METHODS AND COMPOSITIONS FOR IDENTIFYING NEOANTIGENS FOR USE IN TREATING AND PREVENTING CANCER

Information

  • Patent Application
  • 20220251544
  • Publication Number
    20220251544
  • Date Filed
    March 28, 2022
    2 years ago
  • Date Published
    August 11, 2022
    2 years ago
Abstract
Provided herein, are methods of identifying neoantigens for treating and preventing cancer. Also disclosed are methods and compositions for administering identified neoantigens for the treatment and prevention of cancer.
Description
REFERENCE TO SEQUENCE LISTING

The present application is being filed along with a sequence listing in electronic format. The sequence listing is provided as a file entitled SequenceListingCALV007C1, created Apr. 28, 2022 which is 147 KB in size. The information in the electronic format of the sequence listing is incorporated herein by reference in its entirety.


BACKGROUND

Checkpoint inhibitor immunotherapeutics are revolutionizing cancer therapy. However, even in the most responsive cancers a substantial portion (50%-80%) of the patients have poor to no positive response (1-5). The evidence to date is that whether a patient has an effective response to the treatment depends on the nature of the immune response they have established against the tumor. More specifically, the level and quality of the immune response to neoantigens in the cancer seems to be most important.


SUMMARY

Provided herein, in certain aspects, are peptide arrays comprising a plurality of frameshift variant peptides. In some cases, the plurality of frameshift variant peptides comprise peptides encoded by genes having a variant in a microsatellite (MS) in a coding region of the gene. Alternatively or in combination, the plurality of frameshift variant peptides comprise peptides encoded by an mRNA having a splicing error. In some embodiments, the plurality of frameshift variant peptides comprise two or more pooled frameshift peptides. In some cases, the plurality of frameshift variant peptides comprise one or more peptides provided in any one of Tables 1 or 7. In some embodiments, the plurality of frameshift variant peptides are fixed on a substrate. In some embodiments, the substrate comprises glass, composite, resin, or combination thereof. In some embodiments, the peptide array is configured to detect binding by at least one of fluorescence, luminescence, calorimetry, chromatography, radioactivity, Bio-Layer Interferometry, and surface plasmon resonance. In some embodiments, the peptide array comprises at least about 25000, about 50000, about 75000, about 100000, about 125000, about 150000, about 175000, about 200000, about 225000, about 250000, about 275000, about 300000, about 325000, about 350000, about 375000, or about 400000 frameshift variant peptides.


In additional aspects, there are provided methods of measuring an immune response to a neoantigen peptide in a subject. In some cases, the method comprises: (a) contacting a biological sample obtained from a subject to a peptide array comprising a plurality of frameshift variant peptides. In some cases, the plurality of frameshift variant peptides comprise peptides encoded by genes having a variant in a microsatellite (MS) in a coding region of the gene. Alternatively or in combination, the plurality of frameshift variant peptides comprise peptides encoded by an mRNA having a splicing error. In some cases, the method further comprises detecting binding of the biological sample to at least one peptide in the peptide array. In some embodiments, the plurality of frameshift variant peptides comprise two or more pooled frameshift peptides. In some embodiments, the plurality of frameshift variant peptides comprise one or more peptides provided in any one of Tables 1 or 7. In some embodiments, the plurality of frameshift variant peptides are fixed on a substrate. In some embodiments, the substrate comprises glass, composite, resin, or combination thereof. In some embodiments, the peptide array is configured to detect binding by at least one of fluorescence, luminescence, calorimetry, chromatography, radioactivity, Bio-Layer Interferometry, and surface plasmon resonance. In some embodiments, the peptide array comprises at least about 25000, about 50000, about 75000, about 100000, about 125000, about 150000, about 175000, about 200000, about 225000, about 250000, about 275000, about 300000, about 325000, about 350000, about 375000, or about 400000 frameshift variant peptides. In some embodiments, the biological sample comprises blood, serum, plasma, cerebrospinal fluid, saliva, urine, or combinations thereof. In some embodiments, the biological sample comprises an antibody. In some embodiments, the subject is a mammal. In some embodiments, the subject is a human, a dog, a cat, a mouse, a rat, a rabbit, a horse, a cow, or a pig. In some embodiments, the subject is suspected of having a cancer. In some embodiments, the cancer is selected from the group consisting of Acute lymphoblastic leukemia, Acute monocytic leukemia, Acute myeloid leukemia, Acute promyelocytic leukemia, Adenocarcinoma, Adult T-cell leukemia, Astrocytoma, Bladder cancer, Bone Cancer, Brain Tumor, Breast Cancer, Burkitt's lymphoma, Carcinoma, Cervical Cancer, Chronic Lymphocytic Leukemia, Chronic myelogenous leukemia, Colon Cancer, Colorectal cancer, Endometrial cancer, Glioblastoma multiforme, Glioma, Hepatocellular carcinoma, Hodgkin's lymphoma, Inflammatory breast cancer, Kidney Cancer, Leukemia, Lung cancer, Lymphoma, Malignant Mesothelioma, Medulloblastoma, Melanoma, Multiple myeloma, Neuroblastoma, Non-Hodgkin Lymphoma, Non-Small Cell Lung Cancer, Ovarian Cancer, Pancreatic Cancer, Pituitary tumor, Prostate cancer, Retinoblastoma, Skin Cancer, Small Cell Lung Cancer, Squamous cell carcinoma, Stomach cancer, T-cell leukemia, T-cell lymphoma, Thyroid cancer, and Wilms' tumor.


In further aspects, there are provided methods of detecting a cancer in a subject. In some embodiments, the method comprises: (a) contacting a biological sample obtained from a subject to a peptide array comprising a plurality of frameshift variant peptides. In some embodiments, the plurality of frameshift variant peptides comprise peptides encoded by genes having a variant in a microsatellite (MS) in a coding region of the gene. Alternatively or in combination, the plurality of frameshift variant peptides comprise peptides encoded by an mRNA having a splicing error. In some embodiments, the method further comprises detecting binding of the biological sample to at least one peptide in the peptide array. In some embodiments, the plurality of frameshift variant peptides comprise one or more peptides provided in any one of Tables 1 or 7. In some embodiments, the plurality of frameshift variant peptides comprise two or more pooled frameshift peptides. In some embodiments, the plurality of frameshift variant peptides are fixed on a substrate. In some embodiments, the substrate comprises glass, composite, resin, or combination thereof. In some embodiments, the peptide array is configured to detect binding by at least one of fluorescence, luminescence, calorimetry, chromatography, radioactivity, Bio-Layer Interferometry, and surface plasmon resonance. In some embodiments, the peptide array comprises at least about 25000, about 50000, about 75000, about 100000, about 125000, about 150000, about 175000, about 200000, about 225000, about 250000, about 275000, about 300000, about 325000, about 350000, about 375000, or about 400000 frameshift variant peptides. In some embodiments, the biological sample comprises blood, serum, plasma, cerebrospinal fluid, saliva, urine, or combinations thereof. In some embodiments, the biological sample comprises an antibody. In some embodiments, the subject is a mammal. In some embodiments, the subject is a human, a dog, a cat, a mouse, a rat, a rabbit, a horse, a cow, or a pig. In some embodiments, the subject is suspected of having a cancer. In some embodiments, the cancer is selected from the group consisting of Acute lymphoblastic leukemia, Acute monocytic leukemia, Acute myeloid leukemia, Acute promyelocytic leukemia, Adenocarcinoma, Adult T-cell leukemia, Astrocytoma, Bladder cancer, Bone Cancer, Brain Tumor, Breast Cancer, Burkitt's lymphoma, Carcinoma, Cervical Cancer, Chronic Lymphocytic Leukemia, Chronic myelogenous leukemia, Colon Cancer, Colorectal cancer, Endometrial cancer, Glioblastoma multiforme, Glioma, Hepatocellular carcinoma, Hodgkin's lymphoma, Inflammatory breast cancer, Kidney Cancer, Leukemia, Lung cancer, Lymphoma, Malignant Mesothelioma, Medulloblastoma, Melanoma, Multiple myeloma, Neuroblastoma, Non-Hodgkin Lymphoma, Non-Small Cell Lung Cancer, Ovarian Cancer, Pancreatic Cancer, Pituitary tumor, Prostate cancer, Retinoblastoma, Skin Cancer, Small Cell Lung Cancer, Squamous cell carcinoma, Stomach cancer, T-cell leukemia, T-cell lymphoma, Thyroid cancer, and Wilms' tumor.


In further aspects, there are provided compositions comprising a plurality of frameshift variant peptides. In some cases, the plurality of frameshift variant peptides comprise peptides encoded by genes having a variant in a microsatellite (MS) in a coding region of the gene. Alternatively or in combination, wherein the plurality of frameshift variant peptides comprise peptides encoded by an mRNA having a splicing error. In some embodiments, the plurality of frameshift variant peptides comprise one or more peptides provided in any one of Tables 1 or 7. In some embodiments, the plurality of frameshift variant peptides comprise two or more pooled frameshift peptides. In some embodiments, the composition further comprises an adjuvant. In some embodiments, the adjuvant is selected from the group consisting of ABM2, AS01B, AS02, AS02A, Adjumer, Adjuvax, Algammulin, Alum, Aluminum phosphate, Aluminum potassium sulfate, Bordetella pertussis, Calcitriol, Chitosan, Cholera toxin, CpG, Dibutyl phthalate, Dimethyldioctadecylammonium bromide (DDA), Freund's adjuvant, Freund's complete, Freund's incomplete (IFA), GM-CSF, GMDP, Gamma Inulin, Glycerol, HBSS (Hank's Balanced Salt Solution), IL-12, IL-2, Imiquimod, Interferon-Gamma, ISCOM, Lipid Core Peptide (LCP), Lipofectin, Lipopolysaccharide (LPS), Liposomes, MF59, MLP+TDM, Monophosphoryl lipid A, Montanide IMS-1313, Montanide ISA 206, Montanide ISA 720, Montanide ISA-51, Montanide ISA-50, nor-MDP, Oil-in-water emulsion, P1005 (non-ionic copolymer), Pam3Cys (lipoprotein), Pertussis toxin, Poloxamer, QS21, RaLPS, Ribi, Saponin, Seppic ISA 720, Soybean Oil, Squalene, Syntex Adjuvant Formulation (SAF), Synthetic polynucleotides (poly IC/poly AU), TiterMax Tomatine, Vaxfectin, XtendIII, and Zymosan.


In additional aspects, there are provided methods of treating or preventing cancer in a subject comprising administering a composition comprising any one of the frameshift variant peptides provided herein. In some embodiments, the subject is a mammal. In some embodiments, the subject is a human, a dog, a cat, a mouse, a rat, a rabbit, a horse, a cow, or a pig. In some embodiments, the cancer is selected from the group consisting of Acute lymphoblastic leukemia, Acute monocytic leukemia, Acute myeloid leukemia, Acute promyelocytic leukemia, Adenocarcinoma, Adult T-cell leukemia, Astrocytoma, Bladder cancer, Bone Cancer, Brain Tumor, Breast Cancer, Burkitt's lymphoma, Carcinoma, Cervical Cancer, Chronic Lymphocytic Leukemia, Chronic myelogenous leukemia, Colon Cancer, Colorectal cancer, Endometrial cancer, Glioblastoma multiforme, Glioma, Hepatocellular carcinoma, Hodgkin's lymphoma, Inflammatory breast cancer, Kidney Cancer, Leukemia, Lung cancer, Lymphoma, Malignant Mesothelioma, Medulloblastoma, Melanoma, Multiple myeloma, Neuroblastoma, Non-Hodgkin Lymphoma, Non-Small Cell Lung Cancer, Ovarian Cancer, Pancreatic Cancer, Pituitary tumor, Prostate cancer, Retinoblastoma, Skin Cancer, Small Cell Lung Cancer, Squamous cell carcinoma, Stomach cancer, T-cell leukemia, T-cell lymphoma, Thyroid cancer, and Wilms' tumor.


INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the disclosure are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present disclosure will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the disclosure are utilized, and the accompanying drawings of which:



FIG. 1: shows a model for RNA based, frame-shift peptide production in tumor cells—normal cells. Errors in DNA replication are very rare and repaired. Transcription error rates are higher but also rare as are mis-splicing during intron excision. Additionally, the FS transcript with a premature termination may be degraded by Nonsense Mediated Decay (NMD). Aberrant proteins, including those with frameshifts are largely eliminated by the protein quality control system, Ubiquitin/Proteasome System (UPS). The net result is that very few frameshift peptides are presented on MHC I/II or escape the cell to be presented to the immune system. Cancer Cell: All levels of information transfer become more error prone. More errors are made in DNA replication, but only when cells divide. Most DNA mutations are point mutations and encode low or non-immunogenic epitopes. Global transcription is increased and is generally less accurate and even more so through MSs producing INDELs. Most transcribed genes with MSs in the coding region will have more FS transcripts. RNA splicing is also far less accurate, creating more FS transcripts from each out-of-frame splicing between exons from the same gene and different genes. The substantial increase of the FS transcripts from INDELs of MS and mis-splicing overwhelms the RNA quality control systems, such as NMD. Consequently, more truncated proteins with the FS peptide will be translated. These unfolded truncated proteins, combined with aberrant proteins from other mutations, overwhelms the protein quality control system, leading to more frameshift peptides being presented on MHC I/II and mis-secreted or released from the cancer cell which the immune system can respond to.



FIG. 2A: shows end-point RT-PCR analysis of the mSMC1A-1{circumflex over ( )}4 in mouse tumor cell lines and human hSMC1A-1{circumflex over ( )}4.



FIG. 2B: shows end-point RT-PCR analysis and RT-qPCR of the human hSMC1A-1{circumflex over ( )}4 expression in human primary breast tumor tissues and normal mammary tissues. All values are normalized relative to the expression levels in sample 1259 (set as 1). Data are mean 2−ΔΔC of triplicates with SD.



FIG. 2C: shows an analysis of the human EST database for FS variants by exon skipping and trans-splicing.



FIG. 2D: shows an analysis of the frequency of the expression of the 35 trans-splicing variants in 50 human breast cancer cell lines and 54 primary human breast tumors.



FIG. 2E: is an example of a sequence trace of the MS region in SEC62 dog and human genes in paired DNA/cDNA samples.



FIG. 2F: shows an ex vivo analysis of the MS INDEL in transcription and translation of the MS INDEL variants. eGFP was fused to the 3rd reading frame after 11A MS of SEC62 or after 11 non-MS nucleotides. The eGFP directly fused to 12A MS was the positive control. The three different plasmids were transfected individually into 293T cells and GFP fluorescence was measured 24 hrs after transfection.



FIG. 2G: shows a FACS analysis of the GFP positive cells.



FIG. 2H: is a summary of sequencing results of microsatellite candidates in human (4 breast cancer cell lines) and dog (primary dog tumor tissues)



FIGS. 3A-3I: show detection of antibody response against FS in cancer patients.



FIG. 3A: shows a design of human FS array with microsatellite FS peptides from all coding MS regions and predicted mis-splicing FS peptides from every exon of human genes.



FIG. 3B: shows common reactivity and cancer-type reactivity against FS peptides were represented by ˜7000 selected FS peptides. LC: lung cancer; BC: breast cancer; GBM: glioblastoma; GC: gastric cancer; and PC: pancreatic cancer (n=17/each cancer type) and a set of non-cancer samples (n=64), as control.



FIG. 3C: shows p-value and fold change volcano plot analysis of 5 cancer's IgG reactivity on the 400K FS array compared to normal. The horizontal line represents the significant p-value cut-off= 1/392328 (the number of the array peptides).



FIG. 3D: shows a positive rate of all 400K FS peptides in each cancer type, overall cancer and normal group (calculated by counting samples with higher reactivity than AVG(Normal)+6*SD (Normal)), error bar represents Mean±SEM.



FIG. 3E: shows a distribution of personal anti-FS response and shared anti-FS response in all 5 cancer types.



FIG. 3F: shows the top 20 FS peptides for each GBM sample were selected for personal vaccines.



FIG. 3G: shows components of cancer-type specific FS vaccines, top 100 FS peptides for each cancer type were selected with highest positive rate in corresponding cancer type. Shading in normal represents negative sample; other shading is indicative of a positive sample.



FIG. 3H: shows components of a general FS vaccine, top 100 FS peptides were selected with highest positive rate in cancer group. Shading in normal represents negative sample; other shading is indicative of a positive sample.



FIG. 3I: shows a heat map of the positive rate distribution of the FS peptides in Stage I and late stages pancreatic cancer.



FIGS. 4A-4F: show protection of FS antigens as cancer vaccine candidates in different mouse tumor models.



FIG. 4A: shows tumor growth curve of mSMC1A-1{circumflex over ( )}4 immunization in the B16F10-C57BL6 tumor model compared to the control antigen, non-protective Cowpox viral antigen (CPV 172 (3I)) immunization. Mice (n=10 per group) were genetically immunized at 8 weeks of age and challenged with 1×105 B16-F10 cells 4 weeks later.



FIG. 4B: shows tumor growth curve after mSMC1A-1{circumflex over ( )}4 immunization in the 4T1-BALB/c tumor model. Mice (n=10 per group) were prophylactically immunized and challenged 2.5 weeks after the last immunization by 5×103 4T1 cells. The CD8 and CD4 T cell depletion started 2 weeks after the last immunization. The control groups were genetically immunized with empty vectors and boosted with the KLH protein.



FIG. 4C: shows tumor growth curve after FS neo-antigen immunization in the 4T1-BALB/c tumor model. Mice (n=4 per group) were genetic immunized with SLAIN2 FS, ZDHHC17 FS and mock control three times in two week intervals and challenged 2 weeks after the last immunization by subcutaneous injection of 2×103 4T1 cells.



FIG. 4D: shows three MS FS antigens were selected based on the best predicted H2D binding epitopes for BALB/C mice. The tumor growth curve is after three MS FS antigen immunizations in the 4T1-BALB/c tumor model. Mice (n=10 per group) were prophylactically immunized with the different FS antigens or control antigen and challenged 2 weeks later with 5×103 4T1 cells.



FIG. 4E: shows ELISPOT analysis of the three MS FS neo-antigens immunizations. 3 mice were genetically immunized with a pool of the three MS FS neo-antigens and challenged with 5×103 4T1 cells. Splenocytes were collected 19 days after tumor challenge and a pool of three splenocytes were used in the assay. Error bars represent SD of triplicates.



FIG. 4F: shows three FS antigens were selected and immunized individually or pooled in the BALB-NeuT mouse breast tumor model. A tumor free curve is presented of BALB-NeuT mice immunized with individual FS neo-antigens (SMC1A-1{circumflex over ( )}4, n=32; RBM FS, n=22; and SLAIN2 FS, n=14) (total n=68), pool of these three FS neo-antigens (n=37) and control group (total n=44), including untreated (n=14) and immunized with control antigens (n=30). Control vs individual or 3 FS pool, p≤0.0001; individual vs 3FS pool, p=0.005. Error bars in all mouse growth curves represent SEM, *, p<0.05 and **, p<0.005 by two tailed t-test. Statistical analysis of the tumor free curve was with Mantal-Cox test.



FIGS. 5A-5D: are a schematic of FS mis-splicing.



FIG. 5A: is a schematic of exon mis-splicing of mSMC1A. The asterisk indicates the stop codon that is generated by a shift in reading frame upon joining exon 1 with exon 4.



FIG. 5B: is a schematic of exon mis-splicing of ZDHHC17. The asterisk indicates the stop codon that is generated by a shift in reading frame upon joining exon 15 with exon 17.



FIG. 5C: is a schematic of exon mis-splicing of SLAIN2 by splicing exon 6 with exon 8.



FIG. 5D: is a schematic of exon mis-splicing of RBM by splicing RBM14 exon 1 with RBM4 exon 2.



FIG. 5E: shows an RT-PCR of human SMC1A (hSMC1A), human SMC1A FS (hSMC1A-1{circumflex over ( )}4) and β-actin in 33 human breast tumor cell lines.



FIG. 5F: shows an RT-PCR analysis of the ZDHHC17_FS and SLAIN2_FS in B16F10 and 4T1 tumor cell cDNA.



FIG. 5G: shows an RT-PCR analysis of SLAIN2_FS and ZDHHC17 FS in different human tumor cells.



FIG. 5H: shows an RT-PCR analysis of SMC1A_FS, SLAIN_FS and ZDHHC17_FS variants in B16 melanoma cells and normal tissues from C57BL6 mouse.



FIGS. 6A-6H: show components of frameshift peptide array and characteristics.



FIG. 6A: is an example of INDEL Frameshift peptides from dog gene SEC62



FIG. 6B: shows examples of mis-splicing Frameshift peptides from 2nd frame and 3rd frame of human exons.



FIG. 6C: shows a distribution of MS FS peptides in human FS array with insertion or deletion events.



FIG. 6D: shows a distribution of MS FS peptide lengths in human FS array with corresponding FS antigen length.



FIG. 6E: shows a distribution of MS Type in human FS array.



FIG. 6F: shows a distribution of MS repeat length in human FS array.



FIG. 6G: shows a distribution of Mis-splicing FS antigen length in human FS array.



FIG. 6H: shows a distribution of Exon numbers of FS antigens in human FS array.



FIGS. 7A-7G: show a personal frameshift response in 4 cancer types.



FIG. 7A: shows a hierarchical clustering of all 400K FS peptides in 17 GBM samples.



FIG. 7B: shows a personal anti-FS response in 17 GBM cancer patients.



FIG. 7C: shows a personal anti-FS response in 17 gastric cancer patients.



FIG. 7D: shows a personal anti-FS response in 17 breast cancer patients.



FIG. 7E: shows a personal anti-FS response in 17 pancreatic cancer patients.



FIG. 7F: shows a personal anti-FS response in 17 lung cancer patients.



FIG. 7G: shows a correlation matrix of anti-FS response in all cancer samples from 5 cancer types.



FIG. 8: shows tumor free curve of each FS neo-antigen immunized group in BALB-NeuN mice. BALB-NeuT mice were immunized with individual FS antigens (mSMC1A-1{circumflex over ( )}4, n=32; RBM, n=22; and SLAIN2, n=14) (total n=68), pool of these three FS antigens (n=37) and control group (total n=44), including untreated (n=14) and immunized with control antigens (n=30). All of the mice were immunized with the same regime as in FIG. 4D. Detail immunization regime see the method. Control vs. each of individual FS group, p<0.05; 3FS pool vs. mSMC1A-1{circumflex over ( )}4 or RBM FS, p<0.005; 3FS pool vs. SLAIN2, p=0.43. All statistical analysis were with Mantal-Cox test. Detail immunization regimes were described in the methods.



FIG. 9: shows pooled FS vaccines are more protective than personal vaccines. Mouse 4T1 model was used to test pooled FS peptides as vaccines relative to personal vaccines used in the field. Pooled vaccines were made to 4T1 based on screening 30 mice injected with 4T1 and assayed on the FS arrays (BC-FAST). Personal vaccines also made to each mouse injected with 4T1 (BC-PCV) or a pancreatic tumor line (PC-FAST). As shown the BC-FAST vaccine was more protective than the personal vaccines.



FIG. 10: shows pooled FSP vaccines can be constructed for any tumor in humans. The blood of 15 to 17 individuals with one of the 5 designated cancers, including breast, stomach, glioblastoma (GBM), lung, and pancreatic, were screened on FSP arrays to determine reactivity. High reactivity relative to non-cancer individuals is designated by a bars. The 100 most recurrently reactive peptides for each cancer are shown.





DETAILED DESCRIPTION

Provided herein are methods and compositions for preventing, treating, and diagnosing cancer comprising the use of neoantigens. Neoantigens herein comprise peptides encoded by nucleic acids having frameshift mutations, such as insertions or deletions, causing a frameshift in the mRNA and a long stretch of mutant amino acids that are, in some cases, recognized as a non-self peptide by the immune system.


The success of checkpoint inhibitors in cancer therapy is largely attributed to activating the patient's immune response to their tumor's neoantigens arising from DNA mutations. This realization has motivated the interest in personal cancer vaccines based on sequencing the patient's tumor DNA to discover neoantigens. Embodiments provided herein relate to an additional, unrecognized source of tumor neoantigens. In some embodiments, errors in transcription of microsatellites (MS) and mis-splicing of exons create highly immunogenic frameshift (FS) neoantigens in tumors. The sequence of these FS neoantigens are predictable, allowing creation of a peptide array representing all possible neoantigen FS peptides. This array can be used to detect the antibody response in a patient to the FS peptides. A survey of 5 types of cancers reveals peptides that are personally reactive for each patient. This source of neoantigens and the method to discover them may be useful in developing cancer vaccines.


Personal cancer vaccines are promising as a new therapeutic treatment. These vaccines are currently based on mutations in tumor DNA. In some embodiments, variants in RNA production create frameshift neoantigens that may be another source of neoantigens for personal vaccines. Because there are only ˜220K of these antigens a simple peptide array can be used for their detection.


Checkpoint inhibitor immunotherapeutics are revolutionizing cancer therapy. However, even in the most responsive cancers a substantial portion (50%-80%) of the patients have poor to no positive response (1-5). A surprising finding in the analysis of these patients was that one of the best correlates of response has been the total number of neoantigens in the tumor (6-8). This is also the case for patients with high microsatellite instability (MSI) where the production of FS neoantigens drives the effective anti-tumor immune responses (9-11). The realization of the immunological importance of these DNA mutations has spawned the effort to develop personal vaccines (12). As promising as early studies are of these vaccines, a major problem is that the majority of tumors will not have enough neoantigen-generating mutations to sustain development of a personal vaccine (13-15). For example, melanoma tumors have a high mutational level with an average of 200 neoepitope mutations. This provides a large number to algorithmically screen for optimal antigenic presentation. In recent reports of two Phase I clinical trials of personal melanoma vaccines, starting with 90-2,000 personal neoantigens, 10 or 20 were identified for the vaccine (16, 17). However, in glioblastoma multiforme (GBM) only 3.5% patients had a high tumor mutation load, and further analysis showed that only a very small subset of GBM patients would potentially benefit from checkpoint blockade treatment (18). This is also consistent with a lack of response in GBM patients to checkpoint inhibitors (19). Massive genomic sequencing results indicated that GBM, ovarian cancer, breast adenocarcinoma and many other cancer types had very low number non-synonymous mutations, which will make these cancers difficult targets for personalized cancer vaccines (14, 20).


To solve this problem, methods and compositions are provided herein related to an alternative source of neoantigens which expand the scope of the application and efficacy of the neoantigen based cancer vaccines. In the process of becoming a tumor, not only does the DNA mutation rate increase with faster cell divisions, but also there is a disruption of basic cellular functions, including RNA transcription, splicing and the quality control system on peptides (21). The disrupted RNA processes increase the FS transcripts generated by RNA splicing errors and the insertions and deletions (INDELs) of MSs (22). Both of these processes, combined with the disrupted quality control system in tumor cells, can lead to the production of FS peptides and exposure of the FS epitopes to the immune system. Embodiments provided herein relate to FS variants produced by errors in RNA processing as a source of cancer neoantigens and a simple system to detect them.


Disclosed herein are models for how errors in transcription microsatellites and mis-splicing of exons could create frameshift neoantigens. Embodiments provided herein include examples in the RNA of tumors for both mis-splicing and of mis-transcription of an INDEL where the errors are present at the RNA but not DNA level. Also provided are methods for analysis of the NCBI EST library to reveal other examples of FS variants. Using an array comprising all predicted FS peptides with specific qualifications, human sera from patients with 5 different cancers have higher antibody reactivity than people without cancer. Three different patterns of high antibody reactive can be determined—pan-cancer, cancer-type focused and personal. Several examples are presented demonstrating that the FS variants offer at least partial protection in mouse models and that the protection is additive for each FS antigen.


The methods and compositions provided herein indicates that variants produced at the RNA level in tumor cells may be a good source of neoantigens for vaccines for several reasons. First, these FS variants produce neoantigens which are more likely to be immunogenic than neo-epitopes encoded by single nucleotide mutations (7). Second, FS from MS INDELs would be particularly attractive sources. There are a limited number of possible variants (8600 of homopolymers>=7 bp), which encode about 7,000 FS peptides longer than 10 aa, thus reducing the search space for neoantigens. Third, because of the predictable number of candidates it should be possible to use a peptide array to screen for immune reactive neoantigens. This approach would be much simpler than sequencing tumor DNA obtained from a biopsy. Fourth, because any expressed gene has the potential to produce neoantigens, it may not be necessary to limit the vaccine to oncological driver genes. Finally, it should be difficult for the tumor cells to evolve away from the vaccine since these FSs are variants, not heritable mutations. Particularly if the FS antigen was produced in RNA from an essential gene, the tumor cells would need to restrict MHC presentation (17, 52) or create an immune suppressive environment (53) to escape an immune response.


Elements of the model are supported by other published work. The immunological reactivity of FS neoantigens is the presumed basis of the effectiveness of PD-1 in most MSI-H cancers (54, 55). It also explains the responsiveness of renal cancer to CPI therapy—these cancers have low point mutation levels but high FS mutations (3, 7, 20). It has also been shown that cancer cells have much higher mis-splicing rates than normal cells (39, 41, 56). Recently, Andre et al. (56) showed informatically that cancer cells could make neofusion sites by mis-splicing. However, their analysis did not include fusions that created FS peptides. Also, Alicia et.al. (57) analyzed intron retention in tumor databases. This process can also create FS neoepitopes, though apparently much less frequently than mis-splicing of exons. The only aspects of the model not independently confirmed are 1) that the FS peptides potentially generated at the RNA level are made in tumors, 2) that the RNA-generated FSPs can generate immune responses, and 3) that these peptides can be protective against tumors. However, the methods provided herein support these 3 remaining aspects of the model.


An important aspect of this source of neoantigens is that it may allow extending the personal vaccines to more patients and tumor types. Many tumors have relatively low numbers of DNA mutations and probably could not support constructing a vaccine (58). Estimates from published mutational surveys of various tumors (59) indicate that only 40% of patients could be treated with personal vaccines. However, the methods and compositions provided herein predicts that the RNA FS variants would be produced in any cancer type, even if the DNA mutation level is low. This is substantiated, for example, in GBM (FIGS. 3B and G), which is a low mutation rate cancer (14, 20), but elicits similar overall immune response to FS peptides as other high mutation cancers.


The model also predicts that there may be recurrent FSs produced in different tumors. This is substantiated, for example, at the RNA level for SMC1 FS in breast cancers (FIG. 2D), and also confirmed by antibody reactivity using the FS arrays. This data shows 4641 FS peptides that were positive in 10% or more of all the samples across all five tumor types.


Sets of FS peptides were found that had enriched activity in individual tumor types. A collection of a set of these peptides could potentially be used to constitute a general, therapeutic vaccine or one focused on a particular tumor or set of tumors. Such vaccines would have an advantage over a personal vaccine of being pre-made but would have fewer antigens in common with the tumor. Conceivably, pan-cancer peptides could be used to create a prophylactic cancer vaccine, as has been proposed for cancer associated antigens (60). However, as shown in comparing late and early stage pancreatic cancer profiles, a prophylactic vaccine from FS neoantigens would be best constituted from peptides reactive at early stages of cancer. Clinical trials in dogs were recently initiated of a prophylactic vaccine that is designed to be broadly protective (data not shown).



FIG. 3F and FIGS. 7A-7G show refinement of the collection of reactive peptides to the personal level. Using GBM as an example, a set of peptides that are personal for each patient are found. In the 17 patients analyzed there were 1316-8299 personal peptides which were reactive only in that individual. Approximately 70% of all cancer-specific reactivity on the arrays was personal. A set of 20 personal FS antigens for each GBM patient is presented in FIG. 3F. The high antibody reactive indicates the high expression and/or high immunogenic of the FS antigen in the patient, with potential reactive CD4+ T cell response.


In FIGS. 3G and 3H, people without cancer have sporadic antibody reactivity to some of the peptides. This has also been noted that healthy individuals have antibody and T-cell responses to tumor associated antigens (61, 62). This could be due to random background cross-reactive IgG antibodies unrelated to cancer. It was previously shown that monoclonal antibodies are capable of binding random sequence peptides with high affinity, even though the peptides do not contain a sequence resembling the cognate site (63). Alternatively, this reactivity could be a manifestation of immune surveillance (64) eliminating potential tumor cells. Any cell that produced and presented FS antigens, whether tumor or not, could be susceptible to this elimination, effectively a “bad cell” response.


The vaccines tested did not produce complete protection by themselves in the models tested. However, it should be noted that both these models are very stringent and probably do not completely replicate natural tumors. One reason for this may be due to low level production of each FS neoantigen, consistent with the additive effects of the FS peptides in vaccines (FIG. 4F). Only occasional identification by mass spectrometry of FS peptide from MHC I elution of tumor cells is achieved, consistent with other reports (57). The quantitative analysis of transcription errors reported by Gout et al recently is consistent with this proposition (22, 32). However, this could also be due to the tumor cells deleting the antigen and evolving resistance, or that the T cell epitopes have low affinity, as is predicted for the mSMC1A FS peptide in the BALB/c mouse strain. Neoantigens produced by mutations in the DNA will produce 50-100% variant RNA and therefore potentially more presented antigen than would be expected for RNA based neoantigens. Pre-existing T-cell responses were not detected in mouse tumor models, even though vaccination with the FS is at least partially protective. The level of RNA-error-based FS production in the tumor is generally not enough to elicit a T-cell response, but is enough to elicit T-cells elicited by a vaccine to kill the tumor cell. This is consistent with analysis of three clinical trials of personal vaccines (16, 17, 65), where most of the antigens which produced a T-cell response had no pre-exiting T-cell response detectable. Recently, complete protection in the 4T1 model using pools of 10 selected FS antigens with both personal and cancer-type specific vaccines was shown (MTB, LS and SAJ, data not shown).


The arrays detect antibody responses to FS peptides. B-cell responses are not commonly considered important for an anti-tumor effect. It was recently shown that antibodies generated by dogs with cancer could be detected on an 800 FS peptide array. Peptides reactive on the dog array, whose homolog was also present in a mouse tumor line, were protective in the mouse models, while non-reactive peptides on the array did not confer protection. This study establishes that antibody response is an indicator of vaccine effectiveness. The level of antibody response correlated with protection in the mouse models. One explanation for this observation is that the IgG antibody response depends on CD4+ T-cell help. FS with good CD4+ T cell epitopes may also elicit tumor cell killing. It has been noted that CD4+ T cell responses to vaccines correlate with protection (66, 67).


In summary, the methods and compositions provided herein relate to another class of neoantigens that are useful in developing different types of cancer vaccines. Also provided herein are array formats for directly detecting immune responses to these tumor antigens. Dog and human clinical trials for use of the tumor antigens identified by the methods disclosed herein are underway.


As used herein, the term “detect,” “detection,” “detectable,” or “detecting” is understood both on a quantitative and a qualitative level, as well as a combination thereof. It thus includes quantitative, semi-quantitative, and qualitative measurements of measuring a cancer in a subject, using the methods and compositions as disclosed herein.


As used herein, the expression “a subject in need thereof” means a human or non-human mammal that exhibits one or more symptoms or indications of cancer, and/or who has been diagnosed with cancer, including a solid tumor and who needs treatment for the same. In many embodiments, the term “subject” may be interchangeably used with the term “patient”. For example, a human subject may be diagnosed with a primary or a metastatic tumor and/or with one or more symptoms or indications including, but not limited to, unexplained weight loss, general weakness, persistent fatigue, loss of appetite, fever, night sweats, bone pain, shortness of breath, swollen abdomen, chest pain/pressure, enlargement of spleen, and elevation in the level of a cancer-related biomarker.


The term “malignancy” refers to a non-benign tumor or a cancer. As used herein, the term “cancer” includes a malignancy characterized by deregulated or uncontrolled cell growth. Exemplary cancers include: carcinomas, sarcomas, leukemias, and lymphomas. Cancer includes primary malignant tumors (e.g., those whose cells have not migrated to sites in the subject's body other than the site of the original tumor) and secondary malignant tumors (e.g., those arising from metastasis, the migration of tumor cells to secondary sites that are different from the site of the original tumor). A cancer may include, for example, gastric, myeloid, colon, nasopharyngeal, esophageal, and prostate tumors, glioma, neuroblastoma, breast cancer, lung cancer, ovarian cancer, colorectal cancer, thyroid cancer, leukemia (e.g., Adult T-cell leukemia, Acute monocytic leukemia, Acute myeloid leukemia, Acute promyelocytic leukemia, myelogenous leukemia, lymphocytic leukemia, acute myelogenous leukemia (AML), chronic myeloid leukemia (CML), acute lymphoblastic leukemia (ALL), T-lineage acute lymphoblastic leukemia or T-ALL chronic lymphocytic leukemia (CLL), myelodysplastic syndrome (MDS), hairy cell leukemia), lymphoma (Hodgkin's lymphoma (HL), non-Hodgkin's lymphoma (NHL)), multiple myeloma, bladder, renal, gastric (e.g., gastrointestinal stromal tumors (GIST)), liver, melanoma and pancreatic cancer, sarcoma, Adenocarcinoma, Astrocytoma, Bone Cancer, Brain Tumor, Burkitt's lymphoma, Carcinoma, Cervical Cancer, Chronic Lymphocytic Leukemia, Chronic myelogenous leukemia, Endometrial cancer, Glioblastoma multiforme, Glioma, Hepatocellular carcinoma, Hodgkin's lymphoma, Inflammatory breast cancer, Kidney Cancer, Leukemia, Lymphoma, Malignant Mesothelioma, Medulloblastoma, Melanoma, Multiple myeloma, Neuroblastoma, Non-Hodgkin Lymphoma, Non-Small Cell Lung Cancer, Pancreatic Cancer, Pituitary tumor, Retinoblastoma, Skin Cancer, Small Cell Lung Cancer, Squamous cell carcinoma, Stomach cancer, T-cell leukemia, T-cell lymphoma, and Wilms' tumor.


As used herein the term “frameshift mutation” is a mutation causing a change in the frame of the protein. Thus, a frameshift variant peptide is a peptide in which a frame has changed due to a frameshift mutation. In some embodiments provided herein, a frameshift includes two or more pooled frameshifts. As used herein, the term “pooled” refers to a plurality of frameshift samples that have been combined to create a new composition.


As used herein, the term “microsatellite instability,” also known as “MSI” refers to the changes in microsatellite repeats in tumor cells or genetic hypermutability caused due to deficient DNA mismatch repair. Microsatellites, also known as simple sequence repeats, are repeated sequences of DNA comprising repeating units 1-6 base pairs in length. Although the length of microsatellites is highly variable from person to person and contributes to the DNA fingerprint, each individual has microsatellites of a set length. MSI results from the inability of the mismatch repair (MMR) proteins to fix a DNA replication error. MSI comprises DNA polymorphisms, wherein the replication errors vary in length instead of sequence. MSI comprises frame-shift mutations, either through insertions or deletions, or hypermethylation, leading to gene silencing. It is known in the art that microsatellite instability may result in colon cancer, gastric cancer, endometrium cancer, ovarian cancer, hepatobiliary tract cancer, urinary tract cancer, brain cancer, and skin cancers.


EXAMPLES
Example 1: Materials and Methods for Isolating Neoantigens

Cell Lines and Tissues


HEK293, B16-F10 and 4T1 cell lines were purchased from ATCC in 2006. Upon receipt, cells were cultured for three passages in RPMI medium (ATCC) with 10% FBS, 100 U/mL penicillin, and 100 mg/mL streptomycin and stored in aliquots under liquid nitrogen. Cells were maintained at 37° C. under humidified 5% CO2, 95% air. Cells between 2 and 20 passages were used. Cell lines were not re-authenticated. Other cells lines are listed in Table 2 and were cultured in ATCC-recommended media.


Mice and Mouse Tumor Models


BALB/c and C57BL/6 mice were from Charles River Laboratories or Jackson Laboratories. For the tumor challenge, 5×103 4T1 cells were injected in the mammary pad at the right flank of the mice, or 1×105 B16F10 cells were injected subcutaneously in the right flank of the mice. Tumor volumes were measured and calculated by (Length2×Width/2) daily after the size was larger than 1 mm3. Breeding pairs of BALB-neuT and FVB-neuN (FVB/N-Tg (MMTVneu) 202Mul) mice were obtained from Joseph Lustgarten, Mayo Clinic Arizona. Mice were monitored weekly for the tumor incidence after tumor size reached 1 mm3. All experiments were performed in accordance with protocols approved by the Institutional Animal Care and Use Committee of Arizona State University. Statistical significance of differences was analyzed by a Student t-test.


EST Analysis


To identify potential putative chimeric transcripts, that when translated would result in a frame-shifted neo-peptide, two publicly available datasets and applied an algorithm that was used to identify chimeric transcripts were used. Specifically, the sequences found within the Expressed Sequence Taq (EST) library and the Human RefSeq database (23) from the National Center for Biotechnology Information (NCBI) were used. Using the stand-alone BLAST program, all EST sequences were aligned to RefSeq. ESTs that aligned with 50-85 base pairs and had 95% homology to RefSeqs that have been previously annotated by National Center Institute (NCI) were selected. The alignment data was filtered by eliminating the EST sequences that did not align to multiple RefSeqs or were aligned in the 3′-5′ orientation. Lastly, the sequences that aligned with non-coding sequence regions were eliminated. The remaining EST sequences were then used to identify the chimeric transcripts. Only the ESTs that aligned to two or more distinct RefSeq in consecutive positions were considered to be potential candidates. To be defined as a coding chimeric transcript, the EST sequences had to be at least 100 bp long with sequence similarity greater than or equal to 95% to the RefSeq. Also, the junction points between the two genes had to occur within the coding sequence of the upstream gene and orientation of the upstream gene alignment had to be in the positive (5′-3′) orientation. To eliminate false calls, all potential chimeric EST sequences had to be either present in more than one cDNA library or supported by three or more independent EST sequences. In addition, chimeric transcripts were classified based on the relative position of two genes. Classification of types of chimeric transcript was based on relative position of two fusion genes on the chromosome. Specifically, genes found on different chromosomes resulted in inter-chromosomal fusion while genes found in same chromosome were intra-chromosomal or read-through chimeric transcripts. Read-through chimeric transcripts resulted from two neighboring genes on same strand, otherwise intra-chromosomal.


PCR Screen for EST FS Candidates


The 50 Human Breast cancer cell lines were obtained from the American Type Culture Collection (ATCC) and were grown according to recommendations. Human breast cancer tissue specimens were acquired from Mayo Clinic, and were informed consent and approval by the Mayo Clinic Institutional Review Board. All specimens were coded and anonymized. All experiments were performed in accordance with the approval protocol. Total RNA was extracted from breast cancer cell lines and primary breast tissues using the TRIzol LS reagent (Life Technologies, Carlsbad, Calif.) following the manufacturers protocol. RNA integrity was determined by gel electrophoresis and concentration was determined by measuring absorbance at 260/280 on the Nano-drop (NanoDrop Products, Wilmington, Del.). cDNA was prepared by using the SuperScript™ III First-Strand Synthesis SuperMix (Life Technologies, Carlsbad, Calif.) that includes random hexamers and oligo dT's following the manufacturer's recommended protocol. cDNA integrity and quality were assessed by performing a β-actin control PCR. End Point PCR primers for each chimeric transcript were designed using Primer3 (24) so that the forward and reverse primers both bind 80 bp to 280 bp upstream/downstream from the junction point. End-point PCR reactions using approximately 25 ng of cDNA, reagents from (Life Technologies, Carlsbad, Calif.) and 35 cycles were performed using Mastercycler ep gradient S (Eppendorf, Hamburg, Germany). PCR products were analyzed on 1.5% agarose gels. PCR products were purified, and sequence confirmed by Applied Biosystems 3730 (Life Technologies, Carlsbad, Calif.) sequencing.


End-Point RT-PCR


cDNAs from human primary breast tumors and normal mammary glands were from BioChain (Newark, Calif.). Total RNA from other sources was extracted with TRIzol (Life Technologies, Carlsbad, Calif.). cDNA was synthesized from total RNA using the SuperScript III First-Stand Synthesis SuperMix (Life Technologies). The primer sequences used for end-point RT-PCR were synthesized by Life Technologies or Sigma. End-point RT-PCR reactions (25 μL) used the GoTaq PCR kit (Promega, Madison, Wis.) and the following conditions: 95° C. for 2 min; 35 cycles of 95° C. for 30 secs, 60° C. for 30 sec (annealing), and 72° C. for 10 to 30 sec (extension); and 72° C. for 5 min. Exceptions were that mouse SMC1A primers used an annealing temperature of 55° C., and β-actin primers were done with 25 cycles and 30 sec of extension time. Sequence verification was performed on RT-PCR products in initial reactions and later during intermittent reactions. The following primers (from 5′ to 3′) for the PCR were used: SEC62 DNA human forward: TGCCATACCTGTTTTTCCC (SEQ ID NO: 1); SEC62 human DNA reverse: AGTTATCTCAGGTAGGTGTTGC (SEQ ID NO: 2); SEC62 DNA dog forward: AAGGGAGTCTGTGGTTGA (SEQ ID NO: 3); SEC62 DNA dog reverse: CAAAGAGGGAAGAGAGTGG (SEQ ID NO: 4); SEC62 cDNA human forward: AAAGGAAAAGCTGAAAGTGGAA (SEQ ID NO: 5); SEC62 human cDNA reverse: GCAACAGCAAGGAGAAGAATAC (SEQ ID NO: 6); SEC62 cDNA dog forward: AAGGGAGTCTGTGGTTGA (SEQ ID NO: 7); SEC62 cDNA dog reverse: CAAAGAGGGAAGAGAGTGG (SEQ ID NO: 8); SMC1A mouse forward: CTGTCATGGGTTTCCTG (SEQ ID NO: 9); SMC1A mouse reverse: GAGCTGTCCTCTCCTTG (SEQ ID NO: 10); SMC1A human forward: CCTGAAACTGATTGAGATTGAG (SEQ ID NO: 11); SMC1A human reverse: TCTTCAGCCTTCACCATTTC (SEQ ID NO: 12); β-actin mouse forward: CCAACCGTGAAAAGATGACC (SEQ ID NO: 13); β-actin mouse reverse: TGCCAATAGTGATGACCTGG (SEQ ID NO: 14); β-actin human forward: CCAACCGCGAGAAGATGACC (SEQ ID NO: 15); β-actin human reverse: TGCCAATGGTGATGACCTGG (SEQ ID NO: 16); Rat Her-2 forward: ATCGGTGATGTCGGCGATAT (SEQ ID NO: 17); Rat Her-2 reverse: GTAACACAGGCAGATGTAGGA (SEQ ID NO: 18).


Sec62 Transfection and Flow Analysis


HEK293 cell line were purchased from ATCC and cultured with standard protocols. Lipofectamine 2000 Transfection Reagent (Thermo Fisher Scientific, MA) was used to transfect plasmids into cell lines for overnight. Cells were then prepared in FACS buffer and quantified with flow cytometry. The three open reading frames (ORFs) were assembled by PCR and inserted into pCMVi vector at EcoR I MCS site. Detailed sequences of three ORFs were included in Table 6.


Gene Expression


Gene expression was measured with the TaqMan Gene Expression Assay (Life Technologies) according to the manufacturer's directions. The hSMC1A-specific labeled probe was 5′-CAATGGCTCTGGGTGCTGTGGAATC-3′ (SEQ ID NO: 19). The unlabeled forward and reverse primers were 5′-GGGTCGACAGATTATCGGACC-3′ (SEQ ID NO: 20) and 5′-GTCATACTCCTGCGCCAGCT-3 (SEQ ID NO: 21), respectively. Results were normalized by human GAPDH.


Example 2: Human Frameshift Peptide Array Synthesis and Analysis

Microsatellite Frameshift antigens: human mRNA sequences were acquired from NCBI CCDS databases (25). Microsatellite regions (homopolymers of 7 runs or more) were mapped to human coding genes, 2nd and 3rd reading frame peptide sequences after MS regions were predicted and stored in Microsatellite FS database, MS FS peptides 10 aa or longer were included in the human FS peptide array.


Mis-splicing Frameshift antigens: human mRNA sequences and exon coordinates were acquired from NCBI Refseq database (23). 2nd and 3rd reading frame FS peptide sequences were predicted from the start of every exon. Then all the FS peptides were aligned against the human proteome, FS peptides with higher than 98% homology to wild type proteome were removed. FS peptides 10 aa or longer were then included in the human FS peptide array. Table 7 depicts exemplary variant FS peptides.


A total number of 64 non-cancer control samples and 13 pancreatic stage 1 cancer samples, 85 late stage cancer samples from 5 cancer types were tested on the FS array, detailed information was summarized in Table 5. All samples were acquired from collaborators and were informed consent upon collection through the institute's own IRB. All samples were anonymized before receipt at Arizona State University (ASU) via Institutional Review Board (IRB) protocol No. STUDY00003722, ‘Receipt of Deidentified Human Serum for Immunosignature Analysis’ and protocol No. 0912004625, ‘Profiling Biological Sera for Unique Antibody Signatures’. All experiments were performed in accordance with the approval protocol.


400K Frameshift Peptide Array Assay


Serum was diluted 1:100 in binding buffer (0.01M Tris-HCl, pH 7.4, 1% alkali-soluble casein, 0.05% Tween-20) and 150 μl diluted samples were loaded into each compartment of the 12-plex array and incubated overnight at room temperature or 4° C. After sample binding, the arrays were washed 3× in wash buffer (1×TBS, 0.05% Tween-20), 10 min per wash. Primary sample binding was detected via Alexa Fluor® 647-conjugated goat anti-human IgG secondary antibody (Jackson ImmunoResearch #109-605-098). The secondary antibody was diluted 1:10,000 (final concentration 0.15 ng/μl) in secondary binding buffer (lx TBS, 1% alkali-soluble casein, 0.05% Tween-20). Arrays were incubated with secondary antibody for 3 h at room temperature, washed 3× in wash buffer (10 min per wash), 30 secs in reagent-grade water, and then dried by centrifuging at 690 RPM for 5 mins. All washes and centrifugations were done on a Little Dipper 650C Microarray Processor (SciGene) with preset programs. Fluorescent signal of the secondary antibody was detected by scanning at 635 nm at 2 μm resolution and 15% gain, using an MS200 microarray scanner (Roche NimbleGen).


Example 3: Genetic Immunization

Plasmids for Genetic Immunization


The DNA fragments encoding FS peptides were cloned as a C-terminal fusion into the genetic immunization vectors pCMVi-UB (26) and pCMVi-LSrCOMPTT (27, 28) with the Bgl II and Hind III and mixed with 1:1 ratio as the vaccine antigen. Three adjuvants were encoded by genetic immunization vectors. The pCMVi-mGM-CSF vector expresses the adjuvant mouse granulocyte/macrophage colony-stimulating factor (mGM-CSF) under control of the human cytomegalovirus (CMV) promoter (27). LTAB indicates immunization with 1:5 ratio by weight of two plasmids, pCMVi-LTA and pCMVi-LTB, expressing the heat-labile enterotoxins LTA and LTB from Escherichia coli. These plasmids express LTA and LTB as C terminal fusions to the secretion leader sequence from the human al antitrypsin gene (29). Vectors pCMVi-UB, pCMVi-LSrCOMPTT, pCMVi-LTA (also called pCMVi-LS-LTA-R192G) and pCMVi-LTB are available from the PSI:Biology-Materials Repository DNASU (dnasu.org) at Arizona State University. Additional adjuvants were the class A CpG 2216 single-stranded oligodeoxynucleotide obtained from Sigma and alum from Pierce.


Bullet Preparation for Genetic Immunization with Gene Gun


Bullets for biolistic genetic immunization used the gold micronanoplex approach and were prepared as described (30) with the following changes. Two grams of 1-micron gold was used. Prior to addition of N-hydroxysuccinimide and N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride, the gold was resuspended in 20 mL of a 0.1 M solution of 2-(N-morpholino) ethanesulfonic acid (MES), pH 6.0. DNA-gold micronanoplexes were prepared by combining, per bullet, 57 μL of cysteamine-gold solution with precipitated DNA (≤10 μg) that had been resuspended in ≤15 μL of water, and then vortexing for 10 min. To the DNA-cysteamine-gold was added 6 μL/bullet of a freshly made solution of PEI-micron gold (167 mg/mL in 0.1 M MES, pH 6, without NaCl). The pelleted micronanoplexes were washed with ethanol prior to resuspension in n-butanol (55 μL/bullet), followed by bullet formation under nitrogen gas.


Immunization Dosage and Regime and Tumor Challenge


C57BL/B16-F10 Mouse Melanoma Model


Six week old mice (n=10 per group) received one genetic immunization with the Gene Gun in the pinna of the ear (4 shots/mouse) with 20 ng of antigen (SMC1A-1{circumflex over ( )}4 and non-protective Cowpox viral antigen CPV 172 (31)) in pCMVi vectors plus the adjuvants pCMVi-mGM-CSF (0.5 μg) and CpG 2216 (5 μg) for each shot. All of the mice were challenged with 1×105 B16-F10 cells 4 weeks after the immunization.


BALB/C-4T1 Mouse Breast Tumor Model


For the three MS FS experiments, all mice (n=10 per group) were genetically immunized in the ear by Gene Gun at 8 weeks of age (2 shots/mouse, 60 ng pooled antigens plus 0.25 μg LTAB and 2.5 μg CpG2216 as the adjuvant for each shot) and boosted twice (two days apart) in three weeks with 1 μg pooled antigens plus the same adjuvants dosage. All mice were boosted again in two weeks with 50 μg KLH conjugated MS FS peptides with 50 μg CpG 2216 and 50 ul alum in total 100 ul PBS. The negative groups were immunized with the empty vectors and KLH protein with the same dosage. All mice were challenged with 5×103 4T1 cells two weeks after the last immunization.


For the mSMC1A-1{circumflex over ( )}4 experiment, all mice were (n=10 per group) genetically immunized in the ear by Gene Gun at 8 weeks of age (2 shots/mouse, 1 μg antigen plus 0.25 μg LTAB and 2.5 μg CpG2216 as the adjuvant for each shot), and boosted in two weeks with KLH conjugated SMC1A-1{circumflex over ( )}4 peptide plus 50 μg Poly:IC (Sigma) in 100 ul PBS. The same regime was repeated in two weeks. The negative groups were immunized with the empty vectors and KLH protein with the same dosage. All mice were challenged with 5×103 4T1 cells 4 weeks after the last immunization. The CD8 and CD4 T cell depletion started 2 weeks after the last immunization by i.p injection of 100 μg antibody (anti CD8, clone 2.43; anti CD4, clone GK 1.5; BioXCell, West Lebanon, N.H.) every 3 days until the end of the experiment.


BALB-neuT Mice


Mice were genetically immunized by Gene Gun at 4-6 weeks with 100 ng of antigen(s) in pCMVi vectors, boosted twice (3-4 days apart) at 9-10 weeks with 1 μg of the same antigen(s), and boosted once at 13-14 weeks with protein. Genetic immunizations included adjuvants LTAB (0.5 μg) and CpG 2216 (5 μg). Protein boosts were 50 μg of KLH conjugated FS peptides (SMC1A-1{circumflex over ( )}4, n=32; RBM FS, n=22; SLAIN2 FS, n=14 and pool of three FS neoantigens, n=37). The protein boost included 50 μg CpG 2216 and 50 μl alum in 100 μl PBS as the adjuvant. The negative groups (n=30) were immunized with the empty vectors and GST or KLH protein with the same adjuvants and dosage.


ELISPOT


Peptides used in the ELISPOT assays were synthesized in-house. The Mouse IFN-γ ELISPOT Set (BD Biosciences) was used according to the manufacturer's directions except that blocking was at 37° C. 106 fresh mouse splenocytes were added to each well, followed by co-culturing for 48 hr with 20 μg of peptide in a volume of 200 μl RPMI medium. The plate was scanned and spots were analyzed by the AID EliSpot Reader System (Autoimmun Diagnostika GmbH, Germany).


Statistical Analysis


The statistical calculation software used was GraphPad Prism 7 (GraphPad Software, San Diego, Calif.) and JMP Pro (SAS Institute, NC). The data presentation and the statistical tests for each experiment are indicated in the legend of the corresponding figures, as well as the samples size and p-values.


Example 4: Model for the Production of RNA-Based Frameshift Variants

Mistakes in RNA mis-splicing and transcription, particularly of INDELs of MSs in coding regions, in cancer cells may also be a source of neoantigens. FIG. 1 depicts an exemplary model of some embodiments provided herein. As information flows from DNA to RNA to protein there is a general increase in error rates (22, 32-35). These errors include mis-splicing and INDELs of MSs. Both errors will produce a background level of FS transcripts, which encode truncated proteins with a FS peptide at the C-terminus. The level of the FS peptides in normal cells is managed by the quality control mechanisms, such as nonsense mediated decay (36) and ER-associated degradation (37), such that these FS peptides are not presented to the immune system. However, the initiation event of a potentially cancerous cell will destabilize basic cellular processes including transcription, RNA splicing and the quality control system (21, 38-41). These global errors can be augmented due to chromosomal instability (42) or key, broadly effective mutations (43, 44). Consequently, the number of FS peptides produced, combining with other aberrant proteins, exceeds the disrupted quality control system, allowing FS peptides to be presented in MHC I/MHC II complexes or externally to dendritic cells. The level of FS production may be sufficient to be presented in MHC complexes but not induce a T-cell response. In most cases the aberrant cells are killed due to inherent dysfunction or by the immune system. Those escaping to become cancer cells could do so by decreasing MHC expression and/or establishing an immune suppressive environment. An important aspect of the model is that because of the global increase in the errors of transcription and splicing, the FS neoantigens will be constantly produced. Thus, in contrast to the commonly held view (45), bystander FS neoantigens would be good immunological targets. The production of these variants is not dependent on DNA replication as is the case for DNA mutations nor are they heritable and subject to selection.


As seen in FIG. 1, errors in DNA replication are very rare and repaired. Transcription error rates are higher but also rare as are mis-splicing during intron excision. Additionally, the FS transcript with a premature termination may be degraded by Nonsense Mediated Decay (NMD). Aberrant proteins, including those with frameshifts are largely eliminated by the protein quality control system, Ubiquitin/Proteasome System (UPS). The net result is that very few frameshift peptides are presented on MHC I/II or escape the cell to be presented to the immune system. Cancer Cell: All levels of information transfer become more error prone. More errors are made in DNA replication, but only when cells divide. Most DNA mutations are point mutations and encode low or non-immunogenic epitopes. Global transcription is increased and is generally less accurate and even more so through MSs producing INDELs. Most transcribed genes with MSs in the coding region will have more FS transcripts. RNA splicing is also far less accurate, creating more FS transcripts from each out-of-frame splicing between exons from the same gene and different genes. The substantial increase of the FS transcripts from INDEls of MS and mis-splicing overwhelms the RNA quality control systems, such as NMD. Consequently, more truncated proteins with the FS peptide will be translated. These unfolded truncated proteins, combined with aberrant proteins from other mutations, overwhelms the protein quality control system, leading to more frameshift peptides being presented on MHC I/II and mis-secreted or released from the cancer cell which the immune system can respond to.


Example 5: Detection of Frameshift Transcripts

This model makes several specific predictions. First, frequent FS variants in different cancers will be produced by errors in RNA splicing and transcription, not as DNA mutations. As an example of errors in mis-splicing, substantial levels of a FS transcript, SMC1A1{circumflex over ( )}4 (exon 1 to exon 4), from the gene SMC1A in different mouse and human tumors were found (FIGS. 2A, 5A, 5E and 5F). The SMC1A1{circumflex over ( )}4 encodes a 17 amino acids (aa) FS peptide (FIG. 5A). Corresponding exon deletion in the DNA of mouse tumor cell lines was not detected, nor in the 12 TCGA cohorts (N=4730) via Cancer Genomics Browser analysis (data not shown) (46). Quantitative PCR demonstrates more expression of the SMC1A1{circumflex over ( )}4 transcript in breast cancers than normal breast samples (FIG. 2B). To establish an estimate of the frequency of mis-splicing FS variants, 500 clones from a poly A-primed cDNA library of the mouse melanoma cell line, B16F10 were sequenced. Two FS variants SLAIN2 FS and ZDHHC17_FS were identified, which skip exon 7 and 16 respectively (FIGS. 5B and 5C). Table 3 depicts mouse mis-splicing FS antigens in the vaccine. Interestingly, only SLAIN2 was detected in 4T1, a mouse breast tumor cell line (FIG. 5G). The same conserved FS variants were also detected in different human cancers (FIG. 5H). While there were usually more (3-100-fold) frameshift transcripts in mis-splicing of these exons from tumor tissues or cancer cell lines, a low level of frameshift transcripts could be detected in some normal tissues (FIGS. 2B and 5H), which is consistent with the prediction of the model.


The analysis of RNA-generated FS variants was expanded by comparing NCBI tumor EST libraries to normal EST libraries. To simplify the analysis, FS variants caused by exon skipping or trans-splicing were focused on, i.e. splicing exons from different genes. A total of 12,456 exon skipping variants and 5,234 trans-splicing variants were found (FIG. 2C). 96 tumor associated FS variants from exon skipping passed the filters described in FIG. 2C, which also encode a FS peptide longer than 7 aa (Table 1). 230 FS trans-splicing variants that encode FS peptides longer than 6 aa were also identified. Primers were designed to screen 220 of these in different pools of cDNAs from 50 human breast cancer cell lines (Table 2) and 48 were successfully validated. Two of these 48 FS variants, BCAS4-BCAS3 and MDS1-EVI1, have been described elsewhere (47, 48). 35 of these 48 FS variants were also found in 54 human primary breast tumors. The frequency of FS variants detected in tumor cell lines or tumor tissue is summarized in FIG. 2D. The expression frequency of these 48 variants range from 2% to 98% in tumor cell lines and primary tumors. Overall, a total of 27 out of 35 variants were expressed in over 50% of 50 tumor cell lines or 54 primary tumors. 12 of 35 variants tested were not detected in three normal tissues.


Another source of FS transcripts in tumors predicted by embodiments of the model provided herein is INDELs in MSs generated in transcription. As an example, the microsatellite region in the Sec62 gene contains 9 and 11 repeats of Adenine in human and dog, respectively. The sequence of Sec62 and the corresponding INDEL frameshift peptides are shown in FIG. 2A. Human breast cancer cell lines and dog primary tumor tissues from 7 different cancer types were used for sequencing. No INDELs were detected at the genomic level. However, there was a significant level of one A insertion in the cDNA samples from the same tumor for both MSs (FIG. 2E). Two clones with one A insertion and one clone with one A deletion were found in sequencing 15 PCR clones from dog Sec62 cDNA. The INDEL rate was similar as estimated from the PCR sequence trace. 9 human MS candidates and 18 dog MS candidates were further sequenced in cDNA samples from cancer cell lines or primary tumor tissues. INDELs were frequently detected in MS candidates with repeat length of 9 or longer (FIG. 2F). This is consistent with large scale sequencing results in yeast (22). The INDEL rate in transcription for MSs with repeat length of 7, 8 and 9 was very high compared to the genomic mutation rate but was not detected in the PCR sequencing trace due to low sensitivity of the assay. There is no evidence of INDELs in the MS in DNA in published reports except for Microsatellite Instability-High cancer patients with a defective mis-match repair system (15, 49, 50).


To further validate the INDELs in the transcription and the translation of the FS peptide, three plasmids based on the dog Sec62 gene were constructed. One has the eGFP fused in the 3rd reading frame to the MS region of 11 A in the dog Sec62 CDS. The eGFP protein will be correctly translated if there is one A insertion during the transcription. The 11A with 11 nucleotides of non-MS sequence in another plasmid as the negative control was replaced, so there is no MS related INDEL in the transcription and no expression of eGFP. The 11A with 12A as the positive control was also replaced, so the eGFP is in the 1st reading frame and would be translated with the upstream dog Sec62 gene. (FIG. 2G). Plasmids were transfected into 293T cells. 12.77% of the cells were GFP positive in the first construct which indicates this portion of the cells had 1A insertions at the mRNA level and then successfully translated the FS protein. In contrast, none of cells were GFP positive in the negative control which indicates the MS region was crucial for INDELs (FIG. 2H). This experiment not only shows that the transcription could induce translatable FS variants with the INDELs in the MS region, but also indicates that FS peptides could be globally expressed in cancer cells with the defects in the quality control system.


Example 6: Detection of Antibodies to Frameshift Peptides

The model also predicts that the increased expression of FS variants, combined with other aberrant proteins, would overwhelm the quality control system and could potentially elicit immune responses to these FS peptides. To test this, an array of all possible predicted RNA-defined frameshift peptides was designed, meeting specific qualifications that the tumor cell could produce from INDELs in coding MS and mis-splicing of exons.


There are over 8000 MS in the coding region of the human genome that are runs of 7 or more repeats of homopolymers. The majority of MS regions meeting selection criteria are A runs and the number of MS candidates decreases exponentially as the repeat length or frameshift peptide length criteria increases. Each MS could generate 2 predictable FS peptides depending on whether there was an insertion or deletion. In addition, there are ˜200,000 possible FS peptides that could be generated by mis-splicing of exons in the human genome, such as the examples of mis-splicing FSs. Similar to MS FSs, the number of mis-splicing FSs decreases exponentially as the FS peptide length requirement increases. Most of mis-splicing FSs are generated from the first 10 exons of human genes. The restriction of the peptide being longer than 10 amino acids for both sources of FS was applied. By these criteria there are over 220,000 possible FS antigens. Each FS antigen that was longer than 15 aa was divided into 15 aa, non-overlapping peptides. This produced a total of −400,000 peptides. Peptides that share more than 10 aa identical sequences with any human reference proteins were excluded. Finally, each FS array was designed to contain a total of 392,318 FS peptides (FIG. 3A).


NimbleGen (Roche, Madison, Wis.) synthesized the FS peptide array, processed the array assay and summarized the IgG signals of each array with their standard protocol (51). The specific IgG reactivities was analyzed to these FSPs in 64 non-cancer control samples and a total of 85 cancers from 5 different late stage cancer types with 17 samples each (LC: lung cancer, BC: breast cancer, GBM: glioblastoma, GC: gastric cancer, PC: pancreatic cancer) and 12 stage I pancreatic cancer samples.


Each array was normalized to its median florescence for analysis. Three patterns of FS feature reactivity that were higher in cancer than non-cancer were found: common reactivity against FS peptides across all 5 cancer types; cancer type specific reactivity and personal reactivity. Reactivity against ˜7000 selected peptides are shown in FIG. 3B. Common reactivity and cancer type reactivity in 5 cancer types were marked with black squares. Non-cancer control samples had very low, sporadic reactivity in these FS peptides.


Total reactivity on the 400K arrays was evaluated in the 5 cancer types and non-cancer samples with two methods. The first method compares the number of significant peptides in the cancer and control samples using fold change and p-values. By this method, BC, GC, PC and LC cancer samples had significantly more FS peptides compared to control samples which met the fold change and p-value criteria described in FIG. 3C. The exception is GBM where the reactivity in the controls was higher than the GBM samples. The second method used a scoring method for each FS peptide. A peptide is scored as positive (red) if it is higher than six times the standard deviation (6SD) from the mean value of non-cancers for the peptide. All 5 cancer types had more positive FS peptides than the non-cancer controls (p-value<0.0001, FIG. 3D).


The analysis of individual cancer samples within the same cancer type using the scoring method showed that there were three patterns of reactivity. Most of the positive FS peptides (69%-80%) were personal for that individual. However, 16%-19% of the positive peptides were shared between two samples in that cancer type, with 1.5%-6.9% shared between 3 or more. The distribution of these classes is shown in FIG. 3E. Gastric cancer samples had the highest shared FS response (6.9% were shared in 3 or more). This is consistent with the very high correlation coefficients in several gastric cancer samples (FIG. 7F). Hierarchical clustering results of all positive FS peptides in the 5 cancer types are shown in FIGS. 7A-7G.


Embodiments of the model provided herein predicts that a FS peptide with high antibody reactivity is highly immunogenic and/or highly expressed in the tumor cells. These FS peptides could be cancer vaccine candidates. Analysis of the distribution of positive peptides allows the formulation 3 types of potential vaccines. One type is a personal vaccine. As an example, the personal vaccines for the 17 GBM patients are shown. Each patient had ˜5800 positive FS peptides using the 6SD cut-off criterion and ˜4500 positive FS peptides being unique for that patient (FIG. 7B). A filter for highest binding signals was applied to choose the 20 top peptides for each patient. These are depicted in FIG. 3F. This same system was applied to each of the other 4 cancer types with similar results (data not shown). It is noteworthy that even though GBM has been found to have a low DNA mutation rate (14), there appear to be an abundance of reactive RNA variant FS peptide for which to create a vaccine.


As noted in FIG. 3B, there were also peptides that were commonly reactive in a cancer type. Based on this analysis a set of peptides could be chosen to optimize the number in common for a particular cancer. This is depicted in FIG. 3G for the 5 tumor types. The top 100 peptides based on the maximum coverage for the particular cancer type were chosen. These vaccine compositions are referred to herein as “focused” vaccines, as it is clear from the FIG. 3G that many of the peptides optimal for a particular cancer are shared across other cancer types.


Finally, it was determined if there were FS peptides that were common across all 5 cancer types that met the p-value and frequency requirements. In FIG. 3H, exemplary 100 candidate FS peptides for a pan-cancer (at least for the 5 considered) vaccine are presented. It has been found that there are extremely few recurrent mutations in the DNA of certain tumors types (49) and with low chance of being immunogenic. In contrast common reactive FS variants can readily be identified.


All of the samples used for this analysis were from patients with late stage cancer. Cancer vaccines could also potentially be used for treatment of early stage cancers, and it is unclear whether early and late stage cancer vaccines would require different components. 20,000 most reactive and recurrent peptides were compared to non-cancer for both the late stage and stage 1 pancreatic cancer. As evident in FIG. 3I, most of the peptides did not overlap between the late and early stages of pancreatic cancer. This implies that an early and late stage vaccine would require distinct peptide compositions.


Example 7: Frameshift Peptides Offer Partial Protection as Vaccines

The data presented herein shows that FS variants are present at the RNA level in tumors and that antibody responses to these FS peptides are present in cancer patients. However, the clinically relevant question is whether these FS variants can afford therapeutic value as vaccines, which is explored using mouse tumor models.


It was determined if the SMC1A 1{circumflex over ( )}4 FS peptide confers protection in the B16F10 mouse melanoma cancer model and/or the 4T1 mouse breast cancer model. This FS variant was shown to be common in both human and these mouse tumors (FIGS. 2A, and 5E). The FS peptide was encoded on a plasmid in a standard genetic immunization vector and introduced with a gene gun. 1×105B16F10 tumor cells were injected and the animals vaccinated 4 weeks later. The tumor volume was monitored and compared to control mice receiving a mock vaccination. As shown in FIG. 4A, the vaccine conferred significant retardation of tumor growth. The SMC1A 1{circumflex over ( )}4 FS immunization also significantly retarded the 4T1 tumor growth in BALB/c mice (FIG. 4B). Depletion of CD8 or CD4 T-cells in the immunized mice indicates that this protection is CD8 T cell dependent (FIG. 4B).


It was tested whether the detection of FS variants in the RNA correlated with protection. The SLAIN2 and ZDHHC17 FSs had been identified in sequencing B16F10 cDNA. The SLAIN2 FS was present in the 4T1 mammary cancer cell line, but ZDHHC17 FS was not (FIG. 5F). When tested as gene vaccines in the mouse tumor injection model of 4T1, SLAIN2-FS conferred tumor retardation but ZDHHC17 did not (FIG. 4C).


The model (FIG. 1) implies that most transcribed genes with MS s in exons will produce FS peptides and these also may confer protection as vaccines. To test this prediction, three MS FSPs were selected based on the peptide size and best predicted H2-D binding epitopes in the mouse MS FS database (FIG. 4D and Table 4). As predicted, each FS neoantigen vaccination significantly retarded the tumor growth compared to the control group (FIG. 4D). Each FS antigen also elicited specific IFN γ releasing splenocytes (FIG. 4E).


Embodiments of the model provided herein also predicts that each tumor cell will present multiple FS neoantigens. These peptides could be presented at low levels as only a fraction of each RNA would be defective. Therefore, multiplexing neoantigens in a vaccine would be predicted to be more protective. To test this prediction, three FS neoantigens were tested individually and pooled together as vaccines in the BALB-NeuT transgenic mouse mammary cancer model. Each FS neoantigen-based vaccine individually showed similar protection by significantly delaying the tumor growth. As predicted, the pooled neoantigen vaccine produced a significant additive increase in delaying tumor initiation and growth (FIG. 4F). This suggests that pooling multiple FS neoantigens will increase efficacy.


Furthermore, as shown in FIGS. 8 and 9, pooled FS vaccines have increased efficacy compared to personal vaccines. Specifically, a mouse 4T1 model was used to test pooled FS peptides as vaccines relative to personal vaccines used in the field. Pooled vaccines were made to 4T1 based on screening 30 mice injected with 4T1 and assayed on the FS arrays (BC-FAST). Personal vaccines also made to each mouse injected with 4T1 (BC-PCV) or a pancreatic tumor line (PC-FAST). As shown the BC-FAST vaccine was more protective than the personal vaccines (FIG. 9). In addition, pooled FS vaccines can be constructed for any tumor in humans (FIG. 10). The blood of 15 to 17 individuals with one of the 5 designated cancers, including breast, stomach, glioblastoma (GBM), lung, and pancreatic, were screened on FSP arrays to determine reactivity. High reactivity relative to non-cancer individuals is designated by a bars. The 100 most recurrently reactive peptides for each cancer are shown.


REFERENCES



  • 1. J. W. Riess, P. N. Lara, Jr., D. R. Gandara, Theory Meets Practice for Immune Checkpoint Blockade in Small-Cell Lung Cancer. J Clin Oncol, (2016).

  • 2. D. Schadendorf et al., Pooled Analysis of Long-Term Survival Data From Phase II and Phase III Trials of Ipilimumab in Unresectable or Metastatic Melanoma. J Clin Oncol 33, 1889-1894 (2015).

  • 3. R. J. Motzer et al., Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N Engl J Med 373, 1803-1813 (2015).

  • 4. E. B. Garon et al., Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372, 2018-2028 (2015).

  • 5. J. Larkin et al., Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N Engl J Med 373, 23-34 (2015).

  • 6. A. M. Goodman et al., Tumor Mutational Burden as an Independent Predictor of Response to Immunotherapy in Diverse Cancers. Mol Cancer Ther 16, 2598-2608 (2017).

  • 7. S. Turajlic et al., Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis. Lancet Oncol 18, 1009-1021 (2017).

  • 8. N. A. Rizvi et al., Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124-128 (2015).

  • 9. S. Bae, J. Tie, J. Desai, P. Gibbs, Microsatellite instability status is critical to analysis of survival in stage II colon cancer. J Clin Oncol 30, 675-676; author reply 676-677 (2012).

  • 10. K. Bauer et al., T cell responses against microsatellite instability-induced frameshift peptides and influence of regulatory T cells in colorectal cancer. Cancer Immunol Immunother 62, 27-37 (2013).

  • 11. J. C. Dudley, M. T. Lin, D. T. Le, J. R. Eshleman, Microsatellite Instability as a Biomarker for PD-1 Blockade. Clin Cancer Res 22, 813-820 (2016).

  • 12. R. H. Vonderheide, K. L. Nathanson, Immunotherapy at large: the road to personalized cancer vaccines. Nat Med 19, 1098-1100 (2013).

  • 13. A. Vitiello, M. Zanetti, Neoantigen prediction and the need for validation. Nat Biotechnol 35, 815-817 (2017).

  • 14. Z. R. Chalmers et al., Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med 9, 34 (2017).

  • 15. B. Vogelstein et al., Cancer genome landscapes. Science 339, 1546-1558 (2013).

  • 16. P. A. Ott et al., An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217-221 (2017).

  • 17. U. Sahin et al., Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222-226 (2017).

  • 18. T. R. Hodges et al., Mutational burden, immune checkpoint expression, and mismatch repair in glioma: implications for immune checkpoint immunotherapy. Neuro Oncol 19, 1047-1057 (2017).

  • 19. A. C. Filley, M. Henriquez, M. Dey, Recurrent glioma clinical trial, CheckMate-143: the game is not over yet. Oncotarget 8, 91779-91794 (2017).

  • 20. C. Kandoth et al., Mutational landscape and significance across 12 major cancer types. Nature 502, 333-339 (2013).

  • 21. D. Hanahan, R. A. Weinberg, Hallmarks of cancer: the next generation. Cell 144, 646-674 (2011).

  • 22. J. F. Gout et al., The landscape of transcription errors in eukaryotic cells. Sci Adv 3, e1701484(2017).

  • 23. N. A. O'Leary et al., Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 44, D733-745 (2016).

  • 24. A. Untergasser et al., Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35, W71-74 (2007).

  • 25. K. D. Pruitt et al., The consensus coding sequence (CCDS) project: Identifying a common protein-coding gene set for the human and mouse genomes. Genome Res 19, 1316-1323 (2009).

  • 26. K. F. Sykes, S. A. Johnston, Genetic live vaccines mimic the antigenicity but not pathogenicity of live viruses. DNA Cell Biol 18, 521-531 (1999).

  • 27. R. S. Chambers, S. A. Johnston, High-level generation of polyclonal antibodies by genetic immunization. Nat Biotechnol 21, 1088-1092 (2003).

  • 28. D. T. Hansen et al., Polyclonal Antibody Production for Membrane Proteins via Genetic Immunization. Sci Rep 6, 21925 (2016).

  • 29. G. C. Whitlock et al., Protective antigens against glanders identified by expression library immunization. Front Microbiol 2, 227 (2011).

  • 30. S. A. Svarovsky, M. J. Gonzalez-Moa, M. D. Robida, A. Y. Borovkov, K. Sykes, Self-assembled micronanoplexes for improved biolistic delivery of nucleic acids. Mol Pharm 6, 1927-1933 (2009).

  • 31. A. Borovkov et al., New classes of orthopoxvirus vaccine candidates by functionally screening a synthetic library for protective antigens. Virology 395, 97-113 (2009).

  • 32. J. F. Gout, W. K. Thomas, Z. Smith, K. Okamoto, M. Lynch, Large-scale detection of in vivo transcription errors. Proc Natl Acad Sci USA 110, 18584-18589 (2013).

  • 33. B. Schwanhausser et al., Global quantification of mammalian gene expression control. Nature 473, 337-342 (2011).

  • 34. M. Imashimizu, T. Oshima, L. Lubkowska, M. Kashlev, Direct assessment of transcription fidelity by high-resolution RNA sequencing. Nucleic Acids Res 41, 9090-9104 (2013).

  • 35. H. S. Zaher, R. Green, Fidelity at the molecular level: lessons from protein synthesis. Cell 136, 746-762 (2009).

  • 36. S. Lykke-Andersen, T. H. Jensen, Nonsense-mediated mRNA decay: an intricate machinery that shapes transcriptomes. Nat Rev Mol Cell Biol 16, 665-677 (2015).

  • 37. A. Ruggiano, O. Foresti, P. Carvalho, Quality control: ER-associated degradation: protein quality control and beyond. J Cell Biol 204, 869-879 (2014).

  • 38. J. E. Bradner, D. Hnisz, R. A. Young, Transcriptional Addiction in Cancer. Cell 168, 629-643 (2017).

  • 39. S. C. Lee, O. Abdel-Wahab, Therapeutic targeting of splicing in cancer. Nat Med 22, 976-986 (2016).

  • 40. T. I. Lee, R. A. Young, Transcriptional regulation and its misregulation in disease. Cell 152, 1237-1251 (2013).

  • 41. S. Oltean, D. O. Bates, Hallmarks of alternative splicing in cancer. Oncogene 33, 5311-5318 (2014).

  • 42. S. Negrini, V. G. Gorgoulis, T. D. Halazonetis, Genomic instability—an evolving hallmark of cancer. Nat Rev Mol Cell Biol 11, 220-228 (2010).

  • 43. C. Y. Lin et al., Transcriptional amplification in tumor cells with elevated c-Myc. Cell 151, 56-67 (2012).

  • 44. D. Silvera, S. C. Formenti, R. J. Schneider, Translational control in cancer. Nat Rev Cancer 10, 254-266 (2010).

  • 45. P. L. Lollini et al., Vaccines and other immunological approaches for cancer immunoprevention. Curr Drug Targets 12, 1957-1973 (2011).

  • 46. M. Goldman et al., The UCSC Cancer Genomics Browser: update 2015. Nucleic Acids Res 43, D812-817 (2015).

  • 47. C. A. Maher et al., Transcriptome sequencing to detect gene fusions in cancer. Nature 458, 97-101 (2009).

  • 48. C. A. Maher et al., Chimeric transcript discovery by paired-end transcriptome sequencing. Proc Natl Acad Sci USA 106, 12353-12358 (2009).

  • 49. M. T. Chang et al., Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity. Nat Biotechnol 34, 155-163 (2016).

  • 50. R. J. Hause, C. C. Pritchard, J. Shendure, S. J. Salipante, Classification and characterization of microsatellite instability across 18 cancer types. Nat Med 22, 1342-1350 (2016).

  • 51. B. Forsstrom et al., Proteome-wide epitope mapping of antibodies using ultra-dense peptide arrays. Mol Cell Proteomics 13, 1585-1597 (2014).

  • 52. M. Sade-Feldman et al., Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat Commun 8, 1136 (2017).

  • 53. M. D. Vesely, R. D. Schreiber, Cancer immunoediting: antigens, mechanisms, and implications to cancer immunotherapy. Ann N Y Acad Sci 1284, 1-5 (2013).

  • 54. D. T. Le et al., Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409-413 (2017).

  • 55. D. T. Le et al., PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N Engl J Med 372, 2509-2520 (2015).

  • 56. A. Kahles et al., Comprehensive Analysis of Alternative Splicing Across Tumors from 8,705 Patients. Cancer Cell 34, 211-224 e216 (2018).

  • 57. A. C. Smart et al., Intron retention is a source of neoepitopes in cancer. Nat Biotechnol 36, 1056-1058 (2018).

  • 58. S. D. Martin et al., Low Mutation Burden in Ovarian Cancer May Limit the Utility of Neoantigen-Targeted Vaccines. PLoS One 11, e0155189 (2016).

  • 59. T. N. Schumacher, R. D. Schreiber, Neoantigens in cancer immunotherapy. Science 348, 69-74 (2015).

  • 60. T. Kimura et al., MUC1 vaccine for individuals with advanced adenoma of the colon: a cancer immunoprevention feasibility study. Cancer Prev Res (Phila) 6, 18-26 (2013).

  • 61. L. A. Vella et al., Healthy individuals have T-cell and antibody responses to the tumor antigen cyclin B1 that when elicited in mice protect from cancer. Proc Natl Acad Sci USA 106, 14010-14015 (2009).

  • 62. D. W. Cramer et al., Conditions associated with antibodies against the tumor-associated antigen MUC1 and their relationship to risk for ovarian cancer. Cancer Epidemiol Biomarkers Prev 14, 1125-1131 (2005).

  • 63. P. Stafford et al., Physical characterization of the “immunosignaturing effect”. Mol Cell Proteomics 11, M111 011593 (2012).

  • 64. G. P. Dunn, A. T. Bruce, H. Ikeda, L. J. Old, R. D. Schreiber, Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3, 991-998 (2002).

  • 65. D. B. Keskin et al., Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature 565, 234-239 (2019).

  • 66. S. Kreiter et al., Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520, 692-696 (2015).

  • 67. C. Linnemann et al., High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4+ T cells in human melanoma. Nat Med 21, 81-85 (2015).

















TABLE 1











#
#


RefSeq_
Encode FS
Joint_
#Total_

#Total_
Tumor_
Normal_


ID
peptides
pos
EST
EST_Ids
Lib
lib
lib






















NM_001640.3
SPSQAMWATR
 1940-
7
14679393,
3
3
0



M (SEQ ID NO:
 2047

16524005,






22)


18802412,









18807797,









19365353,









19366001,









33261912,








NM_199002.1
GVGGGILPPETP
 2623-
3
10264060,
3
3
0



PVSAWGELCPP
 2788

19733507,






AWLHL (SEQ ID


23301501,






NO: 23)











NM_014154.2
RHEKCCNWKQ
  370-
5
20492217,
3
3
0



QAESQSHCFRS
  448

22518928,






CSKIVVLASARN


45367569,






LKHRAEN (SEQ


146009855,






ID NO: 24)


146104793,








NM_001686.3
TTNPSRISLPSW
 1183-
4
11106585,
4
3
1



VWMNFLRKTS
 1398

12431398,






(SEQ ID NO: 25)


19143008,









20486863,








NM_004217.2
DHGGVGRCSNV
  317-
3
10342556,
3
3
0



LPWEEGDSQRH
  599

14654109,






KARKSALRAQG


22671315,






RAEDC (SEQ ID









NO: 26)











NM_016561.2
WSCSSITGAAG
  545-
6
19376801,
4
3
1



NLNTTSWSTRL
  751

28113628,






WPNGRRKKLSS


45652559,






GWSSWALGHLF


47036548,






TGKGFYLNE


52114251,






(SEQ ID NO: 27)


52114353,








NM_024808.2
FSLKMSSYPLLG
  379-
4
9808442,
4
3
0



LIMKGNSFHNVI
  426

17166915,






PVNALT (SEQ ID


146059308,






NO: 28)


146063843,








NM_013265.2
PCTGLSLHPMA
 2168-
4
4311385,
4
4
0



PRIWSRWSFPA
 2397

46230323,






GRCQDRPNKHV


46834109,






WPPQKKKKKK


47020765,






KKKKK (SEQ ID









NO: 29)











NM_020314.5
GSADRDDGKV
 1339-
4
8407623,
4
3
1



(SEQ ID NO: 30)
 1540

9889142,









10213802,









80934926,








NM_018553.3
CYQHPFPKKSQ
 1845-
3
8618242,
3
3
0



FPGAYWTSFEG
 2308

14448310,






EEEGSGQLTLPG


14469670,






P (SEQ ID NO:









31)











NM_134447.1
GFAASWLFKKP
 1419-
20
2111082,
18
12
4



RPSECHTVIFKE
 2068

3151384,






ESYMN (SEQ ID


3405187,






NO: 32)


3801503,









5395116,









5446288,









5636075,









6451167,









7152982,









7319964,









8634237,









8634238,









19587294,









19753219,









21251126,









23295375,









24791739,









24792974,









154727570,









154730372,








NM_152266.3
DAAFFMSPKLI
  224-
4
10744663,
4
3
1



WWQEMATERG
  283

11064241,






LFGLEIPIILKEL


22668651,






(SEQ ID NO: 33)


32210516,








NM_080571.1
CFTSSPLRW
  241-
7
12272400,
7
4
0



(SEQ ID NO: 34)
  360

20501581,









22824741,









45697997,









46272730,









146043981,









146121376,








NM_178448.3
RVQGTLVHCPT
 2485-
4
10217199,
4
3
1



RHLSQRRGPGR
 2522

13329041,






QRGNSLPEPSS


14652514,






MLTCPQQPHRA


71054789,






TFPAAPGLQGCP









RTGPSQPSMQL









PSYPEDGSGLSR









GHKDVRPGPPG









QERVQVLRACA









PQPQHQVDCSA









VGGPVAAREKP









PVSRLGSAHQG









LPTSAFEGACH









ALGDPGIFTGLE









AGDRTVSVPG









(SEQ ID NO: 35)











NM_000070.2
CLQKHLPVALS
 2741-
3
2222976,
3
3
0



TSLC (SEQ ID
 3083

4124403,






NO: 36)


7038190,








NM_032830.2
MTSLLSSHHPLK
 1977-
13
1720716,
9
6
2



RRNLEP (SEQ ID
 2102

2269339,






NO: 37)


4332045,









5397085,









5638770,









5769282,









7317235,









11450365,









13719026,









13734654,









24787788,









24808260,









45860690,








NM_032830.2
LLSSHHPLKRRN
 1986-
4
13908790,
4
3
0



LEP (SEQ ID NO:
 2111

18392074,






38)


46257227,









92180377,








NM_001040648.1
TSASQIQAILVP
 1865-
3
4630123,
3
3
0



(SEQ ID NO: 39)
 2258

4899627,









5676137,








NM_001161452.1
LLLQLRPGSRPF
  889-
4
1940552,
4
4
0



PVTYVSVTGRQ
 1669

3933437,






PYKSW (SEQ ID


13402321,






NO: 40)


14509526,








NM_001039712.1
AAAAAHHHSPR
  225-
3
13914233,
3
3
0



PAALRHPQEET
  429

21175318,






GCVP (SEQ ID


45699401,






NO: 41)











NM_015954.2
LLQPPFVFIPPG
  263-
5
10202290,
5
3
1



CVML (SEQ ID
  412

11101998,






NO: 42)


13284397,









15434305,









52108714,








NM_213566.1
SPKLPLVRRWM
  540-
3
9183529,
3
3
0



Q (SEQ ID NO:
  731

10729953,






43)


13583484,








NM_001384.4
LPCSSLTSYWE
  292-
9
9141503,
7
6
1



MLWLWLHDWR
  345

9341726,






RRQGQRCSFWV


9720673,






TQPTAAAAWM


11614383,






CWVLSKLELRL


12102395,






SYILALPA (SEQ


13326770,






ID NO: 44)


22703054,









22813642,









56794883,








NM_130443.2
HFPACQLLPLCD
 2342-
4
6594041,
4
3
0



LISSALPYVE
 2439

6974193,






(SEQ ID NO: 45)


24809933,









31153484,








NM_001402.5
CLQNWWYWYC
  119-
4
10201484,
3
3
0



SCWPSGDWCSQ
  818

16001157,






TRYGGHLCSSQ


19093438,






RYNGSKICRNA


19204512,






P (SEQ ID NO:









46)











NM_014285.5
GFWSRFPPPW
  448-
5
9137001,
5
3
1



(SEQ ID NO: 47)
  528

46278258,









145993595,









146042851,









146123968,








NM_001113378.1
VSPGVSELRRNS
 3439-
4
6444477,
3
3
0



KKYGKAGEAV
 3628

6870295,






WFSSDPPVLFFH


6870449,






FLRTE (SEQ ID


83195477,






NO: 48)











NM_001018078.1
VLGSQRHPGQG
  860-
3
10218110,
3
3
0



SCGSCPWHLCS
 1009

19144710,






SPHPTCGSGFGT


46186123,






RSGRAGRRCCG









AGPSPGTWTVR









TPPAARRPACA









GSARRCRAARG









RAVAPRFESCSS









MLPGTGTRRPC









(SEQ ID NO: 49)











NM_006098.4
GWPGHVMGSQ
  637-
8
2574599,
7
5
1



RRQTPLHARW
  748

9807168,






WGHHQRPVLQP


13524413,






(SEQ ID NO: 50)


33203609,









52715305,









58413416,









58566171,









90906220,








NM_015666.3
GPRGHAGEGGR
  390-
4
13133604,
4
3
1



QSCGRPVLRGR
  507

145997763,






(SEQ ID NO: 51)


146023828,









146095508,








NM_016426.6
VQMKMMKSSS
  291-
24
14072238,
15
9
3



DPLDIKKDVLLP
  350

14079103,






AWN (SEQ ID


14080406,






NO: 52)


14176079,









52197802,









52282171,









52282469,









52282506,









52282657,









84914016,









145998391,









146023882,









146039486,









146039586,









146040214,









146050613,









146052038,









146057369,









146057491,









146062991,









146072037,









146080660,









146102605,









146107434,








NM_031243.2
EGVLLQVTNEE
 1300-
4
12422802,
4
3
1



VVNHRVFKK
 3179

13033025,






(SEQ ID NO: 53)


13047121,









24132471,








NM_031243.2
KEGVLLQVTNE
 2581-
3
2466855,
3
3
0



EVVNHRVFKK
 3176

4569115,






(SEQ ID NO: 54)


5659331,








NM_006644.2
DSCGIVNSY
 2925-
6
2077398,
5
4
1



(SEQ ID NO: 55)
 3176

10153160,









10993881,









12672555,









13911640,









51668448,








NM_006644.2
DSCGIVNSY
 2924-
6
4074102,
4
3
1



(SEQ ID NO: 56)
 3175

10032700,









10153621,









19588875,









19608035,









45695863,








NM_024660.2
NCPVWRHNPCL
  441-
6
2033361,
6
4
1



ASWMSWRCWK
  821

9124825,






S (SEQ ID NO:


9141800,






57)


9332671,









10216854,









23253517,








NM_014761.2
IVGPGPKPEASA
  916-
5
19137983,
5
3
1



KLPSRPADNYD
  955

19193502,






NFVLPELPSVPD


28140121,






TLPTASAGASTS


46922603,






ASEDIDFDDLSR


283449919,






RFEEL (SEQ ID









NO: 58)











NM_001130089.1
VGSMPKELLGE
  450-
7
9329185,
5
4
1



SSSSMIFEERG
  617

9335633,






(SEQ ID NO: 59)


9336682,









14810814,









22365213,









45711902,









45715554,








NM_199187.1
HRDSRGSGRNG
  197-
18
10141571,
10
8
2



RHPEREGDHAK
  260

10142544,






PERPPGLLPGQS


10402934,






EEPGDREPEAGE


10586887,






QNPGALGEEGT


12758550,






PGQRLEPLLQD


14177331,






HRGPEGSDLRK


19893549,






YCGQCPHRSAD


21768308,






(SEQ ID NO: 60)


21774629,









21774763,









21777572,









21811780,









21815923,









22682079,









22908399,









24042754,









24045349,









56795793,








NM_002273.3
LLRSRHSTRILP
  831-
9
9340416,
4
4
0



TAAGLRLRACT
  881

9759824,






RSSMRSCRAWL


9759932,






GSTGMTCGAQR


9897110,






LRSLR (SEQ ID


9897831,






NO: 61)


10156714,









21813841,









21814354,









21816557,








NM_177433.1
RCQPDRHSHIW
 1731-
6
2054843,
4
3
1



ALRWPWWSWC
 1809

5511019,






QHQWQLWCLW


5673765,






FLLQV (SEQ ID


5853954,






NO: 62)


20203884,









23531396,








NM_153450.1
ETPSDSDHKKK
  590-
8
3151481,
5
3
1



KKKKEEDPERK
  830

3750732,






RKKKEKKKKK


4223069,






VE (SEQ ID NO:


6139460,






63)


11444683,









11451179,









11452422,









18988750,








NM_015950.3
AGNVRSNSRPSI
  749-
4
2252141,
4
3
1



QR (SEQ ID NO:
  824

3277351,






64)


19588584,









23291327,








NM_032112.2
PASGGSDLVNH
  541-
3
12308492,
3
3
0



SFLCKWHP
  717

12339978,






(SEQ ID NO: 65)


22813610,








NM_032112.2
CLLLGAVTL
  599-
5
10154760,
3
3
0



(SEQ ID NO: 66)
  713

13408766,









20201885,









20493143,









21494992,








NM_014018.2
EIPERNQGPVAA
  237-
5
1295506,
5
4
1



IRS (SEQ ID NO:
  420

6898484,






67)


10246880,









33209502,









34555226,








NM_001145839.1
LHWGSTKVHLL
  415-
4
10738994,
4
3
1



LI (SEQ ID NO:
  801

80835964,






68)


146091479,









146109603,








NM_001114185.1
GGPRRIWS (SEQ
  410-
8
10147163,
4
4
0



ID NO: 69)
  712

10989026,









16773154,









16776609,









16779119,









22853771,









22902798,









145986212,








NM_000431.2
GGPRRIWS (SEQ
  419-
5
16773347,
4
3
1



ID NO: 70)
  721

16777501,









28132078,









47402601,









146062357,








NM_003491.2
RSVKWSPNTMQ
  452-
5
9151226,
5
4
0



MGRTPMP (SEQ
  499

9345658,






ID NO: 71)


19210146,









27947049,









126672362,








NM_024313.2
VPTACCRCCFC
  788-
16
9141107,
12
9
1



WDV (SEQ ID
 2696

9803380,






NO: 72)


12427492,









13328739,









13908466,









14678515,









21780385,









21785028,









22345418,









22361309,









22361754,









46290768,









68292178,









82116561,









90837311,









92186397,








NM_016391.4
SGKTSSILCRRG
  391-
13
2054860,
10
8
2



RWRWS (SEQ ID
  483

2932939,






NO: 73)


2942143,









3601044,









4535246,









5425877,









5438639,









5596079,









5659519,









7151152,









19723340,









19738445,









24795292,








NM_007243.1
AGDAVLGAHTQ
  151-
3
12766042,
3
3
0



RPCVVGGSG
  349

46616730,






(SEQ ID NO: 74)


145998555,








NM_001042549.1
GAKPGGLALGA
  533-
3
3887573,
3
3
0



V (SEQ ID NO:
12194

4991027,






75)


6451223,








NM_181843.1
DEVFALPLAHL
  426-
5
10326854,
5
4
1



LQTQNQGYTHF
  498

11970552,






CRGGHFRYTLP


18510936,






VFLHGPHRVWG


19030548,






LTAVITEFALQL


46555631,






LAPGTYQPRLA









GLTCSGAEGLA









RPKQPLASPCQ









ASSTPGLNKGL









(SEQ ID NO: 76)











NM_198887.1
QENCSNPGGRG
 2448-
4
1192583,
4
3
0



CSDPRSCHFTPA
 3467

3280105,






WAKEQNAISKN


5636736,






IHI (SEQ ID NO:


24792671,






77)











NM_007342.2
AKFCPTFNKSM
  704-
5
11617690,
5
3
1



EEQGK (SEQ ID
  782

52065044,






NO: 78)


52097801,









52298172,









80768446,








NM_001199462.1
GLWLFRPQNVL
  257-
9
3988478,
5
4
0



QMPQSILLQQG
  383

4076572,






ASDPRLEIGT


4268320,






(SEQ ID NO: 79)


4268335,









6700534,









10373888,









10984780,









11512824,









11512860,








NM_002618.3
DYRRLPPGPAN
 2760-
4
9808150,
4
3
1



FFCIFSRDGVSP
 3281

11159219,






CYPGWSPSPDL


13459444,






VMSPLRSPKVL


22920343,






GLQA (SEQ ID









NO: 80)











NM_031948.3
PLRRPCTRSCW
  465-
3
14807581,
3
3
0



GQGS (SEQ ID
  629

19210482,






NO: 81)


146069312,








NM_004577.3
CDLNSLCIFVAI
 1630-
5
2159346,
4
3
1



FHTKCFKCGESI
 1940

13709277,






KHLYS (SEQ ID


13742243,






NO: 82)


14506129,









27939669,








NM_020387.2
GTIVVQWGPSW
  269-
18
2277936,
14
10
3



CLT (SEQ ID NO:
  466

9146588,






83)


10156678,









10742718,









14380528,









14511202,









19128358,









19180556,









19196633,









19199578,









19199919,









23272326,









24184393,









38619719,









52187412,









52187724,









52259400,









52288970,








NM_006743.4
GLWMVVRSVW
  338-
6
10885369,
4
3
1



IMQASLLGEPEE
  445

12600212,






VALGPMGVVA


12600293,






ATLEVVGTRAM


13460579,






GVAGIMTVDLE


19132700,






GMDMDMDVPE


21168881,






TIMAETRVVMT









ATQEEITETIMT









T (SEQ ID NO:









84)











NM_016026.3
SLPPNPSAARET
  165-
3
1679208,
3
3
0



KGISPIKDSKCV
  546

22269010,






FPRTSPGKDPLP


80545142,






(SEQ ID NO: 85)











NM_152553.2
GLFVFPIYCLC
 1017-
5
10400124,
5
3
1



(SEQ ID NO: 86)
 1133

13908341,









14428408,









52261877,









83255255,








NM_198486.2
EVWRHLLGRPH
  427-
5
21985536,
4
3
1



S (SEQ ID NO:
  538

21986341,






87)


145986153,









145999838,









146106725,








NM_000973.3
IRELCHRYLPQP
  225-
8
1154529,
6
5
1



(SEQ ID NO: 88)
  453

6937038,









9128356,









19091430,









19200294,









20486488,









22907262,









24044064,








NM_001002.3
GVRQWQHLQP
  646-
13
9124850,
8
7
1



(SEQ ID NO: 89)
  754

10205674,









13031883,









13403621,









13466151,









13666955,









14173427,









14175419,









19817898,









19895213,









21816494,









22689525,









47384119,








NM_001005.3
GLLWCAAVHH
  285-
3
9125003,
3
3
0



GEWGQRLRGC
  381

9139471,






GVWETPRTEG


22695855,






(SEQ ID NO: 90)











NM_001006.3
FGKAHGASW
  614-
6
10160942,
4
4
0



(SEQ ID NO: 91)
  725

12602739,









19378611,









21773234,









22849872,









22908519,








NM_138421.2
GDGGSGSKGRP
 1088-
3
1801795,
3
3
0



VEQTEVFLCISK
 1286

7155873,






PSSFL (SEQ ID


16771906,






NO: 92)











NM_017827.3
LHARAPGPRGP
 1708-
4
4890586,
4
4
0



PLLCPCCLRVSH
 1833

5746185,






(SEQ ID NO: 93)


13915028,









23284022,








NM_001005914.1
LPQQDLWHLQF
 1164-
3
9896956,
3
3
0



HQGLPRRCHPV
 1377

52185731,






CAEPPPHVQLCP


80585087,






AHWGAPSFPTS









WSQLHLHSNCR









GPGCSR (SEQ ID









NO: 94)











NM_021627.2
GIFELFIL (SEQ
  328-
4
19184218,
4
3
1



ID NO: 95)
  463

52117054,









80576973,









82328796,








NM_001193342.1
GIGAVCMDWW
 1086-
4
19211503,
4
3
0



AAAPPGECAPR
 1200

146039032,






PGCAAHHCGHR


146045087,






LLH (SEQ ID NO:


146056161,






96)











NM_001532.2
SPCPSSPPSQPW
 1096-
4
21176693,
4
3
1



(SEQ ID NO: 97)
 1137

24044445,









28133989,









80539035,








NM_178148.2
VLSDLGCAAGK
  343-
4
13997158,
4
3
1



SDDPQLWGHSH
  499

46283786,






ITG (SEQ ID NO:


78233770,






98)


80883909,








NM_006306.2
CCGIYCHEEPQR
  179-
6
10204155,
4
3
1



EDSSI (SEQ ID
  482

10350966,






NO: 99)


20396212,









20413818,









52288176,









84940096,








NM_030918.5
HFPDGEVTAER
 1593-
10
1162267,
10
7
2



CGHLAFPYPLPF
 2370

2324233,






PSPPSSYSFHVP


2356934,






FQTE (SEQ ID


2552335,






NO: 100)


2557157,









3765160,









4328216,









12300356,









24781036,









24803854,








NM_006461.3
ISVSIMWTQRRK
  269-
5
24952240,
5
3
0



L (SEQ ID NO:
  862

45703140,






101)


46182693,









46185076,









52109618,








NM_006925.3
VKGVLHSLTAA
 1055-
6
2952696,
6
5
1



GQTH (SEQ ID
 1428

4286279,






NO: 102)


18979142,









21477426,









21982089,









24787231,








NM_006374.3
KHQAMDHHGV
  426-
7
9183882,
5
4
1



PGRRLSTGLA
  477

11256565,






(SEQ ID NO: 103)


17161793,









17163262,









17174422,









22286625,









24120773,








NM_014760.3
GDQQPDRTQAG
 2877-
8
6883317,
8
6
2



LKSVSQVEDVF
 2907

10991109,






RELIGTQKTRTG


12385448,






CFPPSGS (SEQ


21770848,






ID NO: 104)


46184886,









58050995,









82074179,









91879091,








NM_006521.4
CSAQARNRSED
 2451-
8
9149080,
3
3
0



ETQPLPLGTLLA
 2492

9330710,






F (SEQ ID NO:


9331155,






105)


9336773,









9344551,









9344576,









10734097,









10734771,








NM_199293.2
HQALGAVPSCE
  112-
6
16526130,
4
3
1



GV (SEQ ID NO:
  370

45700010,






106)


45704764,









45705693,









45717940,









46847261,








NM_207379.1
QFRTPGWPLKA
  543-
10
3933593,
4
3
0



LAGRGWPEDAS
 1313

3933605,






PGQEPSKGAGR


4111770,






GWA (SEQ ID


4312229,






NO: 107)


4684269,









6504772,









6838403,









10031991,









10940483,









11083896,








NM_006291.2
PRAAVSGIQQW
 2087-
11
9176343,
5
4
1



WNGRQNWKRK
 2545

10210944,






KEKMSSRLAGA


11290536,






FRVLWRAVSTA


19369027,






SIRRHIQVAPRP


22342759,






LQAGPAMGP


22374168,






(SEQ ID NO: 108)


22662093,









22852902,









22853464,









22853646,









22902765,








NM_015140.3
LIVGGGAPDRK
 2096-
10
21980643,
5
4
1



GFQ (SEQ ID
 2811

46551962,






NO: 109)


46552370,









46845450,









46876330,









46920760,









46925643,









46929343,









46951310,









47021176,








NM_012473.3
CQRCPLCWP
  343-
3
12687717,
3
3
0



(SEQ ID NO: 110)
  468

21780390,









28088991,








NM_001184977.1
GVRCLIHSIHGF
  308-
6
11265100,
6
4
1



L (SEQ ID NO:
  382

18775927,






111)


19897757,









51485275,









81213059,









82161427,








NM_003370.3
WPQLLLEPNSG
  567-
4
8608901,
3
3
0



KSASRRRPQGG
 1019

14173570,






PQPPKLRVVEA


46181698,






EVGDSWKR


46269629,






(SEQ ID NO: 112)











NM_052844.3
VAARAWAQPPL
  828-
7
10145344,
5
4
1



PGAECGHRREG
  939

10147104,






ATLAGHRGRPA


16526305,






AAHRGLRPGHA


21773170,






AAATEHQAQEA


21777139,






SPRGDRGGRHG


31447502,






SGLLQL (SEQ ID


46265826,






NO: 113)











NM_001033519.1
RYGRCVHCREI
  290-
5
10391746,
4
3
1



VLQQPSGHRQP
  374

10393365,






(SEQ ID NO: 114)


12339226,









14653998,









78233952,








NM_152858.1
GLMASDYSEEV
  674-
3
11158199,
3
3
0



ATSEKFPF (SEQ
  895

12338537,






ID NO: 115)


21118493,








NM_182969.1
DRKRGCCPTSSS
 1312-
4
22340486,
4
3
1



LPISLRVRLS
 1480

27841540,






(SEQ ID NO: 116)


27878857,









83526847,








NM_005741.4
SHSQSGGPRHP
  722-
4
9155377,
3
3
0



GGTRRKAMGSQ
 1106

16534738,






CPELQGGPEPQR


16535238,






PSSRRREI (SEQ


22701945,






ID NO: 117)
















TABLE 2







The 50 human breast cancer cell lines.










No.
Cell Line
ATCC_Name
Tissue













1
MCF-10A
CRL-10317
Breast


2
BT-474
HTB-20
Breast


3
Hs 319.T
CRL-7236
Breast


4
HCC1428
CRL-2327
Breast


5
HCC1599
CRL-2331
Breast


6
Hs 605.T
CRL-7365
Breast


7
Hs 362.T
CRL-7253
Breast


8
ZR-75-1
CRL-1500
Breast


9
MCF-7
HTB-22
Breast


10
Hs 281.T
CRL-7227
Breast


11
HCC1500
CRL-2329
breast


12
BT-20
HTB-19
breast


13
HCC1143
CRL-2321
breast


14
UACC-812
CRL-1897
breast


15
SW527
CRL-7940
breast


16
MDA-MB-453
HTB-131
breast


17
ZR-75-30
CRL-1504
breast


18
MDA-MB-468
HTB-132
breast


19
HCC1187
CRL-2322
breast


20
SK-BR-3
HTB-30
breast


21
MDA-MB-175-VII
HTB-25
breast


22
Hs 574.T
CRL-7345
breast


23
HCC 1008
CRL-2320
breast


24
Hs 742.T
CRL-7482
breast


25
Hs 748.T
CRL-7486
breast


26
BT-483
HTB-121
breast


27
HCC202
CRL-2316
breast


28
HCC 2157
CRL-2340
breast


29
BT-549
HTB-122
breast


30
MDA-MB-415
HTB-128
breast


31
HCC1395
CRL-2324
breast


32

HTB-127
breast


33
MDA-MB-231
HTB-26
breast


34
CAMA-1
HTB-21
breast


35
MDA-MB-134-VI
HTB-23
breast


36
Hs 606.T
CRL-7368
breast


37
HCC1806
CRL-2335
breast


38
HCC1419
CRL-2326
breast


39
AU565
CRL-2351
breast


40
HCC1937
CRL-2336
breast


41
Hs 578T
HTB-126
breast


42
Hs 739.T
CRL-7477
breast


43
DU4475
HTB-123
breast


44
HCC70
CRL-2315
breast


45
HCC38
CRL-2314
breast


46
HCC1954
CRL-2338
breast


47
MB 157
CRL-7721
breast


48
HCC2218
CRL-2343
breast


49
Hs 343.T
CRL-7245
breast


50
UACC-893
CRL-1902
breast
















TABLE 3







Mouse mis-splicing FS antigens in the vaccine









Antigen
Peptide



Name
size
peptide sequence





ZDHHC17
21
AVLLMCQLYQPWMCKEYYRLL


FS

(SEQ ID NO: 118)





SLAIN2
21
IPRMQPQASANHCQLLKVMVA


FS

(SEQ ID NO: 119)





mSMC1A-
27
TAIIGPNGSGCSGVYCHEEPQGEDSSV


1{circumflex over ( )}4

(SEQ ID NO: 120)





RBM FS
45
GRVIECDVVKGSCQDGEAVHWKSAPGGHRAGD




PLTLRAVREGAGM (SEQ ID NO: 121)
















TABLE 4







Three mouse MS FS antigens with predicted H2-D epitope












Antigen

MS

Peptide



ID
Access #
type
INDEL
size
peptide sequence (Kd/Ld epitope score > 20)





MS927
NM_053009.3
 9_A
Del
33
ICMSPPLLWATLQAPETTSAACKASYRPEGLYL (SEQ ID NO:







122)





MS255
NM_010086.4
 9_A
In
24
YFSCDKRCIKHYAGNKSLLTFSGY (SEQ ID NO: 123)





MS518
NM_153511.3
10_A
Del
59
TLCMEVMLRWNTRELGYLYLQLCFLNTHFLHTSQEEKLLTLGR



















FLTWTSRCGSFVIRPL (SEQ

ID NO: 124)
















TABLE 5







Samples tested on Human 400K FS array










Number of



Sample Type
Samples
Source












Breast Cancer
17
UT Southwestern


Lung Cancer
17
UT Southwestern


GBM
17
Barrows Neurological




Institute


Pancreatic Cancer
17
TGEN


Pancreatic Cancer Stage 1
13
TGEN


Gastric Cancer
17
Japan


Control
64
Varied Sources
















TABLE 6





Three ORFs of Sec62 gene















Sec62-12A:


atggcggagcgcaggagacacaagaagcggatccaggaagttggtgaaccatctaaagaagagaaggctgtagccaagtatcttcgattta


actgtccaacaaagtctaccaatatgatggggcaccgagttgattatttcattgcttcaaaagcagtggattgccttttggattcaaagtgggcaa


aggccaagaaaggagaggaagctttatttacaacaagggagtctgtggttgactactgcaacaggcttttaaagaagcagttttttcaccgggc


actaaaagtaatgaaaatgaagtatgataaagacataaaaaaagaaaaagagaaaggaaaggccgaaagtggaaaagaagaagataaaaa


gagcaggaaagaaaatctaaaggatgaaaagacgaaaaaggagaaagaaaaaaaaaaaagatggggaaaaggaagaggattacaagga


cgacgacgacaagtgaaattcatggtgagcaagggcgaggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgta


aacggccacaagttcagcgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccctgaagttcatctgcaccaccggcaag


ctgcccgtgccctggcccaccctcgtgaccaccctgacctacggcgtgcagtgcttcagccactaccccgaccacatgaagcagcacgactt


cttcaagtccgccatgcccgaaggctacgtccaggagcgcaccatcttcttcaaggacgacggcaactacaagacccgcgccgaggtgaa


gttcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgacttcaaggaggacggcaacatcctggggcacaagctggagta


caactacaacagccacaacgtctatatcatggccgacaagcagaagaacggcatcaaggtgaacttcaagatccgccacaacatcgaggac


ggcagcgtgcagctcgccgaccactaccagcagaacacccccatcggcgacggccccgtgctgctgcccgacaaccactacctgagcac


ccagtccgccctgagcaaagaccccaacgagaagcgcgatcacatggtcctgctggagttcgtgaccgccgccgggatcactctcggcatg


gacgagctgtacaagagatctggtaccacgcgtatcgataagcttgcatgcctgcaggtcgactctagaggatcgtga (SEQ ID NO:


125);





Sec62- 11A:


atggcggagcgcaggagacacaagaagcggatccaggaagttggtgaaccatctaaagaagagaaggctgtagccaagtatcttcgattta


actgtccaacaaagtctaccaatatgatggggcaccgagttgattatttcattgcttcaaaagcagtggattgccttttggattcaaagtgggcaa


aggccaagaaaggagaggaagctttatttacaacaagggagtctgtggttgactactgcaacaggcttttaaagaagcagttttttcaccgggc


actaaaagtaatgaaaatgaagtatgataaagacataaaaaaagaaaaagagaaaggaaaggccgaaagtggaaaagaagaagataaaaa


gagcaggaaagaaaatctaaaggatgaaaagacgaaaaaggagaaagaaaaaaaaaaaagatggggaaaaggaagaggattacaagga


cgacgacgacaagtgaaattcatggtgagcaagggcgaggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgta


aacggccacaagttcagcgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccctgaagttcatctgcaccaccggcaag


ctgcccgtgccctggcccaccctcgtgaccaccctgacctacggcgtgcagtgcttcagccactaccccgaccacatgaagcagcacgactt


cttcaagtccgccatgcccgaaggctacgtccaggagcgcaccatcttcttcaaggacgacggcaactacaagacccgcgccgaggtgaa


gttcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgacttcaaggaggacggcaacatcctggggcacaagctggagta


caactacaacagccacaacgtctatatcatggccgacaagcagaagaacggcatcaaggtgaacttcaagatccgccacaacatcgaggac


ggcagcgtgcagctcgccgaccactaccagcagaacacccccatcggcgacggccccgtgctgctgcccgacaaccactacctgagcac


ccagtccgccctgagcaaagaccccaacgagaagcgcgatcacatggtcctgctggagttcgtgaccgccgccgggatcactctcggcatg


gacgagctgtacaagagatctggtaccacgcgtatcgataagcttgcatgcctgcaggtcgactctagaggatcgtga (SEQ ID NO:


126);





Sec62-Non MS:


atggcggagcgcaggagacacaagaagcggatccaggaagttggtgaaccatctaaagaagagaaggctgtagccaagtatcttcgattta


actgtccaacaaagtctaccaatatgatggggcaccgagttgattatttcattgcttcaaaagcagtggattgccttttggattcaaagtgggcaa


aggccaagaaaggagaggaagctttatttacaacaagggagtctgtggttgactactgcaacaggcttttaaagaagcagttttttcaccgggc


actaaaagtaatgaaaatgaagtatgataaagacataaaaaaagaaaaagagaaaggaaaggccgaaagtggaaaagaagaagataaaaa


gagcaggaaagaaaatctaaaggatgaaaagacgaaaaaggagaaagagaggaagagagatggggaaaaggaagaggattacaagga


cgacgacgacaagtgaaattcatggtgagcaagggcgaggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgta


aacggccacaagttcagcgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccctgaagttcatctgcaccaccggcaag


ctgcccgtgccctggcccaccctcgtgaccaccctgacctacggcgtgcagtgcttcagccactaccccgaccacatgaagcagcacgactt


cttcaagtccgccatgcccgaaggctacgtccaggagcgcaccatcttcttcaaggacgacggcaactacaagacccgcgccgaggtgaa


gttcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgacttcaaggaggacggcaacatcctggggcacaagctggagta


caactacaacagccacaacgtctatatcatggccgacaagcagaagaacggcatcaaggtgaacttcaagatccgccacaacatcgaggac


ggcagcgtgcagctcgccgaccactaccagcagaacacccccatcggcgacggccccgtgctgctgcccgacaaccactacctgagcac


ccagtccgccctgagcaaagaccccaacgagaagcgcgatcacatggtcctgctggagttcgtgaccgccgccgggatcactctcggcatg


gacgagctgtacaagagatctggtaccacgcgtatcgataagcttgcatgcctgcaggtcgactctagaggatcgtga (SEQ ID NO:


127).




















TABLE 7






up-
down-




Trans-
stream
stream




splicing
gene
gene




ID
ACC#
ACC#
up WT sequence
down stream FS sequence







BOLA2_
NM_
NM_
MASAKSLDRWKARLLEGGST
LLNR (SEQ ID NO: 129)


Exon2_
001031827.1
015092.3
ALTYALVRAEVSFPAEVAPV



SMG1_


RQQGSVAGARAGVVSLLGCR



Exon12


SSWTAAMELSAEYLREKLQR






DLEAEHVEVEDTTLNRCSCSF






RVLVVSAKFEGKPLLQRHR






(SEQ ID NO: 128)






GFOD1_
NM_
NM_
MLPGVGVFGTSLTARVIIPLL
EPGHQRKKISRQKNTGEKKMP


Exon1_
018988.2
033069.2
KDEGFAVKALWGRTQEEAEE
RGSVQLSFCSLQHPHMGHLFTP


C6orf114_


LAKEMSVPFYTSRIDEVLLHQ
HDAALGESQGTGFKPLGMQPV


Exon2


DVDLVCINLPPPLTRQIAVKT
(SEQ ID NO: 131)





L (SEQ ID NO: 130)






MDS1_
NM_
NM_
MRSKGRARKLATNNECVYG
ILDEFYNVKFCIDASQPDVGSW


Exon2_EVI1_
004991.2
001105078.2
NYPEIPLEEMPDADGVASTPS
LKYIRFAGCYDQHNLVACQIND


Exon4


LNIQEPCSPATSSEAFTPKEGS
QIFYRVVADIAPGEELLLFMKS





PYKAPIYIPDDIPIPAEFELRES
EDYPHETMAPDIHEERQYRCED





NMPGAGLGIWTKRKIEVGEK
CDQLFESKAELADHQKFPCSTP





FGPYVGEQRSNLKDPSYGWE
HSAFSMVEEDFQQKLESENDLQ





(SEQ ID NO: 132)
EIHTIQECKECDQVFPDLQSLEK






HMLSHTEEREYKCDQCPKAFN






WKSNLIRHQMSHDSGKHYECE






NCAKVFTDPSNLQRHIRSQHVG






ARAHACPECGKTFATSSGLKQ






HKHIHSSVKPFICEV (SEQ ID






NO: 133)





C11orf79
NM_
NM_
MAVSTVFSTSSLMLALSRHSL
GPEGPFRHPGARASGHHGAGA


_Exon3_
017841.1
145017.1
LSPLLSVTSFRRFYRGDSPTDS
QGSASAPPAAGPGPAGAGELPT


C11orf66_


QKDMIEIPLPPWQERTDESIET
WPTLHDVGVQFQVSQGPSRPA


Exon5


KRARLLYESRKRGMLENCILL
RFLAEEIDRRKGGEWLHQTVPP





SLFAKEHLQHMTEKQLNLYD
EPHCLPTALTGPPWGPCPPPRPE





RLINEPSNDWDIYYWAT
CHQVRLPPQDSPTWR (SEQ ID





(SEQ ID NO: 134)
NO: 135)





ABHD14A_
NM_
NM_
MVGALCGCWFRLGGARPLIP
AHHAQRHDQQGSRGGAPIGDA


Exon3
015407.3
000666.13
LGPTVVQTSMSQSQVALLGL
LPPVPAYPHCPAQA (SEQ ID


_ACY1_


SLLLMLLLYVGLPGPPEQTSC
NO: 137)


Exon2


LWGDPNVTVLAGLTPGNSPIF






YREVLPLNQAHRVEVVLLHG






KAFNSHTWEQLGTLQLLSQR






GYRAVALDLP (SEQ ID NO:






136)






RBM14_
NM_
NM_
MKIFVGNVDGADTTPEELAA
GSCQDGEAVHRKPAPGGYRAG


NA_RBM4_
006328.3
002896.2
LFAPYGTVMSCAVMKQFAFV
DSLTLRAVWEGAGM (SEQ ID


Exon2


HMRENAGALRAIEALHGHEL
NO: 139)





RPGRALVVEMSRPRPLNTWK






IFVGNVSAACTSQELRSLFER






RGRVIECDVVK (SEQ ID NO:






138)






C20orf29
NM_
NM_
MVHAFLIHTLRAPNTEDTGLC
SLVSSQSIHPSWGQSPLSRI


_Exon2_
018347.1
020746.3
RVLYSCVFGAEKSPDDPRPH
(SEQ ID NO: 141)


VISA_


GAERDRLLRKEQILAVA



Exon2


(SEQ ID NO: 140)






RRM2_
NM_
NM_
MLSLRVPLAPITDPQQLQLSP
LGDREVQSRWSPGPRGDSTPVR


Exon9_
001034.1
182626.1
LKGLSLVDKENTPPALSGTRV
EMETNHPPSVRG (SEQ ID NO:


C20rf48_


LASKTARRIFQEPTEPKTKAA
143)


Exon2


APGVEDEPLLRENPRRFVIFPI






EYHDIWQMYKKAEASFWTA






EEVDLSKDIQHWESLKPEERY






FISHVLAFFAASDGIVNENLV






ERFSQEVQITEARCFYGFQIA






MENIHSEMYSLLIDTYIKDPK






EREFLFNAIETMPCVKKKAD






WALRWIGDKEATYGERVVA






FAAVEGIFFSGSFASIFWLKKR






GLMPGLTFSNELISRDEGLHC






DFACLMFKHLVHKPSEERVR






EIIINAVRIEQEFLTEALPVKLI






GMNCTLMKQYIEFVADRLML






ELGFSKV
(SEQ ID NO: 142)





ELAC1_E
NM_
NM_
MSMDVTFLGTGAAYPSPTRG
YPEYMSNNFPCNVSCCFSLFPK


Exon2_
018696.2
005359.5
ASAVVLRCEGECWLFDCGEG
DQNCFRNWRHI (SEQ ID NO:


SMAD4_


TQTQLMKSQLKAG (SEQ ID
145)


Exon2


NO: 144)






BCAS4_
NM_
NM_
MQRTGGGAPRPGRNHGLPGS
VPLTGA (SEQ ID NO: 147)


Exon1_
001010974.1
001099432.1
LRQPDPVALLMLLVDADQPE



BCAS3_


PMRSGARELALFLTPEPGAE



Exon24


(SEQ ID NO: 146)






C22orf39
NM_
NM_
MADGSGWQPPRPCEAYRAE
ASRFFQLIFTLTGPSSQLEDKGR


_Exon2_
173793.3
003325.3
WKLCRSARHFLHHYYVHGE
ILGRL (SEQ ID NO: 149)


HIRA_


RPACEQWQRDLASCRDWEE



Exon2


RRNAEAQ (SEQ ID NO: 148)






PMF1_Exon4_
NM_
NM_
MAEASSANLGSGCEEKRHEG
VRSPAVQSPAKVQPLCPSRRAA


BGLAP_
007221.2
199173.3
SSSESVPPGTTISRVKLLDTM
R (SEQ ID NO: 151)


{circumflex over ( )}Exon4


VDTFLQKLVAAGSYQRFTDC






YKCFYQLQPAMTQQIYDKFI






AQLQTSIREEISDIKEEGNLEA






VLNALDKIVEEGKVRKEPAW






RPSGIPEKDLHSVMAPYFLQQ






RDTLRRHVQKQEAENQQLAD






AVLAGRRQVEELQLQVQAQ






QQAWQ (SEQ ID NO: 150)






SDHD_
NM_
NM_
MAVLWRLSAVCGALGGRAL
CLQCQIVHSCPLLENQIHLSLKF


Exon3_
003002.1
031275.4
LLRTPVVRPAHISAFLQDRPIP
PDYFIKMKPWRKI (SEQ ID


TEX12_


EWCGVQHIHLSPSHHSGSKA
NO: 153)


Exon3


ASLHWTSERVVSVLLLGLLP






AAYLNPCSAMDYSLAAALTL






HGH (SEQ ID NO: 152)






PRR13_
NM_
NM_
MWNPNAGGPPHPVPQPGYPG
FLAFTPNQ (SEQ ID NO: 155)


Exon3b_
001005354.2
001128914.1
CQPLGPYPPPYPPPAPGIPPVN



PCBP2_


PLAPGMVGPAVIVDKKMQK



Exon2


KMKKAHKKMHKHQKHHKY






HKHGK (SEQ ID NO: 154)






RMND5A
NM_
NM_
MDQCVTVERELEKVLHKFSG
DSL (SEQ ID NO: 157)


_Exon2_
022780.2
022662.2
YGQLCERGLEELIDYTGGLK



ANAPC1


HEILQSHGQDAELSGTLSLVL



_Exon25


TQCCKRIKDTVQKLASDHKDI






HSSVSRVGKAIDK (SEQ ID






NO: 156)






TYMP_
NM_
NM_
MAALMTPGTGAPPAPGDFSG
ASDPCCC (SEQ ID NO: 159)


Exon9_
001113756.1
005138.2
EGSQGLPDPSPEPKQLPELIR



SCO2_Exon2


MKRDGGRLSEADIRGFVAAV






VNGSAQGAQIGAMLMAIRLR






GMDLEETSVLTQALAQSGQQ






LEWPEAWRQQLVDKHSTGG






VGDKVSLVLAPALAACGCKV






PMISGRGLGHTGGTLDKLESI






PGFNVIQSPEQMQVLLDQAG






CCIVGQSEQLVPADGILYAAR






DVTATVDSLPLITASILSKKLV






EGLSALVVDVKFGGAAVFPN






QEQARELAKTLVGVGASLGL






RVAAALTAMDKPLGRCVGH






ALEVEEALLCMDGAGPPDLR






DLVTTLGGALLWLSGHAGTQ






AQGAARVAAALDDGSALGR






FERMLAAQGVDPGLARALCS






GSPAERRQLLPRAREQEELLA






PADGTVELVRALPLALVLHE






LGAGRSRAGEPLRLGVGAEL






LVDVGQRLRRG (SEQ ID






NO: 158)






NAIP_
NM_
NM_
MATQQKASDERISQFDHNLL
G (SEQ ID NO: 161)


Exon13_
004536.2
002538.2
PELSALLGLDAVQLAKELEEE



OCLN_Exon5


EQKERAKMQKGYNSQMRSE






AKRLKTFVTYEPYSSWIPQEM






AAAGFYFTGVKSGIQCFCCSL






ILFGAGLTRLPIEDHKRFHPDC






GFLLNKDVGNIAKYDIRVKN






LKSRLRGGKMRYQEEEARLA






SFRNWPFYVQGISPCVLSEAG






FVFTGKQDTVQCFSCGGCLG






NWEEGDDPWKEHAKWFPKC






EFLRSKKSSEEITQYIQSYKGF






VDITGEHFVNSWVQRELPMA






SAYCNDSIFAYEELRLDSFKD






WPRESAVGVAALAKAGLFYT






GIKDIVQCFSCGGCLEKWQE






GDDPLDDHTRCFPNCPFLQN






MKSSAEVTPDLQSRGELCELL






ETTSESNLEDSIAVGPIVPEMA






QGEAQWFQEAKNLNEQLRA






AYTSASFRHMSLLDISSDLAT






DHLLGCDLSIASKHISKPVQE






PLVLPEVFGNLNSVMCVEGE






AGSGKTVLLKKIAFLWASGC






CPLLNRFQLVFYLSLSSTRPD






EGLASIICDQLLEKEGSVTEM






CVRNIIQQLKNQVLFLLDDYK






EICSIPQVIGKLIQKNHLSRTC






LLIAVRTNRARDIRRYLETILE






IKAFPFYNTVCILRKLFSHNM_






TRLRKFMVYFGKNQSLQKIQ






KTPLFVAAICAHWFQYPFDPS






FDDVAVFKSYMERLSLRNKA






TAEILKATVSSCGELALKGFF






SCCFEFNDDDLAEAGVDEDE






DLTMCLMSKFTAQRLRPFYR






FLSPAFQEFLAGMRLIELLDS






DRQEHQDLGLYHLKQINSPM






MTVSAYNNFLNYVSSLPSTK






AGPKIVSHLLHLVDNKESLEN






ISENDDYLKHQPEISLQMQLL






RGLWQICPQAYFSMVSEHLL






VLALKTAYQSNTVAACSPFV






LQFLQGRTLTLGALNLQYFFD






HPESLSLLRSIHFPIRGNKTSP






RAHFSVLETCFDKSQVPTIDQ






DYASAFEPMNEWERNLAEKE






DNVKSYMDMQRRASPDLST






GYWKLSPKQYKIPCLEVDVN






DIDVVGQDMLEILMTVFSAS






QRIELHLNHSRGFIESIRPALE






LSKASVTKCSISKLELSAAEQ






ELLLTLPSLESLEVSGTIQSQD






QIFPNLDKFLCLKELSVDLEG






NINVFSVIPEEFPNFHHMEKLL






IQISAEYDPSKL (SEQ ID NO:






160)






C1orf151
NM_
NM_
MSESELGRKWDRCLADAVV
LWRPRA (SEQ ID NO: 163)


_Exon1_
001032363.1
182744.2
KIG (SEQ ID NO: 162)



NBL1_Exon3









DDIT3_
NM_
NM_
MAAESLPFSFGTLSSWELEA
LPLGASGGFPSATANCFFRSKSF


{circumflex over ( )}Exon3_
004083.4
004990.2
WYEDLQEVLSSDENGGTYVS
ATSAATSFLSAFCAFSSRTMFPC


MARS_{circumflex over ( )}Exon21


PP (SEQ ID NO: 164)
FVTSSISACICCGLAVVTVSTTA






GFGDVFAWPPPKRCLKLSIWSF






SNFWNKGLTVPIWCPAGKVHR






KFVSRILQAGGGSCSWAWIVAL






TVGM (SEQ ID NO: 165)





RIPK3_
NM_
NM_
MSCVKLWPSGAPAPLVSIEEL
ADLRPELPDHCAVRAGRLLAA


Exon9_ADCY4_
006871.3
139247.2
ENQELVGKGGFGTVFRAQHR
AGPRFPGAATAALDASPVRLG


Exon2


KWGYDVAVKIVNSKAISREV
MGRAASARPRLPVHRGRGERL





KAMASLDNEFVLRLEGVIEK
GPGVLFSLRHLHGVCHAALGH





VNWDQDPKPALVTKFMENG
AGRRRRGPRLLTLASAGPRAVS





SLSGLLQSQCPRPWPLLCRLL
WATAGLTACTAAAVGSKRSAV





KEVVLGMFYLHDQNPVLLHR
PVRERGRSVPQGADGARPAGH





DLKPSNVLLDPELHVKLADF
VPGGTQLPALTPAAGHREEAPG





GLSTFQGGSQSGTGSGEPGGT
TPSLVHPSCLPGPRDEGRDHGT





LGYLAPELFVNVNRKASTAS
AAGRTGVTAREH (SEQ ID NO:





DVYSFGILMWAVLAGREVEL
167)





PTEPSLVYEAVCNRQNRPSLA






ELPQAGPETPGLEGLKELMQL






CWSSEPKDRPSFQECLPKTDE






VFQMVENNMNAAVSTVKDF






LSQLRSSNRRFSIPESGQGGTE






MDGFRRTIENQHSRNDVMVS






EWLNKLNLEEPPSSVPKKCPS






LTKRSRAQEEQVPQAWTAGT






SSDSMAQPPQTPETSTFRNQM






PSPTSTGTPSPGPRGNQGAER






QGMNWSCRTPEPNPVTG






(SEQ ID NO: 166)






COMMD3_
NM_
NM_
MELSESVQKGFQMLADPRSF
GFFIKQKCIEQRESRSLS (SEQ


Exon1_
012071.2
005180.5
DSNAFTLLLRAAFQSLLDAQ
ID NO: 169)


BMI1_Exon2


ADEAVL (SEQ ID NO: 168)






MED8_
NM_
NM_
MQREEKQLEASLDALLSQVA
VLSQDGGCCELVPRGDEARRSP


#xon7c_
052877.3
022821.2
DLKNSLGSFICKLENEYGRLT
DPGLPSDGVPLANDLHSPDLRV


ELOVL1_


WPSVLDSFALLSGQLNTLNK
LRSLTWASHHG (SEQ ID NO:


Exon2


VLKHEKTPLFRNQVIIPLVLSP
171)





DRDEDLMRQTEGRVPVFSHE






VVPDHLRTKPDPEVEEQEKQ






LTTDAARIGADAAQKQIQSLN






KMCSNLLEKISKEERESESGG






LRPNKQTFNPTDTNALVAAV






AFGKGLSNWRPSGSSGPGQA






GQPGAGTILAGTSGLQQVQM






AGAPSQQQPMLSGVQMAQA






GQPGKMPSGIKTNIKSASMHP






YQR (SEQ ID NO: 170)






POLR2J3-
NM_
XM_
MNAPPAFESFLLFEGEKITINK
RACFPFAFCRDCQFPEASPATLS


{circumflex over ( )}Exon2_
001097615.1
001717094.1
DTKVPNACLFTMNKEDHTLG
VQPAEL (SEQ ID NO: 173)


UPK38_


NIIKS (SEQ ID NO: 172)



{circumflex over ( )}Exon7









BGLAP_
NM_
NM_
MAEASSANLGSGCEEKRHEG
VRSPAVQSPAKVQPLCPSRRAA


{circumflex over ( )}Exon2_
199173.3
007221.2
SSSESVPPGTTISRVKLLDTM
R (SEQ ID NO: 175)


pMF1_{circumflex over ( )}Exon5


VDTFLQKLVAAGSYQRFTDC






YKCFYQLQPAMTQQIYDKFI






AQLQTSIREEISDIKEEGNLEA






VLNALDKIVEEGKVRKEPAW






RPSGIPEKDLHSVMAPYFLQQ






RDTLRRHVQKQEAENQQLAD






AVLAGRRQVEELQLQVQAQ






QQAWQ (SEQ ID NO: 174)






TMEM199_
NM_
NM_
MASSLLAGERLVRALGPGGE
PRGAHWAGRDPEPGEGTRTRR


Exon5_
152464.1
015077.2
LEPERLPRKLRAELEAALGKK
AGAERGRHLGAHVQAFGGDM


SARM1_


HKGGDSSSGPQRLVSFRLIRD
PEAGGGRRPGRGAVLVPPHGP


Exon2


LHQHLRERDSKLYLHELLEGS
RAAAPLRAGAGQLRAARGPGG





EIYLPEVVKPPRNPELVARLE
AATHGREARSRVALPARLLQG





KIKIQLANEEYKRITRNVTCQ
GRAASAARLPRSSGVGD (SEQ





DTRHGGTLSDLGKQVRSLKA
ID NO: 177)





LVITIFNFIVTVVAAFVCTYLG






SQYIFTEMASR (SEQ ID NO:






176)






C1QTNF6
NM_
NM_
MQWLRVRESPGEATGHRVT
LPSSAPPCGCNGGPCSVLASAPP


_Exon2_
182486.1
000878.2
MGTAALGPVWAALLLFLLM
HPPPAPGYLLGICSGEWHFPVH


IL2RB_Exon2


CEIPMVELTFDRAVASGCQRC
MLLQLESQHLLCLEPRWGSAG





CDSEDPLDPAHVSSASSSGRP
HFLPSPCLAGQTAVEPNL (SEQ





HALPEIRPYINITILKG (SEQ
ID NO: 179)





ID NO: 178)






LOC100131434_
XM_
XM_
MDPASRGCLGPTPAFRHRKE
RPSTPCLHGAALHLHSGHGSGS


NA_
001713865.1
001714058.1
QSSASPRPSEATGARTMGSQA
RLTNSSCFPGTRRLLALQFTQQ


FLJ44451_


RRPPVIPFTKNETLFSLPGPDA
TGTVGHPTWQPVIR (SEQ ID


NA


RQPTRPRPGDLETGSLDEEPE
NO: 181)





GGKGTGGRKISRIDFITKFWV






PASGVPDETKRLLVLHPRCYF






QNSGLVVWSLHCSMSLLSNL






ESSVFLPSVRCAYFSLEKLEE






AGMLEM (SEQ ID NO: 180)






COX19_
NM_
NM_
MSTAMNFGTKSFQPRPPDKG
SRLGLLHSGRLHLPELLGNPPE


Exon2_
001031617.2
006869.2
SFPLDHLGECKSFKEKFMKCL
YPPGQQGEVRPPGRLGGGPSGV


CENTA1_Exon2


HNNNFENALCRKESKEYLEC
HGLPRERRRESQV (SEQ ID





RMER (SEQ ID NO: 182)
NO: 183)





ACSF2_
NM_
NM_
MAVYVGMLRLGRLCAGSSG
RNLRKKLQHGKMDSKAPMSC


Exon10_
025149.4
001267.2
VLGARAALSRSWQEARLQGV
(SEQ ID NO: 185)


CHAD_{circumflex over ( )}Exon4


RFLSSREVDRMVSTPIGGLSY






VQGCTKKHLNSKTVGQCLET






TAQRVPEREALVVLHEDVRL






TFAQLKEEVDKAASGLLSIGL






CKGDRLGMWGPNSYAWVL






MQLATAQAGIILVSVNPAYQ






AMELEYVLKKVGCKALVFPK






QFKTQQYYNVLKQICPEVEN






AQPGALKSQRLPDLTTVISVD






APLPGTLLLDEVVAAGSTRQ






HLDQLQYNQQFLSCHDPINIQ






FTSGTTGSPKGATLSHYNIVN






NSNILGERLKLHEKTPEQLRM






ILPNPLYHCLGSVAGTMMCL






MYGATLILASPIFNGKKALEA






ISRERGTFLYGTPTMFVDILN






QPDFSSYDISTMCGGVIAGSP






APPELIRAIINKINMKDLV






(SEQ ID NO: 184)






TIMM23
XM_
XM_
MEGGGGSGNKTTGGLAGFFG
VSEMALDSPFCVLLSGS (SEQ


B_NA_
928114.3
001719607.1
AGGAGYSHADLAGVPLTGM
ID NO: 187)


LOC100132418_


NPLSPYLNVDPRYLVQDTDEF



NA


ILPTGANKTRGRFELAFFTIGG






CCMTGAAFGAMNGLRLGLK






ETQNMAWSKPRNVQILNMV






TRQGALWANTLGSLALLYSA






FGVIIEKTRGAEDDLNTVAAG






TMTGMLYKCT (SEQ ID NO:






186)






NDUFA13_
NM_
NM_
MQEPRRVTPCLGKRGVKTPQ
GLGAAAPTCRHGKSGA (SEQ


Exon4_
015965.5
198537.2
LQPGSAFLPRVRRQSFPARSD
ID NO: 189)


YJEFN3_


SYTTVRDFLAVPRTISSASATL



Exon2


IMAVAVSHFRPGPEVWDTAS






MAASKVKQDMPPPGGYGPID






YKRNLPRRGLSGYSMLAIGIG






TLIYGHWSIMKWNRERRRLQ






IEDFEARIALLPLLQAETDRRT






LQMLRENLEEEAIIMKDVPD






WK (SEQ ID NO: 188)






ADHFE1
NM_
NM_
MAAAARARVAYLLRQLQRA
YPVQPEEEPKALSTS (S EQ ID


_Exon13_
144650.2
152765.3
ACQCPTHSHTYSQAPGLSPSG
NO: 191)


C8orf46_


KTTDYAFEMAVSNIRYGAAV



NA


TKEVGMDLKNMGAKNVCLM






TDKNLSKLPPVQVAMDSLVK






NGIPFTVYDNVRVEPTDSSFM






EAIEFAQKGAFDAYVAVGGG






STMDTCKAANLYASSPHSDF






LDYVSAPIGKGKPVSVPLKPL






IAVPTTSGTGSETTGVAIFDYE






HLKVKIGITSRAIKPTLGLIDP






LHTLHMPARVVANSGFDVLC






HALESYTTLPYHLRSPCPSNPI






TRPAYQGSNPISDIWAIHALRI






VAKYLKRAVRNPDDLEARSH






MHLASAFAGIGFGNAGVHLC






HGMSYPISGLVKMYKAKDY






NVDHPLVPHGLSVVLTSPAVF






TFTAQMFPERHLEMAEILGA






DTRTARIQDAGLVLADTLRK






FLFDLDVDDGLAAVGYSKAD






IPALVKGTLPQ (SEQ ID NO:






190)






HPS4_
NM_
NM_
MATSTSTEAKSASWWNYFFL
SNSCTS (SEQ ID NO: 193)


Exon13_
022081.4
020437.4
YDGSKVKEEGDPTRAGICYF



ASPHD2_{circumflex over ( )}Exon4


YPSQTLLDQQELLCGQIAGVV






RCVSDISDSPPTLVRLRKLKF






AIKVDGDYLWVLGCAVELPD






VSCKRFLDQLVGFFNFYNGP






VSLAYENCSQEELSTEWDTFI






EQILKNTSDLHKIFNSLWNLD






QTKVEPLLLLKAARILQTCQR






SPHILAGCILYKGLIVSTQLPP






SLTAKVLLHRTAPQEQRLPTG






EDAPQEHGAALPPNVQIIPVF






VTKEEAISLHEFPVEQMTRSL






ASPAGLQDGSAQHHPKGGST






SALKENATGHVESMAWTTPD






PTSPDEACPDGRKENGCLSGH






DLESIRPAGLHNSARGEVLGL






SSSLGKELVFLQEELDLSEIHI






PEAQEVEMASGHFAFLHVPV






PDGRAPYCKASLSASSSLEPT






PPEDTAISSLRPPSAPEMLTQH






GAQEQLEDHPGHSSQAPIPRA






DPLPRRTRRPLLLPRLDPGQR






GNKLPTGEQGLDEDVDGVCE






SHAAPGLECSSGSANCQGAG






PSADGISSRLTPAESCMGLVR






MNLYTHCVKGLVLSLLAEEP






LLGDSAAIEEVYHSSLASLNG






LEVHLKETLPRDEAASTSSTY






NFTHYDRIQSLLMANLPQVA






TPQDRRFLQAVSLMHSEFAQ






LPALYEMTV (SEQ ID NO:






192)






KIAA1267_
NM_
NM_
MAAMAPALTDAAAEAHHIRF
VSVWRQ (SEQ ID NO: 195)


Exon2_
015443.2
001113738.1
KLAPPSSTLSPGSAENNGNAN



ARL17P1


ILIAANGTKRKAIAAEDPSLDF



_Exon3


RNNPTKEDLGKLQPLVASYL






CSDVTSVPSKESLKLQGVFSK






QTVLKSHPLLSQSYELRAELL






GRQPVLEFSLENLRTMNTSG






QTALPQAPVNGLAKKLTKSS






THSDHDNSTSLNGGKRALTSS






ALHGGEMGGSESGDLKGGM






TNCTLPHRSLDVEHTTLYSNN






STANKSSVNSMEQPALQGSS






RLSPGTDSSSNLGGVKLEGKK






SPLSSILFSALDSDTRITALLRR






QADIESRARRLQKRLQVVQA






KQVERHIQHQLGGFLEKTLSK






LPNLESLRPRSQLMLTRKAEA






ALRKAASETTTSEGLSNFLKS






NSISEELERFTASGIANLRCSE






QAFDSDVTDSSSGGESDIEEE






ELTRADPEQRHVPLRRRSEW






KWAADRAAIVSRWNWLQAH






VSDLEYRIRQQTDIYKQIRAN






K (SEQ ID NO: 194)






LOC100129406_
XM_
NM_
MAGRPGSQEQSKDRGTGSLP
SIGHISTMLMAF (SEQ ID NO:


NA_
001722372.1
018704.2
PPSQRPLGPSPEGAGPSPPPPG
197)


CTTNBP2NL_


IPRGGGSSSSEGPHSYFLSLVD



NA


SQLLRRGFPLTPLIQRHLPPRT






SALAERTH (SEQ ID NO: 196)






RNF216_
NM_
NM_
MEEGNNNEEVIHLNNFHCHR
VYQPQSLHVSKSSRK (SEQ ID


Exon7_
207116.1
021163.3
GQEWINLRDGPITISDSSDEER
NO: 199)


RBAK_Exon2


IPMLVTPAPQQHEEEDLDDD






VILTEDDSEDDYGEFLDLGPP






GISEFTKPSGQTEREPKPGPSH






NQAANDIVNPRSEQKVIILEE






GSLLYTESDPLETQNQSSEDS






ETELLSNLGESAALADDQAIE






EDCWLDHPYFQSLNQQPREIT






NQVVPQERQPEAELGRLLFQ






HEFPGPAFPRPEPQQGGISGPS






SPQPAHPLGEFEDQQLASDDE






EPGPAFPMQESQEPNLENIWG






QEAAEVDQELVELLVKETEA






RFPDVANGFIEEIIHFKNYYDL






NVLCNFLLENPDYPKREDRIII






NPSSSLLASQDETKLPKIDFFD






YSKLTPLDQRCFIQAADLLM






ADFKVLSSQDIKWALHELKG






HYAITRK (SEQ ID NO: 198)






DEDD_
NM_
NM_
MAGLKRRASQVWPEEHGEQ
APSGLGL (SEQ ID NO: 201)


Exon4_
032998.2
005600.1
EHGLYSLHRMFDIVGTHLTH



NIT1_Exon6


RDVRVLSFLFVDVIDDHERGL






IRNGRDFLLALERQGRCDESN






FRQVLQLLRIITRHDLLPYVTL






KRRRA (SEQ ID NO: 200)






RAD54B_
NM_
XM_
MRRSAAPSQLQGNSFKKPKFI
QTWMRRHRLVPVHYR (SEQ


Exon3_
012415.2
001722896.1
PPGRSNPGLNEEITKLNPDIKL
ID NO: 203)


LOC100128414_


FEGVAINNTFLPSQNDLRICSL



NA


NLPSEESTREINNRDNCSGKY






CFEAPTLATLDPPHTV (SEQ






ID NO: 202)






TOPORS
NM_
NM_
MGSQPPLGSPLSREEGEAPPP
KRCSIFRLRKTTRAQWRLPHFF


_Exon2_
005802.2
014314.3
APASEGRRRSRRVRLRGSCR
SSSCWSSRRKAGSVAFWMP


DDX58_


HRPSFLGCRELAASAPARPAP
(SEQ ID NO: 205)


Exon2


ASSE (SEQ ID NO: 204)






NDUFC2
NM_
NM_
MIARRNPEPLRFLPDEARSLPP
VYCCGAERRG (SEQ ID NO:


_Exon2_
004549.4
023930.3
PKLTDPRLLYIGFLGYCSGLID
207)


KCTD14_


NLIRRRPIATAGLHRQLLYITA



Exon2


FFFAGYYLVKREDYLYAVRD






REMFGYMKLHPEDFPEED






(SEQ ID NO: 206)






LRRC57
NM_
NM_
MGNSALRAHVETAQKTGVF
SALSVIRFICGF (SEQ ID NO:


{circumflex over ( )}Exon5_
153260.2
003825.2
QLKDRGLTEFPADLQKLTSNL
209)


SNAP23_Exon8


RTIDLSNNKIESLPPLLIGKFTL






LKSLSLNNNKLTVLPDEICNL






KKLETLSLNNNHLRELPSTFG






QLSALKTLSLSGNQLGALPPQ






LCSLRHLDVMDLSKNQIRSIP






DSVGELQVIELNLNQNQISQIS






VKISCCPRLKILRL (SEQ ID






NO: 208)






IPO11_NA_
NM_
NM_
MVQPIIHLGYVVYSLLYLGY
LASKGP (SEQ ID NO: 211)


SLRN_
001134779.1
181506.4
KPVQHVTALNTVSSCHKMVS



NA


MDLNSASTVVLQVLTQATSQ






DTAVLKPAEEQLKQWETQPG






FYSVLLNIFTNHTLDINVRWL






AVLYFKHGIDRYWRRVAPHA






LSEEEKTTLRAGLITNFNEPIN






QIATQIAVLIAKVARLDCPRQ






WPELIPTLIESVKVQDDLRQH






RALLTFYHVTKTLASKRLAA






DRKLFYDLASGIYNFACSLW






NHHTDTFLQEVSSGNEAAILS






SLERTLLSLKVLRKLTVNGFV






EPHKNMEVMGFLHGIFERLK






QFLECSRSIGTDNVCRDRLEK






TIILFTKVLLDFLDQHPFSFTP






LIQRSLEFSVSYVFTEVGEGV






TFERFIVQCMNLIKMIVKNYA






YKPSKNFEDSSPETLEAHKIK






MAFFTYPTLTEICRRLVSHYF






LLTEEELTMWEEDPEGFTVEE






TGGDSWKYSLRPCTEVLFIDI






FHEYNQTLTPVLLEMMQTLQ






GPTNVEDMNALLIKDAVYNA






VGLAAYELFDSVDFDQWFKN






QLLPELQVIHNRYKPLRRRVI






WLIGQWISVKFKSDLRPMLY






EAICNLLQDQDLVVRIETATT






LKLTVDDFEFRTDQFLPYLET






MFTLLFQLLQQVTECDTKMH






VLHVLSCVIERVNMQIRPYVG






CLVQYLPLLWKQSEEHNMLR






CAILTTLIHLVQGLGADSKNL






YPFLLPVIQLSTDVSQPPHVY






LLEDGLELWLVTLENSPCITP






ELLRIFQNMSPLLELSSENLRT






CFKIINGYIFLSSTEFLQTYAV






GLCQSFCELLKEITTEGQVQV






LKVVENALKVNPILGPQMFQ






PILPYVFKGIIEGERYPVVMST






YLGVMGRVLLQNTSFFSSLL






NEMAHKFNQEMDQLLGNMI






EMWVDRMDNITQPERRKLSA






LALLSLLPSDNS (SEQ ID NO:






210)






SNRPF_
NM_
NM_
MSLPLNPKPFLNGLTGKPVM
QDFHLHLGNIETK (SEQ ID


Exon2_
003095.2
182496.1
VKLKWGMEYKGYLVSVDGY
NO: 213)


CCDC38_


MNMQ (SEQ ID NO: 212)



{circumflex over ( )}Exon12









RNF139_
NM_
NM_
MAAVGPPQQQVRMAHQQV
ETNTDTLLV (SEQ ID NO: 215)


Exon1_
007218.3
005005.2
WAALEVALRVPCLYIIDAIFN



NDUFB9_


SYPDSSQSRFCIVLQIFLRLF



Exon2


(SEQ ID NO: 214)






NDUFB8
NM_
NM_
MAVARAGVLGVQWLQRASR
DRP (SEQ ID NO: 217)


_Exon4_
005004.2
015490.3
NVMPLGARTASHMTKDMFP



SEC31B_


GPYPRTPEERAAAAKKYNMR



{circumflex over ( )}Exon2


VEDYEPYPDDGMGYGDYPK






LPDRSQHERDPWYSWDQPGL






RLNWGEPMHWHLDMYNRN






RVDTSPTPVSWHVMCMQLFG






FLAFMIFMCWVGDVYPVYQP






V (SEQ ID NO: 216)






MIA_Exon3_
NM_
NM_
MARSLVCLGVIILLSAFSGPG
TSSSNSW (SEQ ID NO: 219)


RAB4B_
006533.2
016154.3
VRGGPMPKLADRKLCADQEC



Exon2


SHPISMAVALQDYMAPDCRF






LTIHRGQVVYVFSKLKGRGR






LFWGGSVQGDYYGDLAARL






GYFPSSIVREDQTLKPGKVDV






KTD (SEQ ID NO: 218)






THAP2_
NM_
NM_
MPTNCAAAGCATTYNKHINI
VTYDLFLRGVGCFLLLFLF


Exon2_
031435.2
018279.3
SFHRFPLDPKRRKEWVRLVR
(SEQ ID NO: 221)


TMEM19_


RKNFVPGKHTFLCSKHFEASC



Exon2


FDLTGQTRRLKMDAVPTIFDF






CTHIKSM (SEQ ID NO: 220)






NITl_
NM_
NM_
MLGFITRPPHRFLSLLCPGLRI
QPVSS (SEQ ID NO: 223)


Exon6_DEDD
005600.1
032998.2
PQLSVLCAQPRPRAMAISSSS



_Exon4


CELPLVAVCQVTSTPDKQQN






FKTCAELVREAARLGACLAF






LPEAFDFIARDPAETLHLSEPL






GGKLLEEYTQLARECGLWLS






LGGFHERGQDWEQTQKIYNC






HVLLNSKGAVVATYRKTHLC






DVEIPGQGPMCESNSTMPGPS






LESPVSTPAGKIGLAVCYDMR






FPELSLALAQAGAEILTYPSAF






GSITGPAHWE (SEQ ID NO:






222)









While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.

Claims
  • 1. A method of detecting a cancer in a subject, the method comprising: (a) contacting a biological sample obtained from a subject to a peptide array comprising a plurality of frameshift variant peptides, (i) wherein the plurality of frameshift variant peptides comprise peptides encoded by genes having a variant in a microsatellite (MS) in a coding region of the gene; or (ii) wherein the plurality of frameshift variant peptides comprise peptides encoded by a mRNA having an RNA processing error; and (b) detecting binding of the biological sample to at least one peptide in the peptide array.
  • 2. The method of claim 1, wherein the plurality of frameshift variant peptides comprise one or more peptides provided in any one of Tables 1 or 7.
  • 3. The method of claim 1, wherein the plurality of frameshift variant peptides are fixed on a substrate.
  • 4. The method of claim 3, wherein the substrate comprises glass, composite, resin, or combination thereof.
  • 5. The method of claim 1, wherein detecting binding comprises at least one of fluorescence, luminescence, calorimetry, chromatography, radioactivity, Bio-Layer Interferometry, and surface plasmon resonance.
  • 6. The method of claim 1, wherein the peptide array comprises at least about 25,000, about 50,000, about 75,000, about 100,000, about 125,000, about 150,000, about 175,000, about 200,000, about 225,000, about 250,000, about 275,000, about 300,000, about 325,000, about 350,000, about 375,000, or about 400,000 frameshift variant peptides.
  • 7. The method of claim 1, wherein the biological sample comprises blood, serum, plasma, cerebrospinal fluid, saliva, urine, or combinations thereof.
  • 8. The method of claim 1, wherein the biological sample comprises an antibody.
  • 9. The method of claim 1, wherein the subject is a mammal.
  • 10. The method of claim 1, wherein the subject is a human, a dog, a cat, a mouse, a rat, a rabbit, a horse, a cow, or a pig.
  • 11. The method of claim 1, wherein the subject is suspected of having a cancer.
  • 12. The method of claim 1, wherein the cancer is selected from the group consisting of acute lymphoblastic leukemia, acute monocytic leukemia, acute myeloid leukemia, acute promyelocytic leukemia, adenocarcinoma, adult T-cell leukemia, astrocytoma, bladder cancer, bone cancer, brain tumor, breast cancer, Burkitt's lymphoma, carcinoma, cervical cancer, chronic lymphocytic leukemia, chronic myelogenous leukemia, colon cancer, colorectal cancer, endometrial cancer, glioblastoma multiforme, glioma, hepatocellular carcinoma, Hodgkin's lymphoma, inflammatory breast cancer, kidney cancer, leukemia, lung cancer, lymphoma, malignant mesothelioma, medulloblastoma, melanoma, multiple myeloma, neuroblastoma, non-Hodgkin lymphoma, non-small cell lung cancer, ovarian cancer, pancreatic cancer, pituitary tumor, prostate cancer, retinoblastoma, skin cancer, small cell lung cancer, squamous cell carcinoma, stomach cancer, T-cell leukemia, T-cell lymphoma, thyroid cancer, and Wilms' tumor.
  • 13. A method of measuring an immune response to a neoantigen peptide in a subject, the method comprising: (a) contacting a biological sample obtained from a subject to a peptide array comprising a plurality of frameshift variant peptides, (i) wherein the plurality of frameshift variant peptides comprise peptides encoded by genes having a variant in a microsatellite (MS) in a coding region of the gene; or (ii) wherein the plurality of frameshift variant peptides comprise peptides encoded by a mRNA having an RNA processing error; and (b) detecting binding of the biological sample to at least one peptide in the peptide array.
  • 14. The method of claim 13, wherein the plurality of frameshift variant peptides comprise one or more peptides provided in any one of Tables 1 or 7.
  • 15. The method of claim 13, wherein the plurality of frameshift variant peptides are fixed on a substrate.
  • 16. The method of claim 15, wherein the substrate comprises glass, composite, resin, or combination thereof.
  • 17. The method of claim 13, wherein detecting binding comprises at least one of fluorescence, luminescence, calorimetry, chromatography, radioactivity, Bio-Layer Interferometry, and surface plasmon resonance.
  • 18. The method of claim 13, wherein the peptide array comprises at least about 25,000, about 50,000, about 75,000, about 100,000, about 125,000, about 150,000, about 175,000, about 200,000, about 225,000, about 250,000, about 275,000, about 300,000, about 325,000, about 350,000, about 375,000, or about 400,000 frameshift variant peptides.
  • 19. The method of claim 13, wherein the biological sample comprises blood, serum, plasma, cerebrospinal fluid, saliva, urine, or combinations thereof.
  • 20. The method of claim 13, wherein the biological sample comprises an antibody.
  • 21. The method of claim 13, wherein the subject is a mammal.
  • 22. The method of claim 13, wherein the subject is a human, a dog, a cat, a mouse, a rat, a rabbit, a horse, a cow, or a pig.
  • 23. The method of claim 13, wherein the subject is suspected of having a cancer.
  • 24. The method of claim 23, wherein the cancer is selected from the group consisting of acute lymphoblastic leukemia, acute monocytic leukemia, acute myeloid leukemia, acute promyelocytic leukemia, adenocarcinoma, adult T-cell leukemia, astrocytoma, bladder cancer, bone cancer, brain tumor, breast cancer, Burkitt's lymphoma, carcinoma, cervical cancer, chronic lymphocytic leukemia, chronic myelogenous leukemia, colon cancer, colorectal cancer, endometrial cancer, glioblastoma multiforme, glioma, hepatocellular carcinoma, Hodgkin's lymphoma, inflammatory breast cancer, kidney cancer, leukemia, lung cancer, lymphoma, malignant mesothelioma, medulloblastoma, melanoma, multiple myeloma, neuroblastoma, non-Hodgkin lymphoma, non-small cell lung cancer, ovarian cancer, pancreatic cancer, pituitary tumor, prostate cancer, retinoblastoma, skin cancer, small cell lung cancer, squamous cell carcinoma, stomach cancer, T-cell leukemia, T-cell lymphoma, thyroid cancer, and Wilms' tumor.
  • 25. The method of claim 13, wherein the plurality of frameshift variant peptides comprise two or more pooled frameshift peptides.
  • 26. A peptide array comprising a plurality of frameshift variant peptides, (i) wherein the plurality of frameshift variant peptides comprise peptides encoded by genes having a variant in a microsatellite (MS) in a coding region of the gene; or (ii) wherein the plurality of frameshift variant peptides comprise peptides encoded by a mRNA having an RNA processing error.
  • 27. The peptide array of claim 26, wherein the plurality of frameshift variant peptides comprise one or more peptides provided in any one of Tables 1 or 7.
  • 28. The peptide array of claim 26, wherein the plurality of frameshift variant peptides are fixed on a substrate.
  • 29. The peptide array of claim 28, wherein the substrate comprises glass, composite, resin, or combination thereof.
  • 30. The peptide array of claim 26, wherein the peptide array comprises at least about 25,000, about 50,000, about 75,000, about 100,000, about 125,000, about 150,000, about 175,000, about 200,000, about 225,000, about 250,000, about 275,000, about 300,000, about 325,000, about 350,000, about 375,000, or about 400,000 frameshift variant peptides.
INCORPORATION BY REFERENCE TO ANY PRIORITY APPLICATIONS

Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57. The present application is a continuation of PCT application PCT/US2020/053728, filed Oct. 1, 2020, which claims the benefit of U.S. Provisional patent application Ser. No. 62/909,748 entitled “Methods and Compositions for Identifying Neoantigens for Use in Treating and Preventing Cancer,” filed Oct. 2, 2019, which are incorporated herein by reference in its entirety.

STATEMENT AS TO FEDERALLY SPONSORED RESEARCH

This invention was made with the support of the United States government under Contract number CDRMP W81XWH-07-1-0549 by the Department of Defense.

Provisional Applications (1)
Number Date Country
62909748 Oct 2019 US
Continuations (1)
Number Date Country
Parent PCT/US2020/053728 Oct 2020 US
Child 17706469 US