Methods and compositions for consolidating proppant in fractures

Information

  • Patent Grant
  • 7264052
  • Patent Number
    7,264,052
  • Date Filed
    Monday, May 23, 2005
    19 years ago
  • Date Issued
    Tuesday, September 4, 2007
    17 years ago
Abstract
Improved methods and compositions for consolidating proppant in subterranean fractures are provided. In certain embodiments, the hardenable resin compositions may be especially suited for consolidating proppant in subterranean fractures having temperatures above about 200° F. Improved methods include providing proppant particles coated with a hardenable resin composition mixed with a gelled liquid fracturing fluid, and introducing the fracturing fluid into a subterranean zone. The fracturing fluid may form one or more fractures in the subterranean zone and deposit the proppant particles coated with the resin composition therein. Thereafter, the hardenable resin composition on the proppant particles is allowed to harden by heat and to consolidate the proppant particles into degradation resistant permeable packs. The hardenable resin composition may include a liquid bisphenol A-epichlorohydrin resin, a 4,4′-diaminodiphenyl sulfone hardening agent, a solvent, a silane coupling agent, and a surfactant. The solvent may include diethylene glycol monomethyl ether or dimethyl sulfoxide.
Description
BACKGROUND

The present invention relates to methods and storable hardenable resin compositions for forming one or more fractures in high temperature subterranean zones and consolidating proppant particles therein.


Hydrocarbon producing wells are often stimulated by hydraulic fracturing treatments. In hydraulic fracturing, a viscous fracturing fluid, which also functions as a carrier fluid may be pumped into a subterranean zone to be fractured at a rate and pressure such that one or more fractures are formed in the zone. Proppant particles, e.g., graded sand, for propping the fractures open may be suspended in the fracturing fluid so that the proppant particles are deposited in the fractures when the fracturing fluid is broken. That is, a viscosity breaker may be included in the fracturing fluid so that the fracturing fluid reverts to a thin fluid, which may then be returned to the surface. The proppant particles deposited in the fractures may function to prevent the fractures from closing so that conductive channels are formed through which produced hydrocarbons can readily flow.


To prevent the subsequent flow-back of the proppant particles as well as loose or incompetent fines with fluids produced from the subterranean zone, the proppant particles have heretofore been coated with a hardenable resin composition which is caused to harden and consolidate the proppant particles in the zone into permeable packs. However, when the subterranean zone has a temperature above about 200° F., and it produces hydrocarbons at exceptionally high rates or undergoes reoccurring stresses due to frequent well shutoffs and openings, the hardened resin composition and the permeable proppant particle packs consolidated therewith rapidly deteriorate thus allowing proppant particles and formation fines to flow back with produced formation fluids. The flow-back of the proppant particles and formation fines is detrimental in that it erodes metal goods, plugs piping, and vessels and causes damage to valves, instruments, and other production equipment.


Another problem encountered in the use of prior hardenable resin compositions for coating proppant particles is that the hardenable resin composition or components thereof have had short shelf lives. In addition, the hardenable resin composition components have heretofore had low flash points making them dangerous to use. Also, when the prior hardenable resin compositions or components thereof have been stored at high ambient temperatures, the compositions or components have quickly hardened making them unsuitable for use.


Thus, there are needs for improved methods and storable hardenable resin compositions for consolidating proppant particles in subterranean fractures whereby the permeable packs of consolidated proppant particles formed may be resistant to degradation by high production rates, stress cycling, and/or thermal degradation. Further, there are needs for improved hardenable resin compositions that are premixed and have long shelf lives and high flash points.


SUMMARY

The present invention relates to methods and storable hardenable resin compositions for forming one or more fractures in high temperature subterranean zones and consolidating proppant particles therein.


An example of a method of the present invention for forming one or more fractures in a subterranean zone penetrated by a well bore and consolidating proppant particles therein, the subterranean zone having a temperature above about 200° F. comprises the steps of: providing a hardenable resin composition comprised of a liquid bisphenol A-epichlorohydrin resin, a 4,4′-diaminodiphenyl sulfone hardening agent dissolved in a diethylene glycol monomethyl ether solvent, a silane coupling agent, and a surfactant for facilitating the coating of the resin on the proppant particles; providing proppant particles; coating the proppant particles with the hardenable resin composition; providing a gelled liquid fracturing fluid; mixing the proppant particles with the fracturing fluid so that the proppant particles are suspended therein; introducing the gelled liquid fracturing fluid into the subterranean zone to form the one or more fractures and to deposit the proppant particles therein; and allowing the hardenable resin composition to harden by heat and to consolidate the proppant particles into one or more degradation resistant permeable packs.


Another example of a method of the present invention for forming one or more fractures in a subterranean zone penetrated by a well bore and consolidating proppant particles therein, the subterranean zone having a temperature above about 200° F. comprises the steps of: providing a hardenable resin composition comprised of a liquid bisphenol A-epichlorohydrin resin, a 4,4′-diaminodiphenyl sulfone hardening agent dissolved in a dimethyl sulfoxide solvent, a silane coupling agent, and a surfactant for facilitating the coating of the resin on the proppant particles; providing proppant particles; coating the proppant particles with the hardenable resin composition; providing a gelled liquid fracturing fluid; mixing the proppant particles with the fracturing fluid so that the proppant particles are suspended therein; introducing the gelled liquid fracturing fluid into the subterranean zone to form the one or more fractures and to deposit the proppant particles therein; and allowing the hardenable resin composition to harden by heat and to consolidate the proppant particles into one or more degradation resistant permeable packs.


An example of a hardenable resin composition of the present invention for coating proppant particles comprises a liquid bisphenol A-epichlorohydrin resin; a 4,4-diaminodiphenyl sulfone hardening agent dissolved in a diethylene glycol monomethyl ether solvent; a silane coupling agent; and a surfactant for facilitating the coating of the resin on the proppant particles.


The features and advantages of the present invention will be apparent to those skilled in the art. While numerous changes may be made by those skilled in the art, such changes are within the spirit of the invention.







DESCRIPTION OF PREFERRED EMBODIMENTS

The present invention relates to methods and storable hardenable resin compositions for forming one or more fractures in high temperature subterranean zones and consolidating proppant particles therein.


The present invention provides improved methods of forming one or more fractures in a subterranean zone penetrated by a well bore and consolidating proppant particles therein. In certain embodiments, the methods of the present invention may be especially suited for subterranean zones having a temperature above about 200° F. Improved methods of the present invention may include providing a hardenable resin composition comprised of a liquid bisphenol A-epichlorohydrin resin, a 4,4′-diaminodiphenyl sulfone hardening agent dissolved in a diethylene glycol monomethyl ether solvent, a silane coupling agent, and a surfactant for facilitating the coating of the resin on the proppant particles; providing proppant particles; coating the proppant particles with the hardenable resin composition; providing a gelled liquid fracturing fluid; mixing the proppant particles with the gelled liquid fracturing fluid so that the proppant particles are suspended therein; introducing the gelled liquid fracturing fluid into the subterranean zone to form the one or more fractures and to deposit the proppant particles therein; and allowing the hardenable resin composition to harden by heat and to consolidate the proppant particles into one or more degradation resistant permeable packs. In certain embodiments, a dimethyl sulfoxide solvent may be used instead of or in conjunction with the diethylene glycol monomethyl ether solvent.


Optionally, a hydrolyzable ester for breaking gelled fracturing fluid films on the proppant particles can be included in the hardenable resin composition. A high flash point diluent such as dipropylene glycol methyl ether may also optionally be included in the hardenable resin composition to reduce its viscosity to a desirable level for ease of pumping during operation. A gelled liquid fracturing fluid may also be provided that may be pumped into the subterranean zone to form the one or more fractures and to deposit the proppant particles therein. Proppant particles coated with the hardenable resin composition may be mixed with the fracturing fluid being pumped into the subterranean zone so that the proppant particles coated with the hardenable resin composition are suspended therein. When the proppant particles coated with the hardenable resin composition have been deposited in the one or more fractures, the pumping of the gelled liquid fracturing fluid and the mixing of the proppant particles coated with the hardenable resin composition with the fracturing fluid may be terminated. Thereafter, the hardenable resin composition on the resin composition coated proppant particles may be allowed to harden by heat and to consolidate the proppant particles into one or more high production rate, high stress, and/or high temperature degradation resistant permeable packs.


The diethylene glycol monomethyl ether solvent, which may be used in certain embodiments of the present invention, may offer health and safety advantages over other solvents heretofore used in related applications. Whereas other solvents, such as dimethyl formamide, may pose health and safety risks, such as being readily absorbed into the body through the skin, the diethylene glycol monomethyl ether solvent may pose less of a health and safety hazard, at least from a personnel exposure standpoint.


The proppant particles used in accordance with the present invention are generally of a size such that formation particulate solids that migrate with produced fluids are prevented from being produced from the subterranean zone. Various kinds of proppant particles may be used including graded sand, bauxite, ceramic materials, glass materials, polymer materials, polytetrafluoroethylene materials, nut shell pieces, seed shell pieces, fruit pit pieces, wood, composite particulates, proppant particulates, and combinations thereof. In certain embodiment, the proppant particles may have a size in the range of from about 2 to about 400 mesh, U.S. Sieve Series. The preferred proppant is graded sand, having a particle size in the range of from about 10 to about 70 mesh, U.S. Sieve Series. Preferred sand particle size distribution ranges are one or more of 10-20 mesh, 20-40 mesh, 40-60 mesh, or 50-70 mesh, depending on the particular size and distribution of formation solids to be screened out by the consolidated proppant particles.


Liquid bisphenol A-epichlorohydrin resin is readily available from a number of commercial sources. For example, a suitable such resin is commercially available from Resin Resolution Corporation of Houston, Tex. Upon curing by heat in a subterranean zone, the bisphenol A-epichlorohydrin resin may form an insoluble mass that is highly resistant to high production rate, high stress, and/or high temperature degradation. For example, the cured resin may resist thermal degradation at temperatures up to 400° F. In certain embodiments, bisphenol A-epichlorohydrin resin is present in the hardenable resin composition in an amount in the range of from about 40% to about 65% by weight of the hardenable resin composition, and more preferably in an amount of about 50%.


The liquid hardening agent for hardening the bisphenol A-epichlorohydrin resin at temperatures above about 200° F. may comprise of 4,4′-diaminodiphenyl sulfone dissolved in a dimethyl sulfoxide or a diethylene glycol monomethyl ether solvent and may be present in the hardenable resin composition in an amount in the range of from about 15% to about 50% by weight of the composition, and more preferably, in an amount of about 25%. In certain embodiments, the solvent may contain the 4,4′-diaminodiphenyl sulfone in an amount of about 40% by weight of the solvent.


Examples of silane coupling agents, which may be used in the hardenable resin composition include, but are not limited to, N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and n-beta-(aminoethyl)-gamma-aminopropyltrimethoxysilane. Of these, n-beta-(aminoethyl)-gamma-aminopropyltrimethoxysilane is preferred. The silane coupling agent is included in the hardenable resin composition in an amount in the range of from about 0.1% to about 3% by weight of the composition and more preferably, in an amount of about 1%.


Various surfactants for facilitating the coating of the resin on the proppant particles and for causing the resin to flow to the contact points between adjacent resin coated proppant particles may be used in the hardenable resin composition. Examples of the surfactants include, but are not limited to, ethoxylated nonyl phenol phosphate ester surfactants, mixtures of one or more cationic surfactants and one or more non-ionic surfactants and a C12-C22 alkyl phosphonate surfactant. Of these, a C12-C22 alkyl phosphonate surfactant is preferred. The surfactant may be present in the hardenable resin composition in an amount in the range of from about 0.1% to about 10% by weight of the composition and more preferably, in an amount of about 5%.


Examples of hydrolyzable esters, which may optionally be included in the hardenable resin composition include, but are not limited to, dimethylglutarate, dimethyladipate, dimethylsuccinate, sorbitol, catechol, dimethylthiolate, methyl salicylate, dimethylsuccinate, and terbutylhydroperoxide. Of these, a mixture of dimethylglutarate, dimethyladipate, and dimethylsuccinate is preferred. When used, the hydrolyzable ester may be included in the liquid hardenable resin composition in an amount in the range of from about 0.1% to about 5% by weight of the composition and more preferably in an amount of about 2%.


Dipropylene glycol methyl ether, a high flash point diluent may optionally be included in the hardenable resin composition. When used, the diluent is present in an amount of about 1% to about 40% by weight of the composition.


The liquid hardenable resin composition of the present invention may be premixed and stored at atmospheric conditions, e.g., temperatures up to 120° F. without significant viscosity increase or deterioration. As mentioned above, the liquid hardenable resin composition hardens at temperatures above about 200° F. and may be used in wells having temperatures in the range of from about 200° F. to about 350° F. and higher. The liquid hardenable resin composition has a safe high flash point above 170° F.


Another improved method of forming one or more fractures in a subterranean zone penetrated by a well bore and consolidating proppant particles therein, the subterranean zone having a temperature above about 200° F. is comprised of the following steps. A liquid hardenable resin composition is provided comprised of a liquid bisphenol A-epichlorohydrin resin, a 4,4′-diaminodiphenyl sulfone dissolved in a dimethyl sulfoxide solvent, an n-beta-(aminoethyl)-gamma-aminopropyltrimethoxysilane coupling agent, a C12-C22 alkyl phosphate surfactant, a mixture of dimethylglutarate, dimethyladipate, and dimethylsuccinate hydrolyzable esters and a dipropylene glycol methyl ether diluent. A source of dry proppant particles and a gelled liquid fracturing fluid may also be provided. The gelled liquid fracturing fluid may comprise water and a gelling agent, the gelling agent being comprised of at least one of the following: guar gum, guar gum derivatives, or cellulose derivatives. In certain embodiments, a diethylene glycol monomethyl ether solvent may be substituted for the dimethyl sulfoxide solvent. The gelled liquid fracturing fluid may be pumped into the subterranean formation to form the one or more fractures therein and to place the proppant particles therein. The hardenable resin composition may be coated onto the dry proppant particles conveyed from the source thereof to form hardenable resin composition coated proppant particles. The hardenable resin composition coated proppant particles may be mixed with the fracturing fluid being pumped so that the hardenable resin composition coated proppant particles may be suspended therein. When the hardenable resin composition coated proppant particles have been placed in the one or more fractures by the fracturing fluid, the pumping of the fracturing fluid, the coating of the hardenable resin composition onto the dry proppant particles, and the mixing of the hardenable resin composition coated proppant particles formed with the fracturing fluid may be terminated. Thereafter, the hardenable resin composition on the hardenable resin composition coated proppant particles may be allowed to harden by heat and consolidate the proppant particles into one or more high production rate, high stress, and/or high temperature degradation resistant permeable packs.


The bisphenol A-epichlorohydrin resin, the 4,4′-diaminodiphenyl sulfone hardening agent dissolved in a dimethyl sulfoxide solvent, the silane coupling agent, the surfactant, the hydrolyzable esters, and the dipropylene glycol methyl ether diluent may be present in the hardenable resin composition in the same amounts as described above.


The water in the gelled liquid fracturing fluid may include fresh water or salt water. The term “salt water” as used herein means unsaturated salt solutions and saturated salt solutions including brines and seawater.


In certain embodiments, the gelling agent in the fracturing fluid is generally present in an amount in the range of from about 0.01% to about 3% by weight of water therein and more preferably, in an amount of about 0.1% to about 1%.


The gelled liquid fracturing fluid may include a cross-linking agent for increasing the viscosity of the fracturing fluid. Examples of suitable cross-linking agents include, but are not limited to, alkali metal borates, borax, boric acid, and compounds capable of releasing multivalent metal ions in aqueous solutions. When used, the cross-linking agent may be included in the fracturing fluid in an amount in the range of from about 0.001% to about 5% by weight of water therein and more preferably, in an amount of about 0.01% to about 1%.


The fracturing fluid may also include a delayed viscosity breaker, which may function to reduce the viscosity of the fracturing fluid and may cause the resin composition coated proppant particles suspended in the fracturing fluid to be deposited in the fractures. Examples of delayed viscosity breakers that may be used include, but are not limited to, alkali metal and ammonium persulfates, which may be delayed by being encapsulated in a material that slowly releases the breaker, alkali metal chlorites, alkali metal hypochlorites, and calcium hypochlorite. When used, the delayed viscosity breaker may be included in the fracturing fluid in an amount in the range of from about 0.1% to about 5% by weight of water therein.


A preferred method of the present invention for forming one or more fractures in a subterranean zone penetrated by a well bore and consolidating proppant particles therein, the subterranean zone having a temperature above about 200° F. comprises the steps of: (a) providing proppant particles coated with a hardenable resin composition comprised of a liquid bisphenol A-epichlorohydrin resin, a 4,4′-diaminodiphenyl sulfone hardening agent dissolved in a diethylene glycol monomethyl ether solvent, a silane coupling agent and a surfactant for facilitating the coating of the resin on the proppant particles and for causing the resin to flow to the contact points between adjacent resin coated proppant particles; (b) providing a gelled liquid fracturing fluid; (c) pumping the gelled liquid fracturing fluid into the subterranean zone to form the one or more fractures and to deposit the proppant particles therein; (d) mixing the proppant particles coated with the hardenable resin composition with the fracturing fluid pumped in accordance with step (c) so that the proppant particles coated with the hardenable resin composition are suspended therein; (e) terminating steps (c) and (d) when the proppant particles coated with the hardenable resin composition have been deposited in the one or more fractures; and (f) allowing the hardenable resin composition on the resin composition coated proppant particles to harden by heat and consolidate the proppant particles into one or more degradation resistant permeable packs. As a person of ordinary skill in the art would recognize, the coating of the proppant particles may only coat a portion of the proppant particles with the hardenable resin composition, and some of the proppant particles so coated may, in certain embodiments, be only partially coated.


Another improved method of the present invention for forming one or more fractures in a subterranean zone penetrated by a well bore and consolidating proppant particles therein, the subterranean zone having a temperature above about 200° F. comprises the steps of: (a) providing a liquid hardenable resin composition comprised of a liquid bisphenol A-epichlorohydrin resin, a 4,4′-diaminodiphenyl sulfone hardening agent dissolved in a diethylene glycol monomethyl ether solvent, an n-beta-(aminoethyl)-gamma-aminopropyltrimethoxysilane coupling agent, a C12-C22 alkyl phosphate surfactant, a mixture of dimethyladipate and dimethylsuccinate hydrolyzable esters and a dipropylene glycol methyl ether diluent; (b) providing a source of dry proppant particles; (c) providing a gelled liquid fracturing fluid comprised of water and a gelling agent; (d) pumping the gelled liquid fracturing fluid into the subterranean zone to form the one or more fractures therein and to place the proppant particles therein; (e) coating the hardenable resin composition onto the dry proppant particles conveyed from the source thereof to form hardenable resin composition coated proppant particles; (f) mixing the hardenable resin composition coated proppant particles formed in step (e) with the fracturing fluid pumped in accordance with step (d) whereby the hardenable resin composition coated proppant particles are suspended therein; (g) terminating steps (d), (e) and (f) when the hardenable resin composition coated proppant particles have been placed in the one or more fractures; and (h) allowing the hardenable resin composition on the hardenable resin composition coated proppant particles to harden by heat and consolidate the proppant particles into one or more degradation resistant permeable packs.


A hardenable resin composition of this invention for coating proppant particles may comprise: a hardenable resin comprised of a liquid bisphenol A-epichlorohydrin resin; a 4,4′-diaminodiphenyl sulfone hardening agent dissolved in a diethylene glycol monomethyl ether solvent; a silane coupling agent; and a surfactant for facilitating the coating of the resin on the proppant particles. Optionally, in certain embodiments, a dimethyl sulfoxide solvent may be used instead of the diethylene glycol monomethyl ether solvent.


To facilitate a better understanding of the present invention, the following examples of certain aspects of some embodiments are given. In no way should the following examples be read to limit, or define, the scope of the invention.


EXAMPLE 1

The effect of time and temperature on the viscosity of a hardenable resin composition of this invention was determined. A hardenable resin composition was prepared comprised of a liquid bisphenol A-epichlorohydrin resin present in an amount of 49% by weight of the composition, a 4,4′-diaminodiphenyl sulfone hardening agent dissolved in a dimethyl sulfoxide solvent present in an amount of about 35% by weight of the composition, an n-beta-(aminoethyl)-gamma-aminopropyltrimethoxysilane coupling agent present in an amount of about 1% by weight of the composition, a C12-C22 alkyl phosphate surfactant present in an amount of about 4% by weight of the composition, and a mixture of dimethylglutarate, dimethyladipate, and dimethylsuccinate esters present in an amount of about 1% by weight of the composition, and a diluent of dipropylene glycol methyl ether in an amount of about 10% by weight of the composition.


Samples of the hardenable resin composition were exposed to room temperature for eleven days and were maintained in a water bath at a temperature of 120° F. for eleven days. The samples had viscosities between 1, 100 and 1300 centipoises, which is a desirable viscosity level for coating the resin onto proppant particles.


EXAMPLE 2

One of the hardenable resin composition samples described in Example 1 above was coated onto dry 20/40 mesh bauxite proppant particles in an amount of 3% by weight of the proppant. The resin coated proppant was mixed with water gelled with carboxymethylhydroxypropyl guar and cross-linked with a zirconium cross-linker. Two portions of the resulting viscous fluid containing hardenable resin composition coated proppant particles were stirred for 1 hour at 175° F. to simulate the effect of pumping and fluid suspension during a fracturing treatment. The fluids were then transferred and packed into brass flow cells without stress simulating fracture closure pressure. One of the resulting proppant particle packs was cured at a temperature of 325° F. for 3 hours and the other was cured at the same temperature for 72 hours. Consolidated cores were obtained from the proppant packs formed and the cores were tested for unconfined compressive strengths.


The consolidated core that was cured for 3 hours had an unconfined compressive strength of 1304±108 psi and the consolidated core that was cured for 72 hours had an unconfined compressive strength of 1230±47 psi.


EXAMPLE 3

A hardenable resin composition was prepared comprised of a liquid bisphenol A-epichlorohydrin resin present in an amount of 49% by weight of the composition, a 4,4′-diaminodiphenyl sulfone hardening agent in an amount of 20% by weight of the composition dissolved in a diethylene glycol monomethyl ether solvent present in an amount of about 25% by weight of the composition, an n-beta-(aminoethyl)-gamma-aminopropyltrimethoxysilane coupling agent present in an amount of about 1% by weight of the composition, a C12-C22 alkyl phosphate surfactant present in an amount of about 4% by weight of the composition, and a mixture of dimethylglutarate, dimethyladipate, and dimethylsuccinate esters present in an amount of about 1% by weight of the composition.


The hardenable resin composition was coated onto dry 20/40 mesh bauxite proppant particles in an amount of 1, 2, or 3% by weight of the proppant. The resin coated proppant was then mixed with water gelled with carboxymethylhydroxypropyl guar and cross-linked with a zirconium cross-linker. The resulting viscous slurry containing hardenable resin composition coated proppant particles were stirred for 1 hour at 175° F. to simulate the effect of pumping and fluid suspension during a fracturing treatment. The slurry was then transferred and packed into brass flow cells without stress applied onto the proppant pack during curing. The proppant packs chamber were placed in oven and cured at temperature for 20 hours.


After curing, consolidated proppant packs were extruded from the brass chamber. Cores of desired length were obtained before being subjecting to unconfined compressive strength (UCS) requirements. Table 1 shows the UCS values of proppant packs that were treated with the hardenable resin system at different resin concentrations and cure temperatures.












TABLE 1










Unconfined Compressive Strength (psi)



Resin Conc.
at Indicated Cure Temperatures












(%)
225° F.
300° F.
350° F.
















1
265
194
235



2
747
588
450



3
1692
756
524










Thus the results of the tests described in Examples 1-3 above show the efficacy of certain hardenable resin compositions of the present invention.


Therefore, the present invention is well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. While numerous changes may be made by those skilled in the art, such changes are encompassed within the spirit of this invention as defined by the appended claims. The terms in the claims have their plain, ordinary meaning unless otherwise explicitly and clearly defined by the patentee.

Claims
  • 1. An improved method of forming one or more fractures in a subterranean zone penetrated by a well bore and consolidating proppant particles therein, the subterranean zone having a temperature above about 200° F. comprising the steps of: providing a hardenable resin composition comprised of a liquid bisphenol A-epichlorohydrin resin, a 4,4′-diaminodiphenyl sulfone hardening agent dissolved in a diethylene glycol monomethyl ether solvent, a silane coupling agent, and a surfactant for facilitating the coating of the resin on the proppant particles;providing proppant particles;coating the proppant particles with the hardenable resin composition;providing a gelled liquid fracturing fluid;mixing the proppant particles with the gelled liquid fracturing fluid so that the proppant particles are suspended therein;introducing the gelled liquid fracturing fluid into the subterranean zone to form the one or more fractures and to deposit the proppant particles therein; andallowing the hardenable resin composition to harden by heat and to consolidate the proppant particles into one or more degradation resistant permeable packs.
  • 2. The method of claim 1 wherein the liquid bisphenol A-epichlorohydrin resin is present in the hardenable resin composition in an amount in the range of from about 40% to about 65% by weight of the hardenable resin composition.
  • 3. The method of claim 1 wherein the 4,4′-diaminodiphenyl sulfone hardening agent dissolved in the diethylene glycol monomethyl ether solvent is present in the hardenable resin composition in an amount in the range of from about 15% to about 50% by weight of the hardenable resin composition.
  • 4. The method of claim 1 wherein the silane coupling agent in the hardenable resin composition is selected from the group consisting of: N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and n-beta-(aminoethyl)-gamma-aminopropyltrimethoxysilane.
  • 5. The method of claim 1 wherein the silane coupling agent is present in the hardenable resin composition in an amount in the range of from about 0.1% to about 3% by weight of the hardenable resin composition.
  • 6. The method of claim 1 wherein hardenable resin surfactant for facilitating the coating of the hardenable resin on the proppant particles is selected from the group consisting of: an ethoxylated nonyl phenol phosphate ester, mixtures of one or more cationic surfactants and one or more non-ionic surfactants, and a C12-C22 alkyl phosphonate surfactant.
  • 7. The method of claim 1 wherein the surfactant is a C12-C22 alkyl phosphonate surfactant.
  • 8. The method of claim 1 wherein the surfactant is present in the hardenable resin composition in an amount in the range of from about 0.1% to about 10% by weight of the hardenable resin composition.
  • 9. The method of claim 1 wherein the hardenable resin composition further comprises a hydrolyzable ester for breaking gelled fracturing fluid films on the proppant particles.
  • 10. The method of claim 9 wherein the hydrolyzable ester is selected from the group consisting of: dimethylglutarate, dimethyladipate, dimethylsuccinate, sorbitol, catechol, dimethylthiolate, methyl salicylate, dimethylsuccinate, and terbutylhydroperoxide.
  • 11. The method of claim 9 wherein the hydrolyzable ester is present in the hardenable resin composition in an amount in the range of from about 0.1% to about 5%.
  • 12. The method of claim 1 further comprising a high flash point diluent for reducing the viscosity of the hardenable resin composition.
  • 13. The method of claim 12 wherein the high flash point diluent comprises dipropylene glycol methyl ether.
  • 14. The method of claim 12 wherein the high flash point diluent is present in the hardenable resin composition in an amount in the range of from about 1% to about 40% by weight of the hardenable resin composition.
  • 15. An improved method of forming one or more fractures in a subterranean zone penetrated by a well bore and consolidating proppant particles therein, the subterranean zone having a temperature above about 200°F comprising the steps of: providing a hardenable resin composition comprised of a liquid bisphenol A-epichlorohydrin resin, a 4,4′-diaminodiphenyl sulfone hardening agent dissolved in a dimethyl sulfoxide solvent, a silane coupling agent, and a surfactant for facilitating the coating of the resin on the proppant particles;providing proppant particles;coating the proppant particles with the hardenable resin composition;providing a gelled liquid fracturing fluid;mixing the proppant particles with the gelled liquid fracturing fluid so that the proppant particles are suspended therein;introducing the gelled liquid fracturing fluid into the subterranean zone to form the one or more fractures and to deposit the proppant particles therein; andallowing the hardenable resin composition to harden by heat and to consolidate the proppant particles into one or more degradation resistant permeable packs.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a Continuation-in-part Application of commonly owned U.S. patent application Ser. No. 10/383,184, filed Mar. 6, 2003 now abandoned , entitled “Methods and Compositions for Consolidating Proppant in Fractures,” by Philip D. Nguyen et al., which is hereby incorporated by reference herein for all purposes

US Referenced Citations (433)
Number Name Date Kind
2238671 Woodhouse Apr 1941 A
2703316 Schneider Mar 1955 A
2869642 McKay et al. Jan 1959 A
3047067 Williams et al. Jul 1962 A
3123138 Robichaux Mar 1964 A
3176768 Brandt et al. Apr 1965 A
3199590 Young Aug 1965 A
3272650 MacVittie Sep 1966 A
3297086 Spain Jan 1967 A
3308885 Sandiford Mar 1967 A
3316965 Watanabe May 1967 A
3336980 Rike Aug 1967 A
3375872 McLaughlin et al. Apr 1968 A
3404735 Young et al. Oct 1968 A
3415320 Young Dec 1968 A
3492147 Young et al. Jan 1970 A
3659651 Graham May 1972 A
3681287 Brown et al. Aug 1972 A
3708013 Dismuke Jan 1973 A
3709298 Pramann Jan 1973 A
3754598 Holloway, Jr. Aug 1973 A
3765804 Brandon Oct 1973 A
3768564 Knox et al. Oct 1973 A
3784585 Schmitt et al. Jan 1974 A
3819525 Hattenbrun Jun 1974 A
3828854 Templeton et al. Aug 1974 A
3842911 Know et al. Oct 1974 A
3854533 Gurley et al. Dec 1974 A
3857444 Copeland Dec 1974 A
3863709 Fitch Feb 1975 A
3868998 Lybarger et al. Mar 1975 A
3888311 Cooke, Jr. Jun 1975 A
3912692 Casey et al. Oct 1975 A
3948672 Harnberger Apr 1976 A
3955993 Curtice May 1976 A
3960736 Free et al. Jun 1976 A
4008763 Lowe et al. Feb 1977 A
4029148 Emery Jun 1977 A
4031958 Sandiford et al. Jun 1977 A
4042032 Anderson et al. Aug 1977 A
4070865 McLaughlin Jan 1978 A
4074760 Copeland et al. Feb 1978 A
4127173 Watkins et al. Nov 1978 A
4169798 DeMartino Oct 1979 A
4172066 Zweigle et al. Oct 1979 A
4245702 Haafkens et al. Jan 1981 A
4247430 Constien Jan 1981 A
4273187 Satter et al. Jun 1981 A
4291766 Davies et al. Sep 1981 A
4305463 Zakiewicz Dec 1981 A
4336842 Graham et al. Jun 1982 A
4352674 Fery Oct 1982 A
4353806 Canter et al. Oct 1982 A
4387769 Erbstosser et al. Jun 1983 A
4415805 Fertl et al. Nov 1983 A
4439489 Johnson et al. Mar 1984 A
4443347 Underdown et al. Apr 1984 A
4460052 Gockel Jul 1984 A
4470915 Conway Sep 1984 A
4493875 Beck et al. Jan 1985 A
4494605 Wiechel et al. Jan 1985 A
4498995 Gockel Feb 1985 A
4501328 Nichols Feb 1985 A
4526695 Erbstosser et al. Jul 1985 A
4527627 Graham et al. Jul 1985 A
4541489 Wu Sep 1985 A
4546012 Brooks Oct 1985 A
4553596 Graham et al. Nov 1985 A
4564459 Underdown et al. Jan 1986 A
4572803 Yamazoe et al. Feb 1986 A
4649998 Friedman Mar 1987 A
4664819 Glaze et al. May 1987 A
4665988 Murphey et al. May 1987 A
4669543 Young Jun 1987 A
4675140 Sparks et al. Jun 1987 A
4683954 Walker et al. Aug 1987 A
4694905 Armbruster Sep 1987 A
4715967 Bellis Dec 1987 A
4716964 Erbstosser et al. Jan 1988 A
4733729 Copeland Mar 1988 A
4739832 Jennings, Jr. et al. Apr 1988 A
4785884 Armbruster Nov 1988 A
4787453 Hewgill et al. Nov 1988 A
4789105 Hosokawa et al. Dec 1988 A
4796701 Hudson et al. Jan 1989 A
4797262 Dewitz Jan 1989 A
4800960 Friedman et al. Jan 1989 A
4809783 Hollenbeck et al. Mar 1989 A
4817721 Pober Apr 1989 A
4829100 Murphey et al. May 1989 A
4838352 Oberste-Padtberg et al. Jun 1989 A
4842072 Friedman et al. Jun 1989 A
4843118 Lai et al. Jun 1989 A
4848467 Cantu et al. Jul 1989 A
4848470 Korpics Jul 1989 A
4850430 Copeland et al. Jul 1989 A
4886354 Welch et al. Dec 1989 A
4888240 Graham et al. Dec 1989 A
4895207 Friedman et al. Jan 1990 A
4903770 Friedman et al. Feb 1990 A
4934456 Moradi-Araghi Jun 1990 A
4936385 Weaver et al. Jun 1990 A
4942186 Murphey et al. Jul 1990 A
4957165 Cantu et al. Sep 1990 A
4959432 Fan et al. Sep 1990 A
4961466 Himes et al. Oct 1990 A
4969522 Whitehurst et al. Nov 1990 A
4969523 Martin et al. Nov 1990 A
4986353 Clark et al. Jan 1991 A
4986354 Cantu et al. Jan 1991 A
4986355 Casad et al. Jan 1991 A
5030603 Rumpf et al. Jul 1991 A
5049743 Taylor, III et al. Sep 1991 A
5082056 Tackett, Jr. Jan 1992 A
5105886 Strubhar Apr 1992 A
5107928 Hilterhaus Apr 1992 A
5128390 Murphey et al. Jul 1992 A
5135051 Fracteau et al. Aug 1992 A
5142023 Gruber et al. Aug 1992 A
5165438 Fracteau et al. Nov 1992 A
5173527 Calve Dec 1992 A
5178218 Dees Jan 1993 A
5182051 Bandy et al. Jan 1993 A
5199491 Kutts et al. Apr 1993 A
5199492 Surles et al. Apr 1993 A
5211234 Floyd May 1993 A
5216050 Sinclair Jun 1993 A
5218038 Johnson et al. Jun 1993 A
5232955 Caabai et al. Aug 1993 A
5232961 Murphey et al. Aug 1993 A
5238068 Fredickson Aug 1993 A
5247059 Gruber et al. Sep 1993 A
5249628 Surjaatmadia Oct 1993 A
5256729 Kutts et al. Oct 1993 A
5273115 Spafford Dec 1993 A
5285849 Surles et al. Feb 1994 A
5293939 Surles et al. Mar 1994 A
5295542 Cole et al. Mar 1994 A
5320171 Laramay Jun 1994 A
5321062 Landrum et al. Jun 1994 A
5325923 Surjaatmadja et al. Jul 1994 A
5330005 Card et al. Jul 1994 A
5332037 Schmidt et al. Jul 1994 A
5335726 Rodrogues Aug 1994 A
5351754 Hardin et al. Oct 1994 A
5358051 Rodrigues Oct 1994 A
5359026 Gruber Oct 1994 A
5360068 Sprunt et al. Nov 1994 A
5361856 Surjaatmadja et al. Nov 1994 A
5363916 Himes et al. Nov 1994 A
5373901 Norman et al. Dec 1994 A
5381864 Nguyen et al. Jan 1995 A
5386874 Laramay et al. Feb 1995 A
5388648 Jordan, Jr. Feb 1995 A
5393810 Harris et al. Feb 1995 A
5396957 Surjaatmadja et al. Mar 1995 A
5402846 Jennings, Jr. et al. Apr 1995 A
5422183 Sinclair et al. Jun 1995 A
5423381 Surles et al. Jun 1995 A
5439055 Card et al. Aug 1995 A
5460226 Lawton et al. Oct 1995 A
5464060 Hale et al. Nov 1995 A
5475080 Gruber et al. Dec 1995 A
5484881 Gruber et al. Jan 1996 A
5492178 Nguyen et al. Feb 1996 A
5494103 Surjaatmadja et al. Feb 1996 A
5497830 Boles et al. Mar 1996 A
5498280 Fistner et al. Mar 1996 A
5499678 Surjaatmadja et al. Mar 1996 A
5501275 Card et al. Mar 1996 A
5505787 Yamaguchi Apr 1996 A
5512071 Yam et al. Apr 1996 A
5520250 Harry et al. May 1996 A
5522460 Shu Jun 1996 A
5529123 Carpenter et al. Jun 1996 A
5531274 Bienvenu, Jr. Jul 1996 A
5536807 Gruber et al. Jul 1996 A
5545824 Stengel et al. Aug 1996 A
5547023 McDaniel et al. Aug 1996 A
5551513 Surles et al. Sep 1996 A
5551514 Nelson et al. Sep 1996 A
5582249 Caveny et al. Dec 1996 A
5582250 Constien Dec 1996 A
5588488 Vijn et al. Dec 1996 A
5591700 Harris et al. Jan 1997 A
5594095 Gruber et al. Jan 1997 A
5595245 Scott, III Jan 1997 A
5597784 Sinclair et al. Jan 1997 A
5604184 Ellis et al. Feb 1997 A
5604186 Hunt et al. Feb 1997 A
5609207 Dewprashad et al. Mar 1997 A
5620049 Gipson et al. Apr 1997 A
5639806 Johnson et al. Jun 1997 A
5670473 Scepanski Sep 1997 A
5697440 Weaver et al. Dec 1997 A
5698322 Tsai et al. Dec 1997 A
5712314 Surles et al. Jan 1998 A
5732364 Kalb et al. Mar 1998 A
5765642 Surjaatmadja Jun 1998 A
5775425 Weaver et al. Jul 1998 A
5782300 James et al. Jul 1998 A
5783822 Buchanan et al. Jul 1998 A
5787986 Weaver et al. Aug 1998 A
5791415 Nguyen et al. Aug 1998 A
5799734 Norman et al. Sep 1998 A
5806593 Suries Sep 1998 A
5830987 Smith Nov 1998 A
5833000 Weaver et al. Nov 1998 A
5833361 Funk Nov 1998 A
5836391 Jonasson et al. Nov 1998 A
5836392 Urlwin-Smith Nov 1998 A
5837656 Sinclair et al. Nov 1998 A
5837785 Kinsho et al. Nov 1998 A
5839510 Weaver et al. Nov 1998 A
5840784 Funkhouser et al. Nov 1998 A
5849401 El-Afandi et al. Dec 1998 A
5849590 Anderson, II et al. Dec 1998 A
5853048 Weaver et al. Dec 1998 A
5864003 Qureshi et al. Jan 1999 A
5865936 Edelman et al. Feb 1999 A
5871049 Weaver et al. Feb 1999 A
5873413 Chatterji et al. Feb 1999 A
5875844 Chatterji et al. Mar 1999 A
5875845 Chatterji et al. Mar 1999 A
5875846 Chatterji et al. Mar 1999 A
5893383 Fracteau Apr 1999 A
5893416 Read Apr 1999 A
5908073 Nguyen et al. Jun 1999 A
5911282 Onan et al. Jun 1999 A
5916933 Johnson et al. Jun 1999 A
5921317 Dewprashad et al. Jul 1999 A
5924488 Nguyen et al. Jul 1999 A
5929437 Elliott et al. Jul 1999 A
5944105 Nguyen Aug 1999 A
5945387 Chatterji et al. Aug 1999 A
5948734 Sinclair et al. Sep 1999 A
5957204 Chatterji et al. Sep 1999 A
5960877 Funkhouser et al. Oct 1999 A
5960880 Nguyen et al. Oct 1999 A
5964291 Bourne et al. Oct 1999 A
5969006 Onan et al. Oct 1999 A
5977283 Rossitto Nov 1999 A
5994785 Higuchi et al. Nov 1999 A
RE36466 Nelson et al. Dec 1999 E
6003600 Nguyen et al. Dec 1999 A
6004400 Bishop et al. Dec 1999 A
6006835 Onan et al. Dec 1999 A
6006836 Chatterji et al. Dec 1999 A
6012524 Chatterji et al. Jan 2000 A
6016870 Dewprashad et al. Jan 2000 A
6024170 McCabe et al. Feb 2000 A
6028113 Scepanski Feb 2000 A
6028534 Ciglenec et al. Feb 2000 A
6040398 Kinsho et al. Mar 2000 A
6047772 Weaver et al. Apr 2000 A
6059034 Rickards et al. May 2000 A
6059035 Chatterji et al. May 2000 A
6059036 Chatterji et al. May 2000 A
6068055 Chatterji et al. May 2000 A
6069117 Onan et al. May 2000 A
6074739 Katagiri Jun 2000 A
6079492 Hoogteijling et al. Jun 2000 A
6098711 Chatterji et al. Aug 2000 A
6114410 Betzold Sep 2000 A
6123871 Carroll Sep 2000 A
6123965 Jacon et al. Sep 2000 A
6124246 Heathman et al. Sep 2000 A
6130286 Thomas et al. Oct 2000 A
6135987 Tsai et al. Oct 2000 A
6140446 Fujiki et al. Oct 2000 A
6148911 Gipson et al. Nov 2000 A
6152234 Newhouse et al. Nov 2000 A
6162766 Muir et al. Dec 2000 A
6169058 Le et al. Jan 2001 B1
6172011 Card et al. Jan 2001 B1
6172077 Curtis et al. Jan 2001 B1
6176315 Reddy et al. Jan 2001 B1
6177484 Surles Jan 2001 B1
6184311 O'Keefe et al. Feb 2001 B1
6187834 Thayer et al. Feb 2001 B1
6187839 Eoff et al. Feb 2001 B1
6189615 Sydansk Feb 2001 B1
6192985 Hinkel et al. Feb 2001 B1
6192986 Urlwin-Smith Feb 2001 B1
6196317 Hardy Mar 2001 B1
6202751 Chatterji et al. Mar 2001 B1
6209643 Nguyen et al. Apr 2001 B1
6209644 Brunet Apr 2001 B1
6209646 Reddy et al. Apr 2001 B1
6210471 Craig Apr 2001 B1
6214773 Harris et al. Apr 2001 B1
6231664 Chatterji et al. May 2001 B1
6234251 Chatterji et al. May 2001 B1
6238597 Yim et al. May 2001 B1
6241019 Davidson et al. Jun 2001 B1
6242390 Mitchell et al. Jun 2001 B1
6244344 Chatterji et al. Jun 2001 B1
6257335 Nguyen et al. Jul 2001 B1
6260622 Blok et al. Jul 2001 B1
6271181 Chatterji et al. Aug 2001 B1
6274650 Cui Aug 2001 B1
6279652 Chatterji et al. Aug 2001 B1
6279656 Sinclair et al. Aug 2001 B1
6283214 Guinot et al. Sep 2001 B1
6302207 Nguyen et al. Oct 2001 B1
6306998 Kimura et al. Oct 2001 B1
6311773 Todd et al. Nov 2001 B1
6321841 Eoff et al. Nov 2001 B1
6323307 Bigg et al. Nov 2001 B1
6326458 Gruber et al. Dec 2001 B1
6328105 Betzold Dec 2001 B1
6328106 Griffith et al. Dec 2001 B1
6330916 Rickards et al. Dec 2001 B1
6330917 Chatterji et al. Dec 2001 B2
6350309 Chatterji et al. Feb 2002 B2
6357527 Norman et al. Mar 2002 B1
6364018 Brannon et al. Apr 2002 B1
6364945 Chatterji et al. Apr 2002 B1
6367165 Huttlin Apr 2002 B1
6367549 Chatterji et al. Apr 2002 B1
6372678 Youngsman et al. Apr 2002 B1
6376571 Chawla et al. Apr 2002 B1
6387986 Moradi-Araghi et al. May 2002 B1
6390195 Nguyen et al. May 2002 B1
6401817 Griffith et al. Jun 2002 B1
6405797 Davidson et al. Jun 2002 B2
6406789 McDaniel et al. Jun 2002 B1
6408943 Schultz et al. Jun 2002 B1
6422314 Todd et al. Jul 2002 B1
6439309 Matherly et al. Aug 2002 B1
6439310 Scott, III et al. Aug 2002 B1
6440255 Kohlhammer et al. Aug 2002 B1
6446727 Zemlak et al. Sep 2002 B1
6448206 Griffith et al. Sep 2002 B1
6450260 James et al. Sep 2002 B1
6454003 Chang et al. Sep 2002 B1
6458885 Stengal et al. Oct 2002 B1
6485947 Rajgarhia et al. Nov 2002 B1
6488091 Weaver et al. Dec 2002 B1
6488763 Brothers et al. Dec 2002 B2
6494263 Todd Dec 2002 B2
6503870 Griffith et al. Jan 2003 B2
6508305 Brannon et al. Jan 2003 B1
6527051 Reddy et al. Mar 2003 B1
6528157 Hussain et al. Mar 2003 B1
6531427 Shuchart et al. Mar 2003 B1
6538576 Schultz et al. Mar 2003 B1
6543545 Chatterji et al. Apr 2003 B1
6552333 Storm et al. Apr 2003 B1
6554071 Reddy et al. Apr 2003 B1
6555507 Chatterji et al. Apr 2003 B2
6569814 Brady et al. May 2003 B1
6582819 McDaniel et al. Jun 2003 B2
6593402 Chatterji et al. Jul 2003 B2
6599863 Palmer et al. Jul 2003 B1
6608162 Chiu et al. Aug 2003 B1
6616320 Huber et al. Sep 2003 B2
6620857 Valet Sep 2003 B2
6626241 Nguyen Sep 2003 B2
6632527 McDaniel et al. Oct 2003 B1
6632892 Rubinsztajn et al. Oct 2003 B2
6642309 Komitsu et al. Nov 2003 B2
6648501 Huber et al. Nov 2003 B2
6659179 Nguyen Dec 2003 B2
6664343 Narisawa et al. Dec 2003 B2
6667279 Hessert et al. Dec 2003 B1
6668926 Nguyen et al. Dec 2003 B2
6669771 Tokiwa et al. Dec 2003 B2
6681856 Chatterji et al. Jan 2004 B1
6686328 Binder Feb 2004 B1
6705400 Nguyen et al. Mar 2004 B1
6710019 Sawdon et al. Mar 2004 B1
6713170 Kaneka et al. Mar 2004 B1
6725926 Nguyen et al. Apr 2004 B2
6725931 Nguyen et al. Apr 2004 B2
6729404 Nguyen et al. May 2004 B2
6732800 Acock et al. May 2004 B2
6745159 Todd et al. Jun 2004 B1
6749025 Brannon et al. Jun 2004 B1
6763888 Harris et al. Jul 2004 B1
6766858 Nguyen et al. Jul 2004 B2
6776236 Nguyen Aug 2004 B1
6832650 Nguyen et al. Dec 2004 B2
6851474 Nguyen Feb 2005 B2
6887834 Nguyen et al. May 2005 B2
6978836 Nguyen et al. Dec 2005 B2
7059406 Nguyen Jun 2006 B2
20010016562 Muir et al. Aug 2001 A1
20020043370 Poe Apr 2002 A1
20020048676 McDaniel et al. Apr 2002 A1
20020070020 Nguyen Jun 2002 A1
20030006036 Malone et al. Jan 2003 A1
20030060374 Cooke, Jr. Mar 2003 A1
20030114314 Ballard et al. Jun 2003 A1
20030130133 Vollmer Jul 2003 A1
20030131999 Nguyen et al. Jul 2003 A1
20030148893 Lungofer et al. Aug 2003 A1
20030186820 Thesing Oct 2003 A1
20030188766 Banerjee et al. Oct 2003 A1
20030188872 Nguyen et al. Oct 2003 A1
20030196805 Boney et al. Oct 2003 A1
20030205376 Ayoub et al. Nov 2003 A1
20030230408 Acock et al. Dec 2003 A1
20030234103 Lee et al. Dec 2003 A1
20040000402 Nguyen et al. Jan 2004 A1
20040014607 Sinclair et al. Jan 2004 A1
20040014608 Nguyen et al. Jan 2004 A1
20040040706 Hossaini et al. Mar 2004 A1
20040040708 Stephenson et al. Mar 2004 A1
20040040713 Nguyen et al. Mar 2004 A1
20040048752 Nguyen et al. Mar 2004 A1
20040055747 Lee Mar 2004 A1
20040106525 Willbert et al. Jun 2004 A1
20040138068 Rimmer et al. Jul 2004 A1
20040149441 Nguyen et al. Aug 2004 A1
20040152601 Still et al. Aug 2004 A1
20040177961 Nguyen Sep 2004 A1
20040194961 Nguyen et al. Oct 2004 A1
20040206499 Nguyen et al. Oct 2004 A1
20040211559 Nguyen et al. Oct 2004 A1
20040211561 Nguyen et al. Oct 2004 A1
20040221992 Nguyen et al. Nov 2004 A1
20040231845 Cooke, Jr. Nov 2004 A1
20040231847 Nguyen et al. Nov 2004 A1
20040256099 Nguyen et al. Dec 2004 A1
20040261995 Nguyen et al. Dec 2004 A1
20040261997 Nguyen et al. Dec 2004 A1
20050000731 Nguyen et al. Jan 2005 A1
20050006093 Nguyen Jan 2005 A1
20050006095 Justus et al. Jan 2005 A1
20050006096 Nguyen et al. Jan 2005 A1
20050034862 Nguyen Feb 2005 A1
20050045326 Nguyen Mar 2005 A1
Foreign Referenced Citations (35)
Number Date Country
2063877 May 2003 CA
0 313 243 Oct 1988 EP
0 528 595 Aug 1992 EP
0510762 Nov 1992 EP
0 643 196 Jun 1994 EP
0834644 Apr 1998 EP
0853186 Jul 1998 EP
0864726 Sep 1998 EP
0879935 Nov 1998 EP
0933498 Aug 1999 EP
1001133 May 2000 EP
1132569 Sep 2001 EP
1326003 Jul 2003 EP
1362978 Nov 2003 EP
1394355 Mar 2004 EP
1396606 Mar 2004 EP
1398640 Mar 2004 EP
1403466 Mar 2004 EP
1464789 Oct 2004 EP
1292718 Oct 1972 GB
2382143 Apr 2001 GB
WO9315127 Aug 1993 WO
WO9407949 Apr 1994 WO
WO9408078 Apr 1994 WO
WO9408090 Apr 1994 WO
WO9509879 Apr 1995 WO
WO9711845 Apr 1997 WO
WO9927229 Jun 1999 WO
WO 0181914 Nov 2001 WO
WO 0187797 Nov 2001 WO
WO 0212674 Feb 2002 WO
WO 03027431 Apr 2003 WO
WO 2004037946 May 2004 WO
WO 2004038176 May 2004 WO
WO 2005021928 Mar 2005 WO
Related Publications (1)
Number Date Country
20050230111 A1 Oct 2005 US
Continuation in Parts (1)
Number Date Country
Parent 10383184 Mar 2003 US
Child 11135566 US