Methods and compositions for assessment and treatment of asthma

Abstract
The present invention provides methods and compositions for the assessment and treatment of asthma and other inflammatory diseases, particularly those mediated by interleukin-13 (IL-13). The present invention also provides arrays comprising markers for asthma as well as IL-13 responsiveness. The markers of the present invention can be used in methods to diagnose a patient as having asthma or an IL-13-mediated condition, to evaluate the effectiveness of potential therapeutic agents, to identify or evaluate agents capable of modulating marker expression levels, and to select a treatment for a patient suffering from asthma or an IL-13-mediated condition.
Description
TECHNICAL FIELD

The present invention relates to asthma markers and methods of using the same for the diagnosis, prognosis, and selection of biomarkers to assess effects of treatment and guide the treatment choice in asthma or other allergic or inflammatory diseases, particularly diseases mediated by interleukin-13 (IL-13) and fibrotic pathways modulated by the IL-13 pathway.


BACKGROUND

Asthma is a complex, chronic inflammatory disease of the airways that is characterized by recurrent episodes of reversible airway obstruction, airway inflammation, and airway hyper responsiveness (AHR). Typical clinical manifestations include shortness of breath, wheezing, coughing, and chest tightness that can become life threatening or fatal. While existing therapies focus on reducing the symptomatic bronchospasm and pulmonary inflammation, there is growing awareness of the role of long-term airway remodeling in accelerated lung deterioration in asthmatics. Airway remodeling refers to a number of pathological features including epithelial smooth muscle and myofibroblast hyperplasia and/or metaplasia, subepithelial fibrosis and matrix deposition. The processes collectively result in up to about 300% thickening of the airway in cases of fatal asthma. Despite the considerable progress that has been made in elucidating the pathophysiology of asthma, the prevalence, morbidity and mortality of the disease has increased during the past two decades. In 1995, in the United States alone, nearly 1.8 million emergency room visits, 466,000 hospitalizations and 5,429 deaths were directly attributed to asthma. In fact, the prevalence of asthma has almost doubled in the past 20 years, with approximately 8-10% of the U.S. population affected by the disease (Cohn (2004) Annu. Rev. Immunol. 22:789-815). Worldwide, over four billion dollars is spent annually on treating asthma (Weiss (2001) J Allergy Clin. Immunol. 107:3-8).


It is generally accepted that allergic asthma is initiated by a dysregulated inflammatory reaction to airborne, environmental allergens. The lungs of asthmatics demonstrate an intense infiltration of lymphocytes, mast cells and eosinophils. This results in increased vascular permeability, smooth muscle contraction, bronchoconstriction, and inflammation. A large body of evidence has demonstrated this immune response is driven by CD4+ T-cells shifting their cytokine expression profile from TH1 to a TH2 cytokine profile (Maddox (2002) Annu. Rev. Med. 53:477-98). TH2 cells mediate the inflammatory response through cytokine release, including interleukins (IL) leading to IgE production and release (Mosmann (1986) J Immunol 136:2348-57; Abbas (1996) Nature 383:787-93; Busse (2001) N. Engl. J. Med. 344:350-62). One murine model of asthma involves sensitization of the animal to ovalbumin (OVA) followed by intratracheal delivery of the OVA challenge. This procedure generates a TH2 immune reaction in the mouse lung and mimics four major pathophysiological responses seen in human asthma, including upregulated serum IgE (atopy), eosinophilia, excessive mucus secretion, and AHR. The cytokine IL-13, expressed by basophils, mast cells, activated T cells and NK cells, plays a central role in the inflammatory response to OVA in mouse lungs. Direct lung instillation of murine IL-13 elicits all four of the asthma-related pathophysiologies and conversely, the presence of a soluble IL-13 antagonist (sIL-13Rα2-Fc) completely blocked both the OVA challenge-induced goblet cell mucus synthesis and the AHR to acetylcholine. Thus, IL-13-mediated signaling is sufficient to elicit all four asthma-related pathophysiological phenotypes and is required for the hypersecretion of mucus and induced AHR in the mouse model (Wills-Karp (2004) Immunol. Rev. 202:175-90).


Biologically active IL-13 binds specifically to a low-affinity binding chain IL-13Rα1 and to a high-affinity multimeric complex composed of IL-13Rα1 and IL-4R, a shared component of IL-4 signaling complex. The high-affinity complex is expressed in a wide variety of cell types including monocyte-macrophage populations, basophils, eosinophils, mast cells, endothelial cells, fibroblasts, airway smooth muscle cells, and airway epithelial cells. IL-13-mediated assembly of the functional receptor complex results in the phosphorylation-dependent activation of JAK1 and JAK2 or Tyk-2 kinases and IRS1/2 proteins. Activation of the IL-13 pathway cascade triggers the recruitment, phosphorylation and ultimate nuclear translocation of the transcriptional activator STAT6. A number of physiological studies demonstrate the inability of pulmonary OVA-challenge to elicit major pathology-related phenotypes including eosinophil infiltration, mucus hypersecretion, and airway hyperreactivity in mice homozygous for the STAT6−/− null allele. Studies have indicated that polymorphisms in the IL-4/IL-13 cytokine-receptor signal transduction system may be indicative of disease predisposition and manifestations (Chatila (2004) Trends Mol. Med. 10(10):493-9). Recent genetic studies have also demonstrated a linkage between specific human alleles of IL-13 and its signaling components with asthma and atopy, demonstrating the critical role of this pathway in the human disease.


IL-13 also binds to an additional receptor chain, IL-13Rα2, which is expressed in both human and mouse. The murine IL-13Rα2 binds IL-13 with approximately 100-fold greater affinity (Kd of 0.5 to 1.2 nM) relative to IL-13Rα1, allowing the construction of a potent soluble IL-13 antagonist, sIL-13Rα2-Fc. The sIL-13Rα2-Fc has been used as an antagonist in a variety of disease models to demonstrate the role of IL-13 in Schistosomiasis induced liver fibrosis and granuloma formation, tumor immune surveillance, as well as in the OVA-challenge asthma model.


Current therapies for asthma are designed to inhibit the physiological processes associated with the dysregulated inflammatory responses associated with the diseases. Such therapies include the use of bronchodilators, corticosteroids, leukotriene inhibitors, and soluble IgE. Other treatments counter the airway remodeling occurring from bronchial airway narrowing, such as the bronchodilator salbutamol (Ventolin®), a short-acting B2-agonist. (Barnes (2004) Nat. Rev. Drug Discov. 3:831-44; Boushey (1982) J. Allergy Clin. Immunol. 69: 335-8). The treatments share the same therapeutic goal of bronchodilation, reducing inflammation, and facilitating expectoration. Many of such treatments, however, include undesired side effects and lose effectiveness after being used for a period of time. Furthermore, current asthma treatments are not effective in all patients and relapse often occurs on these medications (van den Toorn (2001) Am. J. Respir. Crit. Care Med. 164:2107-13). Inter-individual variability in drug response and frequent adverse drug reactions to currently marketed drugs necessitate novel treatment strategies (Szefler (2002) J. Allergy Clin. Immunol. 109:410-8; Drazen (1996) N. Engl. J. Med. 335:841-7; Israel (2005) J. Allergy Clin. Immunol 115:S532-8; Lipworth (1999) Arch. Intern. Med. 159:941-55; Wooltorton (2005) CMAJ 173:1030-1; Guillot (2002) Expert Opin. Drug Saf. 1:325-9). Additionally, only limited agents for therapeutic intervention are available for decreasing the airway remodeling process that occurs in asthmatics. Therefore, there remains a need for an increased molecular understanding of the pathogenesis and etiology of asthma, and a need for the identification of novel therapeutic strategies to combat these complex diseases.


SUMMARY OF THE INVENTION

The present invention provides markers which are related to genes expressed at abnormal levels in the blood of asthma subjects, and these include genes that are involved in the IL-13 pathway. Dysregulation of the IL-13 pathway, as noted above, has been strongly implicated in animal models of asthma. However, the present invention includes markers, a number of which are genes that can be measured in the blood, and are expressed in the blood at significantly different levels in asthma and healthy subjects. The present invention also includes markers that are responsive to variation in the level of IL-13, and have their expression levels modulated by the presence of IL-13 or an IL-13 antagonist. The present invention also includes markers, a number of which are transcriptional biomarkers that are related to asthma but are not known to be involved in the IL-13 pathway. The markers of the present invention have utility in assessing whether a therapy modulates their expression levels toward a healthy level. These biomarkers are also of potential utility in the diagnosis, prognosis, or assessment of inflammatory diseases other than asthma, including IL-13-mediated conditions.


The present invention provides markers for asthma. Those markers can be used, for example, in the evaluation of a patient or in the identification of agents capable of modulating their expression; such agents may also be useful clinically.


The present invention also provides markers for IL-13 responsiveness. Those markers can be used, for example, in the evaluation of a patient or in the identification of agents capable of modulating their expression; such agents may also be useful clinically.


Thus, in one aspect, the present invention provides a method for providing a diagnosis, prognosis, or assessment for an individual afflicted with asthma or an IL-13-mediated condition. The method includes the following steps: (1) detecting the expression levels of one or more differentially expressed genes, or markers, of asthma or IL-13 responsiveness in a sample derived from a patient prior to the treatment; and (2) comparing each of the expression levels to a corresponding control, or reference, expression level for the marker. Diagnosis or other assessment is based, in whole or in part, on the outcome of the comparison. In one embodiment, the determination as to whether a treatment significantly affects the expression levels of one or more markers uses standard controls and normalizers. In some embodiments, the determination is based on a comparison of the expression level, for example, to a numerical threshold, to a level indicative of an asthma state, to a level in the same patient at a different time point, or to a level in the same patient before or during a treatment regimen.


In some embodiments, the reference expression level is a level indicative of the presence of asthma. In other embodiments, the reference expression level is a level indicative of the absence of asthma. In some embodiments, the reference expression level is a level indicative of responsiveness to IL-13. In other embodiments, the reference expression level is a numerical threshold, which can be chosen, for example, to distinguish between the presence and absence of asthma. In still other embodiments, the reference expression level is a numerical threshold, which can be chosen to distinguish between the presence and absence of IL-13 responsiveness. In other embodiments, the reference expression level is an expression level from a sample from the same individual but the sample is taken at, for example, a different time, such as with regard to administration of a treatment or progression of a disease.


In another aspect of the present invention, what is provided is a method for diagnosing a patient as having asthma including comparing the expression level of a marker in the patient to a reference expression level of the marker and diagnosing the patient has having asthma if there is a significant difference in the expression levels observed in the comparison. In another aspect of the present invention, what is provided is a method for determining the responsiveness of markers to IL-13 exposure including comparing the expression level of a marker in the patient to a reference expression level of the marker.


In a further aspect of the invention, what is provided is a method for evaluating the effectiveness of a treatment for asthma or an IL-13-mediated condition including the steps of (1) detecting the expression levels of one or more differentially expressed genes, or markers, of asthma or an IL-13-mediated condition in a sample derived from a patient during the course of the treatment; and (2) comparing each of the expression levels to a corresponding control, or reference, expression level for the marker, wherein the result of the comparison is indicative of the effectiveness of the treatment.


In another aspect of the present invention, what is provided is a method for selecting a treatment for asthma in a patient involving the steps of (1) detecting an expression level of a marker in a sample derived from the patient; (2) comparing the expression level of the marker to a reference expression level of the marker; and (3) diagnosing the patient as having a type of asthma likely to be responsive to a particular therapeutic strategy; and (4) selecting a treatment for the patient.


In another aspect of the present invention, what is provided is a method for detecting exposure to IL-13 or an IL-13 antagonist involving the steps of (1) detecting an expression level of a marker in one or more cells; and (2) comparing the expression level of the marker to a reference expression level of the marker; wherein the comparison of the expression levels indicates exposure to IL-13 or an IL-13 antagonist. In one aspect, the method of detecting exposure to IL-13, an IL-13 antagonist, or an IL-13 agonist comprises the steps of detecting a level of expression of at least one marker in one or more cells; and comparing the level of expression of the at least one marker to a reference level of expression of the at least one marker; wherein a difference in the level of expression of the at least one marker and the reference level of expression is indicative of exposure to IL-13, an IL-13 antagonist, or an IL-13 agonist; and wherein the at least one marker is selected from the group consisting of the markers indicated in Table 7.


The present invention further provides a method for modulating an inflammatory disease comprising providing an agent that binds to at least one marker gene product of the present invention. In one embodiment, the marker is selected from Table 1a and b. In one embodiment, the marker is selected from the markers in Table 1b wherein “yes” is indicated in Column C. In a further embodiment of the present invention, the marker is one of the 5 unknown/not previously characterized genes. In one embodiment, the disease is asthma. In another embodiment of the present invention, the disease is an IL-13-mediated condition. The agent may be a nucleic acid comprising the markers in Table 2, a nucleic acid complementary to a nucleic acid marker from Table 2, an SiRNA, an isolated antibody to a polypeptide from Table 2, an isolated nucleic acid comprising a nucleic acid from Table 2, or an isolated polypeptide from Table 2


The present invention further provides a method for modulating an inflammatory disease comprising providing an agent that modulates the level of expression of at least one marker of the present invention. In one embodiment, the marker is selected from Table 1a and b. In a further embodiment of the present invention, the marker is one of the 5 unknown/not previously characterized genes. In one embodiment, the disease is asthma. In another embodiment of the present invention, the disease is an IL-13-mediated condition.


In a further aspect of the present invention, what is provided is a method for evaluating agents capable of modulating the expression of a marker that is differentially expressed in asthma or is responsive to IL-13 involving the steps of (1) contacting one or more cells with the agent, or optionally, administering the agent to a human or non-human mammal; (2) determining the expression level of the marker; and (3) comparing the expression level of the marker to the expression level of the marker in an untreated cell or untreated human or untreated non-human mammal. The comparison is indicative of the agent's ability to modulate the expression level of the marker in question.


“Diagnostic genes” or “markers” or “prognostic genes” referred to in the application include, but are not limited to, any genes or gene fragments that are differentially expressed in peripheral blood mononuclear cells (PBMCs) or other tissues of subjects having asthma as compared to the expression of said genes in an otherwise healthy individual. Exemplary markers are shown in Table 1a and b. It is often the case that there is differential expression of a marker between patients with different clinical outcomes. Markers include genes whose expression levels in PBMCs or other tissues of asthma patients or patients having an IL-13-mediated condition are correlated with clinical outcomes of the patients. A “clinical outcome” referred to in the application includes, but is not limited to, any response to any asthma-related or IL-13-mediated condition-related treatment.


In some embodiments, each of the expression levels of the marker is compared to a corresponding control level which is a numerical threshold. The numerical threshold can be, for example, a ratio, a difference, a confidence level, or another quantitative indicator.


In another aspect, the present invention provides a method for predicting a clinical outcome of asthma or an IL-13-mediated condition including the following steps: (1) generating a gene expression profile from a peripheral blood sample of a patient having asthma or an IL-13-mediated condition; and (2) comparing the gene expression profile to one or more reference expression profiles. The gene expression profile and the one or more reference expression profiles contain expression patterns of one or more markers of the asthma or IL-13-mediated condition in PBMCs. The difference or similarity between the gene expression profile and the one or more reference expression profiles is indicative of the clinical outcome for the patient.


In one embodiment, the gene expression profile of the one or more markers may be compared to the one or more reference expression profiles by, for example, a k-nearest neighbor analysis or a weighted voting algorithm. Typically, the one or more reference expression profiles represent known or determinable clinical outcomes. In some embodiments, the gene expression profile from the patient may be compared to at least two reference expression profiles, each of which represents a different clinical outcome. In some embodiments, one or more reference expression profiles may include a reference expression profile representing a patient without asthma.


In some embodiments, the gene expression profile may be generated by using a nucleic acid array. Typically, the gene expression profile is generated from the peripheral blood sample of the patient prior to therapy for asthma. Alternatively, the gene expression profile is generated from the peripheral blood sample of a patient exposed to IL-13 or an IL-13 antagonist.


In one embodiment, the one or more markers include one or more genes selected from Table 1a and b. In another embodiment, the one or more markers include ten or more genes selected from Table 1a and b. In yet another embodiment, the one or more markers include twenty or more genes selected from Table 1a and b. In one embodiment, the one or more markers are selected from the markers in Table 1b wherein “yes” is indicated in Column C.


In yet another aspect, the present invention provides a method for selecting a treatment for an asthma patient. The method includes the following steps: (1) generating a gene expression profile from a peripheral blood sample derived from the asthma patient; (2) comparing the gene expression profile to a plurality of reference expression profiles, each representing a clinical outcome in response to one of a plurality of treatments; and (3) selecting from the plurality of treatments a treatment which has a favorable clinical outcome for the asthma patient. The treatment selection of step (3) is based on the comparison in step (2), wherein the gene expression profile and the one or more reference expression profiles comprise expression patterns of one or more markers of the asthma in PBMCs. In one embodiment, the gene expression profile may be compared to a plurality of reference expression profiles by, for example, a k-nearest neighbor analysis or a weighted voting algorithm.


In one embodiment, the one or more markers include one or more genes selected from Table 1a and b. In another embodiment, the one or more markers include ten or more genes selected from Table 1a and b. In yet another embodiment, the one or more markers include twenty or more genes selected from Table 1a and b. In one embodiment, the one or more markers are selected from the markers in Table 1b wherein “yes” is indicated in Column C.


In another aspect, the present invention provides a method for diagnosis, assessment, prognosis, or monitoring the occurrence, development, progression, or treatment of asthma. The present invention also provides a method for diagnosis, assessment, prognosis, or monitoring the occurrence, development, progression, or treatment of an IL-13-mediated condition. The method includes the following steps: (1) generating a gene expression profile from a peripheral blood sample of a patient having asthma or an IL-13-mediated condition; and (2) comparing the gene expression profile to one or more reference expression profiles, wherein the gene expression profile and the one or more reference expression profiles contain the expression patterns of one or more markers of asthma or an IL-13-mediated condition in PBMCs, or other tissues, and wherein the difference or similarity between the gene expression profile and the one or more reference expression profiles is indicative of the presence, absence, occurrence, development, progression, or effectiveness of treatment of the asthma or an IL-13-mediated condition in the patient. In one embodiment, the disease is asthma. In one aspect, the invention provides a method for selecting a treatment for an asthma patient comprising generating a sample expression profile from a sample derived from the asthma patient; comparing the sample expression profile to at least one reference expression profile, wherein the at least one reference expression profile represents a favorable clinical outcome in response to a treatment; selecting a treatment; wherein the treatment is one that exhibits a reference expression profile that is different from the sample expression profile; and wherein the sample expression profile and the at least one reference expression profile comprise an expression profile of a marker indicated in Table 1a or Table 1b.


Typically, the one or more reference expression profiles include a reference expression profile representing a disease-free human. Typically, the one or more markers include one or more genes selected from Table 1a and b. In some embodiments, the one or more markers include ten or more genes selected from Table 1a and b. In one embodiment, the one or more markers are selected from the markers in Table 1b wherein “yes” is indicated in Column C.


In another aspect, the present invention provides an array for detecting a marker differentially expressed in asthma or responsive to exposure to IL-13. In another embodiment, the array is for use in a method for predicting a clinical outcome for an asthma patient. The array of the invention includes a substrate having a plurality of addresses, each of which has a distinct probe disposed thereon or affixed thereto. In one embodiment, at least 10% of the plurality of addresses have affixed thereto or disposed thereon probes that can specifically detect or hybridize to markers for asthma or IL-13 responsiveness. In some embodiments, at least 15% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, at least 20% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, at least 25% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, at least 30% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of IL-13 responsiveness or asthma in PBMCs or other tissues. In some embodiments, at least 40% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, at least 50% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of IL-13 responsiveness or asthma in PBMCs or other tissues. In some embodiments, at least 60% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, at least 70% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, at least 80% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, at least 90% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, the markers are selected from Table 1a and b. In other embodiments, the markers are selected from the markers in Table 1b wherein “yes” is indicated in Column C. In some embodiments, at least 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or at least 90% of the plurality of addresses have disposed thereon or affixed thereto markers selected from Table 1a and b. In some embodiments, at least 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or at least 90% of the plurality of addresses have disposed thereon or affixed thereto markers selected from the markers in Table 1b wherein “yes” is indicated in Column C. In some embodiments, the array of the present invention has affixed to or disposed thereon at least 5, preferably at least 10, at least 15, at least 20, at least 25, at least 30, at least 35, at least 40, at least 45, at least 50, at least 60, at least 70, at least 80, at least 90, at least 100, or at least 150 markers selected from Table 1a and b. In some embodiments, the array of the present invention has affixed to or disposed thereon at least 5, preferably at least 10, at least 15, at least 20, at least 25, at least 30, at least 35, at least 40, at least 45, at least 50, at least 60, or at least 70 markers selected from Table 1b wherein “yes” is indicated in Column C. The probe suitable for the present invention may be a nucleic acid probe. Alternatively, the probe suitable for the present invention may be an antibody probe.


In a further aspect, the present invention provides an array for use in a method for diagnosis of asthma or an IL-13-mediated condition including a substrate having a plurality of addresses, each of which have a distinct probe disposed thereon or affixed thereto. In one embodiment, at least 10% of the plurality of addresses have affixed thereto or disposed thereon probes that can specifically detect or hybridize to markers for asthma or IL-13 responsiveness. In some embodiments, at least 15% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, at least 20% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, at least 25% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, at least 30% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of IL-13 responsiveness or asthma in PBMCs or other tissues. In some embodiments, at least 40% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, at least 50% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of IL-13 responsiveness or asthma in PBMCs or other tissues. In some embodiments, at least 60% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, at least 70% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, at least 80% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, at least 90% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, the markers are selected from Table 1a and b. In other embodiments, the markers are selected from the markers in Table 1b wherein “yes” is indicated in Column C. In some embodiments, at least 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or at least 90% of the plurality of addresses have disposed thereon or affixed thereto markers selected from Table 1a and b. In some embodiments, at least 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or at least 90% of the plurality of addresses have disposed thereon or affixed thereto markers selected from the markers in Table 1b wherein “yes” is indicated in Column C. In some embodiments, the array of the present invention has affixed to or disposed thereon at least 5, preferably at least 10, at least 15, at least 20, at least 25, at least 30, at least 35, at least 40, at least 45, at least 50, at least 60, at least 70, at least 80, at least 90, at least 100, or at least 150 markers selected from Table 1a and b. In some embodiments, the array of the present invention has affixed to or disposed thereon at least 5, preferably at least 10, at least 15, at least 20, at least 25, at least 30, at least 35, at least 40, at least 45, at least 50, at least 60, or at least 70 markers selected from Table 1b wherein “yes” is indicated in Column C. The probe suitable for the present invention may be a nucleic acid probe. Alternatively, the probe suitable for the present invention may be an antibody probe.


In a further aspect, the present invention provides a low density array for use in a method of diagnosis, prognosis, or assessment of asthma or an IL-13-mediated condition or determination of IL-13 responsiveness, including a substrate having a plurality of addresses, each of which has a distinct probe disposed thereon or affixed thereto. The low density array provides the benefit of lower cost, given the lower number of probes that are required to be disposed upon or affixed to the array. Furthermore, the low density array also provides a higher sensitivity given the greater representation of a select number of probes of interest as a percentage of all probes at all addresses on the array. In one embodiment, the present invention provides a low density array for use in assessing a patient's asthma or IL-13-mediated condition or IL-13 responsiveness. In another embodiment, the present invention provides a low density array for use in evaluating or identifying agents capable of modulating the level of expression of markers that are differentially expressed in asthma or IL-13-mediated condition or are responsive to IL-13. In one embodiment, the low density array is capable of hybridizing to at least 10 markers selected from Table 1a and b. In another embodiment, the low density array is capable of hybridizing to at least 20 markers selected from Table 1a and b. In one embodiment, at least 10% of the plurality of addresses have affixed thereto or disposed thereon probes that can specifically detect or hybridize to markers for asthma or IL-13 responsiveness. In some embodiments, at least 15% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, at least 20% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, at least 25% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, at least 30% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of IL-13 responsiveness or asthma in PBMCs or other tissues. In some embodiments, at least 40% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, at least 50% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of IL-13 responsiveness or asthma in PBMCs or other tissues. In some embodiments, at least 60% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, at least 70% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, at least 80% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, at least 90% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, the markers are selected from Table 1a and b. In other embodiments, the markers are selected from the markers in Table 1b wherein “yes” is indicated in Column C. In some embodiments, at least 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or at least 90% of the plurality of addresses have disposed thereon or affixed thereto markers selected from Table 1a and b. In some embodiments, at least 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or at least 90% of the plurality of addresses have disposed thereon or affixed thereto markers selected from the markers in Table 1b wherein “yes” is indicated in Column C. In some embodiments, the array of the present invention has affixed to or disposed thereon at least 5, preferably at least 10, at least 15, at least 20, at least 25, at least 30, at least 35, at least 40, at least 45, at least 50, at least 60, at least 70, at least 80, at least 90, at least 100, or at least 150 markers selected from Table 1a and b. In some embodiments, the array of the present invention has affixed to or disposed thereon at least 5, preferably at least 10, at least 15, at least 20, at least 25, at least 30, at least 35, at least 40, at least 45, at least 50, at least 60, or at least 70 markers selected from Table 1b wherein “yes” is indicated in Column C. The probe suitable for the present invention may be a nucleic acid probe. Alternatively, the probe suitable for the present invention may be an antibody probe.


In yet another aspect, the present invention provides a computer-readable medium containing a digitally-encoded expression profile having a plurality of digitally-encoded expression signals, each of which includes a value representing the expression of a marker for asthma or IL-13 responsiveness in a PBMC, or in another tissue. In some embodiments, each of the plurality of digitally-encoded expression signals has a value representing the expression of the marker for asthma or IL-13 responsiveness in a PBMC, or another tissue, of a patient with a known or determinable clinical outcome. In some embodiments, the computer-readable medium of the present invention contains a digitally-encoded expression profile including at least ten digitally-encoded expression signals.


In another aspect, the present invention provides a computer-readable medium containing a digitally-encoded expression profile having a plurality of digitally-encoded expression signals, each of which has a value representing the expression of a marker for asthma or IL-13 responsiveness in a PBMC or other tissue. In some embodiments, each of the plurality of digitally-encoded expression signals has a value representing the expression of the marker of asthma or IL-13 responsiveness in a PBMC, or another tissue, of an asthma-free human or non-human mammal. In some embodiments, the computer-readable medium of the present invention contains a digitally-encoded expression profile including at least ten digitally-encoded expression signals.


In yet another aspect, the present invention provides a kit for prognosis of asthma or an IL-13-mediated condition. The kit includes a) one or more probes that can specifically detect markers for asthma or IL-13 responsiveness in PBMCs, or another tissue; and b) one or more controls, each representing a reference expression level of a marker detectable by the one or more probes. In some embodiments, the kit of the present invention includes one or more probes that can specifically detect markers selected from Table 1a and b. In some embodiments, the kit of the present invention includes one or more probes that can specifically detect markers selected from the markers in Table 1b wherein “yes” is indicated in Column C.


In yet another aspect, the present invention provides a kit for diagnosis of asthma or an IL-13-mediated condition. The kit includes a) one or more probes that can specifically detect markers of asthma or IL-13 responsiveness in PBMCs, or another tissue; and b) one or more controls, each representing a reference expression level of a marker detectable by the one or more probes. In some embodiments, the kit of the present invention includes one or more probes that can specifically detect markers selected from Table 1a and b. In some embodiments, the kit of the present invention includes one or more probes that can specifically detect markers selected from the markers in Table 1b wherein “yes” is indicated in Column C.


In one embodiment, the sample contains protein molecules from the test subject. Alternatively, the biological sample can contain mRNA molecules from the test subject or genomic DNA molecules from the test subject. An exemplary biological sample is a peripheral blood sample isolated by conventional means from a subject, e.g., blood draw. Alternatively, the sample can comprise tissue, mucus, or cells isolated by conventional means from a subject, e.g., biopsy, swab, surgery, endoscopy, bronchoscopy, and other techniques well known to the skilled artisan.


Other features, objects, and advantages of the present invention are apparent in the detailed description that follows. It should be understood, however, that the detailed description, while indicating embodiments of the present invention, is given by way of illustration only and not by way of limitation. Various changes and modifications within the scope of the invention will become apparent to those skilled in the art from the detailed description.







DETAILED DESCRIPTION

The present invention provides methods useful for the diagnosis and assessment of asthma as well as the selection of a treatment for asthma after its assessment. The present invention further provides methods useful for the diagnosis and assessment of IL-13 responsiveness, including an IL-13-mediated condition. The terms “IL-13 responsiveness,” “IL-13 responsive,” and “responsive to IL-13” as used herein refer to a marker or gene's modulation in reaction to exposure to IL-13, an IL-13 antagonist, an IL-13 agonist, or the like. These methods employ asthma and IL-13 responsive markers which are differentially expressed in tissue samples, particularly, peripheral blood samples, of asthma patients or patients with an IL-13-mediated condition who have different clinical outcomes. The present invention also provides methods for monitoring the occurrence, development, progression, effectiveness of a treatment, or treatment of asthma or an IL-13-mediated condition. The present invention further provides methods for offering a prognosis or determining the efficacy of treatment for asthma or an IL-13-mediated condition using the disclosed asthma and IL-13 responsive markers which are differentially expressed in peripheral blood samples, or other tissues, of asthma patients, or patients with an IL-13-mediated condition, with different disease status. Thus, the present invention represents a significant advance in clinical asthma pharmacogenomics and asthma treatment as well as the clinical pharmacogenomics and treatment of conditions mediated by IL-13, including inflammatory disease.


Various aspects of the invention are described in further detail in the following subsections. The use of subsections is not meant to limit the invention. Each subsection may apply to any aspect of the invention. In this application, the use of “or” means “and/or” unless stated otherwise.


Identification of Asthma Markers for the Taqman Low Density Array (TLDA)

Analyses were performed to select 167 genes as the top candidate markers to assess the effects of IMA638, an IL-13 antagonist, by Taqman Low Density Array (TLDA). Using a dataset consisting of HG-U133A GeneChip® (Affymetrix) results from 1147 individual visits from 337 non-smoking asthma subjects and 1183 visits from 348 non-smoking healthy subjects, ANCOVA analyses were performed to identify genes that, by gene expression level, were most significantly associated with asthma and, on an individual visit basis, showed the highest incidence of a detectable fold change when compared to the average level in healthy subjects.


The list of genes thus identified were compared to lists from three independent in vitro studies, two that identified gene expression changes resulting from exposure of human monocytes to IL-13, and a third that identified the effects of IL-13 antagonism on the 6 day PBMC response to allergen stimulation. Also taken into consideration were the results of two in vivo animal studies—one that identified genes affected by IL-13 instillation in the mouse lung, and the other that identified changes in gene expression levels in PBMCs associated with segmental ascaris lung challenge of non-human primates.


In assigning slots on the TLDA, highest priority was given to genes significantly (i.e., having a false discovery rate, or FDR, of less than 1.0e-5) and consistently (in more than 59% of samples) associated with asthma by gene expression level in PBMC and had an average GeneChip® signal greater than 30, and were significantly (FDR<0.05) affected in vitro by IL-13 or its antagonist. A total of 71 genes met all these requirements and are indicated as having met these requirements with a “yes” in Column C of Table 1b.


The vast majority of the remaining TLDA slots were assigned to genes showing a very highly significant (FDA<1.0e-5) association with asthma by expression levels in PBMC and met at least one of the following criteria: a) average fold change of >1.4 in the comparison of asthma and healthy subjects; b) average fold change >1.25, with intra-subject variability <35% and more than 59% of samples showing an expression level difference with the average of healthy volunteers; and/or c) intra-subject variability <20% and more than 59% of samples showing a detectable expression level difference with the average of healthy volunteers. The remaining slots were assigned to genes that were associated with IL-13 through either the in vitro or animal model studies, even if the incidence of samples that differed from the healthy subject average was less than 59% and the association with asthma did not meet the FDR<1.0e-5 level of significance. Table 1a and b provides a complete list of the genes selected as having satisfied the aforementioned criteria and includes the identities and descriptions of the genes as well as pertinent statistical information. The sequences of the probes identified in Table 1a and b are provided in Table 6.


Table 1a provides the Affymetrix Gene Symbol, gene description and Affymetrix Qualifiers for each marker in columns A, B, and C, respectively. Column D discloses the raw p value for association with asthma when gene expression levels in 1147 samples from 337 asthma subjects were compared to levels in 1183 samples from 348 healthy subjects. ANCOVA was performed to adjust for covariates related to age, sex, race, sample quality, processing lab and country of residence. Column E provides the log base-2 difference in expression levels for each marker as between asthmatics and healthy volunteers. A positive value indicates higher expression in asthma subjects, a negative value indicates a lower level in asthma subjects. Columns F and G indicate the intra-subject (within subject) variability for each marker within the asthmatic group and the group of healthy volunteers, respectively. Column H indicates the parameters the inventors used in the selection of the gene for inclusion in this biomarker panel.


Table 1b provides the gene symbol for each marker in column A and the average Affymetrix Gene Chip signal for samples derived from the asthmatic group for each marker in Column B. Column C indicates which markers passed or failed the most stringent criteria set used to determine the highest priority markers as described above. Column D provides the p value adjusted for multiplicity of testing using the false discovery rate method when gene expression levels in 1147 samples from 337 asthma subjects were compared to levels in 1183 samples from 348 healthy subjects. ANCOVA was performed to adjust for covariates related to age, sex, race, sample quality, processing lab and country of residence.


Column E of Table 1b indicates, in shorthand form: gene expression that is significantly higher in healthy patients compared to asthmatics (“h”); gene expression that is significantly lower in healthy patients compared to asthmatics (“I”); and gene expression whose difference in expression between healthy patients and asthmatics does not reach a significance threshold of an FDR<0.0001 (“-”). This information is broken down by severity of asthma. Column E uses a three character code, in which the first character represents a comparison of healthy patients to mild asthmatics; the second character represents a comparison of healthy patients to moderate asthmatics; and the third character represents a comparison of healthy patients to severe asthmatics. Thus, for example, the code in column E of Table 1b for CD69 is “-hh”, indicating that CD69 expression is significantly higher in healthy patients than in moderate or severe asthmatics, but that any difference in expression between healthy patients and mild asthmatics does not reach the FDR<0.0001 threshold. In contrast, the code in column E of Table 1b for BASP1 is “III,” indicating that BASP1 expression is significantly lower in healthy patients than in mild, in moderate, and in severe asthmatics.


Columns F and G of Table 1b provide the FDR for each marker in a comparison of marker expression levels in healthy volunteers to asthmatics suffering from moderate and severe forms of asthma, respectively. Column H, I, and J, indicate the absolute fold difference for each marker in a comparison of the expression levels of each in healthy volunteers versus asthmatics with mild, moderate, and severe asthma, respectively. Column K provides the accession numbers for each marker.


Table 6 provides a list of all probe sequences for the markers identified in Tables 1a and b. Each sequence is identified by an Affymetrix qualifier associated with a marker and each marker has multiple probe sequences associated with it.


Of the genes selected by the criteria outlined above, five (5) were determined to be novel, unknown, or not fully characterized, those genes bearing Affymetrix qualifiers 203429_s_at; 210054_at; 222309_at; 212779_at; and 213158_at. Details pertaining to the description of the sequences, aliases, orthologs, and literature citations can be found in Table 2.


Table 2 provides the annotations of the aforementioned previously unknown markers. Columns A and B provide the Affymetrix qualifiers and annotations, respectively, for each marker, if any. Column C indicates any consensus sequences to which the particular probe is similar. Columns D, E, and F provide the National Center for Biotechnology Information (NCBI) gene names, aliases, and gene descriptions, respectively, for each marker, if any. Columns G and H provide the Refseq accession numbers and protein names, respectively, for each marker, if any. Column I indicates any murine or rat orthologs to the markers and Column J provides any transmembrane domain predictions for the markers, including the first and last amino acids in the primary sequence defining the predicted domain. Lastly, Column K provides the gene ontology (GO) annotation for the marker, if any.


Affymetrix qualifier 203429_at is a probe for the 3′ untranslated region of open reading frame (ORF) 9 of chromosome 1 (or C1ORF9). According to the literature, this probe has the alternative name of CH1, or membrane protein CH1. There are at least two (2) variants and the protein's similarity to some orthologs is indicated in column J of Table 2. Variant 1 contains a signal sequence from amino acid 1 to amino acid 29 and a Sad1/UNC-like C-terminal domain. Sad1/UNC from amino acid 322 to amino acid 452 is part of the galactose-binding like superfamily. Variant 2 lacks the signal sequence but bears the Sad1/UNC-like C-terminal domain from amino acid 480 to amino acid 603. The C. elegans UNC-84 protein is a nuclear envelope protein that is involved in nuclear anchoring and migration during development. The S. pombe Sad1 protein localizes at the spindle pole body. UNC-84 and Sad1 share a common C-terminal region that is often termed the SUN (Sad1 and UNC) domain. In mammals, the SUN domain is present in two proteins, Sun1 and Sun2. The SUN domain of Sun2 has been demonstrated to be in the periplasm. The literature reports that membrane protein CH1 has its highest expression in the pancreas and testis with lower levels of expression in the prostate and ovary (Rosok (2000) Biochem. Biophys. Res. Commun. 267(3): 855-862). Rosok also predicts cAMP and cGMP phosphorylation sites in the C-terminal end of the protein and a transmembrane domain (amino acids 1011-1031 of the protein).


Affymetrix qualifier 210054_at is a probe for the 3′ untranslated region of open reading frame 15 of chromosome 4 (C4ORF15) and has alternative names including DKFZp686I1868, IT1, MGC4701, and hypothetical protein LOC79441. The sequence appears to have a similarity to the early endosome antigen Rab effector (EEA1) isoform 1 of Rattus norvegicus.


Affymetrix qualifier 222309_at is a probe for a region in intron 4 of the C6ORF62 (open reading frame 62 in chromosome 6) gene. Expressed sequence tag (EST) evidence indicates that it is a transcribed region. The sequence of intron 4 is provided in Table 8; the shaded region of the sequence represents a portion of intron 4 contiguously connected to the probed region by EST evidence, indicating that at least this region appears to be transcribed. The entire sequence that, based on EST evidence, appears to be transcribed is also provided in Table 8 and is identified as “Transcribed seq.” Thus, this likely constitutes a 3′ UTR of a truncated C6ORF62 gene with a polyadenylation site in the transcribed sequence. Additional sequence, including additional portions of intron 4, may also be present in the detected transcript.


Affymetrix qualifier 212779_at is a probe for the open reading frame and 3′ untranslated region of KIAA1109, which has aliases and gene descriptions DKFZp781P0474, FSA, MCG110967, “fragile site-associated protein,” and hypothetical protein LOC84162. The sequence appears to have similarity (33-39%) with C. elegans proteins q8wtl7_caeel.trembl and q9n3r9_caeel.trembl. Secondary and tertiary protein structure prediction indicates that this protein contains a transmembrane domain (between amino acids 25 and 47) and an aspartate protease domain as well as a coiled coil region between amino acids 96 through 120. It is predicated that this protein is likely an aspartic-type endopeptidase. The literature indicates that elevated FSA mRNA is found in testis and expression of FSA is associated with postmitotic germ cells in spermatogenesis. Enhanced expression of FSA is also observed during adipogenesis in cultured cells. Through bioinformatics analysis, this protein is also reported to contain several nuclear localization signals (i.e., KKLGTALQDEKEKKGKDK, starting at amino acid 2989; KRLWFLWPDDILKNKRCRNK starting at amino acid 523, PKQRRSF starting at amino acid 773, and PGRKKKK starting at amino acid 831) and nuclear export signals (NES) (i.e., LKLPSLDL starting at amino acid 2003, LSGLQL starting at amino acid 304, and LHRPLDL starting at amino acid 947). FSA is a serine-rich protein, with the overall serine content of the polypeptide reaching 11.9% and as high in some stretches (i.e., amino acids 524 to 693) as 28%. Furthermore, the C-terminal portion of FSA shares 21% amino acid sequence similarity to the deduced amino acid sequence encoded by the lipid depleted protein gene (Ipd-3) of C. elegans (NP491182).


Affymetrix qualifier 213158_at probes for a genomic region with extensive EST support. The ESTs supports a genomic region of 3935 basepairs (bps). There is neither an ORF nor an exon prediction in this region. This sequence appears to probe a long 3′ untranslated region of ZBTB20 (Zinc finger and BTB domain containing 20) (ZBTB20 is located approximately 20 kilobases (kb) upstream of the region being probed by 213158_at). Alternatively, it may probe a non-coding RNA. The 213158_at probe targets a genomic region with extensive EST support that is 23634 bases downstream of ZBTB20. Contiguous EST evidence indicates that the transcript detected by the probes includes the sequence identified as the “transcribed sequence” for 213158_at in Table 8. This is very well conserved in the mouse and again there is EST evidence to support that this region of at least 8439 basepairs is transcribed. The transcribed sequence in the mouse is also provided in Table 8 and identified as “MOUSE TRANSCRIBED SEQ.” Mus ZBTB20 is located approximately 20 kb upstream of the region being probed by 213158_at. In the mouse, there is extensive and, for the most part, overlapping EST evidence in this 23014 bp region to support that ZBTB20 has a very long 3′ UTR. ZBTB belong to the C2H2 zinc finger protein family of transcription factors. The 733-residue long protein contains a BTB/POZ domain at the N-terminal and four (4) C2H2 zinc fingers in the C-terminal. It shares the closest homology to BCL-6, which is widely expressed in hematopoietic tissues, including dendritic cells, monocytes, B cells, and T cells. There is also the possibility of a miRNA prediction in the mouse in this 3′ UTR region approximately 1300 bases upstream of the region probed by 213158_at.


In further studies, approximately 559 genes were determined to be responsive to IL-13 stimulation by the criteria of being called “present” (i.e., Affymetrix Detection p-value<0.04) in at least 25% of the arrays in at least one of twenty-four (24) experimental groups and having a fold-change of >±1.5 at any one or more of four timepoints (timepoints taken at 2 hours, 6 hours, 12 hours, and 24 hours after treatment) with an FDR≦0.05 relative to a time-matched control sample. The complete list of 559 IL-13 responsive genes is given in Table 7.


Table 7 provides the Affymetrix qualifier and gene symbol of the marker of interest in Columns A and B, respectively. Columns C, D, E, and F, provide the FDR for each marker 2 hours, 6 hours, 12 hours, and 24 hours after IL-13 stimulation, respectively. Columns G, H, I, and J indicate the log base-2 fold change in the marker's expression level 2 hours, 6 hours, 12 hours, and 24 hours after IL-13 stimulation, respectively.


As discussed earlier, expression level of markers of the present invention can be used as an indicator of asthma. Expression level of markers of the present invention can also be used as indicators of an IL-13-mediated condition. Detection and measurement of the relative amount of an asthma-associated or IL-13-responsiveness associated marker or marker gene product (polynucleotide or polypeptide) of the invention can be by any method known in the art.


Methodologies for detection of a transcribed polynucleotide can include RNA extraction from a cell or tissue sample, followed by hybridization of a labeled probe (i.e., a complementary polynucleotide molecule) specific for the target RNA to the extracted RNA and detection of the probe (i.e., Northern blotting).


Methodologies for peptide detection include protein extraction from a cell or tissue sample, followed by binding of an antibody specific for the target protein to the protein sample, and detection of the antibody. Antibodies are generally detected by the use of a labeled secondary antibody. The label can be a radioisotope, a fluorescent compound, an enzyme, an enzyme co-factor, or ligand. Such methods are well understood in the art.


Detection of specific polynucleotide molecules may also be assessed by gel electrophoresis, column chromatography, or direct sequencing, quantitative PCR, RT-PCR, or nested PCR among many other techniques well known to those skilled in the art.


Detection of the presence or number of copies of all or part of a marker as defined by the invention may be performed using any method known in the art. It is convenient to assess the presence and/or quantity of a DNA or cDNA by Southern analysis, in which total DNA from a cell or tissue sample is extracted, is hybridized with a labeled probe (i.e., a complementary DNA molecule), and the probe is detected. The label group can be a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor. Other useful methods of DNA detection and/or quantification include direct sequencing, gel electrophoresis, column chromatography, and quantitative PCR, as would be understood by one skilled in the art.


Diagnosis, Prognosis, and Assessment of Asthma and IL-13-Mediated Conditions

The asthma markers and IL-13 responsive markers disclosed in the present invention can be employed in diagnostic methods comprising the steps of (a) detecting an expression level of such a marker in a patient; (b) comparing that expression level to a reference expression level of the same marker; (c) and diagnosing a patient has having or not having asthma, or an IL-13-mediated condition based upon the comparison made. The methods described herein below, including preparation of blood and other tissue samples, assembly of class predictors, and construction and comparison of expression profiles, can be readily adapted for the diagnosis of, assessment of, and selection of a treatment for asthma and IL-13-mediated conditions. This can be achieved by comparing the expression profile of one or more of the markers in a subject of interest to at least one reference expression profile of the markers. The reference expression profile(s) can include an average expression profile or a set of individual expression profiles each of which represents the gene expression of the asthma or IL-13 responsive markers in a particular asthma patient, a patient with an IL-13-mediated condition, or disease-free human. Similarity between the expression profile of the subject of interest and the reference expression profile(s) is indicative of the presence or absence of the disease state of asthma or the IL-13-mediated condition. In many embodiments, the disease genes employed for the diagnosis or monitoring of asthma or the IL-13-mediated condition are selected from the markers described in Table 1a and b. In some embodiments, the disease genes employed for the diagnosis or monitoring of asthma or the IL-13-mediated condition are selected from the markers in Table 1b wherein “yes” is indicated in Column C. One or more asthma or IL-13 responsive markers selected from Table 1a and b can be used for asthma or IL-13-mediated condition diagnosis or disease monitoring. In one embodiment, each marker has a p-value of less than 0.01, 0.005, 0.001, 0.0005, 0.0001, or less. In another embodiment, the asthma genes/markers comprise at least one gene having an “Asthma/Disease-Free” ratio of no less than 2 and at least one gene having an “Asthma/Disease-Free” ratio of no more than 0.5. In a further embodiment, the IL-13 responsive genes/markers comprise at least one gene having an “IL-13-mediated Condition/Condition-Free” ratio of no less than 2 and at least one gene having an “IL-13-mediated Condition/Condition-Free” ratio of no more than 0.5. A diagnosis of a patient as having asthma or an IL-13-mediated condition can be established under a range of ratios, wherein a significant difference can be ratio of the marker expression level to healthy expression level of the marker of >|1| (absolute value of 1). Such significantly different ratios can include, but are not limited to, the absolute values of 1.001, 1.01, 1.05, 1.1, 1.2, 1.3, 1.5, 1.7, 2, 3, 4, 5, 6, 7, 10, or any and all ratios commonly understood to be significant by the skilled practitioner.


The asthma and IL-13 responsive markers of the present invention can be used alone, or in combination with other clinical tests, for asthma or IL-13-mediated condition diagnosis or disease monitoring. Conventional methods for detecting or diagnosing asthma or IL-13-mediated conditions include, but are not limited to, blood tests, chest X-ray, biopsies, skin tests, mucus tests, urine/excreta sample testing, physical exam, or any and all related clinical examinations known to the skilled artisan. Any of these methods, as well as any other conventional or non-conventional method, can be used, in addition to the methods of the present invention, to improve the accuracy of the diagnosis or monitoring of asthma or an IL-13-mediated condition.


The markers of the present invention can also be used for the determination or assessment of the severity of a patient's asthma. In particular, the present invention provides markers, the upregulation or downregulation of which is indicative of mild, moderate, or severe asthma. The capacity for a given marker to provide a determination or assessment of asthma severity is provided in Table 1b, Column E.


The markers of the present invention can also be used for the prediction of the clinical outcome, or prognosis, of an asthma or IL-13-mediated condition patient of interest. The prediction typically involves comparison of the peripheral blood expression profile, or expression profile from another tissue, of one or more markers in the patient of interest to at least one reference expression profile. Each marker employed in the present invention is differentially expressed in peripheral blood samples, or other tissue samples, of asthma or IL-13-mediated condition patients who have different clinical outcomes.


In one embodiment, the markers employed for providing a diagnosis are selected such that the peripheral blood expression profile of each marker is correlated with a class distinction under a class-based correlation analysis (such as the nearest-neighbor analysis), where the class distinction represents an idealized expression pattern of the selected genes in tissue samples, such as peripheral blood samples, of asthma or IL-13-mediated condition patients and healthy volunteers. In many cases, the selected markers are correlated with the class distinction at above the 50%, 25%, 10%, 5%, or 1% significance level under a random permutation test.


In one embodiment, the markers employed for providing a prognosis are selected such that the peripheral blood expression profile of each marker is correlated with a class distinction under a class-based correlation analysis (such as the nearest-neighbor analysis), where the class distinction represents an idealized expression pattern of the selected genes in tissue samples, such as peripheral blood samples, of asthma or IL-13-mediated condition patients who have different clinical outcomes. In many cases, the selected markers are correlated with the class distinction at above the 50%, 25%, 10%, 5%, or 1% significance level under a random permutation test.


The markers can also be selected such that the average expression profile of each marker in tissue samples, such as peripheral blood samples, of one class of asthma or IL-13-mediated condition patients is statistically different from that in another class of patients. For instance, the p-value under a Student's t-test for the observed difference can be no more than 0.05, 0.01, 0.005, 0.001, or less. In addition, the markers can be selected such that the average expression level of each marker in one class of patients is at least 2-, 3-, 4-, 5-, 10-, or 20-fold different from that in another class of patients.


The expression profile of a patient of interest can be compared to one or more reference expression profiles. The reference expression profiles can be determined concurrently with the expression profile of the patient of interest. The reference expression profiles can also be predetermined or prerecorded in electronic or other types of storage media.


The reference expression profiles can include average expression profiles, or individual profiles representing gene expression patterns in particular patients. In one embodiment, the reference expression profiles used for a diagnosis of asthma or an IL-13-mediated condition include an average expression profile of the marker(s) in tissue samples, such as peripheral blood samples, of healthy volunteers. In one embodiment, the reference expression profiles include an average expression profile of the marker(s) in tissue samples, such as peripheral blood samples, of reference patients who have known or determinable disease status or clinical outcomes. Any averaging method may be used, such as arithmetic means, harmonic means, average of absolute values, average of log-transformed values, or weighted average. In one example, the reference asthma patients or IL-13-mediated condition patients have the same disease status or clinical outcome. In another example, the reference patients can are healthy volunteers used in a diagnostic method. In another example, the reference patients can be divided into at least two classes, each class of patients having a different respective disease status or clinical outcome. The average expression profile in each class of patients constitutes a separate reference expression profile, and the expression profile of the patient of interest is compared to each of these reference expression profiles.


In another embodiment, the reference expression profiles include a plurality of expression profiles, each of which represents the expression pattern of the marker(s) in a particular asthma patient or IL-13-mediated condition patient. Other types of reference expression profiles can also be used in the present invention. In yet another embodiment, the present invention uses a numerical threshold as a control level. The numerical threshold may comprise a ratio, including, but not limited to, the ratio of the expression level of a marker in a patient in relation to the expression level of the same marker in a healthy volunteer; or the ratio between the expression levels of the marker in a patient both before and after treatment. The numerical threshold may also by a ratio of marker expression levels between patients with differing disease status or clinical outcomes.


In another embodiment, the absolute expression level(s) of the marker(s) are detected or measured and compared to reference expression level(s) for the purposes of providing a diagnosis or aiding in the selection of a treatment. The reference expression level is obtained from a control sample in this embodiment, the control sample being derived from either a healthy individual or an asthma or IL-13-mediated condition patient prior to treatment.


The expression profile of the patient of interest and the reference expression profile(s) can be constructed in any form. In one embodiment, the expression profiles comprise the expression level of each marker used in outcome prediction. The expression levels can be absolute, normalized, or relative levels. Suitable normalization procedures include, but are not limited to, those used in nucleic acid array gene expression analyses or those described in Hill, et al., GENOME BIOL., 2:research0055.1-0055.13 (2001). In one example, the expression levels are normalized such that the mean is zero and the standard deviation is one. In another example, the expression levels are normalized based on internal or external controls, as appreciated by those skilled in the art. In still another example, the expression levels are normalized against one or more control transcripts with known abundances in blood samples. In many cases, the expression profile of the patient of interest and the reference expression profile(s) are constructed using the same or comparable methodologies.


In another embodiment, each expression profile being compared comprises one or more ratios between the expression levels of different markers. An expression profile can also include other measures that are capable of representing gene expression patterns.


The peripheral blood samples used in the present invention can be either whole blood samples, or samples comprising enriched PBMCs. In one example, the peripheral blood samples used for preparing the reference expression profile(s) comprise enriched or purified PBMCs, and the peripheral blood sample used for preparing the expression profile of the patient of interest is a whole blood sample. In another example, all of the peripheral blood samples employed in outcome prediction comprise enriched or purified PBMCs. In many cases, the peripheral blood samples are prepared from the patient of interest and reference patients using the same or comparable procedures.


Other types of blood samples can also be employed in the present invention, and the gene expression profiles in these blood samples are statistically significantly correlated with patient outcome.


The blood samples used in the present invention can be isolated from respective patients at any disease or treatment stage, and the correlation between the gene expression patterns in these blood samples, the health status, or clinical outcome is statistically significant. In many embodiments, the health status is measured by a comparison of the patient's expression profile or absolute marker(s) expression level(s) as compared to an absolute level of a marker in one or more healthy volunteers or an averaged or correlated expression profile from two or more healthy volunteers. In many embodiments, clinical outcome is measured by patients' response to a therapeutic treatment, and all of the blood samples used in outcome prediction are isolated prior to the therapeutic treatment. The expression profiles derived from the blood samples are therefore baseline expression profiles for the therapeutic treatment.


Construction of the expression profiles typically involves detection of the expression level of each marker used in the health status determination or outcome prediction. Numerous methods are available for this purpose. For instance, the expression level of a gene can be determined by measuring the level of the RNA transcript(s) of the gene(s). Suitable methods include, but are not limited to, quantitative RT-PCR, Northern blot, in situ hybridization, slot-blotting, nuclease protection assay, and nucleic acid array (including bead array). The expression level of a gene can also be determined by measuring the level of the polypeptide(s) encoded by the gene. Suitable methods include, but are not limited to, immunoassays (such as ELISA, RIA, FACS, or Western blot), 2-dimensional gel electrophoresis, mass spectrometry, or protein arrays.


In one aspect, the expression level of a marker is determined by measuring the RNA transcript level of the gene in a tissue sample, such as a peripheral blood sample. RNA can be isolated from the peripheral blood or tissue sample using a variety of methods. Exemplary methods include guanidine isothiocyanate/acidic phenol method, the TRIZOL® Reagent (Invitrogen), or the Micro-FastTrack™ 2.0 or FastTrack™ 2.0 mRNA Isolation Kits (Invitrogen). The isolated RNA can be either total RNA or mRNA. The isolated RNA can be amplified to cDNA or cRNA before subsequent detection or quantitation. The amplification can be either specific or non-specific. Suitable amplification methods include, but are not limited to, reverse transcriptase PCR (RT-PCR), isothermal amplification, ligase chain reaction, and Qbeta replicase.


In one embodiment, the amplification protocol employs reverse transcriptase. The isolated mRNA can be reverse transcribed into cDNA using a reverse transcriptase, and a primer consisting of oligo (dT) and a sequence encoding the phage T7 promoter. The cDNA thus produced is single-stranded. The second strand of the cDNA is synthesized using a DNA polymerase, combined with an RNase to break up the DNA/RNA hybrid. After synthesis of the double-stranded cDNA, T7 RNA polymerase is added, and cRNA is then transcribed from the second strand of the doubled-stranded cDNA. The amplified cDNA or cRNA can be detected or quantitated by hybridization to labeled probes. The cDNA or cRNA can also be labeled during the amplification process and then detected or quantitated.


In another embodiment, quantitative RT-PCR (such as TaqMan, ABI) is used for detecting or comparing the RNA transcript level of a marker of interest. Quantitative RT-PCR involves reverse transcription (RT) of RNA to cDNA followed by relative quantitative PCR (RT-PCR).


In PCR, the number of molecules of the amplified target DNA increases by a factor approaching two with every cycle of the reaction until some reagent becomes limiting. Thereafter, the rate of amplification becomes increasingly diminished until there is not an increase in the amplified target between cycles. If a graph is plotted on which the cycle number is on the X axis and the log of the concentration of the amplified target DNA is on the Y axis, a curved line of characteristic shape can be formed by connecting the plotted points. Beginning with the first cycle, the slope of the line is positive and constant. This is said to be the linear portion of the curve. After some reagent becomes limiting, the slope of the line begins to decrease and eventually becomes zero. At this point the concentration of the amplified target DNA becomes asymptotic to some fixed value. This is said to be the plateau portion of the curve.


The concentration of the target DNA in the linear portion of the PCR is proportional to the starting concentration of the target before the PCR is begun. By determining the concentration of the PCR products of the target DNA in PCR reactions that have completed the same number of cycles and are in their linear ranges, it is possible to determine the relative concentrations of the specific target sequence in the original DNA mixture. If the DNA mixtures are cDNAs synthesized from RNAs isolated from different tissues or cells, the relative abundances of the specific mRNA from which the target sequence was derived may be determined for the respective tissues or cells. This direct proportionality between the concentration of the PCR products and the relative mRNA abundances is true in the linear range portion of the PCR reaction.


The final concentration of the target DNA in the plateau portion of the curve is determined by the availability of reagents in the reaction mix and is independent of the original concentration of target DNA. Therefore, in one embodiment, the sampling and quantifying of the amplified PCR products are carried out when the PCR reactions are in the linear portion of their curves. In addition, relative concentrations of the amplifiable cDNAs can be normalized to some independent standard, which may be based on either internally existing RNA species or externally introduced RNA species. The abundance of a particular mRNA species may also be determined relative to the average abundance of all mRNA species in the sample.


In one embodiment, the PCR amplification utilizes internal PCR standards that are approximately as abundant as the target. This strategy is effective if the products of the PCR amplifications are sampled during their linear phases. If the products are sampled when the reactions are approaching the plateau phase, then the less abundant product may become relatively over-represented. Comparisons of relative abundances made for many different RNA samples, such as is the case when examining RNA samples for differential expression, may become distorted in such a way as to make differences in relative abundances of RNAs appear less than they actually are. This can be improved if the internal standard is much more abundant than the target. If the internal standard is more abundant than the target, then direct linear comparisons may be made between RNA samples.


A problem inherent in clinical samples is that they are of variable quantity or quality. This problem can be overcome if the RT-PCR is performed as a relative quantitative RT-PCR with an internal standard in which the internal standard is an amplifiable cDNA fragment that is larger than the target cDNA fragment and in which the abundance of the mRNA encoding the internal standard is roughly 5-100 fold higher than the mRNA encoding the target. This assay measures relative abundance, not absolute abundance of the respective mRNA species.


In another embodiment, the relative quantitative RT-PCR uses an external standard protocol. Under this protocol, the PCR products are sampled in the linear portion of their amplification curves. The number of PCR cycles that are optimal for sampling can be empirically determined for each target cDNA fragment. In addition, the reverse transcriptase products of each RNA population isolated from the various samples can be normalized for equal concentrations of amplifiable cDNAs. While empirical determination of the linear range of the amplification curve and normalization of cDNA preparations are tedious and time-consuming processes, the resulting RT-PCR assays may, in certain cases, be superior to those derived from a relative quantitative RT-PCR with an internal standard.


In yet another embodiment, nucleic acid arrays (including bead arrays) are used for detecting or comparing the expression profiles of a marker of interest. The nucleic acid arrays can be commercial oligonucleotide or cDNA arrays. They can also be custom arrays comprising concentrated probes for the markers of the present invention. In many examples, at least 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, or more of the total probes on a custom array of the present invention are probes for asthma markers. These probes can hybridize under stringent or nucleic acid array hybridization conditions to the RNA transcripts, or the complements thereof, of the corresponding markers.


As used herein, “stringent conditions” are at least as stringent as, for example, conditions G-L shown in Table 5. “Highly stringent conditions” are at least as stringent as conditions A-F shown in Table 5. Hybridization is carried out under the hybridization conditions (Hybridization Temperature and Buffer) for about four hours, followed by two 20-minute washes under the corresponding wash conditions (Wash Temp and Buffer).


In one example, a nucleic acid array of the present invention includes at least 2, 5, 10, or more different probes. Each of these probes is capable of hybridizing under stringent or nucleic acid array hybridization conditions to a different respective marker of the present invention. Multiple probes for the same marker can be used on the same nucleic acid array. The probe density on the array can be in any range.


The probes for a marker of the present invention can be a nucleic acid probe, such as, DNA, RNA, PNA, or a modified form thereof. The nucleotide residues in each probe can be either naturally occurring residues (such as deoxyadenylate, deoxycytidylate, deoxyguanylate, deoxythymidylate, adenylate, cytidylate, guanylate, and uridylate), or synthetically produced analogs that are capable of forming desired base-pair relationships. Examples of these analogs include, but are not limited to, aza and deaza pyrimidine analogs, aza and deaza purine analogs, and other heterocyclic base analogs, wherein one or more of the carbon and nitrogen atoms of the purine and pyrimidine rings are substituted by heteroatoms, such as oxygen, sulfur, selenium, and phosphorus. Similarly, the polynucleotide backbones of the probes can be either naturally occurring (such as through 5′ to 3′ linkage), or modified. For instance, the nucleotide units can be connected via non-typical linkage, such as 5′ to 2′ linkage, so long as the linkage does not interfere with hybridization. For another instance, peptide nucleic acids, in which the constitute bases are joined by peptide bonds rather than phosphodiester linkages, can be used.


The probes for the markers can be stably attached to discrete regions on a nucleic acid array. By “stably attached,” it means that a probe maintains its position relative to the attached discrete region during hybridization and signal detection. The position of each discrete region on the nucleic acid array can be either known or determinable. All of the methods known in the art can be used to make the nucleic acid arrays of the present invention.


In another embodiment, nuclease protection assays are used to quantitate RNA transcript levels in peripheral blood samples. There are many different versions of nuclease protection assays. The common characteristic of these nuclease protection assays is that they involve hybridization of an antisense nucleic acid with the RNA to be quantified. The resulting hybrid double-stranded molecule is then digested with a nuclease that digests single-stranded nucleic acids more efficiently than double-stranded molecules. The amount of antisense nucleic acid that survives digestion is a measure of the amount of the target RNA species to be quantified. Examples of suitable nuclease protection assays include the RNase protection assay provided by Ambion, Inc. (Austin, Tex.).


Hybridization probes or amplification primers for the markers of the present invention can be prepared by using any method known in the art.


In one embodiment, the probes/primers for a marker significantly diverge from the sequences of other markers. This can be achieved by checking potential probe/primer sequences against a human genome sequence database, such as the Entrez database at the NCBI. One algorithm suitable for this purpose is the BLAST algorithm. This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold. The initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are then extended in both directions along each sequence to increase the cumulative alignment score. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mismatching residues; always <0). The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. These parameters can be adjusted for different purposes, as appreciated by those skilled in the art.


In another embodiment, the probes for markers can be polypeptide in nature, such as, antibody probes. The expression levels of the markers of the present invention are thus determined by measuring the levels of polypeptides encoded by the markers. Methods suitable for this purpose include, but are not limited to, immunoassays such as ELISA, RIA, FACS, dot blot, Western Blot, immunohistochemistry, and antibody-based radio-imaging. In addition, high-throughput protein sequencing, 2-dimensional SDS-polyacrylamide gel electrophoresis, mass spectrometry, or protein arrays can be used.


In one embodiment, ELISAs are used for detecting the levels of the target proteins. In an exemplifying ELISA, antibodies capable of binding to the target proteins are immobilized onto selected surfaces exhibiting protein affinity, such as wells in a polystyrene or polyvinylchloride microtiter plate. Samples to be tested are then added to the wells. After binding and washing to remove non-specifically bound immunocomplexes, the bound antigen(s) can be detected. Detection can be achieved by the addition of a second antibody which is specific for the target proteins and is linked to a detectable label. Detection can also be achieved by the addition of a second antibody, followed by the addition of a third antibody that has binding affinity for the second antibody, with the third antibody being linked to a detectable label. Before being added to the microtiter plate, cells in the samples can be lysed or extracted to separate the target proteins from potentially interfering substances.


In another exemplifying ELISA, the samples suspected of containing the target proteins are immobilized onto the well surface and then contacted with the antibodies. After binding and washing to remove non-specifically bound immunocomplexes, the bound antigen is detected. Where the initial antibodies are linked to a detectable label, the immunocomplexes can be detected directly. The immunocomplexes can also be detected using a second antibody that has binding affinity for the first antibody, with the second antibody being linked to a detectable label.


Another exemplary ELISA involves the use of antibody competition in the detection. In this ELISA, the target proteins are immobilized on the well surface. The labeled antibodies are added to the well, allowed to bind to the target proteins, and detected by means of their labels. The amount of the target proteins in an unknown sample is then determined by mixing the sample with the labeled antibodies before or during incubation with coated wells. The presence of the target proteins in the unknown sample acts to reduce the amount of antibody available for binding to the well and thus reduces the ultimate signal.


Different ELISA formats can have certain features in common, such as coating, incubating or binding, washing to remove non-specifically bound species, and detecting the bound immunocomplexes. For instance, in coating a plate with either antigen or antibody, the wells of the plate can be incubated with a solution of the antigen or antibody, either overnight or for a specified period of hours. The wells of the plate are then washed to remove incompletely adsorbed material. Any remaining available surfaces of the wells are then “coated” with a nonspecific protein that is antigenically neutral with regard to the test samples. Examples of these nonspecific proteins include bovine serum albumin (BSA), casein and solutions of milk powder. The coating allows for blocking of nonspecific adsorption sites on the immobilizing surface and thus reduces the background caused by nonspecific binding of antisera onto the surface.


In ELISAs, a secondary or tertiary detection means can be used. After binding of a protein or antibody to the well, coating with a non-reactive material to reduce background, and washing to remove unbound material, the immobilizing surface is contacted with the control or clinical or biological sample to be tested under conditions effective to allow immunocomplex (antigen/antibody) formation. These conditions may include, for example, diluting the antigens and antibodies with solutions such as BSA, bovine gamma globulin (BGG) and phosphate buffered saline (PBS)/Tween and incubating the antibodies and antigens at room temperature for about 1 to 4 hours or at 4° C. overnight. Detection of the immunocomplex is facilitated by using a labeled secondary binding ligand or antibody, or a secondary binding ligand or antibody in conjunction with a labeled tertiary antibody or third binding ligand.


Following all incubation steps in an ELISA, the contacted surface can be washed so as to remove non-complexed material. For instance, the surface may be washed with a solution such as PBS/Tween, or borate buffer. Following the formation of specific immunocomplexes between the test sample and the originally bound material, and subsequent washing, the occurrence of the amount of immunocomplexes can be determined.


To provide a detecting means, the second or third antibody can have an associated label to allow detection. In one embodiment, the label is an enzyme that generates color development upon incubating with an appropriate chromogenic substrate. Thus, for example, one may contact and incubate the first or second immunocomplex with a urease, glucose oxidase, alkaline phosphatase or hydrogen peroxidase-conjugated antibody for a period of time and under conditions that favor the development of further immunocomplex formation (e.g., incubation for 2 hours at room temperature in a PBS-containing solution such as PBS-Tween).


After incubation with the labeled antibody, and subsequent washing to remove unbound material, the amount of label can be quantified, e.g., by incubation with a chromogenic substrate such as urea and bromocresol purple or 2,2′-azido-di-(3-ethyl)-benzthiazoline-6-sulfonic acid (ABTS) and H2O2, in the case of peroxidase as the enzyme label. Quantitation can be achieved by measuring the degree of color generation, e.g., using a spectrophotometer.


Another method suitable for detecting polypeptide levels is RIA (radioimmunoassay). An exemplary RIA is based on the competition between radiolabeled-polypeptides and unlabeled polypeptides for binding to a limited quantity of antibodies. Suitable radiolabels include, but are not limited to, I125. In one embodiment, a fixed concentration of I125-labeled polypeptide is incubated with a series of dilution of an antibody specific to the polypeptide. When the unlabeled polypeptide is added to the system, the amount of the I125-polypeptide that binds to the antibody is decreased. A standard curve can therefore be constructed to represent the amount of antibody-bound I125-polypeptide as a function of the concentration of the unlabeled polypeptide. From this standard curve, the concentration of the polypeptide in unknown samples can be determined. Protocols for conducting RIA are well known in the art.


Suitable antibodies for the present invention include, but are not limited to, polyclonal antibodies, monoclonal antibodies, chimeric antibodies, humanized antibodies, single chain antibodies, Fab fragments, or fragments produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit dimer formation) can also be used. Methods for preparing these antibodies are well known in the art. In one embodiment, the antibodies of the present invention can bind to the corresponding marker gene products or other desired antigens with binding affinities of at least 104 M−1, 105 M−1, 106 M−1, 107 M−1, or more.


The antibodies of the present invention can be labeled with one or more detectable moieties to allow for detection of antibody-antigen complexes. The detectable moieties can include compositions detectable by spectroscopic, enzymatic, photochemical, biochemical, bioelectronic, immunochemical, electrical, optical or chemical means. The detectable moieties include, but are not limited to, radioisotopes, chemiluminescent compounds, labeled binding proteins, heavy metal atoms, spectroscopic markers such as fluorescent markers and dyes, magnetic labels, linked enzymes, mass spectrometry tags, spin labels, electron transfer donors and acceptors, and the like.


The antibodies of the present invention can be used as probes to construct protein arrays for the detection of expression profiles of the markers. Methods for making protein arrays or biochips are well known in the art. In many embodiments, a substantial portion of probes on a protein array of the present invention are antibodies specific for the marker products. For instance, at least 10%, 20%, 30%, 40%, 50%, or more probes on the protein array can be antibodies specific for the marker gene products.


In yet another aspect, the expression levels of the markers are determined by measuring the biological functions or activities of these genes. Where a biological function or activity of a gene is known, suitable in vitro or in vivo assays can be developed to evaluate the function or activity. These assays can be subsequently used to assess the level of expression of the marker.


After the expression level of each marker is determined, numerous approaches can be employed to compare expression profiles. Comparison of the expression profile of a patient of interest to the reference expression profile(s) can be conducted manually or electronically. In one example, comparison is carried out by comparing each component in one expression profile to the corresponding component in a reference expression profile. The component can be the expression level of a marker, a ratio between the expression levels of two markers, or another measure capable of representing gene expression patterns. The expression level of a gene can have an absolute or a normalized or relative value. The difference between two corresponding components can be assessed by fold changes, absolute differences, or other suitable means.


Comparison of the expression profile of a patient of interest to the reference expression profile(s) can also be conducted using pattern recognition or comparison programs, such as the k-nearest-neighbors algorithm as described in Armstrong (Armstrong (2002) Nature Genetics, 30:4147), or the weighted voting algorithm as described below. In addition, the serial analysis of gene expression (SAGE) technology, the GEMTOOLS gene expression analysis program (Incyte Pharmaceuticals), the GeneCalling and Quantitative Expression Analysis technology (Curagen), and other suitable methods, programs or systems can be used to compare expression profiles.


Multiple markers can be used in the comparison of expression profiles. For instance, 2, 4, 6, 8, 10, 12, 14, or more markers can be used. In addition, the marker(s) used in the comparison can be selected to have relatively small p-values (e.g., two-sided p-values). In many examples, the p-values indicate the statistical significance of the difference between gene expression levels in different classes of patients. In many other examples, the p-values suggest the statistical significance of the correlation between gene expression patterns and clinical outcome. In one embodiment, the markers used in the comparison have p-values of no greater than 0.05, 0.01, 0.001, 0.0005, 0.0001, or less. Markers with p-values of greater than 0.05 can also be used. These genes may be identified, for instance, by using a relatively small number of blood samples.


Similarity or difference between the expression profile of a patient of interest and a reference expression profile is indicative of the class membership of the patient of interest. Similarity or difference can be determined by any suitable means. The comparison can be qualitative, quantitative, or both.


In one example, a component in a reference profile is a mean value, and the corresponding component in the expression profile of the patient of interest falls within the standard deviation of the mean value. In such a case, the expression profile of the patient of interest may be considered similar to the reference profile with respect to that particular component. Other criteria, such as a multiple or fraction of the standard deviation or a certain degree of percentage increase or decrease, can be used to measure similarity.


In another example, at least 50% (e.g., at least 60%, 70%, 80%, 90%, or more) of the components in the expression profile of the patient of interest are considered similar to the corresponding components in a reference profile. Under these circumstances, the expression profile of the patient of interest may be considered similar to the reference profile. Different components in the expression profile may have different weights for the comparison. In some cases, lower percentage thresholds (e.g., less than 50% of the total components) are used to determine similarity.


The marker(s) and the similarity criteria can be selected such that the accuracy of the diagnostic determination or the outcome prediction (the ratio of correct calls over the total of correct and incorrect calls) is relatively high. For instance, the accuracy of the determination or prediction can be at least 50%, 60%, 70%, 80%, 90%, or more.


The effectiveness of treatment prediction can also be assessed by sensitivity and specificity. The markers and the comparison criteria can be selected such that both the sensitivity and specificity of outcome prediction are relatively high. For instance, the sensitivity and specificity can be at least 50%, 60%, 70%, 80%, 90%, 95%, or more. As used herein, “sensitivity” refers to the ratio of correct positive calls over the total of true positive calls plus false negative calls, and “specificity” refers to the ratio of correct negative calls over the total of true negative calls plus false positive calls.


Moreover, peripheral blood expression profile-based health status determination or outcome prediction can be combined with other clinical evidence to aid in treatment selection, improve the effectiveness of treatment, or accuracy of outcome prediction.


In many embodiments, the expression profile of a patient of interest is compared to at least two reference expression profiles. Each reference expression profile can include an average expression profile, or a set of individual expression profiles each of which represents the gene expression pattern in a particular asthma patient or disease-free human. Suitable methods for comparing one expression profile to two or more reference expression profiles include, but are not limited to, the weighted voting algorithm or the k-nearest-neighbors algorithm. Softwares capable of performing these algorithms include, but are not limited to, GeneCluster 2 software. GeneCluster2 software is available from MIT Center for Genome Research at Whitehead Institute. Both the weighted voting and k-nearest-neighbors algorithms employ gene classifiers that can effectively assign a patient of interest to a health status, outcome or effectiveness of treatment class. By “effectively,” it means that the class assignment is statistically significant. In one example, the effectiveness of class assignment is evaluated by leave-one-out cross validation or k-fold cross validation. The prediction accuracy under these cross validation methods can be, for instance, at least 50%, 60%, 70%, 80%, 90%, 95%, or more. The prediction sensitivity or specificity under these cross validation methods can also be at least 50%, 60%, 70%, 80%, 90%, 95%, or more. Markers or class predictors with low assignment sensitivity/specificity or low cross validation accuracy, such as less than 50%, can also be used in the present invention.


Under one version of the weighted voting algorithm, each gene in a class predictor casts a weighted vote for one of the two classes (class 0 and class 1). The vote of gene “g” can be defined as vg=ag (xg−bg), wherein ag equals to P(g,c) and reflects the correlation between the expression level of gene “g” and the class distinction between the two classes, bg is calculated as bg=[x0(g)+x1(g)]/2 and represents the average of the mean logs of the expression levels of gene “g” in class 0 and class 1, and xg is the normalized log of the expression level of gene “g” in the sample of interest. A positive vg indicates a vote for class 0, and a negative vg indicates a vote for class 1. V0 denotes the sum of all positive votes, and V1 denotes the absolute value of the sum of all negative votes. A prediction strength PS is defined as PS=(V0−V1)/(V0+V1). Thus, the prediction strength varies between −1 and 1 and can indicate the support for one class (e.g., positive PS) or the other (e.g., negative PS). A prediction strength near “0” suggests narrow margin of victory, and a prediction strength close to “1” or “−1” indicates wide margin of victory. See Slonim (2000) Procs. of the Fourth Annual International Conference on Computational Molecular Biology, Tokyo, Japan, April 8-11, p 263-272; and Golub (1999) Science, 286: 531-537.


Suitable prediction strength (PS) thresholds can be assessed by plotting the cumulative cross-validation error rate against the prediction strength. In one embodiment, a positive predication is made if the absolute value of PS for the sample of interest is no less than 0.3. Other PS thresholds, such as no less than 0.1, 0.2, 0.4 or 0.5, can also be selected for class prediction. In many embodiments, a threshold is selected such that the accuracy of prediction is optimized and the incidence of both false positive and false negative results is minimized.


Any class predictor constructed according to the present invention can be used for the class assignment of an asthma or IL-13-mediated condition patient of interest. In many examples, a class predictor employed in the present invention includes n markers identified by the neighborhood analysis, where n is an integer greater than 1.


The expression profile of a patient of interest can also be compared to two or more reference expression profiles by other means. For instance, the reference expression profiles can include an average peripheral blood expression profile for each class of patients. The fact that the expression profile of a patient of interest is more similar to one reference profile than to another suggests that the patient of interest is more likely to have the clinical outcome associated with the former reference profile than that associated with the latter reference profile.


In another embodiment, average expression profiles can be compared to each other as well as to a reference expression profile. In one embodiment, an expression profile of a patient is compared to a reference expression profile derived from a healthy volunteer or healthy volunteers, and is also compared to an expression profile of an asthma patient or patients to make a diagnosis. In another embodiment, an expression profile of an asthma patient before treatment is compared to a reference expression profile, and is also compared to an expression profile of the same asthma or IL-13-mediated condition patient after treatment to determine the effectiveness of the treatment. In another embodiment, the expression profiles of the patient both before and after treatment are compared to a reference expression profile, as well as to each other.


In one particular embodiment, the present invention features diagnosis of a patient of interest. Patients can be divided into two classes based on their over- and/or under-expression of asthma or IL-13-responsive markers of interest. One class of patients is diagnosed as having asthma or an IL-13-mediated condition and the other does not (healthy volunteers). Asthma or IL-13 responsive markers that are correlated with a class distinction between those two classes of patients can be identified and then used to assign the patient of interest to one of these two health status classes, thus rendering a diagnosis. Examples of asthma and IL-13 responsive markers suitable for this purpose are depicted in Table 1a and b. In some embodiments, the markers used may be selected from the markers in Table 1b wherein “yes” is indicated in Column C.


In one particular embodiment, the present invention features prediction of clinical outcome or prognosis of an asthma or IL-13-mediated condition patient of interest. Asthma or IL-13-mediated condition patients can be divided into at least two classes based on their responses to a specified treatment regimen. One class of patients (responders) has complete relief of symptoms in response to the treatment, and the other class of patients (non-responders) has neither complete relief from the symptoms nor partial relief in response to the treatment. Asthma or IL-13 responsive markers that are correlated with a class distinction between those two classes of patients can be identified and then used to assign the patient of interest to one of these two outcome classes. Examples of asthma and IL-13 responsive markers suitable for this purpose are depicted in Table 1a and b. In some embodiments, the markers used may be selected from the markers in Table 1b wherein “yes” is indicated in Column C.


The present invention also provides for a method for selecting a treatment or treatment regime involving the use of one or more of the markers of the invention in the diagnosis of the patient as previously described. In a particular embodiment, the expression level of one or more markers of the present invention can be detected and compared to a reference expression level with the subsequent diagnosis of the patient as having asthma or an IL-13-mediated condition should the comparison indicate as such. If the patient is diagnosed as having asthma or an IL-13-mediated condition, treatments or treatment regimes known in the art may be applied in conjunction with this method. Diagnosis of the patient may be determined using any and all of the methods described relating to comparative and statistical methods, techniques, and analyses of marker expression levels, as well as any and all such comparative and statistical methods, techniques, and analyses known to, and commonly used by, one skilled in the art of pharmacogenomics.


In one example, the treatment or treatment regime includes the administration of at least one therapeutic selected from the group including, but not limited to, an IL-13 antagonist, an IL-13 antibody, an anti-histamine, a steroid, an immunomodulator, an IgE downregulator, an immunosuppressant, a bronchodilator/beta-2 agonist, an adenosine A2a receptor agonist, a leukotriene antagonist, a thromboxane A2 synthesis inhibitor, a 5-lipoxygenase inhibitor, an anti-cholinergic, a LTB-4 antagonist, a K+ channel opener, a VLA-4 antagonist, a neurokine antagonist, theophylline, a thromboxane A2 receptor antagonist, a beta-2 adrenoceptor agonist, a soluble interleukin receptor, a 5-lipoxygenase activating protein inhibitor, an arachidonic acid antagonist, an anti-inflammatory, a membrane channel inhibitor, an anti-interleukin antibody, a PDE-4 inhibitor, and a protease inhibitor. Treatments or treatment regimes may also include, but are not limited to, drug therapy, including any and all treatments/therapeutics exemplified in Tables 3 and 4, gene therapy, immunotherapy, radiation therapy, biological therapy, and surgery, as well as any and all other therapeutic methods and treatments known to, and commonly used by, the skilled artisan.


Markers or class predictors capable of distinguishing three or more outcome classes can also be employed in the present invention. These markers can be identified using multi-class correlation metrics. Suitable programs for carrying out multi-class correlation analysis include, but are not limited to, GeneCluster 2 software (MIT Center for Genome Research at Whitehead Institute, Cambridge, Mass.). Under the analysis, patients having asthma or an IL-13-mediated condition are divided into at least three classes, and each class of patients has a different respective clinical outcome. The markers identified under multi-class correlation analysis are differentially expressed in one embodiment in PBMCs of one class of patients relative to PBMCs of other classes of patients. In one embodiment, the identified markers are correlated with a class distinction at above the 1%, 5%, 10%, 25%, or 50% significance level under a permutation test. The class distinction in this embodiment represents an idealized expression pattern of the identified genes in peripheral blood samples of patients who have different clinical outcomes.


Gene Expression Analysis

The relationship between tissue gene expression profiles, especially peripheral blood gene expression profiles, and diagnosis, prognosis, treatment selection, or treatment effectiveness can be evaluated by using global gene expression analyses. Methods suitable for this purpose include, but are not limited to, nucleic acid arrays (such as cDNA or oligonucleotide arrays), 2-dimensional SDS-polyacrylamide gel electrophoresis/mass spectrometry, and other high throughput nucleotide or polypeptide detection techniques.


Nucleic acid arrays allow for quantitative detection of the expression of a large number of genes at one time. Examples of nucleic acid arrays include, but are not limited to, Genechip® microarrays from Affymetrix (Santa Clara, Calif.), cDNA microarrays from Agilent Technologies (Palo Alto, Calif.), and bead arrays described in U.S. Pat. Nos. 6,228,220, and 6,391,562.


The polynucleotides to be hybridized to a nucleic acid array can be labeled with one or more labeling moieties to allow for detection of hybridized polynucleotide complexes. The labeling moieties can include compositions that are detectable by spectroscopic, photochemical, biochemical, bioelectronic, immunochemical, electrical, optical, or chemical means. Exemplary labeling moieties include radioisotopes, chemiluminescent compounds, labeled binding proteins, heavy metal atoms, spectroscopic markers such as fluorescent markers and dyes, magnetic labels, linked enzymes, mass spectrometry tags, spin labels, electron transfer donors, and acceptors, and the like. Unlabeled polynucleotides can also be employed. The polynucleotides can be DNA, RNA, or a modified form thereof.


Hybridization reactions can be performed in absolute or differential hybridization formats. In the absolute hybridization format, polynucleotides derived from one sample, such as PBMCs from a patient in a selected health status or outcome class, are hybridized to the probes on a nucleic acid array. Signals detected after the formation of hybridization complexes correlate to the polynucleotide levels in the sample. In the differential hybridization format, polynucleotides derived from two biological samples, such as one from a patient in a first status or outcome class and the other from a patient in a second status or outcome class, are labeled with different labeling moieties. A mixture of these differently labeled polynucleotides is added to a nucleic acid array. The nucleic acid array is then examined under conditions in which the emissions from the two different labels are individually detectable. In one embodiment, the fluorophores Cy3 and Cy5 (Amersham Pharmacia Biotech, Piscataway, N.J.) are used as the labeling moieties for the differential hybridization format.


Signals gathered from a nucleic acid array can be analyzed using commercially available software, such as those provided by Affymetrix or Agilent Technologies. Controls, such as for scan sensitivity, probe labeling, and cDNA/cRNA quantitation, can be included in the hybridization experiments. In many embodiments, the nucleic acid array expression signals are scaled or normalized before being subject to further analysis. For instance, the expression signals for each gene can be normalized to take into account variations in hybridization intensities when more than one array is used under similar test conditions. Signals for individual polynucleotide complex hybridization can also be normalized using the intensities derived from internal normalization controls contained on each array. In addition, genes with relatively consistent expression levels across the samples can be used to normalize the expression levels of other genes. In one embodiment, the expression levels of genes are normalized across the samples such that the mean is zero and the standard deviation is one. In another embodiment, the expression data detected by nucleic acid arrays are subject to a variation filter that excludes genes showing minimal or insignificant variation across all samples.


Correlation Analysis

The gene expression data collected from nucleic acid arrays can be correlated with diagnosis, clinical outcome, treatment selection, or treatment effectiveness using a variety of methods. Methods suitable for this purpose include, but are not limited to, statistical methods (such as Spearman's rank correlation, Cox proportional hazard regression model, ANOVA/t test, or other rank tests or survival models) and class-based correlation metrics (such as nearest-neighbor analysis).


In one embodiment, patients with asthma are divided into at least two classes based on their responses to a therapeutic treatment. In another embodiment, a patient of interest can be determined to belong to one of two classes based on the patient's health status. The correlation between peripheral blood gene expression (e.g., PBMC gene expression) and the health status, patient outcome or treatment effectiveness classes is then analyzed by a supervised cluster or learning algorithm. Supervised algorithms suitable for this purpose include, but are not limited to, nearest-neighbor analysis, support vector machines, the SAM method, artificial neural networks, and SPLASH. Under a supervised analysis, health status or clinical outcome of, or treatment effectiveness for, each patient is either known or determinable. Genes that are differentially expressed in peripheral blood cells (e.g., PBMCs) of one class of patients relative to another class of patients can be identified. These genes can be used as surrogate markers for predicting/determining health status or clinical outcome of, or treatment effectiveness for, an asthma or IL-13-mediated condition patient of interest. Many of the genes thus identified are correlated with a class distinction that represents an idealized expression pattern of these genes in patients of different health status, outcome, or treatment effectiveness classes.


In another embodiment, patients with asthma or an IL-13-mediated condition can be divided into at least two classes based on their peripheral blood gene expression profiles. Methods suitable for this purpose include unsupervised clustering algorithms, such as self-organized maps (SOMs), k-means, principal component analysis, and hierarchical clustering. A substantial number (e.g., at least 50%, 60%, 70%, 80%, 90%, or more) of patients in one class may have a first health status, clinical outcome, or treatment effectiveness profile, and a substantial number of patient in another class my have a second health status, clinical outcome, or treatment effectiveness profile. Genes that are differentially expressed in the peripheral blood cells of one class of patients relative to another class of patients can be identified. These genes can also be used as markers for predicting/determining health status, clinical outcome of, or treatment effectiveness for, an asthma or IL-13-mediated condition patient of interest.


In yet another embodiment, patients with asthma or an IL-13-mediated condition can be divided into three or more classes based on their clinical outcomes or peripheral blood gene expression profiles. Multi-class correlation metrics can be employed to identify genes that are differentially expressed in one class of patients relative to another class. Exemplary multi-class correlation metrics include, but are not limited to, those employed by GeneCluster 2 software provided by MIT Center for Genome Research at Whitehead Institute (Cambridge, Mass.).


In a further embodiment, nearest-neighbor analysis (also known as neighborhood analysis) is used to correlate peripheral blood gene expression profiles with health status, clinical outcome of, or treatment effectiveness for, asthma or IL-13-mediated condition patients. The algorithm for neighborhood analysis is described in Slonim (2000) Procs. of the Fourth Annual International Conference on Computational Molecular Biology, Tokyo, Japan, April 8-11, p 263-272; Golub (1999) Science, 286: 531-537; and U.S. Pat. No. 6,647,341. Under one version of the neighborhood analysis, the expression profile of each gene can be represented by an expression vector g=(e1, e2, e3, . . . , en), where ei corresponds to the expression level of gene “g” in the ith sample. A class distinction can be represented by an idealized expression pattern c=(c1, c2, c3, . . . , cn), where ci=1 or −1, depending on whether the ith sample is isolated from class 0 or class 1. Class 0 may include patients having a first health status, clinical outcome, or treatment effectiveness profile, and class 1 includes patients having a second health status, clinical outcome, or treatment effectiveness profile. Other forms of class distinction can also be employed. Typically, a class distinction represents an idealized expression pattern, where the expression level of a gene is uniformly high for samples in one class and uniformly low for samples in the other class.


The correlation between “g” and the class distinction can be measured by a signal-to-noise score:






P(g,c)=[□1(g)−□2(g)]/[□1(g)+□2(g)]


where □1(g) and □2(g) represent the means of the log-transformed expression levels of gene “g” in class 0 and class 1, respectively, and □1(g) and □2(g) represent the standard deviation of the log-transformed expression levels of gene “g” in class 0 and class 1, respectively. A higher absolute value of a signal-to-noise score indicates that the gene is more highly expressed in one class than in the other. In one example, the samples used to derive the signal-to-noise scores comprise enriched or purified PBMCs and, therefore, the signal-to-noise score P(g,c) represents the correlation between the class distinction and the expression level of gene “g” in PBMCs.


The correlation between gene “g” and the class distinction can also be measured by other methods, such as by the Pearson correlation coefficient or the Euclidean distance, as appreciated by those skilled in the art.


The significance of the correlation between marker expression profiles and the class distinction is evaluated using a random permutation test. An unusually high density of genes within the neighborhoods of the class distinction, as compared to random patterns, suggests that many genes have expression patterns that are significantly correlated with the class distinction. The correlation between genes and the class distinction can be diagrammatically viewed through a neighborhood analysis plot, in which the y-axis represents the number of genes within various neighborhoods around the class distinction and the x-axis indicates the size of the neighborhood (i.e., P(g,c)). Curves showing different significance levels for the number of genes within corresponding neighborhoods of randomly permuted class distinctions can also be included in the plot.


In many embodiments, the markers employed in the present invention are above the median significance level in the neighborhood analysis plot. This means that the correlation measure P(g,c) for each marker is such that the number of genes within the neighborhood of the class distinction having the size of P(g,c) is greater than the number of genes within the corresponding neighborhoods of random permuted class distinctions at the median significance level. In many other embodiments, the markers employed in the present invention are above the 40%, 30%, 20%, 10%, 5%, 2%, or 1% significance level. As used herein, x % significance level means that x % of random neighborhoods contain as many genes as the real neighborhood around the class distinction.


In another aspect, the correlation between marker expression profiles and health status or clinical outcome can be evaluated by statistical methods. One exemplary statistical method employs Spearman's rank correlation coefficient, which has the formula of:






r
s
=SS
UV/(SSUUSSVV)1/2


where SSUV=ΣUiVi−[(ΣUi)(ΣVi)]/n, SSUU=ΣVi2−[(ΣVi)2]/n, and SSVV=ΣUi2−[(ΣUi)2]/n. Ui is the expression level ranking of a gene of interest, Vi is the ranking of the health status or clinical outcome, and n represents the number of patients. The shortcut formula for Spearman's rank correlation coefficient is rs=1−(6×Σdi2)/[n(n2−1)], where di=Ui−Vi. The Spearman's rank correlation is similar to the Pearson's correlation except that it is based on ranks and is thus more suitable for data that is not normally distributed. See, for example, Snedecor and Cochran, Statistical Methods, Eighth edition, Iowa State University Press, Ames, Iowa, 1989. The correlation coefficient is tested to assess whether it differs significantly from a value of 0 (i.e., no correlation).


The correlation coefficients for each marker identified by the Spearman's rank correlation can be either positive or negative, provided that the correlation is statistically significant. In many embodiments, the p-value for each marker thus identified is no more than 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, or less. In many other embodiments, the Spearman correlation coefficients of the markers thus identified have absolute values of at least 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, or more.


Another exemplary statistical method is Cox proportional hazard regression model, which has the formula of:





log hi(t)=α(t)+βjxij


wherein hi(t) is the hazard function that assesses the instantaneous risk of demise at time t, conditional on survival to that time, α(t) is the baseline hazard function, and xij is a covariate which may represent, for example, the expression level of marker j in a peripheral blood sample or other tissue sample. See Cox (1972) Journal of the Royal Statistical Society, Series B 34:187. Additional covariates, such as interactions between covariates, can also be included in Cox proportional hazard model. As used herein, the terms “demise” or “survival” are not limited to real death or survival. Instead, these terms should be interpreted broadly to cover any type of time-associated events. In many cases, the p-values for the correlation under Cox proportional hazard regression model are no more than 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, or less. The p-values for the markers identified under Cox proportional hazard regression model can be determined by the likelihood ratio test, Wald test, the Score test, or the log-rank test. In one embodiment, the hazard ratios for the markers thus identified are at least 1.5, 2, 3, 4, 5, or more. In another embodiment, the hazard ratios for the markers thus identified are no more than 0.67, 0.5., 0.33, 0.25., 0.2, or less.


Other rank tests, scores, measurements, or models can also be employed to identify markers whose expression profiles in peripheral blood samples, or other tissue samples, are correlated with clinical outcome of asthma or an IL-13-mediated condition. These tests, scores, measurements, or models can be either parametric or nonparametric, and the regression may be either linear or non-linear. Many statistical methods and correlation/regression models can be carried out using commercially available programs.


Class predictors can be constructed using the markers of the present invention. These class predictors can be used to assign an asthma or IL-13-mediated condition patient of interest to a health status, outcome, or treatment effectiveness class. In one embodiment, the markers employed in a class predictor are limited to those shown to be significantly correlated with a class distinction by the permutation test, such as those at or above the 1%, 2%, 5%, 10%, 20%, 30%, 40%, or 50% significance level. In another embodiment, the PBMC expression level of each marker in a class predictor is substantially higher or substantially lower in one class of patients than in another class of patients. In still another embodiment, the markers in a class predictor have top absolute values of P(g,c). In yet another embodiment, the p-value under a Student's t-test (e.g., two-tailed distribution, two sample unequal variance) for each marker in a class predictor is no more than 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, or less. For each marker, the p-value suggests the statistical significance of the difference observed between the average PBMC, or other tissue, expression profiles of the gene in one class of patients versus another class of patients. Lesser p-values indicate more statistical significance for the differences observed between the different classes of asthma or IL-13-mediated condition patients.


The SAM method can also be used to correlate peripheral blood gene expression profiles with different health status, outcome, or treatment effectiveness classes. The prediction analysis of microarrays (PAM) method can then be used to identify class predictors that can best characterize a predefined health status, outcome or treatment effectiveness class and predict the class membership of new samples. See Tibshirani (2002) Proc. Natl. Acad. Sci. U.S.A., 99: 6567-6572.


In many embodiments, a class predictor of the present invention has high prediction accuracy under leave-one-out cross validation, 10-fold cross validation, or 4-fold cross validation. For instance, a class predictor of the present invention can have at least 50%, 60%, 70%, 80%, 90%, 95%, or 99% accuracy under leave-one-out cross validation, 10-fold cross validation, or 4-fold cross validation. In a typical k-fold cross validation, the data is divided into k subsets of approximately equal size. The model is trained k times, each time leaving out one of the subsets from training and using the omitted subset as the test sample to calculate the prediction error. If k equals the sample size, it becomes the leave-one-out cross validation.


Other class-based correlation metrics or statistical methods can also be used to identify markers whose expression profiles in peripheral blood samples, or other tissue samples, are correlated with health status or clinical outcome of asthma or IL-13-mediated condition patients. Many of these methods can be performed by using commercial or publicly accessible software packages.


Other methods capable of identifying asthma markers include, but are not limited to, RT-PCR, Northern blot, in situ hybridization, and immunoassays such as ELISA, RIA, or Western blot. These genes are differentially expressed in peripheral blood cells (e.g., PBMCs), or other tissues, of one class of patients relative to another class of patients. In many cases, the average marker expression level of each of these genes in one class of patients is statistically different from that in another class of patients. For instance, the p-value under an appropriate statistical significance test (e.g., Student's t-test) for the observed difference can be no more than 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, or less. In many other cases, each marker thus identified has at least 2-, 3-, 4-, 5-, 10-, or 20-fold difference in the average PBMC, or other tissue, expression level between one class of patients and another class of patients.


Asthma and IL-13-Mediated Condition Treatment

Any asthma treatment regime, or regime for treatment of an IL-13-mediated condition, and its effectiveness, can be analyzed according to the present invention. Examples of these treatments include, but are not limited to, drug therapy, gene therapy, radiation therapy, immunotherapy, biological therapy, surgery, or a combination thereof. Other conventional, non-conventional, novel, or experimental therapies, including treatments under clinical trials, can also be evaluated according to the present invention.


A variety of anti-asthma, anti-inflammatory, or anti-allergy agents can be used to treat asthma or an IL-13-mediated condition. An “asthma/allergy medicament” as used herein is a composition of matter which reduces the symptoms, inhibits the asthmatic or allergic reaction, or prevents the development of an allergic or asthmatic reaction. Various types of medicaments for the treatment of asthma and allergy are described in the Guidelines For The Diagnosis and Management of Asthma, Expert Panel Report 2, NIH Publication No. 97/4051, Jul. 19, 1997, the entire contents of which are incorporated herein by reference. The summary of the medicaments as described in the NIH publication is presented below. Examples of useful medicaments according to the present invention that are either on the market or in development are presented in Tables 3 and 4.


In most embodiments the asthma/allergy medicament is useful to some degree for treating both asthma and allergy, particularly IL-13-mediated conditions. Treatments for conditions mediated by IL-13 include, but are not limited to, IL-13 antagonists, soluble IL-13 receptor-Fc fusion proteins, IL-13 antibodies, and nucleic acids, either via antisense, RNA interference (RNAi) or gene therapeutic technologies. Asthma medicaments include, but are not limited, PDE-4 inhibitors, bronchodilator/beta-2 agonists, beta-2 adrenoreceptor ant/agonists, anticholinergics, steroids, K+ channel openers, VLA-4 antagonists, neurokin antagonists, thromboxane A2 synthesis inhibitors, xanthines, arachidonic acid antagonists, 5 lipoxygenase inhibitors, thromboxin A2 receptor antagonists, thromboxane A2 antagonists, inhibitor of 5-lipox activation proteins, protease inhibitors, and nucleic acids, either via antisense, RNA interference (RNAi) or gene therapeutic technologies.


Bronchodilator/beta-2 agonists are a class of compounds which cause bronchodilation or smooth muscle relaxation. Bronchodilator/beta-2 agonists include, but are not limited to, salmeterol, salbutamol, albuterol, terbutaline, D2522/formoterol, fenoterol, bitolterol, pirbuerol, methylxanthines and orciprenaline. Long-acting beta-2 agonists and bronchodilators are compounds which are used for long-term prevention of symptoms in addition to the anti-inflammatory therapies. They function by causing bronchodilation, or smooth muscle relaxation, following adenylate cyclase activation and increase in cyclic AMP producing functional antagonism of bronchoconstriction. These compounds also inhibit mast cell mediator release, decrease vascular permeability and increase mucociliary clearance. Long-acting beta-2 agonists include, but are not limited to, salmeterol and albuterol. These compounds are usually used in combination with corticosteroids and generally are not used without any inflammatory therapy. They have been associated with side effects such as tachycardia, skeletal muscle tremor, hypokalemia, and prolongation of QTc interval in overdose.


Methylxanthines, including for instance theophylline, have been used for long-term control and prevention of symptoms. These compounds cause bronchodilation resulting from phosphodiesterase inhibition and likely adenosine antagonism. It is also believed that these compounds may effect eosinophilic infiltration into bronchial mucosa and decrease T-lymphocyte numbers in the epithelium. Dose-related acute toxicities are a particular problem with these types of compounds. As a result, routine serum concentration should be monitored in order to account for the toxicity and narrow therapeutic range arising from individual differences in metabolic clearance. Side effects include tachycardia, nausea and vomiting, tachyarrhythmias, central nervous system stimulation, headache, seizures, hematemesis, hyperglycemia and hypokalemia. Short-acting beta-2 agonists/bronchodilators relax airway smooth muscle, causing the increase in air flow. These types of compounds are a preferred drug for the treatment of acute asthmatic systems. Previously, short-acting beta-2 agonists had been prescribed on a regularly-scheduled basis in order to improve overall asthma symptoms. Later reports, however, suggested that regular use of this class of drugs produced significant diminution in asthma control and pulmonary function (Sears (1990) Lancet, 336:1391-6). Other studies showed that regular use of some types of beta-2 agonists produced no harmful effects over a four-month period but also produced no demonstrable effects (Drazen (1996) N. Eng. J. Med., 335:841-7). As a result of these studies, the daily use of short-acting beta-2 agonists is not generally recommended. Short-acting beta-2 agonists include, but are not limited to, albuterol, bitolterol, pirbuterol, and terbutaline. Some of the adverse effects associated with the mastration of short-acting beta-2 agonists include tachycardia, skeletal muscle tremor, hypokalemia, increased lactic acid, headache, and hyperglycemia.


Other allergy medicaments are commonly used in the treatment of asthma. These include, but are not limited to, anti-histamines, steroids, and prostaglandin inducers. Anti-histamines are compounds which counteract histamine released by mast cells or basophils. Anti-histamines include, but are not limited to, loratidine, cetirizine, buclizine, ceterizine analogues, fexofenadine, terfenadine, desloratadine, norastemizole, epinastine, ebastine, astemizole, levocabastine, azelastine, tranilast, terfenadine, mizolastine, betatastine, CS 560, and HSR 609. Prostaglandins function by regulating smooth muscle relaxation. Prostaglandin inducers include, but are not limited to, S-575 1.


The steroids include, but are not limited to, beclomethasone, fluticasone, tramcinolone, budesonide, corticosteroids and budesonide. To date, the use of steroids in children has been limited by the observation that some steroid treatments have been reportedly associated with growth retardation.


Corticosteroids are used long-term to prevent development of the symptoms, and suppress, control, and reverse inflammation arising from an initiator. Some corticosteroids can be administered by inhalation and others are administered systemically. The corticosteroids that are inhaled have an anti-inflammatory function by blocking late-reaction allergen and reducing airway hyper-responsiveness. These drugs also inhibit cytokine production, adhesion protein activation, and inflammatory cell migration and activation.


Corticosteroids include, but are not limited to, beclomethasome dipropionate, budesonide, flunisolide, fluticaosone, propionate, and triamcinoone acetonide. Although dexamethasone is a corticosteroid having anti-inflammatory action, it is not regularly used for the treatment of asthma/allergy in an inhaled form because it is highly absorbed and it has long-term suppressive side effects at an effective dose. Dexamethasone, however, can be administered at a low dose to reduce the side effects. Some of the side effects associated with corticosteroid include cough, dysphonia, oral thrush (candidiasis), and in higher doses, systemic effects, such as adrenal suppression, osteoporosis, growth suppression, skin thinning and easy bruising. (Barnes (1993) Am. J. Respir. Crit. Care Med., 153:1739-48)


Systemic corticosteroids include, but are not limited to, methylprednisolone, prednisolone and prednisone. Corticosteroids are used generally for moderate to severe exacerbations to prevent the progression, reverse inflammation and speed recovery. These anti-inflammatory compounds include, but are not limited to, methylprednisolone, prednisolone, and prednisone. Corticosteroids are associated with reversible abnormalities in glucose metabolism, increased appetite, fluid retention, weight gain, mood alteration, hypertension, peptic ulcer, and rarely asceptic necrosis of femur. These compounds are useful for short-term (3-10 days) prevention of the inflammatory reaction in inadequately controlled persistent asthma. They also function in a long-term prevention of symptoms in severe persistent asthma to suppress and control and actually reverse inflammation. The side effects associated with systemic corticosteroids are even greater than those associated with inhaled corticosteroids. Side effects include, for instance, reversible abnormalities in glucose metabolism, increased appetite, fluid retention, weight gain, mood alteration, hypertension, peptic ulcer and asceptic necrosis of femur, which are associated with short-term use. Some side effects associated with longer term use include adrenal axis suppression, growth suppression, dermal thinning, hypertension, diabetes, Cushing's syndrome, cataracts, muscle weakness, and in rare instances, impaired immune function. The inhaled corticosteroids are believed to function by blocking late reaction to allergen and reducing airway hyper-responsiveness. They are also believed to reverse beta-2-receptor downregulation and to inhibit microvascular leakage.


The immunomodulators include, but are not limited to, the group consisting of anti-inflammatory agents, leukotriene antagonists, IL-4 muteins, soluble IL-4 receptors, immunosuppressants (such as tolerizing peptide vaccine), IL-4 antagonists, anti-IL-5 antibodies, anti-IL-9 antibodies, CCR3 antagonists, CCR5 antagonists, VLA-4 inhibitors, and, and downregulators of IgE.


Leukotriene modifiers are often used for long-term control and prevention of symptoms in mild persistent asthma. Leukotriene modifiers function as leukotriene receptor antagonists by selectively competing for LTD-4 and LTE-4 receptors. These compounds include, but are not limited to, zafirlukast tablets and zileuton tablets. Zileuton tablets function as 5-lipoxygenase inhibitors. These drugs have been associated with the elevation of liver enzymes and some cases of reversible hepatitis and hyperbilirubinemia. Leukotrienes are biochemical mediators that are released from mast cells, eosinophils, and basophils that cause contraction of airway smooth muscle and increase vascular permeability, mucous secretions and activate inflammatory cells in the airways of patients with asthma.


Other immunomodulators include neuropeptides that have been shown to have immunomodulating properties. Functional studies have shown that substance P, for instance, can influence lymphocyte function by specific receptor mediated mechanisms. Substance P also has been shown to modulate distinct immediate hypersensitivity responses by stimulating the generation of arachidonic acid-derived mediators from mucosal mast cells (McGillies (1987) Fed. Proc., 46:196-9). Substance P is a neuropeptide first identified in 1931 by Von Euler (Von Euler (1931) J. Physiol. (London), 72:74-87). Its amino acid sequence was reported by Chang (Chang (1971) Nature (London) 232:86-87). The immunoregulatory activity of fragments of substance P has been studied by Siemion (Siemion (1990) Molec. Immunol., 27:887-890).


Another class of compounds is the down-regulators of IgE. These compounds include peptides or other molecules with the ability to bind to the IgE receptor and thereby prevent binding of antigen-specific IgE. Another type of downregulator of IgE is a monoclonal antibody directed against the IgE receptor-binding region of the human IgE molecule. Thus, one type of downregulator of IgE is an anti-IgE antibody or antibody fragment. One of skill in the art could prepare functionally active antibody fragments of binding peptides which have the same function. Other types of IgE downregulators are polypeptides capable of blocking the binding of the IgE antibody to the Fc receptors on the cell surfaces and displacing IgE from binding sites upon which IgE is already bound.


One problem associated with downregulators of IgE is that many molecules lack a binding strength to the receptor corresponding to the very strong interaction between the native IgE molecule and its receptor. The molecules having this strength tend to bind irreversibly to the receptor. However, such substances are relatively toxic since they can bind covalently and block other structurally similar molecules in the body. Of interest in this context is that the alpha chain of the IgE receptor belongs to a larger gene family of different IgG Fc receptors. These receptors are absolutely essential for the defense of the body against bacterial infections. Molecules activated for covalent binding are, furthermore, often relatively unstable and therefore they probably have to be administered several times a day and then in relatively high concentrations in order to make it possible to block completely the continuously renewing pool of IgE receptors on mast cells and basophilic leukocytes.


These types of asthma/allergy medicaments are sometimes classified as long-term control medications or quick-relief medications. Long-term control medications include compounds such as corticosteroids (also referred to as glucocorticoids), methylprednisolone, prednisolone, prednisone, cromolyn sodium, nedocromil, long-acting beta-2-agonists, methylxanthines, and leukotriene modifiers. Quick relief medications are useful for providing quick relief of symptoms arising from allergic or asthmatic responses. Quick relief medications include short-acting beta-2 agonists, anticholinergics and systemic corticosteroids.


Chromolyn sodium and medocromil are used as long-term control medications for preventing primarily asthma symptoms arising from exercise or allergic symptoms arising from allergens. These compounds are believed to block early and late reactions to allergens by interfering with chloride channel function. They also stabilize mast cell membranes and inhibit activation and release of mediators from eosinophils and epithelial cells. A four to six week period of administration is generally required to achieve a maximum benefit.


Anticholinergics are generally used for the relief of acute bronchospasm. These compounds are believed to function by competitive inhibition of muscarinic cholinergic receptors. Anticholinergics include, but are not limited to, ipratrapoium bromide. These compounds reverse only cholinerigically-mediated bronchospasm and do not modify any reaction to antigen. Side effects include drying of the mouth and respiratory secretions, increased wheezing in some individuals, blurred vision if sprayed in the eyes.


In addition to standard asthma/allergy medicaments other methods for treating asthma/allergy have been used either alone or in combination with established medicaments. One preferred, but frequently impossible, method of relieving allergies is allergen or initiator avoidance. Another method currently used for treating allergic disease involves the injection of increasing doses of allergen to induce tolerance to the allergen and to prevent further allergic reactions.


Allergen injection therapy (allergen immunotherapy) is known to reduce the severity of allergic rhinitis. This treatment has been theorized to involve the production of a different form of antibody, a protective antibody which is termed a “blocking antibody” (Cooke (1935) Exp. Med., 62:733). Other attempts to treat allergy involve modifying the allergen chemically so that its ability to cause an immune response in the patient is unchanged, while its ability to cause an allergic reaction is substantially altered.


Commonly used allergy and asthma drugs which are currently in development or on the market are shown in Tables 3 and 4 respectively.


Arrays

In yet another embodiment, the present invention provides arrays (including low density microarrays) that are used for detecting or comparing the expression profiles of an asthma or IL-13-responsive marker of interest. In a preferred embodiment, the present invention provides arrays for detecting or hybridizing to the markers of Table 1a and b. In another embodiment, the present invention provides arrays for detecting or hybridizing to the markers in Table 1b wherein “yes” is indicated in Column C. In some embodiments, nucleic acid arrays are provided. In another embodiment, the array can be an antibody, or other polypeptide, array. The nucleic acid arrays can be commercial oligonucleotide or cDNA arrays. They can also be custom arrays comprising concentrated probes for the markers of the present invention. In many examples, at least 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, or more of the total probes on a custom array of the present invention are probes for asthma markers or markers for IL-13 responsiveness. These probes can hybridize under stringent or nucleic acid array hybridization conditions to the RNA transcripts, or the complements thereof, of the corresponding markers.


As used herein, “stringent conditions” are at least as stringent as, for example, conditions G-L shown in Table 5. “Highly stringent conditions” are at least as stringent as conditions A-F shown in Table 5.


In one example, a nucleic acid array of the present invention includes at least 2, 5, 10, or more different probes. Each of these probes is capable of hybridizing under stringent or nucleic acid array hybridization conditions to a different respective marker of the present invention. Multiple probes for the same marker can be used on the same nucleic acid array. The probe density on the array can be in any range.


The probes for a marker of the present invention can be a nucleic acid probe, such as, DNA, RNA, PNA, or a modified form thereof. The nucleotide residues in each probe can be either naturally occurring residues (such as deoxyadenylate, deoxycytidylate, deoxyguanylate, deoxythymidylate, adenylate, cytidylate, guanylate, and uridylate), or synthetically produced analogs that are capable of forming desired base-pair relationships. Examples of these analogs include, but are not limited to, aza and deaza pyrimidine analogs, aza and deaza purine analogs, and other heterocyclic base analogs, wherein one or more of the carbon and nitrogen atoms of the purine and pyrimidine rings are substituted by heteroatoms, such as oxygen, sulfur, selenium, and phosphorus. Similarly, the polynucleotide backbones of the probes can be either naturally occurring (such as through 5′ to 3′ linkage), or modified. For instance, the nucleotide units can be connected via non-typical linkage, such as 5′ to 2′ linkage, so long as the linkage does not interfere with hybridization. For another instance, peptide nucleic acids, in which the constitute bases are joined by peptide bonds rather than phosphodiester linkages, can be used.


The probes for the markers can be stably attached to discrete regions, or addresses, on a nucleic acid array. By “stably attached,” or “affixed thereto,” or “disposed thereon,” it is intended that a probe maintains its position relative to the attached discrete region, or address, during hybridization and signal detection. The position of each discrete region, or address, on the nucleic acid array can be either known or determinable. All of the methods known in the art can be used to make the nucleic acid arrays or antibody/protein arrays of the present invention.


In another aspect, the present invention provides an array for detecting a marker differentially expressed in asthma or responsive to exposure to IL-13. In another embodiment, the array is for use in a method for predicting a clinical outcome for an asthma patient. The array of the invention includes a substrate having a plurality of addresses, each of which has a distinct probe disposed thereon or affixed thereto. In one embodiment, at least 10% of the plurality of addresses have affixed thereto or disposed thereon probes that can specifically detect or hybridize to markers for asthma or IL-13 responsiveness. In some embodiments, at least 15% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, at least 20% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, at least 25% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, at least 30% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of IL-13 responsiveness or asthma in PBMCs or other tissues. In some embodiments, at least 40% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, at least 50% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of IL-13 responsiveness or asthma in PBMCs or other tissues. In some embodiments, at least 60% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, at least 70% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, at least 80% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, at least 90% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, the markers are selected from Table 1a and b. In other embodiments, the markers are selected from the markers in Table 1b wherein “yes” is indicated in Column C. In some embodiments, at least 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or at least 90% of the plurality of addresses have disposed thereon or affixed thereto markers selected from Table 1a and b. In some embodiments, at least 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or at least 90% of the plurality of addresses have disposed thereon or affixed thereto markers selected from the markers in Table 1b wherein “yes” is indicated in Column C. In some embodiments, the array of the present invention has affixed to or disposed thereon at least 5, preferably at least 10, at least 15, at least 20, at least 25, at least 30, at least 35, at least 40, at least 45, at least 50, at least 60, at least 70, at least 80, at least 90, at least 100, or at least 150 markers selected from Table 1a and b. In some embodiments, the array of the present invention has affixed to or disposed thereon at least 5, preferably at least 10, at least 15, at least 20, at least 25, at least 30, at least 35, at least 40, at least 45, at least 50, at least 60, or at least 70 markers selected from Table 1b wherein “yes” is indicated in Column C. The probe suitable for the present invention may be a nucleic acid probe. Alternatively, the probe suitable for the present invention may be an antibody probe.


In a further aspect, the present invention provides an array for use in a method for diagnosis of asthma or an IL-13-mediated condition including a substrate having a plurality of addresses, each of which have a distinct probe disposed thereon or affixed thereto. In one embodiment, at least 10% of the plurality of addresses have affixed thereto or disposed thereon probes that can specifically detect or hybridize to markers for asthma or IL-13 responsiveness. In some embodiments, at least 15% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, at least 20% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, at least 25% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, at least 30% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of IL-13 responsiveness or asthma in PBMCs or other tissues. In some embodiments, at least 40% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, at least 50% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of IL-13 responsiveness or asthma in PBMCs or other tissues. In some embodiments, at least 60% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, at least 70% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, at least 80% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, at least 90% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, the markers are selected from Table 1a and b. In other embodiments, the markers are selected from the markers in Table 1b wherein “yes” is indicated in Column C. In some embodiments, at least 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or at least 90% of the plurality of addresses have disposed thereon or affixed thereto markers selected from Table 1a and b. In some embodiments, at least 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or at least 90% of the plurality of addresses have disposed thereon or affixed thereto markers selected from the markers in Table 1b wherein “yes” is indicated in Column C. In some embodiments, the array of the present invention has affixed to or disposed thereon at least 5, preferably at least 10, at least 15, at least 20, at least 25, at least 30, at least 35, at least 40, at least 45, at least 50, at least 60, at least 70, at least 80, at least 90, at least 100, or at least 150 markers selected from Table 1a and b. In some embodiments, the array of the present invention has affixed to or disposed thereon at least 5, preferably at least 10, at least 15, at least 20, at least 25, at least 30, at least 35, at least 40, at least 45, at least 50, at least 60, or at least 70 markers selected from Table 1b wherein “yes” is indicated in Column C. The probe suitable for the present invention may be a nucleic acid probe. Alternatively, the probe suitable for the present invention may be an antibody probe.


In a further aspect, the present invention provides a low density array for use in a method of diagnosis, prognosis, or assessment of asthma or an IL-13-mediated condition or determination of IL-13 responsiveness, including a substrate having a plurality of addresses, each of which has a distinct probe disposed thereon or affixed thereto. The low density array provides the benefit of lower cost, given the lower number of probes that are required to be disposed upon or affixed to the array. Furthermore, the low density array also provides a higher sensitivity given the greater representation of a select number of probes of interest as a percentage of all probes at all addresses on the array. In one embodiment, the present invention provides a low density array for use in assessing a patient's asthma or IL-13-mediated condition or IL-13 responsiveness. In another embodiment, the present invention provides a low density array for use in evaluating or identifying agents capable of modulating the level of expression of markers that are differentially expressed in asthma or IL-13-mediated condition or are responsive to IL-13. In one embodiment, the low density array is capable of hybridizing to at least 10 markers selected from Table 1a and b. In another embodiment, the low density array is capable of hybridizing to at least 20 markers selected from Table 1a and b. In one embodiment, at least 10% of the plurality of addresses have affixed thereto or disposed thereon probes that can specifically detect or hybridize to markers for asthma or IL-13 responsiveness. In some embodiments, at least 15% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, at least 20% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, at least 25% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, at least 30% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of IL-13 responsiveness or asthma in PBMCs or other tissues. In some embodiments, at least 40% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, at least 50% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of IL-13 responsiveness or asthma in PBMCs or other tissues. In some embodiments, at least 60% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, at least 70% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, at least 80% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, at least 90% of the plurality of addresses have disposed thereon or affixed thereto probes that can specifically detect or hybridize to markers of asthma or IL-13 responsiveness in PBMCs or other tissues. In some embodiments, the markers are selected from Table 1a and b. In other embodiments, the markers are selected from the markers in Table 1b wherein “yes” is indicated in Column C. In some embodiments, at least 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or at least 90% of the plurality of addresses have disposed thereon or affixed thereto markers selected from Table 1a and b. In some embodiments, at least 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or at least 90% of the plurality of addresses have disposed thereon or affixed thereto markers selected from the markers in Table 1b wherein “yes” is indicated in Column C. In some embodiments, the array of the present invention has affixed to or disposed thereon at least 5, preferably at least 10, at least 15, at least 20, at least 25, at least 30, at least 35, at least 40, at least 45, at least 50, at least 60, at least 70, at least 80, at least 90, at least 100, or at least 150 markers selected from Table 1a and b. In some embodiments, the array of the present invention has affixed to or disposed thereon at least 5, preferably at least 10, at least 15, at least 20, at least 25, at least 30, at least 35, at least 40, at least 45, at least 50, at least 60, or at least 70 markers selected from Table 1b wherein “yes” is indicated in Column C. The probe suitable for the present invention may be a nucleic acid probe. Alternatively, the probe suitable for the present invention may be an antibody probe.


Screening Methods

The invention also provides methods (also referred to herein as “screening assays”) for identifying agents capable of modulating marker expression (“modulators”), i.e., candidate or test compounds or agents comprising therapeutic moieties (e.g., peptides, peptidomimetics, peptoids, polynucleotides, small molecules or other drugs) which (a) bind to a marker gene product or (b) have a modulatory (e.g., upregulation or downregulation; stimulatory or inhibitory; potentiation/induction or suppression) effect on the activity of a marker gene product or, more specifically, (c) have a modulatory effect on the interactions of the marker gene product with one or more of its natural substrates, or (d) have a modulatory effect on the expression of the marker. Such assays typically comprise a reaction between the marker gene product and one or more assay components. The other components may be either the test compound itself, or a combination of test compound and a binding partner of the marker gene product.


The test compounds of the present invention are generally either small molecules or biomolecules. Small molecules include, but are not limited to, inorganic molecules and small non-biological organic molecules. Biomolecules include, but are not limited to, naturally-occurring and synthetic compounds that have a bioactivity in mammals, such as polypeptides, polysaccharides, and polynucleotides. In one embodiment, the test compound is a small molecule. In another embodiment, the test compound is a biomolecule. One skilled in the art will appreciate that the nature of the test compound may vary depending on the nature of the protein encoded by the marker of the present invention.


The test compounds of the present invention may be obtained from any available source, including systematic libraries of natural and/or synthetic compounds. Test compounds may also be obtained by any of the numerous approaches in combinatorial library methods known in the art, including: biological libraries; peptoid libraries (libraries of molecules having the functionalities of peptides, but with a novel, non-peptide backbone which are resistant to enzymatic degradation but which nevertheless remain bioactive; see, e.g., Zuckerman (1994) J. Med. Chem., 37:2678-85; spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the “one-bead, one-compound” library method; and synthetic library methods using affinity chromatography selection. The biological library and peptoid library approaches are applicable to peptide, non-peptide oligomers or small molecule libraries of compound (Lam (1997) Anticancer Drug Des., 12:145).


The invention provides methods of screening test compounds for inhibitors of the marker gene products of the present invention. The method of screening comprises obtaining samples from subjects diagnosed with or suspected of having asthma or an IL-13-mediated condition, contacting each separate aliquot of the samples with one or more of a plurality of test compounds, and comparing expression of one or more marker gene products in each of the aliquots to determine whether any of the test compounds provides a substantially decreased level of expression or activity of a marker gene product relative to samples with other test compounds or relative to an untreated sample or control sample. In addition, methods of screening may be devised by combining a test compound with a protein and thereby determining the effect of the test compound on the protein.


In addition, the invention is further directed to a method of screening for test compounds capable of modulating with the binding of a marker gene product and a binding partner, by combining the test compound, the marker gene product, and binding partner together and determining whether binding of the binding partner and the marker gene product occurs. The test compound may be either a small molecule or a biomolecule.


Modulators of marker gene product expression, activity or binding ability are useful as therapeutic compositions of the invention. Such modulators (e.g., antagonists or agonists) may be formulated as compositions or pharmaceutical compositions, as described herein below. Such modulators may also be used in the methods of the invention, for example, to diagnose, treat, or prognose asthma or an IL-13-mediated condition.


The invention provides methods of conducting high-throughput screening for test compounds capable of inhibiting activity or expression of a marker gene product of the present invention. In one embodiment, the method of high-throughput screening involves combining test compounds and the marker gene product and detecting the effect of the test compound on the marker gene product.


A variety of high-throughput functional assays well-known in the art may be used in combination to screen and/or study the reactivity of different types of activating test compounds. Since the coupling system is often difficult to predict, a number of assays may need to be configured to detect a wide range of coupling mechanisms. A variety of fluorescence-based techniques is well-known in the art and is capable of high-throughput and ultra high throughput screening for activity, including but not limited to BRET™ or FRET™ (both by Packard Instrument Co., Meriden, Conn.). The ability to screen a large volume and a variety of test compounds with great sensitivity permits for analysis of the therapeutic targets of the invention to further provide potential inhibitors of asthma or an IL-13-mediated condition. The BIACORE™ system may also be manipulated to detect binding of test compounds with individual components of the therapeutic target, to detect binding to either the encoded protein or to the ligand.


Therefore, the invention provides for high-throughput screening of test compounds for the ability to inhibit activity of a protein encoded by the marker gene products listed in Table 1a and b, by combining the test compounds and the protein in high-throughput assays such as BIACORE™, or in fluorescence-based assays such as BRET™. In addition, high-throughput assays may be utilized to identify specific factors which bind to the encoded proteins, or alternatively, to identify test compounds which prevent binding of the receptor to the binding partner. In the case of orphan receptors, the binding partner may be the natural ligand for the receptor. Moreover, the high-throughput screening assays may be modified to determine whether test compounds can bind to either the encoded protein or to the binding partner (e.g., substrate or ligand) which binds to the protein.


In one embodiment, the high-throughput screening assay detects the ability of a plurality of test compounds to bind to a marker gene product selected from the group consisting of the markers listed in Table 1a and b. In some embodiments, the high-throughput screening assay detects the ability of a plurality of test compounds to bind to a marker gene product selected from the group consisting of markers in Table 1b wherein “yes” is indicated in Column C. In another specific embodiment, the high-throughput screening assay detects the ability of a plurality of a test compound to inhibit a binding partner (such as a ligand) to bind to a marker gene product selected from the group consisting of the markers listed in Table 1a and b. In another specific embodiment, the high-throughput screening assay detects the ability of a plurality of a test compound to inhibit a binding partner (such as a ligand) to bind to a marker gene product selected from the group consisting of markers in Table 1b wherein “yes” is indicated in Column C. In yet another specific embodiment, the high-throughput screening assay detects the ability of a plurality of a test compounds to modulate signaling through a marker gene product selected from the group consisting of the markers listed in Table 1a and b. In another specific embodiment, the high-throughput screening assay detects the ability of a plurality of a test compounds to modulate signaling through a marker gene product selected from the group consisting of the markers in Table 1b wherein “yes” is indicated in Column C.


In one embodiment, one or more candidate agents are administered in vitro directly to cells derived from healthy volunteers and/or asthma or IL-13-mediated condition patients (either before or after treatment). In another particular embodiment, healthy volunteers and/or asthma or IL-13-mediated condition patients are administered one or more candidate agent directly in any manner currently known to, and commonly used by the skilled artisan including generally, but not limited to, enteral or parenteral administration.


Electronic Systems

The present invention also features electronic systems useful for the prognosis, diagnosis, or selection of treatment of asthma or an IL-13-mediated condition. These systems include an input or communication device for receiving the expression profile of a patient of interest or the reference expression profile(s). The reference expression profile(s) can be stored in a database or other media. The comparison between expression profiles can be conducted electronically, such as through a processor or computer. The processor or computer can execute one or more programs which compare the expression profile of the patient of interest to the reference expression profile(s), the programs can be stored in a memory or other storage media or downloaded from another source, such as an internet server. In one example, the electronic system is coupled to a nucleic acid array and can receive or process expression data generated by the nucleic acid array. In another example, the electronic system is coupled to a protein array and can receive or process expression data generated by the protein array.


Compositions and Pharmaceutical Compositions

The invention is further directed to compositions and pharmaceutical compositions comprising an anti-asthma compound, anti-IL-13 compound, or bioactive agent. Alternatively, in a preferred embodiment of the present invention, the compositions and pharmaceutical compositions comprise a marker, a marker gene product, or a marker gene product modulator (i.e., agonist or antagonist), which may further include a marker gene product derivative, and can be formulated as described herein, wherein the marker is selected from Table 1a and b. Alternatively, in a preferred embodiment of the present invention, the compositions and pharmaceutical compositions comprise a marker, a marker gene product, or a marker gene product modulator (i.e., agonist or antagonist), which may further include a marker gene product derivative, and can be formulated as described herein, wherein the marker is selected from those markers in Table 1b wherein “yes” is indicated in Column C. Alternatively, these compositions may include an antibody which specifically binds to a marker gene product of the invention, or its variant, and/or an antisense polynucleotide molecule which is complementary to a marker polynucleotide of the invention and can be formulated as described herein. The compositions of the present invention may also include marker polynucleotides or variants of marker polynucleotides. The compositions of the present invention may also include marker gene product polypeptides or variants of marker gene product polypeptides.


One or more of the markers, variants of markers, marker gene products of the invention, fragments of marker gene products, variants of marker gene products, variants of fragments of marker gene products, marker gene product modulators, or anti-marker gene product antibodies of the invention can be incorporated into pharmaceutical compositions suitable for administration.


Methods for purification and isolation of polynucleotides and polypeptides, particularly the marker polynucleotides, marker gene product polypeptides, and variants thereof are well known in the art. Synthetic methods, both in vivo and in vitro, solid- and liquid-phase, for production of isolated marker polynucleotides, marker gene product polypeptides, and variants thereof are also well known in the art.


Suitable antibodies for the compositions of the present invention include, but are not limited to, polyclonal antibodies, monoclonal antibodies, chimeric antibodies, humanized antibodies, single chain antibodies, Fab fragments, or fragments produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit dimer formation) can also be used in the compositions of the present invention. Methods for preparing these antibodies are well known in the art. In one embodiment, the antibodies of the present invention can bind specifically to the corresponding marker gene products or other desired antigens with binding affinities of at least 104 M−1, 105 M−1, 106 M−1, 107 M−1, or more. Methods of assessing binding affinities and specificities are well known in the art.


The present invention provides, in one embodiment, a composition comprising an isolated marker polynucleotide wherein the marker is selected from the markers of Table 1a and b. The present invention also provides a composition comprising an isolated marker polynucleotide wherein the marker is selected from the markers of Table 1b wherein “yes” is indicated in Column C. In another embodiment of the present invention the marker is one of the 5 novel or unknown genes. In another embodiment of the present invention, a composition is provided comprising an isolated marker gene product polypeptide wherein the marker is selected from the markers of Table 1a and b. In another embodiment of the present invention, a composition is provided comprising an isolated marker gene product polypeptide wherein the marker is selected from the markers Table 1b wherein “yes” is indicated in Column C. In another embodiment of the present invention the marker is one of the 5 novel or unknown genes. The present invention further provides a composition comprising an antibody that specifically binds to a marker gene product polypeptide wherein the marker is selected from one of the markers of Table 1a and b. The present invention further provides a composition comprising an antibody that specifically binds to a marker gene product polypeptide wherein the marker is selected from one of the markers of Table 1b wherein “yes” is indicated in Column C. In another aspect of the present invention, a composition is provided that comprises an antibody that specifically binds to a marker gene product polypeptide wherein the marker is one of the 5 novel or unknown genes.


Suitable pharmaceutically acceptable carriers include solvents, solubilizers, fillers, stabilizers, binders, absorbents, bases, buffering agents, lubricants, controlled release vehicles, diluents, emulsifying agents, humectants, lubricants, dispersion media, coatings, antibacterial or antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. The use of such media and agents for pharmaceutically active substances is well-known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary agents can also be incorporated into the compositions.


The invention includes methods for preparing pharmaceutical compositions for modulating the expression or activity of a polypeptide or polynucleotide corresponding to a marker gene product of the invention. Such methods comprise formulating a pharmaceutically acceptable carrier with an agent which modulates expression or activity of a polypeptide or polynucleotide corresponding to a marker gene product of the invention. Such compositions can further include additional active agents. Thus, the invention further includes methods for preparing a pharmaceutical composition by formulating a pharmaceutically acceptable carrier with an agent which modulates expression or activity of a polypeptide or polynucleotide corresponding to a marker gene product of the invention and one or more additional bioactive agents.


A pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (topical), transmucosal, and rectal administration. Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine; propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfate; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. The pH of the solutions can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.


Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor EL™ (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS). In all cases, the injectable composition should be sterile and should be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyetheylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the requited particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, isotonic agents, for example, sugars, polyalcohols such as manitol, sorbitol, sodium chloride can be included in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.


Sterile injectable solutions can be prepared by incorporating the active compound (e.g., a fragment of a marker gene product or an anti-marker gene product antibody) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle which contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, examples of methods of preparation are vacuum drying and freeze-drying which yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.


Oral compositions generally include an inert diluent or an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose; a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Stertes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.


For administration by inhalation, the compounds are delivered in the form of an aerosol spray from a pressured container or dispenser which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.


Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the bioactive compounds are formulated into ointments, salves, gels, or creams as generally known in the art.


The compounds can also be prepared in the form of suppositories (e.g., with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.


In one embodiment, the therapeutic moieties, which may contain a bioactive compound, are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from e.g. Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers.


It is especially advantageous to formulate oral or parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein includes physically discrete units suited as unitary dosages for the subject to be treated; each unit contains a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals.


Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50. In many embodiments, compounds which exhibit large therapeutic indices are selected. While compounds that exhibit toxic side effects may be used, care should be taken to design a delivery system that targets such compounds to the site of affected tissue in order to minimize potential damage to healthy cells and, thereby, reduce side effects.


The data obtained from the cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of such compounds can lie within a range of circulating concentrations that includes the ED50 with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially from cell culture assays. A dose may be formulated in animal models to achieve a circulating plasma concentration range that includes the IC50 (i.e., the concentration of the test compound which achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma may be measured, for example, by high performance liquid chromatography.


The marker polynucleotides of the invention, and their variants, can be inserted into gene delivery vectors and used as gene therapy vectors. Furthermore, inhibitors or other modulators of the marker gene products of the invention can be inserted into gene delivery vectors and used as gene therapy vectors. Gene therapy vectors can be delivered to a subject by, for example, intravenous administration, intraportal administration, intrabiliary administration, intra-arterial administration, direct injection into the liver parenchyma, by intramusclular injection, by inhalation, by perfusion, or by stereotactic injection. The pharmaceutical preparation of the gene therapy vector can include the gene therapy vector in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded. Alternatively, where the complete gene delivery vector can be produced intact from recombinant cells, e.g., retroviral vectors, the pharmaceutical preparation can include one or more cells which produce the gene delivery system.


The pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration.


Kits for Prognosis, Diagnosis, or Selection of Treatment of Asthma or an IL-13-Mediated Condition

In addition, the present invention features kits useful for the diagnosis or selection of treatment of asthma or an IL-13-mediated condition. Each kit includes or consists essentially of at least one probe for an asthma or IL-13 responsive marker (e.g., a marker selected from Table 1a and b). Reagents or buffers that facilitate the use of the kit can also be included. Any type of probe can be used in the present invention, such as hybridization probes, amplification primers, antibodies, or any and all other probes commonly used and known to the skilled artisan.


In one embodiment, a kit of the present invention includes or consists essentially of at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more polynucleotide probes or primers. Each probe/primer can hybridize under stringent conditions or nucleic acid array hybridization conditions to a different respective asthma or IL-13 responsive marker. As used herein, a polynucleotide can hybridize to a gene if the polynucleotide can hybridize to an RNA transcript, or complement thereof, of the gene. In another embodiment, a kit of the present invention includes one or more antibodies, each of which is capable of binding to a polypeptide encoded by a different respective asthma or IL-13 responsive marker.


In one example, a kit of the present invention includes or consists essentially of probes (e.g., hybridization or PCR amplification probes or antibodies) for at least 1, 2, 3, 4, 5, 10, 14, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, or more genes selected from Table 1a and b. In another embodiment, the kit can contain nucleic acid probes and antibodies to 1, 2, 3, 4, 5, 10, 14, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, or more genes selected from Table 1a and b.


In another example, a kit of the present invention includes or consists essentially of probes (e.g., hybridization or PCR amplification probes or antibodies) for at least 1, 2, 3, 4, 5, 10, 14, 20, 25, 30, 35, 40, 45, 50, 55, 60, or more genes selected from the markers of Table 1b wherein “yes” is indicated in Column C. In another embodiment, the kit can contain nucleic acid probes and antibodies to 1, 2, 3, 4, 5, 10, 14, 20, 25, 30, 35, 40, 45, 50, 55, 60, or more genes selected from the markers of Table 1b wherein “yes” is indicated in Column C.


The probes employed in the present invention can be either labeled or unlabeled. Labeled probes can be detectable by spectroscopic, photochemical, biochemical, bioelectronic, immunochemical, electrical, optical, chemical, or other suitable means. Exemplary labeling moieties for a probe include radioisotopes, chemiluminescent compounds, labeled binding proteins, heavy metal atoms, spectroscopic markers such as fluorescent markers and dyes, magnetic labels, linked enzymes, mass spectrometry tags, spin labels, electron transfer donors and acceptors, and the like.


The kits of the present invention can also have containers containing buffer(s) or reporter means. In addition, the kits can include reagents for conducting positive or negative controls. In one embodiment, the probes employed in the present invention are stably attached to one or more substrate supports. Nucleic acid hybridization or immunoassays can be directly carried out on the substrate support(s). Suitable substrate supports for this purpose include, but are not limited to, glasses, silica, ceramics, nylons, quartz wafers, gels, metals, papers, beads, tubes, fibers, films, membranes, column matrices, or microtiter plate wells. The kits of the present invention may also contain one or more controls, each representing a reference expression level of a marker detectable by one or more probes contained in the kits.


The present invention also allows for personalized treatment of asthma or an IL-13-mediated condition. Numerous treatment options or regimes can be analyzed according to the present invention to identify markers for each treatment regime. The peripheral blood expression profiles of these markers in a patient of interest are indicative of the clinical outcome of the patient and, therefore, can be used for the selection of treatments that have favorable prognoses of the majority of all other available treatments for the patient of interest. The treatment regime with the best prognosis can also be identified.


Treatment selection can be conducted manually or electronically. Reference expression profiles or gene classifiers can be stored in a database. Programs capable of performing algorithms such as the k-nearest-neighbors or weighted voting algorithms can be used to compare the peripheral blood expression profile of a patient of interest to the database to determine which treatment should be used for the patient.


It should be understood that the above-described embodiments and the following examples are given by way of illustration, not limitation. Various changes and modifications within the scope of the present invention will become apparent to those skilled in the art from the present description.


EXAMPLES
Example 1
Asthma and IL-13 Responsive Markers

Analyses were performed to select sequences from 150 unique genes as the top candidate markers to assess the effects of IMA638, an IL-13 antagonist, by Taqman Low Density Array (TLDA). Using a dataset consisting of HG-U133A GeneChip® (Affymetrix) results from 1147 individual visits from 337 non-smoking asthma subjects and 1183 visits from 348 non-smoking healthy subjects, ANCOVA analyses identified genes that, by gene expression level, were most significantly associated with asthma and, on an individual visit basis, showed the highest incidence of a detectable fold change when compared to the average level in healthy subjects.


The list of genes thus identified were compared to lists from three independent in vitro studies, two that identified gene expression changes resulting from exposure of human monocytes to IL-13, and a third that identified the effects of IL-13 antagonism on the 6 day PBMC response to allergen stimulation. Also taken into consideration were the results of two in vivo animal studies—one that identified genes affected by IL-13 instillation in the mouse lung, and the other that identified changes in gene expression levels in PBMCs associated with segmental ascaris lung challenge of non-human primates.


In assigning slots on the TLDA, highest priority was given to genes significantly (i.e., having a false discovery rate, or FDR, of less than 1.0e-5) and consistently (in more than 59% of samples) associated with asthma by gene expression level in PBMC and had an average GeneChip® signal greater than 30, and were significantly (FDR<0.05) affected in vitro by IL-13 or its antagonist. A total of 71 genes met all these requirements and are indicated as having met these requirements with a “yes” in Column C of Table 1b.


The vast majority of the remaining TLDA slots were assigned to genes showing a very highly significant (FDA<1.0e-5) association with asthma by expression levels in PBMC and met at least one of the following criteria: a) average fold change of >1.4 in the comparison of asthma and healthy subjects; b) average fold change >1.25, with intra-subject variability <35% and more than 59% of samples showing an expression level difference with the average of healthy volunteers; and/or c) intra-subject variability <20% and more than 59% of samples showing a detectable expression level difference with the average of healthy volunteers. The remaining slots were assigned to genes that were associated with IL-13 through either the in vitro or animal model studies, even if the incidence of samples that differed from the healthy subject average was less than 59% and the association with asthma did not meet the FDR<1.0e-5 level of significance. Table 1a and b provides a complete list of the genes selected as having satisfied the aforementioned criteria and includes the identities and descriptions of the genes as well as pertinent statistical information. The sequences of the probes identified in Table 1a and b are provided in Table 6.


Example 2
Clinical Trial and Data Collection
Sources of Human Blood Samples

Gene expression levels in PBMC of asthma subjects are determined from samples of subjects enrolled in the Wyeth Asthma Observational Study, as are the determinations of the effects of IL-13 antagonism on the in vitro response of asthma subjects to allergen stimulation. Gene expression levels in healthy volunteer PBMC are determined using samples from the Wyeth Healthy Volunteer Observational Study. The effects of in vitro IL-13 stimulation on monocytes of healthy volunteers, and the effects of IL-13 on the in vitro response of healthy subjects to allergen stimulation are determined using samples from Wyeth employee healthy volunteers. Subjects with asthma and healthy volunteer subjects are recruited. Each site's institutional review board or ethics committee approves the study, and no study-specific procedures are performed before obtaining informed consent from each subject. All asthma subjects are on standard of care treatment of inhaled steroids, and samples are also collected from some patients on systemic steroids. Asthma subjects are categorized as mild persistent, moderate persistent or severe persistent according to the 1997 NIH Guidelines for the Diagnosis and Management of Asthma. Atopic status in asthma subjects is assessed by clinical investigators based on positive skin test, family history, or clinical assessment. Healthy volunteers have no known history of asthma or seasonal allergies.


Sample Collection

Whole blood samples (8 ml×6 tubes) are collected into cell purification tubes (Becton Dickinson, Franklin Lakes, N.J.) according to the manufacturer's recommendations. Blood samples are collected from asthma and healthy subjects and are shipped overnight at room temperature in a temperature controlled box from the clinical site to a site (either Wyeth or a contract lab) that purifies PBMC and RNA.


RNA Purification and Microarray Hybridization

RNA is purified using QIA shredders and Rneasy mini kits (Qiagen, Valencia, Calif.). PBMC pellets frozen in RLT lysis buffer containing 1% β-mercaptoethanol are thawed and processed for total RNA isolation using the QIA shredder and Rneasy mini kit. A phenol:chloroform extraction is then performed, and the RNA is repurified using the Rneasy mini kit reagents. Eluted RNA is quantified using a Spectramax96 well plate UV reader (Molecular Devices, Sunnyvale, Calif., USA) monitoring A260/280 OD values. The quality of each RNA sample is assessed by capillary electrophoresis alongside an RNA molecular weight ladder on the Agilent 2100 bioanalyzer (Agilent Technologies, Palo Alto, Calif., USA). RNA samples are assigned quality values of intact (distinct 18S and 28S bands); partially degraded (discernible 18S and 28S bands with presence of low molecular weight bands) or completely degraded (no discernible 18S and 28S bands).


Labeled targets for oligonucleotide arrays are prepared using a modification of the procedure described by Lockhart (Lockhart (1996) Nat. Biotechnol., 14:1675-80). Labeled targets are hybridized to the HG-U133A Affymetrix GeneChip Array as described in the Affymetrix technical manual. Eleven biotinylated control transcripts ranging in abundance from 3 parts per million (ppm) to 100 ppm are spiked into each sample to function as a standard curve (Hill (2001) Genome Biol., 2:RESEARCH0055). GeneChip MAS 5.0 software is used to evaluate the hybridization intensity, compute the signal value for each probe set and make an absent/present call.


Data Normalization and Filtering

GeneChips are required to pass the pre-set quality control criteria determined by the 5′:3′ ratio of the GAPDH and bActin genes. Samples are excluded from the study if they fail to meet the RNA quality metric. Sequences are excluded from the study of uncultured PBMC if the number of present calls is less than 10% and/or if the proportion of samples with signal greater than 50 is less than 10%. For all the in vitro studies, the signal value for each probe set is converted into a frequency value representative of the number of transcripts present in 106 transcripts by reference to the standard curve (Hill (2001) Genome Biol., 2:RESEARCH0055). Sequences are excluded from the in vitro study if they are not found present in at least five samples and/or do not have a frequency of greater than 10 parts per million (by standard curve) in at least one sample.


Statistical Analysis

For the PBMC study on samples that are not subjected to culture, the clinical and gene expression databases are merged using SAS, and SAS is used for all analyses. Analyses are conducted to identify factors that might have confounding effects on associations between gene expression levels and response group. Differential blood cell counts, age, sex, race, country, processing laboratory, and sample quality are identified as significant covariates. For each gene, ANCOVA is used to test for associations of expression level with these co-variates. ANCOVA is performed using the Log2 transformed Affymetrix MAS5 signal to identify significant differences in gene expression levels between the asthma and healthy volunteer groups. The fold change differences are calculated by back-transforming the difference in the log 2 least square means. For the in vitro study on the effects of IL-13 antagonism on in vitro response to allergen, the fold change differences in the presence and absence of antagonist are calculated by determining the difference in the log 2 frequency. Raw P-values are adjusted for multiplicity according to the false discovery rate (FDR) procedure of Benjamini and Hochberg (Reiner (2003) Bioinformatics, 19:368-75) using Spotfire (Somerville, Mass.).


Identification of Genes Modulated by IL-13

Sdf Human monocytes are purified from PBMC of 5 individual subjects and cultured in the presence or absence of IL-13. Cells are harvested at 2, 6, 12 and 24 hours and gene expression levels are assessed by Affymetrix U95A chip. Genes with an IL-13 dependent difference with an FDR<0.05 and an IL-13 dependent fold change of at least 1.5 fold at any time point are considered to be significantly modulated by IL-13


INCORPORATION BY REFERENCE

All publications and patent documents and all GenBank records corresponding to sequence accession numbers cited in this application are incorporated by reference in their entirety as they exist on the filing date of this application for all purposes to the same extent as if the contents of each individual publication, patent document, or GenBank record was incorporated herein.









TABLE 1a







PROBESETS DETERMINED TO BE ASSOCIATED WITH ASTHMA


AND/OR IL-13 RESPONSIVENESS

















D









Raw P





value'





Assocation





with
E


A


Asthma, all
log2_diff_all


NetAffx-
B
C
patients, all
aos_all
F
G
H


GeneSymbol
Gene Description
QUALIFIER
time points
hvos
‘AOS_intra_subject_cv_sgnl
HVOS_intra_subject_cv_sgnl
Basis for selection

















NRG1
neuregulin 1
206343_s_at
2.56E−04
0.286
38.08
41.44
passes all filters for asthma









and IL13


FCER2
Fc fragment of IgE, low affinity II, receptor
206759_at
4.13E−02
0.184
64.45
69.41
poor consistency, but known



for (CD23A)





IL13 relationship


LDLR
low density lipoprotein receptor (familial
202068_s_at
7.80E−07
−0.203
34.69
35.08
passes all filters for asthma



hypercholesterolemia)





and IL13, and severity related


PRPF39
gb: NM_018333.1 /DEF = Homo sapiens
220553_s_at
9.52E−29
−0.335
29.04
29.77
asthma p value, CV,



hypothetical protein FLJ11128 (FLJ11128),





FC, severity



mRNA. /FEA = mRNA /GEN = FLJ11128



/PROD = hypothetical protein FLJ11128



/DB_XREF = gi: 8922887 /UG = Hs.250477



hypothetical protein FLJ11128



/FL = gb: NM_018333.1


CCNL2 ///
cyclin L2
221427_s_at
1.56E−22
−0.346
29.98
30.74
Based on asthma P-value, CV,


LOC643556






severity and FC, no IL13 filter.


EIF2AK3
eukaryotic translation initiation factor 2-
218696_at
1.29E−28
−0.391
35.34
28.75
Based on asthma P-value, CV,



alpha kinase 3





severity and FC, no IL13 filter.


NUP88
nucleoporin 88 kDa
202900_s_at
3.07E−28
−0.337
27.95
25.17
Based on asthma P-value, CV,









severity and FC, no IL13 filter.


SCML1
sex comb on midleg-like 1 (Drosophila)
218793_s_at
3.18E−21
−0.448
40.58
34.82
Based on asthma P-value, CV,









severity and FC, no IL13 filter.


TNPO1
Transportin 1
212635_at
4.82E−26
−0.328
29.27
25.42
Based on asthma P-value, CV,









severity and FC, no IL13 filter.


NR4A3
nuclear receptor subfamily 4, group A,
209959_at
1.12E−14
−0.650
89.51
71.94
consistency, FC and severity



member 3


ZNF217
zinc finger protein 217
203739_at
3.39E−09
−0.174
33.41
28.85
IL13, consistency, severity


AHR
aryl hydrocarbon receptor
202820_at
1.07E−20
−0.453
47.44
41.64
passes all filters for asthma









and IL13


C6orf62
Chromosome 6 open reading frame 62
222309_at
8.36E−16
−0.316
44.67
34.27
passes all filters for asthma









and IL13 and severity


CD69
CD69 antigen (p60, early T-cell activation
209795_at
1.57E−11
−0.202
30.52
30.19
passes all filters for asthma



antigen)





and IL13 and severity


CD83
CD83 antigen (activated B lymphocytes,
204440_at
3.93E−10
−0.254
40.23
36.47
passes all filters for asthma



immunoglobulin superfamily)





and IL13 and severity


CNOT8
CCR4-NOT transcription complex, subunit 8
202163_s_at
3.60E−09
−0.207
36.92
32.68
passes all filters for asthma









and IL13 and severity


CSE1L
CSE1 chromosome segregation 1-like
210766_s_at
2.02E−20
−0.264
27.14
26.80
passes all filters for asthma



(yeast)





and IL13 and severity


DUSP10
dual specificity phosphatase 10
215501_s_at
2.05E−07
−0.210
43.69
38.96
passes all filters for asthma









and IL13 and severity


DUSP10
Dual specificity phosphatase 10
221563_at
4.81E−12
−0.210
33.40
28.22
passes all filters for asthma









and IL13


EIF1AX
Eukaryotic translation initiation factor 1A, X-
201016_at
3.18E−15
−0.273
36.78
35.49
passes all filters for asthma



linked





and IL13


HSPC111
hypothetical protein HSPC111
203023_at
7.77E−13
−0.209
32.50
29.53
passes all filters for asthma









and IL13


IRF1
interferon regulatory factor 1
202531_at
2.22E−09
−0.249
31.94
35.12
passes all filters for asthma









and IL13


ITPR1
inositol 1,4,5-triphosphate receptor, type 1
216944_s_at
1.33E−11
−0.276
41.14
36.10
passes all filters for asthma









and IL13


KLF9
Kruppel-like factor 9
203543_s_at
5.91E−12
−0.314
46.54
41.26
passes all filters for asthma









and IL13


MAFF
Cluster Incl. AL021977: bK447C4.1 (novel
36711_at
6.11E−11
−0.342
45.72
36.76
passes all filters for asthma



MAFF (v-maf musculoaponeurotic





and IL13



fibrosarcoma (avian) oncogene family,



protein F) LIKE protein) /cds = (0.494)



/gb = AL021977 /gi = 4914526 /ug = Hs.51305



/len = 2128


MTF2
likely ortholog of mouse metal response
203347_s_at
1.22E−11
−0.260
40.35
37.17
passes all filters for asthma



element binding transcription factor 2





and IL13


NRIP1
nuclear receptor interacting protein 1
202599_s_at
2.21E−12
−0.324
44.54
45.26
passes all filters for asthma









and IL13


PFDN4
Prefoldin 4
205361_s_at
5.15E−12
−0.207
33.27
29.10
passes all filters for asthma









and IL13


RAN
RAN, member RAS oncogene family
200749_at
3.99E−17
−0.290
31.89
29.10
passes all filters for asthma









and IL13


SFPQ
Splicing factor proline/glutamine rich
201585_s_at
5.67E−21
−0.249
28.52
26.93
passes all filters for asthma



(polypyrimidine tract binding protein





and IL13



associated)


SMAD7
SMAD, mothers against DPP homolog 7
204790_at
1.71E−15
−0.294
33.79
31.16
passes all filters for asthma



(Drosophila)





and IL13


STCH
Stress 70 protein chaperone, microsome-
202557_at
6.48E−17
−0.309
38.43
33.34
passes all filters for asthma



associated, 60 kDa





and IL13


SUMO1
SMT3 suppressor of mif two 3 homolog 1
208762_at
6.96E−15
−0.299
43.61
42.26
passes all filters for asthma



(yeast)





and IL13


TIMM17A
translocase of inner mitochondrial
201821_s_at
5.63E−21
−0.260
31.53
31.20
passes all filters for asthma



membrane 17 homolog A (yeast)





and IL13


TNFAIP3
Tumor necrosis factor, alpha-induced
202643_s_at
2.62E−10
−0.231
35.66
30.37
passes all filters for asthma



protein 3





and IL13


FUSIP1 ///
gb: NM_021993.1 /DEF = Homo sapiens
204299_at
2.18E−31
−0.427
42.30
28.93
passes all filters for asthma


LOC642558
TLS-associated serine-arginine protein 2





and IL13



(TASR2), mRNA. /FEA = mRNA



/GEN = TASR2 /PROD = TLS-associated



serine-arginine protein 2



/DB_XREF = gi: 12056475 /UG = Hs.3530



TLS-associated serine-arginine protein 2



/FL = gb: NM_021993.1 gb: BC005039.1



gb: AF067730.1


FUSIP1 ///
FUS interacting protein (serine-arginine
206095_s_at
1.25E−28
−0.308
27.66
23.62
passes all filters for asthma


LOC642558
rich) 1





and IL13


FBXL11
Consensus includes RC gb: BE675843
208988_at
4.60E−38
−0.325
23.73
20.85
asthma p value, CV, FC



/FEA = EST /DB_XREF = gi: 10036384



/DB_XREF = est: 7f17b04.x1



/CLONE = IMAGE: 3294895 /UG = Hs.219614



f-box and leucine-rich repeat protein 11



/FL = gb: AF179221.1


MED6
mediator of RNA polymerase II
207078_at
7.84E−26
−0.629
52.37
49.36
asthma p value, FC



transcription, subunit 6 homolog (yeast)


C1orf9
chromosome 1 open reading frame 9
203429_s_at
1.53E−50
−0.525
38.18
38.50
asthma p value, FC, CV


ARMC8
armadillo repeat containing 8
219094_at
8.08E−28
−0.319
32.01
26.70
Based on asthma P-value, CV,









severity and FC, no IL13 filter.


BMS1L
BMS1-like, ribosome assembly protein
203082_at
8.29E−32
−0.319
25.01
24.84
Based on asthma P-value, CV,



(yeast)





severity and FC, no IL13 filter.


BTG3
BTG family, member 3
205548_s_at
5.38E−33
−0.332
32.03
23.01
Based on asthma P-value, CV,









severity and FC, no IL13 filter.


CAND1
TBP-interacting protein
207483_s_at
1.91E−33
−0.359
28.74
26.51
Based on asthma P-value, CV,









severity and FC, no IL13 filter.


CCNT2
Cyclin T2
213743_at
5.92E−28
−0.393
33.44
30.38
Based on asthma P-value, CV,









severity and FC, no IL13 filter.


CRSP6
cofactor required for Sp1 transcriptional
221517_s_at
4.41E−41
−0.467
34.46
31.16
Based on asthma P-value, CV,



activation, subunit 6, 77 kDa





severity and FC, no IL13 filter.


CYLD
Cylindromatosis (turban tumor syndrome)
60084_at
2.70E−35
−0.406
35.44
30.41
Based on asthma P-value, CV,









severity and FC, no IL13 filter.


DBF4
activator of S phase kinase
204244_s_at
1.53E−35
−0.447
39.45
33.28
Based on asthma P-value, CV,









severity and FC, no IL13 filter.


DDX47
DEAD (Asp-Glu-Ala-Asp) box polypeptide
220890_s_at
5.29E−28
−0.310
26.79
27.78
Based on asthma P-value, CV,



47





severity and FC, no IL13 filter.


EZH2
enhancer of zeste homolog 2 (Drosophila)
203358_s_at
1.07E−45
−0.549
40.52
38.56
Based on asthma P-value, CV,









severity and FC, no IL13 filter.


FAM98A
DKFZP564F0522 protein
212333_at
6.39E−27
−0.332
29.18
28.95
Based on asthma P-value, CV,









severity and FC, no IL13 filter.


FBXL11
F-box and leucine-rich repeat protein 11
208989_s_at
6.24E−37
−0.349
29.13
25.74
Based on asthma P-value, CV,









severity and FC, no IL13 filter.


FBXO3
F-box protein 3
218432_at
1.21E−28
−0.425
33.91
30.49
Based on asthma P-value, CV,









severity and FC, no IL13 filter.


HIPK1
Homeodomain interacting protein kinase 1
212293_at
1.53E−34
−0.333
29.78
25.49
Based on asthma P-value, CV,









severity and FC, no IL13 filter.


HSF2
heat shock transcription factor 2
209657_s_at
2.02E−32
−0.468
39.43
31.53
Based on asthma P-value, CV,









severity and FC, no IL13 filter.


PDE4D
phosphodiesterase 4D, cAMP-specific
210837_s_at
3.49E−26
−0.412
35.74
32.43
Based on asthma P-value, CV,



(phosphodiesterase E3 dunce homolog,





severity and FC, no IL13 filter.




Drosophila)



PIGA
phosphatidylinositol glycan, class A
205281_s_at
4.79E−28
−0.327
34.06
25.83
Based on asthma P-value, CV,



(paroxysmal nocturnal hemoglobinuria)





severity and FC, no IL13 filter.


PRDM2
PR domain containing 2, with ZNF domain
203057_s_at
4.13E−31
−0.311
25.95
25.16
Based on asthma P-value, CV,









severity and FC, no IL13 filter.


RANBP2
RAN binding protein 2
201713_s_at
1.44E−35
−0.512
43.59
36.15
Based on asthma P-value, CV,









severity and FC, no IL13 filter.


RFC1
gb: L14922.1 /DEF = Homo sapiens DNA-
209085_x_at
3.94E−37
−0.334
26.34
25.66
Based on asthma P-value, CV,



binding protein (PO-GA) mRNA, complete





severity and FC, no IL13 filter.



cds. /FEA = mRNA /PROD = DNA-binding



protein /DB_XREF = gi: 307337



/UG = Hs.166563 replication factor C



(activator 1) 1 (145 kD) /FL = gb: AF040250.1



gb: L14922.1


RRN3
RRN3 RNA polymerase I transcription
222204_s_at
1.19E−32
−0.382
34.69
29.94
Based on asthma P-value, CV,



factor homolog (yeast)





severity and FC, no IL13 filter.


SFRS12
Splicing factor, arginine/serine-rich 12
212721_at
8.02E−53
−0.422
29.12
26.63
Based on asthma P-value, CV,









severity and FC, no IL13 filter.


SR140
U2-associated SR140 protein
212060_at
9.71E−38
−0.392
29.68
29.59
Based on asthma P-value, CV,









severity and FC, no IL13 filter.


TCERG1
transcription elongation regulator 1
202396_at
2.05E−39
−0.404
30.46
28.30
Based on asthma P-value, CV,









severity and FC, no IL13 filter.


Unknown

Homo sapiens, clone IMAGE: 4214654,

213158_at
1.87E−35
−0.461
35.37
35.40
Based on asthma P-value, CV,



mRNA





severity and FC, no IL13 filter.


ZNF278
zinc finger protein 278
209431_s_at
6.89E−24
−0.321
28.54
27.46
Based on asthma P-value, CV,









severity and FC, no IL13 filter.


ZRF1
Zuotin related factor 1
213097_s_at
1.21E−39
−0.391
31.35
29.61
Based on asthma P-value, CV,









severity and FC, no IL13 filter.


PIAS1
Protein inhibitor of activated STAT, 1
222371_at
1.20E−48
−0.800
61.25
58.80
consistency and fold change


ATP13A3
ATPase family homolog up-regulated in
212297_at
2.58E−32
−0.380
33.83
32.12
passes all filters for asthma



senescence cells





and IL19


CLK1
CDC-like kinase 1
214683_s_at
1.03E−30
−0.312
32.45
27.55
passes all filters for asthma









and IL13


CYP51A1
cytochrome P450, family 51, subfamily A,
202314_at
1.64E−23
−0.340
35.28
33.52
passes all filters for asthma



polypeptide 1





and IL13


JAG1
jagged 1 (Alagille syndrome)
209099_x_at
2.44E−25
−0.434
37.62
41.87
passes all filters for asthma









and IL13


JAG1
jagged 1 (Alagille syndrome)
216268_s_at
8.21E−21
−0.395
38.71
41.53
passes all filters for asthma









and IL13


MEF2D
MADS box transcription enhancer factor 2,
203003_at
4.52E−21
−0.314
35.29
30.84
passes all filters for asthma



polypeptide D (myocyte enhancer factor 2D)





and IL13


UTP18
CGI-48 protein
203721_s_at
2.87E−43
−0.329
20.93
24.93
passes all filters for asthma









and IL13


ACSL3
acyl-CoA synthetase long-chain family
201662_s_at
3.11E−42
−0.461
35.06
33.58
passes all filters for asthma



member 3





and IL13


C4orf15
chromosome 4 open reading frame 15
210054_at
7.05E−32
−0.386
32.95
30.73
passes all filters for asthma









and IL13


CLASP2
Cytoplasmic linker associated protein 2
212306_at
5.38E−48
−0.370
27.82
26.60
passes all filters for asthma









and IL13


GARNL1
GTPase activating Rap/RanGAP domain-
213049_at
1.67E−26
−0.312
30.27
27.95
passes all filters for asthma



like 1





and IL13


IL6ST
Interleukin 6 signal transducer (gp130,
212195_at
1.90E−28
−0.410
31.07
26.31
passes all filters for asthma



oncostatin M receptor)





and IL13


KIAA1109
KIAA1109
212779_at
8.04E−31
−0.336
30.34
29.23
passes all filters for asthma









and IL13


SFPQ
Splicing factor proline/glutamine rich
214016_s_at
1.83E−47
−0.401
31.30
28.04
passes all filters for asthma



(polypyrimidine tract binding protein





and IL13



associated)


SFPQ
Splicing factor proline/glutamine rich
221768_at
3.28E−41
−0.380
30.87
26.96
passes all filters for asthma



(polypyrimidine tract binding protein





and IL13



associated)


ZBTB11
zinc finger and BTB domain containing 11
204847_at
7.02E−59
−0.393
26.61
23.54
passes all filters for asthma









and IL13


ANXA4
annexin A4
201301_s_at
2.20E−06
0.509
104.44
134.54
asthma p value, FC, severity


CEACAM8
carcinoembryonic antigen-related cell
206676_at
9.65E−08
0.814
84.33
86.47
borderline signal, but FC,



adhesion molecule 8





up, and severity


DEFA1 ///
defensin, alpha 1, myeloid-related
205033_s_at
9.31E−09
0.857
72.57
63.60
consistency, FC and severity


DEFA3 ///
sequence


LOC653600


ELA2
elastase 2, neutrophil
206871_at
2.75E−08
0.715
74.41
67.80
consistency, FC, up severity









and function


LTF ///
lactotransferrin
202018_s_at
2.27E−08
0.978
90.47
86.30
consistency, upFC and


LOC643349






severity


ASGR1
asialoglycoprotein receptor 1
206743_s_at
9.85E−08
0.288
37.88
43.31
passes all filters for asthma









and IL13 and severity


CSF3R
colony stimulating factor 3 receptor
203591_s_at
5.74E−08
0.228
40.88
34.35
passes all filters for asthma



(granulocyte)





and IL13


MYL9
myosin, light polypeptide 9, regulatory
201058_s_at
1.97E−06
0.767
77.65
73.75
consistency and fold change


TNFSF13 ///
tumor necrosis factor (ligand) superfamily,
209500_x_at
3.67E−06
0.178
35.74
40.37
IL13, consistency


TNFSF12-
member 13


TNFSF13


CAT
catalase
211922_s_at
6.53E−25
0.385
33.79
37.64
Based on asthma P-value, CV,









severity and FC, no IL13 filter.


FCGR2C
Fc fragment of IgG, low affinity IIc, receptor
210992_x_at
9.21E−26
0.419
32.46
32.83
Based on asthma P-value, CV,



for (CD32)





severity and FC, no IL13 filter.


MXD1
MAX dimerization protein 1
206877_at
4.35E−24
0.392
37.66
31.00
Based on asthma P-value, CV,









severity and FC, no IL13 filter.


S100A11
S100 calcium binding protein A11
200660_at
1.32E−27
0.526
43.32
40.81
Based on asthma P-value, CV,



(calgizzarin)





severity and FC, no IL13 filter.


IL1R2
interleukin 1 receptor, type II
205403_at
2.74E−10
0.639
85.44
74.25
conistency, severity and









function


IL1R2
interleukin 1 receptor, type II
211372_s_at
4.59E−12
0.684
85.63
75.01
conistency, FC, up, severity


IL32
natural killer cell transcript 4
203828_s_at
2.97E−10
0.610
73.37
84.42
consistency, FC, up, severity


CAMP
cathelicidin antimicrobial peptide
210244_at
5.30E−11
0.873
72.48
79.60
consistency and FC, severity


CD24
Consensus includes gb: AK000168.1
216379_x_at
3.38E−14
0.701
51.51
45.10
consistency and FC and



/DEF = Homo sapiens cDNA FLJ20161 fis,





severity



clone COL09252, highly similar to L33930




Homo sapiens CD24 signal transducer




mRNA. /FEA = mRNA



/DB_XREF = gi: 7020079 /UG = Hs.332045




Homo sapiens cDNA FLJ20161 fis, clone




COL09252, highly similar to L33930 Homo



sapiens CD24 signal transducer mRNA


S100P
S100 calcium binding protein P
204351_at
2.09E−12
0.760
57.03
51.49
consistency and FC and









severity


IL8RB
interleukin 8 receptor, beta
207008_at
2.86E−14
0.579
69.75
63.04
consistency, fairFC, up









severity


MS4A3
membrane-spanning 4-domains, subfamily
210254_at
1.19E−12
0.603
54.63
53.08
consistency, FC and severity



A, member 3 (hematopoietic cell-specific)


CD24
CD24 antigen (small cell lung carcinoma
208651_x_at
6.08E−12
0.688
64.51
65.54
consistency, FC and up,



cluster 4 antigen)





severity


DEFA4
defensin, alpha 4, corticostatin
207269_at
1.25E−12
0.768
57.06
51.82
consistency, FC and









up, severity


GLIPR1
HIV-1 rev binding protein 2
214085_x_at
9.28E−28
0.629
65.77
60.19
consistency, FC, severity


CLC
Charcot-Leyden crystal protein
206207_at
2.31E−21
0.768
61.19
53.10
consistency, FC, up and









severity


VNN3
vanin 3
220528_at
7.00E−17
0.635
64.73
63.04
consistency, FC, up, severity


FCAR
Fc fragment of IgA, receptor for
211307_s_at
9.33E−14
0.616
76.81
89.62
consistency, FC, up, severity


CD24
CD24 antigen (small cell lung carcinoma
209771_x_at
3.78E−11
0.680
57.56
51.90
consistency, FC, severity



cluster 4 antigen)


FCGR3B
Fc fragment of IgG, low affinity IIIb, receptor
204007_at
3.72E−13
0.637
77.64
69.14
IL13 and consistency and FC



for (CD16)





and severity


CHI3L1
chitinase 3-like 1 (cartilage glycoprotein-39)
209396_s_at
3.28E−19
0.888
76.40
75.36
IL13 antag in vivo and









consistency and FC and









severity


FCN1
ficolin (collagen/fibrinogen domain
205237_at
3.23E−08
0.196
25.21
35.11
IL13 antagin vivo and



containing) 1





consistency


ARG1
arginase, liver
206177_s_at
4.73E−09
0.450
54.22
50.62
IL13 in vivo mouse


LCN2
lipocalin 2 (oncogene 24p3)
212531_at
2.10E−09
0.528
44.33
40.50
IL13 in vivo mouse,









consistency


BLVRA
Biliverdin reductase A
203771_s_at
2.78E−18
0.296
29.32
34.52
passes all filters for asthma









and IL13 and in vivo


AK2
Adenylate kinase 2
212175_s_at
1.38E−12
0.203
26.80
29.28
passes all filters for asthma









and IL13


ALDOC
aldolase C, fructose-bisphosphate
202022_at
1.76E−06
0.213
35.24
49.25
passes all filters for asthma









and IL13


CD163
CD163 antigen
203645_s_at
2.23E−09
0.348
49.36
58.14
passes all filters for asthma









and IL13


CD163
CD163 antigen
215049_x_at
1.19E−11
0.380
48.61
54.64
passes all filters for asthma









and IL13


CDA
cytidine deaminase
205627_at
1.16E−17
0.393
36.26
33.02
passes all filters for asthma









and IL13


CTSC
cathepsin C
201487_at
6.79E−17
0.319
31.82
36.87
passes all filters for asthma









and IL13


GLRX
glutaredoxin (thioltransferase)
206662_at
5.26E−08
0.259
34.84
32.61
passes all filters for asthma









and IL13


GRN
granulin
211284_s_at
1.58E−08
0.210
32.42
36.80
passes all filters for asthma









and IL13


GRN
granulin
216041_x_at
2.25E−09
0.225
34.24
36.76
passes all filters for asthma









and IL13


IL13RA1
interleukin 13 receptor, alpha 1
210904_s_at
4.58E−21
0.345
39.27
37.32
passes all filters for asthma









and IL13


LILRB2 ///
leukocyte immunoglobulin-like receptor,
210784_x_at
2.44E−06
0.208
43.92
39.69
passes all filters for asthma


LILRB3
subfamily B (with TM and ITIM domains),





and IL13



member 3


NCF4
neutrophil cytosolic factor 4, 40 kDa
205147_x_at
5.65E−23
0.371
37.70
31.27
passes all filters for asthma









and IL13


NCF4
neutrophil cytosolic factor 4, 40 kDa
207677_s_at
4.20E−18
0.422
45.83
38.94
passes all filters for asthma









and IL13


NUP62
nucleoporin 62 kDa
207740_s_at
1.08E−09
0.237
40.59
41.92
passes all filters for asthma









and IL13


PADI2
Consensus includes gb: AL049569
209791_at
2.99E−09
0.298
36.89
38.70
passes all filters for asthma



/DEF = Human DNA sequence from clone





and IL13



RP1-37C10 on chromosome 1p35.2-35.21.



Contains the gene for the ortholog of



mouse and rat PDI (protein-arginine



deiminase (KIAA0994, EC 3.5.3.15,



peptidylarginine deiminase)), the SDHB



gene for succinate dehydrogenase...



/FEA = mRNA_4 /DB_XREF = gi: 5263031



/UG = Hs.33455 peptidyl arginine deiminase



type II /FL = gb: AB030176.1


RNASE2
ribonuclease, RNase A family, 2 (liver,
206111_at
5.44E−19
0.491
40.55
46.94
passes all filters for asthma



eosinophil-derived neurotoxin)





and IL13


S100A9
S100 calcium binding protein A9
203535_at
2.43E−17
0.339
32.52
54.23
passes all filters for asthma



(calgranulin B)





and IL13


SCCPDH
CGI-49 protein
201825_s_at
1.98E−13
0.281
32.64
32.88
passes all filters for asthma









and IL13


SELL
selectin L (lymphocyte adhesion molecule
204563_at
1.24E−17
0.360
34.03
40.16
passes all filters for asthma



1)





and IL13


SELPLG
Selectin P ligand
209879_at
1.39E−13
0.353
45.30
45.72
passes all filters for asthma









and IL13


TALDO1
transaldolase 1
201463_s_at
9.10E−10
0.250
37.54
42.83
passes all filters for asthma









and IL13


VNN2
vanin 2
205922_at
6.32E−19
0.632
48.53
50.21
passes all filters for asthma









and IL13, and severity related


FCGR2A
Fc fragment of IgG, low affinity IIa, receptor
203561_at
1.48E−26
0.444
34.87
33.95
passes all filters for asthma



for (CD32)





and IL13


PECAM1
platelet/endothelial cell adhesion molecule
208983_s_at
9.48E−21
0.372
32.47
38.27
passes all filters for asthma



(CD31 antigen)





and IL13


CHI3L1
chitinase 3-like 1 (cartilage glycoprotein-39)
209395_at
2.90E−16
1.165
120.28
103.42
up, other probesetIL13 and









consistency and FC and









severity


SPCS2 ///
KIAA0102 gene product
201239_s_at
3.42E−36
0.339
26.97
30.96
asthma p value, CV, FC


LOC653566


CCR2
chemokine (C—C motif) receptor 2
206978_at
6.47E−25
0.336
32.02
28.40
Based on asthma P-value, CV,









severity and FC, no IL13 filter.


FCGR2C
Fc fragment of IgG, low affinity IIc, receptor
211395_x_at
3.04E−31
0.383
29.35
30.36
Based on asthma P-value, CV,



for (CD32)





severity and FC, no IL13 filter.


FPR1
formyl peptide receptor 1
205119_s_at
1.23E−30
0.604
42.64
42.35
Based on asthma P-value, CV,









severity and FC, no IL13 filter.


FRAT2
frequently rearranged in advanced T-cell
209864_at
1.87E−31
0.293
27.89
20.88
Based on asthma P-value, CV,



lymphomas 2





severity and FC, no IL13 filter.


LYN
v-yes-1 Yamaguchi sarcoma viral related
202626_s_at
3.53E−34
0.348
30.00
25.45
Based on asthma P-value, CV,



oncogene homolog





severity and FC, no IL13 filter.


LYN
v-yes-1 Yamaguchi sarcoma viral related
210754_s_at
1.38E−26
0.306
31.31
26.93
Based on asthma P-value, CV,



oncogene homolog





severity and FC, no IL13 filter.


MNDA
myeloid cell nuclear differentiation antigen
204959_at
5.34E−29
0.560
49.72
40.90
Based on asthma P-value, CV,









severity and FC, no IL13 filter.


RNF13
ring finger protein 13
201779_s_at
2.94E−36
0.410
33.67
34.76
Based on asthma P-value, CV,









severity and FC, no IL13 filter.


SP110
SP110 nuclear body protein
208012_x_at
2.60E−41
0.410
27.65
22.99
Based on asthma P-value, CV,









severity and FC, no IL13 filter.


SP110
SP110 nuclear body protein
209761_s_at
5.49E−40
0.453
41.78
31.91
Based on asthma P-value, CV,









severity and FC, no IL13 filter.


SP110
SP110 nuclear body protein
209762_x_at
4.86E−31
0.326
24.83
22.65
Based on asthma P-value, CV,









severity and FC, no IL13 filter.


TLR8
toll-like receptor 8
220832_at
1.96E−20
0.832
82.03
84.24
FC, low frequency, but up









gene


ANP32A
Acidic (leucine-rich) nuclear phosphoprotein
201051_at
2.56E−55
0.368
24.34
23.83
IL13, consistency, low CV,



32 family, member A





severity


BASP1
brain abundant, membrane attached signal
202391_at
3.23E−23
0.506
43.55
47.35
passes all filters for asthma



protein 1





and IL13


GAB2
GRB2-associated binding protein 2
203853_s_at
8.99E−10
0.234
35.59
42.25
passes all filters for asthma









and IL13


PICALM
Phosphatidylinositol binding clathrin
215236_s_at
7.18E−26
0.471
49.17
49.66
passes all filters for asthma



assembly protein





and IL13


PRKAR1A
protein kinase, cAMP-dependent,
200604_s_at
5.40E−20
0.300
40.73
42.48
passes all filters for asthma



regulatory, type I, alpha (tissue specific





and IL13



extinguisher 1)


TNFSF10
tumor necrosis factor (ligand) superfamily,
202688_at
1.13E−19
0.411
40.59
35.21
passes all filters for asthma



member 10





and IL13


ACTR2
Consensus includes gb: BE566290
200728_at
2.27E−31
0.404
30.62
35.52
passes all filters for asthma



/FEA = EST /DB_XREF = gi: 9810010





and IL13



/DB_XREF = est: 601339864F1



/CLONE = IMAGE: 3682406 /UG = Hs.42915



ARP2 (actin-related protein 2, yeast)



homolog /FL = gb: AF006082.1



gb: NM_005722.1


CD14
CD14 antigen
201743_at
4.49E−26
0.473
32.47
39.08
passes all filters for asthma









and IL13


GLRX
glutaredoxin (thioltransferase)
209276_s_at
5.19E−31
0.307
24.56
22.39
passes all filters for asthma









and IL13


LAMP2
lysosomal-associated membrane protein 2
203041_s_at
4.36E−25
0.344
29.74
29.16
passes all filters for asthma









and IL13


TNFSF10
tumor necrosis factor (ligand) superfamily,
202687_s_at
2.38E−21
0.408
44.12
36.33
passes all filters for asthma



member 10





and IL13


IL21R
interleukin 21 receptor
221658_s_at
0.00058494
−0.183
51.72
54.25
severity (best)
















TABLE 1b





PROBESETS DETERMINED TO BE ASSOCIATED WITH ASTHMA


AND/OR IL-13 RESPONSIVENESS





















C






Meets all AOS FC,
D



B
FDR, AND % CV
study_fdr_p


A
Signal
filters AND meets
all visitAOSv


NetAffx-
Average
in vitro IL13 FC
all visit
E


GeneSymbol
AOS
and FDR filters
HVOS
hvos_v_severity_pattern_fdr_0001





NRG1
70.93300288
yes
0.000649679
---


FCER2
26.87524999
failed at least one
0.06545711
---




asthma or IL13




filter


LDLR
124.1549244
yes
3.14441E−06
--h


PRPF39
114.0589725
failed at least one
0
-hh




asthma or IL13




filter


CCNL2 ///
123.4261618
failed at least one
0
-hh


LOC643556

asthma or IL13




filter


EIF2AK3
274.44087
failed at least one
0
-hh




asthma or IL13




filter


NUP88
167.8477839
failed at least one
0
-hh




asthma or IL13




filter


SCML1
71.55604311
failed at least one
0
-hh




asthma or IL13




filter


TNPO1
126.6087483
failed at least one
0
-hh




asthma or IL13




filter


NR4A3
45.02028618
failed at least one
1.44434E−13
-hh




asthma or IL13




filter


ZNF217
146.4744833
failed at least one
1.99574E−08
-hh




asthma or IL13




filter


AHR
98.31079541
yes
0
-hh


C6orf62
109.2188141
yes
1.34623E−14
-hh


CD69
911.3149763
yes
1.29848E−10
-hh


CD83
633.482763
yes
2.62877E−09
-hh


CNOT8
168.5195236
yes
2.10199E−08
-hh


CSE1L
85.80572746
yes
0
-hh


DUSP10
108.001544
yes
9.0426E−07
-hh


DUSP10
226.1691671
yes
4.2957E−11
-hh


EIF1AX
52.24429519
yes
4.38116E−14
-hh


HSPC111
35.70482621
yes
7.72704E−12
-hh


IRF1
805.2855493
yes
1.34992E−08
-hh


ITPR1
33.51806115
yes
1.11754E−10
-hh


KLF9
169.0090347
yes
5.19615E−11
-hh


MAFF
427.3750827
yes
4.64609E−10
-hh


MTF2
40.05407156
yes
1.03466E−10
-hh


NRIP1
279.1013755
yes
2.0734E−11
-hh


PFDN4
133.4805559
yes
4.58381E−11
-hh


RAN
104.1539098
yes
0
-hh


SFPQ
249.7976202
yes
0
-hh


SMAD7
117.0530449
yes
2.59456E−14
-hh


STCH
100.0569238
yes
0
-hh


SUMO1
36.66593466
yes
9.56653E−14
-hh


TIMM17A
156.2467863
yes
0
-hh


TNFAIP3
1119.072385
yes
1.80104E−09
-hh


FUSIP1 ///
155.348343
yes
0
-hh


LOC642558


FUSIP1 ///
222.650046
yes
0
-hh


LOC642558


FBXL11
130.9670047
failed at least one
0
hhh




asthma or IL13




filter


MED6
50.39713359
failed at least one
0
hhh




asthma or IL13




filter


C1orf9
160.1458915
failed at least one
0
hhh




asthma or IL13




filter


ARMC8
75.76836596
failed at least one
0
hhh




asthma or IL13




filter


BMS1L
109.8496904
failed at least one
0
hhh




asthma or IL13




filter


BTG3
274.7712677
failed at least one
0
hhh




asthma or IL13




filter


CAND1
136.9822478
failed at least one
0
hhh




asthma or IL13




filter


CCNT2
43.81108228
failed at least one
0
hhh




asthma or IL13




filter


CRSP6
144.7730278
failed at least one
0
hhh




asthma or IL13




filter


CYLD
108.1450109
failed at least one
0
hhh




asthma or IL13




filter


DBF4
170.4515211
failed at least one
0
hhh




asthma or IL13




filter


DDX47
637.6182135
failed at least one
0
hhh




asthma or IL13




filter


EZH2
50.51582676
failed at least one
0
hhh




asthma or IL13




filter


FAM98A
72.3406249
failed at least one
0
hhh




asthma or IL13




filter


FBXL11
173.6063009
failed at least one
0
hhh




asthma or IL13




filter


FBXO3
66.90527513
failed at least one
0
hhh




asthma or IL13




filter


HIPK1
263.5480876
failed at least one
0
hhh




asthma or IL13




filter


HSF2
135.5690337
failed at least one
0
hhh




asthma or IL13




filter


PDE4D
60.69084458
failed at least one
0
hhh




asthma or IL13




filter


PIGA
112.539613
failed at least one
0
hhh




asthma or IL13




filter


PRDM2
369.0891854
failed at least one
0
hhh




asthma or IL13




filter


RANBP2
281.7290261
failed at least one
0
hhh




asthma or IL13




filter


ZRF1
308.3033989
failed at least one
0
hhh




asthma or IL13




filter


PIAS1
46.64045427
failed at least one
0
hhh




asthma or IL13




filter


ATP13A3
69.05182433
yes
0
hhh


CLK1
554.3180327
yes
0
hhh


CYP51A1
35.58447706
yes
0
hhh


JAG1
52.35423155
yes
0
hhh


JAG1
38.58639535
yes
0
hhh


MEF2D
84.45262915
yes
0
hhh


UTP18
244.8115999
yes
0
hhh


ACSL3
104.5698957
yes
0
hhh


C4orf15
291.2957602
yes
0
hhh


CLASP2
70.73554407
yes
0
hhh


GARNL1
79.83075306
yes
0
hhh


IL6ST
351.1599925
yes
0
hhh


KIAA1109
139.7158703
yes
0
hhh


SFPQ
524.3217781
yes
0
hhh


SFPQ
327.4194028
yes
0
hhh


ZBTB11
220.8998228
yes
0
hhh


ANXA4
110.2394672
failed at least one
8.19608E−06
--l




asthma or IL13




filter


CEACAM8
36.34296886
failed at least one
4.48732E−07
--l




asthma or IL13




filter


DEFA1 ///
1175.323077
failed at least one
5.11661E−08
--l


DEFA3 ///

asthma or IL13


LOC653600

filter


ELA2
34.68204765
failed at least one
1.40865E−07
--l




asthma or IL13




filter


LTF ///
211.8884353
failed at least one
1.18233E−07
--l


LOC643349

asthma or IL13




filter


ASGR1
55.02315435
yes
4.57147E−07
--l


CSF3R
295.6427996
yes
2.7782E−07
--l


MYL9
47.6688663
failed at least one
7.40877E−06
-l-




asthma or IL13




filter


TNFSF13 ///
454.185498
failed at least one
1.31712E−05
-l-


TNFSF12-TNFSF13

asthma or IL13




filter


CAT
151.5761608
failed at least one
0
-ll




asthma or IL13




filter


FCGR2C
211.2085751
failed at least one
0
-ll




asthma or IL13




filter


MXD1
133.5450473
failed at least one
0
-ll




asthma or IL13




filter


S100A11
419.4411835
failed at least one
0
-ll




asthma or IL13




filter


IL1R2
51.98941393
failed at least one
1.87328E−09
-ll




asthma or IL13




filter


IL1R2
34.43463449
failed at least one
4.10453E−11
-ll




asthma or IL13




filter


IL32
165.4247612
failed at least one
2.01811E−09
-ll




asthma or IL13




filter


CAMP
122.0248158
failed at least one
4.07475E−10
-ll




asthma or IL13




filter


CD24
87.57466892
failed at least one
4.11845E−13
-ll




asthma or IL13




filter


S100P
221.9623254
failed at least one
1.96217E−11
-ll




asthma or IL13




filter


IL8RB
45.97242255
failed at least one
3.51263E−13
-ll




asthma or IL13




filter


MS4A3
64.9910355
failed at least one
1.16187E−11
-ll




asthma or IL13




filter


CD24
39.04164933
failed at least one
5.33724E−11
-ll




asthma or IL13




filter


DEFA4
116.1741062
failed at least one
1.21758E−11
-ll




asthma or IL13




filter


GLIPR1
177.7234204
failed at least one
0
-ll




asthma or IL13




filter


CLC
156.0192656
failed at least one
0
-ll




asthma or IL13




filter


VNN3
37.23126106
failed at least one
0
-ll




asthma or IL13




filter




FCAR
51.84024762
failed at least one
1.07153E−12
-ll




asthma or IL13




filter


CD24
86.70160845
failed at least one
2.95714E−10
-ll




asthma or IL13




filter


FCGR3B
412.1004734
failed at least one
3.86956E−12
-ll




asthma or IL13




filter


CHI3L1
37.29455996
failed at least one
0
-ll




asthma or IL13




filter


FCN1
2828.646474
failed at least one
1.63677E−07
-ll




asthma or IL13




filter


ARG1
30.85997161
failed at least one
2.70705E−08
-ll




asthma or IL13




filter


LCN2
156.1940446
failed at least one
1.28002E−08
-ll




asthma or IL13




filter


BLVRA
78.04713527
yes
0
-ll


AK2
89.80666112
yes
1.33283E−11
-ll


ALDOC
45.80153849
yes
6.64418E−06
-ll


CD163
285.7250965
yes
1.35109E−08
-ll


CD163
286.8658725
yes
1.01101E−10
-ll


CDA
128.1966577
yes
0
-ll


CTSC
272.5656885
yes
0
-ll


GLRX
691.1995447
yes
2.56432E−07
-ll


GRN
368.175537
yes
8.3996E−08
-ll


GRN
862.8613246
yes
1.36513E−08
-ll


IL13RA1
91.58111953
yes
0
-ll


LILRB2 ///
157.9679806
yes
8.98859E−06
-ll


LILRB3


NCF4
191.650321
yes
0
-ll


NCF4
171.5688728
yes
0
-ll


NUP62
41.26447806
yes
6.86144E−09
-ll


PADI2
117.6038028
yes
1.77242E−08
-ll


RNASE2
226.9375796
yes
0
-ll


S100A9
4869.24767
yes
0
-ll


SCCPDH
48.40147644
yes
2.16228E−12
-ll


SELL
1193.083165
yes
0
-ll


SELPLG
246.0277891
yes
1.55991E−12
-ll


TALDO1
923.4822475
yes
5.81893E−09
-ll


VNN2
273.6878605
yes
0
-ll


FCGR2A
367.4858084
yes
0
-ll


PECAM1
235.4143414
yes
0
-ll


CHI3L1
13.30867662
failed at least one
6.87162E−15
-ll




asthma or IL13




filter


SPCS2 ///
197.588944
failed at least one
0
lll


LOC653566

asthma or IL13




filter


CCR2
62.19685451
failed at least one
0
lll




asthma or IL13




filter


FCGR2C
320.0024338
failed at least one
0
lll




asthma or IL13




filter


FPR1
637.7236886
failed at least one
0
lll




asthma or IL13




filter


FRAT2
86.67753359
failed at least one
0
lll




asthma or IL13




filter


LYN
668.5004752
failed at least one
0
lll




asthma or IL13




filter


LYN
799.5990504
failed at least one
0
lll




asthma or IL13




filter


MNDA
441.9118025
failed at least one
0
lll




asthma or IL13




filter


RNF13
264.2967848
failed at least one
0
lll




asthma or IL13




filter


SP110
250.2803795
failed at least one
0
lll




asthma or IL13




filter


SP110
142.1184803
failed at least one
0
lll




asthma or IL13




filter


SP110
258.454744
failed at least one
0
lll




asthma or IL13




filter


TLR8
26.51766876
failed at least one
0
lll




asthma or IL13




filter


ANP32A
525.7486516
failed at least one
0
lll




asthma or IL13




filter


BASP1
721.6199711
yes
0
lll


GAB2
263.3492369
yes
5.7646E−09
lll


PICALM
97.21388876
yes
0
lll


PRKAR1A
92.84858327
yes
0
lll


TNFSF10
200.7840535
yes
0
lll


ACTR2
750.1160614
yes
0
lll


CD14
1113.798421
yes
0
lll


GLRX
467.6519696
yes
0
lll


LAMP2
235.3305667
yes
0
lll


TNFSF10
83.75964069
yes
0
lll


IL21R
54.31207645
No
0.001388531
--h













A





NetAffx-
F
G
H


GeneSymbol
hvos_v_moderate_fdr_p
hvos_v_severe_fdr_p
abs_fold_diff_hvos_mild





NRG1
0.009026698
0.000548332
1.0900313


FCER2
0.010150025
0.588595289
1.1964585


LDLR
0.000378886
2.65709E−05
1.20027


PRPF39
0
0
1.1247868


CCNL2 ///
0
0
1.2255175


LOC643556


EIF2AK3
0
0
1.1863362


NUP88
0
0
1.1709633


SCML1
2.4324E−14
0
1.2840292


TNPO1
0
0
1.186311


NR4A3
1.63103E−10
1.54924E−11
1.4022462


ZNF217
5.17555E−06
7.04239E−08
1.0980946


AHR
0
0
1.2893531


C6orf62
1.81592E−12
1.20134E−12
1.1136811


CD69
5.83459E−08
9.93597E−09
1.1487626


CD83
2.89789E−06
2.99302E−08
1.200123


CNOT8
5.36053E−08
1.83283E−06
1.0796458


CSE1L
1.27411E−14
0
1.1135737


DUSP10
3.34595E−05
1.77714E−05
1.1679209


DUSP10
3.61919E−08
5.96659E−10
1.1181729


EIF1AX
8.46698E−11
3.80603E−12
1.1563988


HSPC111
2.70276E−09
6.7388E−10
1.1273993


IRF1
1.76774E−06
5.21722E−07
1.1792367


ITPR1
2.97293E−08
2.10408E−09
1.1346336


KLF9
6.3076E−10
3.09248E−08
1.1699081


MAFF
6.95822E−08
9.40399E−08
1.2628265


MTF2
9.16693E−09
2.80316E−09
1.1115951


NRIP1
8.81562E−08
1.17789E−10
1.2045342


PFDN4
2.56116E−08
4.7911E−10
1.1042632


RAN
6.21824E−12
1.61403E−13
1.1695185


SFPQ
0
0
1.1578352


SMAD7
4.72846E−09
4.67674E−13
1.2365496


STCH
2.91383E−12
6.93844E−13
1.1914706


SUMO1
4.56007E−11
6.83317E−12
1.1507182


TIMM17A
2.4324E−14
0
1.1479441


TNFAIP3
7.0278E−07
1.48444E−07
1.2039276


FUSIP1 ///
0
0
1.2015814


LOC642558



FUSIP1 ///
0
0
1.1688886


LOC642558


FBXL11
0
0
1.2043693


MED6
0
0
1.5056512


C1orf9
0
0
1.3716135


ARMC8
0
0
1.1863882


BMS1L
0
0
1.2105861


BTG3
0
0
1.2478516


CAND1
0
0
1.1882618


CCNT2
0
0
1.229274


CRSP6
0
0
1.3028652


CYLD
0
0
1.2465837


DBF4
0
0
1.2468562


DDX47
0
0
1.2021934


EZH2
0
0
1.3826625


FAM98A
0
0
1.2384189


FBXL11
0
0
1.2118986


FBXO3
0
0
1.2472924


HIPK1
0
0
1.1752893


HSF2
0
0
1.3326057


PDE4D
0
0
1.3689426


PIGA
0
0
1.2340365


PRDM2
0
0
1.1782245


RANBP2
0
0
1.3514163


ZRF1
0
0
1.2347722


PIAS1
0
0
1.5428585


ATP13A3
0
0
1.2798182


CLK1
0
0
1.2048727


CYP51A1
0
0
1.2587317


JAG1
0
0
1.3641315


JAG1
0
2.28955E−12
1.2761916


MEF2D
0
5.07631E−14
1.3088095


UTP18
0
0
1.223598


ACSL3
0
0
1.4218835


C4orf15
0
0
1.2324241


CLASP2
0
0
1.2674452


GARNL1
0
0
1.1879682


IL6ST
0
0
1.2633429


KIAA1109
0
0
1.2342201


SFPQ
0
0
1.2385865


SFPQ
0
0
1.2334359


ZBTB11
0
0
1.2637228


ANXA4
0.000233882
4.79227E−06
1.1309154


CEACAM8
0.000634477
9.15327E−08
1.519524


DEFA1 ///
0.000397424
3.26872E−09
1.5338402


DEFA3 ///


LOC653600


ELA2
0.000326398
6.32029E−09
1.2542478


LTF ///
0.000226279
8.31872E−08
1.8379633


LOC643349


ASGR1
0.000148335
1.20674E−06
1.2065426


CSF3R
0.000690523
3.09701E−09
1.0695103


MYL9
3.58705E−06
0.002573408
1.7379649


TNFSF13 ///
2.28221E−05
0.000313891
1.0807806


TNFSF12-TNFSF13


CAT
0
0
1.2280046


FCGR2C
0
0
1.2545678


MXD1
2.4324E−14
0
1.1968959


S100A11
0
0
1.2915987


IL1R2
6.72792E−06
3.51911E−09
1.4720202


IL1R2
1.02892E−06
3.55039E−11
1.4842882


IL32
1.17884E−07
6.04317E−09
1.11549


CAMP
1.35642E−05
1.03263E−10
1.6363391


CD24
7.59375E−08
7.43807E−14
1.3288694


S100P
1.75198E−06
3.14763E−12
1.432839


IL8RB
1.23946E−08
1.02503E−12
1.3613348


MS4A3
1.2841E−06
4.67674E−13
1.2675646


CD24
1.12175E−06
1.2905E−11
1.3310676


DEFA4
4.80167E−06
8.85173E−14
1.3464402


GLIPR1
0
0
1.3329401


CLC
1.87349E−12
0
1.6124318


VNN3
4.37432E−11
6.66307E−14
1.4115476


FCAR
4.0301E−09
7.18789E−12
1.3220409


CD24
2.05983E−06
6.47498E−11
1.2482704


FCGR3B
5.99908E−08
1.33606E−11
1.4145095


CHI3L1
4.47903E−11
0
1.6458281


FCN1
4.28563E−06
7.44476E−07
1.0577687


ARG1
1.81913E−05
5.70196E−09
1.1107325


LCN2
3.93274E−05
1.55783E−09
1.1884576


BLVRA
6.75951E−14
7.05435E−13
1.194241


AK2
3.38967E−09
1.04803E−09
1.1106102


ALDOC
2.46228E−05
6.00654E−05
1.0690178


CD163
1.21096E−06
1.40139E−08
1.0705831


CD163
1.24863E−07
4.65491E−11
1.1066695


CDA
2.09458E−10
0
1.1438888


CTSC
9.75121E−12
7.05435E−13
1.220479


GLRX
9.68991E−05
1.62209E−06
1.2201218


GRN
5.17523E−06
5.38134E−07
1.0955708


GRN
7.71937E−07
2.7227E−07
1.1173798


IL13RA1
1.19315E−10
0
1.1967039


LILRB2 ///
4.91485E−05
1.01913E−05
1.0042018


LILRB3


NCF4
2.12032E−13
0
1.1911238


NCF4
2.12996E−10
0
1.2252915


NUP62
3.64897E−07
1.43901E−07
1.1265323


PADI2
8.83879E−06
5.30958E−09
1.0728412


RNASE2
1.26533E−13
0
1.0803996


S100A9
4.01028E−11
0
1.172443


SCCPDH
1.06914E−09
1.91953E−10
1.1491969


SELL
1.67365E−12
4.26396E−14
1.1866791


SELPLG
1.2491E−10
1.5163E−09
1.2267512


TALDO1
9.97646E−06
5.71439E−10
1.081436


VNN2
1.00833E−11
0
1.48662


FCGR2A
0
0
1.2731478


PECAM1
0
0
1.208294


CHI3L1
9.92991E−09
0
2.0208938


SPCS2 ///
0
0
1.3018007


LOC653566


CCR2
0
0
1.2069824


FCGR2C
0
0
1.2221703


FPR1
0
0
1.5022589


FRAT2
0
0
1.2018121


LYN
0
0
1.2766533


LYN
0
0
1.2469906


MNDA
0
0
1.3873799


RNF13
0
0
1.2997808


SP110
0
0
1.3041581


SP110
0
0
1.3022007


SP110
0
0
1.2274595


TLR8
3.58366E−13
0
1.9588998


ANP32A
0
0
1.2897683


BASP1
0
0
1.4065954


GAB2
1.67698E−05
7.27501E−08
1.2551724


PICALM
0
0
1.3579167


PRKAR1A
1.93205E−13
0
1.2114841


TNFSF10
2.40619E−13
1.82559E−14
1.3524677


ACTR2
0
0
1.3889208


CD14
0
0
1.3995864


GLRX
0
0
1.2453596


LAMP2
0
0
1.2291658


TNFSF10
0
0
1.2942577


IL21R
0.094525341
4.70737E−05
1.0645965















A


K



NetAffx-
I
J
Accessions from



GeneSymbol
abs_fold_diff_hvos_moderate
abs_fold_diff_hvos_severe
Affymetrix







NRG1
1.2009552
1.2617001
NM_004495 ///






NM_013956 ///






NM_013957 ///






NM_013958 ///






NM_013959 ///






NM_013960 ///






NM_013961 ///






NM_013962 ///






NM_013964



FCER2
1.2293845
1.0478603
NM_002002



LDLR
1.1357137
1.1567128
NM_000527



PRPF39
1.2589747
1.2907404
NM_005645 ///






NM_017922



CCNL2 ///
1.2849947
1.2663662
NM_001039577 ///



LOC643556


NM_030937



EIF2AK3
1.3211942
1.3255965
NM_004836



NUP88
1.2503571
1.2926015
NM_002532



SCML1
1.3555516
1.3865761
NM_001037535 ///






NM_001037536 ///






NM_001037540 ///






NM_006746



TNPO1
1.2503142
1.2723927
NM_002270 ///






NM_153188



NR4A3
1.5755965
1.596894
NM_006981 ///






NM_173198 ///






NM_173199 ///






NM_173200



ZNF217
1.1207241
1.1400187
NM_006526



AHR
1.3782095
1.374457
NM_001621



C6orf62
1.2601851
1.2558883
NM_030939



CD69
1.1479189
1.1529257
NM_001781



CD83
1.176171
1.2054826
NM_001040280 ///






NM_004233



CNOT8
1.1751139
1.1489444
NM_004779



CSE1L
1.2038077
1.2141259
NM_001316



DUSP10
1.1552563
1.1566265
NM_007207 ///






NM_144728 ///






NM_144729



DUSP10
1.1522904
1.1678452
NM_007207 ///






NM_144728 ///






NM_144729



EIF1AX
1.2082984
1.2183392
NM_001412



HSPC111
1.1578531
1.1600445
NM_016391



IRF1
1.1869743
1.1917444
NM_002198



ITPR1
1.2120579
1.2245588
NM_002222



KLF9
1.2691417
1.2326508
NM_001206



MAFF
1.2736062
1.2634372
NM_012323 ///






NM_152878



MTF2
1.2049463
1.2071854
NM_007358



NRIP1
1.2329314
1.2779426
NM_003489



PFDN4
1.1518573
1.1664589
NM_002623



RAN
1.2214164
1.2329798
NM_006325



SFPQ
1.1962132
1.1872436
NM_005066



SMAD7
1.2019874
1.2472938
NM_005904



STCH
1.2426809
1.2438993
NM_006948



SUMO1
1.235779
1.2404618
NM_001005781 ///






NM_001005782 ///






NM_003352



TIMM17A
1.1923635
1.212214
NM_006335



TNFAIP3
1.1679942
1.1739664
NM_006290



FUSIP1 ///
1.3341209
1.3822719
NM_006625 ///



LOC642558


NM_054016



FUSIP1 ///
1.2563506
1.2336688
NM_006625 ///



LOC642558


NM_054016



FBXL11
1.2222387
1.289897
NM_012308



MED6
1.524219
1.5755845
NM_005466



C1orf9
1.4490903
1.4429596
NM_014283 ///






NM_016227



ARMC8
1.2515934
1.2550128
NM_014154 ///






NM_015396 ///






NM_213654



BMS1L
1.2476723
1.2544633
NM_014753



BTG3
1.2584417
1.2619079
NM_006806



CAND1
1.2878968
1.2947149
NM_018448



CCNT2
1.3310442
1.3128059
NM_001241 ///






NM_058241



CRSP6
1.3875687
1.3918511
NM_004268



CYLD
1.3155581
1.3488064
NM_001042355 ///






NM_001042412 ///






NM_015247



DBF4
1.3739064
1.3763653
NM_006716



DDX47
1.2276199
1.2570807
NM_016355 ///






NM_201224



EZH2
1.4485263
1.4911837
NM_004456 ///






NM_152998



FAM98A
1.2388327
1.2815254
NM_015475



FBXL11
1.257824
1.3003388
NM_012308



FBXO3
1.3412003
1.3609909
NM_012175 ///






NM_033406



HIPK1
1.2572686
1.2773049
NM_152696 ///






NM_181358 ///






NM_198268 ///






NM_198269



HSF2
1.3814872
1.3942687
NM_004506



PDE4D
1.3314407
1.3225221
NM_006203



PIGA
1.2690353
1.2450219
NM_002641 ///






NM_020473



PRDM2
1.2332903
1.2584299
NM_001007257 ///






NM_012231 ///






NM_015866



RANBP2
1.4235628
1.4416865
NM_006267



ZRF1
1.3228078
1.3149614
NM_014377



PIAS1
1.7714526
1.7529087
NM_016166



ATP13A3
1.2878747
1.3175344
XM_927225 ///






XM_931948 ///






XM_942079



CLK1
1.2488093
1.2413915
NM_001024646 ///






NM_004071



CYP51A1
1.2718816
1.2622854
NM_000786



JAG1
1.3836917
1.3197165
NM_000214



JAG1
1.3691005
1.2744982
NM_000214



MEF2D
1.246638
1.2274384
NM_005920



UTP18
1.2564842
1.2625439
NM_016001



ACSL3
1.358821
1.3849614
NM_004457 ///






NM_203372



C4orf15
1.2914104
1.335465
NM_024511



CLASP2
1.2909897
1.2976883
NM_015097



GARNL1
1.2582785
1.235858
NM_014990 ///






NM_194301



IL6ST
1.3160256
1.3523378
NM_002184 ///






NM_175767



KIAA1109
1.2664959
1.2633508
XM_371706 ///






XM_934076 ///






XM_934079 ///






XM_934081 ///






XM_934084 ///






XM_934087 ///






XM_934092 ///






XM_934095 ///






XM_934097 ///






XM_936897 ///






XM_943047 ///






XM_943057 ///






XM_943062 ///






XM_943070 ///






XM_943072 ///






XM_943076 ///






XM_943084 ///






XM_943089



SFPQ
1.3242047
1.3320277
NM_005066



SFPQ
1.3098783
1.305736
NM_005066



ZBTB11
1.3142959
1.3218937
NM_014415



ANXA4
1.4038844
1.5037427
NM_001153



CEACAM8
1.5818483
1.9866999
NM_001816



DEFA1 ///
1.5913513
2.0993713
NM_004084 ///



DEFA3 ///


NM_005217



LOC653600



ELA2
1.4983137
1.8696151
NM_001972



LTF ///
1.7625597
2.2055305
NM_002343 ///



LOC643349


XM_926682



ASGR1
1.1958345
1.2472404
NM_001671



CSF3R
1.1311176
1.2284606
NM_000760 ///






NM_156038 ///






NM_156039 ///






NM_172313



MYL9
1.9168758
1.5214736
NM_006097 ///






NM_181526



TNFSF13 ///
1.1496026
1.1236226
NM_003808 ///



TNFSF12-TNFSF13


NM_172087 ///






NM_172088 ///






NM_172089



CAT
1.2887458
1.3367678
NM_001752



FCGR2C
1.3337322
1.355572
NM_001005410 ///






NM_001005411 ///






NM_001005412 ///






NM_201563



MXD1
1.2797653
1.3658903
NM_002357



S100A11
1.4555425
1.4541998
NM_005620



IL1R2
1.4810048
1.6463968
NM_004633 ///






NM_173343



IL1R2
1.5128059
1.7217256
NM_004633 ///






NM_173343



IL32
1.5466106
1.5943075
NM_001012631 ///






NM_001012632 ///






NM_001012633 ///






NM_001012634 ///






NM_001012635 ///






NM_001012636 ///






NM_001012718 ///






NM_004221



CAMP
1.6527018
2.0523546
NM_004345



CD24
1.5329024
1.7778519
NM_013230



S100P
1.5636109
1.8754753
NM_005980



IL8RB
1.4455629
1.5656198
NM_001557



MS4A3
1.4235672
1.6647463
NM_001031666 ///






NM_001031809 ///






NM_006138



CD24
1.5208683
1.7573935
NM_013230



DEFA4
1.532612
1.9541149
NM_001925



GLIPR1
1.5426836
1.5919833
NM_006851



CLC
1.6220217
1.7974969
NM_001828



VNN3
1.530229
1.6023256
NM_001024460 ///






NM_018399 ///






NM_078625



FCAR
1.5104606
1.596433
NM_002000 ///






NM_133269 ///






NM_133271 ///






NM_133272 ///






NM_133273 ///






NM_133274 ///






NM_133277 ///






NM_133278 ///






NM_133279 ///






NM_133280



CD24
1.5247802
1.7521099
NM_013230



FCGR3B
1.5000236
1.6351324
NM_000570



CHI3L1
1.7400788
1.9984528
NM_001276



FCN1
1.1503577
1.158168
NM_002003



ARG1
1.3295277
1.4535418
NM_000045



LCN2
1.3710201
1.5615426
NM_005564



BLVRA
1.2397541
1.2228556
NM_000712



AK2
1.154778
1.1560139
NM_001625 ///






NM_013411



ALDOC
1.1752506
1.1620939
NM_005165



CD163
1.2713729
1.3139648
NM_004244 ///






NM_203416



CD163
1.2854848
1.355049
NM_004244 ///






NM_203416



CDA
1.2805546
1.3779105
NM_001785



CTSC
1.2456267
1.2535174
NM_001814 ///






NM_148170



GLRX
1.175648
1.2123243
NM_002064



GRN
1.1563325
1.1681712
NM_001012479 ///






NM_002087



GRN
1.1723434
1.1751952
NM_001012479 ///






NM_002087



IL13RA1
1.2191561
1.3322448
NM_001560



LILRB2 ///
1.1658321
1.1761444
NM_005874 ///



LILRB3


NM_006864



NCF4
1.2600886
1.3447754
NM_000631 ///






NM_013416



NCF4
1.2980644
1.400882
NM_000631 ///






NM_013416



NUP62
1.1831131
1.1850369
NM_012346 ///






NM_016553 ///






NM_153718 ///






NM_153719



PADI2
1.2120843
1.2770249
NM_007365



RNASE2
1.4064658
1.470496
NM_002934



S100A9
1.2472153
1.299472
NM_002965



SCCPDH
1.2195332
1.2239605
NM_016002



SELL
1.2848616
1.2996667
NM_000655



SELPLG
1.2968625
1.2697532
NM_003006



TALDO1
1.1663666
1.232109
NM_006755



VNN2
1.5103815
1.5993172
NM_004665 ///






NM_078488



FCGR2A
1.347988
1.3890123
NM_021642



PECAM1
1.3008057
1.3048504
NM_000442



CHI3L1
2.0049198
2.5315099
NM_001276



SPCS2 ///
1.2726261
1.2506267
NM_014752 ///



LOC653566


XM_930430 ///






XM_934795 ///






XM_934796 ///






XM_934797 ///






XM_940181 ///






XM_944484 ///






XM_944485 ///






XM_944490



CCR2
1.2570451
1.2766177
NM_000647 ///






NM_000648



FCGR2C
1.3067098
1.3164378
NM_001005410 ///






NM_001005411 ///






NM_001005412 ///






NM_201563



FPR1
1.5140272
1.5286369
NM_002029



FRAT2
1.2121175
1.241748
NM_012083



LYN
1.2474337
1.295761
NM_002350



LYN
1.2144684
1.2545185
NM_002350



MNDA
1.4468299
1.5162714
NM_002432



RNF13
1.2946395
1.3663729
NM_007282 ///






NM_183381 ///






NM_183382 ///






NM_183383 ///






NM_183384



SP110
1.3298263
1.3315606
NM_004509 ///






NM_004510 ///






NM_080424



SP110
1.3621926
1.3884504
NM_004509 ///






NM_004510 ///






NM_080424



SP110
1.2673443
1.245558
NM_004509 ///






NM_004510 ///






NM_080424



TLR8
1.7335482
1.7922032
NM_016610 ///






NM_138636



ANP32A
1.2590967
1.3192117
NM_006305



BASP1
1.4181785
1.4248169
NM_006317



GAB2
1.150799
1.1858317
NM_012296 ///






NM_080491



PICALM
1.3418938
1.4326251
NM_001008660 ///






NM_007166



PRKAR1A
1.2227879
1.2427804
NM_002734 ///






NM_212471 ///






NM_212472



TNFSF10
1.3233824
1.3304447
NM_003810



ACTR2
1.3044029
1.3278847
NM_001005386 ///






NM_005722



CD14
1.3964797
1.3791678
NM_000591 ///






NM_001040021



GLRX
1.2280767
1.2432021
NM_002064



LAMP2
1.256374
1.2894208
NM_002294 ///






NM_013995



TNFSF10
1.3274412
1.3317059
NM_003810



IL21R
1.0833414
1.198681
NM_021798(11),






NM_181078






(11), NM_181079






(11)

















TABLE 2







ANNOTATIONS OF PREVIOUSLY UNCHARACTERIZED MARKERS



















C






J



A
B
Affy


F
G
H
I
Trans


Affymetrix
Affymetrix
Consensus
D
E
NCBI Gene
Refseq/GenBank
Refseq
Orthologs-Mus
Membrane
K


Qualifier
Annotations
Seq Hits to
NCBI-Gene
NCBI-Aliases
Description
Accessions
Protein
& Rat
domains
GO





203429_s_at
C1orf9
3′UTR of
C1ORF9
CH1
chromosome
NM_016227
NP_057311
Variant 1 89%
NP_055098
None




NM_016227,


1 open

(Variant
similaity to Mus
(7-25)




NM_014283


reading

2), NP_055098.1
predicted







frame 9

(Variant1)
XP_922178 &







protein;


87% similarity to







membrane


rat







protein CH1


np_955435.rsrat_aa,










Variant 2










83% similaity to











Mus predicted











XP_922178 &










88% similarity to










rat










np_955435.rsrat_aa


210054_at
C4orf15
3′UTR of
C4ORF15
DKFZp686I1868
hypothetical
NM_024511
NP_078787,
Percent
No
None




NM_024511

IT1,
protein


Similarity: 84.245






MGC4701
LOC79441


& Percent










Identity: 78.773










to NR: 109499876










ref|XP_001057582.1|










PREDICTED:










similar to EEA1










(Early Endosome










Antigen, Rab










effector) homolog










family member










(eea-1) isoform 1










[Rattus











norvegicus],











Percent










Similarity: 84.386










& Percent










Identity: 78.070










to mouse










ortholog










NP_666271


222309_at
C6orf62







No


212779_at
KIAA1109
ORF and
KIAA1109
DKFZp781P0474,
fragile site-
DQ335469
ABC59821
Percent
25-47 aa
Molecular




3′UTR of

FSA,
associated


Similarity: 97.815

Function:




DQ335469

MGC110967
protein;


Percent Identity:

Aspartic-type







hypothetical


96.847 to mus

endopeptidase,







protein


XP_980288

Biological







LOC84162


prediction, 33-39%

Process:










similarity to

proteolysis











C. elegans











proteins










q8wtl7_caeel.trembl,










q9n3r9_caeel.trembl (lpd-3)


213158_at

predicted
ZBTB20
HOF; DPZF;
zinc finger
NM_015642
NP_062752
Yes in Mus &
No
DNA binding




3′UTR of

ODA-8S;
and BTB


well-conserved

IEA




ZBTB20

ZNF288;
domain




metal ion






DKFZp566F123
containing 20




binding IEA












protein binding












IEA












zinc ion binding












IEA












Process












Evidence












regulation of












transcription,












DNA-












dependent IEA












transcription












IEA












Component












Evidence












intracellular IEA












nucleus IEA
















TABLE 3







(Allergy Drugs in Development or on the Market)









MARKETER
BRAND NAME (Generic Name)
MECHANISM





Schering-Plough
Claritin & Claritin D (loratidine)
Anti-histamine


UCB
Vancenase (beclomethasone)
Steroid



Reactine (cetirizine) (US)
Anti-histamine



Zyrtec (cetirizine) (ex US)



Longifene (buclizine)
Anti-histamine



UCB 28754 (ceterizine alalogue)
Anti-histamine


Glaxo
Beconase (beclomethasone)
Steroid



Flonase (fluticasone)
Steroid


Aventis
Allegra (fexofenadine)
Anti-histamine



Seldane (terfenadine)


Pfizer
Reactine (cetirizine) (US)
Anti-histamine



Zyrtec/Reactine (cetirizine) (ex US)



(both licensed from UCB)


Sepracor
Allegra (fexofenadine)
Anti-histamine



Desloratadine (lic to Schering-Plought)
Anti-histamine



Cetirizine (−) (lic to UCB)
Anti-histamine



Norastemizole (option to J&J not exercised, Nov.



17, 1999)


B. Ingelheim
Alesion (epinastine)
Anti-histamine


Aventis
Kestin (ebastine) (US)



Bastel (ebastme) Eu/Ger)



Nasacort (tramcinolone)
Steroid


Johnson & Johnson
Hismanol (estemizole)
Anti-histamine



Livostin/Livocarb (levocabastine)
Anti-histamine


AstraZeneca
Rhinocort (budesonide) (Astra)
Steroid


Merck
Rhmocort (budesonide)
Steroid


Eisai
Azeptin (azelastine)
Anti-histamine


Kissei
Rizaben (tranilast)
Anti-histamine


Shionogi
Triludan (terfenadine)
Anti-histamine



S-5751


Schwarz
Zolim (mizolastine)
Anti-histamine


Daiichi
Zyrtec (cetirizine) (ex US)
Anti-histamine


Tanabe
Talion/TAU-284 (betatastine)
Anti-histamine


Seiyaku


Sankyo**
CS 560 (Hypersensitizaion therapy for cedar pollen
Other



allergy)


Asta Medica
Azelastine-MDPI (azelastine)
Anti-histamine


BASF
HSR 609
Anti-histamine


SR Pharma
SRL 172
Immunomodulation


Peptide
Allergy vaccine (allergy (hayfever, anaphylaxis,
Downregulates IgE



atopic asthma))


Therapeutics
Tolerizing peptide vaccine (rye grass peptide (T
Immuno-



cell epitope))
suppressant


Coley
CpG DNA
Immunomodulation


Pharmaceutical


Group


Genetech
Anti-IgE
Down-regulator of




IgE


SR Pharma
SRL 172
Immunomodulation
















TABLE 4







(Asthma Drugs in Development or on the Market)









MARKETER
BRAND NAME (Generic Name)
MECHANISM





Glaxo
Serevent (salmeterol)
Bronchodilator/beta-2 agonist



Flovent (fluticasone)
Steroid



Flixotide (fluticasone)



Becotide (betamethasone)
Steroid



Ventolin (salbutamol)
Bronchodilator/beta-2 agonist



Seretide (salmeterol &
Beta agonist & steroid



fluticasone)



GW215864
Steroid, hydrolysable



GW250495
Steroid, hydrolysable



GW28267
Adenosine A2a receptor




agonist


AstraZeneca
Bambec (bambuterol) (Astra)



Pulmicort (budesonide)
Steroid



(Astra)



Bricanyl Turbuhaler
Bronchodilator/beta-2 agonist



(terbutaline) (Astra)



Accolate (zafurlukast)
Leukotriene antagonist Clo-



(Zeneca)
Phyllin (theophylline)



Inspiryl (salbutamol) (Astra)
Bronchodilator/beta-2 agonist



Oxis Turbuhaler
Bronchodilator/beta-2 agonist



(D2522/formoterol)



Symbicort (pulmicort-oxis
Steroid



combination)



Roflepanide (Astra)
Steroid



Bronica (seratrodast)
Thromboxane A2 synthesis




inhibitor



ZD 4407 (Zeneca)
5 lipoxygenase inhibitor


B. Ingelheim
Atrovent (Ipratropium)
Bronchodilator/anti-cholinergic



Berodual (ipratropium &
Bronchodilator/beta-2 agonist



fenoterol)



Berotec (fenoterol)
Bronchodilator/beta-2 agonist



Alupent (orciprenaline)
Bronchodilator/beta-2 agonist



Ventilat (oxitropium)
Bronchodilator/anti-cholinergic



Spiropent (clenbuterol)
Bronchodilator/beta-2 agonist



Inhacort (flunisolide)
Steroid



B1679/tiotropium bromide



RPR 106541
Steroid



BLIX 1
Potassium channel



BIIL284
LTB-4 antagonist


Schering-Plough
Proventil (salbutamol)
Bronchodilator/beta-2 agonist



Vanceril (becbomethasone)
Steroid



Mometasone furoate
Steroid



Theo-Dur (theophylline (w/



Astra)



Uni-Dur (theophylline)



Asmanex (mometasone)
Steroid



CDP 835 (lic from Celitech)
Anti-IL-5 Mab


RPR
Intal (disodium cromoglycate)
Anti-inflammatory


(Aventis)
Inal/Aarane (disodium



cromoglycate)



Tilade (nedocromil sodium)



Azmacort (triamcinolone
Steroid



acetonide)



RP 73401
PDE-4 inhibitor


Novartis
Zaditen (ketotifen)
Anti-inflammatory



Azmacort (triamoinolone)
Steroid



Foradil (formoterol) lic from
Bronchodilator/beta-2 agonist



Yamanouchi)



E25
Anti-IgE



KCO 912
K+ Channel opener


Merck
Singulair (montelukast)
Leukotriene antagonist Clo-




Phyllin (theophylline)



Pulinicort Turbuhaler
Steroid



(budesonide)



Slo-Phyllin (theophylline)



Symbicort (Pulmicort-Oxis
Steroid



combination)



Oxis Turbuhaler
Bronchodilator/beta-2 agonist



(D2522/formoterol)



Roflepanide (Astra)
Steroid



VLA-4 antagoinst (lic from
VLA-4 antagonist



Biogen)


ONO
Onon (pranlukast)
Leukotriene antagonist



Vega (ozagrel)
Thromboxane A2 synthase




inhibitor


Fujisawa
Intal (chromoglycate)
Anti-inflammatory



FK 888
Neurokine antagonist


Forest Labs
Aerobid (flunisolide)
Steroid


IVAX
Ventolin (salbutamol)
Bronchodilator/beta-2 agonist



Becotide (beclomethasone
Steroid



Easi-Breathe)



Serevent (salmeterol)
Bronchodilator/beta-2 agonist



Flixotide (fluticasone)
Steroid



Salbutamol Dry Powder
Bronchodilator/beta-2 agonist



Inhaler


Alza
Volmax (salbutamol)
Bronchodilator/beta-2 agonist


Altana
Euphyllin (theophylline)
Xanthine



Ciclesonide
Arachidonic acid antagonist



BY 217
PDE 4 inhibitor



BY 9010N (ciclesonide)
Steroid (nasal)


Tanabe
Flucort (fluocinolone acetonide)
Steroid


Seiyaku


Kissei
Domenan (ozagrel)
Thromboxane A2 synthase




inhibitor








Abbott
Zyflo (zileuton) (4X/day dosing, not competitive w/ Singulair or



Accolate, no further interest in this area)









Asta Medica
Aerobec (beclomethasone




dipropionate) (w/ 3M)



Allergodil (azelastine)



Allergospasmin (sodium



cromoglycate reproterol)



Bronchospasmin (reproterol)



Salbulair (salbutamol sulphate)



(w/3M)



TnNasal (triamcinolone)
Steroid



Fomoterol-MDPI
Beta 2 adrenoceptor agonist



Budesonide-MDPI


UCB
Atenos/Respecal (tulobuerol)
Bronchodilator/beta-2 agonist


Recordati
Theodur (theophylline)
Xanthine








Medeva
Clickhalers Asmasal, Asmabec (salbutamol beclomethasone



diproprionate, dry inhaler)









Eisai
E6123
PAF receptor antagonist


Sankyo
Zaditen (ketofen)
Anti-inflammatory



CS 615
Leukotriene antaonist


Shionogi
Anboxan/S 1452 (domitroban)
Thromboxane A2 receptor




antagonist


Yamanouchi
YM 976
Leukotriene D4/thromboxane




A2




dual antagonist


3M Pharma
Exirel (pirbuterol)


Hoechst
Autoinhalers (3M albuterol
Bronchodilator/beta-2 agonist



projects)


(Aventis)


SmithKline
Ariflo
PDE-4 inhibitor


Beecham
SB 240563
Anti-IL5 Mab (humanized)



SB 240683
Anti-IL4 Mab



IDEC 151/clenoliximab
Anti-CD4 Mab, primatised


Roche
Anti-IgE(GNE)/CG051901
Down-regulator of IgE


Sepracor
Fomoterol (R, R)
Beta 2 adrenoceptor agonist



Xopenex (levalbuterol)
Beta 2 adrenoceptor agonist


Bayer
BAY U 3405 (ramatroban)
Thromboxane A2 antagonist



BAY 16-9996 (once monthly
IL4 mutein



dosing)



BAY 19-8004
PDE-4 inhibitor


SR Pharma
SRL 172
Immunomodulation


Immunex
Nuance
Soluble IL-4 receptor




(immunomodulator)


Biogen
Anti-VLA-4
Immunosuppressant


Vanguard
VML 530
Inhibitor of 5-lipox activation




protein


Recordati
Respix (zafurlukast)
Leukotriene antagonist


Genetech
Anti-IgE Mab
Down-regulator of IgE


Warner
CI-1018
PDE 4 inhibitor


Lambert


Celltech/
CDP 835/SCH 55700 (anti-
PDE 4 inhibitor



IL-5) (lic. to Schering-Plough)


Chiroscience
D4418 (w/ Schering-Plough)
PDE 4 inhibitor



CDP 840 (Celltech)
PDE 4 inhibitor


AHP
Pda-641 (asthma steroid



replacement)


Peptide
RAPID Technology Platform
Protease inhibitors


Therapeutics


Coley
CpG DNA


Pharmaceutical


Group
















TABLE 5







Stringency Conditions














Hybridization



Stringency
Poly-nucleotide

Temperature and
Wash Temp.


Condition
Hybrid
Hybrid Length (bp)1
BufferH
and BufferH





A
DNA:DNA
>50
65° C.; 1xSSC -or-
65° C.;





42° C.; 1xSSC, 50%
0.3xSSC





formamide


B
DNA:DNA
<50
TB*; 1xSSC
TB*; 1xSSC


C
DNA:RNA
>50
67° C.; 1xSSC -or-
67° C.;





45° C.; 1xSSC, 50%
0.3xSSC





formamide


D
DNA:RNA
<50
TD*; 1xSSC
TD*; 1xSSC


E
RNA:RNA
>50
70° C.; 1xSSC -or-
70° C.;





50° C.; 1xSSC, 50%
0.3xSSC





formamide


F
RNA:RNA
<50
TF*; 1xSSC
Tf*; 1xSSC


G
DNA:DNA
>50
65° C.; 4xSSC -or-
65° C.; 1xSSC





42° C.; 4xSSC, 50%





formamide


H
DNA:DNA
<50
TH*; 4xSSC
TH*; 4xSSC


I
DNA:RNA
>50
67° C.; 4xSSC -or-
67° C.; 1xSSC





45° C.; 4xSSC, 50%





formamide


J
DNA:RNA
<50
TJ*; 4xSSC
TJ*; 4xSSC


K
RNA:RNA
>50
70° C.; 4xSSC -or-
67° C.; 1xSSC





50° C.; 4xSSC, 50%





formamide


L
RNA:RNA
<50
TL*; 2xSSC
TL*; 2xSSC






1The hybrid length is that anticipated for the hybridized region(s) of the hybridizing polynucleotides. When hybridizing a polynucleotide to a target polynucleotide of unknown sequence, the hybrid length is assumed to be that of the hybridizing polynucleotide. When polynucleotides of known sequence are hybridized, the hybrid length can be determined by aligning the sequences of the polynucleotides and identifying the region or regions of optimal sequence complementarity.




FI: SSPE (1x SSPE is 0.15M NaCl, 10 mM NaH2PO4, and 1.25 mM EDTA, pH 7.4) can be substituted for SSC (1x SSC is 0.15M NaCl and 15 mM sodium citrate) in the hybridization and wash buffers.



TB* − TR*: The hybridization temperature for hybrids anticipated to be less than 50 base pairs in length should be 5-10° C. less than the melting temperature (Tm) of the hybrid, where Tm is determined according to the following equations. For hybrids less than 18 base pairs in length, Tm(° C.) = 2(# of A + T bases) + 4(# of G + C bases). For hybrids between 18 and 49 base pairs in length, Tm(° C.) = 81.5 + 16.6 (log10[Na+]) + 0.41(% G + C) − (600/N), where N is the number of bases in the hybrid, and [Na+] is the molar concentration of sodium ions in the hybridization buffer ([Na+] for 1x SSC = 0.165 M)














TABLE 6







>HG-U133A: 201662_s_at; 152; 617; 2327; Antisense;



TCTGGCATCAGTTTGCTACAGTGAG





>HG-U133A: 201662_s_at; 267; 369; 2376; Antisense;


GAAATGCATGTCTCAAGCTGCAAGG





>HG-U133A: 201662_s_at; 449; 141; 2390; Antisense;


AAGCTGCAAGGCAAACTCCATTCCT





>HG-U133A: 201662_s_at; 34; 135; 2403; Antisense;


AACTCCATTCCTCATATTAAACTAT





>HG-U133A: 201662_s_at; 686; 101; 2429; Antisense;


ACTTCTCATGACGTCACCATTTTTA





>HG-U133A: 201662_s_at; 463; 577; 2437; Antisense;


TGACGTCACCATTTTTAACTGACAG





>HG-U133A: 201662_s_at; 679; 69; 2478; Antisense;


AGACAGCAAACTTGTGTCTGTCTCT





>HG-U133A: 201662_s_at; 229; 679; 2531; Antisense;


TTTACCACCTATGACTGTACTTGTC





>HG-U133A: 201662_s_at; 153; 75; 2588; Antisense;


AGCAGTGATTTTAAAACCTCAAGTT





>HG-U133A: 201662_s_at; 641; 433; 2817; Antisense;


GTTGCTGTGTAATTATTGTCTTGTA





>HG-U133A: 201662_s_at; 437; 163; 2827; Antisense;


AATTATTGTCTTGTATGCATTTGAG





>HG-U133A: 200728_at; 292; 361; 2959; Antisense;


GAACAGATAAGTTTGCCTGCATGCT





>HG-U133A: 200728_at; 495; 199; 2978; Antisense;


CATGCTGGACATGCCTCAGAACCAT





>HG-U133A: 200728_at; 684; 631; 2993; Antisense;


TCAGAACCATGAATAGCCCGTACTA





>HG-U133A: 200728_at; 648; 657; 3006; Antisense;


TAGCCCGTACTAGATCTTGGGAACA





>HG-U133A: 200728_at; 441; 529; 3025; Antisense;


GGAACATGGATCTTAGAGTCACTTT





>HG-U133A: 200728_at; 110; 243; 3090; Antisense;


CGGGGCTTGTTAAAGGACGCGTATG





>HG-U133A: 200728_at; 493; 423; 3110; Antisense;


GTATGTAGGGCCCGTACCTACTGGC





>HG-U133A: 200728_at; 365; 89; 3125; Antisense;


ACCTACTGGCAGTTGGGTTCAGGGA





>HG-U133A: 200728_at; 414; 117; 3149; Antisense;


AAATGGGATTGACTTGGCCTTCAGG





>HG-U133A: 200728_at; 174; 211; 3167; Antisense;


CTTCAGGCTCCTTTGGTCATAATTT





>HG-U133A: 200728_at; 82; 143; 3246; Antisense;


AAGAGCATTTATCGTTTGTCCCTTG





>HG-U133A: 202820_at; 127; 343; 4969; Antisense;


GAATAGCCTGAACCTGGGAATCGGA





>HG-U133A: 202820_at; 58; 187; 5026; Antisense;


CAGCCTGGCAATAGACCGAGCTCCG





>HG-U133A: 202820_at; 363; 41; 5116; Antisense;


ATGGCTTCGGACAAAATATCTCTGA





>HG-U133A: 202820_at; 396; 115; 5129; Antisense;


AAATATCTCTGAGTTCTGTGTATTT





>HG-U133A: 202820_at; 82; 677; 5153; Antisense;


TTCAGTCAAAACTTTAAACCTGTAG





>HG-U133A: 202820_at; 479; 121; 5168; Antisense;


AAACCTGTAGAATCAATTTAAGTGT





>HG-U133A: 202820_at; 253; 639; 5220; Antisense;


TAATTTGTTTCCAGCATGAGGTATC





>HG-U133A: 202820_at; 590; 571; 5225; Antisense;


TGTTTCCAGCATGAGGTATCTAAGG





>HG-U133A: 202820_at; 506; 67; 5254; Antisense;


AGACCAGAGGTCTAGATTAATACTC





>HG-U133A: 202820_at; 389; 689; 5329; Antisense;


TTACTCTCTTCCACATGTTACTGGA





>HG-U133A: 202820_at; 569; 575; 5394; Antisense;


TGATGACAATCAGTTATACAGTTAT





>HG-U133A: 212175_s_at; 363; 213; 1007; Antisense;


CTTTTATCTCAGAACCCCATGGGTT





>HG-U133A: 212175_s_at; 620; 637; 1053; Antisense;


TCAAATTGTTGTCCTGTCTGTCTAT





>HG-U133A: 212175_s_at; 500; 389; 1091; Antisense;


GAGCTTTGATTACTGACTCCGGTTC





>HG-U133A: 212175_s_at; 200; 1; 1261; Antisense;


CCCTGACTTACCACTAATTTACTAG





>HG-U133A: 212175_s_at; 542; 629; 1297; Antisense;


TCATGAGTAACCTCTCACAGCTACC





>HG-U133A: 212175_s_at; 15; 275; 1350; Antisense;


CCTTCTTTTATCTGCACTGTGTGAA





>HG-U133A: 212175_s_at; 511; 339; 1396; Antisense;


GCAAGTGTCCTAAGCTATGTCATCC





>HG-U133A: 212175_s_at; 142; 461; 1414; Antisense;


GTCATCCAAAGATTGTCCTTTCCAT





>HG-U133A: 212175_s_at; 362; 701; 1433; Antisense;


TTCCATTCTCAAATCCTGTGACTGG





>HG-U133A: 212175_s_at; 586; 381; 1452; Antisense;


GACTGGGATCACTCAACAGCACTGT





>HG-U133A: 212175_s_at; 378; 139; 984; Antisense;


AAGCCAGTGCTCTAAGACCTCAGCT





>HG-U133A: 202022_at; 421; 311; 1035; Antisense;


GCTGCCACTGAGGAGTTCATCAAGC





>HG-U133A: 202022_at; 532; 75; 1124; Antisense;


AGCAGCACAGTCACTCTACATTGCC





>HG-U133A: 202022_at; 250; 285; 1147; Antisense;


CCAACCATGCCTACTGAGTATCCAC





>HG-U133A: 202022_at; 320; 653; 1158; Antisense;


TACTGAGTATCCACTCCATACCACA





>HG-U133A: 202022_at; 374; 591; 1201; Antisense;


TGCACCCACTTTTGCTTGTAGTCAT





>HG-U133A: 202022_at; 323; 549; 1226; Antisense;


GGCCAGGGCCAAATAGCTATGCAGA





>HG-U133A: 202022_at; 48; 67; 1248; Antisense;


AGAGCAGAGATGCCTTCACCTGGCA





>HG-U133A: 202022_at; 349; 207; 1311; Antisense;


CATTGCTGCACCTGGGACCATAGGA





>HG-U133A: 202022_at; 649; 519; 1338; Antisense;


GGAGGATAGGGAGCCCCTCATGACT





>HG-U133A: 202022_at; 142; 615; 1427; Antisense;


TCCCACAATTTTCCCATGATGAGGT





>HG-U133A: 202022_at; 643; 233; 994; Antisense;


CTGCACTCAATGCCTGGCGAGGGCA





>HG-U133A: 201051_at; 477; 475; 1202; Antisense;


GTGAGCATTTGTTCCTGACTCTCAA





>HG-U133A: 201051_at; 668; 671; 1236; Antisense;


TTTGGAGTTCTCTTACGTTTCCTGG





>HG-U133A: 201051_at; 51; 547; 1297; Antisense;


GGCTGGTCTCAGTTTGGTTACTCAA





>HG-U133A: 201051_at; 377; 333; 1339; Antisense;


GCACCAGCCATATCTTTTGCTTTGG





>HG-U133A: 201051_at; 397; 637; 1365; Antisense;


TCACATGATGATACCTGCTTTTCTC





>HG-U133A: 201051_at; 687; 179; 1404; Antisense;


CATCCAACGCCCTGGTTTGTAAATA





>HG-U133A: 201051_at; 502; 669; 1446; Antisense;


TTTGGCACTGGTCTGGGGACATTCC





>HG-U133A: 201051_at; 423; 675; 1486; Antisense;


TTTCCCCCTTCACAGATGGTGGTGG





>HG-U133A: 201051_at; 664; 527; 1528; Antisense;


GGACTCTGATGTTACTCTTGAGCTT





>HG-U133A: 201051_at; 208; 363; 1568; Antisense;


GAAAACCGCAGGCTTGTTGTGTTAA





>HG-U133A: 201051_at; 32; 361; 1630; Antisense;


GAAACACACCTTCAAACTTCAACTT





>HG-U133A: 201301_s_at; 679; 367; 1023; Antisense;


GAAAGTCTCTGTACTCGTTCATCAA





>HG-U133A: 201301_s_at; 103; 167; 1045; Antisense;


CAAGGGTGACACATCTGGAGACTAC





>HG-U133A: 201301_s_at; 577; 119; 1073; Antisense;


AAAGTACTGCTTGTTCTCTGTGGAG





>HG-U133A: 201301_s_at; 697; 527; 1125; Antisense;


GGACAGGAGGATTCTCAACACTTTG





>HG-U133A: 201301_s_at; 130;625; 1170; Antisense;


TCTACACTGCTATTATCATTATCTC





>HG-U133A: 201301_s_at; 499; 505; 718; Antisense;


GGTGAAATTTCTAACTGTTCTCTGT





>HG-U133A: 201301_s_at; 197; 571; 733; Antisense;


TGTTCTCTGTTCCCGGAACCGAAAT





>HG-U133A: 201301_s_at; 83; 533; 747; Antisense;


GGAACCGAAATCACCTGTTGCATGT





>HG-U133A: 201301_s_at; 591; 587; 844; Antisense;


TGAAGATGCTCTGCTGGCTATAGTA





>HG-U133A: 201301_s_at; 416; 537; 932; Antisense;


GGCACCGATGATAACACCCTCATCA





>HG-U133A: 201301_s_at; 263; 13; 993; Antisense;


ATATCCGGGCACACTTCAAGAGACT





>HG-U133A: 206177_s_at; 64;3 155; 1006; Antisense;


CAAGCCTATTGACTACCTTAACCCA





>HG-U133A: 206177_s_at; 420; 439; 1113; Antisense;


GTTATCCTTCTAAAGACTTGTTCTT





>HG-U133A: 206177_s_at; 36; 221; 1168; Antisense;


CTCTACAAATTCCCTCTTGGTGTAA





>HG-U133A: 206177_s_at; 70; 645; 1322; Antisense;


TAAGCACACTTACATAAGCCCCCAT





>HG-U133A: 206177_s_at; 339; 83; 1338; Antisense;


AGCCCCCATACATAGAGTGGGACTC





>HG-U133A: 206177_s_at; 352; 483; 1354; Antisense;


GTGGGACTCTTGGAATCAGGAGACA





>HG-U133A: 206177_s_at; 33; 47; 1371; Antisense;


AGGAGACAAAGCTACCACATGTGGA





>HG-U133A: 206177_s_at; 263; 119; 1395; Antisense;


AAAGGTACTATGTGTCCATGTCATT





>HG-U133A: 206177_s_at; 164; 129; 950; Antisense;


AACACAGCAGTTGCAATAACCTTGG





>HG-U133A: 206177_s_at; 316; 21; 965; Antisense;


ATAACCTTGGCTTGTTTCGGACTTG





>HG-U133A: 206177_s_at; 525; 527; 983; Antisense;


GGACTTGCTCGGGAGGGTAATCACA





>HG-U133A: 219094_at; 417; 705; 2294; Antisense;


TTGAATGTTTCCATGTACCTCACTT





>HG-U133A: 219094_at; 699; 275; 2304; Antisense;


CCATGTACCTCACTTTATTTCAGTT





>HG-U133A: 219094_at; 304; 671; 2381; Antisense;


TTTGGTACATCTAAGTTTTCACTTA





>HG-U133A: 219094_at; 566; 517; 2455; Antisense;


GGATGTTGACGCCAATGTTCAGTTT





>HG-U133A: 219094_at; 79; 573; 2470; Antisense;


TGTTCAGTTTGGGTACGTTGGTGTA





>HG-U133A: 219094_at; 282; 505; 2481; Antisense;


GGTACGTTGGTGTATTGCAAGGGGA





>HG-U133A: 219094_at; 543; 509; 2587; Antisense;


GGTTATTAGGGCCCATTAGAAACAG





>HG-U133A: 219094_at; 352; 141; 2635; Antisense;


AAGCTCTAAAAAACCATCTCATGGA





>HG-U133A: 219094_at; 315; 23; 2771; Antisense;


ATCATGTTCTAGAAATACCTGCAAC





>HG-U133A: 219094_at; 341; 17; 2785; Antisense;


ATACCTGCAACATGACAGTCTAATC





>HG-U133A: 219094_at; 708; 37; 2837; Antisense;


ATGTGTATAATTTCCTGGTAAGGCT





>HG-U133A: 206743_s_at; 624; 217; 1000; Antisense;


CTACCGCTGGGTCTGCGAGACAGAG





>HG-U133A: 206743_s_at; 600; 497; 1008; Antisense;


GGGTCTGCGAGACAGAGCTGGACAA





>HG-U133A: 206743_s_at; 555; 597; 1084; Antisense;


TGCCGCAGGGGTCCGGGATTGGGAA





>HG-U133A: 206743_s_at; 70; 625; 1126; Antisense;


TCTTCTGCTTTCTCGGGAATTTTCA





>HG-U133A: 206743_s_at; 609; 223; 1137; Antisense;


CTCGGGAATTTTCATCTAGGATTTT





>HG-U133A: 206743_s_at; 292; 417; 1176; Antisense;


GATAGGGTGATGTTCCGAAGGTGAG





>HG-U133A: 206743_s_at; 290; 501; 1195; Antisense;


GGTGAGGAGCTTGAAACCCGTGGCG





>HG-U133A: 206743_s_at; 157; 47; 771; Antisense;


AGGAGCAGAAATTTGTCCAGCACCA





>HG-U133A: 206743_s_at; 181; 369; 778; Antisense;


GAAATTTGTCCAGCACCACATAGGC





>HG-U133A: 206743_s_at; 487; 283; 793; Antisense;


CCACATAGGCCCTGTGAACACCTGG





>HG-U133A: 206743_s_at; 328; 389; 899; Antisense;


GAGCAGCCGGACGACTGGTACGGCC





>HG-U133A: 212297_at; 420; 435; 1883; Antisense;


GTTCCCCATGTTTATGAAAGTCCTG





>HG-U133A: 212297_at; 329; 113; 2014; Antisense;


AAATATTCATGCATGCAATTTTGAC





>HG-U133A: 212297_at; 23; 565; 2058; Antisense;


TGTATATTTATGGTGGGAGGTGGTT





>HG-U133A: 212297_at; 25; 163; 2109; Antisense;


AATTTTTGTACAGTCTGTGGGCATT





>HG-U133A: 212297_at; 127; 465; 2121; Antisense;


GTCTGTGGGCATTTACACATTTTTA





>HG-U133A: 212297_at; 391; 147; 2188; Antisense;


AAGTTACTTCTAGTTATGATTTGTG





>HG-U133A: 212297_at; 517; 423; 2205; Antisense;


GATTTGTGAATTCCCTAAGACCTTG





>HG-U133A: 212297_at; 619; 155; 2257; Antisense;


AATGATACTGCATCTTTATATTTTT





>HG-U133A: 212297_at; 516; 113; 2283; Antisense;


AAATTGTATTGCTGCTCAAGAATGG





>HG-U133A: 212297_at; 38; 19; 2301; Antisense;


AGAATGGTACCCTCTTGTCAAAAAG





>HG-U133A: 212297_at; 199; 205; 2331; Antisense;


CATTCATAATTGTACATTCAGCATT





>HG-U133A: 202391_at; 154; 19; 1003; Antisense;


ATACCTTCAGTCAACTTTACCAAGA





>HG-U133A: 202391_at; 521; 467; 1029; Antisense;


GTCCTGGATTTCCAAGATCCGCGTC





>HG-U133A: 202391_at; 661; 97; 1099; Antisense;


ACTCCTCCACCGCTGAGAGTTGAAT





>HG-U133A: 202391_at; 440; 17; 1122; Antisense;


ATAGCTTTTCTTCTGCAATGGGAGT





>HG-U133A: 202391_at; 353; 521; 1149; Antisense;


GGAGTGATGCGTTTGATTCTGCCCA





>HG-U133A: 202391_at; 292; 189; 1293; Antisense;


CAGACAGAGCCCACTTAGCTTGTCC





>HG-U133A: 202391_at; 112; 559; 1321; Antisense;


TGGATCTCAATGCCAATCCTCCATT





>HG-U133A: 202391_at; 617; 205; 1342; Antisense;


CATTCTTCCTCTCCAGATATTTTTG





>HG-U133A: 202391_at; 152; 55; 1369; Antisense;


AGTGACAAACATTCTCTCATCCTAC





>HG-U133A: 202391_at; 141; 657; 1395; Antisense;


TAGCCTACCTAGATTTCTCATGACG





>HG-U133A: 202391_at; 26; 401; 1419; Antisense;


GAGTTAATGCATGTCCGTGGTTGGG





>HG-U133A: 203771_s_at; 97; 189; 267; Antisense;


CAGAGCCCGAGAGGAAGTTTGGCGT





>HG-U133A: 203771_s_at; 399; 59; 276; Antisense;


AGAGGAAGTTTGGCGTGGTGGTGGT





>HG-U133A: 203771_s_at; 255; 265; 315; Antisense;


CCGGCTCCGTGCGGATGAGGGACTT





>HG-U133A: 203771_s_at; 104; 517; 327; Antisense;


GGATGAGGGACTTGCGGAATCCACA





>HG-U133A: 203771_s_at; 378; 233; 368; Antisense;


CTGAACCTGATTGGCTTCGTGTCGA





>HG-U133A: 203771_s_at; 272; 539; 380; Antisense;


GGCTTCGTGTCGAGAAGGGAGCTCG





>HG-U133A: 203771_s_at; 141; 525; 397; Antisense;


GGAGCTCGGGAGCATTGATGGAGTC





>HG-U133A: 203771_s_at; 107; 323; 408; Antisense;


GCATTGATGGAGTCCAGCAGATTTC





>HG-U133A: 203771_s_at; 607; 425; 427; Antisense;


GATTTCTTTGGAGGATGCTCTTTCC





>HG-U133A: 203771_s_at; 112; 417; 440; Antisense;


GATGCTCTTTCCAGCCAAGAGGTGG





>HG-U133A: 203771_s_at; 403; 15; 474; Antisense;


ATATCTGCAGTGAGAGCTCCAGCCA





>HG-U133A: 203082_at; 5; 175; 3608; Antisense;


CAAAGGACAGGCGGAGACCGGCCGT





>HG-U133A: 203082_at; 276; 263; 3629; Antisense;


CCGTCATACGCGAGCCTCATGAAAG





>HG-U133A: 203082_at; 133; 145; 3655; Antisense;


AAGATCCTTGCACTGCTGGATGCTC





>HG-U133A: 203082_at; 394; 595; 3668; Antisense;


TGCTGGATGCTCTGAGTACGGTGCA





>HG-U133A: 203082_at; 339; 355; 3807; Antisense;


GAAGCTCTTCAGAATTCAGGGGCAG





>HG-U133A: 203082_at; 298; 481; 3873; Antisense;


GGGCCAATTGCAGTGAGCCTTTGGA





>HG-U133A: 203082_at; 228; 569; 3908; Antisense;


TGTCCCTGGATCTGCGGAGGTAGAC





>HG-U133A: 203082_at; 418; 345; 3953; Antisense;


GAATGCCTGTGAATGACACGTCAGT





>HG-U133A: 203082_at; 506; 61; 3993; Antisense;


AGATGTCTCTACTCAAACTGTGCCT





>HG-U133A: 203082_at; 209; 239; 4048; Antisense;


CTGGGACTGGGTTCATTCTCATGAC





>HG-U133A: 203082_at; 681; 5; 4062; Antisense;


ATTCTCATGACTTGGGGCTGTCGAG





>HG-U133A: 205548_s_at; 102; 15; 1115; Antisense;


ATATATTGTGCATCAACTCTGTTGG





>HG-U133A: 205548_s_at; 440; 485; 1159; Antisense;


GTGGACGATTTGTTCTAGCACCTTT





>HG-U133A: 205548_s_at; 673; 153; 701; Antisense;


AATGGCCATCAGAATCACTATCCTC





>HG-U133A: 205548_s_at; 42; 607; 724; Antisense;


TCCTCCTGTTCCATTTGGTTATCCA





>HG-U133A: 205548_s_at; 12; 113; 763; Antisense;


AAATAAACCATATCGCCCAATTCCA





>HG-U133A: 205548_s_at; 258; 165; 781; Antisense;


AATTCCAGTGACATGGGTACCTCCT





>HG-U133A: 205548_s_at; 521; 607; 802; Antisense;


TCCTCCTGGAATGCATTGTGACCGG





>HG-U133A: 205548_s_at; 321; 385; 821; Antisense;


GACCGGAATCACTGGATTAATCCTC





>HG-U133A: 205548_s_at; 525; 691; 837; Antisense;


TTAATCCTCACATGTTAGCACCTCA





>HG-U133A: 205548_s_at; 14; 299; 854; Antisense;


GCACCTCACTAACTTCGTTTTTGAT





>HG-U133A: 205548_s_at; 199; 565; 967; Antisense;


TGGGCCAAACCATCAAACTTATTTT





>HG-U133A: 203429_s_at; 613; 399; 5339; Antisense;


GAGATTATTATTCCTTGATGTTTGC





>HG-U133A: 203429_s_at; 30; 579; 5354; Antisense;


TGATGTTTGCTTTGTATTGGCTACA





>HG-U133A: 203429_s_at; 151; 39; 5399; Antisense;


ATGTGATGTCGATGTCTCTGTCTTT





>HG-U133A: 203429_s_at; 177; 393; 5534; Antisense;


GAGAATTGACCATTTATTGTTGTGA





>HG-U133A: 203429_s_at; 456; 571; 5640; Antisense;


TGTAATGTGACTTATTTAACGCCTT





>HG-U133A: 203429_s_at; 384; 699; 5725; Antisense;


TTCCTGTCTGCACAATTAGCTATTC





>HG-U133A: 203429_s_at; 150; 651; 5741; Antisense;


TAGCTATTCAGAGCAAGAGGGCCTG





>HG-U133A: 203429_s_at; 531; 291; 5761; Antisense;


GCCTGATTTTATAGAAGCCCCTTGA





>HG-U133A: 203429_s_at; 450; 355; 5774; Antisense;


GAAGCCCCTTGAAAAGAGGTCCAGA





>HG-U133A: 203429_s_at; 342; 163; 5821; Antisense;


AATTATGTGATCTGTGTGTTGTGGG





>HG-U133A: 203429_s_at; 684; 653; 5868; Antisense;


TACGGAGCTGTAGTGCCATTAGAAA





>HG-U133A: 210054_at; 623; 7; 1891; Antisense;


ATTCTACTCATAGGCTTTACCAAGT





>HG-U133A: 210054_at; 303; 169; 2010; Antisense;


CAAGATCAGTTGGCAGTATCTGCTC





>HG-U133A: 210054_at; 439; 539; 2021; Antisense;


GGCAGTATCTGCTCAAGAACATTCT





>HG-U133A: 210054_at; 604; 673; 2045; Antisense;


TTTCTTTCTGTCCAAACGGAATAAG





>HG-U133A: 210054_at; 659; 485; 2073; Antisense;


GTGGACATGCTTTGTGATACTTTGT





>HG-U133A: 210054_at; 205; 187; 2112; Antisense;


CAGCTTTTGCTTAGTGATCAGGAGT





>HG-U133A: 210054_at; 509; 343; 2171; Antisense;


GAATAAGCTAAATCATCTCCTCACT





>HG-U133A: 210054_at; 348; 203; 2184; Antisense;


CATCTCCTCACTGATATTCTTGCTG





>HG-U133A: 210054_at; 167; 427; 2339; Antisense;


GATTAAGGCTGTTAGTCTTGAAGAT





>HG-U133A: 210054_at; 336; 343; 2382; Antisense;


GAATCTTTATTACGTGTCCTCTTTT





>HG-U133A: 210054_at; 95; 687; 2391; Antisense;


TTACGTGTCCTCTTTTATTTATTAG





>HG-U133A: 222309_at; 410; 41; 141; Antisense;


AGGCTGAAGTAACCTTATTCCTATT





>HG-U133A: 222309_at; 484; 87; 152; Antisense;


ACCTTATTCCTATTGTTTAGTAGCT





>HG-U133A: 222309_at; 411; 57; 170; Antisense;


AGTAGCTAATAGCATGCTTTTGATA





>HG-U133A: 222309_at; 472; 325; 181; Antisense;


GCATGCTTTTGATATGCTTATGATC





>HG-U133A: 222309_at; 684; 3; 270; Antisense;


ATTGTGATGCTGTATCATATTTTAT





>HG-U133A: 222309_at; 254; 1; 297; Antisense;


TACGGTTTATAAGAAAAGCTCCTAG





>HG-U133A: 222309_at; 705; 65; 308; Antisense;


AGAAAAGCTCCTAGGTATAAAATGC





>HG-U133A: 222309_at; 67; 153; 328; Antisense;


AATGCTACATAGCAGGAACTTGGTT





>HG-U133A: 222309_at; 343; 245; 339; Antisense;


GCAGGAACTTGGTTTTTCAATGTTA





>HG-U133A: 222309_at; 56; 37; 358; Antisense;


ATGTTATTATTTCCTACTGTTTTTG





>HG-U133A: 222309_at; 197; 605; 369; Antisense;


TCCTACTGTTTTTGACGTAACGGCA





>HG-U133A: 210244_at; 589; 355; 136; Antisense;


GAAGCTGTGCTTCGTGCTATAGATG





>HG-U133A: 210244_at; 448; 17; 154; Antisense;


ATAGATGGCATCAACCAGCGGTCCT





>HG-U133A: 210244_at; 291; 383; 211; Antisense;


GACCCCAGGCCCACGATGGATGGGG





>HG-U133A: 210244_at; 200; 41; 226; Antisense;


ATGGATGGGGACCCAGACACGCCAA





>HG-U133A: 210244_at; 259; 373; 241; Antisense;


GACACGCCAAAGCCTGTGAGCTTCA





>HG-U133A: 210244_at; 262; 383; 291; Antisense;


GACGACACAGCAGTCACCAGAGGAT





>HG-U133A: 210244_at; 286; 501; 347; Antisense;


GGTGTATGGGGACAGTGACCCTCAA





>HG-U133A: 210244_at; 488; 249; 35; Antisense;


CCCAAAGGGATGGCCACTCCCTGGG





>HG-U133A: 210244_at; 425; 543; 382; Antisense;


GGCTCCTTTGACATCAGTTGTGATA





>HG-U133A: 210244_at; 111; 427; 419; Antisense;


GATTTGCCCTGCTGGGTGATTTCTT





>HG-U133A: 210244_at; 245; 681; 506; Antisense;


TTTTGCGGAATCTTGTACCCAGGAC





>HG-U133A: 207483_s_at; 661; 81; 3884; Antisense;


AGCGATCTGCCATGAGAGCAGTAGC





>HG-U133A: 207483_s_at; 52; 403; 3939; Antisense;


GAGTCCACTGATGAGTGAATTCCAG





>HG-U133A: 207483_s_at; 95; 341; 3955; Antisense;


GAATTCCAGTCACAGATCAGTTCTA





>HG-U133A: 207483_s_at; 58; 421; 3969; Antisense;


GATCAGTTCTAACCCTGAGCTGGCG





>HG-U133A: 207483_s_at; 233; 389; 3985; Antisense;


GAGCTGGCGGCTATCTTTGAAAGTA





>HG-U133A: 207483_s_at; 482; 629; 4021; Antisense;


TCATCATCTACTAACTTGGAATCAA





>HG-U133A: 207483_s_at; 287; 371; 4048; Antisense;


GACACTAGTTAGATGTTTGTTCACC





>HG-U133A: 207483_s_at; 621; 443; 4062; Antisense;


GTTTGTTCACCATGGGGACCATTAC





>HG-U133A: 207483_s_at; 40; 501; 4075; Antisense;


GGGGACCATTACATATGACCATACA





>HG-U133A: 207483_s_at; 482; 13; 4247; Antisense;


ATTTCCATAATCCAGAGGTTGTAAA





>HG-U133A: 207483_s_at; 237; 505; 4349; Antisense;


GGTCCAGTATCTATTTACCCTGTAA





>HG-U133A: 211922_s_at; 290; 541; 1036; Antisense;


GGCATTGAGGCCAGTCCTGACAAAA





>HG-U133A: 211922_s_at; 345; 249; 1105; Antisense;


CGCCTGGGACCCAATTATCTTCATA





>HG-U133A: 211922_s_at; 626; 627; 1125; Antisense;


TCATATACCTGTGAACTGTCCCTAC





>HG-U133A: 211922_s_at; 190; 549; 1180; Antisense;


GGCCCGATGTGCATGCAGGACAATC





>HG-U133A: 211922_s_at; 14; 319; 1235; Antisense;


GCTTTGGTGCTCCGGAACAACAGCC





>HG-U133A: 211922_s_at; 336; 471; 1297; Antisense;


GTGCGGAGATTCAACACTGCCAATG





>HG-U133A: 211922_s_at; 541; 645; 1326; Antisense;


TAACGTTACTCAGGTGCGGGCATTC





>HG-U133A: 211922_s_at; 459; 639; 1448; Antisense;


TCAAGAACTTCACTGAGGTCCACCC





>HG-U133A: 211922_s_at; 269; 583; 1473; Antisense;


TGACTACGGGAGCCACATCCAGGCT





>HG-U133A: 211922_s_at; 480; 143; 1528; Antisense;


AAGAATGCGATTCACACCTTTGTGC





>HG-U133A: 211922_s_at; 665; 509; 996; Antisense;


GGTTGAACAGATAGCCTTCGACCCA





>HG-U133A: 221427_s_at; 408; 143; 583; Antisense;


AAGAAAGCCAAGGCGGACAGCCCCG





>HG-U133A: 221427_s_at; 416; 243; 649; Antisense;


CGGAGCCGTGAGCAGAGCTACTCGA





>HG-U133A: 221427_s_at; 202; 611; 682; Antisense;


TCCCGATCAGCGTCTCCTAAGAGGA





>HG-U133A: 221427_s_at; 660; 361; 708; Antisense;


GAAAAGTGACAGCGGCTCCACATCT





>HG-U133A: 221427_s_at; 20; 179; 726; Antisense;


CACATCTGGTGGGTCCAAGTCGCAG





>HG-U133A: 221427_s_at; 332; 83; 751; Antisense;


AGCCGCTCCCGGAGCAGGAGTGACT





>HG-U133A: 221427_s_at; 208; 249; 801; Antisense;


CGCTCCCTACAAAGGCTCTGAGATT





>HG-U133A: 221427_s_at; 488; 573; 819; Antisense;


TGAGATTCGGGGCTCCCGGAAGTCC





>HG-U133A: 221427_s_at; 28; 169; 873; Antisense;


CAAGTCTCGGAGCCGGAGTTCTTCC





>HG-U133A: 221427_s_at; 546; 659; 894; Antisense;


TTCCCGTTCTCGAAGCAGGTCACGG





>HG-U133A: 221427_s_at; 2; 409; 990; Antisense;


GAGGTCGTATGAACGCACAGGCCGT





>HG-U133A: 213743_at; 545; 707; 272; Antisense;


TTGTGTGAGCTATTCAAACTCTTCA





>HG-U133A: 213743_at; 15; 101; 289; Antisense;


ACTCTTCAACCCCTGAACAGGGTAT





>HG-U133A: 213743_at; 442; 361; 303; Antisense;


GAACAGGGTATTAAGCTTCCAAAAT





>HG-U133A: 213743_at; 39; 123; 381; Antisense;


AAACCCTTATAATTCATACTATCAT





>HG-U133A: 213743_at; 633; 341; 406; Antisense;


GAATTTGCTTTATCCATCTCATTTG





>HG-U133A: 213743_at; 477; 25; 421; Antisense;


ATCTCATTTGCATAACAGTTCATCT





>HG-U133A: 213743_at; 623; 645; 433; Antisense;


TAACAGTTCATCTGTCTGGTCCCAT





>HG-U133A: 213743_at; 12; 487; 450; Antisense;


GGTCCCATTAGGCTCTACCAAAGAA





>HG-U133A: 213743_at; 58; 579; 484; Antisense;


TGAGTGGACATTATTACTGTGACTC





>HG-U133A: 213743_at; 87; 97; 499; Antisense;


ACTGTGACTCTTGTAAGTAGCCATA





>HG-U133A: 213743_at; 379; 47; 549; Antisense;


AGGTATGAAATTCCACATGTGCAAA





>HG-U133A: 206978_at; 39; 605; 1661; Antisense;


TCCATCGCTGTCATCTCAGCTGGAT





>HG-U133A: 206978_at; 417; 697; 1691; Antisense;


TTCTCTCAGGCTTGCTGCCAAAAGC





>HG-U133A: 206978_at; 670; 1; 1763; Antisense;


ATTCGAGTGTTTCAGTGCTTCGCAG





>HG-U133A: 206978_at; 540; 471; 1777; Antisense;


GTGCTTCGCAGATGTCCTTGATGCT





>HG-U133A: 206978_at; 580; 313; 1799; Antisense;


GCTCATATTGTTCCCTAATTTGCCA





>HG-U133A: 206978_at; 289; 101; 1919; Antisense;


ACTTTCCTCTTAGTCGAGCCAAGTT





>HG-U133A: 206978_at; 442; 481; 1966; Antisense;


GTGTGTTTCTGATCTGATGCAAGCA





>HG-U133A: 206978_at; 43; 563; 1999; Antisense;


TGGGCTTCTAGAACCAGGCAACTTG





>HG-U133A: 206978_at; 33; 529; 2024; Antisense;


GGAACTAGACTCCCAAGCTGGACTA





>HG-U133A: 206978_at; 682; 305; 2040; Antisense;


GCTGGACTATGGCTCTACTTTCAGG





>HG-U133A: 206978_at; 463; 373; 2100; Antisense;


GACAGAGCAGAACTTTCACCTTCAT





>HG-U133A: 201743_at; 660; 469; 1002; Antisense;


GTGCCTAAAGGACTGCCAGCCAAGC





>HG-U133A: 201743_at; 608; 287; 1020; Antisense;


GCCAAGCTCAGAGTGCTCGATCTCA





>HG-U133A: 201743_at; 590; 337; 1048; Antisense;


GCAACAGACTGAACAGGGCGCCGCA





>HG-U133A: 201743_at; 283; 581; 1076; Antisense;


TGACGAGCTGCCCGAGGTGGATAAC





>HG-U133A: 201743_at; 571; 233; 1101; Antisense;


CTGACACTGGACGGGAATCCCTTCC





>HG-U133A: 201743_at; 136; 95; 1150; Antisense;


ACGAGGGCTCAATGAACTCCGGCGT





>HG-U133A: 201743_at; 284; 257; 1243; Antisense;


CCCGGGGCTTTGCCTAAGATCCAAG





>HG-U133A: 201743_at; 620; 489; 1306; Antisense;


GGGAGTCCCGTCAGGACGTTGAGGA





>HG-U133A: 201743_at; 53; 579; 1325; Antisense;


TGAGGACTTTTCGACCAATTCAACC





>HG-U133A: 201743_at; 565; 277; 799; Antisense;


CCATCCAGAATCTAGCGCTGCGCAA





>HG-U133A: 201743_at; 392; 255; 929; Antisense;


CCCTAGCGCTCCGAGATGCATGTGG





>HG-U133A: 203645_s_at; 544; 285; 3126; Antisense;


GCCAGACGCTGGGGCCATAGTGAGT





>HG-U133A: 203645_s_at; 295; 245; 3237; Antisense;


CGTCAGTCATCCTTTATTGCAGTCG





>HG-U133A: 203645_s_at; 351; 667; 3251; Antisense;


TATTGCAGTCGGGATCCTTGGGGTT





>HG-U133A: 203645_s_at; 121; 551; 3284; Antisense;


GGCCATTTTCGTCGCATTATTCTTC





>HG-U133A: 203645_s_at; 320; 191; 3327; Antisense;


CAGAGACAGCGGCTTGCAGTTTCCT





>HG-U133A: 203645_s_at; 202; 687; 3366; Antisense;


TTAGTCCACCAAATTCAATACCGGG





>HG-U133A: 203645_s_at; 464; 655; 3384; Antisense;


TACCGGGAGATGAATTCTTGCCTGA





>HG-U133A: 203645_s_at; 418; 293; 3445; Antisense;


GCCATTCTGAGCCACACTGAAAAGG





>HG-U133A: 203645_s_at; 493; 19; 3483; Antisense;


ATAACCCAGTGAGTTCAGCCTTTAA





>HG-U133A: 203645_s_at; 209; 557; 3538; Antisense;


TGGAGCAGAAATTCACCTCTCTCAC





>HG-U133A: 203645_s_at; 66; 511; 3587; Antisense;


GGAGTTCTTCTTCTCCTAGGATTCC





>HG-U133A: 215049_x_at; 296; 245; 3237; Antisense;


CGTCAGTCATCCTTTATTGCAGTCG





>HG-U133A: 215049_x_at; 350; 667; 3251; Antisense;


TATTGCAGTCGGGATCCTTGGGGTT





>HG-U133A: 215049_x_at; 122; 551; 3284; Antisense;


GGCCATTTTCGTCGCATTATTCTTC





>HG-U133A: 215049_x_at; 321; 191; 3327; Antisense;


CAGAGACAGCGGCTTGCAGTTTCCT





>HG-U133A: 215049_x_at; 482; 163; 3444; Antisense;


AATTCCCATGAGTCAGCTGATTTCA





>HG-U133A: 215049_x_at; 165; 119; 3521; Antisense;


AAAGGAGGCCATTCTGAGCCACACT





>HG-U133A: 215049_x_at; 494; 19; 3566; Antisense;


ATAACCCAGTGAGTTCAGCCTTTAA





>HG-U133A: 215049_x_at; 210; 557; 3621; Antisense;


TGGAGCAGAAATTCACCTCTCTCAC





>HG-U133A: 215049_x_at; 607; 635; 3633; Antisense;


TCACCTCTCTCACTGACTATTACAG





>HG-U133A: 215049_x_at; 67; 511; 3670; Antisense;


GGAGTTCTTCTTCTCCTAGGATTCC





>HG-U133A: 215049_x_at; 628; 215; 3685; Antisense;


CTAGGATTCCTAAGACTGCTGCTGA





>HG-U133A: 208651_x_at; 279; 239; 1406; Antisense;


CTGGGATTACAGGCTTGAGCCCCCG





>HG-U133A: 208651_x_at; 239; 303; 1430; Antisense;


GCGCCCAGCCATCAAAATGCTTTTT





>HG-U133A: 208651_x_at; 53; 319; 1448; Antisense;


GCTTTTTATTTCTGCATATGTTTGA





>HG-U133A: 208651_x_at; 247; 637; 1612; Antisense;


TCACAAACTTTTATACTCTTTCTGT





>HG-U133A: 208651_x_at; 482; 617; 1632; Antisense;


TCTGTATATACATTTTTTTTCTTTA





>HG-U133A: 208651_x_at; 168; 161; 1676; Antisense;


AATAGCCACATTTAGAACACTTTTT





>HG-U133A: 208651_x_at; 128; 131; 1691; Antisense;


AACACTTTTTGTTATCAGTCAATAT





>HG-U133A: 208651_x_at; 572; 415; 1721; Antisense;


GATAGTTAGAACCTGGTCCTAAGCC





>HG-U133A: 208651_x_at; 309; 357; 1729; Antisense;


GAACCTGGTCCTAAGCCTAAAAGTG





>HG-U133A: 208651_x_at; 308; 149; 1749; Antisense;


AAGTGGGCTTGATTCTGCAGTAAAT





>HG-U133A: 208651_x_at; 229; 649; 1769; Antisense;


TAAATCTTTTACAACTGCCTCGACA





>HG-U133A: 209771_x_at; 248; 637; 1931; Antisense;


TCACAAACTTTTATACTCTTTCTGT





>HG-U133A: 209771_x_at; 310; 357; 2048; Antisense;


GAACCTGGTCCTAAGCCTAAAAGTG





>HG-U133A: 209771_x_at; 309; 149; 2068; Antisense;


AAGTGGGCTTGATTCTGCAGTAAAT





>HG-U133A: 209771_x_at; 230; 649; 2088; Antisense;


TAAATCTTTTACAACTGCCTCGACA





>HG-U133A: 209771_x_at; 549; 291; 2104; Antisense;


GCCTCGACACACATAAACCTTTTTA





>HG-U133A: 209771_x_at; 390; 159; 2131; Antisense;


AATAGACACTCCCCGAAGTCTTTTG





>HG-U133A: 209771_x_at; 234; 147; 2146; Antisense;


AAGTCTTTTGTTCGCATGGTCACAC





>HG-U133A: 209771_x_at; 647; 663; 2201; Antisense;


TATGGCCACAGTAGTCTTGATGACC





>HG-U133A: 209771_x_at; 421; 581; 2221; Antisense;


TGACCAAAGTCCTTTTTTTCCATCT





>HG-U133A: 209771_x_at; 707; 361; 2306; Antisense;


GAACACTCTTGCTTTATTCCAGAAT





>HG-U133A: 209771_x_at; 240; 479; 2365; Antisense;


GTGTATTTACGCTTTGATTCATAGT





>HG-U133A: 216379_x_at; 246; 637; 1447; Antisense;


TCACAAACTTTTATACTCTTTCTGT





>HG-U133A: 216379_x_at; 308; 357; 1564; Antisense;


GAACCTGGTCCTAAGCCTAAAAGTG





>HG-U133A: 216379_x_at; 307; 149; 1584; Antisense;


AAGTGGGCTTGATTCTGCAGTAAAT





>HG-U133A: 216379_x_at; 228; 649; 1604; Antisense;


TAAATCTTTTACAACTGCCTCGACA





>HG-U133A: 216379_x_at; 548; 291; 1620; Antisense;


GCCTCGACACACATAAACCTTTTTA





>HG-U133A: 216379_x_at; 389; 159; 1647; Antisense;


AATAGACACTCCCCGAAGTCTTTTG





>HG-U133A: 216379_x_at; 114; 351; 1661; Antisense;


GAAGTCTTTTGTTCGCATGGTCACA





>HG-U133A: 216379_x_at; 398; 199; 1676; Antisense;


CATGGTCACACACTGATGCTTAGAT





>HG-U133A: 216379_x_at; 646; 663; 1716; Antisense;


TATGGCCACAGTAGTCTTGATGACC





>HG-U133A: 216379_x_at; 420; 581; 1736; Antisense;


TGACCAAAGTCCTTTTTTTCCATCT





>HG-U133A: 216379_x_at; 706L 361; 1821; Antisense;


GAACACTCTTGCTTTATTCCAGAAT





>HG-U133A: 209795_at; 186; 657; 1143; Antisense;


TAGTCTAATTGAATCCCTTAAACTC





>HG-U133A: 209795_at; 111; 39; 1273; Antisense;


ATGGGATGATCGTGTATTTATTTTT





>HG-U133A: 209795_at; 610; 679; 1294; Antisense;


TTTTTTACTTCCTCAGCTGTAGACA





>HG-U133A: 209795_at; 175; 103; 1300; Antisense;


ACTTCCTCAGCTGTAGACAGGTCCT





>HG-U133A: 209795_at; 332; 375; 1315; Antisense;


GACAGGTCCTTTTCGATGGTACATA





>HG-U133A: 209795_at; 418; 559; 1331; Antisense;


TGGTACATATTTCTTTGCCTTTATA





>HG-U133A: 209795_at; 577; 667; 1352; Antisense;


TATAATCTTTTATACAGTGTCTTAC





>HG-U133A: 209795_at; 109; 477; 1450; Antisense;


GTGATGTGGCAAATCTCTATTAGGA





>HG-U133A: 209795_at; 347; 13; 1476; Antisense;


ATATTCTGTAATCTTCAGACCTAGA





>HG-U133A: 209795_at; 244; 39; 1520; Antisense;


AGGTTTGTGACTTTCCTAAATCAAT





>HG-U133A: 209795_at; 75; 655; 1550; Antisense;


TACGTGCAATACTTCAATACTTCAT





>HG-U133A: 204440_at; 206; 605; 1726; Antisense;


TCCATTTCTCATGTTTTCCATTGTT





>HG-U133A: 204440_at; 127; 169; 1769; Antisense;


CAAGAAGCCTTTCCTGTAGCCTTCT





>HG-U133A: 204440_at; 167; 469; 1827; Antisense;


GTCCACGGTCTGTTCTTGAAGCAGT





>HG-U133A: 204440_at; 613; 587; 1843; Antisense;


TGAAGCAGTAGCCTAACACACTCCA





>HG-U133A: 204440_at; 654; 143; 1867; Antisense;


AAGATATGGACACACGGGAGCCGCT





>HG-U133A: 204440_at; 256; 441; 1925; Antisense;


GTTTTAGCCATTGTTGGCTTTCCCT





>HG-U133A: 204440_at; 83; 541; 1939; Antisense;


TGGCTTTCCCTTATCAAACTTGGGC





>HG-U133A: 204440_at; 558; 235; 1997; Antisense;


CTGAGTTATATGTTCACTGTCCCCC





>HG-U133A: 204440_at; 288; 437; 2008; Antisense;


GTTCACTGTCCCCCTAATATTAGGG





>HG-U133A: 204440_at; 344; 353; 2216; Antisense;


GAACCCCCATGATGTAAGTTTACCT





>HG-U133A: 204440_at; 227; 123; 2248; Antisense;


AAACCTGCACTTATACCCATGAACT





>HG-U133A: 205627_at; 658; 567; 322; Antisense;


TGTGCTGAACGGACCGCTATCCAGA





>HG-U133A: 205627_at; 484; 215; 338; Antisense;


CTATCCAGAAGGCCGTCTCAGAAGG





>HG-U133A: 205627_at; 167; 341; 379; Antisense;


GCAATTGCTATCGCCAGTGACATGC





>HG-U133A: 205627_at; 32; 503; 427; Antisense;


GGGGCCTGCAGGCAAGTCATGAGAG





>HG-U133A: 205627_at; 228; 395; 447; Antisense;


GAGAGAGTTTGGCACCAACTGGCCC





>HG-U133A: 205627_at; 689; 295; 468; Antisense;


GCCCGTGTACATGACCAAGCCGGAT





>HG-U133A: 205627_at; 700; 569; 504; Antisense;


TGTCATGACGGTCCAGGAGCTGCTG





>HG-U133A: 205627_at; 556; 603; 535; Antisense;


TCCTTTGGGCCTGAGGACCTGCAGA





>HG-U133A: 205627_at; 88; 55; 566; Antisense;


AGTGACAGCCAGAGAATGCCCACTG





>HG-U133A: 205627_at; 643; 597; 735; Antisense;


TGCCTTGGGACTTAGAACACCGCCG





>HG-U133A: 205627_at; 308; 469; 807; Antisense;


GTCCAGCCTAGTCTGGACTGCTTCC





>HG-U133A: 206676_at; 114; 7; 1759; Antisense;


ATTGCCAATTCTTTAAGTGTTTTCT





>HG-U133A: 206676_at; 559; 687; 1812; Antisense;


TTAAGCTATCTATACCTTACTGCAA





>HG-U133A: 206676_at; 224; 273; 1888; Antisense;


CCTACCTGACTGCCACAGAACTGGG





>HG-U133A: 206676_at; 592; 59; 1963; Antisense;


AGTTCAGTGAGAATCTGCTGTCTTT





>HG-U133A: 206676_at; 636; 53; 2081; Antisense;


AGTGTCTAATCTATCGTGTCAACCC





>HG-U133A: 206676_at; 143; 15; 2089; Antisense;


ATCTATCGTGTCAACCCCAAATTTT





>HG-U133A: 206676_at; 99; 653; 2114; Antisense;


TACGTATGAGATCCTTTAGTCCACC





>HG-U133A: 206676_at; 244; 687; 2129; Antisense;


TTAGTCCACCCAATGGCTGACAGTA





>HG-U133A: 206676_at; 27; 323; 2157; Antisense;


GCATCTTTAACACAACTCTTTGTTC





>HG-U133A: 206676_at; 591; 437; 2178; Antisense;


GTTCAAATGTACTATGGTCTCTTTT





>HG-U133A: 206676_at; 182; 641; 2244; Antisense;


TAATTTAACCCAGGCATGCAATGCT





>HG-U133A: 209395_at; 554; 307; 1427; Antisense;


GCTGTGGGGATAGTGAGGCATCGCA





>HG-U133A: 209395_at; 104; 501; 1432; Antisense;


GGGGATAGTGAGGCATCGCAATGTA





>HG-U133A: 209395_at; 445; 411; 1441; Antisense;


GAGGCATCGCAATGTAAGACTCGGG





>HG-U133A: 209395_at; 54; 325; 1444; Antisense;


GCATCGCAATGTAAGACTCGGGATT





>HG-U133A: 209395_at; 342; 363; 1454; Antisense;


GTAAGACTCGGGATTAGTACACACT





>HG-U133A: 209395_at; 433; 379; 1458; Antisense;


GACTCGGGATTAGTACACACTTGTT





>HG-U133A: 209395_at; 539; 513; 1464; Antisense;


GGATTAGTACACACTTGTTGATGAT





>HG-U133A: 209395_at; 587; 517; 1493; Antisense;


GGAAATGTTTACAGATCCCCAAGCC





>HG-U133A: 209395_at; 288; 117; 1495; Antisense;


AAATGTTTACAGATCCCCAAGCCTG





>HG-U133A: 209395_at; 466; 25; 1662; Antisense;


ACCTTCACTTAGGAACGTAATCGTG





>HG-U133A: 209395_at; 247; 661; 1671; Antisense;


TAGGAACGTAATCGTGTCCCCTATC





>HG-U133A: 209396_s_at; 468; 635; 1198; Antisense;


TCACCAATGCCATCAAGGATGCACT





>HG-U133A: 209396_s_at; 476; 167; 1211; Antisense;


CAAGGATGCACTCGCTGCAACGTAG





>HG-U133A: 209396_s_at; 630; 175; 1248; Antisense;


CACACAGCACGGGGGCCAAGGATGC





>HG-U133A: 209396_s_at; 688; 591; 1365; Antisense;


TGCAGAGGTCCACAACACACAGATT





>HG-U133A: 209396_s_at; 148; 177; 1382; Antisense;


CACAGATTTGAGCTCAGCCCTGGTG





>HG-U133A: 209396_s_at; 91; 255; 1547; Antisense;


CCCTAGCCCTCCTTATCAAAGGACA





>HG-U133A: 209396_s_at; 661; 151; 1565; Antisense;


AAGGACACCATTTTGGCAAGCTCTA





>HG-U133A: 209396_s_at; 218; 537; 1579; Antisense;


GGCAAGCTCTATCACCAAGGAGCCA





>HG-U133A: 209396_s_at; 118; 29; 1607; Antisense;


ATCCTACAAGACACAGTGACCATAC





>HG-U133A: 209396_s_at; 233; 55; 1621; Antisense;


AGTGACCATACTAATTATACCCCCT





>HG-U133A: 209396_s_at; 514; 337; 1646; Antisense;


GCAAAGCCAGCTTGAAACCTTCACT





>HG-U133A: 212306_at; 448; 695; 4357; Antisense;


TTCCCATTAACCTTTGCCAGTGTTA





>HG-U133A: 212306_at; 190; 573; 4493; Antisense;


TGCTACTTTGAGTTTTGTTTCGTAT





>HG-U133A: 212306_at; 458; 443; 4509; Antisense;


GTTTCGTATCATGTCCTATGCTAGA





>HG-U133A: 212306_at; 382; 157; 4566; Antisense;


AATTTGAACTACAGCTGGACTCCGT





>HG-U133A: 212306_at; 344; 307; 4579; Antisense;


GCTGGACTCCGTTTGTGTGATGGTG





>HG-U133A: 212306_at; 532; 423; 4603; Antisense;


GATACATGTCATTAGTTGCAACTTC





>HG-U133A: 212306_at; 267; 5; 4705; Antisense;


ATTGTCTATTGGTTATTGATCTTGC





>HG-U133A: 212306_at; 245; 569; 4748; Antisense;


TGTCCCTTCTATGATCCCTTAAGAA





>HG-U133A: 212306_at; 215; 141; 4772; Antisense;


AAGCTGCACCAAATCATCTGCCTGT





>HG-U133A: 212306_at; 660; 293; 4791; Antisense;


GCCTGTTTTTTCTTGATACTTACTG





>HG-U133A: 212306_at; 370; 683; 4843; Antisense;


TTTTGGTTTGTTTATATCTTTGTTG





>HG-U133A: 206207_at; 613; 171; 111; Antisense;


CAAAGGGCGACCACTTGTCTGTTTC





>HG-U133A: 206207_at; 385; 285; 207; Antisense;


CCAAGTGTGCTTTGGTCGTCGTGTG





>HG-U133A: 206207_at; 473; 475; 245; Antisense;


GTGAGTATGGGGCCTGGAAGCAGCA





>HG-U133A: 206207_at; 122; 359; 282; Antisense;


GAACATGCCCTTTCAGGATGGCCAA





>HG-U133A: 206207_at; 330; 559; 353; Antisense;


TGGTCAATGGCCAATCCTCTTACAC





>HG-U133A: 206207_at; 420; 45; 35; Antisense;


AGGAGACAACAATGTCCCTGCTACC





>HG-U133A: 206207_at; 706; 605; 367; Antisense;


TCCTCTTACACCTTTGACCATAGAA





>HG-U133A: 206207_at; 573; 421; 470; Antisense;


GATAACCAGACTTCATGTTGCCAAG





>HG-U133A: 206207_at; 428; 573; 485; Antisense;


TGTTGCCAAGGAATCCCTGTCTCTA





>HG-U133A: 206207_at; 489; 463; 503; Antisense;


GTCTCTACGTGAACTTGGGATTCCA





>HG-U133A: 206207_at; 504; 625; 82; Antisense;


TCTTTGTCTACTGGTTCTACTGTGA





>HG-U133A: 214683_s_at; 188; 531; 3331; Antisense;


GGAAAGGATTCTTGGACCTCTACCA





>HG-U133A: 214683_s_at; 178; 525; 3344; Antisense;


GGACCTCTACCAAAACATATGATAC





>HG-U133A: 214683_s_at; 258; 453; 3384; Antisense;


GTAAATATTTTCACCACGATCGATT





>HG-U133A: 214683_s_at; 681; 85; 3396; Antisense;


ACCACGATCGATTAGACTGGGATGA





>HG-U133A: 214683_s_at; 96; 587; 3418; Antisense;


TGAACACAGTTCTGCCGGCAGATAT





>HG-U133A: 214683_s_at; 664; 697; 3427; Antisense;


TTCTGCCGGCAGATATGTTTCAAGA





>HG-U133A: 214683_s_at; 693; 153; 3527; Antisense;


AATGTTGGAGTATGATCCAGCCAAA





>HG-U133A: 214683_s_at; 222; 185; 3544; Antisense;


CAGCCAAAAGAATTACTCTCAGAGA





>HG-U133A: 214683_s_at; 360; 569; 3618; Antisense;


TGTAATTGGACAGCTCTCTCGAAGA





>HG-U133A: 214683_s_at; 499; 373; 3626; Antisense;


GACAGCTCTCTCGAAGAGATCTTAC





>HG-U133A: 214683_s_at; 400; 507; 3773; Antisense;


GGTAATGAACATCTTTTTCAGTAAT





>HG-U133A: 202163_s_at; 168; 191; 1994; Antisense;


CAGATGGTCATCTGGATTCTCCCAC





>HG-U133A: 202163_s_at; 271; 701; 2045; Antisense;


TTCCTTCCAGCAAACCTTGAAACGT





>HG-U133A: 202163_s_at; 124; 475; 2087; Antisense;


GTGAGTAACAGGAATGTGTCTTTAA





>HG-U133A: 202163_s_at; 111; 659; 2117; Antisense;


TAGAGTGGTTACATTTAATCAGGCA





>HG-U133A: 202163_s_at; 653; 419; 2146; Antisense;


GATAATTTGGGTTCTTGAGTTGTTT





>HG-U133A: 202163_s_at; 98; 521; 2172; Antisense;


GGAGTAATATCCCACAACTGGGGTA





>HG-U133A: 202163_s_at; 224; 135; 2187; Antisense;


AACTGGGGTAGGAAGCTCAGGACTT





>HG-U133A: 202163_s_at; 55; 681; 2212; Antisense;


TTTTCTTTAAAGCTAGTCATTTCAA





>HG-U133A: 202163_s_at; 387; 125; 2315; Antisense;


AAAACTGGTAACTCACTCAAGTGAA





>HG-U133A: 202163_s_at; 485; 473; 2335; Antisense;


GTGAATGAATGGTCTTGCATTTTAA





>HG-U133A: 202163_s_at; 194; 115; 2359; Antisense;


AAAGCTTATGGGAAACTCAATTTGA





>HG-U133A: 221517_s_at; 157; 503; 1959; Antisense;


GGTGACTATGCTATTTCAGTTCGTA





>HG-U133A: 221517_s_at; 685; 455; 1981; Antisense;


GTAATGGACCTGAAAGTGGCAGCAA





>HG-U133A: 221517_s_at; 239; 539; 1998; Antisense;


GGCAGCAAGATTATGGTTCAGTTTC





>HG-U133A: 221517_s_at; 491; 435; 2013; Antisense;


GTTCAGTTTCCTCGTAACCAATGTA





>HG-U133A: 221517_s_at; 319; 597; 2024; Antisense;


TCGTAACCAATGTAAAGACCTTCCA





>HG-U133A: 221517_s_at; 343; 55; 2079; Antisense;


AGTCATCTTCGTGGGCCATTCAAAG





>HG-U133A: 221517_s_at; 98; 525; 2150; Antisense;


GGAGCTGCTTATGTCTGCACTTAGC





>HG-U133A: 221517_s_at; 261; 179; 2167; Antisense;


CACTTAGCCCTTGTCTACTATGATT





>HG-U133A: 221517_s_at; 141; 415; 2199; Antisense;


GATGTTTCCTAAAGAAGTTTCCAGA





>HG-U133A: 221517_s_at; 221; 423; 2271; Antisense;


GATAACTTCCAAAAGAGTGCTGTTT





>HG-U133A: 221517_s_at; 201; 163; 2480; Antisense;


AATATTCCTTCTTTGATGTTGACAT





>HG-U133A: 210766_s_at; 107; 513; 1732; Antisense;


GGTTCCATCAATGGTGAGCACCAGC





>HG-U133A: 210766_s_at; 97; 559; 1743; Antisense;


TGGTGAGCACCAGCCTGAATGCAGA





>HG-U133A: 210766_s_at; 276; 333; 1749; Antisense;


GCACCAGCCTGAATGCAGAAGCGCT





>HG-U133A: 210766_s_at; 115; 345; 1759; Antisense;


GAATGCAGAAGCGCTCCAGTATCTC





>HG-U133A: 210766_s_at; 639; 229; 1772; Antisense;


CTCCAGTATCTCCAAGGGTACCTTC





>HG-U133A: 210766_s_at; 457; 613; 1780; Antisense;


TCTCCAAGGGTACCTTCAGGCAGCC





>HG-U133A: 210766_s_at; 161; 53; 1805; Antisense;


AGTGTGACACTGCTTTAAACTGCAT





>HG-U133A: 210766_s_at; 129; 373; 1810; Antisense;


GACACTGCTTTAAACTGCATTTTTC





>HG-U133A: 210766_s_at; 559; 559; 1839; Antisense;


TGGGCTAAACCCAGATGGTTTCCTA





>HG-U133A: 210766_s_at; 525; 253; 1848; Antisense;


CCCAGATGGTTTCCTAGGAAATCAC





>HG-U133A: 210766_s_at; 215; 107; 1871; Antisense;


ACAGGCTTCTGAGCACAGCTGCATT





>HG-U133A: 203591_s_at; 578; 215; 2359; Antisense;


CTATGTGCTCCAGGGGGACCCAAGA





>HG-U133A: 203591_s_at; 569; 277; 2407; Antisense;


CCAGTCTGGCACCAGCGATCAGGTC





>HG-U133A: 203591_s_at; 694; 421; 2423; Antisense;


GATCAGGTCCTTTATGGGCAGCTGC





>HG-U133A: 203591_s_at; 654; 257; 2530; Antisense;


CCCCAAGTCCTATGAGAACCTCTGG





>HG-U133A: 203591_s_at; 364; 31; 2541; Antisense;


ATGAGAACCTCTGGTTCCAGGCCAG





>HG-U133A: 203591_s_at; 235; 519; 2602; Antisense;


GGAGGACGACTGTGTCTTTGGGCCA





>HG-U133A: 203591_s_at; 148; 505; 2652; Antisense;


GGATCCGGGTCCATGGGATGGAGGC





>HG-U133A: 203591_s_at; 181; 489; 2715; Antisense;


GGGCCTGCCTCTTAAAGGCCTGAGC





>HG-U133A: 203591_s_at; 362; 519; 2755; Antisense;


GGAGGGTCCATAAGCCCATGACTAA





>HG-U133A: 203591_s_at; 316; 227; 2856; Antisense;


CTCCCAGGCGATCTGCATACTTTAA





>HG-U133A: 203591_s_at; 550; 213; 2875; Antisense;


CTTTAAGGACCAGATCATGCTCCAT





>HG-U133A: 201487_at; 503; 379; 1288; Antisense;


GACTCAGCCTCTGGGATGGATTACT





>HG-U133A: 201487_at; 163; 505; 1345; Antisense;


GGTGAGAATGGCTACTTCCGGATCC





>HG-U133A: 201487_at; 702; 99; 1358; Antisense;


ACTTCCGGATCCGCAGAGGAACTGA





>HG-U133A: 201487_at; 549; 397; 1396; Antisense;


GAGAGCATAGCAGTGGCAGCCACAC





>HG-U133A: 201487_at; 227; 333; 1411; Antisense;


GCAGCCACACCAATTCCTAAATTGT





>HG-U133A: 201487_at; 565; 447; 1434; Antisense;


GTAGGGTATGCCTTCCAGTATTTCA





>HG-U133A: 201487_at; 591; 293; 1443; Antisense;


GCCTTCCAGTATTTCATAATGATCT





>HG-U133A: 201487_at; 706; 419; 1463; Antisense;


GATCTGCATCAGTTGTAAAGGGGAA





>HG-U133A: 201487_at; 277; 165; 1486; Antisense;


AATTGGTATATTCACAGACTGTAGA





>HG-U133A: 201487_at; 422; 381; 1502; Antisense;


GACTGTAGACTTTCAGCAGCAATCT





>HG-U133A: 201487_at; 161; 27; 1597; Antisense;


ACCTTTCAATCGGCCACTGGCCATT





>HG-U133A: 60084_at; 4; 439; 172; Antisense;


GTTATAATCTCTTCCTAGCTAATGG





>HG-U133A: 60084_at; 295; 223; 180; Antisense;


CTCTTCCTAGCTAATGGGCTTACTC





>HG-U133A: 60084_at; 623; 207; 182; Antisense;


CTTCCTAGCTAATGGGCTTACTCAA





>HG-U133A: 60084_at; 78; 657; 187; Antisense;


TAGCTAATGGGCTTACTCAAAGATT





>HG-U133A: 60084_at; 411; 563; 194; Antisense;


TGGGCTTACTCAAAGATTCACCACC





>HG-U133A: 60084_at; 686; 215; 30; Antisense;


CTAGCAATGATATTCTCAGTTGTTT





>HG-U133A: 60084_at; 334; 73; 32; Antisense;


AGCAATGATATTCTCAGTTGTTTCT





>HG-U133A: 60084_at; 607; 339; 33; Antisense;


GCAATGATATTCTCAGTTGTTTCTC





>HG-U133A: 60084_at; 460; 219; 44; Antisense;


CTCAGTTGTTTCTCTCTTGTGGTGC





>HG-U133A: 60084_at; 464; 695; 53; Antisense;


TTCTCTCTTGTGGTGCAGAGTTGCA





>HG-U133A: 60084_at; 258; 623; 56; Antisense;


TCTCTTGTGGTGCAGAGTTGCATTG





>HG-U133A: 60084_at; 73; 223; 57; Antisense;


CTCTTGTGGTGCAGAGTTGCATTGG





>HG-U133A: 60084_at; 354; 591; 66; Antisense;


TGCAGAGTTGCATTGGGTTTTCTAC





>HG-U133A: 60084_at; 196; 591; 74; Antisense;


TGCATTGGGTTTTCTACATTTTCCC





>HG-U133A: 60084_at; 587; 319; 75; Antisense;


GCATTGGGTTTTCTACATTTTCCCA





>HG-U133A: 60084_at; 476; 251; 96; Antisense;


CCCACTGAGTCTTCCCTGTTGTAAA





>HG-U133A: 202314_at; 448; 593; 2794; Antisense;


TGCTTCCTCTCTAGAATCCAATTAG





>HG-U133A: 202314_at; 516; 51; 2817; Antisense;


AGGGATGTTTGTTACTACTCATATT





>HG-U133A: 202314_at; 453; 37; 2877; Antisense;


ATGTGAGATCAGTGAACTCTGGTTT





>HG-U133A: 202314_at; 576; 359; 2890; Antisense;


GAACTCTGGTTTTAAGATAATCTGA





>HG-U133A: 202314_at; 465; 371; 2905; Antisense;


GATAATCTGAAACAAGGTCCTTGGG





>HG-U133A: 202314_at; 36; 129; 2936; Antisense;


AAAATTGGTCACATTCTGTAAAGCA





>HG-U133A: 202314_at; 444; 441; 2967; Antisense;


GTTTAGGAATCAACTTATCTCAAAT





>HG-U133A: 202314_at; 709; 659; 2982; Antisense;


TATCTCAAATTGTAACTCGGGGCCT





>HG-U133A: 202314_at; 214; 61; 2986; Antisense;


TCAAATTGTAACTCGGGGCCTAACT





>HG-U133A: 202314_at; 146; 689; 3047; Antisense;


TTCACTAGGTGATGCCAAAATATTT





>HG-U133A: 202314_at; 119; 573; 3117; Antisense;


TGTTAAACTCTAATTGTGAAGGCAG





>HG-U133A: 204244_s_at; 65; 561; 2194; Antisense;


TGAGGAACCCAATGAATGTGACTTC





>HG-U133A: 204244_s_at; 581; 73; 2220; Antisense;


AGAATATGGATAGTTTACCTTCTGG





>HG-U133A: 204244_s_at; 631; 339; 2355; Antisense;


GAATTTGTAGTTCACCGGTACAGTC





>HG-U133A: 204244_s_at; 299; 693; 2365; Antisense;


TTCACCGGTACAGTCTTTACTAGAC





>HG-U133A: 204244_s_at; 147; 625; 2378; Antisense;


TCTTTACTAGACTTGTTTCAGACTA





>HG-U133A: 204244_s_at; 287; 369; 2410; Antisense;


GAAATCAGAATTTTTGGGTTTCACA





>HG-U133A: 204244_s_at; 672; 617; 2500; Antisense;


TCTGTTAACAGCGTTTTTCTCGTCC





>HG-U133A: 204244_s_at; 320; 253; 2524; Antisense;


CCCTTCAACTTCTACATTTACTGGC





>HG-U133A: 204244_s_at; 599; 171; 2529; Antisense;


CAACTTCTACATTTACTGGCTTTTA





>HG-U133A: 204244_s_at; 704; 665; 2642; Antisense;


TTACCAGCTTTGTTTACAGACCCAA





>HG-U133A: 204244_s_at; 468; 641; 2738; Antisense;


TAAACTTGTGACTGGTCTTGTTTTA





>HG-U133A: 220890_s_at; 124; 83; 1059; Antisense;


AGCCCAAAGGTTTGCCCGAATGGAG





>HG-U133A: 220890_s_at; 614; 365; 1107; Antisense;


GAAACGCTCGCGAGAGGATGCTGGA





>HG-U133A: 220890_s_at; 244; 407; 1147; Antisense;


GAGGGTGCTATTGGTGTCAGGAACA





>HG-U133A: 220890_s_at; 391; 165; 1308; Antisense;


AATTGTGTCCAGAATGTGCTCAGCT





>HG-U133A: 220890_s_at; 443; 633; 1327; Antisense;


TCAGCTAATTCAGTATTCTTCCCCA





>HG-U133A: 220890_s_at; 117; 439; 1405; Antisense;


GTTACTGTTCTTCGACTTTGATTCC





>HG-U133A: 220890_s_at; 460; 377; 1418; Antisense;


GACTTTGATTCCTTGCTCATGACAT





>HG-U133A: 220890_s_at; 710; 199; 1440; Antisense;


CATGAGTAGGGTGTGCTCTTCTGTC





>HG-U133A: 220890_s_at; 612; 235; 1460; Antisense;


CTGTCACTTCACACAGACCTTTTGC





>HG-U133A: 220890_s_at; 72; 417; 1515; Antisense;


GATGATGCCCATGACCTGTAATTGT





>HG-U133A: 220890_s_at; 636; 9; 1567; Antisense;


ATTTAAACCATCTTGGCTTGTGCTT





>HG-U133A: 205033_s_at; 32; 301; 186; Antisense;


GCCCCGGAGCAGATTGCAGCGGACA





>HG-U133A: 205033_s_at; 330; 241; 190; Antisense;


CGGAGCAGATTGCAGCGGACATCCC





>HG-U133A: 205033_s_at; 538; 429; 197; Antisense;


GATTGCAGCGGACATCCCAGAAGTG





>HG-U133A: 205033_s_at; 494; 187; 214; Antisense;


CAGAAGTGGTTGTTTCCCTTGCATG





>HG-U133A: 205033_s_at; 129; 53; 218; Antisense;


AGTGGTTGTTTCCCTTGCATGGGAC





>HG-U133A: 205033_s_at; 66; 513; 221; Antisense;


GGTTGTTTCCCTTGCATGGGACGAA





>HG-U133A: 205033_s_at; 346; 437; 225; Antisense;


GTTTCCCTTGCATGGGACGAAAGCT





>HG-U133A: 205033_s_at; 564; 325; 234; Antisense;


GCATGGGACGAAAGCTTGGCTCCAA





>HG-U133A: 205033_s_at; 673; 381; 240; Antisense;


GACGAAAGCTTGGCTCCAAAGCATC





>HG-U133A: 205033_s_at; 162; 295; 64; Antisense;


GCCTAGCTAGAGGATCTGTGACCCC





>HG-U133A: 205033_s_at; 524; 217; 66; Antisense;


CTAGCTAGAGGATCTGTGACCCCAG





>HG-U133A: 207269_at; 491; 331; 162; Antisense;


GCAGCGTGGGCCAGAAGACCAGGAC





>HG-U133A: 207269_at; 508; 127; 211; Antisense;


AAAAGCTCTGCTCTTCAGGTTTCAG





>HG-U133A: 207269_at; 411; 543; 235; Antisense;


GGCTCAACAAGGGGCATGGTCTGCT





>HG-U133A: 207269_at; 642; 561; 300; Antisense;


TGGGAACTGCCTCATTGGTGGTGTG





>HG-U133A: 207269_at; 137; 477; 322; Antisense;


GTGAGTTTCACATACTGCTGCACGC





>HG-U133A: 207269_at; 140; 311; 338; Antisense;


GCTGCACGCGTGTCGATTAACGTTC





>HG-U133A: 207269_at; 709; 427; 352; Antisense;


GATTAACGTTCTGCTGTCCAAGAGA





>HG-U133A: 207269_at; 394; 629; 380; Antisense;


TCATGCTGGGAACGCCATCATCGGT





>HG-U133A: 207269_at; 295; 503; 402; Antisense;


GGTGGTGTTAGCTTCACATGCTTCT





>HG-U133A: 207269_at; 66; 179; 416; Antisense;


CACATGCTTCTGCAGCTGAGCTTGC





>HG-U133A: 207269_at; 433; 185; 59; Antisense;


CAGCCATGAGGATTATCGCCCTCCT





>HG-U133A: 215501_s_at; 344; 565; 508; Antisense;


TGTGGGAAGGGGCTTCTCATCCACT





>HG-U133A: 215501_s_at; 488; 277; 560; Antisense;


CCATCGTCATCGCTTACTTGATGAA





>HG-U133A: 215501_s_at; 510; 353; 582; Antisense;


GAAGCACACTCGGATGACCATGACT





>HG-U133A: 215501_s_at; 240; 517; 593; Antisense;


GGATGACCATGACTGATGCTTATAA





>HG-U133A: 215501_s_at; 537; 171; 624; Antisense;


CAAAGGCAAACGACCAATTATCTCC





>HG-U133A: 215501_s_at; 5; 501; 666; Antisense;


GGGGCAGTTGCTAGAGTTCGAGGAA





>HG-U133A: 215501_s_at; 481; 581; 707; Antisense;


TGACACCGAGAATCCTTACACCAAA





>HG-U133A: 215501_s_at; 603; 643; 723; Antisense;


TACACCAAAGCTGATGGGCGTGGAG





>HG-U133A: 215501_s_at; 695; 545; 739; Antisense;


GGCGTGGAGACGGTTGTGTGACAAT





>HG-U133A: 215501_s_at; 556; 151; 776; Antisense;


AAGGATTGCTGCTCTCCATTAGGAG





>HG-U133A: 215501_s_at; 399; 577; 931; Antisense;


TGATGCCATTGAGATTCACCTCCCA





>HG-U133A: 221563_at; 566; 67; 2147; Antisense;


AGACATTGAATCACCAAGGCCTGGG





>HG-U133A: 221563_at; 274; 167; 2161; Antisense;


CAAGGCCTGGGATCAACCTGGGCTG





>HG-U133A: 221563_at; 244; 139; 2208; Antisense;


AACCAAACCAAGCCCTGTTGTGCTC





>HG-U133A: 221563_at; 598; 421; 2249; Antisense;


GATCAGGGCAGCTTAAGTGGTCTAA





>HG-U133A: 221563_at; 298; 483; 2265; Antisense;


GTGGTCTAAGAATCCTTCAGGCATT





>HG-U133A: 221563_at; 454; 515; 2305; Antisense;


GGATACCTTTGATTTTGTGTGTTTC





>HG-U133A: 221563_at; 416; 481; 2321; Antisense;


GTGTGTTTCATGCTCTGGATTTTTT





>HG-U133A: 221563_at; 573; 531; 2392; Antisense;


GGAACTGACCATTATATGCCTTCAC





>HG-U133A: 221563_at; 72; 205; 2401; Antisense;


CATTATATGCCTTCACTGGCTTCTT





>HG-U133A: 221563_at; 312; 15; 2532; Antisense;


ATATATCAAATACTTTCCTTCCCAC





>HG-U133A: 221563_at; 419; 437; 2595; Antisense;


GTTACAGTGCCATAAACCTTGTTAC





>HG-U133A: 201016_at; 88; 457; 1297; Antisense;


GTAAGCTTAGTAGTTGCAGAAATTG





>HG-U133A: 201016_at; 497; 361; 1321; Antisense;


GAACACTAGGTGGCACTCAGTTATC





>HG-U133A: 201016_at; 349; 485; 1330; Antisense;


GTGGCACTCAGTTATCTTAACAGGG





>HG-U133A: 201016_at; 327; 97; 1360; Antisense;


ACTGATACAATTGTTGACTTTTCTT





>HG-U133A: 201016_at; 18; 195; 1386; Antisense;


TACTATGTGTAAGAAATACCCCAAA





>HG-U133A: 201016_at; 551; 363; 1398; Antisense;


GAAATACCCCAAACATGAAAAGATT





>HG-U133A: 201016_at; 233; 3; 1420; Antisense;


ATTGTTTTGATCATATGCATGTATG





>HG-U133A: 201016_at; 370; 347; 1500; Antisense;


GAAGTCATATACATGTAAGCTACAA





>HG-U133A: 201016_at; 348; 363; 1605; Antisense;


GAAAAGCCTTTTTCAACATATCCCT





>HG-U133A: 201016_at; 59; 681; 1613; Antisense;


TTTTTCAACATATCCCTAAGCTAAG





>HG-U133A: 201016_at; 519; 171; 1655; Antisense;


CAACTCAGTGAAAAGATGGTCTCCA





>HG-U133A: 218696_at; 331; 353; 3778; Antisense;


GAAGAAGGAAAGTCCCCCTGTGTGG





>HG-U133A: 218696_at; 278; 535; 3904; Antisense;


GGAATCTGCACTATTTTGGAGGACA





>HG-U133A: 218696_at; 474; 37; 3954; Antisense;


ATGTCCGTAGTTTTATAGTCCTATT





>HG-U133A: 218696_at; 12; 669; 3967; Antisense;


TATAGTCCTATTTGTAGCATTCAAT





>HG-U133A: 218696_at; 59; 17; 3990; Antisense;


ATAGCTTTATTCCTTAGATGGTTCT





>HG-U133A: 218696_at; 344; 405; 4006; Antisense;


GATGGTTCTAGGGTGGGTTTACAGC





>HG-U133A: 218696_at; 114; 101; 4146; Antisense;


ACTAACTTCTTCAACTATGGACTTT





>HG-U133A: 218696_at; 188; 571; 4202; Antisense;


TGTAATCCTGTAGGTTGGTACTTCC





>HG-U133A: 218696_at; 126; 609; 4224; Antisense;


TCCCCCAAACTGATTATAGGTAACA





>HG-U133A: 218696_at; 298; 509; 4242; Antisense;


GGTAACAGTTTAATCATCTCACTTG





>HG-U133A: 218696_at; 117; 25; 4254; Antisense;


ATCATCTCACTTGCTAACATGTTTT





>HG-U133A: 206871_at; 320; 471; 351; Antisense;


GTGCAGCGCATCTTCGAAAACGGCT





>HG-U133A: 206871_at; 378; 89; 379; Antisense;


ACCCCGTAAACTTGCTCAACGACAT





>HG-U133A: 206871_at; 207; 639; 394; Antisense;


TCAACGACATCGTGATTCTCCAGCT





>HG-U133A: 206871_at; 685; 87; 432; Antisense;


ACCATCAACGCCAACGTGCAGGTGG





>HG-U133A: 206871_at; 18; 565; 526; Antisense;


TGGGCAGGAACCGTGGGATCGCCAG





>HG-U133A: 206871_at; 54; 327; 557; Antisense;


GCAGGAGCTCAACGTGACGGTGGTG





>HG-U133A: 206871_at; 228; 169; 566; Antisense;


CAACGTGACGGTGGTGACGTCCCTC





>HG-U133A: 206871_at; 693; 253; 663; Antisense;


CCCTTGGTCTGCAACGGGCTAATCC





>HG-U133A: 206871_at; 153; 245; 677; Antisense;


CGGGCTAATCCACGGAATTGCCTCC





>HG-U133A: 206871_at; 559; 297; 747; Antisense;


GCCCCGGTGGCACAGTTTGTAAACT





>HG-U133A: 206871_at; 534; 703; 763; Antisense;


TTGTAAACTGGATCGACTCTATCAT





>HG-U133A: 203358_s_at; 214; 113; 2117; Antisense;


AAATTCGTTTTGCAAATCATTCGGT





>HG-U133A: 203358_s_at; 13; 115; 2130; Antisense;


AAATCATTCGGTAAATCCAAACTGC





>HG-U133A: 203358_s_at; 446; 421; 2182; Antisense;


GATCACAGGATAGGTATTTTTGCCA





>HG-U133A: 203358_s_at; 149; 683; 2199; Antisense;


TTTTGCCAAGAGAGCCATCCAGACT





>HG-U133A: 203358_s_at; 461; 277; 2213; Antisense;


CCATCCAGACTGGCGAAGAGCTGTT





>HG-U133A: 203358_s_at; 57; 365; 2337; Antisense;


GAAACAGCTGCCTTAGCTTCAGGAA





>HG-U133A: 203358_s_at; 291; 231; 2344; Antisense;


CTGCCTTAGCTTCAGGAACCTCGAG





>HG-U133A: 203358_s_at; 407; 629; 2355; Antisense;


TCAGGAACCTCGAGTACTGTGGGCA





>HG-U133A: 203358_s_at; 564; 293; 2473; Antisense;


GCCTTCTCACCAGCTGCAAAGTGTT





>HG-U133A: 203358_s_at; 639; 173; 2489; Antisense;


CAAAGTGTTTTGTACCAGTGAATTT





>HG-U133A: 203358_s_at; 529; 327; 2524; Antisense;


GCAGTATGGTACATTTTTCAACTTT





>HG-U133A: 212333_at; 189; 425; 2197; Antisense;


GATAGCACATTCAGTAGCCTTATTT





>HG-U133A: 212333_at; 306; 651; 2233; Antisense;


TACTGTATCATATGCTCAACTCTGA





>HG-U133A: 212333_at; 513; 137; 2259; Antisense;


AACCTTGAACACGGCCAAAATCCAT





>HG-U133A: 212333_at; 640; 165; 2348; Antisense;


CAATTCAAACTGACCTGCATCCATC





>HG-U133A: 212333_at; 472; 233; 2362; Antisense;


CTGCATCCATCCAAAACAAATTCCT





>HG-U133A: 212333_at; 251; 399; 2453; Antisense;


GAGTTAATACCACTGGCTCAGCAAA





>HG-U133A: 212333_at; 513; 45; 2563; Antisense;


AGGAGGCCCTTTATTATTGCTGCAG





>HG-U133A: 212333_at; 113; 297; 2597; Antisense;


GCCTGGCTGAGTTGATGTTTTACAT





>HG-U133A: 212333_at; 620; 621; 2622; Antisense;


TCTCCCTTACTGAAATCTACATGAC





>HG-U133A: 212333_at; 649; 417; 2649; Antisense;


GATGCTTCTTGCTGGGTTTTTGTAC





>HG-U133A: 212333_at; 292; 41; 2703; Antisense;


ATGGCTGGAGGTGTGCTTTGTGTGA





>HG-U133A: 208988_at; 505; 433; 6399; Antisense;


GTTGCTGATTTAGAGTCAATCTCCA





>HG-U133A: 208988_at; 25; 661; 6409; Antisense;


TAGAGTCAATCTCCAATGTTGTGCT





>HG-U133A: 208988_at; 205; 495; 6464; Antisense;


GGGATAAGTCTTATGCTATCTCAGT





>HG-U133A: 208988_at; 597; 661; 6475; Antisense;


TATGCTATCTCAGTTGACACATTGA





>HG-U133A: 208988_at; 566; 189; 6485; Antisense;


CAGTTGACACATTGAGGTTATTTTG





>HG-U133A: 208988_at; 314; 353; 6524; Antisense;


GAAGCTAGTTGGACTTTGTTTTGTT





>HG-U133A: 208988_at; 35; 575; 6545; Antisense;


TGTTTTCCAAAAGTTCTCCACTATT





>HG-U133A: 208988_at; 398; 145; 6555; Antisense;


AAGTTCTCCACTATTGGTTTTAGAG





>HG-U133A: 208988_at; 594; 73; 6582; Antisense;


AGCAAGGACATCTTTCCTCTGACAC





>HG-U133A: 208988_at; 48; 95; 6605; Antisense;


ACGTGGGAATGGGTGATATTTGTGT





>HG-U133A: 208988_at; 682; 365; 6656; Antisense;


GAAATAGCCTCCAATGGGAAATATT





>HG-U133A: 208989_s_at; 24; 523; 3578; Antisense;


GGAGAGACCCCTTCAGAGCAGGGAT





>HG-U133A: 208989_s_at; 163; 383; 3583; Antisense;


GACCCCTTCAGAGCAGGGATTGTGC





>HG-U133A: 208989_s_at; 126; 51; 3597; Antisense;


AGGGATTGTGCCGGGAGAGTGCCTC





>HG-U133A: 208989_s_at; 15; 673; 3626; Antisense;


TTTGGGACATTTCATCCACAGAAAT





>HG-U133A: 208989_s_at; 370; 189; 3644; Antisense;


CAGAAATTTCCAAGCCAATGGTTTC





>HG-U133A: 208989_s_at; 73; 189; 3770; Antisense;


CAGCAGATGGACCATGCCCTTGCTG





>HG-U133A: 208989_s_at; 225; 361; 3862; Antisense;


GAAAGAAGTGTCTCTGTTGGGGGAC





>HG-U133A: 208989_s_at; 539; 695; 3878; Antisense;


TTGGGGGACAGAGGAACCTGGGGAG





>HG-U133A: 208989_s_at; 390; 325; 3909; Antisense;


GCATGTCCTACAATCTGCTCTTAGA





>HG-U133A: 208989_s_at; 238; 221; 3926; Antisense;


CTCTTAGACACGGCCTTGCCAGGAG





>HG-U133A: 208989_s_at; 124; 685; 3929; Antisense;


TTAGACACGGCCTTGCCAGGAGAGC





>HG-U133A: 218432_at; 403; 365; 1811; Antisense;


GAAACTATGTGACTCATTCTGTGAA





>HG-U133A: 218432_at; 138; 145; 1836; Antisense;


AAGACTTCTTGCAGTTGTGAGTTAT





>HG-U133A: 218432_at; 611; 41; 1886; Antisense;


AGGCTAATCCATTTAGTGATTCCTA





>HG-U133A: 218432_at; 478; 357; 1951; Antisense;


GAACGCTAGTGGTTTGTCCTTAGAC





>HG-U133A: 218432_at; 628; 213; 1998; Antisense;


CTTTATCGCTAAGACCTTGACTTTA





>HG-U133A: 218432_at; 260; 113; 2022; Antisense;


AAATTTTTCATCACTACAACCTTGA





>HG-U133A: 218432_at; 272; 641; 2050; Antisense;


TAATTTCAGGTCTTCAACATGATGA





>HG-U133A: 218432_at; 138; 463; 2093; Antisense;


GTCTTCAACACTATGCGCTTTATCA





>HG-U133A: 218432_at; 348; 597; 2106; Antisense;


TGCGCTTTATCATATTATTCACAGA





>HG-U133A: 218432_at; 54; 709; 2217; Antisense;


TTGTAAATACTGCTTCTGTTTTGTT





>HG-U133A: 218432_at; 88; 443; 2239; Antisense;


GTTTCTCCTTTATACACTTGACTGT





>HG-U133A: 211307_s_at; 436; 603; 381; Antisense;


TCCATCCACCAAGATTACACGACGC





>HG-U133A: 211307_s_at; 288; 111; 397; Antisense;


ACACGACGCAGAACTTGATCCGCAT





>HG-U133A: 211307_s_at; 116; 543; 446; Antisense;


GGCTCTCTTGGCCATACTGGTTGAA





>HG-U133A: 211307_s_at; 557; 707; 473; Antisense;


TTGGCACAGCCATACGGCACTGAAC





>HG-U133A: 211307_s_at; 370; 537; 488; Antisense;


GGCACTGAACAAGGAAGCCTCGGCA





>HG-U133A: 211307_s_at; 196; 533; 500; Antisense;


GGAAGCCTCGGCAGATGTGGCTGAA





>HG-U133A: 211307_s_at; 370; 63; 512; Antisense;


AGATGTGGCTGAACCGAGCTGGAGC





>HG-U133A: 211307_s_at; 650; 309; 519; Antisense;


GCTGAACCGAGCTGGAGCCAACAGA





>HG-U133A: 211307_s_at; 80; 525; 532; Antisense;


GGAGCCAACAGATGTGTCAGCCAGG





>HG-U133A: 211307_s_at; 63; 459; 547; Antisense;


GTCAGCCAGGATTGACCTTTGCACG





>HG-U133A: 211307_s_at; 197; 279; 552; Antisense;


CCAGGATTGACCTTTGCACGAACAC





>HG-U133A: 206759_at; 344; 699; 1110; Antisense;


TTCCGCGGAGTCCATGGGACCTGAT





>HG-U133A: 206759_at; 694; 249; 1113; Antisense;


CGCGGAGTCCATGGGACCTGATTCA





>HG-U133A: 206759_at; 622; 401; 1117; Antisense;


GAGTCCATGGGACCTGATTCAAGAC





>HG-U133A: 206759_at; 74; 467; 1119; Antisense;


GTCCATGGGACCTGATTCAAGACCA





>HG-U133A: 206759_at; 601; 573; 1131; Antisense;


TGATTCAAGACCAGACCCTGACGGC





>HG-U133A: 206759_at; 228; 39; 941; Antisense;


ATGTGGACTACAGCAACTGGGCTCC





>HG-U133A: 206759_at; 473; 555; 944; Antisense;


TGGACTACAGCAACTGGGCTCCAGG





>HG-U133A: 206759_at; 45; 101; 947; Antisense;


ACTACAGCAACTGGGCTCCAGGGGA





>HG-U133A: 206759_at; 53; 51; 989; Antisense;


AGGGCGAGGACTGCGTGATGATGCG





>HG-U133A: 206759_at; 171; 547; 991; Antisense;


GGCGAGGACTGCGTGATGATGCGGG





>HG-U133A: 206759_at; 205; 45; 995; Antisense;


AGGACTGCGTGATGATGCGGGGCTC





>HG-U133A: 203561_at; 212; 597; 1710; Antisense;


TGCTGGGATGACCAGCATCAGCCCC





>HG-U133A: 203561_at; 634; 697; 1796; Antisense;


TTCTGCCTTCTCCATGCTGAGAACA





>HG-U133A: 203561_at; 590; 115; 1821; Antisense;


AAATCACCTATTCACTGCTTATGCA





>HG-U133A: 203561_at; 646; 319; 1837; Antisense;


GCTTATGCAGTCGGAAGCTCCAGAA





>HG-U133A: 203561_at; 134; 351; 1859; Antisense;


GAAGAACAAAGAGCCCAATTACCAG





>HG-U133A: 203561_at; 262; 357; 1883; Antisense;


GAACCACATTAAGTCTCCATTGTTT





>HG-U133A: 203561_at; 589; 275; 1899; Antisense;


CCATTGTTTTGCCTTGGGATTTGAG





>HG-U133A: 203561_at; 488; 143; 1979; Antisense;


AAGACGAAGGGATGCTGCAGTTCCA





>HG-U133A: 203561_at; 168; 507; 2076; Antisense;


GGTCCCAAATGACTGACTGCACCTT





>HG-U133A: 203561_at; 459; 29; 2144; Antisense;


ATCCACACAGCCAATACAATTAGTC





>HG-U133A: 203561_at; 578; 363; 2200; Antisense;


GAAAGACGCTATGTTACAGGTTACA





>HG-U133A: 210992_x_at; 448; 529; 482; Antisense;


GGACAAGCCTCTGGTCAAGGTCACA





>HG-U133A: 210992_x_at; 28; 201; 631; Antisense;


CATCCAAGCCTGTGACCATCACTGT





>HG-U133A: 210992_x_at; 411; 611; 662; Antisense;


TCCCAGCTCTTCACCGATGGGGATC





>HG-U133A: 210992_x_at; 390; 559; 697; Antisense;


TGGTCACTGGGATTGCTGTAGCGGC





>HG-U133A: 210992_x_at; 441; 657; 715; Antisense;


TAGCGGCCATTGTTGCTGCTGTAGT





>HG-U133A: 210992_x_at; 326; 139; 762; Antisense;


AAGCGGATTTCAGCCAATTCCACTG





>HG-U133A: 210992_x_at; 626; 601; 780; Antisense;


TCCACTGATCCTGTGAAGGCTGCCC





>HG-U133A: 210992_x_at; 294; 591; 800; Antisense;


TGCCCAATTTGAGATGCTTTCCTGC





>HG-U133A: 210992_x_at; 11; 333; 823; Antisense;


GCAGCCACCTGGACGTCAAATGATT





>HG-U133A: 210992_x_at; 159; 131; 892; Antisense;


AACAGCTGACGGCGGCTACATGACT





>HG-U133A: 210992_x_at; 224; 647; 946; Antisense;


TAAAAACATCTACCTGACTCTTCCT





>HG-U133A: 211395_x_at; 449; 471; 384; Antisense;


GTGCATCTGACTGTGCTTTCTGAGT





>HG-U133A: 211395_x_at; 33; 71; 449; Antisense;


AGAAACCATCGTGCTGAGGTGCCAC





>HG-U133A: 211395_x_at; 337; 45; 481; Antisense;


AGGACAAGCCTCTGGTCAAGGTCAT





>HG-U133A: 211395_x_at; 695; 103; 610; Antisense;


ACATAGGCTACACGCTGTACTCATC





>HG-U133A: 211395_x_at; 27; 201; 631; Antisense;


CATCCAAGCCTGTGACCATCACTGT





>HG-U133A: 211395_x_at; 410; 611; 662; Antisense;


TCCCAGCTCTTCACCGATGGGGATC





>HG-U133A: 211395_x_at; 601; 413; 677; Antisense;


GATGGGGATCATTGTGGCTGTGGTC





>HG-U133A: 211395_x_at; 389; 559; 697; Antisense;


TGGTCACTGGGATTGCTGTAGCGGC





>HG-U133A: 211395_x_at; 440; 657; 715; Antisense;


TAGCGGCCATTGTTGCTGCTGTAGT





>HG-U133A: 211395_x_at; 158; 131; 840; Antisense;


AACAGCTGACGGCGGCTACATGACT





>HG-U133A: 211395_x_at; 223; 647; 894; Antisense;


TAAAAACATCTACCTGACTCTTCCT





>HG-U133A: 204007_at; 518; 459; 1411; Antisense;


GTCTTCCAGGGGACTCTATCAGAAC





>HG-U133A: 204007_at; 46; 417; 1459; Antisense;


GATGAGCCCTCTAATGCTAGGAGTA





>HG-U133A: 204007_at; 415; 491; 1502; Antisense;


GGGACTGAGGATTGGGGTGGGGGTG





>HG-U133A: 204007_at; 121; 109; 1543; Antisense;


ACAGAACAAACCCTGTGTCACTGTC





>HG-U133A: 204007_at; 448; 479; 1557; Antisense;


GTGTCACTGTCCCAAGTTAAGCTAA





>HG-U133A: 204007_at; 48; 475; 1582; Antisense;


GTGAACAGAACTATCTCAGCATCAG





>HG-U133A: 204007_at; 222; 619; 1741; Antisense;


TCTGCTTCAATGTCTAGTTCCTGTA





>HG-U133A: 204007_at; 545; 607; 1759; Antisense;


TCCTGTATAGCTTTGTTCATTGCAT





>HG-U133A: 204007_at; 624; 95; 1823; Antisense;


ACTGAGCTTCACTGAGTTACGCTGT





>HG-U133A: 204007_at; 601; 625; 1853; Antisense;


TTTCAAATCCTTCTTCAGTCAGTTC





>HG-U133A: 204007_at; 372; 125; 1918; Antisense;


AAAAAGCTTTAGCTGTCTCCTGTTT





>HG-U133A: 205237_at; 110; 511; 1011; Antisense;


GGTATCAACTGGAGTGCGGCGAAGG





>HG-U133A: 205237_at; 521; 269; 1099; Antisense;


CCTCCACATGCACCTGCTAGTGGGG





>HG-U133A: 205237_at; 516; 89; 1131; Antisense;


ACCCACAAGCGCTGCGTCGTGGAAG





>HG-U133A: 205237_at; 411; 403; 738; Antisense;


GAGGGCAACCACCAGTTTGCTAAGT





>HG-U133A: 205237_at; 107; 489; 827; Antisense;


GGGCAGTGCGGGTAATTCTCTAACG





>HG-U133A: 205237_at; 383; 663; 842; Antisense;


TTCTCTAACGGGCCACAACAACAAC





>HG-U133A: 205237_at; 595; 475; 897; Antisense;


GTGAGTTCTTCGAATTGTGCTGAGA





>HG-U133A: 205237_at; 4; 603; 925; Antisense;


TCCAGGGAGCCTGGTGGTACGCCGA





>HG-U133A: 205237_at; 175; 381; 948; Antisense;


GACTGTCATGCTTCAAACCTCAATG





>HG-U133A: 205237_at; 498; 219; 966; Antisense;


CTCAATGGTCTCTACCTCATGGGAC





>HG-U133A: 205237_at; 345; 39; 984; Antisense;


ATGGGACCCCATGAGAGCTATGCCA





>HG-U133A: 205119_s_at; 657; 111; 1071; Antisense;


ACACAGCTACCAATTCTACTTTACC





>HG-U133A: 205119_s_at; 694; 235; 1135; Antisense;


CTGGGGGACACTTTCGAGCTCCCAG





>HG-U133A: 205119_s_at; 77; 77; 1164; Antisense;


AGCTTCGTCTCACCTTGAGTTAGGC





>HG-U133A: 205119_s_at; 601; 41; 1185; Antisense;


AGGCTGAGCACAGGCATTTCCTGCT





>HG-U133A: 205119_s_at; 233; 11; 1211; Antisense;


ATTTTAGGATTACCCACTCATCAGA





>HG-U133A: 205119_s_at; 374; 35; 713; Antisense;


ATGTCCATCGTTGCTGTCAGTTATG





>HG-U133A: 205119_s_at; 645; 319; 739; Antisense;


GCTTATTGCCACCAAGATCCACAAG





>HG-U133A: 205119_s_at; 65; 41; 766; Antisense;


AGGCTTGATTAAGTCCAGTCGTCCC





>HG-U133A: 205119_s_at; 183; 503; 847; Antisense;


GGTGGTGGCCCTTATAGCCACAGTC





>HG-U133A: 205119_s_at; 201; 195; 918; Antisense;


CAGTGGATGTGACAAGTGCCCTGGC





>HG-U133A: 205119_s_at; 344; 137; 962; Antisense;


AACCCCATGCTCTATGTCTTCATGG





>HG-U133A: 209864_at; 235; 73; 1591; Antisense;


AGAAGAGCCCTGTTGGTGCTTTACC





>HG-U133A: 209864_at; 91; 403; 1624; Antisense;


GAGTCTCCCGAGGACACAAACAGGC





>HG-U133A: 209864_at; 112; 479; 1659; Antisense;


GTGTAGGGAGAGTTCTTTCCTGTTT





>HG-U133A: 209864_at; 194; 265; 1710; Antisense;


CCGGAAGGCCACTCATGGCCATGCC





>HG-U133A: 209864_at; 477; 631; 1722; Antisense;


TCATGGCCATGCCAGGAGCTTTCTC





>HG-U133A: 209864_at; 32; 205; 1756; Antisense;


CATAAACGATCTCTTGAGTCTCTTT





>HG-U133A: 209864_at; 460; 671; 1805; Antisense;


TATTCCACCCTTTCTGGTGTCTATA





>HG-U133A: 209864_at; 619; 579; 1838; Antisense;


TGAGAGACCCTGGACGTTTTTCTGC





>HG-U133A: 209864_at; 189; 545; 2005; Antisense;


GGCTGTATGAAACTTGACGGCGCTT





>HG-U133A: 209864_at; 704; 381; 2020; Antisense;


GACGGCGCTTTTGTAAGGTGCCACC





>HG-U133A: 209864_at; 117; 319; 2111; Antisense;


GCTATTGATGTACACTTCGCAACGG





>HG-U133A: 204299_at; 94; 475; 2334; Antisense;


GTGACTTGACATGTCCAATTTCATT





>HG-U133A: 204299_at; 693; 127; 2384; Antisense;


AAAATCTCAGATTGCTTGCTTACAG





>HG-U133A: 204299_at; 465; 555; 2425; Antisense;


TGGACAAACGATTCCTTTTAGAGGA





>HG-U133A: 204299_at; 125; 441; 2468; Antisense;


GTTTTAGTAATCTAGGCTTTGCCTG





>HG-U133A: 204299_at; 691; 513; 2543; Antisense;


GGATTGATTCTAGAACCTTTGTATA





>HG-U133A: 204299_at; 190; 425; 2571; Antisense;


GATAGTATTTCTAACTTTCATTTCT





>HG-U133A: 204299_at; 452; 437; 2614; Antisense;


GTTCATGTTCTGCTATGCAATCGTT





>HG-U133A: 204299_at; 539; 681; 2658; Antisense;


TTTTTTTAGATTTTCCTGGATGTAT





>HG-U133A: 204299_at; 523; 447; 2714; Antisense;


GTAGCAGTAGTTTACAGTTCTAGCA





>HG-U133A: 204299_at; 474; 115; 2862; Antisense;


AAAACAAGACCCAGCTTATTTTCTG





>HG-U133A: 204299_at; 157; 79; 2874; Antisense;


AGCTTATTTTCTGCTTGCTGTAAAT





>HG-U133A: 206095_s_at; 280; 5; 1254; Antisense;


ATTGAGCCCTTACTGTGGGCAAATC





>HG-U133A: 206095_s_at; 95; 423; 1305; Antisense;


GATAATTCCCTTATTCAGTAAATGT





>HG-U133A: 206095_s_at; 482; 115; 1324; Antisense;


AAATGTCTACTGAGCACAATCTAGT





>HG-U133A: 206095_s_at; 300; 473; 1347; Antisense;


GTGAATCATTACAGTATGGCCTCAT





>HG-U133A: 206095_s_at; 340; 123; 1398; Antisense;


AACAATATTTTACACCATTCGTATC





>HG-U133A: 206095_s_at; 388; 457; 1460; Antisense;


GTAATTGTGTGGTTATCTGCCATTT





>HG-U133A: 206095_s_at; 498; 147; 1487; Antisense;


AAGTATCCAGTATTTGATCACATTA





>HG-U133A: 206095_s_at; 290; 239; 1549; Antisense;


CTGGTTTATTGTGCAGTGACTGTAA





>HG-U133A: 206095_s_at; 329; 231; 1603; Antisense;


CTGCCTCACCAAACACATGCTAGGA





>HG-U133A: 206095_s_at; 528; 199; 1618; Antisense;


CATGCTAGGATATAACCCCCAAAAT





>HG-U133A: 206095_s_at; 709; 373; 1707; Antisense;


GACAGAGAGCTGTTATCCTAACTGA





>HG-U133A: 203853_s_at; 369; 699; 5516; Antisense;


TTCCCCATCTGGGCCTTCATAAAAT





>HG-U133A: 203853_s_at; 189; 31; 5539; Antisense;


ATGCAGGGGAAGCCAGACTGGTCTC





>HG-U133A: 203853_s_at; 586; 559; 5557; Antisense;


TGGTCTCAGGAGCGCTAAAGCCCTT





>HG-U133A: 203853_s_at; 370; 301; 5609; Antisense;


GCCCTGCTGTTTAGGACCTGGGACC





>HG-U133A: 203853_s_at; 405; 239; 5626; Antisense;


CTGGGACCACAATGGGGTACCTGCC





>HG-U133A: 203853_s_at; 280; 609; 5658; Antisense;


TCCCCAAGAGATCCAGGCTGTCATG





>HG-U133A: 203853_s_at; 253; 431; 5712; Antisense;


GTTGGCTACTTGTGTCTTGAAATCT





>HG-U133A: 203853_s_at; 355; 53; 5789; Antisense;


AGTGGAAGCCCAGTCTTGAGTTCTT





>HG-U133A: 203853_s_at; 592; 399; 5806; Antisense;


GAGTTCTTGTCTTGTTACCATTTAA





>HG-U133A: 203853_s_at; 539; 53; 5955; Antisense;


AGTGGGTCATGTTTTTGCTGTGGTG





>HG-U133A: 203853_s_at; 578; 371; 5979; Antisense;


GACACATGGTACAGGCTTGGAGCTT





>HG-U133A: 213049_at; 242; 529; 1624; Antisense;


GGAACATAACCCAGGAGTCTAAGTT





>HG-U133A: 213049_at; 316; 91; 1667; Antisense;


ACTGAACTTGCAGGTCCAGGTTGGT





>HG-U133A: 213049_at; 649; 277; 1682; Antisense;


CCAGGTTGGTATACATTCCACCCTC





>HG-U133A: 213049_at; 511; 619; 1697; Antisense;


TTCCACCCTCTAGAAGTATTTTCTT





>HG-U133A: 213049_at; 611; 61; 1727; Antisense;


AGATAAGCTGCTCACATTTTGTTTT





>HG-U133A: 213049_at; 533; 439; 1747; Antisense;


GTTTTGAATGGGCATCTCCTGAGGA





>HG-U133A: 213049_at; 124; 27; 1760; Antisense;


ATCTCCTGAGGAAATGTAGCATGAC





>HG-U133A: 213049_at; 402; 77; 1777; Antisense;


AGCATGACATTGGTACTAACTGCAT





>HG-U133A: 213049_at; 366; 507; 1788; Antisense;


GGTACTAACTGCATGTGTAAATACA





>HG-U133A: 213049_at; 157; 153; 1807; Antisense;


AATACATCATACTGGCAAACCGTAA





>HG-U133A: 213049_at; 318; 447; 1844; Antisense;


GTATCATCATTCATGTAGTATCTAT





>HG-U133A: 214085_x_at; 260; 369; 138; Antisense;


GAAATTTCCTAACTCTATCAGATAA





>HG-U133A: 214085_x_at; 256; 13; 189; Antisense;


ATTTGCAGGTTGCCACAGGTGGACT





>HG-U133A: 214085_x_at; 451; 455; 222; Antisense;


GTAACCTAACCCATGTTTCAGCTTC





>HG-U133A: 214085_x_at; 357; 57; 297; Antisense;


AGTAACTCCAGTAGCCTTCATTAGT





>HG-U133A: 214085_x_at; 223; 325; 342; Antisense;


GCATGCTGCTTCGACTCTAAATATC





>HG-U133A: 214085_x_at; 461; 649; 359; Antisense;


TAAATATCTGGTTTTCCCTGTCTTT





>HG-U133A: 214085_x_at; 278; 675; 388; Antisense;


TTTACTACTTCCCCAGATTCAGAAC





>HG-U133A: 214085_x_at; 563; 499; 426; Antisense;


GGGGATCTGATTTTAGAGGCCTTAA





>HG-U133A: 214085_x_at; 8; 41; 442; Antisense;


AGGCCTTAATTTTCTGTTCATGGAC





>HG-U133A: 214085_x_at; 313; 29; 543; Antisense;


ATGCTGGGACATCATTACTAACCAA





>HG-U133A: 214085_x_at; 613; 361; 685; Antisense;


GAACACTCTTCTATGAACAACCACC





>HG-U133A: 206662_at; 384; 43; 1035; Antisense;


AGGCTGTGGTCATGCGGAACACTCT





>HG-U133A: 206662_at; 235; 543; 1072; Antisense;


GGCTATCCAGATAATCCTGAACACT





>HG-U133A: 206662_at; 590; 185; 1166; Antisense;


CAGCCCCCTACACCAAGAGTGTATC





>HG-U133A: 206662_at; 60; 367; 1194; Antisense;


GAAAGAGCTCCTACACTTTGAAAAC





>HG-U133A: 206662_at; 297; 255; 1227; Antisense;


CCCTTATCATGAAGTTTGCCTGTTC





>HG-U133A: 206662_at; 119; 163; 1270; Antisense;


AATTTCCTTCAATCTCTAGTGACAA





>HG-U133A: 206662_at; 364; 653; 741; Antisense;


TACTGCCCATTAGCTAAAATCATTT





>HG-U133A: 206662_at; 316; 695; 820; Antisense;


TTCTTTCTAACTACATGCATCTCTC





>HG-U133A: 206662_at; 406; 281; 869; Antisense;


CCACCTTGAAAATCGCTGCTCTGAA





>HG-U133A: 206662_at; 96; 117; 878; Antisense;


AAATCGCTGCTCTGAACCAGTGTTC





>HG-U133A: 206662_at; 632; 709; 996; Antisense;


TTGGTCTTGGTGTCATATGGATCAG





>HG-U133A: 209276_s_at; 504; 169; 103; Antisense;


CAAGAGATCCTCAGTCAATTGCCCA





>HG-U133A: 209276_s_at; 32; 491; 136; Antisense;


GGGCTTCTGGAATTTGTCGATATCA





>HG-U133A: 209276_s_at; 589; 11; 147; Antisense;


ATTTGTCGATATCACAGCCACCAAC





>HG-U133A: 209276_s_at; 484; 281; 164; Antisense;


CCACCAACCACACTAACGAGATTCA





>HG-U133A: 209276_s_at; 56; 427; 190; Antisense;


GATTATTTGCAACAGCTCACGGGAG





>HG-U133A: 209276_s_at; 504; 165; 215; Antisense;


CAAGAACGGTGCCTCGAGTCTTTAT





>HG-U133A: 209276_s_at; 64; 195; 264; Antisense;


CAGTGATCTAGTCTCTTTGCAACAG





>HG-U133A: 209276_s_at; 337; 107; 285; Antisense;


ACAGAGTGGGGAACTGCTGACGCGG





>HG-U133A: 209276_s_at; 185; 567; 30; Antisense;


TGTGAACTGCAAAATCCAGCCTGGG





>HG-U133A: 209276_s_at; 188; 349; 54; Antisense;


GAAGGTGGTTGTGTTCATCAAGCCC





>HG-U133A: 209276_s_at; 402; 283; 77; Antisense;


CCACCTGCCCGTACTGCAGGAGGGC





>HG-U133A: 211284_s_at; 31; 601; 1301; Antisense;


TGCCAGACCCACAAGCCTTGAAGAG





>HG-U133A: 211284_s_at; 399; 397; 1323; Antisense;


GAGAGATGTCCCCTGTGATAATGTC





>HG-U133A: 211284_s_at; 390; 577; 1338; Antisense;


TGATAATGTCAGCAGCTGTCCCTCC





>HG-U133A: 211284_s_at; 703; 297; 1376; Antisense;


GCCGAGACAACCGACAGGGCTGGGC





>HG-U133A: 211284_s_at; 135; 249; 1470; Antisense;


CGCAGCCAGGGGTACCAAGTGTTTG





>HG-U133A: 211284_s_at; 339; 657; 1482; Antisense;


TACCAAGTGTTTGCGCAGGGAGGCC





>HG-U133A: 211284_s_at; 615; 383; 1531; Antisense;


GACCCAGCCTTGAGACAGCTGCTGT





>HG-U133A: 211284_s_at; 185; 405; 1556; Antisense;


GAGGGACAGTACTGAAGACTCTGCA





>HG-U133A: 211284_s_at; 502; 559; 1690; Antisense;


TGGGGCCTCAATCTAAGGCCTTCCC





>HG-U133A: 211284_s_at; 148; 123; 1736; Antisense;


AAAGCCACATTACAAGCTGCCATCC





>HG-U133A: 211284_s_at; 115; 679; 1795; Antisense;


TTTTCCCTATCCACAGGGGTGTTTG





>HG-U133A: 216041_x_at; 190; 395; 1225; Antisense;


GAGAAAGAAGTGGTCTCTGCCCAGC





>HG-U133A: 216041_x_at; 662; 245; 1267; Antisense;


CGTAGCCCTCACGTGGGTGTGAAGG





>HG-U133A: 216041_x_at; 608; 347; 1306; Antisense;


GAAGGACACTTCTGCCATGATAACC





>HG-U133A: 216041_x_at; 652; 599; 1318; Antisense;


TGCCATGATAACCAGACCTGCTGCC





>HG-U133A: 216041_x_at; 702; 297; 1340; Antisense;


GCCGAGACAACCGACAGGGCTGGGC





>HG-U133A: 216041_x_at; 439; 287; 1438; Antisense;


GCCAGGGGTACCAAGTGTTTGCGCA





>HG-U133A: 216041_x_at; 614; 383; 1495; Antisense;


GACCCAGCCTTGAGACAGCTGCTGT





>HG-U133A: 216041_x_at; 540; 193; 1526; Antisense;


CAGTACTGAAGACTCTGCAGCCCTC





>HG-U133A: 216041_x_at; 248; 581; 1630; Antisense;


TGAGCTCCCCATCACCATGGGAGGT





>HG-U133A: 216041_x_at; 501; 559; 1654; Antisense;


TGGGGCCTCAATCTAAGGCCTTCCC





>HG-U133A: 216041_x_at; 147; 123; 1700; Antisense;


AAAGCCACATTACAAGCTGCCATCC





>HG-U133A: 212293_at; 423; 423; 5238; Antisense;


GATAGATGGTGCAGCATGTCTACAT





>HG-U133A: 212293_at; 369; 325; 5251; Antisense;


GCATGTCTACATGGTTGTTTGTTGC





>HG-U133A: 212293_at; 336; 641; 5287; Antisense;


TAATGTGTGGTTTCAATTCAGCTTG





>HG-U133A: 212293_at; 366; 361; 5311; Antisense;


GAAAAATAATCTCACTACATGTAGC





>HG-U133A: 212293_at; 198; 13; 5370; Antisense;


ATTTCTGCTTTGAATCCTTGATATT





>HG-U133A: 212293_at; 514; 5; 5392; Antisense;


ATTGCAATGGAATTCCTACTTTATT





>HG-U133A: 212293_at; 47; 667; 5429; Antisense;


TATGCTAGTTATTGTGTGCGATTTA





>HG-U133A: 212293_at; 45; 683; 5477; Antisense;


TTTTGGTTGTGCGCTTTCTTTTACA





>HG-U133A: 212293_at; 87; 671; 5496; Antisense;


TTTACAACAAGCCTCTAGAAACAGA





>HG-U133A: 212293_at; 384; 443; 5523; Antisense;


GTTTCTGAGAATTACTGAGCTATGT





>HG-U133A: 212293_at; 278; 515; 5669; Antisense;


GGATTCAATGTTTGTCTTTGGTTTT





>HG-U133A: 209657_s_at; 138; 691; 1881; Antisense;


TTCAGGTGTTACTCAGCTGCATAGT





>HG-U133A: 209657_s_at; 247; 479; 1886; Antisense;


GTGTTACTCAGCTGCATAGTTACGC





>HG-U133A: 209657_s_at; 281; 59; 1903; Antisense;


AGTTACGCAGATGTAATGCACATTA





>HG-U133A: 209657_s_at; 112; 705; 1928; Antisense;


TTGGCGTATCTTTAAGTTGGATTCA





>HG-U133A: 209657_s_at; 220; 687; 1939; Antisense;


TTAAGTTGGATTCAAATGGCCATTT





>HG-U133A: 209657_s_at; 55; 419; 2048; Antisense;


GATGCTGTCTATTTGCATTGAGTGT





>HG-U133A: 209657_s_at; 394; 321; 2062; Antisense;


GCATTGAGTGTAAGTCATTTGAACT





>HG-U133A: 209657_s_at; 704; 135; 2159; Antisense;


AACTGGGAACATAAAGTGCCTGTAT





>HG-U133A: 209657_s_at; 207; 175; 2266; Antisense;


CAAAGTGTACGTGAATGCTCGCTGT





>HG-U133A: 209657_s_at; 23; 51; 2296; Antisense;


AGGGTTCCAGCTCCATATATATAGA





>HG-U133A: 209657_s_at; 453; 385; 2348; Antisense;


GAGCCCCATCCAGTTAGTTGGACTA





>HG-U133A;203023_at; 564; 493; 454; Antisense;


GGGAGGACTATAAGGCCATGGCCCG





>HG-U133A: 203023_at; 135; 643; 464; Antisense;


TAAGGCCATGGCCCGTGATGAGAAG





>HG-U133A: 203023_at; 72; 551; 467; Antisense;


GGCCATGGCCCGTGATGAGAAGAAT





>HG-U133A: 203023_at; 366; 539; 473; Antisense;


GGCCCGTGATGAGAAGAATTACTAT





>HG-U133A: 203023_at; 655; 341; 488; Antisense;


GAATTACTATCAAGATACCCCAAAA





>HG-U133A: 203023_at; 226; 367; 501; Antisense;


GATACCCCAAAACAGATTCGGAGTA





>HG-U133A: 203023_at; 580; 613; 518; Antisense;


TCGGAGTAAGATCAACGTCTATAAA





>HG-U133A: 203023_at; 221; 421; 527; Antisense;


GATCAACGTCTATAAACGCTTTTAC





>HG-U133A: 203023_at; 689; 433; 534; Antisense;


GTCTATAAACGCTTTTACCCAGCAG





>HG-U133A: 203023_at; 388; 137; 541; Antisense;


AACGCTTTTACCCAGCAGAGTGGCA





>HG-U133A: 203023_at; 289; 679; 547; Antisense;


TTTACCCAGCAGAGTGGCAAGACTT





>HG-U133A: 210904_s_at; 302; 611; 511; Antisense;


TCCCGACACTAACTATACTCTCTAC





>HG-U133A: 210904_s_at; 506; 101; 522; Antisense;


ACTATACTCTCTACTATTGGCACAG





>HG-U133A: 210904_s_at; 229; 347; 587; Antisense;


GAAGGCCAATACTTTGGTTGTTCCT





>HG-U133A: 210904_s_at; 537; 101; 597; Antisense;


ACTTTGGTTGTTCCTTTGATCTGAC





>HG-U133A: 210904_s_at; 122; 515; 631; Antisense;


GGATTCCAGTTTTGAACAACACAGT





>HG-U133A: 210904_s_at; 265; 123; 692; Antisense;


AAACCATCCTTCAATATAGTGCCTT





>HG-U133A: 210904_s_at; 556; 161; 704; Antisense;


AATATAGTGCCTTTAACTTCCCGTG





>HG-U133A: 210904_s_at; 18; 161; 717; Antisense;


TAACTTCCCGTGTGAAACCTGATCC





>HG-U133A: 210904_s_at; 521; 137; 732; Antisense;


AACCTGATCCTCCACATATTAAAAA





>HG-U133A: 210904_s_at; 433; 229; 760; Antisense;


CTCCTTCCACAATGATGACCTATAT





>HG-U133A: 210904_s_at; 185; 417; 773; Antisense;


GATGACCTATATGTGCAATGGGAGA





>HG-U133A: 205403_at; 372; 397; 1023; Antisense;


GAGAGGATTTGCACATGGATTTTAA





>HG-U133A: 205403_at; 587; 431; 1052; Antisense;


GTTGTCCATAATACCCTGAGTTTTC





>HG-U133A: 205403_at; 75; 579; 1068; Antisense;


TGAGTTTTCAGACACTACGCACCAC





>HG-U133A: 205403_at; 654; 93; 1084; Antisense;


ACGCACCACAGTCAAGGAAGCCTCC





>HG-U133A: 205403_at; 262; 499; 1166; Antisense;


GGGGGAATATGGATGCACAGACGGT





>HG-U133A: 205403_at; 244; 191; 1183; Antisense;


CAGACGGTGCAAACACAGAACTGGA





>HG-U133A: 205403_at; 667; 413; 1214; Antisense;


GATGGTCTGACTGTGCTATGGCCTC





>HG-U133A: 205403_at; 106; 595; 1227; Antisense;


TGCTATGGCCTCATCATCAAGACTT





>HG-U133A: 205403_at; 423; 21; 1242; Antisense;


ATCAAGACTTTCAATCCTATCCCAA





>HG-U133A: 205403_at; 469; 487; 950; Antisense;


GGGCCACGCCAGGAATATTCAGAAA





>HG-U133A: 205403_at; 597; 393; 980; Antisense;


GAGAACTACATTGAAGTGCCATTGA





>HG-U133A: 211372_s_at; 212; 3; 479; Antisense;


ATCTCATACCCGCAAATTTTAACCT





>HG-U133A: 211372_s_at; 456; 57; 523; Antisense;


AGTATGCCCTGACCTGAGTGAATTC





>HG-U133A: 211372_s_at; 504; 507; 579; Antisense;


GGTACAAGGATTCTCTTCTTTTGGA





>HG-U133A: 211372_s_at; 317; 281; 639; Antisense;


CCACTCACTTACTCGTACACGATGT





>HG-U133A: 211372_s_at; 187; 671; 683; Antisense;


TATTACCGCTGTGTCCTGACATTTG





>HG-U133A: 211372_s_at; 293; 347; 713; Antisense;


GAAGGCCAGCAATACAACATCACTA





>HG-U133A: 211372_s_at; 191; 145; 803; Antisense;


AAGACCATATCAGCTTCTCTGGGGT





>HG-U133A: 211372_s_at; 9; 643; 847; Antisense;


TAAGGTGTTTCTGGGAACCGGCACA





>HG-U133A: 211372_s_at; 572; 109; 869; Antisense;


ACACCCTTAACCACCATGCTGTGGT





>HG-U133A: 211372_s_at; 582; 561; 890; Antisense;


TGGTGGACGGCCAATGACACCCACA





>HG-U133A: 211372_s_at; 620; 33; 903; Antisense;


ATGACACCCACATAGAGAGCGCCTA





>HG-U133A: 203828_s_at; 273; 89; 370; Antisense;


ACCTGGAGACAGTGGCGGCTTATTA





>HG-U133A: 203828_s_at; 596; 541; 386; Antisense;


GGCTTATTATGAGGAGCAGCACCCA





>HG-U133A: 203828_s_at; 365; 145; 437; Antisense;


AAGAGATGGATTACGGTGCCGAGGC





>HG-U133A: 203828_s_at; 593; 653; 448; Antisense;


TACGGTGCCGAGGCAACAGATCCCC





>HG-U133A: 203828_s_at; 296; 27; 467; Antisense;


ATCCCCTGTCCCGGATGTTGAGGAT





>HG-U133A: 203828_s_at; 195; 609; 475; Antisense;


TCCCGGATGTTGAGGATCCCGCAAC





>HG-U133A: 203828_s_at; 601; 257; 492; Antisense;


CCCGCAACCGAGGAGCCTGGGGAGA





>HG-U133A: 203828_s_at; 95; 581; 535; Antisense;


TGAGATGGTTCCAGGCCATGCTGCA





>HG-U133A: 203828_s_at; 666; 231; 665; Antisense;


CTGCTCTCTGTCAGAGCTCTTCATG





>HG-U133A: 203828_s_at; 268; 235; 735; Antisense;


CTGACACCCCAGAAGTGCTCTGAAC





>HG-U133A: 203828_s_at; 464; 33; 773; Antisense;


ATGAAGATACTGACACCACCTTTGC





>HG-U133A: 212195_at; 133; 415; 2989; Antisense;


GATGGGTCGTGTGATGAGATGCATT





>HG-U133A: 212195_at; 191; 399; 3004; Antisense;


GAGATGCATTTAAGGCCGATAGTGA





>HG-U133A: 212195_at; 158; 547; 3017; Antisense;


GGCCGATAGTGATAGATGTTTTTTT





>HG-U133A: 212195_at; 674; 673; 3044; Antisense;


TTTCTTGAACACAGGCTTTGTCTGA





>HG-U133A: 212195_at; 660; 345; 3067; Antisense;


GAATGATGTTCTTTTATCTCTTGAA





>HG-U133A: 212195_at; 306; 643; 3121; Antisense;


TAAGTGCTGTTACATTAATACCATA





>HG-U133A: 212195_at; 129; 623; 3197; Antisense;


TCTCTAGTCTCAATATGTATGTGTA





>HG-U133A: 212195_at; 357; 471; 3245; Antisense;


GTGCAATTTGCTAGTAGGACAATGC





>HG-U133A: 212195_at; 505; 529; 3261; Antisense;


GGACAATGCAGTGACTGACTAGCAT





>HG-U133A: 212195_at; 509; 469; 3332; Antisense;


GTGCAATCCTTTCATGTTCACTTGC





>HG-U133A: 212195_at; 433; 667; 3510; Antisense;


TATTAGCTCTAATCCCTTAAGTAAA





>HG-U133A: 207008_at; 225; 83; 2347; Antisense;


ACCTAACGAAGTATCCTTCAGCCTG





>HG-U133A: 207008_at; 162; 105; 2393; Antisense;


ACATGTTACAACACGGACGAACCTT





>HG-U133A: 207008_at; 695; 525; 2407; Antisense;


GGACGAACCTTGAAAACTTTATGCT





>HG-U133A: 207008_at; 564; 15; 2462; Antisense;


ATAGTTTATGATTCCACCTACATGA





>HG-U133A: 207008_at; 675; 425; 2532; Antisense;


GATTACCAGGGACTGAGGGGAGGGG





>HG-U133A: 207008_at; 437; 499; 2553; Antisense;


GGGGAGCATGGGAAGTGACGGTTTA





>HG-U133A: 207008_at; 621; 153; 2577; Antisense;


AATGGGCACAGGGTTTATGTTTAGG





>HG-U133A: 207008_at; 492; 105; 2626; Antisense;


ACAGTAGTGATAGTTGTACCGCAAT





>HG-U133A: 207008_at; 181; 451; 2641; Antisense;


GTACCGCAATGTGACTTAATGCCAC





>HG-U133A: 207008_at; 207; 85; 2763; Antisense;


ACCAAGGCTGATTAAACCAAGGCTA





>HG-U133A: 207008_at; 679; 645; 2775; Antisense;


TAAACCAAGGCTAGAACCACCTGCC





>HG-U133A: 202531_at; 669; 105; 1451; Antisense;


ACAGGAGTCAGTGTCTGGCTTTTTC





>HG-U133A: 202531_at; 400; 547; 1518; Antisense;


TGGCTCCTAGGGGAACAGACCAGTG





>HG-U133A: 202531_at; 163; 645; 1557; Antisense;


TAACACCAATCCCAGGGCTGGCTCT





>HG-U133A: 202531_at; 46; 547; 1572; Antisense;


GGCTGGCTCTGCACTAAGCGAAAAT





>HG-U133A: 202531_at; 546; 601; 1616; Antisense;


TCCAAAGAACTACCCCTTTTCAGCT





>HG-U133A: 202531_at; 62; 257; 1644; Antisense;


CCCTGGGGACTGTTCCAAAGCCAGT





>HG-U133A: 202531_at; 399; 133; 1766; Antisense;


AACTTGGCACTTTTTCGTGTGGATC





>HG-U133A: 202531_at; 258; 485; 1784; Antisense;


GTGGATCTTGCCACATTTCTGATCA





>HG-U133A: 202531_at; 366; 191; 1807; Antisense;


CAGAGGTGTACACTAACATTTCCCC





>HG-U133A: 202531_at; 37; 683; 1852; Antisense;


TTATTTATACAGTGCCTTGCTCGGG





>HG-U133A: 202531_at; 570; 481; 1928; Antisense;


GTGTGAGCGCCTTGGTATGACTTAA





>HG-U133A: 216944_s_at; 217; 335; 8510; Antisense;


GCACTTGAACCAGATTATAGATTTA





>HG-U133A: 216944_s_at; 671; 123; 8563; Antisense;


AAACTAGAATAGCCAGTATTTATGT





>HG-U133A: 216944_s_at; 311; 473; 8601; Antisense;


GTGCAATACGAATTATGCAATCACA





>HG-U133A: 216944_s_at; 440; 21; 8620; Antisense;


ATCACAATACATTTGTAGCTCCCGA





>HG-U133A: 216944_s_at; 473; 159; 8625; Antisense;


AATACATTTGTAGCTCCCGAGTGTC





>HG-U133A: 216944_s_at; 465; 13; 8630; Antisense;


ATTTGTAGCTCCCGAGTGTCCTAAA





>HG-U133A: 216944_s_at; 346; 431; 8634; Antisense;


GTAGCTCCCGAGTGTCCTAAAGGGA





>HG-U133A: 216944_s_at; 50; 467; 8647; Antisense;


GTCCTAAAGGGAGTGCACTTCTTTG





>HG-U133A: 216944_s_at; 484; 101; 8663; Antisense;


ACTTCTTTGAAGCTGGTGTGTTAAT





>HG-U133A: 216944_s_at; 576; 355; 8671; Antisense;


GAAGCTGGTGTGTTAATACTATGTA





>HG-U133A: 216944_s_at; 377; 645; 8705; Antisense;


TAACTTTCAAATGATGCTGCTGCCA





>HG-U133A: 209099_x_at; 346; 673; 5053; Antisense;


TTTGTTTTTCTGCTTTAGACTTGAA





>HG-U133A: 209099_x_at; 581; 395; 5080; Antisense;


GAGACAGGCAGGTGATCTGCTGCAG





>HG-U133A: 209099_x_at; 464; 533; 5198; Antisense;


GGAAGCACACCAATCTGACTTTGTA





>HG-U133A: 209099_x_at; 517; 425; 5229; Antisense;


GATTTCTTTTCACCATTCGTACATA





>HG-U133A: 209099_x_at; 131; 357; 5259; Antisense;


GAACCACTTGTAGATTTGATTTTTT





>HG-U133A: 209099_x_at; 73; 61; 5354; Antisense;


AGATCACTGTTTAGATTTGCCATAG





>HG-U133A: 209099_x_at; 435; 675; 5369; Antisense;


TTTGCCATAGAGTACACTGCCTGCC





>HG-U133A: 209099_x_at; 143; 455; 5380; Antisense;


GTACACTGCCTGCCTTAAGTGAGGA





>HG-U133A: 209099_x_at; 418; 63; 5452; Antisense;


AGAGTAATCTTGTTGGTTCACCATT





>HG-U133A: 209099_x_at; 399; 423; 5488; Antisense;


GATACTTTGTATTGTCCTATTAGTG





>HG-U133A: 209099_x_at; 6; 325; 5531; Antisense;


GCATCTTTGATGTGTTGTTCTTGGC





>HG-U133A: 216268_s_at; 518; 425; 1232; Antisense;


GATTTCTTTTCACCATTCGTACATA





>HG-U133A: 216268_s_at; 331; 161; 1256; Antisense;


AATACTGAACCACTTGTAGATTTGA





>HG-U133A: 216268_s_at; 328; 137; 1321; Antisense;


AAGCTAGTTGAATACTTGAACCATA





>HG-U133A: 216268_s_at; 436; 675; 1373; Antisense;


TTTGCCATAGAGTACACTGCCTGCC





>HG-U133A: 216268_s_at; 144; 455; 1384; Antisense;


GTACACTGCCTGCCTTAAGTGAGGA





>HG-U133A: 216268_s_at; 382; 21; 1410; Antisense;


ATCAAAGTGCTATTACGAAGTTCAA





>HG-U133A: 216268_s_at; 478; 105; 1454; Antisense;


ACAGAGTAATCTTGTTGGTTCACCA





>HG-U133A: 216268_s_at; 475; 573; 1466; Antisense;


TGTTGGTTCACCATTGAGACCGTGA





>HG-U133A: 216268_s_at; 618; 395; 1481; Antisense;


GAGACCGTGAAGATACTTTGTATTG





>HG-U133A: 216268_s_at; 400; 423; 1492; Antisense;


GATACTTTGTATTGTCCTATTAGTG





>HG-U133A: 216268_s_at; 7; 325; 1535; Antisense;


GCATCTTTGATGTGTTGTTCTTGGC





>HG-U133A: 212779_at; 99; 457; 5812; Antisense;


GTCAGTTCTTATCAAAAAGCTCGGT





>HG-U133A: 212779_at; 442; 121; 5827; Antisense;


AAAGCTCGGTACTGCACTACAGGAT





>HG-U133A: 212779_at; 360; 465; 5926; Antisense;


GTCTGTTTTATTACACTGGAGTGTT





>HG-U133A: 212779_at; 103; 1; 6019; Antisense;


GTAAGTTAACCTGTTCTAGTTCCAT





>HG-U133A: 212779_at; 320; 237; 6029; Antisense;


CTGTTCTAGTTCCATCATTCTGTGT





>HG-U133A: 212779_at; 149; 39; 6139; Antisense;


ATGTGCAATACAATTCCTGCATCTT





>HG-U133A: 212779_at; 90; 165; 6150; Antisense;


AATTCCTGCATCTTTAAAATGTCTG





>HG-U133A: 212779_at; 118; 671; 6199; Antisense;


TATTGGATTGGCCGTAACTTTTAGA





>HG-U133A: 212779_at; 168; 495; 6255; Antisense;


GGGAGGTCATTAATTGCTTTTTCTT





>HG-U133A: 212779_at; 483; 87; 6304; Antisense;


ACCTGTTTGTATATAGCTTGAGTAA





>HG-U133A: 212779_at; 451; 3; 6328; Antisense;


ATTGTGATATGATTGTATACCACTA





>HG-U133A: 203543_s_at; 611; 485; 4283; Antisense;


GTGGCTTTTGTCAAGCACTTAGATG





>HG-U133A: 203543_s_at; 627; 61; 4303; Antisense;


AGATGGATATAAATGCAGCAACTTG





>HG-U133A: 203543_s_at; 198; 567; 4425; Antisense;


TGTAACGTATAAACTCAAGCCTTTT





>HG-U133A: 203543_s_at; 311; 153; 4478; Antisense;


AATGTCACAAAACAGGAACCAGCAT





>HG-U133A: 203543_s_at; 217; 419; 4526; Antisense;


GATATGGTTCAAATAGGACTACTAG





>HG-U133A: 203543_s_at; 261; 45; 4540; Antisense;


AGGACTACTAGAGTTCATTGAACAC





>HG-U133A: 203543_s_at; 328; 367; 4677; Antisense;


GAAAGACTATTGCAGGTGTTTAAAA





>HG-U133A: 203543_s_at; 520; 455; 4730; Antisense;


GTAAGTAGTTGTCATATTCTGGAAA





>HG-U133A: 203543_s_at; 608; 687; 4766; Antisense;


TTAGAGTTAAGATATCTCCTCTCTT





>HG-U133A: 203543_s_at; 515; 13; 4777; Antisense;


ATATCTCCTCTCTTTGGTTAGGGAA





>HG-U133A: 203543_s_at; 149; 89; 4816; Antisense;


ACCATTGTGGAATGATGCCCTGGCT





>HG-U133A: 203041_s_at; 652; 57; 1186; Antisense;


AGTATTCTACAGCTCAAGACTGCAG





>HG-U133A: 203041_s_at; 125; 381; 1203; Antisense;


GACTGCAGTGCAGATGACGACAACT





>HG-U133A: 203041_s_at; 104; 329; 1207; Antisense;


GCAGTGCAGATGACGACAACTTCCT





>HG-U133A: 203041_s_at; 294; 473; 1210; Antisense;


GTGCAGATGACGACAACTTCCTTGT





>HG-U133A: 203041_s_at; 9; 193; 1213; Antisense;


CAGATGACGACAACTTCCTTGTGCC





>HG-U133A: 203041_s_at; 506; 209; 1226; Antisense;


CTTCCTTGTGCCCATAGCGGTGGGA





>HG-U133A: 203041_s_at; 584; 567; 1232; Antisense;


TGTGCCCATAGCGGTGGGAGCTGCC





>HG-U133A: 203041_s_at; 333; 311; 1251; Antisense;


GCTGCCTTGGCAGGAGTACTTATTC





>HG-U133A: 203041_s_at; 322; 539; 1259; Antisense;


GGCAGGAGTACTTATTCTAGTGTTG





>HG-U133A: 203041_s_at; 261 625; 1274; Antisense;


TCTAGTGTTGCTGGCTTATTTTATT





>HG-U133A: 203041_s_at; 707; 671; 1295; Antisense;


TATTGGTCTCAAGCACCATCATGCT





>HG-U133A: 212531_at; 179; 169; 400; Antisense;


CAAGAGCTACAATGTCACCTCCGTC





>HG-U133A: 212531_at; 44; 197; 457; Antisense;


CAGGACTTTTGTTCCAGGTTGCCAG





>HG-U133A: 212531_at; 25; 245; 487; Antisense;


CGAGTTCACGCTGGGCAACATTAAG





>HG-U133A: 212531_at; 68; 439; 531; Antisense;


GTTACCTCGTCCGAGTGGTGAGCAC





>HG-U133A: 212531_at; 563; 493; 606; Antisense;


GGGAGTACTTCAAGATCACCCTCTA





>HG-U133A: 212531_at; 114; 61; 618; Antisense;


AGATCACCCTCTACGGGAGAACCAA





>HG-U133A: 212531_at; 616; 493; 632; Antisense;


GGGAGAACCAAGGAGCTGACTTCGG





>HG-U133A: 212531_at; 588; 217; 659; Antisense;


CTAAAGGAGAACTTCATCCGCTTCT





>HG-U133A: 212531_at; 103; 467; 725; Antisense;


GTCCCAATCGACCAGTGTATCGACG





>HG-U133A: 212531_at; 194; 381; 746; Antisense;


GACGGCTGAGTGCACAGGTGCCGCC





>HG-U133A: 212531_at; 396; 181; 779; Antisense;


CACCAGCCCGAACACCATTGAGGGA





>HG-U133A: 202068_s_at; 250; 269; 4602; Antisense;


CCTCCAGTCTGGATCGTTTGACGGG





>HG-U133A: 202068_s_at; 670; 673; 4618; Antisense;


TTTGACGGGACTTCAGGTTCTTTCT





>HG-U133A: 202068_s_at; 474; 369; 4643; Antisense;


GAAATCGCCGTGTTACTGTTGCACT





>HG-U133A: 202068_s_at; 451; 229; 4658; Antisense;


CTGTTGCACTGATGTCCGGAGAGAC





>HG-U133A: 202068_s_at; 487; 459; 4696; Antisense;


GTCAGACTCCCGCGTGAAGATGTCA





>HG-U133A: 202068_s_at; 280; 49; 4773; Antisense;


AGGGAACCGTGATAAGCCTTTCTGG





>HG-U133A: 202068_s_at; 610; 293; 4788; Antisense;


GCCTTTCTGGTTTCGGAGCACGTAA





>HG-U133A: 202068_s_at; 186; 179; 4806; Antisense;


CACGTAAATGCGTCCCTGTACAGAT





>HG-U133A: 202068_s_at; 689; 701; 4951; Antisense;


TTGTTCAGTGACTATTCTCGGGGCC





>HG-U133A: 202068_s_at; 187; 249; 5035; Antisense;


CGAACTGGACTGTGTGCAACGCTTT





>HG-U133A: 202068_s_at; 216; 73; 5065; Antisense;


AGAATGATGTCCCCGTTGTATGTAT





>HG-U133A: 210784_x_at; 632; 527; 1524; Antisense;


GGACAGGGGCCTGCTGAGGAGGTCC





>HG-U133A: 210784_x_at; 523; 363; 1573; Antisense;


GAAAACCTCTATGCTGCCGTGAAGG





>HG-U133A: 210784_x_at; 125; 557; 1619; Antisense;


TGGAGCTGGACAGTCAGAGCCCACA





>HG-U133A: 210784_x_at; 60; 613; 1716; Antisense;


TCCCTCCTCACTGTCTGGGGAATTC





>HG-U133A: 210784_x_at; 289; 413; 1779; Antisense;


GATGGACACTGAGGCTGCTGCATCT





>HG-U133A: 210784_x_at; 105; 27; 1800; Antisense;


ATCTGAAGCCTCCCAGGATGTGACC





>HG-U133A: 210784_x_at; 435; 67; 1852; Antisense;


AGACGGAAGGCAACTGAGCCTCCTC





>HG-U133A: 210784_x_at; 361; 275; 1881; Antisense;


CCAGGAAGGGGAACCTCCAGCTGAG





>HG-U133A: 210784_x_at; 113; 385; 1954; Antisense;


GACCCCACACTCAGCAGAAGGAGAC





>HG-U133A: 210784_x_at; 232; 527; 1982; Antisense;


GGACTGCTGAAGGCACGGGAGCTGC





>HG-U133A: 210784_x_at; 181; 525; 2040; Antisense;


GGACCCCTAACACAGACCATGAGGA





>HG-U133A: 202018_s_at; 510; 249; 2081; Antisense;


CGCTGCTGTGCCTCGATGGCAAACG





>HG-U133A: 202018_s_at; 408; 343; 2151; Antisense;


GAATCATGCCGTGGTGTCTCGGATG





>HG-U133A: 202018_s_at; 1; 71; 2230; Antisense;


AGAAATGGATCTGACTGCCCGGACA





>HG-U133A: 202018_s_at; 624; 379; 2242; Antisense;


GACTGCCCGGACAAGTTTTGCTTAT





>HG-U133A: 202018_s_at; 492; 167; 2253; Antisense;


CAAGTTTTGCTTATTCCAGTCTGAA





>HG-U133A: 202018_s_at; 226; 123; 2283; Antisense;


AAACCTTCTGTTCAATGACAACACT





>HG-U133A: 202018_s_at; 649; 479; 2310; Antisense;


GTGTCTGGCCAGACTCCATGGCAAA





>HG-U133A: 202018_s_at; 27; 493; 2355; Antisense;


GGGACCACAGTATGTCGCAGGCATT





>HG-U133A: 202018_s_at; 661; 605; 2411; Antisense;


TCCTGGAAGCCTGTGAATTCCTCAG





>HG-U133A: 202018_s_at; 186; 169; 2468; Antisense;


CAAGAAAGCCTCAGCCATTCACTGC





>HG-U133A: 202018_s_at; 263; 701; 2572; Antisense;


TTCCCTGCTGTCGTCTTAGCAAGAA





>HG-U133A: 202626_s_at; 119; 385; 1859; Antisense;


GACCCGTCCATTTGGCAGGGGTGGC





>HG-U133A: 202626_s_at; 221; 195; 1874; Antisense;


CAGGGGTGGCTGCCTCATTTAGAGA





>HG-U133A: 202626_s_at; 113; 181; 1913; Antisense;


CACTGGTTGCACTTATGATTTCATG





>HG-U133A: 202626_s_at; 399; 631; 1933; Antisense;


TCATGTGCGGGGATCATCTGCCGTG





>HG-U133A: 202626_s_at; 553; 571; 2021; Antisense;


TGTACTCTTAGATGGATTCTCCACT





>HG-U133A: 202626_s_at; 153; 429; 2035; Antisense;


GATTCTCCACTCAGTTGCAACTTGG





>HG-U133A: 202626_s_at; 87; 339; 2051; Antisense;


GCAACTTGGACTTGTCCTCAGCAGC





>HG-U133A: 202626_s_at; 151; 221; 2067; Antisense;


CTCAGCAGCTGGTAATCTTGCTCTG





>HG-U133A: 202626_s_at; 533; 627; 2082; Antisense;


TCTTGCTCTGCTTGACAACATCTGA





>HG-U133A: 202626_s_at; 381; 127; 2144; Antisense;


AAAATGCACCCAACTAGCTCTATGT





>HG-U133A: 202626_s_at; 471; 395; 2199; Antisense;


GAGACCATTGCAATGAATCCCCAAT





>HG-U133A: 210754_s_at; 175; 223; 1003; Antisense;


CTCATTGACTTTTCTGCTCAGATTG





>HG-U133A: 210754_s_at; 662; 391; 1079; Antisense;


GAGCAGCTAATGTTCTGGTCTCCGA





>HG-U133A: 210754_s_at; 423; 435; 1185; Antisense;


GTTCCCTATTAAGTGGACGGCTCCA





>HG-U133A: 210754_s_at; 86; 469; 1254; Antisense;


GTCCTTTGGAATCCTCCTATACGAA





>HG-U133A: 210754_s_at; 467; 133; 1314; Antisense;


AACTAATGCCGACGTGATGACCGCC





>HG-U133A: 210754_s_at; 134; 237; 1339; Antisense;


CTGTCCCAGGGCTACAGGATGCCCC





>HG-U133A: 210754_s_at; 151; 197; 1353; Antisense;


CAGGATGCCCCGTGTGGAGAACTGC





>HG-U133A: 210754_s_at; 361; 97; 1373; Antisense;


ACTGCCCAGATGAGCTCTATGACAT





>HG-U133A: 210754_s_at; 417; 387; 1433; Antisense;


GACCAACGTTTGACTACTTACAGAG





>HG-U133A: 210754_s_at; 227; 305; 1457; Antisense;


GCGTCCTGGATGATTTCTACACAGC





>HG-U133A: 210754_s_at; 107; 151; 943; Antisense;


AAGGGCAGTTTGCTGGATTTCCTGA





>HG-U133A: 36711_at; 129; 705; 1561; Antisense;


TTGCACGGATCTAAGTTATTCTCCC





>HG-U133A: 36711_at; 90; 667; 2026; Antisense;


TATTGCCCGGCTCCTAGAATTTATT





>HG-U133A: 36711_at; 203; 679; 2049; Antisense;


TTTATTTCCTGACTTACAGCAAGCG





>HG-U133A: 36711_at; 241; 685; 2050; Antisense;


TTATTTCCTGACTTACAGCAAGCGA





>HG-U133A: 36711_at; 633; 669; 2051; Antisense;


TATTTCCTGACTTACAGCAAGCGAG





>HG-U133A: 36711_at; 707; 673; 2053; Antisense;


TTTCCTGACTTACAGCAAGCGAGTT





>HG-U133A: 36711_at; 48; 609; 2055; Antisense;


TCCTGACTTACAGCAAGCGAGTTAT





>HG-U133A: 36711_at; 663; 267; 2056; Antisense;


CCTGACTTACAGCAAGCGAGTTATC





>HG-U133A: 36711_at; 120; 233; 2057; Antisense;


CTGACTTACAGCAAGCGAGTTATCG





>HG-U133A: 36711_at; 401; 583; 2058; Antisense;


TGACTTACAGCAAGCGAGTTATCGT





>HG-U133A: 36711_at; 488; 689; 2062; Antisense;


TTACAGCAAGCGAGTTATCGTCTTC





>HG-U133A: 36711_at; 97; 651; 2063; Antisense;


TACAGCAAGCGAGTTATCGTCTTCT





>HG-U133A: 36711_at; 250; 75; 2066; Antisense;


AGCAAGCGAGTTATCGTCTTCTGTA





>HG-U133A: 36711_at; 594; 169; 2068; Antisense;


CAAGCGAGTTATCGTCTTCTGTATT





>HG-U133A: 36711_at; 108; 141; 2069; Antisense;


AAGCGAGTTATCGTCTTCTGTATTT





>HG-U133A: 36711_at; 149; 305; 2071; Antisense;


GCGAGTTATCGTCTTCTGTATTTTG





>HG-U133A: 207078_at; 510; 391; 522; Antisense;


GAGCAAGGTAAGTAGAACATCCATA





>HG-U133A: 207078_at; 544; 309; 583; Antisense;


GCTGTTTTCTTTAGGAAAATGGCTG





>HG-U133A: 207078_at; 366; 153; 600; Antisense;


AATGGCTGTTGATCTTTTCTAAGTG





>HG-U133A: 207078_at; 637; 575; 609; Antisense;


TGATCTTTTCTAAGTGTGTTTCACT





>HG-U133A: 207078_at; 198; 691; 628; Antisense;


TTCACTTTTTCATGGGATGATGGCT





>HG-U133A: 207078_at; 459; 35; 644; Antisense;


ATGATGGCTTTGTTGCAGCTGAGAT





>HG-U133A: 207078_at; 29; 709; 653; Antisense;


TTGTTGCAGCTGAGATTCATGTAAC





>HG-U133A: 207078_at; 355; 549; 683; Antisense;


TGGTAATAATAGTTTCACATAGGAA





>HG-U133A: 207078_at; 699; 61; 709; Antisense;


AGATGCAAGTTCACTCTGTTAGTTA





>HG-U133A: 207078_at; 268; 179; 720; Antisense;


CACTCTGTTAGTTAACTGGTAGTCT





>HG-U133A: 207078_at; 608; 509; 737; Antisense;


GGTAGTCTTTGTTAAGGTGATTCAA





>HG-U133A: 203003_at; 621; 259; 2881; Antisense;


CCCCAGTTTTTCTCTAAGATATACA





>HG-U133A: 203003_at; 266; 425; 2898; Antisense;


GATATACAGTGCAATAGCTCCCCAC





>HG-U133A: 203003_at; 284; 57; 2928; Antisense;


AGTTGACGCCAGCCCTGTAAAGCTG





>HG-U133A: 203003_at; 429; 461; 2983; Antisense;


GTCTTCAGTGAGGTGGCTGGGGCGA





>HG-U133A: 203003_at; 410; 277; 3036; Antisense;


CCAGGCCAGAGCTCTTTCATTGGGG





>HG-U133A: 203003_at; 204; 489; 3058; Antisense;


GGGCGAGTGTGGTGAGGGGACGTCC





>HG-U133A: 203003_at; 284; 91; 3102; Antisense;


ACCTGGGGGAGTCAACACTGGGATG





>HG-U133A: 203003_at; 507; 129; 3115; Antisense;


AACACTGGGATGGTCTGTGGGGTGG





>HG-U133A: 203003_at; 309; 505; 3139; Antisense;


GGAGGGCCTACGGATGGGTCCGTAG





>HG-U133A: 203003_at; 205; 647; 3338; Antisense;


TAGCGACCTTTGGAAAACGTTAGCG





>HG-U133A: 203003_at; 378; 93; 3354; Antisense;


ACGTTAGCGGTGTAACAGTCCAGGA





>HG-U133A: 204959_at; 386; 401; 1092; Antisense;


GAGGTCCCAAACAGAATTATCGAAA





>HG-U133A: 204959_at; 149; 71; 1125; Antisense;


AAAACTCCCAAGATCAGTCAACTTT





>HG-U133A: 204959_at; 47; 75; 1153; Antisense;


AGCAAGCATCTGGAACAATGGTGTA





>HG-U133A: 204959_at; 141; 155; 1169; Antisense;


AATGGTGTATGGGTTGTTTATGTTA





>HG-U133A: 204959_at; 441; 47; 1301; Antisense;


AGGAGATAAACTTCGACTCTTCTGC





>HG-U133A: 204959_at; 126; 223; 1317; Antisense;


CTCTTCTGCCTTCAACTGAGAACAG





>HG-U133A: 204959_at; 331; 233; 1332; Antisense;


CTGAGAACAGTTGACCGCAAGCTGA





>HG-U133A: 204959_at; 400; 263; 1346; Antisense;


CCGCAAGCTGAAACTGGTGTGTGGA





>HG-U133A: 204959_at; 446; 503; 1361; Antisense;


GGTGTGTGGAAGTCACAGCTTCATC





>HG-U133A: 204959_at; 614; 155; 1451; Antisense;


AATGCAACAAACAACTTCCGCTTAA





>HG-U133A: 204959_at; 36; 17; 1582; Antisense;


ATAGATTAGTTTGCTTTCTGGAATA





>HG-U133A: 210254_at; 518; 583; 1071; Antisense;


TCCACCTACTCCATTGCTTTATGAG





>HG-U133A: 210254_at; 322; 535; 1106; Antisense;


GGAAGGCGGTATAATCCCTATTCAA





>HG-U133A: 210254_at; 24; 133; 1150; Antisense;


AACTTCTGACCGCCCAGTAGGAAGA





>HG-U133A: 210254_at; 128; 321; 1207; Antisense;


GCTTCTTGACTTTAACATCAGCATT





>HG-U133A: 210254_at; 213; 405; 1300; Antisense;


GAGGGTTAAGGCTCAGGGATTTTAT





>HG-U133A: 210254_at; 404; 587; 1330; Antisense;


TGAACTGCTGGAACTCACACATGCC





>HG-U133A: 210254_at; 364; 301; 1382; Antisense;


GCGAGTCTGAGAGCAAGCCCAAATG





>HG-U133A: 210254_at; 117; 339; 1465; Antisense;


GAATCTGACACATCTGGGTTCAAAT





>HG-U133A: 210254_at; 569; 365; 1493; Antisense;


GAAACTGTCACTTATTACCTGTATG





>HG-U133A: 210254_at; 545; 641; 1535; Antisense;


TAATCTCTCTGATCTATTTTTCCTC





>HG-U133A: 210254_at; 177; 113; 1584; Antisense;


ACAACTACTTTGTCGGTTGCTCTGA





>HG-U133A: 203347_s_at; 336; 423; 2172; Antisense;


GATACTAGCCTTAACATGTACCTGT





>HG-U133A: 203347_s_at; 267; 655; 2177; Antisense;


TAGCCTTAACATGTACCTGTCAATG





>HG-U133A: 203347_s_at; 565; 35; 2187; Antisense;


ATGTACCTGTCAATGTTATGGATAT





>HG-U133A: 203347_s_at; 490; 153; 2304; Antisense;


AATGATTGAAACCCATGCATGGTGT





>HG-U133A: 203347_s_at; 258; 33; 2318; Antisense;


ATGCATGGTGTTAGACAATTTTTCT





>HG-U133A: 203347_s_at; 581; 477; 2368; Antisense;


GTGATTAGTGATTATCAGAGCAAAC





>HG-U133A: 203347_s_at; 92; 393; 2385; Antisense;


GAGCAAACATCATGTAGATAGCACA





>HG-U133A: 203347_s_at; 317; 337; 2454; Antisense;


GCAAACATCATGTAGATAGCACAAG





>HG-U133A: 203347_s_at; 467; 11; 2528; Antisense;


ATTTCAATACCTTTTAGATTTCATA





>HG-U133A: 203347_s_at; 130; 149; 2553; Antisense;


AAGTGCAGTGTATATAATGCCTACT





>HG-U133A: 203347_s_at; 305; 665; 2565; Antisense;


TATAATGCCTACTGAAAGACTGTAA





>HG-U133A: 206877_at; 33; 129; 497; Antisense;


GAAAAGCCGTTCACCAAATCGACCA





>HG-U133A: 206877_at; 433; 615; 515; Antisense;


TCGACCAGCTTCAGCGAGAGCAGCG





>HG-U133A: 206877_at; 611; 419; 579; Antisense;


GATCCGGATGGACAGCATCGGCTCC





>HG-U133A: 206877_at; 109; 249; 619; Antisense;


CGCTCCGACTCCGACAGGGAAGAAA





>HG-U133A: 206877_at; 264; 393; 660; Antisense;


GAGCACGGACTATCTCACAGGTGAT





>HG-U133A: 206877_at; 7; 505; 679; Antisense;


GGTGATCTGGACTGGAGCAGCAGCA





>HG-U133A: 206877_at; 59; 329; 701; Antisense;


GCAGTGTGAGCGACTCTGACGAGCG





>HG-U133A: 206877_at; 450; 77; 730; Antisense;


AGCATGCAGAGCCTCGGCAGTGATG





>HG-U133A: 206877_at; 39; 55; 748; Antisense;


AGTGATGAGGGCTATTCCAGCACCA





>HG-U133A: 206877_at; 136; 457; 800; Antisense;


GTCACAAGGCGTGTCTTGGTCTCTA





>HG-U133A: 206877_at; 673; 133; 903; Antisense;


AACTCCCTTGCACGTAAACTTCAGT





>HG-U133A: 201058_s_at; 615; 323; 536; Antisense;


GCATCCTCAAACATGGCGCCAAGGA





>HG-U133A: 201058_s_at; 656; 269; 540; Antisense;


CCTCAAACATGGCGCCAAGGATAAA





>HG-U133A: 201058_s_at; 558; 611; 691; Antisense;


TCCCAGTTCCCAGTGGAAGAAACAG





>HG-U133A: 201058_s_at; 525; 53; 724; Antisense;


AGTGCGTGCCGAGCTGAGGCAGATG





>HG-U133A: 201058_s_at; 239; 305; 727; Antisense;


GCGTGCCGAGCTGAGGCAGATGTTC





>HG-U133A: 201058_s_at; 39; 597; 730; Antisense;


TGCCGAGCTGAGGCAGATGTTCCCA





>HG-U133A: 201058_s_at; 398; 261; 761; Antisense;


CCCCAGAGCCCTGGGCTATAGTCTC





>HG-U133A: 201058_s_at; 360; 189; 764; Antisense;


CAGAGCCCTGGGCTATAGTCTCTGA





>HG-U133A: 201058_s_at; 98; 251; 959; Antisense;


CCCACACAAATGCAAGCTCACCAAG





>HG-U133A: 201058_s_at; 202; 111; 962; Antisense;


ACACAAATGCAAGCTCACCAAGGTC





>HG-U133A: 201058_s_at; 205; 111; 964; Antisense;


ACAAATGCAAGCTCACCAAGGTCCC





>HG-U133A: 205147_x_at; 538; 435; 1051; Antisense;


GTTCGGCTGCTGTCGGATGAGGACG





>HG-U133A: 205147_x_at; 83; 651; 1162; Antisense;


TACAGGGTCTACAACACGATGCCAT





>HG-U133A: 205147_x_at; 262; 77; 690; Antisense;


AGCAGAGGCTCTATTTGACTTCACT





>HG-U133A: 205147_x_at; 449; 307; 745; Antisense;


GCTGGAGATGTGATCTTCCTCCTCA





>HG-U133A: 205147_x_at; 421; 207; 759; Antisense;


CTTCCTCCTCAGTCGGATCAACAAA





>HG-U133A: 205147_x_at; 623; 223; 827; Antisense;


CTCTCTCCTTCGTGAAGATCCTCAA





>HG-U133A: 205147_x_at; 131; 551; 883; Antisense;


TGGCTGCGTTGCTACTACTACGAAG





>HG-U133A: 205147_x_at; 276; 653; 898; Antisense;


TACTACGAAGACACCATCAGCACCA





>HG-U133A: 205147_x_at; 96; 23; 913; Antisense;


ATCAGCACCATCAAGGACATCGCGG





>HG-U133A: 205147_x_at; 258; 179; 957; Antisense;


CACTCCCCTATTGAAAGACCTGCTG





>HG-U133A: 205147_x_at; 638; 523; 981; Antisense;


GGAGCTCACAAGGCGGGAGTTCCAG





>HG-U133A: 207677_s_at; 696; 557; 1183; Antisense;


TGGAGGAAGATCTCAGCAGCACTCC





>HG-U133A: 207677_s_at; 257; 179; 1202; Antisense;


CACTCCCCTATTGAAAGACCTGCTG





>HG-U133A: 207677_s_at; 637; 523; 1226; Antisense;


GGAGCTCACAAGGCGGGAGTTCCAG





>HG-U133A: 207677_s_at; 252; 527; 1256; Antisense;


GGACATAGCTCTGAATTACCGGGAC





>HG-U133A: 207677_s_at; 43; 313; 1263; Antisense;


GCTCTGAATTACCGGGACGCTGAGG





>HG-U133A: 207677_s_at; 537; 435; 1296; Antisense;


GTTCGGCTGCTGTCGGATGAGGACG





>HG-U133A: 207677_s_at; 119; 417; 1311; Antisense;


GATGAGGACGTAGCGCTCATGGTGC





>HG-U133A: 207677_s_at; 355; 533; 1378; Antisense;


GGAAGCTGCACATCACGCAGAAGGA





>HG-U133A: 207677_s_at; 316; 595; 836; Antisense;


TCGTGAAGATCCTCAAAGACTTCCC





>HG-U133A: 207677_s_at; 130; 551; 883; Antisense;


TGGCTGCGTTGCTACTACTACGAAG





>HG-U133A: 207677_s_at; 484; 593; 892; Antisense;


TGCTACTACTACGAAGACACCATCA





>HG-U133A: 209959_at; 536; 681; 4461; Antisense;


TTTTATTTTTACACCCATCAGATTT





>HG-U133A: 209959_at; 678; 683; 4610; Antisense;


TTATTACAACTATGAGAGCCTCCCA





>HG-U133A: 209959_at; 4; 271; 4628; Antisense;


CCTCCCAAGTCATCTTATCAACTCA





>HG-U133A: 209959_at; 183; 517; 4699; Antisense;


GGATGACCACACTAGCACAGAAGAG





>HG-U133A: 209959_at; 645; 687; 4735; Antisense;


TTAAAGCAGGTGATTCCTCCCTTGG





>HG-U133A: 209959_at; 434; 429; 4746; Antisense;


GATTCCTCCCTTGGCGGGAGAGCTC





>HG-U133A: 209959_at; 72; 391; 4765; Antisense;


GAGCTCTCTCAGTGTGAACATGCCT





>HG-U133A: 209959_at; 678; 199; 4783; Antisense;


CATGCCTTCTGTGGGCGGAAATCAG





>HG-U133A: 209959_at; 587; 529; 4799; Antisense;


GGAAATCAGGAAGCCACCAGCTGTT





>HG-U133A: 209959_at; 575; 519; 4827; Antisense;


GGAGAGTGCCTTGCTTTTATTTCAG





>HG-U133A: 209959_at; 39; 595; 4877; Antisense;


TGCTCCTCTAACAGCATTGCTCTTT





>HG-U133A: 206343_s_at; 3; 63; 1481; Antisense;


AGATCTAATATTGACTGCCTCTGCC





>HG-U133A: 206343_s_at; 499; 269; 1498; Antisense;


CCTCTGCCTGTCGCATGAGAACATT





>HG-U133A: 206343_s_at; 111; 165; 1531; Antisense;


CAATTGTATTACTTCCTCTGTTCGC





>HG-U133A: 206343_s_at; 79; 699; 1551; Antisense;


TTCGCGACTAGTTGGCTCTGAGATA





>HG-U133A: 206343_s_at; 218; 473; 1587; Antisense;


GTGAGGCTCCGGATGTTTCTGGAAT





>HG-U133A: 206343_s_at; 612; 19; 1669; Antisense;


ATAAAGGCATTTCAAAGTCTCACTT





>HG-U133A: 206343_s_at; 623; 623; 1716; Antisense;


TCTACTGAACAGTCCATCTTCTTTA





>HG-U133A: 206343_s_at; 311; 627; 1732; Antisense;


TCTTCTTTATACAATGACCACATCC





>HG-U133A: 206343_s_at; 314; 387; 1747; Antisense;


GACCACATCCTGAAAAGGGTGTTGC





>HG-U133A: 206343_s_at; 209; 51; 1762; Antisense;


AGGGTGTTGCTAAGCTGTAACCGAT





>HG-U133A: 206343_s_at; 146; 79; 1774; Antisense;


AGCTGTAACCGATATGCACTTGAAA





>HG-U133A: 202599_s_at; 563; 11; 6713; Antisense;


ATTTAAGTTGTGATTACCTGCTGCA





>HG-U133A: 202599_s_at; 232; 149; 6742; Antisense;


AAGTGGCATGGGGGACCCTGTGCAT





>HG-U133A: 202599_s_at; 571; 381; 6755; Antisense;


GACCCTGTGCATCTGTGCATTTGGC





>HG-U133A: 202599_s_at; 82; 605; 6829; Antisense;


TCCATTTCTGGACATGACGTCTGTG





>HG-U133A: 202599_s_at; 622; 381; 6844; Antisense;


GACGTCTGTGGTTTAAGCTTTGTGA





>HG-U133A: 202599_s_at; 311; 155; 6872; Antisense;


AATGTGCTTTGATTCGAAGGGTCTT





>HG-U133A: 202599_s_at; 266; 629; 6909; Antisense;


TAATCGTCAACCACTTTTAAACATA





>HG-U133A: 202599_s_at; 339; 73; 6935; Antisense;


AGAATTCACACAACTACTTTCATGA





>HG-U133A: 202599_s_at; 334; 5; 6985; Antisense;


ATTCCAAGAGTATCCCAGTATTAGC





>HG-U133A: 202599_s_at; 140; 15; 7019; Antisense;


ATATAGGCACATTACCATTCATAGT





>HG-U133A: 202599_s_at; 707; 161; 7069; Antisense;


AATTTGATGCGATCTGCTCAGTAAT





>HG-U133A: 207740_s_at; 67; 187; 1282; Antisense;


CAGCCTGCACCGCGAGGTGGAGAAG





>HG-U133A: 207740_s_at; 176; 385; 1331; Antisense;


GACCAGGAGCTCGACTTCATCCTGT





>HG-U133A: 207740_s_at; 194; 625; 1425; Antisense;


TCTACCTGCAGCACGCGGATGAGGA





>HG-U133A: 207740_s_at; 598; 305; 1468; Antisense;


GCTGGCTGAGAACATCGACGCACAG





>HG-U133A: 207740_s_at; 163; 615; 1482; Antisense;


TCGACGCACAGCTCAAGCGCATGGC





>HG-U133A: 207740_s_at; 572; 551; 1503; Antisense;


TGGCCCAGGATCTCAAGGACATCAT





>HG-U133A: 207740_s_at; 8; 153; 1517; Antisense;


AAGGACATCATCGAGCACCTGAACA





>HG-U133A: 207740_s_at; 659; 327; 1618; Antisense;


GCAGTGGATCGACCAGAACTCGGCC





>HG-U133A: 207740_s_at; 129; 423; 1717; Antisense;


GATCACCTTTGACTGAGCGACAGCA





>HG-U133A: 207740_s_at; 603; 33; 1773; Antisense;


ATGAGGGGAATGCGCCCTGTTGTCT





>HG-U133A: 207740_s_at; 298; 431; 1791; Antisense;


GTTGTCTGTAGTTTGGGGTTGTGGC





>HG-U133A: 202900_s_at; 449; 59; 2016; Antisense;


AGTTCTCTCTGATAGTGAGCGAGAC





>HG-U133A: 202900_s_at; 93; 341; 2050; Antisense;


GAATTACAGCTGATACCTGATCAAC





>HG-U133A: 202900_s_at; 320; 423; 2061; Antisense;


GATACCTGATCAACTTCGACATTTG





>HG-U133A: 202900_s_at; 158; 101; 2073; Antisense;


ACTTCGACATTTGGGCAATGCCATC





>HG-U133A: 202900_s_at; 483; 489; 2085; Antisense;


GGGCAATGCCATCAAACAGGTTACT





>HG-U133A: 202900_s_at; 116; 29; 2090; Antisense;


ATGCCATCAAACAGGTTACTATGAA





>HG-U133A: 202900_s_at; 190; 393; 2140; Antisense;


GAGAAGGTGTTGAGTCTTCCAAAAC





>HG-U133A: 202900_s_at; 709; 621; 2175; Antisense;


TCTCAGTGCCTACCAGCGAAAGTGC





>HG-U133A: 202900_s_at; 78; 471; 2180; Antisense;


GTGCCTACCAGCGAAAGTGCATTCA





>HG-U133A: 202900_s_at; 9; 83; 2189; Antisense;


AGCGAAAGTGCATTCAGTCCATCCT





>HG-U133A: 202900_s_at; 187; 367; 2192; Antisense;


GAAAGTGCATTCAGTCCATCCTGAA





>HG-U133A: 209791_at; 397; 229; 3781; Antisense;


CTCCAGCCCCAGAGCTGAAAACACC





>HG-U133A: 209791_at; 21; 273; 3811; Antisense;


CCTATTTGAGGGTGTCTGTCTGGAG





>HG-U133A: 209791_at; 103; 685; 3926; Antisense;


TTAGGGGGAAGTGAGCGCCTCCCAT





>HG-U133A: 209791_at; 521; 641; 3981; Antisense;


TAAGGCTTTCCCCAATGATGTCGGT





>HG-U133A: 209791_at; 442; 415; 3997; Antisense;


GATGTCGGTAATTTCTGATGTTTCT





>HG-U133A: 209791_at; 200; 617; 4019; Antisense;


TCTGAAGTTCCCAGGACTCACACAC





>HG-U133A: 209791_at; 375; 181; 4064; Antisense;


CACCCAGTGTGACAACCCTCGGTGT





>HG-U133A: 209791_at; 685; 369; 4074; Antisense;


GACAACCCTCGGTGTGGATATACCC





>HG-U133A: 209791_at; 57; 283; 4120; Antisense;


CCACCCCCACTTTCTATAAATGTAG





>HG-U133A: 209791_at; 520; 547; 4144; Antisense;


GGCCTAGAATACGCTTCTCTGTTGC





>HG-U133A: 209791_at; 153; 489; 4223; Antisense;


GGGCAGGGGATGTCGTGAAGATGGC





>HG-U133A: 210837_s_at; 641; 373; 2532; Antisense;


GACATAGCACGAATCTGTTACCAGT





>HG-U133A: 210837_s_at; 485; 519; 2561; Antisense;


GGAGGATGAGCCACAGAAATTGCAT





>HG-U133A: 210837_s_at; 241; 639; 2593; Antisense;


TAATTTCAAGTCTTCCTGATACATG





>HG-U133A: 210837_s_at; 164; 343; 2621; Antisense;


GAATAGTGTGGTTCAGTGAGCTGCA





>HG-U133A: 210837_s_at; 215; 233; 2641; Antisense;


CTGCACTGACCTCTACATTTTGTAT





>HG-U133A: 210837_s_at; 167; 217; 2739; Antisense;


CTATGTTCAGAACTTCATCTGCCAC





>HG-U133A: 210837_s_at; 151; 57; 2801; Antisense;


AGTACAAATCTGTGCTACACTGGAT





>HG-U133A: 210837_s_at; 704; 11; 2835; Antisense;


ATTTATGAATTTTACTTGCACCTTA





>HG-U133A: 210837_s_at; 499; 689; 2846; Antisense;


TTACTTGCACCTTATAGTTCATAGC





>HG-U133A: 210837_s_at; 581; 667; 2907; Antisense;


TATACCAATGACTTCCATATTTTAA





>HG-U133A: 210837_s_at; 326; 133; 2942; Antisense;


CAACTTTATGTTGCAGGAAACCCTT





>HG-U133A: 208983_s_at; 656; 401; 1842; Antisense;


GAGTATTACTGCACAGCCTTCAACA





>HG-U133A: 208983_s_at; 215; 629; 1972; Antisense;


TCATTGCTCTCTTGATCATTGCGGC





>HG-U133A: 208983_s_at; 488; 555; 2041; Antisense;


TGGAAATGTCCAGGCCAGCAGTACC





>HG-U133A: 208983_s_at; 671; 655; 2062; Antisense;


TACCACTTCTGAACTCCAACAACGA





>HG-U133A: 208983_s_at; 187; 523; 2108; Antisense;


GGAAGCTAACAGTCATTACGGTCAC





>HG-U133A: 208983_s_at; 208; 389; 2181; Antisense;


GAGCCTCTGAACTCAGACGTGCAGT





>HG-U133A: 208983_s_at; 39; 481; 2220; Antisense;


GTGTCCTCAGCTGAGTCTCACAAAG





>HG-U133A: 208983_s_at; 117; 53; 2277; Antisense;


AGTGAAGTCCGGAAAGCTGTCCCTG





>HG-U133A: 208983_s_at; 588; 235; 2293; Antisense;


CTGTCCCTGATGCCGTGGAAAGCAG





>HG-U133A: 208983_s_at; 486; 343; 2331; Antisense;


GAAGGCTCCCTTGATGGAACTTAGA





>HG-U133A: 208983_s_at; 553; 373; 2354; Antisense;


GACAGCAAGGCCAGATGCACATCCC





>HG-U133A: 205361_s_at; 221; 153; 144; Antisense;


AAGGCGGCTGCAGAAGATGTCAATG





>HG-U133A: 205361_s_at; 233; 61; 158; Antisense;


AGATGTCAATGTTACTTTCGAAGAT





>HG-U133A: 205361_s_at; 442; 123; 269; Antisense;


AAACCTAGAAGATGCTTGTGATGAC





>HG-U133A: 205361_s_at; 458; 705; 284; Antisense;


TTGTGATGACATCATGCTTGCAGAT





>HG-U133A: 205361_s_at; 567; 415; 309; Antisense;


GATGATTGCTTAATGATACCTTATC





>HG-U133A: 205361_s_at; 594; 423; 323; Antisense;


GATACCTTATCAAATTGGTGATGTC





>HG-U133A: 205361_s_at; 160; 505; 339; Antisense;


GGTGATGTCTTCATTAGCCATTCTC





>HG-U133A: 205361_s_at; 253; 697; 418; Antisense;


TTGACGCCTTAGAATCCAGAGTGGA





>HG-U133A: 205361_s_at; 144; 533; 440; Antisense;


GGAATCAATTCAGCGAGTGTTAGCA





>HG-U133A: 205361_s_at; 440; 437; 474; Antisense;


GTTCAGTTGTATGCAAAATTCGGGA





>HG-U133A: 205361_s_at; 36; 493; 495; Antisense;


GGGAGCAACATAAACCTTGAAGCTG





>HG-U133A: 222371_at; 300; 33; 127; Antisense;


ATGATGTTTACCAGTCCATTTCAGT





>HG-U133A: 222371_at; 651; 677; 133; Antisense;


TTTACCAGTCCATTTCAGTTCTTCA





>HG-U133A: 222371_at; 411; 223; 13; Antisense;


CTCTTATAGCCCCACATAGGTTAGA





>HG-U133A: 222371_at; 331; 99; 180; Antisense;


ACTACTTTTGCTGTATACCAAGCTA





>HG-U133A: 222371_at; 204; 457; 309; Antisense;


GTAAGAGACAGAGTGCATTCATTTG





>HG-U133A: 222371_at; 564; 591; 322; Antisense;


TGCATTCATTTGCACCCAGGGTTGG





>HG-U133A: 222371_at; 629; 13; 377; Antisense;


ATATTGGAGATACTTGGCTATTTGT





>HG-U133A: 222371_at; 548; 89; 402; Antisense;


ACCTCACCTGCCCATGAAGGCTAAA





>HG-U133A: 222371_at; 553; 557; 429; Antisense;


TGGATGGTTAAACACCTGTCTCTGT





>HG-U133A: 222371_at; 228; 417; 82; Antisense;


GATGCTTAAGAAATTACCTCACATA





>HG-U133A: 222371_at; 467; 9; 94; Antisense;


ATTACCTCACATAAACATTTTACCA





>HG-U133A: 215236_s_at; 537; 551; 450; Antisense;


TGGACTTCTCAAACCAACAGTGGCC





>HG-U133A: 215236_s_at; 178; 207; 454; Antisense;


CTTCTCAAACCAACAGTGGCCTCTC





>HG-U133A: 215236_s_at; 151; 219; 457; Antisense;


CTCAAACCAACAGTGGCCTCTCAGA





>HG-U133A: 215236_s_at; 512; 129; 465; Antisense;


AACAGTGGCCTCTCAGAACCAGAAC





>HG-U133A: 215236_s_at; 633; 613; 506; Antisense;


TCCCACCTAGCAAGTTAGTATCTGA





>HG-U133A: 215236_s_at; 384; 447; 523; Antisense;


GTATCTGATGACTTGGATTCATCTT





>HG-U133A: 215236_s_at; 292; 377; 532; Antisense;


GACTTGGATTCATCTTTAGCCAACC





>HG-U133A: 215236_s_at; 678; 425; 538; Antisense;


GATTCATCTTTAGCCAACCTTGTGG





>HG-U133A: 215236_s_at; 677; 627; 541; Antisense;


TCATCTTTAGCCAACCTTGTGGGCA





>HG-U133A: 215236_s_at; 649; 665; 547; Antisense;


TTAGCCAACCTTGTGGGCAATCTTG





>HG-U133A: 215236_s_at; 191; 139; 553; Antisense;


AACCTTGTGGGCAATCTTGGCATCG





>HG-U133A: 205281_s_at; 534; 115; 3027; Antisense;


AAATGGACTGATCTTTAAACTATTC





>HG-U133A: 205281_s_at; 65; 135; 3044; Antisense;


AACTATTCAGTCTTACTGGGATTTT





>HG-U133A: 205281_s_at; 619; 19; 3099; Antisense;


ATAAACAGTGCCAGTATTCATAGGA





>HG-U133A: 205281_s_at; 612; 473; 3126; Antisense;


GTGAGAAACTGTAATATTTGGCCAT





>HG-U133A: 205281_s_at; 406; 293; 3146; Antisense;


GCCATTATTCTATTCAACAGGTTTT





>HG-U133A: 205281_s_at; 653; 637; 3159; Antisense;


TCAACAGGTTTTAGAGGCATGCCAC





>HG-U133A: 205281_s_at; 550; 59; 3276; Antisense;


AGTTGCCTTTGCCTGTAAAACATGT





>HG-U133A: 205281_s_at; 249; 667; 3370; Antisense;


TTTCAACCTTTCTGGATACCTTAAT





>HG-U133A: 205281_s_at; 667; 455; 3396; Antisense;


GTAACTGTCAGTTTGCACTGGTCGG





>HG-U133A: 205281_s_at; 598; 589; 3409; Antisense;


TGCACTGGTCGGTATATGGAAACAC





>HG-U133A: 205281_s_at; 580; 663; 3423; Antisense;


TATGGAAACACATTGCTCTACCCTG





>HG-U133A: 203057_s_at; 54; 31; 5545; Antisense;


ATGCCTATTCTGGTGTTGCGTTTGT





>HG-U133A: 203057_s_at; 391; 381; 5581; Antisense;


GACGTTATCCTCTCAGATTCTTATC





>HG-U133A: 203057_s_at; 327; 667; 5651; Antisense;


TATATCAGTGCACAGGCGCATCCCA





>HG-U133A: 203057_s_at; 250; 323; 5668; Antisense;


GCATCCCAGGCCTGTACAGATGTAT





>HG-U133A: 203057_s_at; 516; 655; 5722; Antisense;


TACCAGGTTTTACACTTGCATCTCT





>HG-U133A: 203057_s_at; 46; 165; 5767; Antisense;


AATTGGCCTCTTCCTAAGTATATTA





>HG-U133A: 203057_s_at; 519; 679; 5798; Antisense;


TTTATCCTTACATTTTATGCCTCCC





>HG-U133A: 203057_s_at; 616; 661; 5813; Antisense;


TATGCCTCCCCCTAAATTAATGACT





>HG-U133A: 203057_s_at; 140; 81; 5850; Antisense;


AGCGGCTAGGTTTTATTCATACTGT





>HG-U133A: 203057_s_at; 644; 585; 5938; Antisense;


TGAATTTGTGCCACTTTAATCCTTC





>HG-U133A: 203057_s_at; 465; 703; 5960; Antisense;


TTCCACTATCATTCCCATTTTGTTA





>HG-U133A: 200604_s_at; 443; 595; 1015; Antisense;


TGCTGTGCTACAACGTCGGTCAGAA





>HG-U133A: 200604_s_at; 516; 99; 1099; Antisense;


ACTACTGATGAATCGTCCTCGTGCT





>HG-U133A: 200604_s_at; 439; 587; 1149; Antisense;


TGAAGTGCGTTAAGCTGGACCGACC





>HG-U133A: 200604_s_at; 343; 287; 1164; Antisense;


TGGACCGACCTAGATTTGAACGTGT





>HG-U133A: 200604_s_at; 669; 11; 1177; Antisense;


ATTTGAACGTGTTCTTGGCCCATGC





>HG-U133A: 200604_s_at; 689; 285; 1296; Antisense;


CCAATCCATGCTTCACTCATGCAAA





>HG-U133A: 200604_s_at; 366; 319; 1305; Antisense;


GCTTCACTCATGCAAACTGCTTTAT





>HG-U133A: 200604_s_at; 348; 5; 1403; Antisense;


ATTGCACCATTTTCAATTTGGAGCA





>HG-U133A: 200604_s_at; 704; 43; 897; Antisense;


AGTGGGAACGTCTTACGGTAGCTGA





>HG-U133A: 200604_s_at; 679; 449; 914; Antisense;


GTAGCTGATGCATTGGAACCAGTGC





>HG-U133A: 200604_s_at; 296; 11; 998; Antisense;


ATTTTAGAGGGGTCAGCTGCTGTGC





>HG-U133A: 220553_s_at; 480; 673; 1543; Antisense;


TTTGATAACCTGTCTTCCTTGTTTC





>HG-U133A: 220553_s_at; 126; 457; 1604; Antisense;


GTCAATTAGTAGCTTACCACAGATA





>HG-U133A: 220553_s_at; 447; 177; 1621; Antisense;


CACAGATACTGTTTCCTACCATTTA





>HG-U133A: 220553_s_at; 395; 575; 1678; Antisense;


TGATTTTTGCATTAAGTGGTCTAGA





>HG-U133A: 220553_s_at; 399; 483; 1693; Antisense;


GTGGTCTAGAATTCTTTTGCAATGC





>HG-U133A: 220553_s_at; 108; 673; 1719; Antisense;


TTTGCAACAGAATTTTGTAGCCTTA





>HG-U133A: 220553_s_at; 379; 361; 1755; Antisense;


GAAAAACCTGACTGCAAATCATGTC





>HG-U133A: 220553_s_at; 262; 175; 1803; Antisense;


CACATAAGGGCTGGTTATTTACCTC





>HG-U133A: 220553_s_at; 192; 45; 1855; Antisense;


AGGACTTTTAACCTTTGCTGACAAG





>HG-U133A: 220553_s_at; 191; 705; 1883; Antisense;


TTGTCTGTTTCAGTTATACTTGTGA





>HG-U133A: 220553_s_at; 470; 157; 1943; Antisense;


AATACTTTGCCTTGGAATAGATTAT





>HG-U133A: 200749_at; 156; 577; 2024; Antisense;


TGATCCCATCAACACTATTCTTGTA





>HG-U133A: 200749_at; 640; 201; 2067; Antisense;


CTATTTTTTTCTCATACGATTACTA





>HG-U133A: 200749_at; 240; 95; 2082; Antisense;


ACGATTACTATAGTCCAGTTTACCA





>HG-U133A: 200749_at; 386; 627; 2131; Antisense;


TCTTGAGATGATTGCTTACCTTAAA





>HG-U133A: 200749_at; 16; 437; 2216; Antisense;


GTTCTACTTACTGTATTAACTGGCA





>HG-U133A: 200749_at; 613; 145; 2256; Antisense;


AAGATCTGAATTGCTGTGTATGTTA





>HG-U133A: 200749_at; 420; 437; 2277; Antisense;


GTTACGCTGTATTCAGAACCAGTTT





>HG-U133A: 200749_at; 228; 357; 2292; Antisense;


GAACCAGTTTCTAACCAGCCTGTGA





>HG-U133A: 200749_at; 301; 53; 2414; Antisense;


AGTGGTGTTGACATTCTGGATCTTC





>HG-U133A: 200749_at; 685; 471; 2462; Antisense;


GTGACGTCACTTACCTGTCTAACGT





>HG-U133A: 200749_at; 120; 655; 2473; Antisense;


TACCTGTCTAACGTGGTGTGGGAGA





>HG-U133A: 201713_s_at; 109; 395; 9419; Antisense;


GAGAACTTCAGAGCACTATGCACTG





>HG-U133A: 201713_s_at; 617; 637; 9462; Antisense;


TCAAGAATTCCATTTTTCACAGAGT





>HG-U133A: 201713_s_at; 299; 457; 9485; Antisense;


GTAATTCCAGATTTTGTTTGCCAAG





>HG-U133A: 201713_s_at; 464; 529; 9533; Antisense;


GGAACAGGCGGACAGTCCATTTATG





>HG-U133A: 201713_s_at; 213; 415; 9584; Antisense;


GATGTGAAACATACTGGTCCTGGTT





>HG-U133A: 201713_s_at; 190; 287; 9620; Antisense;


GCCAATCAAGGCCAGAATACCAATA





>HG-U133A: 201713_s_at; 25; 143; 9692; Antisense;


AAGCATGTAGTATTTGGGTTTGTTA





>HG-U133A: 201713_s_at; 170; 61; 9741; Antisense;


AGATTGAATCATTTGGTTCTCCCAA





>HG-U133A: 201713_s_at; 379; 329; 9851; Antisense;


GCAGTTGGATTGAAGCTTAGCTATT





>HG-U133A: 201713_s_at; 615; 521; 9908; Antisense;


TGGACGTTTCCGATTTACAAATGTA





>HG-U133A: 201713_s_at; 302; 331; 9938; Antisense;


GCAGCTTATAGCTGTTGTCACTTTT





>HG-U133A: 209085_x_at; 23; 209; 3920; Antisense;


CTTGTTTTTTCCCAGAGCAACCATG





>HG-U133A: 209085_x_at; 391; 511; 3958; Antisense;


GGATGACCTGGTGTCCCATTATAAA





>HG-U133A: 209085_x_at; 598; 327; 4012; Antisense;


GCAGTAGGCTTATGTACACCTCTTA





>HG-U133A: 209085_x_at; 384; 575; 4044; Antisense;


TGATAGGACTGCTTGGGTCCTCCAC





>HG-U133A: 209085_x_at; 568; 179; 4066; Antisense;


CACTGTCCTCTGTCAATCTAGTTAG





>HG-U133A: 209085_x_at; 548; 435; 4086; Antisense;


GTTAGACGTGCTTCTGAATGACTGT





>HG-U133A: 209085_x_at; 81; 531; 4117; Antisense;


GGAACTAGAAACTACACCTGGCTTG





>HG-U133A: 209085_x_at; 54; 179; 4131; Antisense;


CACCTGGCTTGGAGTCAGATTTAGT





>HG-U133A: 209085_x_at; 595; 327; 4175; Antisense;


GCAGTAGTACTAAGGCGTCTTTTGT





>HG-U133A: 209085_x_at; 666; 71; 4208; Antisense;


AGAATTTATCCTAATGGCCTTTATA





>HG-U133A: 209085_x_at; 600; 55; 4308; Antisense;


AGTCACCACCTAGAACTGGGTATTC





>HG-U133A: 206111_at; 357; 439; 176; Antisense;


GTTTACCTGGGCTCAATGGTTTGAA





>HG-U133A: 206111_at; 653; 365; 198; Antisense;


GAAACCCAGCACATCAATATGACCT





>HG-U133A: 206111_at; 531; 637; 211; Antisense;


TCAATATGACCTCCCAGCAATGCAC





>HG-U133A: 206111_at; 609; 701; 291; Antisense;


TTCCTTCTTACAACTTTTGCTAACG





>HG-U133A: 206111_at; 655; 453; 331; Antisense;


GTAACCCAAATATGACCTGTCCTAG





>HG-U133A: 206111_at; 93; 385; 344; Antisense;


GACCTGTCCTAGTAACAAAACTCGC





>HG-U133A: 206111_at; 490; 133; 362; Antisense;


AACTCGCAAAAATTGTCACCACAGT





>HG-U133A: 206111_at; 674; 139; 389; Antisense;


AAGCCAGGTGCCTTTAATCCACTGT





>HG-U133A: 206111_at; 512; 189; 503; Antisense;


CAGAGATCAACGACGAGACCCTCCA





>HG-U133A: 206111_at; 137; 193; 544; Antisense;


CAGTTCACCTGGATAGAATCATCTA





>HG-U133A: 206111_at; 57; 29; 630; Antisense;


ATCCCATCTCTCCATATACTTTGGG





>HG-U133A: 201779_s_at; 336; 433; 1007; Antisense;


GTTGTTCCTTCTCAAGGCGATTCAG





>HG-U133A: 201779_s_at; 392; 547; 1022; Antisense;


GGCGATTCAGACTCTGACACAGACA





>HG-U133A: 201779_s_at; 171; 473; 1067; Antisense;


GTGACAGAACATACCCCTTTACTGA





>HG-U133A: 201779_s_at; 80; 581; 1089; Antisense;


TGAGACCTTTAGCTTCTGTCAGTGC





>HG-U133A: 201779_s_at; 317; 279; 1114; Antisense;


CCAGTCATTTGGGGCTTTATCGGAA





>HG-U133A: 201779_s_at; 626; 685; 1130; Antisense;


TTATCGGAATCCCGCTCACATCAGA





>HG-U133A: 201779_s_at; 41; 361; 1232; Antisense;


GAACATGATGTCGTGGTCCAGTTGC





>HG-U133A: 201779_s_at; 654; 483; 1244; Antisense;


GTGGTCCAGTTGCAGCCTAATGGTG





>HG-U133A: 201779_s_at; 519; 427; 1359; Antisense;


GATTTTTTGCTCCCTTCAAAGATTT





>HG-U133A: 201779_s_at; 584; 381; 1493; Antisense;


GACTGGTGCTGTAACTCAAGCATCA





>HG-U133A: 201779_s_at; 529; 123; 981; Antisense;


AAACCTGTCCAGTGTGCAAGCAAAA





>HG-U133A: 222204_s_at; 122; 473; 334; Antisense;


GTGCAAACACTGCTAGAGTCATTTT





>HG-U133A: 222204_s_at; 161; 317; 345; Antisense;


GCTAGAGTCATTTTGAAGCTCAAGC





>HG-U133A: 222204_s_at; 49; 693; 373; Antisense;


TTCACTTTGTTTCTTACATGTGTAC





>HG-U133A: 222204_s_at; 203; 363; 414; Antisense;


GAAAATGGCCATCTTTAAGCATATT





>HG-U133A: 222204_s_at; 186; 675; 442; Antisense;


TTTCTGCCACTTTATTTAAAGGCAA





>HG-U133A: 222204_s_at; 156; 701; 507; Antisense;


TTCCTCTTTTCCAGGGCTTTGTATG





>HG-U133A: 222204_s_at; 469; 279; 517; Antisense;


CCAGGGCTTTGTATGCACTTGTATA





>HG-U133A: 222204_s_at; 273; 449; 559; Antisense;


GTAGAGTTTGAATTTCAGTCTGTAA





>HG-U133A: 222204_s_at; 114; 513; 682; Antisense;


GGTTGTCTTTTTAACTGCTGGCAAA





>HG-U133A: 222204_s_at; 446; 657; 762; Antisense;


TAGTAAGTGGGGTCTTTGTGGGTTG





>HG-U133A: 222204_s_at; 8; 157; 878; Antisense;


AATGACATGGTTAATCTGGAACTTA





>HG-U133A: 200660_at; 368; 615; 118; Antisense;


TCGCTCAGCTCCAACATGGCAAAAA





>HG-U133A: 200660_at; 2; 167; 16; Antisense;


CAAGGCTGGGCCGGGAAGGGCGTGG





>HG-U133A: 200660_at; 587; 47; 212; Antisense;


AGGATGGTTATAACTACACTCTCTC





>HG-U133A: 200660_at; 133; 651; 226; Antisense;


TACACTCTCTCCAAGACAGAGTTCC





>HG-U133A: 200660_at; 34; 161; 262; Antisense;


AATACAGAACTAGCTGCCTTCACAA





>HG-U133A: 200660_at; 542; 237; 27; Antisense;


CGGGAAGGGCGTGGGTTGAGGAGAG





>HG-U133A: 200660_at; 431; 559; 303; Antisense;


TGGTGTCCTTGACCGCATGATGAAG





>HG-U133A: 200660_at; 300; 351; 324; Antisense;


GAAGAAACTGGACACCAACAGTGAT





>HG-U133A: 200660_at; 111; 477; 344; Antisense;


GTGATGGTCAGCTAGATTTCTCAGA





>HG-U133A: 200660_at; 370; 511; 40; Antisense;


GGTTGAGGAGAGGCTCCAGACCCGC





>HG-U133A: 200660_at; 25; 701; 432; Antisense;


TTCCCAGAAGCGGACCTGAGGACCC





>HG-U133A: 203535_at; 654; 183; 108; Antisense;


CACCTTCCACCAATACTCTGTGAAG





>HG-U133A: 203535_at; 113; 333; 273; Antisense;


GCAGCTGAGCTTCGAGGAGTTCATC





>HG-U133A: 203535_at; 305; 411; 303; Antisense;


GATGGCGAGGCTAACCTGGGCCTCC





>HG-U133A: 203535_at; 296; 417; 336; Antisense;


GATGCACGAGGGTGACGAGGGCCCT





>HG-U133A: 203535_at; 59; 259; 357; Antisense;


CCCTGGCCACCACCATAAGCCAGGC





>HG-U133A: 203535_at; 216; 387; 403; Antisense;


GACCACAGTGGCCAAGATCACAGTG





>HG-U133A: 203535_at; 316; 181; 430; Antisense;


CACGGCCATGGCCACAGTCATGGTG





>HG-U133A: 203535_at; 18; 97; 458; Antisense;


ACGGCCACAGGCCACTAATCAGGAG





>HG-U133A: 203535_at; 35; 501; 518; Antisense;


GGGGCCTGTTATGTCAAACTGTCTT





>HG-U133A: 203535_at; 618; 335; 65; Antisense;


GCAAAATGTCGCAGCTGGAACGCAA





>HG-U133A: 203535_at; 475; 531; 81; Antisense;


GGAACGCAACATAGAGACCATCATC





>HG-U133A: 204351_at; 422; 499; 123; Antisense;


GGGGGAGCTCAAGGTGCTGATGGAG





>HG-U133A: 204351_at; 259; 497; 16; Antisense;


GGGTCTGAATCTAGCACCATGACGG





>HG-U133A: 204351_at; 276; 419; 187; Antisense;


GATGCCGTGGATAAATTGCTCAAGG





>HG-U133A: 204351_at; 382; 385; 211; Antisense;


GACCTGGACGCCAATGGAGATGCCC





>HG-U133A: 204351_at; 68; 503; 237; Antisense;


GGTGGACTTCAGTGAGTTCATCGTG





>HG-U133A: 204351_at; 121; 479; 259; Antisense;


GTGTTCGTGGCTGCAATCACGTCTG





>HG-U133A: 204351_at; 590; 231; 278; Antisense;


CGTCTGCCTGTCACAAGTACTTTGA





>HG-U133A: 204351_at; 291; 379; 36; Antisense;


GACGGAACTAGAGACAGCCATGGGC





>HG-U133A: 204351_at; 282; 667; 379; Antisense;


TTTGTTGGCAATTATTCCCCTAGGC





>HG-U133A: 204351_at; 1; 273; 397; Antisense;


CCTAGGCTGAGCCTGCTCATGTACC





>HG-U133A: 204351_at; 283; 421; 63; Antisense;


GATCATAGACGTCTTTTCCCGATAT





>HG-U133A: 201825_s_at; 382; 43; 1296; Antisense;


AGGCAACTTCTCATAAAATTCCCAT





>HG-U133A: 201825_s_at; 165; 647; 1309; Antisense;


TAAAATTCCCATGGTTCTTCTCCTT





>HG-U133A: 201825_s_at; 90; 627; 1324; Antisense;


TCTTCTCCTTTGGCTATTTTTCAAA





>HG-U133A: 201825_s_at; 25; 273; 1381; Antisense;


CCTCATTCACGCTGACATTCTTTGG





>HG-U133A: 201825_s_at; 381; 515; 1410; Antisense;


GGATACAGCCAAGGCACTGGTACAG





>HG-U133A: 201825_s_at; 707; 385; 1477; Antisense;


GACCAGAGGCTGGCTATGTGGCTAC





>HG-U133A: 201825_s_at; 260; 547; 1495; Antisense;


TGGCTACCCCCATAGCTATGGTTCA





>HG-U133A: 201825_s_at; 328; 559; 1513; Antisense;


TGGTTCAGGCAGCCATGACTCTTCT





>HG-U133A: 201825_s_at; 194; 219; 1536; Antisense;


CTAAGTGATGCTTCTCATCTGCCTA





>HG-U133A: 201825_s_at; 66; 221; 1549; Antisense;


CTCATCTGCCTAAGGCGGGCGGGGT





>HG-U133A: 201825_s_at; 507; 369; 1734; Antisense;


GAAATTCTTCTGTAAGCCTGTCTGA





>HG-U133A: 218793_s_at; 490; 669; 2049; Antisense;


TATTTGCCATCATTAGTACCTCTCA





>HG-U133A: 218793_s_at; 333; 659; 2062; Antisense;


TAGTACCTCTCAACTTACTTTTTAG





>HG-U133A: 218793_s_at; 360; 163; 2166; Antisense;


AATTCTGAGCCATTAATCCTGCTAC





>HG-U133A: 218793_s_at; 120; 293; 2174; Antisense;


GCCATTAATCCTGCTACACTTTGAA





>HG-U133A: 218793_s_at; 544; 607; 2182; Antisense;


TCCTGCTACACTTTGAATGATACAT





>HG-U133A: 218793_s_at; 601; 189; 2212; Antisense;


CAGACTAATCTTTGGGGGCTTTATT





>HG-U133A: 218793_s_at; 569; 131; 2261; Antisense;


AACATGTTCAACACTATTATTTTGT





>HG-U133A: 218793_s_at; 370; 391; 2336; Antisense;


GAGCTATGAGAATTGGTGCTATCAC





>HG-U133A: 218793_s_at; 35; 507; 2350; Antisense;


GGTGCTATCACCATTAGCTATTTGC





>HG-U133A: 218793_s_at; 40; 689; 2363; Antisense;


TTAGCTATTTGCTGTAATGTCAAGA





>HG-U133A: 218793_s_at; 287; 87; 2396; Antisense;


ACCAGATGCAAGAATGTACCTTTTC





>HG-U133A: 204563_at; 278; 269; 1778; Antisense;


CCTCGCCGTCTGTGAATTGGACCAT





>HG-U133A: 204563_at; 612; 525; 1796; Antisense;


GGACCATCCTATTTAACTGGCTTCA





>HG-U133A: 204563_at; 411; 681; 1850; Antisense;


TTTTCAGTTGGCTGACTTCCACACC





>HG-U133A: 204563_at; 253; 285; 1868; Antisense;


CCACACCTAGCATCTCATGAGTGCC





>HG-U133A: 204563_at; 629; 657; 1917; Antisense;


TAGCCTGCGCTGTTTTTTAGTTTGG





>HG-U133A: 204563_at; 303; 677; 1959; Antisense;


TTTATGAGACCCATTCCTATTTCTT





>HG-U133A: 204563_at; 604; 457; 1987; Antisense;


GTCAATGTTTCTTTTATCACGATAT





>HG-U133A: 204563_at; 522; 383; 2140; Antisense;


GACCTTTTATCCACTTACCTAGATT





>HG-U133A: 204563_at; 5; 183; 2206; Antisense;


CACCACTTCTTTTATAACTAGTCCT





>HG-U133A: 204563_at; 393; 657; 2224; Antisense;


TAGTCCTTTACTAATCCAACCCATG





>HG-U133A: 204563_at; 105; 223; 2257; Antisense;


CTCTTCCTGGCTTCTTACTGAAAGG





>HG-U133A: 209879_at; 434; 167; 1763; Antisense;


CAAGGAAGATGGAGCTCCCCCATCC





>HG-U133A: 209879_at; 691; 179; 1794; Antisense;


CACTGCACTGCCATTGTCTTTTGGT





>HG-U133A: 209879_at; 456; 707; 1807; Antisense;


TTGTCTTTTGGTTGCCATGGTCACC





>HG-U133A: 209879_at; 650; 473; 1871; Antisense;


GTGACGGACTTCTGAGGCTGTTTCC





>HG-U133A: 209879_at; 699; 605; 1902; Antisense;


TCCTCTGACTTGGGGCAGCTTGGGT





>HG-U133A: 209879_at; 692; 497; 1956; Antisense;


GGGTGAGGTTCAGCCTGTGAGGGCT





>HG-U133A: 209879_at; 504; 547; 1996; Antisense;


GGCCCAAAGGGCAGACCTTTCTTTG





>HG-U133A: 209879_at; 103; 483; 2026; Antisense;


GTGTGGACCAAGGAGCTTCCATCTA





>HG-U133A: 209879_at; 532; 603; 2043; Antisense;


TCCATCTAGTGACAAGTGACCCCCA





>HG-U133A: 209879_at; 25; 605; 2101; Antisense;


TCCAGGGTGGACTCTGTCTTGTTCA





>HG-U133A: 209879_at; 386; 437; 2121; Antisense;


GTTCACTGCAGTATCCCAACTGCAG





>HG-U133A: 201585_s_at; 217; 375; 2437; Antisense;


GACATGCGTACTGAGCGCTTTGGGC





>HG-U133A: 201585_s_at; 606; 301; 2451; Antisense;


GCGCTTTGGGCAGGGAGGTGCGGGG





>HG-U133A: 201585_s_at; 670; 487; 2473; Antisense;


GGGCCTGTGGGTGGACAGGGTCCTA





>HG-U133A: 201585_s_at; 284; 493; 2490; Antisense;


GGGTCCTAGAGGAATGGGGCCTGGA





>HG-U133A: 201585_s_at; 132; 3; 2503; Antisense;


ATGGGGCCTGGAACTCCAGCAGGAT





>HG-U133A: 201585_s_at; 705; 391; 2540; Antisense;


GAGAAGAGTACGAAGGCCCAAACAA





>HG-U133A: 201585_s_at; 523; 137; 2567; Antisense;


AACCCCGATTTTAGATGTGATATTT





>HG-U133A: 201585_s_at; 655; 685; 2590; Antisense;


TTAGGCTTTCATTCCAGTTTGTTTT





>HG-U133A: 201585_s_at; 42; 41; 2677; Antisense;


ATGGATGTTAGCAGTTTATTGACCT





>HG-U133A: 201585_s_at; 429; 37; 2812; Antisense;


ATGTCCCTCAAGTTTATGGCAGTGT





>HG-U133A: 201585_s_at; 495; 479; 2833; Antisense;


GTGTACCTTGTGCCACTGAATTTCC





>HG-U133A: 214016_s_at; 315; 431; 740; Antisense;


GTTGGCTGATATTGGAGTGCTCATT





>HG-U133A: 214016_s_at; 583; 425; 747; Antisense;


GATATTGGAGTGCTCATTCACATGA





>HG-U133A: 214016_s_at; 103; 405; 754; Antisense;


GAGTGCTCATTCACATGAAGTGGAT





>HG-U133A: 214016_s_at; 378; 17; 777; Antisense;


ATAGATACTTCTCAAGACATCACAC





>HG-U133A: 214016_s_at; 620; 101; 783; Antisense;


ACTTCTCAAGACATCACACAGCGTG





>HG-U133A: 214016_s_at; 595; 375; 792; Antisense;


GACATCACACAGCGTGAGTCAATCA





>HG-U133A: 214016_s_at; 347; 305; 803; Antisense;


GCGTGAGTCAATCAAGGAGGGAAGC





>HG-U133A: 214016_s_at; 36; 521; 818; Antisense;


GGAGGGAAGCCACAAGCAGACTGAC





>HG-U133A: 214016_s_at; 164; 289; 826; Antisense;


GCCACAAGCAGACTGACAACGTTTC





>HG-U133A: 214016_s_at; 198; 157; 906; Antisense;


AATGAACGTTTCATTCTCGTTAATA





>HG-U133A: 214016_s_at; 455; 439; 913; Antisense;


GTTTCATTCTCGTTAATAAAGGCAT





>HG-U133A: 221768_at; 475; 389; 1413; Antisense;


GAGCTGATGTTAAAACTCATTTGGT





>HG-U133A: 221768_at; 674; 219; 1428; Antisense;


CTCATTTGGTGAGGTCAACGTTGTC





>HG-U133A: 221768_at; 413; 457; 1441; Antisense;


GTCAACGTTGTCACATACCTTCACA





>HG-U133A: 221768_at; 459; 495; 1469; Antisense;


GGGATAGTATATTTTGGGTTGCAGT





>HG-U133A: 221768_at; 173; 637; 1493; Antisense;


TCAAACTTGTGCTCAGACTGGTGAA





>HG-U133A: 221768_at; 368; 441; 1555; Antisense;


GTTTTCATTCTAATTCAGGTGTCTA





>HG-U133A: 221768_at; 544; 7; 1567; Antisense;


ATTCAGGTGTCTACTTATTTTATGT





>HG-U133A: 221768_at; 684; 257; 1612; Antisense;


CCCCCACCATGAAGTTTCTTCCTAT





>HG-U133A: 221768_at; 321; 679; 1640; Antisense;


TTTATGCTGTAACTTACCCCCAATC





>HG-U133A: 221768_at; 634; 687; 1653; Antisense;


TTACCCCCAATCTTTATCTCTGGAT





>HG-U133A: 221768_at; 571; 433; 1699; Antisense;


GTTGACTAGCATTTTCAAACCTTTA





>HG-U133A: 212721_at; 596; 401; 2963; Antisense;


GAGTTTAAGATACAGGTCATCCATC





>HG-U133A: 212721_at; 92; 461; 2978; Antisense;


GTCATCCATCATTCTTAGGCTCACT





>HG-U133A: 212721_at; 675; 625; 2986; Antisense;


TCATTCTTAGGCTCACTTTTTACAG





>HG-U133A: 212721_at; 81; 571; 3046; Antisense;


TGTTTTTCCCCAGTACTATAACTTG





>HG-U133A: 212721_at; 278; 21; 3063; Antisense;


ATAACTTGTGGTTTCTGAACTCATT





>HG-U133A: 212721_at; 456; 631; 3171; Antisense;


TCAGATTACTCAGTTGCCTTACCTC





>HG-U133A: 212721_at; 530; 633; 3180; Antisense;


TCAGTTGCCTTACCTCATGGGAAGA





>HG-U133A: 212721_at; 33; 77; 3234; Antisense;


AGCATGTTAGTTAC1TGGTTTCAAC





>HG-U133A: 212721_at; 2; 347; 3309; Antisense;


GAATGGAAAGAGTTGCCCTTGTTGC





>HG-U133A: 212721_at; 409; 295; 3344; Antisense;


GCCTGATTTGATTATGAAGCTGCTT





>HG-U133A: 212721_at; 389; 141; 3360; Antisense;


AAGCTGCTTAATCACTCTTCATGTG





>HG-U133A: 204790_at; 326; 51; 2541; Antisense;


AGGGACATGCTTAGCAGTCCCCTTC





>HG-U133A: 204790_at; 373; 347; 2573; Antisense;


GAAGGATTTGGTCCGTCATAACCCA





>HG-U133A: 204790_at; 483; 17; 2590; Antisense;


ATAACCCAAGGTACCATCCTAGGCT





>HG-U133A: 204790_at; 308; 27; 2605; Antisense;


ATCCTAGGCTGACACCTAACTCTTC





>HG-U133A: 204790_at; 29; 213; 2629; Antisense;


CTTTCATTTCTTCTACAACTCATAC





>HG-U133A: 204790_at; 88; 693; 2636; Antisense;


TTCTTCTACAACTCATACACTCGTA





>HG-U133A: 204790_at; 170; 651; 2651; Antisense;


TACACTCGTATGATACTTCGACACT





>HG-U133A: 204790_at; 137; 211; 2666; Antisense;


CTTCGACACTGTTCTTAGCTCAATG





>HG-U133A: 204790_at; 468; 79; 2682; Antisense;


AGCTCAATGAGCATGTTTAGACTTT





>HG-U133A: 204790_at; 247; 561; 3016; Antisense;


TGGTGTTTTTTCCTATGGGTGTTAT





>HG-U133A: 204790_at; 660; 37; 3030; Antisense;


ATGGGTGTTATCACCTAGCTGAATG





>HG-U133A: 208012_x_at; 595; 635; 247; Antisense;


TCACCTGGGCATGGCATCCAAGAGA





>HG-U133A: 208012_x_at; 195; 361; 303; Antisense;


GAAAGACGACTCAACCTGGAACTCA





>HG-U133A: 208012_x_at; 519; 217; 359; Antisense;


CTAAATGTGCCCGAAAGTCCAGATC





>HG-U133A: 208012_x_at; 422; 549; 479; Antisense;


TGGATTTTCACTGTTCTAAGTCCCC





>HG-U133A: 208012_x_at; 603; 259; 501; Antisense;


CCCCGTGACCTGTGGTGAGGCGAAA





>HG-U133A: 208012_x_at; 293; 95; 554; Antisense;


ACGGATCCTCAGTGAAGTGCATTCG





>HG-U133A: 208012_x_at; 61; 535; 673; Antisense;


GGAATGACCCTAGGAGAGCTGCTGA





>HG-U133A: 208012_x_at; 384; 213; 706; Antisense;


CTTTTGCTCTGTCCTCCAAGAATAA





>HG-U133A: 208012_x_at; 420; 339; 752; Antisense;


GCAAGTGAATTTCTACTACCCTCTC





>HG-U133A: 208012_x_at; 398; 271; 771; Antisense;


CCTCTCAGTCACCATGTTGCAGACT





>HG-U133A: 208012_x_at; 362; 591; 788; Antisense;


TGCAGACTTTCCCTGTCTGGAGGCT





>HG-U133A: 209761_s_at; 140; 691; 493; Antisense;


TTCAGTCAAATTAACCTGCGTGAAT





>HG-U133A: 209761_s_at; 145; 137; 505; Antisense;


AACCTGCGTGAATATCCCAATCTGG





>HG-U133A: 209761_s_at; 285; 25; 518; Antisense;


ATCCCAATCTGGTGACGATTTACAG





>HG-U133A: 209761_s_at; 42; 109; 539; Antisense;


ACAGAAGCTTCAAACGTGTTGGTGC





>HG-U133A: 209761_s_at; 130; 319; 545; Antisense;


GCTTCAAACGTGTTGGTGCTTCCTA





>HG-U133A: 209761_s_at; 501; 427; 556; Antisense;


GTTGGTGCTTCCTATGAACGGCAGA





>HG-U133A: 209761_s_at; 361; 273; 566; Antisense;


CCTATGAACGGCAGAGCAGAGACAC





>HG-U133A: 209761_s_at; 200; 191; 582; Antisense;


CAGAGACACACCAATCCTACTTGAA





>HG-U133A: 209761_s_at; 627; 69; 585; Antisense;


AGACACACCAATCCTACTTGAAGCC





>HG-U133A: 209761_s_at; 589; 83; 606; Antisense;


AGCCCCAACTGGCCTAGCAGAAGGA





>HG-U133A: 209761_s_at; 214; 183; 690; Antisense;


CACCCTGTGCGCCAAGAGTCAGTGA





>HG-U133A: 209762_x_at; 56; 515; 1460; Antisense;


GGATTTTCACTGTTCTAAGCTCCCC





>HG-U133A: 209762_x_at; 602; 259; 1481; Antisense;


CCCCGTGACCTGTGGTGAGGCGAAA





>HG-U133A: 209762_x_at; 292; 95; 1534; Antisense;


ACGGATCCTCAGTGAAGTGCATTCG





>HG-U133A: 209762_x_at; 585; 355; 1654; Antisense;


GAACGACCCTAGGAGAGCTGCTGAA





>HG-U133A: 209762_x_at; 694; 351; 1676; Antisense;


GAAGAGTGGACTTTGCTCTGTCCTC





>HG-U133A: 209762_x_at; 419; 339; 1731; Antisense;


GCAAGTGAATTTCTACTACCCTCTC





>HG-U133A: 209762_x_at; 397; 271; 1750; Antisense;


CCTCTCAGTCACCATGTTGCAGACT





>HG-U133A: 209762_x_at; 361; 591; 1767; Antisense;


TGCAGACTTTCCCTGTCTGGAGGCT





>HG-U133A: 209762_x_at; 450; 411; 1786; Antisense;


GAGGCTCACCTTAGAGCTTCTGAGT





>HG-U133A: 209762_x_at; 77; 581; 1806; Antisense;


TGAGTTTCCAAGCTCTGAGTCACCT





>HG-U133A: 209762_x_at; 488; 635; 1825; Antisense;


TCACCTCCACATTTGGGCATGGCAT





>HG-U133A: 201239_s_at; 581; 557; 275; Antisense;


TGGTCTAATTGATGGTCGCCTCACC





>HG-U133A: 201239_s_at; 305; 201; 299; Antisense;


CATCTGTACAATCTCCTGTTTCTTT





>HG-U133A: 201239_s_at; 688; 227; 311; Antisense;


CTCCTGTTTCTTTGCCATAGTGGCT





>HG-U133A: 201239_s_at; 9; 671; 340; Antisense;


TTTGGGA1TATATGCACCCCTTTCC





>HG-U133A: 201239_s_at; 547; 601; 362; Antisense;


TCCAGAGTCCAAACCCGTTTTGGCT





>HG-U133A: 201239_s_at; 642; 709; 381; Antisense;


TTGGCTTTGTGTGTCATATCCTATT





>HG-U133A: 201239_s_at; 498; 393; 447; Antisense;


GAGAAGAGCATCTTTCTCGTGGCCC





>HG-U133A: 201239_s_at; 7; 617; 461; Antisense;


TCTCGTGGCCCACAGGAAAGATCCT





>HG-U133A: 201239_s_at; 690; 415; 501; Antisense;


GATGATATTTGGCAGCTGTCCTCCA





>HG-U133A: 201239_s_at; 18; 357; 597; Antisense;


GAAGCCGAGTTCACAAAGTCCATTG





>HG-U133A: 201239_s_at; 328; 603; 678; Antisense;


TCCAGGCTCCATGACAGTCTTGCCA





>HG-U133A: 212060_at; 11; 143; 3785; Antisense;


AAGACTAGGTAGATATGGCATGGCG





>HG-U133A: 212060_at; 98; 277; 3867; Antisense;


CCATACATCCAACCCATGTTCTGAG





>HG-U133A: 212060_at; 300; 171; 3876; Antisense;


CAACCCATGTTCTGAGCAACTACTT





>HG-U133A: 212060_at; 298; 581; 3888; Antisense;


TGAGCAACTACTTACTTTTAGGGGG





>HG-U133A: 212060_at; 314; 115; 3918; Antisense;


AAATATCTTTTCATTTCCTCTTCTA





>HG-U133A: 212060_at; 171; 11; 3971; Antisense;


ATTTTCTAACAAGGTTTGGCCATAG





>HG-U133A: 212060_at; 639; 639; 4025; Antisense;


TAATCTTCTGTAGGCTATCTTTCAA





>HG-U133A: 212060_at; 114; 393; 4121; Antisense;


GAGACTTGGGTTTAGTTATAGCTTT





>HG-U133A: 212060_at; 680; 101; 4180; Antisense;


ACTTCGTATCTAATGGTTTGTAAAT





>HG-U133A: 212060_at; 601; 645; 4226; Antisense;


TAAACCATTTGCAGAGTTGAACTCT





>HG-U133A: 212060_at; 473; 155; 4300; Antisense;


AATGTTGGTCATAATACTGCTATAA





>HG-U133A: 202557_at 461; 187; 3413; Antisense;


CAGCTCATCTCATGTCCTGAAGTTG





>HG-U133A: 202557_at 343; 375; 3471; Antisense;


GACAGTGTTGGAATTTGGAGGCAGT





>HG-U133A: 202557_at; 281; 411; 3488; Antisense;


GAGGCAGTAGTTGAGCATATTCTCT





>HG-U133A: 202557_at; 568; 7; 3506; Antisense;


ATTCTCTAGTATATAGCTACACCTT





>HG-U133A: 202557_at; 676; 461; 3548; Antisense;


GTCTTCAATCATATTTTAGTGGGCT





>HG-U133A: 202557_at; 625; 57; 3691; Antisense;


AGTTGTACATTTAGCCAGTGTTATT





>HG-U133A: 202557_at; 248; 35; 3794; Antisense;


ATGTTTTGGTACTGTGTTTTCACTC





>HG-U133A: 202557_at; 335; 479; 3807; Antisense;


GTGTTTTCACTCAAACCACTGACTT





>HG-U133A: 202557_at; 159; 87; 3821; Antisense;


ACCACTGACTTAACAGATACTGCTG





>HG-U133A: 202557_at; 339; 423; 3836; Antisense;


GATACTGCTGTGTATAACATGTACT





>HG-U133A: 202557_at; 229; 431; 3887; Antisense;


GATTGTTCCTCTTATATTTGTGTGT





>HG-U133A: 208762_at; 478; 569; 1214; Antisense;


TGTCAAAAATCGTACTAATGCTTAT





>HG-U133A: 208762_at; 680; 149; 1278; Antisense;


AAGGTTTTCTTGCATAAATACTGGA





>HG-U133A: 208762_at; 161; 161; 1294; Antisense;


AATACTGGAAATTGCACATGGTACA





>HG-U133A: 208762_at; 629; 333; 1307; Antisense;


GCACATGGTACAAATTTTTTCTTCA





>HG-U133A: 208762_at; 527; 231; 1368; Antisense;


CTGAAAGTTACTGAAGTGCCTTCTG





>HG-U133A: 208762_at; 551; 349; 1380; Antisense;


GAAGTGCCTTCTGAATCAAGGATTT





>HG-U133A: 208762_at; 262; 511; 1399; Antisense;


GGATTTAATTAAGGCCACAATACCT





>HG-U133A: 208762_at; 21; 15; 1418; Antisense;


ATACCTTTTTAATACTCAGTGTTCT





>HG-U133A: 208762_at; 13; 127; 1453; Antisense;


AAAACTTGATATTCCCGTATGGTGC





>HG-U133A: 208762_at; 296; 425; 1460; Antisense;


GATATTCCCGTATGGTGCATATTTG





>HG-U133A: 208762_at; 168; 561; 1472; Antisense;


TGGTGCATATTTGATACAGGTACCC





>HG-U133A: 201463_s_at; 136; 41; 1066; Antisense;


ATGGAAAGTAGCGCATCCCTGAGGC





>HG-U133A: 201463_s_at; 382; 619; 1125; Antisense;


TCTGACTGCACGTGGCTTCTGATGA





>HG-U133A: 201463_s_at; 5; 173; 749; Antisense;


CAAAACCATTGTCATGGGCGCCTCC





>HG-U133A: 201463_s_at; 454; 603; 771; Antisense;


TCCTTCCGCAACACGGGCGAGATCA





>HG-U133A: 201463_s_at; 632; 21; 792; Antisense;


ATCAAAGCACTGGCCGGCTGTGACT





>HG-U133A: 201463_s_at; 677; 181; 829; Antisense;


CACCCAAGCTCCTGGGAGAGCTGCT





>HG-U133A: 201463_s_at; 314; 155; 920; Antisense;


AATCCACCTGGATGAGAAGTCTTTC





>HG-U133A: 201463_s_at; 123; 351; 935; Antisense;


GAAGTCTTTCCGTTGGTTGCACAAC





>HG-U133A: 201463_s_at; 303; 513; 949; Antisense;


GGTTGCACAACGAGGACCAGATGGC





>HG-U133A: 201463_s_at; 696; 311; 983; Antisense;


GCTCTCTGACGGGATCCGCAAGTTT





>HG-U133A: 201463_s_at; 576; 263; 998; Antisense;


CCGCAAGTTTGCCGCTGATGCAGTG





>HG-U133A: 202396_at; 269; 67; 3633; Antisense;


AGAGCATTTGTGGCTTGAACTTGCC





>HG-U133A: 202396_at; 304; 359; 3649; Antisense;


GAACTTGCCAGATGCAAATACCACA





>HG-U133A: 202396_at; 545; 341; 3757; Antisense;


GAATTCTTATCTTCCAGAGGCTACA





>HG-U133A: 202396_at; 420; 529; 3793; Antisense;


GGACAATACTTTTACCTTTGTCTCT





>HG-U133A: 202396_at; 112; 59; 3830; Antisense;


AGTTTTATTTGTTCACTTACGTGCT





>HG-U133A: 202396_at; 520; 635; 3842; Antisense;


TCACTTACGTGCTTTGATTATCCCC





>HG-U133A: 202396_at; 448; 427; 3857; Antisense;


GATTATCCCCTCTGAATTATAGACC





>HG-U133A: 202396_at; 67; 627; 3924; Antisense;


TCTTCTCAGGTATGGAACCACGGTC





>HG-U133A: 202396_at; 444; 355; 3938; Antisense;


GAACCACGGTCATAACTAACATGTT





>HG-U133A: 202396_at; 710; 367; 4034; Antisense;


GACAACAAATTACCTTTCTGGGTGT





>HG-U133A: 202396_at; 409; 623; 4060; Antisense;


TCTTGTAAACTATACTCCTGTTTGA





>HG-U133A: 201821_s_at; 638; 553; 375; Antisense;


TGGCATTCTCCTAGCTTTAATTGAA





>HG-U133A: 201821_s_at; 219; 347; 397; Antisense;


GAAGGAGCTGGTATCTTGTTGACAA





>HG-U133A: 201821_s_at; 368; 611; 472; Antisense;


TCCCAGTTGCCTTCAACTCAGTTAC





>HG-U133A: 201821_s_at; 574; 181; 503; Antisense;


CACCTTTTGGAGACTATCGACAATA





>HG-U133A: 201821_s_at; 17; 371; 521; Antisense;


GACAATATCAGTAGGACTTCTTTCC





>HG-U133A: 201821_s_at; 380; 625; 539; Antisense;


TCTTTCCTAGGATTTCTTTAACAGA





>HG-U133A: 201821_s_at; 444; 397; 566; Antisense;


GAGTTGTGGTTCGAGAAGGATTTCA





>HG-U133A: 201821_s_at; 692; 75; 633; Antisense;


AGCTATGGCCAATAGGCTATAAAGA





>HG-U133A: 201821_s_at; 17; 121; 653; Antisense;


AAAGAGACATTTAGCACTTTTTTCT





>HG-U133A: 201821_s_at; 582; 597; 864; Antisense;


TGCCTGGTTTTGTGTGTTCTGTTAT





>HG-U133A: 201821_s_at; 50; 307; 903; Antisense;


GCTGGTGGAACTTACTCTTTCTTTT





>HG-U133A: 220832_at; 226; 647; 2817; Antisense;


TAAAAGGCTACAGGTCTCTTTCCAC





>HG-U133A: 220832_at; 671; 671; 2835; Antisense;


TTTCCACATCCCAAACTTTCTATGA





>HG-U133A: 220832_at; 172; 373; 2876; Antisense;


GACACCAAAGATGCCTCTGTTACTG





>HG-U133A: 220832_at; 173; 311; 2917; Antisense;


GCTGCGCTACCACCTTGAAGAGAGC





>HG-U133A: 220832_at; 316; 169; 2947; Antisense;


CAAAAACGTTCTCCTTTGTCTAGAG





>HG-U133A: 220832_at; 10; 27; 3002; Antisense;


ATCGACAACCTCATGCAGAGCATCA





>HG-U133A: 220832_at; 590; 317; 3092; Antisense;


GCTTTTTACTTGGCTTTGCAGAGGC





>HG-U133A: 220832_at; 562; 525; 3157; Antisense;


GGAGCCAGTGTTACAGCATTCTCAG





>HG-U133A: 220832_at; 293; 705; 3185; Antisense;


TTGAGGCTACGGCAGCGGATCTGTA





>HG-U133A: 220832_at; 88; 307; 3199; Antisense;


GCGGATCTGTAAGAGCTCCATCCTC





>HG-U133A: 220832_at; 570; 601; 3222; Antisense;


TCCAGTGGCCTGACAACCCGAAGGC





>HG-U133A: 202643_s_at; 358; 623; 3316; Antisense;


TCTTTGGGTTATTACTGTCTTTACT





>HG-U133A: 202643_s_at; 203; 369; 3433; Antisense;


GAAATGCTGCCCTAGAAGTACAATA





>HG-U133A: 202643_s_at; 473; 695; 3484; Antisense;


TTCTGGTTGTTGTTGGGGCATGAGC





>HG-U133A: 202643_s_at; 346; 321; 3522; Antisense;


GCTTGCATAAACTCAACCAGCTGCC





>HG-U133A: 202643_s_at; 609; 51; 3554; Antisense;


AGGGAGCTCTAGTCCTTTTTGTGTA





>HG-U133A: 202643_s_at; 559; 397; 3668; Antisense;


GAGAGAACATCCTTGCTTTGAGTCA





>HG-U133A: 202643_s_at; 522; 489; 3699; Antisense;


GGGCAAGTTCCTGACCACAGGGAGT





>HG-U133A: 202643_s_at; 648; 493; 3718; Antisense;


GGGAGTAAATTGGCCTCTTTGATAC





>HG-U133A: 202643_s_at; 403; 625; 3733; Antisense;


TCTTTGATACACTTTTGCTTGCCTC





>HG-U133A: 202643_s_at; 649; 7; 3797; Antisense;


ATTCATCGATGTTTCGTGCTTCTCC





>HG-U133A: 202643_s_at; 656; 471; 3812; Antisense;


GTGCTTCTCCTTATGAAACTCCAGC





>HG-U133A: 202687_s_at; 58; 451; 466; Antisense;


GTAGCAGCTCACATAACTGGGACCA





>HG-U133A: 202687_s_at; 146; 207; 506; Antisense;


CATTGTCTTCTCCAAACTCCAAGAA





>HG-U133A: 202687_s_at; 591; 539; 542; Antisense;


TGGGCCGCAAAATAAACTCCTGGGA





>HG-U133A: 202687_s_at; 646; 489; 580; Antisense;


GGGCATTCATTCCTGAGCAACTTGC





>HG-U133A: 202687_s_at; 446; 681; 643; Antisense;


TTTTACTACATCTATTCCCAAACAT





>HG-U133A: 202687_s_at; 647; 613; 658; Antisense;


TCCCAAACATACTTTCGATTTCAGG





>HG-U133A: 202687_s_at; 229; 161; 737; Antisense;


AATACACAAGTTATCCTGACCCTAT





>HG-U133A: 202687_s_at; 666; 527; 814; Antisense;


GGACTCTATTCCATCTATCAAGGGG





>HG-U133A: 202687_s_at; 490; 581; 888; Antisense;


TGAGCACTTGATAGACATGGACCAT





>HG-U133A: 202687_s_at; 620; 523; 906; Antisense;


GGACCATGAAGCCAGTTTTTTCGGG





>HG-U133A: 202687_s_at; 608; 291; 931; Antisense;


GCCTTTTTAGTTGGCTAACTGACCT





>HG-U133A: 202688_at; 508; 223; 1181; Antisense;


CTCTACCTCATATCAGTTTGCTAGC





>HG-U133A: 202688_at; 422; 143; 1216; Antisense;


AAGACTGTCAGCTTCCAAACATTAA





>HG-U133A: 202688_at; 427; 33; 1240; Antisense;


ATGCAATGGTTAACATCTTCTGTCT





>HG-U133A: 202688_at; 241; 619; 1258; Antisense;


TCTGTCTTTATAATCTACTCCTTGT





>HG-U133A: 202688_at; 443; 639; 1268; Antisense;


TAATCTACTCCTTGTAAAGACTGTA





>HG-U133A: 202688_at; 297; 71; 1295; Antisense;


AGAAAGCGCAACAATCCATCTCTCA





>HG-U133A: 202688_at; 345; 29; 1308; Antisense;


ATCCATCTCTCAAGTAGTGTATCAC





>HG-U133A: 202688_at; 533; 53; 1323; Antisense;


AGTGTATCACAGTAGTAGCCTCCAG





>HG-U133A: 202688_at; 465; 635; 1329; Antisense;


TCACAGTAGTAGCCTCCAGGTTTCC





>HG-U133A: 202688_at; 504; 409; 1388; Antisense;


GAGGCACCACTAAAAGATCGCAGTT





>HG-U133A: 202688_at; 151; 29; 1404; Antisense;


ATCGCAGTTTGCCTGGTGCAGTGGC





>HG-U133A: 209500_x_at; 433; 199; 1114; Antisense;


CATGGAGCTCCGAATTCTTGCGTGT





>HG-U133A: 209500_x_at; 612; 321; 1170; Antisense;


GCATTGTTCAGACCTGGTCGGGGCC





>HG-U133A: 209500_x_at; 543; 613; 1187; Antisense;


TCGGGGCCCACTGGAAGCATCCAGA





>HG-U133A: 209500_x_at; 423; 639; 1286; Antisense;


TAGGGAAAACCCCTGGTTCTCCATG





>HG-U133A: 209500_x_at; 334; 285; 1347; Antisense;


CCACAAGAAGCCTTATCCTACGTCC





>HG-U133A: 209500_x_at; 324; 399; 1414; Antisense;


GAGATGTAGCTATTATGCGCCCGTC





>HG-U133A: 209500_x_at; 695; 211; 1438; Antisense;


CTACAGGGGGTGCCCGACGATGACG





>HG-U133A: 209500_x_at; 65; 469; 1463; Antisense;


GTGCCTTCGCAGTCAAATTACTCTT





>HG-U133A: 209500_x_at; 305; 701; 1541; Antisense;


TTCCAAGCCCTTCCGGGCTGGAACT





>HG-U133A: 209500_x_at; 699; 615; 1570; Antisense;


TCGGAGGAGCCTCGGGTGTATCGTA





>HG-U133A: 209500_x_at; 450; 235; 1624; Antisense;


CTGAGCTCTTCTTTCTGATCAAGCC





>HG-U133A: 212635_at; 343; 75; 2525; Antisense;


AGCAAATTGAGCTTGGGTGATTTTT





>HG-U133A: 212635_at; 345; 123; 2625; Antisense;


AAACGTGGTAAATCACTTCATATTA





>HG-U133A: 212635_at; 28; 57; 2696; Antisense;


AGTAGCATTAGCTTTAGTTACAAAT





>HG-U133A: 212635_at; 128; 515; 2727; Antisense;


GGATCTTTCTGCTGACAACTTAGGT





>HG-U133A: 212635_at; 421; 649; 2776; Antisense;


TAAATCTGATGTTTCCTGTACCTGC





>HG-U133A: 212635_at; 79; 235; 2791; Antisense;


CTGTACCTGCCACACTATGTTAGAA





>HG-U133A: 212635_at; 664; 37; 2815; Antisense;


ATGTGTCCTTCAAACATATCCTCCT





>HG-U133A: 212635_at; 681; 225; 2835; Antisense;


CTCCTGCAACTTCTCAAACTGTACT





>HG-U133A: 212635_at; 9; 629; 2871; Antisense;


TCTTGAAGTCTAACTCTGTGCTAAC





>HG-U133A: 212635_at; 628; 233; 2886; Antisense;


CTGTGCTAACAGATCTCCATTTTAA





>HG-U133A: 212635_at; 232; 63; 3051; Antisense;


AGATGTGAATGTTAATCACTGCTTG





>HG-U133A: 213158_at; 250; 669; 1655; Antisense;


TTTGGAAAAACCTTGCATACGCCTT





>HG-U133A: 213158_at; 426; 323; 1669; Antisense;


GCATACGCCTTTTCTATCAAGTGCT





>HG-U133A: 213158_at; 294; 105; 1743; Antisense;


ACAGTATCCTTACCTGCCATTTAAT





>HG-U133A: 213158_at; 510; 89; 1754; Antisense;


ACCTGCCATTTAATATTAGCCTCGT





>HG-U133A: 213158_at; 609; 265; 1773; Antisense;


CCTCGTATTTTTCTCACGTATATTT





>HG-U133A: 213158_at; 248; 95; 1788; Antisense;


ACGTATATTTACCTGTGACTTGTAT





>HG-U133A: 213158_at; 351; 135; 1857; Antisense;


AACTGTAGCGCTTCATTATACTATT





>HG-U133A: 213158_at; 305; 59; 1921; Antisense;


AGTTTTATCTCTTGCATATACTTTA





>HG-U133A: 213158_at; 509; 647; 2070; Antisense;


TAAATGTTACCAGCACTTTTTTTGT





>HG-U133A: 213158_at; 184; 569; 2092; Antisense;


TGTAAGTTTCACTTTCCGAGGTATT





>HG-U133A: 213158_at; 697; 509; 2111; Antisense;


GGTATTGTACAAGTTCACACTGTTT





>HG-U133A: 203721_s_at; 620; 7; 1331; Antisense;


ATTAAGCATTGCCACATCTAGGAAT





>HG-U133A: 203721_s_at; 99; 513; 1463; Antisense;


GGTTACAGGTGTTACTTCTCTGACC





>HG-U133A: 203721_s_at; 73; 623; 1479; Antisense;


TCTCTGACCTTCAATCCTACTACAG





>HG-U133A: 203721_s_at; 103; 355; 1536; Antisense;


GAAGCAGTCAGATTGGTTCATCTTC





>HG-U133A: 203721_s_at; 172; 451; 1567; Antisense;


GTACAGTATTTTCAAACTTCCCAGT





>HG-U133A: 203721_s_at; 427; 435; 1617; Antisense;


GTTCATACCATGGATTTTTCTCCGA





>HG-U133A: 203721_s_at; 439; 349; 1642; Antisense;


GAAGTGGATACTTTGCCTTGGGGAA





>HG-U133A: 203721_s_at; 564; 153; 1676; Antisense;


AAGGCCCTGATGTATAGGTTGCACC





>HG-U133A: 203721_s_at; 272; 663; 1690; Antisense;


TAGGTTGCACCATTACTCAGACTTC





>HG-U133A: 203721_s_at; 702; 393; 1749; Antisense;


GAGAAGCCTGTCTTGATATATCATC





>HG-U133A: 203721_s_at; 498; 419; 1821; Antisense;


GATCCAGCTGTGCTTAAGAGCCAGT





>HG-U133A: 205922_at; 349; 515; 1428; Antisense;


GGATCATCTGGGCCTATACTAACAG





>HG-U133A: 205922_at; 294; 483; 1501; Antisense;


GTGGGACCAGCAATTCAGCAATAAC





>HG-U133A: 205922_at; 283; 439; 1580; Antisense;


GTTATAGGGGCGTCTCTTTATCACT





>HG-U133A: 205922_at; 391; 213; 1595; Antisense;


CTTTATCACTCAGCTTCTGCATCAT





>HG-U133A: 205922_at; 685; 209; 1608; Antisense;


CTTCTGCATCATACGCTTGGCTGAA





>HG-U133A: 205922_at; 14; 545; 1626; Antisense;


GGCTGAATGTGTTTATCGGCTTCCC





>HG-U133A: 205922_at; 709; 155; 1820; Antisense;


AATGAAGATCAAACTCCAGCTCCAG





>HG-U133A: 205922_at; 505; 281; 1841; Antisense;


CCAGCCTCATTTTGCTTGAGACTTT





>HG-U133A: 205922_at; 147; 493; 1892; Antisense;


GGGAGTGAGGAGTTTCAGGGCCATT





>HG-U133A: 205922_at; 458; 293; 1911; Antisense;


GCCATTGAAACATAGCTGTGCCCTT





>HG-U133A: 205922_at; 617; 511; 1965; Antisense;


GGTTTATGACTGAATTCCCTTTGAC





>HG-U133A: 220528_at; 667; 359; 1190; Antisense;


GAACAGACGAGATCTATGCCCTAGG





>HG-U133A: 220528_at; 230; 31; 1205; Antisense;


ATGCCCTAGGTGCTTTTGATGGACT





>HG-U133A: 220528_at; 134; 357; 1309; Antisense;


GAACCTGTGGGGTCAGCTTTTACCA





>HG-U133A: 220528_at; 290; 169; 1332; Antisense;


CAAGTTTGAAGACTTCTCCCTCAGT





>HG-U133A: 220528_at; 709; 469; 1364; Antisense;


TTGGAACGCGTTATGTTTTCCCACA





>HG-U133A: 220528_at; 527; 619; 1395; Antisense;


TCTAAGTGGGAGTCAGCTTGCCCCT





>HG-U133A: 220528_at; 288; 707; 1453; Antisense;


TTGAGGAGCCGAAGTGGAGCCCCTT





>HG-U133A: 220528_at; 695; 703; 1477; Antisense;


TTGCCTGTCTTAGTTATGGCCCTGT





>HG-U133A: 220528_at; 312; 269; 1525; Antisense;


CCTCCACGCTTAGGGCAGGGATCTG





>HG-U133A: 220528_at; 15; 369; 1551; Antisense;


GAAATTCCAGTGATCTCCTTTAGCA





>HG-U133A: 220528_at; 594; 329; 1573; Antisense;


GCAGAGCCCTTTTAGGATTAGCCTG





>HG-U133A: 204847_at; 229; 227; 4494; Antisense;


CTCCTCAAGCTATCCAATTTTCTGA





>HG-U133A: 204847_at; 408; 643; 4528; Antisense;


TAACCATGAGAGATGCCACATTTCT





>HG-U133A: 204847_at; 97; 693; 4549; Antisense;


TTCTCTCTGGGAAACTACCACTCAA





>HG-U133A: 204847_at; 600; 329; 4642; Antisense;


GCAGATCACATGTAAATCATTCCTA





>HG-U133A: 204847_at; 196; 569; 4683; Antisense;


TGTGCCTTGATGTACATATATTACT





>HG-U133A: 204847_at; 533; 667; 4699; Antisense;


TATATTACTAAGTTGCCTCTCCCAG





>HG-U133A: 204847_at; 250; 39; 4759; Antisense;


ATGTGATAGCTGTGCATGCATTATA





>HG-U133A: 204847_at; 115; 81; 4817; Antisense;


AGCTGTGTGGCTGACTTTCAATTTT





>HG-U133A: 204847_at; 484; 705; 4852; Antisense;


TTGACATACAGCCCATAACTTTATA





>HG-U133A: 204847_at; 547; 101; 4869; Antisense;


ACTTTATAATGGCTGCTCATTTATC





>HG-U133A: 204847_at; 568; 201; 4961; Antisense;


CATCCTCTGTTGTTACTAGATTTAG





>HG-U133A: 203739_at; 503; 59; 5073; Antisense;


AGTTTTGCACTTTTATAGCCTATTT





>HG-U133A: 203739_at; 319; 111; 5108; Antisense;


ACACATTTGCAAGATGATTGACTCA





>HG-U133A: 203739_at; 519; 3; 5124; Antisense;


ATTGACTCAATCTTTGCCTAATCCA





>HG-U133A: 203739_at; 214; 703; 5137; Antisense;


TTGCCTAATCCAATGAGTGTTACAG





>HG-U133A: 203739_at; 471; 397; 5161; Antisense;


GAGAGCTTGCTGTGACTAGAACCAT





>HG-U133A: 203739_at; 327; 691; 5306; Antisense;


TTCAGATTTCTCTTTTTAACCACAT





>HG-U133A: 203739_at; 409; 699; 5359; Antisense;


TTCCTACAGCCCTTTGTACTTCAAA





>HG-U133A: 203739_at; 47; 17; 5384; Antisense;


ATATGTTTTTGTGTCCATCAGTATT





>HG-U133A: 203739_at; 165; 637; 5407; Antisense;


TTAACTATTGGTATACTACTGGTTT





>HG-U133A: 203739_at; 688; 53; 5469; Antisense;


AGAGGTACAATTCGTTGGATTTTTG





>HG-U133A: 203739_at; 1; 377; 5560; Antisense;


GACATTACGTGTTTTATTTATGATA





>HG-U133A: 209431_s_at; 374; 87; 3074; Antisense;


ACCATGGGGTGAGTGTCCTCCAAGA





>HG-U133A: 209431_s_at; 494; 319; 3151; Antisense;


GCTTGGAGGCGAGCATTTTCACTGC





>HG-U133A: 209431_s_at; 273; 693; 3168; Antisense;


TTCACTGCTAGGACAAGCTCAGCTG





>HG-U133A: 209431_s_at; 379; 427; 3230; Antisense;


GATTTTAACCATTCAACATGCTGTT





>HG-U133A: 209431_s_at; 257; 341; 3314; Antisense;


GAATTGCTACTGAAAGCTATCCCAG





>HG-U133A: 209431_s_at; 75; 319; 3329; Antisense;


GCTATCCCAGGTGATACAGAGCTCT





>HG-U133A: 209431_s_at; 236; 389; 3347; Antisense;


GAGCTCTTTGTAAACCGCAGTCACA





>HG-U133A: 209431_s_at; 602; 157; 3475; Antisense;


AATGCCAGTCTGGTCAGGGAAGTAG





>HG-U133A: 209431_s_at; 369; 279; 3522; Antisense;


CCAGGAAGGTGGGACAGCCGGCAGG





>HG-U133A: 209431_s_at; 164; 421; 3546; Antisense;


GTAGGGACATTGTGTACCTCAGTTG





>HG-U133A: 209431_s_at; 443; 479; 3557; Antisense;


GTGTACCTCAGTTGTGTCACATGTG





>HG-U133A: 213097_s_at; 24; 123; 1496; Antisense;


AAAGCTGTGAATCTGTTCCCTGCTG





>HG-U133A: 213097_s_at; 16; 701; 1511; Antisense;


TTCCCTGCTGGAACAAATTCAAGAT





>HG-U133A: 213097_s_at; 280; 403; 1697; Antisense;


GAGTGGTACCTCAAGCAGACAACGC





>HG-U133A: 213097_s_at; 518; 111; 1715; Antisense;


ACAACGCAACGCCTTCAGAACGATT





>HG-U133A: 213097_s_at; 580; 43; 1743; Antisense;


AGGTCCATATACAGACTTCACCCCT





>HG-U133A: 213097_s_at; 370; 377; 1756; Antisense;


GACTTCACCCCTTGGACAACAGAAG





>HG-U133A: 213097_s_at; 359; 111; 1797; Antisense;


ACAAGCTTTGAAAACATACCCAGTA





>HG-U133A: 213097_s_at; 514; 127; 1809; Antisense;


AACATACCCAGTAAATACACCTGAA





>HG-U133A: 213097_s_at; 503; 17; 1846; Antisense;


ATAGCAGAAGCGGTGCCTGGCAGGA





>HG-U133A: 213097_s_at 325; 347; 1875; Antisense;


GAAGGACTGCATGAAACGATACAAG





>HG-U133A: 213097_s_at; 607; 311; 1930; Antisense;


GCTGCTCAAGAACAAGTGCTGAATG





>HG-U133A: 221658_s_at; 159; 157; 2022; Antisense;


AATGCCCATGGTACTCCATGCATTC





>HG-U133A: 221658_s_at; 57; 593; 2057; Antisense;


TGCATGTCTGGACTCACGGAGCTCA





>HG-U133A: 221658_s_at; 542; 477; 2159; Antisense;


GTGTTGCAAGTTGGTCCACAGCATC





>HG-U133A: 221658_s_at; 324; 285; 2174; Antisense;


CCACAGCATCTCCGGGGCTTTGTGG





>HG-U133A: 221658_s_at; 383; 317; 2190; Antisense;


GCTTTGTGGGATCAGGGCATTGCCT





>HG-U133A: 221658_s_at 233; 349; 2265; Antisense;


GAAGTCCATATTGTTCCTTATCACC





>HG-U133A: 221658_s_at; 704; 547; 2357; Antisense;


GGCCCCTGGACGAAGGTCTGAATCC





>HG-U133A: 221658_s_at 354; 151; 2369; Antisense;


AAGGTCTGAATCCCGACTCTGATAC





>HG-U133A: 221658_s_at; 160; 317; 2437; Antisense;


GCTAGAGTTTCCTTATCCAGACAGT





>HG-U133A: 221658_s_at; 589; 367; 2486; Antisense;


GAAATTGGCGATGTCACCCGTGTAC





>HG-U133A: 221658_s_at; 267; 329; 2526; Antisense;


GCAGACCCTCAATAAACGTCAGCTT
















TABLE 7





PROBESETS RESPONSIVE TO IL-13 STIMULATION




















A
B
C
D
E
F


Name
Gene Symbol
IM_IL13_2h_STQValue
IM_IL13_6h_STQValue
IM_IL13_12h_STQValue
IM_IL13_24h_STQValue





1179_at

0.300
0.540
0.007
0.263


32218_at

0.007
0.044
0.137
0.075


32247_at

0.493
0.233
0.521
0.039


1150_at

0.055
0.002
0.001
0.001


1284_at

0.021
0.011
0.028
0.031


40888_f_at

0.271
0.545
0.285
0.025


953_g_at

0.198
0.014
0.002
0.005


34145_at

0.040
0.014
0.019
0.074


1173_g_at

0.302
0.032
0.079
0.020


956_at

0.117
0.015
0.102
0.015


1148_s_at

0.326
0.477
0.049
0.043


38033_at
38970
0.114
0.197
0.033
0.026


33173_g_at
38971
0.359
0.030
0.060
0.008


160044_g_at
ACO2
0.427
0.125
0.069
0.022


40082_at
ACSL1
0.517
0.630
0.410
0.028


33881_at
ACSL3
0.513
0.307
0.014
0.112


39330_s_at
ACTN1
0.204
0.052
0.036
0.016


41654_at
ADA
0.418
0.300
0.273
0.020


907_at
ADA
0.426
0.360
0.338
0.024


35479_at
ADAM28
0.221
0.013
0.014
0.005


34378_at
ADFP
0.138
0.309
0.213
0.023


34777_at
ADM
0.403
0.467
0.106
0.023


40821_at
AHCY
0.448
0.144
0.183
0.050


40516_at
AHR
0.423
0.002
0.025
0.101


40789_at
AK2
0.217
0.327
0.062
0.016


38780_at
AKR1A1
0.536
0.279
0.015
0.015


36589_at
AKR1B1
0.445
0.248
0.089
0.022


37015_at
ALDH1A1
0.266
0.245
0.038
0.000


38315_at
ALDH1A2
0.102
0.031
0.109
0.180


40685_at
ALDH3B1
0.042
0.138
0.230
0.403


37330_at
ALDH4A1
0.501
0.118
0.221
0.020


34636_at
ALOX15
0.229
0.000
0.005
0.001


307_at
ALOX5
0.192
0.036
0.123
0.053


37099_at
ALOX5AP
0.510
0.269
0.123
0.012


678_at
ALPPL2
0.543
0.199
0.420
0.031


38417_at
AMPD2
0.081
0.017
0.084
0.007


39315_at
ANGPT1
0.559
0.072
0.021
0.099


36637_at
ANXA11
0.564
0.009
0.021
0.003


37647_at
AOAH
0.153
0.236
0.007
0.001


41549_s_at
AP1S2
0.164
0.167
0.197
0.039


37669_s_at
ATP1B1
0.403
0.004
0.040
0.016


37992_s_at
ATP5D
0.143
0.593
0.490
0.019


34811_at
ATP5G3
0.326
0.250
0.000
0.014


38751_i_at
ATP5I
0.405
0.495
0.484
0.014


36142_at
ATXN1
0.378
0.008
0.084
0.001


39942_at
BATF
0.017
0.130
0.519
0.365


37971_at
BAZ1A
0.368
0.126
0.068
0.016


36812_at
BCAR3
0.163
0.003
0.008
0.036


32828_at
BCKDK
0.217
0.004
0.095
0.009


41356_at
BCL11A
0.227
0.167
0.227
0.030


2002_s_at
BCL2A1
0.375
0.592
0.219
0.005


40091_at
BCL6
0.274
0.002
0.008
0.012


32842_at
BCL7A
0.139
0.015
0.047
0.024


40879_at
BICD2
0.043
0.402
0.537
0.424


32726_g_at
BID
0.201
0.118
0.099
0.022


32618_at
BLVRA
0.146
0.002
0.116
0.042


41732_at
BOLA2
0.351
0.070
0.227
0.030


35615_at
BOP1 ///
0.248
0.033
0.352
0.305



LOC653119


33759_at
BPGM
0.540
0.534
0.026
0.360


41639_at
BRRN1
0.160
0.111
0.012
0.024


32675_at
BST1
0.335
0.169
0.091
0.024


38760_f_at
BTN3A2
0.207
0.553
0.460
0.048


41415_at
BYSL
0.125
0.200
0.019
0.056


39172_at
C10orf22
0.393
0.008
0.004
0.027


38652_at
C10orf26
0.137
0.055
0.001
0.016


38411_at
C11orf32
0.221
0.015
0.013
0.008


41437_at
C14orf109
0.159
0.348
0.106
0.027


38969_at
C19orf10
0.062
0.015
0.378
0.408


41409_at
C1orf38
0.032
0.484
0.538
0.372


37668_at
C1QBP
0.146
0.284
0.000
0.011


33374_at
C2
0.325
0.335
0.582
0.047


32107_at
C21orf25
0.358
0.052
0.095
0.023


31927_s_at
C21orf33
0.445
0.108
0.302
0.020


32068_at
C3AR1
0.426
0.016
0.018
0.011


40175_at
C3orf40
0.160
0.319
0.398
0.038


39710_at
C5orf13
0.560
0.011
0.169
0.337


41696_at
C7orf24
0.518
0.055
0.170
0.014


34995_at
CALCRL
0.436
0.072
0.027
0.008


38716_at
CAMKK2
0.018
0.660
0.194
0.421


574_s_at
CASP1
0.077
0.068
0.047
0.000


39320_at
CASP1
0.033
0.198
0.021
0.000


37162_at
CCDC6
0.330
0.324
0.253
0.036


34183_at
CCDC69
0.184
0.022
0.360
0.495


37454_at
CCL13
0.137
0.045
0.055
0.009


1183_at
CCL17
0.080
0.002
0.028
0.008


32128_at
CCL18
0.139
0.007
0.035
0.000


875_g_at
CCL2
0.539
0.295
0.070
0.028


34375_at
CCL2
0.441
0.345
0.212
0.029


34041_at
CCL22
0.446
0.337
0.099
0.036


36445_at
CCL23
0.182
0.002
0.029
0.017


36444_s_at
CCL23
0.131
0.013
0.020
0.003


1924_at
CCNH
0.043
0.106
0.070
0.020


39936_at
CCR2 ///
0.316
0.523
0.237
0.021



LOC653518


35759_at
CCT2
0.205
0.016
0.026
0.044


39767_at
CCT8
0.384
0.443
0.278
0.036


36661_s_at
CD14
0.465
0.012
0.110
0.090


31438_s_at
CD163
0.194
0.036
0.061
0.083


34926_at
CD1A
0.148
0.002
0.000
0.000


34927_at
CD1B
0.405
0.003
0.005
0.011


37835_at
CD1C
0.436
0.003
0.000
0.001


37861_at
CD1E
0.311
0.000
0.000
0.003


34699_at
CD2AP
0.160
0.021
0.107
0.015


34760_at
CD302
0.217
0.043
0.277
0.123


31870_at
CD37
0.352
0.097
0.046
0.008


31472_s_at
CD44
0.217
0.015
0.127
0.148


1125_s_at
CD44
0.136
0.037
0.271
0.171


1126_s_at
CD44
0.235
0.048
0.111
0.199


38006_at
CD48
0.077
0.027
0.028
0.005


39351_at
CD59
0.255
0.512
0.169
0.025


37536_at
CD83
0.080
0.113
0.212
0.027


505_at
CDC37
0.148
0.058
0.229
0.011


2031_s_at
CDKN1A
0.017
0.009
0.018
0.003


36053_at
CDKN2C
0.514
0.048
0.278
0.126


36190_at
CDR2
0.038
0.151
0.011
0.074


1052_s_at
CEBPD
0.017
0.016
0.046
0.018


32589_at
CHAF1A
0.373
0.031
0.042
0.044


33569_at
CLEC10A
0.419
0.040
0.007
0.002


40698_at
CLEC2B
0.095
0.106
0.055
0.020


40013_at
CLIC2
0.475
0.009
0.005
0.001


39960_at
COQ2
0.473
0.155
0.029
0.319


40427_at
COX17
0.018
0.090
0.099
0.017


39921_at
COX5B
0.534
0.592
0.060
0.008


36687_at
COX7B
0.504
0.298
0.068
0.029


39692_at
CREB3L2
0.328
0.585
0.018
0.027


39438_at
CREBL2
0.326
0.068
0.002
0.169


33232_at
CRIP1
0.534
0.418
0.046
0.127


40119_at
CRTAP
0.357
0.182
0.284
0.047


34223_at
CSF3R
0.465
0.093
0.085
0.025


596_s_at
CSF3R
0.483
0.182
0.130
0.011


410_s_at
CSNK2B
0.214
0.071
0.115
0.008


38112_g_at
CSPG2
0.529
0.156
0.048
0.007


31682_s_at
CSPG2
0.545
0.399
0.213
0.020


39581_at
CSTA
0.312
0.073
0.002
0.004


35331_at
CTNNAL1
0.054
0.002
0.000
0.001


40444_s_at
CTNND1
0.148
0.013
0.035
0.205


36566_at
CTNS
0.007
0.012
0.028
0.003


133_at
CTSC
0.061
0.002
0.000
0.000


239_at
CTSD
0.445
0.309
0.037
0.002


38466_at
CTSK
0.248
0.043
0.012
0.003


41239_r_at
CTSS
0.069
0.275
0.423
0.007


31823_at
CUTL1
0.476
0.265
0.505
0.041


40646_at
CX3CR1
0.138
0.002
0.048
0.076


37187_at
CXCL2
0.479
0.155
0.068
0.005


649_s_at
CXCR4
0.043
0.045
0.095
0.023


40296_at
CXorf9
0.482
0.231
0.247
0.036


999_at
CYP27A1
0.424
0.344
0.212
0.027


33389_at
CYP51A1
0.265
0.041
0.148
0.082


33753_at
DAAM1
0.198
0.467
0.114
0.007


1243_at
DDB2
0.178
0.092
0.027
0.035


38104_at
DECR1
0.427
0.515
0.089
0.047


41734_at
DENND3
0.273
0.250
0.099
0.023


41637_at
DEXI
0.323
0.630
0.148
0.033


41872_at
DFNA5
0.238
0.063
0.076
0.005


39044_s_at
DGKD
0.188
0.125
0.039
0.208


39814_s_at
DHRS7
0.278
0.042
0.079
0.008


41402_at
DKFZP564O0823
0.229
0.015
0.134
0.020


41716_at
DMXL2
0.151
0.103
0.065
0.016


35799_at
DNAJB9
0.045
0.539
0.161
0.445


40607_at
DPYSL2
0.358
0.043
0.035
0.015


32168_s_at
DSCR1
0.042
0.432
0.084
0.008


38555_at
DUSP10
0.017
0.003
0.031
0.010


41193_at
DUSP6
0.426
0.015
0.016
0.002


36921_at
DYNLT3
0.181
0.025
0.225
0.067


37016_at
ECHS1
0.556
0.276
0.225
0.020


40886_at
EEF1A1 ///
0.329
0.390
0.484
0.037



APOLD1 ///



LOC440595


37863_at
EGR2
0.273
0.025
0.000
0.005


33351_at
EIF1B
0.170
0.563
0.015
0.177


34302_at
EIF3S4
0.258
0.242
0.220
0.029


35323_at
EIF3S9
0.134
0.118
0.402
0.025


37527_at
ELK3
0.038
0.568
0.304
0.351


40606_at
ELL2
0.093
0.439
0.406
0.017


39542_at
ENC1
0.452
0.229
0.018
0.100


32562_at
ENG
0.250
0.352
0.123
0.037


41123_s_at
ENPP2
0.209
0.016
0.058
0.391


41124_r_at
ENPP2
0.255
0.057
0.048
0.478


32585_at
EPB41L2
0.510
0.014
0.040
0.013


902_at
EPHB2
0.200
0.038
0.085
0.177


41678_at
EPHB2
0.410
0.006
0.036
0.091


37731_at
EPS15
0.531
0.399
0.020
0.002


38158_at
ESPL1
0.132
0.074
0.212
0.014


38739_at
ETS2
0.488
0.559
0.134
0.036


32259_at
EZH1
0.354
0.327
0.026
0.166


40143_at
FAM53B
0.043
0.260
0.387
0.520


32209_at
FAM89B
0.512
0.652
0.586
0.022


38318_at
FAM8A1
0.166
0.330
0.106
0.046


36495_at
FBP1
0.387
0.615
0.409
0.027


34959_at
FCER2
0.166
0.000
0.000
0.000


34960_g_at
FCER2
0.078
0.001
0.000
0.001


37688_f_at
FCGR2A
0.522
0.376
0.050
0.001


37689_s_at
FCGR2A
0.349
0.661
0.028
0.014


37687_i_at
FCGR2B
0.363
0.446
0.212
0.008


37200_at
FCGR3A
0.160
0.015
0.004
0.008


31499_s_at
FCGR3B
0.185
0.008
0.079
0.045


39593_at
FGL2
0.317
0.199
0.183
0.045


39591_s_at
FGL2
0.346
0.130
0.191
0.024


32546_at
FH
0.542
0.140
0.023
0.037


880_at
FKBP1A
0.148
0.003
0.002
0.008


41425_at
FLI1
0.122
0.144
0.188
0.032


41814_at
FUCA1
0.515
0.023
0.036
0.040


35338_at
FURIN
0.283
0.184
0.069
0.008


34716_at
FUSIP1 ///
0.031
0.525
0.333
0.302



LOC642558


41819_at
FYB
0.168
0.037
0.065
0.006


38326_at
G0S2
0.212
0.021
0.170
0.096


33936_at
GALC
0.257
0.024
0.105
0.064


1598_g_at
GAS6
0.175
0.017
0.040
0.016


1597_at
GAS6
0.060
0.002
0.005
0.067


37658_at
GAS6
0.262
0.015
0.028
0.009


33387_at
GAS7
0.046
0.018
0.045
0.040


36596_r_at
GATM
0.299
0.245
0.253
0.033


32643_at
GBE1
0.217
0.660
0.432
0.025


32700_at
GBP2
0.570
0.035
0.204
0.139


37944_at
GCH1
0.415
0.531
0.021
0.064


38237_at
GGTLA1
0.280
0.010
0.003
0.016


34311_at
GLRX
0.034
0.219
0.217
0.087


40522_at
GLUL
0.018
0.092
0.013
0.012


31812_at
GMPR
0.271
0.061
0.031
0.264


35272_at
GNG5
0.339
0.623
0.067
0.016


38379_at
GPNMB
0.297
0.054
0.048
0.008


31700_at
GPR35
0.169
0.042
0.068
0.027


34930_at
GPR65
0.235
0.284
0.189
0.023


40994_at
GRK5
0.485
0.270
0.055
0.024


33932_at
GSPT1
0.207
0.260
0.018
0.055


869_at
GTF2A2
0.326
0.321
0.048
0.022


35821_at
HDAC3
0.148
0.026
0.083
0.088


40121_at
HIP2
0.017
0.616
0.459
0.466


32980_f_at
HIST1H2BC
0.540
0.558
0.149
0.009


31522_f_at
HIST1H2BF
0.224
0.641
0.273
0.047


31524_f_at
HIST1H2BI
0.410
0.412
0.227
0.046


35576_f_at
HIST1H2BL
0.500
0.525
0.208
0.038


31528_f_at
HIST1H2BM
0.527
0.367
0.142
0.043


36347_f_at
HIST1H2BN
0.570
0.600
0.229
0.031


40964_at
HK2
0.044
0.016
0.048
0.011


37604_at
HNMT
0.072
0.475
0.223
0.021


38292_at
HOMER2
0.138
0.083
0.008
0.014


38233_at
HOMER3
0.146
0.003
0.037
0.074


36030_at
HOM-TES-
0.069
0.026
0.068
0.071



103


35702_at
HSD11B1
0.395
0.028
0.066
0.046


32316_s_at
HSP90AA1
0.108
0.105
0.005
0.016


1161_at
HSP90AB1
0.088
0.083
0.010
0.198


33984_at
HSP90AB1
0.209
0.118
0.029
0.015


31692_at
HSPA1A
0.388
0.456
0.049
0.192


35965_at
HSPA6
0.220
0.002
0.097
0.023


117_at
HSPA6 ///
0.438
0.053
0.005
0.091



LOC652878


40637_at
HSPA8
0.448
0.606
0.002
0.306


36785_at
HSPB1
0.330
0.070
0.025
0.011


41259_at
HSPC111
0.148
0.057
0.044
0.006


37720_at
HSPD1
0.170
0.043
0.085
0.008


39353_at
HSPE1
0.288
0.399
0.010
0.067


719_g_at
HTRA1
0.168
0.004
0.018
0.009


718_at
HTRA1
0.183
0.015
0.000
0.020


36564_at
IBRDC3
0.060
0.043
0.015
0.038


38454_g_at
ICAM2
0.403
0.517
0.099
0.022


37043_at
ID3
0.050
0.099
0.110
0.020


36927_at
IFI44L
0.354
0.162
0.117
0.026


676_g_at
IFITM1 ///
0.490
0.418
0.037
0.009



IFITM3 ///



IFITM2


41745_at
IFITM3
0.394
0.466
0.088
0.014


1038_s_at
IFNGR1
0.017
0.050
0.067
0.032


34946_at
IGSF6
0.315
0.358
0.040
0.119


1061_at
IL10RA
0.030
0.076
0.119
0.012


359_at
IL13RA1
0.204
0.088
0.235
0.025


1165_at
IL18
0.549
0.016
0.182
0.024


39402_at
IL1B
0.236
0.614
0.323
0.044


1368_at
IL1R1
0.108
0.002
0.000
0.000


998_s_at
IL1R2
0.231
0.005
0.020
0.027


37603_at
IL1RN
0.046
0.002
0.067
0.044


37844_at
IL27RA
0.383
0.061
0.015
0.001


37843_i_at
IL27RA
0.488
0.090
0.021
0.025


1185_at
IL3RA
0.017
0.001
0.064
0.092


1369_s_at
IL8
0.529
0.536
0.367
0.049


37276_at
IQGAP2
0.217
0.060
0.285
0.021


37625_at
IRF4
0.007
0.269
0.014
0.085


35731_at
ITGA4
0.360
0.093
0.048
0.065


38533_s_at
ITGAM
0.187
0.015
0.073
0.022


36709_at
ITGAX
0.176
0.234
0.086
0.035


41300_s_at
ITM2B
0.571
0.110
0.016
0.006


32778_at
ITPR1
0.210
0.077
0.006
0.018


755_at
ITPR1
0.316
0.017
0.055
0.016


33178_at
JAG1
0.003
0.439
0.361
0.312


35414_s_at
JAG1
0.003
0.017
0.090
0.001


34786_at
JMJD1A
0.043
0.497
0.348
0.376


38972_at
KCTD12
0.033
0.026
0.119
0.017


39783_at
KIAA0100
0.189
0.167
0.068
0.001


35744_at
KIAA0141
0.404
0.598
0.012
0.496


31863_at
KIAA0179
0.295
0.151
0.006
0.002


38735_at
KIAA0513
0.019
0.370
0.114
0.268


35252_at
KIAA0528
0.488
0.456
0.447
0.022


39559_at
KMO
0.314
0.218
0.031
0.131


180_at
LENG4
0.521
0.346
0.269
0.048


37542_at
LHFPL2
0.272
0.015
0.035
0.005


38618_at
LIMK2 ///
0.326
0.283
0.164
0.015



PPP1R14BP1


39232_at
LIMS1
0.559
0.198
0.023
0.055


38745_at
LIPA
0.522
0.012
0.018
0.061


31936_s_at
LKAP
0.017
0.189
0.361
0.365


32195_at
LOC339287
0.284
0.048
0.197
0.521


39879_s_at
LOC388397
0.481
0.400
0.275
0.027


33866_at
LOC643634
0.496
0.370
0.015
0.041


39937_at
LOC653518
0.303
0.626
0.349
0.036


38775_at
LRP1
0.514
0.184
0.020
0.117


41320_s_at
LRRFIP1
0.535
0.270
0.004
0.039


36493_at
LSP1 ///
0.530
0.461
0.129
0.035



LOC649377


38081_at
LTA4H
0.294
0.042
0.032
0.002


35869_at
LY86
0.467
0.169
0.175
0.020


41505_r_at
MAF
0.020
0.200
0.158
0.413


36711_at
MAFF
0.039
0.015
0.015
0.022


37472_at
MANBA
0.080
0.002
0.037
0.052


41772_at
MAOA
0.005
0.002
0.010
0.001


41771_g_at
MAOA
0.007
0.000
0.006
0.000


41770_at
MAOA
0.004
0.000
0.004
0.001


976_s_at
MAPK1
0.111
0.332
0.023
0.088


33223_at
MAST3
0.093
0.334
0.035
0.490


32571_at
MAT2A
0.078
0.091
0.097
0.024


34386_at
MBD4
0.039
0.326
0.534
0.088


36608_at
MDH1
0.528
0.004
0.001
0.002


35629_at
MKL1
0.147
0.008
0.291
0.015


32207_at
MPP1
0.131
0.018
0.023
0.073


36908_at
MRC1 ///
0.003
0.002
0.001
0.056



MRC1L1


39812_at
MRPL12
0.534
0.019
0.212
0.043


35992_at
MSC
0.171
0.102
0.079
0.021


674_g_at
MTHFD1
0.348
0.534
0.111
0.023


40074_at
MTHFD2
0.534
0.226
0.023
0.008


879_at
MX2
0.465
0.050
0.078
0.041


1973_s_at
MYC
0.160
0.038
0.040
0.047


38369_at
MYD88
0.099
0.043
0.191
0.535


32069_at
N4BP1
0.104
0.305
0.023
0.040


41249_at
NADK
0.046
0.118
0.166
0.168


36607_at
NAGA
0.305
0.234
0.131
0.015


38187_at
NAT1
0.525
0.203
0.010
0.319


34279_at
NBPF14 ///
0.359
0.632
0.288
0.044



NBPF1 ///



KIAA1245 ///



NBPF11 ///



NBPF15 ///



NBPF20 ///



NBPF9 ///



NBPF10 ///



NBPF12 ///



NBPF8 ///



NBPF16


39174_at
NCOA4
0.216
0.187
0.099
0.011


39358_at
NCOR2
0.543
0.051
0.291
0.034


38257_at
NDUFS8
0.321
0.308
0.260
0.046


34893_at
NDUFV2
0.030
0.063
0.157
0.170


37544_at
NFIL3
0.357
0.037
0.037
0.029


35366_at
NID1
0.414
0.160
0.170
0.015


39073_at
NME1
0.278
0.111
0.020
0.020


1985_s_at
NME1
0.209
0.021
0.032
0.016


1979_s_at
NOL1
0.560
0.025
0.044
0.007


32719_at
NRG1
0.388
0.461
0.029
0.047


40088_at
NRIP1
0.158
0.089
0.023
0.047


32644_at
NUP188
0.175
0.099
0.235
0.014


40768_s_at
NUP214
0.003
0.148
0.003
0.004


34491_at
OASL
0.405
0.416
0.313
0.016


36134_at
OLFM1
0.121
0.051
0.023
0.022


38855_s_at
OLFM1
0.272
0.276
0.040
0.017


36007_at
OLFML2B
0.197
0.004
0.099
0.024


36689_at
OSBPL1A
0.297
0.540
0.106
0.031


35674_at
PADI2
0.556
0.073
0.018
0.012


39056_at
PAICS
0.537
0.094
0.184
0.030


1560_g_at
PAK2
0.455
0.025
0.182
0.093


41191_at
PALLD
0.017
0.017
0.012
0.006


38465_at
PAM
0.101
0.024
0.032
0.005


34352_at
PCBD1
0.217
0.063
0.080
0.008


37188_at
PCK2
0.107
0.030
0.073
0.201


1884_s_at
PCNA
0.031
0.614
0.335
0.552


32212_at
PDCD8
0.540
0.088
0.118
0.034


746_at
PDE3B
0.431
0.365
0.202
0.028


36092_at
PDE4DIP
0.223
0.450
0.247
0.036


35714_at
PDXK
0.304
0.000
0.144
0.003


37397_at
PECAM1
0.351
0.036
0.143
0.106


32455_s_at
PELP1
0.335
0.025
0.196
0.326


39175_at
PFKP
0.055
0.019
0.014
0.002


36502_at
PFTK1
0.350
0.601
0.132
0.022


32739_at
PGM3
0.282
0.507
0.040
0.214


33333_at
PIP3-E
0.146
0.239
0.232
0.009


34839_at
PITRM1
0.126
0.058
0.023
0.002


33707_at
PLA2G4C
0.341
0.305
0.308
0.047


36943_r_at
PLAGL1
0.175
0.590
0.501
0.035


37310_at
PLAU
0.044
0.236
0.269
0.394


32775_r_at
PLSCR1
0.571
0.167
0.110
0.014


32193_at
PLXNC1
0.169
0.024
0.088
0.012


38653_at
PMP22
0.384
0.012
0.009
0.008


1696_at
POLB
0.201
0.015
0.073
0.012


858_at
POR
0.346
0.013
0.303
0.277


37104_at
PPARG
0.014
0.159
0.123
0.032


41709_at
PPFIBP2
0.176
0.025
0.123
0.033


37384_at
PPM1F
0.303
0.329
0.133
0.022


33358_at
PPM1H
0.288
0.038
0.095
0.017


41540_at
PPP1R7
0.440
0.143
0.052
0.001


1336_s_at
PRKCB1
0.276
0.097
0.088
0.005


1217_g_at
PRKCB1
0.267
0.020
0.353
0.036


160029_at
PRKCB1
0.378
0.155
0.133
0.011


37969_at
PTGS1
0.543
0.323
0.267
0.024


33804_at
PTK2B
0.258
0.015
0.102
0.022


35342_at
PTPLB
0.408
0.493
0.241
0.008


36808_at
PTPN22
0.172
0.080
0.048
0.012


39672_at
PTPN7
0.398
0.276
0.068
0.043


40519_at
PTPRC
0.201
0.231
0.119
0.038


32916_at
PTPRE
0.030
0.002
0.000
0.000


32199_at
PTPRO
0.286
0.276
0.186
0.046


1190_at
PTPRO
0.336
0.200
0.095
0.026


35966_at
QPCT
0.017
0.007
0.006
0.002


37978_at
QPRT
0.520
0.113
0.079
0.003


1257_s_at
QSCN6
0.072
0.001
0.005
0.002


809_at
RAB27A
0.319
0.256
0.086
0.012


1202_g_at
RAB33A
0.098
0.043
0.146
0.024


35340_at
RAB8A
0.377
0.004
0.014
0.018


35339_at
RAB8A
0.351
0.026
0.023
0.024


35289_at
RABGAP1
0.219
0.019
0.055
0.003


34445_at
RABGAP1L
0.205
0.160
0.113
0.031


37703_at
RABGGTB
0.354
0.251
0.095
0.019


1874_at
RAD23B
0.523
0.219
0.212
0.048


32593_at
RAFTLIN
0.275
0.050
0.089
0.065


35668_at
RAMP1
0.225
0.269
0.075
0.007


41342_at
RANBP1
0.322
0.615
0.000
0.437


34745_at
RAPGEF2
0.135
0.028
0.090
0.071


32026_s_at
RAPGEF2
0.101
0.024
0.108
0.035


1675_at
RASA1
0.048
0.167
0.267
0.318


36935_at
RASA1
0.044
0.099
0.191
0.404


37598_at
RASSF2
0.030
0.352
0.562
0.352


34187_at
RBMS2
0.340
0.444
0.469
0.027


40818_at
RBPSUH
0.286
0.015
0.068
0.001


35193_at
RCBTB2
0.110
0.025
0.149
0.063


41172_at
RDH11
0.026
0.271
0.102
0.510


38908_s_at
REV3L
0.153
0.028
0.025
0.024


37701_at
RGS2
0.014
0.030
0.109
0.034


36550_at
RIN2
0.207
0.003
0.078
0.039


32664_at
RNASE4
0.352
0.151
0.035
0.015


35777_at
RNF4
0.422
0.135
0.214
0.007


36187_at
RNH1
0.104
0.059
0.034
0.001


41296_s_at
RPS24
0.541
0.172
0.060
0.025


33325_at
RPS6KA2
0.125
0.074
0.018
0.230


32544_s_at
RSU1
0.318
0.619
0.169
0.028


106_at
RUNX3
0.341
0.118
0.066
0.002


37732_at
RYBP
0.212
0.190
0.012
0.011


539_at
RYK
0.311
0.024
0.032
0.057


41096_at
S100A8
0.364
0.071
0.014
0.040


41471_at
S100A9
0.510
0.390
0.030
0.025


34304_s_at
SAT
0.148
0.106
0.139
0.040


41200_at
SCARB1
0.206
0.088
0.014
0.012


36192_at
SCRN1
0.453
0.131
0.036
0.044


39757_at
SDC2
0.372
0.025
0.070
0.008


40390_at
SDS
0.056
0.098
0.182
0.047


41597_s_at
SEC22B
0.178
0.294
0.198
0.014


245_at
SELL
0.534
0.478
0.103
0.039


34363_at
SEPP1
0.326
0.020
0.021
0.050


37185_at
SERPINB2
0.496
0.197
0.086
0.036


34438_at
SERPINB9
0.102
0.157
0.043
0.482


40856_at
SERPINF1
0.195
0.022
0.080
0.014


40638_at
SFPQ
0.221
0.368
0.048
0.057


40457_at
SFRS3
0.517
0.563
0.021
0.256


973_at
SGK
0.152
0.013
0.003
0.023


38968_at
SH3BP5
0.135
0.173
0.055
0.040


1427_g_at
SLA
0.043
0.016
0.002
0.005


1426_at
SLA
0.007
0.002
0.001
0.001


1138_at
SLC20A1
0.028
0.000
0.001
0.036


38122_at
SLC23A2
0.095
0.197
0.066
0.015


37740_r_at
SLC25A5
0.102
0.414
0.047
0.357


36979_at
SLC2A3
0.022
0.221
0.342
0.344


34749_at
SLC31A2
0.031
0.153
0.287
0.355


37895_at
SLC35A1
0.169
0.030
0.070
0.017


1798_at
SLC39A6
0.431
0.401
0.036
0.147


33731_at
SLC7A7
0.111
0.035
0.014
0.037


40810_at
SMARCC1
0.204
0.529
0.128
0.032


39950_at
SMPDL3A
0.017
0.453
0.215
0.029


33354_at
SMURF2
0.143
0.522
0.573
0.035


40842_at
SNRPA
0.501
0.170
0.237
0.007


40605_at
SNX4
0.258
0.586
0.023
0.316


41592_at
SOCS1
0.010
0.002
0.005
0.020


32140_at
SORL1
0.385
0.023
0.011
0.003


41573_at
SP3
0.140
0.236
0.159
0.015


671_at
SPARC
0.565
0.552
0.122
0.006


1685_at
SPHAR
0.358
0.048
0.513
0.446


33448_at
SPINT1
0.446
0.030
0.012
0.006


34348_at
SPINT2
0.043
0.002
0.000
0.000


36798_g_at
SPN
0.061
0.002
0.054
0.012


34342_s_at
SPP1
0.557
0.513
0.201
0.020


2092_s_at
SPP1
0.571
0.559
0.166
0.023


32135_at
SREBF1
0.076
0.239
0.124
0.039


40109_at
SRF
0.175
0.473
0.183
0.016


35231_at
SRP19
0.043
0.334
0.126
0.062


1640_at
ST13
0.311
0.160
0.014
0.023


39298_at
ST3GAL6
0.000
0.002
0.006
0.020


38487_at
STAB1
0.483
0.224
0.014
0.068


38525_at
STAM2
0.211
0.163
0.031
0.350


41295_at
STARD7
0.297
0.013
0.018
0.012


AFFX-
STAT1
0.275
0.021
0.195
0.104


HUMISGF3A/


M


97935_3_at


33339_g_at
STAT1
0.465
0.048
0.095
0.113


39708_at
STAT3
0.291
0.637
0.551
0.022


40473_at
STK24
0.022
0.170
0.368
0.240


32182_at
STK38L
0.160
0.048
0.204
0.348


41663_at
STX6
0.030
0.002
0.025
0.071


41034_s_at
SULT2B1
0.456
0.332
0.492
0.023


31869_at
SWAP70
0.018
0.088
0.133
0.024


34885_at
SYNGR2
0.017
0.079
0.031
0.002


36532_at
SYNJ2
0.020
0.398
0.036
0.119


34966_at
T
0.465
0.433
0.021
0.173


39416_at
TAX1BP3
0.540
0.361
0.046
0.012


38317_at
TCEAL1
0.504
0.612
0.243
0.020


40865_at
TDG
0.352
0.453
0.229
0.037


160025_at
TGFA
0.046
0.051
0.167
0.266


38805_at
TGIF
0.072
0.016
0.032
0.216


38404_at
TGM2
0.041
0.000
0.014
0.010


32829_at
TIMM17A
0.054
0.015
0.014
0.079


39411_at
TIPARP
0.501
0.318
0.186
0.048


38364_at
TLE4
0.017
0.335
0.382
0.150


40310_at
TLR2
0.413
0.110
0.139
0.029


34473_at
TLR5
0.170
0.168
0.070
0.008


32116_at
TMC6
0.208
0.019
0.099
0.048


36950_at
TMED9
0.194
0.044
0.490
0.044


39424_at
TNFRSF14
0.146
0.017
0.015
0.075


1583_at
TNFRSF1B
0.014
0.015
0.023
0.020


33813_at
TNFRSF1B
0.043
0.068
0.040
0.059


1715_at
TNFSF10
0.245
0.061
0.099
0.028


1030_s_at
TOP1
0.038
0.325
0.021
0.070


31680_at
TOP1P2
0.033
0.298
0.132
0.039


36139_at
TRAF3IP2
0.574
0.130
0.429
0.016


35238_at
TRAF5
0.453
0.175
0.501
0.050


1468_at
TRAP1
0.427
0.070
0.265
0.016


41468_at
TRGC2 ///
0.021
0.198
0.501
0.275



TRGV2 ///



TRGV9 ///



TARP ///



LOC642083


36825_at
TRIM22
0.466
0.129
0.139
0.014


39032_at
TSC22D1
0.153
0.418
0.259
0.049


36629_at
TSC22D3
0.139
0.192
0.146
0.030


32730_at
TSPYL5
0.135
0.072
0.025
0.060


34825_at
TTRAP
0.168
0.403
0.166
0.022


38350_f_at
TUBA2
0.148
0.173
0.018
0.003


40567_at
TUBA3
0.160
0.199
0.018
0.001


151_s_at
TUBB
0.297
0.530
0.236
0.007


429_f_at
TUBB2A ///
0.284
0.073
0.067
0.007



TUBB4 ///



TUBB2B


33678_i_at
TUBB2C
0.187
0.037
0.036
0.002


33679_f_at
TUBB2C
0.153
0.029
0.061
0.005


471_f_at
TUBB3
0.228
0.317
0.029
0.014


38089_at
UBAP2L
0.174
0.058
0.041
0.003


39040_at
UBE2J1
0.155
0.004
0.042
0.073


223_at
UBE2L3
0.275
0.091
0.008
0.029


40505_at
UBE2L6
0.322
0.439
0.085
0.022


40839_at
UBL3
0.022
0.487
0.216
0.007


39442_at
UNC50
0.022
0.453
0.409
0.571


283_at
UQCRC1
0.213
0.043
0.086
0.006


41859_at
UST
0.504
0.036
0.295
0.154


34481_at
VAV1
0.007
0.406
0.095
0.328


36601_at
VCL
0.360
0.248
0.197
0.018


31608_g_at
VDAC1
0.423
0.086
0.096
0.014


40198_at
VDAC1
0.358
0.092
0.044
0.004


1388_g_at
VDR
0.054
0.030
0.027
0.005


1410_at
VDR
0.195
0.050
0.015
0.023


34498_at
VNN2
0.343
0.028
0.021
0.023


1669_at
WNT5A
0.183
0.043
0.015
0.007


31862_at
WNT5A
0.078
0.086
0.043
0.009


40167_s_at
WSB2
0.549
0.276
0.024
0.126


783_at
WWP1
0.077
0.015
0.014
0.020


784_g_at
WWP1
0.137
0.044
0.035
0.057


39755_at
XBP1
0.017
0.002
0.387
0.376


39756_g_at
XBP1
0.038
0.073
0.222
0.198


41669_at
ZCCHC11
0.250
0.419
0.168
0.020


35681_r_at
ZFHX1B
0.033
0.433
0.557
0.265


32587_at
ZFP36L2
0.137
0.088
0.099
0.023


32588_s_at
ZFP36L2
0.174
0.170
0.105
0.035


37254_at
ZNF133
0.195
0.016
0.162
0.029


35368_at
ZNF207
0.017
0.058
0.015
0.014


32034_at
ZNF217
0.160
0.374
0.091
0.024


31633_g_at
ZNF259
0.177
0.517
0.151
0.031

















A
B
G
H
I
J



Name
Gene Symbol
IM_IL13_2h_logFC
IM_IL13_6h_logFC
IM_IL13_12h_logFC
IM_IL13_24h_logFC







1179_at

0.330
0.185
0.744
0.153



32218_at

−0.712
−0.579
−0.422
−0.420



32247_at

−0.082
−0.393
−0.109
−0.867



1150_at

1.264
1.696
1.916
1.765



1284_at

1.281
1.269
1.186
1.383



40888_f_at

0.674
−0.160
−0.413
−0.737



953_g_at

0.684
1.174
1.569
1.285



34145_at

−0.747
−0.513
−0.560
−0.630



1173_g_at

−0.334
−0.730
−0.990
−1.011



956_at

0.848
0.971
0.704
0.800



1148_s_at

0.473
−0.445
−1.876
−2.336



38033_at
38970
−0.538
−0.668
−0.705
−1.283



33173_g_at
38971
0.409
0.917
0.940
1.006



160044_g_at
ACO2
0.164
0.469
0.577
1.047



40082_at
ACSL1
0.124
0.096
−0.181
−0.689



33881_at
ACSL3
−0.132
0.394
0.752
0.337



39330_s_at
ACTN1
0.555
0.572
0.471
0.595



41654_at
ADA
−0.392
−0.787
−0.742
−1.081



907_at
ADA
−0.337
−0.645
−0.628
−1.078



35479_at
ADAM28
−0.713
−1.571
−2.772
−4.024



34378_at
ADFP
−0.809
−0.455
−0.420
−0.891



34777_at
ADM
−0.482
−0.452
−0.943
−1.135



40821_at
AHCY
0.133
0.636
0.761
0.952



40516_at
AHR
0.270
1.540
1.493
0.751



40789_at
AK2
0.944
0.879
1.370
1.021



38780_at
AKR1A1
−0.025
−0.266
−0.646
−0.608



36589_at
AKR1B1
−0.150
−0.276
−0.637
−0.897



37015_at
ALDH1A1
−0.736
−0.595
−3.571
−3.502



38315_at
ALDH1A2
1.394
1.824
0.957
0.910



40685_at
ALDH3B1
−0.752
−0.800
−0.362
−0.112



37330_at
ALDH4A1
−0.047
0.502
0.374
0.605



34636_at
ALOX15
1.223
4.366
5.601
6.461



307_at
ALOX5
−0.279
−1.424
−1.577
−1.360



37099_at
ALOX5AP
−0.091
−0.510
−0.747
−1.465



678_at
ALPPL2
−0.021
−0.312
0.235
−0.600



38417_at
AMPD2
0.654
0.978
0.477
0.787



39315_at
ANGPT1
0.025
−1.006
−0.984
−0.581



36637_at
ANXA11
0.006
0.484
0.501
0.677



37647_at
AOAH
−0.362
−0.465
−1.082
−1.093



41549_s_at
AP1S2
−0.609
−0.865
−0.448
−0.737



37669_s_at
ATP1B1
0.335
2.133
1.424
1.500



37992_s_at
ATP5D
0.299
0.059
0.094
0.593



34811_at
ATP5G3
−0.218
0.372
0.713
0.455



38751_i_at
ATP5I
0.177
0.203
0.155
0.651



36142_at
ATXN1
−0.599
1.519
0.866
0.896



39942_at
BATF
2.915
0.999
0.116
0.205



37971_at
BAZ1A
0.238
0.485
0.600
0.615



36812_at
BCAR3
−1.596
2.185
1.697
1.541



32828_at
BCKDK
0.556
0.835
0.621
0.771



41356_at
BCL11A
1.075
0.868
0.738
0.776



2002_s_at
BCL2A1
0.669
−0.209
−0.785
−1.599



40091_at
BCL6
0.453
1.286
1.434
1.019



32842_at
BCL7A
1.382
1.094
0.963
1.509



40879_at
BICD2
−0.845
−0.120
0.050
0.078



32726_g_at
BID
0.976
0.823
0.706
0.732



32618_at
BLVRA
0.762
0.976
0.908
1.011



41732_at
BOLA2
0.426
0.743
0.483
0.810



35615_at
BOP1 ///
0.325
0.819
0.241
0.284




LOC653119



33759_at
BPGM
0.058
0.180
0.911
0.208



41639_at
BRRN1
1.353
1.213
1.994
1.980



32675_at
BST1
−0.330
−1.067
−1.453
−1.577



38760_f_at
BTN3A2
−0.654
0.139
−0.131
−0.612



41415_at
BYSL
0.727
0.545
0.839
0.838



39172_at
C10orf22
0.354
0.723
0.939
0.841



38652_at
C10orf26
−0.672
−0.614
−0.851
−0.612



38411_at
C11orf32
−0.498
−1.713
−1.593
−1.499



41437_at
C14orf109
−1.159
−0.493
−0.392
−0.787



38969_at
C19orf10
0.464
0.764
0.191
−0.075



41409_at
C1orf38
−0.934
−0.208
0.070
−0.284



37668_at
C1QBP
0.387
0.315
0.671
0.698



33374_at
C2
0.223
0.245
−0.009
0.724



32107_at
C21orf25
−0.581
0.645
0.885
0.825



31927_s_at
C21orf33
−0.329
0.675
0.282
0.982



32068_at
C3AR1
0.220
−1.402
−1.709
−1.494



40175_at
C3orf40
0.465
0.240
0.248
0.703



39710_at
C5orf13
−0.020
−1.169
−0.644
−0.326



41696_at
C7orf24
0.053
0.561
0.476
0.970



34995_at
CALCRL
0.171
1.379
1.679
1.594



38716_at
CAMKK2
−0.720
−0.004
−0.150
−0.095



574_s_at
CASP1
−1.229
−1.238
−1.299
−1.614



39320_at
CASP1
−1.445
−1.823
−1.316
−1.662



37162_at
CCDC6
−0.742
0.375
0.546
0.650



34183_at
CCDC69
−0.463
−0.636
−0.199
−0.044



37454_at
CCL13
1.382
2.236
2.754
5.200



1183_at
CCL17
3.438
4.691
5.206
4.757



32128_at
CCL18
2.988
4.707
4.269
5.530



875_g_at
CCL2
0.152
−0.716
−1.267
−1.761



34375_at
CCL2
0.625
−1.051
−0.697
−1.961



34041_at
CCL22
0.193
0.617
1.194
1.595



36445_at
CCL23
1.123
2.773
3.122
2.824



36444_s_at
CCL23
2.432
3.866
4.520
5.405



1924_at
CCNH
1.847
0.870
0.959
0.954



39936_at
CCR2 ///
−1.127
−0.186
−0.589
−0.730




LOC653518



35759_at
CCT2
0.424
0.639
0.579
0.376



39767_at
CCT8
0.140
0.231
0.277
0.601



36661_s_at
CD14
−0.221
−2.935
−3.403
−2.754



31438_s_at
CD163
−0.386
−2.323
−2.986
−2.200



34926_at
CD1A
0.635
1.975
2.817
3.710



34927_at
CD1B
0.772
4.155
5.859
6.060



37835_at
CD1C
0.269
2.707
3.372
3.855



37861_at
CD1E
0.890
4.459
5.731
5.786



34699_at
CD2AP
−0.681
−1.058
−0.900
−0.745



34760_at
CD302
−0.440
−1.068
−0.778
−0.745



31870_at
CD37
−0.212
−0.595
−0.834
−1.156



31472_s_at
CD44
0.544
1.020
0.815
0.538



1125_s_at
CD44
0.820
1.062
0.338
0.435



1126_s_at
CD44
0.503
0.918
0.831
0.439



38006_at
CD48
−1.441
−0.912
−1.063
−1.034



39351_at
CD59
0.898
−0.221
−0.645
−1.279



37536_at
CD83
2.381
1.482
1.313
1.428



505_at
CDC37
0.390
0.669
0.287
0.605



2031_s_at
CDKN1A
2.272
1.871
2.001
1.565



36053_at
CDKN2C
0.073
−0.606
−0.325
−0.311



36190_at
CDR2
1.418
0.780
1.054
0.749



1052_s_at
CEBPD
−2.336
−1.335
−1.503
−1.185



32589_at
CHAF1A
−0.231
−0.664
−0.622
−0.397



33569_at
CLEC10A
0.325
1.011
1.408
1.382



40698_at
CLEC2B
−0.986
−0.982
−0.898
−0.768



40013_at
CLIC2
0.419
1.619
2.868
1.913



39960_at
COQ2
−0.122
−0.634
−0.866
−0.316



40427_at
COX17
0.664
0.400
0.544
0.648



39921_at
COX5B
0.030
0.089
0.601
0.692



36687_at
COX7B
−0.045
0.301
0.696
0.606



39692_at
CREB3L2
−0.375
0.105
−0.948
−0.862



39438_at
CREBL2
0.508
0.805
1.018
0.341



33232_at
CRIP1
0.083
0.331
1.313
0.817



40119_at
CRTAP
−0.290
−0.473
−0.683
−0.692



34223_at
CSF3R
−0.186
−0.719
−1.284
−1.105



596_s_at
CSF3R
−0.128
−0.541
−1.292
−1.099



410_s_at
CSNK2B
0.219
0.336
0.352
0.649



38112_g_at
CSPG2
0.155
−1.752
−2.854
−2.573



31682_s_at
CSPG2
−0.123
−0.692
−1.071
−2.533



39581_at
CSTA
−0.308
−0.868
−1.306
−1.347



35331_at
CTNNAL1
3.799
4.665
5.256
4.839



40444_s_at
CTNND1
−0.863
−0.750
−0.632
−0.376



36566_at
CTNS
1.541
0.757
0.661
0.791



133_at
CTSC
1.473
2.104
2.315
2.193



239_at
CTSD
−0.105
−0.419
−0.985
−1.335



38466_at
CTSK
−0.533
−1.392
−2.422
−3.439



41239_r_at
CTSS
−1.504
−0.826
−0.400
−1.226



31823_at
CUTL1
−0.192
−0.528
−0.111
−0.606



40646_at
CX3CR1
−1.518
−2.578
−1.904
−2.433



37187_at
CXCL2
0.464
−2.162
−2.220
−2.546



649_s_at
CXCR4
−1.750
−0.713
−1.020
−1.464



40296_at
CXorf9
−0.234
0.604
0.609
0.863



999_at
CYP27A1
−0.266
−0.867
−1.556
−2.374



33389_at
CYP51A1
0.252
1.116
0.779
0.363



33753_at
DAAM1
0.962
0.337
0.844
1.187



1243_at
DDB2
0.513
0.584
0.607
0.697



38104_at
DECR1
−0.199
0.179
0.583
0.612



41734_at
DENND3
−0.529
−0.726
−1.029
−0.816



41637_at
DEXI
−0.294
−0.040
−0.647
−0.819



41872_at
DFNA5
−1.073
−1.812
−1.573
−2.516



39044_s_at
DGKD
−0.482
−0.439
−0.794
−0.318



39814_s_at
DHRS7
−0.376
−0.860
−0.644
−0.753



41402_at
DKFZP564O0823
0.746
1.328
1.191
2.189



41716_at
DMXL2
−1.261
−0.649
−1.201
−1.078



35799_at
DNAJB9
0.967
−0.480
−0.328
−0.141



40607_at
DPYSL2
−0.289
0.623
0.612
0.608



32168_s_at
DSCR1
1.039
0.312
0.722
0.566



38555_at
DUSP10
−3.037
−1.626
−1.805
−1.845



41193_at
DUSP6
−0.313
−1.607
−1.978
−1.982



36921_at
DYNLT3
−0.662
−0.799
−0.571
−0.510



37016_at
ECHS1
0.017
0.259
0.481
0.667



40886_at
EEF1A1 ///
0.332
−0.337
−0.135
−0.704




APOLD1 ///




LOC440595



37863_at
EGR2
1.209
2.427
3.073
2.380



33351_at
EIF1B
0.797
0.138
0.740
0.348



34302_at
EIF3S4
0.395
0.400
0.350
0.706



35323_at
EIF3S9
0.478
0.341
0.127
0.585



37527_at
ELK3
−0.868
0.074
−0.345
−0.349



40606_at
ELL2
1.381
−0.560
−0.246
−0.845



39542_at
ENC1
0.246
−0.491
−0.773
−0.686



32562_at
ENG
−0.712
−0.356
−0.815
−0.601



41123_s_at
ENPP2
1.658
2.191
1.211
0.283



41124_r_at
ENPP2
1.207
1.512
1.054
0.167



32585_at
EPB41L2
−0.147
1.867
1.538
1.311



902_at
EPHB2
−0.867
−1.232
−1.126
−0.813



41678_at
EPHB2
−0.292
−1.154
−1.140
−0.937



37731_at
EPS15
−0.087
0.289
0.942
0.901



38158_at
ESPL1
2.106
0.930
1.099
1.391



38739_at
ETS2
−0.185
0.141
−0.658
−1.145



32259_at
EZH1
−0.309
−0.174
−0.797
−0.291



40143_at
FAM53B
−1.655
−0.635
−0.292
−0.050



32209_at
FAM89B
0.066
−0.018
−0.005
0.711



38318_at
FAM8A1
−1.381
−0.323
−0.615
−0.617



36495_at
FBP1
−0.445
0.130
0.346
0.961



34959_at
FCER2
2.017
4.040
5.794
5.810



34960_g_at
FCER2
2.075
3.613
5.248
5.484



37688_f_at
FCGR2A
0.130
−0.834
−1.946
−2.079



37689_s_at
FCGR2A
0.556
0.010
−2.088
−2.374



37687_i_at
FCGR2B
−0.209
−0.150
−0.381
−0.900



37200_at
FCGR3A
−0.683
−1.259
−2.101
−1.990



31499_s_at
FCGR3B
−0.638
−1.186
−1.203
−1.449



39593_at
FGL2
0.418
0.670
0.548
0.720



39591_s_at
FGL2
0.455
0.853
0.866
1.011



32546_at
FH
0.025
0.475
0.650
0.697



880_at
FKBP1A
0.660
1.194
1.235
1.289



41425_at
FLI1
−1.806
−1.337
−1.009
−0.697



41814_at
FUCA1
−0.171
−2.498
−2.584
−1.628



35338_at
FURIN
0.381
0.362
0.826
1.135



34716_at
FUSIP1 ///
0.660
0.177
0.218
0.228




LOC642558



41819_at
FYB
−1.508
−1.435
−0.997
−1.086



38326_at
G0S2
3.184
5.128
3.090
2.013



33936_at
GALC
−0.603
−0.732
−0.567
−0.570



1598_g_at
GAS6
0.806
1.663
1.794
1.750



1597_at
GAS6
2.378
2.936
2.484
2.239



37658_at
GAS6
0.545
1.637
1.846
1.881



33387_at
GAS7
−1.674
−1.296
−1.102
−1.086



36596_r_at
GATM
−0.647
−0.946
−0.958
−1.264



32643_at
GBE1
−0.378
0.006
−0.143
−0.633



32700_at
GBP2
−0.007
−0.763
−0.687
−0.528



37944_at
GCH1
0.323
0.307
−1.337
−1.692



38237_at
GGTLA1
0.278
0.975
1.516
1.063



34311_at
GLRX
−2.011
−0.700
−0.519
−0.724



40522_at
GLUL
−1.806
−1.220
−1.022
−0.800



31812_at
GMPR
0.202
−0.800
−0.637
−0.166



35272_at
GNG5
−0.176
0.050
0.640
0.731



38379_at
GPNMB
−0.811
−1.269
−2.347
−2.005



31700_at
GPR35
0.591
0.993
0.674
0.537



34930_at
GPR65
−1.828
−1.348
−0.609
−0.932



40994_at
GRK5
−0.077
−0.501
−0.833
−0.857



33932_at
GSPT1
0.399
0.393
0.673
0.515



869_at
GTF2A2
0.244
0.392
0.786
0.949



35821_at
HDAC3
−0.501
0.598
0.669
0.408



40121_at
HIP2
−1.165
0.160
0.192
0.103



32980_f_at
HIST1H2BC
−0.032
−0.121
−0.548
−0.744



31522_f_at
HIST1H2BF
−0.419
−0.034
−0.420
−0.988



31524_f_at
HIST1H2BI
−0.197
−0.376
−0.660
−1.013



35576_f_at
HIST1H2BL
−0.097
−0.280
−0.637
−1.082



31528_f_at
HIST1H2BM
−0.051
0.450
−0.628
−0.879



36347_f_at
HIST1H2BN
0.007
−0.101
−0.732
−0.987



40964_at
HK2
−2.036
−1.109
−1.243
−1.587



37604_at
HNMT
−0.891
−0.392
−0.427
−0.762



38292_at
HOMER2
0.844
0.747
2.044
2.571



38233_at
HOMER3
−1.160
−1.518
−1.266
−0.974



36030_at
HOM-TES-
−0.901
−0.634
−0.618
−0.458




103



35702_at
HSD11B1
0.581
2.941
3.395
2.768



32316_s_at
HSP90AA1
0.648
0.517
0.768
0.321



1161_at
HSP90AB1
0.706
0.822
0.824
0.233



33984_at
HSP90AB1
0.554
0.465
0.619
0.439



31692_at
HSPA1A
0.357
0.251
0.774
0.250



35965_at
HSPA6
−0.397
−1.058
−1.622
−1.293



117_at
HSPA6 ///
−0.220
−0.883
−1.751
−1.240




LOC652878



40637_at
HSPA8
−0.129
0.134
1.142
0.220



36785_at
HSPB1
0.396
1.049
1.726
1.174



41259_at
HSPC111
0.991
0.825
1.063
0.871



37720_at
HSPD1
0.508
0.517
0.622
0.617



39353_at
HSPE1
0.393
0.355
0.921
0.447



719_g_at
HTRA1
−1.087
−3.221
−4.095
−3.351



718_at
HTRA1
−1.094
−2.684
−3.037
−3.426



36564_at
IBRDC3
1.477
1.178
0.954
0.948



38454_g_at
ICAM2
−0.146
−0.134
−0.494
−0.962



37043_at
ID3
−0.873
−0.666
−1.026
−1.390



36927_at
IFI44L
−0.781
−1.288
−1.819
−2.243



676_g_at
IFITM1 ///
0.152
−0.390
−1.142
−1.154




IFITM3 ///




IFITM2



41745_at
IFITM3
0.583
−0.608
−1.757
−1.589



1038_s_at
IFNGR1
−2.252
−0.974
−0.624
−0.567



34946_at
IGSF6
0.319
0.411
0.857
0.516



1061_at
IL10RA
0.662
0.511
0.289
0.484



359_at
IL13RA1
−0.496
−0.487
−0.513
−0.732



1165_at
IL18
−0.047
−0.889
−0.916
−1.360



39402_at
IL1B
1.842
0.216
−0.987
−1.022



1368_at
IL1R1
1.259
1.706
2.516
2.172



998_s_at
IL1R2
0.270
1.962
2.469
1.816



37603_at
IL1RN
3.108
1.991
1.202
1.079



37844_at
IL27RA
−0.349
0.888
1.175
1.227



37843_i_at
IL27RA
0.084
0.812
0.911
0.916



1185_at
IL3RA
1.177
1.749
1.165
0.881



1369_s_at
IL8
0.342
−0.721
−1.721
−3.129



37276_at
IQGAP2
−0.747
−0.598
−0.351
−0.670



37625_at
IRF4
3.332
0.572
1.194
0.463



35731_at
ITGA4
0.506
−1.409
−1.367
−1.446



38533_s_at
ITGAM
1.434
2.776
2.002
1.657



36709_at
ITGAX
0.437
0.760
0.600
1.157



41300_s_at
ITM2B
0.003
−0.787
−0.913
−0.902



32778_at
ITPR1
−1.051
−1.054
−1.337
−0.909



755_at
ITPR1
−0.380
−1.181
−1.087
−1.104



33178_at
JAG1
0.688
0.116
0.167
0.169



35414_s_at
JAG1
2.928
1.783
1.140
2.075



34786_at
JMJD1A
−1.401
−0.250
−0.367
−0.158



38972_at
KCTD12
−1.743
−1.441
−1.245
−1.341



39783_at
KIAA0100
0.668
0.684
1.094
1.494



35744_at
KIAA0141
−0.145
−0.037
−0.622
0.058



31863_at
KIAA0179
−0.463
0.451
1.184
2.030



38735_at
KIAA0513
−1.295
−0.286
−0.376
−0.199



35252_at
KIAA0528
−0.072
−0.241
−0.189
−0.680



39559_at
KMO
0.428
1.082
1.222
0.801



180_at
LENG4
0.108
0.565
0.685
1.357



37542_at
LHFPL2
−0.992
−1.213
−1.493
−2.161



38618_at
LIMK2 ///
0.450
0.422
0.627
0.861




PPP1R14BP1



39232_at
LIMS1
−0.020
0.665
1.006
0.680



38745_at
LIPA
0.073
1.446
1.409
0.580



31936_s_at
LKAP
−1.714
−0.392
−0.152
0.161



32195_at
LOC339287
−0.274
−0.608
−0.357
0.041



39879_s_at
LOC388397
0.121
−0.148
−0.383
−0.702



33866_at
LOC643634
0.196
0.684
1.153
1.198



39937_at
LOC653518
−0.919
0.077
−0.425
−0.736



38775_at
LRP1
−0.058
−0.514
−1.064
−0.711



41320_s_at
LRRFIP1
0.055
0.512
0.983
0.543



36493_at
LSP1 ///
−0.054
−0.190
0.564
0.806




LOC649377



38081_at
LTA4H
−0.290
−1.319
−1.518
−1.695



35869_at
LY86
−0.118
−0.692
−1.106
−1.082



41505_r_at
MAF
2.097
1.219
1.287
0.336



36711_at
MAFF
3.314
3.010
2.655
1.982



37472_at
MANBA
−0.779
−0.947
−0.742
−0.361



41772_at
MAOA
5.016
5.167
5.876
4.585



41771_g_at
MAOA
4.387
4.419
3.905
4.392



41770_at
MAOA
6.053
6.013
5.609
5.845



976_s_at
MAPK1
0.764
0.277
0.778
0.577



33223_at
MAST3
−0.710
−0.289
−0.657
0.072



32571_at
MAT2A
1.603
1.004
1.380
1.253



34386_at
MBD4
−1.120
−0.181
−0.031
−0.198



36608_at
MDH1
0.071
0.802
1.013
0.984



35629_at
MKL1
−0.986
0.848
0.455
0.788



32207_at
MPP1
−0.472
−1.077
−1.135
−0.734



36908_at
MRC1 ///
3.727
3.882
3.310
2.256




MRC1L1



39812_at
MRPL12
−0.040
0.785
0.643
0.613



35992_at
MSC
1.931
1.481
1.816
1.650



674_g_at
MTHFD1
−0.978
0.260
0.618
0.683



40074_at
MTHFD2
0.069
0.562
0.912
0.875



879_at
MX2
−0.274
−1.122
−1.168
−0.860



1973_s_at
MYC
0.964
0.527
0.917
0.544



38369_at
MYD88
−1.354
−0.750
−0.515
0.034



32069_at
N4BP1
1.119
0.558
0.894
0.446



41249_at
NADK
−1.294
−0.397
−0.360
−0.384



36607_at
NAGA
−0.247
0.276
0.528
0.648



38187_at
NAT1
−0.095
0.380
0.641
0.142



34279_at
NBPF14 ///
−0.289
0.071
−0.563
−1.073




NBPF1 ///




KIAA1245 ///




NBPF11 ///




NBPF15 ///




NBPF20 ///




NBPF9 ///




NBPF10 ///




NBPF12 ///




NBPF8 ///




NBPF16



39174_at
NCOA4
−0.471
−0.737
−0.718
−0.730



39358_at
NCOR2
0.075
0.913
0.376
0.612



38257_at
NDUFS8
−0.271
0.299
0.407
0.700



34893_at
NDUFV2
1.058
0.452
0.476
0.451



37544_at
NFIL3
0.367
0.970
1.346
1.239



35366_at
NID1
−0.603
−1.614
−1.851
−2.727



39073_at
NME1
0.486
1.001
0.770
0.675



1985_s_at
NME1
0.658
1.225
1.008
0.756



1979_s_at
NOL1
−0.021
0.881
0.721
0.595



32719_at
NRG1
0.355
−0.496
−1.730
−1.935



40088_at
NRIP1
−0.636
−0.778
−0.831
−0.777



32644_at
NUP188
0.468
0.731
0.328
0.738



40768_s_at
NUP214
−1.118
−0.496
−1.350
−1.040



34491_at
OASL
0.551
−0.374
−0.603
−1.103



36134_at
OLFM1
−1.492
−0.599
−1.406
−2.322



38855_s_at
OLFM1
−1.145
−0.574
−1.702
−2.963



36007_at
OLFML2B
−1.198
−2.206
−1.933
−2.125



36689_at
OSBPL1A
−1.147
−0.319
−0.929
−0.798



35674_at
PADI2
−0.076
−1.383
−1.941
−2.041



39056_at
PAICS
−0.114
0.936
0.424
0.605



1560_g_at
PAK2
−0.212
0.691
0.694
0.505



41191_at
PALLD
2.563
2.039
2.498
2.836



38465_at
PAM
−0.521
−0.802
−1.060
−1.140



34352_at
PCBD1
0.514
0.597
0.714
0.742



37188_at
PCK2
−0.893
−0.634
−0.838
−0.358



1884_s_at
PCNA
−1.090
−0.049
0.143
−0.020



32212_at
PDCD8
0.064
0.601
0.634
0.661



746_at
PDE3B
0.164
−0.365
−1.685
−1.038



36092_at
PDE4DIP
−0.937
−0.439
−0.493
−1.962



35714_at
PDXK
0.485
1.070
0.705
0.890



37397_at
PECAM1
−0.384
−1.361
−1.216
−0.751



32455_s_at
PELP1
0.646
1.287
0.883
0.900



39175_at
PFKP
1.512
1.775
2.521
2.614



36502_at
PFTK1
−0.419
−0.130
−0.874
−1.257



32739_at
PGM3
0.222
−0.084
−0.596
−0.273



33333_at
PIP3-E
1.079
0.799
1.004
1.285



34839_at
PITRM1
0.969
1.013
0.998
0.899



33707_at
PLA2G4C
−0.255
−0.315
−0.272
−0.738



36943_r_at
PLAGL1
−0.634
−0.114
−0.091
−0.604



37310_at
PLAU
1.541
0.504
0.406
−0.165



32775_r_at
PLSCR1
0.004
−0.697
−0.692
−1.138



32193_at
PLXNC1
−0.990
−1.740
−1.623
−1.609



38653_at
PMP22
−0.273
−1.545
−1.739
−1.991



1696_at
POLB
−0.697
−0.695
−0.797
−0.734



858_at
POR
0.293
0.972
0.184
0.244



37104_at
PPARG
3.752
1.668
1.585
1.412



41709_at
PPFIBP2
0.733
0.675
0.391
0.507



37384_at
PPM1F
0.198
0.281
0.699
0.746



33358_at
PPM1H
−0.391
−0.804
−0.803
−0.784



41540_at
PPP1R7
0.098
0.473
0.698
0.949



1336_s_at
PRKCB1
−0.491
−0.680
−0.836
−1.051



1217_g_at
PRKCB1
−0.308
−0.789
−0.337
−0.728



160029_at
PRKCB1
−0.314
−0.720
−0.647
−0.750



37969_at
PTGS1
0.023
0.434
0.454
0.781



33804_at
PTK2B
−0.387
−0.774
−0.450
−0.742



35342_at
PTPLB
−0.320
0.275
0.685
1.040



36808_at
PTPN22
−1.113
−2.064
−1.394
−1.738



39672_at
PTPN7
0.245
0.451
0.669
0.851



40519_at
PTPRC
−0.634
−0.286
−0.613
−0.675



32916_at
PTPRE
1.553
2.044
2.201
2.131



32199_at
PTPRO
0.559
0.610
0.922
1.587



1190_at
PTPRO
−0.638
0.859
1.200
1.499



35966_at
QPCT
1.223
2.041
2.487
2.040



37978_at
QPRT
−0.155
0.817
1.427
2.492



1257_s_at
QSCN6
1.453
2.202
1.285
1.518



809_at
RAB27A
−0.448
−0.603
−0.801
−0.704



1202_g_at
RAB33A
1.154
1.664
0.912
1.148



35340_at
RAB8A
0.208
0.883
1.027
0.685



35339_at
RAB8A
0.362
0.918
0.974
0.707



35289_at
RABGAP1
−0.561
0.344
0.560
0.674



34445_at
RABGAP1L
−0.716
−0.659
−1.052
−0.980



37703_at
RABGGTB
−0.205
0.378
0.442
0.618



1874_at
RAD23B
0.037
0.374
0.215
0.615



32593_at
RAFTLIN
−0.217
0.996
1.060
0.871



35668_at
RAMP1
1.545
1.682
2.837
5.185



41342_at
RANBP1
−0.418
0.152
0.828
−0.103



34745_at
RAPGEF2
0.999
0.898
0.446
0.522



32026_s_at
RAPGEF2
1.480
1.204
0.766
0.719



1675_at
RASA1
−1.593
−0.340
−0.317
0.206



36935_at
RASA1
−1.094
−0.392
−0.287
0.123



37598_at
RASSF2
−0.798
−0.133
−0.012
−0.098



34187_at
RBMS2
0.565
0.476
0.403
2.136



40818_at
RBPSUH
0.250
0.858
0.506
0.805



35193_at
RCBTB2
−1.303
−0.920
−1.025
−1.009



41172_at
RDH11
−1.447
−0.606
−0.626
−0.124



38908_s_at
REV3L
−0.933
−0.752
−0.758
−0.606



37701_at
RGS2
−2.969
−2.343
−2.058
−1.352



36550_at
RIN2
−1.278
−1.373
−0.832
−0.643



32664_at
RNASE4
−0.590
−2.375
−2.044
−2.244



35777_at
RNF4
0.157
0.540
0.318
0.674



36187_at
RNH1
0.388
0.592
0.742
0.824



41296_s_at
RPS24
−0.064
0.639
0.799
0.622



33325_at
RPS6KA2
−0.491
−0.905
−0.942
−0.328



32544_s_at
RSU1
−0.291
−0.075
0.429
0.783



106_at
RUNX3
−0.361
−0.493
−0.628
−0.726



37732_at
RYBP
0.564
0.466
0.660
0.642



539_at
RYK
−0.299
0.759
0.646
0.533



41096_at
S100A8
0.262
−0.762
−2.508
−2.514



41471_at
S100A9
0.083
−0.336
−1.899
−3.154



34304_s_at
SAT
−0.986
−1.114
−0.879
−1.113



41200_at
SCARB1
1.063
1.487
1.636
1.368



36192_at
SCRN1
−0.282
0.852
0.937
0.403



39757_at
SDC2
−0.239
0.891
1.206
1.502



40390_at
SDS
−1.714
−0.912
−1.223
−1.648



41597_s_at
SEC22B
−0.417
−0.319
−0.490
−0.942



245_at
SELL
−0.084
−0.354
−1.001
−1.395



34363_at
SEPP1
−0.766
−2.841
−3.734
−4.896



37185_at
SERPINB2
0.268
−1.032
−2.042
−1.963



34438_at
SERPINB9
1.085
0.663
0.736
−0.057



40856_at
SERPINF1
−0.521
−0.869
−0.827
−1.279



40638_at
SFPQ
0.675
0.462
0.657
0.293



40457_at
SFRS3
0.078
0.137
0.614
0.264



973_at
SGK
−1.668
−1.612
−1.352
−1.078



38968_at
SH3BP5
−0.997
−0.808
−1.566
−1.216



1427_g_at
SLA
1.632
1.300
1.236
1.090



1426_at
SLA
1.799
1.193
1.328
1.302



1138_at
SLC20A1
1.430
1.452
1.551
0.825



38122_at
SLC23A2
−1.005
−0.357
−0.826
−0.937



37740_r_at
SLC25A5
−0.784
0.275
0.775
0.149



36979_at
SLC2A3
2.286
0.375
0.406
0.380



34749_at
SLC31A2
−1.717
−0.524
−0.222
−0.155



37895_at
SLC35A1
−1.144
−0.946
−0.765
−0.718



1798_at
SLC39A6
−0.246
0.345
0.982
0.608



33731_at
SLC7A7
−0.784
−0.968
−1.761
−1.584



40810_at
SMARCC1
−0.283
0.146
0.360
0.695



39950_at
SMPDL3A
2.182
−0.314
−0.716
−1.024



33354_at
SMURF2
−0.512
−0.270
−0.023
−0.743



40842_at
SNRPA
0.064
0.411
0.265
0.588



40605_at
SNX4
−0.420
0.066
0.650
0.148



41592_at
SOCS1
5.292
4.291
4.244
3.686



32140_at
SORL1
−0.385
−1.360
−1.349
−1.727



41573_at
SP3
−1.098
−0.538
−0.413
−0.925



671_at
SPARC
0.028
−0.292
−2.186
−2.901



1685_at
SPHAR
−0.252
−0.707
−0.097
0.148



33448_at
SPINT1
0.121
0.651
0.718
0.946



34348_at
SPINT2
1.117
1.881
2.025
2.044



36798_g_at
SPN
0.833
0.996
0.898
0.767



34342_s_at
SPP1
−0.112
−0.677
−2.198
−3.127



2092_s_at
SPP1
−0.022
−0.406
−2.486
−3.069



32135_at
SREBF1
0.675
0.353
0.465
0.621



40109_at
SRF
0.692
0.171
0.466
0.669



35231_at
SRP19
0.639
0.186
0.315
0.281



1640_at
ST13
−0.188
0.335
0.668
0.546



39298_at
ST3GAL6
−2.618
−1.441
−1.096
−0.845



38487_at
STAB1
−0.205
−0.665
−1.491
−0.766



38525_at
STAM2
−0.848
1.372
1.285
0.313



41295_at
STARD7
−0.312
0.784
0.811
0.583



AFFX-
STAT1
−0.577
−0.753
−0.660
−0.956



HUMISGF3A/



M



97935_3_at



33339_g_at
STAT1
−0.242
−0.996
−1.220
−1.152



39708_at
STAT3
−0.205
−0.043
−0.041
−0.770



40473_at
STK24
−1.199
−0.329
−0.222
−0.192



32182_at
STK38L
−0.740
−0.707
−0.581
−0.226



41663_at
STX6
−1.654
−0.747
−0.701
−0.348



41034_s_at
SULT2B1
−0.080
−0.220
−0.171
−0.596



31869_at
SWAP70
−1.360
−0.526
−0.438
−0.725



34885_at
SYNGR2
0.773
0.883
0.618
0.606



36532_at
SYNJ2
1.023
0.640
1.040
0.523



34966_at
T
0.153
−0.252
−1.194
−0.509



39416_at
TAX1BP3
0.039
0.271
0.584
0.637



38317_at
TCEAL1
−0.101
0.035
−0.313
−0.702



40865_at
TDG
0.208
0.177
0.264
0.712



160025_at
TGFA
2.013
0.962
0.995
0.635



38805_at
TGIF
−0.960
−0.634
−0.561
−0.235



38404_at
TGM2
3.912
4.662
2.549
2.374



32829_at
TIMM17A
0.658
0.713
0.729
0.385



39411_at
TIPARP
−0.145
−0.396
−0.434
−0.854



38364_at
TLE4
−1.732
−0.552
−0.188
−0.341



40310_at
TLR2
−0.325
−0.716
−0.508
−0.745



34473_at
TLR5
−1.934
−1.040
−1.113
−0.927



32116_at
TMC6
0.288
1.052
0.625
0.471



36950_at
TMED9
0.431
0.618
0.104
0.327



39424_at
TNFRSF14
0.447
0.587
0.392
0.392



1583_at
TNFRSF1B
−1.060
−0.657
−0.610
−0.366



33813_at
TNFRSF1B
−0.878
−0.642
−0.555
−0.332



1715_at
TNFSF10
−1.391
−1.609
−1.527
−1.569



1030_s_at
TOP1
0.809
0.256
0.521
0.392



31680_at
TOP1P2
0.806
0.209
0.372
0.471



36139_at
TRAF3IP2
0.000
−0.620
−0.136
−0.721



35238_at
TRAF5
0.116
−0.342
0.104
0.653



1468_at
TRAP1
0.206
0.684
0.451
0.794



41468_at
TRGC2 ///
3.157
1.155
−0.259
−0.887




TRGV2 ///




TRGV9 ///




TARP ///




LOC642083



36825_at
TRIM22
−0.288
−0.815
−1.300
−1.510



39032_at
TSC22D1
−1.244
−0.292
−0.532
−0.912



36629_at
TSC22D3
−0.809
−0.930
−0.761
−0.765



32730_at
TSPYL5
0.663
1.029
1.351
0.817



34825_at
TTRAP
−0.976
−0.223
−0.247
−0.635



38350_f_at
TUBA2
0.300
0.459
0.950
0.989



40567_at
TUBA3
0.762
0.661
1.324
1.412



151_s_at
TUBB
0.264
0.133
0.491
0.758



429_f_at
TUBB2A ///
0.489
0.739
0.920
0.842




TUBB4 ///




TUBB2B



33678_i_at
TUBB2C
0.856
1.079
1.235
0.980



33679_f_at
TUBB2C
0.520
0.706
0.764
0.695



471_f_at
TUBB3
0.482
0.367
0.798
0.865



38089_at
UBAP2L
0.395
0.557
0.782
0.898



39040_at
UBE2J1
0.838
0.887
0.602
0.486



223_at
UBE2L3
0.135
0.488
0.672
0.549



40505_at
UBE2L6
−0.334
−0.233
−0.587
−0.649



40839_at
UBL3
1.038
0.127
0.414
0.963



39442_at
UNC50
−0.891
−0.220
0.102
0.001



283_at
UQCRC1
0.250
0.404
0.636
0.664



41859_at
UST
0.257
1.530
0.919
0.566



34481_at
VAV1
−1.259
−0.253
−0.590
−0.140



36601_at
VCL
0.382
0.483
0.772
1.002



31608_g_at
VDAC1
0.214
0.514
0.616
0.760



40198_at
VDAC1
0.259
0.581
0.724
0.571



1388_g_at
VDR
1.280
1.114
1.426
1.274



1410_at
VDR
0.985
1.802
2.171
2.136



34498_at
VNN2
−0.995
−2.501
−2.237
−2.248



1669_at
WNT5A
1.334
2.827
3.306
4.272



31862_at
WNT5A
2.419
2.916
3.665
3.705



40167_s_at
WSB2
0.034
0.437
0.796
0.392



783_at
WWP1
−0.966
−1.303
−1.261
−1.309



784_g_at
WWP1
−0.806
−1.226
−1.179
−1.071



39755_at
XBP1
1.363
0.607
0.135
−0.122



39756_g_at
XBP1
1.338
0.591
0.222
−0.218



41669_at
ZCCHC11
−0.681
−0.289
−0.610
−0.731



35681_r_at
ZFHX1B
−1.993
−0.430
−0.044
−0.200



32587_at
ZFP36L2
−1.682
−1.343
−1.209
−1.351



32588_s_at
ZFP36L2
−1.116
−1.188
−1.405
−1.414



37254_at
ZNF133
−0.849
−0.641
−0.347
−0.488



35368_at
ZNF207
0.630
0.367
0.620
0.356



32034_at
ZNF217
−1.595
0.351
0.622
0.811



31633_g_at
ZNF259
0.697
0.095
0.359
0.707


















TABLE 8







22209_at : target sequence is located in intron4 of C6ORF62 gene



Intron4 fasta sequence:


GTATTTTGGTCTAAAGTGTGATGAGTATTTCAATATGTGAAAACTACTAGAATATAATAG


GGTCTAACTTGAGAAATTCTTTGGGAAAATGGTTTCTGATAGTTTTATTTCACGAGTCTC


CCCTATTTAGAATATTGTGATGCAAGAGAAGAAAGCGTTTGGATTATAGAATCTCTTGAC


AGTGTGGTGGTTCCACCTGCCCAGTGTGGCTTTGAAATTATGACTAGAGAAAATCTTTTA


AAGTGGACATTTACTGATTTATAGAGGGGCCCACAGATGAGCTTCTGAGATCTGTAACTC


TTGAAGCCTTCACCACACATCCTTCTAAAACCGTATATTTAACTGCTGCTTCCCAAAGGA


ATGTGATCTGAAATGGGTGAAGAAATCATTTTGTAGAAGTTGATCTGTATATAAAATTAT


AGAAGAAAGAAGTAAATTTAGTAGTCATTCTTAACCTTAAAATCTTGCTGACTTTTGACT


GTTTGTCATGGTATACTAGACATTGCTCAAGTGAATCCCCCCTCTAGTGTTAAGGGCATT


TACTCATGTTGAACCTAGTTTTATTTACAGTATATTTGTATGCATAGAAGATGGAGGTCC


ACCAAAGTGTTAATTATGCTTAGTTGTAGGTCAGGTATAGCTAACTTTCCTTTTTTAATA


TATATATTTACATTTGTGTTTCCTTTATAATTTATGGCATAGATTGCCACGATTTTCTTA


AGTATACTTTTATAATCAGAAAAATGATATTAAGGACTCATTTTAAGTACACTAAATCAA


ATATTAGAAGGCTTCTTTATTTTAAGCTAATTGTGAGGATTATTTGTCATTTAAAACTTT


TGCTTCTACTTATTACCCTGAAGTATCTTTGTGGTGCTTATGTTTTTCACAGACTGTATA


AATTGATATACTCTCCCGCCCCATGGTAATGTTGCTACACATAAGCTCTAATAATTATCA


TTTTTAATGTTTTAAGATTAATTCAACTAAGTTTTAAAAATAATCCATTGGTTACATACA


TAAGAAAGTACTGTATACAGATTCCCCTGACTTATAATGGTTCGACTTAAGATTTTTTCA


ACTTTACCATGATGTGAAAGCCATATGAATTCATTGTGCTCCTCGATTTATGATGGGACT


ACATCCAGGTGAAGTCATTGTAAATTGGAATTGTTGTAAGTTCAAAAGTCACTTTTTGAT


TTAAAATACGTGTAACTTACACTGGGTTTATCAGGATGTAACATCACAAGTCGTGGAGCA


TCTGTATTTCGGTCATTTAATGGATGATATCTGACTGAAGGGAGAAAATGAATATAAAAG


GCATGAAAACAGGAATAGAAAAGGCATGTTTAAAGTTCTCAGCGCAGGGCTGATAACTCT


AGCTGCTCTCTGGAGGTGGTGTTAGGATTTTGTTGTTTTTTAGTTAAGGATTTCCCACTG


GAAAAATGTAGGTCTGCTTATTACAGTATGTTTTCAAATTTCTAATACCCTGCCTTTCCC


ACTGGGACCTTATTTGAAATAGTTGAGTTAACTTTAGTCTTGTGTCAAATAGTACTCTTT


GAAGTCATGGCTGATGTTTATTGAGAGTTGACTGTACTAGTTTCAGCTTTTTTTTTTTTT


TTTTTTTGAGACAGAGTCTCACTCTGTTGCCAGATTGGAGTGCAGTAGTGTGATCTTGGC


TCACTGCAACCTCCTCCTCCTTGCAACCTCTGCCTCCGCCTCCCTGGTTCAAATGATTCT


CCTGCCTTAGCCTCCCGAGTAGCTGGGTCTACAGGGACATGCCACCACGCCCAGCTAATT


TTTGTATTTTTAGTAGAGACGGGTTTTCACCATGTTGGCCGGGATGGTCTCGATCTCTTG


ACCTCGTGATTCACCCGCCTCGGCCTCCCAAAGTGCTGGGATTACAGGTATGAGCCACCA


TGCCCGTCCTTTTTTTGAGACAGGGTCTTGCTCTGTCGCCCAAGCTGGAGTGTGGTGGCG


TGATCTTGGCTCACTGCAACCTCTGCCTCCCAGGTTTGAGCCGTTCTTGTGCCTCAGCCT


CTTGAGTAGCTGGGATTATAGGCGCATGCTATGACACCCAGCTAATTTTTGTATTTTTTT


TGTAGAGACGGAGTTTTGCTATGTTGGCCAGGGTGGTGTCCTTGACCTCAAGTGATCTGC


CTGGCTTGGCCTCCCAAAGTGGTGGGATTACGGGTATGAGCCACCACACTTGGCCTTAGA


CTTTCTCTTACTTTATATATATTTAATCTCAGTCCTTAAAATAACTGGGTAGATAGGAAG


AAACTGAGACAGAAATTAGGTAAATAAGGCCCAAGGCAGTTAAATAGGATAAAAGCCTGG


ACTGACTGTGCTTTTAACTCACTACCCTGTACTGTGAAAATTTACCTATATTAATTATAG


AATCTTAAAATTCTGGACTGAGTGTAAGCAGTATGATGTAGGTAATGACTTTAGAATTCA


ACTGCAGTAAGTAGGTTAATATTGTAAGAACTAATTTGCTTTTCTGAAGTAATTTAAAAT


GTGTGAATATCCTATATGAGGGGCCTTAAATATAACTCACTCAGTTCTTTCTCAAAGAAA


ATGAGAAAAGGAATGGTAAATGTTAACTTGCAGGCCTCTTTTTTTTGTTTTTTGTTTTTT


GACTCTTAAAGCACTTTACTTATTTTTAAAATTTAATTAATTTTTTGTAGAGATGGGGTC


TCACTTTGTTGCCCAGGCTGGTCTTGAACTCCTAGGTTCAAGTGATCCTCTTGCCTCAGC













































Transcribed seq : EST support for target seq


TCAGCCTCCCAAAGTGCTGAGATTACAGGTGTGAGTCACCGTGCCTGGCCTTTTGAAGCA


CTGTAAAACCTGAATATATGGGTAGTGAGGATATAATCGGAACCAGAATAAGGATTGTTT


TTAAATACTGAGTTCTTCAGTGTACTGTGAAGTGCTGGGAGGTACTACTAAAATGTATCT


CTTCTTTTCTCTTCATTATTAATGCTACTGCCAAGGTTAGCTCCTCCCCTGACTGTTAGA


ATATTTCGTTACTTCTGTGGGAATTACTTCTTTCATGCTGCTTATGAGAAGTTGTGTGTG


TGTGTTTGTGTGTGTGTGTGTGTACCATTTCTTTTCAGATAAGTGGATATTCAATATGAT


AGAATTGAAATGCTAAAGAACTATAAGGAAGGCCTTTTTCAGTCTCACTCAAACCTTTTT


TCAGTGTGGTTACCGGTTCTTGCACCCACCCTGGTTGCTTACCATATTGCAGCTTTGTTA


CTTGAATAGTATTTCAGTTTTTAACACATTTGTTTTTGTGTTGGTTCTGTTTCCTAGTAT


GGCTGTTTTTTTTGTTTTGTTTTGAGATGGTGAGATGGGGTATTACTCTGTCATCCAGGC


TGGAGTGCAGTGGCATAGTCATGGCTCACTGCAGCCTTGAACTCCCAGGCCCAAGTGATC


CTCCCACCTCAACCTCATGAGTAGCTGGGACCACAGGTGTGCACCCCATGCCCAACTAAT


TATTTTTGTAGAGATAGGATCTCACTGTGTTGCCCGGGCTGGTCTCAAACTCCTGGCCTC


TAGTGATCCTCCCGCTTTGGACTCCCAAAGTGCTGGGATTATAGGTCTGAGCCACCATGC


CCAGTCAGCGTTTATCAGATTACTTACCATTACTACTTTGTCCTGGGGAAATCCTCTTAA


TCTTTAAAGGCGCAATCCAAAATCATAATGTTCCCGTGTTACTTACTGTTACTTTTTTTT


TTTTCTCCTATAGTGGTTTGATGATAAGAACCCAATTTGGGCCGGGCGCGGTTGCTCACG


CCTGTAATCCCAACACTTTGGGAGGCTAAGCCAGATGGATCACCTGAGGTCGGGAGTTTG


AGACCATCCTGACCAACATAAAGAAGTCCTATCTCTACTAAAAACACAAAATTAGCTGGG


CGTGGTGGTGCATGCCTGTATTCCAGCTACTTGGGAGGCTGAGGCAGAAGAATCGCTTGA


ACCCAGGAGGCGGAGGTTGCAGTGAGCCGAGATCGCGCCATTGCACTCCAGCCTGGGCAA


CAAGAGCGAAATTCCGTCTAAAAAAAAAAAAAAAAATTGGAGTTTTACAGATAACCACAT


CTTATTCTGGGAAAGGATTTGAAGCAAGTTGGGTTTTATATTTGGCTGTACTTGTCCTCT


TCAGCAGTATAATAAGCCCCTTAAGGCTGAAGTAACCTTATTCCTATTGTTTAGTAGCTA


ATAGCATGCTTTTGATATGCTTATGATCATACTAATAATTTAATATTTGAATTGTATGGA


AGTACAATTCAGTATCATTTTACATATGGTATATTGTGATGCTGTATCATATTTTATGTT


ACGGTTTATAAGAAAAGCTCCTAGGTATAAAATGCTACATAGCAGGAACTTGGTTTTTCA


ATGTTATTATTTCCTACTGTTTTTGACGTAACGGCAATAAAATTTGTTTGAACCAAAATG


GACTAACAATTATTTGTACAACTCAGTATTGTCTAAATATCATATTGTTAAATCTAGGTT


TCTTGAATTCTCCATCAAGCCTGGTCATGTCATGTAGCATTTGGTGTCTCACCATGCCCA


ACAGATATTTTGTGGGAGGATGGAGTTGATCTTCCTCATGTTAAAAGATTGAAGGGAGTG


TTCTGACTTAATTGATAACAGTCTTTCATAACTTCACAAATTTTTGAGAATGACCCAAGG


CTAACTGTGGGAAAAATTCACATAAAAACATAGCCTATCTATGAGGAGCAAAACTATATT


TCAGTTGTGGGCTTTACATTTCATTTAACCCTCTTAACTGTCCTGTGAAATGGGTTACAG


CCTTATTTTATAGATGAGGAAGCTGAAGTTTAAGGGATTTGCATACGGTCACGTAACTAG


TGAGTTGTGCAGCTAGGGTTAGAATAAACAGATTTATTTTTTTTTTTTCTTAGAAACAGC


AATTAACAATGTGACTCCTAATCAAAAGAAAAGAGATGTCCTTGGGGCTTAAAGTACTAT


GGTGGGAGTCTTGGACTGAGTAGGTTTGAAAATACAATTTTATGATCGTGGAGTACTAGG


ATTTAGTCATTTTGATGCAGAGCATTTCCTGATCAACTGCTGTTGTGGAGTGTACTGTCC


AATAGAATTCTCTACAATTAAGGAAATGTTCTGTATCTCAAGAGATTGTTCTTAATGGTG


GCCAGTAGTCATGTGACCGTTGAGCATTTGAAATGTGGCTAGTGCTACTGAAGAATGGAA


TTGTAAATTGCTTTTAATCTAAATTTTGCCTGTGATATTATTGGCTGTGGGTTTGCCAAA


ATTTGTTTTTTTAAAGAGGAAAAGATAACGGACTGTTGGCTGCTTTATTGGACAGCACAG


CTAGCATATAGATGCAGATAGGTAGTATAACTTGTTTGTAGTTTAATATAAATGTTGTAT


TTTGTAATTAG


Transcribed sequence is


CTCTGCTTCTGAGACCCTCCTGTTACTGTTATCATCGTTCCCTAGCCTGGCTCTGCCTTT


CTCAGCAGCCCACATTCCATGGATGGGAGCAGGGGGGCAGGGACCCAAAGGAGGGAAATG


GCTGTGGGTGGTGTGAAGGCCCCCCAGCCCTCAGGAAGGTGGGGCAAGAGACCACTGAGC


ACAAGGGATCTTGCCCACCTCCTCTTTGACTCTGTGGATTATCCATCCATCTGCTCACTG


TGAAGATGGAGAGGCAGTGCCCTAAGGCTGTTCAATAGCTTTTCCATATTTTTTCAACAT


TGAAAAAATAATTTTTAAAAACTGTGATTTTTTTAAAAAATCATTTGGCTGGAGGGAAGG


GAAAAGGGAAACACCAAAAGCTGTACCATGATGAACTGGAGATATTTAACTGGGGCACTT


TCCAGACCAAGACAAACAAATTCCTTTCTGGACTCTAAAGCAGCCGAATCTTGAGACTGT


CAATGACAGAAAGCTGAAGAGAGGCCTCTATTTCTTCCTTTTTCCTTTCTTCTGTCTAAA


AACTCTCTCTTGTTCCCCTTTTCCAGCTTCCCTTGGACTACTGCCCCAATGGCCCCTTGG


ACTCGCGTTTCATGTATGCGAGCACACACACACACAAACTTGCAAAATACCGTTTTTCTT


AAGGATTGTGGGACCGAATAATATCACGTGCCTTCATCTTTTCCTTTTATAGTTAGATGA


ACCTCTTCCTCTTTACAATTTTTTTAAAAAGTGATAGGGGAGGTTGATGTGTTAGTGGAA


GATTTGGGCATCGTTTGAGAAGTAACTTTTGTTTAACACATTCCCCCTAAACATTGAACA


CAAACATTTCAACCCCTTCATGACACTCTTTGGACATTTAAAGCATTGAGTAACCATGTA


CATGACAGCCTAAATCCGTTTGATTTCAGAGCATTTCCTGAACATTGTATTTCATAGACT


TCTCTGATTTTTTCAAAAATGAGGTGAGCAATGGCAAGCAGCCTTGTTCTCCCAATTTGG


TGCTTTTGCTTTTGGTGTGGGGTGGGCATGGGGGGTTGGGGGTGGTGTGGGTGTGTTTAG


AAAAAAGATGCATTCCTGAAGATCTCTGGTGCTGAAGGGCCTCGAGTTCCTTTCAGAGAC


TGTATTTGACACACTTTAGGTACACACAAACGAATGGTATCACATGCAATATTTTAATGG


AGCAATGGGAGAGGCTCTTTGAAATGGGGTTTGCATCTTTTTGTAACATTTTGATTTCTC


TGGTGCCTTATTCCTACTTGATGCTGGCACTCACATACCCACAAGAAGCTGACACAGAAG


TCAGCCTTAGGCGTGGGGACATATGGGTGATGTTTGAGCATGCAGGGGCCATGGGGAGTT


TGGTGTCAGTTGGTGGAGAAGGGACTAGATGGCATCTCTTAGCCGAGGCCAACAGGAACT


GCACAAGTCCATTATAGTCAAAGTTAGCAATTTTGATACGTAAACACAATACTTCATTCT


TCCTCATCTGAGCTTTCCTTCCTTCTTCCTTTTCTATCTCTACCTTCTCATAAAGGTGCT


GCTGCTGCTGCTAAGGTGCCCGGAGTCCAGAATGTCCATTAATCACTCAGGCACGAGCCT


GGCACTGCCACGTCAGCCCCCAGCATGACCAAACCCAGGTTTCTCTTGCTTGGGGCTGAG


AACTGTCAGATTTTTCTCATCAAAAATGTTTTCCAAGGAATCAGTGGATTACAGTTTTTC


TGCATTGAAAATGCACTTTAAAAAATAAATTAAAGCTCCAGACTGTTTAAAATATACAGA


GGGAGCAGGGGAAAGTTAAGCATGTGCTAGTGTCTGAACCCAGTTCAGTTTATCTCCAGT


TGAAACGATATACACTATATTATGTATAAATGTATACACACTTCCTATATGTATCCACAT


ATATATAGTGTATATATTATACATGTATAGGTGTGTATATGTGCATATATACACACATGC


ACATAACAAAATCAGATGCTCATTACAAATCCAGATGCTCATTACAAAACCAGATGCTAC


ACAAACAGCAGCAGAGGAAACAAGGTTGGACTCTTGCAACAGATCACAAAAAATAAAAAC


AGCTACTTGCAGTGACTTTGGTCATTTCTGTATGTTCATAAAGAATGGATTGTAACAAGG


AAAAAAAGGAACAGTGTTAGTGAAAAAGGAAAAATGGGCGAAACCATCTTGATCCGATGC


GAATGCAGTAATGTTCTATATACCATTTCATCAGTTATTTCTTTTAGTCATGTTGATTTG


ATTTCAGTTTCTGGCTATGAAAAACATTTTTAAACTCGTCACCCACAACAAACTGAACAA


AACTACTACAGTGAAAGCCCTTTTCAGTGAAAGATGTCAGAAACCTCAAAACCTTTGGCC


TGACTCAGAACTACCATGTGAAAATCAGTACTCTCTTAATGTTTGAAATAAAAACTGAAA


AAAAAAACAAAAAAACAAAAAACCTTTTTTGAAGCACCTTAACGTGGCCATCCATTTGAG


AAGTGGGTGCCACTTTTTTCTTTGAGCACCTTATTGATGTGTTTGCTATCTGCTGTCTTT


CTGTTACCTGTTGGCTGAATGGCTAGCTGTTAACATATACATGTGCACAGAAGAGATATC


TGGGCATGTATGTTCTCAATGAAGTTTACTGTGGTGACTGCTGAAAGGTGAACCCATTTC


CTGATTTTCCCGCCGCAGTGTTGTGATAAGATTCGAAGAAACCTTTTTCCCTGCACAGAA


ATGTTTCTTATCACATTGTATCTTAGTATGGAAAGGAATATGGTCCCTTTTTTGCAATTG


CTACTGTGTACACACACACACACACACACACACACACACACACACACTGTATGTTTAGAC


CTAAAATACACACACCCACGCACACACTGTATGTTTATGTGACCTAAAACATACACACAT


GCACACACACATACATATCCATTCATTCATTCATTCAAGTGGTGTTTCCAGTGTCTGTGT


GTCACTGTTTATGCAGTTTCCATTTCCCAGTGAATTATGAGTGGAGGGCAACTTTTCTAA


CCAGATTGTCTTTTCAGAACAAAGACCTGGGAATTGAGGAAGAGTTTGGAAAGAGGGAGA


GGCAAGGAAAGAGAGCTTTAAATTGAAAGGTTAATTTCCTAAGAGGAACCTGGGCTGAAT


GACTGCAGTGTTATACCCTCCAATCTTTGCAGGTGGGCATGGAACACTGCTTGTATCACT


CTGTGCACGGTATAAATCCATATATCCACAAAAACACACATCCATCCATCAACATATACA


TGGTTTGGGATGAGCAGGTCAATAGTTTTGAGAGGGAGTTTGTTCCTTTTTTTTTCTCAT


TATACTCTTAAATTGTTGTCAGTTATCAAACAAACAAACAGAAAAATTGTTTGGAAAAAC


CTTGCATACGCCTTTTCTATCAAGTGCTTTAAAATATAGACTAAATACACACATCCTGCC


AGTTTTTTCTTACAGTGACAGTATCCTTACCTGCCATTTAATATTAGCCTCGTATTTTTC


TCACGTATATTTACCTGTGACTTGTATTTGTTATTTAAACAGGAAAAAAAACATTCAAAA


AAAGAAAAATTAACTGTAGCGCTTCATTATACTATTATATTATTATTATTATTGTGACAT


TTTGGAATACTGTGAAGTTTTATCTCTTGCATATACTTTATACGGAAGTATTACGCCTTA


AAAATACGAAAATAAATTTTACAAGGTTTCTGTTTTGTGTGGAAGAGTAATTGATGTTGC


TAAGAATGATGTTTGTTTTTTTGGGGTTTTTGTTGTTTTTTTTTTAAATGTTACCAGCAC


TTTTTTTGTAAGTTTCACTTTCCGAGGTATTGTACAAGTTCACACTGTTTGTGAAGTTTG


AATATGAAGGAATAATTAAAAAAAAAAAAACTCTT


MOUSE TRANSCRIBED SEQ (Homologous to Human


213158_at transcribed seq)


AAATCTTAGAAGCAATCGGGGTTGACAGCGCTTTCGTAATTACTAATGAGAGGATCTTGT


GCTACCGGAAGAGCAATAGACTGTGTGGCGACTCAAACAAGTGTGGGGATGCTGAGGGGC


TCCTCCAGAGTCCCGGATGACAGCTCTTGGAAACCCTTGTTTGCTAAGAATCACAGCCCT


TGTAAACACCTAATGTTGAGTTTCTTTGAACACTGTCCCACCTGAGGGGATTCGTTTGGA


AAGCTTCCATTTCAGGCCTCTTTAACAGAGTATCAATCTGATGCTTTCTCCTTCCTCCTT


ATGATAGGTCTCATTCTACTTTCCCATGTCAGAGTTTCTTTTTATATATACAAAAGTGCC


AGCCTTGCTAGTTTAACCCTACAGAGACCATTCAGAACTAACTTAAGCAGCAACTTAGGA


GAACTCAAAGCATTATCTGTATTTCAAGCAGGCTCCTGAATCAGATCTCATAGCAGATGC


CTGGGAATGCGTGGTGGGAAAGCACTAACAGGACATGGAGACACCCAACCAAAGCTATGA


GAGGAAACAGTTGACCTTTAAAACAGTCTCACCTTAACTTTCCTTGAGGCATTGGGGACA


AGTTTTTCTTGAAACTTGCATATCCACTCCAGTTCCTTCACCAAAGATTTTCTTCTCCAG


AGCCCAGCCTCCTTTCTCCCAGGCAGAACCATAACAGGCCTGAGGGTGTCCTTGCAGTGG


TCCACAGAGTTCACCTTCTGTTCACAGGGGTATTTACAGACCTTATAGTAGAAGGGTTTC


CAAACAGTCTGTATGGAAAACATACACAGTACTACTTGGCACTGCGAGCTTTGTGAGACT


CATCTGTTGCCTGGAGGCTTGTAGTCAGAAATATCCATGGAAGGGAGAGTGCGAAGTCAT


TTAGAGCCAAACAGGACCGCTGGTGAGAGGATCATTGGGCAGTATGAGTCAAGAGCAGAT


CAAGGCTCCGTGTGCCCAGGGCCAATGGCAGTGGCCTATGAGGATGTTAGACAACACATC


AATGGAGTCACATTCTGAGAAGCTAAAGTGTGGGCTTTGCTGTAATGGCTGACATTGTTG


AAATGTTCGTGCCACAGCAAGGGAACTACTTGGAAGTAGACCTGTTGTGATAGTGCCTTC


TTGTTGTAGCAAGTCATTTATTCAGTTAGGCTTTTCTGGACCATTGCCCCCATCTTCTGA


AGAGGTCTGAGATGAAGGGATAGGACACTGCCCCTGAAATGCTGTGATTTGAAGATATTT


GCACTAGATTCTATCCTCTCCTTTAAACTGGAGCAACTGAATGAGAGGGGAAAAATTAAC


AAGGACAGCTCAAAATGAAAAGAAACCCAAAGTAATGTGTTCTGATAACATTATCTCCCC


TCACTGCTACATCTTTCCTCCCCCCTTCCTCCCTTCCCTCCTAGATCTACTTTTTTTTCC


TTCCTCTTAAAGGAAACTTCCATTTTCTTATTACCAAATCCAACAATTACTTCTCTTTGT


TTCTCCCCAGTACTGAATCATAAGCTTATTAATCACTCATGAGCTAGGAATATCTAGTAA


AGAGCCTCTGCCTTGACAGTGTTGCTGGCCTTCTCTGTCCATCACGGGTGAACAACGAGG


GGTAATAGGGAGACTAGACTGGCCCAGCTCTTATGGAAGCCAGAGTCTGGATTTCACACC


TATAAGGAGATGACACCTATTTACCCAGAACACATAGTCTGCAGCTCATCTTAAAAGACG


CTTAGGAACAAAAGGAAGTTCCTGTGTTACAGCAAACAGATGCGGTAGTACCCAAAGCTT


ACCTGTCTCTTCTCTCTCCTCTCTTCCGTCTTACTGCCATGTCCTCTCAACGAGACTTAA


ACTTCATCTCATGAATGGCACCAGAAGAACTATTTGACTCCTTGGCTTCTCTCTTTTTCA


GTAGGCTGGTAGCTCATTCAAAATTAAAACCAAGCAAATACTATTAGTGGCTAGCCCCCT


GAGGGCTGAACAATTTCCCAAGTGTCTTGATGATCCCAATATCTTGATAATCAACTCTGA


TAACTTGGAAGTTTTGGCTGGCTCAGACATCTGTCAACTTTATTTTCATTTTGTCTCCAT


TTCCATTTGAATCTTAAGTGAGAGTGGAAAGGTAGAATCATGGGAAAGATTGTGAGGCTG


CAATTCTAGGGTAGAGTTTGTCAGAAGTTTGTATTATCCCAAATAGAAATTTCTATACTT


ACTTTCAATTTAATGTTACCCTGAATATAATTTCTATTACATTTATTGTTATTTTTATAA


AAATAGAGTTCAATTACTATGTCTAGTTGAGTGCTCTCTTTTCTATTTTCCCACATGGAT


GCAGTACCAACCTGTTACCTAAATATCTTTTTATTATATTGTTAATATGTAATTCTACTG


TAGACCAAAAATATAAAAACAAATTTGCTCATTTTAAACATATACAGACTCTAATGAGTA


AAGATGAGGAGAAAAGACCAGAGAGCAGTGGTTGACTATGTTGTTAGAAATCAAAGAGTA


GCCTTACCTATTTTTAACCAGTGCTTGCCGTCACACCATAGTTAGGACTATGTTAGCATG


GCTTCTTCATGCTTACGTTCTGCAAGCCTTGTCTGTCTGTTTCCTTTGATGTGTTCGAGG


TTGCACAATGATGCTATTGTTTTTTTCTTTTGGTAATGCCTGATTTTATTATAATGTACT


TTATCAGTCATTTCCTTTAGAAGAATGAGGGGGAAAGTTTTATTTCTTCTTTTAATTTAA


ATTTTGTTTAATGCACTGGAAATAAAATTGGACACATTTCACTGTTTAAAAATCAGAAAC


GAAACAAAACAAAACCCCGAAGAAAAAACCAGCAAACAAGTAAGTAATAGGATACACACA


CATACAAAAAAGCTATGAAAAATATTCTGTTCATACAAAATATAGGCTATATCTCACATG


AGAGATAAATACTGTCAAGTAATAAAAAGACATTGTCAACTACAGTGCTGAAAACTATAA


GAGGAACCTAGGTGTACAGTGTGTGGGGAAAACTACGAATCCTTTCTGAGGCGAGATCTT


TCCATTGTTCCAATAAAAACCTAAGCAAGTTGAATGTGGAAGTCGGTAAGTAGGGAGCAC


CCCGCCTTCTTTACACCAGCGGACCTCTGGGTTACTTTCTACCATGGGTCTCAGCCACAT


ACACATACACACGCACGCACTCATGTGCACACACTCAATACTTGAGAAGGATTTGTGAAA


ATGTACATACCCAGTACACAGATGTACACAGTGCTCTGACAGCCCTCAAGCTCTTCTGAG


GCTTAGCAGTGATGGGTCCACAACATGGAATACTGAAAGGGATTCACTGAGATCTACGTG


TGCTAATAAAGTGCTTGAAGCCAGCCTGGTCTCTTCCCCAGCATCCCCTAGTCCAAGGCC


AGCTGCCACACACACATGGACAGAGAAAGGCGAGACACCGGTTACTTCTCCTAGCCAACT


GGCTCATTATTATTTGCTGAATATTTGCTGGATTTTTCTGGTTTTGTTCTGTTTTAGAAT


GGGGTGGGAGTGGATGTTATGTCACAATCCTAATACAGTAAAGTTTTGCATCTTCCATAT


CTTATGCAAAAACAGACATTTAAATCAATAAATAGTTGTGCCCTAGACTGAAAGTTAATG


TTTAGGAGAGGGAAAAATTGTTGGAATTTTTTCTACATTTTTTTGTGAAGAATCTTTTTT


GGAAAGGAAGGATACATATTTTTGTTGTGTAATATTTTCTATTTTTGAATGCATTTTATT


GGTACAAGACTGTTTTTTTGGTGAAGACATTATTTAAAAAAAGAAAAAAAGAAAAAAACT


AATCGAAAAGTTTGCCCTTAAGGATATGCTGCAGTTTTGAGATTAAAAAATAATAACTGA


TTCAAGATGCGTGTTAAAAGTTGGGATTATATTGTTGTTTTTGTAATTGTTACAAGAAGA


AGTTTGTACCCACTGCTGTTTATTTTGTTTCAGATGAGTAAGTAAAGGGATTGTTCTTGT


TTTATTCTTTTTTTAGAGAAAAAAGCTATTTATGAAATGTCAAAAACACTGGACTGTGAG


TTTAAGTGTGGAAGCATTTTACCACCCTGTGTCTTCAACCAATTATGGGAAACCTTTTCT


CTCCCCCCCTGCCTTAGCCTTGCCAAATGAGGAAAACGTAACAGCTCTCAGATGACGGAA


GTCACCGAAGCCCTGCTTTAATTTTTATGGTCTGAAAAAGTCGGAAAACCAAAGTTAAAT


TTGTTTCTGAAATCCCGCTGTCTATAGCCCCTTTTTTGTACAACACAGCCGGCTGGCTCT


GCCTCTCTATCTTGGATCATTGCCTTCTTAGGAACGTGGGGCCAGCTCTGCCAAGAGGCG


TGAAGGTGGCGAGGTCACAGGAAGTGAGGTGTGAGGGGGACCCCTAGGGCCCCGGAGCTT


CTCCATCCAGAGGCGAGGCTGCCAAGAGCACACACAGCTAACAGTGCCTGGCGGGGTCGC


CCCTGTCCCCCTCACCTTCTGCTTCGAAGACCCTCCAGTTACCGTGGCTCTGCCTTTCTC


AGCAGCCCACGTTCCGTGGATGGGAGGGGGTGGGATCCAAGCAGAAAACACGGCTGTGGG


CGCTGCGAAGGCCCCGGCCCTCAGGAGGTAAAGCAAGGGACCACTCAGCACAAGGGCTCT


TGCTGCCCGCCTCCTCTTTGACTCTGTGGATCGTCCATCCATCTGCTCACTGTGAAGATG


GAGAGGCAGTGCGCCCTGAGGCTGTTCAATAGCTTTTCCATATTTTTTCAACATTGAAAA


AATAATTTTTAAAAACTGTGATATTTAAAAAAAAAAAAATCATTTGGCTGGAGGGAAGGG


AAAAGGGAAACACCAAAAGCTGTAACATGATTAACTGGAGATATTTATAACTGGGGCACT


TTCCAGACCAAGACAAATGAATTGTTTTCTGGACCCGAAAGCAGCCAAATTTTAAGACTG


TCAGTGACAAAAAGCTGAAGAGAGGCCTCCATTTCTCCTCCTTTCTTCTTTCTGTCCCAA


ATTCTCTCATTTTCTCTTCTAGCTTCTCTTGGTAACTGTCCAATGGACTTCATACTTCAT


GCAAAATCCCGCGCATGCACGCGAGCGCGCACGCATGCGCGTGTACACACACACACACAC


ACACACACACACACACACACACACACAAGCAAAAAAAAAAACTATTTTTCTTAAGGATTG


TGGGACTAAATTTAAAGTCATGTGCCTTCATTTTTTTCCCTTTTATAGTTAAATGAACCT


CTTCCTTTTTTACAATGTGTTGGGTTTTGTTTTGTTTTTAGTAGAAGGGGAAGGTTAAAG


TGTTTGTGGAAGAGAGGATTTTTAGGCATCAACTGGGAGATTTTTTTAGCATATTCCCCC


ACTAAATATTAAACACAAACATCTCAATCCCTCCACGTGTCACTGTGCACACTTAGAGCA


TCAAGGAATCAGAATCCGACAGCCTAATCCACTTGATTTTAGAGAAGTTCCTGAAATTTC


TATTTCCTAGACTTTTTTATTGTTCTTATTTTATCACAGTGAGGTGAGCAAGGCAAGTTG


CCTCGTTCTCCCAACTCGGTGCTTCTGCTTGTGGGGTGGGGGTGGGGCGGTATAGACAAG


GGTGCACTCCTAAAGCTCTCTGGTGCTGAAGGGCCTCAAGGTTGAGTTTCTTTCAGAAAA


TGTGTATGGCACACTCTCAAGTGCACACGTGAACGGTGTCATGCGCACTATTTTTAAAGG


ACAAGGGAAGGGGCTCTGAAGTGGGTTTTGCTTTCTCTCATGACATTTGATTTCCCTGGT


GCCTTATTCCTATTCTATGCTGGCACTCACATGCCCACAGGAACACACGCTGATGTCAGC


CCCAGGAGTGAGGACCTCTAGGTGACAGTTGAGCATGTGGGGACCATCGGATATTGGGGT


CAGTTGGTAGGGGAGGAACTAGATGGCTGAAAATACACAGGGACTGCACAAGCCCATCAC


AGTCAAGATTAGTAATGCTCATATGTGAGTATGTGCAATACATGCACACACAAACACACA


CACAGACACACACAGAGATGCACACACAAACACCAAATACACTCTTCTTCCTCTGAACAT


TGCTTCCTTCTTCATTTCCTGTCTTTGCCTTCTCATAAAGGTGCTGCTTGCTGCTGCTGC


TGAGGTGCCCGGAGTCCAGAATGCCCAGTAATCACTCAGGCACAAGCCTGGCACTGCCAC


GTTCAGTCCTTGGCAAGACCAAACCCTGGTTTCTCTTGCCTGGGGCTGAAAACCGTCAGA


TTTTTCTCATCAAAAAAAAAAAAAAAAAGTTATCCAAGGAATCAGTGGATTATAGTTACT


CTGCATTAAAAATGCACTTTAAAAATAAATAAAAGCTCCAGACTGTTTAAAACACACAGA


GGGAACAGGAGAAAGATAAACGTGCTAGTGTCTGAACCCAGTTCAGCATATCTCCAGTTG


AAACAGTATACACTATATTATGTATAAATGTATACACACTTCTATATATGTCCACATATA


TGCGGTGTGTGTATTATACAGGTATAGGTGTGTGTGCACGCACACAGGTGCACATAGCAT


ATCAAGTGTTCATTACAAATCCAGATGCTCATTTCACAAACAGCAGCAGAGGAAACAAGG


TTGGACTCTTGCAGCAGATCACAAAACAATAAAAACAGCCACTTGCGGTGACGCTGGTCA


CTGCTGTGTGTTCATAAGGAATGGATTGTAACAAAGGAAAACAAGGAGCAGTGTTAGCAA


TTGAGGAAAACTGGGACAGACCATCTTGATCCAATGGGAATGCAGTAATGTTCTCTACCA


TTTCATCCGTTCTTTCTGTTAGTCGTGACGATTTGATTTTCATTTTTGCCTATTAAAAAT


GGTTTAGATTCAAGTGACCACATCCAAGTGAACAAAACAACCACAGTGAAAGTCCTTTTC


AGTAGGAAGATGTCAGAAAACTCAAAACCCTTGGCCTGGCTCAGAACTACCATGTGCAAA


CCAGAACTCTCTCAACGTTTGAAATAAAAACTTTAAAACTCTTTTTGAAGCACCTTAACG


TGGCCATCCATTTGACAAGTGGGTGCCACCTTTTTCTTTGAGCACCTTATTGACGTATTT


TGCTATCTGCTGTCTTCTGTTACTGTTGGCTGAATAGCTAGCTGTTAACACACACACATG


TGCACAGACCAGACATCTGAGCATGCGTGTTCTCAATGACGTTTACCGTGGTGACTGCTG


GAAGGTGAACTCATTTTCTGATTTGCCCACCACAGTGTTGTGATAAGACTCGAAGAAACC


CTGCCCTGCACGGAAAAATGTCCCTTATCACGTTGTATATTAGGGTGGGAAGGAATATGG


TCCCCTTTTTGCAATTGCTACTGTGTATACATACACATGCACACACACACACACACACAC


ACACACACACACACACACACACACACACACTGTATATTCAGACATGATGTACACACACAA


ACATAACTCATTTGTCCAAGTGATATTTCAGATGTTTCTGTGGGTGTCACACACCATGTG


CAGTTTTCCACTTCCCAGAGAATTTTGAGTGGAGGGTAACTTTTCAGACTGATGAACGGG


GCACTGAGGAAGAGTTTGAAGTGGGAGGCAAGAAAGGAGAGAGCATTAAGTCAAAAGAAT


AATTTCCCAAGAGAAGCTGGAGGAATGGCTGTCCTTGCAGGTGGGTGTGGAACACTGCTG


TCTCAGTCTGCACTGTAGAAATCCATGCACACATCAACACACACACACACACACACACAC


ACACACATACACACATCCCCCCACAGGGGCGTGGTCTGGGATGAGCAGGTCAATAGTTTT


GAGAGGGAGTTTGTTCCTTTTTTTTCTCTCATTATACTCTTGTCAGTTATTAAACAAACA


AACAGAAAAAAATTGTTTTGAAAAACCTTGCGTACGCCTTTTCTATCAAGTGCTTTAAAA


TATAGACTAAATACACACATCCTGCCAGTTTTTCTTACAGTGACAGTACCCTTACCTGCC


ATTTAATATTAGCCTCGTATTTTTCTCACGTATATTTACCTGTGACTTGTATTTGTTATT


TAAACAGGAAAAAATTTCAAAAAAAAGAAAAATTAACTGTAGCGCTTCATTATACTATTA


TATTATTATTATTGTGACATTTTGGAATACTGTGAAGTTTTATCTCTTGCATATACTTTA


TACAGAAGTATTACGCCTTAAAAATACGAAAATAAATTTTACAAGGTTTCTGTTTTGTGT


GGAAGAGTAATTGATGTTGCTAAGAATGATGTTTGTTTTTTGGGGTTTTTGTTGTTTTTT


TTTTTAAATGTTACCAGCACTTTTTTTGTAAGTTTCACTTTCTGAGGTATTGTACAAGTT


CACACTGTTTGTGAAGTTTGAATATGAAGGAATAATTAA








Claims
  • 1. An array comprising a substrate having a plurality of addresses, each address comprising a distinct polynucleotide probe affixed thereto, wherein at least 10% of the plurality of addresses have affixed thereto polynucleotide probes that hybridize under stringent conditions to markers selected from the group consisting of the markers indicated in Table 1a and Table 1b; and wherein at least 10 of the markers hybridize to the array.
  • 2. A method for providing a diagnosis, prognosis, or assessment of asthma in a patient comprising the steps of: (a) detecting a level of expression of at least one marker that is differentially expressed in asthma;(b) comparing the level of expression of the at least one marker in the patient to a reference expression level of the at least one marker; and(c) providing a diagnosis, prognosis, or assessment of the patient's asthma based on the comparison done in step (b);wherein the at least one marker is selected from the group consisting of the markers indicated in Table 1a and Table 1b.
  • 3. The method of claim 2 wherein the reference expression level is selected from a numerical threshold, a level indicative of an asthma state, a level in the same patient at a different time point, a level in the same patient before a treatment regimen, or a level in the same patient during a treatment regimen.
  • 4. A method for evaluating the effectiveness of an asthma treatment in a patient, the method comprising: (a) detecting a level of expression of at least one marker in a sample derived from the patient during the course of treatment of the patient; and(b) comparing the level of expression of the at least one marker in the patient to a reference level of expression of the at least one marker;wherein the difference between the detected level of expression of the at least one marker in the patient and the reference level of expression of the at least one marker is indicative of the effectiveness of the treatment of the patient's asthma; andwherein the at least one marker is selected from the group consisting of the markers indicated in Table 1a and Table 1b.
  • 5. The method of claim 4 wherein the reference level of expression is a level from a sample from the same individual wherein the sample is taken at a different time with regard to administration of the asthma treatment.
  • 6. The method of of claim 4 wherein the sample comprises blood cells.
  • 7. The method of claim 6 wherein the blood cells are peripheral blood mononuclear cells (PBMCs).
  • 8. A method for selecting a treatment for asthma, comprising the steps of: (a) detecting a level of expression of at least one marker in a sample derived from a patient;(b) comparing the level of expression of the at least one marker to a reference level of expression of the at least one marker;(c) diagnosing the patient as having asthma; and(d) selecting a treatment for the patient;wherein the at least one marker is selected from the group consisting of the markers indicated in Table 1a and Table 1b.
  • 9. A method for identifying an agent capable of modulating expression of at least one marker differentially expressed in asthma, comprising the steps of: (a) exposing one or more cells to the at least one agent;(b) determining the level of expression of the at least one marker in the exposed cells;(c) comparing the level of expression of the at least one marker to a reference level of expression of the at least one marker; and(d) identifying the agent as capable of modulating the level of expression of the at least one marker based upon the comparison performed in step (c);wherein said reference level of expression is the level of expression of the at least one marker in a cell not exposed to the agent; andwherein a change in the level of expression of the at least one marker compared to the reference level of expression of the at least one marker is indicative of the agent's capability of modulating the level of expression of the at least one marker; andwherein the at least one marker is selected from the group consisting of the markers indicated in Table 1a and Table 1b.
  • 10. The method of claim 9 wherein the reference expression level is selected from a numerical threshold, a level indicative of an asthma state, a level in the same patient at a different time point, a level in the same patient before a treatment regime, or a level in the same patient during a treatment regimen.
  • 11. A method for identifying an agent capable of modulating expression of at least one marker differentially expressed in asthma, comprising the steps of: (a) administering an agent to a human or non-human mammal;(b) determining the level of expression of the at least one marker from the treated human or treated non-human mammal;(c) comparing the level of expression of the at least one marker with a reference level of expression of the at least one marker; and(d) identifying the agent as capable of modulating the level of expression of the at least one marker in the human or non-human mammal based upon the comparison performed in step (c);wherein the reference level of expression is the level of expression of the at least one marker in an untreated human or untreated non-human mammal; andwherein a change in the level of expression of the at least one marker compared to the reference level of expression of the at least one marker is indicative that the agent is capable of modulating the level of expression of the at least one marker; andwherein the at least one marker is selected from the group consisting of the markers indicated in Table 1a and Table 1b.
  • 12. The method of claim 11 wherein the reference expression level is selected from a numerical threshold, a level indicative of an asthma state, a level in the same patient at a different time point, a level in the same patient before a treatment regime, or a level in the same patient during a treatment regimen.
  • 13. A method for treating an inflammatory disease in a patient, the method comprising the step of modulating the level or activity of at least one marker selected from the group consisting of the markers indicated in Table 2.
  • 14. The method of claim 13 wherein the level or activity is modulated by providing to the patient an isolated nucleic acid complementary to a nucleic acid marker from Table 2.
  • 15. The method of claim 13 wherein the level or activity is modulated by providing to the patient an SiRNA.
  • 16. The method of claim 13 wherein the level or activity is modulated by providing to the patient an isolated antibody to a polypeptide from Table 2.
  • 17. The method of claim 13 wherein the level or activity is modulated by providing to the patient an isolated nucleic acid comprising a nucleic acid from Table 2.
  • 18. The method of claim 13 wherein the level or activity is modulated by providing to the patient an isolated polypeptide from Table 2.
  • 19. An isolated antibody that specifically binds to a polypeptide comprising an amino acid sequence that is at least 95% identical to an amino acid sequence selected from the group consisting of the polypeptide indicated in Table 2.
  • 20. A method of detecting exposure to IL-13 or an IL-13 antagonist comprising the steps of: (a) detecting a level of expression of at least one marker in one or more cells; and(b) comparing the level of expression of the at least one marker to a reference level of expression of the at least one marker;wherein the comparison performed in step (b) is indicative of exposure to IL-13 or an IL-13 antagonist; andwherein the at least one marker is selected from the group consisting of the markers indicated in Table 7.
  • 21. The method of claim 20 wherein the cells comprise blood cells.
  • 22. The method of claim 21 wherein the blood cells are peripheral blood mononuclear cells (PBMCs).
  • 23. The method according to claim 20 comprising the additional step of providing a diagnosis, prognosis, or assessment of a patient's IL-13-mediated disease based upon the comparison performed in step (b).
  • 24. The method according to claim 20 wherein the one or more cells are derived from a patient during the course of treatment for an IL-13-mediated disease; and wherein the difference between the detected level of expression of the at least one marker and the reference level of expression of the at least one marker is indicative of the effectiveness of the treatment of the IL-13-mediated disease.
  • 25. The method according to claim 20 comprising the step, preceding step (a), of exposing the one or more cells to an agent; and further comprising the step of identifying or evaluating the agent as capable of modulating the level of expression of the at least one marker based upon the comparison performed in step (b); wherein said reference level of expression is the level of expression of the at least one marker in a cell not exposed to the agent; andwherein a change in the level of expression of the at least one marker compared to the reference level of expression of the at least one marker is indicative of the agent's capability of modulating the level of expression of the at least one marker.
  • 26. The method according to claim 20 comprising the steps, preceding step (a), of administering an agent to a human or non-human mammal; and deriving a sample comprising one or more cells from the human or non-human mammal; and further comprising the additional step of identifying or evaluating the agent as capable of modulating the level of expression of the at least one marker in the human or non-human mammal based upon the comparison performed in step (b); wherein the reference level of expression of the at least one marker is the level of expression of the at least one marker in an untreated human or untreated non-human mammal; andwherein a change in the level of expression of the at least one marker compared to the reference level of expression of the at least one marker is indicative of the agent's capability of modulating the level of expression of the at least one marker.
  • 27. An isolated nucleic acid comprising a nucleic acid sequence selected from the nucleic acid sequences indicated in Table 8.
  • 28. A method for selecting a treatment for an asthma patient comprising: (a) generating a sample expression profile from a sample derived from the asthma patient;(b) comparing the sample expression profile to at least one reference expression profile, wherein the at least one reference expression profile represents a favorable clinical outcome in response to a treatment;(c) selecting a treatment;wherein the treatment is one that exhibits a reference expression profile that is different from the sample expression profile; and wherein the sample expression profile and the at least one reference expression profile comprise an expression profile of a marker indicated in Table 1a or Table 1b.
  • 29. The method of claim 28 wherein the sample derived from the asthma patient comprises blood cells.
  • 30. The method of claim 28 wherein the blood cells are peripheral blood mononuclear cells (PBMCs).
  • 31. A method of detecting exposure to IL-13, an IL-13 antagonist, or an IL-13 agonist comprising the steps of: (a) detecting a level of expression of at least one marker in one or more cells; and(b) comparing the level of expression of the at least one marker to a reference level of expression of the at least one marker;wherein a difference in the level of expression of the at least one marker and the reference level of expression is indicative of exposure to IL-13, an IL-13 antagonist, or an IL-13 agonist; andwherein the at least one marker is selected from the group consisting of the markers indicated in Table 7.
  • 32. The method of claim 30 wherein the one or more cells comprise blood cells.
  • 33. The method of claim 30 wherein the blood cells are peripheral blood mononuclear cells (PBMCs).
  • 34. The method according to claim 30 comprising the additional step of providing a diagnosis, prognosis, or assessment of a patient's IL-13-mediated disease based upon the difference in the level of expression of the at least one marker and the reference level of expression.
  • 35. The method according to claim 30 wherein the one or more cells are derived from a patient during the course of treatment for an IL-13-mediated disease; and wherein the difference between the detected level of expression of the at least one marker and the reference level of expression of the at least one marker is indicative of the effectiveness of the treatment of the IL-13-mediated disease.
  • 36. The method according to claim 30 comprising the step, preceding step (a), of exposing the one or more cells to an agent; and further comprising the step of identifying or evaluating the agent as capable of modulating the level of expression of the at least one marker based upon the comparison performed in step (b); wherein said reference level of expression is the level of expression of the at least one marker in a cell not exposed to the agent; andwherein a change in the level of expression of the at least one marker compared to the reference level of expression of the at least one marker is indicative of the agent's capability of modulating the level of expression of the at least one marker.
  • 37. The method according to claim 30 comprising the steps, preceding step (a), of administering an agent to a human or non-human mammal; and deriving a sample comprising one or more cells from the human or non-human mammal; and further comprising the additional step of identifying or evaluating the agent as capable of modulating the level of expression of the at least one marker in the human or non-human mammal based upon the comparison performed in step (b); wherein the reference level of expression of the at least one marker is the level of expression of the at least one marker in an untreated human or untreated non-human mammal; andwherein a change in the level of expression of the at least one marker compared to the reference level of expression of the at least one marker is indicative of the agent's capability of modulating the level of expression of the at least one marker.
Provisional Applications (1)
Number Date Country
60879994 Jan 2007 US