Methods and compositions for cancer therapy using a novel adenovirus

Abstract
The invention comprises a novel virus that can kill mammalian cancer cells efficiently. The virus produces a novel protein that converts two non-toxic prodrugs into potent chemotherapeutic agents. These chemotherapeutic agents are produced locally and help the virus kill the cancer cells as well as sensitize them to radiation. In preclinical studies, the virus has proven effective at killing a variety of mammalian cancer cells either alone or when combined with prodrug therapy and/or radiation therapy. The invention may provide a safe and effective treatment for human cancer.
Description
FIELD OF THE INVENTION

Generally, the present invention relates to a cancer therapy. More specifically, the present invention relates to an adenovirus-based cancer therapy.


BACKGROUND

Despite advances in both diagnosis and therapy, the annual number of cancer related deaths has not decreased during the past 60 years. Although conventional cancer therapies (surgery, radiotherapy, chemotherapy) produce a high rate of cure for patients with early stage disease, many cancers recur and the majority of patients with advanced cancer eventually succumb to the disease. The limitations of conventional cancer therapies do not derive from their inability to ablate tumor, but rather from limits on their ability to do so without excessively damaging the patient. It is this consideration that constrains the extent of surgical resection, the dose of radiation and volume to be irradiated, and the dose and combination of chemotherapeutic drugs. Improving the effectiveness of a treatment is of no clinical value if there is no significant increase in the differential response between tumor and normal tissue (i.e., therapeutic index).


Nonetheless, improved methods and novel agents for treating cancer have resulted in increased survival time and survival rate for patients with various types of cancer. For example, improved surgical and radiotherapeutic procedures result in more effective removal of localized tumors. Surgical methods, however, can be limited due, for example, to the location of a tumor or to dissemination of metastatic tumor cells. Radiotherapy also can be limited by other factors that limit the dose that can be administered. Tumors that are relatively radioresistant will not be cured at such a dose.


Although a single treatment modality such as radiation therapy, chemotherapy, surgery or immunotherapy can result in improvement of a patient, superior results can be achieved when such modalities are used in combination. In particular, treatment with a combination of radiotherapy, which can be directed to a localized area containing a tumor, and chemotherapy or immunotherapy, which provide a systemic mode of treatment, can be useful where dissemination of the disease has occurred or is likely to occur. Unfortunately, the therapeutic usefulness of radiation therapy can be limited where the tumor cells are relatively radioresistant, since the dose is limited by the tolerance of normal tissue in the radiation field. Thus, there exists a need to sensitize cancer tumors to the effects of radiotherapy so that it can more effectively reduce the severity of a tumor in a patient. Further, it would be useful to develop a treatment that more specifically isolates the location of the radiation, thus preventing the effects of radiation treatment on healthy cells.


In related fashion, to mitigate unwanted effects of some chemotherapies, adenovirus vectors have been used to transduce tumor cells with so-called “chemogenes” that convert a nontoxic substance, or “prodrug”, into a toxic, therapeutically effective form. Several new approaches involving gene therapy are under consideration for improving the therapeutic index of cancer therapies.


One of these approaches, so-called “suicide gene therapy,” involves the transfer and expression of non-mammalian genes encoding enzymes that convert non-toxic prodrugs into toxic anti-metabolites. Two “suicide genes” that are currently being evaluated in clinical trials are the E. coli cytosine deaminase (CD) and herpes simplex virus type-1 thymidine kinase (HSV-1 TK) genes, which confer sensitivity to 5-fluorocytosine (5-FC) and ganciclovir (GCV), respectively. Following targeted transfer of these genes to the tumor, the 5-FC and GCV prodrugs are converted locally into potent chemotherapeutic agents resulting in significant tumor cell death (see reference 1 (and the references cited therein) in the List of References Section below). Thus, the dose-limiting systemic toxicity associated with conventional chemotherapies is mitigated.


Previously, the bacterial CD and wild-type HSV-1 TK genes have been coupled to create a novel CD/HSV-1 TK fusion gene (see reference (hereinafter “ref.”) 1 in the List of References Section). The CD/HSV-1 TK fusion gene allows for combined use of CD/5-FC and HSV-1 TK/GCV suicide gene therapies. It has been previously demonstrated that CD/5-FC and HSV-1 TK/GCV suicide gene therapies render malignant cells sensitive to specific pharmacological agents and importantly, sensitize them to radiation (see refs. 1-9). Using a novel, oncolytic, replication-competent adenovirus (Ad5-CD/TKrep) containing the prototype CD/HSV-1 TK fusion gene (ref. 10), the safety and efficacy of replication-competent adenovirus-mediated double suicide gene therapy without and with radiation therapy in several preclinical cancer models (refs. 10-13) and more recently, in human prostate cancer patients (refs. 14 and 15) have been demonstrated.


In these clinical trials targeting human prostate cancer, the Ad5-CD/TKrep virus proved to be safe up to a dose of 1012 Vp when combined with up to 3 weeks of 5-FC and GCV (vGCV) prodrug therapy without (ref. 14) and with (ref. 15) conventional dose (70 Gy) three dimensional conformal radiation therapy (3DCRT). Moreover, these treatment regimens have demonstrated signs of clinical activity (refs 14 and 15).


Nonetheless, despite these advances, a significant need remains for inventions that comprise effective methods and compositions for use in cancer therapies. The present invention was developed in light of these and other drawbacks.


SUMMARY OF THE INVENTION

The present invention comprises novel, improved methods and compositions for cancer therapy which comprise a novel virus that can kill mammalian cancer cells efficiently. The virus produces a novel protein that converts non-toxic prodrugs into potent chemotherapeutic agents. These chemotherapeutic agents are produced locally and help the virus kill the cancer cells as well as sensitize them to radiation. In preclinical studies, the virus has proven effective at killing a variety of human cancer cells either alone or when combined with prodrug therapy and/or radiation therapy.


The invention comprises a novel, “second-generation” adenovirus (designated “Ad5-yCD/mutTKSR39rep-ADP”) with at least two significant improvements relative to the previously disclosed prototype Ad5-CD/TKrep virus. Ad5-yCD/mutTKSR39rep-ADP contains an improved yCD/mutTKSR39 fusion gene whose product is more efficient at converting the 5-FC and GCV prodrugs into their active chemotherapeutic agents. Moreover, Ad5-yCD/mutTKSR39rep-ADP expresses the Ad5 ADP protein, which significantly increases the oncolytic activity of replication-competent adenoviruses. Relative to the prototype Ad5-CDITKrep virus, Ad5-yCD/mutTKSR39rep-ADP has demonstrated greater viral oncolytic and chemotherapeutic activity in preclinical cancer models. The data suggest that the Ad5-yCD/mutTKSR39rep-ADP virus comprising the present invention will exhibit low toxicity and significant anti-tumor activity clinically when combined with 5-FC and GCV prodrug therapy and radiation therapy.


Other aspects of the invention will be apparent to those skilled in the art after reviewing the drawings and the detailed description below.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will now be described, by way of example, with reference to the accompanying drawings, in which:



FIG. 1 is a schematic representation of the Ad5-yCD/mutTKSR39rep-ADP virus of the present invention.



FIG. 2 is a diagram showing an advantage of the ADP gene of the present invention.



FIGS. 3A and 3B are diagrams showing the advantage of the improved yCD/mutTKSR39 gene of the invention.



FIG. 4 is a diagram showing an advantage of the ADP gene of the present invention



FIG. 5 shows Kaplan-Meier plots with Ad5-yCD/mutTKSR39rep-ADP in intraprostatic LNCaP C4-2 mouse model.





DETAILED DESCRIPTION OF THE INVENTION

Generally, the present invention comprises methods and compositions for the treatment for cancer. More specifically, the present invention provides a treatment that, when administered with prodrugs, can kill cancer cells and make the remaining cancer cells more sensitive to radiation.


Embodiments of the present invention include a novel virus that produces a protein that can convert non-toxic prodrugs into chemotherapeutic agents. The prodrugs can be produced locally or administered in conjunction with the treatment. Preferably, the virus is an oncolytic, replication-competent adenovirus such as, but not limited to, Ad5-yCD/mutTKSR39rep-ADP. When administered to a patient in need of such treatment, the adenovirus converts at least two prodrugs into chemotherapeutic agents. These prodrugs can include, but are not limited to, 5-fluorocytosine (5-FC) and ganciclovir (GCV and derivatives thereof).


In addition to the ability to convert the prodrugs into chemotherapeutic agents, embodiments of the present invention sensitize the cells to radiation. By sensitizing the cells, lower doses of radiation can be used without limiting the benefits of radiation. Further, the radiation therapy is more effective because the cancer cells are more sensitive to the radiation, while normal cells are not more sensitive, thus limiting the side effects of cancer treatments. The treatment of the present invention can be used in conjunction with other therapies such as surgery, chemotherapy, hormone therapy, and immunotherapy.


In preferred embodiments, the present invention comprises a novel, oncolytic, replication-competent adenovirus (Ad5-yCD/mutTKSR39rep-ADP) containing a yeast cytosine deaminase (yCD)/mutant SR39 herpes simplex virus type-1 thymidine kinase (mutTKSR39) fusion gene and the adenovirus type 5 (Ad5) adenovirus death protein (ADP) gene. Ad5-yCD/mutTKSR39rep-ADP replicates in and kills human cancer cells efficiently. Ad5-yCD/mutTKSR39rep-ADP produces a novel yCD/mutTKSR39 fusion protein that can convert two prodrugs, 5-fluorocytosine (5-FC) and ganciclovir (GCV; and GCV derivatives), into potent chemotherapeutic agents (referred to as double suicide gene therapy). Both yCD/5-FC and HSV-1 TKSR39 suicide gene therapies exhibit potent chemotherapeutic activity and sensitize tumor cells to ionizing radiation.


By way of example only, preclinical studies show that the Ad5-yCD/mutTKSR39rep-ADP virus is effective at killing a variety of human cancer cells when used by itself or when combined with double suicide gene therapy and/or radiation therapy. In a clinical setting, the Ad5-yCD/mutTKSR39rep-ADP virus could be used as a monotherapy for its virus-mediated oncolytic effect, it could be coupled with yCD/5-FC and HSV-1 Ad5-TKSR39/GCV suicide gene therapies for a combined viral oncolytic/chemotherapeutic effect, or it could be coupled with yCD/5-FC and HSV-1 TKSR39/GCV suicide gene therapies and radiation therapy for a combined viral oncolytic/chemotherapeutic/radiosensitization effect (referred to as trimodal therapy). Trimodal therapy could be combined with other conventional cancer treatments such as surgery, chemotherapy, hormone therapy and immunotherapy in the management of human cancer.


To develop further this gene therapy-based approach as a cancer treatment, a novel, second-generation adenovirus (Ad5-yCD/mutTKSR39rep-ADP) has been developed with two significant improvements relative to the prototype Ad5-CD/TKrep virus. Ad5-yCD/mutTKSR39rep-ADP contains an improved yCD/mutTKSR39 fusion gene whose product is more efficient at converting the 5-FC and GCV prodrugs into their active chemotherapeutic agents. Moreover, Ad5-yCD/mutTKSR39rep-ADP expresses the Ad5 ADP protein, which significantly increases the oncolytic activity of replication-competent adenoviruses. Relative to the prototype Ad5-CDITKrep virus, Ad5-yCD/mutTKSR39rep-ADP has demonstrated greater viral oncolytic and chemotherapeutic activity in preclinical cancer models.


Introduction of nucleic acid of the present invention by viral infection offers several advantages over the other listed methods. Higher efficiency can be obtained due to virus' infectious nature. Moreover, viruses are very specialized and typically infect and propagate in specific cell types. Thus, their natural specificity can be used to target the vectors to specific cell types in vivo or within a tissue or mixed culture of cells. Viral vectors can also be modified with specific receptors or ligands to alter target specificity through receptor mediated events.


Also, additional features can be added to the vector to ensure its safety and/or enhance its therapeutic efficacy. Such features include, for example, markers that can be used to negatively select against cells infected with the recombinant virus. An example of such a negative selection marker is the TK gene described above that confers sensitivity to the antibiotic gancyclovir. Negative selection is therefore a means by which infection can be controlled because it provides inducible suicide through the addition of antibiotic. Such protection ensures that if, for example, mutations arise that produce altered forms of the viral vector or recombinant sequence, cellular transformation will not occur.


Features that limit expression to particular cell types can also be included in some embodiments. Such features include, for example, promoter and regulatory elements that are specific for the desired cell type.


In addition, recombinant viral vectors are useful for in vivo expression of the nucleic acids of the present invention because they offer advantages such as lateral infection and targeting specificity. Lateral infection is inherent in the life cycle of, for example, retrovirus and is the process by which a single infected cell produces many progeny virions that bud off and infect neighboring cells. The result is that a large area becomes rapidly infected, most of which was not initially infected by the original viral particles. This is in contrast to vertical-type of infection in which the infectious agent spreads only through daughter progeny. Viral vectors can also be produced that are unable to spread laterally. This characteristic can be useful if the desired purpose is to introduce a specified gene into only a localized number of targeted cells.


As described above, viruses are very specialized infectious agents that have evolved, in many cases, to elude host defense mechanisms. Typically, viruses infect and propagate in specific cell types. The targeting specificity of viral vectors utilizes its natural specificity to specifically target predetermined cell types and thereby introduce a recombinant gene into the infected cell. The vector to be used in the methods of the invention will depend on desired cell type to be targeted and will be known to those skilled in the art. For example, if breast cancer is to be treated then a vector specific for such epithelial cells would be used. Likewise, if diseases or pathological conditions of the hematopoietic system are to be treated, then a viral vector that is specific for blood cells and their precursors, preferably for the specific type of hematopoietic cell, would be used.


The recombinant vector can be administered in several ways. For example, the procedure can take advantage of the target specificity of viral vectors and consequently do not have to be administered locally at the diseased site. However, local administration can provide a quicker and more effective treatment. Administration can also be performed by, for example, intravenous or subcutaneous injection into the subject. Following injection, the viral vectors will circulate until they recognize host cells with the appropriate target specificity for infection.


An alternate mode of administration can be by direct inoculation locally at the site of the disease or pathological condition or by inoculation into the vascular system supplying the site with nutrients. Local administration is advantageous because there is no dilution effect and, therefore, a smaller dose is required to achieve expression in a majority of the targeted cells. Additionally, local inoculation can alleviate the targeting requirement required with other forms of administration since a vector can be used that infects all cells in the inoculated area. If expression is desired in only a specific subset of cells within the inoculated area, then promoter and regulatory elements that are specific for the desired subset can be used to accomplish this goal. Such non-targeting vectors can be, for example, viral vectors, viral genome, plasmids, phagemids and the like. Transfection vehicles such as liposomes can also be used to introduce the non-viral vectors described above into recipient cells within the inoculated area. Such transfection vehicles are known by one skilled within the art.


The compound of the present invention is administered and dosed in accordance with good medical practice, taking into account the clinical condition of the individual patient, the site and method of administration, scheduling of administration, patient age, sex, body weight and other factors known to medical practitioners. The pharmaceutically “effective amount” for purposes herein is thus determined by such considerations as are known in the art. The amount must be effective to achieve improvement including but not limited to improved survival rate or more rapid recovery, or improvement or elimination of symptoms and other indicators as are selected as appropriate measures by those skilled in the art.


In the method of the present invention, the compound of the present invention can be administered in various ways. It should be noted that it can be administered as the compound and can be administered alone or as an active ingredient in combination with pharmaceutically acceptable carriers, diluents, adjuvants and vehicles. The compounds can be administered orally, subcutaneously or parenterally including intravenous, intraarterial, intramuscular, intraperitoneally, and intranasal administration as well as intrathecal and infusion techniques. Implants of the compounds are also useful. The patient being treated is a warm-blooded animal and, in particular, mammals including humans. The pharmaceutically acceptable carriers, diluents, adjuvants and vehicles as well as implant carriers generally refer to inert, non-toxic solid or liquid fillers, diluents or encapsulating material not reacting with the active ingredients of the invention.


It is noted that humans are treated generally longer than the mice or other experimental animals exemplified herein which treatment has a length proportional to the length of the disease process and drug effectiveness. The doses may be single doses or multiple doses over a period of several days. The treatment generally has a length proportional to the length of the disease process and drug effectiveness and the patient species being treated.


When administering the compound of the present invention parenterally, it will generally be formulated in a unit dosage injectable form (solution, suspension, emulsion). The pharmaceutical formulations suitable for injection include sterile aqueous solutions or dispersions and sterile powders for reconstitution into sterile injectable solutions or dispersions. The carrier can be a solvent or dispersing medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils.


Proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Nonaqueous vehicles such a cottonseed oil, sesame oil, olive oil, soybean oil, corn oil, sunflower oil, or peanut oil and esters, such as isopropyl myristate, may also be used as solvent systems for compound compositions. Additionally, various additives which enhance the stability, sterility, and isotonicity of the compositions, including antimicrobial preservatives, antioxidants, chelating agents, and buffers, can be added. Prevention of the action of microorganisms can be ensured by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, and the like. In many cases, it will be desirable to include isotonic agents, for example, sugars, sodium chloride, and the like. Prolonged absorption of the injectable pharmaceutical form can be brought about by the use of agents delaying absorption, for example, aluminum monostearate and gelatin. According to the present invention, however, any vehicle, diluent, or additive used would have to be compatible with the compounds.


Sterile injectable solutions can be prepared by incorporating the compounds utilized in practicing the present invention in the required amount of the appropriate solvent with various of the other ingredients, as desired.


A pharmacological formulation of the present invention can be administered to the patient in an injectable formulation containing any compatible carrier, such as various vehicle, adjuvants, additives, and diluents; or the compounds utilized in the present invention can be administered parenterally to the patient in the form of slow-release subcutaneous implants or targeted delivery systems such as monoclonal antibodies, vectored delivery, iontophoretic, polymer matrices, liposomes, and microspheres. Many other such implants, delivery systems, and modules are well known to those skilled in the art.


In one embodiment, the compound of the present invention can be administered initially by intravenous injection to bring blood levels to a suitable level. The patient's levels are then maintained by an oral dosage form, although other forms of administration, dependent upon the patient's condition and as indicated above, can be used. The quantity to be administered will vary for the patient being treated.


DEFINITIONS

Unless stated otherwise or suggested by context, the following terms and phrases have the meaning provided below.


The term “gene therapy” as used herein refers to the transfer of genetic material (e.g. DNA or RNA) of interest into a host to treat or prevent a genetic or acquired disease or condition phenotype. The genetic material of interest encodes a product (e.g. a protein, polypeptide, peptide, functional RNA, antisense) whose production in vivo is desired. For example, the genetic material of interest can encode a hormone, receptor, enzyme, polypeptide or peptide of therapeutic value. The genetic material of interest can also encode a suicide gene. For a review see, in general, the text “Gene Therapy” (Advances in Pharmacology 40, Academic Press, 1997).


The phrase “in vivo gene therapy” refers to when the genetic material to be transferred is introduced into the target cells of the recipient organism in situ, which is within the recipient. After therapy, the genetically altered target cells express the transfected genetic material in situ. Such therapy also includes repairing the gene in situ, if the host gene is defective.


The phrase “gene expression vehicle” refers to any vehicle capable of delivery/transfer of heterologous nucleic acid into a host cell. The expression vehicle may include elements to control targeting, expression and transcription of the nucleic acid in a cell selective manner as is known in the art. It should be noted that often the 5′UTR and/or 3′UTR of the gene may be replaced by the 5′UTR and/or 3′UTR of the expression vehicle. Therefore, as used herein the expression vehicle may, as needed, not include the 5′UTR and/or 3′UTR of the actual gene to be transferred and only include the specific amino acid coding region. The expression vehicle can include a promoter for controlling transcription of the heterologous material and can be either a constitutive or inducible promoter to allow selective transcription. Enhancers that may be required to obtain necessary transcription levels can optionally be included. Enhancers are generally any non-translated DNA sequence which works contiguously with the coding sequence (in cis) to change the basal transcription level dictated by the promoter. The expression vehicle can also include a selection gene.


EXAMPLES

1. Description of the Ad5-yCD/mutTKSR39rep-ADP Adenovirus


The complete and partial DNA and translated protein sequences of the Ad5-yCD/mutTKSR39rep-ADP adenovirus, yCD/mutTKSR39 fusion gene and ADP gene (SEQ ID NOs. 1-5) are disclosed following the List of References Section. The following examples are presented in view of such sequences.


The Ad5-yCD/mutTKSR39rep-ADP virus (SEQ ID NO. 1) of the examples is a replication-competent, type 5 adenovirus (the sequence of which is readily known and obtainable to one skilled in the art) that contains an improved yCD/mutTKSR39 fusion gene in the E1 region and the Ad5 ADP gene in the E3 region. A schematic representation of Ad5-yCD/mutTKSR39rep-ADP is provide in FIG. 1 (in FIG. 1, “CMV”=human cytomegalovirus promoter; “SV40”=simian virus 40 polyadenylation sequences; and “mu”=map units.) As shown in FIG. 1, the CMV-yCD/mutTKSR39-SV40 expression cassette is located in the E1 region in place of the deleted 55 kDa E1B gene. The CMV-ADP-SV40 expression cassette is located in the E3 region in place of the deleted E3 genes.


Ad5-yCD/mutTKSR39rep-ADP contains a 1,255 base pair (bp) deletion (bases 2,271 to 3,524) in the 55 kDa E1B gene (see SEQ ID NO. 2). Using methods known to those of ordinary skill in the art, two premature translation stop codons were engineered into the 55 kDa E1B gene resulting in the production of a truncated, non-functional, 78 amino acid E1B protein. Ad5-yCD/mutTKSR39rep-ADP expresses the wild-type Ad5 E1A and 19 kDa E1B proteins. The yCD/mutTKSR39 fusion gene (SEQ ID NO. 4) was inserted in place of the deleted 55 kDa E1B gene. Expression of the yCD/mutTKSR39 fusion gene is driven by the human cytomegalovirus (CMV) promoter and utilizes simian virus 40 (SV40) polyadenylation elements. The yCD/mutTKSR39 fusion gene codes for a 59 kDa yCD/mutTKSR39 fusion protein, which is capable of enzymatically converting 5-flurocytosine (5-FC) into fluorouracil (5-FU) and ganciclovir (GCV) and its derivatives into their corresponding monophosphates (e.g. GCV-MP). The downstream metabolic products of 5-FU and GCV-MP are potent inhibitors of DNA replication and result in the death of dividing cells. These downstream metabolic products are also potent radiosensitizers and can markedly increase the therapeutic effect of radiation therapy (see refs. 1-14). Cells that express the yCD/mutTKSR39 fusion protein, as well as neighboring cells via the bystander effect, are killed by yCD/5-FC and HSV-1 TKSR39/GCV suicide gene therapies and are sensitized to the killing effects of ionizing radiation.


Ad5-yCD/mutTKSR39rep-ADP also contains a 2.68 kb deletion in the E3 region (bases 28,133 to 30,181), which affects genes that suppress the host immune response but are unnecessary for virus replication (see SEQ ID NO. 3). Ad5-yCD/mutTKSR39rep-ADP contains an Ad5 ADP expression cassette in place of the natural Ad5 E3 genes. Expression of the ADP gene (SEQ ID NO. 5) is driven by the human cytomegalovirus (CMV) promoter and utilizes simian virus 40 (SV40) polyadenylation elements. The authentic 111.6 kDa Ad5 ADP protein is produced, which significantly increases the oncolytic activity of replication-competent adenoviruses. Ad5-yCD/mutTKSR39rep-ADP lacks all other known Ad5 E3 genes (gp19, 10.4 kDa, 14.5 kDa and 14.7 kDa genes).


2. Construction of the Ad5-yCD/mutTKSR39rep-ADP Adenovirus


Plasmids containing adenoviral sequences used in the construction of Ad5-yCD/mutTKSR39rep-ADP were obtained from Microbix (Toronto, Canada). To generate the pCMV-yCD/mutTKSR39 expression plasmid (left-end vector), the mutant SR39 HSV-1 TK gene (ref. 16) was generated by the polymerase chain reaction (PCR) using linearized pET23d:HSVTKSR39 as template. The following primer pair was used to generate the mutTKSR39 PCR product:










5′-GATCGGATCCCTCGAGATC2CTAGCATGGCTTCGTACCCCGGC-3






5′-GATCGAATTCTTCCGTGTTTCAGTTAGCCTC-3






The resulting 1,128 bp fragment was digested with BamHI (GGATCC)+EcoRI (GAATTC) and cloned between the BamHI+EcoRI sites of pCA14-CDglyTK-E1aE1b (ref. 10) after removal of the prototype CD/HSV-1 TK fusion gene generating pCA14-CMV-mutTKsR39-E1aE1b. The yCD gene (ref. 17) was generated by PCR using linearized pBAD-ByCD as template. The following primer pair was used to generate the yCD PCR product:










5′-GATCCTCGAGCCACCATGGTGACAGGGGGAATG-3′






5′-GATCGCTAGCACCTCCCCCACCGCCTCtCCCTCCACCCTCACCAATA





TCTTC-3′






The resulting 526 bp fragment was digested with XhoI (CTCGAG)+NheI (GCTAGC) and cloned between the XhoI+NheI sites of pCA14-CMV-mutTKSR39-E1aE1b generating pCA14-CMV-yCD/mutTKSR39−E1aE1b.


To generate pBHG10-PacImod-CMV-ADP (right-end vector), the ADP gene was generated by PCR and cloned between the PacI and SwaI sites of pBHG10-PacImod. pBHG10-PacImod is a derivative of pBHG10 (Microbix; Toronto, Canada) and contains PacI and SwaI sites in the E3 region to facilitate directional cloning.


pBHG10 is a plasmid that contains the entire adenovirus type 5 genome minus bases 188 to 1,339 in the E1 region and bases 28,133 to 30,818 in the E3 region. Using wild-type Ad5 DNA as template, a 333 bp PCR product containing the ADP gene was generated. The following primer pair was used to generate the ADP PCR product:












5′-GATCGGATCCCCTGCTCCAGAGATGACCGGC.3′








5′-GATCAAGCTTGGAATCATGTCTCAMAATC-3′






The resulting 333 bp PCR product was digested with BamHI (GGATCC)+HindIII (AAGCTT) and cloned into BamHI-HindIII digested pCA14 (Microbix; Toronto, Canada) generating pCA14-ADP. The entire CMV-ADP-SV40 polyA expression cassette was generated by PCR using the following primer pair:












5′-GATCATTTAAATAATTCCCTGGCATTATGCCCAGTA-3′








5′-GATCTTAATTAATCGATGCTAGACGATCCAGACATG-3′






A SwaI restriction site (ATTTAAAT) was introduced upstream of the CMV promoter in the 5′ primer and a PacI restriction site (TTAATTAA) was introduced downstream of the SV40 poly A region with the 3′primer. The PCR product was digested with SwaI and PacI and cloned into SwaI-PacI digested pBGH10-PacImod generating pBGH10-PacImod-CMV-ADP.


To generate Ad5-yCD/mutTKSR39rep-ADP virus, pCA14-CMV-yCD/mutTKSR39-E1aE1b (10 μg) was linearized by PvuI digestion and co-transfected with ClaI-linearized pBHG10-PacImod-CMV-ADP (30 μg) into HEK 293 cells (Microbix) using the CaPO4-DNA precipitation method. Isolated plaques were harvested 7-14 days later and plaque-purified a second time on HEK 293 cells. Virus form twice purified plaques was used to infect HEK 293 cells to generate crude viral supernatants and CsCl gradient-purified adenovirus.


3. Advantage of the ADP Gene Contained in Ad5-yCD/mutTKSR39rep-ADP in vitro


Human DU145 prostate adenocarcinoma cells were plated in a 24-well plate at a concentration of 5×104 cells/well and were infected with graded amounts of thee Ad5-CD/TKrep (lane 1) and Ad5-yCD/mutTKSR39rep-ADP viruses (lane 2). Five days later, cells were fixed and stained with crystal violet. The results (as shown in FIG. 2, “Vp”=viral particles) clearly demonstrate that replication-competent adenoviruses containing the Ad5 ADP gene and expressing the ADP protein (i.e. Ad5-yCD/mutTKSR39rep-ADP) possess significantly greater oncolytic activity than adenoviruses that lack ADP. In other words, the presence of the Ad5 ADP gene significantly increased the oncolytic activity of replication competent adenoviruses. These results demonstrate, in vitro, the advantage of the ADP gene contained in Ad5-yCD/mutTKSR39rep-ADP.


4. Advantage of the yCD/mutTKSR39 Gene Contained in Ad5-yCD/mutTKSR39rep-ADP in vitro


A. CD Assays

LNCaP C4-2 cells were mock-infected (lanes 1 & 5), or infected with Ad5-CD/TKrep (lanes 2 & 6), Ad5-yCD/mutTKSR39rep-ADP (lanes 3 & 7), Ad5-yCD/mutTKSR39 rep-hNIS (lanes 4 & 8) at a MOI of 10. Seventy two hours later, cells were examined for CD activity using [14C]-cytosine (lanes 1-4) and [3H]-5-FC (lanes 4-8) as substrates. The results are shown in FIG. 3A [(Cytosine (lower left arrow), uracil (upper left arrow), 5-FC (upper right arrow), 5-FU (lower right arrow)]. As shown by FIG. 3A, recombinant adenoviruses that express the improved yCD/mutTKSR39rep gene, such as Ad5-yCD/mutTKSR39rep-ADP, demonstrate greater conversion of 5-FC into 5-FU, but not cytosine into uracil, than viruses expressing the CD/HSV-1 TK fusion gene contained in the prototype Ad5-CD/TKrep virus.


B. Cytopathic Effect Assay

Cells (106 cells, 60 mm dish) were mock-infected or infected with Ad5-CD/TKrep or Ad5-yCD/mutTKSR39rep-ADP at an MOI of 3. The next day, cells were replated (24 well plate) in medium containing varying concentrations of 5-FC (wells 3-7 and 15-19, going left to right, top to bottom) or GCV (wells 8-12 and 20-24, going left to right, top to bottom) in μg/ml. Cells were stained with crystal violet 9 days later. The results (as shown in FIG. 3B) demonstrate that recombinant adenoviruses expressing the improved yCD/mutTKrep gene, such as Ad5-yCD/mutTKSR39rep-ADP, achieve greater cell kill when combined with 5-FC prodrug therapy than viruses expressing the CD/HSV-1 TK fusion gene contained in the prototype Ad5-yCD/TKrep virus. Together, the results of FIGS. 3A and 3B show, in vitro, the advantage of the yCD/mutTKSR39 gene, which is contained in Ad5-yCD/mutTKSR39rep-ADP.


The results of this example also demonstrate that yCD/5-FC and HSV-1 TKSR39/GCV suicide gene therapies can be used to increase the therapeutic effect of the Ad5-yCD/mutTKSR39rep-ADP virus itself. Ad5-yCD/mutTKSR39rep-ADP contains a novel yCD/mutTKSR39 fusion gene whose product has improved catalytic activity relative to the CD/HSV-1 TK fusion protein produced by the prototype Ad5-CD/TKrep virus. Recombinant adenoviruses that express the improved yCD/mutTKSR39 fusion protein demonstrate significantly greater conversion of 5-FC into 5-FU, and possibly GCV into GCV-MP, than viruses that express the prototype CD/HSV-1-TK fusion protein. Thus, yCD/5-FC and HSV-1 TKSR39/GCV suicide gene therapies can be used independently and together to augment the tumor destructive effects of the Ad5-yCD/mutTKSR39rep-ADP virus.


5. Advantage of the ADP Gene Contained in Ad5-yCD/mutTKSR39rep-ADP in vivo


Intramuscular (leg) C33A tumors (150-200 mm3) were injected with 1010 vp of Ad5-CD/TKrep or Ad5-CD/TKrep-ADP on Days 0, 2 and 4 (arrowheads in FIG. 4). 5-FC (500 mg/kg/day) and GCV (30 mg/kg/day) were administered on Days 5-11 (hatched bar in FIG. 4). Tumor volume was monitored every other day. The predetermined endpoint was 500 mm3. Survival is defined as an animal having no tumor (cure) or a tumor <500 mm3 on Day 90. The results (as shown in FIG. 4 and Table 1 below) show greater destruction of tumor cells in vivo and thus demonstrate the advantage of the ADP gene, which is contained in Ad5-yCD/mutTKSR39rep-ADP. In other words, the presence of the Ad5 ADP gene significantly increased the oncolytic activity of replication competent adenoviruses in vivo as well as in vitro.









TABLE 1







Summary of Results with Ad5-CD/TKrep-ADP in C33A Tumor


Model.









P value













Tumor

Fisher Exact



Median
Care
Log Rank
(Tumor


Group
Survival
(%)
(Survival)
Cure)














PBS
17
0 (0/13)




Ad5-CD/TKrep
26
0 (0/12)


Ad5-CD/TKrep + 5-FC +
33
9 (1/11)


GCV


Ad5-CD/TKrep-ADP
>90
8 (1/12)
0.022b
1.000b


Ad5-CD/TKrep-ADP +
>90
70 (7/10) 
0.026c
.008c


5-FC + GCV






aMedian survival is in days.




bAd5-CD/TKrep-ADP vs. Ad5-CD/TKrep




cAd5-CD/TKrep-ADP + 5-FC + GCV vs. Ad5-CD/TKrep + 5-FC + GCV








6. Effectiveness of Ad5-yCD/mutTKSR39rep-ADP in vivo in Mouse Model


Male SCID mice bearing intraprostatic LNCaP C4-2 tumors (˜25-50 mm3 in size) were injected with about 109 vp of Ad5-yCD/mutTKSR39rep-ADP on Day 0 (arrowhead in FIG. 5). 5-FC (500 mg/kg/day) and GCV (30 mg/kg/day) were administered on Days 3-9 (hatched bar in FIG. 5). Serum PSA was measured weekly. The predetermined endpoint was PSA=500 ng/ml. The results (as shown in FIG. 5 and Table 2) show an increase in median survival time and/or tumor cure in mouse model using Ad5-yCD/mutTKSR39rep-ADP of the present invention.









TABLE 2







Results with Ad5-yCD/mutTKSR39rep-ADP


in LNCaP C4-2 Tumor Model.









P value















Fisher



Median
Tumor

Exact



Survival
cure
Log Rank
(Tumor


Group
(days)
(%)
(Survival)
Cure)














PBS
5
0 (0/8) 




Ad5-yCD/mutTKSR39rep-ADP
17
0 (0/11)
.038a
NAa


Ad5-yCD/mutTKSR39rep-
>90
80 (8/10) 
<0.001b
<0.001b


ADP + 5-FC + GCV






aAd5-yCD/mutTKSR39rep-ADP vs. PBS;




bAd5-yCD/mutTKSR39rep-ADP + 5-FC + GCV vs. PBS.








7. Radiosensitized Human Cancer Cells Using yCD/5-FC and HSV-1 TKSR39/GCV


As shown in previous experiments by the inventors (see refs. 1-14), yCD/5-FC and HSV-1 TKSR39/GCV suicide gene therapies can also be used to radiosensitize human cancer cells. Ad5-yCD/mutTKSR39rep-ADP contains a novel yCD/mutTKSR39 fusion gene whose product has improved catalytic activity relative to the CD/HSV-1 TK fusion protein produced by the prototype Ad5-CD/TKrep virus. The previous studies demonstrated that CD/5-FC and HSV-1 TK/GCV suicide gene therapies can sensitize human tumor cells to ionizing radiation. Thus, since Ad5-yCD/mutTKSR39 rep-ADP expresses an improved yCD/mutTKSR39 fusion protein, it may result in greater tumor cell radiosensitization in vivo.


Throughout this application, various references are noted by reference numbers. A numbered list of these references with their full citations is provided below. The disclosures of these references in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art to which this invention pertains.


While the present invention has been particularly shown and described with reference to the foregoing preferred and alternative embodiments, and examples, it should be understood by those skilled in the art that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention without departing from the spirit and scope of the invention as defined in the following claims. It is intended that the following claims define the scope of the invention and that the method and composition within the scope of these claims and their equivalents be covered thereby. This description of the invention should be understood to include all novel and non-obvious combinations of elements described herein, and claims may be presented in this or a later application to any novel and non-obvious combination of these elements. The foregoing embodiments are illustrative, and no single feature or element is essential to all possible combinations that may be claimed in this or a later application. Where the claims recite “a” or “a first” element of the equivalent thereof, such claims should be understood to include incorporation of one or more such elements, neither requiring nor excluding two or more such elements.


LIST OF REFERENCES



  • 1. Rogulski, K. R., Kim, J. H., Kim, S. H., and Freytag, S. O. Glioma cells transduced with an E. coli CD/HSV-1 TK fusion gene exhibit enhanced metabolic suicide and radiosensitivity. Hum. Gene Ther., 8: 73-85, 1997.

  • 2. Kim, J. H., Kim, S. H., Brown, S. L., and Freytag, S. O. Selective enhancement by an antiviral agent of the radiation-induced cell killing of human glioma cells transduced with HSV-tk gene. Cancer Res., 54: 6003-6056, 1994.

  • 3. Kim, J. H., Kim, S. H., Kolozsvary, A., Brown, S. L., Kim, O. B., and Freytag, S. O. Selective enhancement of radiation response of herpes simplex virus thymidine kinase transduced 9L gliosarcoma cells in vitro and in vivo by antiviral agents. Int. J. Radiat. Oncol. Biol. Phys., 33: 861-868, 1995.

  • 4. Khil, M., Kim, J. H., Mullen, C. A., Kim, S. H., and Freytag, S. O. Radiosensitization by 5-fluorocytosine of human colorectal carcinoma cells in culture transduced with cytosine deaminase gene. Clin. Cancer Res., 2: 53-57, 1996.

  • 5. Kim, S. H., Kim, J. H., Kolozsvary, A., Brown, S. L., and Freytag, S. O. Preferential radiosensitization of 9L glioma cells transduced with HSV-TK gene by acyclovir. J. Neurooncol., 33: 189-194, 1997.

  • 6. Gable, M., Kim, J. H., Kolozsvary, A., Khil, M., and Freytag, S. O. Selective in vivo radiosensitization by 5-fluorocytosine of human colorectal carcinoma cells transduced with the E. coli cytosine deaminase gene. Int. J. Radiat. Oncol. Biol. Phys., 41: 883-887, 1998.

  • 7. Rogulski, K. R., Zhang, K., Kolozsvary, A., Kim, J. H., and Freytag, S. O. Pronounced antitumor effects and tumor radiosensitization of double suicide gene therapy. Clin. Cancer Res., 3: 2081-2088, 1997.

  • 8. Kim, J. H., Kolozsvary, A., Rogulski, K. R., Khil, M., and Freytag, S. O. Selective radiosensitization of 9L glioma. in the brain transduced with double suicide fusion gene. Can. J. Scient Am. 4:364-369, 1998.

  • 9. Xie, Y., Gilbert, J. D., Kim, J. H., and Freytag, S. O. Efficacy of adenovirus-mediated CD/5-FC and HSV-1TK/GCV suicide gene therapies concomitant with p53 gene therapy. Clin. Cancer Res., 5: 4224-4232, 1999.

  • 10. Freytag, S. O., Rogulski, K. R., Paielli, D. L., Gilbert, J. D., and Kim, J. H. A novel three-pronged approach to selectively kill cancer cells: concomitant viral, double suicide gene, and radiotherapy. Hum. Gene Ther., 9: 1323-1333, 1998.

  • 11. Rogulski, K. R., Wing, M., Paielll, D. L., Gilbert, J. D., Kim, J. H., and Freytag, S. O. Double suicide gene therapy augments the antitumor activity of a replication-competent lytic adenovirus through enhanced cytotoxicity and radiosensitization. Hum. Gene Ther., 11: 67-76, 2000.

  • 12. Paielli, D. L., Wing, M., Rogulski, K. R., Gilbert, J. D., Kolozsvary, A., Kim, J. H., Hughes, J. V., Schnell, M., Thompson, T., and Freytag S. O. Evaluation of the biodistribution, toxicity, and potential of germ line transmission of a replication-competent human adenovirus following intraprostatic administration in the mouse. Molecular Ther. 1: 263-274, 2000.

  • 13. Freytag, S. O., Paielli, D., Wing, M., Rogulski, K., Brown, S., Kolozsvary, A., Seely, J., Barton, K., Dragovic, A., and Kim, J. H. Efficacy and toxicity of replication-competent adenovirus-mediated double suicide gene therapy in combination with radiation therapy in an orthotopic mouse prostate cancer model. Int. J. Radiat. Oncol. Biol. Phys., 54: 873-886, 2002.

  • 14. Freytag, S. O., Khil, M., Stricker, H., Peabody, J., Menon, M., DePeralta-Venturina, M., Nafziger, D., Pegg, J., Paielli, D., Brown, S., Barton, K., Lu, M., Aguilar-Cordova, E., and Kim, J. H. Phase I study of replication-competent adenovirus-mediated double suicide gene therapy for the treatment of locally recurrent prostate cancer. Cancer Res., 62: 4968-4976, 2002.

  • 15. Freytag, S. O., Stricker, H., Peabody, J., Menon, M., DePeralta-Venturina, M., Pegg, J., Paiellii, D., Brown, S., Lu, M., and Kim, J. H. Phase I study of replication-competent-adenovirus-mediated double suicide gene therapy in combination with conventional dose three-dimensional conformal radiation therapy for the treatment of locally aggressive prostate cancer. In preparation, 2003.

  • 16. Black, M., Kokoris, M., and Sabo, P. Herpes simplex virus-1 thymidine kinase mutants created by semi-random sequence mutagenesis improve prodrug-mediated tumor cell killing. Cancer Res., 61: 3022-3026, 2001.

  • 17. Kievit, E., Bershad, E., Ng, E., Sethna, P., Dev, I., Lawrence, T., Rehemtulla, A. Superiority of yeast over bactedal cytosine deaminase for enzyme/prodrug gene therapy in colon cancer xenografts. Cancer Res., 59: 1417-1421, 1999.

  • 18. Bischoff J R, Kirn D H, Williams A, Heise C, Horn S, Muna M, et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science, 274: 373-376, 1996.

  • 19. Heise C, Sampson-Johannes A, Williams A, McCormick F, von Hoff D D, Kirn D H. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nature Med. 3: 639-645, 1997.

  • 20. Ganly, I., Kirn, D., Eckhardt, S., Rodriguez, G., Soutar, D., Otto, R., Robertson, A., Park, O., Gulley, M., Heise, C., von Hoff, D., and Kaye, S. A phase I study of ONYX-015, an E1B attenuated adenovirus, administered intratumorally to patents with recurrent head and neck cancer. Clin. Cancer Res., 6: 798-806, 2000.

  • 21. Nemunaitis, J., Khuri, F., Ganly, I., Arseneau, J., Posner, M., Vokes, E., Kuhn, J., McCarty, T., Landers, S., Blackburn, A., Romel, L., Randlev, B., Kaye, S., and Kim, D. Phase II trial of intratumoral administration of ONYX-015, a replication-selective adenovirus, in patients with refractory head and neck cancer. J. Clin. Oncol., 19: 289-298, 2001.

  • 22. Nemunaitis, J., Ganly, I., Khuri, F., Arsenead, J, Kuhn, J., McCarty, T., Landers, S., Maples, P., Romel, L., Randlev, B., Reid, T., Kaye, S., and Kim, D. Selective replication and oncolysis in p53 mutant tumors with ONYX-015, an E1B-55 kD gene-deleted adenovirus, in patients with advanced head and neck cancer: a phase II trial. Cancer Res., 60: 6359-6366, 2000.

  • 23. Khuri, F., Nemunaitis, J., Ganly, I., Arseneau, J., Tannock, I., Romel., L., Gore, M., Ironside, J., MacDougall, R., Heise, C., Randlev, B., Gillenwater, A., Bruso, P., Kaye, S., Hong, W., and Kirn, D. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nature Med., 6: 879-885, 2000.

  • 24. Mulvihill, S,, Warren, R., Venook, A., Adler, A., Randlev, B., Heise, C., and Kirn, D. Safety and feasibility of injection with an E1B-55 kDa gene-deleted, replication-selective adenovirus (ONYX-015) into primary carcinomas of the pancreas: a phase I trial. Gene Ther., 8: 308-315, 2001.

  • 25. Reid, T., Galanis, E., Abbruzzese, J., Sze, D., Andrews, J., Romel, L., Hatfield, M., Rubin, J., and Kim, D. Intra-arterial administration of a replication-selective adenovirus (dl1520) in patients with colorectal carcinoma metastatic to the liver: a phase I trial. Gene Ther., 8: 1618-1626, 2001.

  • 26. Vasey, P., Shulman, L., Campos, S., Davis, J., Gore, M., Johnston, S., Kirn, D., O'Neill, V., Siddiqui, N., Seiden, M., and Kaye, S. Phase I trial of intraperitoneal injection of the E1B-55-kd-gene-deleted adenovirus ONYX-015 (dl520) given on days 1 through 5 every 3 weeks in patients with recurrent/refractory epithelial ovarian cancer. J. Clin. Oncol, 20: 1562-1569, 2002.

  • 27. Rodriquez, R., Schuur, E., Lim, H., Henderson, G., Simons, J., and Henderson, D. Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res., 57: 2559-2563, 1997.

  • 28. Chen, Y., DeWeese, T., Dilley, J., Zhang, Y., Li, Y., Ramesh, N., Lee, J., Pennathur-Das, R., Radzyminski, J., Wypych, J., Brignetti, D., Scott, S., Stephens, J., Karpf, D., Henderson, D. and Yu, D. CV706, a prostate cancer-specific adenovirus variant, in combination with radiotherapy produces synergistic antitumor efficacy without increasing toxicity. Cancer Res., 61: 5453-5460, 2001.

  • 29. DeWeese, T., van der Poel, H., Li, S., Mikhak, B., Drew, R., Goemann, M., Hamper, U., DeJong, R., Detorie, N., Roddguez, R., Haulk, T., DeMarzo, A., Piantadosi, S., Yu, D., Chen, Y., Henderson, D., Carducci, M., Nelson, W., and Simons, J. A phase I trial of CV706, a replication-competent, PSA selective oncolytic adenovirus, for the treatment of locally recurrent prostate cancer following radiation therapy. Cancer Res., 61: 7464-7472, 2001.

  • 30. Burke and Olson, “Preparation of Clone Libraries in Yeast Artificial-Chromosome Vectors” in Methods in Enzymology, Vol. 194, “Guide to Yeast Genetics and Molecular Biology”, eds. C. Guthrie and G. Fink, Academic Press, Inc., Chap. 17, pp. 251-270 (1991).

  • 31. Capecchi, “Altering the genome by homologous recombination” Science 244:1288-1292 (1989).

  • 32. Davies et al., “Targeted alterations in yeast artificial chromosomes for inter-species gene transfer”, Nucleic Acids Research, Vol. 20, No. 11, pp. 2693-2698 (1992).

  • 33. Dickinson et al., “High frequency gene targeting using insertional vectors”, Human Molecular Genetics, Vol. 2, No. 8, pp. 1299-1202 (1993).

  • 34. Duff and Lincoln, “Insertion of a pathogenic mutation into a yeast artificial chromosome containing the human APP gene and expression in ES cells”, Research Advances in Alzheimers Disease and Related Disorders, 1995.

  • 35. Huxley et al., “The human, HPRT gene on a yeast artificial chromosome is functional when transferred to mouse cells by cell fusion”, Genomics, 9:742-750 (1991).

  • 36. Jakobovits et al., “Germ-line transmission and expression of a human-derived yeast artificial chromosome”, Nature, Vol. 362, pp. 255-261 (1993).

  • 37. Lamb et al., “Introduction and expression of the 400 kilobase precursor amyloid protein gene in transgenic mice”, Nature Genetics, Vol. 5, pp. 22-29 (1993).

  • 38. Pearson and Choi, Expression of the human b-amyloid precursor protein gene from a yeast artificial chromosome in transgenic mice. Proc. Natl. Acad. Sci. USA, 1993. 90, 10578-82.

  • 39. Rothstein, “Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast” in Methods in Enzymology, Vol. 194, “Guide to Yeast Genetics and Molecular Biology”, eds. C., Guthrie and G. Fink, Academic Press, Inc., Chap. 19, pp. 281-301 (1991).

  • 40. Schedl et al., “A yeast artificial chromosome covering the tyrosinase gene confers copy number-dependent expression in transgenic mice”, Nature, Vol. 362, pp. 258-261 (1993).

  • 41. Strauss et al., “Germ line transmission of a yeast artificial chromosome spanning the murine a (1) collagen locus”, Science, Vol. 259, pp. 1904-1907 (1993).

  • 42. Gilboa, E, Eglitis, M A, Kantoff, P W, Anderson, W F: Transfer and expression of cloned genes using retroviral vectors. BioTechniques 4(6):504-512, 1986.

  • 43. Cregg J M, Vedvick T S, Raschke W C: Recent Advances in the Expression of Foreign Genes in Pichia pastoris, Bio/Technology 11:905-910, 1993.

  • 44. Culver, 1998. Site-Directed recombination for repair of mutations in the human ADA gene. (Abstract) Antisense DNA & RNA based therapeutics, February, 1998, Coronado, Calif.

  • 45. Huston et al, 1991 “Protein engineering of single-chain Fv analogs and fusion proteins” in Methods in Enzymology (J J Langone, ed.; Academic Press, New York, N.Y.) 203:46-88.

  • 46. Johnson and Bird, 1991 “Construction of single-chain Fvb derivatives of monoclonal antibodies and their production in Escherichia coli in Methods in Enzymology (J J Langone, ed.; Academic Press, New York, N.Y.) 203:88-99.

  • 47. Mernaugh and Mernaugh, 1995 “An overview of phage-displayed recombinant antibodies” in Molecular Methods In Plant Pathology (R P Singh and U S Singh, eds.; CRC Press Inc., Boca Raton, Fla.) pp. 359-365.

  • 47. Mernaugh and Mernaugh, 1995 “An overview of phage-displayed recombinant antibodies” in Molecular Methods In Plant Pathology (RP Singh and U S Singh, eds.; CRC Press Inc., Boca Raton, Fla.) pp. 359-365.











Complete DNA Sequence of Ad5-yCD/mutTKSR39rep-ADP Virus









(SEQ. ID NO. 1)









TCCCTTCCAGCTCTCTGCCCCTTTTGGATTGAAGCCAATATGATAATGAGGGGGTGGAGTTTGTGACGTGGCGCGGGGCGTGGGAACGGGGCGGGT






GACGTAGTAGTGTGGCGGAAGTGTGATGTTGCAAGTGTGGCGGAACACATGTAAGCGACGGATGTGGCAAAAGTGACGTTTTTGGTGTGCGCCGGT





GTACACAGGAAGTGACAATTTTCGCGCGGTTTTAGGCGGATGTTGTAGTAAATTTGGGCGTAACCGAGTAAGATTTGGCCATTTTCGCGGGAAAAC





TGAATAAGAGGAAGTGAAATCTGAATAATTTTGTGTTACTCATAGCGCGTAATCTCTAGCATCGAAGATCCATTTGTCTAGGGCCGCGGGGACTTT





GACCGTTTACGTGGAGACTCGCCCAGGTGTTTTTCTCAGGTGTTTTCCGCGTTCCGGGTCAAAGTTGGCGTTTTATTATTATAGTCAGCTGACGTG





TAGTGTATTTATACCCGGTGAGTTCCTCAAGAGGCCACTCTTGAGTGCCAGCGAGTAGAGTTTTCTCCTCCGAGCCGCTCCGACACCGGGACTGAA





AATGAGACATATTATCTGCCACGGAGGTGTTATTACCGAAGAAATGGCCGCCAGTCTTTTGGACCAGCTGATCGAAGAGGTACTGGCTGATAATCT





TCCACCTCCTAGCCATTTTGAACCACCTACCCTTCACGAACTGTATGATTTAGACGTGACGGCCCCCGAAGATCCCAACGAGGAGGCGGCTTCGCA





GATTTTTCCCGACTCTGTAATGTTGGCGGTGCAGGAAGGGATTGACTTACTCACTTTTCCGCCGGCGCCCGGTTCTCCGGAGCCGCCTCACCTTTC





CCGGCAGCCCGAGCAGCCGGAGCAGAGAGCCTTGGGTCCGGTTTCTATGCCAAACCTTGTACCGGAGGTGATCGATCTTACCTGCCACGAGGCTGG





CTTTCCACCCAGTGACGACGAGGATGAAGAGGGTGAGGAGTTTGTGTTAGATTATGTGGAGCACCCCGGGCACGGTTGCAGGTCTTGTCATTATCA





CCGGAGGAATACGGGGGACCCAGATATTATGTGTTCGCTTTGCTATATGAGGACCTGTGGCATGTTTGTCTACAGTAAGTGAAAATTATGGGCAGT





GGGTGATAGAGTGGTGGGTTTGGTGTGGTAATTTTTTTTTTAATTTTTACAGTTTTGTGGTTTAAAGAATTTTGTATTGTGATTTTTTTAAAAGGT





CCTGTGTCTGAACCTGAGCCTGAGCCCGAGCCAGAACCGGAGCCTGCAAGACCTACCCGCCGTCCTAAAATGGCGCCTGCTATCCTGAGACGCCCG





ACATCACCTGTGTCTAGAGAATGCAATAGTAGTACGGATAGCTGTGACTCCGGTCCTTCTAACACACCTCCTGAGATACACCCGGTGGTCCCGCTG





TGCCCCATTAAACCAGTTGCCGTGAGAGTTGGTGGGCGTCGCCAGGCTGTGGAATGTATCGAGGACTTGCTTAACGAGCCTGGGCAACCTTTGGAC





TTGAGCTGTAAACGCCCCAGGCCATAAGGTGTAAACCTGTGATTGCGTGTGTGGTTAACGCCTTTGTTTGCTGAATGAGTTGATGTAAGTTTAATA





AAGGGTGAGATAATGTTTAACTTGCATGGCGTGTTAAATGGGGCGGGGCTTAAAGGGTATATAATGCGCCGTGGGCTAATCTTGGTTACATCTGAC





CTCATGGAGGCTTGGGAGTGTTTGGAAGATTTTTCTGCTGTGCGTAACTTGCTGGAACAGAGCTCTAACAGTACCTCTTGGTTTTGGAGGTTTCTG





TGGGGCTCATCCCAGGCAAAGTTAGTCTGCAGAATTAAGGAGGATTACAAGTGGGAATTTGAAGAGCTTTTGAAATCCTGTGGTGAGCTGTTTGAT





TCTTTGAATCTGGGTCACCAGGCGCTTTTCCAAGAGAAGGTCATCAAGACTTTGGATTTTTCCACACCGGGGCGCGCTGCGGCTGCTGTTGCTTTT





TTGAGTTTTATAAAGGATAAATGGAGCGAAGAAACCCATCTGAGCGGGGGGTACCTGCTGGATTTTCTGGCCATGCATCTGTGGAGAGCGGTTGTG





AGACACAAGAATCGCCTGCTACTGTTGTCTTCCGTCCGCCCGGCGATAATACCGACGGAGGAGCAGCAGCAGCAGCAGGAGGAAGCCAGGCGGCGG





CGGCAGGAGCAGAGCCCATGGAACCCGAGAGCCGGCCTGGACCCTCGGGAATGAATGTTGTATAGGTGGCTTAACTGTATAGATCTAATTCCCTGG





CATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGTTTTGGCAG





TACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCGCCACCCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAA





CGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTCGTTTA





GTGAACCGTCAGATCGCCTGGAGACGCCATCCACGCTGTTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTGGGGATCTTCGAGTCGAGG





GATCCCTCGAGCCACCATGGGGACAGGGGGAATGGCAAGCAAGTGGGATCAGAAGGGTATGGACATTGCCTATGAGGAGGCGGCCTTAGGTTACAA





AGAGGGTGGTGTTCCTATTGGCGGATGTCTTATCAATAACAAAGACGGAAGTGTTCTCGGTCGTGGTCACAACATGAGATTTCAAAAGGGATCCGC





CACACTACATGGTGAGATCTCCACTTTGGAAAACTGTGGGAGATTAGAGGGCAAAGTGTACAAAGATACCACTTTGTATACGACGCTGTCTCCATG





CGACATGTGTACAGGTGCCATCATCATGTATGGTATTCCACGCTGTGTTGTCGGTGAGAACGTTAATTTCAAAAGTAAGGGCGAGAAATATTTACA





AACTAGAGGTCACGAGGTTGTTGTTGTTGACGATGAGAGGTGTAAAAAGATCATGAAACAATTTATCGATGAAAGACCTCAGGATTGGTTTGAAGA





TATTGGTGAGGGTGGAGGGGGAGGCGGTGGGGGAGGTGCTAGCATGGCTTCGTACCCCTGCCATCAACACGCGTCTGCGTTCGACCAGGCTGCGCG





TTCTCGCGGCCATAGCAACCGACGTACGGCGTTGCGCCCTCGCCGGCAGCAAGAAGCCACGGAAGTCCGCCTGGAGCAGAAAATGCCCACGCTACT





GCGGGTTTATATAGACGGTCCTCACGGGATGGGGAAAACCACCACCACGCAACTGCTGGTGGCCCTGGGTTCGCGCGACGATATCGTCTACGTACC





CGAGCCGATGACTTACTGGCAGGTGCTGGGGGCTTCCGAGACAATCGCGAACATCTACACCACACAACACCGCCTCGACCAGGGTGAGATATCGGC





CGGGGACGCGGCGGTGGTAATGACAAGCGCCCAGATAACAATGGGCATGCCTTATGCCGTGACCGACGCCGTTCTGGCTCCTCATGTCGGGGGGGA





GGCTGGGAGTTCACATGCCCCGCCCCCGGCCCTCACCATCTTCCTCGACCGCCATCCCATCGCCTTCATGCTGTGCTACCCGGCCGCGCGGTACCT





TATGGGCAGCATGACCCCCCAGGCCGTGCTGGCGTTCGTGGCCCTCATCCCGCCGACCTTGCCCGGCACAAACATCGTGTTGGGGGCCCTTCCGGA





GGACAGACACATCGACCGCCTGGCCAAACGCCAGCGCCCCGGCGAGCGGCTTGACCTGGCTATGCTGGCCGCGATTCGCCGCGTTTACGGGCTGCT





TGCCAATACGGTGCGGTATCTGCAGGGCGGCGGGTCGTGGTGGGAGGATTGGGGACAGCTTTCGGGGACGGCCGTGCCGCCCCAGGGTGCCGAGCC





CCAGAGCAACGCGGGCCCACGACCCCATATCGGGGACACGTTATTTACCCTGTTTCGGGCCCCCGAGTTGCTGGCCCCCAACGGCGACCTGTATAA





CGTGTTTGCCTGGGCCTTGGACGTCTTGGCCAAACGCCTCCGTCCCATGCACGTCTTTATCCTGGATTACGACCAATCGCCCGCCGGCTGCCGGGA





CGCCCTGCTGCAACTTACCTCCGGGATGGTCCAGACCCACGTCACCACCCCAGGCTCCATACCGACGATCTGCGACCTGGCGCGCACGTTTGCCCG





GGAGATGGGGGAGGCTAACTGAAACACGGAAGAATTCAAGCTTGTCGACTTCGAGCAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCA





ATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTATCATGTCTGGATCG





TCTAGCATCGAAGATCTGGATCTGGGCGTGGTTAAGGGTGGGAAAGAATATATAAGGTGGGGGTCTTATGTAGTTTTGTATCTGTTTTGCAGCAGC





CGCCGCCGCCATGAGCACCAACTCGTTTGATGGAAGCATTGTGAGCTCATATTTGACAACGCGCATGCCCCCATGGGCCGGGGTGCGTCAGAATGT





GATGGGCTCCAGCATTGATGGTCGCCCCGTCCTGCCCGCAAACTCTACTACCTTGACCTACGAGACCGTGTCTGGAACGCCGTTGGAGACTGCAGC





CTCCGCCGCCGCTTCAGCCGCTGCAGCCACCGCCCGCGGGATTGTGACTGACTTTGCTTTCCTGAGCCCGCTTGCAAGCAGTGCAGCTTCCCGTTC





ATCCGCCCGCGATGACAAGTTGACGGCTCTTTTGGCACAATTGGATTCTTTGACCCGGGAACTTAATGTCGTTTCTCAGCAGCTGTTGGATCTGCG





CCAGCAGGTTTCTGCCCTGAAGGCTTCCTCCCCTCCCAATGCGGTTTAAAACATAAATAAAAAACCAGACTCTGTTTGGATTTGGATCAAGCAAGT





GTCTTGCTGTCTTTATTTAGGGGTTTTGCGCGCGCGGTAGGCCCGGGACCAGCGGTCTCGGTCGTTGAGGGTCCTGTGTATTTTTTCCAGGACGTG





GTAAAGGTGACTCTGGATGTTCAGATACATGGGCATAAGCCCGTCTCTGGGGTGGAGGTAGCACCACTGCAGAGCTTCATGCTGCGGGGTGGTGTT





GTAGATGATCCAGTCGTAGCAGGAGCGCTGGGCGTGGTGCCTAAAAATGTCTTTCAGTAGCAAGCTGATTGCCAGGGGCAGGCCCTTGGTGTAAGT





GTTTACAAAGCGGTTAAGCTGGGATGGGTGCATACGTGGGGATATGAGATGCATCTTGGACTGTATTTTTAGGTTGGCTATGTTCCCAGCCATATC





CCTCCGGGGATTCATGTTGTGCAGAACCACCAGCACAGTGTATCCGGTGCACTTGGGAAATTTGTCATGTAGCTTAGAAGGAAATGCGTGGAAGAA





CTTGGAGACGCCCTTGTGACCTCCAAGATTTTCCATGCATTCGTCCATAATGATGGCAATGGGCCCACGGGCGGCGGCCTGGGCGAAGATATTTCT





GGGATCACTAACGTCATAGTTGTGTTCCAGGATGAGATCGTCATAGGCCATTTTTACAAAGCGCGGGCGGAGGGTGCCAGACTGCGGTATAATGGT





TCCATCCGGCCCAGGGGCGTAGTTACCCTCACAGATTTGCATTTCCCACGCTTTGAGTTCAGATGGGGGGATCATGTCTACCTGCGGGGCGATGAA





GAAAACGGTTTCCGGGGTAGGGGAGATCAGCTGGGAAGAAAGCAGGTTCCTGAGCAGCTGCGACTTACCGCAGCCGGTGGGCCCGTAAATCACACC





TATTACCGGGTGCAACTGGTAGTTAAGAGAGCTGCAGCTGCCGTCATCCCTGAGCAGGGGGGCCACTTCGTTAAGCATGTCCCTGACTCGCATGTT





TTCCCTGACCAAATCCGCCAGAAGGCGCTCGCCGCCCAGCGATAGCAGTTCTTGCAAGGAAGCAAAGTTTTTCAACGGTTTGAGACCGTCCGCCGT





AGGCATGCTTTTGAGCGTTTGACCAAGCAGTTCCAGGCGGTCCCACAGCTCGGTCACCTGCTCTACGGCATCTCGATCCAGCATATCTCCTCGTTT





CGCGGGTTGGGGCGGCTTTCGCTGTACGGCAGTAGTCGGTGCTCGTCCAGACGGGCCAGGGTCATGTCTTTCCACGGGCGCAGGGTCCTCGTCAGC





GTAGTCTGGGTCACGGTGAAGGGGTGCGCTCCGGGCTGCGCGCTGGCCAGGGTGCGCTTGAGGCTGGTCCTGCTGGTGCTGAAGCGCTGCCGGTCT





TCGCCCTGCGCGTCGGCCAGGTAGCATTTGACCATGGTGTCATAGTCCAGCCCCTCCGCGGCGTGGCCCTTGGCGCGCAGCTTGCCCTTGGAGGAG





GCGCCGCACGAGGGGCAGTGCAGACTTTTGAGGGCGTAGAGCTTGGGCGCGAGAAATACCGATTCCGGGGAGTAGGCATCCGCGCCGCAGGCCCCG





CAGACGGTCTCGCATTCCACGAGCCAGGTGAGCTCTGGCCGTTCGGGGTCAAAAACCAGGTTTCCCCCATGCTTTTTGATGCGTTTCTTACCTCTG





GTTTCCATGAGCCGGTGTCCACGCTCGGTGACGAAAAGGCTGTCCGTGTCCCCGTATACAGACTTGAGAGGCCTGTCCTCGAGCGGTGTTCCGCGG





TCCTCCTCGTATAGAAACTCGGACCACTCTGAGACAAAGGCTCGCGTCCAGGCCAGCACGAAGGAGGCTAAGTGGGAGGGGTAGCGGTCGTTGTCC





ACTAGGGGGTCCACTCGCTCCAGGGTGTGAAGACACATGTCGCCCTCTTCGGCATCAAGGAAGGTGATTGGTTTGTAGGTGTAGGCCACGTGACCG





GGTGTTCCTGAAGGGGGGCTATAAAAGGGGGTGGGGGCGCGTTCGTCCTCACTCTCTTCCGCATCGCTGTCTGCGAGGGCCAGCTGTTGGGGTGAG





TACTCCCTCTGAAAAGCGGGCATGACTTCTGCGCTAAGATTGTCAGTTTCCAAAAACGAGGAGGATTTGATATTCACCTGGCCCGCGGTGATGCCT





TTGAGGGTGGCCGCATCCATCTGGTCAGAAAAGACAATCTTTTTGTTGTCAAGCTTGGTGGCAAACGACCCGTAGAGGGCGTTGGACAGCAACTTG





GCGATGGAGCGCAGGGTTTGGTTTTTGTCGCGATCGGCGCGCTCCTTGGCCGCGATGTTTAGCTGCACGTATTCGCGCGCAACGCACCGCCATTCG





GGAAAGACGGTGGTGCGCTCGTCGGGCACCAGGTGCACGCGCCAACCGCGGTTGTGCAGGGTGACAAGGTCAACGCTGGTGGCTACCTCTCCGCGT





AGGCGCTCGTTGGTCCAGCAGAGGCGGCCGCCCTTGCGCGAGCAGAATGGCGGTAGGGGGTCTAGCTGCGTCTCGTCCGGGGGGTCTGCGTCCACG





GTAAAGACCCCGGGCAGCAGGCGCGCGTCGAAGTAGTCTATCTTGCATCCTTGCAAGTCTAGCGCCTGCTGCCATGCGCGGGCGGCAAGCGCGCGC





TCGTATGGGTTGAGTGGGGGACCCCATGGCATGGGGTGGGTGAGCGCGGAGGCGTACATGCCGCAAATGTCGTAAACGTAGAGGGGCTCTCTGAGT





ATTCCAAGATATGTAGGGTAGCATCTTCCACCGCGGATGCTGGCGCGCACGTAATCGTATAGTTCGTGCGAGGGAGCGAGGAGGTCGGGACCGAGG





TTGCTACGGGCGGGCTGCTCTGCTCGGAAGACTATCTGCCTGAAGATGGCATGTGAGTTGGATGATATGGTTGGACGCTGGAAGACGTTGAAGCTG





GCGTCTGTGAGACCTACCGCGTCACGCACGAAGGAGGCGTAGGAGTCGCGCAGCTTGTTGACCAGCTCGGCGGTGACCTGCACGTCTAGGGCGCAG





TAGTCCAGGGTTTCCTTGATGATGTCATACTTATCCTGTCCCTTTTTTTTCCACAGCTCGCGGTTGAGGACAAACTCTTCGCGGTCTTTCCAGTAC





TCTTGGATCGGAAACCCGTCGGCCTCCGAACGGTAAGAGCCTAGCATGTAGAACTGGTTGACGGCCTGGTAGGCGCAGCATCCCTTTTCTACGGGT





AGCGCGTATGCCTGCGCGGCCTTCCGGAGCGAGGTGTGGGTGAGCGCAAAGGTGTCCCTGACCATGACTTTGAGGTACTGGTATTTGAAGTCAGTG





TCGTCGCATCCGCCCTGCTCCCAGAGCAAAAAGTCCGTGCGCTTTTTGGAACGCGGATTTGGCAGGGCGAAGGTGACATCGTTGAAGAGTATCTTT





CCCGCGCGAGGCATAAAGTTGCGTGTGATGCGGAAGGGTCCCGGCACCTCGGAACGGTTGTTAATTACCTGGGCGGCGAGCACGATCTCGTCAAAG





CCGTTGATGTTGTGGCCCACAATGTAAAGTTCCAAGAAGCGCGGGATGCCCTTGATGGAAGGCAATTTTTTAAGTTCCTCGTAGGTGAGCTCTTCA





GGGGAGCTGAGCCCGTGCTCTGAAAGGGCCCAGTCTGCAAGATGAGGGTTGGAAGCGACGAATGAGCTCCACAGGTCACGGGCCATTAGCATTTGC





AGGTGGTCGCGAAAGGTCCTAAACTGGCGACCTATGGCCATTTTTTCTGGGGTGATGCAGTAGAAGGTAAGCGGGTCTTGTTCCCAGCGGTCCCAT





CCAAGGTTCGCGGCTAGGTCTCGCGCGGCAGTCACTAGAGGCTCATCTCCGCCGAACTTCATGACCAGCATGAAGGGCACGAGCTGCTTCCCAAAG





GCCCCCATCCAAGTATAGGTCTCTACATCGTAGGTGACAAAGAGACGCTCGGTGCGAGGATGCGAGCCGATCGGGAAGAACTGGATCTCCCGCCAC





CAATTGGAGGAGTGGCTATTGATGTGGTGAAAGTAGAAGTCCCTGCGACGGGCCGAACACTCGTGCTGGCTTTTGTAAAAACGTGCGCAGTACTGG





CAGCGGTGCACGGGCTGTACATCCTGCACGAGGTTGACCTGACGACCGCGCACAAGGAAGCAGAGTGGGAATTTGAGCCCCTCGCCTGGCGGGTTT





GGCTGGTGGTCTTCTACTTCGGCTGCTTGTCCTTGACCGTCTGGCTGCTCGAGGGGAGTTACGGTGGATCGGACCACCACGCCGCGCGAGCCCAAA





GTCCAGATGTCCGCGCGCGGCGGTCGGAGCTTGATGACAACATCGCGCAGATGGGAGCTGTCCATGGTCTGGAGCTCCCGCGGCGTCAGGTCAGGC





GGGAGCTCCTGCAGGTTTACCTCGCATAGACGGGTCAGGGCGCGGGCTAGATCCAGGTGATACCTAATTTCCAGGGGCTGGTTGGTGGCGGCGTCG





ATGGCTTGCAAGAGGCCGCATCCCCGCGGCGCGACTACGGTACCGCGCGGCGGGCGGTGGGCCGCGGGGGTGTCCTTGGATGATGCATCTAAAAGC





GGTGACGCGGGCGAGCCCCCGGAGGTAGGGGGGGCTCCGGACCCGCCGGGAGAGGGGGCAGGGGCACGTCGGCGCCGCGCGCGGGCAGGAGCTGGT





GCTGCGCGCGTAGGTTGCTGGCGAACGCGACGACGCGGCGGTTGATCTCCTGAATCTGGCGCCTCTGCGTGAAGACGACGGGCCCGGTGAGCTTGA





GCCTGAAAGAGAGTTCGACAGAATCAATTTCGGTGTCGTTGACGGCGGCCTGGCGCAAAATCTCCTGCACGTCTCCTGAGTTGTCTTGATAGGCGA





TCTCGGCCATGAACTGCTCGATCTCTTCCTCCTGGAGATCTCCGCGTCCGGCTCGCTCCACGGTGGCGGCGAGGTCGTTGGAAATGCGGGCCATGA





GCTGCGAGAAGGCGTTGAGGCCTCCCTCGTTCCAGACGCGGCTGTAGACCACGCCCCCTTCGGCATCGCGGGCGCGCATGACCACCTGCGCGAGAT





TGAGCTCCACGTGCCGGGCGAAGACGGCGTAGTTTCGCAGGCGCTGAAAGAGGTAGTTGAGGGTGGTGGCGGTGTGTTCTGCCACGAAGAAGTACA





TAACCCAGCGTCGCAACGTGGATTCGTTGATATCCCCCAAGGCCTCAAGGCGCTCCATGGCCTCGTAGAAGTCCACGGCGAAGTTGAAAAACTGGG





AGTTGCGCGCCGACACGGTTAACTCCTCCTCCAGAAGACGGATGAGCTCGGCGACAGTGTCGCGCACCTCGCGCTCAAAGGCTACAGGGGCCTCTT





CTTCTTCTTCAATCTCCTCTTCCATAAGGGCCTCCCCTTCTTCTTCTTCTGGCGGCGGTGGGGGAGGGGGGACACGGCGGCGACGACGGCGCACCG





GGAGGCGGTCGACAAAGCGCTCGATCATCTCCCCGCGGCGACGGCGCATGGTCTCGGTGACGGCGCGGCCGTTCTCGCGGGGGCGCAGTTGGAAGA





CGCCGCCCGTCATGTCCCGGTTATGGGTTGGCGGGGGGCTGCCATGCGGCAGGGATACGGCGCTAACGATGCATCTCAACAATTGTTGTGTAGGTA





CTCCGCCGCCGAGGGACCTGAGCGAGTCCGCATCGACCGGATCGGAAAACCTCTCGAGAAAGGCGTCTAACCAGTCACAGTCGCAAGGTAGGCTGA





GCACCGTGGCGGGCGGCAGCGGGCGGCGGTCGGGGTTGTTTCTGGCGGAGGTGCTGCTGATGATGTAATTAAAGTAGGCGGTCTTGAGACGGCGGA





TGGTCGACAGAAGCACCATGTCCTTGGGTCCGGCCTGCTGAATGCGCAGGCGGTCGGCCATGCCCCAGGCTTCGTTTTGACATCGGCGCAGGTCTT





TGTAGTAGTCTTGCATGAGCCTTTCTACCGGCACTTCTTCTTCTCCTTCCTCTTGTCCTGCATCTCTTGCATCTATCGCTGCGGCGGCGGCGGAGT





TTGGCCGTAGGTGGCGCCCTCTTCCTCCCATGCGTGTGACCCCGAAGCCCCTCATCGGCTGAAGCAGGGCTAGGTCGGCGACAACGCGCTCGGCTA





ATATGGCCTGCTGCACCTGCGTGAGGGTAGACTGGAAGTCATCCATGTCCACAAAGCGGTGGTATGCGCCCGTGTTGATGGTGTAAGTGCAGTTGG





CCATAACGGACCAGTTAACGGTCTGGTGACCCGGCTGCGAGAGCTCGGTGTACCTGAGACGCGAGTAAGCCCTCGAGTCAAATACGTAGTCGTTGC





AAGTCCGCACCAGGTACTGGTATCCCACCAAAAAGTGCGGCGGCGGCTGGCGGTAGAGGGGCCAGCGTAGGGTGGCCGGGGCTCCGGGGGCGAGAT





CTTCCAACATAAGGCGATGATATCCGTAGATGTACCTGGACATCCAGGTGATGCCGGCGGCGGTGGTGGAGGCGCGCGGAAAGTCGCGGACGCGGT





TCCAGATGTTGCGCAGCGGCAAAAAGTGCTCCATGGTCGGGACGCTCTGGCCGGTCAGGCGCGCGCAATCGTTGACGCTCTACCGTGCAAAAGGAG





AGCCTGTAAGCGGGCACTCTTCCGTGGTCTGGTGGATAAATTCGCAAGGGTATCATGGCGGACGACCGGGGTTCGAGCCCCGTATCCGGCCGTCCG





CCGTGATCCATGCGGTTACCGCCCGCGTGTCGAACCCAGGTGTGCGACGTCAGACAACGGGGGAGTGCTCCTTTTGGCTTCCTTCCAGGCGCGGCG





GCTGCTGCGCTAGCTTTTTTGGCCACTGGCCGCGCGCAGCGTAAGCGGTTAGGCTGGAAAGCGAAAGCATTAAGTGGCTCGCTCCCTGTAGCCGGA





GGGTTATTTTCCAAGGGTTGAGTCGCGGGACCCCCGGTTCGAGTCTCGGACCGGCCGGACTGCGGCGAACGGGGGTTTGCCTCCCCGTCATGCAAG





ACCCCGCTTGCAAATTCCTCCGGAAACAGGGACGAGCCCCTTTTTTGCTTTTCCCAGATGCATCCGGTGCTGCGGCAGATGCGCCCCCCTCCTCAG





CAGCGGCAAGAGCAAGAGCAGCGGCAGACATGCAGGGCACCCTCCCCTCCTCCTACCGCGTCAGGAGGGGCGACATCCGCGGTTGACGCGGCAGCA





GATGGTGATTACGAACCCCCGCGGCGCCGGGCCCGGCACTACCTGGACTTGGAGGAGGGCGAGGGCCTGGCGCGGCTAGGAGCGCCCTCTCCTGAG





CGGTACCCAAGGGTGCAGCTGAAGCGTGATACGCGTGAGGCGTACGTGCCGCGGCAGAACCTGTTTCGCGACCGCGAGGGAGAGGAGCCCGAGGAG





ATGCGGGATCGAAAGTTCCACGCAGGGCGCGAGCTGCGGCATGGCCTGAATCGCGAGCGGTTGCTGCGCGAGGAGGACTTTGAGCCCGACGCGCGA





ACCGGGATTAGTCCCGCGCGCGCACACGTGGCGGCCGCCGACCTGGTAACCGCATACGAGCAGACGGTGAACCAGGAGATTAACTTTCAAAAAAGC





TTTAACAACCACGTGCGTACGCTTGTGGCGCGCGAGGAGGTGGCTATAGGACTGATGCATCTGTGGGACTTTGTAAGCGCGCTGGAGCAAAACCCA





AATAGCAAGCCGCTCATGGCGCAGCTGTTCCTTATAGTGCAGCACAGCAGGGACAACGAGGCATTCAGGGATGCGCTGCTAAACATAGTAGAGCCC





GAGGGCCGCTGGCTGCTCGATTTGATAAACATCCTGCAGAGCATAGTGGTGCAGGAGCGCAGCTTGAGCCTGGCTGACAAGGTGGCCGCCATCAAC





TATTCCATGCTTAGCCTGGGCAAGTTTTACGCCCGCAAGATATACCATACCCCTTACGTTCCCATAGACAAGGAGGTAAAGATCGAGGGGTTCTAC





ATGCGCATGGCGCTGAAGGTGCTTACCTTGAGCGACGACCTGGGCGTTTATCGCAACGAGCGCATCCACAAGGCCGTGAGCGTGAGCCGGCGGCGC





GAGCTCAGCGACCGCGAGCTGATGCACAGCCTGCAAAGGGCCCTGGCTGGCACGGGCAGCGGCGATAGAGAGGCCGAGTCCTACTTTGACGCGGGC





GCTGACCTGCGCTGGGCCCCAAGCCGACGCGCCCTGGAGGCAGCTGGGGCCGGACCTGGGCTGGCGGTGGCACCCGCGCGCGCTGGCAACGTCGGC





GGCGTGGAGGAATATGACGAGGACGATGAGTACGAGCCAGAGGACGGCGAGTACTAAGCGGTGATGTTTCTGATCAGATGATGCAAGACGCAACGG





ACCCGGCGGTGCGGGCGGCGCTGCAGAGCCAGCCGTCCGGCCTTAACTCCACGGACGACTGGCGCCAGGTCATGGACCGCATCATGTCGCTGACTG





CGCGCAATCCTGACGCGTTCCGGCAGCAGCCGCAGGCCAACCGGCTCTCCGCAATTCTGGAAGCGGTGGTCCCGGCGCGCGCAAACCCCACGCACG





AGAAGGTGCTGGCGATCGTAAACGCGCTGGCCGAAAACAGGGCCATCCGGCCCGACGAGGCCGGCCTGGTCTACGACGCGCTGCTTCAGCGCGTGG





CTCGTTACAACAGCGGCAACGTGCAGACCAACCTGGACCGGCTGGTGGGGGATGTGCGCGAGGCCGTGGCGCAGCGTGAGCGCGCGCAGCAGCAGG





GCAACCTGGGCTCCATGGTTGCACTAAACGCCTTCCTGAGTACACAGCCCGCCAACGTGCCGCGGGGACAGGAGGACTACACCAACTTTGTGAGCG





CACTGCGGCTAATGGTGACTGAGACACCGCAAAGTGAGGTGTACCAGTCTGGGCCAGACTATTTTTTCCAGACCAGTAGACAAGGCCTGCAGACCG





TAAACCTGAGCCAGGCTTTCAAAAACTTGCAGGGGCTGTGGGGGGTGCGGGCTCCCACAGGCGACCGCGCGACCGTGTCTAGCTTGCTGACGCCCA





ACTCGCGCCTGTTGCTGCTGCTAATAGCGCCCTTCACGGACAGTGGCAGCGTGTCCCGGGACACATACCTAGGTCACTTGCTGACACTGTACCGCG





AGGCCATAGGTCAGGCGCATGTGGACGAGCATACTTTCCAGGAGATTACAAGTGTCAGCCGCGCGCTGGGGCAGGAGGACACGGGCAGCCTGGAGG





CAACCCTAAACTACCTGCTGACCAACCGGCGGCAGAAGATCCCCTCGTTGCACAGTTTAAACAGCGAGGAGGAGCGCATTTTGCGCTACGTGCAGC





AGAGCGTGAGCCTTAACCTGATGCGCGACGGGGTAACGCCCAGCGTGGCGCTGGACATGACCGCGCGCAACATGGAACCGGGCATGTATGCCTCAA





ACCGGCCGTTTATCAACCGCCTAATGGACTACTTGCATCGCGCGGCCGCCGTGAACCCCGAGTATTTCACCAATGCCATCTTGAACCCGCACTGGC





TACCGCCCCCTGGTTTCTACACCGGGGGATTCGAGGTGCCCGAGGGTAACGATGGATTCCTCTGGGACGACATAGACGACAGCGTGTTTTCCCCGC





AACCGCAGACCCTGCTAGAGTTGCAACAGCGCGAGCAGGCAGAGGCGGCGCTGCGAAAGGAAAGCTTCCGCAGGCCAAGCAGCTTGTCCGATCTAG





GCGCTGCGGCCCCGCGGTCAGATGCTAGTAGCCCATTTCCAAGCTTGATAGGGTCTCTTACCAGCACTCGCACCACCCGCCCGCGCCTGCTGGGCG





AGGAGGAGTACCTAAACAACTCGCTGCTGCAGCCGCAGCGCGAAAAAAACCTGCCTCCGGCATTTCCCAACAACGGGATAGAGAGCCTAGTGGACA





AGATGAGTAGATGGAAGACGTACGCGCAGGAGCACAGGGACGTGCCAGGCCCGCGCCCGCCCACCCGTCGTCAAAGGCACGACCGTCAGCGGGGTC





TGGTGTGGGAGGACGATGACTCGGCAGACGACAGCAGCGTCCTGGATTTGGGAGGGAGTGGCAACCCGTTTGCGCACCTTCGCCCCAGGCTGGGGA





GAATGTTTTAAAAAAAAAAAAGCATGATGCAAAATAAAAAACTCACCAAGGCCATGGCACCGAGCGTTGGTTTTCTTGTATTCCCCTTAGTATGCG





GCGCGCGGCGATGTATGAGGAAGGTCCTCCTCCCTCCTACGAGAGTGTGGTGAGCGCGGCGCCAGTGGCGGCGGCGCTGGGTTCTCCCTTCGATGC





TCCCCTGGACCCGCCGTTTGTGCCTCCGCGGTACCTGCGGCCTACCGGGGGGAGAAACAGCATCCGTTACTCTGAGTTGGCACCCCTATTCGACAC





CACCCGTGTGTACCTGGTGGACAACAAGTCAACGGATGTGGCATCCCTGAACTACCAGAACGACCACAGCAACTTTCTGACCACGGTCATTCAAAA





CAATGACTACAGCCCGGGGGAGGCAAGCACACAGACCATCAATCTTGACGACCGGTCGCACTGGGGCGGCGACCTGAAAACCATCCTGCATACCAA





CATGCCAAATGTGAACGAGTTCATGTTTACCAATAAGTTTAAGGCGCGGGTGATGGTGTCGCGCTTGCCTACTAAGGACAATCAGGTGGAGCTGAA





ATACGAGTGGGTGGAGTTCACGCTGCCCGAGGGCAACTACTCCGAGACCATGACCATAGACCTTATGAACAACGCGATCGTGGAGCACTACTTGAA





AGTGGGCAGACAGAACGGGGTTCTGGAAAGCGACATCGGGGTAAAGTTTGACACCCGCAACTTCAGACTGGGGTTTGACCCCGTCACTGGTCTTGT





CATGCCTGGGGTATATACAAACGAAGCCTTCCATCCAGACATCATTTTGCTGCCAGGATGCGGGGTGGACTTCACCCACAGCCGCCTGAGCAACTT





GTTGGGCATCCGCAAGCGGCAACCCTTCCAGGAGGGCTTTAGGATCACCTACGATGATCTGGAGGGTGGTAACATTCCCGCACTGTTGGATGTGGA





CGCCTACCAGGCGAGCTTGAAAGATGACACCGAACAGGGCGGGGGTGGCGCAGGCGGCAGCAACAGCAGTGGCAGCGGCGCGGAAGAGAACTCCAA





CGCGGCAGCCGCGGCAATGCAGCCGGTGGAGGACATGAACGATCATGCCATTCGCGGCGACACCTTTGCCACACGGGCTGAGGAGAAGCGCGCTGA





GGCCGAAGCAGCGGCCGAAGCTGCCGCCCCCGCTGCGCAACCCGAGGTCGAGAAGCCTCAGAAGAAACCGGTGATCAAACCCCTGACAGAGGACAG





CAAGAAACGCAGTTACAACCTAATAAGCAATGACAGCACCTTCACCCAGTACCGCAGCTGGTACCTTGCATACAACTACGGCGACCCTCAGACCGG





AATCCGCTCATGGACCCTGCTTTGCACTCCTGACGTAACCTGCGGCTCGGAGCAGGTCTACTGGTCGTTGCCAGACATGATGCAAGACCCCGTGAC





CTTCCGCTCCACGCGCCAGATCAGCAACTTTCCGGTGGTGGGCGCCGAGCTGTTGCCCGTGCACTCCAAGAGCTTCTACAACGACCAGGCCGTCTA





CTCCCAACTCATCCGCCAGTTTACCTCTCTGACCCACGTGTTCAATCGCTTTCCCGAGAACCAGATTTTGGCGCGCCCGCCAGCCCCCACCATCAC





CACCGTCAGTGAAAACGTTCCTGCTCTCACAGATCACGGGACGCTACCGCTGCGCAACAGCATCGGAGGAGTCCAGCGAGTGACCATTACTGACGC





CAGACGCCGCACCTGCCCCTACGTTTACAAGGCCCTGGGCATAGTCTCGCCGCGCGTCCTATCGAGCCGCACTTTTTGAGCAAGCATGTCCATCCT





TATATCGCCCAGCAATAACACAGGCTGGGGCCTGCGCTTCCCAAGCAAGATGTTTGGCGGGGCCAAGAAGCGCTCCGACCAACACCCAGTGCGCGT





GCGCGGGCACTACCGCGCGCCCTGGGGCGCGCACAAACGCGGCCGCACTGGGCGCACCACCGTCGATGACGCCATCGACGCGGTGGTGGAGGAGGC





GCGCAACTACACGCCCACGCCGCCACCAGTGTCCACAGTGGACGCGGCCATTCAGACCGTGGTGCGCGGAGCCCGGCGCTATGCTAAAATGAAGAG





ACGGCGGAGGCGCGTAGCACGTCGCCACCGCCGCCGACCCGGCACTGCCGCCCAACGCGCGGCGGCGGCCCTGCTTAACCGCGCACGTCGCACCGG





CCGACGGGCGGCCATGCGGGCCGCTCGAAGGCTGGCCGCGGGTATTGTCACTGTGCCCCCCAGGTCCAGGCGACGAGCGGCCGCCGCAGCAGCCGC





GGCCATTAGTGCTATGACTCAGGGTCGCAGGGGCAACGTGTATTGGGTGCGCGACTCGGTTAGCGGCCTGCGCGTGCCCGTGCGCACCCGCCCCCC





GCGCAACTAGATTGCAAGAAAAAACTACTTAGACTCGTACTGTTGTATGTATCCAGCGGCGGCGGCGCGCAACGAAGCTATGTCCAAGCGCAAAAT





CAAAGAAGAGATGCTCCAGGTCATCGCGCCGGAGATCTATGGCCCCCCGAAGAAGGAAGAGCAGGATTACAAGCCCCGAAAGCTAAAGCGGGTCAA





AAAGAAAAAGAAAGATGATGATGATGAACTTGACGACGAGGTGGAACTGCTGCACGCTACCGCGCCCAGGCGACGGGTACAGTGGAAAGGTCGACG





CGTAAAACGTGTTTTGCGACCCGGCACCACCGTAGTCTTTACGCCCGGTGAGCGCTCCACCCGCACCTACAAGCGCGTGTATGATGAGGTGTACGG





CGACGAGGACCTGCTTGAGCAGGCCAACGAGCGCCTCGGGGAGTTTGCCTACGGAAAGCGGCATAAGGACATGCTGGCGTTGCCGCTGGACGAGGG





CAACCCAACACCTAGCCTAAAGCCCGTAACACTGCAGCAGGTGCTGCCCGCGCTTGCACCGTCCGAAGAAAAGCGCGGCCTAAAGCGCGAGTCTGG





TGACTTGGCACCCACCGTGCAGCTGATGGTACCCAAGCGCCAGCGACTGGAAGATGTCTTGGAAAAAATGACCGTGGAACCTGGGCTGGAGCCCGA





GGTCCGCGTGCGGCCAATCAAGCAGGTGGCGCCGGGACTGGGCGTGCAGACCGTGGACGTTCAGATACCCACTACCAGTAGCACCAGTATTGCCAC





CGCCACAGAGGGCATGGAGACACAAACGTCCCCGGTTGCCTCAGCGGTGGCGGATGCCGCGGTGCAGGCGGTCGCTGCGGCCGCGTCCAAGACCTC





TACGGAGGTGCAAACGGACCCGTGGATGTTTCGCGTTTCAGCCCCCCGGCGCCCGCGCGGTTCGAGGAAGTACGGCGCCGCCAGCGCGCTACTGCC





CGAATATGCCCTACATCCTTCCATTGCGCCTACCCCCGGCTATCGTGGCTACACCTACCGCCCCAGAAGACGAGCAACTACCCGACGCCGAACCAC





CACTGGAACCCGCCGCCGCCGTCGCCGTCGCCAGCCCGTGCTGGCCCCGATTTCCGTGCGCAGGGTGGCTCGCGAAGGAGGCAGGACCCTGGTGCT





GCCAACAGCGCGCTACCACCCCAGCATCGTTTAAAAGCCGGTCTTTGTGGTTCTTGCAGATATGGCCCTCACCTGCCGCCTCCGTTTCCCGGTGCC





GGGATTCCGAGGAAGAATGCACCGTAGGAGGGGCATGGCCGGCCACGGCCTGACGGGCGGCATGCGTCGTGCGCACCACCGGCGGCGGCGCGCGTC





GCACCGTCGCATGCGCGGCGGTATCCTGCCCCTCCTTATTCCACTGATCGCCGCGGCGATTGGCGCCGTGCCCGGAATTGCATCCGTGGCCTTGCA





GGCGCAGAGACACTGATTAAAAACAAGTTGCATGTGGAAAAATCAAAATAAAAAGTCTGGACTCTCACGCTCGCTTGGTCCTGTAACTATTTTGTA





GAATGGAAGACATCAACTTTGCGTCTCTGGCCCCGCGACACGGCTCGCGCCCGTTCATGGGAAACTGGCAAGATATCGGCACCAGCAATATGAGCG





GTGGCGCCTTCAGCTGGGGCTCGCTGTGGAGCGGCATTAAAAATTTCGGTTCCACCGTTAAGAACTATGGCAGCAAGGCCTGGAACAGCAGCACAG





GCCAGATGCTGAGGGATAAGTTGAAAGAGCAAAATTTCCAACAAAAGGTGGTAGATGGCCTGGCCTCTGGCATTAGCGGGGTGGTGGACCTGGCCA





ACCAGGCAGTGCAAAATAAGATTAACAGTAAGCTTGATCCCCGCCCTCCCGTAGAGGAGCCTCCACCGGCCGTGGAGACAGTGTCTCCAGAGGGGC





GTGGCGAAAAGCGTCCGCGCCCCGACAGGGAAGAAACTCTGGTGACGCAAATAGACGAGCCTCCCTCGTACGAGGAGGCACTAAAGCAAGGCCTGC





CCACCACCCGTCCCATCGCGCCCATGGCTACCGGAGTGCTGGGCCAGCACACACCCGTAACGCTGGACCTGCCTCCCCCCGCCGACACCCAGCAGA





AACCTGTGCTGCCAGGCCCGACCGCCGTTGTTGTAACCCGTCCTAGCCGCGCGTCCCTGCGCCGCGCCGCCAGCGGTCCGCGATCGTTGCGGCCCG





TAGCCAGTGGCAACTGGCAAAGCACACTGAACAGCATCGTGGGTCTGGGGGTGCAATCCCTGAAGCGCCGACGATGCTTCTGAATAGCTAACGTGT





CGTATGTGTGTCATGTATGCGTCCATGTCGCCGCCAGAGGAGCTGCTGAGCCGCCGCGCGCCCGCTTTCCAAGATGGCTACCCCTTCGATGATGCC





GCAGTGGTCTTACATGCACATCTCGGGCCAGGACGCCTCGGAGTACCTGAGCCCCGGGCTGGTGCAGTTTGCCCGCGCCACCGAGACGTACTTCAG





CCTGAATAACAAGTTTAGAAACCCCACGGTGGCGCCTACGCACGACGTGACCACAGACCGGTCCCAGCGTTTGACGCTGCGGTTCATCCCTGTGGA





CCGTGAGGATACTGCGTACTCGTACAAGGCGCGGTTCACCCTAGCTGTGGGTGATAACCGTGTGCTGGACATGGCTTCCACGTACTTTGACATCCG





CGGCGTGCTGGACAGGGGCCCTACTTTTAAGCCCTACTCTGGCACTGCCTACAACGCCCTGGCTCCCAAGGGTGCCCCAAATCCTTGCGAATGGGA





TGAAGCTGCTACTGCTCTTGAAATAAACCTAGAAGAAGAGGACGATGACAACGAAGACGAAGTAGACGAGCAAGCTGAGCAGCAAAAAACTCACGT





ATTTGGGCAGGCGCCTTATTCTGGTATAAATATTACAAAGGAGGGTATTCAAATAGGTGTCGAAGGTCAAACACCTAAATATGCCGATAAAACATT





TCAACCTGAACCTCAAATAGGAGAATCTCAGTGGTACGAAACTGAAATTAATCATGCAGCTGGGAGAGTCCTTAAAAAGACTACCCCAATGAAACC





ATGTTACGGTTCATATGCAAAACCCACAAATGAAAATGGAGGGCAAGGCATTCTTGTAAAGCAACAAAATGGAAAGCTAGAAAGTCAAGTGGAAAT





GCAATTTTTCTCAACTACTGAGGCGACCGCAGGCAATGGTGATAACTTGACTCCTAAAGTGGTATTGTACAGTGAAGATGTAGATATAGAAACCCC





AGACACTCATATTTCTTACATGCCCACTATTAAGGAAGGTAACTCACGAGAACTAATGGGCCAACAATCTATGCCCAACAGGCCTAATTACATTGC





TTTTAGGGACAATTTTATTGGTCTAATGTATTACAACAGCACGGGTAATATGGGTGTTCTGGCGGGCCAAGCATCGCAGTTGAATGCTGTTGTAGA





TTTGCAAGACAGAAACACAGAGCTTTCATACCAGCTTTTGCTTGATTCCATTGGTGATAGAACCAGGTACTTTTCTATGTGGAATCAGGCTGTTGA





CAGCTATGATCCAGATGTTAGAATTATTGAAAATCATGGAACTGAAGATGAACTTCCAAATTACTGCTTTCCACTGGGAGGTGTGATTAATACAGA





GACTCTTACCAAGGTAAAACCTAAAACAGGTCAGGAAAATGGATGGGAAAAAGATGCTACAGAATTTTCAGATAAAAATGAAATAAGAGTTGGAAA





TAATTTTGCCATGGAAATCAATCTAAATGCCAACCTGTGGAGAAATTTCCTGTACTCCAACATAGCGCTGTATTTGCCCGACAAGCTAAAGTACAG





TCCTTCCAACGTAAAAATTTCTGATAACCCAAACACCTACGACTACATGAACAAGCGAGTGGTGGCTCCCGGGTTAGTGGACTGCTACATTAACCT





TGGAGCACGCTGGTCCCTTGACTATATGGACAACGTCAACCCATTTAACCACCACCGCAATGCTGGCCTGCGCTACCGCTCAATGTTGCTGGGCAA





TGGTCGCTATGTGCCCTTCCACATCCAGGTGCCTCAGAAGTTCTTTGCCATTAAAAACCTCCTTCTCCTGCCGGGCTCATACACCTACGAGTGGAA





CTTCAGGAAGGATGTTAACATGGTTCTGCAGAGCTCCCTAGGAAATGACCTAAGGGTTGACGGAGCCAGCATTAAGTTTGATAGCATTTGCCTTTA





CGCCACCTTCTTCCCCATGGCCCACAACACCGCCTCCACGCTTGAGGCCATGCTTAGAAACGACACCAACGACCAGTCCTTTAACGACTATCTCTC





CGCCGCCAACATGCTCTACCCTATACCCGCCAACGCTACCAACGTGCCCATATCCATCCCCTCCCGCAACTGGGCGGCTTTCCGCGGCTGGGCCTT





CACGCGCCTTAAGACTAAGGAAACCCCATCACTGGGCTCGGGCTACGACCCTTATTACACCTACTCTGGCTCTATACCCTACCTAGATGGAACCTT





TTACCTCAACCACACCTTTAAGAAGGTGGCCATTACCTTTGACTCTTCTGTCAGCTGGCCTGGCAATGACCGCCTGCTTACCCCCAACGAGTTTGA





AATTAAGCGCTCAGTTGACGGGGAGGGTTACAACGTTGCCCAGTGTAACATGACCAAAGACTGGTTCCTGGTACAAATGCTAGCTAACTACAACAT





TGGCTACCAGGGCTTCTATATCCCAGAGAGCTACAAGGACCGCATGTACTCCTTCTTTAGAAACTTCCAGCCCATGAGCCGTCAGGTGGTGGATGA





TACTAAATACAAGGACTACCAACAGGTGGGCATCCTACACCAACACAACAACTCTGGATTTGTTGGCTACCTTGCCCCCACCATGCGCGAAGGACA





GGCCTACCCTGCTAACTTCCCCTATCCGCTTATAGGCAAGACCGCAGTTGACAGCATTACCCAGAAAAAGTTTCTTTGCGATCGCACCCTTTGGCG





CATCCCATTCTCCAGTAACTTTATGTCCATGGGCGCACTCACAGACCTGGGCCAAAACCTTCTCTACGCCAACTCCGCCCACGCGCTAGACATGAC





TTTTGAGGTGGATCCCATGGACGAGCCCACCCTTCTTTATGTTTTGTTTGAAGTCTTTGACGTGGTCCGTGTGCACCGGCCGCACCGCGGCGTCAT





CGAAACCGTGTACCTGCGCACGCCCTTCTCGGCCGGCAACGCCACAACATAAAGAAGCAAGCAACATCAACAACAGCTGCCGCCATGGGCTCCAGT





GAGCAGGAACTGAAAGCCATTGTCAAAGATCTTGGTTGTGGGCCATATTTTTTGGGCACCTATGACAAGCGCTTTCCAGGCTTTGTTTCTCCACAC





AAGCTCGCCTGCGCCATAGTCAATACGGCCGGTCGCGAGACTGGGGGCGTACACTGGATGGCCTTTGCCTGGAACCCGCACTCAAAAACATGCTAC





CTCTTTGAGCCCTTTGGCTTTTCTGACCAGCGACTCAAGCAGGTTTACCAGTTTGAGTACGAGTCACTCCTGCGCCGTAGCGCCATTGCTTCTTCC





CCCGACCGCTGTATAACGCTGGAAAAGTCCACCCAAAGCGTACAGGGGCCCAACTCGGCCGCCTGTGGACTATTCTGCTGCATGTTTCTCCACGCC





TTTGCCAACTGGCCCCAAACTCCCATGGATCACAACCCCACCATGAACCTTATTACCGGGGTACCCAACTCCATGCTCAACAGTCCCCAGGTACAG





CCCACCCTGCGTCGCAACCAGGAACAGCTCTACAGCTTCCTGGAGCGCCACTCGCCCTACTTCCGCAGCCACAGTGCGCAGATTAGGAGCGCCACT





TCTTTTTGTCACTTGAAAAACATGTAAAAATAATGTACTAGAGACACTTTCAATAAAGGCAAATGCTTTTATTTGTACACTCTCGGGTGATTATTT





ACCCCCACCCTTGCCGTCTGCGCCGTTTAAAAATCAAAGGGGTTCTGCCGCGCATCGCTATGCGCCACTGGCAGGGACACGTTGCGATACTGGTGT





TTAGTGCTCCACTTAAACTCAGGCACAACCATCCGCGGCAGCTCGGTGAAGTTTTCACTCCACAGGCTGCGCACCATCACCAACGCGTTTAGCAGG





TCGGGCGCCGATATCTTGAAGTCGCAGTTGGGGCCTCCGCCCTGCGCGCGCGAGTTGCGATACACAGGGTTGCAGCACTGGAACACTATCAGCGCC





GGGTGGTGCACGCTGGCCAGCACGCTCTTGTCGGAGATCAGATCCGCGTCCAGGTCCTCCGCGTTGCTCAGGGCGAACGGAGTCAACTTTGGTAGC





TGCCTTCCCAAAAAGGGCGCGTGCCCAGGCTTTGAGTTGCACTCGCACCGTAGTGGCATCAAAAGGTGACCGTGCCCGGTCTGGGCGTTAGGATAC





AGCGCCTGCATAAAAGCCTTGATCTGCTTAAAAGCCACCTGAGCCTTTGCGCCTTCAGAGAAGAACATGCCGCAAGACTTGCCGGAAAACTGATTG





GCCGGACAGGCCGCGTCGTGCACGCAGCACCTTGCGTCGGTGTTGGAGATCTGCACCACATTTCGGCCCCACCGGTTCTTCACGATCTTGGCCTTG





CTAGACTGCTCCTTCAGCGCGCGCTGCCCGTTTTCGCTCGTCACATCCATTTCAATCACGTGCTCCTTATTTATCATAATGCTTCCGTGTAGACAC





TTAAGCTCGCCTTCGATCTCAGCGCAGCGGTGCAGCCACAACGCGCAGCCCGTGGGCTCGTGATGCTTGTAGGTCACCTCTGCAAACGACTGCAGG





TACGCCTGCAGGAATCGCCCCATCATCGTCACAAAGGTCTTGTTGCTGGTGAAGGTCAGCTGCAACCCGCGGTGCTCCTCGTTCAGCCAGGTCTTG





CATACGGCCGCCAGAGCTTCCACTTGGTCAGGCAGTAGTTTGAAGTTCGCCTTTAGATCGTTATCCACGTGGTACTTGTCCATCAGCGCGCGCGCA





GCCTCCATGCCCTTCTCCCACGCAGACACGATCGGCACACTCAGCGGGTTCATCACCGTAATTTCACTTTCCGCTTCGCTGGGCTCTTCCTCTTCC





TCTTGCGTCCGCATACCACGCGCCACTGGGTCGTCTTCATTCAGCCGCCGCACTGTGCGCTTACCTCCTTTGCCATGCTTGATTAGCACCGGTGGG





TTGCTGAAACCCACCATTTGTAGCGCCACATCTTCTCTTTCTTCCTCGCTGTCCACGATTACCTCTGGTGATGGCGGGCGCTCGGGCTTGGGAGAA





GGGCGCTTCTTTTTCTTCTTGGGCGCAATGGCCAAATCCGCCGCCGAGGTCGATGGCCGCGGGCTGGGTGTGCGCGGCACCAGCGCGTCTTGTGAT





GAGTCTTCCTCGTCCTCGGACTCGATACGCCGCCTCATCCGCTTTTTTGGGGGCGCCCGGGGAGGCGGCGGCGACGGGGACGGGGACGACACGTCC





TCCATGGTTGGGGGACGTCGCGCCGCACCGCGTCCGCGCTCGGGGGTGGTTTCGCGCTGCTCCTCTTCCCGACTGGCCATTTCCTTCTCCTATAGG





CAGAAAAAGATCATGGAGTCAGTCGAGAAGAAGGACAGCCTAACCGCCCCCTCTGAGTTCGCCACCACCGCCTCCACCGATGCCGCCAACGCGCCT





ACCACCTTCCCCGTCGAGGCACCCCCGCTTGAGGAGGAGGAAGTGATTATCGAGCAGGACCCAGGTTTTGTAAGCGAAGACGACGAGGACCGCTCA





GTACCAACAGAGGATAAAAAGCAAGACCAGGACAACGCAGAGGCAAACGAGGAACAAGTCGGGCGGGGGGACGAAAGGCATGGCGACTACCTAGAT





GTGGGAGACGACGTGCTGTTGAAGCATCTGCAGCGCCAGTGCGCCATTATCTGCGACGCGTTGCAAGAGCGCAGCGATGTGCCCCTCGCCATAGCG





GATGTCAGCCTTGCCTACGAACGCCACCTATTCTCACCGCGCGTACCCCCCAAACGCCAAGAAAACGGCACATGCGAGCCCAACCCGCGCCTCAAC





TTCTACCCCGTATTTGCCGTGCCAGAGGTGCTTGCCACCTATCACATCTTTTTCCAAAACTGCAAGATACCCCTATCCTGCCGTGCCAACCGCAGC





CGAGCGGACAAGCAGCTGGCCTTGCGGCAGGGCGCTGTCATACCTGATATCGCCTCGCTCAACGAAGTGCCAAAAATCTTTGAGGGTCTTGGACGC





GACGAGAAGCGCGCGGCAAACGCTCTGCAACAGGAAAACAGCGAAAATGAAAGTCACTCTGGAGTGTTGGTGGAACTCGAGGGTGACAACGCGCGC





CTAGCCGTACTAAAACGCAGCATCGAGGTCACCCACTTTGCCTACCCGGCACTTAACCTACCCCCCAAGGTCATGAGCACAGTCATGAGTGAGCTG





ATCGTGCGCCGTGCGCAGCCCCTGGAGAGGGATGCAAATTTGCAAGAACAAACAGAGGAGGGCCTACCCGCAGTTGGCGACGAGCAGCTAGCGCGC





TGGCTTCAAACGCGCGAGCCTGCCGACTTGGAGGAGCGACGCAAACTAATGATGGCCGCAGTGCTCGTTACCGTGGAGCTTGAGTGCATGCAGCGG





TTCTTTGCTGACCCGGAGATGCAGCGCAAGCTAGAGGAAACATTGCACTACACCTTTCGACAGGGCTACGTACGCCAGGCCTGCAAGATCTCCAAC





GTGGAGCTCTGCAACCTGGTCTCCTACCTTGGAATTTTGCACGAAAACCGCCTTGGGCAAAACGTGCTTCATTCCACGCTCAAGGGCGAGGCGCGC





CGCGACTACGTCCGCGACTGCGTTTACTTATTTCTATGCTACACCTGGCAGACGGCCATGGGCGTTTGGCAGCAGTGCTTGGAGGAGTGCAACCTC





AAGGAGCTGCAGAAACTGCTAAAGCAAAACTTGAAGGACCTATGGACGGCCTTCAACGAGCGCTCCGTGGCCGCGCACCTGGCGGACATCATTTTC





CCCGAACGCCTGCTTAAAACCCTGCAACAGGGTCTGCCAGACTTCACCAGTCAAAGCATGTTGCAGAACTTTAGGAACTTTATCCTAGAGCGCTCA





GGAATCTTGCCCGCCACCTGCTGTGCACTTCCTAGCGACTTTGTGCCCATTAAGTACCGCGAATGCCCTCCGCCGCTTTGGGGCCACTGCTACCTT





CTGCAGCTAGCCAACTACCTTGCCTACCACTCTGACATAATGGAAGACGTGAGCGGTGACGGTCTACTGGAGTGTCACTGTCGCTGCAACCTATGC





ACCCCGCACCGCTCCCTGGTTTGCAATTCGCAGCTGCTTAACGAAAGTCAAATTATCGGTACCTTTGAGCTGCAGGGTCCCTCGCCTGACGAAAAG





TCCGCGGCTCCGGGGTTGAAACTCACTCCGGGGCTGTGGACGTCGGCTTACCTTCGCAAATTTGTACCTGAGGACTACCACGCCCACGAGATTAGG





TTCTACGAAGACCAATCCCGCCCGCCAAATGCGGAGCTTACCGCCTGCGTCATTACCCAGGGCCACATTCTTGGCCAATTGCAAGCCATCAACAAA





GCCCGCCAAGAGTTTCTGCTACGAAAGGGACGGGGGGTTTACTTGGACCCCCAGTCCGGCGAGGAGCTCAACCCAATCCCCCCGCCGCCGCAGCCC





TATCAGCAGCAGCCGCGGGCCCTTGCTTCCCAGGATGGCACCCAAAAAGAAGCTGCAGCTGCCGCCGCCACCCACGGACGAGGAGGAATACTGGGA





CAGTCAGGCAGAGGAGGTTTTGGACGAGGAGGAGGAGGACATGATGGAAGACTGGGAGAGCCTAGACGAGGAAGCTTCCGAGGTCGAAGAGGTGTC





AGACGAAACACCGTCACCCTCGGTCGCATTCCCCTCGCCGGCGCCCCAGAAATCGGCAACCGGTTCCAGCATGGCTACAACCTCCGCTCCTCAGGC





GCCGCCGGCACTGCCCGTTCGCCGACCCAACCGTAGATGGGACACCACTGGAACCAGGGCCGGTAAGTCCAAGCAGCCGCCGCCGTTAGCCCAAGA





GCAACAACAGCGCCAAGGCTACCGCTCATGGCGCGGGCACAAGAACGCCATAGTTGCTTGCTTGCAAGACTGTGGGGGCAACATCTCCTTCGCCCG





CCGCTTTCTTCTCTACCATCACGGCGTGGCCTTCCCCCGTAACATCCTGCATTACTACCGTCATCTCTACAGCCCATACTGCACCGGCGGCAGCGG





CAGCGGCAGCAACAGCAGCGGCCACACAGAAGCAAAGGCGACCGGATAGCAAGACTCTGACAAAGCCCAAGAAATCCACAGCGGCGGCAGCAGCAG





GAGGAGGAGCGCTGCGTCTGGCGCCCAACGAACCCGTATCGACCCGCGAGCTTAGAAACAGGATTTTTCCCACTCTGTATGCTATATTTCAACAGA





GCAGGGGCCAAGAACAAGAGCTGAAAATAAAAAACAGGTCTCTGCGATCCCTCACCCGCAGCTGCCTGTATCACAAAAGCGAAGATCAGCTTCGGC





GCACGCTGGAAGACGCGGAGGCTCTCTTCAGTAAATACTGCGCGCTGACTCTTAAGGACTAGTTTCGCGCCCTTTCTCAAATTTAAGCGCGAAAAC





TACGTCATCTCCAGCGGCCACACCCGGCGCCAGCACCTGTCGTCAGCGCCATTATGAGCAAGGAAATTCCCACGCCCTACATGTGGAGTTACCAGC





CACAAATGGGACTTGCGGCTGGAGCTGCCCAAGACTACTCAACCCGAATAAACTACATGAGCGCGGGACCCCACATGATATCCCGGGTCAACGGAA





TCCGCGCCCACCGAAACCGAATTCTCTTGGAACAGGCGGCTATTACCACCACACCTCGTAATAACCTTAATCCCCGTAGTTGGCCCGCTGCCCTGG





TGTACCAGGAAAGTCCCGCTCCCACCACTGTGGTACTTCCCAGAGACGCCCAGGCCGAAGTTCAGATGACTAACTCAGGGGCGCAGCTTGCGGGCG





GCTTTCGTCACAGGGTGCGGTCGCCCGGGCAGGGTATAACTCACCTGACAATCAGAGGGCGAGGTATTCAGCTCAACGACGAGTCGGTGAGCTCCT





CGCTTGGTCTCCGTCCGGACGGGACATTTCAGATCGGCGGCGCCGGCCGTCCTTCATTCACGCCTCGTCAGGCAATCCTAACTCTGCAGACCTCGT





CCTCTGAGCCGCGCTCTGGAGGCATTGGAACTCTGCAATTTATTGAGGAGTTTGTGCCATCGGTCTACTTTAACCCCTTCTCGGGACCTCCCGGCC





ACTATCCGGATCAATTTATTCCTAACTTTGACGCGGTAAAGGACTCGGCGGACGGCTACGACTGAATGTTAAGTGGAGAGGCAGAGCAACTGCGCC





TGAAACACCTGGTCCACTGTCGCCGCCACAAGTGCTTTGCCCGCGACTCCGGTGAGTTTTGCTACTTTGAATTGCCCGAGGATCATATCGAGGGCC





CGGCGCACGGCGTCCGGCTTACCGCCCAGGGAGAGCTTGCCCGTAGCCTGATTCGGGAGTTTACCCAGCGCCCCCTGCTAGTTGAGCGGGACAGGG





GACCCTGTGTTCTCACTGTGATTTGCAACTGTCCTAACCTTGGATTACATCAAGATCCTCTAGTTAATACTAGTATTTAAATAATTCCCTGGCATT





ATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGTTTTGGCAGTACA





TCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGG





ACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTCGTTTAGTGA





ACCGTCAGATCGCCTGGAGACGCCATCCACGCTGTTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTGGGGATCAGTCTTCGAGTCGAGG





ATCCCCTGCTCCAGAGATGACCGGCTCAACCATCGCGCCCACAACGGACTATCGCAACACCACTGCTACCGGACTAACATCTGCCCTAAATTTACC





CCAAGTTCATGCCTTTGTCAATGACTGGGCGAGCTTGGACATGTGGTGGTTTTCCATAGCGCTTATGTTTGTTTGCCTTATTATTATGTGGCTTAT





TTGTTGCCTAAAGCGCAGACGCGCCAGACCCCCCATCTATAGGCCTATCATTGTGCTCAACCCACACAATGAAAAAATTCATAGATTGGACGGTCT





GAAACCATGTTCTCTTCTTTTACAGTATGATTAAATGAGACATGATTCCAAGCTTGTCGACTTCGAGCAACTTGTTTATTGCAGCTTATAATGGTT





ACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTATC





ATGTCTGGATCGTCTAGCATCGATTAATTAACTAGAGTACCCGGGGATCTTATTCCCTTTAACTAATAAAAAAAAATAATAAAGCATCACTTACTT





AAAATCAGTTAGCAAATTTCTGTCCAGTTTATTCAGCAGCACCTCCTTGCCCTCCTCCCAGCTCTGGTATTGCAGCTTCCTCCTGGCTGCAAACTT





TCTCCACAATCTAAATGGAATGTCAGTTTCCTCCTGTTCCTGTCCATCCGCACCCACTATCTTCATGTTGTTGCAGATGAAGCGCGCAAGACCGTC





TGAAGATACCTTCAACCCCGTGTATCCATATGACACGGAAACCGGTCCTCCAACTGTGCCTTTTCTTACTCCTCCCTTTGTATCCCCCAATGGGTT





TCAAGAGAGTCCCCCTGGGGTACTCTCTTTGCGCCTATCCGAACCTCTAGTTACCTCCAATGGCATGCTTGCGCTCAAAATGGGCAACGGCCTCTC





TCTGGACGAGGCCGGCAACCTTACCTCCCAAAATGTAACCACTGTGAGCCCACCTCTCAAAAAAACCAAGTCAAACATAAACCTGGAAATATCTGC





ACCCCTCACAGTTACCTCAGAAGCCCTAACTGTGGCTGCCGCCGCACCTCTAATGGTCGCGGGCAACACACTCACCATGCAATCACAGGCCCCGCT





AACCGTGCACGACTCCAAACTTAGCATTGCCACCCAAGGACCCCTCACAGTGTCAGAAGGAAAGCTAGCCCTGCAAACATCAGGCCCCCTCACCAC





CACCGATAGCAGTACCCTTACTATCACTGCCTCACCCCCTCTAACTACTGCCACTGGTAGCTTGGGCATTGACTTGAAAGAGCCCATTTATACACA





AAATGGAAAACTAGGACTAAAGTACGGGGCTCCTTTGCATGTAACAGACGACCTAAACACTTTGACCGTAGCAACTGGTCCAGGTGTGACTATTAA





TAATACTTCCTTGCAAACTAAAGTTACTGGAGCCTTGGGTTTTGATTCACAAGGCAATATGCAACTTAATGTAGCAGGAGGACTAAGGATTGATTC





TCAAAACAGACGCCTTATACTTGATGTTAGTTATCCGTTTGATGCTCAAAACCAACTAAATCTAAGACTAGGACAGGGCCCTCTTTTTATAAACTC





AGCCCACAACTTGGATATTAACTACAACAAAGGCCTTTACTTGTTTACAGCTTCAAACAATTCCAAAAAGCTTGAGGTTAACCTAAGCACTGCCAA





GGGGTTGATGTTTGACGCTACAGCCATAGCCATTAATGCAGGAGATGGGCTTGAATTTGGTTCACCTAATGCACCAAACACAAATCCCCTCAAAAC





AAAAATTGGCCATGGCCTAGAATTTGATTCAAACAAGGCTATGGTTCCTAAACTAGGAACTGGCCTTAGTTTTGACAGCACAGGTGCCATTACAGT





AGGAAACAAAAATAATGATAAGCTAACTTTGTGGACCACACCAGCTCCATCTCCTAACTGTAGACTAAATGCAGAGAAAGATGCTAAACTCACTTT





GGTCTTAACAAAATGTGGCAGTCAAATACTTGCTACAGTTTCAGTTTTGGCTGTTAAAGGCAGTTTGGCTCCAATATCTGGAACAGTTCAAAGTGC





TCATCTTATTATAAGATTTGACGAAAATGGAGTGCTACTAAACAATTCCTTCCTGGACCCAGAATATTGGAACTTTAGAAATGGAGATCTTACTGA





AGGCACAGCCTATACAAACGCTGTTGGATTTATGCCTAACCTATCAGCTTATCCAAAATCTCACGGTAAAACTGCCAAAAGTAACATTGTCAGTCA





AGTTTACTTAAACGGAGACAAAACTAAACCTGTAACACTAACCATTACACTAAACGGTACACAGGAAACAGGAGACACAACTCCAAGTGCATACTC





TATGTCATTTTCATGGGACTGGTCTGGCCACAACTACATTAATGAAATATTTGCCACATCCTCTTACACTTTTTCATACATTGCCCAAGAATAAAG





AATCGTTTGTGTTATGTTTCAACGTGTTTATTTTTCAATTGCAGAAAATTTCAAGTCATTTTTCATTCAGTAGTATAGCCCCACCACCACATAGCT





TATACAGATCACCGTACCTTAATCAAACTCACAGAACCCTAGTATTCAACCTGCCACCTCCCTCCCAACACACAGAGTACACAGTCCTTTCTCCCC





GGCTGGCCTTAAAAAGCATCATATCATGGGTAACAGACATATTCTTAGGTGTTATATTCCACACGGTTTCCTGTCGAGCCAAACGCTCATCAGTGA





TATTAATAAACTCCCCGGGCAGCTCACTTAAGTTCATGTCGCTGTCCAGCTGCTGAGCCACAGGCTGCTGTCCAACTTGCGGTTGCTTAACGGGCG





GCGAAGGAGAAGTCCACGCCTACATGGGGGTAGAGTCATAATCGTGCATCAGGATAGGGCGGTGGTGCTGCAGCAGCGCGCGAATAAACTGCTGCC





GCCGCCGCTCCGTCCTGCAGGAATACAACATGGCAGTGGTCTCCTCAGCGATGATTCGCACCGCCCGCAGCATAAGGCGCCTTGTCCTCCGGGCAC





AGCAGCGCACCCTGATCTCACTTAAATCAGCACAGTAACTGCAGCACAGCACCACAATATTGTTCAAAATCCCACAGTGCAAGGCGCTGTATCCAA





AGCTCATGGCGGGGACCACAGAACCCACGTGGCCATCATACCACAAGCGCAGGTAGATTAAGTGGCGACCCCTCATAAACACGCTGGACATAAACA





TTACCTCTTTTGGCATGTTGTAATTCACCACCTCCCGGTACCATATAAACCTCTGATTAAACATGGCGCCATCCACCACCATCCTAAACCAGCTGG





CCAAAACCTGCCCGCCGGCTATACACTGCAGGGAACCGGGACTGGAACAATGACAGTGGAGAGCCCAGGACTCGTAACCATGGATCATCATGCTCG





TCATGATATCAATGTTGGCACAACACAGGCACACGTGCATACACTTCCTCAGGATTACAAGCTCCTCCCGCGTTAGAACCATATCCCAGGGAACAA





CCCATTCCTGAATCAGCGTAAATCCCACACTGCAGGGAAGACCTCGCACGTAACTCACGTTGTGCATTGTCAAAGTGTTACATTCGGGCAGCAGCG





GATGATCCTCCAGTATGGTAGCGCGGGTTTCTGTCTCAAAAGGAGGTAGACGATCCCTACTGTACGGAGTGCGCCGAGACAACCGAGATCGTGTTG





GTCGTAGTGTCATGCCAAATGGAACGCCGGACGTAGTCATATTTCCTGAAGCAAAACCAGGTGCGGGCGTGACAAACAGATCTGCGTCTCCGGTCT





CGCCGCTTAGATCGCTCTGTGTAGTAGTTGTAGTATATCCACTCTCTCAAAGCATCCAGGCGCCCCCTGGCTTCGGGTTCTATGTAAACTCCTTCA





TGCGCCGCTGCCCTGATAACATCCACCACCGCAGAATAAGCCACACCCAGCCAACCTACACATTCGTTCTGCGAGTCACACACGGGAGGAGCGGGA





AGAGCTGGAAGAACCATGTTTTTTTTTTTATTCCAAAAGATTATCCAAAACCTCAAAATGAAGATCTATTAAGTGAACGCGCTCCCCTCCGGTGGC





GTGGTCAAACTCTACAGCCAAAGAACAGATAATGGCATTTGTAAGATGTTGCACAATGGCTTCCAAAAGGCAAACGGCCCTCACGTCCAAGTGGAC





GTAAAGGCTAAACCCTTCAGGGTGAATCTCCTCTATAAACATTCCAGCACCTTCAACCATGCCCAAATAATTCTCATCTCGCCACCTTCTCAATAT





ATCTCTAAGCAAATCCCGAATATTAAGTCCGGCCATTGTAAAAATCTGCTCCAGAGCGCCCTCCACCTTCAGCCTCAAGCAGCGAATCATGATTGC





AAAAATTCAGGTTCCTCACAGACCTGTATAAGATTCAAAAGCGGAACATTAACAAAAATACCGCGATCCCGTAGGTCCCTTCGCAGGGCCAGCTGA





ACATAATCGTGCAGGTCTGCACGGACCAGCGCGGCCACTTCCCCGCCAGGAACCTTGACAAAAGAACCCACACTGATTATGACACGCATACTCGGA





GCTATGCTAACCAGCGTAGCCCCGATGTAAGCTTTGTTGCATGGGCGGCGATATAAAATGCAAGGTGCTGCTCAAAAAATCAGGCAAAGCCTCGCG





CAAAAAAGAAAGCACATCGTAGTCATGCTCATGCAGATAAAGGCAGGTAAGCTCCGGAACCACCACAGAAAAAGACACCATTTTTCTCTCAAACAT





GTCTGCGGGTTTCTGCATAAACACAAAATAAAATAACAAAAAAACATTTAAACATTAGAAGCCTGTCTTACAACAGGAAAAACAACCCTTATAAGC





ATAAGACGGACTACGGCCATGCCGGCGTGACCGTAAAAAAACTGGTCACCGTGATTAAAAAGCACCACCGACAGCTCCTCGGTCATGTCCGGAGTC





ATAATGTAAGACTCGGTAAACACATCAGGTTGATTCATCGGTCAGTGCTAAAAAGCGACCGAAATAGCCCGGGGGAATACATACCCGCAGGCGTAG





AGACAACATTACAGCCCCCATAGGAGGTATAACAAAATTAATAGGAGAGAAAAACACATAAACACCTGAAAAACCCTCCTGCCTAGGCAAAATAGC





ACCCTCCCGCTCCAGAACAACATACAGCGCTTCACAGCGGCAGCCTAACAGTCAGCCTTACCAGTAAAAAAGAAAACCTATTAAAAAAACACCACT





CGACACGGCACCAGCTCAATCAGTCACAGTGTAAAAAAGGGCCAAGTGCAGAGCGAGTATATATAGGACTAAAAAATGACGTAACGGTTAAAGTCC





ACAAAAAACACCCAGAAAACCGCACGCGAACCTACGCCCAGAAACGAAAGCCAAAAAACCCACAACTTCCTCAAATCGTCACTTCCGTTTTCCCAC





GTTACGTAACTTCCCATTTTAAGAAAACTACAATTCCCAACACATACAAGTTACTCCGCCCTAAAACCTACGTCACCCGCCCCGTTCCCACGCCCC





GCGCCACGTCACAAACTCCACCCCCTCATTATCATATTGGCTTCAATCCAAAATAAGGTATATTATTGATGAT





Partial DNA sequence of Ad5-yCD/mutTKSR39rep-ADP (base 1 → 5100) (E1 Region)








(SEQ ID NO. 2)









yCD sequence is italicized; glycine polylinker is bolded; mutTKSR39 sequence is regular text;



mutations in mutTKSR39 are indicated





        10         20         30         40         50         60         70         80         90


TCCCTTCCAGCTCTCTGCCCCTTTTGGATTGAAGCCAATATGATAATGAGGGGGTGGAGTTTGTGACGTGGCGCGGGGCGTGGGAACGGGGCGGGT


100


GACG





       110        120        130        140        150        160        170        180        190


TAGTAGTGTGGCGGAAGTGTGATGTTGCAAGTGTGGCGGAACACATGTAAGCGACGGATGTGGCAAAAGTGACGTTTTTGGTGTGCGCCGGTGTAC


200


ACAG





       210        220        230        240        250        260        270        280        290


GAAGTGACAATTTTCGCGCGGTTTTAGGCGGATGTTGTAGTAAATTTGGGCGTAACCGAGTAAGATTTGGCCATTTTCGCGGGAAAACTGAATAAG


300


AGGA





                                                    BglII/BamHI


       310        320        330        340        350        360        370        380        390


AGTGAAATCTGAATAATTTTGTGTTACTCATAGCGCGTAATCTCTAGCATCGAAGATCCATTTGTCTAGGGCCGCGGGGACTTTGACCGTTTACGT


400


GGAG





                                                                                    E1A TATA


       410        420        430        440        450        460        470        480        490


ACTCGCCCAGGTGTTTTTCTCAGGTGTTTTCCGCGTTCCGGGTCAAAGTTGGCGTTTTATTATTATAGTCAGCTGACGTGTAGTGTATTTATACCC


500


GGTG





                +1 E1A mRNA                                                  E1A start


       510        520        530        540        550        560        570        580        590


AGTTCCTCAAGAGGCCACTCTTGAGTGCCAGCGAGTAGAGTTTTCTCCTCCGAGCCGCTCCGACACCGGGACTGAAAATGAGACATATTATCTGCC


600


ACGG





       610        620        630        640        650        660        670        680        690


AGGTGTTATTACCGAAGAAATGGCCGCCAGTCTTTTGGACCAGCTGATCGAAGAGGTACTGGCTGATAATCTTCCACCTCCTAGCCATTTTGAACC


700


ACCT





       710        720        730        740        750        760        770        780        790


ACCCTTCACGAACTGTATGATTTAGACGTGACGGCCCCCGAAGATCCCAACGAGGAGGCGGTTTCGCAGATTTTTCCCGACTCTGTAATGTTGGCG


800


GTGC





       810        820        830        840        850        860        870        880        890


AGGAAGGGATTGACTTACTCACTTTTCCGCCGGCGCCCGGTTCTCCGGAGCCGCCTCACCTTTCCCGGCAGCCCGAGCAGCCGGAGCAGAGAGCCT


900


TGGG





                                                                                            E1A


       910        920        930        940        950        960        970        980        990


TCCGGTTTCTATGCCAAACCTTGTACCGGAGGTGATCGATCTTACCTGCCACGAGGCTGGCTTTCCACCCAGTGACGACGAGGATGAAGAGGGTGA


SD


1000


GGAG





      1010       1020       1030       1040       1050       1060       1070       1080       1090


TTGTGTTAGATTATGTGGAGCACCCCGGGCACGGTTGCAGGTCTTGTCATTATCACCGGAGGAATACGGGGGACCCAGATATTATGTGTTCGCTT


1100


TGCT





                              E1A SD


      1110       1120       1130       1140       1150       1160       1170       1180       1190


ATATGAGGACCTGTGGCATGTTTGTCTACAGTAAGTGAAAATTATGGGCAGTGGGTGATAGAGTGGTGGGTTTGGTGTGGTAATTTTTTTTTTAAT


1200


TTTT





                                            E1A SA


      1210       1220       1230       1240       1250       1260       1270       1280       1290


ACAGTTTTGTGGTTTAAAGAATTTTGTATTGTGATTTTTTTAAAAGGTCCTGTGTCTGAACCTGAGCCTGAGCCCGAGCCAGAACCGGAGCCTGCA


1300


AGAC





      1310       1320       1330       1340       1350       1360       1370       1380       1390


CTACCCGCCGTCCTAAAATGGCGCCTGCTATCCTGAGACGCCCGACATCACCTGTGTCTAGAGAATGCAATAGTAGTACGGATAGCTGTGACTCCG


1400


GTCC





      1410       1420       1430       1440       1450       1460       1470       1480       1490


TTCTAACACACCTCCTGAGATACACCCGGTGGTCCCGCTGTGCCCCATTAAACCAGTTGCCGTGAGAGTTGGTGGGCGTCGCCAGGCTGTGGAATG


1500


TATC





                                                            E1A stop


      1510       1520       1530       1540       1550       1560       1570       1580       1590


GAGGACTTGCTTAACGAGCCTGGGCAACCTTTGGACTTGAGCTGTAAACGCCCCAGGCCATAAGGTGTAAACCTGTGATTGCGTGTGTGGTTAACG


1600


CCTT





                            E1A polyadenylation   E1A mRNA 3′ terminus


      1610       1620       1630       1640       1650       1660       1670       1680       1690


TGTTTGCTGAATGAGTTGATGTAAGTTTAATAAAGGGTGAGATAATGTTTAACTTGCATGGCGTGTTAAATGGGGCGGGGCTTAAAGGGTATATAA


1700


TGCG





                   +1 E1B mRNA 19 kDa E1B start


      1710       1720       1730       1740       1750       1760       1770       1780       1790


CCGTGGGCTAATCTTGGTTACATCTGACCTCATGGAGGCTTGGGAGTGTTTGGAAGATTTTTCTGCTGTGCGTAACTTGCTGGAACAGAGCTCTAA


1800


CAGT





      1810       1820       1830       1840       1850       1860       1870       1880       1890


ACCTCTTGGTTTTGGAGGTTTCTGTGGGGCTCATCCCAGGCAAAGTTAGTCTGCAGAATTAAGGAGGATTACAAGTGGGAATTTGAAGAGCTTTTG


1900


AAAT





      1910       1920       1930       1940       1950       1960       1970       1980       1990


CCTGTGGTGAGCTGTTTGATTCTTTGAATCTGGGTCACCAGGCGCTTTTCCAAGAGAAGGTCATCAAGACTTTGGATTTTTCCACACCGGGGCGCG


2000


CTGC





                                    55 kDa E1B start


      2010       2020       2030       2040       2050       2060       2070       2080       2090


GGCTGCTGTTGCTTTTTTGAGTTTTATAAAGGATAAATGGAGCGAAGAAACCCATCTGAGCGGGGGGTACCTGCTGGATTTTCTGGCCATGCATCT


2100


GTGG





      2110       2120       2130       2140       2150       2160       2170       2180       2190


AGAGCGGTTGTGAGACACAAGAATCGCCTGCTACTGTTGTCTTCCGTCCGCCCGGCGATAATACCGACGGAGGAGCAGCAGCAGCAGCAGGAGGAA


2200


GCCA





                                                 55 kDa premature stops


                                                           19 kDa E1B stop              BglII


      2210       2220       2230       2240       2250       2260       2270       2280       2290


GGCGGCGGCGGCAGGAGCAGAGCCCATGGAACCCGAGAGCCGGCCTGGACCCTCGGGAATGAATGTTGTATAGGTGGCTTAACTGTATAGATCTAA


2300


TTCC





      2310       2320       2330       2340       2350       2360       2370       2380       2390


CTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGTTTTG


2400


GCAG





      2410       2420       2430       2440       2450       2460       2470       2480       2490


TACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAA


2500


CGGG





                                                    CMV TATA


      2510       2520       2530       2540       2550       2560       2570       2580       2590


ACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTCGTTTAGTGA


2600


ACCG





+1 CMV                                                                                      BamHI


      2610       2620       2630       2640       2650       2660       2670       2680       2690



TCAGATCGCCTGGAGACGCCATCCACGCTGTTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTGGGGATCTTCGAGTCGAGGGATCCCTC



XhoI


2700



GAGC






    CD start


      2710       2720       2730       2740       2750       2760       2770       2780       2790


CACCATGGGGACAGGGGGAATGGCAAGCAAGTGGGATCAGAAGGGTATGGACATTGCCTATGAGGAGGCGGCCTTAGGTTACAAAGAGGGTGGTGT


2800



TCCT






      2810       2820       2830       2840       2850       2860       2870       2880       2890



ATTGGCGGATGTCTTATCAATAACAAAGACGGAAGTGTTCTCGGTCGTGGTCACAACATGAGATTTCAAAAGGGATCCGCCACACTACATGGTGAG



2900



ATCT






      2910       2920       2930       2940       2950       2960       2970       2980       2990



CCACTTTGGAAAACTGTGGGAGATTAGAGGGCAAAGTGTACAAAGATACCACTTTGTATACGACGCTGTCTCCATGCGACATGTGTACAGGTGCCA



3000



TCAT






      3010       3020       3030       3040       3050       3060       3070       3080       3090



CATGTATGGTATTCCACGCTGTGTTGTCGGTGAGAACGTTAATTTCAAAAGTAAGGGCGAGAAATATTTACAAACTAGAGGTCACGAGGTTGTTGT



3100



TGTT






                                                                             end of yCD


      3110       3120       3130       3140       3150       3160       3170       3180       3190



GACGATGAGAGGTGTAAAAAGATCATGAAACAATTTATCGATGAAAGACCTCAGGATTGGTTTGAAGATATTGGTGAG
GGTGGAGGGGGAGGCGGT



polylinker


3200



GGGG






     NheI  TK start


      3210       3220       3230       3240       3250       3260       3270       3280       3290



GAGGT

GCTAGC

ATGGCTTCGTACCCCTGCCATCAACACGCGTCTGCGTTCGACCAGGCTGCGCGTTCTCGCGGCCATAGCAACCGACGTACGGCGT



3300


TGCG





      3310       3320       3330       3340       3350       3360       3370       3380       3390


CCCTCGCCGGCAGCAAGAAGCCACGGAAGTCCGCCTGGAGCAGAAAATGCCCACGCTACTGCGGGTTTATATAGACGGTCCTCACGGGATGGGGAA


3400


AACC





      3410       3420       3430       3440       3450       3460       3470       3480       3490


ACCACCACGCAACTGCTGGTGGCCCTGGGTTCGCGCGACGATATCGTCTACGTACCCGAGCCGATGACTTACTGGCAGGTGCTGGGGGCTTCCGAG


3500


ACAA





      3510       3520       3530       3540       3550       3560       3570       3580       3590


TCGCGAACATCTACACCACACAACACCGCCTCGACCAGGGTGAGATATCGGCCGGGGACGCGGCGGTGGTAATGACAAGCGCCCAGATAACAATGG


3600


GCAT





                                                                                  mutTKSR39


      3610       3620       3630       3640       3650       3660       3670       3680       3690


GCCTTATGCCGTGACCGACGCCGTTCTGGCTCCTCATGTCGGGGGGGAGGCTGGGAGTTCACATGCCCCGCCCCCGGCCCTCACCATCTTCCTCGA


mutations


3700


CCGC





            mUtTKSR39 mutations


      3710       3720       3730       3740       3750       3760       3770       3780       3790


CATCCCATCGCCTTCATGCTGTGCTACCCGGCCGCGCGGTACCTTATGGGCAGCATGACCCCCCAGGCCGTGCTGGCGTTCGTGGCCCTCATCCCG


3800


CCGA





      3810       3820       3830       3840       3850       3860       3870       3880       3890


CCTTGCCCGGCACAAACATCGTGTTGGGGGCCCTTCCGGAGGACAGACACATCGACCGCCTGGCCAAACGCCAGCGCCCCGGCGAGCGGCTTGACC


3900


TGGC





      3910       3920       3930       3940       3950       3960       3970       3980       3990


TATGCTGGCCGCGATTCGCCGCGTTTACGGGCTGCTTGCCAATACGGTGCGGTATCTGCAGGGCGGCGGGTCGTGGTGGGAGGATTGGGGACAGCT


4000


TTCG





      4010       4020       4030       4040       4050       4060       4070       4080       4090


GGGACGGCCGTGCCGCCCCAGGGTGCCGAGCCCCAGAGCAACGCGGGCCCACGACCCCATATCGGGGACACGTTATTTACCCTGTTTCGGGCCCCC


4100


GAGT





      4110       4120       4130       4140       4150       4160       4170       4180       4190


TGCTGGCCCCCAACGGCGACCTGTATAACGTGTTTGCCTGGGCCTTGGACGTCTTGGCCAAACGCCTCCGTCCCATGCACGTCTTTATCCTGGATT


4200


ACGA





      4210       4220       4230       4240       4250       4260       4270       4280       4290


CCAATCGCCCGCCGGCTGCCGGGACGCCCTGCTGCAACTTACCTCCGGGATGGTCCAGACCCACGTCACCACCCCAGGCTCCATACCGACGATCTG


4300


CGAC





                                       TK stop   EcoRI HindIII


      4310       4320       4330       4340       4350       4360       4370       4380       4390


CTGGCGCGCACGTTTGCCCGGGAGATGGGGGAGGCTAACTGAAACACGGAAGAATTCAAGCTTGTCGACTTCGAGCAACTTGTTTATTGCAGCTTA


4400


TAAT





       SV40 polyadenylation SV40 3′ terminus


      4410       4420       4430       4440       4450       4460       4470       4480       4490


GGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCT


4500


TATC





                       BglII BamHI/BglII


      4510       4520       4530       4540       4550       4560       4570       4580       4590


ATGTCTGGATCGTCTAGCATCGAAGATCTGGATCTGGGCGTGGTTAAGGGTGGGAAAGAATATATAAGGTGGGGGTCTTATGTAGTTTTGTATCTG


4600


TTTT





  E1B SA


      4610       4620       4630       4640       4650       4660       4670       4680       4690


GCAGCAGCCGCCGCCGCCATGAGCACCAACTCGTTTGATGGAAGCATTGTGAGCTCATATTTGACAACGCGCATGCCCCCATGGGCCGGGGTGCGT


4700


CAGA





      4710       4720       4730       4740       4750       4760       4770       4780       4790


ATGTGATGGGCTCCAGCATTGATGGTCGCCCCGTCCTGCCCGCAAACTCTACTACCTTGACCTACGAGACCGTGTCTGGAACGCCGTTGGAGACTG


4800


CAGC





      4810       4820       4830       4840       4850       4860       4870       4880       4890


CTCCGCCGCCGCTTCAGCCGCTGCAGCCACCGCCCGCGGGATTGTGACTGACTTTGCTTTCCTGAGCCCGCTTGCAAGCAGTGCAGCTTCCCGTTC


4900


ATCC





      4910       4920       4930       4940       4950       4960       4970       4980       4990


GCCCGCGATGACAAGTTGACGGCTCTTTTGGCACAATTGGATTCTTTGACCCGGGAACTTAATGTCGTTTCTCAGCAGCTGTTGGATCTGCGCCAG


5000


CAGG





                                               E1B polyadenylation                  E1B mRNA 3′


      5010       5020       5030       5040       5050       5060       5070       5080       5090


TTTCTGCCCTGAAGGCTTCCTCCCCTCCCAATGCGGTTTAAAACATAAATAAAAAACCAGACTCTGTTTGGATTTGGATCAAGCAAGTGTCTTGCT


terminus


5100


GTCT





Partial DNA sequence of Ad5-yCD/mutTKSR39rep-ADP (base 29,163 → 30,079) (E3 Region)








(SEQ ID NO. 3)









ADP sequence is bolded



SwaI


        10         20         30         40         50         60         70         80         90



ATTTAAATAATTCCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATG



100


GTGA





       110        120        130        140        150        160        170        180        190


TGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTTTGTTTT


200


GGCA





                                                                                       CMV TATA


       210        220        230        240        250        260        270        280        290


CCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAG


300


AGCT





              +1 CMV


       310        320        330        340        350        360        370        380        390


CGTTTAGTGAACCGTCAGATCGCCTGGAGACGCCATCCACGCTGTTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTGGGGATCAGTCTT


400


CGAG





    BamHI            ADP start


       410        420        430        440        450        460        470        480        490


TCGAGGATCCCCTGCTCCAGAGATGACCGGCTCAACCATCGCGCCCACAACGGACTATCGCAACACCACTGCTACCGGACTAACATCTGCCCTAAA


500



TTTA






       510        520        530        540        550        560        570        580        590



CCCCAAGTTCATGCCTTTGTCAATGACTGGGCGAGCTTGGACATGTGGTGGTTTTCCATAGCGCTTATGTTTGTTTGCCTTATTATTATGTGGCTT



600



ATTT






       610        620        630        640        650        660        670        680        690



GTTGCCTAAAGCGCAGACGCGCCAGACCCCCCATCTATAGGCCTATCATTGTGCTCAACCCACACAATGAAAAAATTCATAGATTGGACGGTCTGA



700



AACC






                       ADP stop           HindIII                                          SV40


       710        720        730        740        750        760        770        780        790



ATGTTCTCTTCTTTTACAGTATGATTAAATGAGACATGATTCCAAGCTTGTCGACTTCGAGCAACTTGTTTATTGCAGCTTATAATGGTTACAAAT



poly A


800



AAAG






           SV40 3′ terminus


       810        820        830        840        850        860        870        880        890


CAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTATCATGTCTGGAT


900


CGTC





         PacI


       910


TAGCATCGATTAATTAA





DNA Sequence and Translation of yCD/mutTKSR39 Fusion Gene








(SEQ ID NO. 4)












yCD sequence is italicized; glycine polylinker is bolded; mutTKSR39 sequence is regular text;



mutations in mutTKSR39 are indicated


                           10                            20                            30


 M  G  T  G  G  M  A  S  K  W  D  Q  K  G  M  D  I  A  Y  E  E  A  A  L  G  Y  K  E  G  G



ATGGGGACAGGGGGAATGGCAAGCAAGTGGGATCAGAAGGGTATGGACATTGCCTATGAGGAGGCGGCCTTAGGTTACAAAGAGGGTGGT



        10        20        30        40        50        60        70        80        90





                           40                            50                            60


 V  P  I  G  G  C  L  I  N  N  K  D  G  S  V  L  G  R  G  H  N  M  R  F  Q  K  G  S  A  T



GTTCCTATTGGCGGATGTCTTATCAATAACAAAGACGGAAGTGTTCTCGGTCGTGGTCACAACATGAGATTTCAAAAGGGATCCGCCACA



       100       110       120       130       140       150       160       170       180





                           70                            80                            90


 L  H  G  E  I  S  T  L  E  N  C  G  R  L  E  G  K  V  Y  K  D  T  T  L  Y  T  T  L  S  P



CTACATGGTGAGATCTCCACTTTGGAAAACTGTGGGAGATTAGAGGGCAAAGTGTACAAAGATACCACTTTGTATACGACGCTGTCTCCA



       190       200       210       220       230       240       250       260       270





                          100                           110                           120


 C  D  M  C  T  G  A  I  I  M  Y  G  I  P  R  C  V  V  G  E  N  V  N  F  K  S  K  G  E  K



TGCGACATGTGTACAGGTGCCATCATCATGTATGGTATTCCACGCTGTGTTGTCGGTGAGAACGTTAATTTCAAAAGTAAGGGCGAGAAA



       280       290       300       310       320       330       340       350       360





                          130                           140                           150


 Y  L  Q  T  R  G  H  E  V  V  V  V  D  D  E  R  C  K  K  I  M  K  Q  F  I  D  E  R  P  Q



TATTTACAAACTAGAGGTCACGAGGTTGTTGTTGTTGACGATGAGAGGTGTAAAAAGATCATGAAACAATTTATCGATGAAAGACCTCAG



       370       380       390       400       410       420       430       440       450





                          160                           170                           180


 D  W  F  E  D  I  G  E  G  G  G  G  G  G  G  G  G  A  S  M  A  S  Y  P  C  H  Q  H  A  S



GATTGGTTTGAAGATATTGGTGAG
GGTGGAGGGGGAGGCGGTGGGGGAGGTGCTAGC
ATGGCTTCGTACCCCTGCCATCAACACGCGTCT



       460       470       480       490       500       510       520       530       540





                          190                           200                           210


 A  F  D  Q  A  A  R  S  R  G  H  S  N  R  R  T  A  L  R  P  R  R  Q  Q  E  A  T  E  V  R


GCGTTCGACCAGGCTGCGCGTTCTCGCGGCCATAGCAACCGACGTACGGCGTTGCGCCCTCGCCGGCAGCAAGAAGCCACGGAAGTCCGC


       550       560       570       580       590       600       610       620       630





                          220                           230                           240


 L  E  Q  K  M  P  T  L  L  R  V  Y  I  D  G  P  H  G  M  G  K  T  T  T  T  Q  L  L  V  A


CTGGAGCAGAAAATGCCCACGCTACTGCGGGTTTATATAGACGGTCCTCACGGGATGGGGAAAACCACCACCACGCAACTGCTGGTGGCC


       640       650       660       670       680       690       700       710       720





                          250                           260                           270


 L  G  S  R  D  D  I  V  Y  V  P  E  P  M  T  Y  W  Q  V  L  G  A  S  E  T  I  A  N  I  Y


CTGGGTTCGCGCGACGATATCGTCTACGTACCCGAGCCGATGACTTACTGGCAGGTGCTGGGGGCTTCCGAGACAATCGCGAACATCTAC


       730       740       750       760       770       780       790       800       810





                          280                           290                           300


 T  T  Q  H  R  L  D  Q  G  E  I  S  A  G  D  A  A  V  V  M  T  S  A  Q  I  T  M  G  M  P


ACCACACAACACCGCCTCGACCAGGGTGAGATATCGGCCGGGGACGCGGCGGTGGTAATGACAAGCGCCCAGATAACAATGGGCATGCCT


       820       830       840       850       860       870       880       890       900





                          310                           320                           330


WT HSV-1 TK                                                                       L  I  F


WT HSV-1 TK                                                                      C  A  T





 Y  A  V  T  D  A  V  L  A  P  H  V  G  G  E  A  G  S  S  H  A  P  P  P  A  L  T  I  F  L


TATGCCGTGACCGACGCCGTTCTGGCTCCTCATGTCGGGGGGGAGGCTGGGAGTTCACATGCCCCGCCCCCGGCCCTCACCATCTTCCTC


       910       920       930       940       950       960       970       980       990





                          340                           350                           360


WT HSV-1 TK        A  L


WT HSV-1 TK       GC C C


 D  R  H  P  I  A  F  M  L  C  Y  P  A  A  R  Y  L  M  G  S  M  T  P  Q  A  V  L  A  F  V


GACCGCCATCCCATCGCCTTCATGCTGTGCTACCCGGCCGCGCGGTACCTTATGGGCAGCATGACCCCCCAGGCCGTGCTGGCGTTCGTG


      1000      1010      1020      1030      1040      1050      1060      1070      1080





                          370                           380                           390


 A  L  I  P  P  T  L  P  G  T  N  I  V  L  G  A  L  P  E  D  R  H  I  D  R  L  A  K  R  Q


GCCCTCATCCCGCCGACCTTGCCCGGCACAAACATCGTGTTGGGGGCCCTTCCGGAGGACAGACACATCGACCGCCTGGCCAAACGCCAG


      1090      1100      1110      1120      1130      1140      1150      1160      1170





                          400                           410                           420


 R  P  G  E  R  L  D  L  A  M  L  A  A  I  R  R  V  Y  G  L  L  A  N  T  V  R  Y  L  Q  G


CGCCCCGGCGAGCGGCTTGACCTGGCTATGCTGGCCGCGATTCGCCGCGTTTACGGGCTGCTTGCCAATACGGTGCGGTATCTGCAGGGC


      1180      1190      1200      1210      1220      1230      1240      1250      1260





                          430                           440                           450


 G  G  S  W  W  E  D  W  G  Q  L  S  G  T  A  V  P  P  Q  G  A  E  P  Q  S  N  A  G  P  R


GGCGGGTCGTGGTGGGAGGATTGGGGACAGCTTTCGGGGACGGCCGTGCCGCCCCAGGGTGCCGAGCCCCAGAGCAACGCGGGCCCACGA


      1270      1280      1290      1300      1310      1320      1330      1340      1350





                          460                           470                           480


 P  H  I  G  D  T  L  F  T  L  F  R  A  P  E  L  L  A  P  N  G  D  L  Y  N  V  F  A  W  A


CCCCATATCGGGGACACGTTATTTACCCTGTTTCGGGCCCCCGAGTTGCTGGCCCCCAACGGCGACCTGTATAACGTGTTTGCCTGGGCC


      1360      1370      1380      1390      1400      1410      1420      1430      1440





                          490                           500                           510


 L  D  V  L  A  K  R  L  R  R  M  H  V  E  L  L  D  Y  D  Q  S  P  A  G  C  R  D  A  L  L


TTGGACGTCTTGGCCAAACGCCTCCGTCCCATGCACGTCTTTATCCTGGATTACGACCAATCGCCCGCCGGCTGCCGGGACGCCCTGCTG


      1450      1460      1470      1480      1490      1500      1510      1520      1530





                          520                           530                           540


 Q  L  T  S  G  M  V  Q  T  H  V  T  T  P  G  S  I  P  T  I  C  D  L  A  R  T  F  A  R  E


CAACTTACCTCCGGGATGGTCCAGACCCACGTCACCACCCCAGGCTCCATACCGACGATCTGCGACCTGGCGCGCACGTTTGCCCGGGAG


      1540      1550      1560      1570      1580      1590      1600      1610      1620





            545


 M  G  E  A  N


ATGGGGGAGGCTAAC


      1630





DNA Sequence and Translation of ADP gene








(SEQ ID NO. 5)









                           10                            20                            30



 M  T  G  S  T  I  A  P  T  T  D  Y  R  N  T  T  A  T  G  L  T  S  A  L  N  L  P  Q  V  H


ATGACCGGCTCAACCATCGCGCCCACAACGGACTATCGCAACACCACTGCTACCGGACTAACATCTGCCCTAAATTTACCCCAAGTTCAT


        10        20        30        40        50        60        70        80        90





                           40                            50                            60


 A  F  V  N  D  W  A  S  L  D  M  W  W  F  S  I  A  L  M  F  V  C  L  I  I  M  W  L  I  C


GCCTTTGTCAATGACTGGGCGAGCTTGGACATGTGGTGGTTTTCCATAGCGCTTATGTTTGTTTGCCTTATTATTATGTGGCTTATTTGT


       100       110       120       130       140       150       160       170       180





                           70                            80                            90


 C  L  A  R  R  R  A  R  P  P  I  Y  R  P  I  I  V  L  N  P  H  N  E  K  I  H  R  L  D  G


TGCCTAAAGCGCAGACGCGCCAGACCCCCCATCTATAGGCCTATCATTGTGCTCAACCCACACAATGAAAAAATTCATAGATTGGACGGT


       190       200       210       220       230       240       250       260       270





                          100


 L  K  P  C  S  L  L  L  Q  Y  D


CTGAAACCATGTTCTCTTCTTTTACAGTATGAT


       280       290       300





Claims
  • 1. An isolated polynucleotide comprising a nucleotide sequence of a yeast cytosine deaminase/mutant SR 39 herpes simplex virus type 1 thymidine kinase fusion gene.
  • 2. An isolated polypeptide comprising an amino acid sequence encoded by the polynucleotide of claim 1, which converts prodrugs, 5 fluorocytosine and ganciclovir, into active chemotherapeutic agents.
  • 3. A recombinant adenovirus comprising the polynucleotide according to claim 1.
  • 4. The recombinant adenovirus according to claim 3, further comprising an adenovirus type 5 adenovirus death protein gene.
  • 5. The recombinant adenovirus according to claim 3, wherein the adenovirus is a replication-competent, type 5 adenovirus.
  • 6. The polynucleotide according to claim 1, further comprising an adenovirus type 5 adenovirus death protein gene.
  • 7. The polynucleotide according to claim 1, which comprises the nucleotide sequence of SEQ ID NO. 4.
  • 8. The polynucleotide according to claim 4, wherein the adenovirus type 5 adenovirus death protein gene comprises the nucleotide sequence of SEQ ID NO. 5.
  • 9. The polypeptide according to claim 2, which comprises an amino acid sequence of SEQ ID NO. 4.
  • 10. The recombinant adenovirus according to claim 4, which comprises the nucleotide sequence of SEQ ID NO. 1.
  • 11. A pharmaceutical composition comprising the recombinant adenovirus according to claim 3, and a pharmaceutically acceptable carrier.
  • 12. A pharmaceutical composition comprising the recombinant adenovirus according to claim 4, and a pharmaceutically acceptable carrier.
  • 13. A method of treating a mammalian patient having a malignancy, said method comprising administering to the patient the pharmaceutical composition according to claim 11.
  • 14. A method of treating a mammalian patient having a malignancy, said method comprising administering to the patient the pharmaceutical composition according to claim 12.
  • 15. The method according to claim 13, wherein the pharmaceutical composition is administered locally to a tumor site.
  • 16. The method according to claim 13, wherein the pharmaceutical composition is administered by direct injection to a tumor.
  • 17. The method according to claim 13, wherein the pharmaceutical composition is administered by intravenous injection.
  • 18. The method according to claim 13, wherein the administration is performed at two or more separate times.
  • 19. The method according to claim 14, wherein the pharmaceutical composition is administered locally to a tumor site.
  • 20. The method according to claim 14, wherein the pharmaceutical composition is administered by direct injection to a tumor.
  • 21. The method according to claim 14, wherein the pharmaceutical composition is administered by intravenous injection.
  • 22. The method according to claim 14, wherein the administration is performed at two or more separate times.
  • 23. The method according to claim 14, further comprising administering (a) 5-fluorocytosine and/or (b) ganciclovir or derivatives thereof to the patient.
  • 24. The method according to claim 23, further comprising treating the patient with radiation therapy.
  • 25. A method of treating a mammalian patient having a solid tumor, wherein cells comprising said tumor are capable of infection by an adenovirus, said method comprising: treating the patient with the recombinant adenovirus according to claim 4,administering (a) 5-fluorocytosine and/or (b) ganciclovir or derivatives thereof to the patient, andtreating the patient with radiation therapy.
  • 26. A method of converting 5 fluorocytosine and/or ganciclovir into active chemotherapeutic agents comprising contacting the polypeptide according to claim 2 with 5 fluorocytosine and/or ganciclovir.
Priority Claims (1)
Number Date Country Kind
PCT/US04/22320 Jul 2004 US national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority based on U.S. Provisional Patent Application No. 60/486,219, filed Jul. 9, 2003, which is hereby incorporated by reference in full.

Provisional Applications (1)
Number Date Country
60486219 Jul 2003 US