1. Field of the Invention
The present invention relates to integrated circuit technology. More particularly, the present invention relates to on-chip circuitry for sensing an analog signal during powerup of an integrated circuit.
2. The Prior Art
There sometimes exists a need for sensing an analog signal present in an integrated circuit during powerup of the integrated circuit prior to a time at which the entire circuit is functioning. In some cases, an additional I/O pad may be provided to provide power for performing this function. However, as the complexity of the functions of the integrated circuit increases, integrated circuit I/O availability becomes more constrained and additional I/O to provide functionality such as application of external power supply potential may not be available.
According to one aspect of the present invention, a method for sensing voltage on an internal node in an integrated circuit includes sensing that an activation voltage larger than a threshold value is present on a first I/O pad on the integrated circuit, generating from the activation voltage a power potential for a sensing circuit disposed on the integrated circuit and coupled to the internal node, and coupling an output of the sensing circuit to a second I/O pad on the integrated circuit only when the activation voltage is present on the first I/O pad. The first and second I/O pads may have other functions when sensing voltage on the internal node is not taking place.
According to a second aspect of the present invention, circuits for sensing voltage on an internal node in an integrated circuit are disclosed. In response to sensing the presence of an above-threshold voltage on a first I/O pad of the integrated circuit, a circuit generates a power potential therefrom and provides it to a voltage-sensing circuit. The circuit also couples the output of the voltage-sensing circuit to a second I/O pad on the integrated circuit.
In one embodiment, a circuit for sensing voltage on an internal node in an integrated circuit includes first and second I/O pads, and a voltage-sensor power node on the integrated circuit. A voltage-sensor circuit has an input coupled to the internal node and has a power connection coupled to the voltage-sensor power node. A circuit coupled to the first I/O pad and to the voltage sensor power node is configured to place a voltage-sensor power supply potential on the voltage sensor power node when a voltage larger than a threshold value is present on the first I/O pad. A switch is coupled between the output of the voltage-sensor circuit and the second I/O pad. A control element of the switch is coupled to the voltage-sensor power node and is configured to turn on the first switch when the voltage-sensor power supply potential is present on the voltage sensor power node. The first and second I/O pads may have other functions when the voltage-sensor circuit is not active.
Persons of ordinary skill in the art will realize that the following description of the present invention is illustrative only and not in any way limiting. Other embodiments of the invention will readily suggest themselves to such skilled persons.
Referring first to
Integrated circuit 10 also includes an internal signal node 22. It is desired to sense the voltage on internal signal node 22 at a time prior to completion of the powerup of the integrated circuit 10. At the time sensing is desired, presence of full operating voltages everywhere in the integrated circuit 10 cannot be assured. While, in some cases, it is possible to devote an I/O pad of the integrated circuit to the function of supplying a power-supply potential for powering a voltage-sensing circuit, in many cases it is not possible.
According to the present invention, I/O pad 12 may be used to temporarily supply a power-supply potential to use for powering a voltage-sensing circuit on the integrated circuit 10. Accordingly, a voltage-sensing circuit includes an operational amplifier 24 configured either as a voltage follower or a unity-gain operational amplifier with its output connected to its inverting input. The output of operational amplifier 24 mirrors the voltage at internal signal node 22 and is coupled to output pad 18 through n-channel MOS transistor 26. As may be seen from an examination of
A series string of diodes 32 in series with a weak depletion-mode n-channel MOS transistor 34 are coupled between I/O pad 12 and ground. Each diode may be configured from a diode-connected MOS transistor and each diode drops about 1V as indicated in
When it is desired to operate the voltage sensing circuit of the present invention, a voltage having a magnitude greater than 6V, e.g., 8V, is placed on input pin 12. Under that condition, the AVDD line 30 will be at about 2V. Under this condition, the n-channel MOS transistor 26 will be turned on and the p-channel MOS transistor 28 will be turned off, disconnecting the output of output circuit 16 from the output pad 18, and turning on operational amplifier 24 as well as connecting its output to output pad 18. The signal appearing at internal signal node 22 will thus be buffered by operational amplifier 24 and presented on output pad 18. All signals may be referenced to ground at I/O pad 34.
Referring now to
While embodiments and applications of this invention have been shown and described, it would be apparent to those skilled in the art that many more modifications than mentioned above are possible without departing from the inventive concepts herein. The invention, therefore, is not to be restricted except in the spirit of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5111376 | Mehl | May 1992 | A |
5534771 | Massie | Jul 1996 | A |
5847586 | Burstein | Dec 1998 | A |
6384670 | Eager et al. | May 2002 | B1 |
6590412 | Sunter | Jul 2003 | B2 |
6720821 | Ajit | Apr 2004 | B2 |
7123460 | Ajit | Oct 2006 | B2 |
7224192 | Fukushi et al. | May 2007 | B2 |
20050104571 | Byeon et al. | May 2005 | A1 |
20050280450 | Shin et al. | Dec 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20070236259 A1 | Oct 2007 | US |