the operational lifespan of the turbomachine component can be extended.
Conventional processes for depositing aluminum-containing layers over turbomachine components include pack cementation and Chemical Vapor Deposition (CVD). Such deposition processes are associated with a number of drawbacks, which may include undesirably high processing costs, cumbersome high temperature masking requirements, and the general inability to deposit aluminum-containing layers over non-planar, geometrically-complex surfaces in a predictable and controlled manner. Recently, ionic liquid bath plating processes have been introduced, which provide a relatively low cost approach for depositing aluminum-containing layers onto metallic workpieces. As a further advantage, ionic liquid bath plating processes are carried-out under low temperature conditions at which high temperature masking is unneeded. While such advantages are significant, ionic liquid bath plating processes remain limited in certain respects. For example, as conventionally performed, ionic liquid bath plating processes are typically incapable of depositing an aluminum-containing layer over the non-planar surfaces of a metallic workpiece, such as the aerodynamically-streamed surfaces of a turbomachine component, in a consistent and controlled manner without the usage of relatively complex plating set-ups; e.g., plating set-ups including relatively large anode pin arrays, auxiliary anodes, multiple power sources, and the like.
It is thus desirable to provide ionic liquid bath plating process enabling the deposition of aluminum-containing layers over contoured workpiece surfaces, such as the aerodynamically-streamlined surfaces of turbomachine components, in a controlled and cost-effective effective manner. For reasons explained more fully below, it would also be desirable to provide ionic liquid bath plating processes enabling the deposition of aluminum-containing layers having three dimensionally-tailored thickness distributions. Finally, it would be desirable to provide embodiments of turbomachine components having three dimensionally-tailored, aluminum-containing coatings produced, at least in part, from aluminum-containing layers. Other desirable features and characteristics of embodiments of the present invention will become apparent from the subsequent Detailed Description and the appended Claims, taken in conjunction with the accompanying drawings and the foregoing Background.
Ionic liquid bath plating methods are provided for depositing aluminum-containing layers onto a metallic workpiece having one or more non-planar workpiece surfaces. In embodiments, the ionic liquid bath plating method includes the step or process of obtaining a consumable aluminum anode including a workpiece-facing anode surface substantially conforming with the geometry of the non-planar workpiece surface. The workpiece-facing anode surface and the non-planar workpiece surface are positioned in an adjacent, non-contacting relationship, while the workpiece and the consumable aluminum anode are submerged in an ionic liquid aluminum plating bath. An electrical potential is applied across the consumable aluminum anode and the workpiece to deposit an aluminum-containing layer onto the non-planar workpiece surface. The aluminum-containing layer deposited onto the non-planar workpiece surface may consist essentially of aluminum or may instead contain other constituents co-deposited with aluminum. In certain implementations, additional steps are then performed to convert or incorporate the aluminum-containing layer into a high temperature aluminum-containing coating, such as an aluminide coating. In one embodiment, the consumable aluminum anode is selected to have an anode body that is shaped, at least in part, to substantially conform with a non-planar geometry of the non-planar workpiece surface. The shaped anode body may be produced from, for example, a stamped aluminum sheet.
In other embodiments, the ionic liquid bath plating method includes the step or process of identifying a workpiece having a workpiece surface over which an aluminum-containing layer having an average thickness (TAVG) is subsequently deposited. A virtual thickness map for the aluminum-containing layer is established and includes at least one thickness-modified region (TMOD), which has a thickness different than TAVG and which overlies a targeted region of the workpiece surface. A consumable aluminum anode is obtained having an anode body and at least one anodic field modifying feature. The consumable aluminum anode and the metallic workpiece are placed in a neighboring, non-contacting relationship such that the at least one anodic field modifying feature is positioned adjacent the targeted region of the workpiece surface. The consumable aluminum anode and the metallic workpiece are partially or fully submerged in an ionic liquid aluminum plating bath. An electrical potential is applied across the consumable aluminum anode and the metallic workpiece to deposit the aluminum-containing layer onto the workpiece surface including the thickness-modified region overlying the targeted region of the workpiece surface.
Embodiments of a turbomachine component are further provided. In one embodiment, the turbomachine component includes a contoured surface having a region prone to recession (e.g., due to the occurrence of oxidation and corrosion) when the component is placed within a high temperature turbomachine environment. A high temperature, aluminum-containing coating (e.g., an aluminide coating) is formed over the contoured surface and includes a locally-thickened region overlying the recession-prone region. The locally-thickened region is at least partially composed of or formed from an aluminum-containing layer deposited onto the contoured surface utilizing, for example, an ionic liquid bath plating process. In certain implementations, the turbomachine component may include a rotor blade, which has a blade tip portion, a blade root portion, and a leading edge portion extending between the blade tip portion to the blade root portion. In such implementations, the locally-thickened region of the aluminum-containing coating may overlie or cover the blade tip portion and the leading edge portion of the turbomachine component, at least in substantial part. In another embodiment, the aluminum-containing coating further includes a locally-thinned region at least partially overlying of the blade root portion of the turbomachine component.
Methods for fabricating shaped consumable aluminum anodes are further provided. In embodiments, the method includes the step or process of purchasing, fabricating, or otherwise obtaining a die having a plurality of die cavities. Each die cavity has a contoured or shaped geometry, which is substantially conformal with a contoured surface of a metallic workpiece over which an aluminum-containing layer is desirably deposited. The aluminum sheet is then pressed into the die to transfer the contoured geometry of the die cavities and produce non-singulated shaped anodes across the aluminum sheet. The shaped anodes are then separated by singulation of the aluminum sheet. In certain embodiments, local anodic field modifying features may also be formed (e.g., by stamping or utilizing a material removal process, such as photoetching) at selected locations across the aluminum sheet prior to singulation of the aluminum sheet.
At least one example of the present invention will hereinafter be described in conjunction with the following figures, wherein like numerals denote like elements, and:
The following Detailed Description is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. Furthermore, there is no intention to be bound by any theory presented in the preceding Background or the following Detailed Description. The term “exemplary,” as appearing throughout this document, is synonymous with the term “example” and is utilized repeatedly below to emphasize that the following description provides only multiple non-limiting examples of the invention and should not be construed to restrict the scope of the invention, as set-out in the Claims, in any respect.
Ionic liquid bath plating methods are provided for depositing aluminum-containing layers onto the non-planar surfaces of a metallic workpiece. The ionic liquid bath plating methods are carried-out utilizing consumable aluminum anodes, which are shaped to generally conform with the geometry or contour of the non-planar workpiece surfaces. Through the usage of such shaped, consumable aluminum anodes, an aluminum-containing layer can be deposited over non-planar workpiece surfaces in a predictable and highly controlled manner, while still utilizing an ionic liquid bath plating approach. The consumable aluminum anodes need not precisely conform with the geometry of the non-planar workpiece surfaces in all implementations. Indeed, in certain embodiments, it may be desirable to produce a consumable aluminum anode (and, specifically, the workpiece-facing surface or surfaces of the anode) to have a geometry that emulates, but does not precisely follow the geometry of the non-planar workpiece surface to provide variable gap width between the workpiece-facing anode surface and the non-planar workpiece surface. Such a variable gap width alters the deposition rate during the plating process and, therefore, the final thickness distribution of the aluminum-containing layer. Thus, when it is desired to impart the aluminum-containing layer with a tailored thickness distribution, the consumable aluminum anodes can be shaped as a function of the surface geometry of the non-planar workpiece surface and the desired thickness distribution of the aluminum-containing layer to be deposited over the workpiece surface.
When the aluminum-containing layer is desirably imparted with a tailored thickness profile or distribution, the consumable aluminum anodes may also include local anodic field modifying features. As appearing herein, the term “local anodic field modifying features” refers to structural features or elements of the anode that alter (e.g., amplify or dampen) particular areas or zones of the anodic field during the plating process to control the final layer thickness distribution. In this regard, the consumable aluminum anodes may include raised features (e.g., raised dimples or ridges stamped into the anode bodies) that amplify the anodic field adjacent areas of the workpiece surface over which it is desired to increase the local thickness of the aluminum-containing layer. Conversely, the consumable aluminum anodes may include depressions or openings (e.g., an array of perforations formed through anode bodies) that dampen the anodic field adjacent areas of the workpiece surface over which it is desired to decrease the local thickness of the aluminum-containing layer. Additional examples of local anodic field modifying features are provided below. The foregoing notwithstanding, the consumable aluminum anodes need not include anodic field modifying features in all embodiments. For example, the consumable aluminum anodes may lack anodic field modifying features in implementations wherein the aluminum-containing layer is desirably deposited to have a substantially uniform layer thickness or when any desired variations in layer thickness are effectuated by shaping the aluminum anodes to provide a varied gap width between the workpiece surface and the workpiece-facing anode surfaces, as described below.
The ionic liquid bath plating method can be carried-out to deposit aluminum-containing layers onto any type of metallic workpiece, regardless of surface geometry or the application in which the workpiece is ultimately utilized. Embodiments of the ionic liquid bath plating method may, however, be particularly useful in depositing aluminum-containing layers onto turbomachine components for at least two reasons. First, turbomachine components often have highly contoured, aerodynamically-streamlined surfaces, which can be difficult to plate in a consistent and controlled manner utilizing conventional plating processes. Second, the ability to deposit an aluminum-containing layer having a tailored thickness distribution is useful in the context of turbomachine components having gas-exposed surfaces over which aluminum-containing (e.g., aluminide) coatings are desirably formed. When deposited to have such a tailored thickness distribution, the aluminum-containing layer can be converted to or integrated into an aluminum-containing coating having a similar three dimensionally-tailored thickness distribution. The aluminum-containing coating can thus be imparted with a regionally-varied thickness distribution optimized or tailored in accordance with the operating conditions (e.g., in-service temperatures), material loss characteristics (e.g., oxidation, hot gas corrosion, and other degradation rates), and failure modes encountered within the service environment of the turbomachine component. This, in turn, may prolong the operational lifespan of the coated turbomachine component.
Ionic liquid bath plating method 18 commences with producing, purchasing, or otherwise obtaining a metallic workpiece onto which an aluminum-containing layer is desirably plated (STEP 20,
Referring collectively to
The consumable aluminum anode or anodes obtained during STEP 22 of method 18 (
In certain implementations, the consumable aluminum anodes obtained during STEP 22 of plating method 18 (
Referring once again to
As shown in
In contrast to raised features 42 and extended anode portion 44, openings 46 serve as anodic field damping features. Specifically, openings 46 decrease the metal density of consumable aluminum anode 36 and, therefore, anodic field along the region of contoured workpiece surface 34 positioned adjacent openings 46 (i.e., lower surface region 34(c)). When viewed in three dimensions, openings 46 may have any suitable dimensions and planform geometries, such as have rounded or elongated, slot-like shapes. In one embodiments, openings 46 are generally rounded and an array of spaced openings or perforations is provided through the lower portion of consumable aluminum anode 36. By controlling the size, relative positioning, and density of such openings or perforations, a precisely controlled anodic field can be generated during the plating process to assist in the deposition of aluminum-containing layer having a tailored, regionally-varied thickness distribution. As an additional benefit, openings 46 may also facilitate flow of the plating bath through consumable aluminum anode 36 during the plating process, as indicated by double-headed arrows in below-described
In the exemplary embodiment shown in
Continuing with plating method 18, the consumable aluminum anode or anodes are next positioned adjacent to the contoured workpiece surfaces over which the aluminum-containing layer is desirably applied (STEP 24,
At STEP 26 of plating method 18 (
Lastly, ionic liquid bath plating method 18 (
Referring once again to
As identified in
Aluminum-containing layer 60 (
There has thus been desired ionic liquid bath plating process enabling the deposition of aluminum-containing layers over contoured workpiece surfaces. As noted above, the unique abilities of the ionic liquid bath plating method (that is, the ability to deposit an aluminum-containing layer onto geometrically-complex surfaces in a highly controlled manner and/or the ability to deposit the aluminum-containing layer to have a three-dimensionally tailored thickness distribution) may render the plating method particularly useful when performed as part of a high temperature coating fabrication process. In this regard, embodiments of the ionic liquid bath plating method may be utilized to deposit an aluminum-containing layer, which is subsequently converted to or integrated into a high temperature aluminum-containing coating formed over the contoured or streamlined surfaces of turbomachine component. To emphasize this point, a further exemplary implementation of plating method 18 will now be described in conjunction with
Rotor blade piece 70 includes a rotor blade 72 and a platform 74 from which blade 72 extends. Rotor blade 72 includes, in turn, a blade root portion 76, a blade tip portion 78, a leading edge portion 80, and an opposing trailing edge portion 82. A base portion or shank 84 of rotor blade piece 70 is joined to platform 74 opposite rotor blade 72. Shank 84 is produced (e.g., cast and machined) to have an interlocking geometry, such as a fir tree or dovetail geometry. When rotor blade piece 70 is integrated into a larger rotor, shank 84 is inserted into mating slots provided around an outer circumferential portion of a separately-fabricated hub disk to prevent disengagement of piece 70 during high speed rotation of the rotor. Rotor blade 72 further includes a first face 86 (referred to hereafter “pressure side 86”) and a second, opposing face 88 (hereafter “suction side 88”). As viewed from blade tip portion 78 toward blade root portion 76, rotor blade 72 is imparted with an airfoil-shaped geometry. Accordingly, pressure side 86 is imparted with a contoured, generally concave surface geometry, which bends or curves in three dimensions. Conversely, suction side 88 is imparted with a countered, generally convex surface geometry, which likewise bends or curves in multiple dimensions.
As indicated above, it may be desirable to form an aluminum-containing coating over pressure side 86, suction side 88, and possibly other selected surfaces of rotor blade piece 70 to reduce oxidation, corrosion, and material loss from rotor blade 72 during usage. Such aluminum-containing coatings may include aluminide coatings and MCrAlY coatings, which contain chromium, aluminum, yttrium, and “M” (representing nickel, cobalt, or a combination thereof). In other embodiments, the ionic liquid bath plating method may be utilized to deposit aluminum-containing layers over a turbomachine component for another purpose; e.g., to provide a bond coat for another coating, such as an yttria-stabilized zirconia coating. Formation of the aluminum-containing coating may entail deposition of an aluminum-containing layer over selected surfaces of rotor blade piece 70. Ionic liquid bath plating method 18 (
Consumable aluminum anodes 90, 91 are further produced to include a number of local anodic field modifying features. These features may include: (i) a number of dimples 98 (only a few of which are labeled to avoid cluttering the drawing), (ii) an array of perforations 100 (again only a few of which are labeled), (iii) a central slot 102, and (iv) an extended anode portion 104. Dimples 98 and extended anode portion 104 serve as anodic field focusing features, which concentrate the anodic field generated when consumable aluminum anode 90 and rotor blade piece 70 (or other metallic workpiece) are energized. A locally-thickened plating will thus be promoted along the regions of rotor blade piece 70 positioned adjacent dimples 98 and anode portion 104 during the electroplating process. Extended anode portion 104, in particular, projects beyond the edge of blade tip portion 78 and/or beyond the leading edge portion 80 of rotor blade 72 (in a forward direction) to concentrate the anodic field along these regions of blade 72. Conversely, perforations 100 and slot 102 (collectively “openings 100, 102”) serve as anodic field damping features, which decrease or diffuse the anodic field along regions and the plating thickness along the regions of pressure side 86 positioned openings 100, 102 when consumable aluminum anode 90 is positioned adjacent rotor blade piece 70. As a further benefit, openings 100, 102 can also help facilitate plating solution flow to and from the plated area.
Consumable aluminum anode 90, consumable aluminum anode 91, and rotor blade piece 70 are next submerged in an ionic liquid plating bath (STEP 26,
Turning lastly to STEP 28 of ionic liquid bath plating method 18 (
In the exemplary embodiment, aluminum-containing coating 110 is produced to include a locally-thickened region (region R1), which largely overlies or covers areas of rotor blade 72 that have been identified (e.g., through field observation and/or bench testing) as prone to recession or material loss when rotor blade 70 is placed within its operative environment. Region R1 has a maximum thickness (TMAX) and extends along blade tip portion 78 of rotor blade 72 in fore and aft directions. Additionally, region R1 further extends downward along leading edge portion 80 of rotor blade 72 toward, but terminates prior to reaching platform 74. Aluminum-containing coating 110 also includes a locally-thinned region (region R6), which overlies or covers an area of rotor blade 72 less prone to oxidation and corrosion, but subject to greater mechanical loading. Thus, to avoid embrittlement potentially caused by deposition of excessive amounts of aluminum, region R6 is provided with a minimum coating thickness (TMIN) and is deposited exclusively over suction side 88 and blade root portion 76 at a region adjacent the interface between blade root portion 76 of rotor blade 72 and platform 74. Aluminum-containing coating 110 further includes other regions (region R2-R5), which having varying intermediate thicknesses less than TMAX and greater than TMIN. For example, coating 110 further includes an intermediate region R2, which extends along leading edge portion 80 of rotor blade 72 between region R1 to platform 74, wrapping around blade 72 from pressure side 86 to suction side 88 of blade 72. The respective thicknesses of the other regions of aluminum-containing coating are likewise tailored to best suit the operating conditions (e.g., in-service temperatures), material loss characteristics, and failure modes encountered within the service environment of rotor blade 72. The operational lifespan of rotor blade piece 70 is improved as a result.
There has thus been provided ionic liquid bath aluminum plating methods suitable for depositing aluminum-containing layers onto workpiece surfaces having three dimensionally-complex or contoured geometries. Additionally or alternatively, the ionic liquid bath plating methods can be utilized to deposit aluminum-containing layers having three dimensionally-tailored thickness distributions. In the latter regard, the above-described ionic liquid bath plating methods can be utilized to deposit aluminum-containing layers having non-uniform layer thicknesses, which vary in accordance with a pre-established coating thickness layout or map. For these reasons, the ionic liquid bath plating method may be well-suited for performance as part of a high temperature coating fabrication process, which is utilized to create an aluminum-containing coating over an aerodynamically-streamlined turbomachine component. The consumable aluminum anodes utilized during the ionic liquid bath plating method can be produced in various different manners. Such methods include, but are not limited to, casting, three dimensional printing, DMLS, machining (e.g., milling) of an aluminum block or preform, and metalworking (e.g., metal sheet stamping) processes. In one implementation, a number of consumable aluminum anodes are produced by processing an aluminum sheet. An example of such a process is shown in
With initial reference to
Aluminum sheet 120 is next transferred to a first die 126 having a number of cavities 128 (one of which is shown in
While multiple exemplary embodiments have been presented in the foregoing Detailed Description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the foregoing Detailed Description will provide those skilled in the art with a convenient road map for implementing an exemplary embodiment of the invention. It being understood that various changes may be made in the function and arrangement of elements described in an exemplary embodiment without departing from the scope of the invention as set-forth in the appended Claims.
This application is a divisional application of U.S. patent application Ser. No. 15/139,033, filed Apr. 26, 2016.
Number | Name | Date | Kind |
---|---|---|---|
6254756 | Maricocchi et al. | Jul 2001 | B1 |
6322684 | Hodko et al. | Nov 2001 | B1 |
8581401 | Lu et al. | Nov 2013 | B2 |
8778163 | Yu et al. | Jul 2014 | B2 |
8778164 | Piascik et al. | Jul 2014 | B2 |
9105905 | Ramasubramanian et al. | Aug 2015 | B2 |
20030230491 | Basol et al. | Dec 2003 | A1 |
20040248405 | Fukunaga et al. | Dec 2004 | A1 |
20050053467 | Ackerman et al. | Mar 2005 | A1 |
20050241360 | Miller | Nov 2005 | A1 |
20060042933 | Evans | Mar 2006 | A1 |
20080035486 | Albrecht et al. | Feb 2008 | A1 |
20080302667 | Rucker et al. | Dec 2008 | A1 |
20100072073 | Jabado et al. | Mar 2010 | A1 |
20120156519 | Piascik et al. | Jun 2012 | A1 |
20140272458 | Ruan et al. | Sep 2014 | A1 |
20140329132 | Lahiri et al. | Nov 2014 | A1 |
20150062782 | Rzany et al. | Mar 2015 | A1 |
20150144495 | Chen et al. | May 2015 | A1 |
20150200390 | Lu et al. | Jul 2015 | A1 |
20150299884 | Chen et al. | Oct 2015 | A1 |
20150376810 | Browning et al. | Dec 2015 | A1 |
20160024637 | Nakano | Jan 2016 | A1 |
20160208813 | Zafiris | Jul 2016 | A1 |
20160312614 | Chen et al. | Oct 2016 | A1 |
20190003070 | Piascik | Jan 2019 | A1 |
20190024605 | Iizuka | Jan 2019 | A1 |
Number | Date | Country |
---|---|---|
101914792 | Jul 2012 | CN |
102337570 | Sep 2013 | CN |
104294327 | Jan 2015 | CN |
102839403 | Feb 2015 | CN |
102766891 | Mar 2015 | CN |
103436921 | Aug 2015 | CN |
106925670 | Jul 2017 | CN |
102016124971 | Jun 2018 | DE |
102018107413 | Oct 2019 | DE |
2012122445 | Jun 2012 | JP |
2014150508 | Sep 2014 | WO |
Entry |
---|
Abbott, A.P. et al; Physical Chemistry Chemical Physics; High Quality Research in Physical Chemistry, Chemical Physics and Biophysical Chemistry; Issue 37, 2006. |
Abbott, A.P. et al; Material Research; Electroplating Using Ionic Liquids; Annual Review of Materials Research vol. 43: 335-358 (Volume publication date Jul. 2013). |
Huang P. et al; A review of ionic liquid surface film formation on Mg and its alloys for improved corrosion performance; Electrochimica Acta; © 2013 Elsevier Ltd. |
Liu, Q.X. et al; Electroplating of mild steel by aluminium in a first generation ionic liquid: A green alternative to commercial AI-plating in organic solvents; ScienceDirect Surface & Coatings Technology 201 (2006) 1352-1356. |
Number | Date | Country | |
---|---|---|---|
20190353041 A1 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15139033 | Apr 2016 | US |
Child | 16529722 | US |