Bohen, S.P. “Genetic and Biochemical analysis of p23 and Ansamycin Antibiotics in the Function of HSP90-Dependent Signaling Proteins”, Molecular and Cellular Biology, Jun. 1998, vol. 18, No. 6, pp 3330-3339. |
Pratt, W.B. “The hsp90-based Chaperone System: Involvement in Signal Transduction from a Variety of Hormone and Growth Factor Receptors”, Proceedings of the Society for Experimental Biology and Medicine, Apr. 1998, vol. 217, No. 4, pp 420-434, especially p. 421. |
Scheibel, et al, “Two Chapperone Sites in Hsp90 Differing in Substrate specificity and ATP Dependence”, Proceedings of the National Academy of Sciences of the USA, Feb. 17, 1998, vol. 95, No. 4, pp 1495-1499, especially p. 1495. |
Chen, et al, “The Ah Receptor Is a Sensitive Target of Geldanamycin-Induced Protein Turnover”, Archives of Biochemistry and Biophysics, Dec. 1, 1997, vol. 348, No. 1, pp 190-198, especially p. 190. |
Landel, et al, “Estrogen Receptor Accessory Proteins Augment Receptor-DNA Interaction and DNA Bending”, The Journal of Steroid Biochemistry & Molecular Biology, vol. 63, No. 1-3, pp 59-73, especially pp. 59-61, 1997. |
Bamberger, et al, “Inhibition of Mineralocorticoid and Glucocorticoid Receptor Function by the Heat Shock Protein 90-Binding Agent Geldanamycin”, Molecular and Cellular Endocrinology, Aug. 8, 1997, vol. 131, No. 2, pp 233-240, especially pp 237-239. |
Segnitz, et al, “The Function of Steroid Hormone Receptors Is Inhibited by the hsp90-specific Compound Geldanamycin”, The Journal of Biological Chemistry, Jul. 25, 1997, vol. 272, No. 30, pp 18694-18694. |
Munster et al., “Inhibition of Heat Shock Protein 90 Function by Ansamycins Causes the Morphological and Functional Differentiation of Breast Cancer Cells”, Cancer Research. Apr. 1, 2001, vol. 61, pp 2945-2952. |
Schulte et al., “The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin”, Cancer Chemotherapy and Pharmacology, 1998, vol. 42, pp 273-279. |
Hurst, S. et al., “HSP90 inhibitors block the mitotic checkpoint and are synergistically toxic with spindle poisons”, Clinical Cancer Res., Nov. 1999, vol. 8, p. 3788s, #293. |
Kherfellah, d. et al, “Effect of the combination of topoisomerase I and topoisomerase II inhibitors on rat glioblastoma cells and drug-resistant variants”, Pharmacol. Experimental Therapeutics, Mar. 1999, vol. 40, p. 109, #724. |
Stebbins, c. E. et al, “Crystal structure of the Hsp90-Geldanamycin complex: targeting of a protein chaperone by an antitumor agent”, Cell, Apr. 1997, vol. 89, pp. 239-240 and 246-248. |
Rosenhagen, M. C. et al, “Synergistic inhibition of the Glucocorticoid receptor by radicicol and benzoquinone ansamycins”, Biol. Chem., Mar. 2001, vol. 382, pp. 499-504. |
Chavany, et al. “p185erbB2 Binds to GRP94 in Vivo”, Journal of Biological Chemistry, vol. 271, No. 9 Mar. 1, 1996, pps. 4974-4977. |
Neckers, “Effects of Geldanamycin and Other Naturally Occurring Small Molecule Antagonists of Heat Shock Protein 90 on HER2 Protein Expression”, Breast Disease 11 (2000) 49-59. pps. 49-59. |
Schnur, et al. “erbB-2 Oncogene Inhibition by Geldanamycin Derivatives: Synthesis, Mechanism of Action, and Structure—Activity Relationships”, J. Med. Chem. 1995, 38, 3813-3820. |