METHODS AND COMPOSITIONS FOR cDNA SYNTHESIS AND SINGLE-CELL TRANSCRIPTOME PROFILING USING TEMPLATE SWITCHING REACTION

Information

  • Patent Application
  • 20160258016
  • Publication Number
    20160258016
  • Date Filed
    August 22, 2014
    10 years ago
  • Date Published
    September 08, 2016
    8 years ago
Abstract
This application discloses methods for cDN′A synthesis with improved reverse transcription, template switching and preamplification to increase both yield and average length of cDNA libraries generated from individual cells. The new methods include exchanging a single nucleoside residue for a locked nucleic acid (INA) at the TSO 3′ end, using a methyl group donor, and/or a MgCb concentration higher than conventionally used. Single-cell transcriptome analyses incorporating these differences have full-length coverage, improved sensitivity and accuracy, have less bias and are more amendable to cost-effective automation. The invention also provides cDNA molecules comprising a locked nucleic acid at the 3′-end, compositions and cDNA libraries comprising these cDNA molecules, and methods for single-cell transcriptome profiling.
Description
FIELD OF THE INVENTION

The present invention relates to methods for synthesis of double stranded cDNA with improved yield and average length, and cDNA molecules synthesized and cDNA libraries generated from individual cells.


BACKGROUND OF THE INVENTION

Single-cell gene expression analyses hold promise to characterize cellular heterogeneity, but current methods sacrifice either the coverage, sensitivity or throughput. Several methods exist for full-length cDNA construction from large amounts of RNA, including cap enrichment procedures (Maruyama, K. & Sugano, S., Gene 138, 171-174 (1994); Carninci, P. & Hayashizaki, Y., Meth. Enzymol. 303, 19-44 (1999); Das, M., et al., Physiol. Genomics 6, 57-80 (2001)), but it is still challenging to obtain full-length coverage from single-cell amounts of RNA. Existing methods use either 3′ end polyA-tailing of cDNA (e.g., Tang, F. et al., Nat. Methods 6, 377-382 (2009); Sasagawa, Y. et al., Genome Biol. 14, R31 (2013)) or template switching (Zhu, Y. Y., et al., BioTechniques 30, 892-897 (2001); Ramsköld, D. et al., Nat. Biotechnol. 30, 777-782 (2012)), whereas other methods sacrifice full-length coverage altogether for early multiplexing (Islam, S. et al., Genome Res. (2011). doi:10.1101/gr.110882.110; Hashimshony, T., et al., Cell Rep. 2, 666-673 (2012)). It has recently been shown that Smart-Seq, which relies on template switching, has more even read coverage across transcripts than polyA-tailing methods (Ramskold, D. et al., Nat. Biotechnol. 30, 777-782 (2012)), consistent with the common use of template switching in applications designed to directly capture RNA 5′ ends, including nanoCAGE (Plessy, C. et al., Nat. Methods 7, 528-534 (2010)) and STRT (Islam, S. et al., Genome Res. (2011). doi:10.1101/gr.110882.110). Single-cell applications utilizing template switching are dependent upon the efficiency of the reverse transcription, the template switching reaction, and a uniform polymerase chain reaction (PCR) preamplification to obtain representative cDNA in sufficient amounts for sequencing. Despite the widespread use of these reactions, no systematic efforts to improve cDNA library yield and average length from single-cell amounts have been reported.


SUMMARY OF THE INVENTION

The present invention provides improved methods for synthesis of cDNA, in particular, in the reverse transcription, template switching and preamplification of single cell applications utilizing template switching reactions, to increase both yield and average length of cDNA libraries generated from individual cells. Single-cell transcriptome analyses incorporating these differences have improved sensitivity and accuracy, and are less biased and more amenable to cost-effective automation.


Specifically, to improve full-length transcriptome profiling from single cells, this application discloses evaluation of a large number of variations to reverse transcription, template switching oligonucleotides (TSO) and PCR preamplification, and comparison of the results to commercial Smart-Seq (hereafter called SMARTer®) in terms of cDNA library yield and length. The modifications disclosed herein surprisingly and significantly increased both the yield and length of the cDNA obtained from as little as 1 ng of starting total RNA.


In one embodiment, the present invention provides a method for preparing DNA that is complementary to an RNA molecule, the method comprising conducting a reverse transcription reaction in the presence of a template switching oligonucleotide (TSO) comprising a locked nucleic acid residue.


In another embodiment, the present invention provides a method of increasing the yield of cDNA, comprising use of an additive, such as a methyl group donor, in the cDNA synthesis. In one embodiment, the methyl group donor is betaine.


In another embodiment, the present invention provides a method of increasing the yield of cDNA, comprising use of an increased concentration of metal salt, for example, MgCl2, in the synthesis of cDNA.


In a preferred embodiment, the method comprises use of a methyl group donor in combination with an increased concentration of MgCl2 in the cDNA synthesis. In a particularly preferred embodiment, the method comprises use of methyl group donor betaine in combination with an increased concentration of MgCl2, which has shown a significant positive effect on the yields of cDNA.


In another embodiment, the present invention provides a method of increasing the average length of a preamplified cDNA, comprising administering dNTPs prior to the RNA denaturation rather than in the reverse transcriptase (RT) master mix.


In another embodiment, the present invention provides a cDNA library produced by a method according to any of the embodiments disclosed herein.


In another embodiment, the present invention provides use of a cDNA library produced according to any of the embodiments disclosed herein for single-cell transcriptome profiling.


In another embodiment, the present invention provides a method for analyzing gene expression in a plurality of single cells, comprising the steps of preparing a cDNA library according to a method according to any embodiment disclosed herein; and sequencing the cDNA library.


It has been demonstrated in accordance with the present invention that these methods performed on purified RNA are applicable to individual metazoan cells, including for example mammalian cells.


In another embodiment, the present invention provides a template switching oligonucleotide (TSO) comprising an LNA at its 3′-end.


In another embodiment, the present invention provides use of a TSO according to any of the embodiments disclosed herein for synthesis of double stranded cDNA.


These and other aspects of the present invention will be better appreciated by reference to the following drawings and detailed description.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates improvements in cDNA library yield and length. (A) Median yield of preamplified cDNA from 1 ng total RNA using different template switching oligonucleotides, relative to those obtained using the rG3 oligo. All oligo sequences are found in Table 1. (B) Median yield of preamplified cDNA from 1 ng total RNA in reactions with betaine (black) or without (gray) and as a function of increasing Mg2+ concentration, relative to cDNA yields obtained using SMARTer®-like conditions (betaine and 6 mM Mg2+). (C) Length of preamplified cDNA generated from 1 ng total mouse brain RNA in reactions that deployed dNTPs prior to RNA denaturation (early) or in RT master mix (late). (D) Median yield of preamplified cDNA from HEK293T cells using the LNA-G and SMARTer® IIA template switching oligos with the optimized protocol. Dashed lines indicate median yield from commercial SMARTer® reactions. (E) Median yield of preamplified cDNA from DG-75 cells in reactions with or without betaine. (F) Lengths of cDNA libraries generated from single HEK293T cells in reactions with or without bead extraction. Note that brain mRNAs are naturally longer than cell line mRNAs. (A-F) The replicate measurements are represented as boxplots with the numbers of replicates per condition indicated in parenthesis. Significant differences in mean yield or length were determined using the Student's t-test.



FIG. 2 illustrates sensitive full-length transcriptome profiling in single cells. (A) Percentage of genes reproducibly detected in replicate cells, binned according to expression level. All pair-wise comparisons were performed within replicates for the optimized protocol and SMARTer® and reported as the mean and 90% confidence interval. (B) Standard deviation in gene expression estimates within replicates in bins of genes sorted according to expression levels. Error bars, s.e.m. (n≧4). (C) The mean numbers of genes detected in HEK293T cells using SMARTer® and optimized protocol, at different RPKM cut-offs. Significant increase in gene detection in the optimized protocol was obtained at all RPKM thresholds (all with p<0.5; Student's t-test). (D) The mean fraction of genes detected as expressed (RPKM>1) in bins of genes sorted according to their GC content. The mRNA-Seq data from a human tissue was included as a no-preamplification control. Error bars denote SEM (n≧4), and the lower panel shows the GC range for genes in each bin. (E) The mean fraction of reads aligning to the 3′ most 20% of the genes, 5′ most 20% and the middle 60% for single-cell data generated using different protocols. (F) Principal component analyses of single-cell gene expression data showing the two most significant components. Cells are colored according to preamplification enzyme and protocol variant.



FIG. 3 shows cDNA yields using LNA bases in template switching oligonucleotides.



FIG. 4 illustrates single-cell RNA-Seq sensitivity and variability. (A) Percentage of genes reproducibly detected in replicate cells. (B) Standard deviation in gene expression estimates.



FIG. 5 illustrates validation of single-cell RNA-Seq results using another analysis pipeline. (A) Percentage of genes reproducibly detected in replicate cells. (B) Standard deviation in gene expression estimates. (C) The mean numbers of genes detected. (D) The mean fraction of genes detected as expressed. (E) The mean fraction of reads aligning to the 3′ most 20% of the genes, 5′ most 20% and the middle 60% for single-cell data generated using different protocols.



FIG. 6 illustrates comparison of single-cell transcriptomic data generated with Smart-Seq2, Quartz-Seq and SMARTer. (A) Percentage of genes reproducibly detected in replicate cells. All pair-wise comparisons were performed with Smart-Seq2 and Quartz-seq, and reported as the mean and 90% confidence interval. (B) Standard deviation in gene expression estimates in (A). (C) Percentage of genes reproducibly detected in replicate cells. All pair-wise comparisons were performed with Smart-Seq2 and SMARTer®, and reported as the mean and 90% confidence interval. (D) Standard deviation in gene expression estimates in (C). (E) Percentage of genes reproducibly detected in replicate cells. All pair-wise comparisons were performed with Quartz-seq, and reported as the mean and 90% confidence interval. (F) Standard deviation in gene expression estimates in (E).



FIG. 7 illustrates mapping statistics for single-cell libraries generated using SMARTer, optimized Smart-Seq and variants of the optimized protocol. (A) Fraction of uniquely aligned reads with 1 to 9 mismatches for each single-cell RNA-Seq library. (B) Percentage of reads that aligned uniquely, aligned to multiple genomic coordinates, or did not align for all single-cell RNA-Seq libraries. (C) Fraction of uniquely aligned reads that mapped to exonic, intronic or intergenic regions. (D) Number of sequenced reads per cell and library preparation protocol.



FIG. 8 illustrates gene expression and GC levels in single-cell RNA-Seq protocols.



FIG. 9 illustrates single-cell RNA-Seq sensitivity and variability. (A) Percentage of genes reproducibly detected in replicate cells. (B) Standard deviation in gene expression estimates.



FIG. 10 illustrates read coverage across genes in single-cell RNA-Seq data.



FIG. 11 illustrates read coverage across transcripts. (A) Mean fraction coverage read for all genes. (B)-(F) Transcripts grouped by length into 5 equal-sized bins.



FIG. 12 illustrates read peaks in single-cell RNA-Seq data. (A) Number of genes with one or more high density peaks per single-cell RNA-Seq library. (B) Heatmaps of read densities across genes with peaks in the highest number of libraries.



FIG. 13 illustrates assessment of the technical and biological variability in single-cell transcriptomics using Smart-Seq2. (A) Percentage of genes reproducibly detected in dilutions of HEK cells. (B) Standard deviation in gene expression estimates for (A). (C) Percentage of genes reproducibly detected in dilutions of HEK total RNA. (D) Standard deviation in gene expression estimates for (D). (E) Standard deviation in gene expression estimates for (D) with pair-wise comparisons of individual cells.



FIG. 14 illustrates comparison of libraries generated with commercial Tn5 (Nextera) to in-house produced Tn5. (A) Percentage of genes reproducibly detected using in-house conditions. (B) Standard deviation in gene expression estimates for (A). (C) Percentage of genes reproducibly detected using commercial buffers and conditions. (D) Standard deviation in gene expression estimates for (D). (E) Differences in reactions carried out in (A).





DETAILED DESCRIPTION OF THE INVENTION

This application discloses methods for cDNA synthesis with improved reverse transcription, template switching and preamplification to increase both yield and average length of cDNA libraries generated from individual cells.


In one embodiment, the present invention provides a method for preparing DNA that is complementary to an RNA molecule, comprising the steps of:


annealing a cDNA synthesis primer to the RNA molecule and synthesizing a first cDNA strand to form an RNA-cDNA intermediate; and


conducting a reverse transcriptase reaction by contacting the RNA-cDNA intermediate with a template switching oligonucleotide (TSO), wherein the TSO comprises a locked nucleic acid (LNA) at its 3′-end, under conditions suitable for extension of the first DNA strand that is complementary to the RNA molecule, rendering it additionally complementary to the TSO.


In another embodiment of the present invention, the reverse transcription reaction is conducted in the presence of a methyl group donor and a metal salt.


In another embodiment of the present invention, the methyl group donor is betaine.


In another embodiment of the present invention, the metal salt is a magnesium salt.


In another embodiment of the present invention, the magnesium salt has a concentration of at least 7 mM, at least 8 mM, or at least 9 mM.


In another embodiment of the present invention, the template switching oligonucleotide optionally comprises one or two ribonucleotide residues.


In another embodiment of the present invention, the template switching oligonucleotide comprises at least one or two ribonucleotide residues and an LNA residue.


In another embodiment of the present invention, the at least one or two ribonucleotide residues are riboguanine.


In another embodiment of the present invention, the locked nucleic acid residue is selected from the group consisting of locked guanine, locked adenine, locked uracil, locked thymine, locked cytosine, and locked 5-methylcytosine.


In another embodiment of the present invention, the locked nucleic acid residue is locked guanine.


In another embodiment of the present invention, the locked nucleic acid residue is at the 3′-most position.


In another embodiment of the present invention, the template switching oligonucleotide comprises at the 3′-end two ribonucleotide residues and one locked nucleotide residue characterized by formula rGrG+N, wherein +N represents a locked nucleotide residue.


In another embodiment of the present invention, the template switching oligonucleotide comprises rGrG+G.


In another embodiment of the present invention, the methyl group donor is betaine, and the metal salt is MgCl2 at a concentration of at least 9 mM.


In another embodiment of the present invention, the method further comprises amplifying the DNA strand that is complementary to the RNA molecule and the template switching oligonucleotide using an oligonucleotide primer.


In another embodiment of the present invention, the template switching oligonucleotide is selected from the oligonucleotides in Table S2.


In another embodiment of the present invention, the cDNA synthesis primer is an oligo-dT primer.


In another embodiment of the present invention, the cDNA is synthesized on beads comprising an anchored oligo-dT primer.


In another embodiment of the present invention, the oligo-dT primer comprises a sequence of 5′-AAGCAGTGGTATCAACGCAGAGTACT30VN-3′, wherein “N” is any nucleoside base, and “V” is selected from the group consisting of “A”, “C” and “G”.


In another embodiment of the present invention, the method further comprises PCR preamplification, tagmentation, and final PCR amplification.


In another embodiment of the present invention, the PCR preamplification is conducted without purifying the cDNA obtained from reverse transcription reaction.


In another embodiment of the present invention, the RNA is total RNA in a cell.


In another embodiment, the present invention provides a cDNA library produced by the method according to any embodiment disclosed herein.


In another embodiment, the present invention provides use of a cDNA library produced by the method according to any embodiment disclosed herein for single-cell transcriptome profiling.


In another embodiment, the present invention provides a method for analyzing gene expression in a plurality of single cells, the method comprising the steps of: preparing a cDNA library produced by the method according to any embodiment disclosed herein; and sequencing the cDNA library.


In another embodiment, the present invention provides a template switching oligonucleotide (TSO) comprising a locked nucleotide residue at the 3′-end. The TSOs of the present invention can be used in the synthesis of cDNA to improve yield and length.


In another embodiment, the TSO comprises three nucleotide residues at the 3′-end, wherein said three nucleotide residues are selected from the group consisting of +N+N+N, N+N+N, NN+N, rN+N+N, and rNrN+N, wherein N at each occurrence is independently a deoxyribonucleotide residue, rN at each occurrence is independently a ribonucleotide residue, and +N at each occurrence is independently a locked nucleotide residue.


In one embodiment, the portion of the ISO that is on the 5′ side of the three nucleotide residues at the 3′-end, also referred to herein as the 5′-portion, comprises an arbitrary nucleotide sequence comprised of ribonucleotides, deoxyribonucleotides, or mixtures thereof. In one preferred embodiment, the 5′-portion of the TSO comprises all ribonucleotides. In another preferred embodiment, the 5′-portion of the TSO comprises all deoxyribonucleotides.


In another embodiment, the locked nucleotide residue in the TSOs is selected from the group consisting of locked guanine, locked adenine, locked uracil, locked thymine, locked cytosine, and locked 5-methylcytosine


In another embodiment, the three nucleotide residues at the 3′-end of the TSOs are NN+G or rNrN+G, wherein N at each occurrence is independently a deoxyribonucleotide residue, and rN at each occurrence is independently a ribonucleotide residue.


In another embodiment, the three nucleotide residues at the 3′-end of the TSOs are rGrG+N, wherein +N is locked nucleotide residue.


In another embodiment, the three nucleotide residues at the 3′-end of the TSOs are rGrG+G.


The TSOs preferably have a length of from about 10 to about 50 nucleotides, or from about 15 to about 45 nucleotides, or from about 20 to about 40 nucleotides, or from about 24 to about 35 nucleotides, or about 30 nucleotides.


In another embodiment, the present invention provides use of a ISO according to any one of the embodiments disclosed herein in the synthesis of a cDNA.


Examples of metal cations useful for the present invention include, but are not limited to, Mg2+ and Mn2+, with Mg2+ preferred; and their concentrations can be in the range of 0-30 μM, inclusive, with a preferred range of 3-20 μM, and a more preferred range of 9-12 μM.


In addition to methyl donor betaine, other additives that may be added in the cDNA synthesis of the present invention include, but are not limited to, trehalose, sucrose, glucose, maltose, DMSO (dimethyl sulfoxide), formamide, non-ionic detergents, TMAC (tetramethylammonium chloride), 7-deaza-2′-deoxyguanosine (dC7GTP), bovine serum albumin (RSA), and T4 gene 32 protein.


The present invention is applicable to reactions using all reverse transcriptases that are MMLV-related and have template switching activity. MMLV-related reverse transcriptases include wild-type Moloney murine leukemia virus and its variants, including for example derivatives lacking RNase H activity such as SUPER-SCRIPT II (Invitrogen), POWER SCRIPT (BD Biosciences) and SMART SCRIBE (Clontech). TSOs useful for the present invention may comprise barcodes, including but not limited to molecular barcodes or sample barcodes.


The cDNA synthesized according to the present invention may have applications as cDNA synthesized according to any literature methods, including but not limited to construction of small quantity cDNA library, single-cell cDNA analyses, single-cell gene expression analyses, few-cell cDNA analyses, few-cell gene expression analyses, single-cell qPCR analyses (that use this preamplification step), and cap capturing based amplification.


The following non-limiting examples illustrate certain aspects of the present invention.


EXAMPLES
Example 1
Methods
Experiments Using Total RNA

RNA experiments were performed using the Control Total RNA supplied with the SMARTer® Ultra Low RNA Kit for IIlumina Sequencing (Clontech), extracted from mouse brain. One microliter of a 1 ng/μl solution was used in each experiment and mixed with 1 μl of anchored oligo-dT primer (10 mM, 5′-AAGCAGTGGTATCAACGCAGAGTACT30VN-3′, where “N” is any base and “V” is either “A”, “C” or “G”) and 1 μl of dNTP mix (10 mM, Fermentas), denaturated at 72° C. for 3 min and immediately placed on ice afterwards. Seven μl of the first strand reaction mix containing 0.50 μl SuperScript II RT (200 U ml-1, Invitrogen), 0.25 μl RNAse inhibitor (20 U ml-1, Clontech), 2 μl Superscript II First-Strand Buffer (5×, Invitrogen), 0.25 μl DTT (100 mM, Invitrogen), 2 μl betaine (S M, Sigma), 0.9 μl MgCl2 (100 mM, Sigma), 1 μl TSO (10 μM, the complete list of the oligos can be found in Table S1) and 0.1 μl Nuclease-free water (Gibco) were added to each sample. Reverse transcription reaction was carried out by incubating at 42° C. for 90 min, followed by 10 cycles of (50° C. for 2 min, 42° C. for 2 min). Finally, the RT was inactivated by incubation at 70° C. for 15 min.


PCR Pre-Amplification

In the original Smart-Seq protocol purification with Ampure XP beads is performed after first strand cDNA synthesis. PCR is then carried out directly on the cDNA immobilized on the beads, after adding 2 μl Advantage 2 Polymerase Mix (50×, Clontech), 5 μl Advantage 2 PCR Buffer (10×, Clontech), 2 μl d dNTP mix (10 mM, Clontech), 2 μl IS PCR primer (12 μM, Clontech) and 39 μl nuclease-free water to a final reaction volume of 50 μl. In the present examples the cDNA was not purified after RT but just added the same PCR master mix, taking into account that the volume after first strand cDNA synthesis is 10 μl and adjusting the amount of water accordingly. Reaction was incubated at 95° C. 1 min, then cycled 15 times between (95° C. 15 sec, 65° C. 30 sec, 68° C. 6 min), with a final extension at 72° C. for 10 min.


A second modification that significantly improved cDNA yield was the replacement of Advantage 2 Polymerase mix with KAPA HiFi HotStart ReadyMix (KAPA Biosystems). Purification after first strand cDNA synthesis was omitted also in this case. The PCR master mix had the following composition: 25 μl KAPA HiFi HotStart ReadyMix (2×, KAPA Biosystems), 1 μl IS PCR primers (10 mM, 5′-AAGCAGTGGTATCAACGCAGAGT-3′) and 14 μl nuclease-free water (Gibco). The program used was as follows: 98° C. 3 min, then 15 cycles of (98° C. 15 sec, 67° C. 20 sec, 72° C. 6 min), with a final extension at 72° C. for 5 min.


Regardless of the PCR protocol used, PCR was purified using a 1:1 ratio of AMPure XP beads (Beckman Coulter), performing the final elution in 15 μl of EB solution (Qiagen). Library size distribution was checked on a High-Sensitivity DNA chip (Agilent Bioanalyzer) after a 1:5 dilution. The expected average size should be around 1.5-2.0 kb and the fraction of fragments below 300 bp should be negligible. To evaluate the performance of the different modifications introduced in the protocol, the amount of cDNA comprised in the interval 300-9000 by in the Agilent Bioanalyzer plot was assessed.


Tagmentation Reaction and Final PCR Amplification

Five nanograms of cDNA were then used for the tagmentation reaction carried out with Nextera® DNA Sample Preparation kit (Illumine), adding 25 μl of 2× Tagment DNA Buffer and 5 μl of Tagment DNA Enzyme, in a final volume of 50 μl. Tagmentation reaction was incubated at 55° C. for 5 min, followed by purification with DNA Clean & Concentrator™-5 kit (Zymo Research) with a final elution in 20 μl Resuspension Buffer (RSB) from the Nextera® kit. The whole volume was then used for limited-cycle enrichment PCR, along with 15 μl of Nextera® PCR Primer Mix (NPM), 5 μl of Index 1 primers (N7xx), 5 μl of Index 2 primers (N5xx) and 5 μl of PCR Primer Cocktail (PPC). A second amplification round was performed as follows: 72° C. 3 min, 98° C. 30 sec, then 5 cycles of (98° C. 10 sec, 63° C. 30 sec, 72° C. 3 min). Purification was done with a 1:1 ratio of AMPure XP beads and samples were loaded on a High-Sensitivity DNA chip to check the quality of the library, while quantification was done with Qubit High-Sensitivity DNA kit (Invitrogen). Libraries were diluted to a final concentration of 2 nM, pooled and sequenced on Illumina HiSeq 2000.


Single-cell cDNA isolation


Single HEK293T (human), DG-75 (human), C2C12 (mouse) and MEF (mouse) cells were manually picked under the microscope after resuspension in PBS. Volume of liquid was kept as low as possible, usually below 0.5 μl and preferably below 0.3 μl. Cells were then transferred to a 0.2 ml thin-wall PCR tube containing 2 μl of a mild hypotonic lysis buffer composed of 0.2% Triton X-100 (Sigma) and 2 U/μl of RNAse inhibitor (Clontech). Cells already picked were kept on ice throughout the process or stored at −80° C. if not used immediately. All the downstream steps were the same as when using total RNA (see above), with the only exception of the quality control with the High Sensitivity DNA chip, where samples were loaded pure (without dilution), due to the limited amount of cDNA obtained from RI in single cells.


When working with total RNA it was observed that cDNA yield could be increased using a double amount of TSO or different combinations of TSOs and PCR enzymes (data not shown). To validate this finding, some experiments on HEK293T cells were repeated using different amounts of TSO (1 or 2 μl of a 10 μM solution), TSO types (rGrGrG, rGrG+G or rGrG+N) or PCR enzymes (KAPA HiFi or Advantage 2). Sequencing results for the most significant comparisons are reported in Figures S2-S7. The final protocol (i.e. “optimized”) refers to the one using only 1 μl of the 10 μM rGrG+G TSO and KAPA HiFi HotStart ReadyMix as enzyme in the first PCR (without AMPure XP bead purification).


Smart-Seq Experiments

To evaluate and compare the performance of the present method, cDNA libraries were generated with the same total RNA and single cells using the Smart-Seq protocol, following manufacturer's instructions (see Clontech manual). After PCR pre-amplification, 5 ng of cDNA were used for the tagmentation reaction and processed exactly in the same way as described above.


Statistical Analyses of cDNA Yield and Length


Performances of the different protocols were evaluated with regard to cDNA yield and average cDNA length according to the Bioanalyzer in the range of 3009,000 bp. For mouse brain total RNA samples, each experimental variable was evaluated in a pairwise manner selecting a set of experiments where all other variables are identical. Within that set of experiments, the significance for a change in yield or length, between the two variables, was evaluated using Student's t-test and Wilcoxon rank sum test (Table 1, sheet B).


In the HEK293T cell experiments each optimized experimental setting was compared to each other, as well as to the SMARTer® protocol, using Student's t-test and Wilcoxon rank sum test (Table 3, sheet B). All analyses and figures were produced with using R.


Read Alignments and Gene Expression Estimation

Single-cell libraries were sequenced with Nextera dual indexes (i7+i5) on an Illumina HiSeq 2000, giving 43 bp insert reads after demultiplexing and removing cellular barcodes. The reads were aligned to human (hg19) or mouse (mm10) genomes using STAR v2.2.0 (Dobin et al. Bioinformatics 2013 29(1): 15-21) with default settings and filtered for uniquely mapping reads. Gene expression values were calculated as RPKM values for each transcript in Ensembl release 69 and RefSeq (February 2013) using rpkmforgenes (Ramsköld et al. PLoS Comp Biol., 5, e1000598, 2009).


Single-Cell RNA-Seq Sensitivity and Variability

Analyses of gene detection in single HEK293T cells (FIG. 2A, FIGS. 5A, and 7A) were calculated over all possible pairs of technical replicates from each experimental setting. Genes were binned by expression level in the two samples, and were considered detected if the RPKM was above 0.1 in both samples. The mean for all possible pairs of technical replicates within a group was used together with standard deviation using the adjusted Wald method. Analyses of variation (FIG. 2B and FIGS. 5B & 7B) were also calculated on pairs of samples, binning genes by the mean of log expression, excluding genes below 0.1 RPKM in either sample. As gene expression levels across single cells are often log normally distributed (Bengtsson Genome Res 2005 15(10): 1388-1392), absolute difference in log10 expression values and s.d. were calculated by multiplying mean difference in a bin with 0.886.


Analyses of Read Coverage and GC Tolerance

Gene body coverage was calculated using the RSeQC-2.3.4 package (Wang, Wang and Li. Bioinformatics 2012; 28(16):2184-5) for the longest transcript of all protein coding genes (FIG. 2E and FIG. 8). Gene detection at different GC-content was calculated using longest transcript for all protein coding RefSeq genes that were binned by GC-content into 10 equal sized bins, and the numbers of genes with no detection, or detection at different RPKM cutoffs were calculated (FIG. 2D and FIG. 6).


Read Peak Analyses

Some genes displayed unexplained peaks with high density of reads within the gene body. To identify these regions, the gene bodies of each gene were divided into 101 equally sized bins and each gene with at least one bin with >5 standard deviation read density over the mean read distribution within that gene. In these analyses genes with low expressed genes (those with fewer reads than around 2,000-10,000 reads depending on the sequencing depth per cell) were discarded. The number of such genes in each cell is represented in FIG. 9A. And the genes with peaks in the highest number of HEK239T cells are displayed as heatmaps in FIG. 9B illustrating that the peaks are consistently found at the same position in all experiments.


Example 2

To improve full-length transcriptome profiling from single cells, a large number of variations to reverse transcription, template switching oligonucleotide (TSO) and PCR preamplification (in total 457 experiments) were evaluated, and the results were compared to commercial Smart-Seq (hereafter called SMARTer®) in terms of cDNA library yield and length (Table 1). Importantly, modifications were identified that significantly increased both cDNA yield and length obtained from 1 ng of starting total RNA (Table 1).


In particular, exchanging only a single guanylate for a locked nucleic acid (LNA) guanylate at the TSO 3′ end (rGrG+G), led to a 2-fold increase in cDNA yield relative to the SMARTer® IIA oligo used in commercial Smart-Seq (p=0.003, Student's t-test; FIG. 1a, Table 2 and FIG. 3).


Additionally, it was discovered that the methyl group donor betaine in combination with higher MgCl2 concentrations had a significant positive effect on yield (2-4 fold increase, p=0.0012, Student's t-test, for all comparisons) (FIG. 1b). The commercial Smart-Seq buffer has a final concentration of 6 mM MgCl2, but it was found herein that higher yield is obtained when increasing the concentration to 9 mM or beyond. Finally, the average length of the preamplified cDNA increased with 370 nts when administering dNTPs prior to the RNA denaturation rather than in the RT master mix (p=7.8×10−9, Student's t-test; FIG. 1c).


It was further demonstrated that these improvements obtained with purified RNA extended to cDNA reactions performed directly in lysates of individual human and mouse cells. To this end, single-cell cDNA libraries were generated from a total of 262 individual human or mouse cells (159 HEK293T, 34 DG-75, 30 C2C12 and 39 MEF cells) spanning different cell sizes and total RNA contents (Table 3). Analyses of the single-cell cDNA libraries demonstrated higher cDNA yields both with the use of the LNA-containing TSO (3-fold increase, p<0.001, Student's t-test; FIG. 1d) and with betaine together with high Mg2+ concentrations (4-fold increase, p=3.7×10−6, Student's t-test; FIG. 1e).


The sensitivity and accuracy of single-cell methods are limited by the efficiency of each sample-processing step. The SMARTer® protocol uses bead purification to remove unincorporated adaptors from the first strand cDNA reaction before the preamplification with Advantage 2 Polymerase (Adv2). However, performing bead purification in small volumes poses a significant recovery challenge for liquid handling automation. It was determined herein that KAPA HiFi Hot Start (KAPA) DNA Polymerase efficiently amplified first-strand cDNA directly after reverse transcription, with no need for prior bead purification. Libraries preamplified without bead purification had no reduction in yield, but the average cDNA length increased with 450 nts (p=2.6×10−12, Student's t-test; FIG. 1f) demonstrating that KAPA preamplification improves cDNA generation and offers a viable approach for Smart-Seq automation.


To demonstrate the significance of the improved cDNA generation on downstream applications, its impact on single-cell transcriptome profiling was assessed. To this end, single HEK293T cell libraries generated both according to the commercial SMARTer (n=4) and using variations of the present protocol were sequenced (Smart-Seq2, n=35) (Table 4).


The improved conversion of RNA to cDNA should improve gene expression profiling as more original RNA molecules are accessible for sequencing. Indeed, both a significant increase in the ability to detect gene expression (FIG. 2a) and lowered technical variation for low and medium abundance transcripts were observed (FIG. 2b and FIG. 4). The improved sensitivity of the optimized protocol led to the average detection of 2,372 more genes in each cell (p<0.05 Student's t-test; FIG. 2c). All these improvements were independently validated using an alternative RNA-Seq alignment and analyses strategy (FIG. 5). Moreover, both better sensitivity and lower variability in single-cell transcriptome data generated with Smart-Seq2 than for data available for Quartz-Seq were obtained (FIG. 6). Although the sequenced libraries had similar mappings characteristics as SMARTer libraries, a 7% increase in unmapped reads was noted (FIG. 7).


Several preamplification enzymes have lower GC bias than the Advantage2 (Adv2) that is used with SMARTer®, indicating that single-cell profiling could also improve with cDNA preamplifications using KAPA. Indeed, the single-cell libraries preamplified with KAPA detected more genes at higher GC levels (FIG. 2d and FIG. 8) and improved sensitivity and accuracy (FIG. 9). When compared with the low coverage of 5′ regions in single-cell data generated through 3′ end polyA-tailing of cDNA, single-cell RNA-Seq libraries that had been preamplified with KAPA had significantly better coverage across the full length of transcripts (p<10−5, 1.6×10−3 for 5′ and 3′ ends respectively, Student's t-test), as they approached the expected fraction of reads at the 5′ and 3′ ends (FIG. 2e and FIGS. 10-11). Importantly, global gene expression profiles from cells preamplified with KAPA and Adv2 separated on the first principal component (FIG. 2f), demonstrating that preamplification bias had significant impact on absolute expression levels. Regions with artificially large number of reads aligned (i.e. peak) appearing systematically in Smart-Seq irrespectively of preamplification enzyme that necessitated filtering were sequenced (FIG. 12). Together, the data show that preamplification using KAPA improved GC tolerance and read coverage across transcripts.


To determine the extent of technical variability in the single-cell transcriptome profiling with Smart-Seq2, sequencing libraries were generated from dilution series of HEK293T cells (100, 50 and 10 cells) and total RNA (1 ng, 100 pg, 10 pg). Technical losses and variations were small when analyzing 10 cells or more, but considerable variability exists at single-cell levels, as previously observed. It is informative to contrast the technical variability with the biological variability present in cells of the same or different cell type origin (FIG. 13A-D). To this end, additional single-cell transcriptomes were sequenced from DG-75 (n=7), C2C12 (n=6) and MEF (n=7) cells. Analyzing the biological variability between and within cell populations revealed that biological variability associated with cell type specific expression exceeded technical variability at around 50 RPKM, but the exact threshold will depend on the RNA content present in the cell types studied (FIG. 13E).


This invention provides a new protocol that improves sensitivity, accuracy and coverage across transcripts and is more amenable to automation. Moreover, the new protocol costs less than 12% of the current cost per reaction and only 3% when using in-house produced Tn5 (FIG. 14).


Although these results were reached in the context of Smart-Seq single-cell gene expression analyses, these modifications are applicable other single-cell methods that rely on template switching, including those carried out on microfluidic chips (e.g. Fluidigm C1) or inside emulsion droplets.


The foregoing examples and description of the preferred embodiments should be taken as illustrating, rather than as limiting the present invention as defined by the claims. As will be readily appreciated, numerous variations and combinations of the features set forth above can be utilized without departing from the present invention as set forth in the claims. Such variations are not regarded as a departure from the spirit and script of the invention, and all such variations are intended to be included within the scope of the following claims.


All references cited herein are incorporated herein by reference in their entireties.









TABLE S1





Tables of cDNA library yield and length starting with purified total RNA







Worksheet A lists all 457 cDNA libraries generated from mouse brain total RNA. The general protocol followed for each sample is indicated in the “general


protocol” column, with specific information on the template switching oligonucleotide, RT enzyme, PCR enzyme, MgCl2 concentration, betaine, bead purification


and dNTPs administration timing detailed in separate columns. Worksheet B contains a list of direct comparisons of variables that effect cDNA library yield


and average length using replicate groups that have identical reaction parameters except for the experimental variable evaluated.


































amount















dil.




TSO (ul







dNTPs






Bio-


avg

of 10 uM




purifica-

PCR
added



amount
PCR
ul
ana-
additional
conc
size

in 10 ul
RT
MgCl2
RT
betaine
tion
PCR
rxn vol
in the
other


Entry
(ng)
cycles
elution
lyzer
description
(pg/ul)
(bp)
TSO
RT rxn)
enzyme
(mM)
protocol
(M)
after RT
enzyme
(ul)
beginning?
additives





1
1
15
10
1:5
SMARTer kit
318
1669
SMARTer
1
SMARTscribe
6
90′ @

yes
Advantage
50












Oligo IIA



42° C.


2
1
15
10
1:5
SMARTer kit
263
1857
SMARTer
1
SMARTscribe
6
90′ @

yes
Advantage
50









but


Oligo IIA



42° C.







replacing







ISPCR







primers


3
1
15
10
1:5
SMARTer kit
172
1784
SMARTer
1
SMARTscribe
6
90′ @

yes
Advantage
50









but


Oligo IIA



42° C.







replacing







oligo dT


4




SMARTer kit
FAILED

SMARTer
1
SMARTscribe
6
90′ @

yes
Advantage
50

3 mM







but


Oligo IIA



42° C.





MnCl2







replacing







FSB


5
1
15
10
1:5
modified
393
1683
SMARTer
1
SSRTII
6
90′ @

yes
Advantage
50









SMARTer kit


Oligo IIA



42° C.


6
1
15
NA
NA
modified
121
1780
rG5
1
SMARTscribe
6
90′ @

yes
Advantage
50









SMARTer kit






42° C.


7
1
15
NA
NA
modified
1038
1346
rGrGrG
1
SMARTscribe
6
90′ @

yes
Advantage
50









SMARTer kit






42° C.


8
1
15
NA
NA
modified
90
1652
rGrGrGp
1
SMARTscribe
6
90′ @

yes
Advantage
50









SMARTer kit






42° C.


9
1
15
NA
NA
modified
84
1608
ISO
1
SMARTscribe
6
90′ @

yes
Advantage
50









SMARTer kit






42° C.


10
1
15
NA
NA
SMARTer kit
3628
1838
SMARTer
1
SMARTscrib
6
90′ @

ye
Advantage
50












Oligo IIA



42° C.


11
1
15
NA
NA
modified
650
2108
rG5
1
SMARTscribe
6
90′ @

yes
Advantage
50









SMARTer kit






42° C.


12
1
15
NA
NA
modified
6423
1852
rGrGrG
1
SMARTscribe
6
90′ @

yes
Advantage
50









SMARTer kit






42° C.


13
1
15
NA
NA
modified
666
2187
rGrGrGp
1
SMARTscribe
6
90′ @

yes
Advantage
50









SMARTer kit






42° C.


14
1
15
NA
NA
modified
525
2181
ISO
1
SMARTscribe
6
90′ @

yes
Advantage
50









SMARTer kit






42° C.


15
1
15
NA
NA
SMARTer kit
3366
1782
SMARTer
1
SMARTscribe
6
90′ @

yes
Advantage
50









but


Oligo IIA



42° C.







replacing







ISPCR







primers


16
1
15
NA
NA
modified
435
1970
ds oligos
1
SMARTscribe
6
90′ @

yes
Advantage
50









SMARTer kit






42° C.


17
1
15
NA
NA
SMARTer kit
1143
1445
SMARTer
1
SMARTscribe
6
90′ @

yes
Advantage
50












Oligo IIA



42° C.


18
1
15
NA
NA
SMARTer kit
1504
1519
SMARTer
1
SMARTscribe
6
90′ @

yes
Advantage
50









but


Oligo IIA



42° C.







replacing







ISPCR







primers


19
1
15
NA
NA
SMARTer kit
1984
1728
SMARTer
1
SMARTscribe
6
90′ @

yes
Advantage
50









but


Oligo IIA



42° C.







replacing







ISPCR







primers


20
1
15
NA
NA
modified
1346
1543
SMARTer
1
SSRTII
6
90′ @

yes
Advantage
50









SMARTer kit


Oligo IIA



42° C.


21
1
15
NA
NA
modified
1191
1683
SMARTer
1
SSRTII
6
90′ @

yes
Advantage
50









SMARTer kit


Oligo IIA



42° C.


22
1
15
NA
NA
SMARTer kit
103
1420
SMARTer
1
SMARTscribe
3
90′ @

yes
Advantage
50









but using


Oligo IIA



42° C.







Superscript







II FSB







(3 mM MgCl2)


23
1
15
NA
NA
SMARTer kit
192
1609
SMARTer
1
SMARTscribe
3
90′ @

yes
Advantage
50









but using


Oligo IIA



42° C.







Superscript







II FSB







(3 mM MgCl2


24




SMARTer kit
FAILED

SMARTer
1
SMARTscribe

90′ @

yes
Advantage
50

6 mM







but using


Oligo IIA



42° C.





MnCl2







STRT buffer


25
1
15
NA
NA
SMARTer kit
1573
2378
SMARTer
1
SMARTscribe
6
90′ @

yes
Advantage
50












Oligo IIA



42° C.


26
1
15
NA
NA
modified
246
2024
rG5
1
SMARTscribe
3
90′ @

yes
Advantage
50









SMARTer kit






42° C.


27
1
15
NA
NA
modified
1393
1945
rGrGrG
1
SMARTscribe
3
90′ @

yes
Advantage
50









SMARTer kit






42° C.


28
1
15
NA
NA
modified
259
2180
rGrGrGp
1
SMARTscribe
3
90′ @

yes
Advantage
50









SMARTer kit






42° C.


29
1
15
NA
NA
modified
776
1958
SMARTer
1
SMARTscribe
6
90′ @
1
yes
Advantage
50









SMARTer kit


Oligo IIA



42° C.


30
1
15
NA
NA
modified
731
1808
SMARTer
1
SMARTscribe
6
90′ @
2
yes
Advantage
50









SMARTer kit


Oligo IIA



42° C.


31
1
15
NA
NA
modified
1936
1965
SMARTer
1
SMARTscribe
6
90′ @
1
yes
Advantage
50









SMARTer kit


Oligo IIA



42° C.


32




modified
FAILED

SMARTer
1
SMARTscribe
6
90′ @
1
yes
Advantage
50

3 mM







SMARTer kit


Oligo IIA



42° C.





MnCl2


33




modified
FAILED

SMARTer
1
SMARTscribe
6
90′ @

yes
Advantage
50

3 mM







SMARTer kit


Oligo IIA



42° C.





MnCl2,




















5%




















DMSO


34
1
15
NA
NA
SMARTer kit
580
2634
SMARTer
1
SMARTscribe
6
90′ @

yes
Advantage
50












Oligo IIA



42° C.


35
1
15
NA
NA
modified
166
2208
SMARTer
1
SMARTscribe
3
90′ @
1
yes
Advantage
50









SMARTer kit


Oligo IIA



42° C.


36
1
15
NA
NA
modified
204
2016
SMARTer
1
SMARTscribe
3
90′ @
1
yes
Advantage
50









SMARTer kit


Oligo IIA



42° C.


37
1
15
NA
NA
modified
547
2171
SMARTer
1
SMARTscribe
6
90′ @
1
yes
Advantage
50









SMARTer kit


Oligo IIA



42° C.


38
1
15
NA
NA
modified
640
2028
SMARTer
1
SMARTscribe
6
90′ @
1
yes
Advantage
50









SMARTer kit


Oligo IIA



42° C.


39
1
15
NA
NA
modified
145
1938
rGrGrG
1
SMARTscribe
3
90′ @
1
yes
Advantage
50









SMARTer kit






42° C.


40
1
15
NA
NA
modified
224
1841
rGrGrG
1
SMARTscribe
3
90′ @
1
yes
Advantage
50









SMARTer kit






42° C.


41
1
15
NA
NA
modified
496
1863
rGrGrG
1
SMARTscribe
6
90′ @
1
yes
Advantage
50









SMARTer kit






42° C.


42
1
15
NA
NA
modified
493
1911
rGrGrG
1
SMARTscribe
6
90′ @
1
yes
Advantage
50









SMARTer kit






42° C.


43
1
15
20

in house prot
8431
2226
rGrGrG
1
SSRTII
6
90′ @
1
yes
Advantage
50
















42° C.


44
1
15
20

in house prot
8248
2235
rGrGrG
1
SSRTII
6
90′ @
1
yes
Advantage
50
















42° C.


45
1
15
20

in house prot
7672
2317
rGrGrG
1
SSRTII
6
90′ @
1.5
yes
Advantage
50
















42° C.


46
1
15
20

in house prot
6562
2248
rGrGrG
1
SSRTII
6
90′ @
1.5
yes
Advantage
50
















42° C.


47
1
15
20

SMARTer kit
8156
2298
SMARTer
1
SMARTscribe
6
90′ @

yes
Advantage
50












Oligo IIA



42° C.


48
1
15
20

in house prot
1744
2592
rGrGrGp
1
SSRTII
6
90′ @
1
yes
Advantage
50
















42° C.


49
1
15
20

in house prot
1820
2585
rGrGrGp
1
SSRTII
6
90′ @
1
yes
Advantage
50
















42° C.


50
1
15
20

in house prot
1591
2541
rGrGrGp
1
SSRTII
6
90′ @
1.5
yes
Advantage
50
















42° C.


51
1
15
20

in house prot
1398
2616
rGrGrGp
1
SSRTII
6
90′ @
1.5
yes
Advantage
50
















42° C.


52
1
15
20

in house prot
2265
2110
dGCGGG
1
SSRTII
6
90′ @
1
yes
Advantage
50
















42° C.


53
1
15
20

in house prot
2568
2125
dGCGGG
1
SSRTII
6
90′ @
1
yes
Advantage
50
















42° C.


54
1
15
20

in house prot
2263
2079
dGCGGG
1
SSRTII
6
90′ @
1
yes
Advantage
50
















42° C.


55
1
15
20

in house prot
691
2290
dGCGGGp
1
SSRTII
6
90′ @
1
yes
Advantage
50
















42° C.


56
1
15
20

in house prot
757
2344
dGCGGGp
1
SSRTII
6
90′ @
1
yes
Advantage
50
















42° C.


57
1
15
20

in house prot
690
2294
dGCGGGp
1
SSRTII
6
90′ @
1
yes
Advantage
50
















42° C.


58
1
15
20

SMARTer kit
6525
2295
SMARTer
1
SMARTscribe
6
90′ @

yes
Advantage
50












Oligo IIA



42° C.


59
1
15
20

SMARTer kit
6806
2270
SMARTer
1
SMARTscribe
6
90′ @

yes
Advantage
50












Oligo IIA



42° C.


60
1
15
20

in house prot,
5922
1861
rGrGrG
1
SSRTII
6
90′ @
1
yes
Advantage
50









processed






42° C.







immediately







after adding







lysis buffer







(LB)


61
1
15
20

in house prot,
5419
1892
rGrGrG
1
SSRTII
6
90′ @
1
yes
Advantage
50









processed






42° C.







immediately







after adding







lysis buffer







(LB)


62
1
15
20

in house prot,
5664
1806
rGrGrG
1
SSRTII
6
90′ @
1
yes
Advantage
50









processed






42° C.







immediately







after adding







lysis buffer







(LB), 60′







after adding







lysis buffer







(LB), stored







at RT


63
1
15
20

in house prot,
5554
1800
rGrGrG
1
SSRTII
6
90′ @
1
yes
Advantage
50









processed






42° C.







immediately







after adding







lysis buffer







(LB), 45′







after adding







lysis buffer







(LB), stored







at RT


64
1
15
20

in house prot,
5552
1772
rGrGrG
1
SSRTII
6
90′ @
1
yes
Advantage
50









processed






42° C.







immediately







after adding







lysis buffer







(LB), 30′







after adding







lysis buffer







(LB), stored







at RT


65
1
15
20

in house prot,
6335
1824
rGrGrG
1
SSRTII
6
90′ @
1
yes
Advantage
50









processed






42° C.







immediately







after adding







lysis buffer







(LB), 10′







after adding







lysis buffer







(LB), stored







at RT


66
1
15
20

in house prot,
4904
1700
rGrGrG
1
SSRTII
6
90′ @
1
yes
Advantage
50









processed






42° C.







immediately







after adding







lysis buffer







(LB), 60′







after adding







lysis buffer







(LB), stored







in the fridge


67
1
15
20

in house prot,
3938
1544
rGrGrG
1
SSRTII
6
90′ @
1
yes
Advantage
50









processed






42° C.







immediately







after adding







lysis buffer







(LB), 45′







after adding







lysis buffer







(LB), stored







in the fridge


68
1
15
20

in house prot,
3793
1585
rGrGrG
1
SSRTII
6
90′ @
1
yes
Advantage
50









processed






42° C.







immediately







after adding







lysis buffer







(LB), 30′







after adding







lysis buffer







(LB), stored







in the fridge


69
1
15
20

in house prot,
5312
1824
rGrGrG
1
SSRTII
6
90′ @
1
yes
Advantage
50









processed






42° C.







immediately







after adding







lysis buffer







(LB), 10′







after adding







lysis buffer







(LB), stored







in the fridge


70
1
15
30

in house prot,
1024
1547
rGrGrG
1
SSRTII
6
90′ @
1
yes
Advantage
50

3 mM







RT for






42° C.





MnCl2







1 h @42° C.,







then added







3 mM MnCl2







and incubated







for 15′


71
1
15
30

in house prot,
849
1412
rGrGrG
1
SSRTII
6
90′ @
1
yes
Advantage
50

3 mM







RT for






42° C.





MnCl2







1 h @42° C.,







then added







3 mM MnCl2







and incubated







for 15′


72
1
15
30

in house prot,
558
1227
rGrGrG
1
SSRTII
6
90′ @
1
yes
Advantage
50

6 mM







RT for






42° C.





MnCl2







1 h @42° C.,







then added







6 mM MnCl2







and incubated







for 15′


73
1
15
30

in house prot,
572
1199
rGrGrG
1
SSRTII
6
90′ @
1
yes
Advantage
50

6 mM







RT for






42° C.





MnCl2







1 h @42° C.,







then added







6 mM MnCl2







and incubated







for 15′


74
1
15
30

in house prot
2105
2051
rGrGrG
1
SSRTII
6
90′ @
1
yes
Advantage
50
















42° C.


75
1
15
30

in house prot
1664
1809
rGrGrG
1
SSRTII
6
90′ @
1
yes
Advantage
50
















42° C.


76
100
10
15
1:5
in house prot
3196
1946
2OMe
1
SSRTII
6
90′ @
1
yes
Advantage
50
















42° C.


77
100
10
15
1:5
in house prot
8894
1767
rGrG + G
1
SSRTII
6
90′ @
1
yes
Advantage
50
















42° C.


78
100
10
15
1:5
in house prot
1939
2054
ddC
1
SSRTII
6
90′ @
1
yes
Advantage
50
















42° C.


79
100
10
15
1:5
in house prot
1942
1286
rGrGrG
1
SSRTII
6
90′ @
1
yes
Advantage
50
















42° C.


80
10
12
15
1:5
in house prot
1635
1891
2OMe
1
SSRTII
6
90′ @
1
yes
Advantage
50
















42° C.


81
10
12
15
1:5
in house prot
1230
1705
2OMe
1
SSRTII
6
90′ @
1
yes
Advantage
50
















42° C.


82
10
12
15
1:5
in house prot
4700
1602
rGrG + G
1
SSRTII
6
90′ @
1
yes
Advantage
50
















42° C.


83
10
12
15
1:5
in house prot
4051
1717
rGrG + G
1
SSRTII
6
90′ @
1
yes
Advantage
50
















42° C.


84
10
12
15
1:5
in house prot
733
1904
ddC
1
SSRTII
6
90′ @
1
yes
Advantage
50
















42° C.


85
10
12
15
1:5
in house prot
637
1897
ddC
1
SSRTII
6
90′ @
1
yes
Advantage
50
















42° C.


86
10
12
15
1:5
in house prot
1104
1556
rGrGrG
1
SSRTII
6
90′ @
1
yes
Advantage
50
















42° C.


87
1
15
15
1:5
in house prot
923
1734
2OMe
1
SSRTII
6
90′ @
1
yes
Advantage
50
















42° C.


88
1
15
15
1:5
in house prot
842
1620
2OMe
1
SSRTII
6
90′ @
1
yes
Advantage
50
















42° C.


89
1
15
15
1:5
in house prot
3387
1426
rGrG + G
1
SSRTII
6
90′ @
1
yes
Advantage
50
















42° C.


90
1
15
15
1:5
in house prot
3609
1473
rGrG + G
1
SSRTII
6
90′ @
1
yes
Advantage
50
















42° C.


91
1
15
15
1:5
in house prot
401
1463
ddC
1
SSRTII
6
90′ @
1
yes
Advantage
50
















42° C.


92
1
15
15
1:5
in house prot
470
1661
ddC
1
SSRTII
6
90′ @
1
yes
Advantage
50
















42° C.


93
1
15
15
1:5
in house prot
1550
1341
rGrGrG
1
SSRTII
6
90′ @
1
yes
Advantage
50
















42° C.


94
1
15
15
1:5
in house prot
1267
1483
rGrGrG
1
SSRTII
6
90′ @
1
yes
Advantage
50
















42° C.


95
1
15
15
1:5
in house prot
2176
1438
rGrG + G
1
SSRTII
6
90′ @
1
yes
Advantage
50
















42° C.


96
1
15
15
1:5
in house prot
1469
1705
rGrGrG
1
SSRTII
9
90′ @
1
yes
Advantage
50
















42° C.


97
1
15
15
1:5
in house prot
2383
1596
rGrG + G
1
SSRTII
9
90′ @
1
yes
Advantage
50
















42° C.


98
1
15
15
1:5
in house prot
1431
1807
rGrGrG
1
SSRTII
12
90′ @
1
yes
Advantage
50
















42° C.


99
1
15
15
1:5
in house prot
3630
1623
rGrG + G
1
SSRTII
12
90′ @
1
yes
Advantage
50
















42° C.


100
1
15
15
1:5
in house prot
1277
1610
rGrGrG
1
SSRTII
15
90′ @
1
yes
Advantage
50
















42° C.


101
1
15
15
1:5
in house prot
1884
1462
rGrG + G
1
SSRTII
15
90′ @
1
yes
Advantage
50
















42° C.


102
1
15
15
1:5
in house prot
1123
1652
SMARTer
1
SSRTII
6
90′ @
1
yes
Advantage
50












Oligo IIA



42° C.


103
1
15
15
1:5
in house prot
935
1593
SMARTer
1
SSRTII
15
90′ @
1
yes
Advantage
50












Oligo IIA



42° C.


104
1
15
15
1:5
in house prot,
2156
1767
rGrG + G
1
SSRTII
12
90′ @
1
yes
KAPA
50









KAPA HiFi






42° C.


HiFi HS







after washing







beads 1


105
1
15
15
1:5
in house prot,
352
2151
rGrGrG
1
SSRTII
12
90′ @
1
yes
KAPA
50









KAPA HiFi






42° C.


HiFi HS







after washing







beads 1


106
1
15
15
1:5
in house prot,
1729
1611
rGrG + G
1
SSRTII
12
90′ @
1
yes
KAPA
50









KAPA HiFi






42° C.


HiFi HS







after washing







beads 2


107
1
15
15
1:5
in house prot,
203
2073
rGrGrG
1
SSRTII
12
90′ @
1
yes
KAPA
50









KAPA HiFi






42° C.


HiFi HS







after washing







beads 2


108
1
15
15
1:5
in house prot,
1108
1480
rGrG + G
1
SSRTII
12
90′ @
1
yes
KAPA
50









KAPA HiFi






42° C.


HiFi HS







after washing







beads 1 +







elution


109
1
15
15
1:5
in house prot,
301
1903
rGrGrG
1
SSRTII
12
90′ @
1
yes
KAPA
50









KAPA HiFi






42° C.


HiFi HS







after washing







beads 1 +







elution


110
1
15
15
1:5
in house prot,
1337
1522
rGrG + G
1
SSRTII
12
90′ @
1
yes
KAPA
50









KAPA HiFi






42° C.


HiFi HS







after washing







beads 2 +







elution


112
1
15
15
1:5
in house prot,
383
1935
rGrGrG
1
SSRTII
12
90′ @
1
yes
KAPA
50









KAPA HiFi






42° C.


HiFi HS







after washing







beads 2 +







elution


113
1
15
15
1:5
in house prot
2897
1737
rGrG + G
1
SSRTII
12
90′ @
1
yes
Advantage
50
















42° C.


114
1
15
15
1:5
in house prot
1853
1706
rGrGrG
1
SSRTII
12
90′ @
1
yes
Advantage
50
















42° C.


115
1
15
15
1:5
in house prot
1492
1563
rGrG + G
1
Revertaid
4
90′ @
1
yes
Advantage
50














H−

42° C.


116
1
15
15
1:5
in house prot
1236
1472
rGrG + G
1
Revertaid
4
90′ @
1
yes
Advantage
50














H−

42° C.


117
1
15
15
1:5
in house prot
1843
1450
rGrG + G
1
Revertaid
6
90′ @
1
yes
Advantage
50














H−

42° C.


118
1
15
15
1:5
in house prot
1465
1346
rGrG + G
1
Revertaid
6
90′ @
1
yes
Advantage
50














H−

42° C.


119
1
15
15
1:5
in house prot
2996
1597
rGrG + G
1
Revertaid
9
90′ @
1
yes
Advantage
50














H−

42° C.


120
1
15
15
1:5
in house prot
2654
1530
rGrG + G
1
Revertaid
9
90′ @
1
yes
Advantage
50














H−

42° C.


121
1
15
15
1:5
in house prot
2159
1487
rGrG + G
1
Revertaid
12
90′ @
1
yes
Advantage
50














H−

42° C.


122
1
15
15
1:5
in house prot
1890
1412
rGrG + G
1
Revertaid
12
90′ @
1
yes
Advantage
50














H−

42° C.


123
1
15
15
1:5
in house prot
1504
1246
rGrG + G
1
Revertaid
15
90′ @
1
yes
Advantage
50














H−

42° C.


124
1
15
15
1:5
in house prot
1986
1474
rGrG + G
1
Revertaid
15
90′ @
1
yes
Advantage
50














H−

42° C.


125
1
15
15
1:5
in house prot
1109
1691
rGrG + G
1
SSRTII

60′ @42°

yes
Advantage
50

0.3M














C., then





trehalose














90′ @60°














C.


126
1
15
15
1:5
in house prot
1090
1752
rGrG + G
1
SSRTII

60′ @42°

yes
Advantage
50

0.3M














C., then





trehalose














90′ @60°














C.


127
1
15
15
1:5
in house prot
863
1565
rGrG + G
1
SSRTII

60′ @42°

yes
Advantage
50

0.6M














C., then





trehalose














90′ @60°














C.


128
1
15
15
1:5
in house prot
896
1652
rGrG + G
1
SSRTII

60′ @42°

yes
Advantage
50

0.6M














C., then





trehalose














90′ @60°














C.


129
1
15
15
1:5
in house prot
1078
1655
rGrG + G
1
SSRTII

60′ @42°
1
yes
Advantage
50

0.3M














C., then





trehalose














90′ @60°














C.


130
1
15
15
1:5
in house prot
562
1517
rGrG + G
1
SSRTII

60′ @42°
1
yes
Advantage
50

0.3M














C., then





trehalose














90′ @60°














C.


131
1
15
15
1:5
in house prot
998
1594
rGrG + G
1
SSRTII

60′ @42°
0.6
yes
Advantage
50

0.3M














C., then





trehalose














90′ @60°














C.


132
1
15
15
1:5
in house prot
925
1545
rGrG + G
1
SSRTII

60′ @42°
0.6
yes
Advantage
50

0.3M














C., then





trehalose














90′ @60°














C.


133
1
15
15
1:5
in house prot
1155
1618
rGrG + G
1
SSRTII
3
60′ @42°
1
yes
Advantage
50

0.3M














C., then





trehalose














90′ @60°














C.


134
1
15
15
1:5
in house prot
603
1433
rGrG + G
1
SSRTII
3
60′ @42°
1
yes
Advantage
50

0.3M














C., then





trehalose














90′ @60°














C.


135
1
15
15
1:5
in house prot
1561
1716
rGrG + G
1
SSRTII
3
60′ @42°
0.6
yes
Advantage
50

0.3M














C., then





trehalose














90′ @60°














C.


136
1
15
15
1:5
in house prot
445
1575
rGrG + G
1
SSRTII

60′ @50°

yes
Advantage
50

0.3M














C., then





trehalose














90′ @42°














C.


137
1
15
15
1:5
in house prot
1466
1698
rGrG + G
1
SSRTII

90′ @42°

yes
Advantage
50

0.3M














C.,





trehalose














30′ @60°














C., then














30′ @42°














C.


138
1
15
15
1:5
in house prot
703
1580
rGrG + G
1
SSRTII

60′ @50°

yes
Advantage
50

0.6M














C., then





trehalose














90′ @42°














C.


139
1
15
15
1:5
in house prot
1397
1740
rGrG + G
1
SSRTII

90′ @42°

yes
Advantage
50

0.6M














C.,





trehalose














30′ @60°














C., then














30′ @42°














C.


140
1
15
15
1:5
in house prot
355
1425
rGrG + G
1
SSRTII

60′ @50°
0.6
yes
Advantage
50

0.6M














C., then





trehalose














90′ @42°














C.


141
1
15
15
1:5
in house prot
1654
1598
rGrG + G
1
SSRTII

90′ @42°
0.6
yes
Advantage
50

0.6M














C.,





trehalose














30′ @60°














C., then














30′ @42°














C.


142
1
15
15
1:5
in house prot
1470
1480
rGrG + G
1
SSRTII
12
60′ @50°
0.6
yes
Advantage
50

0.6M














C., then





trehalose














90′ @42°














C.


143
1
15
15
1:5
in house prot
1389
1480
rGrG + G
1
SSRTII
12
90′ @42°
0.6
yes
Advantage
50

0.6M














C.,





trehalose














30′ @60°














C., then














30′ @42°














C.


144
1
15
15
1:5
in house prot
3959
1641
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
















C., then 10X














(2′ @50° C.-














2′ @42° C.)


145
1
15
15
1:5
in house prot
3816
1732
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
















C., then 10X














(2′ @60° C.-














2′ @42° C.


146
1
15
15
1:5
in house prot
3179
1769
rGrG + G
1
SSRTII
12
90′ @42°
0.5
yes
Advantage
50

0.3M














C., then 10X





trehalose














(2′ @50° C.-














2′ @42° C.


147
1
15
15
1:5
in house prot
3271
1828
rGrG + G
1
SSRTII
12
90′ @42°
0.5
yes
Advantage
50

0.3M














C., then 10X





trehalose














(2′ @60° C.-














2′ @42° C.)


148
1
15
15
1:5
in house prot
4081
1706
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
















C., then 5x














(2′ @50° C.-














2′ @42° C.)


149
1
15
15
1:5
in house prot
3858
1771
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
















C., then 5x














(2′ @50° C.-














2′ @42° C.)


150
1
15
15
1:5
in house prot
3711
1781
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
















C., then 5x














(2′ @50° C.-














2′ @42° C.)


151
1
15
15
1:5
in house prot
4015
1773
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
















C., then 10x














(2′ @50° C.-














2′ @42° C.)


152
1
15
15
1:5
in house prot
3671
1753
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
















C., then 10x














(2′ @50° C.-














2′ @42° C.)


153
1
15
15
1:5
in house prot
3498
1708
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
















C., then 10x














(2′ @50° C.-














2′ @42° C.)


154
1
15
15
1:5
in house prot
3804
1610
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
















C., then 15x














(2′ @50° C.-














2′ @42° C.)


155
1
15
15
1:5
in house prot
3613
1679
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
















C., then 15x














(2′ @50° C.-














2′ @42° C.)


156
1
15
15
1:5
in house prot
4595
1630
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
















C., then 15x














(2′ @50° C.-














2′ @42° C.)


157
1
15
15
1:5
in house prot
3457
1525
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
















C., then 20x














(2′ @50° C.-














2′ @42° C.)


158
1
15
15
1:5
in house prot
2869
1409
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
















C., then 20x














(2′ @50° C.-














2′ @42° C.)


159
1
15
15
1:5
in house prot
1529
1629
3rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
















C., then 10x














(2′ @50° C.-














2′ @42° C.)


160
1
15
15
1:5
in house prot
1901
1728
3rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
















C., then 10x














(2′ @50° C.-














2′ @42° C.)


161
1
15
15
1:5
in house prot
1785
1717
3rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
















C., then 10x














(2′ @50° C.-














2′ @42° C.)


162
1
15
15
1:5
in house prot
1086
1928
2rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
















C., then 10x














(2′ @50° C.-














2′ @42° C.)


163
1
15
15
1:5
in house prot
1128
1846
2rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
















C., then 10x














(2′ @50° C.-














2′ @42° C.)


164
1
15
15
1:5
in house prot
596
1892
phosphate
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
















C., then 10x














(2′ @50° C.-














2′ @42° C.)


165
1
15
15
1:5
in house prot
579
1922
phosphate
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
















C., then 10x














(2′ @50° C.-














2′ @42° C.)


166
1
15
15
1:5
in house prot
546
1830
C6 amino
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
















C., then 10x














(2′ @50° C.-














2′ @42° C.)


167
1
15
15
1:5
in house prot
419
1664
C6 amino
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
















C., then 10x














(2′ @50° C.-














2′ @42° C.)


168
1
15
15
1:5
in house prot
3076
1567
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
















C., then 10x














(2′ @50° C.-














2′ @42° C.)


169
1
15
15
1:5
in house prot
2889
1465
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
















C., then 10x














(2′ @50° C.-














2′ @42° C.)


170
1
15
15
1:5
in house prot
3653
1735
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
















C., then 10x














(2′ @50° C.-














2′ @42° C.)


171
1
15
15
1:5
in house prot
2152
1455
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
















C., then 10x














(2′ @50° C.-














2′ @42° C.)


172
1
15
15
1:5
in house prot
1454
1084
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50

0.816M














C., then 10x





1,2














(2′ @50° C.-





propandiol














2′ @42° C.)


173
1
15
15
1:5
in house prot
1331
1106
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50

0.816M














C., then 10x





1,2














(2′ @50° C.-





propandiol














2′ @42° C.)


174
1
15
15
1:5
in house prot
1373
1089
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50

0.816M














C., then 10x





1,2














(2′ @50° C.-





propandiol














2′ @42° C.)


175
1
15
15
1:5
in house prot
1904
1453
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50

1.075M














C., then 10x





ethylene














(2′ @50° C.-





glycol














2′ @42° C.)


176
1
15
15
1:5
in house prot
2855
1390
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50

1.075M














C., then 10x





ethylene














(2′ @50° C.-





glycol














2′ @42° C.)


177
1
15
15
1:5
in house prot
2571
1670
rGrG + G
1
Maxima
4
90′ @50°
1
yes
Advantage
50














H−

C.


178
1
15
15
1:5
in house prot
2549
1722
rGrG + G
1
Maxima
4
90′ @50°
1
yes
Advantage
50














H−

C.


179
1
15
15
1:5
in house prot
288
1599
rGrG + G
1
Revertaid
4
90′ @50°
1
yes
Advantage
50














Premium

C.


180
1
15
15
1:5
in house prot
129
1608
rGrG + G
1
Revertaid
4
90′ @50°
1
yes
Advantage
50














Premium

C.


181




in house prot
FAILED

rGrG + G
1
Maxima
12
90′ @50°
1
yes
Advantage
50














H−

C.


182




in house prot
FAILED

rGrG + G
1
Maxima
12
90′ @50°
1
yes
Advantage
50














H−

C.


183
1
15
15
1:5
in house prot
2633
1341
rGrG + G
1
Revertaid
12
90′ @50°
1
yes
Advantage
50














Premium

C.


184
1
15
15
1:5
in house prot
2662
1325
rGrG + G
1
Revertaid
12
90′ @50°
1
yes
Advantage
50














Premium

C.


185
1
15
15
1:5
in house prot
2814
1674
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
















C., then 10x














(2′ @50° C.-














2′ @42° C.)


186




in house prot
FAILED

rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Long PCR
50
















C., then 10x


Enzyme














(2′ @50° C.-


mix














2′ @42° C.)


187
1
15
15
1:5
in house prot,
3155
1764
rGrG + G
1
SSRTII
12
90′ @42°
1

Phusion
100









PCR w/o






C., then 10x


HS







purif in






(2′ @50° C.-







100 ul






2′ @42° C.)


188
1
15
15
1:5
in house prot,
2740
1793
rGrG + G
1
SSRTII
12
90′ @42°
1

Phusion
100









PCR w/o






C., then 10x


HS







purif in






(2′ @50° C.-







100 ul






2′ @42° C.)


189
1
15
15
1:5
in house prot,
1857
1739
rGrG + G
1
SSRTII
12
90′ @42°
1

Q5 NEB
100









PCR w/o






C., then 10x







purif in






(2′ @50° C.-







100 ul






2′ @42° C.)


190
1
15
15
1:5
in house prot,
1697
1697
rGrG + G
1
SSRTII
12
90′ @42°
1

Q5 NEB
100









PCR w/o






C., then 10x







purif in






(2′ @50° C.-







100 ul






2′ @42° C.)


191
1
15
15
1:5
in house prot,
3278
1639
rGrG + G
1
SSRTII
12
90′ @42°
1

KAPA
100









PCR w/o






C., then 10x


HiFi HS







purif in






(2′ @50° C.-







100 ul






2′ @42° C.)


192
1
15
15
1:5
in house prot,
3719
1590
rGrG + G
1
SSRTII
12
90′ @42°
1

KAPA
100









PCR w/o






C., then 10x


HiFi HS







purif in






(2′ @50° C.-







100 ul






2′ @42° C.)


193
1
15
15
1:5
in house prot,
3816
1630
rGrG + G
1
SSRTII
12
90′ @42°
1

Advantage
50









PCR w/o






C., then 10x







purif in






(2′ @50° C.-







50 ul






2′ @42° C.)


194
1
15
15
1:5
in house prot,
2462
1653
rGrG + G
1
SSRTII
12
90′ @42°
1

Advantage
50









PCR w/o






C., then 10x







purif in






(2′ @50° C.-







50 ul






2′ @42° C.)


195
1
15
15
1:5
in house prot,
2848
1588
rGrG + G
1
SSRTII
12
90′ @42°
1

Advantage
50









PCR w/o






C., then 10x







purif in






(2′ @50° C.-







50 ul






2′ @42° C.)


196
1
15
15
1:5
in house prot,
2012
1669
rGrG + G
1
SSRTII
12
90′ @42°
1

Phusion
50









PCR w/o






C., then 10x


HS







purif in






(2′ @50° C.-







50 ul






2′ @42° C.)


197
1
15
15
1:5
in house prot,
1836
1665
rGrG + G
1
SSRTII
12
90′ @42°
1

Phusion
50









PCR w/o






C., then 10x


HS







purif in






(2′ @50° C.-







50 ul






2′ @42° C.)


198
1
15
15
1:5
in house prot,
2542
1771
rGrG + G
1
SSRTII
12
90′ @42°
1

KAPA
50









PCR w/o






C., then 10x


HiFi HS







purif in






(2′ @50° C.-







50 ul






2′ @42° C.)


199
1
15
15
1:5
in house prot,
2393
1808
rGrG + G
1
SSRTII
12
90′ @42°
1

KAPA
50









PCR w/o






C., then 10x


HiFi HS







purif in






(2′ @50° C.-







50 ul






2′ @42° C.)


200
1
15
15
1:5
in house prot,
2200
1933
rGrG + G
1
SSRTII
12
90′ @42°
1

Advantage
50









PCR w/o






C., then 10x







purif in






(2′ @50° C.-







50 ul






2′ @42° C.)


201
1
15
15
1:5
in house prot,
2371
1920
rGrG + G
1
SSRTII
12
90′ @42°
1

Advantage
50









PCR w/o






C., then 10x







purif in






(2′ @50° C.-







50 ul






2′ @42° C.)


202
1
15
15
1:5
in house prot,
1717
1780
rGrG + G
1
SSRTII
12
90′ @42°
1

Q5 NEB
50









PCR w/o






C., then 10x







purif in






(2′ @50° C.-







50 ul






2′ @42° C.)


203
1
15
15
1:5
in house prot,
1868
1759
rGrG + G
1
SSRTII
12
90′ @42°
1

Q5 NEB
50









PCR w/o






C., then 10x







purif in






(2′ @50° C.-







50 ul






2′ @42° C.)


204
1
15
15
1:5
in house prot
40
1772
rGrG + G
1
SSRTIII
12
90′ @42°
1
yes
Advantage
50
















C., then 10x














(2′ @50° C.-














2′ @42° C.)


205
1
15
15
1:5
in house prot
16
1017
rGrG + G
1
SSRTIII
12
90′ @42°
1
yes
Advantage
50
















C., then 10x














(2′ @50° C.-














2′ @42° C.)


206
1
15
15
1:5
in house prot
88
1753
rGrG + G
1
SSRTIII
12
90′ @42°
1
yes
Advantage
50
















C., then 10x














(2′ @50° C.-














2′ @42° C.)


207
1
15
15
1:5
in house prot
61
1557
rGrG + G
1
SSRTIII
12
90′ @42°
1
yes
Advantage
50
















C., then 10x














(2′ @50° C.-














2′ @42° C.)


208
1
15
15
1:5
in house prot
182
1766
rGrG + G
1
SSRTIII
12
90′ @42°
1
yes
Advantage
50
















C., then 10x














(2′ @50° C.-














2′ @42° C.)


209
1
15
15
1:5
in house prot
136
1742
rGrG + G
1
SSRTIII
12
90′ @42°
1
yes
Advantage
50
















C., then 10x














(2′ @50° C.-














2′ @42° C.)


210
1
15
15
1:5
in house prot
279
1701
rGrG + G
1
SSRTIII
12
90′ @42°
1
yes
Advantage
50
















C., then 10x














(2′ @50° C.-














2′ @42° C.)


211
1
15
15
1:5
in house prot
233
1643
rGrG + G
1
SSRTIII
12
90′ @42°
1
yes
Advantage
50
















C., then 10x














(2′ @50° C.-














2′ @42° C.)


212
1
15
15
1:5
in house prot
447
1602
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
















C., then 10x














(2′ @50° C.-














2′ @42° C.)


213
1
15
15
1:5
in house prot
363
1541
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
















C., then 10x














(2′ @50° C.-














2′ @42° C.)


214
1
15
15
1:5
in house prot
1279
1919
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
















C., then 10x














(2′ @50° C.-














2′ @42° C.)


215
1
15
15
1:5
in house prot
1739
1959
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
















C., then 10x














(2′ @50° C.-














2′ @42° C.)


216
1
15
15
1:5
in house prot
1861
2063
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
















C., then 10x














(2′ @50° C.-














2′ @42° C.)


217
1
15
15
1:5
in house prot
2329
2260
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes








(40 u






C., then 10x







SSRTII)






(2′ @50° C.-














2′ @42° C.)


218
1
15
15
1:5
in house prot
2273
2218
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes








(40 u






C., then 10x







SSRTII)






(2′ @50° C.-














2′ @42° C.)


219
1
15
15
1:5
in house prot
2013
2268
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes








(40 u






C., then 10x







SSRTII, with






(2′ @50° C.-







dNTPs +






2′ @42° C.)







betaine added







in the







beginning)


220
1
15
15
1:5
in house prot
1932
2122
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes








(40 u






C., then 10x







SSRTII, with






(2′ @50° C.-







dNTPs +






2′ @42° C.)







betaine added







in the







beginning)


221
1
15
15
1:5
in house prot
1877
2009
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes








(40 u






C., then 10x







SSRTII, with






(2′ @50° C.-







dNTPs +






2′ @42° C.)







betaine +







MgCl2 added







in the







beginning)


222
1
15
15
1:5
in house prot
989
1963
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes








(40 u






C., then 10x







SSRTII, with






(2′ @50° C.-







dNTPs +






2′ @42° C.)







betaine +







MgCl2 added







in the







beginning)


223
1
15
15
1:5
in house prot
2269
1316
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes








(40 u






C., then 10x







SSRTII, with






(2′ @50° C.-







all reagents






2′ @42° C.)







except







SSRTII added







in the







beginning)


224
1
15
15
1:5
in house prot
1926
1292
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes








(40 u






C., then 10x







SSRTII, with






(2′ @50° C.-







all reagents






2′ @42° C.)







except







SSRTII added







in the







beginning)


225
1
15
15
1:5
in house prot
1536
1297
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes








(40 u






C., then 10x







SSRTII, with






(2′ @50° C.-







all reagents






2′ @42° C.)







except







SSRTII added







in the







beginning)


226
1
15
15
1:5
in house prot
1604
1925
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes















C., then 10x














(2′ @50° C.-














2′ @42° C.)


227
1
15
15
1:5
in house prot
1493
1910
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes















C., then 10x














(2′ @50° C.-














2′ @42° C.)


228
1
15
15
1:5
in house prot
1540
1924
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes















C., then 10x














(2′ @50° C.-














2′ @42° C.)


229
1
15
15
1:5
in house prot
1946
2143
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes















C., then 10x














(2′ @50° C.-














2′ @42° C.)


230
1
15
15
1:5
in house prot
1620
2100
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes















C., then 10x














(2′ @50° C.-














2′ @42° C.)


231
1
15
15
1:5
in house prot
1724
2059
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes















C., then 10x














(2′ @50° C.-














2′ @42° C.)


232
1
15
15
1:5
in house prot
1355
1813
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50









(no






C., then 10x







denaturation






(2′ @50° C.-







step @72°






2′ @42° C.)







C. for oligo-dT







(incubated







5′ @RT))


233
1
15
15
1:5
in house prot
1330
1810
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50









(no






C., then 10x







denaturation






(2′ @50° C.-







step @72°






2′ @42° C.)







C. for oligo-dT







(incubated







5′ @RT))


234
1
15
15
1:5
in house prot
1319
1795
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50









(no






C., then 10x







denaturation






(2′ @50° C.-







step @72°






2′ @42° C.)







C. for oligo-dT







(incubated







5′ @RT))


235
1
15
15
1:5
in house prot
1493
1842
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes








(no






C., then 10x







denaturation






(2′ @50° C.-







step @72°






2′ @42° C.)







C. for oligo-dT







(incubated







5′ @RT))


236
1
15
15
1:5
in house prot
1332
1792
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes








(no






C., then 10x







denaturation






(2′ @50° C.-







step @72°






2′ @42° C.)







C. for oligo-dT







(incubated







5′ @RT))


237
1
15
15
1:5
in house prot
1728
2214
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes















C., then 10x














(2′ @50° C.-














2′ @42° C.)


238
1
15
15
1:5
in house prot
1620
2283
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes















C., then 10x














(2′ @50° C.-














2′ @42° C.)


239
1
15
15
1:5
in house prot
1563
2260
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes















C., then 10x














(2′ @50° C.-














2′ @42° C.)


240
1
15
15
1:5
in house prot
1485
2171
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes















C., then 10x














(2′ @55° C.-














2′ @42° C.)


241
1
15
15
1:5
in house prot
1444
2281
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes















C., then 10x














(2′ @55° C.-














2′ @42° C.)


242
1
15
15
1:5
in house prot
1308
2231
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes















C., then 10x














(2′ @55° C.-














2′ @42° C.)


243
1
15
15
1:5
in house prot
1618
2176
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes















C., then 10x














(2′ @60° C.-














2′ @42° C.)


244
1
15
15
1:5
in house prot
1385
2168
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes















C., then 10x














(2′ @60° C.-














2′ @42° C.)


245
1
15
15
1:5
in house prot
1588
2173
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes















C., then 10x














(2′ @60° C.-














2′ @42° C.)


246
1
15
15
1:5
in house prot
1332
2096
rGrG + G
1
SSRTII
12
90′ @
1
yes
Advantage
50
yes















42° C.


247
1
15
15
1:5
in house prot
1376
2054
rGrG + G
1
SSRTII
12
90′ @
1
yes
Advantage
50
yes















42° C.


248
1
15
15
1:5
in house prot
15
2251
rGrG + G
1
Maxima
4
90′ @

yes
Advantage
50
yes













H−

55° C.


249
1
15
15
1:5
in house prot
22
1988
rGrG + G
1
Maxima
4
90′ @

yes
Advantage
50
yes













H−

55° C.


250
1
15
15
1:5
in house prot
62
2084
rGrG + G
1
Maxima
4
90′ @
1
yes
Advantage
50
yes













H−

55° C.


251
1
15
15
1:5
in house prot
84
1867
rGrG + G
1
Maxima
4
90′ @
1
yes
Advantage
50
yes













H−

55° C.


252
1
15
15
1:5
in house prot
633
2065
rGrG + G
1
Maxima
4
90′ @

yes
Advantage
50
yes













H−

55° C.


253




in house prot
FAILED

rGrG + G
1
Maxima
4
90′ @

yes
Advantage
50
yes








(+extra DTT)




H−

60° C.


254




in house prot
FAILED

rGrG + G
1
Maxima
4
90′ @
1
yes
Advantage
50
yes








(+extra DTT)




H−

60° C.


255




in house prot
FAILED

rGrG + G
1
Maxima
12
90′ @
1
yes
Advantage
50
yes








(+extra DTT)




H−

60° C.


256
1
15
15
1:5
in house prot
80
1933
rGrG + G
1
Maxima
12
90′ @
1
yes
Advantage
50
yes








(+extra DTT)




H−

60° C.


257
1
15
15
1:5
in house prot
634
2177
rGrG + G
1
Maxima
4
90′ @

yes
Advantage
50
yes








(+extra DTT)




H−

50° C.


258
1
15
15
1:5
in house prot
684
2195
rGrG + G
1
Maxima
4
90′ @

yes
Advantage
50
yes








(+extra DTT)




H−

50° C.


259
1
15
15
1:5
in house prot
1013
2142
rGrG + G
1
Maxima
4
90′ @
1
yes
Advantage
50
yes








(+extra DTT)




H−

50° C.


260
1
15
15
1:5
in house prot
1195
2100
rGrG + G
1
Maxima
4
90′ @
1
yes
Advantage
50
yes








(+extra DTT)




H−

50° C.


261
1
15
15
1:5
in house prot
2192
1858
rGrG + G
1
Maxima
12
90′ @
1
yes
Advantage
50
yes








(+extra DTT)




H−

50° C.


262
1
15
15
1:5
in house prot
2209
1837
rGrG + G
1
Maxima
12
90′ @
1
yes
Advantage
50
yes








(+extra DTT)




H−

50° C.


263
1
15
15
1:5
in house prot
647
2117
rGrG + G
1
Maxima
4
90′ @

yes
Advantage
50
yes








(NO




H−

50° C.







extra DTT)


264
1
15
15
1:5
in house prot
613
2147
rGrG + G
1
Maxima
4
90′ @

yes
Advantage
50
yes








(NO




H−

50° C.







extra DTT)


265
1
15
15
1:5
in house prot
1442
1989
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes















C., then 10x














(2′ @50° C.-














2′ @42° C.)


266
1
15
15
1:5
in house prot
1496
2105
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes















C., then 10x














(2′ @50° C.-














2′ @42° C.)


267
1
15
15
1:5
in house prot
1228
2677
rGrG + G
1
Maxima
4
90′ @


KAPA
50
yes













H−

50° C.


HiFi HS


268
1
15
15
1:5
in house prot
882
2283
rGrG + G
1
Maxima
4
90′ @


Advantage
50
yes













H−

50° C.


269
1
15
15
1:5
in house prot
2475
2558
rGrG + G
1
Maxima
4
90′ @
1

KAPA
50
yes













H−

50° C.


HiFi HS


270
1
15
15
1:5
in house prot
1557
2201
rGrG + G
1
Maxima
4
90′ @
1

Advantage
50
yes













H−

50° C.


271
1
15
15
1:5
in house prot
4074
2185
rGrG + G
1
Maxima
12
90′ @
1

KAPA
50
yes













H−

50° C.


HiFi HS


272
1
15
15
1:5
in house prot
2927
2330
rGrG + G
1
Maxima
12
90′ @
1

Advantage
50
yes













H−

50° C.


273
1
15
15
1:5
in house prot
3213
2524
rGrG + G
1
SSRTII
12
90′ @42°
1

KAPA
50
yes















C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


274
1
15
15
1:5
in house prot
3359
2662
rGrG + G
1
SSRTII
12
90′ @42°
1

Advantage
50
yes















C., then 10x














(2′ @50° C.-














2′ @42° C.)


275
1
15
15
1:5
in house prot
819
2069
rGrG + G
1
Maxima
4
90′ @

yes
Advantage
50
yes













H−

50° C.


276
1
15
15
1:5
in house prot
737
2202
rGrG + G
1
Maxima
4
90′ @

yes
Advantage
50
yes













H−

50° C.


277
1
15
15
1:5
in house prot
1375
1937
rGrG + G
1
Maxima
4
90′ @
1
yes
Advantage
50
yes













H−

50° C.


278
1
15
15
1:5
in house prot
1426
2008
rGrG + G
1
Maxima
4
90′ @
1
yes
Advantage
50
yes













H−

50° C.


279
1
15
15
1:5
in house prot
2773
1848
rGrG + G
1
Maxima
12
90′ @
1
yes
Advantage
50
yes













H−

50° C.


280
1
15
15
1:5
in house prot
2987
1916
rGrG + G
1
Maxima
12
90′ @
1
yes
Advantage
50
yes













H−

50° C.


281
1
15
15
1:5
in house prot
2155
2266
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes















C., then 10x














(2′ @50° C.-














2′ @42° C.)


282
1
15
15
1:5
in house prot
2240
2271
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes















C., then 10x














(2′ @50° C.-














2′ @42° C.)


283
1
15
15
1:5
in house prot
694
2244
rGrG + G
1
SSRTII
6
90′ @42°

yes
Advantage
50
yes
1M














C., then 10x





proline














(2′ @50° C.-














2′ @42° C.)


284
1
15
15
1:5
in house prot
682
2361
rGrG + G
1
SSRTII
6
90′ @42°

yes
Advantage
50
yes
1M














C., then 10x





proline














(2′ @50° C.-














2′ @42° C.)


285
1
15
15
1:5
in house prot
745
2264
rGrG + G
1
SSRTII
6
90′ @42°

yes
Advantage
50
yes
1M














C., then 10x





proline














(2′ @50° C.-














2′ @42° C.)


286
1
15
15
1:5
in house prot
766
2311
rGrG + G
1
SSRTII
12
90′ @42°

yes
Advantage
50
yes
1M














C., then 10x





proline














(2′ @50° C.-














2′ @42° C.)


287
1
15
15
1:5
in house prot
685
2304
rGrG + G
1
SSRTII
12
90′ @42°

yes
Advantage
50
yes
1M














C., then 10x





proline














(2′ @50° C.














2′ @42° C.)


288
1
15
15
1:5
in house prot
642
2226
rGrG + G
1
SSRTII
12
90′ @42°

yes
Advantage
50
yes
1M














C., then 10x





proline














(2′ @50° C.-














2′ @42° C.)


289
1
15
15
1:5
in house prot
1133
1873
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes














C., then 10x














(2′ @50° C.-














2′ @42° C.)


290
1
15
15
1:5
in house prot
1443
2148
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes














C., then 10x














(2′ @50° C.-














2′ @42° C.)


291
1
15
15
1:5
in house prot
1147
2066
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes














C., then 10x














(2′ @50° C.-














2′ @42° C.)


292
1
15
15
1:5
in house prot
1322
2084
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes














C., then 10x














(2′ @50° C.-














2′ @42° C.)


293
1
15
15
1:5
in house prot
1013
2095
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes














C., then 10x














(2′ @50° C.-














2′ @42° C.)


294
1
15
15
1:5
in house prot
960
2125
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes














C., then 10x














(2′ @50° C.-














2′ @42° C.)


295
1
15
15
1:5
in house prot
1296
2129
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes







with






C., then 10x







SMARTer






(2′ @50° C.-







dT30






2′ @42° C.)







(unanchored







oligo)


296
1
15
15
1:5
in house prot
1390
2194
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes







with






C., then 10x







SMARTer






(2′ @50° C.-







dT30






2′ @42° C.)







(unanchored







oligo)


297
1
15
15
1:5
in house prot
1419
2084
rGrG + G
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes







with






C., then 10x







SMARTer






(2′ @50° C.-







dT30






2′ @42° C.)







(unanchored







oligo)


298
1
18
15
 1:20
in house prot
5456
2293
rGrG + G
2
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes














C., then 10x














(2′ @50° C.-














2′ @42° C.)


299
1
18
15
 1:20
in house prot
5753
2334
rGrG + G
2
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes














C., then 10x














(2′ @50° C.-














2′ @42° C.)


300
1
18
15
 1:20
in house prot
5341
2365
rGrG + G
2
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes














C., then 10x














(2′ @50° C.-














2′ @42° C.)


301
1
18
15
 1:20
in house prot
2266
1750
rGrG + G
2
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes














C., then 10x














(2′ @50° C.-














2′ @42° C.)


302
1
18
15
 1:20
in house prot
1530
1850
rGrG + G
2
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes














C., then 10x














(2′ @50° C.-














2′ @42° C.)


303
1
18
15
 1:20
in house prot
1883
1703
rGrG + G
2
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes














C., then 10x














(2′ @50° C.-














2′ @42° C.)


304
1
18
15
 1:20
in house prot
2856
1731
rGrG + G
2
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes














C., then 10x














(2′ @50° C.-














2′ @42° C.)


305
1
18
15
 1:20
in house prot
3150
2371
rGrG + N
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes














C., then 10x














(2′ @50° C.-














2′ @42° C.)


306
1
18
15
 1:20
in house prot
2889
2393
rGrG + N
1
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes














C., then 10x














(2′ @50° C.-














2′ @42° C.)


307
1
18
15
 1:20
in house prot
3773
2302
rGrG + N
2
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes














C., then 10x














(2′ @50° C.-














2′ @42° C.)


308
1
18
15
 1:20
in house prot
3744
2318
rGrG + N
2
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes














C., then 10x














(2′ @50° C.-














2′ @42° C.)


309
1
18
15
 1:20
in house prot
4113
2390
rGrG + N
2
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes














C., then 10x














(2′ @50° C.-














2′ @42° C.)


310
1
18
15
 1:20
in house prot
3903
2309
rGrG + N
2
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes














C., then 10x














(2′ @50° C.-














2′ @42° C.)


311
1
18
15
 1:20
in house prot
2649
2436
rGrG + N
2
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes














C., then 10x














(2′ @50° C.-














2′ @42° C.)


312
1
18
15
 1:20
in house prot
2856
2422
rGrG + N
2
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes














C., then 10x














(2′ @50° C.-














2′ @42° C.)


313
1
18
15
 1:20
in house prot
2674
2412
rGrG + N
2
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes














C., then 10x














(2′ @50° C.-














2′ @42° C.)


314
1
18
15
 1:20
in house prot
2641
2427
rGrG + N
2
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes














C., then 10x














(2′ @50° C.-














2′ @42° C.)


315
1
18
15
 1:20
in house prot
5251
2272
rGrG + G
2
SSRTII
12
90′ @42°
1
yes
Advantage
50
yes














C., then 10x














(2′ @50° C.-














2′ @42° C.)


316
1
15
15
1:5
in house prot
1255
2057
rGrG + G
1
SSRTII
12
90′ @42°
1

KAPA
50
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


317
1
15
15
1:6
in house prot
1135
2123
rGrG + G
1
SSRTII
12
90′ @42°
1

KAPA
50
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


318
1
15
15
1:7
in house prot
925
2224
rGrG + G
1
SSRTII
12
90′ @42°
1

KAPA
50
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


319
1
15
15
1:8
in house prot
790
2326
rGrG + G
1
SSRTII
12
90′ @42°
1

KAPA
50
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


320
1
15
15
1:9
in house prot
9
2866
rGrG + G
1
SSRTII
12
30′ @42°
1

KAPA
50
yes
1M














C.,


HiFi HS


sorbitol +














10′ @50°





0.3M














C.,





trehalose














10′ @55°














C.


321
1
15
15
 1:10
in house prot
17
2648
rGrG + G
1
SSRTII
12
30′ @42°
1

KAPA
50
yes
1M














C.,


HiFi HS


sorbitol +














10′ @50°





0.3M














C.,





trehalose














10′ @55°














C.


322
1
15
15
 1:11
in house prot
18
2744
rGrG + G
1
SSRTII
12
30′ @42°
1

KAPA
50
yes
1M














C.,


HiFi HS


sorbitol +














10′ @50°





0.3M














C.,





trehalose














10′ @55°














C.


323
1
15
15
 1:12
in house prot
14
2844
rGrG + G
1
SSRTII
12
30′ @42°
1

KAPA
50
yes
1M














C.,


HiFi HS


sorbitol +














10′ @50°





0.3M














C.,





trehalose














10′ @55°














C.


324
1
15
15
 1:13
in house prot
24
2546
rGrG + G
1
SSRTII
12
30′ @42°
1

KAPA
50
yes
0.75M














C.,


HiFi HS


sorbitol +














10′ @50°





0.15M














C.,





trehalose














10′ @55°














C.


325
1
15
15
 1:14
in house prot
30
2478
rGrG + G
1
SSRTII
12
30′ @42°
1

KAPA
50
yes
0.75M














C.,


HiFi HS


sorbitol +














10′ @50°





0.15M














C.,





trehalose














10′ @55°














C.


326
1
15
15
 1:15
in house prot
40
2609
rGrG + G
1
SSRTII
12
30′ @42°
1

KAPA
50
yes
0.75M














C.,


HiFi HS


sorbitol +














10′ @50°





0.15M














C.,





trehalose














10′ @55°














C.


327
1
18
15
 1:10
in house prot
3197
2061
rGrG + G
1
SSRTII
15
90′ @42°
1

KAPA
50
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


328
1
18
15
 1:10
in house prot
3085
2065
rGrG + G
1
SSRTII
15
90′ @42°
1

KAPA
50
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


329
1
18
15
 1:10
in house prot
2627
2134
rGrG + G
1
SSRTII
15
90′ @42°
1

KAPA
50
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


330
1
18
15
 1:10
in house prot
2750
2035
rGrG + G
1
SSRTII
15
90′ @42°
1

KAPA
50
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


331
1
18
15
 1:10
in house prot
980
1920
rGrG + G
1
SSRTII
3
90′ @42°
1

KAPA
50
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


332
1
18
15
 1:10
in house prot
997
1863
rGrG + G
1
SSRTII
3
90′ @42°
1

KAPA
50
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


333
1
18
15
 1:10
in house prot
1055
1925
rGrG + G
1
SSRTII
3
90′ @42°
1

KAPA
50
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


334
1
18
15
 1:10
in house prot
938
1931
rGrG + G
1
SSRTII
3
90′ @42°
1

KAPA
50
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


335
1
18
15
 1:10
in house prot
2192
2119
rGrG + G
1
SSRTII
6
90′ @42°
1

KAPA
50
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


336
1
18
15
 1:10
in house prot
2122
2046
rGrG + G
1
SSRTII
6
90′ @42°
1

KAPA
50
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


337
1
18
15
 1:10
in house prot
2408
2079
rGrG + G
1
SSRTII
6
90′ @42°
1

KAPA
50
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


338
1
18
15
 1:10
in house prot
1836
2109
rGrG + G
1
SSRTII
6
90′ @42°
1

KAPA
50
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


339
1
18
15
 1:10
in house prot
2861
2098
rGrG + G
1
SSRTII
9
90′ @42°
1

KAPA
50
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


340
1
18
15
 1:10
in house prot
2518
2086
rGrG + G
1
SSRTII
9
90′ @42°
1

KAPA
50
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


341
1
18
15
 1:10
in house prot
2289
2135
rGrG + G
1
SSRTII
9
90′ @42°
1

KAPA
50
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


342
1
18
15
 1:10
in house prot
2553
2168
rGrG + G
1
SSRTII
9
90′ @42°
1

KAPA
50
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


343
1
18
15
 1:10
in house prot
2571
2134
rGrG + G
1
SSRTII
12
90′ @42°
1

KAPA
50
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


344
1
18
15
 1:10
in house prot
2691
2115
rGrG + G
1
SSRTII
12
90′ @42°
1

KAPA
50
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


345
1
18
15
 1:10
in house prot
2348
2121
rGrG + G
1
SSRTII
12
90′ @42°
1

KAPA
50
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


346
1
18
15
 1:10
in house prot
2046
2162
rGrG + G
1
SSRTII
12
90′ @42°
1

KAPA
50
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


347
1
15
15
1:5
in house prot
37
1918
rGrG + G
1
SSRTII
3
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


348
1
15
15
1:5
in house prot
65
1888
rGrG + G
1
SSRTII
3
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


349
1
15
15
1:5
in house prot
46
1976
rGrG + G
1
SSRTII
3
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


350
1
15
15
1:5
in house prot
39
1966
rGrG + G
1
SSRTII
3
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


351
1
15
15
1:5
in house prot
44
1784
rGrG + G
1
SSRTII
3
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


352
1
15
15
1:5
in house prot
95
1791
rGrG + G
1
SSRTII
3
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


353
1
15
15
1:5
in house prot
80
1897
rGrG + G
1
SSRTII
3
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


354
1
15
15
1:5
in house prot
281
1685
rGrG + G
1
SSRTII
6
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


355
1
15
15
1:5
in house prot
348
1753
rGrG + G
1
SSRTII
6
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


356
1
15
15
1:5
in house prot
204
1734
rGrG + G
1
SSRTII
6
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


357
1
15
15
1:5
in house prot
210
1840
rGrG + G
1
SSRTII
6
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


358
1
15
15
1:5
in house prot
207
1853
rGrG + G
1
SSRTII
6
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


359
1
15
15
1:5
in house prot
285
1801
rGrG + G
1
SSRTII
6
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


360
1
15
15
1:5
in house prot
120
1942
rGrG + G
1
SSRTII
6
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


361
1
15
15
1:5
in house prot
201
1732
rGrG + G
1
SSRTII
6
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


362
1
15
15
1:5
in house prot
395
1808
rGrG + G
1
SSRTII
9
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


363
1
15
15
1:5
in house prot
558
1887
rGrG + G
1
SSRTII
9
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


364
1
15
15
1:5
in house prot
429
1792
rGrG + G
1
SSRTII
9
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


365
1
15
15
1:5
in house prot
340
1779
rGrG + G
1
SSRTII
9
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


366
1
15
15
1:5
in house prot
511
1797
rGrG + G
1
SSRTII
9
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


367
1
15
15
1:5
in house prot
353
1783
rGrG + G
1
SSRTII
9
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


368
1
15
15
1:5
in house prot
365
1785
rGrG + G
1
SSRTII
9
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


369
1
15
15
1:5
in house prot
333
1840
rGrG + G
1
SSRTII
9
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


370
1
15
15
1:5
in house prot
477
1818
rGrG + G
1
SSRTII
12
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


371
1
15
15
1:5
in house prot
517
1754
rGrG + G
1
SSRTII
12
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


372
1
15
15
1:5
in house prot
265
1917
rGrG + G
1
SSRTII
12
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


373
1
15
15
1:5
in house prot
349
1815
rGrG + G
1
SSRTII
12
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


374
1
15
15
1:5
in house prot
255
1763
rGrG + G
1
SSRTII
12
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


375
1
15
15
1:5
in house prot
388
1760
rGrG + G
1
SSRTII
12
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


376
1
15
15
1:5
in house prot
387
1816
rGrG + G
1
SSRTII
12
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


377
1
15
15
1:5
in house prot
635
1928
rGrG + G
1
SSRTII
15
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


378
1
15
15
1:5
in house prot
515
1873
rGrG + G
1
SSRTII
15
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


379
1
15
15
1:5
in house prot
658
1989
rGrG + G
1
SSRTII
15
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


380
1
15
15
1:5
in house prot
602
1905
rGrG + G
1
SSRTII
15
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


381
1
15
15
1:5
in house prot
412
1896
rGrG + G
1
SSRTII
15
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


382
1
15
15
1:5
in house prot
476
1958
rGrG + G
1
SSRTII
15
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


383
1
15
15
1:5
in house prot
422
1853
rGrG + G
1
SSRTII
15
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


384
1
15
15
1:5
in house prot
551
1876
rGrG + G
1
SSRTII
15
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


385
1
15
15
1:5
in house prot
1736
1698
rGrG + G
1
SSRTII
20
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


386
1
15
15
1:5
in house prot
1294
1750
rGrG + G
1
SSRTII
20
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


387
1
15
15
1:5
in house prot
1160
1736
rGrG + G
1
SSRTII
20
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


388
1
15
15
1:5
in house prot
1245
1786
rGrG + G
1
SSRTII
20
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


389
1
15
15
1:5
in house prot
1234
1733
rGrG + G
1
SSRTII
25
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


390
1
15
15
1:5
in house prot
1654
1684
rGrG + G
1
SSRTII
25
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


391
1
15
15
1:5
in house prot
1327
1696
rGrG + G
1
SSRTII
25
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.














2′ @42° C.)


392
1
15
15
1:5
in house prot
1713
1596
rGrG + G
1
SSRTII
25
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


393
1
15
15
1:5
in house prot
1428
1667
rGrG + G
1
SSRTII
30
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


394
1
15
15
1:5
in house prot
1274
1711
rGrG + G
1
SSRTII
30
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


395
1
15
15
1:5
in house prot
1471
1651
rGrG + G
1
SSRTII
30
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


396
1
15
15
1:5
in house prot
1362
1653
rGrG + G
1
SSRTII
30
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


397
1
15
15
1:5
in house prot
86
1996
rGrG + G
1
SSRTII
6
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


398
1
15
15
1:5
in house prot
66
2002
rGrG + G
1
SSRTII
6
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


399
1
15
15
1:5
in house prot
92
1941
rGrG + G
1
SSRTII
6
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


400
1
15
15
1:5
in house prot
86
1898
rGrG + G
1
SSRTII
6
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


401
1
15
15
1:5
in house prot
85
2071
rGrG + G
1
SSRTII
9
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


402
1
15
15
1:5
in house prot
75
2078
rGrG + G
1
SSRTII
9
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


403
1
15
15
1:5
in house prot
120
2081
rGrG + G
1
SSRTII
9
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


404
1
15
15
1:5
in house prot
150
1984
rGrG + G
1
SSRTII
9
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


405
1
15
15
1:5
in house prot
132
2088
rGrG + G
1
SSRTII
12
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


406
1
15
15
1:5
in house prot
101
2139
rGrG + G
1
SSRTII
12
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


407
1
15
15
1:5
in house prot
131
2221
rGrG + G
1
SSRTII
12
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


408
1
15
15
1:5
in house prot
149
2083
rGrG + G
1
SSRTII
12
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


409
1
15
15
1:5
in house prot
169
2105
rGrG + G
1
SSRTII
15
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


410
1
15
15
1:5
in house prot
195
2020
rGrG + G
1
SSRTII
15
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


411
1
15
15
1:5
in house prot
141
2042
rGrG + G
1
SSRTII
15
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


412
1
15
15
1:5
in house prot
196
2077
rGrG + G
1
SSRTII
15
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


413
1
15
15
1:5
in house prot
123
2133
rGrG + G
1
SSRTII
20
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


414
1
15
15
1:5
in house prot
136
2042
rGrG + G
1
SSRTII
20
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


415
1
15
15
1:5
in house prot
153
2008
rGrG + G
1
SSRTII
20
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


416
1
15
15
1:5
in house prot
166
2111
rGrG + G
1
SSRTII
20
90′ @42°
1

KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


417
1
15
15
1:5
in house prot
259
2484
rGrG + G
1
SSRTII
6
90′ @42°


KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


418
1
15
15
1:5
in house prot
255
2505
rGrG + G
1
SSRTII
6
90′ @42°


KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


419
1
15
15
1:5
in house prot
231
2493
rGrG + G
1
SSRTII
6
90′ @42°


KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


420
1
15
15
1:5
in house prot
258
2469
rGrG + G
1
SSRTII
6
90′ @42°


KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


421
1
15
15
1:5
in house prot
226
2529
rGrG + G
1
SSRTII
6
90′ @42°


KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


422
1
15
15
1:5
in house prot
280
2402
rGrG + G
1
SSRTII
6
90′ @42°


KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


423
1
15
15
1:5
in house prot
270
2449
rGrG + G
1
SSRTII
6
90′ @42°


KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


424
1
15
15
1:5
in house prot
249
2557
rGrG + G
1
SSRTII
6
90′ @42°


KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


425
1
15
15
1:5
in house prot
423
1680
rGrG + G
1
SSRTII
9
90′ @42°


KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


426
1
15
15
1:5
in house prot
433
2537
rGrG + G
1
SSRTII
9
90′ @42°


KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


427
1
15
15
1:5
in house prot
504
2571
rGrG + G
1
SSRTII
9
90′ @42°


KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


428
1
15
15
1:5
in house prot
483
2002
rGrG + G
1
SSRTII
9
90′ @42°


KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


429
1
15
15
1:5
in house prot
585
2409
rGrG + G
1
SSRTII
9
90′ @42°


KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


430
1
15
15
1:5
in house prot
502
2591
rGrG + G
1
SSRTII
9
90′ @42°


KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


431
1
15
15
1:5
in house prot
541
2533
rGrG + G
1
SSRTII
9
90′ @42°


KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


432
1
15
15
1:5
in house prot
554
2555
rGrG + G
1
SSRTII
9
90′ @42°


KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


433
1
15
15
1:5
in house prot
677
2368
rGrG + G
1
SSRTII
12
90′ @42°


KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


434
1
15
15
1:5
in house prot
792
2287
rGrG + G
1
SSRTII
12
90′ @42°


KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


435
1
15
15
1:5
in house prot
842
2325
rGrG + G
1
SSRTII
12
90′ @42°


KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


436
1
15
15
1:5
in house prot
737
2312
rGrG + G
1
SSRTII
12
90′ @42°


KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


437
1
15
15
1:5
in house prot
831
2233
rGrG + G
1
SSRTII
12
90′ @42°


KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


438
1
15
15
1:5
in house prot
780
2468
rGrG + G
1
SSRTII
12
90′ @42°


KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


439
1
15
15
1:5
in house prot
41
2536
rGrG + G
1
SSRTII
6
90′ @42°


KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


440
1
15
15
1:5
in house prot
28
2646
rGrG + G
1
SSRTII
6
90′ @42°


KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


441
1
15
15
1:5
in house prot
44
2702
rGrG + G
1
SSRTII
6
90′ @42°


KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


442
1
15
15
1:5
in house prot
30
2504
rGrG + G
1
SSRTII
6
90′ @42°


KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


443
1
15
15
1:5
in house prot
47
2664
rGrG + G
1
SSRTII
9
90′ @42°


KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


444
1
15
15
1:5
in house prot
54
2652
rGrG + G
1
SSRTII
9
90′ @42°


KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


445
1
15
15
1:5
in house prot
70
2502
rGrG + G
1
SSRTII
9
90′ @42°


KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


446
1
15
15
1:5
in house prot
80
2555
rGrG + G
1
SSRTII
9
90′ @42°


KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


447
1
15
15
1:5
in house prot
122
2374
rGrG + G
1
SSRTII
12
90′ @42°


KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


448
1
15
15
1:5
in house prot
138
2368
rGrG + G
1
SSRTII
12
90′ @42°


KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


449
1
15
15
1:5
in house prot
105
2441
rGrG + G
1
SSRTII
12
90′ @42°


KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


450
1
15
15
1:5
in house prot
108
2377
rGrG + G
1
SSRTII
12
90′ @42°


KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


451
1
15
15
1:5
in house prot
128
2113
rGrG + G
1
SSRTII
15
90′ @42°


KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


452
1
15
15
1:5
in house prot
147
2049
rGrG + G
1
SSRTII
15
90′ @42°


KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


453
1
15
15
1:5
in house prot
101
2127
rGrG + G
1
SSRTII
15
90′ @42°


KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ 42° C.)


454
1
15
15
1:5
in house prot
108
2251
rGrG + G
1
SSRTII
15
90′ @42°


KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


455
1
15
15
1:5
in house prot
128
2007
rGrG + G
1
SSRTII
20
90′ @42°


KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


456
1
15
15
1:5
in house prot
86
2104
rGrG + G
1
SSRTII
20
90′ @42°


KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


457
1
15
15
1:5
in house prot
98
2147
rGrG + G
1
SSRTII
20
90′ @42°


KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)


458
1
15
15
1:5
in house prot
94
1963
rGrG + G
1
SSRTII
20
90′ @42°


KAPA
25
yes














C., then 10x


HiFi HS














(2′ @50° C.-














2′ @42° C.)










B. Analyses of experimental variables effecting cDNA library yield and length


To evaluate the effect on cDNA yield and length of each component of the protocol, we compiled groups of replicates


from different experiments that only differed in the experimental variable evaluated (column A). These experiments were


used to compute Student t-test p-values and Wilcoxon rank sum test p-values for both cDNA yield and cDNA average length.










Experi-
cDNA Yield
cDNA length



















mental



Wilcoxon-
mean
mean
t-test
wilcoxon-
mean
mean



Variable


t-test
test
yield
yield
cDNA
test cDNA
length
length
Number of


Tested
Variant 1
Variant 2
Yield
Yield
(Var1)
(Var2)
length
length
(Var1)
(Var2)
replicates





elution
20
30
2.69E−02
3.33E−01
166.79
56.535
2.43E−01
3.33E−01
2230.5
1930
2


volume


(ul)


TSO
2rGrG + G
3rGrG + G
3.01E−02
3.33E−01
83.025
138.225
1.50E−01
3.33E−01
1887
1722.5
2


TSO
2rGrG + G
C6 amino
4.43E−02
3.33E−01
83.025
36.1875
3.11E−01
3.33E−01
1887
1747
2


TSO
2rGrG + G
rGrG + G
2.56E−04
3.33E−01
83.025
299.025
1.71E−01
3.33E−01
1887
1707
2


TSO
2rGrG + G
phosphate
1.12E−02
3.33E−01
83.025
44.0625
7.13E−01
1.00E+00
1887
1907
2


TSO
2OMe
ddC
2.00E−01
9.52E−02
117.39
62.7
8.95E−01
8.41E−01
1779.2
1795.8
5


TSO
2OMe
rGrG + G
2.59E−02
7.94E−03
117.39
369.615
7.72E−02
1.51E−01
1779.2
1597
5


TSO
2OMe
rGrGrG
7.68E−01
8.86E−01
123.675
109.9313
8.19E−03
2.86E−02
1797.75
1416.5
4


TSO
2OMe
SMARTer


69.225
84.225


1734
1652
1




Oligo IIA


TSO
3rGrG + G
C6 amino
4.11E−03
3.33E−01
138.225
36.1875
8.17E−01
1.00E+00
1722.5
1747
2


TSO
3rGrG + G
rGrG + G
1.36E−03
1.00E−01
130.375
285.775
6.09E−01
1.00E+00
1691.3333
1646.3333
3


TSO
3rGrG + G
phosphate
2.63E−02
3.33E−01
138.225
44.0625
3.09E−02
3.33E−01
1722.5
1907
2


TSO
C6 amino
rGrG + G
3.25E−03
3.33E−01
36.1875
299.025
7.44E−01
6.67E−01
1747
1707
2


TSO
C6 amino
phosphate
3.42E−01
3.33E−01
36.1875
44.0625
2.97E−01
3.33E−01
1747
1907
2


TSO
ddC
rGrG + G
1.36E−02
7.94E−03
62.7
369.615
1.53E−01
2.22E−01
1795.8
1597
5


TSO
ddC
rGrGrG
2.16E−01
2.00E−01
66.4313
109.9313
6.64E−02
1.14E−01
1770.5
1416.5
4


TSO
ddC
SMARTer


30.075
84.225


1463
1652
1




Oligo IIA


TSO
dGCGGG
dGCGGGp
2.63E−03
1.00E−01
47.3067
14.2533
9.78E−04
1.00E−01
2104.6667
2309.3333
3


TSO
dGCGGG
rGrGrG
2.21E−02
1.00E−01
47.3067
150.6733
9.85E−01
7.00E−01
2104.6667
2107.3333
3


TSO
dGCGGG
rGrGrGp
1.32E−01
3.33E−01
48.33
35.64
2.38E−03
3.33E−01
2117.5
2588.5
2


TSO
dGCGGGp
rGrGrG
1.37E−02
1.00E−01
14.253
150.6733
2.41E−01
1.00E−01
2309.3333
2107.3333
3


TSO
dGCGGGp
rGrGrGp
2.47E−03
3.33E−01
14.48
35.64
5.93E−02
3.33E−01
2317
2588.5
2


TSO
rGrG + G
phosphate
2.41E−03
3.33E−01
299.025
44.0625
1.89E−01
3.33E−01
1707
1907
2


TSO
rGrG + G
rGrGrG
6.55E−03
4.96E−04
235.7125
82.075
1.71E−01
2.14E−01
1588.8333
1713
12


TSO
rGrG + G
SMARTer
2.74E−01
3.33E−01
197.6625
77.175
5.20E−02
3.33E−01
1444
1622.5
2




Oligo IIA


TSO
rGrGrG
rGrGrGp
4.64E−04
2.86E−02
154.565
32.765
2.56E−05
2.86E−02
2256.5
2583.5
4


TSO
rGrGrG
SMARTer
1.62E−01
3.33E−01
106.0125
77.175
4.67E−01
6.67E−01
1475.5
1622.5
2




Oligo IIA


MgCl2
0
3
5.27E−01
4.00E−01
65.95
82.975
9.97E−01
1.00E+00
1588.6667
1589
3


concentra-


tion (mM)


MgCl2
0
12
6.31E−01
1.00E+00
75.3375
107.2125
7.78E−01
1.00E+00
1511.5
1480
2


concentra-


tion (mM)


MgCl2
4
6
3.46E−01
6.67E−01
102.3
124.05
2.28E−01
3.33E−01
1517.5
1398
2


concentra-


tion (mM)


MgCl2
4
9
2.52E−02
3.33E−01
102.3
211.875
5.08E−01
6.67E−01
1517.5
1563.5
2


concentra-


tion (mM)


MgCl2
4
12
9.44E−05
1.30E−04
91.395
198.795
3.07E−01
2.47E−01
1918.8
1753.9
10


concentra-


tion (mM)


MgCl2
4
15
3.32E−01
3.33E−01
102.3
130.875
3.81E−01
6.67E−01
1517.5
1360
2


concentra-


tion (mM)


MgCl2
6
9
5.94E−01
6.86E−01
154.5938
178.1625
3.80E−03
2.86E−02
1390.75
1607
4


concentra-


tion (mM)


MgCl2
6
12
8.77E−01
7.30E−01
127.0167
132.9417
4.77E−01
2.58E−01
1709.7778
1845.8889
9


concentra-


tion (mM)


MgCl2
6
15
4.50E−01
8.41E−01
140.52
113.79
7.04E−01
5.48E−01
1443
1477
5


concentra-


tion (mM)


MgCl2
9
12
8.71E−01
6.86E−01
178.1625
170.8125
8.05E−01
8.86E−01
1607
1582.25
4


concentra-


tion (mM)


MgCl2
9
15
1.17E−01
2.00E−01
178.1625
124.7062
1.24E−01
2.00E−01
1607
1448
4


concentra-


tion (mM)


MgCl2
12
15
2.94E−01
3.43E−01
170.8125
124.7062
2.87E−01
3.43E−01
1582.25
1448
4


concentra-


tion (mM)


betaine
0
0.6
7.74E−01
6.86E−01
80.6063
73.725
3.70E−02
1.14E−01
1690.75
1540.5
4


concentra-


tion (M)


betaine
0
1
1.61E−01
1.65E−01
51.93
81.2025
3.55E−01
2.18E−01
2127.8
2006.9
10


concentra-


tion (M)


betaine
0.6
1
4.49E−01
1.00E+00
87.1
69.875
7.58E−01
1.00E+00
1618.3333
1596.6667
3


concentra-


tion (M)


betaine
1
1.5
7.73E−01
3.43E−01
101.215
86.115
8.82E−01
6.86E−01
2409.5
2430.5
4


concentra-


tion (M)


RT
Maxima
Revertaid
1.92E−02
3.33E−01
192
15.6375
1.66E−01
3.33E−01
1696
1603.5
2


enzyme
H−
Premium


RT
Revertaid
SSRTII
2.47E−02
4.11E−02
148.2125
222.375
9.03E−02
1.32E−01
1423
1552.8333
6


enzyme
H−


RT
SMARTscribe
SSRTII


15.9
19.65


1669
1683
1


enzyme


RT
SSRTII
SSRTIII
1.21E−06
1.55E−04
252.3094
9.7031
8.59E−01
6.74E−01
1637.125
1618.875
8


enzyme


RT
60@42 C.,
60@50 C.,
1.47E−01
3.33E−01
73.95
43.05
5.70E−01
1.00E+00
1628
1577.5
2


protocol
then
then



90@60 C.
90@42 C.


RT
60@42 C.,
90@42 C.,
1.50E−01
3.33E−01
73.95
107.3625
3.70E−01
3.33E−01
1628
1719
2


protocol
then
30@60 C.,



90@60 C.
then




30@42 C.


RT
60@50 C.,
90@42 C.,
5.90E−02
2.00E−01
55.7437
110.7375
1.58E−01
1.46E−01
1515
1629
4


protocol
then
30@60 C.,



90@42 C.
then




30@42 C.


RT
90@42 C.
90@42 C.,
3.09E−01
3.43E−01
173.1562
235.8
6.43E−01
4.86E−01
1877.5
1973
4


protocol

then 10x




(2@50 C.-




2@42 C.)


RT
90@42 C.
90@42 C.,
6.72E−02
3.33E−01
101.55
109.8375
1.90E−01
3.33E−01
2075
2226
2


protocol

then 10x




(2@55 C.-




2@42 C.)


RT
90@42 C.
90@42 C.,
8.90E−01
4.00E−01
158.45
170.475
6.57E−01
4.00E−01
1924.3333
2025.3333
3


protocol

then 10x




(2@60 C.-




2@42 C.)


RT
90@42 C.
90@42 C.,
4.30E−01
6.67E−01
244.7625
278.1375
6.57E−01
6.67E−01
1680
1644.5
2


protocol

then 15x




(2@50 C.-




2@42 C.)


RT
90@42 C.
90@42 C.,
8.51E−01
6.67E−01
244.7625
237.225
1.20E−01
3.33E−01
1680
1467
2


protocol

then 20x




(2@50 C.-




2@42 C.)


RT
90@42 C.
90@42 C.,
2.86E−01
3.33E−01
244.7625
297.7125
4.87E−01
6.67E−01
1680
1738.5
2


protocol

then 5x




(2@50 C.-




2@42 C.)


RT
90@42 C.,
90@42 C.,
5.04E−03
1.00E−01
165.375
105.925
5.96E−01
1.00E+00
2248.6667
2227.6667
3


protocol
then 10x
then 10x



(2@50 C.-
(2@55 C.-



2@42 C.)
2@42 C.)


RT
90@42 C.,
90@42 C.,
5.23E−01
4.21E−01
206.295
175.17
9.27E−01
5.48E−01
2031.2
2015.4
5


protocol
then 10x
then 10x



(2@50 C.-
(2@60 C.-



2@42 C.)
2@42 C.)


RT
90@42 C.,
90@42 C.,
7.32E−01
1.00E+00
291.125
300.3
1.71E−01
2.00E−01
1722.3333
1639.6667
3


protocol
then 10x
then 15x



(2@50 C.-
(2@50 C.-



2@42 C.)
2@42 C.)


RT
90@42 C.,
90@42 C.,
4.97E−01
4.00E−01
246.875
196.375
7.32E−02
1.00E−01
1714
1521
3


protocol
then 10x
then 20x



(2@50 C.-
(2@50 C.-



2@42 C.)
2@42 C.)


RT
90@42 C.,
90@42 C.,
9.92E−01
1.00E+00
291.125
291.25
5.65E−01
7.00E−01
1722.3333
1752.6667
3


protocol
then 10x
then 5x



(2@50 C.-
(2@50 C.-



2@42 C.)
2@42 C.)


RT
90@42 C.,
90@42 C.,
2.69E−01
4.00E−01
105.925
114.775
2.23E−01
4.00E−01
2227.6667
2172.3333
3


protocol
then 10x
then 10x



(2@55 C.-
(2@60 C.-



2@42 C.)
2@42 C.)


RT
90@42 C.,
90@42 C.,


286.2
285.3


1732
1610
1


protocol
then 10x
then 15x



(2@60 C.-
(2@50 C.-



2@42 C.)
2@42 C.)


RT
90@42 C.,
90@42 C.,


286.2
259.275


1732
1525
1


protocol
then 10x
then 20x



(2@60 C.-
(2@50 C.-



2@42 C.)
2@42 C.)


RT
90@42 C.,
90@42 C.,


286.2
306.075


1732
1706
1


protocol
then 10x
then 5x



(2@60 C.-
(2@50 C.-



2@42 C.)
2@42 C.)


RT
90@42 C.,
90@42 C.,
2.94E−01
3.33E−01
278.1375
237.225
1.47E−01
3.33E−01
1644.5
1467
2


protocol
then 15x
then 20x



(2@50 C.-
(2@50 C.-



2@42 C.)
2@42 C.)


RT
90@42 C.,
90@42 C.,
7.35E−01
1.00E+00
300.3
291.25
2.30E−02
1.00E−01
1639.6667
1752.6667
3


protocol
then 15x
then 5x



(2@50 C.-
(2@50 C.-



2@42 C.)
2@42 C.)


RT
90@42 C.,
90@42 C.,
1.90E−01
3.33E−01
237.225
297.7125
8.13E−02
3.33E−01
1467
1738.5
2


protocol
then 20x
then 5x



(2@50 C.-
(2@50 C.-



2@42 C.)
2@42 C.)


RT
90@50 C.
90@55 C.
3.50E−03
7.94E−03
62.595
12.24
2.09E−01
1.51E−01
2146.2
2051
5


protocol


RT
90@50 C.
90@60 C.


164.4
6


1858
1933
1


protocol


PCR
Advantage 2
KAPA
6.44E−01
7.55E−01
186.6375
171.0125
5.18E−01
5.90E−01
1929.4167
2029.5
12


enzyme
Pol.
HiFi HS


PCR
Advantage 2
Phusion
4.33E−01
4.86E−01
212.3625
182.6813
8.11E−01
3.43E−01
1701
1722.75
4


enzyme
Pol.
HS


PCR
Advantage 2
Q5 NEB
5.85E−02
2.86E−02
212.3625
133.8562
6.29E−01
3.43E−01
1701
1743.75
4


enzyme
Pol.


PCR
KAPA
Phusion
2.60E−01
3.43E−01
223.725
182.6813
7.49E−01
8.86E−01
1702
1722.75
4


enzyme
HiFi HS
HS


PCR
KAPA
Q5 NEB
2.99E−02
2.86E−02
223.725
133.8562
4.93E−01
8.86E−01
1702
1743.75
4


enzyme
HiFi HS


PCR
Phusion
Q5 NEB
1.25E−01
1.14E−01
182.683
133.8562
5.99E−01
8.86E−01
1722.75
1743.75
4


enzyme
HS


purifica-
0
yes
6.77E−01
6.05E−01
186.85
203.225
3.44E−01
3.87E−01
2022.2222
1875.4444
9


tion.


dNTPs
0
yes
4.55E−03
1.37E−02
193.6781
134.3812
3.44E−04
5.55E−05
1709.4167
2008.0833
24


added in


the


beginning


other
0
0.816M
6.89E−04
1.00E−01
291.125
103.95
3.50E−03
1.00E−01
1722.3333
1093
3


additives

1,2




propandiol


other
0
1.075M
1.82E−01
3.33E−01
299.025
178.4625
9.93E−02
3.33E−01
1707
1421.5
2


additives

ethylene




glycol


other
0
3 mM
1.10E−01
3.33E−01
56.535
28.095
1.13E−01
3.33E−01
1930
1479.5
2


additives

MnCl2


other
0
6 mM
1.05E−01
3.33E−01
56.535
16.95
1.03E−01
3.33E−01
1930
1213
2


additives

MnCl2


other
0.3M
0.6M
8.18E−01
6.86E−01
77.0625
72.3563
4.45E−01
4.86E−01
1679
1634.25
4


additives
trehalose
trehalose


other
0.816M
1.075M
2.82E−01
3.33E−01
104.4375
178.4625
3.99E−02
3.33E−01
1095
1421.5
2


additives
1,2
ethylene



propandiol
glycol


other
3 mM
6 mM
1.45E−01
3.33E−01
28.095
16.95
1.46E−01
3.33E−01
1479.5
1213
2


additives
MnCl2
MnCl2
















TABLE S2







List of all template switching oligonucleotides tested.














5′-end


3′-end


TSO

blocking
5′-end
3′-end
blocking


name
Sequence (5′->3′)
groups
modifications
modifications
groups





2OMe
AAGCAGTGGTATCAACGCAGAGT


3 Riboguanosines + 1 Guanosine
20′-Methyl



ACrGrGrGmG









C6
AAGCAGTGGTATCAACGCAGAGT


3 Riboguanosines
Aminolink


Amino
ACATrGrGrG



C6





ddC
AAGCAGTGGTATCAACGCAGAGT


4 Riboguanosines + 1




ACrGrGrGrGddC


Dideoxycytosine






dGCG
AAGCAGTGGTATCAACGCAGAGT


1 Guanosine + 1 Cytosine + 3



GG
ACGCGGG


Guanosines






dGCG
AAGCAGTGGTATCAACGCAGAGT


1 Guanosine + 1 Cytosine + 3
Phosphate


GGp
ACGCGGG


Guanosines






ISO
iGiCiGAAGCAGTGGTATCAACGCA
Methyl C5
isoGuanosine-
1 Riboguanosine + 1 Ribocytosine
Phosphate



GAGTACrGrCrGrGrG

isoCytosine-
+ 3 Riboguanosines






isoGuanosine







rGrG +
AAGCAGTGGTATCAACGCAGAGT


2 Riboguanosines + 1 LNA-



G
ACrGrG + G


modified Guanosine






rGrG +
AAGCAGTGGTATCAACGCAGAGT


2 Riboguanosines + 1 LNA-



N
ACrGrG + N


modified nucleotide (any)






+G +
AAGCAGTGGTATCAACGCAGAGT


3 LNA-modified Guanosines



G + G
AC + G + G + G









rG +
AAGCAGTGGTATCAACGCAGAGT


2 LNA-modified Guanosines



G + G
ACrG + G + G









rGrGr
AAGCAGTGGTATCAACGCAGAGT


3 Riboguanosines



G
ACATrGrGrG









rG3p
AAGCAGTGGTATCAACGCAGAGT


3 Riboguanosines
Phospate



ACATrGrGrGp









rG5
AAGCAGTGGTATCAACGCAGAGT


5 Riboguanosines




ACrGrGrGrGrG





































avg


text missing or illegible when filed





purifica-

PCR






conc
size

10 uM solution in
RT
oligo
MgCl2
betaine
tion
PCR
rxn vol


sample
cell type
species
(ng/ul)
(bp)
TSO

text missing or illegible when filed

enzyme
dT
(mM)
(M)
after RT?
enzyme
(ul)
notes





























HEK_2
HEK293T

H. sapiens

10.778
1099
rGrG + G
1
SSRTII
SMARTer
13
1
yes
Advantage
50
Could be a cell aggregate










dT30VN


HEK_3
HEK293T

H. sapiens

9.596
1142
rGrG + G
1
SSRTII
SMARTer
14
1
yes
Advantage
50
Could be a cell aggregate










dT30VN


HEK_4
HEK293T

H. sapiens

1.160
1098
rGrG + G
1
SSRTII
SMARTer
15
1
yes
Advantage
50










dT30VN


HEK_5
HEK293T

H. sapiens

0.590
1203
rGrG + G
1
SSRTII
SMARTer
16
1
yes
Advantage
50










dT30VN


HEK_6
HEK293T

H. sapiens

2.210
1175
rGrG + G
1
SSRTII
SMARTer
17
1
yes
Advantage
50










dT30VN


HEK_7
HEK293T

H. sapiens

0.410
1136
rGrG + G
1
SSRTII
SMARTer
18
1
yes
Advantage
50










dT30VN


HEK_8
HEK293T

H. sapiens

4.184
1146
rGrG + G
1
SSRTII
SMARTer
19
1
yes
Advantage
50
Could be a cell aggregate










dT30VN


HEK_9
HEK293T

H. sapiens

0.840
1141
rGrG + G
1
SSRTII
SMARTer
20
1
yes
Advantage
50










dT30VN


HEK_10
HEK293T

H. sapiens

1.130
1088
rGrG + G
1
SSRTII
SMARTer
21
1
yes
Advantage
50










dT30VN


HEK_12
HEK293T

H. sapiens

9.095
1106
rGrG + G
1
SSRTII
SMARTer
23
1
yes
Advantage
50
Could be a cell aggregate










dT30VN


HEK_13
HEK293T

H. sapiens

0.490
1017
rGrG + G
1
SSRTII
SMARTer
24
1
yes
Advantage
50










dT30VN


HEK_14
HEK293T

H. sapiens

3.640
1046
rGrG + G
1
SSRTII
SMARTer
25
1
yes
Advantage
50
Could be a cell aggregate










dT30VN


HEK_16
HEK293T

H. sapiens

17.225
1072
rGrG + G
1
SSRTII
SMARTer
27
1
yes
Advantage
50
Could be a cell aggregate










dT30VN


HEK_SMRT_1
HEK293T

H. sapiens

0.760
1429
SMARTer
1
SMARTscribe
SMARTer
6
1
yes
Advantage
50







Oligo IIA


dT30VN


HEK_SMRT_2
HEK293T

H. sapiens

2.304
1411
SMARTer
1
SMARTscribe
SMARTer
6
1
yes
Advantage
50
Could be a cell aggregate







Oligo IIA


dT30VN


HEK_SMRT_3
HEK293T

H. sapiens

1.544
1424
SMARTer
1
SMARTscribe
SMARTer
6
1
yes
Advantage
50







Oligo IIA


dT30VN


HEK_SMRT_4
HEK293T

H. sapiens

0.422
1457
SMARTer
1
SMARTscribe
SMARTer
6
1
yes
Advantage
50







Oligo IIA


dT30VN


HEK_18
HEK293T

H. sapiens

0.208
1384
rGrGrG
1
SSRTII
SMARTer
12
1
yes
Advantage
50
40 u SSRT II










dT30VN


HEK_19
HEK293T

H. sapiens

0.512
1541
rGrGrG
1
SSRTII
SMARTer
12
1
yes
Advantage
50
40 u SSRT II










dT30VN


HEK_20
HEK293T

H. sapiens

0.550
1614
rGrGrG
1
SSRTII
SMARTer
12
1
yes
Advantage
50
40 u SSRT II










dT30VN


HEK_21
HEK293T

H. sapiens

0.240
1492
rGrGrG
1
SSRTII
SMARTer
12
1
yes
Advantage
50
40 u SSRT II










dT30VN


HEK_22
HEK293T

H. sapiens

0.957
1222
rGrGrG
1
SSRTII
SMARTer
12
1
yes
Advantage
50
40 u SSRT II










dT30VN


HEK_23
HEK293T

H. sapiens

0.872
1392
rGrGrG
1
SSRTII
SMARTer
12
1
yes
Advantage
50
40 u SSRT II










dT30VN


HEK_24
HEK293T

H. sapiens

0.315
1326
rGrGrG
1
SSRTII
SMARTer
12
1
yes
Advantage
50
40 u SSRT II










dT30VN


HEK_25
HEK293T

H. sapiens

0.462
1474
rGrG + G
1
SSRTII
SMARTer
12
1
yes
Advantage
50










dT30VN


HEK_26
HEK293T

H. sapiens

0.248
1441
rGrG + G
1
SSRTII
SMARTer
12
1
yes
Advantage
50










dT30VN


HEK_27
HEK293T

H. sapiens

0.244
1487
rGrG + G
1
SSRTII
SMARTer
12
1
yes
Advantage
50










dT30VN


HEK_28
HEK293T

H. sapiens

0.262
1496
rGrG + G
1
SSRTII
SMARTer
12
1
yes
Advantage
50










dT30VN


HEK_29
HEK293T

H. sapiens

0.761
1402
rGrG + G
1
SSRTII
SMARTer
12
1
yes
Advantage
50










dT30VN


HEK_31
HEK293T

H. sapiens

0.594
1583
rGrG + G
1
SSRTII
SMARTer
12
1
yes
Advantage
50










dT30VN


HEK_32
HEK293T

H. sapiens

0.457
1347
rGrG + G
1
SSRTII
SMARTer
12
1
yes
Advantage
50










dT30VN


HEK_33
HEK293T

H. sapiens

0.473
1507
rGrG + G
1
SSRTII
SMARTer
12
1
yes
Advantage
50










dT30VN


HEK_34
HEK293T

H. sapiens

0.315
1501
rGrG + G
1
SSRTII
SMARTer
12
1
yes
Advantage
50










dT30VN


HEK_35
HEK293T

H. sapiens

0.744
1917
rGrG + G
1
SSRTII
SMARTer
12
1

Advantage
50










dT30VN


HEK_37
HEK293T

H. sapiens

1.531
1626
rGrG + G
1
SSRTII
SMARTer
12
1

Advantage
50










dT30VN


HEK_38
HEK293T

H. sapiens

0.344
1870
rGrG + G
1
SSRTII
SMARTer
12
1

Advantage
50










dT30VN


HEK_39
HEK293T

H. sapiens

0.453
1968
rGrG + G
1
SSRTII
SMARTer
12
1

Advantage
50










dT30VN


HEK_40
HEK293T

H. sapiens

0.580
1958
rGrG + G
1
SSRTII
SMARTer
12
1

Advantage
50










dT30VN


HEK_41
HEK293T

H. sapiens

0.382
1202
rGrG + G
1
SSRTII
SMARTer
12
1
yes
Advantage
50










dT30VN


HEK_42
HEK293T

H. sapiens

0.392
1288
rGrG + G
1
SSRTII
SMARTer
12
1
yes
Advantage
50










dT30VN


HEK_43
HEK293T

H. sapiens

0.844
1319
rGrG + G
1
SSRTII
SMARTer
12
1
yes
Advantage
50










dT30VN


HEK_44
HEK293T

H. sapiens

0.582
1452
rGrG + G
1
SSRTII
SMARTer
12
1
yes
Advantage
50










dT30VN


HEK_45
HEK293T

H. sapiens

0.682
1312
rGrG + G
1
SSRTII
SMARTer
12
1
yes
Advantage
50










dT30VN


HEK_46
HEK293T

H. sapiens

0.692
1411
rGrG + G
1
SSRTII
SMARTer
12
1
yes
Advantage
50










dT30VN


HEK_47
HEK293T

H. sapiens

0.716
1337
rGrGrG
1
SSRTII
SMARTer
12
1
yes
Advantage
50










dT30VN


HEK_48
HEK293T

H. sapiens

0.578
1391
rGrGrG
1
SSRTII
SMARTer
12
1
yes
Advantage
50










dT30VN


HEK_49
HEK293T

H. sapiens

2.681
1440
rGrGrG
1
SSRTII
SMARTer
12
1
yes
Advantage
50
Could be a cell aggregate










dT30VN


HEK_50
HEK293T

H. sapiens

1.158
1507
rGrGrG
1
SSRTII
SMARTer
12
1
yes
Advantage
50










dT30VN


HEK_51
HEK293T

H. sapiens

0.710
1389
rGrGrG
1
SSRTII
SMARTer
12
1
yes
Advantage
50










dT30VN


HEK_52
HEK293T

H. sapiens

1.050
1463
rGrGrG
1
SSRTII
SMARTer
12
1
yes
Advantage
50










dT30VN


HEK_53
HEK293T

H. sapiens

0.714
1384
rGrGrG
1
SSRTII
SMARTer
12
1
yes
Advantage
50










dT30VN


HEK_54
HEK293T

H. sapiens

0.637
1509
rGrGrG
1
SSRTII
SMARTer
12
1
yes
Advantage
50










dT30VN


HEK_55
HEK293T

H. sapiens

1.338
1873
rGrGrG
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


HEK_56
HEK293T

H. sapiens

1.258
1846
rGrGrG
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


HEK_57
HEK293T

H. sapiens

3.012
1798
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


HEK_58
HEK293T

H. sapiens

1.763
1734
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


HEK_59
HEK293T

H. sapiens

2.837
1833
rGrGrG
1
SSRTII
SMARTer
12
1

Advantage
50










dT30VN


HEK_60
HEK293T

H. sapiens

1.889
1758
rGrGrG
1
SSRTII
SMARTer
12
1

Advantage
50










dT30VN


HEK_61
HEK293T

H. sapiens

3.733
1841
rGrG + G
1
SSRTII
SMARTer
12
1

Advantage
50










dT30VN


HEK_62
HEK293T

H. sapiens

2.430
1849
rGrG + G
1
SSRTII
SMARTer
12
1

Advantage
50










dT30VN


HEK_63
HEK293T

H. sapiens

0.758
1845
rGrGrG
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


HEK_64
HEK293T

H. sapiens

0.948
1907
rGrGrG
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


HEK_65
HEK293T

H. sapiens

1.364
1837
rGrGrG
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


HEK_66
HEK293T

H. sapiens

1.897
1821
rGrGrG
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


HEK_67
HEK293T

H. sapiens

2.721
1746
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


HEK_68
HEK293T

H. sapiens

5.123
1699
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50
Could be a cell aggregate










dT30VN



HiFi HS


HEK_69
HEK293T

H. sapiens

2.499
1892
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


HEK_70
HEK293T

H. sapiens

1.632
1715
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


HEK_71
HEK293T

H. sapiens

2.614
1438
rGrG + G
1
SSRTII
SMARTer
12
1
yes
Advantage
50










dT30VN


HEK_72
HEK293T

H. sapiens

1.343
1535
rGrG + G
1
SSRTII
SMARTer
12
1
yes
Advantage
50










dT30VN


HEK_73
HEK293T

H. sapiens

2.618
1570
rGrG + G
1
SSRTII
SMARTer
12
1
yes
Advantage
50










dT30VN


HEK_74
HEK293T

H. sapiens

2.037
1611
rGrG + G
1
SSRTII
SMARTer
12
1
yes
Advantage
50










dT30VN


HEK_75
HEK293T

H. sapiens

1.862
1494
rGrGrG
1
SSRTII
SMARTer
12
1
yes
Advantage
50










dT30VN


HEK_76
HEK293T

H. sapiens

0.560
1567
rGrGrG
1
SSRTII
SMARTer
12
1
yes
Advantage
50










dT30VN


HEK_77
HEK293T

H. sapiens

1.609
1604
rGrGrG
1
SSRTII
SMARTer
12
1
yes
Advantage
50










dT30VN


HEK_78
HEK293T

H. sapiens

0.748
1392
rGrGrG
1
SSRTII
SMARTer
12
1
yes
Advantage
50










dT30VN


HEK_79
HEK293T

H. sapiens

2.876
2093
rGrG + G
1
SSRTII
SMARTer
12
1

Advantage
50










dT30VN


HEK_80
HEK293T

H. sapiens

6.017
1975
rGrG + G
1
SSRTII
SMARTer
12
1

Advantage
50
Could be a cell aggregate










dT30VN


HEK_81
HEK293T

H. sapiens

5.110
1834
rGrG + G
1
SSRTII
SMARTer
12
1

Advantage
50
Could be a cell aggregate










dT30VN


HEK_82
HEK293T

H. sapiens

2.659
1912
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


HEK_83
HEK293T

H. sapiens

3.820
1848
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50
Could be a cell aggregate










dT30VN



HiFi HS


HEK_84
HEK293T

H. sapiens

1.875
1941
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


HEK_85
HEK293T

H. sapiens

4.477
2003
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50
Could be a cell aggregate










dT30VN



HiFi HS


HEK_86
HEK293T

H. sapiens

4.162
1784
rGrG + G
1
SSRTII
SMARTer
12
1

Advantage
50
Could be a cell aggregate










dT30VN


HEK_87
HEK293T

H. sapiens

0.539
1964
rGrG + G
1
Maxima
SMARTer
12
1

KAPA
50









H minus
dT30VN



HiFi HS


HEK_88
HEK293T

H. sapiens

0.526
1860
rGrG + G
1
Maxima
SMARTer
12
1

KAPA
50









H minus
dT30VN



HiFi HS


HEK_89
HEK293T

H. sapiens

0.288
1881
rGrG + G
1
Maxima
SMARTer
12
1

KAPA
50









H minus
dT30VN



HiFi HS


HEK_90
HEK293T

H. sapiens

0.650
1560
rGrG + G
1
Maxima
SMARTer
12
1

KAPA
50









H minus
dT30



HiFi HS


HEK_91
HEK293T

H. sapiens

0.341
1852
rGrG + G
1
Maxima
SMARTer
12
1

KAPA
50









H minus
dT30



HiFi HS


HEK_92
HEK293T

H. sapiens

0.354
1783
rGrG + G
1
Maxima
SMARTer
12
1

KAPA
50









H minus
dT30



HiFi HS


HEK_93
HEK293T

H. sapiens

1.520
1939
rGrG + N
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


HEK_94
HEK293T

H. sapiens

1.722
1740
rGrG + N
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


HEK_95
HEK293T

H. sapiens

0.485
1740
rGrG + N
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


HEK_96
HEK293T

H. sapiens

1.090
1833
rGrG + N
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


HEK_97
HEK293T

H. sapiens

2.856
1731
rGrG + N
2
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


HEK_98
HEK293T

H. sapiens

2.776
1881
rGrG + N
2
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


HEK_99
HEK293T

H. sapiens

1.954
1730
rGrG + N
2
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


HEK_100
HEK293T

H. sapiens

2.836
1909
rGrG + N
2
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


HEK_101
HEK293T

H. sapiens

2.266
1750
rGrG + G
2
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


HEK_102
HEK293T

H. sapiens

1.530
1850
rGrG + G
2
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


HEK_103
HEK293T

H. sapiens

1.883
1703
rGrG + G
2
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


HEK_105
HEK293T

H. sapiens

4.105
1929
rGrG + G
2
SSRTII
SMARTer
12
1

KAPA
50
Could be a cell aggregate










dT30VN



HiFi HS


HEK_106
HEK293T

H. sapiens

2.580
2009
rGrG + G
2
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


HEK_107
HEK293T

H. sapiens

2.572
1910
rGrG + G
2
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


HEK_108
HEK293T

H. sapiens

1.496
1973
rGrG + G
2
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


HEK_109
HEK293T

H. sapiens

3.459
1908
rGrG + G
2
SSRTII
SMARTer
12
1

KAPA
50
Could be a cell aggregate










dT30VN



HiFi HS


HEK_110
HEK293T

H. sapiens

4.591
1921
rGrG + G
2
SSRTII
SMARTer
12
1

Advantage
50
Could be a cell aggregate










dT30VN


HEK_111
HEK293T

H. sapiens

3.841
1972
rGrG + G
2
SSRTII
SMARTer
12
1

Advantage
50
Could be a cell aggregate










dT30VN


HEK_112
HEK293T

H. sapiens

4.279
1916
rGrG + G
2
SSRTII
SMARTer
12
1

Advantage
50
Could be a cell aggregate










dT30VN


HEK_113
HEK293T

H. sapiens

2.123
1648
rGrG + G
2
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


HEK_114
HEK293T

H. sapiens

2.526
1845
rGrG + G
2
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


HEK_115
HEK293T

H. sapiens

2.084
1569
rGrG + N
2
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


HEK_116
HEK293T

H. sapiens

0.511
1628
rGrG + N
2
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


HEK_117
HEK293T

H. sapiens

2.690
1823
rGrG + N
2
SSRTII
SMARTer
12
1

Advantage
50










dT30VN


HEK_118
HEK293T

H. sapiens

1.454
1774
rGrG + N
2
SSRTII
SMARTer
12
1

Advantage
50










dT30VN


HEK_119
HEK293T

H. sapiens

0.361
1598
rGrG + N
2
SSRTII
SMARTer
12
1

Advantage
50










dT30VN


HEK_120
HEK293T

H. sapiens

1.215
1935
rGrG + N
2
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


HEK_121
HEK293T

H. sapiens

0.434
1682
rGrG + N
2
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


HEK_122
HEK293T

H. sapiens

0.739
1553
rGrG + N
2
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


HEK_123
HEK293T

H. sapiens

1.599
1688
rGrG + N
2
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


HEK_124
HEK293T

H. sapiens

2.301
1617
rGrG + N
2
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


HEK_135
HEK293T

H. sapiens

0.784
1810
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50
2x dCTP










dT30VN



HiFi HS


HEK_136
HEK293T

H. sapiens

1.311
1990
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50
2x dCTP










dT30VN



HiFi HS


HEK_137
HEK293T

H. sapiens

0.895
1829
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50
2x dCTP










dT30VN



HiFi HS


HEK_138
HEK293T

H. sapiens

1.318
1948
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50
2x dCTP










dT30VN



HiFi HS


HEK_139
HEK293T

H. sapiens

1.853
1704
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50
2x dCTP










dT30VN



HiFi HS


HEK_140
HEK293T

H. sapiens

4.009
1833
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50
2x dCTP (NOT SINGLE CELL)










dT30VN



HiFi HS


HEK_141
HEK293T

H. sapiens

5.230
1820
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50
Could be a cell aggregate










dT30VN



HiFi HS


HEK_144
HEK293T

H. sapiens

4.803
1766
rGrG + G
2
SSRTII
SMARTer
12
1

Advantage
50
Could be a cell aggregate










dT30VN


HEK_145
HEK293T

H. sapiens

2.166
1619
rGrG + G
2
SSRTII
SMARTer
12
1

Advantage
50










dT30VN


HEK_146
HEK293T

H. sapiens

2.283
1552
rGrG + G
2
SSRTII
SMARTer
12
1

Advantage
50










dT30VN


HEK_147
HEK293T

H. sapiens

2.099
1316
rGrG + G
2
SSRTII
SMARTer
12
1

Advantage
50










dT30VN


HEK_148
HEK293T

H. sapiens

2.191
1339
rGrG + G
2
SSRTII
SMARTer
12
1

Advantage
50
HEDGEHOG PATTERN










dT30VN


HEK_149
HEK293T

H. sapiens

1.560
1426
rGrG + G
2
SSRTII
SMARTer
12
1

Advantage
50










dT30VN


HEK_150
HEK293T

H. sapiens

2.830
1508
rGrG + G
2
SSRTII
SMARTer
12
1

Advantage
50










dT30VN


HEK_151
HEK293T

H. sapiens

2.220
1220
rGrG + G
2
SSRTII
SMARTer
12
1

Advantage
50










dT30


HEK_152
HEK293T

H. sapiens

2.654
1534
rGrG + G
2
SSRTII
SMARTer
12
1

Advantage
50
HEDGEHOG PATTERN










dT30


HEK_153
HEK293T

H. sapiens

2.039
1655
rGrG + G
2
SSRTII
SMARTer
12
1

Advantage
50










dT30


HEK_154
HEK293T

H. sapiens

3.001
1837
rGrG + G
2
SSRTII
SMARTer
12
1

Advantage
50










dT30


HEK_155
HEK293T

H. sapiens

1.378
1846
rGrG + G
2
SSRTII
SMARTer
12
1

Advantage
50










dT30


HEK_156
HEK293T

H. sapiens

1.065
1853
rGrG + G
2
SSRTII
SMARTer
12
1

Advantage
50










dT30


HEK_157
HEK293T

H. sapiens

1.621
1772
rGrG + G
2
SSRTII
SMARTer
12
1

Advantage
50










dT30


HEK_158
HEK293T

H. sapiens

2.418
1706
rGrG + G
2
SSRTII
SMARTer
12
1

Advantage
50










dT30


HEK_SMRT_5
HEK293T

H. sapiens

0.128
1495
SMARTer
1
SMARTscribe
SMARTer
6
1
yes
Advantage
50







Oligo IIA


dT30VN


HEK_SMRT_6
HEK293T

H. sapiens

0.042
1469
SMARTer
1
SMARTscribe
SMARTer
6
1
yes
Advantage
50







Oligo IIA


dT30VN


HEK_SMRT_7
HEK293T

H. sapiens

0.207
1359
SMARTer
1
SMARTscribe
SMARTer
6
1
yes
Advantage
50







Oligo IIA


dT30VN


HEK_SMRT_8
HEK293T

H. sapiens

0.246
1340
SMARTer
1
SMARTscribe
SMARTer
6
1
yes
Advantage
50







Oligo IIA


dT30VN


HEK_SMRT_9
HEK293T

H. sapiens

0.152
1455
SMARTer
1
SMARTscribe
SMARTer
6
1
yes
Advantage
50







Oligo IIA


dT30VN


HEK_SMRT_10
HEK293T

H. sapiens

0.256
1228
SMARTer
1
SMARTscribe
SMARTer
6
1
yes
Advantage
50







Oligo IIA


dT30VN


HEK_SMRT_11
HEK293T

H. sapiens

0.072
1238
SMARTer
1
SMARTscribe
SMARTer
6
1
yes
Advantage
50







Oligo IIA


dT30VN


HEK_SMRT_12
HEK293T

H. sapiens

0.256
1292
SMARTer
1
SMARTscribe
SMARTer
6
1
yes
Advantage
50







Oligo IIA


dT30VN


C_1
C2C12

M. musculus

3.003
1696
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
25
Could be a cell aggregate










dT30VN



HiFi HS


C_2
C2C12

M. musculus

1.110
1772
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
25










dT30VN



HiFi HS


C_3
C2C12

M. musculus

1.157
1660
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
25










dT30VN



HiFi HS


C_4
C2C12

M. musculus

1.965
1674
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
25










dT30VN



HiFi HS


C_5
C2C12

M. musculus

2.884
1708
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
25
Could be a cell aggregate










dT30VN



HiFi HS


C_6
C2C12

M. musculus

2.325
1646
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
25










dT30VN



HiFi HS


C_7
C2C12

M. musculus

1.941
1577
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
25










dT30VN



HiFi HS


C_8
C2C12

M. musculus

2.248
1666
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
25










dT30VN



HiFi HS


C_9
C2C12

M. musculus

1.379
1614
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


C_10
C2C12

M. musculus

1.832
1809
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


C_11
C2C12

M. musculus

3.644
1735
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50
Could be a cell aggregate










dT30VN



HiFi HS


C_12
C2C12

M. musculus

1.245
1735
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


C_13
C2C12

M. musculus

1.913
1896
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


C_14
C2C12

M. musculus

1.703
1836
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


C_15
C2C12

M. musculus

1.588
1937
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


C_16
C2C12

M. musculus

1.730
1937
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


MEF_1
MEF

M. musculus

0.999
1397
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
25










dT30VN



HiFi HS


MEF_2
MEF

M. musculus

2.862
1710
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
25










dT30VN



HiFi HS


MEF_3
MEF

M. musculus

1.571
1577
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
25










dT30VN



HiFi HS


MEF_4
MEF

M. musculus

1.120
1489
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
25










dT30VN



HiFi HS


MEF_5
MEF

M. musculus

2.121
1672
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
25










dT30VN



HiFi HS


MEF_6
MEF

M. musculus

5.025
1610
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
25
Could be a cell aggregate










dT30VN



HiFi HS


MEF_7
MEF

M. musculus

5.874
1065
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
25
Could be a cell aggregate










dT30VN



HiFi HS


MEF_8
MEF

M. musculus

1.272
?
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
25










dT30VN



HiFi HS


MEF_9
MEF

M. musculus

1.650
?
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
25










dT30VN



HiFi HS


MEF_10
MEF

M. musculus

2.071
?
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
25










dT30VN



HiFi HS


MEF_11
MEF

M. musculus

0.755
?
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
25










dT30VN



HiFi HS


MEF_12
MEF

M. musculus

7.528
?
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
25
Could be a cell aggregate










dT30VN



HiFi HS


MEF_13
MEF

M. musculus

2.271
?
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
25










dT30VN



HiFi HS


MEF_14
MEF

M. musculus

2.327
?
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
25










dT30VN



HiFi HS


MEF_15
MEF

M. musculus

3.149
?
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
25
Could be a cell aggregate










dT30VN



HiFi HS


MEF_16
MEF

M. musculus

2.045
?
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
25










dT30VN



HiFi HS


MEF_17
MEF

M. musculus

0.497
1803
rGrGrG
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


MEF_18
MEF

M. musculus

0.427
1879
rGrGrG
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


MEF_19
MEF

M. musculus

0.406
1873
rGrGrG
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


MEF_20
MEF

M. musculus

0.680
1984
rGrGrG
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


MEF_21
MEF

M. musculus

0.429
1738
rGrGrG
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


MEF_22
MEF

M. musculus

0.634
2089
rGrGrG
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


MEF_23
MEF

M. musculus

0.722
2019
rGrGrG
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


MEF_24
MEF

M. musculus

0.397
1881
rGrGrG
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


MEF_25
MEF

M. musculus

0.981
2007
rGrG + G
1
SSRTII
SMARTer
12
1

Advantage
50










dT30VN


MEF_26
MEF

M. musculus

0.626
1827
rGrG + G
1
SSRTII
SMARTer
12
1

Advantage
50










dT30VN


MEF_28
MEF

M. musculus

0.656
1979
rGrG + G
1
SSRTII
SMARTer
12
1

Advantage
50










dT30VN


MEF_29
MEF

M. musculus

1.356
2143
rGrG + G
1
SSRTII
SMARTer
12
1

Advantage
50










dT30VN


MEF_30
MEF

M. musculus

1.242
2137
rGrG + G
1
SSRTII
SMARTer
12
1

Advantage
50










dT30VN


MEF_31
MEF

M. musculus

2.240
2015
rGrG + G
1
SSRTII
SMARTer
12
1

Advantage
50










dT30VN


MEF_32
MEF

M. musculus

0.781
1817
rGrG + G
1
SSRTII
SMARTer
12
1

Advantage
50










dT30VN


MEF_33
MEF

M. musculus

0.603
1781
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


MEF_34
MEF

M. musculus

5.014
1894
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50
Could be a cell aggregate










dT30VN



HiFi HS


MEF_35
MEF

M. musculus

1.651
2064
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


MEF_36
MEF

M. musculus

1.017
1773
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


MEF_37
MEF

M. musculus

1.119
1783
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


MEF_38
MEF

M. musculus

0.681
1659
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


MEF_39
MEF

M. musculus

1.444
1469
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


MEF_40
MEF

M. musculus

0.845
1401
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


SMRT_1
C2C12

M. musculus

0.063
1170
SMARTer
1
SMARTscribe
SMARTer
12
1
yes
Advantage
50







Oligo IIA


dT30VN


SMRT_2
C2C12

M. musculus

0.165
1127
SMARTer
1
SMARTscribe
SMARTer
12
1
yes
Advantage
50







Oligo IIA


dT30VN


SMRT_3
C2C12

M. musculus

0.130
1169
SMARTer
1
SMARTscribe
SMARTer
12
1
yes
Advantage
50







Oligo IIA


dT30VN


SMRT_4
C2C12

M. musculus

0.091
1325
SMARTer
1
SMARTscribe
SMARTer
12
1
yes
Advantage
50







Oligo IIA


dT30VN


SMRT_5
C2C12

M. musculus

0.036
1282
SMARTer
1
SMARTscribe
SMARTer
12
1
yes
Advantage
50







Oligo IIA


dT30VN


SMRT_6
C2C12

M. musculus

0.135
1373
SMARTer
1
SMARTscribe
SMARTer
12
1
yes
Advantage
50







Oligo IIA


dT30VN


SMRT_7
C2C12

M. musculus

0.161
1525
SMARTer
1
SMARTscribe
SMARTer
12
1
yes
Advantage
50







Oligo IIA


dT30VN


SMRT_8
C2C12

M. musculus

0.178
1314
SMARTer
1
SMARTscribe
SMARTer
12
1
yes
Advantage
50







Oligo IIA


dT30VN


SMRT_9
C2C12

M. musculus

0.036
1363
SMARTer
1
SMARTscribe
SMARTer
12
1
yes
Advantage
50







Oligo IIA


dT30VN


SMRT_10
C2C12

M. musculus

0.129
1261
SMARTer
1
SMARTscribe
SMARTer
12
1
yes
Advantage
50







Oligo IIA


dT30VN


SMRT_11
C2C12

M. musculus

0.080
1234
SMARTer
1
SMARTscribe
SMARTer
12
1
yes
Advantage
50







Oligo IIA


dT30VN


SMRT_12
C2C12

M. musculus

0.111
1447
SMARTer
1
SMARTscribe
SMARTer
12
1
yes
Advantage
50







Oligo IIA


dT30VN


SMRT_14
C2C12

M. musculus

0.081
1408
SMARTer
1
SMARTscribe
SMARTer
12
1
yes
Advantage
50







Oligo IIA


dT30VN


SMRT_16
C2C12

M. musculus

0.074
1280
SMARTer
1
SMARTscribe
SMARTer
12
1
yes
Advantage
50







Oligo IIA


dT30VN


BC_1
B-cells

H. sapiens

0.826
1657
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


BC_3
B-cells

H. sapiens

1.091
1659
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


BC_4
B-cells

H. sapiens

0.401
1649
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


BC_5
B-cells

H. sapiens

0.501
1547
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


BC_6
B-cells

H. sapiens

0.573
1534
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


BC_7
B-cells

H. sapiens

0.328
1343
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


BC_8
B-cells

H. sapiens

0.661
1607
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


BC_9
B-cells

H. sapiens

0.500
1605
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


BC_10
B-cells

H. sapiens

0.840
1782
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


BC_11
B-cells

H. sapiens

0.829
1813
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


BC_12
B-cells

H. sapiens

0.648
1642
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


BC_13
B-cells

H. sapiens

0.297
1815
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


BC_15
B-cells

H. sapiens

0.982
1825
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


HEK_159
HEK293T

H. sapiens

3.057
1464
rGrG + G
1
SSRTII
SMARTer
15
1

KAPA
25
Could be a cell aggregate










dT30VN



HiFi HS


HEK_160
HEK293T

H. sapiens

3.506
1799
rGrG + G
1
SSRTII
SMARTer
15
1

KAPA
25
Could be a cell aggregate










dT30VN



HiFi HS


HEK_161
HEK293T

H. sapiens

2.027
1611
rGrG + G
1
SSRTII
SMARTer
15
1

KAPA
25










dT30VN



HiFi HS


HEK_162
HEK293T

H. sapiens

2.513
1714
rGrG + G
1
SSRTII
SMARTer
15
1

KAPA
25










dT30VN



HiFi HS


HEK_163
HEK293T

H. sapiens

0.558
 909
rGrG + G
1
SSRTII
SMARTer
20
1

KAPA
25










dT30VN



HiFi HS


HEK_164
HEK293T

H. sapiens

1.490
1397
rGrG + G
1
SSRTII
SMARTer
20
1

KAPA
25










dT30VN



HiFi HS


HEK_165
HEK293T

H. sapiens

0.606
1334
rGrG + G
1
SSRTII
SMARTer
20
1

KAPA
25










dT30VN



HiFi HS


HEK_166
HEK293T

H. sapiens

1.203
1515
rGrG + G
1
SSRTII
SMARTer
20
1

KAPA
25










dT30VN



HiFi HS


BC_17
B-cells

H. sapiens

0.393
1603
rGrG + G
1
SSRTII
SMARTer
12


KAPA
50










dT30VN



HiFi HS


BC_19
B-cells

H. sapiens

0.216
1730
rGrG + G
1
SSRTII
SMARTer
12


KAPA
50










dT30VN



HiFi HS


BC_20
B-cells

H. sapiens

0.074
1131
rGrG + G
1
SSRTII
SMARTer
12


KAPA
50










dT30VN



HiFi HS


BC_21
B-cells

H. sapiens

0.126
1445
rGrG + G
1
SSRTII
SMARTer
12


KAPA
50










dT30VN



HiFi HS


BC_22
B-cells

H. sapiens

0.325
1702
rGrG + G
1
SSRTII
SMARTer
12


KAPA
50










dT30VN



HiFi HS


BC_23
B-cells

H. sapiens

0.183
1756
rGrG + G
1
SSRTII
SMARTer
12


KAPA
50










dT30VN



HiFi HS


BC_24
B-cells

H. sapiens

0.097
1338
rGrG + G
1
SSRTII
SMARTer
12


KAPA
50










dT30VN



HiFi HS


BC_25
B-cells

H. sapiens

0.826
1657
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


BC_26
B-cells

H. sapiens

1.091
1659
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


BC_27
B-cells

H. sapiens

0.401
1649
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


BC_28
B-cells

H. sapiens

0.501
1547
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


BC_29
B-cells

H. sapiens

0.573
1534
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


BC_30
B-cells

H. sapiens

0.328
1343
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


BC_31
B-cells

H. sapiens

0.661
1607
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


BC_32
B-cells

H. sapiens

0.500
1605
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


BC_33
B-cells

H. sapiens

0.840
1782
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


BC_34
B-cells

H. sapiens

0.829
1813
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


BC_35
B-cells

H. sapiens

0.648
1642
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


BC_36
B-cells

H. sapiens

0.297
1815
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


BC_37
B-cells

H. sapiens

0.982
1825
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS


BC_38
B-cells

H. sapiens

0.853
1795
rGrG + G
1
SSRTII
SMARTer
12
1

KAPA
50










dT30VN



HiFi HS






text missing or illegible when filed indicates data missing or illegible when filed














TABLE S4







Detailing variants of the Smart-seq2 protocol














Bead






purification


Protocol

amount ISO
before pre-


name
TSO
(ul)
amplification?
DNA Polymerase





Smart-
rGrG + G
1 ul (10 uM)
no
KAPA HiFi


seq2



HotStart






ReadyMix


Variant 1
rGrG + G
2 ul (10 uM)
no
KAPA HiFi






HotStart






ReadyMix


Variant 2
rGrG + N
2 ul (10 uM)
no
KAPA HiFi






HotStart






ReadyMix


Variant 3
rGrG + G
1 ul (10 uM)
no
Advantage 2


Variant 4
rGrGrG
1 ul (10 uM)
no
KAPA HiFi






HotStart






ReadyMix


SMARTer
SMARTer
1 ul (12 uM)
yes
Advantage 2



Oligo IIA








Claims
  • 1. A method for preparing DNA that is complementary to an RNA molecule, comprising the steps of: annealing a cDNA synthesis primer to said RNA molecule and synthesizing a first cDNA strand to form an RNA-cDNA intermediate;conducting a reverse transcriptase reaction by contacting said RNA-cDNA intermediate with a template switching oligonucleotide (TSO), wherein the TSO comprises a locked nucleic acid (LNA) at its 3′-end, under conditions suitable for extension of the first DNA strand that is complementary to the RNA molecule, rendering it additionally complementary to the TSO; andoptionally amplifying said DNA strand that is complementary to said RNA molecule and said template switching oligonucleotide using an oligonucleotide primer, wherein optionally said RNA is total RNA in a cell.
  • 2. The method of claim 1, wherein said reverse transcription reaction is conducted in the presence of a methyl group donor and a metal salt.
  • 3. The method of claim 2, wherein said methyl group donor is betaine.
  • 4. The method of claim 2, wherein said metal salt is magnesium salt.
  • 5. The method of claim 4, wherein said magnesium salt has a concentration of at least 7 mM, at least 8 mM, or at least 9 mM.
  • 6. The method of claim 1, wherein said template switching oligonucleotide comprises at least one or two ribonucleotide residues and said LNA residue.
  • 7. The method of claim 6, wherein said at least one or two ribonucleotide residues are riboguanine.
  • 8. The method of claim 6, wherein said locked nucleic acid residue is selected from the group consisting of locked guanine, locked adenine, locked uracil, locked thymine, locked cytosine, and locked 5-methylcytosine.
  • 9. The method of claim 8, wherein said locked nucleic acid residue is locked guanine.
  • 10. The method of claim 1, wherein said locked nucleic acid residue is at the 3′-most position.
  • 11. The method of claim 1, wherein said template switching oligonucleotide comprises at the 3′-end three nucleotide residues characterized by formula rGrG+N, wherein +N represents a locked nucleotide residue.
  • 12. The method of claim 11, wherein said template switching oligonucleotide comprises rGrG+G.
  • 13. The method of claim 2, wherein said methyl group donor is betaine, and said metal salt is MgCl2 at a concentration of at least 9 mM.
  • 14. The method of claim 1, further comprising amplifying said DNA strand that is complementary to said RNA molecule and said template switching oligonucleotide using an oligonucleotide primer.
  • 15. The method of claim 1, wherein said template switching oligonucleotide is selected from the oligonucleotides in Table S2.
  • 16. The method of claim 1, wherein the cDNA is synthesized on beads comprising an anchored oligo-dT primer.
  • 17. The method of claim 16, wherein said oligo-dT primer comprises a sequence of 5′-AAGCAGTGGTATCAACGCAGAGTACT30VN-3′, wherein “N” is any nucleoside base, and “V” is selected from the group consisting of “A”, “C” and “G”.
  • 18. The method of claim 14, further comprising PCR preamplification, tagmentation, and final PCR amplification, wherein optionally the PCR preamplification is conducted without purifying the cDNA obtained from reverse transcription reaction.
  • 19. (canceled)
  • 20. (canceled)
  • 21. A cDNA library produced by the method of claim 1.
  • 22. (canceled)
  • 23. A method for analyzing gene expression in a plurality of single cells, the method comprising the steps of: preparing a cDNA library according to the method of claim 1; and sequencing the cDNA library.
  • 24. A template switching oligonucleotide (TSO) comprising a locked nucleotide residue at its 3′-end.
  • 25. The TSO of claim 24, comprising three nucleotide residues at the 3′-end selected from the group consisting of +N+N+N, N+N+N, NN+N, rN+N+N, and rNrN+N, wherein N at each occurrence is independently a deoxyribonucleotide residue, rN at each occurrence is independently a ribonucleotide residue, and +N at each occurrence is independently a locked nucleotide residue.
  • 26. The TSO of claim 24, wherein said locked nucleotide residue is selected from the group consisting of locked guanine, locked adenine, locked uracil, locked thymine, locked cytosine, and locked 5-methylcytosine.
  • 27. The TSO of claim 25, wherein said three nucleotide residues are selected from the group consisting of NN+G rNrN+G, rGrG+N, GG+N, rGrG+G, and GG+G.
  • 28. (canceled)
  • 29. (canceled)
  • 30. (canceled)
CROSS REFERENCE TO RELATED APPLICATIONS

The present application claims priority to U.S. Provisional Patent Application Ser. No. 61/869,220, filed Aug. 23, 2014, the contents of which are hereby incorporated by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/US14/52233 8/22/2014 WO 00
Provisional Applications (1)
Number Date Country
61869220 Aug 2013 US