METHODS AND COMPOSITIONS FOR MODULATING SPLICING

Information

  • Patent Application
  • 20230054781
  • Publication Number
    20230054781
  • Date Filed
    July 29, 2021
    2 years ago
  • Date Published
    February 23, 2023
    a year ago
Abstract
Described herein are small molecule splicing modulator compounds that modulate splicing of mRNA, such as pre-mRNA, encoded by genes, pharmaceutical compositions comprising the same, and methods of use of the small molecule splicing modulator compounds for modulating splicing and treating diseases and conditions.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Jul. 26, 2021, is named 51503_709_301_SL.txt and is 18,304 bytes in size.


BACKGROUND

The majority of protein-coding genes in the human genome are composed of multiple exons (coding regions) that are separated by introns (non-coding regions). Gene expression results in a single precursor messenger RNA (pre-mRNA). The intron sequences are subsequently removed from the pre-mRNA by a process called splicing, which results in the mature messenger RNA (mRNA). By including different combinations of exons, alternative splicing gives rise to multiple mRNAs encoding distinct protein isoforms. The spliceosome, an intracellular complex of multiple proteins and ribonucleoproteins, catalyzes splicing.


Current therapeutic approaches to direct and control mRNA expression require methods such as gene therapy, genome editing, or a wide range of oligonucleotide technologies (antisense, RNAi, etc.). Gene therapy and genome editing act upstream of transcription of mRNA by influencing the DNA code and thereby changing mRNA expression. Oligonucleotides modulate the action of RNA via canonical base/base hybridization. The appeal of this approach is in the design of the basic pharmacophore of an oligonucleotide, which can be defined in a straightforward fashion by known base pairing to the target sequence subject. Each of these therapeutic modalities suffers from substantial technical, clinical, and regulatory challenges. Some limitations of oligonucleotides as therapeutics (e.g., antisense, RNAi) include unfavorable pharmacokinetics, lack of oral bioavailability, and lack of blood-brain-barrier penetration, with the latter precluding delivery to the brain or spinal cord after parenteral drug administration for the treatment of diseases (e.g., neurological diseases, brain cancers). In addition, oligonucleotides are not taken up effectively into solid tumors without a complex delivery system such as lipid nanoparticles. Further, most of the oligonucleotides taken up into cells and tissues remain in non-functional compartments (e.g., endosomes) and does not gain access to the cytosol and/or nucleus where the target is located


Additionally, to anneal to a target, oligonucleotide therapies require access to complementary base pairs of the target. This approach assumes that pre-mRNA sequences exist as a linear strand of RNA in the cell. However, pre-mRNA is rarely linear; it has complex secondary and tertiary structure. Further, cis-acting elements (e.g., protein binding elements) and trans-acting factors (e.g., splicing complex components) can create additional two-dimensional and three-dimensional complexity (e.g., by binding to the pre-mRNA). These features can be potency-and efficacy-limiting for oligonucleotide therapies.


SUMMARY

The novel small molecule splicing modulators (SMSMs) described herein do not suffer from the limitations above, nor the structural and steric hindrances that greatly limit oligonucleotide therapies (e.g., by blocking hybridization to pre-mRNA targets). Small molecules have been essential in uncovering the mechanisms, regulations, and functions of many cellular processes, including DNA replication, transcription, and translation. While several recent reports have described screens for small molecule effectors of splicing, only a small number of constitutive or alternative splicing modulators have been identified and many of the small-molecule inhibitors lack specificity, lack selectivity, lack potency, exhibit toxicity, or are not orally available. Targeting the RNA transcriptome with small-molecule modulators represents an untapped therapeutic approach to treat a variety of RNA-mediated diseases. Accordingly, there remains a need to develop small-molecule RNA modulators useful as therapeutic agents. There is need in the art for novel modulators of splicing or splicing-dependent processes. Provided herein are small molecule splicing modulators and uses thereof that fulfill this need.


In one aspect, described herein is a compound of Formula (I), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof:




embedded image


wherein,

  • A is —CRA═CRA—;
  • E is —NR—, —O—, —S—, —S(═O)—, —S(═O)2—, or —S(═O)(═NRE)—;
  • RE is hydrogen, substituted or unsubstituted C1-C3 alkyl, substituted or unsubstituted C3-C6 cycloalkyl, substituted or unsubstituted C2-C5 heterocycloalkyl, substituted or unsubstituted C2-C3 alkenyl, or substituted or unsubstituted C2-C3 alkynyl;
  • each RA is independently selected from the group consisting of hydrogen, deuterium, F, Cl, —CN, —OR1, —SR1, —S(═O)R1, —S(═O)2R1, substituted or unsubstituted C1-C4 alkyl, substituted or unsubstituted C1-C4 haloalkyl, substituted or unsubstituted C1-C4 heteroalkyl, substituted or unsubstituted C3-C4 cycloalkyl, and substituted or unsubstituted C2-C3 heterocycloalkyl;
  • ring Q is substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl;
  • X is —O— or —S—;
  • Z is CR2;
  • W is substituted or unsubstituted C1-C3 alkylene, substituted or unsubstituted C1-C2 heteroalkylene, substituted or unsubstituted C2-C3 alkenylene, substituted or unsubstituted C3-C8 cycloalkylene, substituted or unsubstituted C2-C7 heterocycloalkylene;
  • R is hydrogen;
  • each R1 is independently hydrogen, deuterium, substituted or unsubstituted C1-C4 alkyl, —CD3, substituted or unsubstituted C1-C4haloalkyl, substituted or unsubstituted C1-C4 heteroalkyl, substituted or unsubstituted C3-C6 cycloalkyl, substituted or unsubstituted C2-C5 heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;
  • R2 is hydrogen, deuterium, substituted or unsubstituted C1-C4 alkyl, —CD3, or substituted or unsubstituted C1-C4 haloalkyl;
  • each R11, R12, R13, R14, R16, and R17 is independently selected from the group consisting of hydrogen, deuterium, F, —OR1, substituted or unsubstituted C1-C4 alkyl, a substituted or unsubstituted C1-C4 fluoroalkyl, and substituted or unsubstituted C1-C4 heteroalkyl;
  • R15 and R18 (i) are the same and selected from the group consisting of hydrogen and deuterium, or (ii) are the same and selected from the group consisting of F, —OR1, substituted or unsubstituted C1-C4 alkyl, a substituted or unsubstituted C1-C4 fluoroalkyl, and substituted or unsubstituted C1-C4 heteroalkyl;
  • a is 0;
  • b is 0;
  • c is 1; and
  • d is 1, with the proviso that the compound is not a compound in Table 3 or Table 4.


In one aspect, described herein is a compound of Formula (I), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof:




embedded image


  • wherein,

  • A is —CRA═CRA—;

  • E is —NR—, —O—, —S—, —S(═O)—, —S(═O)2—, or —S(═O)(═NRE)—;

  • RE is hydrogen, substituted or unsubstituted C1-C3 alkyl, substituted or unsubstituted C3-C6 cycloalkyl, substituted or unsubstituted C2-C5 heterocycloalkyl, substituted or unsubstituted C2-C3 alkenyl, or substituted or unsubstituted C2-C3 alkynyl;

  • each RA is independently selected from the group consisting of hydrogen, deuterium, F, Cl, —CN, —OR1, —SR1, —S(═O)R1, —S(═O)2R1, substituted or unsubstituted C1-C4 alkyl, substituted or unsubstituted C1-C4 haloalkyl, substituted or unsubstituted C1-C4 heteroalkyl, substituted or unsubstituted C3-C4 cycloalkyl, and substituted or unsubstituted C2-C3 heterocycloalkyl;

  • ring Q is substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl;

  • X is —O— or —S—;

  • Z is CR2;

  • W is substituted or unsubstituted C1-C3 alkylene, substituted or unsubstituted C1-C2 heteroalkylene, substituted or unsubstituted C2-C3 alkenylene, substituted or unsubstituted C3-C8 cycloalkylene, substituted or unsubstituted C2-C7 heterocycloalkylene;

  • R is hydrogen;

  • each R1 is independently hydrogen, deuterium, substituted or unsubstituted C1-C4 alkyl, —CD3, substituted or unsubstituted C1-C4 haloalkyl, substituted or unsubstituted C1-C4 heteroalkyl, substituted or unsubstituted C3-C6 cycloalkyl, substituted or unsubstituted C2-C5 heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;

  • R2 is hydrogen, deuterium, substituted or unsubstituted C1-C4 alkyl, —CD3, or substituted or unsubstituted C1-C4 haloalkyl;

  • each R11, R12, R13, R14, R16, and R17 is independently selected from the group consisting of hydrogen, deuterium, F, —OR1, substituted or unsubstituted C1-C4 alkyl, a substituted or unsubstituted C1-C4 fluoroalkyl, and substituted or unsubstituted C1-C4 heteroalkyl;

  • R15 and R18 are the same and selected from the group consisting of hydrogen and deuterium;

  • a is 0;

  • b is 0;

  • c is 1; and

  • d is 1, with the proviso that the compound is not a compound in Table 3.



In one aspect, described herein is a compound of Formula (I), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof:




embedded image


  • wherein,

  • A is —CRA═CRA—;

  • E is —NR—, —O—, —S—, —S(═O)—, —S(═O)2—, or —S(═O)(═NRE)—;

  • RE is hydrogen, substituted or unsubstituted C1-C3 alkyl, substituted or unsubstituted C3-C6 cycloalkyl, substituted or unsubstituted C2-C5 heterocycloalkyl, substituted or unsubstituted C2-C3 alkenyl, or substituted or unsubstituted C2-C3 alkynyl;

  • each RA is independently selected from the group consisting of hydrogen, deuterium, F, Cl, —CN, —OR1, —SR1, —S(═O)R1, —S(═O)2R1, substituted or unsubstituted C1-C4 alkyl, substituted or unsubstituted C1-C4 haloalkyl, substituted or unsubstituted C1-C4 heteroalkyl, substituted or unsubstituted C3-C4 cycloalkyl, and substituted or unsubstituted C2-C3 heterocycloalkyl;

  • ring Q is substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl;

  • X is —O— or —S—;

  • Z is CR2;

  • W is substituted or unsubstituted C1-C3 alkylene, substituted or unsubstituted C1-C2 heteroalkylene, substituted or unsubstituted C2-C3 alkenylene, substituted or unsubstituted C3-C8 cycloalkylene, substituted or unsubstituted C2-C7 heterocycloalkylene;

  • R is hydrogen;

  • each R1 is independently hydrogen, deuterium, substituted or unsubstituted C1-C4 alkyl, —CD3, substituted or unsubstituted C1-C4 haloalkyl, substituted or unsubstituted C1-C4 heteroalkyl, substituted or unsubstituted C3-C6 cycloalkyl, substituted or unsubstituted C2-C5 heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;

  • R2 is hydrogen, deuterium, substituted or unsubstituted C1-C4 alkyl, —CD3, or substituted or unsubstituted C1-C4 haloalkyl;

  • each R11, R12, R13, R14, R16, and R17 is independently selected from the group consisting of hydrogen, deuterium, F, —OR1, substituted or unsubstituted C1-C4 alkyl, a substituted or unsubstituted C1-C4 fluoroalkyl, and substituted or unsubstituted C1-C4 heteroalkyl;

  • R15 and R18 are the same and selected from the group consisting of F, —OR1, substituted or unsubstituted C1-C4 alkyl, a substituted or unsubstituted C1-C4 fluoroalkyl, and substituted or unsubstituted C1-C4 heteroalkyl;

  • a is 0;

  • b is 0;

  • c is 1; and

  • d is 1, with the proviso that the compound is not a compound in Table 4.



In one aspect, described herein is a compound of Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof:




embedded image


  • wherein,

  • A is —CRA═CRA—;

  • E is —NR—, —O—, —S—, —S(═O)—, —S(═O)2—, or —S(═O)(═NRE)—;

  • RE is hydrogen, substituted or unsubstituted C1-C3 alkyl, substituted or unsubstituted C3-C6 cycloalkyl, substituted or unsubstituted C2-C5 heterocycloalkyl, substituted or unsubstituted C2-C3 alkenyl, or substituted or unsubstituted C2-C3 alkynyl;

  • each RA is independently selected from the group consisting of hydrogen, deuterium, F, Cl, —CN, —OR1, —SR1, —S(═O)R1, —S(═O)2R1, substituted or unsubstituted C1-C4 alkyl, substituted or unsubstituted C1-C4 haloalkyl, substituted or unsubstituted C1-C4 heteroalkyl, substituted or unsubstituted C3-C4 cycloalkyl, and substituted or unsubstituted C2-C3 heterocycloalkyl;

  • ring Q is substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl;

  • X is —O— or —S—;

  • Z is CR2;

  • W is substituted or unsubstituted C1-C3 alkylene, substituted or unsubstituted C1-C2 heteroalkylene, substituted or unsubstituted C2-C3 alkenylene, substituted or unsubstituted C3-C8 cycloalkylene, substituted or unsubstituted C2-C7 heterocycloalkylene;

  • R is hydrogen;

  • each R1 is independently hydrogen, deuterium, substituted or unsubstituted C1-C4 alkyl, —CD3, substituted or unsubstituted C1-C4 haloalkyl, substituted or unsubstituted C1-C4 heteroalkyl, substituted or unsubstituted C3-C6 cycloalkyl, substituted or unsubstituted C2-C5 heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;

  • R2 is hydrogen, deuterium, substituted or unsubstituted C1-C4 alkyl, —CD3, or substituted or unsubstituted C1-C4 haloalkyl;

  • each R11, R12, R13, R14, R16, R17, R19, and R20 is independently selected from the group consisting of hydrogen, deuterium, F, —OR1, substituted or unsubstituted C1-C4 alkyl, a substituted or unsubstituted C1-C4 fluoroalkyl, and substituted or unsubstituted C1-C4 heteroalkyl;

  • R15 and R18 (i) are the same and selected from the group consisting of hydrogen and deuterium, or (ii) are the same and selected from the group consisting of F, —OR1, substituted or unsubstituted C1-C4 alkyl, a substituted or unsubstituted C1-C4 fluoroalkyl, and substituted or unsubstituted C1-C4 heteroalkyl;

  • a is 0;

  • b is 0;

  • c is 1; and

  • d is 1, with the proviso that the compound is not a compound in Table 3 or Table 4.



In one aspect, described herein is a compound of Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof:




embedded image


wherein,

  • A is —CRA═CRA—;
  • E is —NR—, —O—, —S—, —S(═O)—, —S(═O)2—, or —S(═O)(═NRE)—;
  • RE is hydrogen, substituted or unsubstituted C1-C3 alkyl, substituted or unsubstituted C3-C6 cycloalkyl, substituted or unsubstituted C2-C5 heterocycloalkyl, substituted or unsubstituted C2-C3 alkenyl, or substituted or unsubstituted C2-C3 alkynyl;
  • each RA is independently selected from the group consisting of hydrogen, deuterium, F, Cl, —CN, —OR1, —SR1, —S(═O)R1, —S(═O)2R1, substituted or unsubstituted C1-C4 alkyl, substituted or unsubstituted C1-C4 haloalkyl, substituted or unsubstituted C1-C4 heteroalkyl, substituted or unsubstituted C3-C4 cycloalkyl, and substituted or unsubstituted C2-C3 heterocycloalkyl;
  • ring Q is substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl;
  • X is —O— or —S—;
  • Z is CR2;
  • W is substituted or unsubstituted C1-C3 alkylene, substituted or unsubstituted C1-C2 heteroalkylene, substituted or unsubstituted C2-C3 alkenylene, substituted or unsubstituted C3-C8 cycloalkylene, substituted or unsubstituted C2-C7 heterocycloalkylene;
  • R is hydrogen;
  • each R1 is independently hydrogen, deuterium, substituted or unsubstituted C1-C4 alkyl, —CD3, substituted or unsubstituted C1-C4 haloalkyl, substituted or unsubstituted C1-C4 heteroalkyl, substituted or unsubstituted C3-C6 cycloalkyl, substituted or unsubstituted C2-C5 heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;
  • R2 is hydrogen, deuterium, substituted or unsubstituted C1-C4 alkyl, —CD3, or substituted or unsubstituted C1-C4 haloalkyl;
  • each R11, R12, R13, R14, R16, R17, R19, and R20 is independently selected from the group consisting of hydrogen, deuterium, F, —OR1, substituted or unsubstituted C1-C4 alkyl, a substituted or unsubstituted C1-C4 fluoroalkyl, and substituted or unsubstituted C1-C4 heteroalkyl;
  • R15 and R18 are the same and selected from the group consisting of hydrogen and deuterium;
  • a is 0;
  • b is 0;
  • c is 1; and
  • d is 1, with the proviso that the compound is not a compound in Table 3.


In one aspect, described herein is a compound of Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof:




embedded image


wherein,

  • A is —CRA═CRA—;
  • E is —NR—, —O—, —S—, —S(═O)—, —S(═O)2—, or —S(═O)(═NRE)—;
  • RE is hydrogen, substituted or unsubstituted C1-C3 alkyl, substituted or unsubstituted C3-C6 cycloalkyl, substituted or unsubstituted C2-C5 heterocycloalkyl, substituted or unsubstituted C2-C3 alkenyl, or substituted or unsubstituted C2-C3 alkynyl;
  • each RA is independently selected from the group consisting of hydrogen, deuterium, F, Cl, —CN, —OR1, —SR1, —S(═O)R1, —S(═O)2R1, substituted or unsubstituted C1-C4 alkyl, substituted or unsubstituted C1-C4 haloalkyl, substituted or unsubstituted C1-C4 heteroalkyl, substituted or unsubstituted C3-C4 cycloalkyl, and substituted or unsubstituted C2-C3 heterocycloalkyl;
  • ring Q is substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl;
  • X is —O— or —S—;
  • Z is CR2;
  • W is substituted or unsubstituted C1-C3 alkylene, substituted or unsubstituted C1-C2 heteroalkylene, substituted or unsubstituted C2-C3 alkenylene, substituted or unsubstituted C3-C8 cycloalkylene, substituted or unsubstituted C2-C7 heterocycloalkylene;
  • R is hydrogen;
  • each R1 is independently hydrogen, deuterium, substituted or unsubstituted C1-C4 alkyl, —CD3, substituted or unsubstituted C1-C4 haloalkyl, substituted or unsubstituted C1-C4 heteroalkyl, substituted or unsubstituted C3-C6 cycloalkyl, substituted or unsubstituted C2-C5 heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;
  • R2 is hydrogen, deuterium, substituted or unsubstituted C1-C4 alkyl, —CD3, or substituted or unsubstituted C1-C4 haloalkyl;
  • each R11, R12, R13, R14, R16, R17, R19, and R20 is independently selected from the group consisting of hydrogen, deuterium, F, —OR1, substituted or unsubstituted C1-C4 alkyl, a substituted or unsubstituted C1-C4 fluoroalkyl, and substituted or unsubstituted C1-C4 heteroalkyl;
  • R15 and R18 are the same and selected from the group consisting of F, —OR1, substituted or unsubstituted C4-C4 alkyl, a substituted or unsubstituted C1-C4 fluoroalkyl, and substituted or unsubstituted C1-C4 heteroalkyl;
  • a is 0;
  • b is 0;
  • c is 1; and
  • d is 1, with the proviso that the compound is not a compound in Table 4.


In some embodiments, the compound of Formula (I) or Formula (II) has the structure of Formula (A):




embedded image


In some embodiments, the compound of Formula (I) or Formula (II) has the structure of Formula (B):




embedded image


In some embodiments, the compound of Formula (B) has the structure of Formula (B-1):




embedded image


In some embodiments, the compound of Formula (B) has the structure of Formula (B-2):




embedded image


In some embodiments, the compound of Formula (B) has the structure of Formula (B-3):




embedded image


In some embodiments, the compound of Formula (B) has the structure of Formula (B-4):




embedded image


In some embodiments, the compound of Formula (I) or Formula (II) has the structure of Formula (C):




embedded image


In some embodiments, the compound of Formula (C) has the structure of Formula (C-1):




embedded image


In some embodiments, the compound of Formula (C) has the structure of Formula (C-2):




embedded image


In some embodiments, the compound of Formula (C) has the structure of Formula (C-3):




embedded image


In some embodiments, the compound of Formula (C) has the structure of Formula (C-4):




embedded image


For any and all of the embodiments, substituents can be selected from among a subset of the listed alternatives. For example, if in some embodiments, R2 is hydrogen, —CH3, or —OCH3 is disclosed, then R2 is hydrogen, R2 is —CH3, and R2 is —OCH3 are also disclosed.


In some embodiments, R15 and R18 are both hydrogen. In some embodiments, R15 and R18 are both deuterium. In some embodiments, R15 and R18 are the same and selected from F, —OR1, substituted or unsubstituted C1-C3 alkyl, substituted or unsubstituted C1-C3 fluoroalkyl, and substituted or unsubstituted C1-C3 heteroalkyl. In some embodiments, R15 and R18 are the same and selected from F, —CH3, —CH2CH3, —CH2CH2CH3, —CH(CH3)2, —CH2OH, —CH2CH2OH, —CH2NHCH3, —CH2N(CH3)2, —OH, —OCH3, —OCH2CH3, —OCH2CH2OH, —OCH2CN, —OCF3, —CH2F, —CHF2, and —CF3. In some embodiments, R15 and R18 are the same and selected from F, —CH3, —CH2OH, —OCH2CN, —OH, —OCH3, —OCH2CN, —OCF3, —CH2F, —CHF2, and —CF3. In some embodiments, R15 and R18 are the same and selected from F, —CH3, —OCH3, —OCF3, —CH2F, —CHF2, and —CF3. In some embodiments, R15 and R18 are the same and selected from F, —CH3, and —OCH3. In some embodiments, R15 and R18 are both F. In some embodiments, R15 and R18 are both —CH3.


In some embodiments, ring Q is substituted or unsubstituted aryl.


In some embodiments, ring Q is 2-hydroxy-phenyl substituted with 1, 2, or 3 substituents independently selected from: deuterium, halogen, —OH, —NO2, —CN, —SR1, —S(═O)R1, —S(═O)2R1, —N(R1)2, —C(═O)R1, —OC(═O)R1, —C(═O)OR1, —C(═O)N(R1)2, substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C2-C6 alkynyl, substituted or unsubstituted C1-C6 alkoxy, substituted or unsubstituted C3-C7 cycloalkyl, substituted or unsubstituted C2-C7 heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl; and each R1 is independently hydrogen, deuterium, substituted or unsubstituted C1-C4 alkyl, —CD3, substituted or unsubstituted C1-C4 haloalkyl, substituted or unsubstituted C1-C4 heteroalkyl, substituted or unsubstituted C3-C6 cycloalkyl, substituted or unsubstituted C2-C5 heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.


In some embodiments, ring Q is 2-hydroxy-phenyl substituted with substituted or unsubstituted heteroaryl.


In some embodiments, ring Q is 2-hydroxy-phenyl substituted with substituted or unsubstituted aryl, wherein if aryl is substituted then it is substituted with 1 or 2 substituents independently selected from: deuterium, halogen, —OH, —NO2, —CN, —SR1, —S(═O)R1, —S(═O)2R1, —NCR1)2, —C(═O)R1, —OC(═O)R1, —C(═O)OR1, —C(═O)N(R1)2, substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C2-C6 alkynyl, substituted or unsubstituted C1-C6 alkoxy, substituted or unsubstituted C3-C7 cycloalkyl, and substituted or unsubstituted C2-C7 heterocycloalkyl; and each R1 is independently hydrogen, deuterium, substituted or unsubstituted C1-C4 alkyl, —CD3, substituted or unsubstituted C1-C4 haloalkyl, substituted or unsubstituted C1-C4 heteroalkyl, substituted or unsubstituted C3-C6 cycloalkyl, substituted or unsubstituted C2-C5 heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.


In some embodiments, ring Q is 2-hydroxy-phenyl substituted with substituted or unsubstituted heteroaryl, wherein if heteroaryl is substituted then it is substituted with 1 or 2 substituents independently selected from: deuterium, halogen, —OH, —NO2, —CN, —SR1, —S(═O)R1, —S(═O)2R1, —N(R1)2, —C(═O)R1, —OC(═O)R1, —C(═O)OR1, —C(═O)N(R1)2, substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C2-C6 alkynyl, substituted or unsubstituted C1-C6 alkoxy, substituted or unsubstituted C3-C7 cycloalkyl, and substituted or unsubstituted C2-C7 heterocycloalkyl; and each R1 is independently hydrogen, deuterium, substituted or unsubstituted C1-C4 alkyl, —CD3, substituted or unsubstituted C1-C4 haloalkyl, substituted or unsubstituted C1-C4 heteroalkyl, substituted or unsubstituted C3-C6 cycloalkyl, substituted or unsubstituted C2-C5 heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.


In some embodiments, ring Q is substituted or unsubstituted heteroaryl.


In some embodiments, ring Q is substituted or unsubstituted 5- or 6-membered monocyclic heteroaryl.


In some embodiments, ring Q is substituted or unsubstituted 6-membered monocyclic heteroaryl.


In some embodiments, ring Q is 6-membered monocyclic heteroaryl selected from:




embedded image


wherein each RQ is independently selected from hydrogen, deuterium, —F, —Cl, —CN, —OH, —CH3, —CH2CH3, —CH2CH2CH3, —CH(CH3)2, —CF, —OCH3, —OCH2CH3, —CH2OCH3, —OCH2CH2CH3, and —OCH(CH3)2; and ring P is substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl.


In some embodiments, ring Q is




embedded image


wherein each RQ is independently selected from hydrogen, deuterium, —F, —Cl, —CN, —OH, —CH3, —CH2CH3, —CH2CH2CH3, —CH(CH3)2, —CF, —OCH3, —OCH2CH3, —CH2OCH3, —OCH2CH2CH3, and —OCH(CH3)2; and ring P is substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl.


In some embodiments, each RQ is independently selected from hydrogen, —F, —Cl, —CN, —OH, —CH3, —CF3, and —OCH3.


In some embodiments, ring P is substituted or unsubstituted heteroaryl.


In some embodiments, ring P is heteroaryl selected from the group consisting of:




embedded image


embedded image


wherein, each RB is independently selected from hydrogen, deuterium, halogen, hydroxy, cyano, substituted or unsubstituted C1-C6 alkyl, —CD3, substituted or unsubstituted C1-C6 fluoroalkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C2-C6 alkynyl, substituted or unsubstituted C1-C6 alkoxy, deuterium substituted C1-C6 alkoxy,—OCD3, substituted or unsubstituted C3-7 cycloalkyl, substituted or unsubstituted C2-C7 heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl; RB1 is selected from hydrogen, deuterium, substituted or unsubstituted C1-C6 alkyl, —CD3, substituted or unsubstituted C1-C6 fluoroalkyl, substituted or unsubstituted C1-C6 heteroalkyl, substituted or unsubstituted C3-7 cycloalkyl, and substituted or unsubstituted C2-C7 heterocycloalkyl; and m is 0, 1, 2, or 3. In some embodiments, m is 1, 2, or 3. In some embodiments, m is 0 or 1. In some embodiments, m is 1 or 2. In some embodiments, m is 2 or 3. In some embodiments, m is 1. In some embodiments, m is 2. In some embodiments, m is 3.


In some embodiments, ring P is heteroaryl selected from the group consisting of:




embedded image


wherein, each RB is independently selected from hydrogen, deuterium, halogen, hydroxy, cyano, substituted or unsubstituted C1-C6 alkyl, —CD3, substituted or unsubstituted C1-C6 fluoroalkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C2-C6 alkynyl, substituted or unsubstituted C1-C6 alkoxy, deuterium substituted C1-C6 alkoxy,—OCD3, substituted or unsubstituted C3-7 cycloalkyl, substituted or unsubstituted C2-C7 heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl; RB1 is selected from hydrogen, deuterium, substituted or unsubstituted C1-C6 alkyl, —CD3, substituted or unsubstituted C1-C6 fluoroalkyl, substituted or unsubstituted C1-C6 heteroalkyl, substituted or unsubstituted C3-7 cycloalkyl, and substituted or unsubstituted C2-C7 heterocycloalkyl; and m is 0, 1, 2, or 3. In some embodiments, m is 1, 2, or 3. In some embodiments, m is 0 or 1. In some embodiments, m is 1 or 2. In some embodiments, m is 2 or 3. In some embodiments, m is 1. In some embodiments, m is 2. In some embodiments, m is 3.


In some embodiments, each RB is independently selected from deuterium, —F, —Cl, —CN, —CH3, —CF3, —OH, and —OCH3. In some embodiments, each RB is independently selected from hydrogen, deuterium, —F, —Cl, —CN, —CH3, —CF3, —OH, and —OCH3.


In some embodiments, each RB is independently —F or —OCH3. In some embodiments, each RB is independently hydrogen, —F or —OCH3. In some embodiments, RB is hydrogen. In some embodiments, RB is —OCH3. In some embodiments, RB is —CH3.


In some embodiments, RB1 is selected from hydrogen, deuterium, —CH3, —CF3, and —CD3. In some embodiments, RB1 is hydrogen. In some embodiments, RB1 is deuterium. In some embodiments, RB1 is —CH3. In some embodiments, RB1 is —CF3. In some embodiments, RB1 is —CD3.


In some embodiments, ring Q is 2-naphthyl substituted at the 3 position with 0, 1, and 2 substituents independently selected from: deuterium, halogen, —OH, —NO2, —CN, —SR1, —S(═O)R1, —S(═O)2R1, —N(R1)2, —C(═O)R1, —OC(═O)R1, —C(═O)OR1, —C(═O)N(R1)2, substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C2-C6 alkynyl, substituted or unsubstituted C1-C6 alkoxy, substituted or unsubstituted C3-C7 cycloalkyl, substituted or unsubstituted C2-C7 heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl; wherein each R1 is independently hydrogen, deuterium, substituted or unsubstituted C1-C4 alkyl, —CD3, substituted or unsubstituted C1-C4 haloalkyl, substituted or unsubstituted C1-C4 heteroalkyl, substituted or unsubstituted C3-C6 cycloalkyl, substituted or unsubstituted C2-C5 heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.


In some embodiments, ring Q is selected from the group consisting of:




embedded image


In some embodiments, ring Q is selected from the group consisting of:




embedded image


In some embodiments, ring Q is selected from the group consisting of:




embedded image


embedded image


In some embodiments, ring Q is selected from the group consisting of:




embedded image


embedded image


embedded image


wherein RB1 is selected from hydrogen, deuterium, substituted or unsubstituted C1-C6 alkyl, —CD3, substituted or unsubstituted C1-C6 fluoroalkyl, substituted or unsubstituted C1-C6 heteroalkyl, substituted or unsubstituted C3-7 cycloalkyl, and substituted or unsubstituted C2-C7 heterocycloalkyl.


In some embodiments, W is substituted or unsubstituted C1-C3 alkylene. In some embodiments, W is substituted or unsubstituted —CH2CH2—. In some embodiments, W is —CH2CH2—. In some embodiments, W is substituted or unsubstituted —CH2CH2CH2. In some embodiments, W is —CH2CH2CH2.


In some embodiments, W is substituted or unsubstituted C3-C8 cycloalkylene or substituted or unsubstituted C2-C3 alkenylene. In some embodiments, W is substituted or unsubstituted C3-C8 cycloalkylene. In some embodiments, W is substituted or unsubstituted cyclopropylene. In some embodiments, W is substituted or unsubstituted C2-C3 alkenylene. In some embodiments, W is —CH═CH—.


In some embodiments, W is substituted or unsubstituted C1-C2 heteroalkylene. In some embodiments, W is substituted or unsubstituted —CH2OCH2—. In some embodiments, W is —CH2O—, wherein O is attached to a carbon atom to which R18 group is attached.


In some embodiments, one or more of R16 and R17 is independently selected from F, —OR1, substituted or unsubstituted C1-C4 alkyl, a substituted or unsubstituted C1-C4 fluoroalkyl, and substituted or unsubstituted C1-C4 heteroalkyl.


In some embodiments, one or more of R16 and R17 is independently selected from F, —OH, —OCH3, —OCH2CH3, —OCH2CH2OH, —OCH2CN, —OCF3, —CH3, —CH2CH3, —CH2OH, —CH2CH2OH, —CH2CN, —CH2F, —CHF2, —CF3, —CH2CH2F, —CH2CHF2, and —CH2CF3.


In some embodiments, one or more of R16 and R17 is independently selected from F, —OH, —OCH3, —OCF3, —CH3, —CH2OH, —CH2F, —CHF2, and —CF3.


In some embodiments, R16 is F. In some embodiments, R16 is hydrogen. In some embodiments, R17 is F. In some embodiments, R17 is hydrogen. In some embodiments, R16 and R17 are hydrogen.


In some embodiments, R16 is H and R17 is F. In some embodiments, R16 is F and R17 is H.


In some embodiments, R2 is hydrogen, —CH3, or —OCH3.


In some embodiments, R2 is hydrogen.


In some embodiments, each RA is independently hydrogen, F, Cl, —CN, —CH3, —CH2CH3, —CH2CH2CH3, —CH(CH3)2, —OH, —OCH3, —OCH2CH3, —OCF3, —CH2F, —CHF2, or —CF3.


In some embodiments, each RA is independently hydrogen, F, Cl, —CN, —CH3, —OH, —OCH3, —OCF3, —CH2F, —CHF2, or —CF3.


In some embodiments, each RA is independently hydrogen, F, Cl, —CN, —CH3, or —OCH3.


In some embodiments, each RA is independently hydrogen, F, Cl, or —CH3.


In some embodiments, RA is hydrogen.


In some embodiments, X is —O—. In some embodiments, X is —S—.


In some embodiments, R15 and R18 are both hydrogen. In some embodiments, R15 and R18 are both deuterium. In some embodiments, R15 and R18 are the same and selected from F, —OR1, substituted or unsubstituted C1-C3 alkyl, substituted or unsubstituted C1-C3 fluoroalkyl, and substituted or unsubstituted C1-C3 heteroalkyl. In some embodiments, R15 and R18 are the same and selected from F, —CH3, —CH2CH3, —CH2CH2CH3, —CH(CH3)2, —CH2OH, —CH2CH2OH, —CH2NHCH3, —CH2N(CH3)2, —OH, —OCH3, —OCH2CH3, —OCH2CH2OH, —OCH2CN, —OCF3, —CH2F, —CHF2, and —CF3. In some embodiments, R15 and R18 are the same and selected from F, —CH3, —CH2OH, —OCH2CN, —OH, —OCH3, —OCH2CN, —OCF3, —CH2F, —CHF2, and —CF3. In some embodiments, R15 and R18 are the same and selected from F, —CH3, —OCH3, —OCF3, —CH2F, —CHF2, and —CF3. In some embodiments, R15 and R18 are the same and selected from F, —CH3, and —OCH3. In some embodiments, R15 and R18 are both F. In some embodiments, R15 and R18 are both —CH3.


In some embodiments of a compound of Formula (I) or Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, at least one of R11, R12, R13, R14, R15, R16, R17, and R18 is F. In some embodiments, one of R11, R12, R13, R14, R15, R16, R17, and R18 is F. In some embodiments, at least two of R11, R12, R13, R14, R15, R16, R17, and R18 are F. In some embodiments, at least one of R11, R12, R13, R14, R16, and R17 is F. In some embodiments, one of R11, R12, R13, R14, R16, and R17 is F. In some embodiments, at least two of R11, R12, R13, R14, R16, and R17 are F.


In some embodiments of a compound of Formula (I) or Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, at least one of R11, R12, R13, R14, R15, R16, R17, and R18 comprises a fluorine, e.g., F or C1-C4 fluoroalkyl such as CH2F, CF3, CHF2, and CH3CH2F. In some embodiments, at least one of R11, R12, R13, R14, R15, R16, R17, and R18 is F or C1-C4 fluoroalkyl. In some embodiments, one of R11, R12, R13, R14, R15, R16, R17, and R18 comprises a fluorine. In some embodiments, at least two of R11, R12, R13, R14, R15, R16, R17, and R18 comprise a fluorine. In some embodiments, at least one of R11, R12, R13, R14, R16, and R17 comprises a fluorine. In some embodiments, one of R11, R12, R13, R14, R16, and R17 comprises a fluorine. In some embodiments, at least two of R11, R12, R13, R14, R16, and R17 comprise a fluorine.


In some embodiments of a compound of Formula (I) or Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, at least one of W, R11, R12, R13, R14, R15, R16, R17, and R18 comprises a fluorine, e.g., F or C1-C4 fluoroalkyl such as CH2F, CF3, CHF2, and CH3CH2F. In some embodiments, one of W, R11, R12, R13, R14, R15, R16, R17, and R18 comprises a fluorine. In some embodiments, W comprises a fluorine.


In some embodiments of a compound of Formula (I) or Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, R11 is H, D, or F. In some embodiments, R11 is D. In some embodiments, R11 is H. In some embodiments, R11 is F. In some embodiments of a compound of Formula (I) or Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, R12 is H, D, or F. In some embodiments, R12 is D. In some embodiments, R12 is H. In some embodiments, R12 is F. In some embodiments of a compound of Formula (I) or Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, R13 is H, D, or F. In some embodiments, R13 is D. In some embodiments, R13 is H. In some embodiments, R13 is F. In some embodiments of a compound of Formula (I) or Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, R14 is H, D, or F. In some embodiments, R14 is D. In some embodiments, R14 is H. In some embodiments, R14 is F.


In some embodiments of a compound of Formula (I) or Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, R15 is F, CH2F, CHF2, CF3, or CH3. In some embodiments, R15 is F, CF3, CHF2, or CH2F. In some embodiments, R15 is F. In some embodiments of a compound of Formula (I) or Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, R16 is H, D, or F. In some embodiments, R16 is D. In In some embodiments, R16 is H, some embodiments, R16 is F. In some embodiments of a compound of Formula (I) or Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, R17 is H, D, or F. In some embodiments, R17 is D. In some embodiments, R17 is H. In some embodiments, R17 is F. In some embodiments of a compound of Formula (I) or Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, R18 is F, CH2F, CHF2, CF3, or CH3. In some embodiments, R18 is F, CF3, CHF2, or CH2F. In some embodiments, R18 is F.


In some embodiments of a compound of Formula (I) or Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, at least one of R11, R12, R13, R14, R15, R16, R17, and R18 is F. In some embodiments, one of R11, R12, R13, R14, R15, R16, R17, and R18 is F. In some embodiments, at least two of R11, R12, R13, R14, R15, R16, R17, and R18 are F. In some embodiments, at least one of R11, R12, R13, R14, R16, and R17 is F. In some embodiments, one of R11, R12, R13, R14, R16, and R17 is F. In some embodiments, at least two of R11, R12, R13, R14, R16, and R17 are F.


In some embodiments of a compound of Formula (I) or Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, at least one of R11, R12, R13, R14, R15, R16, R17, and R18 comprises a fluorine, e.g., F or C1-C4 fluoroalkyl such as CH2F, CF3, CHF2, and CH3CH2F. In some embodiments, at least one of R11, R12, R13, R14, R15, R16, R17, and R18 is F or C1-C4 fluoroalkyl. In some embodiments, one of R11, R12, R13, R14, R15, R16, R17, and R18 comprises a fluorine. In some embodiments, at least two of R11, R12, R13, R14, R15, R16, R17, and R18 comprise a fluorine. In some embodiments, at least one of R11, R12, R13, R14, R16, and R17 comprises a fluorine. In some embodiments, one of R11, R12, R13, R14, R16, and R17 comprises a fluorine. In some embodiments, at least two of R11, R12, R13, R14, R16, and R17 comprise a fluorine.


In some embodiments of a compound of Formula (I) or Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, at least one of W, R11, R12, R13, R14, R15, R16, R17, and R18 comprises a fluorine, e.g., F or C1-C4 fluoroalkyl such as CH2F, CF3, CHF2, and CH3CH2F. In some embodiments, one of W, R11, R12, R13, R14, R15, R16, R17, and R18 comprises a fluorine. In some embodiments, W comprises a fluorine.


In some embodiments of a compound of Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, R11, R12, R19, R20 and R16 are hydrogen. In some embodiments of a compound of Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, R19 is hydrogen. In some embodiments, R19 is H, F, —OH, —OCH3, —OCH2CH3, —OCH2CH2OH, —OCH2CN, —OCF3, —CH3, —CH2CH3, —CH2OH, —CH2CH2OH, —CH2CN, —CH2F, —CHF2, —CF3, —CH2CH2F, —CH2CHF2, and —CH2CF3. In some embodiments, R19 is H, F, —OH, —OCH3, —OCF3, —CH3, —CH2OH, —CH2F, —CHF2, and —CF3. In some embodiments, R19 is F or —OCH3.


In some embodiments of a compound of Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, R20 is hydrogen. In some embodiments, R20 is H, F, —OH, —OCH3, —OCH2CH3, —OCH2CH2OH, —OCH2CN, —OCF3, —CH3, —CH2CH3, —CH2OH, —CH2CH2OH, —CH2CN, —CH2F, —CHF2, —CF3, —CH2CH2F, —CH2CHF2, and —CH2CF3. In some embodiments, R20 is H, F, —OH, —OCH3, —OCF3, —CH3, —CH2OH, —CH2F, —CHF2, and —CF3. In some embodiments, R20 is F or —OCH3.


In some embodiments of a compound of Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, R19 is H, D, or F. In some embodiments, R19 is D. In some embodiments, R19 is H. In some embodiments, R19 is F. In some embodiments of a compound of Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, R20 is H, D, or F. In some embodiments, R20 is D. In some embodiments, R20 is H. In some embodiments, R20 is F. In some embodiments of a compound of Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, R16 and R19 are H. In some embodiments, R16 and R19 are D. In some embodiments, R16 and R19 are F. In some embodiments of a compound of Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, R19 and R20 are H. In some embodiments, R19 and R20 are D. In some embodiments, R19 and R20 are F. In some embodiments of a compound of Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, R17 and R20 are H. In some embodiments, R17 and R20 are D. In some embodiments, R17 and R20 are F.


In some embodiments of a compound of Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, at least one of R11, R12, R13, R14, R15, R16, R17, R19, R20, and R18 is F. In some embodiments, one of R11, R12, R13, R14, R15, R16, R17, R19, R20, and R18 is F. In some embodiments, at least two of R11, R12, R13, R14, R15, R16, R17, R19, R20, and R18 are F. In some embodiments, at least one of R11, R12, R13, R14, R16, R19, R20, and R17 is F. In some embodiments, one of R11, R12, R13, R14, R16, R19, R20, and R17 is F. In some embodiments, at least two of R11, R12, R13, R14, R16, R19, R20, and R17 are F.


In some embodiments of a compound of Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, at least one of R11, R12, R13, R14, R15, R16, R17, R19, R20, and R18 comprises a fluorine, e.g., F or C1-C4 fluoroalkyl such as CH2F, CF3, CHF2, and CH3CH2F. In some embodiments, at least one of R11, R12, R13, R14, R15, R16, R17, R19, R20, and R18 is F or C1-C4 fluoroalkyl. In some embodiments, one of R11, R12, R13, R14, R15, R16, R17, R19, R20, and R18 comprises a fluorine. In some embodiments, at least two of R11, R12, R13, R14, R15, R16, R17, R19, R20, and R18 comprise a fluorine. In some embodiments, at least one of R11, R12, R13, R14, R16, R19, R20, and R17 comprises a fluorine. In some embodiments, one of R11, R12, R13, R14, R16, R19, R20, and R17 comprises a fluorine. In some embodiments, at least two of R11, R12, R13, R14, R16, and R17 comprise a fluorine.


In some embodiments of a compound of Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, at least one of W, R11, R12, R13, R14, R15, R16, R17, R19, R20, and R18 comprises a fluorine, e.g., F or C1-C4 fluoroalkyl such as CH2F, CF3, CHF2, and CH3CH2F. In some embodiments, one of W, R11, R12, R13, R14, R15, R16, R17, R19, R20, and R18 comprises a fluorine. In some embodiments, W comprises a fluorine.


In one aspect, described herein is a pharmaceutical composition comprising a compound of the disclosure or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, and a pharmaceutically acceptable excipient or carrier.


In one aspect, described herein is a method of treating a condition or disease comprising administering a compound of the disclosure or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof to a subject in need thereof.


In one aspect, described herein is the use of a compound of the disclosure or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof in the manufacture of a medicament for the treatment of a condition or disease.


INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.







DETAILED DESCRIPTION

Certain specific details of this description are set forth in order to provide a thorough understanding of various embodiments. However, one skilled in the art will understand that the present disclosure may be practiced without these details. In other instances, well-known structures have not been shown or described in detail to avoid unnecessarily obscuring descriptions of the embodiments. Unless the context requires otherwise, throughout the specification and claims which follow, the word “comprise” and variations thereof, such as, “comprises” and “comprising” are to be construed in an open, inclusive sense, that is, as “including, but not limited to.” Further, headings provided herein are for convenience only and do not interpret the scope or meaning of the claimed disclosure.


As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the content clearly dictates otherwise. It should also be noted that the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present disclosure, suitable methods and materials are described below.


Definitions

The terms “compound(s) of this disclosure”, “compound(s) of the present disclosure”, “small molecule steric modulator(s)”, “small molecule splicing modulator(s)” “steric modulator(s)”, “splicing modulator(s)”, “compound(s) that modify splicing” and “compound(s) modifying splicing”, “SMSM” or “small molecule that binds a target RNA,” are interchangeably used herein and refer to compounds as disclosed herein and stereoisomers, tautomers, solvates, and salts (e.g., pharmaceutically acceptable salts) thereof. The terms “compound(s) of this disclosure”, “compound(s) of the present disclosure”, “small molecule steric modulator(s)”, “small molecule splicing modulator(s)” “steric modulator(s)”, “splicing modulator(s)”, “compound(s) that modify splicing” and “compound(s) modifying splicing”, “SMSM” or “small molecule that binds a target RNA,” denote a small molecule compound that binds to a cell component (e.g., DNA, RNA, pre-mRNA, protein, RNP, snRNA, carbohydrates, lipids, co-factors, nutrients and/or metabolites) and modulates splicing of a target polynucleotide, e.g., a pre-mRNA. For example, an SMSM can bind directly or indirectly to a target polynucleotide, e.g., RNA (e.g., a pre-mRNA) with a mutated, non-mutated, bulged and/or aberrant splice site, resulting in modulation of splicing of the target polynucleotide. For example, an SMSM can bind directly or indirectly to a protein, e.g., a spliceosome protein or a ribonuclear protein, resulting in steric modulation of the protein and modulation of splicing of a target RNA. For example, an SMSM can bind directly or indirectly to a spliceosome component, e.g., a spliceosome protein or snRNA resulting in steric modulation of the spliceosome protein or snRNA and modulation of splicing of target polynucleotide. These terms specifically exclude compounds consisting of oligonucleotides. These terms include small molecule compounds that may bind to one or more secondary or tertiary structure elements of a target RNA. These sites include RNA triplexes, 3WJs, 4WJs, parallel-Y junctions, hairpins, bulge loops, pseudoknots, internal loops, and other higher- order RNA structural motifs.


The term “RNA” (ribonucleic acid) as used herein, means naturally-occurring or synthetic oligoribonucleotides independent of source (e.g., the RNA may be produced by a human, animal, plant, virus, or bacterium, or may be synthetic in origin), biological context (e.g., the RNA may be in the nucleus, circulating in the blood, in vitro, cell lysate, or isolated or pure form), or physical form (e.g., the RNA may be in single-, double-, or triple-stranded form (including RNA-DNA hybrids), may include epigenetic modifications, native post-transcriptional modifications, artificial modifications (e.g., obtained by chemical or in vitro modification), or other modifications, may be bound to, e.g., metal ions, small molecules, proteins such as chaperones, or co-factors, or may be in a denatured, partially denatured, or folded state including any native or unnatural secondary or tertiary structure such as quadruplexes, hairpins, triplexes, three way junctions (3WJs), four way junctions (4WJs), parallel-Y junctions, hairpins, bulge loops, pseudoknots, and internal loops, etc., and any transient forms or structures adopted by the RNA). In some embodiments, the RNA is 20, 22, 50, 75, or 100 or more nucleotides in length. In some embodiments, the RNA is 250 or more nucleotides in length. In some embodiments, the RNA is 350, 450, 500, 600, 750, or 1,000, 2,000, 3,000, 4,000, 5,000, 7,500, 10,000, 15,000, 25,000, 50,000, or more nucleotides in length. In some embodiments, the RNA is between 250 and 1,000 nucleotides in length. In some embodiments, the RNA is a pre-RNA, pre-miRNA, or pretranscript. In some embodiments, the RNA is a non-coding RNA (ncRNA), messenger RNA (mRNA), micro-RNA (miRNA), a ribozyme, riboswitch, IncRNA, lincRNA, snoRNA, snRNA, scaRNA, piRNA, ceRNA, pseudo- gene, viral RNA, fungal RNA, parasitic RNA, or bacterial RNA.


The term “target polynucleotide” or “target RNA,” as used herein, means any type of polynucleotide or RNA, respectively, having a splice site capable of being modulated by a small molecule compound described herein. For example, a target polynucleotide” or “target RNA,” may have a secondary or tertiary structure capable of binding a small molecule compound described herein.


“Steric alteration”, “steric modification” or “steric modulation” herein refers to changes in the spatial orientation of chemical moieties with respect to each other. A person of ordinary skill in the art would recognize steric mechanisms include, but are not limited to, steric hindrance, steric shielding, steric attraction, chain crossing, steric repulsions, steric inhibition of resonance, and steric inhibition of protonation.


Any open valency appearing on a carbon, oxygen, sulfur or nitrogen atom in the structures herein indicates the presence of hydrogen, unless indicated otherwise.


The definitions described herein apply irrespective of whether the terms in question appear alone or in combination. It is contemplated that the definitions described herein can be appended to form chemically-relevant combinations, such as e.g. “heterocycloalkylaryl”, “haloalkylheteroaryl”, “arylalkylheterocycloalkyl”, or “alkoxyalkyl”. The last member of the combination is the radical which is binding to the rest of the molecule. The other members of the combination are attached to the binding radical in reversed order in respect of the literal sequence, e.g. the combination arylalkylheterocycloalkyl refers to a heterocycloalkyl-radical which is substituted by an alkyl which is substituted by an aryl.


When indicating the number of substituents, the term “one or more” refers to the range from one substituent to the highest possible number of substitution, i.e. replacement of one hydrogen up to replacement of all hydrogens by substituents.


The term “optional” or “optionally” denotes that a subsequently described event or circumstance can but need not occur, and that the description includes instances where the event or circumstance occurs and instances in which it does not.


The term “substituent” denotes an atom or a group of atoms replacing a hydrogen atom on the parent molecule.


The term “substituted” denotes that a specified group bears one or more substituents. Where any group can carry multiple substituents and a variety of possible substituents is provided, the substituents are independently selected and need not to be the same. The term “unsubstituted” means that the specified group bears no substituents. The term “optionally substituted” means that the specified group is unsubstituted or substituted by one or more substituents, independently chosen from the group of possible substituents. When indicating the number of substituents, the term “one or more” means from one substituent to the highest possible number of substitution, i.e. replacement of one hydrogen up to replacement of all hydrogens by substituents.


The following abbreviations are used throughout the specification: acetic acid (AcOH); ethyl acetate (EtOAc); butyl alcohol (n-BuOH); 1,2-dichloroethane (DCE); dichloromethane (CH2Cl2, DCM); diisopropylethylamine (Diipea); dimethylformamide (DMF); hydrogen chloride (HCl); methanol (MeOH); methoxymethyl bromide (MOMBr); N-methyl-2-pyrrolidone (NMP); methyl Iodide (Mel); n-propanol (n-PrOH); p-methoxybenzyl (PMB); triethylamine (Et3N): [1,1′-Bis(diphenylphosphino)ferrocene]dichloropalladium(II); (Pd(dppf)Cl2); sodium ethane thiolate (EtSNa); sodium acetate (NaOAc); sodium hydride (NaH); sodium hydroxide (NaOH); tetrahydropyran (THP); tetrahydrofuran (THF).


As used herein, C1-Cx includes C1-C2, C1-C3 . . . C1-Cx. By way of example only, a group designated as “C1-C4” indicates that there are one to four carbon atoms in the moiety, i.e. groups containing 1 carbon atom, 2 carbon atoms, 3 carbon atoms or 4 carbon atoms. Thus, by way of example only, “C1-C4 alkyl” indicates that there are one to four carbon atoms in the alkyl group, i.e., the alkyl group is selected from among methyl, ethyl, propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, and t-butyl.


The term “oxo” refers to the ═O substituent.


The term “thioxo” refers to the ═S substituent.


The term “halo”, “halogen”, and “halide” are used interchangeably herein and denote fluoro, chloro, bromo, or iodo.


The term “alkyl” refers to a straight or branched hydrocarbon chain radical, having from one to twenty carbon atoms, and which is attached to the rest of the molecule by a single bond. An alkyl comprising up to 10 carbon atoms is referred to as a C1-C10 alkyl, likewise, for example, an alkyl comprising up to 6 carbon atoms is a C1-C6 alkyl. Alkyls (and other moieties defined herein) comprising other numbers of carbon atoms are represented similarly. Alkyl groups include, but are not limited to, C1-C10 alkyl, C1-C9 alkyl, C1-C8 alkyl, C1-C7 alkyl, C1-C6 alkyl, C1-C5 alkyl, C1-C4 alkyl, C1-C3 alkyl, C1-C2 alkyl, C2-C8 alkyl, C3-C8 alkyl and C4-C8 alkyl. Representative alkyl groups include, but are not limited to, methyl, ethyl, n-propyl. 1-methylethyl (i-propyl), n-butyl, i-butyl, s-butyl, n-pentyl, 1,1-dimethylethyl (t-butyl). 3-methylhexyl, 2-methylhexyl, 1-ethyl-propyl, and the like. In some embodiments, the alkyl is methyl or ethyl. In some embodiments, the alkyl is —CH(CH3)2 or —C(CH3)3. Unless stated otherwise specifically in the specification, an alkyl group may be optionally substituted as described below. “Alkylene” or “alkylene chain” refers to a straight or branched divalent hydrocarbon chain linking the rest of the molecule to a radical group. In some embodiments, the alkylene is —CH2—, —CH2CH2—, or —CH2CH2CH2—. In some embodiments, the alkylene is —CH2—. In some embodiments, the alkylene is —CH2CH2—. In some embodiments, the alkylene is —CH2CH2CH2—.


The term “alkoxy” refers to a radical of the formula —ORa where Ra is an alkyl radical as defined. Unless stated otherwise specifically in the specification, an alkoxy group may be optionally substituted as described below. Representative alkoxy groups include, but are not limited to, methoxy, ethoxy, propoxy, butoxy, pentoxy. In some embodiments, the alkoxy is methoxy. In some embodiments, the alkoxy is ethoxy.


The term “alkylamino” refers to a radical of the formula —NHRa or —NRaRa where each Ra is, independently, an alkyl radical as defined above. Unless stated otherwise specifically in the specification, an alkylamino group may be optionally substituted as described below.


The term “alkenyl” refers to a type of alkyl group in which at least one carbon-carbon double bond is present. In one embodiment, an alkenyl group has the formula —C(Ra)═CRa2, wherein Ra refers to the remaining portions of the alkenyl group, which may be the same or different. In some embodiments, Ra is H or an alkyl. In some embodiments, an alkenyl is selected from ethenyl (i.e., vinyl), propenyl (i.e., allyl), butenyl, pentenyl, pentadienyl, and the like. Non-limiting examples of an alkenyl group include —CH═CH2, —C(CH3)═CH2, —CH═CHCH3, —C(CH3)═CHCH3, and —CH2CH═CH2.


The term “alkynyl” refers to a type of alkyl group in which at least one carbon-carbon triple bond is present. In one embodiment, an alkenyl group has the formula —C≡C—Ra, wherein Ra refers to the remaining portions of the alkynyl group. In some embodiments, R is H or an alkyl. In some embodiments, an alkynyl is selected from ethynyl, propynyl, butynyl, pentynyl, hexynyl, and the like. Non-limiting examples of an alkynyl group include —C≡CH, —C≡CCH3—C≡CCH2CH3, —CH2C≡CH.


The term “aromatic” refers to a planar ring having a delocalized π-electron system containing 4n+2π electrons, where n is an integer. Aromatics can be optionally substituted. The term “aromatic” includes both aryl groups (e.g., phenyl, naphthalenyl) and heteroaryl groups (e.g., pyridinyl, quinolinyl).


The term “aryl” refers to an aromatic ring wherein each of the atoms forming the ring is a carbon atom. Aryl groups can be optionally substituted. Examples of aryl groups include, but are not limited to phenyl, and naphthyl. In some embodiments, the aryl is phenyl. Depending on the structure, an aryl group can be a monoradical or a diradical (i.e., an arylene group). Unless stated otherwise specifically in the specification, the term “aryl” or the prefix “ar-” (such as in “aralkyl”) is meant to include aryl radicals that are optionally substituted. In some embodiments, an aryl group is partially reduced to form a cycloalkyl group defined herein. In some embodiments, an aryl group is fully reduced to form a cycloalkyl group defined herein.


The term “haloalkyl” denotes an alkyl group wherein at least one of the hydrogen atoms of the alkyl group has been replaced by same or different halogen atoms, particularly fluoro atoms. Examples of haloalkyl include monofluoro-, difluoro- or trifluoro-methyl, -ethyl or -propyl, for example 3,3,3-trifluoropropyl, 2-fluoroethyl, 2,2,2-trifluoroethyl, fluoromethyl, or trifluoromethyl. The term “perhaloalkyl” denotes an alkyl group where all hydrogen atoms of the alkyl group have been replaced by the same or different halogen atoms.


The term “haloalkoxy” denotes an alkoxy group wherein at least one of the hydrogen atoms of the alkoxy group has been replaced by same or different halogen atoms, particularly fluoro atoms. Examples of haloalkoxyl include monofluoro-, difluoro- or trifluoro-methoxy, -ethoxy or -propoxy, for example 3,3,3-trifluoropropoxy, 2-fluoroethoxy, 2,2,2-trifluoroethoxy, fluoromethoxy, or trifluoromethoxy. The term “perhaloalkoxy” denotes an alkoxy group where all hydrogen atoms of the alkoxy group have been replaced by the same or different halogen atoms.


The term “bicyclic ring system” denotes two rings which are fused to each other via a common single or double bond (annelated bicyclic ring system), via a sequence of three or more common atoms (bridged bicyclic ring system) or via a common single atom (spiro bicyclic ring system). Bicyclic ring systems can be saturated, partially unsaturated, unsaturated or aromatic. Bicyclic ring systems can comprise heteroatoms selected from N, O and S.


The terms “carbocyclic” or “carbocycle” refer to a ring or ring system where the atoms forming the backbone of the ring are all carbon atoms. The term thus distinguishes carbocyclic from “heterocyclic” rings or “heterocycles” in which the ring backbone contains at least one atom which is different from carbon. In some embodiments, at least one of the two rings of a bicyclic carbocycle is aromatic. In some embodiments, both rings of a bicyclic carbocycle are aromatic. Carbocycle includes cycloalkyl and aryl.


The term “cycloalkyl” refers to a monocyclic or polycyclic non-aromatic radical, wherein each of the atoms forming the ring (i.e. skeletal atoms) is a carbon atom. In some embodiments, cycloalkyls are saturated or partially unsaturated. In some embodiments, cycloalkyls are spirocyclic or bridged compounds. In some embodiments, cycloalkyls are fused with an aromatic ring (in which case the cycloalkyl is bonded through a non-aromatic ring carbon atom). Cycloalkyl groups include groups having from 3 to 10 ring atoms. Representative cycloalkyls include, but are not limited to, cycloalkyls having from three to ten carbon atoms, from three to eight carbon atoms, from three to six carbon atoms, or from three to five carbon atoms. Monocyclic cycloalkyl radicals include, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl. In some embodiments, the monocyclic cycloalkyl is cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl. In some embodiments, the monocyclic cycloalkyl is cyclopentenyl or cyclohexenyl. In some embodiments, the monocyclic cycloalkyl is cyclopentenyl. Polycyclic radicals include, for example, adamantyl, 1.2-dihydronaphthalenyl, 1,4-dihydronaphthalenyl, tetrainyl, decalinyl, 3,4-dihydronaphthalenyl-1(2H)-one, spiro[2.2]pentyl, norbomyl and bicycle[1.1.1]pentyl. Unless otherwise stated specifically in the specification, a cycloalkyl group may be optionally substituted.


The term “bridged” refers to any ring structure with two or more rings that contains a bridge connecting two bridgehead atoms. The bridgehead atoms are defined as atoms that are the part of the skeletal framework of the molecule and which are bonded to three or more other skeletal atoms. In some embodiments, the bridgehead atoms are C, N, or P. In some embodiments, the bridge is a single atom or a chain of atoms that connects two bridgehead atoms. In some embodiments, the bridge is a valence bond that connects two bridgehead atoms. In some embodiments, the bridged ring system is cycloalkyl. In some embodiments, the bridged ring system is heterocycloalkyl.


The term “fused” refers to any ring structure described herein which is fused to an existing ring structure. When the fused ring is a heterocyclyl ring or a heteroaryl ring, any carbon atom on the existing ring structure which becomes part of the fused heterocyclyl ring or the fused heteroaryl ring may be replaced with one or more N, S, and O atoms. The non-limiting examples of fused heterocyclyl or heteroaryl ring structures include 6-5 fused heterocycle, 6-6 fused heterocycle, 5-6 fused heterocycle, 5-5 fused heterocycle, 7-5 fused heterocycle, and 5-7 fused heterocycle.


The term “haloalkyl” refers to an alkyl radical, as defined above, that is substituted by one or more halo radicals, as defined above, e.g., trifluoromethyl, difluoromethyl, fluoromethyl, trichloromethyl, 2,2,2-trifluoroethyl, 1,2-difluoroethyl, 3-bromo-2-fluoropropyl, 1,2-dibromoethyl, and the like. Unless stated otherwise specifically in the specification, a haloalkyl group may be optionally substituted.


The term “haloalkoxy” refers to an alkoxy radical, as defined above, that is substituted by one or more halo radicals, as defined above, e.g., trifluoromethoxy, difluoromethoxy, fluoromethoxy, trichloromethoxy, 2.2.2-trifluoroethoxy, 1,2-difluoroethoxy, 3-bromo-2-fluoropropoxy, 1,2-dibromoethoxy, and the like. Unless stated otherwise specifically in the specification, a haloalkoxy group may be optionally substituted.


The term “fluoroalkyl” refers to an alkyl in which one or more hydrogen atoms are replaced by a fluorine atom. In one aspect, a fluoroalkyl is a C1-C6 fluoroalkyl. In some embodiments, a fluoroalkyl is selected from trifluoromethyl, difluoromethyl, fluoromethyl, 2,2,2-trifluoroethyl, l-fluoromethyl-2-fluoroethyl, and the like.


The term “heteroalkyl” refers to an alkyl group in which one or more skeletal atoms of the alkyl are selected from an atom other than carbon, e.g., oxygen, nitrogen (e.g. —NH—, —N(alkyl)-, or —N(aryl)-), sulfur (e.g. —S—, —S(═O)—, or —S(═O)2—), or combinations thereof. In some embodiments, a heteroalkyl is attached to the rest of the molecule at a carbon atom of the heteroalkyl. In some embodiments, a heteroalkyl is attached to the rest of the molecule at a heteroatom of the heteroalkyl. In some embodiments, a heteroalkyl is a C1-C6 heteroalkyl. Representative heteroalkyl groups include, but are not limited to —OCH2OMe, —OCH2CH2OH, —OCH2CH2OMe, or —OCH2CH2OCH2CH2NH2.


The term “heteroalkylene” refers to an alkyl radical as described above where one or more carbon atoms of the alkyl is replaced with a O, N or S atom. “Heteroalkylene” or “heteroalkylene chain” refers to a straight or branched divalent heteroalkyl chain linking the rest of the molecule to a radical group. Unless stated otherwise specifically in the specification, the heteroalkyl or heteroalkylene group may be optionally substituted as described below. Representative heteroalkylene groups include, but are not limited to —OCH2CH2O—, —OCH2CH2OCH2CH2O—, or —OCH2CH2OCH2CH2OCH2CH2O—.


The term “heterocycloalkyl” refers to a cycloalkyl group that includes at least one heteroatom selected from nitrogen, oxygen, and sulfur. Unless stated otherwise specifically in the specification, the heterocycloalkyl radical may be a monocyclic, or bicyclic ring system, which may include fused (when fused with an aryl or a heteroaryl ring, the heterocycloalkyl is bonded through a non-aromatic ring atom) or bridged ring systems. The nitrogen, carbon or sulfur atoms in the heterocyclyl radical may be optionally oxidized. The nitrogen atom may be optionally quaternized. The heterocycloalkyl radical is partially or fully saturated. Examples of heterocycloalkyl radicals include, but are not limited to, dioxolanyl, thienyl[1,3]dithianyl, tetrahydroquinolyl, tetrahydroisoquinolyl, decahydroquinolyl, decahydroisoquinolyl, imidazolinyl, imidazolidinyl, isothiazolidinyl, isoxazolidinyl, morpholinyl, octahydroindolyl, octahydroisoindolyl, 2-oxopiperazinyl, 2-oxopiperidinyl, 2-oxopyrrolidinyl, oxazolidinyl, piperidinyl, piperazinyl, 4-piperidonyl, pyrrolidinyl, pyrazolidinyl, quinuclidinyl, thiazolidinyl, tetrahydrofuryl, trithianyl, tetrahydropyranyl, thiomorpholinyl, thiamorpholinyl, 1-oxo-thiomorpholinyl, 1,1-dioxo-thiomorpholinyl. The term heterocycloalkyl also includes all ring forms of carbohydrates, including but not limited to monosaccharides, disaccharides and oligosaccharides. Unless otherwise noted, heterocycloalkyls have from 2 to 12 carbons in the ring. In some embodiments, heterocycloalkyls have from 2 to 10 carbons in the ring. In some embodiments, heterocycloalkyls have from 2 to 10 carbons in the ring and 1 or 2 N atoms. In some embodiments, heterocycloalkyls have from 2 to 10 carbons in the ring and 3 or 4 N atoms. In some embodiments, heterocycloalkyls have from 2 to 12 carbons, 0-2 N atoms, 0-2 O atoms, 0-2 P atoms, and 0-1 S atoms in the ring. In some embodiments, heterocycloalkyls have from 2 to 12 carbons, 1-3 N atoms, 0-1 O atoms, and 0-1 S atoms in the ring. It is understood that when referring to the number of carbon atoms in a heterocycloalkyl, the number of carbon atoms in the heterocycloalkyl is not the same as the total number of atoms (including the heteroatoms) that make up the heterocycloalkyl (i.e. skeletal atoms of the heterocycloalkyl ring). Unless stated otherwise specifically in the specification, a heterocycloalkyl group may be optionally substituted.


The term “heterocycle” or “heterocyclic” refers to heteroaromatic rings (also known as heteroaryls) and heterocycloalkyl rings (also known as heteroalicyclic groups) that includes at least one heteroatom selected from nitrogen, oxygen and sulfur, wherein each heterocyclic group has from 3 to 12 atoms in its ring system, and with the proviso that any ring does not contain two adjacent O or S atoms. In some embodiments, heterocycles are monocyclic, bicyclic, polycyclic, spirocyclic or bridged compounds. Non-aromatic heterocyclic groups (also known as heterocycloalkyls) include rings having 3 to 12 atoms in its ring system and aromatic heterocyclic groups include rings having 5 to 12 atoms in its ring system. The heterocyclic groups include benzo-fused ring systems. Examples of non-aromatic heterocyclic groups are pyrrolidinyl, tetrahydrofuranyl, dihydrofuranyl, tetrahydrothienyl, oxazolidinonyl, tetrahydropyranyl, dihydropyranyl, tetrahydrothiopyranyl, piperidinyl, morpholinyl, thiomorpholinyl, thioxanyl, piperazinyl, aziridinyl, azetidinyl, oxetanyl, thietanyl, homopiperidinyl, oxepanyl, thiepanyl, oxazepinyl, diazepinyl, thiazepinyl, 1,2,3,6-tetrahydropyridinyl, pyrrolin-2-yl, pyrrolin-3-yl, indolinyl, 2H-pyranyl, 4H-pyranyl, dioxanyl, 1,3-dioxolanyl, pyrazolinyl, dithianyl, dithiolanyl, dihydropyranyl, dihydrothienyl, dihydrofuranyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, 3-azabicyclo[3.1.0]hexanyl, 3-azabicyclo[4.1.0]heptanyl, 3 h-indolyl, indolin-2-onyl, isoindolin-1-onyl, isoindoline-1,3-dionyl, 3,4-dihydroisoquinolin-1 (2H)-onyl, 3,4-dihydroquinolin-2(1H)-onyl, isoindoline-1,3-dithionyl, benzo[d]oxazol-2(3H)-onyl, 1H-benzo[d]imidazol-2(3H)-onyl, benzo[d]thiazol-2(3H)-onyl, and quinolizinyl. Examples of aromatic heterocyclic groups are pyridinyl, imidazolyl, pyrimidinyl, pyrazolyl, triazolyl, pyrazinyl, tetrazolyl, furyl, thienyl, isoxazolyl, thiazolyl, oxazolyl, isothiazolyl, pyrrolyl, quinolinyl, isoquinolinyl, indolyl, benzimidazolyl, benzofuranyl, cinnolinyl, indazolyl, indolizinyl, phthalazinyl, pyridazinyl, triazinyl, isoindolyl, pteridinyl, purinyl, oxadiazolyl, thiadiazolyl, furazanyl, benzofurazanyl, benzothiophenyl, benzothiazolyl, benzoxazolyl, quinazolinyl, quinoxalinyl, naphthyridinyl, and furopyridinyl. The foregoing groups are either C-attached (or C-linked) or N-attached where such is possible. For instance, a group derived from pyrrole includes both pyrrol-1-yl (N-attached) or pyrrol-3-yl (C-attached). Further, a group derived from imidazole includes imidazol-1-yl or imidazol-3-yl (both N-attached) or imidazol-2-yl, imidazol-4-yl or imidazol-5-yl (all C-attached). The heterocyclic groups include benzo-fused ring systems. Non-aromatic heterocycles are optionally substituted with one or two oxo (═O) moieties, such as pyrrolidin-2-one. In some embodiments, at least one of the two rings of a bicyclic heterocycle is aromatic. In some embodiments, both rings of a bicyclic heterocycle are aromatic.


The term “heteroaryl” refers to an aryl group that includes one or more ring heteroatoms selected from nitrogen, oxygen and sulfur. The heteroaryl is monocyclic or bicyclic. Illustrative examples of monocyclic heteroaryls include pyridinyl, imidazolyl, pyrimidinyl, pyrazolyl, triazolyl, pyrazinyl, tetrazolyl, furyl, thienyl, isoxazolyl, thiazolyl, oxazolyl, isothiazolyl, pyrrolyl, pyridazinyl, triazinyl, oxadiazolyl, thiadiazolyl, furazanyl, indolizine, indole, benzofuran, benzothiophene, indazole, benzimidazole, purine, quinolizine, quinoline, isoquinoline, cinnoline, phthalazine, quinazoline, quinoxaline, 1,8-naphthyridine, and pteridine. Illustrative examples of monocyclic heteroaryls include pyridinyl, imidazolyl, pyrimidinyl, pyrazolyl, triazolyl, pyrazinyl, tetrazolyl, furyl, thienyl, isoxazolyl, thiazolyl, oxazolyl, isothiazolyl, pyrrolyl, pyridazinyl, triazinyl, oxadiazolyl, thiadiazolyl, and furazanyl. Illustrative examples of bicyclic heteroaryls include indolizine, indole, benzofuran, benzothiophene, indazole, benzimidazole, purine, quinolizine, quinoline, isoquinoline, cinnoline, phthalazine, quinazoline, quinoxaline, 1,8-naphthyridine, and pteridine. In some embodiments, heteroaryl is pyridinyl, pyrazinyl, pyrimidinyl, thiazolyl, thienyl, thiadiazolyl or furyl. In some embodiments, a heteroaryl contains 0-6 N atoms in the ring. In some embodiments, a heteroaryl contains 1-4 N atoms in the ring. In some embodiments, a heteroaryl contains 4-6 N atoms in the ring. In some embodiments, a heteroaryl contains 0-4 N atoms, 0-1 O atoms, 0-1 P atoms, and 0-1 S atoms in the ring. In some embodiments, a heteroaryl contains 1-4 N atoms, 0-1 O atoms, and 0-1 S atoms in the ring. In some embodiments, heteroaryl is a C1-C9 heteroaryl. In some embodiments, monocyclic heteroaryl is a C1-C5 heteroaryl. In some embodiments, monocyclic heteroaryl is a 5-membered or 6-membered heteroaryl. In some embodiments, a bicyclic heteroaryl is a C6-C9 heteroaryl. In some embodiments, a heteroaryl group is partially reduced to form a heterocycloalkyl group defined herein. In some embodiments, a heteroaryl group is fully reduced to form a heterocycloalkyl group defined herein.


The term “moiety” refers to a specific segment or functional group of a molecule. Chemical moieties are often recognized chemical entities embedded in or appended to a molecule.


The term “optionally substituted” or “substituted” means that the referenced group is optionally substituted with one or more additional group(s) individually and independently selected from D, halogen, —CN, —NH2, —NH(alkyl), —N(alkyl)2, —OH, —CO2H, —CO2 alkyl, —C(═O)NH2, —C(═O)NH(alkyl), —C(═O)N(alkyl)2, —S(═O)2NH2, —S(═O)2NH(alkyl), —S(═O)2N(alkyl)2, alkyl, cycloalkyl, fluoroalkyl, heteroalkyl, alkoxy, fluoroalkoxy, heterocycloalkyl, aryl, heteroaryl, aryloxy, alkylthio, arylthio, alkylsulfoxide, arylsulfoxide, alkylsulfone, and arylsulfone. In some other embodiments, optional substituents are independently selected from D, halogen, —CN, —NH2, —NH(CH3), —N(CH3)2, —OH, —CO2H, —CO2(C1-C4 alkyl), —C(═O)NH2, —C(═O)NH(C1-C4 alkyl), —C(═O)N(C1-C4alkyl)2, —S(═O)2NH2, —S(═O)2NH(C1-C4 alkyl), —S(═O)2N(C1-C4alkyl)2, C1-C4 alkyl, C3-C6 cycloalkyl, C1-C4 fluoroalkyl, C1-C4 heteroalkyl, C1-C4 alkoxy, C1-C4 fluoroalkoxy, —SC1-C4 alkyl, —S(═O)C1-C4 alkyl, and —S(═O)2(C1-C4 alkyl). In some embodiments, optional substituents are independently selected from D, halogen, —CN, —NH2, —OH, —NH(CH3), —N(CH3)2, —NH(cyclopropyl), —CH3, —CH2CH3, —CF3, —OCH3, and —OCF3. In some embodiments, substituted groups are substituted with one or two of the preceding groups. In some embodiments, an optional substituent on an aliphatic carbon atom (acyclic or cyclic) includes oxo (═O).


The term “tautomer” refers to a proton shift from one atom of a molecule to another atom of the same molecule. The compounds presented herein may exist as tautomers. Tautomers are compounds that are interconvertible by migration of a hydrogen atom, accompanied by a switch of a single bond and adjacent double bond. In bonding arrangements where tautomerization is possible, a chemical equilibrium of the tautomers will exist. All tautomeric forms of the compounds disclosed herein are contemplated. The exact ratio of the tautomers depends on several factors, including temperature, solvent, and pH. Some examples of tautomeric interconversions include:




embedded image


The term “about” or “approximately” can mean within an acceptable error range for the particular value as determined by one of ordinary skill in the art, which will depend in part on how the value is measured or determined, i.e., the limitations of the measurement system. For example, “about” can mean within 1 or more than 1 standard deviation, per the practice in the art. Alternatively, “about” can mean a range of up to 20%, up to 15%, up to 10%, up to 5%, or up to 1% of a given value. Alternatively, particularly with respect to biological systems or processes, the term can mean within an order of magnitude, within 5-fold, or within 2-fold, of a value.


The terms “administer,” “administering”, “administration,” and the like, as used herein, refer to the methods that may be used to enable delivery of compounds or compositions to the desired site of biological action. These methods include, but are not limited to oral routes (p.o.), intraduodenal routes (i.d.), parenteral injection (including intravenous (i.v.), subcutaneous (s.c.), intraperitoneal (i.p.), intramuscular (i.m.), intravascular or infusion (inf.)), topical (top.) and rectal (p.r.) administration. Those of skill in the art are familiar with administration techniques that can be employed with the compounds and methods described herein. In some embodiments, the compounds and compositions described herein are administered orally.


The terms “co-administration” or the like, as used herein, are meant to encompass administration of the selected therapeutic agents to a single patient, and are intended to include treatment regimens in which the agents are administered by the same or different route of administration or at the same or different time.


The terms “effective amount” or “therapeutically effective amount,” as used herein, refer to a sufficient amount of an agent or a compound being administered which will relieve to some extent one or more of the symptoms of the disease or condition being treated; for example a reduction and/or alleviation of one or more signs, symptoms, or causes of a disease, or any other desired alteration of a biological system. For example, an “effective amount” for therapeutic uses can be an amount of an agent that provides a clinically significant decrease in one or more disease symptoms. An appropriate “effective” amount may be determined using techniques, such as a dose escalation study, in individual cases.


The terms “enhance” or “enhancing,” as used herein, means to increase or prolong either in amount, potency or duration a desired effect. For example, in regard to enhancing splicing of a target, the term “enhancing” can refer to the ability to increase or prolong splicing, either in amount, potency or duration, of a the target.


The term “subject” or “patient” encompasses mammals. Examples of mammals include, but are not limited to, any member of the mammalian class: humans, non-human primates such as chimpanzees, and other apes and monkey species; farm animals such as cattle, horses, sheep, goats, swine; domestic animals such as rabbits, dogs, and cats; laboratory animals including rodents, such as rats, mice and guinea pigs, and the like. In one aspect, the mammal is a human. The term “animal” as used herein comprises human beings and non-human animals. In one embodiment, a “non-human animal” is a mammal, for example a rodent such as rat or a mouse. In one embodiment, a non-human animal is a mouse.


The terms “treat,” “treating” or “treatment,” as used herein, include alleviating, abating or ameliorating at least one symptom of a disease or condition, preventing additional symptoms, inhibiting the disease or condition, e.g., arresting the development of the disease or condition, relieving the disease or condition, causing regression of the disease or condition, relieving a condition caused by the disease or condition, or stopping the symptoms of the disease or condition either prophylactically and/or therapeutically.


The term “preventing” or “prevention” of a disease state denotes causing the clinical symptoms of the disease state not to develop in a subject that can be exposed to or predisposed to the disease state, but does not yet experience or display symptoms of the disease state.


The terms “pharmaceutical composition” and “pharmaceutical formulation” (or “formulation”) are used interchangeably and denote a mixture or solution comprising a therapeutically effective amount of an active pharmaceutical ingredient together with one or more pharmaceutically acceptable excipients to be administered to a subject, e.g., a human in need thereof.


The term “pharmaceutical combination” as used herein, means a product that results from mixing or combining more than one active ingredient and includes both fixed and non-fixed combinations of the active ingredients. The term “fixed combination” means that the active ingredients, e.g., a compound described herein and a co-agent, are both administered to a patient simultaneously in the form of a single entity or dosage. The term “non-fixed combination” means that the active ingredients, e.g. a compound described herein and a co-agent, are administered to a patient as separate entities either simultaneously, concurrently or sequentially with no specific intervening time limits, wherein such administration provides effective levels of the two compounds in the body of the patient. The latter also applies to cocktail therapy, e.g., administration of three or more active ingredients.


The term “pharmaceutically acceptable” denotes an attribute of a material which is useful in preparing a pharmaceutical composition that is generally safe, non-toxic, and neither biologically nor otherwise undesirable and is acceptable for veterinary as well as human pharmaceutical use. “Pharmaceutically acceptable” can refer a material, such as a carrier or diluent, which does not abrogate the biological activity or properties of the compound, and is relatively nontoxic, i.e., the material may be administered to an individual without causing undesirable biological effects or interacting in a deleterious manner with any of the components of the composition in which it is contained.


The terms “pharmaceutically acceptable excipient”, “pharmaceutically acceptable carrier” and “therapeutically inert excipient” can be used interchangeably and denote any pharmaceutically acceptable ingredient in a pharmaceutical composition having no therapeutic activity and being non-toxic to the subject administered, such as disintegrators, binders, fillers, solvents, buffers, tonicity agents, stabilizers, antioxidants, surfactants, carriers, diluents, excipients, preservatives or lubricants used in formulating pharmaceutical products


The term “pharmaceutically acceptable salts” denotes salts which are not biologically or otherwise undesirable. Pharmaceutically acceptable salts include both acid and base addition salts. A “pharmaceutically acceptable salt” can refer to a formulation of a compound that does not cause significant irritation to an organism to which it is administered and/or does not abrogate the biological activity and properties of the compound. In some embodiments, pharmaceutically acceptable salts are obtained by reacting an SMSM compound of any one of Formulas (I) or (II) with an acid. Pharmaceutically acceptable salts are also obtained by reacting a compound of any one of Formulas (I) or (II) or with a base to form a salt.


The term “nucleic acid” as used herein generally refers to one or more nucleobases, nucleosides, or nucleotides, and the term includes polynucleobases, polynucleosides, and polynucleotides.


The term “polynucleotide”, as used herein generally refers to a molecule comprising two or more linked nucleic acid subunits, e.g., nucleotides, and can be used interchangeably with “oligonucleotide”. For example, a polynucleotide may include one or more nucleotides selected from adenosine (A), cytosine (C), guanine (G), thymine (T) and uracil (U), or variants thereof. A nucleotide generally includes a nucleoside and at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more phosphate (PO3) groups. A nucleotide can include a nucleobase, a five-carbon sugar (either ribose or deoxyribose), and one or more phosphate groups. Ribonucleotides include nucleotides in which the sugar is ribose. Deoxyribonucleotides include nucleotides in which the sugar is deoxyribose. A nucleotide can be a nucleoside monophosphate, nucleoside diphosphate, nucleoside triphosphate or a nucleoside polyphosphate. For example, a nucleotide can be a deoxyribonucleoside polyphosphate, such as a deoxyribonucleoside triphosphate (dNTP), Exemplary dNTPs include deoxyadenosine triphosphate (dATP), deoxycytidine triphosphate (dCTP), deoxyguanosine triphosphate (dGTP), uridine triphosphate (dUTP) and deoxythymidine triphosphate (dTTP), dNTPs can also include detectable tags, such as luminescent tags or markers (e.g., fluorophores). For example, a nucleotide can be a purine (i.e., A or G, or variant thereof) or a pyrimidine (i.e., C, T or U, or variant thereof). In some examples, a polynucleotide is deoxyribonucleic acid (DNA), ribonucleic acid (RNA), or derivatives or variants thereof. Exemplary polynucleotides include, but are not limited to, short interfering RNA (siRNA), a microRNA (miRNA), a plasmid DNA (pDNA), a short hairpin RNA (shRNA), small nuclear RNA (snRNA), messenger RNA (mRNA), precursor mRNA (pre-mRNA), antisense RNA (asRNA), and heteronuclear RNA (hnRNA), and encompasses both the nucleotide sequence and any structural embodiments thereof, such as single-stranded, double-stranded, triple-stranded, helical, hairpin, stem loop, bulge, etc. In some cases, a polynucleotide is circular. A polynucleotide can have various lengths. For example, a polynucleotide can have a length of at least about 7 bases, 8 bases, 9 bases, 10 bases, 20 bases, 30 bases, 40 bases, 50 bases, 100 bases, 200 bases, 300 bases, 400 bases, 500 bases, 1 kilobase (kb), 2 kb, 3, kb, 4 kb, 5 kb, 10 kb, 50 kb, or more. A polynucleotide can be isolated from a cell or a tissue. For example, polynucleotide sequences may comprise isolated and purified DNA/RNA molecules, synthetic DNA/RNA molecules, and/or synthetic DNA/RNA analogs.


Polynucleotides may include one or more nucleotide variants, including nonstandard nucleotide(s), non-natural nucleotide(s), nucleotide analog(s) and/or modified nucleotides. Examples of modified nucleotides include, but are not limited to diaminopurine, 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xantine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl)uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5′-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, 2,6-diaminopurine and the like. In some cases, nucleotides may include modifications in their phosphate moieties, including modifications to a triphosphate moiety. Non-limiting examples of such modifications include phosphate chains of greater length (e.g., a phosphate chain having, 4, 5, 6, 7, 8, 9, 10 or more phosphate moieties) and modifications with thiol moieties (e.g., alpha-thiotriphosphate and beta-thiotriphosphates). Nucleic acid molecules may also be modified at the base moiety (e.g., at one or more atoms that typically are available to form a hydrogen bond with a complementary nucleotide and/or at one or more atoms that are not typically capable of forming a hydrogen bond with a complementary nucleotide), sugar moiety or phosphate backbone. Nucleic acid molecules may also contain amine-modified groups, such as amino ally 1-dUTP (aa-dUTP) and aminohexhylacrylamide-dCTP (aha-dCTP) to allow covalent attachment of amine reactive moieties, such as N-hydroxysuccinimide esters (NHS). Alternatives to standard DNA base pairs or RNA base pairs in the oligonucleotides of the present disclosure can provide higher density in bits per cubic mm, higher safety (resistant to accidental or purposeful synthesis of natural toxins), easier discrimination in photo-programmed polymerases, or lower secondary structure. Such alternative base pairs compatible with natural and mutant polymerases for de novo and/or amplification synthesis are described in Betz K, Malyshev DA, Lavergne T, Welte W, Diederichs K, Dwyer T J, Ordoukhanian P, Romesberg F E, Marx A. Nat. Chem. Biol. 2012 July; 8(7):612-4, which is herein incorporated by reference for all purposes.


As used herein, the terms “polypeptide”, “protein” and “peptide” are used interchangeably and refer to a polymer of amino acid residues linked via peptide bonds and which may be composed of two or more polypeptide chains. The terms “polypeptide”, “protein” and “peptide” refer to a polymer of at least two amino acid monomers joined together through amide bonds. An amino acid may be the L-optical isomer or the D-optical isomer. More specifically, the terms “polypeptide”, “protein” and “peptide” refer to a molecule composed of two or more amino acids in a specific order; for example, the order as determined by the base sequence of nucleotides in the gene or RNA coding for the protein. Proteins are essential for the structure, function, and regulation of the body's cells, tissues, and organs, and each protein has unique functions. Examples are hormones, enzymes, antibodies, and any fragments thereof. In some cases, a protein can be a portion of the protein, for example, a domain, a subdomain, or a motif of the protein. In some cases, a protein can be a variant (or mutation) of the protein, wherein one or more amino acid residues are inserted into, deleted from, and/or substituted into the naturally occurring (or at least a known) amino acid sequence of the protein. A protein or a variant thereof can be naturally occurring or recombinant.


Methods for detection and/or measurement of polypeptides in biological material are well known in the art and include, but are not limited to, Western-blotting, flow cytometry, ELISAs, RIAs, and various proteomics techniques. An exemplary method to measure or detect a polypeptide is an immunoassay, such as an ELISA. This type of protein quantitation can be based on an antibody capable of capturing a specific antigen, and a second antibody capable of detecting the captured antigen. Exemplary assays for detection and/or measurement of polypeptides are described in Harlow, E. and Lane, D. Antibodies: A Laboratory Manual, (1988), Cold Spring Harbor Laboratory Press.


Methods for detection and/or measurement of RNA in biological material are well known in the art and include, but are not limited to, Northern-blotting, RNA protection assay, RT PCR. Suitable methods are described in Molecular Cloning: A Laboratory Manual (Fourth Edition) By Michael R. Green, Joseph Sambrook, Peter MacCallum 2012, 2,028 pp, ISBN 978-1-936113-42-2.


As used here, a “small molecular weight compound” can be used interchangeably with “small molecule” or “small organic molecule”. Small molecules refer to compounds other than peptides or oligonucleotides; and typically have molecular weights of less than about 2000 Daltons, e.g., less than about 900 Daltons.


A ribonucleoprotein (RNP) refers to a nucleoprotein that contains RNA. A RNP can be a complex of a ribonucleic acid and an RNA-binding protein. Such a combination can also be referred to as a protein-RNA complex. These complexes can function in a number of biological functions that include, but are not limited to, DNA replication, gene expression, metabolism of RNA, and pre-mRNA splicing. Examples of RNPs include the ribosome, the enzyme telomerase, vault ribonucleoproteins, RNase P, heterogeneous nuclear RNPs (hnRNPs) and small nuclear RNPs (snRNPs).


Nascent RNA transcripts from protein-coding genes and mRNA processing intermediates, collectively referred to as pre-mRNA, are generally bound by proteins in the nuclei of eukaryotic cells. From the time nascent transcripts first emerge from RNA polymerase (e.g., RNA polymerase II) until mature mRNAs are transported into the cytoplasm, the RNA molecules are associated with an abundant set of splicing complex components (e.g., nuclear proteins and snRNAs). These proteins can be components of hnRNPs, which can contain heterogeneous nuclear RNA (hnRNA) (e.g., pre-mRNA and nuclear RNA complexes) of various sizes.


Splicing complex components function in splicing and/or splicing regulation. Splicing complex components can include, but are not limited to, ribonuclear proteins (RNPs), splicing proteins, small nuclear RNAs (snRNAs), small nuclear ribonucleoproteins (snRNPs), and heterogeneous nuclear ribonucleoproteins (hnRNPs). Splicing complex components include, but are not limited to, those that may be required for splicing, such as constitutive splicing, alternative splicing, regulated splicing and splicing of specific messages or groups of messages. A group of related proteins, the serine arginine rich proteins (SR proteins), can function in constitutive pre-mRNA splicing and may also regulate alternative splice-site selection in a concentration-dependent manner. SR proteins typically have a modular structure that consists of one or two RNA-recognition motifs (RRMs) and a C-terminal rich in arginine and serine residues (RS domain). Their activity in alternative splicing may be antagonized by members of the hnRNP A/B family of proteins. Splicing complex components can also include proteins that are associated with one or more snRNAs. SR proteins in human include, but are not limited to, SC35, SRp55, SRp40, SRm300, SFRS10, TASR-1, TASR-2, SF2/ASF, 9G8, SRp75, SRp30c, SRp20 and P54/SFRS11. Other splicing complex components in human that can be involved in splice site selection include, but are not limited to, U2 snRNA auxiliary factors (e.g. U2AF65, U2AF35), Urp/U2AF1-RS2, SF1/BBP, CBP80, CBP 20, SF1 and PTB/hnRNPI hnRNP proteins in humans include, but are not limited to, A1, A2/B1, L, M, K, U, F, H, G, R, I and C1/C2. Human genes encoding hnRNPs include HNRNPA0, HNRNPA1, HNRNPAIL1, HNRNPAIL2, HNRNPA3, HNRNPA2B1, HNRNPAB, HNRNPBP1, HNRNPC, HNRNPCL1, HNRNPD, HNRPDL, HNRNPF, HNRNPH1, HNRNPH2, HNRNPH3, HNRNPK, HNRNPL, HNRPLL, HNRNPM, HNRNPR, HNRNPU, HNRNPUL1, HNRNPUL2, HNRNPUL3, and FMR1. Splicing complex components may be stably or transiently associated with a snRNP or with a transcript.


The term “intron” refers to both the DNA sequence within a gene and the corresponding sequence in the unprocessed RNA transcript. As part of the RNA processing pathway, introns can be removed by RNA splicing either shortly after or concurrent with transcription. Introns are found in the genes of most organisms and many viruses. They can be located in a wide range of genes, including those that generate proteins, ribosomal RNA (rRNA), and transfer RNA (tRNA).


An “exon” can be any part of a gene that encodes a part of the final mature RNA produced by that gene after introns have been removed by RNA splicing. The term “exon” refers to both the DNA sequence within a gene and to the corresponding sequence in RNA transcripts.


A “spliceosome” can be assembled from snRNAs and protein complexes. The spliceosome can remove introns from a transcribed pre-mRNA.


“Medium effective dose” (ED50) is the dose at which 50% of a population expresses a specified response. “Medium lethal dose” (LD50) is the dose at which 50% of a population dies. “Medium toxic dose” (TD50) is the dose at which 50% of a population expresses a specified toxic effect. One particularly useful pharmacological indicator is the “therapeutic index” which is traditionally defined as the ratio of LD50 to ED50 or the ratio of TD50 to ED50. Therapeutic index provides a simple and useful indicator of the benefit versus adverse effect of a drug. Those drugs which have a high therapeutic index have a large therapeutic window, i.e., the drugs may be administered over a wider range of effective doses without incurring significant adverse events. Conversely, drugs having a small therapeutic index have a small therapeutic window (small range of effective doses without incurring significant adverse events).


The term “AUC” as used herein refers to an abbreviation for “area under the curve” in a graph of the concentration of a therapeutic agent over time in a certain part or tissue, such as blood or plasma, of a subject to whom the therapeutic agent has been administered.


Small Molecule Splicing Modulators (SMSMs)

It has now been found that compounds of this disclosure, and pharmaceutically acceptable compositions thereof, are effective as agents for use in treating, preventing, or ameliorating a disease or condition associated with a target RNA. The present disclosure provides the unexpected discovery that certain small chemical molecules can modify splicing events in pre-mRNA molecules, herein referred to as small molecule splicing modulators (SMSMs). These SMSMs can modulate specific splicing events in specific pre-mRNA molecules. These SMSMs can operate by a variety of mechanisms to modify splicing events. For example, the SMSMs of this disclosure can: 1) interfere with the formation and/or function and/or other properties of splicing complexes, spliceosomes, and/or their components such as hnRNPs, snRNPs, SR-proteins and other splicing factors or elements, resulting in the prevention or induction of a splicing event in a pre-mRNA molecule. As another example; 2) prevent and/or modify post-transcriptional regulation (e.g., splicing) of gene products, such as hnRNPs, snRNPs, SR-proteins and other splicing factors, which can subsequently be involved in the formation and/or function of a spliceosome or splicing complex component; 3) prevent and/or modify phosphorylation, glycosylation and/or other modifications of gene products including, but not limited to, hnRNPs, snRNPs, SR-proteins and other splicing factors, which can subsequently be involved in the formation and/or function of a spliceosome or splicing complex component; 4) bind to and/or otherwise affect specific pre-mRNA so that a specific splicing event is prevented or induced, e.g., via a mechanism that does not involve base pairing with RNA in a sequence-specific manner. The small molecules of this disclosure are different from and are not related to antisense or antigene oligonucleotides.


Described herein are compounds modifying splicing of gene products for use in the treatment, prevention and/or delay of progression of diseases or conditions (e.g., cancer). Described herein are compounds modifying splicing of gene products wherein the compounds induce a transcriptionally inactive variant or transcript of a gene product. Described herein are compounds modifying splicing of gene products wherein the compounds repress a transcriptionally active variant or transcript of a gene product.


In one aspect, described herein is a compound of Formula (I), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof:




embedded image


wherein,

  • A is —CRA═CRA—;
  • E is —NR—, —O—, —S—, —S(═O)—, —S(═O)2—, or —S(═O)(═NRE)—;
  • RE is hydrogen, substituted or unsubstituted C1-C3 alkyl, substituted or unsubstituted C3-C6 cycloalkyl, substituted or unsubstituted C2-C5 heterocycloalkyl, substituted or unsubstituted C2-C3 alkenyl, or substituted or unsubstituted C2-C3 alkynyl;
  • each RA is independently selected from the group consisting of hydrogen, deuterium, F, Cl, —CN, —OR1, —SR1, —S(═O)R1, —S(═O)2R1, substituted or unsubstituted C1-C4 alkyl, substituted or unsubstituted C1-C4 haloalkyl, substituted or unsubstituted C1-C4 heteroalkyl, substituted or unsubstituted C3-C4 cycloalkyl, and substituted or unsubstituted C2-C3 heterocycloalkyl;
  • ring Q is substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl;
  • X is —O— or —S—;
  • Z is CR2;
  • W is substituted or unsubstituted C1-C3 alkylene, substituted or unsubstituted C1-C2 heteroalkylene, substituted or unsubstituted C2-C3 alkenylene, substituted or unsubstituted C3-C8 cycloalkylene, substituted or unsubstituted C2-C7 heterocycloalkylene;
  • R is hydrogen;
  • each R1 is independently hydrogen, deuterium, substituted or unsubstituted C1-C4 alkyl, —CD3, substituted or unsubstituted C1-C4 haloalkyl, substituted or unsubstituted C1-C4 heteroalkyl, substituted or unsubstituted C3-C6 cycloalkyl, substituted or unsubstituted C2-C5 heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;
  • R2 is hydrogen, deuterium, substituted or unsubstituted C1-C4 alkyl, —CD3, or substituted or unsubstituted C1-C4 haloalkyl;
  • each R11, R12, R13, R14, R16, and R17 is independently selected from the group consisting of hydrogen, deuterium, F, —OR1, substituted or unsubstituted C1-C4 alkyl, a substituted or unsubstituted C1-C4 fluoroalkyl, and substituted or unsubstituted C1-C4 heteroalkyl;
  • R15 and R18 (i) are the same and selected from the group consisting of hydrogen and deuterium, or (ii) are the same and selected from the group consisting of F, —OR1, substituted or unsubstituted C1-C4 alkyl, a substituted or unsubstituted C1-C4 fluoroalkyl, and substituted or unsubstituted C1-C4 heteroalkyl;
  • a is 0;
  • b is 0;
  • c is 1; and
  • d is 1, with the proviso that the compound is not a compound in Table 3 or Table 4.


In one aspect, described herein is a compound of Formula (I), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof:




embedded image


wherein,

  • A is —CRA═CRA—;
  • E is —NR—, —O—, —S—, —S(═O)—, —S(═O)2—, or —S(═O)(═NRE)—;
  • RE is hydrogen, substituted or unsubstituted C1-C3 alkyl, substituted or unsubstituted C3-C6 cycloalkyl, substituted or unsubstituted C2-C5 heterocycloalkyl, substituted or unsubstituted C2-C3 alkenyl, or substituted or unsubstituted C2-C3 alkynyl;
  • each RA is independently selected from the group consisting of hydrogen, deuterium, F, Cl, —CN, —OR1, —SR1, —S(═O)R1, —S(═O)2R1, substituted or unsubstituted C1-C4 alkyl, substituted or unsubstituted C1-C4 haloalkyl, substituted or unsubstituted C1-C4 heteroalkyl, substituted or unsubstituted C3-C4 cycloalkyl, and substituted or unsubstituted C2-C3 heterocycloalkyl;
  • ring Q is substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl;
  • X is —O— or —S—;
  • Z is CR2;
  • W is substituted or unsubstituted C1-C3 alkylene, substituted or unsubstituted C1-C2 heteroalkylene, substituted or unsubstituted C2-C3 alkenylene, substituted or unsubstituted C3-C8 cycloalkylene, substituted or unsubstituted C2-C7 heterocycloalkylene;
  • R is hydrogen;
  • each R1 is independently hydrogen, deuterium, substituted or unsubstituted C1-C4 alkyl, —CD3, substituted or unsubstituted C1-C4 haloalkyl, substituted or unsubstituted C1-C4 heteroalkyl, substituted or unsubstituted C3-C6 cycloalkyl, substituted or unsubstituted C2-C5 heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;
  • R2 is hydrogen, deuterium, substituted or unsubstituted C1-C4 alkyl, —CD3, or substituted or unsubstituted C1-C4 haloalkyl;
  • each R11, R12, R13, R14, R16, and R17 is independently selected from the group consisting of hydrogen, deuterium, F, —OR1, substituted or unsubstituted C1-C4 alkyl, a substituted or unsubstituted C1-C4 fluoroalkyl, and substituted or unsubstituted C1-C4 heteroalkyl;
  • R15 and R18 are the same and selected from the group consisting of hydrogen and deuterium;
  • a is 0;
  • b is 0;
  • c is 1; and
  • d is 1, with the proviso that the compound is not a compound in Table 3.


In one aspect, described herein is a compound of Formula (I), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof:




embedded image


wherein,

  • A is —CRA═CRA—;
  • E is —NR—, —O—, —S—, —S(═O)—, —S(═O)2—, or —S(═O)(═NRE)—;
  • RE is hydrogen, substituted or unsubstituted C1-C3 alkyl, substituted or unsubstituted C3-C6 cycloalkyl, substituted or unsubstituted C2-C5 heterocycloalkyl, substituted or unsubstituted C2-C3 alkenyl, or substituted or unsubstituted C2-C3 alkynyl;
  • each RA is independently selected from the group consisting of hydrogen, deuterium, F, Cl, —CN, —OR1, —SR1, —S(═O)R1, —S(═O)2R1, substituted or unsubstituted C1-C4 alkyl, substituted or unsubstituted C1-C4 haloalkyl, substituted or unsubstituted C1-C4 heteroalkyl, substituted or unsubstituted C3-C4 cycloalkyl, and substituted or unsubstituted C2-C3 heterocycloalkyl;
  • ring Q is substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl;
  • X is —O— or —S—;
  • Z is CR2;
  • W is substituted or unsubstituted C1-C3 alkylene, substituted or unsubstituted C1-C2 heteroalkylene, substituted or unsubstituted C2-C3 alkenylene, substituted or unsubstituted C3-C8 cycloalkylene, substituted or unsubstituted C2-C7 heterocycloalkylene;
  • R is hydrogen;
  • each R1 is independently hydrogen, deuterium, substituted or unsubstituted C1-C4 alkyl, —CD3, substituted or unsubstituted C1-C4 haloalkyl, substituted or unsubstituted C1-C4 heteroalkyl, substituted or unsubstituted C3-C6 cycloalkyl, substituted or unsubstituted C2-C5 heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;
  • R2 is hydrogen, deuterium, substituted or unsubstituted C1-C4 alkyl, —CD3, or substituted or unsubstituted C1-C4 haloalkyl;
  • each R11, R12, R13, R14, R16, and R17 is independently selected from the group consisting of hydrogen, deuterium, F, —OR1, substituted or unsubstituted C1-C4 alkyl, a substituted or unsubstituted C1-C4 fluoroalkyl, and substituted or unsubstituted C1-C4 heteroalkyl;
  • R15 and R18 are the same and selected from the group consisting of F, —OR1, substituted or unsubstituted C1-C4 alkyl, a substituted or unsubstituted C1-C4 fluoroalkyl, and substituted or unsubstituted C1-C4 heteroalkyl;
  • a is 0;
  • b is 0;
  • c is 1; and
  • d is 1, with the proviso that the compound is not a compound in Table 4.


In one aspect, described herein is a compound of Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof:




embedded image


  • wherein,

  • A is —CRA═CRA—;

  • E is —NR—, —O—, —S—, —S(═O)—, —S(═O)2—, or —S(═O)(═NRE)—;

  • RE is hydrogen, substituted or unsubstituted C1-C3 alkyl, substituted or unsubstituted C3-C6 cycloalkyl, substituted or unsubstituted C2-C5 heterocycloalkyl, substituted or unsubstituted C2-C3 alkenyl, or substituted or unsubstituted C2-C3 alkynyl;

  • each RA is independently selected from the group consisting of hydrogen, deuterium, F, Cl, —CN, —OR1, —SR1, —S(═O)R1, —S(═O)2R1, substituted or unsubstituted C1-C4 alkyl, substituted or unsubstituted C1-C4 haloalkyl, substituted or unsubstituted C1-C4 heteroalkyl, substituted or unsubstituted C3-C4 cycloalkyl, and substituted or unsubstituted C2-C3 heterocycloalkyl;

  • ring Q is substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl;

  • X is —O— or —S—;

  • Z is CR2;

  • W is substituted or unsubstituted C1-C3 alkylene, substituted or unsubstituted C1-C2 heteroalkylene, substituted or unsubstituted C2-C3 alkenylene, substituted or unsubstituted C3-C8 cycloalkylene, substituted or unsubstituted C2-C7 heterocycloalkylene;

  • R is hydrogen;

  • each R1 is independently hydrogen, deuterium, substituted or unsubstituted C1-C4 alkyl, —CD3, substituted or unsubstituted C1-C4 haloalkyl, substituted or unsubstituted C1-C4 heteroalkyl, substituted or unsubstituted C3-C6 cycloalkyl, substituted or unsubstituted C2-C5 heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;

  • R2 is hydrogen, deuterium, substituted or unsubstituted C1-C4 alkyl, —CD3, or substituted or unsubstituted C1-C4 haloalkyl;

  • each R11, R12, R13, R14, R16, R17, R19, and R20 is independently selected from the group consisting of hydrogen, deuterium, F, —OR1, substituted or unsubstituted C1-C4 alkyl, a substituted or unsubstituted C1-C4 fluoroalkyl, and substituted or unsubstituted C1-C4 heteroalkyl;

  • R15 and R18 (i) are the same and selected from the group consisting of hydrogen and deuterium, or (ii) are the same and selected from the group consisting of F, —OR1, substituted or unsubstituted C1-C4 alkyl, a substituted or unsubstituted C1-C4 fluoroalkyl, and substituted or unsubstituted C1-C4 heteroalkyl;

  • a is 0;

  • b is 0;

  • c is 1; and

  • d is 1, with the proviso that the compound is not a compound in Table 3 or Table 4.



In one aspect, described herein is a compound of Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof:




embedded image


  • wherein,

  • A is —CRA═CRA—;

  • E is —NR—, —O—, —S—, —S(═O)—, —S(═O)2—, or —S(═O)(═NRE)—;

  • RE is hydrogen, substituted or unsubstituted C1-C3 alkyl, substituted or unsubstituted C3-C6 cycloalkyl, substituted or unsubstituted C2-C5 heterocycloalkyl, substituted or unsubstituted C2-C3 alkenyl, or substituted or unsubstituted C2-C3 alkynyl;

  • each RA is independently selected from the group consisting of hydrogen, deuterium, F, Cl, —CN, —OR1, —SR1, —S(═O)R1, —S(═O)2R1, substituted or unsubstituted C1-C4 alkyl, substituted or unsubstituted C1-C4 haloalkyl, substituted or unsubstituted C1-C4 heteroalkyl, substituted or unsubstituted C3-C4 cycloalkyl, and substituted or unsubstituted C2-C3 heterocycloalkyl;

  • ring Q is substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl;

  • X is —O— or —S—;

  • Z is CR2;

  • W is substituted or unsubstituted C1-C3 alkylene, substituted or unsubstituted C1-C2 heteroalkylene, substituted or unsubstituted C2-C3 alkenylene, substituted or unsubstituted C3-C4 cycloalkylene, substituted or unsubstituted C2-C7 heterocycloalkylene;

  • R is hydrogen;

  • each R1 is independently hydrogen, deuterium, substituted or unsubstituted C1-C4 alkyl, —CD3, substituted or unsubstituted C1-C4 haloalkyl, substituted or unsubstituted C1-C4 heteroalkyl, substituted or unsubstituted C3-C6 cycloalkyl, substituted or unsubstituted C2-C5 heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;

  • R2 is hydrogen, deuterium, substituted or unsubstituted C1-C4 alkyl, —CD3, or substituted or unsubstituted C1-C4 haloalkyl;

  • each R11, R12, R13, R14, R16, R17, R19, and R20 is independently selected from the group consisting of hydrogen, deuterium, F, —OR1, substituted or unsubstituted C1-C4 alkyl, a substituted or unsubstituted C1-C4 fluoroalkyl, and substituted or unsubstituted C1-C4 heteroalkyl;

  • R15 and R18 are the same and selected from the group consisting of hydrogen and deuterium;

  • a is 0;

  • b is 0;

  • c is 1; and

  • d is 1, with the proviso that the compound is not a compound in Table 3.



In one aspect, described herein is a compound of Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof:




embedded image


  • wherein,

  • A is —CRA═CRA—;

  • E is —NR—, —O—, —S—, —S(═O)—, —S(═O)2—, or —S(═O)(═NRE)—;

  • RE is hydrogen, substituted or unsubstituted C1-C3 alkyl, substituted or unsubstituted C3-C6 cycloalkyl, substituted or unsubstituted C2-C5 heterocycloalkyl, substituted or unsubstituted C2-C3 alkenyl, or substituted or unsubstituted C2-C3 alkynyl;

  • each RA is independently selected from the group consisting of hydrogen, deuterium, F, Cl, —CN, —OR1, —SR1, —S(═O)R1, —S(═O)2R1, substituted or unsubstituted C1-C4 alkyl, substituted or unsubstituted C1-C4 haloalkyl, substituted or unsubstituted C1-C4 heteroalkyl, substituted or unsubstituted C3-C4 cycloalkyl, and substituted or unsubstituted C2-C3 heterocycloalkyl;

  • ring Q is substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl;

  • X is —O— or —S—;

  • Z is CR2;

  • W is substituted or unsubstituted C1-C3 alkylene, substituted or unsubstituted C1-C2 heteroalkylene, substituted or unsubstituted C2-C3 alkenylene, substituted or unsubstituted C3-C8 cycloalkylene, substituted or unsubstituted C2-C7 heterocycloalkylene;

  • R is hydrogen;

  • each R1 is independently hydrogen, deuterium, substituted or unsubstituted C1-C4 alkyl, —CD3, substituted or unsubstituted C1-C4haloalkyl, substituted or unsubstituted C1-C4 heteroalkyl, substituted or unsubstituted C3-C6 cycloalkyl, substituted or unsubstituted C2-C5 heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;

  • R2 is hydrogen, deuterium, substituted or unsubstituted C1-C4 alkyl, —CD3, or substituted or unsubstituted C1-C4 haloalkyl;

  • each R11, R12, R13, R14, R16, R17, R19, and R20 is independently selected from the group consisting of hydrogen, deuterium, F, —OR1, substituted or unsubstituted C1-C4 alkyl, a substituted or unsubstituted C1-C4 fluoroalkyl, and substituted or unsubstituted C1-C4 heteroalkyl;

  • R15 and R18 are the same and selected from the group consisting of F, —OR1, substituted or unsubstituted C4-C4 alkyl, a substituted or unsubstituted C1-C4 fluoroalkyl, and substituted or unsubstituted C1-C4 heteroalkyl;

  • a is 0;

  • b is 0;

  • c is 1; and

  • d is 1, with the proviso that the compound is not a compound in Table 4.



In some embodiments, the compound of Formula (I) or Formula (II) has the structure of Formula (A):




embedded image


In some embodiments, the compound of Formula (I) or Formula (II) has the structure of Formula (B):




embedded image


In some embodiments, the compound of Formula (B) has the structure of Formula (B-1):




embedded image


In some embodiments, the compound of Formula (B) has the structure of Formula (B-2):




embedded image


In some embodiments, the compound of Formula (B) has the structure of Formula (B-4):




embedded image


In some embodiments, the compound of Formula (B) has the structure of Formula (B-4):




embedded image


In some embodiments, the compound of Formula (I) or Formula (II) has the structure of Formula (C):




embedded image


In some embodiments, the compound of Formula (C) has the structure of Formula (C-1):




embedded image


In some embodiments, the compound of Formula (C) has the structure of Formula (C-2):




embedded image


In some embodiments, the compound of Formula (C) has the structure of Formula (C-3):




embedded image


In some embodiments, the compound of Formula (C) has the structure of Formula (C-4):




embedded image


In some embodiments, E is —NR—. In some embodiments, E is —O—. In some embodiments, E is S(═O). In some embodiments, E is S(═O) and oxygen atom in S(═O) is in the equatorial position. In some embodiments, E is S(═O) and oxygen atom in S(═O) is in the axial position. In some embodiments, E is S(═O)(═NRE). In some embodiments, E is S(═O)(═NRE) and oxygen atom in S(═O)(═NRE) is in the equatorial position, and nitrogen atom in S(═O)(═NRE) is in the axial position. In some embodiments, E is S(═O)(═NRE), and oxygen atom in S(═O)(═NRE) is in the axial position, and nitrogen atom in S(═O)(═NRE) is in the equatorial position.


In some embodiments, R19 is F. In some embodiments, R20 is F.


In some embodiments, R15 and R18 are both hydrogen. In some embodiments, R15 and R18 are both deuterium. In some embodiments, R15 and R18 are the same and selected from F, —OR1, substituted or unsubstituted C1-C3 alkyl, substituted or unsubstituted C1-C3 fluoroalkyl, and substituted or unsubstituted C1-C3 heteroalkyl. In some embodiments, R15 and R18 are the same and selected from F, —CH3, —CH2CH3, —CH2CH2CH3, —CH(CH3)2, —CH2OH, —CH2CH2OH, —CH2NHCH3, —CH2N(CH3)2, —OH, —OCH3, —OCH2CH3, —OCH2CH2OH, —OCH2CN, —OCF3, —CH2F, —CHF2, and —CF3. In some embodiments, R15 and R18 are the same and selected from F, —CH3, —CH2OH, —OCH2CN, —OH, —OCH3, —OCH2CN, —OCF3, —CH2F, —CHF2, and —CF3. In some embodiments, R15 and R18 are the same and selected from F, —CH3, —OCH3, —OCF3, —CH2F, —CHF2, and —CF3. In some embodiments, R15 and R18 are the same and selected from F, —CH3, and —OCH3. In some embodiments, R15 and R18 are both F. In some embodiments, R15 and R18 are both —CH3.


In some embodiments, ring Q is substituted or unsubstituted aryl.


In some embodiments, ring Q is 2-hydroxy-phenyl substituted with 1, 2, or 3 substituents independently selected from: deuterium, halogen, —OH, —NO2, —CN, —SR1, —S(═O)R1, —S(═O)2R1, —N(R1)2, —C(═O)R1, —OC(═O)R1, —C(═O)OR1, —C(═O)N(R1)2, substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C2-C6 alkynyl, substituted or unsubstituted C1-C6 alkoxy, substituted or unsubstituted C3-C7 cycloalkyl, substituted or unsubstituted C2-C7 heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. In some embodiments, each R1 is independently hydrogen, deuterium, substituted or unsubstituted C1-C4 alkyl, —CD3, substituted or unsubstituted C1-C4 haloalkyl, substituted or unsubstituted C1-C4 heteroalkyl, substituted or unsubstituted C3-C6 cycloalkyl, substituted or unsubstituted C2-C5 heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.


In some embodiments, ring Q is 2-hydroxy-phenyl substituted with substituted or unsubstituted heteroaryl.


In some embodiments, ring Q is 2-hydroxy-phenyl substituted with substituted or unsubstituted aryl. In some embodiments, if aryl is substituted then it is substituted with 1 or 2 substituents independently selected from: deuterium, halogen, —OH, —NO2, —CN, —SR1, —S(═O)R1, —S(═O)2R1, —N(R1)2, —C(═O)R1, —OC(═O)R1, —C(═O)OR1, —C(═O)N(R1)2, substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C2-C6 alkynyl, substituted or unsubstituted C1-C6 alkoxy, substituted or unsubstituted C3-C7 cycloalkyl, and substituted or unsubstituted C2-C7 heterocycloalkyl. In some embodiments, each R1 is independently hydrogen, deuterium, substituted or unsubstituted C1-C4 alkyl, —CD3, substituted or unsubstituted C1-C4 haloalkyl, substituted or unsubstituted C1-C4 heteroalkyl, substituted or unsubstituted C3-C6 cycloalkyl, substituted or unsubstituted C2-C5 heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.


In some embodiments, ring Q is 2-hydroxy-phenyl substituted with substituted or unsubstituted heteroaryl. In some embodiments, if heteroaryl is substituted then it is substituted with 1 or 2 substituents independently selected from: deuterium, halogen, —OH, —NO2, —CN, —SR1, —S(═O)R1, —S(═O)2R1, —N(R1)2, —C(═O)R1, —OC(═O)R1, —C(═O)OR1, —C(═O)N(R1)2, substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C2-C6 alkynyl, substituted or unsubstituted C1-C6 alkoxy, substituted or unsubstituted C3-C7 cycloalkyl, and substituted or unsubstituted C2-C7 heterocycloalkyl. In some embodiments, each R1 is independently hydrogen, deuterium, substituted or unsubstituted C1-C4 alkyl, —CD3, substituted or unsubstituted C1-C4 haloalkyl, substituted or unsubstituted C1-C4 heteroalkyl, substituted or unsubstituted C3-C6 cycloalkyl, substituted or unsubstituted C2-C5 heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.


In some embodiments, ring Q is substituted or unsubstituted heteroaryl.


In some embodiments, ring Q is substituted or unsubstituted 5- or 6-membered monocyclic heteroaryl.


In some embodiments, ring Q is substituted or unsubstituted 6-membered monocyclic heteroaryl.


In some embodiments, ring Q is 6-membered monocyclic heteroaryl selected from:




embedded image


In some embodiments, each RQ is independently selected from hydrogen, deuterium, —F, —Cl, —CN, —OH, —CH3, —CH2CH3, —CH2CH2CH3, —CH(CH3)2, —CF, —OCH3, —OCH2CH3, —CH2OCH3, —OCH2CH2CH3, and —OCH(CH3)2. In some embodiments, ring P is substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl.


In some embodiments, ring Q is




embedded image


In some embodiments, each RQ is independently selected from hydrogen, deuterium, —F, —Cl, —CN, —OH, —CH3, —CH2CH3, —CH2CH2CH3, —CH(CH3)2, —CF3, —OCH3, —OCH2CH3, —CH2OCH3, —OCH2CH2CH3, and —OCH(CH3)2. In some embodiments, ring P is substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl.


In some embodiments, each RQ is independently selected from hydrogen, —F, —Cl, —CN, —OH, —CH3,—CF3, and —OCH3. In some embodiments, RQ is hydrogen. In some embodiments, RQ is —F. In some embodiments, RQ is —Cl. In some embodiments, RQ is —CN. In some embodiments, RQ is —OH. In some embodiments, RQ is —CH3. In some embodiments, RQ is —CF3. In some embodiments, RQ is —OCH3.


In some embodiments,




embedded image


In some embodiments,




embedded image


In some embodiments, ring P is substituted or unsubstituted heteroaryl.


In some embodiments, ring P is heteroaryl selected from the group consisting of:




embedded image


embedded image


wherein, each RB is independently selected from the group consisting of hydrogen, deuterium, halogen, hydroxy, cyano, substituted or unsubstituted C1-C6 alkyl, —CD3, substituted or unsubstituted C1-C6 fluoroalkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C2-C6 alkynyl, substituted or unsubstituted C1-C6 alkoxy, deuterium substituted C1-C6 alkoxy,—OCD3, substituted or unsubstituted C3-7 cycloalkyl, substituted or unsubstituted C2-C7 heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl; RB1 is selected from the group consisting of hydrogen, deuterium, substituted or unsubstituted C1-C6 alkyl, —CD3, substituted or unsubstituted C1-C6 fluoroalkyl, substituted or unsubstituted C1-C6 heteroalkyl, substituted or unsubstituted C3-7 cycloalkyl, and substituted or unsubstituted C2-C7 heterocycloalkyl; and m is 0, 1, 2, or 3. In some embodiments, m is 1, 2, or 3. In some embodiments, m is 0 or 1. In some embodiments, m is 1 or 2. In some embodiments, m is 2 or 3. In some embodiments, m is 1. In some embodiments, m is 2. In some embodiments, m is 3.


In some embodiments, ring P is heteroaryl selected from the group consisting of:




embedded image


wherein, each RB is independently selected from the group consisting of hydrogen, deuterium, halogen, hydroxy, cyano, substituted or unsubstituted C1-C6 alkyl, —CD3, substituted or unsubstituted C1-C6 fluoroalkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C2-C6 alkynyl, substituted or unsubstituted C1-C6 alkoxy, deuterium substituted C1-C6 alkoxy,—OCD3, substituted or unsubstituted C3-7 cycloalkyl, substituted or unsubstituted C2-C7 heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl; RB1 is selected from the group consisting of hydrogen, deuterium, substituted or unsubstituted C1-C6 alkyl, —CD3, substituted or unsubstituted C1-C6 fluoroalkyl, substituted or unsubstituted C1-C6 heteroalkyl, substituted or unsubstituted C3-7 cycloalkyl, and substituted or unsubstituted C2-C7 heterocycloalkyl; and m is 0, 1, 2, or 3. In some embodiments, m is 1, 2, or 3. In some embodiments, m is 0 or 1. In some embodiments, m is 1 or 2. In some embodiments, m is 2 or 3. In some embodiments, m is 1. In some embodiments, m is 2. In some embodiments, m is 3.


In some embodiments, ring P is heteroaryl selected from the group consisting of:




embedded image


wherein each RB is independently selected from the group consisting of hydrogen, deuterium, halogen, hydroxy, cyano, substituted or unsubstituted C1-C6 alkyl, —CD3, substituted or unsubstituted C1-C6 fluoroalkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C2-C6 alkynyl, substituted or unsubstituted C1-C6 alkoxy, deuterium substituted C1-C6 alkoxy,—OCD3, substituted or unsubstituted C3-7 cycloalkyl, substituted or unsubstituted C2-C7 heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl; and m is 0, 1, 2, 3, or 4. In some embodiments, m is 0, 1, 2, or 3. In some embodiments, m is 1, 2, or 3. In some embodiments, m is 2, 3, or 4. In some embodiments, m is 0 or 1. In some embodiments, m is 1 or 2. In some embodiments, m is 2 or 3. In some embodiments, m is 3 or 4. In some embodiments, m is 0. In some embodiments, m is 1. In some embodiments, m is 2. In some embodiments, m is 3. In some embodiments, m is 4.


In some embodiments, ring P is heteroaryl selected from the group consisting of:




embedded image


wherein each RB is independently selected from the group consisting of hydrogen, deuterium, halogen, hydroxy, cyano, substituted or unsubstituted C1-C6 alkyl, —CD3, substituted or unsubstituted C1-C6 fluoroalkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C2-C6 alkynyl, substituted or unsubstituted C1-C6 alkoxy, deuterium substituted C1-C6 alkoxy,—OCD3, substituted or unsubstituted C3-7 cycloalkyl, substituted or unsubstituted C2-C7 heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl; and m is 1, 2, 3 or 4. In some embodiments, RB1 is selected from the group consisting of hydrogen, deuterium, substituted or unsubstituted C1-C6 alkyl, —CD3, substituted or unsubstituted C1-C6, fluoroalkyl, substituted or unsubstituted C1-C6 heteroalkyl, substituted or unsubstituted C3-7 cycloalkyl, and substituted or unsubstituted C2-C7 heterocycloalkyl. In some embodiments, m is 1, 2, or 3. In some embodiments, m is 1 or 2. In some embodiments, m is 2 or 3. In some embodiments, m is 1. In some embodiments, m is 2. In some embodiments, m is 3.


In some embodiments, ring P is heteroaryl selected from the group consisting of:




embedded image


wherein each RD is independently selected from the group consisting of deuterium, halogen, hydroxy, cyano, substituted or unsubstituted C1-C6 alkyl, —CD3, substituted or unsubstituted C1-C6 fluoroalkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C2-C6 alkynyl, substituted or unsubstituted C1-C6 alkoxy, deuterium substituted C1-C6 alkoxy,—OCD3, substituted or unsubstituted C3-7 cycloalkyl, substituted or unsubstituted C2-C7 heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl; and m is 0, 1, 2, 3, or 4. In some embodiments, m is 0, 1, 2, or 3. In some embodiments, m is 1, 2, 3, or 4. In some embodiments, m is 1, 2, or 3. In some embodiments, m is 2, 3, or 4. In some embodiments, m is 0 or 1. In some embodiments, m is 1 or 2. In some embodiments, m is 2 or 3. In some embodiments, m is 3 or 4. In some embodiments, m is 0. In some embodiments, m is 1. In some embodiments, m is 2. In some embodiments, m is 3. In some embodiments, m is 4.


In some embodiments, each RB is independently hydrogen, deuterium, —F, —Cl, —CN, —CH3, —CF3, —OH, or —OCH3. In some embodiments, each RB is independently deuterium, —F, —Cl, —CN, —CH3, —CF3, —OH, or —OCH3.


In some embodiments, each RB is independently hydrogen, —F or —OCH3. In some embodiments, each RB is independently —F or —OCH3. In some embodiments, RB is hydrogen. In some embodiments, RB is —OCH3. In some embodiments, RB is —CH3.


In some embodiments, RB1 is hydrogen, deuterium, —CH3, —CF3, or —CD3. In some embodiments, RB1 is hydrogen, deuterium, —CH3, —CF3, or —CD3.


In some embodiments, ring P is heteroaryl selected from the group consisting of:




embedded image


In some embodiments, ring P is heteroaryl selected from the group consisting of:




embedded image


In some embodiments, ring P is




embedded image


In some embodiments, ring P is




embedded image


In some embodiments, ring P is




embedded image


in some embodiments, ring P is




embedded image


In some embodiments, ring P is




embedded image


In some embodiments, ring P is




embedded image


In some embodiments, ring P is heteroaryl selected from the group consisting of:




embedded image


In some embodiments, ring P is




embedded image


In some embodiments, ring P is




embedded image


In some embodiments, ring P is




embedded image


In some embodiments, ring P is




embedded image


In some embodiments, ring P is




embedded image


In some embodiments, ring P is




embedded image


In some embodiments, ring P is




embedded image


In some embodiments, ring P is




embedded image


In some embodiments, ring P is




embedded image


In some embodiments, ring P is




embedded image


In some embodiments, ring P is




embedded image


In some embodiments, ring P is heteroaryl selected from the group consisting of:




embedded image


In some embodiments, ring P is heteroaryl selected from the group consisting of:




embedded image


In some embodiments, ring Q is 2-naphthyl substituted at the 3 position with 0, 1, and 2 substituents independently selected from: deuterium, halogen, —OH, —NO2, —CN, —SR1, —S(═O)R1, —S(═O)2R1, —N(R1)2, —C(═O)R1, —OC(═O)R1, —C(═O)OR1, —C(═O)N(R1)2, substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C2-C6 alkynyl, substituted or unsubstituted C1-C6 alkoxy, substituted or unsubstituted C3-C7 cycloalkyl, substituted or unsubstituted C2-C7 heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl; wherein each R1 is independently hydrogen, deuterium, substituted or unsubstituted C1-C4 alkyl, —CD3, substituted or unsubstituted C1-C4 haloalkyl, substituted or unsubstituted C1-C4 heteroalkyl, substituted or unsubstituted C3-C6 cycloalkyl, substituted or unsubstituted C2-C5 heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.


In some embodiments, ring Q is selected from the group consisting of:




embedded image


In some embodiments, ring Q is selected from the group consisting of:




embedded image


In some embodiments, ring Q is selected from the group consisting of:




embedded image


embedded image


In some embodiments, ring Q is selected from the group consisting of:




embedded image


embedded image


embedded image


wherein


RB1 is selected from the group consisting of hydrogen, deuterium, substituted or unsubstituted C1-C6 alkyl, —CD3, substituted or unsubstituted C1-C6 fluoroalkyl, substituted or unsubstituted C1-C6 heteroalkyl, substituted or unsubstituted C3-7 cycloalkyl, and substituted or unsubstituted C2-C7 heterocycloalkyl.


In some embodiments, ring Q is selected from the group consisting of:




embedded image


wherein each of the ring Q group can be optionally substituted with 1-3 RB, wherein each RB is independently selected from the group consisting of deuterium, halogen, hydroxy, cyano, substituted or unsubstituted C1-C6 alkyl, —CD3, substituted or unsubstituted C1-C6 fluoroalkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C2-C6 alkynyl, substituted or unsubstituted C1-C6alkoxy, deuterium substituted C1-C6 alkoxy,—OCD3, substituted or unsubstituted C3-7 cycloalkyl, substituted or unsubstituted C2-C7 heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl.


In some embodiments, ring Q is selected from the group consisting of:




embedded image


wherein each of the ring Q group can be optionally substituted with 1-3 RB, wherein each RB is independently selected from the group consisting of deuterium, halogen, hydroxy, cyano, substituted or unsubstituted C1-C6 alkyl, —CD3, substituted or unsubstituted C1-C6 fluoroalkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C2-C6 alkynyl, substituted or unsubstituted C1-C6 alkoxy, deuterium substituted C1-C6 alkoxy,—OCD3, substituted or unsubstituted C3-7 cycloalkyl, substituted or unsubstituted C2-C7 heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl.


In some embodiments, ring Q is selected from the group consisting of:




embedded image


embedded image


wherein each of the ring Q group can be optionally substituted with 1, 2, 3, 4, or 5 RB, wherein each RB is independently selected from the group consisting of deuterium, halogen, hydroxy, cyano, substituted or unsubstituted C1-C6 alkyl, —CD3, substituted or unsubstituted C1-C6 fluoroalkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C2-C6 alkynyl, substituted or unsubstituted C1-C6 alkoxy, deuterium substituted C1-C6 alkoxy,—OCD3, substituted or unsubstituted C3-7 cycloalkyl, substituted or unsubstituted C2-C7 heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl.


In some embodiments, or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, ring Q is selected from the group consisting of:




embedded image


embedded image


embedded image


wherein RB1 is selected from the group consisting of hydrogen, deuterium, substituted or unsubstituted C1-C6 alkyl, —CD3, substituted or unsubstituted C1-C6 fluoroalkyl, substituted or unsubstituted C1-C6 heteroalkyl, substituted or unsubstituted C3-7 cycloalkyl, and substituted or unsubstituted C2-C7 heterocycloalkyl, and wherein each of the ring Q group can be optionally substituted with 1, 2, 3, 4 or 5 RB, wherein each RB is independently selected from the group consisting of deuterium, halogen, hydroxy, cyano, substituted or unsubstituted C1-C6 alkyl, —CD3, substituted or unsubstituted C1-C6 fluoroalkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C2-C6 alkynyl, substituted or unsubstituted C1-C6 alkoxy, deuterium substituted C1-C6 alkoxy,—OCD3, substituted or unsubstituted C3-7 cycloalkyl, substituted or unsubstituted C2-C7 heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. In some embodiments, RB1 is selected from the group consisting of hydrogen, deuterium, substituted or unsubstituted C1-C6 alkyl, —CD3, substituted or unsubstituted C1-C6 fluoroalkyl, substituted or unsubstituted C1-C6 heteroalkyl, substituted or unsubstituted C3-7 cycloalkyl, and substituted or unsubstituted C2-C7 heterocycloalkyl.


In some embodiments, W is substituted or unsubstituted C1-C2 alkylene.


In some embodiments, W is C1-C2 alkylene substituted with 1, 2, 3, or 4 substituents each independently selected from F, —OH, —OCH3, and —CH3.


In some embodiments, W is —CH2—, —CHF—, —CH(CH3)—, —CH(OH)—, —CH(OCH3)—, —CF2—, —CH2CH2—, —CHFCH2—, —CH2CHF—, —CH(CH3)CH2—, —CH2CH(CH3)—, —CH(OH)CH2—, —CH2CH(OH)—, —CH(OCH3)CH2—, —CH2CH(OCH3)—, —CF2CH2—, or —CH2CF2—.


In some embodiments, W is —CHFCH2—, —CH2CHF—, —CF2CH2—, or —CH2CF2—. In some embodiments, W is —CHFCH2—. In some embodiments, W is —CH2CHF—. In some embodiments, W is —CF2CH2— In some embodiments, W is —CH2CF2—.


In some embodiments, W is substituted or unsubstituted C3-C4 alkylene.


In some embodiments, W is C3-C4 alkylene substituted with 1, 2, 3, or 4 substituents each independently selected from the group consisting of F, —OH, —OCH3, and —CH3.


In some embodiments, W is —CH2CH2CH2—, —CHFCH2CH2—, —CH2CHFCH2—, —CH2CH2CHF—, —CF2CH2CH2—, —CH2CF2CH2—, —CH2CH2CF2—, —CH(OH)CH2CH2—, —CH2CH(OH)CH2—, —CH2CH2CH(OH)—, —CH(OCH3)CH2CH2—, —CH2CH(OCH3)CH2—, —CH2CH2CH(OCH3)—, —CH(CH3)CH2CH2—, —CH2CH(CH3)CH2—, or —CH2CH2CH(CH3)—.


In some embodiments, W is —CH2CHFCH2— or —CH2CF2CH2—. In some embodiments, W is —CH2CHFCH2—. In some embodiments, W is —CH2CF2CH2—.


In some embodiments, W is —CHFCH2CH2— or —CF2CH2CH2—. In some embodiments, W is —CHFCH2CH2—. In some embodiments, W is —CF2CH2CH2—.


In some embodiments, W is —CH2CH2CHF— or —CH2CH2CF2—. In some embodiments, W is —CH2CH2CHF—. In some embodiments, W is —CH2CH2CF2—.


In some embodiments, W is substituted or unsubstituted C1-C3 alkylene. In some embodiments, W is substituted or unsubstituted —CH2CH2—. In some embodiments, W is —CH2CH2—. In some embodiments, W is substituted or unsubstituted —CH2CH2CH2. In some embodiments, W is —CH2CH2CH2.


In some embodiments, W is substituted or unsubstituted C3-C8 cycloalkylene or substituted or unsubstituted C2-C3 alkenylene. In some embodiments, W is substituted or unsubstituted C3-C8 cycloalkylene. In some embodiments, W is substituted or unsubstituted cyclopropylene. In some embodiments, W is substituted or unsubstituted C2-C3 alkenylene. In some embodiments, W is —CH═CH—.


In some embodiments, W is substituted or unsubstituted C1-C2 heteroalkylene. In some embodiments, W is substituted or unsubstituted —CH2OCH2—. In some embodiments, W is —CH2O—, wherein O is attached to a carbon atom to which R18 group is attached.


In some embodiments, one or more of R16 and R17 is independently selected from F, —OR1, substituted or unsubstituted C1-C4 alkyl, a substituted or unsubstituted C1-C4 fluoroalkyl, and substituted or unsubstituted C1-C4 heteroalkyl.


In some embodiments, one or more of R16 and R17 is independently selected from F, —OH, —OCH3, —OCH2CH3, —OCH2CH2OH, —OCH2CN, —OCF3, —CHs, —CH2CH3, —CH2OH, —CH2CH2OH, —CH2CN, —CH2F, —CHF2, —CF3, —CH2CH2F, —CH2CHF2, and —CH2CF3.


In some embodiments, one or more of R16 and R17 is independently selected from F, —OH, —OCH3, —OCF3, —CHs, —CH2OH, —CH2F, —CHF2, and —CF3.


In some embodiments, R16 is F. In some embodiments, R16 is hydrogen. In some embodiments, R17 is F. In some embodiments, R17 is hydrogen. In some embodiments, R16 and R17 are hydrogen.


In some embodiments, R16 is H and R17 is F. In some embodiments, R16 is F and R17 is H.


In some embodiments R16 is not hydrogen. In some embodiments, a carbon atom having R16 group is in the (S)-configuration. In some embodiments, a carbon atom having R16 group is in the (R)-configuration.


In some embodiments R17 is not hydrogen. In some embodiments, a carbon atom having R17 group is in the (S)-configuration. In some embodiments, a carbon atom having R17 group is in the (R)-configuration.


In some embodiments R16 is not hydrogen and R17 is not hydrogen. In some embodiments, a carbon atom having R16 group is in the (S)-configuration and a carbon atom having R17 group is in the (S)-configuration. In some embodiments, a carbon atom having R16 group is in the (S)-configuration and a carbon atom having R17 group is in the (Reconfiguration. In some embodiments, a carbon atom having R16 group is in the (R)-configuration and a carbon atom having R17 group is in the (S)-configuration. In some embodiments, a carbon atom having R16 group is in the (R)-configuration and a carbon atom having R17 group is in the (R)-configuration.


In some embodiments, R2 is hydrogen, —CH3, or —OCH3.


In some embodiments, R2 is hydrogen.


In some embodiments, each RA is independently hydrogen, F, Cl, —CN, —CH3, —CH2CH3, —CH2CH2CH3, —CH(CH3)2, —OH, —OCH3, —OCH2CH3, —OCF3, —CH2F, —CHF2, or —CF3.


In some embodiments, each RA is independently hydrogen, F, Cl, —CN, —CH3, —OH, —OCH3, —OCF3, —CH2F, —CHF2, or —CF3.


In some embodiments, each RA is independently hydrogen, F, Cl, —CN, —CH3, or —OCH3.


In some embodiments, each RA is independently hydrogen, F, Cl, or —CH3.


In some embodiments, RA is hydrogen.


In some embodiments, X is —O—. In some embodiments, X is —S—.


In some embodiments, R15 and R18 are both hydrogen. In some embodiments, R15 and R18 are both deuterium. In some embodiments, R15 and R18 are the same and selected from F, —OR1, substituted or unsubstituted C4-C3 alkyl, substituted or unsubstituted C4-C3 fluoroalkyl, and substituted or unsubstituted C1-C3 heteroalkyl. In some embodiments, R15 and R18 are the same and selected from F, —CH3, —CH2CH3, —CH2CH2CH3, —CH(CH3)2, —CH2OH, —CH2CH2OH, —CH2NHCH3, —CH2N(CH3)2, —OH, —OCH3, —OCH2CH3, —OCH2CH2OH, —OCH2CN, —OCF3, —CH2F, —CHF2, and —CF3. In some embodiments, R15 and R18 are the same and selected from F, —CH3, —CH2OH, —OCH2CN, —OH, —OCH3, —OCH2CN, —OCF3, —CH2F, —CHF2, and —CF3. In some embodiments, R15 and R18 are the same and selected from F, —CH3, —OCH3, —OCF3, —CH2F, —CHF2, and —CF3. In some embodiments, R15 and R18 are the same and selected from F, —CH3, and —OCH3. In some embodiments, R15 and R18 are both F. In some embodiments, R15 and R18 are both —CH3.


In some embodiments of a compound of Formula (I) or Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, at least one of R11, R12, R13, R14, R15, R16, R17, and R18 is F. In some embodiments, one of R11, R12, R13, R14, R15, R16, R17, and R18 is F. In some embodiments, at least two of R11, R12, R13, R14, R15, R16, R17, and R18 are F. In some embodiments, at least one of R11, R12, R13, R14, R16, and R17 is F. In some embodiments, one of R11, R12, R13, R14, R16, and R17 is F. In some embodiments, at least two of R11, R12, R13, R14, R16, and R17 are F.


In some embodiments of a compound of Formula (I) or Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, at least one of R11, R12, R13, R14, R15, R16, R17, and R18 comprises a fluorine, e.g., F or C1-C4 fluoroalkyl such as CH2F, CF3, CHF2, and CH3CH2F. In some embodiments, at least one of R11, R12, R13, R14, R15, R16, R17, and R18 is F or C1-C4 fluoroalkyl. In some embodiments, one of R11, R12, R13, R14, R15, R16, R17, and R18 comprises a fluorine. In some embodiments, at least two of R11, R12, R13, R14, R15, R16, R17, and R18 comprise a fluorine. In some embodiments, at least one of R11, R12, R13, R14, R16, and R17 comprises a fluorine. In some embodiments, one of R11, R12, R13, R14, R16, and R17 comprises a fluorine. In some embodiments, at least two of R11, R12, R13, R14, R16, and R17 comprise a fluorine.


In some embodiments of a compound of Formula (I) or Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, at least one of W, R11, R12, R13, R14, R15, R16, R17, and R18 comprises a fluorine, e.g., F or C1-C4 fluoroalkyl such as CH2F, CF3, CHF2, and CH3CH2F. In some embodiments, one of W, R11, R12, R13, R14, R15, R16, R17, and R18 comprises a fluorine. In some embodiments, W comprises a fluorine.


In some embodiments of a compound of Formula (I) or Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, R11 is H, D, or F. In some embodiments, R11 is D. In some embodiments, R11 is H. In some embodiments, R11 is F. In some embodiments of a compound of Formula (I) or Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, R12 is H, D, or F. In some embodiments, R12 is D. In some embodiments, R12 is H. In some embodiments, R12 is F. In some embodiments of a compound of Formula (I) or Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, R13 is H, D, or F. In some embodiments, R13 is D. In some embodiments, R13 is H. In some embodiments, R13 is F. In some embodiments of a compound of Formula (I) or Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, R14 is H, D, or F. In some embodiments, R14 is D. In some embodiments, R14 is H. In some embodiments, R14 is F.


In some embodiments of a compound of Formula (I) or Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, R15 is F, CH2F, CHF2, CF3, or CH3. In some embodiments, R15 is F, CF3, CHF2, or CH2F. In some embodiments, R15 is F. In some embodiments of a compound of Formula (I) or Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, R16 is H, D, or F. In some embodiments, R16 is D. In In some embodiments, R16 is H, some embodiments, R16 is F. In some embodiments of a compound of Formula (I) or Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, R17 is H, D, or F. In some embodiments, R17 is D. In some embodiments, R17 is H. In some embodiments, R17 is F. In some embodiments of a compound of Formula (I) or Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, R18 is F, CH2F, CHF2, CF3, or CH3. In some embodiments, R18 is F, CF3, CHF2, or CH2F. In some embodiments, R18 is F.


In some embodiments of a compound of Formula (I) or Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, at least one of R11, R12, R13, R14, R15, R16, R17, and R18 is F. In some embodiments, one of R11, R12, R13, R14, R15, R16, R17, and R18 is F. In some embodiments, at least two of R11, R12, R13, R14, R15, R16, R17, and R18 are F. In some embodiments, at least one of R11, R12, R13, R14, R16, and R17 is F. In some embodiments, one of R11, R12, R13, R14, R16, and R17 is F. In some embodiments, at least two of R11, R12, R13, R14, R16, and R17 are F.


In some embodiments of a compound of Formula (I) or Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, at least one of R11, R12, R13, R14, R15, R16, R17, and R18 comprises a fluorine, e.g., F or C1-C4 fluoroalkyl such as CH2F, CF3, CHF2, and CH3CH2F. In some embodiments, at least one of R11, R12, R13, R14, R15, R16, R17, and R18 is F or C1-C4 fluoroalkyl. In some embodiments, one of R11, R12, R13, R14, R15, R16, R17, and R18 comprises a fluorine. In some embodiments, at least two of R11, R12, R13, R14, R15, R16, R17, and R18 comprise a fluorine. In some embodiments, at least one of R11, R12, R13, R14, R16, and R17 comprises a fluorine. In some embodiments, one of R11, R12, R13, R14, R16, and R17 comprises a fluorine. In some embodiments, at least two of R11, R12, R13, R14, R16, and R17 comprise a fluorine.


In some embodiments of a compound of Formula (I) or Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, at least one of W, R11, R12, R13, R14, R15, R16, R17, and R18 comprises a fluorine, e.g., F or C1-C4 fluoroalkyl such as CH2F, CF3, CHF2, and CH3CH2F. In some embodiments, one of W, R11, R12, R13, R14, R15, R16, R17, and R18 comprises a fluorine. In some embodiments, W comprises a fluorine.


In some embodiments of a compound of Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, R11, R12, R19, R20 and R16 are hydrogen. In some embodiments of a compound of Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, R19 is hydrogen. In some embodiments, R19 is H, F, —OH, —OCH3, —OCH2CH3, —OCH2CH2OH, —OCH2CN, —OCF3, —CH3, —CH2CH3, —CH2OH, —CH2CH2OH, —CH2CN, —CH2F, —CHF2, —CF3, —CH2CH2F, —CH2CHF2, and —CH2CF3. In some embodiments, R19 is H, F, —OH, —OCH3, —OCF3, —CH3, —CH2OH, —CH2F, —CHF2, and —CF3. In some embodiments, R19 is F or —OCH3.


In some embodiments of a compound of Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, R20 is hydrogen. In some embodiments, R20 is H, F, —OH, —OCH3, —OCH2CH3, —OCH2CH2OH, —OCH2CN, —OCF3, —CH3, —CH2CH3, —CH2OH, —CH2CH2OH, —CH2CN, —CH2F, —CHF2, —CF3, —CH2CH2F, —CH2CHF2, and —CH2CF3. In some embodiments, R20 is H, F, —OH, —OCH3, —OCF3, —CH3, —CH2OH, —CH2F, —CHF2, and —CF3. In some embodiments, R20 is F or —OCH3.


In some embodiments of a compound of Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, R19 is H, D, or F. In some embodiments, R19 is D. In some embodiments, R19 is H. In some embodiments, R19 is F. In some embodiments of a compound of Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, R20 is H, D, or F. In some embodiments, R20 is D. In some embodiments, R20 is H. In some embodiments, R20 is F. In some embodiments of a compound of Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, R16 and R19 are H. In some embodiments, R16 and R19 are D. In some embodiments, R16 and R19 are F. In some embodiments of a compound of Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, R19 and R20 are H. In some embodiments, R19 and R20 are D. In some embodiments, R19 and R20 are F. In some embodiments of a compound of Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, R17 and R20 are H. In some embodiments, R17 and R20 are D. In some embodiments, R17 and R20 are F.


In some embodiments of a compound of Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, at least one of R11, R12, R13, R14, R15, R16, R17, R19, R20, and R18 is F. In some embodiments, one of R11, R12, R13, R14, R15, R16, R17, R19, R20, and R18 is F. In some embodiments, at least two of R11, R12, R13, R14, R15, R16, R17, R19, R20, and R18 are F. In some embodiments, at least one of R11, R12, R13, R14, R16, R19, R20, and R17 is F. In some embodiments, one of R11, R12, R13, R14, R16, R19, R20, and R17 is F. In some embodiments, at least two of R11, R12, R13, R14, R16, R19, R20, and R17 are F.


In some embodiments of a compound of Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, at least one of R11, R12, R13, R14, R15, R16, R17, R19, R20, and R18 comprises a fluorine, e.g., F or C1-C4 fluoroalkyl such as CH2F, CF3, CHF2, and CH3CH2F. In some embodiments, at least one of R11, R12, R13, R14, R15, R16, R17, R19, R20, and R18 is F or C1-C4 fluoroalkyl. In some embodiments, one of R11, R12, R13, R14, R15, R16, R17, R19, R20, and R18 comprises a fluorine. In some embodiments, at least two of R11, R12, R13, R14, R15, R16, R17, R19, R20, and R18 comprise a fluorine. In some embodiments, at least one of R11, R12, R13, R14, R16, R19, R20, and R17 comprises a fluorine. In some embodiments, one of R11, R12, R13, R14, R16, R19, R20, and R17 comprises a fluorine. In some embodiments, at least two of R11, R12, R13, R14, R16, and R17 comprise a fluorine.


In some embodiments of a compound of Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, at least one of W, R11, R12, R13, R14, R15, R16, R17, R19, R20, and R18 comprises a fluorine, e.g., F or C1-C4 fluoroalkyl such as CH2F, CF3, CHF2, and CH3CH2F. In some embodiments, one of W, R11, R12, R13, R14, R15, R16, R17, R19, R20, and R18 comprises a fluorine. In some embodiments, W comprises a fluorine.


In some embodiments of a compound of Formula (I)-(II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, RE is hydrogen, substituted or unsubstituted C1-C3 alkyl, or substituted or unsubstituted C3-C6 cycloalkyl. In some embodiments, RE is hydrogen. In some embodiments, RE is methyl or ethyl. In some embodiments, RE is methyl. In some embodiments, RE is ethyl


In some embodiments of a compound of Formula (I)-(II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, each R1 is independently hydrogen, deuterium, substituted or unsubstituted C1-C4 alkyl, —CD3, or substituted or unsubstituted C1-C4haloalkyl. In some embodiments, each R1 is independently hydrogen, deuterium, or C1-C4 alkyl. In some embodiments, each R1 is independently hydrogen, deuterium, or methyl. In some embodiments, R1 is hydrogen. In some embodiments, R1 is deuterium. In some embodiments, R1 is methyl.


In some embodiments, a compound of Formula (I) or Formula (II) is made from racemic starting materials (and/or intermediate) and separated into the individual enantiomers by chiral chromatography as an intermediate or final product. Unless otherwise stated, it is understood that the absolute configuration of the separated intermediates and final compounds is not determined. In some embodiments, the absolute stereochemistry of the enantiomers as drawn is arbitrarily assigned. In some embodiments, both enantiomers are synthesized.


In one aspect, provided herein is a compound, or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, wherein the compound is selected from Table 1, Table 2 and Table 5.


In some embodiments, the compounds made in the examples below are made from racemic starting materials (and/or intermediates) and separated into the individual enantiomers by chiral chromatography as final products or intermediates. Unless otherwise stated, it is understood that the absolute configuration of the separated intermediates and final compounds as drawn is arbitrarily assigned and was not determined.


In some embodiments, a compound of Formula (I) or Formula (II) is a single enantiomer. In some embodiments, a compound of Formula (I) or Formula (II) is not racemic. In some embodiments, a compound of Formula (I) or Formula (II) is substantially free of other isomers. In some embodiments, a compound of Formula (I) or Formula (II) is a single isomer substantially free of other isomers. In some embodiments, a compound of Formula (I) or Formula (II) comprises 25% or less of other isomers. In some embodiments, the compound of Formula (I) or Formula (II) comprises 20% or less of other isomers. In some embodiments, a compound of Formula (I) or Formula (II) comprises 15% or less of other isomers. In some embodiments, a compound of Formula (I) or Formula (II) comprises 10% or less of other isomers. In some embodiments, the compound of Formula (I) or Formula (II) comprises 5% or less of other isomers. In some embodiments, the compound of Formula (I) or Formula (II) comprises 1% or less of other isomers.


In some embodiments, a compound of Formula (I) or Formula (II) has a stereochemical purity of at least 75%. In some embodiments, a compound of Formula (I) or Formula (II) has a stereochemical purity of at least 80%. In some embodiments, a compound of Formula (I) or Formula (II) has a stereochemical purity of at least 85%. In some embodiments, a compound of Formula (I) or Formula (II) has a stereochemical purity of at least 90%. In some embodiments, a compound of Formula (I) or Formula (II) has a stereochemical purity of at least 95%. In some embodiments, a compound of Formula (I) or Formula (II) has a stereochemical purity of at least 96%. In some embodiments, a compound of Formula (I) or Formula (II) has a stereochemical purity of at least 97%. In some embodiments, a compound of Formula (I) or Formula (II) has a stereochemical purity of at least 98%. In some embodiments, a compound of Formula (I) or Formula (II) has a stereochemical purity of at least 99%.


In some embodiments, an asymmetric carbon atom of a compound of Formula (I) or Formula (II) is present in enantiomerically enriched form. In certain embodiments, the asymmetric carbon atom of the compound of Formula (I) or Formula (II) has at least 50% enantiomeric excess, at least 60% enantiomeric excess, at least 70% enantiomeric excess, at least 80% enantiomeric excess, at least 90% enantiomeric excess, at least 95% enantiomeric excess, or at least 99% enantiomeric excess in the (S)- or (Reconfiguration.


In some embodiments, the compound is:




embedded image


embedded image


embedded image


embedded image


embedded image


or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof.


In some embodiments, the compound is:




embedded image


or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof.


In some embodiments, the compound is:

  • 4-fluoro-2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1,3,4-oxadiazol-2-yl)phenol;
  • 4-fluoro-2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1,3,4-oxadiazol-2-yl)phenol;
  • 4-fluoro-2-(6-(((1S,2S,3R,5R)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-5-(1,3,4-oxadiazol-2-yl)phenol;
  • 4-fluoro-2-(6-(((1R,2R,3S,5S)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-5-(1,3,4-oxadiazol-2-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-5-(1,3,4-thiadiazol-2-yl)phenol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-5-(1,3,4-thiadiazol-2-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-5-(1,3,4-oxadiazol-2-yl)phenol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-5-(1,3,4-oxadiazol-2-yl)phenol;
  • 6-(4-(6-(((1R,2R,3S,5S)-2-fluoro-1,5-dimethyl-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-3-hydroxyphenyl)-3-methylpyrimidin-4(3H)-one;
  • 6-(4-(6-(((1S,2S,3R,5R)-2-fluoro-1,5-dimethyl-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-3-hydroxyphenyl)-3-methylpyrimidin-4(3H)-one;
  • 6-(4-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-3-hydroxyphenyl)-3-methylpyrimidin-4(3H)-one;
  • 6-(4-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-3-hydroxyphenyl)-3-methylpyrimidin-4(3H)-one;
  • 6-(6-(((1S,2S,3R,5R)-2-fluoro-1,5-dimethyl-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-7-hydroxy-N-methylquinoline-2-carboxamide;
  • 6-(6-(((1R,2R,3S,5S)-2-fluoro-1,5-dimethyl-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-7-hydroxy-N-methylquinoline-2-carboxamide;
  • 6-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-7-hydroxy-N-methylquinoline-2-carboxamide;
  • 6-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-7-hydroxy-N-methylquinoline-2-carboxamide;
  • 6-(6-(((1R,2R,3S,5S)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-7-hydroxy-N-methylquinoline-2-carboxamide;
  • 6-(6-(((1S,2S,3R,5R)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-7-hydroxy-N-methylquinoline-2-carboxamide;
  • 6-(6-(((1R,2R,3S,5S)-2-fluoro-1,5-dimethyl-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-7-hydroxy-3-methylquinazolin-4(3H)-one;
  • 6-(6-(((1S,2S,3R,5R)-2-fluoro-1,5-dimethyl-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-7-hydroxy-3-methylquinazolin-4(3H)-one;
  • 6-(6-(((1S,2S,3R,5R)-2-fluoro-1,5-dimethyl-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-7-hydroxy-3-methylquinazolin-4(3H)-one;
  • 6-(6-(((1R,2R,3S,5S)-2-fluoro-1,5-dimethyl-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-7-hydroxy-3-methylquinazolin-4(3H)-one;
  • 7-(6-(((1S,2S,3R,5R)-2-fluoro-1,5-dimethyl-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-6-hydroxy-1-methylquinolin-4(1H)-one;
  • 7-(6-(((1R,2R,3S,5S)-2-fluoro-1,5-dimethyl-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-6-hydroxy-1-methylquinolin-4(1H)-one;
  • 6-(6-(((1S,2S,3R,5R)-2-fluoro-1,5-dimethyl-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-7-hydroxy-1-methylquinolin-4(1H)-one;
  • 6-(6-(((1R,2R,3S,5S)-2-fluoro-1,5-dimethyl-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-7-hydroxy-1-methylquinolin-4(1H)-one;
  • 7-(6-(((1S,2S,3R,5R)-2-fluoro-1,5-dimethyl-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-6-hydroxy-2-methylisoquinolin-1 (2H)-one;
  • 7-(6-(((1R,2R,3S,5S)-2-fluoro-1,5-dimethyl-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-6-hydroxy-2-methylisoquinolin-1 (2H)-one;
  • 7-(6-(((1S,2S,3R,5R)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-6-hydroxy-2-methylisoquinolin-1 (2H)-one;
  • 7-(6-(((1R,2R,3S,5S)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-6-hydroxy-2-methylisoquinolin-1 (2H)-one;
  • 7-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-6-hydroxy-2-methylisoquinolin-1 (2H)-one;
  • 7-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-6-hydroxy-2-methylisoquinolin-1 (2H)-one;
  • 6-(6-(((1S,2S,3R,5R)-2-fluoro-1,5-dimethyl-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-7-hydroxy-2-methylisoquinolin-1 (2H)-one;
  • 6-(6-(((1R,2R,3S,5S)-2-fluoro-1,5-dimethyl-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-7-hydroxy-2-methylisoquinolin-1 (2H)-one;
  • 6-(6-(((1S,2S,3R,5R)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-7-hydroxy-2-methylisoquinolin-1 (2H)-one;
  • 6-(6-(((1R,2R,3S,5S)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-7-hydroxy-2-methylisoquinolin-1 (2H)-one;
  • 6-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-7-hydroxy-2-methylisoquinolin-1 (2H)-one;
  • 6-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-7-hydroxy-2-methylisoquinolin-1 (2H)-one;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-1,5-dimethyl-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-5-(6-methoxypyridazin-4-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-1,5-dimethyl-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-5-(6-methoxypyridazin-4-yl)phenol;
  • 2-(6-(((1R,5R,6R,7S)-6-fluoro-3-oxa-9-azabicyclo[3.3.1]nonan-7-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol;
  • 2-(6-(((1S,5S,6S,7R)-6-fluoro-3-oxa-9-azabicyclo[3.3.1]nonan-7-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol;
  • 2-(6-(((1R,5R,6R,7S)-6-fluoro-3-oxa-9-azabicyclo[3.3.1]nonan-7-yl)oxy)pyridazin-3-yl)-5-(1H-pyrazol-4-yl)phenol;
  • 2-(6-(((1S,5S,6S,7R)-6-fluoro-3-oxa-9-azabicyclo[3.3.1]nonan-7-yl)oxy)pyridazin-3-yl)-5-(1H-pyrazol-4-yl)phenol;
  • 2-(6-(((1R,2S,3R,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol;
  • 2-(6-(((1 S,2R,3 S,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol;
  • 2-(6-(((1R,2R,3R,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol;
  • 2-(6-(((1S,2S,3S,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol;
  • 4-chloro-2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol;
  • 4-chloro-2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol;
  • 2-fluoro-6-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-3-(1-methyl-1H-pyrazol-4-yl)phenol;
  • 2-fluoro-6-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-3-(1-methyl-1H-pyrazol-4-yl)phenol;
  • 3-fluoro-2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol;
  • 3-fluoro-2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1,3,4-oxadiazol-2-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1,3,4-oxadiazol-2-yl)phenol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1,3,4-thiadiazol-2-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1,3,4-thiadiazol-2-yl)phenol;
  • 5-(3-fluoro-1H-pyrazol-1-yl)-2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)phenol;
  • 5-(3-fluoro-1H-pyrazol-1-yl)-2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)phenol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-5-(1H-indazol-1-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-5-(1H-indazol-1-yl)phenol;
  • 2-(6-(((1R,3r,5S,7s)-7-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1H-pyrazol-4-yl)phenol;
  • 4-(6-(((1R,2R,3S,5S)-2-fluoro-1,5-dimethyl-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-3-hydroxybenzonitrile;
  • 4-(6-(((1S,2S,3R,5R)-2-fluoro-1,5-dimethyl-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-3-hydroxybenzonitrile;
  • 4-(6-(((1R,2R,3S,5S)-2-fluoro-1,5-dimethyl-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-3-hydroxybenzonitrile;
  • 4-(6-(((1S,2S,3R,5R)-2-fluoro-1,5-dimethyl-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-3-hydroxybenzonitrile;
  • 4-(6-(((1R,2R,3S,5S)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-3-hydroxybenzonitrile;
  • 4-(6-(((1 S,2S,3R,5R)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-3-hydroxybenzonitrile;
  • 4-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-3-hydroxybenzonitrile;
  • 4-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-3-hydroxybenzonitrile;
  • 5-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-2-(1-methyl-1H-pyrazol-4-yl)pyridin-4-ol;
  • 5-(3-fluoro-1-methyl-1H-pyrazol-4-yl)-2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)phenol;
  • 5-(3-fluoro-1-methyl-1H-pyrazol-4-yl)-2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)phenol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(prop-1-yn-1-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(prop-1-yn-1-yl)phenol;
  • 4-(4-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-3-hydroxyphenyl)-1-methylpyrimidin-2(1H)-one;
  • 4-(4-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-3-hydroxyphenyl)-1-methylpyrimidin-2(1H)-one;
  • 4-(4-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-3-hydroxyphenyl)-1-(fluoromethyl)pyridin-2(1H)-one;
  • 4-(4-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-3-hydroxyphenyl)-1-(fluoromethyl)pyridin-2(1H)-one;
  • 7-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)quinolin-6-ol;
  • 7-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)quinolin-6-ol;
  • 7-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)quinoxalin-6-ol;
  • 7-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)quinoxalin-6-ol;
  • 6-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)quinolin-7-ol;
  • 6-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)quinolin-7-ol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(6-methylpyrazin-2-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(6-methylpyrazin-2-yl)phenol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(5-methylthiophen-3-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(5-methylthiophen-3-yl)phenol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(5-methylthiophen-2-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(5-methylthiophen-2-yl)phenol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(5-methylfuran-2-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(5-methylfuran-2-yl)phenol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(5-methylfuran-3-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(5-methylfuran-3-yl)phenol;
  • 5-(4-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-3-hydroxyphenyl)-3-methyloxazol-2(3H)-one;
  • 5-(4-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-3-hydroxyphenyl)-3-methyloxazol-2(3H)-one;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(2-methylthiazol-4-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(2-methylthiazol-4-yl)phenol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(2-methylthiazol-5-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(2-methylthiazol-5-yl)phenol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(5-methyl-1,3,4-thiadiazol-2-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(5-methyl-1,3,4-thiadiazol-2-yl)phenol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(5-methyl-1,3,4-oxadiazol-2-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(5-methyl-1,3,4-oxadiazol-2-yl)phenol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(2-methyloxazol-5-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(2-methyloxazol-5-yl)phenol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(2-methyloxazol-4-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(2-methyloxazol-4-yl)phenol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(pyrazolo[1,5-a]pyridin-3-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(pyrazolo[1,5-a]pyridin-3-yl)phenol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(6-methylpyridazin-4-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(6-methylpyridazin-4-yl)phenol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(5-methylpyridin-3-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(5-methylpyridin-3-yl)phenol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(2-methylpyridin-4-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(2-methylpyridin-4-yl)phenol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(pyridazin-4-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(pyridazin-4-yl)phenol;
  • 5-(6-(((1R,2R,3S,5S)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-2-(1-methyl-1H-pyrazol-4-yl)pyridin-4-ol;
  • 5-([1,2,4]triazolo[4,3-a]pyridin-7-yl)-2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)phenol;
  • 5-([1,2,4]triazolo[4,3-a]pyridin-7-yl)-2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)phenol;
  • 5-([1,2,4]triazolo[4,3-a]pyridin-6-yl)-2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)phenol;
  • 5-([1,2,4]triazolo[4,3-a]pyridin-6-yl)-2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)phenol;
  • 4-fluoro-2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)thio)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol;
  • 4-fluoro-2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)thio)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol;
  • 6-(6-(((1R,2R,3S,5S)-2-fluoro-1,5-dimethyl-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-7-hydroxy-2-methylisoquinolin-1 (2H)-one;
  • 6-(6-(((1R,2R,3S,5S)-2-fluoro-1,5-dimethyl-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-hydroxy-N,N-dimethylbenzofuran-2-carboxamide;
  • 6-(6-(((1S,2S,3R,5R)-2-fluoro-1,5-dimethyl-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-7-hydroxy-2-methylisoquinolin-1 (2H)-one;
  • 6-(6-(((1S,2S,3R,5R)-2-fluoro-1,5-dimethyl-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-hydroxy-N,N-dimethylbenzofuran-2-carboxamide;
  • 4-(4-(6-(((1S,2S,3R,5R)-2-fluoro-1,5-dimethyl-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-3-hydroxyphenyl)-1-methylpyridin-2(1H)-one;
  • 4-(4-(6-(((1R,2R,3S,5S)-2-fluoro-1,5-dimethyl-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-3-hydroxyphenyl)-1-methylpyridin-2(1H)-one;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-1,5-dimethyl-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1H-pyrazol-4-yl)phenol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-1,5-dimethyl-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1H-pyrazol-4-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-1,5-dimethyl-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-1,5-dimethyl-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-1,5-dimethyl-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-1,5-dimethyl-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(3-methylisoxazol-4-yl)phenol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(imidazo[1,5-a]pyridin-6-yl)phenol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(imidazo[1,2-a]pyridin-6-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(imidazo[1,5-a]pyridin-6-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(imidazo[1,2-a]pyridin-6-yl)phenol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(imidazo[1,2-a]pyridin-7-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(imidazo[1,2-a]pyridin-7-yl)phenol;
  • 4-fluoro-2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol;
  • 4-fluoro-2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol;
  • 7-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)isoquinolin-6-ol;
  • 6-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)isoquinolin-7-ol;
  • 7-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)isoquinolin-6-ol;
  • 6-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)isoquinolin-7-ol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(pyrazin-2-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(pyrazin-2-yl)phenol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(5-methylpyrazin-2-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(5-methylpyrazin-2-yl)phenol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(pyridin-2-yl)phenol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(6-methoxypyridazin-4-yl)phenol;
  • 6-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-hydroxy-3-methylbenzo[d]oxazol-2(3H)-one;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(6-methylpyridazin-3-yl)phenol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(6-methylpyridin-3-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(pyridin-2-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(6-methoxypyridazin-4-yl)phenol;
  • 6-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-hydroxy-3-methylbenzo[d]oxazol-2(3H)-one;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(6-methylpyridazin-3-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(6-methylpyridin-3-yl)phenol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(3-methylisoxazol-4-yl)phenol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(2-methylthiazol-4-yl)phenol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(3-methyl-1H-1,2,4-triazol-1-yl)phenol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1H-1,2,3-triazol-1-yl)phenol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-3-yl)phenol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1H-pyrazol-3-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(3-methyl-1H-1,2,4-triazol-1-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1H-1,2,3-triazol-1-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-3-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1H-pyrazol-3-yl)phenol;
  • 5-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-2-(1-methyl-1H-pyrazol-4-yl)pyridin-4-ol;
  • 5-(6-(((1S,2S,3R,5R)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-2-(1-methyl-1H-pyrazol-4-yl)pyridin-4-ol;
  • 4-fluoro-2-(6-(((1R,2R,3S,5S)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol;
  • 4-fluoro-2-(6-(((1S,2S,3R,5R)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol;
  • 4-(2-fluoro-4-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-hydroxyphenyl)-1-methylpyridin-2(1H)-one;
  • 4-(2-fluoro-4-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-hydroxyphenyl)pyridin-2(1H)-one;
  • 4-fluoro-2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1H-pyrazol-4-yl)phenol;
  • 4-(2-fluoro-4-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-hydroxyphenyl)-1-methylpyridin-2(1H)-one;
  • 4-(2-fluoro-4-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-hydroxyphenyl)pyridin-2(1H)-one;
  • 4-fluoro-2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1H-pyrazol-4-yl)phenol;
  • 4-(4-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-3-hydroxyphenyl)-1-methylpyridin-2(1H)-one;
  • 4-(4-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-3-hydroxyphenyl)pyridin-2(1H)-one;
  • 4-(4-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-3-hydroxyphenyl)-1-methylpyridin-2(1H)-one;
  • 4-(4-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-3-hydroxyphenyl)pyridin-2(1H)-one;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-1,5-dimethyl-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-5-(1H-pyrazol-1-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-1,5-dimethyl-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-5-(1H-pyrazol-1-yl)phenol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-1,5-dimethyl-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-5-(1H-pyrazol-4-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-1,5-dimethyl-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-5-(1H-pyrazol-4-yl)phenol;
  • 2-(6-(((1R,3S,5S)-6,6-difluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-5-(1H-imidazol-1-yl)phenol;
  • 2-(6-(((1S,3R,5R)-6,6-difluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-5-(1H-imidazol-1-yl)phenol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol;
  • 2-(6-(((1R,2S,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol;
  • 2-(6-(((1S,2R,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol;
  • 2-(6-(((1S,3R,5R)-6,6-difluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-5-(1H-pyrazol-4-yl)phenol;
  • 2-(6-(((1R,3S,5S)-6,6-difluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-5-(1H-pyrazol-4-yl)phenol;
  • 2-(6-(((1S,2R,3R,5R)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-5-(1H-pyrazol-4-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-5-(1H-pyrazol-4-yl)phenol;
  • 2-(6-(((1R,2S,3S,5S)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-5-(1H-pyrazol-4-yl)phenol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-5-(1H-pyrazol-4-yl)phenol;
  • 2-(6-(((1S,2R,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1H-pyrazol-4-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1H-pyrazol-4-yl)phenol;
  • 2-(6-(((1R,2S,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1H-pyrazol-4-yl)phenol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1H-pyrazol-4-yl)phenol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-5-(1H-imidazol-1-yl)phenol;
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-S-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-5-(1H-imidazol-1-yl)phenol;
  • 2-(6-(((1R,2R,3S,5S)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-5-(1H-pyrazol-1-yl)phenol;
  • or
  • 2-(6-(((1S,2S,3R,5R)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-5-(1H-pyrazol-1-yl)phenol;
  • or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof.


In some embodiments, exemplary SMSM compounds are summarized in Table 1.









TABLE 1







Exemplary SMSM compounds









SMSM




#
Structure
Name





1-1 


embedded image


2-(6-(((1R,2R,3S,5S)-2-fluoro-8- azabicyclo[3.2.1]octan-3- yl)oxy)pyridazin-3-yl)-5- (1H-imidazol-1-yl)phenol





1-2 


embedded image


2-(6-(((1R,2R,3S,5S)-2-fluoro-8- azabicyclo[3.2.1]octan-3- yl)oxy)pyridazin-3-yl)-5-(2- methoxypyridin-4-yl)phenol





1-3 


embedded image


5-(4-fluoro-1H-pyrazol-1- yl)-2-(6-(((1R,2R,3S,5S)- 2-fluoro-8-azabicyclo[3.2.1]octan-3- yl)oxy)pyridazin-3-yl)phenol





1-4 


embedded image


4-(4-(6-(((1R,2S,3S,5S)-2-fluoro-8- azabicyclo[3.2.1]octan-3- yl)oxy)pyridazin-3-yl)-3- hydroxyphenyl)pyridin-2(1H)-one





1-5 


embedded image


2-(6-(((1S,2S,3R,5R)-2-fluoro-8- azabicyclo[3.2.1]octan-3- yl)oxy)pyridazin-3-yl)-5- (1H-imidazol-1-yl)phenol





1-6 


embedded image


4-(4-(6-(((1R,2S,3S,5S)-2-fluoro-8- azabicyclo[3.2.1]octan-3- yl)oxy)pyridazin-3-yl)-3- hydroxyphenyl)pyridin-2(1H)-one





1-7 


embedded image


2-(6-(((1R,3S,5S)-6,6-difluoro-8- azabicyclo[3.2.1]octan-3- yl)oxy)pyridazin-3-yl)-5- (1H-imidazol-1-yl)phenol





1-8 


embedded image


2-(6-(((1R,3S,5S)-6,6-difluoro-8- azabicyclo[3.2.1]octan-3- yl-1,5-d2)oxy)pyridazin-3- yl)-5-(1H-imidazol-1-yl)phenol





1-9 


embedded image


2-(6-(((1R,3S,5S,6S)-6-fluoro-8- azabicyclo[3.2.1]octan-3- yl)oxy)pyridazin-3-yl)-5- (1H-imidazol-1-yl)phenol





1-10


embedded image


2-(6-(((1R,3S,5S,6R)-6-fluoro-8- azabicyclo[3.2.1]octan-3- yl)oxy)pyridazin-3-yl)-5- (1H-imidazol-1-yl)phenol





1-11


embedded image


2-(6-(((1R,3r,5S)-8- azabicyclo[3.2.1]oct-6-en-3- yl)oxy)pyridazin-3-yl)-5- (1H-imidazol-1-yl)phenol





1-12


embedded image


2-(6-(((1R,3r,5S)-8- azabicyclo[3.2.1]oct-6-en-3- yl)oxy)pyridazin-3-yl)-5- (1H-1,2,3-triazol-1- yl)phenol





1-13


embedded image


2-(6-(((1R,2S,3S,5R)-2-fluoro-8- azabicyclo[3.2.1]oct-6-en-3- yl)oxy)pyridazin-3-yl)-5- (1H-imidazol-1-yl)phenol





1-14


embedded image


2-(6-(((1R,2S,3S,5R)-2-fluoro-8- azabicyclo[3.2.1]oct-6-en-3- yl)oxy)pyridazin-3-yl)-5- (1H-1,2,3-triazol-1-yl)phenol





1-15


embedded image


2-(6-(((1R,2R,3S,5S)-2-fluoro-9- azabicyclo[3.2.1]nonan-3- yl)oxy)pyridazin-3-yl)-5- (1H-imidazol-1-yl)phenol





1-16


embedded image


2-(6-(((1R,2R,3S,5S)-2-fluoro-9- azabicyclo[3.3.1]nonan-3- yl)oxy)pyridazin-3-yl)-5- (2-methoxypyridin-4-yl)phenol





1-17


embedded image


5-(4-fluoro-1H-pyrazol-1- yl)-2-(6-(((1R,2R,3S,5S)- 2-fluoro-9-azabicyclo[3.3.1]nonan-3- yl)oxy)pyridazin-3-yl)phenol





1-18


embedded image


2-(6-(((1R,2S,3S,5S)-2-fluoro-9- azabicyclo[3.3.1]nonan-3- yl)oxy)pyridazin-3-yl)-5- (1H-imidazol-1-yl)pheno





1-19


embedded image


2-(6-(((1R,2S,3S,5S)-2-fluoro-9- azabicyclo[3.3.1]nonan-3- yl)oxy)pyridazin-3-yl)-5- (1H-1,2,3-triazol-1-yl)phenol





1-20


embedded image


4-(4-(6-(((1R,2S,3S,5S)-2-fluoro-9- azabicyclo[3.3.1]nonan-3- yl)oxy)pyridazin-3-yl)-3- hydroxyphenyl)pyridin-2(1H)-one





1-21


embedded image


2-(6-(((1S,2S,3R,5R)-2-fluoro-9- azabicyclo[3.3.1]nonan-3- yl)oxy)pyridazin-3-yl)-5- (1H-imidazol-1-yl)phenol





1-22


embedded image


4-(4-(6-(((1S,2S,3R,5R)-2-fluoro-9- azabicyclo[3.3.1]nonan-3- yl)oxy)pyridazin-3-yl)-3- hydroxyphenyl)-1-methyl- 1,3,5-triazin-2(1H)-one





1-23


embedded image


2-(6-(((1S,2S,3R,5R)-2-fluoro-9- azabicyclo[3.3.1]nonan-3- yl)oxy)pyridazin-3-yl)-5- (4-methyl-2H-1,2,3-triazol-2-yl)phenol





1-24


embedded image


2-(6-(((1S,2R,3R,5R)-2-fluoro-9- azabicyclo[3.3.1]nonan-3- yl)oxy)pyridazin-3-yl)-5- (1H-imidazol-1-yl)phenol





1-25


embedded image


2-(6-(((1S,2R,3R,5R)-2-fluoro-9- azabicyclo[3.3.1]nonan-3- yl)oxy)pyridazin-3-yl)-5- (5-methyl-2H-tetrazol-2-yl)phenol





1-26


embedded image


2-(4-(6-(((1S,2R,3R,5R)-2-fluoro-9- azabicyclo[3.3.1]nonan-3- yl)oxy)pyridazin-3-yl)-3- hydroxyphenyl)-3-methylpyrimidin- 4(3H)-one





1-27


embedded image


2-(6-(((1R,2R,3S,5R)-2-fluoro-8- azabicyclo[3.2.1]oct-6-en-3- yl)oxy)pyridazin-3-yl)-5- (4H-1,2,4-triazol-4-yl)phenol





1-28


embedded image


2-(6-(((1R,2S,4S,5S,7r)-9- azatricyclo[3.3.1.02,4]nonan- 7-yl)oxy)pyridazin-3- yl)-5-(1H-imidazol-1-yl)phenol





1-29


embedded image


2-(6-(((1R,2S,4R,5S,7r)-9- azatricyclo[3.3.1.02,4]nonan- 7-yl)oxy)pyridazin-3- yl)-5-(4-methoxy-1,3,5-triazin- 2-yl)phenol





1-30


embedded image


4-(4-(6-(((1R,2S,4R,5S,7r)-9- azatricyclo[3.3.1.02,4]nonan- 7-yl)oxy)pyridazin-3- yl)-3-hydroxyphenyl)-1- methyl-1,3,5-triazin-2(1H)- one









In some embodiments, disclosed herein is a pharmaceutically acceptable salt or pharmaceutically acceptable solvate of a compound in Table 1.


In some embodiments, exemplary SMSM compounds are summarized in Table 2.









TABLE 2







Exemplary SMSM compounds









SMSM #
Structure
Name





2-1 


embedded image


2-(6-(((1R,2R,3S,5S)-2- fluoro-1,5-dimethyl-8- azabicyclo[3.2.1]octan-3- yl)oxy)pyridazin-3-yl)-5- (1H-imidazol-1-yl)phenol





2-2 


embedded image


2-(6-(((1R,2R,3S,5S)-2- fluoro-1,5-dimethyl-8- azabicyclo[3.2.1]octan-3- yl)oxy)pyridazin-3-yl)-5- (2-methoxypyridin-4-yl)phenol





2-3 


embedded image


2-(6-(((1R,2R,3S,5S)-2- fluoro-1,5-dimethyl-8- azabicyclo[3.2.1]octan-3- yl)oxy)pyridazin-3-yl)-5- (4-fluoro-1H-pyrazol-1-yl)phenol





2-4 


embedded image


2-(6-(((1R,2S,3S,5S)-2- fluoro-1,5-dimethyl-8- azabicyclo[3.2.1]octan-3- yl)oxy)pyridazin-3-yl)-5- (1H-imidazol-1-yl)phenol





2-5 


embedded image


2-(6-(((1R,2S,3S,5S)-2- fluoro-1,5-dimethyl-8- azabicyclo[3.2.1]octan-3- yl)oxy)pyridazin-3-yl)-5- (1H-1,2,3-triazol-1-yl)phenol





2-6 


embedded image


4-(4-(6-(((1R,2S,3S,5S)-2- fluoro-1,5-dimethyl-8- azabicyclo[3.2.1]octan-3- yl)oxy)pyridazin-3-yl)-3- hydroxyphenyl)pyridin-2(1H)-one





2-7 


embedded image


2-(6-(((1S,2S,3R,5R)-2- fluoro-1,5-dimethyl-8- azabicyclo[3.2.1]octan-3- yl)oxy)pyridazin-3-yl)-5- (1H-imidazol-1-yl)phenol





2-8 


embedded image


4-(4-(6-(((1S,2S,3R,5R)- 2-fluoro-1,5-dimethyl-8- azabicyclo[3.2.1]octan-3- yl)oxy)pyridazin-3-yl)-3- hydroxyphenyl)-1-methyl- 1,3,5-triazin-2(1H)-one





2-9 


embedded image


2-(6-(((1S,2S,3R,5R)-2- fluoro-1,5-dimethyl-8- azabicyclo[3.2.1]octan-3- yl)oxy)pyridazin-3-yl)-5- (4-methyl-2H-1,2,3- triazol-2-yl)phenol





2-10


embedded image


2-(6-(((1S,2R,3R,5R)-2- fluoro-1,5-dimethyl-8- azabicyclo[3.2.1]octan-3- yl)oxy)pyridazin-3-yl)-5- (1H-imidazol-1-yl)phenol





2-11


embedded image


2-(6-(((1S,2R,3R,5R)-2- fluoro-1,5-dimethyl-8- azabicyclo[3.2.1]octan-3- yl)oxy)pyridazin-3-yl)-5- (5-methyl-2H-tetrazol-2-yl)phenol





2-12


embedded image


2-(4-(6-(((1S,2R,3R,5R)- 2-fluoro-1,5-dimethyl-8- azabicyclo[3.2.1]octan-3- yl)oxy)pyridazin-3-yl)-3- hydroxyphenyl)-3-methylpyrimidin- 4(3H)-one





2-13


embedded image


2-(6-(((1R,3s,5S)-1,5-dimethyl-8- azabicyclo[3.2.1]octan-3- yl)oxy)pyridazin-3-yl)-5- (1H-imidazol-1-yl)phenol





2-14


embedded image


2-(6-(((1R,3s,5S)-1,5-dimethyl-8- azabicyclo[3.2.1]octan-3- yl)oxy)pyridazin-3-yl)-5- (4-methoxy-1,3,5-triazin-2-yl)phenol





2-15


embedded image


4-(4-(6-(((1R,3s,5S)-1,5-dimethyl-8- azabicyclo[3.2.1]octan-3- yl)oxy)pyridazin-3-yl)-3- hydroxyphenyl)-1-methyl- 1,3,5-triazin-2(1H)-one





2-16


embedded image


5-(1H-imidazol-1-yl)-2- (6-(((1R,3S,5S,6R)-6- methoxy-1,5-dimethyl-8- azabicyclo[3.2.1]octan-3- yl)oxy)pyridazin-3-yl)phenol





2-17


embedded image


2-(6-(((1R,3S,5S,6R)- 6-fluoro-1,5-dimethyl-8- azabicyclo[3.2.1]octan-3- yl)oxy)pyridazin-3-yl)-5- (1H-imidazol-1-yl)phenol





2-18


embedded image


2-(6-(((1R,3S,5S)-6,6- difluoro-1,5-dimethyl-8- azabicyclo[3.2.1]octan-3- yl)oxy)pyridazin-3-yl)-5- (1H-imidazol-1-yl)phenol









In some embodiments, disclosed herein is a pharmaceutically acceptable salt or pharmaceutically acceptable solvate of a compound in Table 2.


In some embodiments, an SMSM described herein is not a compound in Table 3.









TABLE 3





List of Compounds


Structure









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image











In some embodiments, W is not —CH2CH2—, CH2CH2CH2—, or —CH2OCH2—.


In some embodiments, A is not —CH═CH—.


In some embodiments, R15, R16, R17, and R18 are not simultaneously hydrogen. In some embodiments, R15 and R18 are not simultaneously hydrogen. In some embodiments, R16 and R17 are not simultaneously hydrogen.


In some embodiments, when (i) W is —CH2CH2—, CH2CH2CH2—, or —CH2OCH2—, (ii) A is-CH═CH—, and (ii) R16 and R17 are both hydrogen, R15 and R18 are not simultaneously hydrogen.


In some embodiments, when W is —CH2CH2—, CH2CH2CH2—, or —CH2OCH2—, then R15, R16, R17, and R18 are not simultaneously hydrogen. In some embodiments, when A is-CH═CH—, then R15, R16, R17, and R18 are not simultaneously hydrogen. In some embodiments, when A is-CH═CH—, then R16 and R17 are not simultaneously hydrogen.


In some embodiments, ring Q is not




embedded image


embedded image


embedded image


embedded image


In some embodiments, the compound is not a compound in Table 3.


In some embodiments, an SMSM described herein is not a compound in Table 4.









TABLE 4





List of Compounds


Structure









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image











In some embodiments, W is not —CH2CH2— or CH2CH2CH2—.


In some embodiments, A is not —CH═CH—.


In some embodiments, X is not —O—.


In some embodiments, R16 and R17 are not simultaneously hydrogen. In some embodiments, R15 and R18 are not —CH3. In some embodiments, when R16 and R17 are simultaneously hydrogen, then R15 and R18 are not —CH3. In some embodiments, when R15 and R18 are —CH3, then R16 and R17 are not simultaneously hydrogen.


In some embodiments, when (i) W is CH2CH2— or CH2CH2CH2—, (ii) A is-CH═CH—, (iii) R16 and R17 are both hydrogen, (iv) R15 and R18 are —CH3, and (v) X is —O—, ring Q is not substituted monocyclic aryl.


In some embodiments, when (i) W is CH2CH2— or CH2CH2CH2—, (ii) A is-CH═CH—, (iii) R15 and R18 are —CH3, and (v) X is —O—, then R16 and R17 are not simultaneously hydrogen.


In some embodiments, ring Q is not




embedded image


In some embodiments, the compound is not a compound in Table 4.


In some cases, an SMSM provided herein can be designated by more than one number in different parts of the application; for example, the same compound can appear more than once in the tables, in the examples, and in the schemes.


In some embodiments, an SMSM described herein is made from racemic starting materials (and/or intermediate) and separated into the individual enantiomers by chiral chromatography as an intermediate or final product. Unless otherwise stated, it is understood that the absolute configuration of the separated intermediates and final compounds is not determined. In some embodiments, the absolute stereochemistry of the enantiomers as drawn is arbitrarily assigned. In some embodiments, both enantiomers are synthesized.


In some embodiments, an SMSM described herein, is a single enantiomer. In some embodiments, an SMSM described herein, is not racemic. In some embodiments, an SMSM described herein, is substantially free of other isomers. In some embodiments, an SMSM described herein, is a single isomer substantially free of other isomers. In some embodiments, an SMSM described herein, comprises 25% or less of other isomers. In some embodiments, an SMSM described herein, comprises 20% or less of other isomers. In some embodiments, an SMSM described herein, comprises 15% or less of other isomers. In some embodiments, an SMSM described herein, comprises 10% or less of other isomers. In some embodiments, an SMSM described herein, comprises 5% or less of other isomers. In some embodiments, an SMSM described herein, comprises 1% or less of other isomers.


In some embodiments, an SMSM described herein, has a stereochemical purity of at least 75%. In some embodiments, an SMSM described herein, has a stereochemical purity of at least 80%. In some embodiments, an SMSM described herein, has a stereochemical purity of at least 85%. In some embodiments, an SMSM described herein, has a stereochemical purity of at least 90%. In some embodiments, an SMSM described herein, has a stereochemical purity of at least 95%. In some embodiments, an SMSM described herein, has a stereochemical purity of at least 96%. In some embodiments, an SMSM described herein, has a stereochemical purity of at least 97%. In some embodiments, an SMSM described herein, has a stereochemical purity of at least 98%. In some embodiments, an SMSM described herein, has a stereochemical purity of at least 99%.


In some embodiments, an SMSM described herein, possesses one or more stereocenters and each stereocenter exists independently in either the R or S configuration. The compounds presented herein include all diastereomeric, enantiomeric, and epimeric forms as well as the appropriate mixtures thereof. The compounds and methods provided herein include all cis, trans, syn, anti, entgegen (E), and zusammen (Z) isomers as well as the appropriate mixtures thereof. In certain embodiments, compounds described herein are prepared as their individual stereoisomers by reacting a racemic mixture of the compound with an optically active resolving agent to form a pair of diastereoisomeric compounds/salts, separating the diastereomers and recovering the optically pure enantiomers. In some embodiments, resolution of enantiomers is carried out using covalent diastereomeric derivatives of the compounds described herein. In another embodiment, diastereomers are separated by separation/resolution techniques based upon differences in solubility. In other embodiments, separation of stereoisomers is performed by chromatography or by the forming diastereomeric salts and separation by recrystallization, or chromatography, or any combination thereof. Jean Jacques, Andre Collet, Samuel H. Wilen, “Enantiomers, Racemates and Resolutions”, John Wiley And Sons, Inc., 1981. In one aspect, stereoisomers are obtained by stereoselective synthesis.


In some embodiments, compounds described herein are prepared as prodrugs. A “prodrug” refers to an agent that is converted into the parent drug in vivo. Prodrugs are often useful because, in some situations, they may be easier to administer than the parent drug. They may, for instance, be bioavailable by oral administration whereas the parent is not. The prodrug may also have improved solubility in pharmaceutical compositions over the parent drug. In some embodiments, the design of a prodrug increases the effective water solubility. An example, without limitation, of a prodrug is a compound described herein, which is administered as an ester (the “prodrug”) to facilitate transmittal across a cell membrane where water solubility is detrimental to mobility but which then is metabolically hydrolyzed to the carboxylic acid, the active entity, once inside the cell where water-solubility is beneficial. A further example of a prodrug might be a short peptide (polyaminoacids) bonded to an acid group where the peptide is metabolized to reveal the active moiety. In certain embodiments, upon in vivo administration, a prodrug is chemically converted to the biologically, pharmaceutically or therapeutically active form of the compound. In certain embodiments, a prodrug is enzymatically metabolized by one or more steps or processes to the biologically, pharmaceutically or therapeutically active form of the compound.


In one aspect, prodrugs are designed to alter the metabolic stability or the transport characteristics of a drug, to mask side effects or toxicity, to improve the flavor of a drug or to alter other characteristics or properties of a drug. By virtue of knowledge of pharmacokinetic, pharmacodynamic processes and drug metabolism in vivo, once a pharmaceutically active compound is known, the design of prodrugs of the compound is possible, (see, for example, Nogrady (1985) Medicinal Chemistry A Biochemical Approach, Oxford University Press, New York, pages 388-392; Silverman (1992), The Organic Chemistry of Drug Design and Drug Action, Academic Press, Inc., San Diego, pages 352-401, Rooseboom et al., Pharmacological Reviews, 56:53-102, 2004; Aesop Cho, “Recent Advances in Oral Prodrug Discovery”, Annual Reports in Medicinal Chemistry, Vol. 41, 395-407, 2006; T. Higuchi and V. Stella, Pro-drugs as Novel Delivery Systems, Vol. 14 of the A.C.S. Symposium Series).


In some cases, some of the herein-described compounds may be a prodrug for another derivative or active compound.


In some embodiments, sites on the aromatic ring portion of compounds described herein are susceptible to various metabolic reactions Therefore incorporation of appropriate substituents on the aromatic ring structures will reduce, minimize or eliminate this metabolic pathway. In specific embodiments, the appropriate substituent to decrease or eliminate the susceptibility of the aromatic ring to metabolic reactions is, by way of example only, a halogen, or an alkyl group.


In another embodiment, the compounds described herein are labeled isotopically (e.g. with a radioisotope) or by another other means, including, but not limited to, the use of chromophores or fluorescent moieties, bioluminescent labels, or chemiluminescent labels.


Compounds described herein include isotopically-labeled compounds, which are identical to those recited in the various formulae and structures presented herein, but for the fact that one or more atoms are replaced by an atom having an atomic mass or mass number different from the atomic mass or mass number usually found in nature. Examples of isotopes that can be incorporated into the present compounds include isotopes of hydrogen, carbon, nitrogen, oxygen, sulfur, fluorine and chlorine, such as, for example, 2H, 3h, 13C, 14C, 15N, 18O, 17O, 35S, 18F, 36 cl. In one aspect, isotopically-labeled compounds described herein, for example those into which radioactive isotopes such as 3H and 14C are incorporated, are useful in drug and/or substrate tissue distribution assays. In one aspect, substitution with isotopes such as deuterium affords certain therapeutic advantages resulting from greater metabolic stability, such as, for example, increased in vivo half-life or reduced dosage requirements.


In additional or further embodiments, the compounds described herein are metabolized upon administration to an organism in need to produce a metabolite that is then used to produce a desired effect, including a desired therapeutic effect.


Compounds described herein may be formed as, and/or used as, pharmaceutically acceptable salts. The type of pharmaceutical acceptable salts, include, but are not limited to: (1) acid addition salts, formed by reacting the free base form of the compound with a pharmaceutically acceptable: inorganic acid, such as, for example, hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, metaphosphoric acid, and the like; or with an organic acid, such as, for example, acetic acid, propionic acid, hexanoic acid, cyclopentanepropionic acid, glycolic acid, pyruvic acid, lactic acid, malonic acid, succinic acid, malic acid, maleic acid, fumaric acid, trifluoroacetic acid, tartaric acid, citric acid, benzoic acid, 3-(4-hydroxybenzoyl)benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, 1,2-ethanedisulfonic acid, 2-hydroxyethanesulfonic acid, benzenesulfonic acid, toluene sulfonic acid, 2-naphthalenesulfonic acid, 4-methylbicyclo-[2.2.2]oct-2-ene-1-carboxylic acid, glucoheptonic acid, 4,4′-methylenebis-(3-hydroxy-2-ene-1-carboxylic acid), 3-phenylpropionic acid, trimethylacetic acid, tertiary butylacetic acid, lauryl sulfuric acid, gluconic acid, glutamic acid, hydroxynaphthoic acid, salicylic acid, stearic acid, muconic acid, butyric acid, phenylacetic acid, phenylbutyric acid, valproic acid, and the like; (2) salts formed when an acidic proton present in the parent compound is replaced by a metal ion, e.g., an alkali metal ion (e.g. lithium, sodium, potassium), an alkaline earth ion (e.g. magnesium, or calcium), or an aluminum ion. In some cases, compounds described herein may coordinate with an organic base, such as, but not limited to, ethanolamine, diethanolamine, triethanolamine, tromethamine, N-methylglucamine, dicyclohexylamine, tris(hydroxymethyl)methylamine. In other cases, compounds described herein may form salts with amino acids such as, but not limited to, arginine, lysine, and the like. Acceptable inorganic bases used to form salts with compounds that include an acidic proton, include, but are not limited to, aluminum hydroxide, calcium hydroxide, potassium hydroxide, sodium carbonate, sodium hydroxide, and the like.


It should be understood that a reference to a pharmaceutically acceptable salt includes the solvent addition forms, particularly solvates. Solvates contain either stoichiometric or non-stoichiometric amounts of a solvent, and may be formed during the process of crystallization with pharmaceutically acceptable solvents such as water, ethanol, and the like. Hydrates are formed when the solvent is water, or alcoholates are formed when the solvent is alcohol. In some embodiments, solvates of compounds described herein are conveniently prepared or formed during the processes described herein. In addition, the compounds provided herein can exist in unsolvated as well as solvated forms. In general, the solvated forms are considered equivalent to the unsolvated forms for the purposes of the compounds and methods provided herein.


In some embodiments, an SMSM has a molecular weight of at most about 2000 Daltons, 1500 Daltons, 1000 Daltons or 900 Daltons. In some embodiments, an SMSM has a molecular weight of at least 100 Daltons, 200 Daltons, 300 Daltons, 400 Daltons or 500 Daltons. In some embodiments, an SMSM does not comprise a phosphodiester linkage.


Methods of Making Compounds

Compounds described herein can be synthesized using standard synthetic techniques or using methods known in the art in combination with methods described herein. Unless otherwise indicated, conventional methods of mass spectroscopy, NMR, HPLC, protein chemistry, biochemistry, recombinant DNA techniques and pharmacology can be employed. Compounds can be prepared using standard organic chemistry techniques such as those described in, for example, March's Advanced Organic Chemistry, 6th Edition, John Wiley and Sons, Inc. Alternative reaction conditions for the synthetic transformations described herein may be employed such as variation of solvent, reaction temperature, reaction time, as well as different chemical reagents and other reaction conditions. The starting materials can be available from commercial sources or can be readily prepared. By way of example only, provided are schemes for preparing the exemplary SMSMs.


In some embodiments, a scheme for preparing an SMSM described herein is Scheme 1:




embedded image


embedded image


In some embodiments, a scheme for preparing an SMSM described herein is Scheme 2:




embedded image


embedded image


in some embodiments, a scheme for preparing an SMSM described herein is Scheme 3:




embedded image


embedded image


In some embodiments, a scheme for preparing an SMSM described herein is Scheme 4:




embedded image


embedded image


In some embodiments, a scheme for preparing an SMSM described herein is Scheme 5:




embedded image


embedded image


In some embodiments, a scheme for preparing an SMSM described herein is Scheme 6:




embedded image


In some embodiments, a scheme for preparing an SMSM described herein is Scheme 7:




embedded image


embedded image


In some embodiments, a scheme for preparing an SMSM described herein is Scheme 8:




embedded image


embedded image


In some embodiments, a scheme for preparing an SMSM described herein is Scheme 9:




embedded image


embedded image


In some embodiments, a scheme for preparing an SMSM described herein is Scheme 10:




embedded image


embedded image


In some embodiments, a scheme for preparing an SMSM described herein is Scheme 11:




embedded image


embedded image


In some embodiments, a scheme for preparing an SMSM described herein is Scheme 12:




embedded image


embedded image


Suitable reference books and treatise that detail the synthesis of reactants useful in the preparation of compounds described herein, or provide references to articles that describe the preparation, include for example, “Synthetic Organic Chemistry”, John Wiley & Sons, Inc., New York; S. R. Sandler et al., “Organic Functional Group Preparations,” 2nd Ed., Academic Press, New York, 1983; H. O. House, “Modern Synthetic Reactions”, 2nd Ed., W. A. Benjamin, Inc. Menlo Park, Calif. 1972; T. L. Gilchrist, “Heterocyclic Chemistry”, 2nd Ed., John Wiley & Sons, New York, 1992; J. March, “Advanced Organic Chemistry: Reactions, Mechanisms and Structure”, 4th Ed., Wiley Interscience, New York, 1992. Additional suitable reference books and treatise that detail the synthesis of reactants useful in the preparation of compounds described herein, or provide references to articles that describe the preparation, include for example, Fuhrhop, J. and Penzlin G. “Organic Synthesis: Concepts, Methods, Starting Materials”, Second, Revised and Enlarged Edition (1994) John Wiley & Sons ISBN: 3 527-29074-5; Hoffman, R. V. “Organic Chemistry, An Intermediate Text” (1996) Oxford University Press, ISBN 0-19-509618-5; Larock, R. C. “Comprehensive Organic Transformations: A Guide to Functional Group Preparations” 2nd Edition (1999) Wiley-VCH, ISBN: 0-471-19031-4; March, J. “Advanced Organic Chemistry: Reactions, Mechanisms, and Structure” 4th Edition (1992) John Wiley & Sons, ISBN: 0-471-60180-2; Otera, J. (editor) “Modern Carbonyl Chemistry” (2000) Wiley-VCH, ISBN: 3-527-29871-1; Patai, S. “Patai's 1992 Guide to the Chemistry of Functional Groups” (1992) Interscience ISBN: 0-471-93022-9; Solomons, T. W. G. “Organic Chemistry” 7th Edition (2000) John Wiley & Sons, ISBN: 0-471-19095-0; Stowell, J. C., “Intermediate Organic Chemistry” 2nd Edition (1993) Wiley-Interscience, ISBN: 0-471-57456-2; “Industrial Organic Chemicals: Starting Materials and Intermediates: An Ullmann's Encyclopedia” (1999) John Wiley & Sons, ISBN: 3-527-29645-X, in 8 volumes; “Organic Reactions” (1942-2000) John Wiley & Sons, in over 55 volumes; and “Chemistry of Functional Groups” John Wiley & Sons, in 73 volumes.


In the reactions described, it may be necessary to protect reactive functional groups, for example hydroxy, amino, imino, thio or carboxy groups, where these are desired in the final product, in order to avoid their unwanted participation in reactions. A detailed description of techniques applicable to the creation of protecting groups and their removal are described in Greene and Wuts, Protective Groups in Organic Synthesis, 3rd Ed., John Wiley & Sons, New York, N.Y., 1999, and Kocienski, Protective Groups, Thieme Verlag, New York, N.Y., 1994, which are incorporated herein by reference for such disclosure).


SMSMs can be made using known techniques and further chemically modified, in some embodiments, to facilitate intranuclear transfer to, e.g., a splicing complex component, a spliceosome or a pre-mRNA molecule. One of ordinary skill in the art will appreciate the standard medicinal chemistry approaches for chemical modifications for intranuclear transfer (e.g., reducing charge, optimizing size, and/or modifying lipophilicity).


Pharmaceutical Compositions

In some embodiments, the compounds described herein are formulated into pharmaceutical compositions. Pharmaceutical compositions are formulated in a conventional manner using one or more pharmaceutically acceptable inactive ingredients that facilitate processing of the active compounds into preparations that can be used pharmaceutically. Proper formulation is dependent upon the route of administration chosen. A summary of pharmaceutical compositions described herein can be found, for example, in Remington: The Science and Practice of Pharmacy, Nineteenth Ed (Easton, Pa.: Mack Publishing Company, 1995); Hoover, John E., Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa. 1975; Liberman, H. A. and Lachman, L., Eds., Pharmaceutical Dosage Forms, Marcel Decker, New York, N.Y., 1980; and Pharmaceutical Dosage Forms and Drug Delivery Systems, Seventh Ed. (Lippincott Williams & Wilkins 1999), herein incorporated by reference for such disclosure.


A pharmaceutical composition can be a mixture of an SMSM described herein with one or more other chemical components (i.e. pharmaceutically acceptable ingredients), such as carriers, excipients, binders, filling agents, suspending agents, flavoring agents, sweetening agents, disintegrating agents, dispersing agents, surfactants, lubricants, colorants, diluents, solubilizers, moistening agents, plasticizers, stabilizers, penetration enhancers, wetting agents, anti-foaming agents, antioxidants, preservatives, or one or more combination thereof. The pharmaceutical composition facilitates administration of the compound to an organism.


The compositions described herein can be administered to the subject in a variety of ways, including parenterally, intravenously, intradermally, intramuscularly, colonically, rectally or intraperitoneally. In some embodiments, the small molecule splicing modulator or a pharmaceutically acceptable salt thereof is administered by intraperitoneal injection, intramuscular injection, subcutaneous injection, or intravenous injection of the subject. In some embodiments, the pharmaceutical compositions can be administered parenterally, intravenously, intramuscularly or orally. The oral agents comprising a small molecule splicing modulator can be in any suitable form for oral administration, such as liquid, tablets, capsules, or the like. The oral formulations can be further coated or treated to prevent or reduce dissolution in stomach. The compositions of the present disclosure can be administered to a subject using any suitable methods known in the art. Suitable formulations for use in the present disclosure and methods of delivery are generally well known in the art. For example, the small molecule splicing modulators described herein can be formulated as pharmaceutical compositions with a pharmaceutically acceptable diluent, carrier or excipient. The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions including pH adjusting and buffering agents, tonicity adjusting agents, wetting agents and the like, such as, for example, sodium acetate, sodium lactate, sodium chloride, potassium chloride, calcium chloride, sorbitan monolaurate, triethanolamine oleate, etc.


Pharmaceutical formulations described herein can be administrable to a subject in a variety of ways by multiple administration routes, including but not limited to, oral, parenteral (e.g., intravenous, subcutaneous, intramuscular, intramedullary injections, intrathecal, direct intraventricular, intraperitoneal, intralymphatic, intranasal injections), intranasal, buccal, topical or transdermal administration routes. The pharmaceutical formulations described herein include, but are not limited to, aqueous liquid dispersions, self-emulsifying dispersions, solid solutions, liposomal dispersions, aerosols, solid dosage forms, powders, immediate release formulations, controlled release formulations, fast melt formulations, tablets, capsules, pills, delayed release formulations, extended release formulations, pulsatile release formulations, multiparticulate formulations, and mixed immediate and controlled release formulations.


In some embodiments, the pharmaceutical formulation is in the form of a tablet. In other embodiments, pharmaceutical formulations containing an SMSM described herein are in the form of a capsule. In one aspect, liquid formulation dosage forms for oral administration are in the form of aqueous suspensions or solutions selected from the group including, but not limited to, aqueous oral dispersions, emulsions, solutions, elixirs, gels, and syrups.


For administration by inhalation, an SMSM described herein can be formulated for use as an aerosol, a mist or a powder. For buccal or sublingual administration, the compositions may take the form of tablets, lozenges, or gels formulated in a conventional manner. In some embodiments, an SMSM described herein can be prepared as transdermal dosage forms. In some embodiments, an SMSM described herein can be formulated into a pharmaceutical composition suitable for intramuscular, subcutaneous, or intravenous injection. In some embodiments, an SMSM described herein can be administered topically and can be formulated into a variety of topically administrable compositions, such as solutions, suspensions, lotions, gels, pastes, medicated sticks, balms, creams or ointments. In some embodiments, an SMSM described herein can be formulated in rectal compositions such as enemas, rectal gels, rectal foams, rectal aerosols, suppositories, jelly suppositories, or retention enemas.


Splicing

Extensive posttranscriptional processing occurs before eukaryotic pre-mRNA matures and exits from the nucleus to the cytoplasm, including the addition of a 7-methylguanosine cap at the 5′ end, the cleavage and addition of a poly-A tail at the 3′ end as well as the removal of intervening sequences or introns by the spliceosome. The vast majority of higher eukaryotic genes contain multiple introns that are spliced out with high precision and fidelity in order to maintain the reading frame of the exons. Splicing of pre-mRNA can utilize the recognition of short consensus sequences at the boundaries and within introns and exons by an array of small nuclear ribonucleoprotein (snRNP) complexes (e.g., snRNPs U1, U2, U4, U5, U6, U11, U12m U4 atc and U6 atc) and a large number of proteins, including spliceosomal proteins and positively as well as negatively acting splicing modulators.


Serine-arginine-rich (SR)-domain-containing proteins generally serve to promote constitutive splicing. They can also modulate alternative splicing by binding to intronic or exonic splicing enhancer (ISE) or ESE, respectively) sequences. Other pre-mRNA binding proteins, such as hnRNPs, regulate splicing by binding to intronic or exonic splicing suppressor (ISS or ESS, respectively) sequences and can also act as general splicing modulators. The SR protein family is a class of at least 10 proteins that have a characteristic serine/arginine rich domain in addition to an RNA-binding. SR proteins are generally thought to enhance splicing by simultaneously binding to U170K, a core component of the U1 snRNP, at the 5′ splice site, and the U2AF35 at the 3′ splice site, thus bridging the two ends of the intron. While this particular function of SR proteins seems to be redundant, as any individual SR protein can commit a pre-mRNA for constitutive splicing, the role of the various SR proteins in alternative splicing of specific pre-mRNAs is distinct due in part to their ability to recognize and bind to unique consensus sequences. Phosphorylation of the RS domain of SR proteins can lead to the regulation of their protein interactions, RNA binding, localization, trafficking, and role in alternative splicing. Several cellular kinases that phosphorylate SR proteins have been identified, including SR protein Kinase (SRPKs), Cdc2-like kinases (Clks), pre-mRNA processing mutant 4 (PRP4), and topoisomerase I. Optimal phosphorylation of SR proteins may be required for proper functioning as both hypo- and hyperphosphorylation of the RS domains may be detrimental to their role in constitutive and alternative splicing.


In higher eukaryotes, the vast majority of genes contain one or more introns, which creates a situation in which the exons are spliced together to generate mature mRNA and microRNA (miRNA). In the host nucleus, pre-mRNA splicing is the mechanism by which introns are removed from a pre-mRNA and the exons are ligated together to generate mature mRNAs and pre-miRNA that is then exported to the cytoplasm for translation into the polypeptide gene product. Splicing of pre-mRNA can occur in cis, where two exons derive from two adjacent cotranscribed sequences, or in tram, when the two exons come from different pre-mRNA transcripts. The ratio of the different protein products (isoforms) may be due to the frequency of alternative splicing events within a pre-mRNA that leads to different amounts of distinct splice variants. In some embodiments, alternative splicing of a pre-mRNA may lead to 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 protein isoforms being expressed.


Aberrations in splicing are thought to be the cause of roughly half of all inherited diseases. Aberrant splicing due to mutations in consensus sequences involved in exon-intron boundary recognition is responsible for up to 15% of inherited diseases. In addition, defects in the splicing machinery itself due to the loss or gain of function of splicing factors and modulators are causes of a wide range of human ailments from cancer to neurodegenerative diseases. Both constitutive and alternative splicing are subject to regulation by upstream signaling pathways. This regulation can be essential during development, in tissue specific expression of certain isoforms, during the cell cycle and in response to extrinsic signaling molecules.


Alternative splicing allows for a single gene to express different isoforms of mRNA, thus playing a major role in contributing to the cellular complexity in higher eukaryotes without the need to expand the genome. Splicing can also be subject to regulation by upstream signaling pathways. For example, an upstream signaling pathway may modulate alternative splicing and increase or decrease expression levels of different isoforms of mRNA.


Alternative splicing events are highly regulated by numerous splicing factors in a tissue type-, developmental stage-, and signal-dependent manner. Furthermore, non-mutation based causes of splicing defects and defects in the splicing machinery itself, e.g., due to the loss/gain of function of splicing factors or their relative stoichiometry, cause of a wide range of human ailments, ranging from cancer to neurodegenerative diseases. In many diseases the disease state is caused by an alteration of the ratio of different isoforms of two or more proteins expressed from a gene. In some embodiments, the alteration in the ratio of the protein products is due to changes in the frequency of alternative splicing events within a pre-mRNA, leading to changes in the ratio of splice variants produced. In some embodiments, alternative splicing of a pre-mRNA may lead to 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 protein isoforms being expressed. In some embodiments, a change in the splice variant ratio is caused by genetic mutation.


In eukaryotes, the vast majority of splicing processes are catalyzed by the spliceosome, an RNA-protein complex that occurs in unique steps and may comprise a subset of several hundred different proteins, in addition to five spliceosomal snRNAs. These factors are responsible for the accurate positioning of the spliceosome on the 5′ and 3′ splice site sequences. The reason why so many factors are needed reflects the observation that exon recognition can be affected by many pre-mRNA features such as exon length, sequence recognition, the presence of enhancer and silencer elements, the strength of upstream splicing signals, the promoter architecture, and the rate of RNA processivity, secondary and tertiary RNA structure.


All mammalian diseases are ultimately mediated by the transcriptome. Insofar as messenger mRNA (mRNA) is part of the transcriptome, and all protein expression derives from mRNAs, there is the potential to intervene in protein-mediated diseases by modulating the expression of the relevant protein and by, in turn, modulating the translation of the corresponding upstream mRNA. But mRNA is only a small portion of the transcriptome: other transcribed RNAs also regulate cellular biology either directly by the structure and function of RNA structures (e.g., ribonucleoproteins) as well as via protein expression and action, including (but not limited to) microRNA (miRNA), long noncoding RNA (IncRNA), long intergenic noncoding RNA (lincRNA), small nucleolar RNA (snoRNA), small nuclear RNA (snRNA), small Cajal body-specific RNA (scaRNA), piwi-interacting RNA (piRNA), competing endogenous (ceRNA), and pseudo-genes. Drugs that intervene at this level have the potential of modulating any and all cellular processes. Existing therapeutic modalities such as antisense RNA or siRNA, in most cases, have yet to overcome significant challenges such as drug delivery, absorption, distribution to target organs, pharmacokinetics, and cell penetration. In contrast, small molecules have a long history of successfully surmounting these barriers and these qualities, which make them suitable as drugs, are readily optimized through a series of analogues to overcome such challenges. In sharp contrast, the application of small molecules as ligands for RNA that yield therapeutic benefit has received little to no attention from the drug discovery community.


DNA sequences in the chromosome are transcribed into pre-mRNAs which contain coding regions (exons) and generally also contain intervening non-coding regions (introns). Introns are removed from pre-mRNAs through splicing. Pre-mRNA splicing proceeds by a two-step mechanism. In the first step, the 5′ splice site is cleaved, resulting in a “free” 5′ exon and a lariat intermediate. In the second step, the 5′ exon is ligated to the 3′ exon with release of the intron as the lariat product. These steps are catalyzed in a complex of small nuclear ribonucleoproteins and proteins called the spliceosome.


In most cases, the splicing reaction occurs within the same pre-mRNA molecule, which is termed cis-splicing. Splicing between two independently transcribed pre-mRNAs is termed trans-splicing.


Introns are portions of eukaryotic DNA, which intervene between the coding portions, or “exons,” of that DNA. Introns and exons are transcribed into RNA termed “primary transcript, precursor to mRNA” (or “pre-mRNA”). Introns can be removed from the pre-mRNA so that the native protein encoded by the exons can be produced (the term “native protein” as used herein refers to naturally occurring, wild type, or functional protein). The removal of introns from pre-mRNA and subsequent joining of the exons is carried out in the splicing process.


The splicing process is a series of reactions, which are carried out on RNA after transcription but before translation and which are mediated by splicing factors. Thus, a “pre-mRNA” can be an RNA that contains both exons and intron(s), and a mature mRNA (“mRNA”) can be an RNA in which the intron(s) have been removed and the exons joined together sequentially so that the protein may be translated therefrom by the ribosomes.


Introns can be defined by a set of “splice elements” that are part of the splicing machinery and may be required for splicing and which are relatively short, conserved RNA segments that bind the various splicing factors, which carry out the splicing reactions. Thus, each intron is defined by a 5′ splice site, a 3′ splice site, and a branch point situated there between. Splice elements also comprise exon splicing enhancers and silencers, situated in exons, and intron splicing enhancers and silencers situated in introns at a distance from the splice sites and branch points. In addition to splice site and branch points these elements control alternative aberrant and constitutive splicing.


Initial RNA transcripts (pre-mRNA) of most eukaryotic genes are retained in the nucleus until non-coding intron sequences are removed by the spliceosome to produce mature messenger RNA (mRNA). The splicing that occurs can vary, so the synthesis of alternative protein products from the same primary transcript can be affected by tissue-specific or developmental signals. A significant fraction of human genetic diseases, including a number of cancers, are believed to result from deviations in the normal pattern of pre-mRNA splicing. The spliceosome is a complex comprising ribonucleoprotein (snRNP) particles composed of small nuclear RNAs and proteins. snRNA components of the spliceosome can promote the two transesterification reactions of splicing.


Two unique spliceosomes coexist in most eukaryotes: the U2-dependent spliceosome, which catalyzes the removal of U2-type introns, and the less abundant U12-dependent spliceosome, which is present in only a subset of eukaryotes and splices the rare U12-type class of introns. The U2-dependent spliceosome is assembled from the U1, U2, U5, and U4/U6 snRNPs and numerous non-snRNP proteins. The U2 snRNP is recruited with two weakly bound protein subunits, SF3a and SF3b, during the first ATP-dependent step in spliceosome assembly. SF3b is composed of seven conserved proteins, including PHF5a, SF3b155, SF3b145, SF3b130, SF3b49, SF3b14a, and SF3b10.


Splicing or RNA splicing typically refers to the editing of the nascent precursor messenger RNA (pre-mRNA) transcript into a mature messenger RNA (mRNA). Splicing is a biochemical process which includes the removal of introns followed by exon ligation. Sequential transesterification reactions are initiated by a nucleophilic attack of the 5′ splice site (5′ss) by the branch adenosine (branch point; BP) in the downstream intron resulting in the formation of an intron lariat intermediate with a 2′, 5′-phosphodiester linkage. This is followed by a 5′ss-mediated attack on the 3′ splice site (3′ss), leading to the removal of the intron lariat and the formation of the spliced RNA product.


Splicing can be regulated by various cis-acting elements and trans-acting factors. Cis-acting elements are sequences of the mRNA and can include core consensus sequences and other regulatory elements. Core consensus sequences typically can refer to conserved RNA sequence motifs, including the 5′ss, 3′ss, polypyrimidine tract and BP region, which can function for spliceosome recruitment. BP refers to a partially conserved sequence of pre-mRNA, generally less than 50 nucleotides upstream of the 3′ss. BP reacts with the 5′ss during the first step of the splicing reaction. Other regulatory cis-acting elements can include exonic splicing enhancer (ESE), exonic splicing silencer (ESS), intronic splicing enhancer (ISE), and intronic splicing silencer (ISS). Trans-acting factors can be proteins or ribonucleoproteins which bind to cis-acting elements.


Splice site identification and regulated splicing can be accomplished principally by two dynamic macromolecular machines, the major (U2-dependent) and minor (U12-dependent) spliceosomes. Each spliceosome contains five snRNPs: U1, U2, U4, U5 and U6 snRNPs for the major spliceosome (which processes ˜95.5% of all introns); and U11, U12, U4atac, U5 and U6atac snRNPs for the minor spliceosome. Spliceosome recognition of consensus sequence elements at the 5′ss, 3′ss and BP sites is one of the steps in the splicing pathway, and can be modulated by ESEs, ISEs, ESSs, and ISSs, which can be recognized by auxiliary splicing factors, including SR proteins and hnRNPs. Polypyrimidine tract-binding protein (PTBP) can bind to the polypyrimidine tract of introns and may promote RNA looping.


Alternative splicing is a mechanism by which a single gene may eventually give rise to several different proteins. Alternative splicing can be accomplished by the concerted action of a variety of different proteins, termed “alternative splicing regulatory proteins,” that associate with the pre-mRNA, and cause distinct alternative exons to be included in the mature mRNA. These alternative forms of the gene's transcript can give rise to distinct isoforms of the specified protein. Sequences in pre-mRNA molecules that can bind to alternative splicing regulatory proteins can be found in introns or exons, including, but not limited to, ISS, ISE, ESS, ESE, and polypyrimidine tract. Many mutations can alter splicing patterns. For example, mutations can be cis-acting elements, and can be located in core consensus sequences (e.g. 5′ss, 3′ss and BP) or the regulatory elements that modulate spliceosome recruitment, including ESE, ESS, ISE, and ISS.


A cryptic splice site, for example, a cryptic 5′ss and a cryptic 3′ss, can refer to a splice site that is not normally recognized by the spliceosome and therefore are in the dormant state. Cryptic splice site can be recognized or activated, for example, by mutations in cis-acting elements or trans-acting factors, or structural configurations, such as bulges.


Splicing Modulation

The present disclosure contemplates use of small molecules with favorable drug properties that modulate the activity of splicing of a target RNA. Provided herein are small molecule splicing modulators (SMSMs) that modulate splicing of a target polynucleotide. In some embodiments, the SMSMs bind and modulate target RNA. In some embodiments, provided herein is a library of SMSMs that bind and modulate one or more target RNAs. In some embodiments, the target RNA is mRNA. In some embodiments, the target RNA is mRNA a noncoding RNA. In some embodiments, the target RNA is a pre-mRNA. In some embodiments, the target RNA is hnRNA. In some embodiments, the small molecules modulate splicing of the target RNA. In some embodiments, a small molecule provided herein modulates splicing at a sequence of the target RNA. In some embodiments, a small molecule provided herein modulates splicing at a cryptic splice site sequence of the target RNA. In some embodiments, a small molecule provided herein binds to a target RNA. In some embodiments, a small molecule provided herein binds to a splicing complex component. In some embodiments, a small molecule provided herein binds to a target RNA and a splicing complex component.


Thus, provided herein are methods of preventing or inducing a splicing event in a pre-mRNA molecule, comprising contacting the pre-mRNA molecule and/or other elements of the splicing machinery (e.g., within a cell) with a compound provided herein to prevent or induce the splicing event in the pre-mRNA molecule. The splicing event that is prevented or induced can be, e.g., an aberrant splicing event, a constitutive splicing event or an alternate splicing event.


Further provided herein is a method of identifying a compound capable of preventing or inducing a splicing event in a pre-mRNA molecule, comprising contacting the compound with splicing elements and/or factors involved in alternative, aberrant and/or constitutive splicing as described herein (e.g., within cells) under conditions whereby a positive (prevention or induction of splicing) or negative (no prevention or induction of splicing) effect is produced and detected and identifying a compound that produces a positive effect as a compound capable of preventing or inducing a splicing event.


In some embodiments, a small molecule compound described herein in a pharmaceutically acceptable carrier prevents or induces an alternative or aberrant splicing event in a pre-mRNA molecule. As noted above, the small molecule compounds provided herein are not antisense or antigene oligonucleotides. Table 1, Table 2, and Table 5 show the chemical structure and name of exemplary compounds and is not intended to be all-inclusive.


In some embodiments, a composition comprises a small molecule splicing modulator compound (SMSM); wherein the SMSM interacts with an unpaired bulged nucleobase of an RNA duplex, and wherein the RNA duplex comprises a splice site. Provided herein is composition comprising a complex comprising a small molecule splicing modulator compound (SMSM) bound to an RNA duplex, wherein the SMSM interacts with an unpaired bulged nucleobase of an RNA duplex, and wherein the RNA duplex comprises a splice site. In some embodiments, the duplex RNA comprises an alpha helix. In some embodiments, the unpaired bulged nucleobase is located on an external portion of a helix of the duplex RNA. In some embodiments, the unpaired bulged nucleobase is located within an internal portion of the helix of the duplex RNA. In some embodiments, the SMSM forms one or more intermolecular interactions with the duplex RNA. In some embodiments, the SMSM forms one or more intermolecular interactions with the unpaired bulged nucleobase. In some embodiments, the intermolecular interaction is selected from the group comprising an ionic interaction, a hydrogen bond, a dipole-dipole interaction or a van der Waals interaction. In some embodiments, a first portion of the SMSM interacts with the unpaired bulged nucleobase on a first RNA strand of the RNA duplex. In some embodiments, a second portion of the SMSM interacts with one or more nucleobases of a second RNA strand of the RNA duplex, wherein the first RNA strand is not the second RNA strand. In some embodiments, a rate of exchange of the unpaired bulged nucleobase from within the interior of a helix of the duplex RNA to an exterior portion of the helix is reduced. In some embodiments, the SMSM reduces a rate of rotation of the unpaired bulged nucleobase. In some embodiments, the SMSM reduces a rate of rotation of the unpaired bulged nucleobase around a phosphate backbone of an RNA strand of the RNA duplex. In some embodiments, the SMSM modulates a distance of the unpaired bulged nucleobase from a second nucleobase of the duplex RNA. In some embodiments, the SMSM reduces the distance of the unpaired bulged nucleobase from a second nucleobase of the duplex RNA. In some embodiments, the unpaired bulged nucleobase is located within the interior of a helix of the duplex RNA of the complex. In some embodiments, the SMSM reduces a size of a bulge of the RNA duplex. In some embodiments, the SMSM removes a bulge of the RNA duplex. In some embodiments, the SMSM stabilizes a bulge of the RNA duplex. In some embodiments, the SMSM modulates splicing at the splice site of the RNA duplex. In some embodiments, the SMSM increases splicing at the splice site of the RNA duplex. In some embodiments, the SMSM reduces splicing at the splice site of the RNA duplex. In some embodiments, the unpaired bulged nucleobase has modulated base stacking within an RNA strand of the RNA duplex. In some embodiments, the unpaired bulged nucleobase has increased base stacking within an RNA strand of the RNA duplex. In some embodiments, the unpaired bulged nucleobase has decreased base stacking within an RNA strand of the RNA duplex. In some embodiments, the SMSM is not an aptamer. In some embodiments, the RNA duplex comprises pre-mRNA. In some embodiments, the unpaired bulged nucleobase is free to rotate around a phosphate backbone of an RNA strand of the RNA duplex in the absence of the SMSM.


In some embodiments, a method of modulating splicing comprises contacting a small molecule splicing modulator compound (SMSM) to cells, wherein the SMSM kills the cells at an IC50 of less than 50 nM. In some embodiments, a method of modulating splicing comprises contacting a small molecule splicing modulator compound (SMSM) to cells, wherein the SMSM modulates splicing at a splice site sequence of a pre-mRNA that encodes a mRNA, wherein the mRNA encodes a target protein or a functional RNA, and wherein a total amount of the mRNA is increased at least about 10% compared to the total amount of the mRNA encoding the target protein or functional RNA produced in control cells. In some embodiments, a method of modulating splicing comprises contacting a small molecule splicing modulator compound (SMSM) to cells, wherein the SMSM modulates splicing at a splice site sequence of a pre-mRNA that encodes a mRNA, wherein the mRNA encodes a target protein or a functional RNA, and wherein a total amount of the mRNA, the target protein and/or the functional RNA is at least 10% lower than the total amount of the mRNA, the target protein and/or the functional RNA in control cells.


In some embodiments, a method of modulating splicing comprises contacting a small molecule splicing modulator compound (SMSM) to cells, wherein the SMSM modulates splicing at a splice site sequence of a pre-mRNA that encodes a first mRNA isoform associated with a disease or condition and a second mRNA isoform, wherein a total amount of the first mRNA isoform is decreased by at least about 10% compared to the total amount of the first mRNA isoform in control cells, and/or a total amount of the second mRNA isoform is increased by at least about 10% compared to the total amount of the first mRNA isoform in control cells. In some embodiments, a method of modulating splicing comprises contacting a small molecule splicing modulator compound (SMSM) to cells comprising an amount of a first mRNA isoform and an amount of a second mRNA isoform present in the cells; wherein a ratio of the first mRNA isoform to the second mRNA isoform is decreased at least 1.2 fold; wherein the first and second mRNAs are encoded by a pre-MRNA comprising a splice site sequence, and wherein the first mRNA isoform is associated with a disease or condition and a second mRNA isoform.


In some embodiments, a method of modulating splicing comprises contacting a small molecule splicing modulator compound (SMSM) to a cell comprising a polynucleotide with a splice site sequence, wherein the SMSM modulates exon inclusion, exon exclusion, pseudoexon inclusion, intron retention, or splicing at a cryptic splice site of the polynucleotide, and wherein the SMSM modulates splicing of the splice site sequence. In some embodiments, a method of modulating splicing comprises contacting a small molecule splicing modulator compound (SMSM) to a cell comprising a polynucleotide with a splice site sequence, thereby modulating splicing of the polynucleotide, wherein the splice site sequence comprises a splice site sequence selected from the group consisting of splice site sequences of Table 2A, Table 2B, Table 2C and Table 2D. In some embodiments, a method of modulating splicing comprises contacting a small molecule splicing modulator compound (SMSM) to a cell comprising a polynucleotide with a splice site sequence, wherein the splice site sequence comprises a sequence selected from GGAguaag and AGAguaag. In some embodiments, a method of modulating splicing comprises contacting a small molecule splicing modulator compound (SMSM) to a cell comprising a polynucleotide with a splice site sequence, wherein the splice site sequence comprises at least one bulged nucleotide at the −3, −2, −1, +1, +2, +3, +4, +5 or +6 position of the splice site sequence. In some embodiments, a method of modulating splicing comprises contacting a small molecule splicing modulator compound (SMSM) to a cell comprising a polynucleotide with a splice site sequence, wherein the splice site sequence comprises a mutant nucleotide at the −3, −2, −1, +1, +2, +3, +4, +5 or +6 position of the splice site sequence.


In some embodiments, a method of modulating splicing comprises contacting a small molecule splicing modulator compound (SMSM) to a cell comprising a polynucleotide with a splice site sequence, thereby modulating splicing of the polynucleotide, wherein the splice site sequence comprises a sequence selected from the group consisting of NGAgunvm, NHAdddddn, NNBnnnnnn, and NHAddmhvk; wherein N or n is A, U, G or C; B is C, G, or U; H or h is A, C, or U; d is a, g, or u; m is a or c; r is a or g; v is a, c or g; k is g or u. In some embodiments, a method of modulating splicing comprises contacting a small molecule splicing modulator compound (SMSM) to a cell comprising a polynucleotide with a splice site sequence, thereby modulating splicing of the polynucleotide, wherein the splice site sequence comprises a sequence selected from the group consisting of NNBgunnnn, NNBhunnnn, and NNBgvnnnn; wherein N or n is A, U, G or C; B is C, G, or U; H or h is A, C, or U; d is a, g, or u; m is a or c; r is a or g; v is a, c or g; k is g or u. In some embodiments, the splice site sequence comprises a sequence selected from the group consisting of NNBgurrm, NNBguwwdn, NNBguvmvn, NNBguvbbn, NNBgukddn, NNBgubnbd, NNBhunngn, NNBhurmhd, and NNBgvdnvn; wherein N or n is A, U, G or C; B is C, G, or U; H or h is A, C, or U; d is a, g, or u; m is a or c; r is a or g; v is a, c or g; k is g or u. In some embodiments, the nucleotide at the −3, −2, −1, +1, +2, +3, +4, +5 or +6 position of the splice site sequence is a bulged nucleotide. In some embodiments, the nucleotide at the −3, −2, −1, +1, +2, +3, +4, +5 or +6 position of the splice site sequence is mutated nucleotide. In some embodiments, the splice site sequence comprises a sequence selected from the group consisting of splice site sequences of Table 2A, Table 2B, Table 2C and Table 2D.


In some embodiments, a method of modulating splicing comprises contacting a small molecule splicing modulator compound (SMSM) to a cell comprising a polynucleotide with a splice site sequence, thereby modulating splicing of the polynucleotide, wherein the polynucleotide is encoded by a gene selected from the group consisting of genes of Table 2A, Table 2B, Table 2C and Table 2D. In some embodiments, the gene is HTT. In some embodiments, modulating splicing of the polynucleotide comprises inhibiting skipping of exon 7. In some embodiments, the gene is DMD. In some embodiments, modulating splicing of the polynucleotide comprises promoting skipping of exon 51.


In some embodiments, a method of modulating splicing comprises contacting a small molecule splicing modulator compound (SMSM) to a cell; wherein the SMSM interacts with an unpaired bulged nucleobase of an RNA duplex in the cell; wherein the duplex RNA comprises a splice site sequence; and wherein the SMSM modulates splicing of the RNA duplex. In some embodiments, a method comprises modulating the relative position of a first nucleobase relative to a second nucleobase, wherein the first nucleobase and the second nucleobase are within a duplex RNA, the method comprising contacting a small molecule splicing modulator compound (SMSM) to the duplex RNA, or a pharmaceutically acceptable salt thereof, wherein the first nucleobase is an unpaired bulged nucleobase of the RNA duplex; wherein the duplex RNA comprises a splice site sequence.


In some embodiments, the duplex RNA comprises a helix. In some embodiments, the unpaired bulged nucleobase is located on an external portion of a helix of the duplex RNA prior to contacting the SMSM. In some embodiments, the SMSM forms one or more intermolecular interactions with the duplex RNA. In some embodiments, the SMSM forms one or more intermolecular interactions with the unpaired bulged nucleobase. In some embodiments, the intermolecular interaction is selected from the group comprising an ionic interaction, a hydrogen bond, a dipole-dipole interaction or a van der Waals interaction. In some embodiments, a rate of exchange of the unpaired bulged nucleobase from within the interior of a helix of the duplex RNA to an exterior portion of the helix is reduced. In some embodiments, a rate of rotation of the unpaired bulged nucleobase is reduced. In some embodiments, a rate of rotation of the unpaired bulged nucleobase around a phosphate backbone of an RNA strand of the RNA duplex is reduced. In some embodiments, a distance of the unpaired bulged nucleobase from a second nucleobase of the duplex RNA is modulated after contacting the SMSM. In some embodiments, the distance of the unpaired bulged nucleobase from a second nucleobase of the duplex RNA is reduced. In some embodiments, the unpaired bulged nucleobase is located within the interior of the helix of the duplex RNA. In some embodiments, a size of a bulge of the RNA duplex is reduced. In some embodiments, a bulge of the RNA duplex is removed or maintained. In some embodiments, splicing at the splice site of the RNA duplex is promoted. In some embodiments, base stacking of the unpaired bulged nucleobase within an RNA strand of the RNA duplex is increased after contacting the SMSM. In some embodiments, the distance of the unpaired bulged nucleobase from a second nucleobase of the duplex RNA is increased or maintained. In some embodiments, a bulge of the RNA duplex is stabilized after contacting the SMSM. In some embodiments, the unpaired bulged nucleobase is located on an exterior portion of a helix of the duplex RNA. In some embodiments, a size of a bulge of the RNA duplex is increased. In some embodiments, splicing at the splice site of the RNA duplex is inhibited. In some embodiments, splicing is inhibited at the splice site In some embodiments, base stacking of the unpaired bulged nucleobase within an RNA strand of the RNA duplex is reduced after contacting the SMSM. In some embodiments, the RNA duplex comprises pre-mRNA.


In some embodiments, a method of treating a subject with a tumor comprises administering a small molecule splicing modulator compound (SMSM) to the subject, wherein a size of the tumor is reduced. In some embodiments, a method of treating a subject with a tumor comprises administering a small molecule splicing modulator compound (SMSM) to the subject, wherein tumor growth is inhibited by at least 20. In some embodiments, a method of the treatment, prevention and/or delay of progression of a condition or disease comprises administering a small molecule splicing modulator compound (SMSM) to a subject, wherein the SMSM modulates splicing of a splice site of a polynucleotide in a cell of the subject, wherein the condition or disease is associated with splicing of the splice site. In some embodiments, the subject has the disease or condition. In some embodiments, a method of treating a subject with a disease or condition comprises administering a small molecule splicing modulator compound (SMSM) to a subject with a disease or condition selected from the group consisting of diseases of Table 2A, Table 2B, Table 2C and Table 2D. In some embodiments, a method of treating a subject with a disease or condition comprises administering a small molecule splicing modulator compound (SMSM) to a subject with a disease or condition, wherein the SMSM is selected from the group consisting of the SMSMs of Table 1, Table 2, and Table 5. In some embodiments, a method of treating a subject with a disease or condition comprises administering a small molecule splicing modulator compound (SMSM) to a subject with a disease or condition, wherein the SMSM binds to a pre-mRNA comprising a splice site sequence selected from the group consisting of splice site sequences of Table 2A, Table 2B, Table 2C and Table 2D. In some embodiments, the subject is a mammal. In some embodiments, the mammal is a human. In some embodiments, the polynucleotide is a pre-mRNA. In some embodiments, the disease or condition is spinal muscular atrophy. In some embodiments, the disease or condition is Duchenne's muscular dystrophy. In some embodiments, the method further comprises administering an additional therapeutic molecule to the subject. In some embodiments, the SMSM is a compound described herein. In some embodiments, the SMSM is selected from the group consisting of SMSMs of Table 1, Table 2, and Table 5.


In some embodiments, modulating splicing comprises preventing, inhibiting or reducing splicing at the splice site sequence of the polynucleotide. In some embodiments, modulating splicing comprises enhancing, promoting or increasing splicing at the splice site sequence of the polynucleotide. In some embodiments, the splice site sequence is a 5′ splice site sequence, a 3′ splice site sequence, a branch point splice site sequence or a cryptic splice site sequence. In some embodiments, the splice site comprises a mutation, the splice site comprises a bulge, the splice site comprises a mutation and a bulge, the splice site does not comprises a mutation, the splice site does not comprises a bulge, or the splice site does not comprises a mutation and does not comprise a bulge. In some embodiments, the bulge is a bulge caused by the mutation. In some embodiments, a bulged nucleotide is a mutant nucleotide. In some embodiments, a bulged nucleotide is not a mutant nucleotide. In some embodiments, the SMSM decreases a KD of splicing complex component to the polynucleotide. In some embodiments, the SMSM increases a KD of splicing complex component to the polynucleotide. In some embodiments, the SMSM inhibits binding of a splicing complex component to the polynucleotide at the splice site sequence, upstream of the splice site sequence or downstream of the splice site sequence. In some embodiments, the SMSM promotes binding of a splicing complex component to the polynucleotide at the splice site sequence, upstream of the splice site sequence or downstream of the splice site sequence. In some embodiments, the polynucleotide is RNA. In some embodiments, the RNA is a pre-mRNA. In some embodiments, the RNA is a heterogeneous nuclear RNA. In some embodiments, the splice site sequence is a 5′ splice site sequence, a 3′ splice site sequence, a branch point (BP) splice site sequence, an exonic splicing enhancer (ESE) sequence, an exonic splicing silencer (ESS) sequence, an intronic splicing enhancer (ISE) sequence, an intronic splicing silencer (ISS) sequence, a polypyrimidine tract sequence, or any combination thereof. In some embodiments, the polynucleotide is at least 5, 6, 7, 8, 9, 10, 15, 20, 25, 50, 100, 250, 500, 750, 1,000, 2,000, 5,000, 10,000, 50,000, 100,000, 500,000, or 1,000,000 nucleotides in length. In some embodiments, the SMSM binds to the splice site sequence of the polynucleotide. In some embodiments, the SMSM interacts with a bulge of the splice site sequence of the polynucleotide. In some embodiments, the polynucleotide comprises a cis-acting element sequence. In some embodiments, the cis-acting element sequence does not comprise a bulge. In some embodiments, the cis-acting element sequence does not comprise a mutation. In some embodiments, the cis-acting element sequence comprises a mutation, a bulge, or a combination thereof, at the cis-acting element sequence, 1-1000 nucleobases upstream of the cis-acting element sequence or 1-1000 nucleobases downstream of the cis-acting element sequence. In some embodiments, the cis-acting element sequence comprises a regulatory element sequence that modulates recruitment of a splicing complex component to the polynucleotide. In some embodiments, the cis-acting element sequence comprises a regulatory element sequence that modulates recruitment of a spliceosome to the polynucleotide. In some embodiments, the regulatory element sequence comprises an exonic splicing enhancer (ESE) sequence, an exonic splicing silencer (ESS) sequence, an intronic splicing enhancer (ISE) sequence, an intronic splicing silencer (ISS) sequence, and combinations thereof. In some embodiments, the SMSM binds to the splicing complex component. In some embodiments, the splicing complex component is 9G8, A1 hnRNP, A2 hnRNP, ASD-1, ASD-2b, ASF, B1 hnRNP, C1 hnRNP, C2 hnRNP, CBP20, CBP80, CELF, F hnRNP, FBP11, Fox-1, Fox-2, GhnRNP, HhnRNP, hnRNP 1, hnRNP 3, hnRNP C, hnRNP G, hnRNP K, hnRNP M, hnRNP U, Hu, HUR, I hnRNP, K hnRNP, KH-type splicing regulatory protein (KSRP), F hnRNP, M hnRNP, mBBP, muscle-blind like (MBNF), NF45, NFAR, Nova-1, Nova-2, nPTB, P54/SFRS11, polypyrimidine tract binding protein (PTB), PRP19 complex proteins, R hnRNP, RNPC1, SAM68, SC35, SF, SF1/BBP, SF2, SF3 a, SF3B, SFRS10, Sm proteins, SR proteins, SRm300, SRp20, SRp30c, SRP35C, SRP36, SRP38, SRp40, SRp55, SRp75, SRSF, STAR, GSG, SUP-12, TASR-1, TASR-2, TIA, TIAR, TRA2, TRA2a/b, U hnRNP, U1 snRNP, U11 snRNP, U12 snRNP, U1-C, U2 snRNP, U2AF1-RS2, U2AF35, U2AF65, U4 snRNP, U5 snRNP, U6 snRNP, Urp, YB1, or any combination thereof. In some embodiments, the splicing complex component comprises RNA. In some embodiments, the splicing complex component is a small nuclear RNA (snRNA). In some embodiments, the snRNA comprises U1 snRNA, U2 snRNA, U4 snRNA, U5 snRNA, U6 snRNA, U11 snRNA, U12 snRNA, U4atac snRNA, U5 snRNA, U6 atac snRNA, or any combination thereof. In some embodiments, the splicing complex component comprises a protein. In some embodiments, the splicing complex component comprises a small nuclear ribonucleoprotein (snRNP). In some embodiments, the snRNP comprises U1 snRNP, U2 snRNP, U4 snRNP, U5 snRNP, U6 snRNP, U11 snRNP, U12 snRNP, U4atac snRNP, U5 snRNP, U6 atac snRNP, or any combinations thereof. In some embodiments, the protein is a serine/arginine-rich (SR) protein. In some embodiments, the splice site sequence comprises a base that is mismatched to a base of a snRNA sequence. In some embodiments, a bulge is due to mismatched base pairing between the splice site sequence and a snRNA sequence.


In some embodiments, a method comprises upregulating expression of a native protein in a cell containing a DNA encoding the native protein, wherein the DNA contains a mutation or no mutation that causes downregulation of the native protein by aberrant and/or alternate splicing thereof. For example, the DNA can encode a pre-mRNA that has a mutation or an aberrant secondary or tertiary structure that causes downregulation of one or more isoforms of a protein. The method can comprise introducing into the cell a small molecule provided herein that prevents an aberrant splicing event, whereby the native intron is removed by correct splicing and the native protein is produced by the cell. In some embodiments, a method comprises introducing into a cell a small molecule provided herein that modulates an alternate splicing event to produce a protein that has a different function than the protein that would be produced without modulation of alternate splicing.


In some embodiments, a method comprises downregulating expression of a native protein in a cell containing a DNA encoding the native protein, wherein the DNA contains a mutation or no mutation that causes upregulation of the native protein by aberrant and/or alternate splicing thereof. For example, the DNA can encode a pre-mRNA that has a mutation or an aberrant secondary or tertiary structure that causes upregulation of one or more isoforms of a protein. The method can comprise introducing into the cell a small molecule provided herein that prevents an aberrant splicing event, whereby the native intron is removed by correct splicing and the native protein is produced by the cell. In some embodiments, a method comprises introducing into a cell a small molecule provided herein that modulates an alternate splicing event to produce a protein that has a different function than the protein that would be produced without modulation of alternate splicing. For example, a method can comprise preventing aberrant splicing in a pre-mRNA molecule containing a mutation or an aberrant secondary or tertiary structure and/or preventing an alternative splicing event. When present in the pre-mRNA, the mutation or aberrant secondary or tertiary structure can cause a pre-mRNA to splice incorrectly and produce an aberrant mRNA or mRNA fragment different from the mRNA ordinarily resulting from a pre-mRNA without the mutation or aberrant secondary or tertiary structure. For example, s pre-mRNA molecule can contain: (i) a first set of splice elements defining a native intron which can be removed by splicing when the mutation or aberrant secondary or tertiary structure is absent to produce a first mRNA molecule encoding a native protein, and (ii) a second set of splice elements induced by the mutation or aberrant secondary or tertiary structure which defines an aberrant intron different from the native intron, which aberrant intron is removed by splicing when the mutation or aberrant secondary or tertiary structure is present to produce an aberrant second mRNA molecule different from the first mRNA molecule. The method can comprise contacting the pre-mRNA molecule and/or other factors and/or elements of the splicing machinery as described herein (e.g., within a cell) with a compound described herein to prevent or promote an aberrant splicing event in a pre-mRNA molecule, whereby the native intron is removed by correct splicing and native protein production is increased in the cell.


In some embodiments, a method comprises upregulating expression of a RNA that would otherwise be downregulated by modulating an alternative splicing event in the RNA. The method can comprise contacting a pre-mRNA molecule and/or other elements and/or factors of the splicing machinery with a compound described herein to modulate alternate splicing events, whereby a native splicing event is inhibited and an alternate splicing event is promoted that upregulates expression of a RNA that is otherwise downregulated when under the control of the native splicing event.


In some embodiments, a method comprises downregulating expression of a RNA that would otherwise be upregulated by modulating an alternative splicing event in the RNA. The method can comprise contacting a pre-mRNA molecule and/or other elements and/or factors of the splicing machinery with a compound described herein to modulate alternate splicing events, whereby a native splicing event is inhibited and an alternate splicing event is promoted that downregulates expression of a RNA that is otherwise upregulated when under the control of the native splicing event.


The methods, compounds and compositions described herein have a variety of uses. For example, they are useful in any process where it is desired to have a means for downregulating expression of a RNA to be expressed until a certain time, after which it is desired to upregulate RNA expression. For such use, the RNA to be expressed may be any RNA encoding a protein to be produced so long as the gene contains a native intron. The RNA may be mutated by any suitable means, such as site-specific mutagenesis (see. T. Kunkel, U.S. Pat. No. 4,873,192) to deliberately create an aberrant second set of splice elements which define an aberrant intron which substantially downregulates expression of the gene. A sequence encoding the RNA may be inserted into a suitable expression vector and the expression vector inserted into a host cell (e.g., a eukaryotic cell such as a yeast, insect, or mammalian cell (e.g., human, rat)) by standard recombinant techniques. The host cell can then be grown in culture by standard techniques. When it is desired to upregulate expression of the mutated gene, a suitable compound of the present disclosure, in a suitable formulation, can be added to the culture medium so that expression of the gene is upregulated.


Also provided herein is a method of altering the ratio of splice variants produced from a gene. The method can comprise contacting a pre-mRNA molecule and/or other elements and/or factors of the splicing machinery with a compound or compounds described herein to modulate alternative splicing events. The compound or compounds of this disclosure can be used to act upon 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 alternative splicing events that may occur within a pre-mRNA. In some embodiments, a first splice variant may be downregulated or inhibited and/or a second splice variant may be upregulated, resulting in an altered ratio of splice variants of the two or more RNA. In some embodiments, a first splice variant may be upregulated while a second splice variant may be unaffected, thereby altering the ratio of the RNA. In some embodiments, a first splice variant may be downregulated while a second splicing event may be unaffected thereby altering the ratio of the RNA.


The methods, compounds and formulations described herein are also useful as in vitro or in vivo tools to examine and modulate splicing events in human or animal RNAs encoded by genes, e.g., those developmental and/or tissue regulated (e.g., alternate splicing events).


The compounds and formulations described herein are also useful as therapeutic agents in the treatment of disease involving aberrant and/or alternate splicing. Thus, in some embodiments, a method of treating a subject having a condition or disorder associated with an alternative or aberrant splicing event in a pre-mRNA molecule, comprises administering to the subject a therapeutically effective amount of a compound described herein to modulate an alternative splicing event or prevent an aberrant splicing event, thereby treating the subject. The method can, e.g., restore a correct splicing event in a pre-mRNA molecule. The method can, e.g., utilize a small molecule compound described herein in a pharmaceutically acceptable carrier.


Formulations containing the small molecules described herein can comprise a physiologically or pharmaceutically acceptable carrier, such as an aqueous carrier. Thus, formulations for use in the methods described herein include, but are not limited to, those suitable for oral administration, parenteral administration, including subcutaneous, intradermal, intramuscular, intravenous and intra-arterial administration, as well as topical administration (e.g., administration of an aerosolized formulation of respirable particles to the lungs of a patient afflicted with cystic fibrosis or lung cancer or a cream or lotion formulation for transdermal administration of patients with psoriasis). The formulations may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art. The most suitable route of administration in any given case may depend upon the subject, the nature and severity of the condition being treated, and the particular active compound, which is being used, as would be readily determined by one of skill in the art.


Also provided herein are methods for the use of a compound described herein having the characteristics set forth above for the preparation of a medicament for upregulating or downregulating RNA expression in a patient having a disorder associated with aberrant or alternate splicing of a pre-mRNA molecule, as discussed above. In some embodiments, the medicament upregulates gene expression. In other embodiments, the medicament downregulates gene expression. In the manufacture of at medicament according to the disclosure, the compound can be admixed with, inter alia, a pharmaceutically acceptable carrier. The carrier may be a solid or a liquid. One or more compounds may be incorporated in any combination in the formulations described herein, which may be prepared by any of the well-known techniques of pharmacy, such as admixing the components, and/or including one or more accessory therapeutic ingredients.


The present inventors identify herein low molecular weight compounds (sometimes referred to herein as small molecules, which block mRNA splicing and/or enhance (facilitate, augment) mRNA splicing. The splicing that can be regulated by the methods described herein include alternative splicing, e.g., exon skipping, intron retention, pseudoexons skipping, exon exclusion, partial intron exclusion and others. Depending on factors such as the splicing sequence and the RNA (or gene encoding the RNA) or exon involved, modulation of splicing can be accomplished in the presence of, or in the absence of, antisense oligonucleotides (AOs) that are specific for splicing sequences of interest. In some embodiments, a small molecule and an AO act synergistically.


In some aspects, a method comprises contacting a splice modulating compound (e.g., a SMSM) to a pre-mRNA that modulates splicing of the pre-mRNA to favor expression of a transcript that promotes cell proliferation. For example, an SMSM described herein can increase one or more isoforms of a transcript that promotes cell proliferation. For example, an SMSM described herein can decrease expression one or more isoforms of a transcript that prevents or inhibits cell proliferation.


In some aspects, a method comprises contacting a splice modulating compound (e.g., a SMSM) to a pre-mRNA that modulates splicing of the pre-mRNA to favor expression of a transcript that prevents or inhibits cell proliferation. For example, an SMSM described herein can increase one or more isoforms of a transcript that prevents or inhibits cell proliferation. For example, an SMSM described herein can decrease expression one or more isoforms of a transcript that promotes cell proliferation.


In some embodiments, a method of modulating splicing of pre-mRNA comprises using an SMSM to decrease expression or functionality of one or more isoforms of a transcript in a subject. The method can comprise administering an SMSM, or a composition comprising an SMSM, to a subject, wherein the SMSM binds to a pre-mRNA or a splicing complex component and modulates splicing of the pre-mRNA to favor expression of one or more isoforms of a transcript. The method can comprise administering an SMSM, or a composition comprising an SMSM, to a subject, wherein the SMSM binds to a pre-mRNA or a splicing complex component and modulates splicing of the pre-mRNA to disfavor expression of one or more isoforms of a transcript.


In some embodiments, the present disclosure provides a method of treating a subject afflicted with a disease or condition associated with aberrant splicing of a pre-mRNA. The method can comprise administering an SMSM, or a composition comprising an SMSM, to a subject, wherein the SMSM binds to a pre-mRNA or a splicing complex component and modulates splicing of the pre-mRNA to inhibit expression of one or more isoforms of a transcript. The method can comprise administering an SMSM, or a composition comprising an SMSM, to a subject, wherein the SMSM binds to a pre-mRNA or a splicing complex component and modulates the splicing of the pre-mRNA to increase expression of one or more isoforms of a transcript.


A number of diseases are associated with expression of an aberrant gene product (e.g., an RNA transcript or protein) of a gene. For example, aberrant amounts of a RNA transcript may lead to disease due to corresponding changes in protein expression. Changes in the amount of a particular RNA transcript may be the result of several factors. First, changes in the amount of RNA transcripts may be due to an aberrant level of transcription of a particular gene, such as by the perturbation of a transcription factor or a portion of the transcription process, resulting in a change in the expression level of a particular RNA transcript. Second, changes in the splicing of particular RNA transcripts, such as by perturbation of a particular splicing process or mutations in the gene that lead to modified splicing can change the levels of a particular RNA transcript. Changes to the stability of a particular RNA transcript or to components that maintain RNA transcript stability, such as the process of poly-A tail incorporation or an effect on certain factors or proteins that bind to and stabilize RNA transcripts, may lead to changes in the levels of a particular RNA transcript. The level of translation of particular RNA transcripts can also affect the amount of those transcripts, affecting or upregulating RNA transcript decay processes. Finally, aberrant RNA transport or RNA sequestration may also lead to changes in functional levels of RNA transcripts, and may have an effect on the stability, further processing, or translation of the RNA transcripts.


In some embodiments, provided herein are methods for modulating the amount of one, two, three or more RNA transcripts encoded by a pre-mRNA, comprising contacting a cell with an SMSM compound or a pharmaceutically acceptable salt thereof. In some embodiments, the cell is contacted with an SMSM compound or a pharmaceutically acceptable salt thereof in a cell culture. In other embodiments, the cell is contacted with an SMSM compound or a pharmaceutically acceptable salt thereof in a subject (e.g., a non-human animal subject or a human subject).


In some embodiments, provided herein are methods for treatment, prevention and/or delay of progression of a disease or condition comprising administering an effective amount of a small molecule splicing modulator as described herein to a subject, in particular to a mammal.


In some embodiments, provided herein are compositions and methods for treating a disease or condition, including steric modulator compounds or pharmaceutically acceptable salts thereof that promote prevention or correction of exon skipping of a pre-mRNA. The disclosure further provides compositions and methods for increasing production of mature mRNA and, in turn, protein, in cells of a subject in need thereof, for example, a subject that can benefit from increased production of protein. The disclosure further provides compositions and methods for decreasing production of mature mRNA and, in turn, protein, in cells of a subject in need thereof, for example, a subject that can benefit from decreased production of protein. In one embodiment, the described methods may be used to treat subjects having a disease or condition caused by a mutation in a gene, including missense, splicing, frameshift and nonsense mutations, as well as whole gene deletions, which result in deficient protein production. In another embodiment, the described methods may be used to treat subjects having a disease or condition not caused by gene mutation. In some embodiments, the compositions and methods of the present disclosure are used to treat subjects having a disease or condition, who can benefit from increased production of protein. In some embodiments, the compositions and methods of the present disclosure are used to treat subjects having a disease or condition, who can benefit from increased production of protein. In some embodiments, the compositions and methods of the present disclosure are used to treat subjects having a disease or condition, who can benefit from decreased production of a protein.


In some embodiments, provided herein are methods of treating a disease or condition in a subject in need thereof by increasing the expression of a target protein or functional RNA by cells of the subject, wherein the cells have a mutation that causes, e.g., exon skipping or intron inclusion, or a portion thereof, of pre-mRNA, wherein the pre-mRNA encodes the target protein or functional RNA. The method can comprise contacting cells of a subject with an SMSM compound or a pharmaceutically acceptable salt thereof that targets the pre-mRNA encoding the target protein or functional RNA or splicing complex component, whereby splicing of an exon from a pre-mRNA encoding a target protein or functional RNA is prevented or inhibited, thereby increasing a level of mRNA encoding the target protein or functional RNA, and increasing the expression of the target protein or functional RNA in the cells of the subject. In some embodiments, also disclosed herein is a method of increasing expression of a target protein by cells having a mutation or aberrant secondary or tertiary RNA structure that causes exon skipping of pre-mRNA, the pre-mRNA comprising a mutation or aberrant secondary or tertiary RNA structure that causes exon skipping. The method can comprise contacting the cells with an SMSM compound or a pharmaceutically acceptable salt thereof that targets a pre-mRNA encoding a target protein or functional RNA, whereby splicing of an exon from a pre-mRNA encoding a target protein or functional RNA is prevented or inhibited, thereby increasing the level of mRNA encoding functional protein, and increasing the expression of protein in the cells. In some embodiments, the target protein is a tumor suppressor. In some embodiments, the target protein is a tumor promoter. In some embodiments, the target protein or the functional RNA is a compensating protein or a compensating functional RNA that functionally augments or replaces a target protein or functional RNA that is deficient in amount or activity in the subject. In some embodiments, the cells are in or from a subject having a condition caused by a deficient amount or activity of the protein. In some embodiments, the deficient amount of the target protein is caused by haploinsufficiency of the target protein, wherein the subject has a first allele encoding a functional target protein, and a second allele from which the target protein is not produced, or a second allele encoding a nonfunctional target protein, and wherein an SMSM compound or a pharmaceutically acceptable salt thereof binds to a targeted portion of a pre-mRNA transcribed from the first allele. In some embodiments, the target protein is produced in a form that is fully-functional compared to the equivalent protein produced from mRNA in which an exon has been skipped or is missing. In some embodiments, the pre-mRNA is encoded by a genetic sequence with at least about 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to a pre-mRNA. In some embodiments, an SMSM compound or a pharmaceutically acceptable salt thereof increases the amount of the target protein or the functional RNA by modulating alternative splicing of pre-mRNA transcribed from a gene encoding the functional RNA or target protein. In some embodiments, an SMSM compound or a pharmaceutically acceptable salt thereof increases the amount of the target protein or the functional RNA by modulating aberrant splicing resulting from mutation of the gene encoding the target protein or the functional RNA.


In some embodiments, the total amount of the mRNA encoding the target protein or functional RNA produced in the cell contacted with an SMSM compound or a pharmaceutically acceptable salt thereof is increased at least about 10%, at least about 20%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 100%, at least about 150%, at least about 200%, at least about 250%, at least about 300%, at least about 400%, or at least about 500%, compared to the total amount of the mRNA encoding the target protein or functional RNA produced in a control cell.


In some embodiments, the total amount of the mRNA encoding the target protein or functional RNA produced in the cell contacted with than SMSM compound or a pharmaceutically acceptable salt thereof is increased about 20% to about 300%, about 50% to about 300%, about 100% to about 300%, about 150% to about 300%, about 20% to about 50%, about 20% to about 100%, about 20% to about 150%, about 20% to about 200%, about 20% to about 250%, about 50% to about 100%, about 50% to about 150%, about 50% to about 200%, about 50% to about 250%, about 100% to about 150%, about 100% to about 200%, about 100% to about 250%, about 150% to about 200%, about 150% to about 250%, or about 200% to about 250%, compared to the total amount of the mRNA encoding the target protein or functional RNA produced in a control cell.


In some embodiments, the total amount of target protein produced by the cell contacted with an SMSMS compound or a pharmaceutically acceptable salt thereof is increased at least about 20%, at least about 50%, at least about 100%, at least about 150%, at least about 200%, at least about 250%, or at least about 300%, compared to the total amount of target protein produced by a control cell. In some embodiments, the total amount of target protein produced by the cell contacted with an SMSM compound or a pharmaceutically acceptable salt thereof is increased about 20% to about 300%, about 50% to about 300%, about 100% to about 300%, about 150% to about 300%, about 20% to about 50%, about 20% to about 100%, about 20% to about 150%, about 20% to about 200%, about 20% to about 250%, about 50% to about 100%, about 50% to about 150%, about 50% to about 200%, about 50% to about 250%, about 100% to about 150%, about 100% to about 200%, about 100% to about 250%, about 150% to about 200%, about 150% to about 250%, or about 200% to about 250%, compared to the total amount of target protein produced by a control cell.


In some embodiments, a total amount of the mRNA encoding the target protein or functional RNA produced in the cell contacted with an SMSM compound or a pharmaceutically acceptable salt thereof is increased at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold compared to the total amount of the mRNA encoding the target protein or functional RNA produced in a control cell. In some embodiments, a total amount of an mRNA encoding the target protein or functional RNA produced in a cell contacted with an SMSM compound or a pharmaceutically acceptable salt thereof is increased about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, or about 4 to about 9-fold, compared to a total amount of the mRNA encoding the target protein or functional RNA produced in a control cell.


In some embodiments, a total amount of target protein produced by a cell contacted with an SMSM compound or a pharmaceutically acceptable salt thereof is increased at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold, compared to the total amount of target protein produced by a control cell. In some embodiments, the total amount of target protein produced by the cell contacted with an SMSM compound or a pharmaceutically acceptable salt thereof is increased about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, or about 4 to about 9-fold, compared to a total amount of target protein produced by a control cell.


In some embodiments, the total amount of the mRNA encoding the target protein or functional RNA produced in the cell contacted with an SMSM compound or a pharmaceutically acceptable salt thereof is decreased at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, or at least about 100%, compared to the total amount of the mRNA encoding the target protein or functional RNA produced in a control cell.


In some embodiments, the total amount of the mRNA encoding the target protein or functional RNA produced in the cell contacted with an SMSM compound or a pharmaceutically acceptable salt thereof is decreased about 10% to about 100%, about 20% to about 100%, about 30% to about 100%, about 40% to about 100%, about 50% to about 100%, about 60% to about 100%, about 70% to about 100%, about 80% to about 100% about 90% to about 100%, about 20% to about 30%, about 20% to about 40%, about 20% to about 50%, about 20% to about 60%, about 20% to about 70%, about 20% to about 80%, about 20% to about 90%, about 30% to about 40%, about 30% to about 50%, about 30% to about 60%, about 30% to about 70%, about 30% to about 80%, about 30% to about 90%, about 40% to about 50%, about 40% to about 60%, about 40% to about 70%, about 40% to about 80%, about 40% to about 90%, about 50% to about 60%, about 50% to about 70%, about 50% to about 80%, about 50% to about 90%, about 60% to about 70%, about 60% to about 80%, about 60% to about 90%, 70% to about 80%, about 70% to about 90%, or about 80% to about 90%, compared to the total amount of the mRNA encoding the target protein or functional RNA produced in a control cell.


In some embodiments, the total amount of target protein produced by the cell contacted with an SMSM compound or a pharmaceutically acceptable salt thereof is decreased at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, or at least about 100%, compared to the total amount of target protein produced by a control cell. In some embodiments, the total amount of target protein produced by the cell contacted with an SMSM compound or a pharmaceutically acceptable salt thereof is decreased about 10% to about 100%, about 20% to about 100%, about 30% to about 100%, about 40% to about 100%, about 50% to about 100%, about 60% to about 100%, about 70% to about 100%, about 80% to about 100% about 90% to about 100%, about 20% to about 30%, about 20% to about 40%, about 20% to about 50%, about 20% to about 60%, about 20% to about 70%, about 20% to about 80%, about 20% to about 90%, about 30% to about 40%, about 30% to about 50%, about 30% to about 60%, about 30% to about 70%, about 30% to about 80%, about 30% to about 90%, about 40% to about 50%, about 40% to about 60%, about 40% to about 70%, about 40% to about 80%, about 40% to about 90%, about 50% to about 60%, about 50% to about 70%, about 50% to about 80%, about 50% to about 90%, about 60% to about 70%, about 60% to about 80%, about 60% to about 90%, 70% to about 80%, about 70% to about 90%, or about 80% to about 90%, compared to the total amount of target protein produced by a control cell.


In some embodiments, the difference in amount between a first splice variant and a second splice variant encoding a target protein or functional RNA isoform produced in the cell contacted with an SMSM compound or a pharmaceutically acceptable salt thereof is increased about 20% to about 300%, about 50% to about 300%, about 100% to about 300%, about 150% to about 300%, about 20% to about 50%, about 20% to about 100%, about 20% to about 150%, about 20% to about 200%, about 20% to about 250%, about 50% to about 100%, about 50% to about 150%, about 50% to about 200%, about 50% to about 250%, about 100% to about 150%, about 100% to about 200%, about 100% to about 250%, about 150% to about 200%, about 150% to about 250%, about 200% to about 250%, at least about 20%, at least about 50%, at least about 100%, at least about 150%, at least about 200%, at least about 250%, or at least about 300%, compared to the difference in amounts between the two splice variants produced by a control cell. In some embodiments, the difference in amount between a first protein isoform expressed from a first splice variant and a second protein isoform expressed from a second splice variant produced by the cell contacted with an SMSM compound or a pharmaceutically acceptable salt thereof is increased about 20% to about 300%, about 50% to about 300%, about 100% to about 300%, about 150% to about 300%, about 20% to about 50%, about 20% to about 100%, about 20% to about 150%, about 20% to about 200%, about 20% to about 250%, about 50% to about 100%, about 50% to about 150%, about 50% to about 200%, about 50% to about 250%, about 100% to about 150%, about 100% to about 200%, about 100% to about 250%, about 150% to about 200%, about 150% to about 250%, about 200% to about 250%, at least about 20%, at least about 50%, at least about 100%, at least about 150%, at least about 200%, at least about 250%, or at least about 300%, compared to the difference in amounts between two protein isoforms produced from the splice variants produced by a control cell.


In some embodiments, the difference in amount between a first splice variant and a second splice variant encoding a target protein or functional RNA isoform produced in the cell contacted with an SMSM compound or a pharmaceutically acceptable salt thereof is increased about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, about 4 to about 9-fold, at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold, compared to the difference in amounts between the two splice variants produced by a control cell. In some embodiments, the difference in amount between a first protein isoform expressed from a first splice variant and a second protein isoform expressed from a second splice variant produced by the cell contacted with an SMSM compound or a pharmaceutically acceptable salt thereof is increased about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, about 4 to about 9-fold, at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold, compared to the difference in amounts between two protein isoforms expressed from the splice variants produced by a control cell.


In some embodiments, a difference in amount between a first splice variant and a second splice variant encoding a target protein or functional RNA isoform produced in a cell contacted with an SMSM compound or a pharmaceutically acceptable salt thereof is decreased about 20% to about 300%, about 50% to about 300%, about 100% to about 300%, about 150% to about 300%, about 20% to about 50%, about 20% to about 100%, about 20% to about 150%, about 20% to about 200%, about 20% to about 250%, about 50% to about 100%, about 50% to about 150%, about 50% to about 200%, about 50% to about 250%, about 100% to about 150%, about 100% to about 200%, about 100% to about 250%, about 150% to about 200%, about 150% to about 250%, about 200% to about 250%, at least about 20%, at least about 50%, at least about 100%, at least about 150%, at least about 200%, at least about 250%, or at least about 300%, compared to the difference in amounts between the two splice variants produced by a control cell. In some embodiments, a difference in amount between a first protein isoform expressed from a first splice variant and a second protein isoform expressed from a second splice variant produced by a cell contacted with an SMSM compound or a pharmaceutically acceptable salt thereof is decreased about 20% to about 300%, about 50% to about 300%, about 100% to about 300%, about 150% to about 300%, about 20% to about 50%, about 20% to about 100%, about 20% to about 150%, about 20% to about 200%, about 20% to about 250%, about 50% to about 100%, about 50% to about 150%, about 50% to about 200%, about 50% to about 250%, about 100% to about 150%, about 100% to about 200%, about 100% to about 250%, about 150% to about 200%, about 150% to about 250%, about 200% to about 250%, at least about 20%, at least about 50%, at least about 100%, at least about 150%, at least about 200%, at least about 250%, or at least about 300%, compared to a difference in amounts between two protein isoforms produced from the splice variants produced by a control cell.


In some embodiments, the difference in amount between a first splice variant and a second splice variant encoding a target protein or functional RNA isoform produced in the cell contacted with an SMSM compound or a pharmaceutically acceptable salt thereof is decreased about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, about 4 to about 9-fold, at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold, compared to the difference in amounts between the two splice variants produced by a control cell. In some embodiments, the difference in amount between a first protein isoform expressed from a first splice variant and a second protein isoform expressed from a second splice variant produced by the cell contacted with an SMSM compound or a pharmaceutically acceptable salt thereof is decreased about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, about 4 to about 9-fold, at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold, compared to the difference in amounts between two protein isoforms express from the splice variants produced by a control cell.


The ratio of a first isoform and a second isoform may contribute to a number of conditions or diseases. In some embodiments, a subject without a condition or disease has a first isoform to second isoform ratio of 1:1. In some embodiments, a subject with a condition or disease described herein has a first isoform to second isoform ratio of about 1:1.2, 1:1.4, 1:1.6, 1:1.8, 1:2, 1:2.5, 1:3, 1:3.5, 1:4, 1:4.5 or 1:5. In some embodiments, a subject with a condition or disease described herein has a first isoform to second isoform ratio from about 1:1 to about 1:1.1, about 1:1 to about 1:1.2, about 1:1 to about 1:1.3, about 1:1 to about 1:1.4, about 1:1 to about 1:1.5, about 1:1 to about 1:1.6, about 1:1 to about 1:1.8, about 1:1 to about 1:2, about 1:1 to about 1:3, about 1:1 to about 1:3.5, about 1:1 to about 1:4, about 1:1 to about 1:4.5, about 1:1 to about 1:5, 1:2 to about 1:3, about 1:2 to about 1:4, about 1:2 to about 1:5, about 1:3 to about 1:4, about 1:3 to about 1:5, or about 1:4 to about 1:5.


In some embodiments, binding of an SMSM compound or a pharmaceutically acceptable salt thereof to pre-mRNA prevents splicing out of one or more exons and/or introns and/or proteins thereof, from the population of pre-mRNAs to produce mRNA encoding the target protein or functional RNA. In some embodiments, the cell comprises a population of pre-mRNAs transcribed from the gene encoding the target protein or functional RNA, wherein the population of pre-mRNAs comprises a mutation that causes the splicing out of one or more exons, and wherein an SMSM compound or a pharmaceutically acceptable salt thereof binds to the mutation that causes the splicing out of the one or more exons in the population of pre-mRNAs. In some embodiments, the binding of an SMSM compound or a pharmaceutically acceptable salt thereof to the mutation that causes the splicing out of the one or more exons prevents splicing out of the one or more exons from the population of pre-mRNAs to produce mRNA encoding the target protein or functional RNA. In some embodiments, the condition is a disease or disorder. In some embodiments, the method further comprises assessing protein expression. In some embodiments, an SMSM compound or a pharmaceutically acceptable salt thereof binds to a targeted portion of a pre-mRNA.


In some embodiments, the binding of an SMSM compound or a pharmaceutically acceptable salt thereof catalyzes the inclusion of a missing exon or removal of an undesired retained intron or portions thereof, resulting in healthy mRNA and proteins. In some embodiments, the binding of an SMSM compound or a pharmaceutically acceptable salt thereof has minimal to no effect on non-diseased cells.


In some embodiments, an SMSM kills cells at an IC50 of less than 50 nM. In some embodiments, the cells are primary cells. In some embodiments, an SMSM kills the cells at an IC50 of less than 48 nM, 45 nM, 40 nM, 35 nM, 30 nM, 25 nM, 20 nM, 15 nM, 10 nM, 5 nM, 3 nM, or 1 nM.


In some embodiments, an SMSM modulates splicing at a splice site sequence of a polynucleotide of the primary cells. In some embodiments, an SMSM modulates proliferation or survival of the primary cells. In some embodiments, the primary cells are primary diseased cells. In some embodiments, the primary diseased cells are primary cancer cells. In some embodiments, the SMSM is present at a concentration of at least about 1 nM, 10 nM, 100 nM, 1 μM, 10 μM, 100 μM, 1 mM, 10 mM, 100 mM, or 1 M. In some embodiments, at least about 5%, 10%, 25%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99% or 100% of the primary diseased cells are killed. In some embodiments, at least about 5%, 10%, 25%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99% or 100% of the primary diseased cells undergo apoptosis. In some embodiments, at least about 5%, 10%, 25%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99% or 100% of the primary diseased cells undergo necrosis. In some embodiments, proliferation is reduced or inhibited in at least about 5%, 10%, 25%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99% or 100% of the primary diseased cells. In some embodiments, the primary diseased cells are non-transformed cells.


In some embodiments, an SMSM reduces a size of a tumor in a subject. In some embodiments, a size of a tumor in a subject administered an SMSM or a pharmaceutically acceptable salt thereof is reduced by at least about 1%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% in the subject. In some embodiments, a diameter of a tumor in a subject administered an SMSM or a pharmaceutically acceptable salt thereof is reduced by at least about 1%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99%. In some embodiments, a volume of the tumor is reduced by at least about 1%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% in the subject. In some embodiments, the tumor is malignant.


In some embodiments, a method comprises contacting an SMSM to primary non-diseased cells. In some embodiments, at most about 1%, 5%, 10%, 15%, 20%, 25%, or 50% of the primary non-diseased cells are killed. In some embodiments, at most about 1%, 5%, 10%, 15%, 20%, 25%, or 50% of the primary non-diseased cells undergo apoptosis. In some embodiments, at most about 1%, 5%, 10%, 15%, 20%, 25%, or 50% of the primary non-diseased cells undergo necrosis. In some embodiments, proliferation is reduced or inhibited in at most about 1%, 5%, 10%, 15%, 20%, 25%, or 50% of the primary non-diseased cells. In some embodiments, the primary non-diseased cells are of the same tissue as the primary diseased cells. In some embodiments, the primary non-diseased cells are differentiated cells.


An SMSM can modulate splicing at a splice site of a polynucleotide and does not exhibit significant toxicity. In some embodiments, an SMSM penetrates the blood brain barrier (BBB) when administered to a subject.


In some embodiments, an SMSM has a brain/blood AUC of at least about 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.5, 3.0, 3.5, 40, or higher.


In some embodiments, an SMSM provided herein, e.g., an SMSM described herein, has an apparent permeability (Papp) of at least about 1, at least about 2, at least about 3, at least about 4, at least about 5, at least about 10, at least about 15, at least about 20, at least about 30, at least about 40, at least about 50, at least about 60, at least about 70, at least about 80, at least about 90, or at least about 100, as determined by MDCK-MDR1 Permeability assay. In some embodiments, an SMSM provided herein has an apparent permeability of at least about 10, at least about 20, or at least about 50.


In some embodiments, an SMSM provided herein, e.g., an SMSM described herein, has an Efflux Ratio (ER) of at most about 3. In some embodiments, an SMSM provided herein has an Efflux ratio within a range of from about 1, about 2, about 3 or about 4, to about 5, about 6, about 7, about 8, about 9, about 10, about 12 about 15, or about 20, as determined by MDCK-MDR1 Permeability assay. In some embodiments, an SMSM provided herein has an Efflux ratio of from about 3 to about 10. In some embodiments, an SMSM provided herein has an Efflux ratio that is at most about 3, at most about 2, or at most about 1. In some embodiments, an SMSM provided herein has an Efflux ratio of larger than about 10. In some embodiments, an SMSM provided herein has an Efflux ratio of at least about 10, at least about 20, at least about 50, at least about 100, at least about 200, or at least about 300.


In some embodiments, an SMSM has a half-life of at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, or 1000 hours in a human.


In some embodiments, an SMSM is stable at room temperature for at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 or 24 hours; or at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 months; or at least 1, 2, 3, 4, or 5 years. In some embodiments, an SMSM is stable at 4° C. for at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 or 24 hours; or for at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 months; or at least 1, 2, 3, 4, or 5 years. In some embodiments, an SMSM is stable at room temperature in water or an organic solvent for at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 or 24 hours; or at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 months; or at least 1, 2, 3, 4, or 5 years. In some embodiments, an SMSM is stable at 4° C. in water or an organic solvent for at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 or 24 hours; or for at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 months; or at least 1, 2, 3, 4, or 5 years.


In some embodiments, an SMSM has an cell viability IC50 of 0.01-10 nM, 0.01-5 nM, 0.01-2.5 nM, 0.01-1 nM, 0.01-0.75 nM, 0.01-0.5 nM, 0.01-0.25 nM, 0.01-0.1 nM, 0.1-100 nM, 0.1-50 nM, 0.1-25 nM, 0.1-10 nM, 0.1-7.5 nM, 0.1-5 nM, 0.1-2.5 nM, 2-1000 nM, 2-500 nM, 2-250 nM, 2-100 nM, 2-75 nM, 2-50 nM, 2-25 nM, 2-10 nM, 10-1000 nM, 10-500 nM, 10-250 nM, 10-100 nM, 10-75 nM, 10-50 nM, 10-25 nM, 25-1000 nM, 25-500 nM, 25-250 nM, 25-100 nM, 25-75 nM, 25-50 nM, 50-1000 nM, 50-500 nM, 50-250 nM, 50-100 nM, 50-75 nM, 60-70 nM, 100-1000 nM, 100-500 nM, 100-250 nM, 250-1000 nM, 250-500 nM, or 500-1000 nM.


In some embodiments, an SMSM has an cell viability IC50 of at most 2 nM, 3 nM, 4 nM, 5 nM, 6 nM, 7 nM, 8 nM, 9 nM, 10 nM, 11 nM, 12 nM, 13 nM, 14 nM, 15 nM, 16 nM, 17 nM, 18 nM, 19 nM, 20 nM, 21 nM, 22 nM, 23 nM, 24 nM, 25 nM, 30 nM, 35 nM, 40 nM, 45 nM, 50 nM, 51 nM, 52 nM, 53 nM, 54 nM, 55 nM, 56 nM, 57 nM, 58 nM, 59 nM, 60 nM, 61 nM, 62 nM, 63 nM, 64 nM, 65 nM, 66 nM, 67 nM, 68 nM, 69 nM, 70 nM, 71 nM, 72 nM, 73 nM, 74 nM, 75 nM, 76 nM, 77 nM, 78 nM, 79 nM, 80 nM, 81 nM, 82 nM, 83 nM, 84 nM, 85 nM, 90 nM, 95 nM, 100 nM, 110 nM, 120 nM, 130 nM, 140 nM, 150 nM, 160 nM, 170 nM, 180 nM, 190 nM, 200 nM, 210 nM, 220 nM, 230 nM, 240 nM, 250 nM, 275 nM, 300 nM, 325 nM, 350 nM, 375 nM, 400 nM, 425 nM, 450 nM, 475 nM, 500 nM, 550 nM, 600 nM, 650 nM, 700 nM, 750 nM, 800 nM, 850 nM, 900 nM, 950 nM, 1 μM, or 10 μM.


In some embodiments, an SMSM reduces cell proliferation of diseased cells by more than 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 30%, 35%, 40%, 45%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% when the cells are treated with the SMSM at a concentration of 2-1000 nM, 2-500 nM, 2-250 nM, 2-100 nM, 2-75 nM, 2-50 nM, 2-25 nM, 2-10 nM, 10-1000 nM, 10-500 nM, 10-250 nM, 10-100 nM, 10-75 nM, 10-50 nM, 10-25 nM, 25-1000 nM, 25-500 nM, 25-250 nM, 25-100 nM, 25-75 nM, 25-50 nM, 50-1000 nM, 50-500 nM, 50-250 nM, 50-100 nM, 50-75 nM, 60-70 nM, 100-1000 nM, 100-500 nM, 100-250 nM, 250-1000 nM, 250-500 nM, or 500-1000 nM for at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 21, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, or 48 hours.


In some embodiments, an SMSM reduces cell proliferation of diseased cells by more than 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 30%, 35%, 40%, 45%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% when the cells are treated with the SMSM at a concentration of at least 2 nM, 3 nM, 4 nM, 5 nM, 6 nM, 7 nM, 8 nM, 9 nM, 10 nM, 11 nM, 12 nM, 13 nM, 14 nM, 15 nM, 16 nM, 17 nM, 18 nM, 19 nM, 20 nM, 21 nM, 22 nM, 23 nM, 24 nM, 25 nM, 30 nM, 35 nM, 40 nM, 45 nM, 50 nM, 51 nM, 52 nM, 53 nM, 54 nM, 55 nM, 56 nM, 57 nM, 58 nM, 59 nM, 60 nM, 61 nM, 62 nM, 63 nM, 64 nM, 65 nM, 66 nM, 67 nM, 68 nM, 69 nM, 70 nM, 71 nM, 72 nM, 73 nM, 74 nM, 75 nM, 76 nM, 77 nM, 78 nM, 79 nM, 80 nM, 81 nM, 82 nM, 83 nM, 84 nM, 85 nM, 90 nM, 95 nM, 100 nM, 110 nM, 120 nM, 130 nM, 140 nM, 150 nM, 160 nM, 170 nM, 180 nM, 190 nM, 200 nM, 210 nM, 220 nM, 230 nM, 240 nM, 250 nM, 275 nM, 300 nM, 325 nM, 350 nM, 375 nM, 400 nM, 425 nM, 450 nM, 475 nM, 500 nM, 550 nM, 600 nM, 650 nM, 700 nM, 750 nM, 800 nM, 850 nM, 900 nM, 950 nM, 1 μM, or 10 μM for at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 21, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, or 48 hours.


In some embodiments, an SMSM reduces viability of diseased cells by more than 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 30%, 35%, 40%, 45%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%, when the cells are treated with the SMSM at a concentration of 2-1000 nM, 2-500 nM, 2-250 nM, 2-100 nM, 2-75 nM, 2-50 nM, 2-25 nM, 2-10 nM, 10-1000 nM, 10-500 nM, 10-250 nM, 10-100 nM, 10-75 nM, 10-50 nM, 10-25 nM, 25-1000 nM, 25-500 nM, 25-250 nM, 25-100 nM, 25-75 nM, 25-50 nM, 50-1000 nM, 50-500 nM, 50-250 nM, 50-100 nM, 50-75 nM, 60-70 nM, 100-1000 nM, 100-500 nM, 100-250 nM, 250-1000 nM, 250-500 nM, or 500-1000 nM for at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 21, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, or 48 hours.


In some embodiments, an SMSM reduces viability of diseased cells by more than 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 30%, 35%, 40%, 45%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% when the cells are treated with the SMSM at a concentration of at least 2 nM, 3 nM, 4 nM, 5 nM, 6 nM, 7 nM, 8 nM, 9 nM, 10 nM, 11 nM, 12 nM, 13 nM, 14 nM, 15 nM, 16 nM, 17 nM, 18 nM, 19 nM, 20 nM, 21 nM, 22 nM, 23 nM, 24 nM, 25 nM, 30 nM, 35 nM, 40 nM, 45 nM, 50 nM, 51 nM, 52 nM, 53 nM, 54 nM, 55 nM, 56 nM, 57 nM, 58 nM, 59 nM, 60 nM, 61 nM, 62 nM, 63 nM, 64 nM, 65 nM, 66 nM, 67 nM, 68 nM, 69 nM, 70 nM, 71 nM, 72 nM, 73 nM, 74 nM, 75 nM, 76 nM, 77 nM, 78 nM, 79 nM, 80 nM, 81 nM, 82 nM, 83 nM, 84 nM, 85 nM, 90 nM, 95 nM, 100 nM, 110 nM, 120 nM, 130 nM, 140 nM, 150 nM, 160 nM, 170 nM, 180 nM, 190 nM, 200 nM, 210 nM, 220 nM, 230 nM, 240 nM, 250 nM, 275 nM, 300 nM, 325 nM, 350 nM, 375 nM, 400 nM, 425 nM, 450 nM, 475 nM, 500 nM, 550 nM, 600 nM, 650 nM, 700 nM, 750 nM, 800 nM, 850 nM, 900 nM, 950 nM, 1 μM, or 10 μM for at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 21, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, or 48 hours.


In some embodiments, an SMSM does not reduce viability of non-diseased cells by more than 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 30%, 35%, 40%, 45%, or 50 when the cells are treated with the SMSM at a concentration of 2-1000 nM, 2-500 nM, 2-250 nM, 2-100 nM, 2-75 nM, 2-50 nM, 2-25 nM, 2-10 nM, 10-1000 nM, 10-500 nM, 10-250 nM, 10-100 nM, 10-75 nM, 10-50 nM, 10-25 nM, 25-1000 nM, 25-500 nM, 25-250 nM, 25-100 nM, 25-75 nM, 25-50 nM, 50-1000 nM, 50-500 nM, 50-250 nM, 50-100 nM, 50-75 nM, 60-70 nM, 100-1000 nM, 100-500 nM, 100-250 nM, 250-1000 nM, 250-500 nM, or 500-1000 nM for at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, II, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 21, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, or 48 hours.


In some embodiments, an SMSM does not reduce viability of non-diseased cells by more than 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 30%, 35%, 40%, 45%, or 50% when the cells are treated with the SMSM at a concentration of at least 2 nM, 3 nM, 4 nM, 5 nM, 6 nM, 7 nM, 8 nM, 9 nM, 10 nM, 11 nM, 12 nM, 13 nM, 14 nM, 15 nM, 16 nM, 17 nM, 18 nM, 19 nM, 20 nM, 21 nM, 22 nM, 23 nM, 24 nM, 25 nM, 30 nM, 35 nM, 40 nM, 45 nM, 50 nM, 51 nM, 52 nM, 53 nM, 54 nM, 55 nM, 56 nM, 57 nM, 58 nM, 59 nM, 60 nM, 61 nM, 62 nM, 63 nM, 64 nM, 65 nM, 66 nM, 67 nM, 68 nM, 69 nM, 70 nM, 71 nM, 72 nM, 73 nM, 74 nM, 75 nM, 76 nM, 77 nM, 78 nM, 79 nM, 80 nM, 81 nM, 82 nM, 83 nM, 84 nM, 85 nM, 90 nM, 95 nM, 100 nM, 110 nM, 120 nM, 130 nM, 140 nM, 150 nM, 160 nM, 170 nM, 180 nM, 190 nM, 200 nM, 210 nM, 220 nM, 230 nM, 240 nM, 250 nM, 275 nM, 300 nM, 325 nM, 350 nM, 375 nM, 400 nM, 425 nM, 450 nM, 475 nM, 500 nM, 550 nM, 600 nM, 650 nM, 700 nM, 750 nM, 800 nM, 850 nM, 900 nM, 950 nM, 1 μM, or 10 μM for at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 21, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, or 48 hours.


In some embodiments, an SMSM reduces a size of a tumor in a subject by at least 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 30%, 35%, 40%, 45%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%.


In some embodiments, an SMSM inhibits tumor growth of a tumor in a subject by at least 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 30%, 35%, 40%, 45%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%.


SMSM Targets

Aberrant splicing of mRNA, such as pre-mRNA, can result in a defective protein and can cause a disease or a disorder in a subject. The compositions and methods described herein can reduce this aberrant splicing of mRNA, such as pre-mRNA, and treat a disease or a disorder caused by this aberrant splicing.


Diseases associated with changes to RNA transcript amount are often treated with a focus on the aberrant protein expression. However, if the processes responsible for the aberrant changes in RNA levels, such as components of the splicing process or associated transcription factors or associated stability factors, could be targeted by treatment with a small molecule, it would be possible to restore protein expression levels such that the unwanted effects of the expression of aberrant levels of RNA transcripts or associated proteins. Therefore, there is a need for methods of modulating the amount of RNA transcripts encoded by certain genes as a way to prevent or treat diseases associated with aberrant expression of the RNA transcripts or associated proteins.


Structural Targets

Mutations and/or aberrant secondary or tertiary RNA structures in cis-acting elements can induce three-dimensional structural change in pre-mRNA. Mutations and/or aberrant secondary RNA structures in cis-acting elements can induce three-dimensional structural change in pre-mRNA when the pre-mRNA is, for example, bound to at least one snRNA, or at least one snRNP, or at least one other auxiliary splicing factor. For example, non-canonical base pairing of a non-canonical splice site sequence to a snRNA can form a bulge. For example, a bulge can be formed when the 5′ss is bound to U1-U12 snRNA or a portion thereof. For example, a bulge can be induced to form when 5′ss containing at least one mutation is bound to U1-U12 snRNA or a portion thereof. For example, a bulge can be formed when the cryptic 5′ss is bound to U1-U12 snRNA or a portion thereof. For example, a bulge can be induced to form when cryptic 5′ss containing at least one mutation is bound to U1-U12 snRNA or a portion thereof. For example, a bulge can be formed when the 3′ss is bound to U2 snRNA or a portion thereof. For example, a bulge can be induced to form when the 3′ss is bound to U2 snRNA or a portion thereof. For example, a bulge can be formed when the cryptic 3′ss is bound to U2 snRNA or a portion thereof. For example, a bulge can be induced to form when the cryptic 3′ss is bound to U2 snRNA or a portion thereof. The protein components of U1 and U2 may or may not present to form the bulge. Exemplary 5′ splice site mutations and/or with aberrant secondary and/or tertiary structures that can induce a bulge structure are described herein. A polynucleotide in the methods disclosed herein can contain any one of exemplary the 5′ splice site sequences described herein.


In some embodiments, a small molecule can bind to a bulge. In some embodiments, a bulge is naturally occurring. In some embodiments, a bulge is formed by non-canonical base-pairing between the splice site and the small nuclear RNA. For example, a bulge can be formed by non-canonical base-pairing between the 5′ss and U1-U12 snRNA. The bulge can comprise 1 nucleotide, 2 nucleotides, 3 nucleotides, 4 nucleotides, 5 nucleotides, 6 nucleotides, 7 nucleotides, 8 nucleotides, 9 nucleotides, 10 nucleotides, 11 nucleotides, 12 nucleotides, 13 nucleotides, 14 nucleotides, or 15 nucleotides. In some embodiments, 3-dimensional structural changes can be induced by a mutation without bulge formation. In some embodiments, a bulge may be formed without any mutation in a splice site. In some embodiments, a recognition portion can be formed by a mutation in any of the cis-acting elements. In some embodiments, a small molecule can bind to a recognition portion that is induced by a mutation. In some embodiments, a mutation and/or aberrant secondary or tertiary RNA structure at an authentic 5′ splice site can result in splicing at a cryptic 5′ splice site. In some embodiments, a mutation and/or aberrant secondary or tertiary RNA structure can be in one of the regulatory elements including ESEs, ESSs, ISEs, and ISSs.


In some embodiments, a target of an SMSM is a pre-mRNA comprising a splice site sequence with a bulged nucleotide in an exon. In some embodiments, a target of an SMSM is a pre-mRNA comprising a splice site sequence with a bulged nucleotide upstream (5′) of the splice site of the splice site sequence. In some embodiments, a target of an SMSM is a pre-mRNA comprising a splice site sequence with a bulged nucleotide at the −1 position relative to the splice site of the splice site sequence. For example, a target of an SMSM can be a pre-mRNA comprising a splice site sequence of NNN*nnnnnn, wherein N* represents a bulged nucleotide. In some embodiments, a target of an SMSM is a pre-mRNA comprising a splice site sequence with a bulged nucleotide at the −2 position relative to the splice site of the splice site sequence. For example, a target of an SMSM can be a pre-mRNA comprising a splice site sequence of NN*Nnnnnnn, wherein N* represents a bulged nucleotide. In some embodiments, a target of an SMSM is a pre-mRNA comprising a splice site sequence with a bulged nucleotide at the −3 position relative to the splice site of the splice site sequence. For example, a target of an SMSM can be a pre-mRNA comprising a splice site sequence of N*NNnnnnnn, wherein N* represents a bulged nucleotide.


In some embodiments, a target of an SMSM is a pre-mRNA comprising a splice site sequence with a bulged nucleotide in an intron. In some embodiments, a target of an SMSM is a pre-mRNA comprising a splice site sequence with a bulged nucleotide downstream (3′) of the splice site of the splice site sequence.


In some embodiments, a target of an SMSM is a pre-mRNA comprising a splice site sequence with a bulged nucleotide at the +1 position relative to the splice site of the splice site sequence. For example, a target of an SMSM can be a pre-mRNA comprising a splice site sequence of NNNn*nnnnn, wherein n* represents a bulged nucleotide. In some embodiments, a target of an SMSM is a pre-mRNA comprising a splice site sequence with a bulged nucleotide at the +2 position relative to the splice site of the splice site sequence. For example, a target of an SMSM can be a pre-mRNA comprising a splice site sequence of NNNnn*nnnn, wherein n* represents a bulged nucleotide. In some embodiments, a target of an SMSM is a pre-mRNA comprising a splice site sequence with a bulged nucleotide at the +3 position relative to the splice site of the splice site sequence. For example, a target of an SMSM can be a pre-mRNA comprising a splice site sequence of NNNnnn*nnn, wherein n* represents a bulged nucleotide. In some embodiments, a target of an SMSM is a pre-mRNA comprising a splice site sequence with a bulged nucleotide at the +4 position relative to the splice site of the splice site sequence. For example, a target of an SMSM can be a pre-mRNA comprising a splice site sequence of NNNnnnn*nn, wherein n* represents a bulged nucleotide. In some embodiments, a target of an SMSM is a pre-mRNA comprising a splice site sequence with a bulged nucleotide at the +5 position relative to the splice site of the splice site sequence. For example, a target of an SMSM can be a pre-mRNA comprising a splice site sequence of NNNnnnnn*n, wherein n* represents a bulged nucleotide. In some embodiments, a target of an SMSM is a pre-mRNA comprising a splice site sequence with a bulged nucleotide at the +6 position relative to the splice site of the splice site sequence. For example, a target of an SMSM can be a pre-mRNA comprising a splice site sequence of NNNnnnnnn*, wherein n* represents a bulged nucleotide. In some embodiments, a target of an SMSM is a pre-mRNA comprising a splice site sequence with a bulged nucleotide at the +7 position relative to the splice site of the splice site sequence. For example, a target of an SMSM can be a pre-mRNA comprising a splice site sequence of NNNnnnnnnn*, wherein n* represents a bulged nucleotide.


In some embodiments, a target of an SMSM is a pre-mRNA comprising a splice site sequence with one or more bulged nucleotides at the −1, −2, −3, +1, +2, +3, +4, +5, +6 and/or +7 position relative to the splice site of the splice site sequence. For example, a target of an SMSM can be a pre-mRNA comprising a splice site sequence of NNN*nnnnnn. NN*Nnnnnnn. N*NNnnnnnn. NNNn*nnnnn, NNNnn*nnnn, NNNnnn*nnn, NNNnnnn*nn, NNNnnnnn*n, NNNnnnnnn*, or NNNnnnnnnn*, wherein N* or n* represents a bulged nucleotide.


In some embodiments, a target of an SMSM is a pre-mRNA comprising a splice site sequence with one or more bulged nucleotides at the −1, −2, and/or −3 position relative to the splice site of the splice site sequence. For example, a target of an SMSM can be a pre-mRNA comprising a splice site sequence of NNN*nnnnnn, NN*Nnnnnnn. or N*NNnnnnnn, wherein N* represents a bulged nucleotide.


In some embodiments, a target of an SMSM is a pre-mRNA comprising a splice site sequence with one or more bulged nucleotides at the +1, +2, +3, +4, +5, +6 and/or +7 position relative to the splice site of the splice site sequence. For example, a target of an SMSM can be a pre-mRNA comprising a splice site sequence of NNNn*nnnnn, NNNnn*nnnn, NNNnnn*nnn, NNNnnnn*nn, NNNnnnnn*n, NNNnnnnnn*, or NNNnnnnnnn*, wherein n* represents a bulged nucleotide.


In some embodiments, a target of an SMSM is a pre-mRNA comprising a splice site sequence with a bulged nucleotide at the −1 position relative to the splice site of the splice site sequence and a bulged nucleotide at the −2 position relative to the splice site of the splice site sequence. For example, a target of an SMSM can be a pre-mRNA comprising a splice site sequence of NN*N*nnnnnn, wherein N* represents a bulged nucleotide. In some embodiments, a target of an SMSM is a pre-mRNA comprising a splice site sequence with a bulged nucleotide at the −2 position relative to the splice site of the splice site sequence and a bulged nucleotide at the −3 position relative to the splice site of the splice site sequence. For example, a target of an SMSM can be a pre-mRNA comprising a splice site sequence of N*N*Nnnnnnn, wherein N* represents a bulged nucleotide.


In some embodiments, an SMSM interacts with a bulged nucleotide of an RNA duplex comprising a splice site. In some embodiments, the RNA duplex comprises pre-mRNA. In some embodiments, an SMSM binds to an RNA duplex and interacts with an unpaired bulged nucleobase of an RNA duplex comprising a splice site. In some embodiments, a first portion of the SMSM interacts with the bulged nucleotide on a first RNA strand of the RNA duplex. In some embodiments, a second portion of the SMSM interacts with one or more nucleotides of a second RNA strand of the RNA duplex, wherein the first RNA strand is not the second RNA strand. In some embodiments, the SMSM forms one or more intermolecular interactions with the duplex RNA, for example, an ionic interaction, a hydrogen bond, a dipole-dipole interaction or a van der Waals interaction. In some embodiments, the SMSM forms one or more intermolecular interactions with the bulged nucleotide, for example, an ionic interaction, a hydrogen bond, a dipole-dipole interaction or a van der Waals interaction.


In some embodiments, the duplex RNA comprises an alpha helix. In some embodiments, the bulged nucleotide is located on an external portion of a helix of the duplex RNA. In some embodiments, the bulged nucleotide is located within an internal portion of the helix of the duplex RNA.


In some embodiments, a rate of exchange of the bulged nucleotide from within the interior of a helix of the duplex RNA to an exterior portion of the helix is reduced.


In some embodiments, the SMSM modulates a distance of the bulged nucleotide from a second nucleotide of the duplex RNA. In some embodiments, the SMSM reduces the distance of the bulged nucleotide from a second nucleotide of the duplex RNA. In some embodiments, the SMSM increases the distance of the bulged nucleotide from a second nucleotide of the duplex RNA.


In some embodiments, the bulged nucleotide is located within the interior of a helix of the duplex RNA of the complex. In some embodiments, the bulged nucleotide has modulated base stacking within an RNA strand of the RNA duplex. In some embodiments, the bulged nucleotide has increased base stacking within an RNA strand of the RNA duplex. In some embodiments, the bulged nucleotide has decreased base stacking within an RNA strand of the RNA duplex.


In some embodiments, the SMSM modulates splicing at the splice site of the RNA duplex. In some embodiments, the SMSM increases splicing at the splice site of the RNA duplex. In some embodiments, the SMSM reduces splicing at the splice site of the RNA duplex. In some embodiments, the SMSM reduces a size of a bulge of the RNA duplex. In some embodiments, the SMSM removes a bulge of the RNA duplex. In some embodiments, the SMSM stabilizes a bulge of the RNA duplex.


In some embodiments, the unpaired bulged nucleotide is free to rotate around a phosphate backbone of an RNA strand of the RNA duplex in the absence of the SMSM. In some embodiments, the SMSM reduces a rate of rotation of the unpaired bulged nucleotide. In some embodiments, the SMSM reduces a rate of rotation of the unpaired bulged nucleotide around a phosphate backbone of an RNA strand of the RNA duplex.


In some embodiments, the SMSM is not an aptamer.


Also, provided herein is a method of modulating splicing comprising contacting a small molecule splicing modulator compound (SMSM) to a cell; wherein the SMSM interacts with an unpaired bulged nucleotide of an RNA duplex in the cell; wherein the duplex RNA comprises a splice site; and wherein the SMSM modulates splicing of the RNA duplex.


Provided herein is a method for modulating the relative position of a first nucleotide relative to a second nucleotide, wherein the first nucleotide and the second nucleotide are within a duplex RNA, the method comprising contacting a small molecule splicing modulator compound (SMSM) to the duplex RNA, or a pharmaceutically acceptable salt thereof, wherein the first nucleotide is a bulged nucleotide of the RNA duplex; wherein the duplex RNA comprises a splice site.


In some embodiments, the duplex RNA comprises a helix.


In some embodiments, the bulged nucleotide is located on an external portion of a helix of the duplex RNA prior to contacting the SMSM.


In some embodiments, SMSM forms one or more intermolecular interactions with the duplex RNA.


In some embodiments, the SMSM forms one or more intermolecular interactions with an unpaired bulged nucleotide. In some embodiments, the intermolecular interaction is selected from the group comprising an ionic interaction, a hydrogen bond, a dipole-dipole interaction or a van der Waals interaction. In some embodiments, a rate of exchange of the unpaired bulged nucleotide from within the interior of a helix of the duplex RNA to an exterior portion of the helix is reduced. In some embodiments, a rate of rotation of the unpaired bulged nucleotide is reduced. In some embodiments, a rate of rotation of the unpaired bulged nucleotide around a phosphate backbone of an RNA strand of the RNA duplex is reduced. In some embodiments, a distance of the unpaired bulged nucleotide from a second nucleotide of the duplex RNA is modulated after contacting the SMSM. In some embodiments, the distance of the unpaired bulged nucleotide from a second nucleotide of the duplex RNA is reduced. In some embodiments, unpaired bulged nucleotide is located within the interior of the helix of the duplex RNA. In some embodiments, a size of a bulge of the RNA duplex is reduced. In some embodiments, a bulge of the RNA duplex is removed or maintained.


In some embodiments, splicing at the splice site of the RNA duplex is promoted. In some embodiments, base stacking of the unpaired bulged nucleotide within an RNA strand of the RNA duplex is increased after contacting the SMSM. In some embodiments, the distance of the unpaired bulged nucleotide from a second nucleotide of the duplex RNA is increased or maintained. In some embodiments, a bulge of the RNA duplex is stabilized after contacting the SMSM. In some embodiments, the unpaired bulged nucleotide is located on an exterior portion of a helix of the duplex RNA. In some embodiments, a size of a bulge of the RNA duplex is increased. In some embodiments, splicing at the splice site of the RNA duplex is inhibited. In some embodiments, splicing is inhibited at the splice site. In some embodiments, base stacking of the unpaired bulged nucleotide within an RNA strand of the RNA duplex is reduced after contacting the SMSM.


Exemplary sites targeted by the SMSMs described herein include 5′ splice sites, 3′ splice sites, polypyrimidine tracts, branch sites, splicing enhancers and silencer elements. Mutations or aberrant secondary or tertiary RNA structures at hot spots can create mRNA sites or scaffold sequences that can be targeted. For example, many exons are flanked by the intronic dinucleotides GT and AG at the 5′ and 3′ splice sites, respectively. For example, mutations or aberrant secondary or tertiary RNA structures at these sites can cause, e.g., exclusion of an adjacent exon or inclusion of an adjacent intron. Many factors influence the complex pre-mRNA splicing process, including several hundred different proteins, at least five spliceosomal snRNAs, sequences on the mRNA, sequence length, enhancer and silencer elements, and strength of splicing signals. Exemplary sites targeted by the SMSMs described herein include secondary and sometimes tertiary structures of RNA. For example, exemplary sites targeted by the SMSMs described herein include a stem loop, hairpin, branch point sequence (BPS), polypyrimidine tract (PPT), 5′ splice site (5′ss) and 3′ splice site (3′ss), duplex snRNA and splice sites and trans acting protein binding to RNA. The target pre-mRNA can comprise a defective sequence, such as a sequence that produces a deficient protein, such as a protein with altered function such as enzyme activity, or expression, such as lack of expression. In some embodiments, the defective sequence impacts the structure of the RNA. In some embodiments, the defect sequence impacts recognition by snRNP.


In addition to consensus splice site sequences, structural constraints, including those resulting from mutations, can affect cis-acting sequences such as exonic/intronic splicing enhancers (ESE/ISE) or silencer elements (ESS/ISS).


In some embodiments, a mutation in native DNA and/or pre-mRNA, or an aberrant secondary or tertiary structure of RNA, creates a new splice site sequence. For example, a mutation or aberrant RNA structure may cause native regions of the RNA that are normally dormant, or play no role as splicing elements, to become activated and serve as splice sites or splice elements. Such splice sites and elements can be referred to as “cryptic”. For example, a native intron may become divided into two aberrant introns, with a new exon situated there between. For example, a mutation may create a new splice site between a native 5′ splice site and a native branch point. For example, a mutation may activate a cryptic branch point sequence between a native splice site and a native branch point. For example, a mutation may create a new splice site between a native branch point and a native splice site and may further activate a cryptic splice site and a cryptic branch point sequentially upstream from the aberrant mutated splice site.


In some embodiments, a mutation or misexpression of trans-acting proteins that regulate splicing activity may cause native regions of the RNA that are normally dormant, or play no role as splicing elements, to become activated and serve as splice sites or splice elements. For example, a mutation or misexpression of an SR protein may cause native regions of the RNA that are normally dormant, or play no role as splicing elements, to become activated and serve as splice sites or splice elements.


In some embodiments, a mutation in native DNA and/or pre-mRNA inhibits splicing at a splice site. For example, a mutation may result in a new splice site upstream from (i.e., 5′ to) a native splice site sequence and downstream from (i.e., 3′ to) a native branch point sequence. The native splice site sequence and the native branch point sequence may serve as members of both the native set of splice site sequences and the aberrant set of splice site sequences.


In some embodiments, a native splice element (e.g., a branch point) is also a member of the set of aberrant splice elements. For example, SMSMs provided herein can block the native element and activate a cryptic element (e.g., a cryptic 5′ss, a cryptic 3′ss or a cryptic branch point), which may recruit remaining members of the native set of splice elements to promote correct splicing over incorrect splicing. In some embodiments, an activated cryptic splice element is in an intron. In some embodiments, an activated cryptic splice element is in an exon. The compounds and methods provided herein can be used to block or activate a variety of different splice elements, depending on the type of aberrant splice element (e.g., mutated splice element or non-mutated splice element) and/or depending on regulation of a splice element (e.g., regulation by upstream signaling pathways). For example, the compounds and methods provided herein can block a mutated element, a non-mutated element, a cryptic element, or a native element; it may block a 5′ splice site, a 3′ splice site, or a branch point.


In some embodiments, an alternate splicing event can be modulated by employing the compounds provided herein. For example, a compound provided herein can be introduced into a cell in which a gene is present that encodes a pre-mRNA that comprises alternate splice sites. In some embodiments, in the absence of the compound, a first splicing event occurs to produce a gene product having a particular function. For example, in the presence of the compound provided herein, the first splicing event can be inhibited. In some embodiments, in the presence of the compound provided herein, the first splicing event can be inhibited and a second or alternate splicing event occurs, resulting in expression of the same gene to produce a gene product having a different function.


In some embodiments, a first inhibited splicing event (e.g., a splicing event inhibited by a mutation, a mutation-induced bulge or a non-mutation induced bulge), is promoted or enhanced in the presence of a compound provided herein. In some embodiments, the first inhibited splicing event (e.g., a splicing event inhibited by a mutation, a mutation-induced bulge or a non-mutation induced bulge), is promoted or enhanced in the presence of a compound provided herein. For example, the inhibition of the first splicing event (e.g., a splicing event inhibited by a mutation, a mutation-induced bulge or a non-mutation induced bulge) can be restored to a corresponding first splicing event that is uninhibited, in the presence of a compound provided herein; or the inhibition of the first splicing event can be decreased, in the presence of a compound provided herein. In some embodiments, a second or alternate splicing event occurs, resulting in expression of the same gene to produce a gene product having a different function.


Target Polynucleotides

The compounds described herein can modulate splicing of gene products, such as those described herein. In some embodiments, the compounds described herein are use in the treatment, prevention and/or delay of progression of diseases or conditions (e.g., cancer and neurodegenerative diseases). In some embodiments, the compounds described herein can modulate splicing and induce a transcriptionally inactive variant or transcript of a gene product, such as those described herein. In some embodiments, the compounds described herein modulate splicing and repress a transcriptionally active variant or transcript of a gene product, such as those described herein.


Modulation of splicing by the compounds described herein includes, but is not limited to, modulation of naturally occurring splicing, splicing of an RNA expressed in a diseased cell, splicing of cryptic splice site sequences of an RNA or alternative splicing. Modulation of splicing by the compounds described herein can restore or promote correct splicing or a desired splicing event. Modulation of splicing by the compounds described herein includes, but is not limited to, prevention of aberrant splicing events, e.g., splicing events caused by mutations or aberrant secondary or tertiary structures of RNA that are associated with conditions and diseases. In some embodiments, the compounds described herein prevent or inhibit splicing at a splice site sequence. In some embodiments, the compounds described herein promote or increase splicing at a splice site sequence. In some embodiments, the compounds described herein modulate splicing at a specific splice site sequence.


In some embodiments, described herein are compounds modifying splicing of gene products, such as HTT pre-m RNA for use in the treatment, prevention, and/or delay of progression of diseases or conditions (e.g., Huntington's disease). In some embodiments, the present disclosure relates to a pharmaceutical composition comprising an SMSM described herein for use in the treatment, prevention, and/or delay of progression of Huntington's disease. Huntington's disease is an inherited disease that causes the progressive degeneration of nerve cells in the brain. Huntington's disease has a broad impact on a person's functional abilities and usually results in movement, cognitive and psychiatric disorders. Huntington's disease affects both sexes and all races and ethnic groups around the world. Approximately 30,000 Americans have Huntington's disease, but impact of the disease extends further as the disease may be or have been inherited in multiple generations. Currently available medications are able to ameliorate symptoms of the disease, but cannot prevent the physical, mental, and behavioral decline associated with the condition. In some embodiments, an SMSM described herein can be administered for treatment, prevention, and/or delay of progression of Huntington's disease. In some embodiments, a subject is affected by Huntington's disease associated with the HTT gene. In some embodiments, a subject is affected by Huntington's disease associated with a splicing product of the HTT pre-mRNA. In some embodiments, the splicing product of the HTT pre-mRNA is an aberrant splicing product. In some embodiments, the splicing product of the HTT pre-mRNA encodes an aberrant polypeptide. In some embodiments, the splicing product of the HTT pre-mRNA is an aberrant splicing product resulted from a mutation in the HTT gene. In some embodiments, the splicing product of the HTT pre-mRNA may comprise a string of CAG repeats. In some embodiments, the splicing product of the HTT pre-mRNA may comprise an aberrant expansion of a string of CAG repeats. In some embodiments, the splicing product of the HTT pre-mRNA may comprise an aberrant expansion of a string of CAG repeats resulted from a mutation in the HTT gene.


In some embodiments, the splice modulating compounds and methods of use described herein can modulate splicing, such as alternative splicing of a polynucleotide encoded by HTT gene. In some embodiments, alternative splicing of the HTT pre-mRNA may lead to the expression of 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 isoforms of the huntingtin protein. In some embodiments, the HTT gene may comprise a mutation. In some embodiments, the HTT gene may comprise a mutation associated with expansion of a CAG repeat. In some embodiments, the splice modulating compounds and methods of use described herein can modulate splicing of the HTT pre-mRNA that lead to inclusion of a cryptic exon (e.g, a poison exon) that is normally not included the HTT spliced product, e.g, mRNA. In some embodiments, the cryptic exon (e.g, a poison exon) included in the HTT spliced product may lead to degradation of the HTT spliced product through nonsense-mediated decay (NMD) mediated RNA degradation. In a preferred embodiment, alternative splicing of the HTT pre-mRNA may lead to inclusion of a cryptic exon that is not normally included in between exon 49 and exon 50 of the HTT mRNA. In a preferred embodiment, alternative splicing of the HTT pre-mRNA may lead to inclusion of a poison exon that is not normally included in between exon 49 and exon 50 of the HTT mRNA. In a preferred embodiment, alternative splicing of the HTT pre-mRNA may promote the inclusion of a poison exon 49b. In some embodiments, the HTT pre-mRNA comprises the sequence AGAguaaggg (SEQ ID NO: 86). In a preferred embodiment, the splice modulating compound binds to the 5′ss sequence AGAguaaggg (SEQ ID NO: 86).


Described herein are compounds modifying splicing of gene products wherein the compounds induce a post-transcriptionally unstable variant or transcript of a gene product. Described herein are compounds modifying splicing of gene products wherein the compounds repress a transcript of a gene product. In some embodiments, an HTT transcript harbors a poison exon. In some embodiments, the poison exon results in a frame-shift in a downstream exon, for example in an exon immediately following the poison exon. In some embodiments, the frame-shift in a downstream exon contains an in-frame stop codon that would not be in frame in the absence of inclusion of the poison exon. In some embodiments, the poison exon comprises an in-frame premature termination codon (PTC). In some embodiments, the poison exon triggers NMD and degradation of the transcript. In some embodiments, the gene product is HTT.


The compositions and methods described herein can be used to modulate splicing of a target RNA, e.g., pre-mRNAs, encoded by genes. Examples of genes encoding a target RNA, e.g., a pre-mRNA, include, but are not limited to the genes described herein. Examples of genes encoding a target RNA of the compositions and methods described herein, e.g., a pre-mRNA, include, but are not limited to ABCA4, ABCD1, ACADM, ACADSB, ADA, ADAMTS13, AGL, AGT, ALB, ALDH3A2, ALG6, ANGPTL3, ARC, APOA1, APOB, APOC3, AR, ATM, ATP7A, ATP7B, ATR, ATXN2, ATXN3, B2M, BCU-like 11 (BIM), BML2K, BRCA1, BRCA2, BTK, C3, CACNA1B, CACNA1C, CALCA, CAT, CD33, CD46, CDH1, CDH23, CEB, CFTR, CHM, CLCN1, COL11A1, COL11A2, COL1A1, COL1A2, COL2A1, COL3A1, COL4A5, COL6A1, COL7A1, COL9A2, COLQ, CREBBR, CSTB, CUL4B, CYBB, CYP17, CYP19, CYP27A1, DES, DGAT2, DMD, DUX4, DYSF, EGER, EMD, ETV4, F11, F13A1, F5, F7, F8, FAH, FANCA, FANCC, FANCG, FBN1, FECH, FGA, FGFR2, FGG, FIX, FLNA, FOXM1, FRAS1, GALC, GBA, GCGR, GH1, GHR, GHV, GLA, HADHA, HBA2, HBB, HEXA, HEXB, HLCS, HMBS, HMGCL, HNF1A, HPRT1, HPRT2, HSF4, HSPG2, HTT, IDH1, IDS, IKBKAP, IL7RA, INSR, ITGB2, ITGB3, ITGB4, JAG1, KLKB1, KRAS, KRT5, L1CAM, LAMA2, LAMA3, LDLR, LGALS3, LMNA, LPA, LPL, LRRK2, MADD, MAPT, MET, MLH1, MSH2, MST1R, MLHFR, MUT, MVK, NF1, NF2, NRIH4, OAT, OPA1, OTC, OXT, PAH, PBGD, PCCA, PDH1, PGK1, BH1X, PKD2, PKLR, PKM1, PKM2, PLEKHM1, BLKR, POMT2, PRDM1, PRKAR1A, PROG, PSEN1, PTCH1, PTEN, PYGM, RP6KA3, RBGR, RSK2, SBCAD, SCN5A, SCNA, SERPINA1, SH2D1A, SLC12A3, SLC6A8, SMN2, SOD1, SPINK5, SPTA1, TMPRSS6, TP53, TRAPPC2, TSC1, TSC2, TSHB, TTN, TTR, UBE3A, UGT1A1 and USH2A.


Examples of genes encoding a target RNA, e.g., a pre-mRNA, include, but are not limited to the genes in Table 2B. Examples of genes encoding a target RNA of the compositions and methods described herein, e.g., a pre-mRNA, include, but are not limited to ABCD1, APOB, AR, ATM, BRCA1, C3, CFTR, COLIA1, COL3A1, COL6A1, COL7A1, CYP19, CYP27A1, DMD, F5, F7, FAH, FBN1, FGA, GCK, GHV, HBA2, HBB, HMGCL, HPRT1, HXA, IDS, ITGB2, ITGB3, KRT5, LDLR, LMNA, LPL, MTHFR, NF1, NF2, PBGD, PGK1, PKD1, PTEN, RPGR, TP53, TSC2, UGT1A1 and YGM.


Examples of genes encoding a target RNA, e.g., a pre-mRNA, include, but are not limited to the genes in Table 2C. Examples of genes encoding a target RNA of the compositions and methods described herein, e.g., a pre-mRNA, include, but are not limited to genes encoding a target RNA, e.g., a pre-mRNA, with a splice site comprising a splice site sequence of AGAguaag. Examples of genes encoding a target RNA of the compositions and methods described herein, e.g., a pre-mRNA, include, but are not limited to ABCA9, ABCB1, ABCB5, ACADL, ACSS2, ADAL, ADAM10, ADAM15, ADAMTS20, ADAMTS6, ADAMTS9, ADCY10, ADCY8, AFP, AGL, AHCTF1, AKAP10, AKAP3, ALAS1, ALS2CL, AMBRA1, ANK3, ANTXR2, ANXA10, ANXA11, AP2A2, AP4E1, APOB, ARFGEF1, ARFGEF2, ARHGAP1, ARHGAP18, ARHGEF18, ARHGEF2, ARPC3, ARS2, ASH1L, ASNSD1, ASPM, ATAD5, ATG4A, ATP11C, ATP6V1G3, BBOX1, BCS1L, BMPR2, BRCC3, BRSK2, C10orf137, C11orf70, C12orf51, C13orf1, C13orf15, C14orf118, C15orf29, C15orf42, C16orf33, C16orf38, C16orf48, C18orf8, C19orf42, C1orf107, C1orf114, C1orf130, C1orf149, C1orf27, C1orf71, C1orf94, C1R, C20orf74, C21orf70, C3orf23, C4orf18, C5orf34, C8B, C8orf33, C9orf114, C9orf86, C9orf98, CA11, CAB39, CACNA2D1, CALCOCO2, CAMK1D, CAMKK1, CAPN9, CAPSL, CBX1, CBX3, CCDC102B, CCDC11, CCDC15, CCDC18, CCDCl5, CCDCl81, CD4, CDC14A, CDC16, CDCl2L5, CDCl42BPB, CDCA8, CDH10, CDH11, CDH24, CDH8, CDH9, CDK5RAP2, CDK8, CELSR3, CENP1, CENTB2, CENTG2, CEP110, CEP170, CEP192, CETP, CFH, CHAF1A, CHD9, CHIC2, CHN1, CLIC2, CLINT1, CLPB, CM1P, CNOT1, CNOT7, COG3, COLH1A1, COL12A1, COL14A1, COL19A1, COL1A1, COL1A2, COL22A1, COL24A1, COL25A1, COL29A1, COL2A1, COL3A1, COL4A1, COL4A2, COL4A5, COL4A6, COL5A2, COL9A1, COMTD1, COPA, COPB2, COPS7B, COPZ2, CPSF2, CPXM2, CR1, CREBBP, CRKRS, CSE1L, CT45-6, CUBN, CUL5, CXorf41, CYP3A4, CYP3A43, CYP3A5, DCC, DCTN3, DDA1, DDX1, DDX24, DDX4, DENND2D, DEPDC2, DHFR, DHRS7, DIP2A, DMD, DNAH3, DNAH8, DNA11, DNAJA4, DNAJC13, DNAJC7, DNTTIP2, DOCK11, DOCK4, DPP4, DSCC1, DYNC1H1, ECM2, EDEM3, EFCAB3, EFCAB4B, EIF3A, ELA1, ELA2A, EMCN, EML5, ENPP3, EPB41L5, EPHA3, EPHB1, EPHB3, EPS15, ERCC8, ERGIC3, ERMN, ERMP1, ERN1, ERN2, ETS2, EVC2, EXO1, EXOC4, F3, FAM13A1, FAM13B1, FAM13C1, FAM184A, FAM19A1, FAM20A, FAM23B, FAM65C, FANCA, FANCM, FANK1, FAR2, FBX015, FBXO18, FBXO38, FEZ2, FGFR1OP, FGFR1OP2, FGFR2, FGR, FLJ35848, FLJ36070, FLNA, FN1, FNBP1L, FOLH1, FRAS, FUT9, FZD3, FZD6, GAB1, GALNT3, GART, GAS2L3, GCG, GJA1, GLT8D1, GNAS, GNB5, GOLGB1, GOLT1A, GOLT1B, GPATCH1, GPR160, GRAMD3, GRHPR, GRIA1, GRIA3, GRIA4, GRIN2B, GRM3, GRM4, GRN, GSDMB, GSTCD, GTPBP4, HDAC3, HDAC5, HDX, HEPACAM2, HERC1, HIPK3, HNRNPH1, HSPA9, HSPG2, HTT, ICA1, IFI44L, IL1R2, IL5RA, IMMT, INPP5D, INTU, IPO4, IPO8, ISL2, IWS1, JAK1, JAK2, KATNAL2, KCNN2, KCNT2, KIAA0256, KIAA0586, KIAA1033, KIAA1219, KIAA1622, KIF15, KIF16B, KIF5A, KIF5B, KIF9, KIN, KIR2DL5B, KIR3DL2, KIR3DL3, KLF12, KLF3, KPNA5, KREMEN1, KRIT1, KRTCAP2, L1CAM, L3MBTL, L3MBTL2, LACE1, LAMA2, LAMB1, LGMN, LHCGR, LHX6, LIMCH1, LIMK2, LMBRD1, LMBRD2, LMLN, LMO2, LOC390110, LPCAT2, LRP4, LRPPRC, LRRC19, LRRC42, LUM, LVRN, LYST, MADD, MAG11, MAGI1, MALT1, MAP4K4, MAPK8IP3, MAPK9, MATN2, MCF2L2, MDGA2, MEGF10, MEGF11, MEMO1, MGAM, MGAT4A, MGC34774, M1B1, MIER2, MKL2, MLANA, MLL5, MLX, MME, MP1, MRAP2, MRPL39, MRPS28, MRPS35, MTDH, MTF2, MUC2, MYB, MYCBP2, MYH2, MYO19, MYO3A, MYO9B, MYOM2, MYOM3, NAG, NARG1, NARG2, NCOA1, NDF1P2, NEDD4, NEK1, NEK5, NF1A, NF1X, NFRKB, NKAP, NLRC3, NLRC5, NME7, NOL10, NOS1, NOS2A, NOTCH1, NPM1, NR4A3, NRXN1, NSMAF, NSMCE2, NT5C3, NUBP1, NUBPL, NUMA1, NUP160, NUP98, NUPL1, OBFC2B, OL1G2, OSBPL11, OSBPL8, OSGEPL1, PAD14, PAH, PAN2, PAPOLG, PARVB, PAWR, PCNX, PCOTH, PDCD4, PDE8B, PDIA3, PDK4, PDS5A, PDS5B, PHACTR4, PHKB, PHLDB2, PHTF1, PIAS1, PIGF, PIGN, PIGT, PIK3C2G, PIK3CG, PIK3R1, PIWIL3, PKHD1L1, PLCB1, PLCB4, PLCG1, PLD1, PLEKHA5, PLEKHA7, PLXNC, POLN, POLR3D, POMT2, POSTN, PPF1A2, PPP1R12A, PPP3CB, PPP4C, PPP4R1L, PPP4R2, PRAME, PRC1, PRIM1, PRIM2, PRKG, PRMT7, PROCR, PROSC, PROX, PRPF40B, PRPF4B, PRRG2, PSD3, PSMAL, PTK2, PTK2B, PTPN11, PTPN22, PTPN3, PTPN4, PTPRD, PTPRK, PTPRM, PUS10, PVRL2, QRSL1, RAB11F1P2, RAB23, RB1CC1, RBM39, RBM45, REC8, RFC4, RHPN2, RLN3, RNF32, RNFT1, ROCK1, ROCK2, RP1, RP11-265F1, RP13-36C9, RPAP3, RPN1, RTEL1, RYR3, SAAL1, SAE1, SCN11A, SCN1A, SCN3A, SCO1, SCYL3, SDK2, SEC24A, SEC24D, SEC31A, SEL1L, SENP3, SENP6, SENP7, SETD3, SETD4, SGCE, SGOL2, SGPL1, SH3PXD2A, SH3PXD2B, SH3RF2, SH3TC2, SIPAIL2, SIPAIL3, SKAP1, SKIV2L2, SLC13A1, SLC28A3, SLC38A1, SLC38A4, SLC39A10, SLC4A2, SMARCA1, SMARCA5, SMC5, SNRK, SNRP70, SNX6, SPAG9, SPATA13, SPATA4, SPATS1, SPECC1L, SPP2, SRP 72, SSX3, SSX5, SSX9, STAG1, STAMBPL1, STARD6, STK17B, STX3, STXBP1, SUCLG2, SULF2, SUPT16H, SYCP1, SYTL5, TA F2, TBC1D3G, TBC1D8B, TBCEL, TBK1, TCEB3, TCF12, TCP11L2, TDRD3, TEAD1, TET2, TFRC, TG, THOC2, TIAL1, TIAM2, TIMM50, TLK2, TMEM156, TMEM27, TMF1, TNFRSF10A, TNFRSF10B, TNFRSF8, TNK2, TNKS, TNKS2, TOM1L1, TOP2B, TP53INP1, TP63, TRAF3IP3, TRIM44, TRIM65, TRIML1, TRIML2, TRPM7, TTC17, TTLL5, TTN, TTPAL, UHRF1BP1, UNC45B, UNC5C, USP38, USP39, USP6, UTP15, UTP18, UTRN, UTX, UTY, UVRAG, UXT, VAPA, VPS29, VPS35, VT1A, VT11B, VWA3B, WDFY2, WDR17, WDR26, WDR44, WDR67, WDTC1, WRN1P1, WWC3, XRN1, XRN2, XX—FW88277, YARS, ZBTB20, ZC3HAV1, ZC3HC1, ZNF114, ZNF365, ZNF37A, ZNF618 and ZW1NT.


Examples of genes encoding a target RNA, e.g., a pre-mRNA, include, but are not limited to the genes in Table 2D. Examples of genes encoding a target RNA of the compositions and methods described herein, e.g., a pre-mRNA, include, but are not limited to genes encoding a target RNA, e.g., a pre-mRNA, with a splice site comprising a splice site sequence of GGAgtaag. Examples of genes encoding a target RNA of the compositions and methods described herein, e.g., a pre-mRNA, include, but are not limited to ABCC9, ACTG2, ADAM22, ADAM32, ADAMTS12, ADCY3, ADRBK2, AFP, AKNA, APOH, ARHGAP26, ARHGAP8, ATG6L2, ATP13A5, B4GALNT3, BBS4, BRSK1, BTAF1, C11orf30, C11orf65, C14orf101, C15orf60, C1orf87, C2orf55, C4orf29, C6orf118, C9orf43, CACHD1, CACNA1G, CACNA1H, CAPN3, CARKD, CCDC131, CCDC146, CD1B, CDK6, CEL, CGN, CGNL1, CHL1, CLEC16A, CLK1, CLPTM1, CMYA5, CNGA3, CNTN6, COL11A1, COL15A1, COL17A1, COL1A1, COL2A1, CRYZ, CSTF3, CYFIP2, CYP24A1, CYP4F2, CYP4F3, DAZ2, DCBLD1, DCUN1D4, DDEF1, DDX1, DHRS9, DMTF1, DOCK10, DPP3, DPY19L2P2, DVL3, EFNA4, EFTUD2, EPHA4, EPHB2, ERBB4, ERCC1, FAM134A, FAMM61A, FAM176B, FCGBP, FGD6, FKBP3, GAPDH, GBGT1, GFM1, GPR158, GRIA1, GSTCD, GSTO2, HCK, HLA-DPB1, HLA-G, HLTF, HP1BP3, HPGD, HSF2BP, INTS3, IQGAP2, ITFG1, ITGAL, ITGB1, ITIH1, ITPR2, JMJD1C, KALRN, KCNN2, KIAA0528, KIAA0564, KIAA1166, KIAA1409, KIAA1787, KIF3B, KLHL20, KLK12, LAMA1, LARP7, LENG1, LOC389634, LRWD1, LYN, MAP2K1, MCM6, MEGF10, MGAM, MGAT5, MGC16169, MKKS, MPDZ, MRPL11, MS4A13, MSMB, MT1F2, NDC80, NEB, NEK11, NFE2L2, NFKB1L2, NKA1N2, NLRC3, NLRC5, NLRP13, NLRP7, NLRP8, NT5C, NUDT5, NUP88, OBFC2A, OPN4, OPTN, PARD3, PBRM1, PCBP4, PDE10A, PDLIM5, PDXK, PDZRN3, PEL12, PGM2, PIP5KIA, PITRM1, PK1B, PMFBP1, POMT2, PRKCA, PRODH, PRUNE2, PTPRN2, PTPRT, RALBP1, RALGDS, RBL2, RFT1, RFTN1, R1F1, RMND5B, RNF11, RNGTT, RPS6KA6, RRM1, RRP1B, RTF1, RUFY1, SCN2A, SCN4A, SCN8A, SDK1, SEZ6, SFRS12, SH3BGRL2, SIVA1, SLC22A17, SLC25A14, SLC6A11, SLC6A13, SLC6A6, SMTN, SNCA1P, SNX6, STAT6, SUPT6H, SV2C, SYCP2, SYT6, TAF2, TBC1D26, TBC1D29, TBPL1, TECTB, TEK, TGM7, TGS1, TM4SF20, TM6SF1, TMEM194A, TMEM77, TOM1L2, TP53BP2, TP5313, TRPM3, TRPM5, TSPAN7, TTLL9, TUSC3, TXNDC10, UCK1, USH2A, USP1, UTP20, VPS39, WDR16, ZC3H7A, ZFYVE1, ZNF169 and ZNF326.


The SMSM compounds and methods of their use described herein can modulate splicing, such as aberrant splicing of polynucleotide encoded by a gene, e.g., an ABCA4, ABCA9, ABCB1, ABCB5, ABCC9, ABCD1, ACADL, ACADM, ACADSB, ACSS2, ACTG2, ADA, ADAL, ADAM10, ADAM15, ADAM22, ADAM32, ADAMTS12, ADAMTS13, ADAMTS20, ADAMTS6, ADAMTS9, ADCY10, ADCY3, ADCY8, ADRBK2, AFP, AGL, AGT, AHCTF1, AKAP10, AKAP3, AKNA, ALAS1, ALB, ALDH3A2, ALG6, ALS2CL, AMBRA1, ANGPTL3, ANK3, ANTXR2, ANXA10, ANXA11, AP2A2, AP4E1, APC, APOAl, APOB, APOC3, APOH, AR, ARFGEF1, ARFGEF2, ARHGAP1, ARHGAP18, ARHGAP26, ARHGAP8, ARHGEF18, ARHGEF2, ARPC3, ARS2, ASH1L, ASNSD1, ASPM, ATAD5, ATG16L2, ATG4A, ATM, ATP11C, ATP13A5, ATP6V1G3, ATP7A, ATP7B, ATR, ATXN2, ATXN3, B2M, B4GALNT3, BBOX1, BBS4, BCL2-like 11 (B1M), BCS1L, BMP2K, BMPR2, BRCA1, BRCA2, BRCC3, BRSK1, BRSK2, BTAF1, BTK, C10orf137, C11orf30, C11orf65, C11orf70, C12orf51, C13orf1, C13orf15, C14orf101, C14orf118, C15orf29, C15orf42, C15orf60, C16orf33, C16orf38, C16orf48, C18orf8, C19orf42, C1orf107, C1 orf114, C1orf130, C1 orf149, C1 orf27, C1 orf71, C1 orf87, C1 orf94, C1R, C20orf74, C21orf70, C2orf55, C3, C3orf23, C4orf18, C4orf29, C5orf34, C6orf118, C8B, C8orf33, C9orf114, C9orf43, C9orf86, C9orf98, CA11, CAB39, CACHD1, CACNA1B, CACNA1C, CACNA1G, CACNA1H, CACNA2D1, CALCA, CALCOCO2, CAMKD, CAMKK1, CAPN3, CAPN9, CAPSL, CARKD, CAT, CBX, CBX3, CCDC102B, CCDC1, CCDC131, CCDC146, CCDC15, CCDC18, CCDCl5, CCDCl81, CD1B, CD33, CD4, CD46, CDC14A, CDC16, CDCl2L5, CDCl42BPB, CDCA8, CDH, CDH10, CDH11, CDH23, CDH24, CDH8, CDH9, CDK5RAP2, CDK6, CDK8, CEL, CELSR3, CENP1, CENTB2, CENTG2, CEP110, CEP170, CEP192, CETP, CFB, CFH, CFTR, CGN, CGNL1, CHAF1A, CHD9, CHIC2, CHL1, CHM, CHN1, CLCN1, CLEC16A, CLIC2, CLINT1, CLK1, CLPB, CLP™1, CMIP, CMYA5, CNGA3, CNOT1, CNOT7, CNTN6, COG3, COL11A1, COL11A2, COL12A1, COL14A1, COL15A1, COL17A1, COL19A1, COL1A1, COL1A2, COL22A1, COL24A1, COL25A1, COL29A1, COL2A1, COL3A1, COL4A1, COL4A2, COL4A5, COL4A6, COL5A2, COL6A1, COL7A1, COL9AM, COL9A2, COLQ, COMTDM, COPA, COPB2, COPS7B, COPZ2, CPSF2, CPXM2, CR1, CREBBP, CRKRS, CRYZ, CSE1L, CSTB, CSTF3, CT45-6, CUBN, CUL4B, CUL5, CXorf41, CYBB, CYFIP2, CYP17, CYP19, CYP24A1, CYP27A1, CYP3A4, CYP3A43, CYP3A5, CYP4F2, CYP4F3, DAZ2, DCBLD1, DCC, DCTN3, DCUN1D4, DDA1, DDEF1, DDX1, DDX24, DDX4, DENND2D, DEPDC2, DES, DGAT2, DHFR, DHRS7, DHRS9, D1P2A, DMD, DMTF1, DNAH3, DNAH8, DNAI1, DNAJA4, DNAJC3, DNAJC7, DNTT1P2, DOCK10, DOCK11, DOCK4, DPP3, DPP4, DPY19L2P2, DSCC1, DUX4, DVL3, DYNC1H1, DYSF, ECM2, EDEM3, EFCAB3, EFCAB4B, EFNA4, EFTUD2, EGFR, E1F3A, ELA1, ELA2A, EMCN, EMD, EML5, ENPP3, EPB41L5, EPHA3, EPHA4, EPHB1, EPHB2, EPHB3, EPS15, ERBB4, ERCC1, ERCC8, ERG1C3, ERMN, ERMP1, ERN1, ERN2, ETS2, ETV4, EVC2, EXO1, EXOC4, F11, F13A1, F3, F5, F7, F8, FAH, FAM134A, FAM13A1, FAM13B1, FAM13C1, FAM16NA, FAM76B, FAM184A, FAM19A1, FAM20A, FAM23B, FAM65C, FANCA, FANCC, FANCG, FANCM, FANK, FAR2, FBN1, FBXO15, FBXO18, FBXO38, FCGBP, FECH, FEZ2, FGA, FGD6, FGFR1OP, FGFR10P2, FGFR2, FGG, FGR, F1X, FKBP3, FLJ35848, FLJ36070, FLNA, FN1, FNBP1L, FOLH1, FOXM1, FRAS1, FUT9, FZD3, FZD6, GAB1, GALC, GALNT3, GAPDH, GART, GAS2L3, GBA, GBGT1, GCG, GCGR, GCK, GFM1, GH1, GHR, GHV, GJA1, GLA, GLT8D1, GNAS, GNB5, GOLGB1, GOLT1A, GOLT1B, GPATCH, GPR158, GPR160, GRAMD3, GRHPR, GRIA1, GRIA3, GRIA4, GRIN2B, GRM3, GRM4, GRN, GSDMB, GSTCD, GSTO2, GTPBP4, HADHA, HBA2, HBB, HCK, HDAC3, HDAC5, HDX, HEPACAM2, HERC1, HEXA, HEXB, HIPK3, HLA-DPB1, HLA-G, HLCS, HLTF, HMBS, HMGCL, HNF1A, HNRNPH1, HP1BP3, HPGD, HPRT, HPRT2, HSF2BP, HSF4, HSPA9, HSPG2, HTT, HXA, ICA1, IDH1, IDS, IFI44L, IKBKAP, IL1R2, IL5RA, IL7RA, IMMT, INPP5D, INSR, INTS3, INTU, IPO4, IPO8, IQGAP2, ISL2, ITFG1, ITGAL, ITGB1, ITGB2, ITGB3, ITGB4, ITIH1, ITPR2, IWS1, JAG1, JAK1, JAK2, JMJD1C, KALRN, KATNAL2, KCNN2, KCNT2, KIAA0256, KIAA0528, KIAA0564, KIAA0586, KIAA1033, KIAA1166, KIAA1219, KIAA1409, KIAA1622, KIAA1787, KIF15, KIF16B, KIF3B, KIF5A, KIF5B, KIF9, KIN, KIR2DL5B, KIR3DL2, KIR3DL3, KLF12, KLF3, KLHL20, KLK12, KLKB1, KPNA5, KRAS, KREMEN1, KR1T1, KRT5, KRTCAP2, L1CAM, L3MBTL, L3MBTL2, LACE1, LAMA1, LAMA2, LAMA3, LAMB1, LARP7, LDLR, LENG1, LGALS3, LGMN, LHCGR, LHX6, LIMCH1, LIMK2, LMBRD1, LMBRD2, LMLN, LMNA, LMO2, LOC389634, LOC390110, LPA, LPCAT2, LPL, LRP4, LRPPRC, LRRC19, LRRC42, LRRK2, LRWD1, LUM, LVRN, LYN, LYST, MADD, MAG11, MAGT1, MALT1, MAP2K1, MAP4K4, MAPK81P3, MAPK9, MAPT, MATN2, MCF2L2, MCM6, MDGA2, MEGF0, MEGF11, MEMO1, MET, MGAM, MGAT4A, MGAT5, MGC16169, MGC34774, M1B1, MIER2, MKKS, MKL2, MLANA, MLH1, MLL5, MLX, MME, MPDZ, MPI, MRAP2, MRPL11, MRPL39, MRPS28, MRPS35, MS4A13, MSH2, MSMB, MST1R, MTDH, MTF2, MTHFR, MT1F2, MUC2, MUT, MVK, MYB, MYCBP2, MYH2, MYO19, MYO3A, MYO9B, MYOM2, MYOM3, NAG, NARG1, NARG2, NCOA1, NDC80, NDF1P2, NEB, NEDD4, NEK1, NEK11, NEK5, NF1, NF2, NFE2L2, NF1A, NF1X, NFKBIL2, NFRKB, NKA1N2, NKAP, NLRC3, NLRC5, NLRP13, NLRP7, NLRP8, NME7, NOL10, NOS1, NOS2A, NOTCH1, NPM1, NRIH4, NR4A3, NRXN1, NSMAF, NSMCE2, NT5C, NT5C3, NUBP1, NUBPL, NUDT5, NUMA1, NUP160, NUP88, NUP98, NUPL1, OAT, OBFC2A, OBFC2B, OL1G2, OPA1, OPN4, OPTN, OSBPL11, OSBPL8, OSGEPL1, OTC, OXT, PAD14, PAH, PAN2, PAPOLG, PARD3, PARVB, PAWR, PBGD, PBRM1, PCBP4, PCCA, PCNX, PCOTH, PDCD4, PDE10A, PDE8B, PDH, PDIA3, PDK4, PDLIM5, PDS5A, PDS5B, PDXK, PDZRN3, PEL12, PGK1, PGM2, PHACTR4, PHEX, PHKB, PHLDB2, PHTF1, PIAS1, PIGF, PIGN, PIGT, PIK3C2G, PIK3CG, PIK3R1, PIP5KIA, PITRM1, PIWIL3, PKD1, PKD2, PKHDIL1, PK1B, PKLR, PKM1, PKM2, PLCB1, PLCB4, PLCG1, PLD1, PLEKHA5, PLEKHA7, PLEKHM1, PLKR, PLXNC1, PMFBP1, POLN, POLR3D, POMT2, POSTN, PPFIA2, PPPIR12A, PPP3CB, PPP4C, PPP4RIL, PPP4R2, PRAME, PRC1, PRDM1, PRIM1, PRIM2, PRKAR1A, PRKCA, PRKG1, PRMT7, PROC, PROCR, PRODH, PROSC, PROX1, PRPF40B, PRPF4B, PRRG2, PRUNE2, PSD3, PSEN1, PSMAL, PTCH1, PTEN, PTK2, PTK2B, PTPN11, PTPN22, PTPN3, PTPN4, PTPRD, PTPRK, PTPRM, PTPRN2, PTPRT, PUS10, PVRL2, PYGM, QRSL1, RAB11F1P2, RAB23, RALBP1, RALGDS, RB1CC1, RBL2, RBM39, RBM45, REC8, RFC4, RFT1, RFTN1, RHPN2, R1F1, RLN3, RMND5B, RNF11, RNF32, RNFT1, RNGTT, ROCK1, ROCK2, RP1, RP11-265F1, RP13-36C9, RP6KA3, RPAP3, RPGR, RPN1, RPS6KA6, RRRM1, RRP1B, RSK2, RTEL1, RTF1, R UFY1, RYR3, SAAL1, SAE1, SBCAD, SCN11A, SCN1A, SCN2A, SCN3A, SCN4A, SCN5A, SCN8A, SCNA, SCO1, SCYL3, SDK1, SDK2, SEC24A, SEC24D, SEC31A, SELIL, SENP3, SENP6, SENP7, SERP1NA1, SETD3, SETD4, SEZ6, SFRS12, SGCE, SGOL2, SGPL1, SH2D1A, SH3BGRL2, SH3PXD2A, SH3PXD2B, SH3RF2, SH3TC2, SIPAIL2, SIPAIL3, SIVA1, SKAP1, SK1V2L2, SLC12A3, SLC13A1, SLC22A17, SLC25A14, SLC28A3, SLC38A1, SLC38A4, SLC39A10, SLC4A2, SLC6A11, SLC6A13, SLC6A6, SLC6A8, SMARCA1, SMARCA5, SMC5, SMN2, SMTN, SNCA1P, SNRK, SNRP70, SNX6, SOD1, SPAG9, SPATA13, SPATA4, SPATS1, SPECCIL, SPINK5, SPP2, SPTA1, SRP72, SSX3, SSX5, SSX9, STAG1, STAMBPL1, STARD6, STAT6, STK17B, STX3, STXBP1, SUCLG2, SULF2, SUPT16H, SUPT6H, SV2C, SYCP1, SYCP2, SYT6, SYTL5, TAF2, TBC1D26, TBC1D29, TBC1D3G, TBC1D8B, TBCEL, TBK1, TBPL1, TCEB3, TCF12, TCP11L2, TDRD3, TEAD1, TECTB, TEK, TET2, TFRC, TG, TGM7, TGS1, THOC2, TIAL1, TIAM2, TIMM50, TLK2, TM4SF20, TM6SF1, TMEM156, TMEM194A, TMEM27, TMEM77, TMF1, TMPRSS6, TNFRSF10A, TNFRSF10B, TNFRSF8, TNK2, TNKS, TNKS2, TOMIL1, TOMIL2, TOP2B, TP53, TP53BP2, TP5313, TP53INP1, TP63, TRAF3IP3, TRAPPC2, TRIM44, TRIM65, TRIML1, TRIML2, TRPM3, TRPM5, TRPM7, TSC1, TSC2, TSHB, TSPAN7, TTC17, TTLL5, TTLL9, TTN, TTPAL, TTR, TUSC3, TXNDC0, UBE3A, UCK1, UGT1A1, UHRF1BP1, UNC45B, UNCSC, USH2A, USP1, USP38, USP39, USP6, UTP1S, UTP18, UTP20, UTRN, UTX, UTY, UVRAG, UXT, VAPA, VPS29, VPS35, VPS39, VT11A, VT11B, VWA3B, WDFY2, WDR16, WDR17, WDR26, WDR44, WDR67, WDTC1, WRN1P1, WWC3, XRN1, XRN2, XX-FW88277, YARS, YGM, ZBTB20, ZC3H7A, ZC3HAV1, ZC3HC1, ZFYVE1, ZNF114, ZNF169, ZNF326, ZNF365, ZNF37A, ZNF618 or ZW1NT gene.


For example, provided herein are splice modulating compounds that modulate splicing, such as aberrant splicing of ABCA4, ABCA9, ABCB1, ABCB5, ABCC9, ABCD1, ACADL, ACADM, ACADSB, ACSS2, ACTG2, ADA, ADAL, ADAM10, ADAM15, ADAM22, ADAM32, ADAMTS12, ADAMTS13, ADAMTS20, ADAMTS6, ADAMTS9, ADCY10, ADCY3, ADCY8, ADRBK2, AFP, AGL, AGT, AHCTF1, AKAP10, AKAP3, AKNA, ALAS1, ALB, ALDH3A2, ALG6, ALS2CL, AMBRA1, ANGPTL3, ANK3, ANTXR2, ANXA10, ANXA11, AP2A2, AP4E1, APC, APOA1, APOB, APOC3, APOH, AR, ARFGEF1, ARFGEF2, ARHGAP1, ARHGAP18, ARHGAP26, ARHGAP8, ARHGEF18, ARHGEF2, ARPC3, ARS2, ASH1L, ASNSD1, ASPM, ATAD5, ATG16L2, ATG4A, ATM, ATP11C, ATP13A5, ATP6V1G3, ATP7A, ATP7B, ATR, ATXN2, ATXN3, B2M, B4GALNT3, BBOX1, BBS4, BCL2-like 11 (B1M), BCS1L, BMP2K, BMPR2, BRCA1, BRCA2, BRCC3, BRSK1, BRSK2, BTAF1, BTK, C10orf137, C11orf30, C11orf65, C11orf70, C12orf51, C13orfl, C13orf15, C14orf101, C14orf118, C15orf29, C15orf42, C15orf60, C16orf33, C16orf38, C16orf48, C18orf8, C19orf42, C1orf107, C1orf114, C1orf130, C1orf149, C1orf27, C1orf71, C1orf87, C1orf94, C1R, C20orf74, C21orf70, C2orf55, C3, C3orf23, C4orf18, C4orf29, C5orf34, C6orf118, C8B, C8orf33, C9orf114, C9orf43, C9orf86, C9orf98, CA11, CAB39, CACHD1, CACNA1B, CACNA1C, CACNA1G, CACNA1H, CACNA2D1, CALCA, CALCOCO2, CAMK1D, CAMKK1, CAPN3, CAPN9, CAPSL, CARKD, CAT, CBX1, CBX3, CCDC102B, CCDC11, CCDC131, CCDC146, CCDC15, CCDC18, CCDCl5, CCDCl81, CD1B, CD33, CD4, CD46, CDC14A, CDC16, CDCl2L5, CDCl42BPB, CDCA8, CDH1, CDH10, CDH11, CDH23, CDH24, CDH8, CDH9, CDK5RAP2, CDK6, CDK8, CEL, CELSR3, CENP1, CENTB2, CENTG2, CEP110, CEP170, CEP192, CETP, CFB, CFH, CFTR, CGN, CGNL1, CHAF1A, CHD9, CHIC2, CHL1, CHM, CHN1, CLCN1, CLEC16A, CLIC2, CLINT1, CLK1, CLPB, CLPTM1, CMIP, CMYA5, CNGA3, CNOT1, CNOT7, CNTN6, COG3, COL11A1, COL11A2, COL12A1, COL14A1, COL15A1, COL17A1, COL19A1, COL1A1, COL1A2, COL22A1, COL24A1, COL25A1, COL29A1, COL2A1, COL3A1, COL4A1, COL4A2, COL4A5, COL4A6, COL5A2, COL6A1, COL7A1, COL9A1, COL9A2, COLQ, COMTD1, COPA, COPB2, COPS7B, COPZ2, CPSF2, CPXM2, CR1, CREBBP, CRKRS, CRYZ, CSE1L, CSTB, CSTF3, CT45-6, CUBN, CUL4B, CUL5, CXorf41, CYBB, CYFIP2, CYP17, CYP19, CYP24A1, CYP27A1, CYP3A4, CYP3A43, CYP3A5, CYP4F2, CYP4F3, DAZ2, DCBLD1, DCC, DCTN3, DCUN1D4, DDA1, DDEF1, DDX1, DDX24, DDX4, DENND2D, DEPDC2, DES, DGAT2, DHFR, DHRS7, DHRS9, DIP2A, DMD, DMTF1, DNAH3, DNAH8, DNAI1, DNAJA4, DNAJC13, DNAJC7, DNTTIP2, DOCK10, DOCK11, DOCK4, DPP3, DPP4, DPY19L2P2, DSCC1, DUX4, DVL3, DYNC1H1, DYSF, ECM2, EDEM3, EFCAB3, EFCAB4B, EFNA4, EFTUD2, EGFR, EIF3A, ELA1, ELA2A, EMCN, EMD, EML5, ENPP3, EPB41L5, EPHA3, EPHA4, EPHB1, EPHB2, EPHB3, EPS15, ERBB4, ERCC1, ERCC8, ERGIC3, ERMN, ERMP1, ERN1, ERN2, ETS2, ETV4, EVC2, EXOl, EXOC4, F11, F13A1, F3, F5, F7, F8, FAH, FAM134A, FAM13A1, FAM13B1, FAM13C1, FAM161A, FAM176B, FAM184A, FAM19A1, FAM20A, FAM23B, FAM65C, FANCA, FANCC, FANCG, FANCM, FANK1, FAR2, FBN1, FBX015, FBX018, FBXO38, FCGBP, FECH, FEZ2, FGA, FGD6, FGFR1OP, FGFR10P2, FGFR2, FGG, FGR, FIX, FKBP3, FLJ35848, FLJ36070, FLNA, FN1, FNBP1L, FOLH1, FOXM1, FRAS1, FUT9, FZD3, FZD6, GAB1, GALC, GALNT3, GAPDH, GART, GAS2L3, GBA, GBGT1, GCG, GCGR, GCK, GFM1, GH1, GHR, GHV, GJA1, GLA, GLT8D1, GNAS, GNB5, GOLGB1, GOLT1A, GOLT1B, GPATCH1, GPR158, GPR160, GRAMD3, GRHPR, GRIA1, GRIA3, GRIA4, GRIN2B, GRM3, GRM4, GRN, GSDMB, GSTCD, GST02, GTPBP4, HADHA, HBA2, HBB, HCK, HDAC3, HDAC5, HDX, HEPACAM2, HERC1, HEXA, HEXB, HIPK3, HLA-DPB1, HLA-G, HLCS, HLTF, HMBS, HMGCL, HNF1A, HNRNPH1, HP1BP3, HPGD, HPRT1, HPRT2, HSF2BP, HSF4, HSPA9, HSPG2, HTT, HXA, ICA1, IDH1, IDS, IFI44L, IKBKAP, IL1R2, IL5RA, IL7RA, IMMT, INPP5D, INSR, INTS3, INTU, IPO4, IPO8, IQGAP2, ISL2, ITFG1, ITGAL, ITGB1, ITGB2, ITGB3, ITGB4, IT1H1, ITPR2, IWS1, JAG1, JAK1, JAK2, JMJD1C, KALRN, KATNAL2, KCNN2, KCNT2, KIAA0256, KIAA0528, KIAA0564, KIAA0586, KIAA1033, KIAA1166, KIAA1219, KIAA1409, KIAA1622, KIAA1787, KIF15, KIF16B, KIF3B, KIF5A, KIF5B, KIF9, KIN, KIR2DL5B, KIR3DL2, KIR3DL3, KLF12, KLF3, KLHL20, KLK12, KLKB1, KPNA5, KRAS, KREMEN1, KRIT1, KRT5, KRTCAP2, L1 CAM, L3MBTL, L3MBTL2, LACE1, LAMA1, LAMA2, LAMA3, LAMB1, LARP7, LDLR, LENG1, LGALS3, LGMN, LHCGR, LHX6, LIMCH1, LIMK2, LMBRD1, LMBRD2, LMLN, LMNA, LMO2, LOC389634, LOC390110, LPA, LPCAT2, LPL, LRP4, LRPPRC, LRRC19, LRRC42, LRRK2, LRWD1, LUM, LVRN, LYN, LYST, MADD, MAGI1, MAGT1, MALT1, MAP2K1, MAP4K4, MAPK8IP3, MAPK9, MAPT, MATN2, MCF2L2, MCM6, MDGA2, MEGF10, MEGF11, MEMO1, MET, MGAM, MGAT4A, MGAT5, MGC16169, MGC34774, MIB1, MIER2, MKKS, MKL2, MLANA, MLH1, MLL5, MLX, MME, MPDZ, MPI, MRAP2, MRPL11, MRPL39, MRPS28, MRPS35, MS4A13, MSH2, MSMB, MST1R, MTDH, MTF2, MTHFR, MTIF2, MUC2, MUT, MVK, MYB, MYCBP2, MYH2, MYO19, MYO3A, MYO9B, MYOM2, MYOM3, NAG, NARG1, NARG2, NCOA1, NDC80, NDFIP2, NEB, NEDD4, NEK1, NEK11, NEK5, NF1, NF2, NFE2L2, NFIA, NFIX, NFKBIL2, NFRKB, NKAIN2, NKAP, NLRC3, NLRC5, NLRP13, NLRP7, NLRP8, NME7, NOL10, NOS1, NOS2A, NOTCH1, NPM1, NRIH4, NR4A3, NRXN1, NSMAF, NSMCE2, NT5C, NT5C3, NUBP1, NUBPL, NUDT5, NUMA1, NUP160, NUP88, NUP98, NUPL1, OAT, OBFC2A, OBFC2B, OLIG2, OPA1, OPN4, OPTN, OSBPL11, OSBPL8, OSGEPL1, OTC, OXT, PADI4, PAH, PAN2, PAPOLG, PARD3, PARVB, PAWR, PBGD, PBRM1, PCBP4, PCCA, PCNX, PCOTH, PDCD4, PDE10A, PDE8B, PDH1, PDIA3, PDK4, PDLIM5, PDS5A, PDS5B, PDXK, PDZRN3, PELI2, PGK1, PGM2, PHACTR4, PHEX, PHKB, PHLDB2, PHTF1, PIAS1, PIGF, PIGN, PIGT, PIK3C2G, PIK3CG, PIK3R1, PIP5KIA, PITRM1, PIWIL3, PKD1, PKD2, PKHD1L1, PKIB, PKLR, PKM1, PKM2, PLCB1, PLCB4, PLCG1, PLD1, PLEKHA5, PLEKHA7, PLEKHM1, PLKR, PLXNC1, PMFBP1, POLN, POLR3D, POMT2, POSTN, PPFIA2, PPP1R12A, PPP3CB, PPP4C, PPP4R1L, PPP4R2, PRAME, PRC1, PRDM1, PRIM1, PRIM2, PRKAR1A, PRKCA, PRKG1, PRMT7, PROC, PROCR, PRODH, PROSC, PROX1, PRPF40B, PRPF4B, PRRG2, PRUNE2, PSD3, PSEN1, PSMAL, PTCH1, PTEN, PTK2, PTK2B, PTPN11, PTPN22, PTPN3, PTPN4, PTPRD, PTPRK, PTPRM, PTPRN2, PTPRT, PUS10, PVRL2, PYGM, QRSL1, RAB11FIP2, RAB23, RALBP1, RALGDS, RB1CC1, RBL2, RBM39, RBM45, REC8, RFC4, RFT1, RFTN1, RHPN2, RIF1, RLN3, RMND5B, RNF11, RNF32, RNFT1, RNGTT, ROCK1, ROCK2, RP1, RP11-265F1, RP13-36C9, RP6KA3, RPAP3, RPGR, RPN1, RPS6KA6, RRM1, RRP1B, RSK2, RTEL1, RTF1, RUFY1, RYR3, SAAL1, SAE1, SBCAD, SCN11A, SCN1A, SCN2A, SCN3A, SCN4A, SCN5A, SCN8A, SCNA, SCOl, SCYL3, SDK1, SDK2, SEC24A, SEC24D, SEC31A, SEL1L, SENP3, SENP6, SENP7, SERPINA1, SETD3, SETD4, SEZ6, SFRS12, SGCE, SGOL2, SGPL1, SH2D1A, SH3BGRL2, SH3PXD2A, SH3PXD2B, SH3RF2, SH3TC2, SIPA1L2, SIPA1L3, SIVA1, SKAP1, SKIV2L2, SLC12A3, SLC13A1, SLC22A17, SLC25A14, SLC28A3, SLC38A1, SLC38A4, SLC39A10, SLC4A2, SLC6A11, SLC6A13, SLC6A6, SLC6A8, SMARCA1, SMARCA5, SMC5, SMN2, SMTN, SNCAIP, SNRK, SNRP70, SNX6, SOD1, SPAG9, SPATA13, SPATA4, SPATS1, SPECC1L, SPINK5, SPP2, SPTA1, SRP72, SSX3, SSX5, SSX9, STAG1, STAMBPL1, STARD6, STAT6, STK17B, STX3, STXBP1, SUCLG2, SULF2, SUPT16H, SUPT6H, SV2C, SYCP1, SYCP2, SYT6, SYTL5, TAF2, TBC1D26, TBC1D29, TBC1D3G, TBC1D8B, TBCEL, TBK1, TBPL1, TCEB3, TCF12, TCP11L2, TDRD3, TEAD1, TECTB, TEK, TET2, TFRC, TG, TGM7, TGS1, THOC2, TIAL1, TIAM2, TIMM50, TLK2, TM4SF20, TM6SF1, TMEM156, TMEM194A, TMEM27, TMEM77, TMF1, TMPRSS6, TNFRSF10A, TNFRSF10B, TNFRSF8, TNK2, TNKS, TNKS2, TOM1L1, TOM1L2, TOP2B, TP53, TP53BP2, TP53I3, TP53INP1, TP63, TRAF3IP3, TRAPPC2, TRIM44, TRIM65, TRIML1, TRIML2, TRPM3, TRPM5, TRPM7, TSC1, TSC2, TSHB, TSPAN7, TTC17, TTLL5, TTLL9, TTN, TTPAL, TTR, TUSC3, TXNDC10, UBE3A, UCK1, UGT1A1, UHRF1BP1, UNC45B, UNC5C, USH2A, USP1, USP38, USP39, USP6, UTP15, UTP18, UTP20, UTRN, UTX, UTY, UVRAG, UXT, VAPA, VPS29, VPS35, VPS39, VTI1A, VTI1B, VWA3B, WDFY2, WDR16, WDR17, WDR26, WDR44, WDR67, WDTC1, WRNIP1. WWC3, XRN1, XRN2, XX-FW88277, YARS, YGM, ZBTB20, ZC3H7A, ZC3HAV1, ZC3HC1, ZFYVE1, ZNF114, ZNF169, ZNF326, ZNF365, ZNF37A, ZNF618 or a ZWINT mRNA, such as pre-mRNA.


In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ABCA4. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ABCA9. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ABCB1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ABCB5. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ABCC9. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ABCD1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ACADL. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ACADM. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ACADSB. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ACSS2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ACTG2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ADA. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ADAL. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ADAM10. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ADAM15. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ADAM22. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ADAM32. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ADAMTS12. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of AD AMTS 13. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ADAMTS20. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ADAMTS6. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ADAMTS9. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ADCY10. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ADCY3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ADCY8. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ADRBK2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of AFP. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of AGL. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of AGT. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of AHCTF1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of AKAP10. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of AKAP3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of AKNA. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ALAS1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ALB. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ALDH3A2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ALG6. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ALS2CL. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of AMBRA1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ANGPTL3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ANK3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ANTXR2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ANXA10. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ANXA11. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of AP2A2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of AP4E1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of APC. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of APOA1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of APOB. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of APOC3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of APOH. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of AR. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ARFGEF1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ARFGEF2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ARHGAP1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ARHGAP18. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ARHGAP26. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ARHGAP8. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ARHGEF18. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ARHGEF2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ARPC3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ARS2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ASH1L. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ASNSD1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ASPM. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ATAD5. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ATG16L2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ATG4A. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ATM. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ATP11C. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ATP13A5. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ATP6V1G3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ATP7A. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ATP7B. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ATR. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ATXN2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ATXN3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of B2M. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of B4GALNT3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of BBOX1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of BBS4. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of BCL2-like 11 (BIM). In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of BCS1L. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of BMP2K. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of BMPR2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of BRCA1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of BRCA2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of BRCC3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of BRSK1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of BRSK2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of BTAF1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of BTK. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of C10orf137. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of C11orf30. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of C11orf65. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of C11orf70. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of C12orf51. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of C13orf1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of C13orf15. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of C14orf101. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of C14orf118. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of C15orf29. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of C15orf42. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of C15orf60. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of C16orf33. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of C16orf38. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of C16orf48. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of C18orf8. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of C19orf42. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of C1orf107. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of C1orf114. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of C1orf130. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of C1orf149. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of C1orf27. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of C1orf71. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of C1orf87. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of C1orf94. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of C1R. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of C20orf74. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of C21orf70. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of C2orf55. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of C3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of C3orf23. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of C4orf18. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of C4orf29. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of C5orf34. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of C6orf118. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of C8B. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of C8orf33. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of C9orf114. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of C9orf43. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of C9orf86. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of C9orf98. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CA11. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CAB39. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CACHD1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CACNA1B. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CACNA1C. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CACNA1G. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CACNA1H. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CACNA2D1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CALCA. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CALCOCO2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CAMK1D. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CAMKK1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CAPN3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CAPN9. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CAPSL. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CARKD. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CAT. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CBX1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CBX3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CCDC102B. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CCDC11. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CCDC131. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CCDC146. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CCDC15. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CCDC18. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CCDCl5. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CCDCl81. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CD1B. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CD33. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CD4. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CD46. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CDC14A. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CDC16. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CDCl2L5. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CDCl42BPB. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CDCA8. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CDH1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CDH10. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CDH11. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CDH23. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CDH24. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CDH8. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CDH9. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CDK5RAP2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CDK6. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CDK8. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CEL. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CELSR3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CENP1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CENTB2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CENTG2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CEP110. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CEP170. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CEP192. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CETP. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CFB. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CFH. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CFTR. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CGN. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CGNL1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CHAF1A. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CHD9. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CHIC2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CHL1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CHM. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CHN1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CLCN1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CLEC16A. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CLIC2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CLINT1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CLK1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CLPB. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CLPTM1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CMIP. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CMYA5. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CNGA3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CNOT1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CNOT7. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CNTN6. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of COG3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of COL11A1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of COL11A2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of COL12A1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of COL14A1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of COL15A1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of COL17A1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of COL19A1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of COL1A1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of COL1A2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of COL22A1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of COL24A1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of COL25A1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of COL29A1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of COL2A1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of COL3A1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of COL4A1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of COL4A2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of COL4A5. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of COL4A6. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of COL5A2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of COL6A1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of COL7A1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of COL9A1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of COL9A2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of COLQ. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of COMTD1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of COPA. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of COPB2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of COPS7B. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of COPZ2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CPSF2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CPXM2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CR1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CREBBP. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CRKRS. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CRYZ. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CSE1L. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CSTB. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CSTF3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CT45-6. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CUBN. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CUL4B. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CUL5. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CXorf41. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CYBB. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CYFIP2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CYP17. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CYP19. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CYP24A1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CYP27A1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CYP3A4. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CYP3 A43. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CYP3A5. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CYP4F2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of CYP4F3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of DAZ2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of DCBLD1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of DCC. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of DCTN3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of DCUN1D4. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of DDA1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of DDEF1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of DDX1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of DDX24. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of DDX4. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of DENND2D. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of DEPDC2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of DES. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of DGAT2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of DHFR. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of DHRS7. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of DHRS9. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of DIP2A. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of DMD. For example, the SMSM compounds and methods of their use described herein can modulate splicing of exon 51a pre-mRNA of DMD. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of DMTF1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of DNAH3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of DNAH8. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of DNAI1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of DNAJA4. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of DNAJC13. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of DNAJC7. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of DNTTIP2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of DOCK10. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of DOCK11. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of DOCK4. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of DPP3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of DPP4. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of DPY19L2P2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of DSCC1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of DUX4. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of DVL3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of DYNC1H1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of DYSF. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ECM2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of EDEM3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of EFCAB3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of EFCAB4B. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of EFNA4. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of EFTUD2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of EGFR. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of EIF3A. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ELA1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ELA2A. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of EMCN. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of EMD. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of EML5. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ENPP3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of EPB41L5. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of EPHA3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of EPHA4. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of EPHB1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of EPHB2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of EPHB3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of EPS15. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ERBB4. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ERCC1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ERCC8. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ERGIC3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ERMN. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ERMP1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ERN1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ERN2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ETS2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ETV4. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of EVC2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of EXO1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of EXOC4. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of F11. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of F13 A1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of F3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of F5. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of F7. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of F8. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FAH. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FAM134A. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FAM13A1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FAM13B1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FAM13C1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FAM161A. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FAM176B. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FAM184A. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FAM19A1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FAM20A. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FAM23B. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FAM65C. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FANCA. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FANCC. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FANCG. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FANCM. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FANK1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FAR2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FBN1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FBX015. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FBX018. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FBXO38. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FCGBP. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FECH. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FEZ2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FGA. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FGD6. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FGFR1OP. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FGFR10P2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FGFR2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FGG. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FGR. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FIX. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FKBP3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FLJ35848. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FLJ36070. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FLNA. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FN1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FNBP1L. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FOLH1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FOXM1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FRAS1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FUT9. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FZD3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of FZD6. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of GAB1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of GALC. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of GALNT3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of GAPDH. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of GART. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of GAS2L3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of GBA. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of GBGT1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of GCG. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of GCGR. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of GCK. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of GFM1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of GH1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of GHR. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of GHV. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of GJA1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of GLA. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of GLT8D1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of GNAS. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of GNB5. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of GOLGB1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of GOLT1A. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of GOLT1B. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of GPATCH1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of GPR158. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of GPR160. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of GRAMD3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of GRHPR. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of GRIA1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of GRIA3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of GRIA4. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of GRIN2B. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of GRM3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of GRM4. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of GRN. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of GSDMB. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of GSTCD. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of GST02. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of GTPBP4. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of HADHA. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of HBA2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of HBB. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of HCK. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of HDAC3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of HDAC5. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of HDX. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of HEPACAM2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of HERC1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of HEXA. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of HEXB. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of HIPK3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of HLA-DPB1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of HLA-G. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of HLCS. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of HLTF. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of HMBS. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of HMGCL. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of HNF1A. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of HNRNPH1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of HP1BP3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of HPGD. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of HPRT1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of HPRT2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of HSF2BP. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of HSF4. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of HSPA9. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of HSPG2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of HTT. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of HXA. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ICA1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of IDH1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of IDS. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of IFI44L. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of IKBKAP. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of IL1R2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of IL5RA. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of IL7RA. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of IMMT. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of INPP5D. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of INSR. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of INTS3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of INTU. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of IPO4. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of IPO8. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of IQGAP2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ISL2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ITFG1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ITGAL. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ITGB1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ITGB2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ITGB3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ITGB4. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of IT1H1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ITPR2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of IWS1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of JAG1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of JAK1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of JAK2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of JMJD1C. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of KALRN. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of KATNAL2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of KCNN2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of KCNT2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of KIAA0256. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of KIAA0528. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of KIAA0564. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of KIAA0586. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of apre-mRNA of KIAA1033. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of KIAA1166. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of KIAA1219. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of KIAA1409. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of KIAA1622. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of KIAA1787. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of KIF15. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of KIF16B. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of KIF3B. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of KIF5A. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of KIF5B. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of KIF9. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of KIN. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of KIR2DL5B. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of KIR3DL2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of KIR3DL3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of KLF12. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of KLF3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of KLHL20. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of KLK12. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of KLKB1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of KPNA5. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of KRAS. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of KREMEN1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of KRIT1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of KRT5. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of KRTCAP2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of L1CAM. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of L3MBTL. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of L3MBTL2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of LACE1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of LAMA1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of LAMA2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of LAMA3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of LAMB1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of LARP7. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of LDLR. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of LENG1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of LGALS3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of LGMN. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of LHCGR. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of LHX6. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of LIMCH1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of LIMK2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of LMBRD1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of LMBRD2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of LMLN. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of LMNA. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of LM02. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of LOC389634. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of LOC390110. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of LPA. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of LPCAT2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of LPL. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of LRP4. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of LRPPRC. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of LRRC19. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of LRRC42. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of LRRK2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of LRWD1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of LUM. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of LVRN. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of LYN. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of LYST. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MADD. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MAGI1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MAGT1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MALT1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MAP2K1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MAP4K4. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MAPK8IP3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MAPK9. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MAPT. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MATN2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MCF2L2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MCM6. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MDGA2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of apre-mRNA of MEGF10. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MEGF11. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MEMO1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MET. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MGAM. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MGAT4A. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MGAT5. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MGC16169. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MGC34774. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MIB1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MIER2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MKKS. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MKL2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MLANA. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of apre-mRNA of MLH1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MLL5. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MLX. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MME. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MPDZ. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MPI. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MRAP2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MRPL11. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MRPL39. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of apre-mRNA of MRPS28. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MRPS35. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of apre-mRNA of MS4A13. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MSH2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MSMB. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MST1R. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MTDH. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MTF2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MTHFR. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MTIF2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MUC2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MUT. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MVK. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MYB. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MYCBP2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MYH2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MYO19. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of apre-mRNA of MYO3A. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MYO9B. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MYOM2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of MYOM3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of NAG. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of NARG1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of NARG2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of NCOA1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of NDC80. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of NDFIP2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of NEB. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of NEDD4. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of NEK1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of NEK11. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of apre-mRNA of NEK5. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of NF1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of NF2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of NFE2L2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of NFIA. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of NFIX. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of NFKBIL2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of NFRKB. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of NKAIN2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of NKAP. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of NLRC3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of NLRC5. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of NLRP13. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of NLRP7. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of NLRP8. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of NME7. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of apre-mRNA of NOL10. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of NOS1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of NOS2A. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of NOTCH1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of NPM1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of NRIH4. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of NR4A3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of NRXN1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of apre-mRNA of NSMAF. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of NSMCE2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of NT5C. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of NT5C3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of NUBP1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of NUBPL. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of NUDT5. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of NUMA1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of NUP160. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of NUP88. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of NUP98. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of NUPL1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of OAT. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of OBFC2A. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of OBFC2B. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of OLIG2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of OPA1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of OPN4. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of OPTN. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of OSBPL11. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of OSBPL8. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of OSGEPL1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of OTC. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of OXT. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PADI4. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PAH. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PAN2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PAPOLG. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PARD3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PARVB. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PAWR. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PBGD. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PBRM1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PCBP4. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PCCA. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PCNX. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PCOTH. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PDCD4. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PDE10A. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PDE8B. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PDH1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PDIA3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PDK4. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PDLIM5. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PDS5A. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PDS5B. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PDXK. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PDZRN3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PELI2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PGK1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PGM2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PHACTR4. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PHEX. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PHKB. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PHLDB2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PHTF1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PIAS1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PIGF. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PIGN. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PIGT. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PIK3C2G. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PIK3CG. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PIK3R1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PIP5KIA. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PITRM1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PIWIL3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PKD1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PKD2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PKHD1L1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PKIB. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PKLR. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PKM1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PKM2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PLCB1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PLCB4. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PLCG1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PLD1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PLEKHA5. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PLEKHA7. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PLEKHM1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PLKR. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PLXNC1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PMFBP1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of POLN. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of POLR3D. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of POMT2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of POSTN. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PPFIA2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PPP1R12A. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PPP3CB. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PPP4C. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PPP4R1L. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PPP4R2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PRAME. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PRC1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PRDM1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PRIME In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PRIM2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PRKAR1A. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PRKCA. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PRKG1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PRMT7. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PROC. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PROCR. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PRODH. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PROSC. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PROX1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PRPF40B. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PRPF4B. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PRRG2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PRUNE2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PSD3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PSEN1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PSMAF. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PTCH1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PTEN. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PTK2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PTK2B. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PTPN11. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PTPN22. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PTPN3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PTPN4. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PTPRD. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PTPRK. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PTPRM. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PTPRN2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PTPRT. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PUS10. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PVRL2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of PYGM. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of QRSL1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of RAB11FIP2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of RAB23. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of RALBP1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of RALGDS. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of RB1CC1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of RBL2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of RBM39. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of RBM45. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of REC8. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of RFC4. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of RFT1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of RFTN1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of RHPN2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of RIF1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of RLN3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of RMND5B. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of RNF11. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of apre-mRNA of RNF32. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of RNFT1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of RNGTT. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ROCK1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ROCK2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of RP1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of RP11-265F1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of RP13-36C9. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of RP6KA3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of RPAP3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of RPGR. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of RPN1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of RPS6KA6. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of RRM1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of RRP1B. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of RSK2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of RTEL1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of RTF1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of RUFY1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of RYR3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SAAL1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SAE1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SBCAD. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SCN11A. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SCN1A. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SCN2A. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SCN3A. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SCN4A. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SCN5A. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SCN8A. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SCNA. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SCO1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SCYL3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SDK1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SDK2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SEC24A. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SEC24D. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SEC31A. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SEL1L. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SENP3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SENP6. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SENP7. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SERPINA1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SETD3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SETD4. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SEZ6. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SFRS12. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SGCE. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SGOL2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SGPL1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SH2D1A. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SH3BGRL2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SH3PXD2A. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SH3PXD2B. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SH3RF2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SH3TC2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SIPA1L2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SIPA1L3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SIVA1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SKAP1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SKIV2L2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SLC12A3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SLC13A1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SLC22A17. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SLC25A14. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SLC28A3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SLC38A1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SLC38A4. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SLC39A10. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SLC4A2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SLC6A11. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SLC6A13. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SLC6A6. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SLC6A8. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SMARCA1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SMARCA5. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SMC5. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SMTN. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SNCAIP. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SNRK. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SNRP70. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SNX6. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SOD1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SPAG9. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SPATA13. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SPATA4. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SPATS1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SPECC1L. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SPINK5. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SPP2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SPTA1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SRP72. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SSX3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SSX5. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SSX9. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of STAG1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of STAMBPL1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of STARD6. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of STAT6. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of STK17B. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of STX3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of STXBP1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SUCLG2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SULF2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SUPT16H. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SUPT6H. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SV2C. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SYCP1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SY CP2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SYT6. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of SYTL5. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TAF2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TBC1D26. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TBC1D29. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TBC1D3G. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TBC1D8B. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TBCEL. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TBK1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TBPL1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TCEB3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TCF12. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TCP11L2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TDRD3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TEAD1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TECTB. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TEK. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TET2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TFRC. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TG. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TGM7. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TGS1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of THOC2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TIAL1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TIAM2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TIMM50. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TLK2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TM4SF20. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TM6SF1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TMEM156. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TMEM194A. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TMEM27. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TMEM77. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TMF1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TMPRSS6. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TNFRSF10A. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TNFRSF10B. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TNFRSF8. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TNK2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TNKS. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TNKS2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TOM1L1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TOM1L2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TOP2B. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TP53. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TP53BP2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TP53I3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TP53INP1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TP63. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TRAF3IP3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TRAPPC2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TRIM44. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TRIM65. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TRIML1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TRIML2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TRPM3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TRPM5. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TRPM7. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TSC1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TSC2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TSHB. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TSPAN7. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TTC17. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TTLL5. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TTLL9. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TTN. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TTPAL. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TTR. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TUSC3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of TXNDC10. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of UBE3A. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of UCK1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of UGT1A1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of UHRF1BP1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of UNC45B. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of UNC5C. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of USH2A. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of USP1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of USP38. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of USP39. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of USP6. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of UTP15. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of UTP18. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of UTP20. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of UTRN. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of UTX. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of UTY. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of UVRAG. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of UXT. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of VAPA. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of VPS29. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of VPS35. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of VPS39. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of VTI1A. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of VTI1B. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of VWA3B. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of WDFY2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of WDR16. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of WDR17. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of WDR26. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of WDR44. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of WDR67. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of WDTC1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of WRNIP1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of WWC3. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of XRN1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of XRN2. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of XX-FW88277. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of YARS. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of YGM. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ZBTB20. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ZC3H7A. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ZC3HAV1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ZC3HC1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ZFYVE1. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ZNF114. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ZNF169. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ZNF326. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ZNF365. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ZNF37A. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ZNF618. In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing of a pre-mRNA of ZWINT.


In some embodiments, the SMSM compounds and methods of their use described herein can modulate splicing, such as alternative splicing of a polynucleotide encoded by MAPT gene. In some embodiments, alternative splicing of the MAPT pre-mRNA may lead to the expression of 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 isoforms of the tau protein. In some embodiments, alternative splicing of the MAPT pre-mRNA may lead to the expression of 6 isoforms of the tau protein. In some embodiments, the 6 isoforms of tau include 3 four-repeat (4R) isoforms and 3 three-repeat (3R) isoforms of the tau protein. In the 3R tau isoforms exon 10 is excluded from the splice variants. For example, a 3R tau isoform in which exon 10 is excluded may include exon 2 and/or exon 3. In the 4R tau isoforms exon 10 is included in the splice variants. For example, a 4R tau isoform in which exon 10 is included may include exon 2 and/or exon 3. The inclusion or exclusion of exon 10 may depend on alternative splicing events in a stem loop occurring at the exon 10 intron 10 junction. In some embodiments, a mutation occurring at the 5′ss results in inclusion of exon 10 in an mRNA encoding the tau protein. In some embodiments, a mutation in an ISS region of the stem loop results in exclusion of exon 10 from the mRNA encoding the tau protein. In some embodiments, a mutation at the 5′ss destabilizes the stem loop, thereby decreasing exon 10 inclusion in the mRNA of tau. In some embodiments, a mutation at the 5′ss inhibits binding of a spliceosome component to the pre-mRNA, thereby decreasing exon 10 inclusion in the mRNA of tau. In some embodiments, a mutation at the ISS region of the stem loop inhibits binding of a spliceosome component to the pre-mRNA, thereby increasing exon 10 inclusion in the mRNA of tau.


The ratio of 3R to 4R tau isoforms may contribute to a number of conditions or diseases. In some embodiments, a subject without a condition or disease has a 3R to 4R ratio of 1:1. In some embodiments, a subject with a condition or disease described herein has a 3R to 4R ratio of about 1:1.2, 1:1.4, 1:1.6, 1:1.8, 1:2, 1:2.5, 1:3, 1:3.5, 1:4, 1:4.5 or 1:5. In some embodiments, a subject with a condition or disease described herein has a 3R to 4R ratio from about 1:1 to about 1:1.1, about 1:1 to about 1:1.2, about 1:1 to about 1:1.3, about 1:1 to about 1:1.4, about 1:1 to about 1:1.5, about 1:1 to about 1:1.6, about 1:1 to about 1:1.8, about 1:1 to about 1:2, about 1:1 to about 1:3, about 1:1 to about 1:3.5, about 1:1 to about 1:4, about 1:1 to about 1:4.5, about 1:1 to about 1:5, 1:2 to about 1:3, about 1:2 to about 1:4, about 1:2 to about 1:5, about 1:3 to about 1:4, about 1:3 to about 1:5, or about 1:4 to about 1:5. In some embodiments, a subject with a condition or disease described herein has a 4R to 3R ratio of about 1:1.2, 1:1.4, 1:1.6, 1:1.8, 1:2, 1:2.5, 1:3, 1:3.5, 1:4, 1:4.5 or 1:5. In some embodiments, a subject with a condition or disease described herein has a 4R to 3R ratio from about 1:1 to about 1:1.1, about 1:1 to about 1:1.2, about 1:1 to about 1:1.3, about 1:1 to about 1:1.4, about 1:1 to about 1:1.5, about 1:1 to about 1:1.6, about 1:1 to about 1:1.8, about 1:1 to about 1:2, about 1:1 to about 1:3, about 1:1 to about 1:3.5, about 1:1 to about 1:4, about 1:1 to about 1:4.5, about 1:1 to about 1:5, 1:2 to about 1:3, about 1:2 to about 1:4, about 1:2 to about 1:5, about 1:3 to about 1:4, about 1:3 to about 1:5, or about 1:4 to about 1:5.


In some aspects, the SMSM compounds are used to modulate alternative splicing of tau pre-mRNA. In some embodiments, the SMSM compound binds to the stem loop of exon 10 of the tau pre-mRNA, reducing binding affinity of a spliceosome component to the 5′ss, thereby increasing exclusion of exon 10 in the mRNA of tau and increasing the ratio of 3R:4R tau isoforms. In some embodiments, the SMSM compound binds to the stem loop of exon 10 of the tau pre-mRNA, increasing binding affinity of a spliceosome component to the 5′ss, thereby increasing inclusion of exon 10 in the mRNA of tau and decreasing the ratio of 3R:4R tau isoforms. In some embodiments, the SMSM compound binds to the stem loop of exon 10 of the tau pre-mRNA, reducing binding affinity of a spliceosome component to the ISS region, thereby increasing inclusion of exon 10 in the mRNA of tau and decreasing the ratio of 3R:4R tau isoforms. In some embodiments, the SMSM compound binds to the stem loop of exon 10 of the tau pre-mRNA, increasing binding affinity of a spliceosome component to the ISS region, thereby reducing inclusion of exon 10 in the mRNA of tau and increasing the ratio of 3R:4R tau isoforms. In some embodiments, the SMSM compound restores the ratio of 3R:4R to 1:1. In some embodiments, the SMSM compound alters the ratio from 3R>4R to 4R>3R. In some embodiments, the SMSM compound alters the ratio from 3R<4R to 4R<3R. In some embodiments, the SMSM compound binds to the stem loop of exon 10 of the tau pre-mRNA, increasing the thermodynamic stability of the stem loop, thereby reducing inclusion of exon 10 in the mRNA of tau and increasing the ratio of 3R:4R tau isoforms. In some embodiments, the SMSM compound binds to the stem loop of exon 10 of the tau pre-mRNA, decreasing the thermodynamic stability of the stem loop, thereby increasing inclusion of exon 10 in the mRNA of tau and decreasing the ratio of 3R:4R tau isoforms.


Mutations and/or aberrant secondary or tertiary RNA structures in cis-acting elements of splicing can alter splicing patterns. Mutations and/or aberrant secondary or tertiary RNA structures can be found in core consensus sequences, including 5′ss, 3′ss, and BP regions, or other regulatory elements, including ESEs, ESSs, ISEs, and ISSs. Mutations in cis-acting elements can result in multiple diseases. Exemplary diseases are described below. The present disclosure provides splice modulating compounds and methods that target pre-mRNA containing one or more mutations and/or aberrant secondary or tertiary RNA structures in cis-acting elements. In some embodiments, the present disclosure provides methods and small molecule binding agents that target pre-mRNA containing one or more mutations and/or aberrant secondary or tertiary RNA structures in splice sites or BP regions. In some embodiments, the present disclosure provides methods and small molecule binding agents that target pre-mRNA containing one or more mutations and/or aberrant secondary or tertiary RNA structures in other regulatory elements, for example, ESEs, ESSs, ISEs, and ISSs.


In some embodiments, splicing at a splice site sequence of a polynucleotide of primary cells is modulated. In some embodiments, splicing at a splice site sequence of a polynucleotide of cells of a tumor is modulated. In some embodiments, the SMSM modulates splicing at a cryptic splice site sequence. In some embodiments, an SMSM modulates splicing of splice site of a polynucleotide. In some embodiments, wherein the polynucleotide is transcribed from the gene. In some embodiments, SMSM modulates exon inclusion in the polynucleotide and splicing of the splice site sequence. In some embodiments, the SMSM modulates pseudoexons inclusion in the polynucleotide and splicing of the splice site sequence. In some embodiments, the SMSM modulates splicing at a cryptic splice site sequence of a polynucleotide.


In some embodiments, an SMSM modulates splicing by preventing, inhibiting or reducing splicing of the polynucleotide. In some embodiments, an SMSM modulates splicing by preventing, inhibiting or reducing splicing at the splice site sequence. In some embodiments, an SMSM decreases affinity of a splicing complex component to the polynucleotide. In some embodiments, an SMSM decreases affinity of a splicing complex component to the polynucleotide at the splice site sequence, upstream of the splice site sequence or downstream of the splice site sequence. In some embodiments, an SMSM inhibits or reduces a rate of catalysis of splicing of the polynucleotide. In some embodiments, an SMSM inhibits or reduces a rate of catalysis of splicing of the polynucleotide at the splice site sequence. In some embodiments, an SMSM increases steric hindrance between a splicing complex component and the polynucleotide. In some embodiments, an SMSM increases steric hindrance between a splicing complex component and the polynucleotide at the splice site sequence, upstream of the splice site sequence or downstream of the splice site sequence. In some embodiments, an SMSM increases steric hindrance between a first splicing complex component and a second splicing complex component. In some embodiments, an SMSM prevents, inhibits, disrupts or reduces binding of a first splicing complex component and a second splicing complex component.


In some embodiments, an SMSM decreases affinity of a first splicing complex component to a second splicing complex component. In some embodiments, an SMSM prevents, inhibits, disrupts or reduces binding of a splicing complex component to the polynucleotide. In some embodiments, an SMSM prevents, inhibits, disrupts or reduces binding of a splicing complex component to the polynucleotide at the splice site sequence, upstream of the splice site sequence or downstream of the splice site sequence.


In some embodiments, an SMSM modulates splicing by promoting or increasing splicing of the polynucleotide. In some embodiments, an SMSM modulates splicing by promoting or increasing splicing the splice site sequence. In some embodiments, an SMSM increases affinity of a splicing complex component to the polynucleotide. In some embodiments, an SMSM increases affinity of a splicing complex component to the polynucleotide at the splice site sequence, upstream of the splice site sequence or downstream of the splice site sequence. In some embodiments, an SMSM increases a rate of catalysis of splicing of the polynucleotide. In some embodiments, an SMSM increases a rate of catalysis of splicing of the polynucleotide at the splice site sequence. In some embodiments, an SMSM decreases or reduces steric hindrance between a splicing complex component and the polynucleotide. In some embodiments, an SMSM decreases steric hindrance between a splicing complex component and the polynucleotide at the splice site sequence, 1-1000 nucleobases bases upstream of the splice site sequence or 1-1000 nucleobases downstream of the splice site sequence. In some embodiments, an SMSM decreases or reduces steric hindrance between a first splicing complex component and a second splicing complex component. In some embodiments, an SMSM promotes or increases binding of a first splicing complex component and a second splicing complex component. In some embodiments, an SMSM increases affinity of a first splicing complex component to a second splicing complex component. In some embodiments, an SMSM promotes or increases binding of a splicing complex component to the polynucleotide. In some embodiments, an SMSM promotes or increases binding of a splicing complex component to the polynucleotide at the splice site sequence, 1-1000 nucleobases upstream of the splice site sequence or 1-1000 nucleobases downstream of the splice site sequence. In some embodiments, an SMSM binds to a splicing complex component, the polynucleotide, or a combination thereof. In some embodiments, an SMSM binds to the polynucleotide at the splice site sequence, 1-1000 nucleobases upstream of the splice site sequence or 1-1000 nucleobases downstream of the splice site sequence. In some embodiments, an SMSM structurally modulates a splicing complex component, the polynucleotide, or both. In some embodiments, an SMSM promotes or increases steric hindrance, steric shielding, steric attraction, chain crossing, steric repulsions, steric inhibition of resonance, steric inhibition of protonation, or a combination thereof of the polynucleotide, a splicing complex component or a combination thereof. In some embodiments, binding of an SMSM to a polynucleotide or a splicing complex component decreases conformational stability of a splice site sequence. In some embodiments, binding of an SMSM to a polynucleotide increases conformational stability of a splice site sequence.


In some embodiments, an SMSM modulates exon skipping of a target polynucleotide, such as a pre-mRNA. For example, an SMSM can inhibit exon skipping of a target polynucleotide, such as a pre-mRNA. For example, an SMSM can promote exon skipping of a target polynucleotide, such as a pre-mRNA. In some embodiments, an SMSM modulates splicing at a splice site sequence of a polynucleotide in a cell of a subject with a disease or condition associated with exon skipping of the polynucleotide, such as a pre-mRNA. In some embodiments, an SMSM modulates splicing at a splice site sequence of a polynucleotide in a cell of a subject with a disease or condition associated with aberrant exon skipping of the polynucleotide, such as a pre-mRNA.


In some embodiments, an SMSM modulates exon inclusion of a target polynucleotide, such as a pre-mRNA. For example, an SMSM can inhibit exon inclusion of a target polynucleotide, such as a pre-mRNA. For example, an SMSM can promote exon inclusion of a target polynucleotide, such as a pre-mRNA. In some embodiments, an SMSM modulates splicing at a splice site sequence of a polynucleotide in a cell of a subject with a disease or condition associated with exon inclusion of the polynucleotide, such as a pre-mRNA. In some embodiments, an SMSM modulates splicing at a splice site sequence of a polynucleotide in a cell of a subject with a disease or condition associated with aberrant exon inclusion of the polynucleotide, such as a pre-mRNA.


In some embodiments, an SMSM modulates nonsense mediated degradation (NMD) of a target polynucleotide, such as a pre-mRNA. For example, an SMSM can inhibit nonsense mediated degradation (NMD) of a target polynucleotide, such as a pre-mRNA or an mRNA. In some embodiments, an SMSM modulates splicing at a splice site sequence of a polynucleotide in a cell of a subject with a disease or condition associated with NMD of the polynucleotide, such as a pre-mRNA or an mRNA.


In some embodiments, an SMSM modulates intron inclusion of a target polynucleotide. For example, an SMSM can inhibit intron inclusion of a target polynucleotide, such as a pre-mRNA. For example, an SMSM can promote intron inclusion of a target polynucleotide, such as a pre-mRNA. In some embodiments, an SMSM modulates splicing at a splice site sequence of a polynucleotide in a cell of a subject with a disease or condition associated with intron inclusion of the polynucleotide. In some embodiments, the SMSM modulates splicing at a splice site sequence of a polynucleotide in a cell of a subject with a disease or condition associated with intron inclusion of the polynucleotide.


In some embodiments, an SMSM modulates splicing at splice site sequence of a polynucleotide, such as a pre-mRNA, wherein the splice site sequence comprises a sequence selected from the group consisting of NGAgunvm, NHAdddddn, NNBnnnnnn, and NHAddmhvk; wherein N or n is A, U, G or C; B is C, G, or U; H or h is A, C, or U; d is a, g, or u; m is a or c; r is a or g; v is a, c or g; k is g or u.


In some embodiments, an SMSM modulates splicing of a splice site sequence comprising a sequence NNBgunnnn, NNBhunnnn, or NNBgvnnnn. In some embodiments, an SMSM modulates splicing of a splice site sequence comprising a sequence NNBgurrm, NNBguwwdn, NNBguvmvn, NNBguvbbn, NNBgukddn, NNBgubnbd, NNBhunngn, NNBhurmhd, or NNBgvdnvn; wherein N or n is A, U, G or C; B is C, G, or U; H or h is A, C, or U; d is a, g, or u; m is a or c; r is a or g; v is a, c or g; k is g or u.


In some embodiments, an SMSM modulates splicing of a splice site sequence comprising a sequence of Table 2A, Table 2B, Table 2C or Table 2D. In some embodiments, an SMSM modulates splicing of a splice site sequence comprising a sequence AAAauaagu, AAAguaagua (SEQ ID NO: 1), AAAguacau, AAAguaga, AAAguaug, AAAguaugu, AAAgugagug (SEQ ID NO: 2), AAAgugaguu (SEQ ID NO: 3), AACaugagga (SEQ ID NO: 4), AACguaagu, AACgugacu, AACgugauu, AAGaugagc, AAGauuugu, AAGgaugag, AAGgcaaaa, AAGgcaaggg (SEQ ID NO: 5), AAGgcaggga (SEQ ID NO: 6), AAGggaaaa, AAGguaugag (SEQ ID NO: 7), AAGguaaag, AAGguaaau, AAGguaaca, AAGguaacaug (SEQ ID NO: 8), AAGguaacu, AAGguaagcc (SEQ ID NO: 9), AAGguaagcg (SEQ ID NO: 10), AAGguaauaa (SEQ ID NO: 11), AAGguaaugu (SEQ ID NO: 12), AAGguaaugua (SEQ ID NO: 13), AAGguacag, AAGguacgg, AAGguacug, AAGguagacc (SEQ ID NO: 14), AAGguagag, AAGguagcg, AAGguagua, AAGguagug, AAGguauac, AAGguauau, AAGguauauu (SEQ ID NO: 15), AAGguauca, AAGguaucg, AAGguaucu, AAGguauga, AAGguaugg, AAGguaugu, AAGguauuu, AAGgucaag, AAGgucaau, AAGgucucu, AAGgucuggg (SEQ ID NO: 16), AAGgucugu, AAGgugaccuu (SEQ ID NO: 17), AAGgugagau (SEQ ID NO: 18), AAGgugaguc (SEQ ID NO: 19), AAGgugccu, AAGgugggcc (SEQ ID NO: 20), AAGgugggu, AAGguggua, AAGguguau, AAGgugucu, AAGgugugc, AAGgugugu, AAGguguua, AAGguuaag, AAGguuagc, AAGguuagug (SEQ ID NO: 21), AAGguuca, AAGguuuaa, AAGguuuau, AAGguuugg, AAGuuaagg, AAGuuaaua, AAGuuagga, AAUguaaau, AAUguaagc, AAUguaagg, AAUguaauu, AAUguaugu, AAUgugagu, AAUgugugu, ACAguaaau, ACAgugagg, ACAguuagu, ACAguuuga, ACCaugagu, ACCgugaguu (SEQ ID NO: 22), ACGauaagg, ACGcuaagc, ACGguagcu, ACGgugaac, ACGgugagug (SEQ ID NO: 23), ACUguaaau, ACUguaacu, ACUguauu, ACUgugagug (SEQ ID NO: 24), AGAguaag, AGAguaaga, AGAguaagg, AGAguaagu, AGAguagau, AGAguaggu, AGAgugaau, AGAgugagc, AGAgugagu, AGAgugcgu, AGCguaagg, AGCguaagu, AGCguacgu, AGCguaggu, AGCgugagu, AGGguaauga (SEQ ID NO: 25), AGGguagac, AGGguauau, AGGgugaau, AGGgugagg, AGGgugauc, AGGgugcaa, AGGgugucu, AGUguaagc, AGUguaagu, AGUgugagu, AGUgugaguac (SEQ ID NO: 26), AUAgucagu, AUAgugaau, AUCgguaaaa (SEQ ID NO: 27), AUCguuaga, AUGguaaaa, AUGguaacc, AUGguacau, AUGguaugu, AUGguauuu, AUGgucauu, AUGgugacc, AUUuuaagc, CAAGguaccu (SEQ ID NO: 28), CAAguaaac, CAAguaacu, CAAguaagc, CAAguaagg, CAAguaagua (SEQ ID NO: 29), CAAguaau, CAAguaugu, CAAguauuu, CAAgugaaa, CAAgugagu, CACgugagc, CACguuggu, CAGauaacu, CAGaugagg, CAGaugagu, CAGauuggu, CAGcugugu, CAGgcgagu, CAGgcuggu, CAGguaaggc (SEQ ID NO: 30), CAGguaaaa, CAGguaaag, CAGguaaccuc (SEQ ID NO: 31), CAGguaagac (SEQ ID NO: 32), CAGguaagc, CAGguaagu, CAGguaau, CAGguaaugc (SEQ ID NO: 33), CAGguaaugu (SEQ ID NO: 34), CAGguacaa, CAGguacag, CAGguacagu (SEQ ID NO: 35), CAGguaccg, CAGguacug, CAGguagag, CAGguagcaa (SEQ ID NO: 36), CAGguaggagg (SEQ ID NO: 37), CAGguaggc, CAGguagguga (SEQ ID NO: 38), CAGguagua, CAGguagug, CAGguauag, CAGguauau, CAGguaucc, CAGguauga, CAGguaugg, CAGguaugu, CAGguauug, CAGgucaau, CAGgucagug (SEQ ID NO: 39), CAGgucuga, CAGgucugga (SEQ ID NO: 40), CAGgucuggu (SEQ ID NO: 41), CAGgucuuu, CAGgugacu, CAGgugagc, CAGgugaggg (SEQ ID NO: 42), CAGgugagugg (SEQ ID NO: 43), CAGgugaua, CAGgugcac, CAGgugcag, CAGgugcgc, CAGgugcug, CAGguggau, CAGgugggug (SEQ ID NO: 44), CAGgugua, CAGguguag, CAGguguau, CAGguguga, CAGgugugu, CAGguuaag, CAGguugau, CAGguugcu, CAGguuggc, CAGguuguc, CAGguuguu, CAGguuuagu (SEQ ID NO: 45), CAGguuugc, CAGguuugg, CAGuuuggu, CAUggaagac (SEQ ID NO: 46), CAUguaau, CAUguaauu, CAUguaggg, CAUguauuu, CCAguaaac, CCAgugaga, CCGguaacu, CCGgugaau, CCGgugacu, CCGgugagg, CCUauaagu, CCUaugagu, CCUguaaau, CCUguaagc, CCUguaauu, CCUgugaau, CCUgugauu, CGAguccgu, CGCauaagu, CGGguaau, CGGguauau, CGGguaugg, CGGgucauaauc (SEQ ID NO: 47), CGGgugggu, CGGguguau, CGGgugugu, CGUgugaau, CGUgugggu, CUGguauga, CUGgugaau, CUGgugaguc (SEQ ID NO: 48), CUGgugaguuc (SEQ ID NO: 49), CUGgugcau, CUGgugcuu, CUGguguga, CUGguuugu, CUGuuaag, CUGuugaga, GAAggaagu, GAAguaaac, GAAguaaau, GAAgucugg, GAAguggg, GAAgugugu, GAAuaaguu, GACaugagg, GAGaucugg, GAGaugagg, GAGCAGguaagcu (SEQ ID NO: 50), GAGcugcag, GAGgcaggu, GAGgcgugg, GAGgcuccc, GAGguggguuu (SEQ ID NO: 51), GAGguaaag, GAGguaaga, GAGguaagag (SEQ ID NO: 52), GAGguaagcg (SEQ ID NO: 53), GAGguaauac (SEQ ID NO: 54), GAGguaauau (SEQ ID NO: 55), GAGguaaugu (SEQ ID NO: 56), GAGguacaa, GAGguagga, GAGguauau, GAGguauga, GAGguaugg, GAGgucuggu (SEQ ID NO: 57), GAGgugaag, GAGgugagg, GAGgugca, GAGgugccu, GAGgugcggg (SEQ ID NO: 58), GAGgugcug, GAGguguac, GAGguguau, GAGgugugc, GAGgugugu, GAGuuaagu, GAUaugagu, GAUguaaau, GAUguaagu, GAUguaauu, GAUguaua, GAUgugacu, GAUgugagg, GAUgugauu, GCAguaaau, GCAguagga, GCAguuagu, GCGaugagu, GCGgagagu, GCGguaaaa, GCGguaauca (SEQ ID NO: 59), GCGgugacu, GCGgugagca (SEQ ID NO: 60), GCGgugagcu (SEQ ID NO: 61), GCGguggga, GCGguuagu, GCUguaaau, GCUguaacu, GCUguaauu, GGAguaag, GGAguaagg, GGAguaagu, GGAguaggu, GGAgugagu, GGAguuagu, GGCguaagu, GGCgucagu, GGGauaagu, GGGaugagu, GGGguaagug (SEQ ID NO: 62), GGGguaaau, GGGguaacu, GGGguacau, GGGgugacg, GGGgugagug (SEQ ID NO: 63), GGGgugcau, GGGguuggga (SEQ ID NO: 64), GGUguaagu, GUAgugagu, GUGguaagu, GUGguaagug (SEQ ID NO: 65), GUGgugagc, GUGgugagu, GUGgugauc, GUGguugua, GUUauaagu, GUUCUCAgugug (SEQ ID NO: 66), GUUguaaau, GUUuugguga (SEQ ID NO: 67), uAGCAGguaagca (SEQ ID NO: 68), uGGguaccug (SEQ ID NO: 69), UAGaugcgu, UAGguaaag, UAGguaccc, UAGguaggu, UAGguauau, UAGguauc, UAGguauga, UAGguauug, UAGgucaga, UAGgugcau, UAGguguau, UCAguaaac, UCAguaaau, UCAguaagu, UCAgugauu, UCAgugug, UCCgugaau, UCCgugacu, UCCgugagc, UCUguaaau, UGAgugaau, UGGauaagg, UGGguaaag, UGGguacca, UGGguaugc, UGGguggau, UGGguggggg (SEQ ID NO: 70), UGGgugggug (SEQ ID NO: 71), UGGgugugg, UGGguuagu, UGUgcaagu, UGUguaaau, UGUguacau, UUAguaaau, UUCauaagu, UUGguaaag, UUGguaaca, UUGguacau, UUGguagau, UUGgugaau, UUGgugagc, UUUauaagc or UUUgugagc. ABCA4, ABCA9, ABCB1, ABCB5, ABCC9, ABCD1, ACADL, ACADM, ACADSB, ACSS2, ACTG2, ADA, ADAL, ADAM10, ADAM15, ADAM22, ADAM32, ADAMTS12, ADAMTS13, ADAMTS20, ADAMTS6, ADAMTS9, ADCY10, ADCY3, ADCY8, ADRBK2, AFP, AGL, AGT, AHCTF1, AKAP10, AKAP3, AKNA, ALAS1, ALB, ALDH3A2, ALG6, ALS2CL, AMBRA1, ANGPTL3, ANK3, ANTXR2, ANXA10, ANXA11, AP2A2, AP4E1, APC, APOA1, APOB, APOC3, APOH, AR, ARFGEF1, ARFGEF2, ARHGAP1, ARHGAP18, ARHGAP26, ARHGAP8, ARHGEF18, ARHGEF2, ARPC3, ARS2, ASH1L, ASNSD1, ASPM, ATAD5, ATG16L2, ATG4A, ATM, ATP11C, ATP13A5, ATP6V1G3, ATP7A, ATP7B, ATR, ATXN2, ATXN3, B2M, B4GALNT3, BBOX1, BBS4, BCL2-like 11 (BIM), BCS1L, BMP2K, BMPR2, BRCA1, BRCA2, BRCC3, BRSK1, BRSK2, BTAF1, BTK, C10orf137, C11orf30, C11orf65, C11orf70, C12orf51, C13orf1, C13orf15, C14orf101, C14orf118, C15orf29, C15orf42, C15orf60, C16orf33, C16orf38, C16orf48, C18orf8, C19orf42, C1orf107, C1orf114, C1orf130, C1orf149, C1orf27, C1orf71, C1orf87, C1orf94, C1R, C20orf74, C21orf70, C2orf55, C3, C3orf23, C4orf18, C4orf29, C5orf34, C6orf118, C8B, C8orf33, C9orf114, C9orf43, C9orf86, C9orf98, CA11, CAB39, CACHD1, CACNA1B, CACNA1C, CACNA1G, CACNA1H, CACNA2D1, CALCA, CALCOCO2, CAMK1D, CAMKK1, CAPN3, CAPN9, CAPSL, CARKD, CAT, CBX1, CBX3, CCDC102B, CCDC11, CCDC131, CCDC146, CCDC15, CCDC18, CCDCl5, CCDCl81, CD1B, CD33, CD4, CD46, CDC14A, CDC16, CDCl2L5, CDCl42BPB, CDCA8, CDH1, CDH10, CDH11, CDH23, CDH24, CDH8, CDH9, CDK5RAP2, CDK6, CDK8, CEL, CELSR3, CENP1, CENTB2, CENTG2, CEP110, CEP170, CEP192, CETP, CFB, CFH, CFTR, CGN, CGNL1, CHAF1A, CHD9, CHIC2, CHL1, CHM, CHN1, CLCN1, CLEC16A, CLIC2, CLINT1, CLK1, CLPB, CLPTM1, CMIP, CMYA5, CNGA3, CNOT1, CNOT7, CNTN6, COG3, COL11A1, COL11A2, COL12A1, COL14A1, COL15A1, COL17A1, COL19A1, COL1A1, COL1A2, COL22A1, COL24A1, COL25A1, COL29A1, COL2A1, COL3A1, COL4A1, COL4A2, COL4A5, COL4A6, COL5A2, COL6A1, COL7A1, COL9A1, COL9A2, COLQ, COMTD1, COPA, COPB2, COPS7B, COPZ2, CPSF2, CPXM2, CR1, CREBBP, CRKRS, CRYZ, CSE1L, CSTB, CSTF3, CT45-6, CUBN, CUL4B, CUL5, CXorf41, CYBB, CYFIP2, CYP17, CYP19, CYP24A1, CYP27A1, CYP3A4, CYP3A43, CYP3A5, CYP4F2, CYP4F3, DAZ2, DCBLD1, DCC, DCTN3, DCUN1D4, DDA1, DDEF1, DDX1, DDX24, DDX4, DENND2D, DEPDC2, DES, DGAT2, DHFR, DHRS7, DHRS9, DIP2A, DMD, DMTF1, DNAH3, DNAH8, DNAI1, DNAJA4, DNAJC13, DNAJC7, DNTTIP2, DOCK10, DOCK11, DOCK4, DPP3, DPP4, DPY19L2P2, DSCC1, DUX4, DVL3, DYNC1H1, DYSF, ECM2, EDEM3, EFCAB3, EFCAB4B, EFNA4, EFTUD2, EGFR, EIF3A, ELA1, ELA2A, EMCN, EMD, EML5, ENPP3, EPB41L5, EPHA3, EPHA4, EPHB1, EPHB2, EPHB3, EPS15, ERBB4, ERCC1, ERCC8, ERGIC3, ERMN, ERMP1, ERN1, ERN2, ETS2, ETV4, EVC2, EXO1, EXOC4, F11, F13A1, F3, F5, F7, F8, FAH, FAM134A, FAM13A1, FAM13B1, FAM13C1, FAM161A, FAM176B, FAM184A, FAM19A1, FAM20A, FAM23B, FAM65C, FANCA, FANCC, FANCG, FANCM, FANK1, FAR2, FBN1, FBX015, FBX018, FBXO38, FCGBP, FECH, FEZ2, FGA, FGD6, FGFR10P, FGFR10P2, FGFR2, FGG, FGR, FIX, FKBP3, FLJ35848, FLJ36070, FLNA, FN1, FNBP1L, FOLH1, FOXM1, FRAS1, FUT9, FZD3, FZD6, GAB1, GALC, GALNT3, GAPDH, GART, GAS2L3, GBA, GBGT1, GCG, GCGR, GCK, GFM1, GH1, GHR, GHV, GJA1, GLA, GLT8D1, GNAS, GNB5, GOLGB1, GOLT1A, GOLT1B, GPATCH1, GPR158, GPR160, GRAMD3, GRHPR, GRIA1, GRIA3, GRIA4, GRIN2B, GRM3, GRM4, GRN, GSDMB, GSTCD, GST02, GTPBP4, HADHA, HBA2, HBB, HCK, HDAC3, HDAC5, HDX, HEPACAM2, HERC1, HEXA, HEXB, HIPK3, HLA-DPB1, HLA-G, HLCS, HLTF, HMBS, HMGCL, HNF1A, HNRNPH1, HP1BP3, HPGD, HPRT1, HPRT2, HSF2BP, HSF4, HSPA9, HSPG2, HTT, HXA, ICA1, IDH1, IDS, IFI44L, IKBKAP, IL1R2, IL5RA, IL7RA, IMMT, INPP5D, INSR, INTS3, INTU, IPO4, IPO8, IQGAP2, ISL2, ITFG1, ITGAL, ITGB1, ITGB2, ITGB3, ITGB4, IT1H1, ITPR2, IWS1, JAG1, JAK1, JAK2, JMJD1C, KALRN, KATNAL2, KCNN2, KCNT2, KIAA0256, KIAA0528, KIAA0564, KIAA0586, KIAA1033, KIAA1166, KIAA1219, KIAA1409, KIAA1622, KIAA1787, KIF15, KIF16B, KIF3B, KIF5A, KIF5B, KIF9, KIN, KIR2DL5B, KIR3DL2, KIR3DL3, KLF12, KLF3, KLHL20, KLK12, KLKB1, KPNA5, KRAS, KREMEN1, KRIT1, KRT5, KRTCAP2, L1CAM, L3MBTL, L3MBTL2, LACE1, LAMA1, LAMA2, LAMA3, LAMB1, LARP7, LDLR, LENG1, LGALS3, LGMN, LHCGR, LHX6, LIMCH1, LIMK2, LMBRD1, LMBRD2, LMLN, LMNA, LM02, LOC389634, LOC390110, LPA, LPCAT2, LPL, LRP4, LRPPRC, LRRC19, LRRC42, LRRK2, LRWD1, LUM, LVRN, LYN, LYST, MADD, MAGI1, MAGT1, MALT1, MAP2K1, MAP4K4, MAPK8IP3, MAPK9, MAPT, MATN2, MCF2L2, MCM6, MDGA2, MEGF10, MEGF11, MEMOl, MET, MGAM, MGAT4A, MGAT5, MGC16169, MGC34774, MIB1, MIER2, MKKS, MKL2, MLANA, MLH1, MLL5, MLX, MME, MPDZ, MPI, MRAP2, MRPL11, MRPL39, MRPS28, MRPS35, MS4A13, MSH2, MSMB, MST1R, MTDH, MTF2, MTHFR, MTIF2, MUC2, MUT, MVK, MYB, MYCBP2, MYH2, MYO19, MYO3A, MYO9B, MYOM2, MYOM3, NAG, NARG1, NARG2, NCOA1, NDC80, NDFIP2, NEB, NEDD4, NEK1, NEK11, NEK5, NF1, NF2, NFE2L2, NFIA, NFIX, NFKBIL2, NFRKB, NKAIN2, NKAP, NLRC3, NLRC5, NLRP13, NLRP7, NLRP8, NME7, NOL10, NOS1, NOS2A, NOTCH1, NPM1, NRIH4, NR4A3, NRXN1, NSMAF, NSMCE2, NT5C, NT5C3, NUBP1, NUBPL, NUDT5, NUMA1, NUP160, NUP88, NUP98, NUPL1, OAT, OBFC2A, OBFC2B, OLIG2, OPA1, OPN4, OPTN, OSBPL11, OSBPL8, OSGEPL1, OTC, OXT, PADI4, PAH, PAN2, PAPOLG, PARD3, PARVB, PAWR, PBGD, PBRM1, PCBP4, PCCA, PCNX, PCOTH, PDCD4, PDE10A, PDE8B, PDH1, PDIA3, PDK4, PDLIM5, PDS5A, PDS5B, PDXK, PDZRN3, PELI2, PGK1, PGM2, PHACTR4, PHEX, PHKB, PHLDB2, PHTF1, PIAS1, PIGF, PIGN, PIGT, PIK3C2G, PIK3CG, PIK3R1, PIP5KIA, PITRM1, PIWIL3, PKD1, PKD2, PKHD1L1, PKIB, PKLR, PKM1, PKM2, PLCB1, PLCB4, PLCG1, PLD1, PLEKHA5, PLEKHA7, PLEKHM1, PLKR, PLXNC1, PMFBP1, POLN, POLR3D, POMT2, POSTN, PPFIA2, PPP1R12A, PPP3CB, PPP4C, PPP4R1L, PPP4R2, PRAME, PRC1, PRDM1, PRIM1, PRIM2, PRKAR1A, PRKCA, PRKG1, PRMT7, PROC, PROCR, PRODH, PROSC, PROX1, PRPF40B, PRPF4B, PRRG2, PRUNE2, PSD3, PSEN1, PSMAL, PTCH1, PTEN, PTK2, PTK2B, PTPN11, PTPN22, PTPN3, PTPN4, PTPRD, PTPRK, PTPRM, PTPRN2, PTPRT, PUS10, PVRL2, PYGM, QRSL1, RAB11FIP2, RAB23, RALBP1, RALGDS, RB1CC1, RBL2, RBM39, RBM45, REC8, RFC4, RFT1, RFTN1, RHPN2, RIF1, RLN3, RMND5B, RNF11, RNF32, RNFT1, RNGTT, ROCK1, ROCK2, RP1, RP11-265F1, RP13-36C9, RP6KA3, RPAP3, RPGR, RPN1, RPS6KA6, RRM1, RRP1B, RSK2, RTEL1, RTF1, RUFY1, RYR3, SAAL1, SAE1, SBCAD, SCN11A, SCN1A, SCN2A, SCN3A, SCN4A, SCN5A, SCN8A, SCNA, SCO1, SCYL3, SDK1, SDK2, SEC24A, SEC24D, SEC31A, SEL1L, SENP3, SENP6, SENP7, SERPINA1, SETD3, SETD4, SEZ6, SFRS12, SGCE, SGOL2, SGPL1, SH2D1A, SH3BGRL2, SH3PXD2A, SH3PXD2B, SH3RF2, SH3TC2, SIPA1L2, SIPA1L3, SIVA1, SKAP1, SKIV2L2, SLC12A3, SLC13A1, SLC22A17, SLC25A14, SLC28A3, SLC38A1, SLC38A4, SLC39A10, SLC4A2, SLC6A11, SLC6A13, SLC6A6, SLC6A8, SMARCA1, SMARCA5, SMC5, SMN2, SMTN, SNCAIP, SNRK, SNRP70, SNX6, SOD1, SPAG9, SPATA13, SPATA4, SPATS1, SPECC1L, SPINK5, SPP2, SPTA1, SRP72, SSX3, SSX5, SSX9, STAG1, STAMBPL1, STARD6, STAT6, STK17B, STX3, STXBP1, SUCLG2, SULF2, SUPT16H, SUPT6H, SV2C, SYCP1, SYCP2, SYT6, SYTL5, TAF2, TBC1D26, TBC1D29, TBC1D3G, TBC1D8B, TBCEL, TBK1, TBPL1, TCEB3, TCF12, TCP11L2, TDRD3, TEAD1, TECTB, TEK, TET2, TFRC, TG, TGM7, TGS1, THOC2, TIAL1, TIAM2, TIMM50, TLK2, TM4SF20, TM6SF1, TMEM156, TMEM194A, TMEM27, TMEM77, TMF1, TMPRSS6, TNFRSF10A, TNFRSF10B, TNFRSF8, TNK2, TNKS, TNKS2, TOMIL1, TOM1L2, TOP2B, TP53, TP53BP2, TP53I3, TP53INP1, TP63, TRAF3IP3, TRAPPC2, TRIM44, TRIM65, TRIML1, TRIML2, TRPM3, TRPM5, TRPM7, TSC1, TSC2, TSHB, TSPAN7, TTC17, TTLL5, TTLL9, TTN, TTPAL, TTR, TUSC3, TXNDC10, UBE3A, UCK1, UGT1A1, UHRF1BP1, UNC45B, EINC5C, USH2A, USP1, USP38, USP39, USP6, UTP15, UTP18, UTP20, UTRN, UTX, UTY, UVRAG, UXT, VAPA, VPS29, VPS35, VPS39, VTI1A, VTI1B, VWA3B, WDFY2, WDR16, WDR17, WDR26, WDR44, WDR67, WDTC1, WRNIP1. WWC3, XRN1, XRN2, XX-FW88277, YARS, YGM, ZBTB20, ZC3H7A, ZC3HAV1, ZC3HC1, ZFYVE1, ZNF114, ZNF169, ZNF326, ZNF365, ZNF37A, ZNF618 or a ZWINT.


In some embodiments, an SMSM modulates splicing of a splice site sequence comprising a sequence of Table 2A. In some embodiments, an SMSM modulates splicing of a splice site sequence comprising a sequence AAAauaagu, AAAguaagua (SEQ ID NO: 1), AAAguacau, AAAguaga, AAAguaug, AAAguaugu, AAAgugagug (SEQ ID NO: 2), AAAgugaguu (SEQ ID NO: 3), AACaugagga (SEQ ID NO: 4), AACguaagu, AACgugacu, AACgugauu, AAGaugagc, AAGauuugu, AAGgaugag, AAGgcaaaa, AAGgcaaggg (SEQ ID NO: 5), AAGgcaggga (SEQ ID NO: 6), AAGggaaaa, AAGgtatgag (SEQ ID NO: 72), AAGguaaag, AAGguaaau, AAGguaaca, AAGguaacaug (SEQ ID NO: 8), AAGguaacu, AAGguaagcc (SEQ ID NO: 9), AAGguaagcg (SEQ ID NO: 10), AAGguaauaa (SEQ ID NO: 11), AAGguaaugu (SEQ ID NO: 12), AAGguaaugua (SEQ ID NO: 13), AAGguacag, AAGguacgg, AAGguacug, AAGguagacc (SEQ ID NO: 14), AAGguagag, AAGguagcg, AAGguagua, AAGguagug, AAGguauac, AAGguauau, AAGguauauu (SEQ ID NO: 15), AAGguauca, AAGguaucg, AAGguaucu, AAGguauga, AAGguaugg, AAGguaugu, AAGguauuu, AAGgucaag, AAGgucaau, AAGgucucu, AAGgucuggg (SEQ ID NO: 16), AAGgucugu, AAGgugaccuu (SEQ ID NO: 17), AAGgugagau (SEQ ID NO: 18), AAGgugaguc (SEQ ID NO: 19), AAGgugccu, AAGgugggcc (SEQ ID NO: 20), AAGgugggu, AAGguggua, AAGguguau, AAGgugucu, AAGgugugc, AAGgugugu, AAGguguua, AAGguuaag, AAGguuagc, AAGguuagug (SEQ ID NO: 21), AAGguuca, AAGguuuaa, AAGguuuau, AAGguuugg, AAGuuaagg, AAGuuaaua, AAGuuagga, AAUguaaau, AAUguaagc, AAUguaagg, AAUguaauu, AAUguaugu, AAUgugagu, AAUgugugu, ACAguaaau, ACAgugagg, ACAguuagu, ACAguuuga, ACCaugagu, ACCgugaguu (SEQ ID NO: 22), ACGauaagg, ACGcuaagc, ACGguagcu, ACGgugaac, ACGgugagug (SEQ ID NO: 23), ACUguaaau, ACUguaacu, ACUguauu, ACUgugagug (SEQ ID NO: 24), AGAguaaga, AGAguaagg, AGAguaagu, AGAguagau, AGAguaggu, AGAgugaau, AGAgugagc, AGAgugagu, AGAgugcgu, AGCguaagg, AGCguaagu, AGCguacgu, AGCguaggu, AGCgugagu, AGGguaauga (SEQ ID NO: 25), AGGguagac, AGGguauau, AGGgugaau, AGGgugagg, AGGgugauc, AGGgugcaa, AGGgugucu, AGUguaagc, AGUguaagu, AGUgugagu, AGUgugaguac (SEQ ID NO: 26), AUAgucagu, AUAgugaau, AUCgguaaaa (SEQ ID NO: 27), AUCguuaga, AUGguaaaa, AUGguaacc, AUGguacau, AUGguaugu, AUGguauuu, AUGgucauu, AUGgugacc, AUUuuaagc, CAAGguaccu (SEQ ID NO: 28), CAAguaaac, CAAguaacu, CAAguaagc, CAAguaagg, CAAguaagua (SEQ ID NO: 29), CAAguaau, CAAguaugu, CAAguauuu, CAAgugaaa, CAAgugagu, CACgugagc, CACguuggu, CAGauaacu, CAGaugagg, CAGauuggu, CAGcugugu, CAGgcuggu, CAGgtaaggc (SEQ ID NO: 73), CAGguaaaa, CAGguaaag, CAGguaaccuc (SEQ ID NO: 31), CAGguaagac (SEQ ID NO: 32), CAGguaagc, CAGguaagu, CAGguaau, CAGguaaugc (SEQ ID NO: 33), CAGguaaugu (SEQ ID NO: 34), CAGguacaa, CAGguacag, CAGguacagu (SEQ ID NO: 35), CAGguaccg, CAGguacug, CAGguagag, CAGguagcaa (SEQ ID NO: 36), CAGguaggagg (SEQ ID NO: 37), CAGguaggc, CAGguagguga (SEQ ID NO: 38), CAGguagua, CAGguagug, CAGguauag, CAGguauau, CAGguaucc, CAGguauga, CAGguaugg, CAGguaugu, CAGguauug, CAGgucaau, CAGgucagug (SEQ ID NO: 39), CAGgucuga, CAGgucugga (SEQ ID NO: 40), CAGgucuggu (SEQ ID NO: 41), CAGgucuuu, CAGgugagc, CAGgugaggg (SEQ ID NO: 42), CAGgugagugg (SEQ ID NO: 43), CAGgugaua, CAGgugcac, CAGgugcag, CAGgugcgc, CAGgugcug, CAGguggau, CAGgugggug (SEQ ID NO: 44), CAGgugua, CAGguguag, CAGguguau, CAGguguga, CAGgugugu, CAGguuaag, CAGguugau, CAGguugcu, CAGguuggc, CAGguuguc, CAGguuguu, CAGguuuagu (SEQ ID NO: 45), CAGguuugc, CAGguuugg, CAGuuuggu, CAUggaagac (SEQ ID NO: 46), CAUguaau, CAUguaauu, CAUguaggg, CAUguauuu, CCAguaaac, CCAgugaga, CCGguaacu, CCGgugaau, CCGgugacu, CCGgugagg, CCUauaagu, CCUaugagu, CCUguaaau, CCUguaagc, CCUguaauu, CCUgugaau, CCUgugauu, CGAguccgu, CGCauaagu, CGGguaau, CGGguauau, CGGguaugg, CGGgucauaauc (SEQ ID NO: 47), CGGgugggu, CGGguguau, CGGgugugu, CGUgugaau, CGUgugggu, CUGguauga, CUGgugaau, CUGgugaguc (SEQ ID NO: 48), CUGgugaguuc (SEQ ID NO: 49), CUGgugcau, CUGgugcuu, CUGguguga, CUGguuugu, CUGuuaag, CUGuugaga, GAAggaagu, GAAguaaac, GAAguaaau, GAAgucugg, GAAguggg, GAAgugugu, GAAuaaguu, GACaugagg, GAGaucugg, GAGaugagg, GAGCAGguaagcu (SEQ ID NO: 50), GAGcugcag, GAGgcaggu, GAGgcgugg, GAGgcuccc, GAGgtgggttt (SEQ ID NO: 74), GAGguaaag, GAGguaaga, GAGguaagag (SEQ ID NO: 52), GAGguaagcg (SEQ ID NO: 53), GAGguaauac (SEQ ID NO: 54), GAGguaauau (SEQ ID NO: 55), GAGguaaugu (SEQ ID NO: 56), GAGguacaa, GAGguagga, GAGguauau, GAGguauga, GAGguaugg, GAGgucuggu (SEQ ID NO: 57), GAGgugaag, GAGgugagg, GAGgugca, GAGgugccu, GAGgugcggg (SEQ ID NO: 58), GAGgugcug, GAGguguac, GAGguguau, GAGgugugc, GAGgugugu, GAGuuaagu, GAUaugagu, GAUguaaau, GAUguaagu, GAUguaauu, GAUguaua, GAUgugacu, GAUgugagg, GAUgugauu, GCAguaaau, GCAguagga, GCAguuagu, GCGaugagu, GCGgagagu, GCGguaaaa, GCGguaauca (SEQ ID NO: 59), GCGgugacu, GCGgugagca (SEQ ID NO: 60), GCGgugagcu (SEQ ID NO: 61), GCGguggga, GCGguuagu, GCUguaaau, GCUguaacu, GCUguaauu, GGAguaagg, GGAguaagu, GGAguaggu, GGAgugagu, GGAguuagu, GGCguaagu, GGCgucagu, GGGauaagu, GGGaugagu, GGGgtaagtg (SEQ ID NO: 75), GGGguaaau, GGGguaacu, GGGguacau, GGGgugacg, GGGgugagug (SEQ ID NO: 63), GGGgugcau, GGGguuggga (SEQ ID NO: 64), GGUguaagu, GUUCUCAgugug (SEQ ID NO: 66), UCAgugug, GUAgugagu, GUGguaagu, GUGguaagug (SEQ ID NO: 65), GUGgugagc, GUGgugagu, GUGgugauc, GUGguugua, GUUauaagu, GUUguaaau, GUUuugguga (SEQ ID NO: 67), UAGCAGguaagca (SEQ ID NO: 68), TGGgtacctg (SEQ ID NO: 76), UAGaugcgu, UAGguaaag, UAGguaccc, UAGguaggu, UAGguauau, UAGguauc, UAGguauga, UAGguauug, UAGgucaga, UAGgugcau, UAGguguau, UCAguaaac, UCAguaaau, UCAguaagu, UCAgugauu, UCCgugaau, UCCgugacu, UCCgugagc, UCUguaaau, UGAgugaau, UGGauaagg, UGGguaaag, UGGguacca, UGGguaugc, UGGguggau, UGGguggggg (SEQ ID NO: 70), UGGgugggug (SEQ ID NO: 71), UGGgugugg, UGGguuagu, UGUgcaagu, UGUguaaau, UGUguacau, UUAguaaau, UUCauaagu, UUGguaaag, UUGguaaca, UUGguacau, UUGguagau, UUGgugaau, UUGgugagc, UUUauaagc or UUUgugagc.


In some embodiments, an SMSM modulates splicing of a splice site sequence comprising a sequence of Table 2B. In some embodiments, an SMSM modulates splicing of a splice site sequence comprising a sequence AAAauaagu, AAGaugagc, AAGauuugu, AAGgaugag, AAGgcaaaa, AAGuuaagg, AAGuuaaua, AAGuuagga, ACCaugagu, ACGauaagg, ACGcuaagc, AGGguauau, AGGgugagg, AGGgugauc, AGGgugucu, AUGgugacc, AUUuuaagc, CAAgugagu, CACgugagc, CACguuggu, CAGauaacu, CAGaugagg, CAGaugagu, CAGauuggu, CAGcugugu, CAGgcgagu, CAGgcuggu, CAGgugacu, CAGguugau, CAGguugcu, CAGguuggc, CAGguuguu, CAGuuuggu, CAUguaggg, CAUguauuu, CCGgugaau, CCUauaagu, CCUaugagu, CCUgugaau, CGCauaagu, CGGguguau, CUGuuaag, CUGuugaga, GAAggaagu, GAAguaaau, GAAgucugg, GAAguggg, GAAgugugu, GAAuaaguu, GACaugagg, GAGaucugg, GAGaugagg, GAGgcaggu, GAGgcgugg, GAGgcuccc, GAGguaaga, GAGguagga, GAGgugagg, GAGuuaagu, GAUaugagu, GAUaugagu, GCAguagga, GCGaugagu, GCGgagagu, GCGgugacu, GCGguuagu, GCUguaacu, GGGaugagu, GUAgugagu, GUGgugagc, GUGgugauc, UAGaugcgu, UGGauaagg, UGGguacca, UGGguggau, UGGgugggug (SEQ ID NO: 71), UGUgcaagu, UUCauaagu, UUGguaaca, UUUauaagc or UUUgugagc.


In some embodiments, an SMSM modulates splicing of a splice site sequence comprising a sequence of Table 2C or Table 2D. In some embodiments, an SMSM modulates splicing of a splice site sequence comprising a sequence NGAguaag.


In some embodiments, an SMSM modulates splicing of a splice site sequence comprising a sequence of Table 2C. In some embodiments, an SMSM modulates splicing of a splice site sequence comprising a sequence AGAguaag.


In some embodiments, an SMSM modulates splicing of a splice site sequence comprising a sequence of Table 2D. In some embodiments, an SMSM modulates splicing of a splice site sequence comprising a sequence GGAguaag.









TABLE 2A







Exemplary targets














Splice Site
SEQ




Gene
Disease
Sequence
ID NO:
Description
Exon















ABCA4
Stargardt disease, Macular
GAGguaaag

Non-mutated 5′ bulge
3



Degeneration, Age-Related
CGGguaugg

Non-mutated 5′ bulge
4




AGUguaagc

Non-mutated 5′ bulge
13 




CCAguaaac

IVS20 + 5G > A
20 




CAGgugcac

IVS28 + 5G > A
28 




AUGguacau

IVS40 + 5G > A
40 




AGAguaggu

Non-mutated 5′ bulge
6




AAGguacug

Non-mutated 5′ bulge
11 




GGAguaggu

Non-mutated 5′ bulge
20 


ABCD1
X-linked adrenoleukodystrophy (X-
GAAguggg

IVS1 − 1G > A
1



ALD)






ACADM
Medium-chain acyl-coA DH deficiency
AAGguaaau

IVS7 + 6G > U
8






Mutated 5′ bulge



ACADSB
2-methylbutyryl-CoA dehydrogenase
GGGgugcau

IVS3 + 3A > G
3



deficiency






ADA
Adenosine deaminase deficiency
CCAgugaga

IVS5 + 6U > A
5


ADAMTS13
Thrombotic thrombocytopenic purpura
AGGguagac

IVS13 + 5G > A
13 


AGL
Glycogen Storage Disease Type III
GGCguaagu

Non-mutated 5′ bulge
1




CUGguauga

IVS6 + 3A > G
6




AAGguagug

Non-mutated 5′ bulge
28 




AGAguaagu

Non-mutated 5′ bulge
31 


AGT
Treatment Resistant Hypertension
AAGguaagcc
9
Non-mutated 5′ss
1


ALB
Analbuminemia
AACaugagga
4
c.1652 + 1 G > A
12 


ALDH3A2
Cancer, non-small cell lung cancer,
CAGgucuggu
41
Non-mutated 5′ bulge
2



Sjögren-Larrson syndrome
AAGguuuau

IVS5 + 5G > A
5


ALG6
ALG6-congenital disorder of
UGUguaaau

IVS3 + 5G > A
3



glycosylation, ALG6-CDG






ANGPTL3
Lipid disorders, Rare hyperlipidemias,
AAAguaagua
1
Non-mutated 5′ss
1



Nonalcoholic fatty liver disease (NAFLD),







Metabolic complications, Homozygous







familial hypercholesterolemia (HoFH),







Familial chylomicronemia syndrome (FCS)






APC
Colorectal cancer, Familial
CAAguaugu

IVS9 + 3A > G
9



adenomatous polyposis
CAAguauuu

IVS9 + 5G > U
9




CAGguauau

IVS14 + 3A > G
14 


APOA1

UGGguaccug
69
Non-mutated 5′ss
1


APOB
Familial hypercholesterolemia,
AGAguaagu

Non-mutated 5′ bulge
13 



hypercholesterolemia







Homozygous hypobetalipoproteinemia,
AAGgcaaaa

IVS24 + 2 U > C
24 



familial hypercholesterolemia






APOC3
Familial Chylomicronemia Syndrome (FCS)
CAGguaaugc
33
Non-mutated 5′ss
1



and familial partial lipodystrophy (FPL)






AR
Androgen Sensitivity, prostate cancer
CUGuuaag

IVS4 + 1G > U
4




UUAguaaau

IVS6 + 5G > A
6


ATM
Ataxia-Telangiectasia, cancer
AAGguagua

Non-mutated 5′ bulge
2




UAGguauau

IVS7 + 5{circumflex over ( )}dG > A
7




CAGguacag

Non-mutated 5′ bulge
8




UUGguaaag

Non-mutated 5′ bulge
9




AAGguuuaa

IVS9 + 3A > U
9




AUCguuaga

IVS21 + 3A > U
21 




AUCgguaaaa
27
IVS21 + 5{circumflex over ( )}dG > A
21 




AAGgucucu

Non-mutated 5′ bulge
35 




GAGguaaugu
56
Non-mutated 5′ bulge
38 




CAGauaacu

IVS45 + 1G > A
45 




GAGguaaag

Non-mutated 5′ bulge
61 


ATP7A
Occipital Horn Syndrome, Menkes
AAGguaaugu
12
Non-mutated 5′ bulge
3



Disease







Occipital Horn Syndrome
GUUguaaau

IVS6 + 5G > A
6



Menkes Disease
GUUauaagu

IVS6 + 1G > A
6



Occipital Horn Syndrome, Menkes
AAGguaaag

Non-mutated 5′ bulge
10 



Disease







Occipital horn syndrome
AAGguuaag

IVS10 + 3A > U
10 






Mutated 5′ bulge




Menkes Disease
CAGgucuuu

IVS11 + 3A > C (mouse
11 






model), consistent







with patient




Occipital Horn Syndrome, Menkes
CAAguaaac

IVS17 + 5G > A
17 



Disease
CUGguuugu

IVS21 + 3A > U
21 


ATP7B
Wilson′s disease
AAAgugaguu
3
Non-mutated 5′ss
1


ATR
Seckel syndrome 1
CAGguauug

Non-mutated 5′ bulge
19 




CAGgucuga

Non-mutated 5′ bulge
28 


ATXN2
Spinocerebellar ataxia type 2 (SCA2),
CAGgugggug
44
Non-mutated 5′ss
1



ALS
GAGguggguuu
51
Non-mutated 5′ss
5


ATXN3
Spinocerebellar ataxia type 3 (SCA3)
AAAgugagug
2
Non-mutated 5′ss
1


B2M
Cancer, colorectal cancer
AGCgugagu

Non-mutated 5′ bulge
1


BCL2-like
Autoimmune disease, tumor
AGGguaauga
25
Non-mutated 5′ss
3, 4


11 (BIM)
development, Chronic Myeloid
GUUuugguga
67





Leukemia drug resistance






BMP2K
Cancer
CAAguaagg

Mutation inducing loss
14 






of U1snRNA affinity



BRCA1
Breast Caner
UGGguaaag

Non-mutated 5′ bulge
1




AAGguguau

IVS5 + 3A > G
5




AGGguauau

IVS5 − 2A > G
5




AAGgugugc

IVS13 + 6U > C
13 




UUUgugagc

IVS16 + 6U > C
16 




UCUguaaau

IVS18 + 5G > A
18 




ACAguaaau

IVS22 + 5G > A
22 


BRCA2
Breast Cancer
CAGguguga

IVS5 + 3A > G
5




UAGguauug

Non-mutated 5′ bulge
14 




CAGguauga

Non-mutated 5′ bulge
19 


BTK
Isolated growth hormone deficiency
AAGguggua

Non-mutated 5′ bulge
2



type III, X-linked agammaglobulinemia
GAAguaaac

IVS6 + 5G > A
6



(XLA), Cancer, Autoimmune disorders
GAUgugagg

IVS14 + 6U > G
14 


C3
Hereditary C3 deficiency
UGGauaagg

IVS18 + 1G > A
18 


CACNA1B
Pain, tactile neuropathic allodynia
GUGguaagug
65
Non-mutated 5′ss
37a




AAGguagacc
14
Non-mutated 5′ss
37b


CACNA1C
Type 1 Timothy's syndrome
GAGCAGguaagcu
50
G406R (G > A)
 8a



Type 2 Timothy's syndrome
UAGCAGguaagca
68
G406R (G > A)
8




GUUCUCAgugug
66
G402R (G > A)
8


CALCA
CGRP-related migraines
CAUggaagac
46
Non-mutated 5′ss
4


CAT
Acatalasemia and Pityriasis Versicolor,
UUGguagau

IVS4 + 5G > A
4



Autoimmune disease, cancer






CD33
Alzheimer's disease, acute myeloid
CAGgugagugg
43
Non-mutated 5′ss
1



leukemia






CD46
Autoimmune disorders, cancer, atypical
CAGguuuagu
45
Non-mutated 5′ss
7



hemolytic uremic syndrome (aHUS),
CAGguuuagu
45
Non-mutated 5′ss
8



multiple sclerosis, rheumatoid arthritis,
AAGguaucu

Non-mutated 5′ss
13 



age-related macular degeneration,







asthma






CDH1
Cancer, hereditary diffuse gastric cancel
CAGguggau

IVS14 + 5G > A
14 



syndrome






CDH23
Usher Syndrome and Nonsyndromic
ACGgugaac

IVS51 + 5G > A
51 



Deafness
AGCguaagg

Non-mutated 5′ bulge
54 


CFB
Hemolytic Uremic Syndrome, Atypical
GAGguaagcg
53
Non-mutated 5′ss
1


(Complement
4 and Complement Factor B Deficiency






factor B)







CFTR
Cystic Fibrosis
CAUguaau

−1G > U
8






Mutated 5′ bulge





AAAguaug

−1G > A
19 






Mutated 5′ bulge





AAGuuaaua

IVS4 + 1G > U
4




ACAguuagu

IVS6b + 3{circumflex over ( )}d
 6b




CAGguaaugu
34
Non-mutated 5′ bulge
8




AAAguaugu

c.1766-1G > A
12 




AAUguaugu

c.1766-1G > U
12 




AAGguauuu

IVS12 + 5G > U
12 




AAGgugugu

c.1766 + 3A > G
12 




AAGgucugu

c.1766 + 3A > C
12 




AAGguauga

Non-mutated 5′ bulge
19 




CACgugagc

IVS20 − 1G > C
20 


CHM
Choroideremia
UAGgucaga

IVS13 + 3A > C
13 


CLCN1
Myotonia congenita
CAGguuaag

IVS1 + 3A > U
1






Mutated 5′ bulge



COL11A1
Stickler syndrome, Cancer, Marshall
GAGguaauac
54
Non-mutated 5′ bulge
7



syndrome
AGCguaagu

Non-mutated 5′ bulge
8




AGAguaagu

Non-mutated 5′ bulge
29 




AAGguauca

Non-mutated 5′ bulge
34 




GGCguaagu

Non-mutated 5′ bulge
50 




GGCgucagu

IVS50 + 3A > C
50 




GGAguaagu

Non-mutated 5′ bulge
64 


COL11A2
Otospondylomegaepiphyseal Dysplasia,
CCUgugaau

IVS53 + 5G > A
53 



Stickler syndrome






COL1A1
Severe type III osteogenesis imperfecta
GGAguaagu

Non-mutated 5′ bulge
5




UCAguaaac

IVS8 + 5G > A
8




CCUaugagu

IVS8 + 1G > A
8




AGAgugagu

Non-mutated 5′ bulge
11 




GCUguaaau

IVS14 + 5G > A
14 




AGCgugagu

Non-mutated 5′ bulge
19 




AGAguaagu

Non-mutated 5′ bulge
30 


COL1A2
Osteogenesis imperfecta
AGAguagau

IVS21 + 5G > A
21 






Mutated 5′ bulge





GAUguaaau

IVS9 + 5G > A
9




AGAguaggu

Non-mutated 5′ bulge
21 




AGAguaagu

Non-mutated 5′ bulge
23 




CGGgugggu

IVS26 + 3A > G
26 




AGAguaagu

Non-mutated 5′ bulge
30 




CGUgugaau

IVS33 + 5G > A
33 




CGUgugggu

IVS33 + 4A > G
33 




GCUguaaau

IVS40 + 5G > A
40 


COL2A1
Chondrodysplasias, familial
GUGguugua

Non-mutated 5′ bulge
2



osteoarthritis
GGAguaagu

Non-mutated 5′ bulge
7




AGAguaagu

Non-mutated 5′ bulge
13 




CCUgugauu

IVS20 + 5G > U
20 




UCUguaaau

IVS24 + 5G > A
24 




AGAguaagu

Non-mutated 5′ bulge
49 


COL3A1
Ehlers-Danlos syndrome
CCUguaagc

IVS7 + 6U > C
7




UCAguaaau

IVS8 + 5G > A
8




AGAguaagu

Non-mutated 5′ bulge
10 




GCAguuagu

IVS14 + 3G > U
14 



Ehlers-Danlos syndrome IV
CCUauaagu

IVS16 + 1G > A
16 




CGCauaagu

IVS20 + 1G > A
20 



Ehlers-Danlos syndrome
GAUgugauu

IVS25 + 5G > U
25 




ACUguaaau

IVS27 + 5G > A
27 




ACUguauu

IVS27 + 5G > U
27 




AAGguagua

Non-mutated 5′ bulge
29 




GCUguaauu

IVS37 + 5G > U
37 




CCUguaaau

IVS38 + 5G > A
38 




CCUguaauu

IVS38 + 5G > U
38 




GAUgugacu

IVS42 + 5G > C
42 



Ehlers-Danlos syndrome IV
GAUaugagu

IVS42 + 1G > A
42 



Ehlers-Danlos syndrome
CCUguaaau

IVS45 + 5G > A
45 




AGAguaagu

Non-mutated 5′ bulge
46 


COL4A5
Alport syndrome
AGAguaagu

Non-mutated 5′ bulge
4




AGAguaagu

Non-mutated 5′ bulge
15 




AAGgucuggg
16
Non-mutated 5′ bulge
28 




CAGgugcug

Non-mutated 5′ bulge
39 




CAGguaaag

Non-mutated 5′ bulge
52 


COL6A1
Mild Bethlem myopathy
GGGaugagu

IVS3 + 1G > A
3



Autosomal-recessive isolated dystonia,
AAGguaugg

Non-mutated 5′ bulge
4



dystonia
CAGguaugg

Non-mutated 5′ bulge
6




AAGguacgg

Non-mutated 5′ bulge
14 




AAAguacau

IVS29 + 5G > A
29 




AGUguaagu

Non-mutated 5′ bulge
38 


COL7A1
Recessive dystrophic epidermolysis
AGGgugauc

IVS3 − 2A > G
3



bullosa







Dominant dystrophic epidermolysis
CAGguauag

Non-mutated 5′ bulge
23 



bullosa
CAGguuugg

Non-mutated 5′ bulge
24 




CAGguuugg

Non-mutated 5′ bulge
27 




AGGgugagg

Non-mutated 5′ss
73 



Recessive dystrophic epidermolysis
GUAgugagu

IVS95 − 1G > A
95 



bullosa






COL9A2
Multiple epiphyseal dysplasia
CCGgugagg

IVS3 + 6U > G
3




CCGgugacu

IVS3 + 5G > C
3


COLQ
Congenital acetylcholinesterase
UGGguggggg
70
IVS16 + 3A > G
16 



deficiency






CREBBP
Rubinstein-Taybi syndrome
AAGguuca

+3A > U
18 






Mutated 5′ bulge



CSTB
Epilepsy: progressive myoclonus
AAAguaga

−1G > A
2






Mutated 5′ bulge



CUL4B
X-linked intellectual disability, cancer
CAGguaaaa

Non-mutated 5′ bulge
14 


CYBB
X-linked chronic granulomatous disease
GGGguaaau

IVS2 + 5G > A
2




GCGguaaaa

IVS3 + 5G > A
3




AAGguuagc

IVS5 + 3A > U
5




UGAgugaau

IVS6 + 5G > A
6


CYP17
Congenital adrenal hyperplasia and 17-
UCAgugauu

IVS2 + 5G > U
2



hydroxylase deficiency
CUGgugaau

IVS7 + 5G > A
7


CYP19
Placental aromatase deficiency
UGUgcaagu

IVS6 + 2U > C
6


CYP27A1
Cerebrotendineous xanthomatosis
AACgugauu

IVS7 + 5G > U
7




GAGguagga

IVS6 − 2C > A
6




GCAguagga

IVS6 − 1G > A
6


DES
Desmin-related myopathy
GAGguguac

IVS3 + 3A > G
3


DGAT2
Nonalcoholic steatohepatitis (NASH)
GGGgugagug
63
Non-mutated 5′ss
1


DMD
Duchenne's muscular dystrophy,
GAUguaagu

Non-mutated 5′ bulge
5



Duchenne and Becker muscular
CAGguaaag

Non-mutated 5′ bulge
8



dystrophy
CAGgugugu

Non-mutated 5′ bulge
14 




AUGgucauu

IVS19 + 3A > C
19 




AGAguaaga

Non-mutated 5′ bulge
24 




AAGggaaaa

IVS26 + 2U > G
26 




CAGguauau

c.4250U > A
31 




CAGguauau

Non-mutated 5′ bulge
31 




AAGguaugag
7
Non-mutated 5′ss
51 




CAAguaacu

IVS62 + 5G > C
62 




GCUguaacu

IVS64 + 5G > C
64 




GCUguaacu

IVS64 + 5G > C
64 




GAUguaauu

IVS66 + 5G > U
66 




CCGguaacu

IVS69 + 5G > C
69 




AACgugacu

IVS70 + 5G > C
70 


DUX4
FSHD
GGGguuggga
64
Non-mutated 5′ss
1


DYSF
Limb Girdle Muscular Dystrophy 2B,
AGAgugcgu

Non-mutated 5′ bulge
13 



Miyoshi myopathy, Miyoshi Muscular
UGUguacau

IVS45 + 5G > A
45 



Dystrophy 1






EGFR
Cancer
AACguaagu

Non-mutated 5′ss
4




ACAguuuga

Non-mutated 5′ bulge
9




GUGgugagu

Non-mutated 5′ bulge
22 


EMD
Emery-Dreifuss muscular dystrophy
UAGguaccc

IVS1 + 5G > C
1


ETV4
Ovarian Cancer
GAGcugcag

Non-mutated 5′ bulge
5


F13A1
Cancer
UUGgugagc

IVS3 + 6C > U
3




UUGgugaau

IVS3 + 5G > A
3


F5
Factor V deficiency
AAGguaacu

Non-mutated 5′ bulge
1




CAUguauuu

IVS10 − 1G > U
10 




AAGguuugg

Non-mutated 5′ bulge
13 




UGGguuagu

IVS19 + 3A > U
19 




AAGgucaag

Non-mutated 5′ bulge
23 




AAGguagag

Non-mutated 5′ bulge
24 


F7
Factor VII deficiency
UGGguggau

IVS7 + 5G > A
7




UGGgugggug
71
IVS7 + 7A > G
7




UGGguacca

IVS7del[+3:+6]
7


F8
Hemophilia A
AGGgugaau

IVS3 + 5G > A
3




CAGgugugu

IVS6 + 3A > G
6




CAGguguga

IVS14 + 3A > G
14 




AUAgugaau

IVS19 + 5G > A
19 




AUGguauuu

IVS22 + 5G > U
22 




AUAgucagu

IVS23 + 3A > C
23 


F11
Factor XI, clotting disorders
CAGguacagu
35
Non-mutated 5′ ss
1


FAH
Tyrosinemia type I, Chronic
AAGguaugu

Non-mutated 5′ bulge
11 



Tyrosinemia Type 1
CCGgugaau

IVS12 + 5G > A
12 


FANCA
Fanconi Anemia
AGAguaaga

Non-mutated 5′ bulge
4




AAGguagcg

Non-mutated 5′ bulge
6




CUGgugcau

IVS7 + 5G > A
7




CUGgugcuu

IVS7 + 5G > U
7




GAGgugcug

Non-mutated 5′ bulge
10 




CGAguccgu

IVS16 + 3A > C
16 


FANCC
Fanconi anemia
AAUgugugu

IVS4 + 4A > U
4


FANCG
Fanconi Anemia, Complementation
CAGgugaua

IVS4 + 3A > G
4



Group G and Fanconi Anemia,







Complementation Group A






FBN1
Marfan Syndrome
UUGguacau

IVS11 + 5G > A
11 




GAGguaugg

Non-mutated 5′ bulge
13 




AAGguaauaa
11
Non-mutated 5′ bulge
14 




CAGgucaau

IVS25 + 5G > A
25 




CAUguaauu

IVS37 + 5G > U
37 




UAGgugcau

IVS46 + 5G > A
46 




UAGaugcgu

IVS46 + 1G > A
46 




AAGguaaag

Non-mutated 5′ bulge
60 


FECH
Erythropoietic protoporphyria
UAGguauc

−3A > U
10 






Mutated 5′ bulge





GAGguauga

Non-mutated 5′ bulge
2




CAGguaugg

Non-mutated 5′ bulge
4




AAGgugucu

IVS10 + 3A > G
10 




AAGguaucu

Non-mutated 5′ bulge
10 


FGA
Common congenital afibrinogenemia
UGGgugugg

IVS1 + 3A > G
1




GAGuuaagu

IVS4 + 1G > U
4


FGFR2
Craniosynostosis syndromes, cancer
AGAguaagu

Non-mutated 5′ bulge
3




CAGguguau

IVS3c + 3A > G
 3c


FGG
Dysfibrinogenaemia
GCAguaaau

IVS1 + 5G > A
1




CAAgugaaa

IVS3 + 5G > A
3


FIX
Haemophilia B deficiency (coagulation
CGGgucauaauc
47
c.519A > G
5



factor IX deficiency)






FLNA
X-linked cardiac valvular dysplasia
AGAguaagu

Non-mutated 5′ bulge
19 


FOXM1
Cancer
AAGguaaugu
12
Non-mutated 5′ bulge
4




UCAguaagu

Non-mutated bulge
9


FRAS1
Fraser syndrome
AAGguacgg

Non-mutated 5′ bulge
3




GGAgugagu

Non-mutated 5′ bulge
5




AAGguauuu

Non-mutated 5′ bulge
8




AAGguaucg

Non-mutated 5′ bulge
17 




AGCguaggu

Non-mutated 5′ bulge
22 




AGAguaagu

Non-mutated 5′ bulge
24 




CAGguacaa

Non-mutated 5′ bulge
53 


GALC
NASH
GGAguuagu

Non-mutated 5′ bulge
5


GBA
Gaucher′s disease
GAGguaagag
52
Non-mutated 5′ ss
2


GCGR
Diabetes
GCGgugagca
60
Non-mutated 5′ ss
1


GH1
Growth hormone deficiency
UCCgugagc

IVS3 + 6U > C
3




UCCgugaau

IVS3 + 5G > A
3




UCCgugacu

IVS3 + 5G > C
3




GGGgugacg

IVS4 + 5G > C
4




GGGgugacg

IVS4 + 5G > A
4


GHR
Acromegaly
GGGguaagug
62
Non-mutated 5′ ss
1


GHV
Mutation in placenta
UUUauaagc

IVS2 + 1G > A
2


GLA
Fabry's disease
AAGgugagau
18
Non-mutated 5′ ss
4


HADHA
Trifunctional protein deficiency or
AAGgugucu

IVS3 + 3A > G
3



LCHAD
AGUguaagu

Non-mutated 5′ bulge
18 


HBA2
Alpha-thalassemia
GAGgcuccc

IVS1 del[+2:+6]
1


HBB
Beta-thalassemia
CAGguuguu

IVS1 + 5G > U
1




CACguuggu

IVS1 − 1G > C
1




CAGguuggc

IVS1 + 6U > C
1




CAGauuggu

IVS1 + 1G > A
1




CAGuuuggu

IVS1 + 1G > U
1




CAGgcuggu

IVS1 + 2U > C
1




CAGguugau

IVS1 + 5G > A
1




CAGguugcu

IVS1 + 5G > C
1




AGGgugucu

IVS2 del[+4:+5]
2


HEXA
Tay-Sachs Syndrome
ACAguaaau

IVS4 + 5G > A
4




CUGguguga

IVS8 + 3A > G
8




GACaugagg

IVS9 + 1G > A
9


HEXB
Sandhoff disease
UUGguaaca

IVS8 + 5G > C
8


HLCS
Holocarboxylase synthetase deficiency
AAGgucaau

IVS10 + 5G > A
10 


HMBS
Acute intermittent porphyria
GCGguuagu

IVS1 + 3G > U
1




GCGgugacu

IVS1 + 5G > C
1


HMGCL
Hereditary HL deficiency
ACGcuaagc

IVS7 + 1G > C
7


HNF1A
diabetes
AGCguaagu

Non-mutated 5′ bulge
2


HPRT1
Somatic mutations in kidney tubular
GUGgugagc

IVS1del[−2:+34]
1



epithelial cells
GUGgugauc

IVS1 + 5G > U
1



Lesch-Nyhan syndrome
GAAggaagu

IVS5 + 2U > G
5




GAAgugugu

IVS5 + 3:4AA > GU
5




GAAguaaau

IVS5 + 5G > A
5




GAAuaaguu

IVS5del[G1]
5




ACUguaaau

IVS7 + 5G > A
7



Hypoxanthine
ACUguaacu

IVS7 + 5G > C
7



phosphoribosyltransferase deficiency
AAUguaagc

IVS8 + 6U > C
8






Mutation inducing loss







of U1snRNA affinity





AAUguaagg

IVS8 + 6U > G
8




AAUguaaau

IVS8 + 5G > A
8




AAUguaauu

IVS8 + 5G > U
8


HPRT2
Primary hyperthyroidism
GGGauaagu

IVS1 + 1G > A
1


HSF4
Congenital cataracts
CAGguagug

IVS12 + 4A > G
12 


HSPG2
Schwartz-Jampel syndrome type 1
AGAgugagu

Non-mutated 5′ss
30 




AGAguaagu

Non-mutated 5′ ss
40 




CAGguacag

Non-mutated 5′ ss
61 


HTT
Huntington's disease
CAGguacug

Non-mutated 5′ ss
25 




AAGguaaau

Non-mutated 5′ss
32 




AGAguaagu

Non-mutated 5′ ss
51 




CUGgugaguc
48
Non-mutated 5′ ss
52 




ACCgugaguu
22
Non-mutated 5′ ss
1


IDH1
Gliomas
CAGguaaccuc
31
Non-mutated 5′ ss
1




ACUgugagug
24
Non-mutated 5′ ss
1


IDS
Mucopolysaccharidosis type II (Hunter
AUGguaacc

IVS7 + 5G > C
7



syndrome)
AUUuuaagc

IVS7 − 1:+1GG > UU
7


IKBKAP
Familial Dysautonomia, Dysautonomia
CAAguaagc

IVS20 + 6U > C
20 






Mutation inducing loss







of U1snRNA affinity





CAGguaugu

Non-mutated 5′ ss
27 




AGCguacgu

Non-mutated 5′ ss
33 


IL7RA
Encodes IL7RA, Multiple sclerosis
AAGgugaccuu
17
Non-mutated 5′ss
6


INSR
Breast Cancer
GGCguaagu

Non-mutated 5′ bulge
7




AGUguaagu

Non-mutated 5′ bulge
20 


ITGB2
Leukocyte adhesion deficiency
UUCauaagu

IVS7 + 1G > A
7


ITGB3
Glanzmann thrombasthenia
GAUaugagu

IVS4 + 1G > A
4


ITGB4
Epidermolysis bullosa with congenital
GAGgugccu

Non-mutated 5′ bulge
4



pyloric atresia
CAGguagua

Non-mutated 5′ bulge
33 


JAG1
Alagille syndrome
CGGgugugu

IVS11 + 3A > G
11 




AGAgugagu

Non-mutated 5′ bulge
18 


KLKB1
Hereditary angioedema
CAGguagcaa
36
Non-mutated 5′ss
1


KRAS
Cancer
CAGguaagu

Splice switching on
 4a






isoforms



KRT5
Dowling-Meara epidermolysis bullosa
AAGaugagc

IVS1 + 1G > A
1



simplex






L1CAM
Cancer
AAUgugagu

Non-mutated 5′ bulge
2




AGAguaaga

Non-mutated 5′ bulge
14 




CAGgugagc

Non-mutated 5′ bulge
27 




CAGguaaggc
30
Non-mutated 5′ss
1


LAMA2
Muscular dystrophy: merosin deficient
GAGgugca

+3A > G
1






Mutated 5′ bulge



LAMA3
Cancer, Junctional epidermolysis
CAGguaaag

Non-mutated 5′ bulge
16 



bullosa
AAGguaaugu
12
Non-mutated 5′ bulge
26 




CAGguagug

Non-mutated 5′ bulge
27 




AGCguaagu

Non-mutated 5′ bulge
31 




CAGguaccg

Non-mutated 5′ bulge
40 




AAGguaaugu
12
Non-mutated 5′ bulge
45 




AGAgugagu

Non-mutated 5′ bulge
50 




GAGguacaa

Non-mutated 5′ bulge
57 




UGGguaugc

Non-mutated 5′ bulge
64 


LDLR
Familial hypercholesterolemia
GAGgcgugg

IVS12 + 2U > C
12 


LGALS3
NASH
GCGgugagcu
61
Non-mutated 5′ss
1


LMNA
Hutchinson-Gilford progeria syndrome
CAAgugagu

c.1968 − 1G > A
10 



(HGPS)






LPA
Hyperlipoproteinemia, Type Iii and
CAGguaagac
32
Non-mutated 5′ss
1



Familial Hyperlipidemia






LPL
Familial hypercholesterolemia
ACGauaagg

IVS2 + 1G > A
2


LRRK2
Parkinson's disease
GCGguaauca
59
Non-mutated 5′ss
1




AAGguaacaug
8
Non-mutated 5′ss
31 




CAGguagguga
38
Non-mutated 5′ss
41 


MADD
Cancer, Glioblastoma
AAGguacag

Non-mutated 5′ bulge
3




AAGgugggu

Non-mutated 5′ bulge
16 




AGAguaagg

Non-mutated 5′ bulge
21 


MAPT
Frontotemporal Dementia
AGUguaagu

IVS10 + 3G > A
10 



Alzheimer's disease, Frontotemporal


Mutated 5′ bulge




dementia and parkinsonism linked to
AGUgugagu

Non-mutated 5′ bulge
10 



chromosome 17, Progressive
AGUgugaguac
26
Non-mutated 5′bulge
10 



supranuclear palsy (PSP), Corticobasal
AAGguuagug
21
Non-mutated 5′ss
1



degeneration (CBD), Argyrophilic grain
AAGgugggcc
20
Non-mutated 5′ss
2



disease, Pick's disease
CAGgugaggg
42
Non-mutated 5′ss
3




AAGguaagcg
10
Non-mutated 5′bulge
5


MET
Cancer
AAGguauauu
15
Non-mutated 5′ss
14 


MLH1
Colorectal cancer: non-polyposis
CGGguaau

−2A > G
6






Mutated 5′ bulge





CAAguaau

−1G > A
18 






Mutated 5′ bulge




Hereditary nonpolyposis colorectal
CAGgugcag

IVS6 + 3A > G
6



cancer; Colorectal cancer: non-


Mutated 5′ bulge




polyposis







Hereditary nonpolyposis colorectal
CAGgugcag

IVS18 + 3A > G
18 



cancer
CAGguauag

Non-mutated 5′ bulge
4




CAGguacag

Non-mutated 5′ bulge
6




CAGguaaugu
34
Non-mutated 5′ bulge
10 




CAGguacag

Non-mutated 5′ bulge
18 


MSH2
Lynch syndrome
AAGguaaca

Non-mutated 5′ bulge
7




CAGguuugc

Non-mutated 5′ bulge
10 


MST1R
Cancer, Breast cancer, Colon cancer
CAGguaggc

Non-mutated
11 


MTHFR
Severe deficiency of MTHFR
CAGaugagg

IVS4 + 1G > A
4


MUT
Methylmalonic acidemia
AAGguauac

Non-mutated 5′ bulge
3




AAGguguua

ISV8 + 3A > G
8




GAGguaauau
55
Non-mutated 5′ bulge
10 


MVK
Mevalonic aciduria
CAGguaucc

Non-mutated 5′ bulge
4


NF1
Neurofibromatosis, Neurofibromatosis
UAGguguau

IVS11 + 3A > G
11 



type 1


Mutated 5′ bulge





GGGguaacu

IVS3 + 5G > C
3



Neurofibromatosis, Neurofibromatosis
CGGguguau

IVS7 + 5G > A
7



type I,







Neurofibromatosis type II







Neurofibromatosis, Neurofibromatosis
UAGguauau

Non-mutated 5′ bulge
15 



type 1
CAGguaaag

Non-mutated 5′ bulge
21 




GAGguaaga

IVS27b del[+1:+10]
27b




AAAauaagu

IVS28 + 1G > A
28 



Neurofibromatosis
UAGguaaag

Non-mutated 5′ bulge
34 




CAAGguaccu
28
c.6724 − 4C > U
36 




AAGgugccu

IVS36 + 3A > G
36 


NF2
Neurofibromatosis, Neurofibromatosis
GAGgugagg

IVS12 del[−14:+2]
12 



type II
GAGaugagg

IVS12 + 1G > A
12 


NR1H4
Nonalcoholic steatohepatitis (NASH)
CAAguaagua
29
Non-mutated 5′ss
1


OAT
OAT deficiency
CAGguuguc

Non-mutated 5′ bulge
5


OPA1
Autosomal dominant optic atrophy
CGGguauau

IVS8 + 5G > A
8


OTC
Ornithine transcarbamylase deficiency
GAGgugugc

IVS7 + 3A > G
7


OXT
Pain, endometritis, Chorioamnionitis
AAGgugaguc
19
Non-mutated 5′ss
1


PAH
Phenylketonuria
CAGguguga

IVS5 + 3A > G
5




AGAguaagu

Non-mutated 5′ bulge
6




CAGguguga

IVS10 + 3A > G
10 




GAGgugcggg
58
Non-mutated 5′ss
1


PBGD
Acute intermittent porphyria
GCGaugagu

IVS1 + 1G > A
1




GCGgagagu

IVS1 + 2U > A
1




GCGgugacu

IVS1 + 5G > C
1




GCGguuagu

IVS1 + 3G > U
1




CAUguaggg

IVS10 − 1G > U
10 


PCCA
Propionic acidemia
GGUguaagu

Non-mutated 5′ bulge
14 




AAGguaugg

Non-mutated 5′ bulge
18 


PDH1
Pyruvate dehydrogenase deficiency
AAGguacag

Non-mutated 5′ bulge
11 


PGK1
Pyruvate dehydrogenase deficiency
AAGuuagga

IVS4 + 1G > U
4


PHEX
X-linked hypophosphatemic rickets
AGAgugagu

Non-mutated 5′ bulge
4




AGAgugagu

Non-mutated 5′ bulge
14 


PKD2
Polycystic kidney disease
AGUguaagu

Non-mutated 5′ bulge
13 


PKLR
Pyruvate kinase deficiency
CAGgucugga
40
Non-mutated 5′ bulge
7




GCGguggga

IVS9 + 3A > G
9


PKM1
Cancer Cancer metabolism
CUGgugaguuc
49
Non-mutated 5′ss
9


PKM2
Cancer, Cancer metabolism
CAGguaggagg
37
Non-mutated 5′ss
10 


PLEKHM1
Autosomal recessive osteopetrosis type 6
AGAgugagu

Non-mutated 5′ bulge
4


PLKR
Lymphoblastic leukemia
AGUgugagu

Non-mutated 5′ bulge
25 


POMT2
Limb-girdle muscular dystrophy
GGAguaagg

Non-mutated 5′ bulge
3




CAGguaaugu
34
Non-mutated 5′ bulge
10 




AGAguaagu

Non-mutated 5′ bulge
11 




AGUgugagu

Non-mutated 5′ bulge
14 


PRDM1
B-cell lymphoma
CAGgugcgc

Non-mutated 5′ bulge
6


PRKAR1A
Carney complex.
GAGgugaag

IVS8 + 3A > G
8


PROC
Protein C deficiency
ACAgugagg

IVS3 + 3A > G
3


PSEN1
Alzheimer's disease
CAGguacag

Non-mutated 5′ bulge
3


PTCH1
Basal cell carcinoma
GAGgugugu

Non-mutated 5′ bulge
1


PTEN
Cowden syndrome
GAGgcaggu

IVS4 + 2U > C
4




AAGauuugu

IVS7 + 1G > A
7


PYGM
Myophosphorylase deficiency (McArdle
ACCaugagu

IVS14 + 1G > A
14 



disease)






RP6KA3
Coffin Lowry Syndrome
GAGguguau

IVS6 + 3A > G
6


RPGR
Retinitis pigmentosa
CAGgugua

+3A > G
4






Mutated 5′ bulge





AAGguuugg

Non-mutated 5′ bulge
3




CAGguauag

Non-mutated 5′ bulge
4




CAGguguag

IVS4 + 3A > G
4



X-linked retinitis pigmentosa (RP3)
CUGuugaga

IVS5 + 1G > U
5



Retinitis pigmentosa
AGGgugcaa

IVS10 + 3A > G
10 


RSK2
Coffin Lowry Syndrome
GAGguauau

IVS6 + 3A > G
6


SBCAD
SBCAD deficiency
GGGguacau

IVS3 + 3A > G
3


SCNA
Alpha-synuclein, Parkinson's disease,
UAGguaggu

Non-mutated 5′ss
2



Dementia with Lewy bodies (DLB)
CAGguaagc

Non-mutated 5′bulge
3




GAGguagga

Non-mutated 5′bulge
5


SCN5A
Cardiomyopathies
GGCguaagu

Non-mutated 5′ bulge
4




CAGgugugu

Non-mutated 5′ bulge
8


SERPINA1
Emphysema
AAGuuaagg

IVS2 + 1G > U
2


SH2D1A
Lymphoproliferative syndrome: X-
GAUguaua

−1G > U
2



linked


Mutated 5′ bulge



SLC12A3
Gitelman syndrome
GGCguaagu

Non-mutated 5′ bulge
22 


SLC6A8
X-linked mental retardation
GGAgugagu

Non-mutated 5′ bulge
3




ACGguagcu

IVS10 + 5G > C
10 


SOD1
Familial ALS
AAGgcaaggg
5
Non-mutated 5′ss
1




GUGguaagu

Non-mutated 5′ss
4


SPINK5
Netherton syndrome
CAGguaau

IVS2 + 5G > A
2




AAGguagua

Non-mutated 5′ bulge
20 


SPTA1
Hereditary blood disorders,
AAGguauau

Non-mutated 5′ bulge
3



Elliptocytosis-2, Pyropoikilocytosis,







Spherocytosis type 3







Hereditary blood disorders,
CAGguagag

Non-mutated 5′ bulge
27 



Elliptocytosis-2, Pyropoikilocytosis
UAGguauga

Non-mutated 5′ bulge
41 


TMPRSS6
Beta-thalassemia, Iron toxicity
AAGgcaggga
6
Non-mutated 5′ss
1


TP53
Cancers
GAGgucuggu
57
Non-mutated 5′ bulge
5



Colorectal tumors
AUGgugacc

IVS5 + 5G > C
5



Squamous cell carcinoma
GAAgucugg

IVS6 − 1G > A
6




GAGaucugg

IVS6 + 1G > A
6


TRAPPC2
Spondyloepiphyseal dysplasia tarda
AAGguacgg

+4U > C
5






Mutated 5′ bulge





AAGguaugg

Non-mutated 5′ bulge
4


TSC1
Tuberous sclerosis
AUGguaaaa

Non-mutated 5′ bulge
9




AAGguaaugua
13
Non-mutated 5′ bulge
14 


TSC2

AGAgugaau

+5G > A
2






Mutated 5′ bulge




Familial tuberous sclerosis
AAGgaugag

IVS37 + 2 ins[A]
37 


TSHB
Thyroid stimulating hormone.
CGGguauau

IVS2 + 5G > A
2


TTN
Dilated cardiomyopathy
CAGgugagc

Non-mutated 5′ss
1


TTR
TTR amyloidosis
ACGgugagug
23
Non-mutated 5′ss
1


UBE3A
Dup15q, Angelman's
CAGgucagug
39
Non-mutated 5′ss
1


UGT1A1
Crigler-Najjar syndrome type 1
CAGcugugu

IVS1 + 1G > C
1


USH2A
Usher syndrome type Ila
CAGguauug

Non-mutated 5′ bulge
19 




CAGguaaugu
34
Non-mutated 5′ bulge
28 




AAGguaaag

Non-mutated 5′ bulge
31 




GGAguaagu

Non-mutated 5′ bulge
34 




AGAgugagc

Non-mutated 5′ bulge
39 




AUGguaugu

Non-mutated 5′ bulge
70 
















TABLE 2B







Exemplary targets














Mutated Authentic
Authentic Splice

Cryptic Splice Site


Gene
Disease
Splice Site Sequence
Site Mutation
Exon
sequence (Location)





HBB
Beta-
CACguuggu
IVS1 − 1G > C
1
GUGgugagg (IVS1 −16)



thalassemia
CAGguuggc
IVS1 + 6U > C
1
AUGguuaag (IVS2 + 48)




CAGauuggu
IVS1 + 1G > A
1
AAGgugaac (IVS1 −38)




CAGuuuggu
IVS1 + 1G > U
1
AAGgugaag (Exon2 −135)




CAGgcuggu
IVS1 + 2U > C
1





CAGguugau
IVS1 + 5G > A
1





CAGguugcu
IVS1 + 5G > C
1





CAGguuguu
IVS1 + 5G > U
1





AGGgugucu
IVS2 del[+4:+5]
2



PBGD
Acute
GCGaugagu
IVS1 + 1G > A
1
CGGgugggg (Exon 10 −9)



intermittent
CAUguaggg
IVS10 − 1G > U
10 




porphyria
GCGgagagu
IVS1 + 2U > A
1





GCGgugacu
IVS1 + 5G > C
1





GCGguuagu
IVS1 + 3G > U
1



HBA2
Alpha-
GAGgcuccc
IVS1 del[+2:+6]
1
GGGguaagg (Exon1 −49)



thalassemia






AR
Androgen
CUGuuaag
IVS4 + 1G > U
4




Sensitivity






ATM
Ataxia-
CAGauaacu
IVS45 + 1G > A
45 
AGAgugacu (IVS45 +72)



telangiectasia






BRCA1
Breast Cancer
UUUgugagc
IVS16 + 6U > C
16 
UAUguaaga (Exon5 −22)







UAGguauug (IVS16 +70)




AGGguauau
IVS5 − 2A > G
5



CYP27A1
Cerebrotendinous
GAGguagga
IVS6 − 2C > A
6
GUGgugggu (Exon6 −89)



xanthomatosis
GCAguagga
IVS6 − 1G > A
6



FAH
Chronic
CCGgugaau
IVS12 + 5G > A
12 
GAGgugggu (IVS112 +106)



Tyrosinemia







Type 1






TP53
Colorectal
AUGgugacc
IVS5 + 5G > C
5




tumors






FGA
Common
GAGuuaagu
IVS4 + 1G > U
4
GGAguuaag (Exon4 −66)



congenital



UAAguauua (Exon4 −36)



afibrinogenemia






PTEN
Cowden
AAGauuugu
IVS7 + 1G > A
7
CAUguaagg (IVS7 +76)



syndrome
GAGgcaggu
IVS4 + 2U > C
4



UGT1A1
Crigler-Najjar
CAGcugugu
IVS1 + 1G > C
1
GAGgugacu (Exon1 −141)



syndrome type 1






CFTR
Cystic Fibrosis
CACgugagc
IVS20 − 1G > C
20 
AUUgugagg (Exon4 −93)




AAGuuaaua
IVS4 + 1G > U
4



COL7A1
Dominant
AGGgugagg
Exon73 del[−98:−71]
73 
CUGguauuc (Exon73 −62)



Dystrophic







epidermolysis







bullosa






KRT5
Dowling-Meara
AAGaugagc
IVS1 + 1G > A
1
AGGgugagg (Exon1 −66)



epidermolysis







bullosa simplex






DMD
Duchenne and
GCUguaacu
IVS64 + 5G > C
64 
AAGggaaaa (IVS26 + 2U > G)



Becker muscular







dystrophy






COL3A1
Ehlers-Danlos
GAUaugagu
IVS42 + 1G > A
42 
GGAguaagc (IVS16 +24)



syndrome IV
CCUauaagu
IVS16 + 1G > A
16 





CGCauaagu
IVS20 + 1G + A
20 



LPL
Familial
ACGauaagg
IVS2 + 1G > A
2
CAGguggga (IVS2 +143)



hypercholesterolemia



GAGguuggu (IVS2 +247)







AGAgugagg (IVS2 +383)


LDLR
Familial
GAGgcgugg
IVS12 + 2U > C
12 
UACguacga (IVS12 +12)



hypercholesterolemia






TSC2
Familial
AAGgaugag
IVS37 + 2 ins[A]
37 
CCGgugagg (Exon37 −29)



tuberous sclerosis






F7
FVII deficiency
UGGgugggug
IVS7 + 7A > G
7
UGGgugggu (IVS7 +38)




(SEQ ID NO: 71)







UGGguggau
IVS7 + 5G > A
7





UGGguacca
IVS7del[+3:+6]
7



ITGB3
Glanzmann
GAUaugagu
IVS4 + 1G > A
4
CAGgugugg (IVS4 +28)



thrombasthenia






C3
Hereditary C3
UGGauaagg
IVS18 + 1G > A
18 
GAAgugagu (Exon18 −61)



deficiency






HMGCL
Hereditary HL
ACGcuaagc
IVS7 + 1G > C
7
GGGguauuu (IVS7 +79)



deficiency






APOB
Homozygous
AAGgcaaaa
IVS24 + 2U > C
24 




hypobetalipoproteinemia






LMNA
Hutchinson-
CAAgugagu
IVS11 − 1G > A
11 
CAGgugggc (Exon 11)



Gilford progeria
CAGgugacu
IVS11 + 5G > C
11 
CAGgugggc (Exon 11)



syndrome (HGPS)
CAGaugagu
IVS11 + 1G > A
11 
CAGgugggc (Exon 11)




CAGgcgagu
IVS11 + 2U > C
11 
CAGgugggc (Exon 11)


HPRT1
Lesch-Nyhan
GAAggaagu
IVS5 + 2U > G
5
AAGguaagc (IVS5 +68)



syndrome
GAAgugugu
IVS5 + 3:4AA > GU
5





GAAguaaau
IVS5 + 5G > A
5





GAAuaaguu
IVS5del[G1]
5



ITGB2
Leukocyte adhesion
UUCauaagu
IVS7 + 1G > A
7
AGGgugggg (IVS7 +65)



deficiency






FBN1
Marfan syndrome
UAGaugcgu
IVS46 + 1G > A
46 
GAAgucagu (IVS46 +34)


GCK
Maturity onset



CCUgugagg (Exon4 −24)



diabetes of the







young (MODY)






COL6A1
Mild Bethlem
GGGaugagu
IVS3 + 1G > A
3
CAAguacuu (Exon3 −66)



myopathy






IDS
Mucopolysacch
AUUuuaagc
IVS7 − 1:+1GG > UU
7
CUGgugagu (IVS7 +23)



aridosis type II







(Hunter syndrome)






GHV
Mutation in
UUUauaagc
IVS2 + 1G > A
2
UGGguaaug (IVS2 +13)



placenta






YGM
Myophosphorylase
ACCaugagu
IVS14 + 1 G > A
14 
CAGgugaag (Exon14 −67)



deficiency







(McArdle disease)






NF1
Neurofibromatosis
AAAauaagu
IVS28 + 1G > A
28 
AACguuaag (Exon27b −69)



type I
GAGguaaga
IVS27b del[+1:+10]
27b
AAGguauuc (Exon28 −4)


NF2
Neurofibromatosis
GAGgugagg
IVS12 del[−14:+2]
12 
GAUguacgg (Exon7 −23)



type II



AAGgugcug (Exon 12 −38)







GAGgugcug (Exon 12 −53)







ACGguguga (Exon7 −28)




GAGaugagg
IVS12 + 1G > A
12 





CGGguguau
IVS7 + 5 G > A
7



PGK1
Phosphoglycerate
AAGuuagga
IVS4 + 1G > U
4
GGGgugagg (IVS4 +31)



kinase deficiency






CYP19
Placental aromatase
UGUgcaagu
IVS6 + 2U > C
6




deficiency






PKD1
Polycystic



CAGguggcg (Exon43 −66)



kidney disease 1






COL7A1
Recessive dystrophic
GUAgugagu
IVS95 − 1G > A
95 
GGGgucagu (Exon95 −7)



epidermolysis
AGGgugauc
IVS3 − 2A > G
3
UCCgugagc (Exon 3 −104)



bullosa







Risk for
AAGuuaagg
IVS2 + 1G > U
2
AGGguacuc (Exon2 −84)



emphysema







Sandhoff disease
UUGguaaca
IVS8 + 5G > C
8
AAUguuggu (Exon8 −4)


MTHFR
Severe
CAGaugagg
IVS4 + 1G > A
4




deficiency of







MTHFR






F5
Severe factor V
CAUguauuu
IVS10 − 1G > U
10 
UCUguaaga (Exon 10 −35)



deficiency






COL1A1
Severe type III
CCUaugagu
IVS8 + 1G > A
8
UUGguaaga



osteogenesis
CCUgugaau
IVS8 + 5G > A
8
(IVS8 G +97; exon 8 ±26)



imperfecta



CUGgugagc (IVS8 +97)







CUGgugaca (Exon34 −8)


HPRT1
Somatic
GUGgugagc
IVS1del[−2:+34]
1
CAGguggcg (IVS1 +50)



mutations in
GUGgugauc
IVS1 + 5G > U
1




kidney tubular







epithelial cells






TP53
Squamous cell
GAAgucugg
IVS6 − 1G > A
6




carcinoma
GAGaucugg
IVS6 + 1G > A
6



HXA
Tay-Sachs
GACaugagg
IVS9 + 1 G > A
9
AGGgugggu (IVS9 +18)



Syndrome






ABCD1
X-linked
GAAguggg
IVS1 − 1G > A
1
CAGguuggg (IVS1 +10)



adrenoleukodystrophy







(X-ALD)






RPGR
X-linked retinitis
CUGuugaga
IVS5 + 1G > U
5
CAUguaauu (Exon5 −76)



pigmentosa (RP3)

















A TABLE 2C








Exemplary targets with AGAguaag splice site sequence













Genomic
Genomic



Gene
Chr
Location
Location
Strand














EPHA3
3
89604444
89604474
+


PCOTH
13
23361677
23361707
+


NDFIP2
13
79005577
79005607
+


FZD6
8
104409805
104409835
+


PTPN3
9
111222509
111222539



AFP
4
74537190
74537220
+


CBX3
7
26212640
26212670
+


PHACTR4
1
28675375
28675405
+


TAF2
8
120826286
120826316



KCNT2
1
194552885
194552915



PRIM1
12
55431073
55431103



CDH9
5
26941809
26941839



SLC38A1
12
44883044
44883074



HDX
X
83643077
83643107



RAB23
6
57194060
57194090



STX3
11
59312981
59313011
+


DNAH3
16
21053065
21053095



SSX3
X
48100997
48101027



NSMAF
8
59670657
59670687



XRN2
20
21283495
21283525
+


EVC2
4
5715719
5715749



ERCC8
5
60223605
60223635



QRSL1
6
107210285
107210315
+


CEP110
9
122943672
122943702
+


FANCA
16
88404822
88404852



DYNC1H1
14
101544412
101544442
+


TRIML1
4
189298099
189298129
+


MKL2
16
14213752
14213782
+


CHAF1A
19
4369058
4369088
+


CCDC11
18
46031110
46031140



ALS2CL
3
46704576
46704606



C13orf1
13
49390214
49390244



JAK1
1
65079706
65079736



PAN2
12
54998272
54998302



PRKG1
10
52897587
52897617
+


KREMEN1
22
27824926
27824956
+


ADAMTS9
3
64611717
64611747



PDS5B
13
32228079
32228109
+


PTPRM
18
8374669
8374699
+


DPP4
2
162570485
162570515



L3MBTL2
22
39955591
39955621
+


EFCAB3
17
57837751
57837781
+


GRHPR
9
37412815
37412845
+


ARHGEF18
19
7434826
7434856
+


MLX
17
37977597
37977627
+


ABCB5
7
20649508
20649538
+


MAP4K4
2
101814730
101814760
+


L1CAM
X
152786433
152786463



CLPB
11
71683001
71683031



GNB5
15
50203946
50203976



TRAF3IP3
1
208021411
208021441
+


WDR26
1
222673827
222673857



ARHGAP1
11
46675131
46675161



PPP4C
16
30001341
30001371
+


MRPS35
12
27768371
27768401
+


WDR17
4
177254715
177254745
+


CLIC2
X
154162429
154162459



ARS2
7
100323401
100323431
+


MYO3A
10
26483743
26483773
+


EPS15
1
51701917
51701947



ANK3
10
61570100
61570130



CNOT1
16
57148251
57148281



FBXO38
5
147770506
147770536
+


PLXNC1
12
93142207
93142237
+


DMD
X
32392608
32392638



TMEM27
X
15587044
15587074



CDH10
5
24570962
24570992



GOLT1B
12
21546134
21546164
+


NUMA1
11
71412952
71412982



IMMT
2
86226686
86226716



SSX9
X
48050476
48050506



SSX5
X
47941095
47941125



PPP1R12A
12
78790703
78790733



TBCEL
11
120429636
120429666
+


MYO9B
19
17167267
17167297
+


PRPF40B
12
48316028
48316058
+


C10orf137
10
127414448
127414478
+


PDK4
7
95060931
95060961



MEGF11
15
63995524
63995554



FLJ35848
17
40102396
40102426
+


SLC13A1
7
122556119
122556149



MADD
11
47270708
47270738
+


ADAM10
15
56723361
56723391



MYH2
17
10380556
10380586



IL5RA
3
3121571
3121601



RLN3
19
14002153
14002183
+


CCDC81
11
85803988
85804018
+


SENP3
17
7408890
7408920
+


ACSS2
20
32977730
32977760
+


TRIM65
17
71399473
71399503



LOC390110
11
44028232
44028262
+


SENP6
6
76388046
76388076
+


PIK3C2G
12
18607684
18607714
+


SLC38A4
12
45458323
45458353



HDAC5
17
39526192
39526222



MGAM
7
141380633
141380663
+


YARS
1
33020576
33020606



C1R
12
7132560
7132590



TIMM50
19
44670682
44670712
+


SEC24A
5
134038791
134038821
+


NOS2A
17
23138815
23138845



FBXO18
10
6003311
6003341
+


PKHD1L1
8
110482978
110483008
+


GSDMB
17
35315874
35315904



C8orf33
8
146249321
146249351
+


PROCR
20
33222668
33222698
+


FEZ2
2
36661921
36661951



KIAA1033
12
104025754
104025784
+


FANK1
10
127575199
127575229
+


COMTD1
10
76664358
76664388



REC8
14
23716414
23716444
+


ATG4A
X
107267755
107267785
+


GTPBP4
10
1045505
1045535
+


PLCG1
20
39234328
39234358
+


CDH24
14
22593539
22593569



PRRG2
19
54783686
54783716
+


KIF5A
12
56256413
56256443
+


C1orf130
1
24794575
24794605
+


ARFGEF2
20
47038591
47038621
+


NME7
1
167534402
167534432



SEL1L
14
81022370
81022400



MME
3
156369265
156369295
+


PRIM2
6
57293302
57293332
+


DNAJC13
3
133724516
133724546
+


PPP4R1L
20
56246657
56246687



LUM
12
90026010
90026040



ZNF37A
10
38424723
38424753
+


SNRK
3
43348791
43348821
+


SPAG9
17
46511928
46511958



JAK2
9
5063770
5063800
+


C1orf114
1
167654859
167654889



CSE1L
20
47140951
47140981
+


MRPS28
8
81077773
81077803



NSMCE2
8
126183896
126183926
+


NUBPL
14
31138321
31138351
+


C5orf34
5
43544988
43545018



MRPL39
21
25886979
25887009



MTF2
1
93353748
93353778
+


FANCM
14
44720643
44720673
+


EPB41L5
2
120601882
120601912
+


ADAMTS20
12
42146706
42146736



RFC4
3
187995125
187995155



PIAS1
15
66226077
66226107
+


CUL5
11
107465545
107465575
+


COL5A2
2
189615675
189615705



FN1
2
215951127
215951157



PROSC
8
37749550
37749580
+


LHX6
9
124015690
124015720



SCYL3
1
168114383
168114413



MALT1
18
54518788
54518818
+


C15orf42
15
87944905
87944935
+


DIP2A
21
46773509
46773539
+


WDR44
X
117454800
117454830
+


KIN
10
7865034
7865064



FGFR2
10
123313990
123314020



OSBPL8
12
75287532
75287562



TCEB3
1
23956187
23956217
+


MYO19
17
31929016
31929046



APOB
2
21104688
21104718



RP13-36C9.
X
134715052
134715082
+


RP13-36C9.
X
134777728
134777758



CT45-6
X
134794978
134795008



XX-FW88277
X
134680521
134680551
+


CEP110
9
122959964
122959994
+


SPATS1
6
44428573
44428603
+


C9orf114
9
130631194
130631224



STK17B
2
196712573
196712603



CCDC18
1
93455999
93456029
+


NCOA1
2
24803064
24803094
+


TTLL5
14
75199304
75199334
+


SH3PXD2A
10
105474002
105474032



DOCK4
7
111192394
111192424



MTDH
8
98804424
98804454
+


COL24A1
1
86145449
86145479



ADAMTS6
5
64631552
64631582



SENP7
3
102529996
102530026



PIGN
18
57928031
57928061



TOP2B
3
25623650
25623680



NUPL1
13
24787590
24787620
+


OSBPL11
3
126761897
126761927



CCDC5
18
41954009
41954039
+


COPS7B
2
232364112
232364142
+


POLN
4
2200608
2200638



VTI1A
10
114418022
114418052
+


SYTL5
X
37833769
37833799
+


CETP
16
55561399
55561429
+


LMLN
J
199185727
199185757
+


C11orf70
11
101442577
101442607
+


LMBRD2
5
36145788
36145818



DNTTIP2
1
94111247
94111277



ECM2
9
94304600
94304630



PRKG1
10
53563656
53563686
+


C16orf38
16
1477302
1477332



RBM45
2
178696609
178696639
+


C1orf94
1
34416282
34416312
+


GRIA1
5
152869544
152869574
+


HDAC3
5
140988294
140988324



IPO4
14
23727246
23727276



MYOM2
8
2077714
2077744
+


NARG1
4
140501217
140501247
+


HEPACAM2
7
92659487
92659517



SDK2
17
68955333
68955363



FBXO15
18
69958923
69958953



SNX6
14
34120502
34120532



BBOX1
11
27097953
27097983
+


C3orf23
3
44417815
44417845
+


ETS2
21
39108171
39108201
+


CDC16
13
114040792
114040822
+


CFH
1
194908901
194908931
+


ANTXR2
4
81171785
81171815



PIK3CG
7
106300268
106300298
+


EDEM3
1
182968578
182968608



IL1R2
2
102002691
102002721
+


KPNA5
6
117133001
117133031
+


LHCGR
2
48779242
48779272



NOL10
2
10720520
10720550



CYP3A4
7
99205311
99205341



TTC17
11
43369687
43369717
+


FAR2
12
29366109
29366139
+


COL3A1
2
189563316
189563346
+


ZBTB20
3
115826398
115826428



COL19A1
6
70907587
70907617
+


NUP160
11
47797486
47797516



SCO1
17
10539767
10539797



VWA3B
2
98283096
98283126
+


COL3A1
2
189580894
189580924
+


CYP3A43
7
99283798
99283828
+


DHRS7
14
59690414
59690444



MIB1
18
17687162
17687192
+


NLRC5
16
55670690
55670720
+


POLR3D
8
22160707
22160737
+


ATP11C
X
138696982
138697012



ADAM15
1
153296186
153296216
+


FAM65C
20
48645297
48645327



SCN3A
2
165733476
165733506



CYP3A5
7
99102144
99102174



COL1A1
17
45624324
45624354



FGR
1
27820641
27820671



MIER2
19
276619
276649



SIPA1L3
19
43283691
43283721
+


CDH11
16
63583156
63583186



SYCP1
1
115203939
115203969
+


ASH1L
1
153652143
153652173



FAM13B1
5
137351846
137351876



COL4A5
X
107693797
107693827
+


PRPF4B
6
3966684
3966714
+


PTPN11
12
111424428
111424458
+


LAMB1
7
107367654
107367684



PIK3R1
5
67627057
67627087
+


FLNA
X
153243216
153243246



SKIV2L2
5
54698445
54698475
+


RNFT1
17
55394667
55394697



PDCD4
10
112644255
112644285
+


AHCTF1
1
245137460
245137490



DHFR
5
79965436
79965466



UTP15
5
72899893
72899923
+


TMEM156
4
38666850
38666880



TNKS
8
9604951
9604981
+


NFIA
1
61570831
61570861
+


NT5C3
7
33021791
33021821



TNKS2
10
93580736
93580766
+


COL11A1
1
103227646
103227676



PCNX
14
70583560
70583590
+


MEMO1
2
31999355
31999385



LMBRD1
6
70467362
70467392



NEDD4
15
54030850
54030880



PPP3CB
10
74901216
74901246



C1orf71
1
244864497
244864527
+


CAB39
2
231383266
231383296
+


POMT2
14
76848378
76848408



TP53INP1
8
96013458
96013488



CDC14A
1
100706223
100706253
+


KLF3
4
38367880
38367910
+


NEK1
4
170760224
170760254



PPP4R2
3
73192886
73192916
+


KLF12
13
73285274
73285304



PHTF1
1
114042391
114042421



COL2A1
12
46674028
46674058



KIAA1622
14
93792679
93792709
+


TTN
2
179343016
179343046



PSD3
8
18534387
18534417



LACE1
6
108905173
108905203
+


SLC28A3
9
86104300
86104330



COPA
1
158533741
158533771



PAPOLG
2
60849514
60849544
+


CENPI
X
100268896
100268926
+


ARFGEF1
8
68328224
68328254



EXOC4
7
133273347
133273377
+


TIAM2
6
155607594
155607624
+


MDGA2
14
46384703
46384733



BRCC3
X
153972293
153972323
+


MEGF10
5
126804443
126804473
+


WDTC1
1
27481348
27481378
+


EMCN
4
101605587
101605617



FUT9
6
96575555
96575585
+


NPM1
5
170752572
170752602
+


GPR160
3
171280364
171280394
+


OSGEPL1
2
190334602
190334632



SGPL1
10
72274386
72274416
+


CEP192
18
13028563
13028593
+


CHN1
2
175491492
175491522



FLJ36070
19
53911758
53911788



CELSR3
3
48652095
48652125



GLT8D1
3
52704461
52704491



COL14A1
8
121423851
121423881
+


SAAL1
11
18074878
18074908



SH3TC2
5
148386600
148386630



SEC31A
4
84014772
84014802



LVRN
5
115357435
115357465
+


TLK2
17
57984833
57984863
+


KIF5B
10
32349940
32349970



EML5
14
88282266
88282296



TMF1
3
69176317
69176347



TMF1
3
69155880
69155910



TRIM44
11
35641889
35641919
+


PTK2
8
141925525
141925555



MLL5
7
104468691
104468721
+


ABCB1
7
87034021
87034051



SGOL2
2
201148414
201148444
+


PAWR
12
78512224
78512254



NUBP1
16
10769375
10769405
+


PHLDB2
3
113142167
113142197
+


ISL2
15
74416322
74416352
+


CNOT7
8
17145306
17145336



UTX
X
44823525
44823555
+


COL5A2
2
189631804
189631834



DSCC1
8
120925014
120925044



RB1CC1
8
53705567
53705597



PLCB4
20
9401479
9401509
+


ASPM
1
195328789
195328819



ERMP1
9
5801095
5801125



LIMK2
22
29986048
29986078
+


HERC1
15
61733355
61733385



CHD9
16
51854495
51854525
+


THOC2
X
122599559
122599589



SCN11A
3
38961890
38961920



SLC39A10
2
196281798
196281828
+


PLCB1
20
8717354
8717384
+


CXorf41
X
106348840
106348870
+


CENTB2
3
196547261
196547291



UNC5C
4
96382587
96382617



DNAH8
6
39060046
39060076
+


POMT2
14
76824842
76824872



MAGT1
X
76983383
76983413



HSPA9
5
137921441
137921471



PTPRK
6
128339479
128339509



RP1
8
55697386
55697416
+


PTPN4
2
120434984
120435014
+


C19orf42
19
16627033
16627063



TG
8
133982965
133982995
+


PIGT
20
43481629
43481659
+


CDC42BPB
14
102495705
102495735



TOM1L1
17
50382471
50382501
+


USP39
2
85716749
85716779
+


POSTN
13
37058903
37058933



PAH
12
101773028
101773058



ARHGEF2
1
154191301
154191331



RBM39
20
33773060
33773090



C21orf70
21
45204496
45204526
+


GAS2L3
12
99540276
99540306
+


UXT
X
47401510
47401540



C16orf48
16
66257459
66257489



CMIP
16
80282931
80282961
+


CA11
19
53834602
53834632



PHKB
16
46251964
46251994
+


ADAMTS9
3
64602548
64602578



SETD3
14
99001777
99001807



DENND2D
1
111532831
111532861



GAB1
4
144600066
144600096
+


COL4A2
13
109888370
109888400
+


PADI4
1
17555526
17555556
+


MYOM3
1
24260121
24260151



ARPC3
12
109367624
109367654



TBC1D3G
17
31873637
31873667



USP6
17
4981754
4981784
+


COG3
13
44958696
44958726
+


ATP6V1G3
1
196776306
196776336



KIR2DL5B
19
237531
237561
+


KIR3DL2
19
60069161
60069191
+


KIR3DL3
19
59938621
59938651
+


HTT
4
3186721
3186751
+


CEP192
18
13086291
13086321
+


TEAD1
11
12859159
12859189
+


CD4
12
6775799
6775829
+


SUCLG2
3
67662185
67662215



VTI1B
14
67192870
67192900



L3MBTL
20
41598497
41598527
+


GCG
2
162710280
162710310



MCF2L2
3
184428763
184428793



MYCBP2
13
76590460
76590490



AP2A2
11
971284
971314
+


GRAMD3
5
125829912
125829942
+


ATAD5
17
26245279
26245309
+


PDS5A
4
39540218
39540248



GRM3
7
86307142
86307172
+


TG
8
134030355
134030385
+


SPAG9
17
46430788
46430818



PLEKHA7
11
16849206
16849236



KATNAL2
18
42840008
42840038
+


COL5A2
2
189629928
189629958



ERN2
16
23629322
23629352



TFRC
3
197264670
197264700



TET2
4
106384369
106384399
+


KRTCAP2
1
153411649
153411679



MEGF10
5
126802143
126802173
+


IWS1
2
127977417
127977447



COL2A1
12
46656548
46656578



FAM20A
17
64062497
64062527



PDIA3
15
41842681
41842711
+


CDC2L5
7
40084960
40084990
+


SMARCA1
X
128473446
128473476



NFRKB
11
129257540
129257570



CPXM2
10
125629701
125629731



BCS1L
2
219235631
219235661
+


NFIX
19
13045295
13045325
+


SPECC1L
22
23050380
23050410
+


NAG
2
15350096
15350126



KIF16B
20
16426242
16426272



AKAP3
12
4621310
4621340



PROX1
1
212228672
212228702
+


MATN2
8
99102716
99102746
+


STAMBPL1
10
90663180
90663210
+


EPHB1
3
136451008
136451038
+


TTPAL
20
42548745
42548775
+


PVRL2
19
50077446
50077476
+


ZNF618
9
115837321
115837351
+


COL4A5
X
107710609
107710639
+


FAM13C1
10
60792149
60792179



VPS35
16
45272068
45272098



SPP2
2
234624463
234624493
+


FAM19A1
3
68670706
68670736
+


NRXN1
2
50576531
50576561



HIPK3
11
33326925
33326955
+


CAPN9
1
228992543
228992573
+


CEP170
1
241406611
241406641



FGFR1OP
6
167358357
167358387
+


ADCY8
8
131917689
131917719



MAGI1
3
65403491
65403521



UNC45B
17
30505858
30505888
+


C16orf33
16
46598
46628
+


GRN
17
39783979
39784009
+


KIF9
3
47293760
47293790



LMO2
11
33847452
33847482



C13orf15
13
40930591
40930621
+


FNBP1L
1
93771198
93771228
+


CCDC102B
18
64657128
64657158
+


C15orf29
15
32226677
32226707



ARHGAP18
6
129970715
129970745
trem


C9orf98
9
134692499
134692529



GRIA3
X
122389656
122389686
+


DNAI1
9
34473463
34473493
+


PIWIL3
22
23475355
23475385



SLC4A2
7
150394766
150394796
+


CRKRS
17
34929851
34929881
+


OBFC2B
12
54905731
54905761
+


C14orf118
14
75712771
75712801
+


DCTN3
9
34608657
34608687



COL4A1
13
109656997
109657027



CDCA8
1
37938765
37938795
+


PARVB
22
42863716
42863746
+


FGFR1OP2
12
26982895
26982925
+


STXBP1
9
129414525
129414555
+


BMPR2
2
203129484
203129514
+


SNRP70
19
54293758
54293788
+


ACADL
2
210793600
210793630



TBC1D8B
X
105950866
105950896
+


MUC2
11
1073587
1073617
+


POMT2
14
76823313
76823343



CAPSL
5
35946209
35946239



BRSK2
11
1429210
1429240
+


ERGIC3
20
33605556
33605586
+


DDA1
19
17286183
17286213
+


CDK8
13
25872672
25872702
+


TP63
3
191068410
191068440
+


INPP5D
2
233757891
233757921
+


MAPK8IP3
16
1714664
1714694
+


TNFRSF8
1
12108681
12108711
+


AMBRA1
11
46396023
46396053



F3
1
94774093
94774123



HSPG2
1
22059241
22059271



RHPN2
19
38209234
38209264



RP11-265F1
1
15682467
15682497
+


ELA2A
1
15662589
15662619
+


GRM4
6
34115917
34115947



GOLT1A
1
202449617
202449647



LGMN
14
92254829
92254859



TNK2
3
197080749
197080779



LRP4
11
46867522
46867552



SEC24A
5
134041726
134041756
+


EFCAB4B
12
3658326
3658356



MAPK9
5
179621274
179621304



SH3RF2
5
145415954
145415984
+


NKAP
X
118956705
118956735



CALCOCO2
17
44274233
44274263
+


DDX1
2
15677956
15677986
+


PRMT7
16
66912851
66912881
+


TDRD3
13
59939499
59939529
+


PPFIA2
12
80375659
80375689



COL24A1
1
86021751
86021781



STAMBPL1
10
90671117
90671147
+


KIF15
3
44865039
44865069
+


ANXA11
10
81906098
81906128



PIK3C2G
12
18415497
18415527
+


COL29A1
3
131625419
131625449
+


ERMN
2
157892215
157892245



GNAS
20
56904119
56904149
+


SULF2
20
45734333
45734363



TRPM7
15
48654325
48654355



ALAS1
3
52208481
52208511
+


COPZ2
17
43466212
43466242



OLIG2
21
33320189
33320219
+


FAM13A1
4
89889929
89889959



RPN1
3
129823681
129823711



SRP72
4
57028652
57028682
+


LPCAT2
16
54137215
54137245
+


SGCE
7
94066929
94066959



C1orf107
1
208070996
208071026
+


UTP18
17
46698625
46698655
+


UVRAG
11
75405657
75405687
+


PRC1
15
89318803
89318833



CUBN
10
17125816
17125846



NEK5
13
51574054
51574084



EPHB3
3
185781875
185781905
+


ZNF114
19
53466882
53466912
+


CAMK1D
10
12906542
12906572
+


NOTCH1
9
138517439
138517469



ADAL
15
41415301
41415331
+


SPATA13
13
23758516
23758546
+


CAMKK1
17
3740720
3740750



C9orf86
9
138837917
138837947
+


FRAS1
4
79513021
79513051
+


CENTG2
2
236614209
236614239
+


PTPRD
9
8330327
8330357



UHRF1BP1
6
34910601
34910631
+


JAK1
1
65084904
65084934



LYST
1
233985385
233985415



CPSF2
14
91697328
91697358
+


PUS10
2
61041015
61041045



COL1A2
7
93882503
93882533
+


DPP4
2
162587495
162587525



SEC24D
4
119905389
119905419



ADCY10
1
166139733
166139763



CDH8
16
60627469
60627499



ZC3HAV1
7
138396306
138396336



SKAP1
17
43620188
43620218



FAM23B
10
18105150
18105180
+


RTEL1
20
61779965
61779995
+


ZNF365
10
63806686
63806716
+


SAE1
19
52348122
52348152
+


STARD6
18
50109699
50109729



TBK1
12
63170151
63170181
+


SETD4
21
36335959
36335989



ZWINT
10
57790947
57790977



GRIN2B
12
13611210
13611240



TNFRSF10A
8
23110574
23110604



TNFRSF10B
8
22937630
22937660



ROCK2
2
11251817
11251847



ABCA9
17
64568586
64568616



GRIA4
11
105302860
105302890
+


EXO1
1
240082321
240082351
+


PRAME
22
21231362
21231392



C8B
1
57170055
57170085



PAPOLG
2
60867690
60867720
+


CDH8
16
60416401
60416431



KIAA0586
14
58025330
58025360
+


GSTCD
4
106907867
106907897
+


STAG1
3
137635072
137635102



CLINT1
5
157148933
157148963



KCNN2
5
113836745
113836775
+


GART
21
33800135
33800165



DDX24
14
93596181
93596211



AKAP10
17
19785715
19785745



LRPPRC
2
43980093
43980123



DOCK11
X
117654388
117654418
+


LAMA2
6
129506903
129506933
+


HNRNPH1
5
178975689
178975719



RAB11FIP2
10
119795296
119795326



COL9A1
6
71036722
71036752



LRRC42
1
54186227
54186257
+


KRIT1
7
91693760
91693790



PLEKHA5
12
19299351
19299381
+


MLANA
9
5882536
5882566
+


CCDC15
11
124334355
124334385
+


CACNA2D1
7
81437911
81437941



SCN1A
2
166621151
166621181



SENP6
6
76480002
76480032
+


DNAJA4
15
76345675
76345705
+


AP4E1
15
49063619
49063649
+


LAMB1
7
107413687
107413717



TCP11L2
12
105254106
105254136
+


GOLGB1
3
122884438
122884468



C20orf74
20
20513493
20513523



WDFY2
13
51228584
51228614
+


MGC34774
7
77817519
77817549
+


DNAJC7
17
37394932
37394962



RPAP3
12
46347014
46347044



PTK2B
8
27343574
27343604
+


RNF32
7
156128527
156128557
+


COL22A1
8
139862336
139862366



VAPA
18
9940550
9940580
+


MGAT4A
2
98641097
98641127



RYR3
15
31920361
31920391
+


MYB
6
135552699
135552729
+


SPATA4
4
177351087
177351117



FZD3
8
28465172
28465202
+


CR1
1
205847289
205847319
+


C18orf8
18
19360712
19360742
+


CHIC2
4
54609863
54609893



TRIML2
4
189255193
189255223



WRNIP1
6
2715579
2715609
+


INTU
4
128814803
128814833
+


WDR67
8
124231534
124231564
+


C1orf149
1
37747450
37747480



ELA1
12
50021279
50021309



C12orf51
12
111115232
111115262



LIMCH1
4
41335726
41335756
+


ROCK1
18
16793783
16793813



COL4A6
X
107440618
107440648



AGL
1
100153615
100153645
+


WWC3
X
10062621
10062651
+


GPATCH1
19
38295344
38295374
+


IFI44L
1
78867257
78867287
+


NLRC3
16
3538120
3538150



DCC
18
48995950
48995980
+


ARHGEF18
19
7433205
7433235
+


MPI
15
72972181
72972211
+


PTPN22
1
114169271
114169301



KIAA1622
14
93744641
93744671
+


DEPDC2
8
69158162
69158192
+


NARG2
15
58527445
58527475



COL25A1
4
109972969
109972999



ENPP3
6
132040758
132040788
+


UTRN
6
144900531
144900561
+


CUBN
10
17022021
17022051



TIAL1
10
121326097
121326127



USP38
4
144346814
144346844
+


SIPA1L2
1
230686145
230686175



NUPL1
13
24791473
24791503
+


SUPT16H
14
20901216
20901246



KIAA1219
20
36608472
36608502
+


JAK2
9
5070365
5070395
+


GALNT3
2
166323487
166323517



ZC3HC1
7
129477503
129477533



COL1A2
7
93878387
93878417
+


CBX1
17
43509210
43509240



SMC5
9
72102942
72102972
+


ANXA10
4
169342392
169342422
+


XRN1
3
143566826
143566856



CREBBP
16
3734880
3734910



NOS1
12
116186061
116186091



SMARCA5
4
144667048
144667078
+


VPS29
12
109421707
109421737



PLD1
3
172935333
172935363



PIGF
2
46694321
46694351



C1orf27
1
184621823
184621853
+


TCF12
15
55143298
55143328
+


COL24A1
1
85999651
85999681



MRAP2
6
84829415
84829445
+


FOLH1
11
49161261
49161291



PSMAL
11
89035044
89035074
+


SH3PXD2B
5
171741629
171741659



KIAA0256
15
47088689
47088719



C4orf18
4
159271372
159271402



NR4A3
9
101635542
101635572
+


FAM184A
6
119342986
119343016



PDE8B
5
76743287
76743317
+


DDX4
5
55116914
55116944
+


ERN1
17
59511851
59511881



COL12A1
6
75868020
75868050



COPB2
3
140573239
140573269



ICA1
7
8147904
8147934



NUP98
11
3759832
3759862



GJA1
6
121798662
121798692
+


LRRC19
9
26989596
26989626



IPO8
12
30709405
30709435



CDK5RAP2
9
122255539
122255569



UTY
Y
13944813
13944843



EIF3A
10
120806226
120806256



ASNSD1
2
190238407
190238437
+






A
Homo sapiens (human) genome assembly GRCh37 (hg19) from Genome Reference Consortium















A TABLE 2D








Exemplary SMSM Splice Site Targets


with GGAguaag splice site sequence













Genomic
Genomic



Gene
Chr
location
location
Strand














CD1B
1
156565768
156565798



ZFYVE1
14
72514372
72514402



LENG1
19
59352297
59352327



PRUNE2
9
78424060
78424090



HLA-DPB1
6
33161542
33161572
+


GSTO2
10
106047417
106047447
+


BRSK1
19
60506032
60506062
+


GAPDH
12
6517578
6517608
+


TTLL9
20
29950014
29950044
+


CACHD1
1
64820560
64820590
+


DPP3
11
66019521
66019551
+


LRWD1
7
101892597
101892627
+


CYFIP2
5
156685209
156685239
+


KIAA1787
17
7165139
7165169



KCNN2
5
113850384
113850414
+


SLC25A14
X
129301993
129302023
+


CEL
9
134934051
134934081
+


TRPM3
9
72443834
72443864



DPY19L2P2
7
102707805
102707835



COL17A1
10
105787368
105787398



TRPM5
11
2383317
2383347



ITGB1
10
33254789
33254819



ACTG2
2
73982100
73982130
+


TECTB
10
114049297
114049327
+


SYCP2
20
57890379
57890409



KIAA1166
X
64056670
64056700



RTF1
15
39549867
39549897
+


MGAM
7
141368693
141368723
+


PCBP4
3
51970789
51970819



ERCC1
19
50609045
50609075



CGN
1
149764875
149764905
+


CACNA1G
17
46040364
46040394
+


NT5C
17
70638855
70638885



MGAT5
2
134815785
134815815
+


SDK1
7
3975567
3975597
+


RMND5B
5
177503319
177503349
+


HLA-G
6
29905434
29905464
+


HP1BP3
1
20975661
20975691



KIAA0564
13
41191711
41191741



SLC6A6
3
14464313
14464343
+


NFKBIL2
8
145638852
145638882



PRODH
22
17298487
17298517



CACNA1H
16
1202124
1202154
+


INTS3
1
152003306
152003336
+


POMT2
14
76842417
76842447



KLK12
19
56226928
56226958



FAM134A
2
219754156
219754186
+


MKKS
20
10360316
10360346



HPGD
4
175650861
175650891



FKBP3
14
44659824
44659854



TXNDC10
18
64501126
64501156



NUP88
17
5230736
5230766



SV2C
5
75622897
75622927
+


ADAM32
8
39222827
39222857
+


SEZ6
17
24307287
24307317



NUDT5
10
12277759
12277789



PDZRN3
3
73535973
73536003



TP53I3
2
24161089
24161119



SCN8A
12
50366493
50366523
+


NLRC3
16
3547579
3547609



CDK6
7
92090270
92090300



RFT1
3
53128924
53128954



GSTCD
4
106966391
106966421
+


DAZ2
Y
23782988
23783018
+


DAZ2
Y
25408223
25408253
+


FCGBP
19
45124790
45124820



ZNF326
1
90245882
90245912
+


ITPR2
12
26483311
26483341



CHL1
3
411540
411570
+


NKAIN2
6
124645972
124646002
+


COL11A1
1
103121327
103121357



CNGA3
2
98366321
98366351
+


SYT6
1
114437864
114437894



ARHGAP26
5
142373859
142373889
+


PTPRN2
7
157596266
157596296



EPHA4
2
221999412
221999442



RUFY1
5
178936728
178936758
+


ATP13A5
3
194534217
194534247



PELI2
14
55825090
55825120
+


BTAF1
10
93681242
93681272
+


SIVA1
14
104294127
104294157
+


APOH
17
61655880
61655910



TGS1
8
56848817
56848847
+


CMYA5
5
79122633
79122663
+


NLRP7
19
60141208
60141238



CYP24A1
20
52208016
52208046



B4GALNT3
12
439957
439987
+


UTP20
12
100203775
100203805
+


NEK11
3
132475093
132475123
+


CARKD
13
110072699
110072729
+


C15orf60
15
71630529
71630559
+


PIP5K1A
1
149478263
149478293
+


NLRC5
16
55662016
55662046
+


SCN2A
2
165872678
165872708
+


PITRM1
10
3192024
3192054



RRM1
11
4105047
4105077
+


PKIB
6
122996196
122996226
+


C9orf43
9
115225584
115225614
+


ADAM22
7
87630416
87630446
+


HCK
20
30126170
30126200
+


MRPL11
11
65961135
65961165



COL2A1
12
46677640
46677670



TBPL1
6
134343076
134343106
+


TM4SF20
2
227943859
227943889



KIAA0528
12
22567611
22567641



C11orf65
11
107783017
107783047



PTPRT
20
40377761
40377791



ITFG1
16
46044129
46044159



MAP2K1
15
64466804
64466834
+


HSF2BP
21
43877565
43877595



RFTN1
3
16394213
16394243



ITPR2
12
26759936
26759966



OBFC2A
2
192254973
192255003
+


WDR16
17
9442360
9442390
+


OPTN
10
13191006
13191036
+


C14orf101
14
56121488
56121518
+


ADRBK2
22
24404867
24404897
+


TOM1L2
17
17710899
17710929



C6orf118
6
165614944
165614974



PDLIM5
4
95794799
95794829
+


USP1
1
62686910
62686940
+


HLTF
3
150250693
150250723



ERBB4
2
211960899
211960929



C4orf29
4
129161828
129161858
+


UTP20
12
100293650
100293680
+


CRYZ
1
74952835
74952865



DCBLD1
6
117960234
117960264
+


KIF3B
20
30378333
30378363
+


AKNA
9
116161679
116161709



RALGDS
9
134965460
134965490



TM6SF1
15
81579422
81579452
+


PMFBP1
16
70714298
70714328



TBC1D29
17
25911845
25911875
+


FAM161A
2
61927382
61927412



TBC1D26
17
15587032
15587062
+


ZNF169
9
96088900
96088930
+


KIAA1409
14
93218778
93218808
+


NFE2L2
2
177807182
177807212



PRKCA
17
62213539
62213569
+


CLPTM1
19
50172542
50172572
+


MCM6
2
136350283
136350313



TMEM194A
12
55750708
55750738



SCN4A
17
59403212
59403242



TUSC3
8
15645477
15645507
+


GBGT1
9
135028946
135028976



CCDC146
7
76721801
76721831
+


GFM1
3
159853935
159853965
+


MSMB
10
51225827
51225857
+


STAT6
12
55778539
55778569



FAM176B
1
36562065
36562095



NEB
2
152054715
152054745



MTIF2
2
55349202
55349232



CLEC16A
16
10974404
10974434
+


ADAMTS12
5
33685400
33685430



LOC389634
12
8434117
8434147



TGM7
15
41356336
41356366



SLC6A13
12
217337
217367



C11orf30
11
75911968
75911998
+


DCUN1D4
4
52469883
52469913
+


TEK
9
27159612
27159642
+


RRP1B
21
43920630
43920660
+


MGC16169
4
107450517
107450547



TMEM77
1
111464661
111464691



ADCY3
2
24915204
24915234



RALBP1
18
9503272
9503302
+


EPHB2
1
23111664
23111694
+


PDXK
21
43996923
43996953
+


SLC22A17
14
22891679
22891709



GPR158
10
25724933
25724963
+


LYN
8
57022821
57022851
+


SFRS12
5
65476106
65476136
+


DHRS9
2
169632008
169632038
+


CLK1
2
201437053
201437083



SLC6A11
3
10840062
10840092
+


COL1A1
17
45631570
45631600



DVL3
3
185367140
185367170
+


ITIH1
3
52796653
52796683
+


NLRP8
19
61179466
61179496
+


SNCAIP
5
121808311
121808341
+


SH3BGRL2
6
80440220
80440250
+


PDE10A
6
165768699
165768729



OPN4
10
88408409
88408439
+


C1orf87
1
60227396
60227426



EFNA4
1
153306525
153306555
+


KLHL20
1
172011589
172011619
+


LAMA1
18
6948460
6948490



BBS4
15
70804034
70804064
+


SUPT6H
17
24025743
24025773
+


MEGF10
5
126797085
126797115
+


FGD6
12
94026394
94026424



SMTN
22
29825867
29825897
+


PBRM1
3
52671173
52671203



ATG16L2
11
72212800
72212830
+


KALRN
3
125859073
125859103
+


DDEF1
8
131269521
131269551



CSTF3
11
33077714
33077744



ARHGAP8
22
43576693
43576723
+


ZC3H7A
16
11759772
11759802



LARP7
4
113777829
113777859
+


EFTUD2
17
40318134
40318164



UCK1
9
133391637
133391667



CAPN3
15
40465431
40465461
+


CNTN6
3
1389143
1389173
+


PARD3
10
34730744
34730774



TAF2
8
120866606
120866636



TSPAN7
X
38310537
38310567
+


TP53BP2
1
222038424
222038454



JMJD1C
10
64638813
64638843



GRIA1
5
153058811
153058841
+


RNGTT
6
89567986
89568016



ABCC9
12
21957057
21957087



SNX6
14
34168848
34168878



CGNL1
15
55531764
55531794
+


ITGAL
16
30429943
30429973
+


CYP4F3
19
15621076
15621106
+


CYP4F2
19
15862106
15862136



MS4A13
11
60047987
60048017
+


C2orf55
2
98820998
98821028



AFP
4
74534033
74534063
+


COL15A1
9
100851846
100851876
+


RIF1
2
152023655
152023685
+


RPS6KA6
X
83246147
83246177



DDX1
2
15670844
15670874
+


MPDZ
9
13129970
13130000



PGM2
4
37526652
37526682
+


RBL2
16
52058567
52058597
+


CCDC131
12
70294865
70294895



NDC80
18
2598814
2598844
+


USH2A
1
214238836
214238866



VPS39
15
40243100
40243130



DMTF1
7
86648578
86648608
+


RNF11
1
51508370
51508400
+


DOCK10
2
225378003
225378033



IQGAP2
5
75942749
75942779
+


NLRP13
19
61108104
61108134







A
Homo sapiens (human) genome assembly GRCh37 (hg19) from Genome Reference Consortium







Methods of Treatment

The compositions and methods described herein can be used for treating a human disease or disorder associated with aberrant splicing, such as aberrant pre-mRNA splicing. The compositions and methods described herein can be used for treating a human disease or disorder by modulating mRNA, such as pre-mRNA. In some embodiments, the compositions and methods described herein can be used for treating a human disease or disorder by modulating splicing of a nucleic acid even when that nucleic acid is not aberrantly spliced in the pathogenesis of the disease or disorder being treated.


Provided herein are methods of treating cancer or a non-cancer disease or condition in a mammal in need thereof. The method can comprise administering a therapeutically effective amount of a compound described herein or a pharmaceutically acceptable salt thereof, to a mammal with a cancer or a non-cancer disease or condition. In some embodiments, the present disclosure relates to the use of an SMSM as described herein for the preparation of a medicament for the treatment, prevention and/or delay of progression of cancer or a non-cancer disease or condition. In some embodiments, the present disclosure relates to the use of a steric modulator as described herein for the treatment, prevention and/or delay of progression of cancer or a non-cancer disease or condition.


In some embodiments, an effective amount in the context of the administration of an SMSM compound or a pharmaceutically acceptable salt thereof, or composition or medicament thereof refers to an amount of an SMSM compound or a pharmaceutically acceptable salt thereof to a patient which has a therapeutic effect and/or beneficial effect. In certain specific embodiments, an effective amount in the context of the administration of an SMSM compound or a pharmaceutically acceptable salt thereof, or composition or medicament thereof to a patient results in one, two or more of the following effects: (i) reduces or ameliorates the severity of a disease; (ii) delays onset of a disease; (iii) inhibits the progression of a disease; (iv) reduces hospitalization of a subject; (v) reduces hospitalization length for a subject; (vi) increases the survival of a subject; (vii) improves the quality of life of a subject; (viii) reduces the number of symptoms associated with a disease; (ix) reduces or ameliorates the severity of a symptom associated with a disease; (x) reduces the duration of a symptom associated with a disease associated; (xi) prevents the recurrence of a symptom associated with a disease; (xii) inhibits the development or onset of a symptom of a disease; and/or (xiii) inhibits of the progression of a symptom associated with a disease. In some embodiments, an effective amount of an SMSM compound or a pharmaceutically acceptable salt thereof is an amount effective to restore the amount of a RNA transcript of a gene to the amount of the RNA transcript detectable in healthy patients or cells from healthy patients. In other embodiments, an effective amount of an SMSM compound or a pharmaceutically acceptable salt thereof is an amount effective to restore the amount an RNA isoform and/or protein isoform of gene to the amount of the RNA isoform and/or protein isoform detectable in healthy patients or cells from healthy patients.


In some embodiments, an effective amount of an SMSM compound or a pharmaceutically acceptable salt thereof is an amount effective to decrease the aberrant amount of an RNA transcript of a gene which associated with a disease. In some embodiments, an effective amount of an SMSM compound or a pharmaceutically acceptable salt thereof is an amount effective to decrease the amount of the aberrant expression of an isoform of a gene. In some embodiments, an effective amount of an SMSM compound or a pharmaceutically acceptable salt thereof is an amount effective to result in a substantial change in the amount of an RNA transcript (e.g., mRNA transcript), alternative splice variant or isoform.


In some embodiments, an effective amount of an SMSM compound or a pharmaceutically acceptable salt thereof is an amount effective to increase or decrease the amount of an RNA transcript (e.g, an mRNA transcript) of gene which is beneficial for the prevention and/or treatment of a disease. In some embodiments, an effective amount of an SMSM compound or a pharmaceutically acceptable salt thereof is an amount effective to increase or decrease the amount of an alternative splice variant of an RNA transcript of gene which is beneficial for the prevention and/or treatment of a disease. In some embodiments, an effective amount of an SMSM compound or a pharmaceutically acceptable salt thereof is an amount effective to increase or decrease the amount of an isoform of gene which is beneficial for the prevention and/or treatment of a disease.


A method of treating cancer in a subject in need thereof can comprise administering to the subject a therapeutically effective amount of a compound described herein or a pharmaceutically acceptable salt thereof. A method of treating a non-cancer disease or condition in a subject in need thereof can comprise administering to the subject a therapeutically effective amount of a compound described herein or a pharmaceutically acceptable salt thereof.


In some embodiments, the present disclosure relates to a method for the treatment, prevention and/or delay of progression of cancer or a non-cancer disease or condition comprising administering an effective amount of a SMSM as described herein to a subject, in particular to a mammal.


In some embodiments, an effective amount in the context of the administration of an SMSM compound or a pharmaceutically acceptable salt thereof, or composition or medicament thereof refers to an amount of an SMSM compound or a pharmaceutically acceptable salt thereof to a patient which has a therapeutic effect and/or beneficial effect. In certain specific embodiments, an effective amount in the context of the administration of an SMSM compound or a pharmaceutically acceptable salt thereof, or composition or medicament thereof to a patient results in one, two or more of the following effects: (i) reduces or ameliorates the severity of a disease; (ii) delays onset of a disease; (iii) inhibits the progression of a disease; (iv) reduces hospitalization of a subject; (v) reduces hospitalization length for a subject; (vi) increases the survival of a subject; (vii) improves the quality of life of a subject; (viii) reduces the number of symptoms associated with a disease; (ix) reduces or ameliorates the severity of a symptom associated with a disease; (x) reduces the duration of a symptom associated with a disease associated; (xi) prevents the recurrence of a symptom associated with a disease; (xii) inhibits the development or onset of a symptom of a disease; and/or (xiii) inhibits of the progression of a symptom associated with a disease. In some embodiments, an effective amount of an SMSM compound or a pharmaceutically acceptable salt thereof is an amount effective to restore the amount of a RNA transcript of a gene to the amount of the RNA transcript detectable in healthy patients or cells from healthy patients. In other embodiments, an effective amount of an SMSM compound or a pharmaceutically acceptable salt thereof is an amount effective to restore the amount an RNA isoform and/or protein isoform of gene to the amount of the RNA isoform and/or protein isoform detectable in healthy patients or cells from healthy patients.


In some embodiments, an effective amount of an SMSM compound or a pharmaceutically acceptable salt thereof is an amount effective to decrease the aberrant amount of an RNA transcript of a gene which associated with a disease. In some embodiments, an effective amount of an SMSM compound or a pharmaceutically acceptable salt thereof is an amount effective to decrease the amount of the aberrant expression of an isoform of a gene. In some embodiments, an effective amount of an SMSM compound or a pharmaceutically acceptable salt thereof is an amount effective to result in a substantial change in the amount of an RNA transcript (e.g., mRNA transcript), alternative splice variant or isoform.


In some embodiments, an effective amount of an SMSM compound or a pharmaceutically acceptable salt thereof is an amount effective to increase or decrease the amount of an RNA transcript (e.g, an mRNA transcript) of gene which is beneficial for the prevention and/or treatment of a disease. In some embodiments, an effective amount of an SMSM compound or a pharmaceutically acceptable salt thereof is an amount effective to increase or decrease the amount of an alternative splice variant of an RNA transcript of gene which is beneficial for the prevention and/or treatment of a disease. In some embodiments, an effective amount of an SMSM compound or a pharmaceutically acceptable salt thereof is an amount effective to increase or decrease the amount of an isoform of gene which is beneficial for the prevention and/or treatment of a disease. Non-limiting examples of effective amounts of an SMSM compound or a pharmaceutically acceptable salt thereof are described herein. For example, the effective amount may be the amount required to prevent and/or treat a disease associated with the aberrant amount of an mRNA transcript of gene in a human subject. In general, the effective amount will be in a range of from about 0.001 mg/kg/day to about 500 mg/kg/day for a patient having a weight in a range of between about 1 kg to about 200 kg. The typical adult subject is expected to have a median weight in a range of between about 70 and about 100 kg.


In one embodiment, an SMSM described herein can be used in the preparation of medicaments for the treatment of diseases or conditions described herein. In addition, a method for treating any of the diseases or conditions described herein in a subject in need of such treatment, can involve administration of pharmaceutical compositions that includes at least one SMSM described herein or a pharmaceutically acceptable salt, thereof, in a therapeutically effective amount to a subject.


In certain embodiments, an SMSM described herein can be administered for prophylactic and/or therapeutic treatments. In certain therapeutic applications, the compositions are administered to a patient already suffering from a disease or condition, in an amount sufficient to cure or at least partially arrest at least one of the symptoms of the disease or condition. Amounts effective for this use depend on the severity and course of the disease or condition, previous therapy, the patient's health status, weight, and response to the drugs, and the judgment of the treating physician. Therapeutically effective amounts are optionally determined by methods including, but not limited to, a dose escalation clinical trial. In prophylactic applications, compositions containing an SMSM described herein can be administered to a patient susceptible to or otherwise at risk of a particular disease, disorder or condition. In certain embodiments, the dose of drug being administered may be temporarily reduced or temporarily suspended for a certain length of time (i.e., a “drug holiday”). Doses employed for adult human treatment typically range of 0.01 mg-5000 mg per day or from about 1 mg to about 1000 mg per day. In some embodiments, a desired dose is conveniently presented in a single dose or in divided doses.


For combination therapies described herein, dosages of the co-administered compounds can vary depending on the type of co-drug(s) employed, on the specific drug(s) employed, on the disease or condition being treated and so forth. In additional embodiments, when co-administered with one or more other therapeutic agents, the compound provided herein is administered either simultaneously with the one or more other therapeutic agents, or sequentially. If administration is simultaneous, the multiple therapeutic agents can be, by way of example only, provided in a single, unified form, or in multiple forms.


Conditions and Diseases

The present disclosure relates to a pharmaceutical composition comprising a SMSM described herein for use in the treatment, prevention and/or delay of progression of a disease, disorder or condition. In some embodiments, the present disclosure relates to a pharmaceutical composition comprising a SMSM described herein for use in the treatment, prevention and/or delay of progression of a disease, disorder or condition in Table 2A, Table 2B, Table 2C and Table 2D.


A method of treating, preventing, or delaying a non-cancer disease or condition disease can comprise administering a therapeutically effective amount of a compound described herein or a pharmaceutically acceptable salt thereof to a subject with a disease, disorder or condition in Table 2A, Table 2B, Table 2C and Table 2D.


In some embodiments, the present disclosure relates to a pharmaceutical composition comprising a SMSM described herein for use in the treatment, prevention and/or delay of progression of cancer.


A method of treating, preventing, or delaying cancer can comprise administering a therapeutically effective amount of a compound described herein or a pharmaceutically acceptable salt thereof to a subject with a liquid cancer. A method of treating, preventing, or delaying cancer can comprise administering a therapeutically effective amount of a compound described herein or a pharmaceutically acceptable salt thereof to a subject with a leukemia or lymphoma. A method of treating, preventing, or delaying cancer can comprise administering a therapeutically effective amount of a compound described herein or a pharmaceutically acceptable salt thereof to a subject with a leukemia, acute myeloid leukemia, colon cancer, gastric cancer, macular degeneration, acute monocytic leukemia, breast cancer, hepatocellular carcinoma, cone-rod dystrophy, alveolar soft part sarcoma, myeloma, skin melanoma, prostatitis, pancreatitis, pancreatic cancer, retinitis, adenocarcinoma, adenoiditis, adenoid cystic carcinoma, cataract, retinal degeneration, gastrointestinal stromal tumor, Wegener's granulomatosis, sarcoma, myopathy, prostate adenocarcinoma, Hodgkin's lymphoma, ovarian cancer, non-Hodgkin's lymphoma, multiple myeloma, chronic myeloid leukemia, acute lymphoblastic leukemia, renal cell carcinoma, transitional cell carcinoma, colorectal cancer, chronic lymphocytic leukemia, anaplastic large cell lymphoma, kidney cancer, breast cancer, cervical cancer.


A method of treating, preventing, or delaying cancer can comprise administering a therapeutically effective amount of a compound described herein or a pharmaceutically acceptable salt thereof to a subject with a solid cancer or solid tumor.


In some embodiments, the tumor is selected from the group consisting of adenocarcinoma, melanoma (e.g., metastatic melanoma), liver cancer (e.g., hepatocellular carcinoma, hepatoblastoma, liver carcinoma), prostate cancer (e.g, prostate adenocarcinoma, androgen-independent prostate cancer, androgen-dependent prostate cancer, prostate carcinoma), sarcoma (e.g., leiomyosarcoma, rhabdomyosarcoma), brain cancer (e.g., glioma, a malignant glioma, astrocytoma, brain stem glioma, ependymoma, oligodendroglioma, nonglial tumor, acoustic neurinoma, craniopharyngioma, medulloblastoma, meningioma, pineocytoma, pineoblastoma, primary brain lymphoma, anaplastic astrocytoma, juvenile pilocytic astrocytoma, a mixture of oligodendroglioma and astrocytoma elements), breast cancer (e.g., triple negative breast cancer, metastatic breast cancer, breast carcinoma, breast sarcoma, adenocarcinoma, lobular (small cell) carcinoma, intraductal carcinoma, medullary breast cancer, mucinous breast cancer, tubular breast cancer, papillary breast cancer, inflammatory breast cancer), Paget's disease, juvenile Paget's disease, lung cancer (e.g., KRAS-mutated non-small cell lung cancer, non-small cell lung cancer, squamous cell carcinoma (epidermoid carcinoma), adenocarcinoma, large-cell carcinoma, small cell lung cancer, lung carcinoma), pancreatic cancer (e.g., insulinoma, gastrinoma, glucagonoma, vipoma, somatostatin-secreting tumor, carcinoid tumor, islet cell tumor, pancreas carcinoma), skin cancer (e.g, skin melanoma, basal cell carcinoma, squamous cell carcinoma, melanoma, superficial spreading melanoma, nodular melanoma, lentigo malignant melanoma, acrallentiginous melanoma, skin carcinoma), cervical cancer (e.g, squamous cell carcinoma, adenocarcinoma, cervical carcinoma), ovarian cancer (e.g, ovarian epithelial carcinoma, borderline tumor, germ cell tumor, stromal tumor, ovarian carcinoma), cancer of the mouth, cancer of the nervous system (e.g, cancer of the central nervous system, a CNS germ cell tumor), goblet cell metaplasia, kidney cancer (e.g, renal cell cancer, adenocarcinoma, hypernephroma, Wilms' tumor, fibrosarcoma, transitional cell cancer (renal pelvis and/or uterer), renal cell carcinoma, renal carcinoma), bladder cancer (e.g, transitional cell carcinoma, squamous cell cancer, carcinosarcoma), stomach cancer (e.g, fimgating (polypoid), ulcerating, superficial spreading, diffusely spreading, liposarcoma, fibrosarcoma, carcinosarcoma), uterine cancer (e.g, endometrial cancer, endometrial carcinoma, uterine sarcoma), cancer of the esophagus (e.g, squamous cancer, adenocarcinoma, adenoid cyctic carcinoma, mucoepidermoid carcinoma, adenosquamous carcinoma, sarcoma, melanoma, plasmacytoma, verrucous carcinoma, and oat cell (small cell) carcinoma, esophageal carcinomas), colon cancer (e.g, colon carcinoma), cancer of the rectum (e.g, rectal cancers), colorectal cancer (e.g, colorectal carcinoma, metastatic colorectal cancer, hereditary nonpolyposis colorectal cancer, KRAS mutated colorectal cancer), gallbladder cancer (e.g, adenocarcinoma, cholangiocarcinoma, papillary cholangiocarcinoma, nodular cholangiocarcinoma, diffuse cholangiocarcinoma), testicular cancer (e.g, germinal tumor, seminoma, anaplastic testicular cancer, classic (typical) testicular cancer, spermatocytic testicular cancer, nonseminoma testicular cancer), embryonal carcinoma (e.g, teratoma carcinoma, choriocarcinoma (yolk-sac tumor)), gastric cancer (e.g, gastrointestinal stromal tumor, cancer of other gastrointestinal tract organs, gastric carcinomas), bone cancer (e.g, connective tissue sarcoma, bone sarcoma, cholesteatoma-induced bone osteosarcoma, Paget's disease of bone, osteosarcoma, chondrosarcoma, Ewing's sarcoma, malignant giant cell tumor, fibrosarcoma of bone, chordoma, periosteal sarcoma, soft-tissue sarcoma, angiosarcoma (hemangiosarcoma), fibrosarcoma, Kaposi's sarcoma, leiomyosarcoma, alveolar soft part sarcoma), liposarcoma, lymphangiosarcoma, neurilemmoma, rhabdomyosarcoma, synovial sarcoma, cancer of the lymph node (e.g, lymphangioendotheliosarcoma), adenoid cystic carcinoma, vaginal cancer (e.g, squamous cell carcinoma, adenocarcinoma, melanoma), vulvar cancer (e.g, squamous cell carcinoma, melanoma, adenocarcinoma, sarcoma, Paget's disease), cancer of other reproductive organs, thyroid cancer (e.g, papillary thyroid cancer, follicular thyroid cancer, medullary thyroid cancer, anaplastic thyroid cancer, thyroid carcinoma), salivary gland cancer (e.g, adenocarcinoma, mucoepidermoid carcinoma), eye cancer (e.g, ocular melanoma, iris melanoma, choroidal melanoma, cilliary body melanoma, retinoblastoma), penal cancers, oral cancer (e.g squamous cell carcinoma, basal cancer), pharynx cancer (e.g, squamous cell cancer, verrucous pharynx cancer), cancer of the head, cancer of the neck, cancer of the throat, cancer of the chest, cancer of the spleen, cancer of skeletal muscle, cancer of subcutaneous tissue, adrenal cancer, pheochromocytoma, adrenocortical carcinoma, pituitary cancer, Cushing's disease, prolactin-secreting tumor, acromegaly, diabetes insipidus, myxosarcoma, osteogenic sarcoma, endotheliosarcoma, mesothelioma, synovioma, hemangioblastoma, epithelial carcinoma, cystadenocarcinoma, bronchogenic carcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, ependyoma, optic nerve glioma, primitive neuroectodermal tumor, rhabdoid tumor, renal cancer, glioblastoma multiforme, neurofibroma, neurofibromatosis, pediatric cancer, neuroblastoma, malignant melanoma, carcinoma of the epidermis, polycythemia vera, Waldenstrom's macroglobulinemia, monoclonal gammopathy of undetermined significance, benign monoclonal gammopathy, heavy chain disease, pediatric solid tumor, Ewing's sarcoma, Wilms tumor, carcinoma of the epidermis, HIV-related Kaposi's sarcoma, rhabdomyosarcoma, thecomas, arrhenoblastomas, endometrial carcinoma, endometrial hyperplasia, endometriosis, fibrosarcomas, choriocarcinoma, nasopharyngeal carcinoma, laryngeal carcinoma, hepatoblastoma, Kaposi's sarcoma, hemangioma, cavernous hemangioma, hemangioblastoma, retinoblastoma, glioblastoma, Schwannoma, neuroblastoma, rhabdomyosarcoma, osteogenic sarcoma, leiomyosarcoma, urinary tract carcinoma, abnormal vascular proliferation associated with phakomatoses, edema (such as that associated with brain tumors), Meigs' syndrome, pituitary adenoma, primitive neuroectodermal tumor, medullblastoma, and acoustic neuroma.


A method of treating, preventing, or delaying cancer can comprise administering a therapeutically effective amount of a compound described herein or a pharmaceutically acceptable salt thereof to a subject with basal cell carcinoma, goblet cell metaplasia, or a malignant glioma. A method of treating, preventing, or delaying cancer can comprise administering a therapeutically effective amount of a compound described herein or a pharmaceutically acceptable salt thereof to a subject with a cancer of the liver, breast, lung, prostate, cervix, uterus, colon, pancreas, kidney, stomach, bladder, ovary, or brain.


A method of treating, preventing, or delaying cancer can comprise administering a therapeutically effective amount of a compound described herein or a pharmaceutically acceptable salt thereof to a subject with a cancer of the head, neck, eye, mouth, throat, esophagus, esophagus, chest, bone, lung, kidney, colon, rectum or other gastrointestinal tract organs, stomach, spleen, skeletal muscle, subcutaneous tissue, prostate, breast, ovaries, testicles or other reproductive organs, skin, thyroid, blood, lymph nodes, kidney, liver, pancreas, and brain or central nervous system.


Specific examples of cancers that can be prevented and/or treated in accordance with present disclosure include, but are not limited to, the following: renal cancer, kidney cancer, glioblastoma multiforme, metastatic breast cancer; breast carcinoma; breast sarcoma; neurofibroma; neurofibromatosis; pediatric tumors; neuroblastoma; malignant melanoma; carcinomas of the epidermis; leukemias such as but not limited to, acute leukemia, acute lymphocytic leukemia, acute myelocytic leukemias such as myeloblastic, promyelocytic, myelomonocytic, monocytic, erythroleukemia leukemias and myclodysplastic syndrome, chronic leukemias such as but not limited to, chronic myelocytic (granulocytic) leukemia, chronic lymphocytic leukemia, hairy cell leukemia; polycythemia vera; lymphomas such as but not limited to Hodgkin's disease, non-Hodgkin's disease; multiple myelomas such as but not limited to smoldering multiple myeloma, nonsecretory myeloma, osteosclerotic myeloma, plasma cell leukemia, solitary plasmacytoma and extramedullary plasmacytoma; Waldenstrom's macroglobulinemia; monoclonal gammopathy of undetermined significance; benign monoclonal gammopathy; heavy chain disease; bone cancer and connective tissue sarcomas such as but not limited to bone sarcoma, myeloma bone disease, multiple myeloma, cholesteatoma-induced bone osteosarcoma, Paget's disease of bone, osteosarcoma, chondrosarcoma, Ewing's sarcoma, malignant giant cell tumor, fibrosarcoma of bone, chordoma, periosteal sarcoma, soft-tissue sarcomas, angiosarcoma (hemangiosarcoma), fibrosarcoma, Kaposi's sarcoma, leiomyosarcoma, liposarcoma, lymphangio sarcoma, neurilemmoma, rhabdomyosarcoma, and synovial sarcoma; brain tumors such as but not limited to, glioma, astrocytoma, brain stem glioma, ependymoma, oligodendroglioma, nonglial tumor, acoustic neurinoma, craniopharyngioma, medulloblastoma, meningioma, pineocytoma, pineoblastoma, and primary brain lymphoma; breast cancer including but not limited to adenocarcinoma, lobular (small cell) carcinoma, intraductal carcinoma, medullary breast cancer, mucinous breast cancer, tubular breast cancer, papillary breast cancer, Paget's disease (including juvenile Paget's disease) and inflammatory breast cancer; adrenal cancer such as but not limited to pheochromocytom and adrenocortical carcinoma; thyroid cancer such as but not limited to papillary or follicular thyroid cancer, medullary thyroid cancer and anaplastic thyroid cancer; pancreatic cancer such as but not limited to, insulinoma, gastrinoma, glucagonoma, vipoma, somatostatin-secreting tumor, and carcinoid or islet cell tumor; pituitary cancers such as but limited to Cushing's disease, prolactin-secreting tumor, acromegaly, and diabetes insipius; eye cancers such as but not limited to ocular melanoma such as iris melanoma, choroidal melanoma, and cilliary body melanoma, and retinoblastoma; vaginal cancers such as squamous cell carcinoma, adenocarcinoma, and melanoma; vulvar cancer such as squamous cell carcinoma, melanoma, adenocarcinoma, basal cell carcinoma, sarcoma, and Paget's disease; cervical cancers such as but not limited to, squamous cell carcinoma, and adenocarcinoma; uterine cancers such as but not limited to endometrial carcinoma and uterine sarcoma; ovarian cancers such as but not limited to, ovarian epithelial carcinoma, borderline tumor, germ cell tumor, and stromal tumor; cervical carcinoma; esophageal cancers such as but not limited to, squamous cancer, adenocarcinoma, adenoid cyctic carcinoma, mucoepidermoid carcinoma, adenosquamous carcinoma, sarcoma, melanoma, plasmacytoma, verrucous carcinoma, and oat cell(small cell) carcinoma; stomach cancers such as but not limited to, adenocarcinoma, fungating (polypoid), ulcerating, superficial spreading, diffusely spreading, malignant lymphoma, liposarcoma, fibrosarcoma, and carcinosarcoma; colon cancers; KRAS mutated colorectal cancer; colon carcinoma; rectal cancers; liver cancers such as but not limited to hepatocellular carcinoma and hepatoblastoma, gallbladder cancers such as adenocarcinoma; cholangiocarcinomas such as but not limited to papillary, nodular, and diffuse; lung cancers such as KRAS-mutated non-small cell lung cancer, non-small cell lung cancer, squamous cell carcinoma (epidermoid carcinoma), adenocarcinoma, large-cell carcinoma and small-cell lung cancer; lung carcinoma; testicular cancers such as but not limited to germinal tumor, seminoma, anaplastic, classic (typical), spermatocytic, nonseminoma, embryonal carcinoma, teratoma carcinoma, choriocarcinoma (yolk-sac tumor), prostate cancers such as but not limited to, androgen-independent prostate cancer, androgen-dependent prostate cancer, adenocarcinoma, leiomyosarcoma, and rhabdomyosarcoma; penal cancers; oral cancers such as but not limited to squamous cell carcinoma; basal cancers; salivary gland cancers such as but not limited to adenocarcinoma, mucoepidermoid carcinoma, and adenoidcystic carcinoma; pharynx cancers such as but not limited to squamous cell cancer, and verrucous; skin cancers such as but not limited to, basal cell carcinoma, squamous cell carcinoma and melanoma, superficial spreading melanoma, nodular melanoma, lentigo malignant melanoma, acrallentiginous melanoma; kidney cancers such as but not limited to renal cell cancer, adenocarcinoma, hypernephroma, fibrosarcoma, transitional cell cancer (renal pelvis and/or uterer); renal carcinoma; Wilms' tumor; bladder cancers such as but not limited to transitional cell carcinoma, squamous cell cancer, adenocarcinoma, carcinosarcoma. In addition, cancers include myxosarcoma, osteogenic sarcoma, endotheliosarcoma, lymphangioendotheliosarcoma, mesothelioma, synovioma, hemangioblastoma, epithelial carcinoma, cystadenocarcinoma, bronchogenic carcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma and papillary adenocarcinomas.


A method of treating, preventing, or delaying cancer can comprise administering a therapeutically effective amount of a compound described herein or a pharmaceutically acceptable salt thereof to a subject with a pediatric solid tumor, Ewing's sarcoma, Wilms tumor, neuroblastoma, neurofibroma, carcinoma of the epidermis, malignant melanoma, cervical carcinoma, colon carcinoma, lung carcinoma, renal carcinoma, breast carcinoma, breast sarcoma, metastatic breast cancer, HIV-related Kaposi's sarcoma, prostate cancer, androgen-independent prostate cancer, androgen-dependent prostate cancer, neurofibromatosis, lung cancer, non-small cell lung cancer, KRAS-mutated non-small cell lung cancer, malignant melanoma, melanoma, colon cancer, KRAS-mutated colorectal cancer, glioblastoma multiforme, renal cancer, kidney cancer, bladder cancer, ovarian cancer, hepatocellular carcinoma, thyroid carcinoma, rhabdomyosarcoma, acute myeloid leukemia, or multiple myeloma.


In some embodiments, cancers and conditions associated therewith that are prevented and/or treated in accordance with the present disclosure are breast carcinomas, lung carcinomas, gastric carcinomas, esophageal carcinomas, colorectal carcinomas, liver carcinomas, ovarian carcinomas, thecomas, arrhenoblastomas, cervical carcinomas, endometrial carcinoma, endometrial hyperplasia, endometriosis, fibrosarcomas, choriocarcinoma, head and neck cancer, nasopharyngeal carcinoma, laryngeal carcinomas, hepatoblastoma, Kaposi's sarcoma, melanoma, skin carcinomas, hemangioma, cavernous hemangioma, hemangioblastoma, pancreas carcinomas, retinoblastoma, astrocytoma, glioblastoma, Schwannoma, oligodendroglioma, medulloblastoma, neuroblastomas, rhabdomyosarcoma, osteogenic sarcoma, leiomyosarcomas, urinary tract carcinomas, thyroid carcinomas, Wilm's tumor, renal cell carcinoma, prostate carcinoma, abnormal vascular proliferation associated with phakomatoses, edema (such as that associated with brain tumors), or Meigs' syndrome. In specific embodiment, the cancer an astrocytoma, an oligodendroglioma, a mixture of oligodendroglioma and an astrocytoma elements, an ependymoma, a meningioma, a pituitary adenoma, a primitive neuroectodermal tumor, a medullblastoma, a primary central nervous system (CNS) lymphoma, or a CNS germ cell tumor.


In some embodiments, the cancer treated in accordance with the present disclosure is an acoustic neuroma, an anaplastic astrocytoma, a glioblastoma multiforme, or a meningioma. In some embodiments, the cancer treated in accordance with the present disclosure is a brain stem glioma, a craniopharyngioma, an ependyoma, a juvenile pilocytic astrocytoma, a medulloblastoma, an optic nerve glioma, primitive neuroectodermal tumor, or a rhabdoid tumor.


A method of treating, preventing, or delaying a condition or disease can comprise administering a therapeutically effective amount of a compound described herein or a pharmaceutically acceptable salt thereof to a subject with acute myeloid leukemia, ALS, Alzheimer's disease, argyrophilic grain disease, cancer metabolism, chronic lymphocytic leukemia, colorectal carcinoma, corticobasal degeneration, cystic fibrosis, dilated cardiomyopathy, Duchenne muscular dystrophy, Ehlers-Danlos syndrome, endometrial cancer, Fabry's disease, familial dysautonomia, familial hypercholesterolemia, familial persistent hyperinsulinemic hypoglycemia, frontotemporal dementia, FTDP-17, gucher's disease, glioma, globular glial tauopathy, HIV-1, Huntington's disease, Hutchinson-Gilford progeria syndrome, hypercholesterolemia, Feber congenital amaurosis, migraine, multiple sclerosis, myelodysplastic syndromes, NASH, Niemann-Pick's, non-small cell lung cancer, pain, Parkinson's disease, phenylketonuria, Pick's disease, progressive supranuclear palsy, spinal muscular atrophy, spinocerebellar ataxia type 2, or Wilson's disease.


A method of treating, preventing, or delaying a non-cancer disease or condition disease can comprise administering a therapeutically effective amount of a compound described herein or a pharmaceutically acceptable salt thereof to a subject with atypical hemolytic uremic syndrome (aHUS), cystic fibrosis, muscular dystrophy, polycystic autosomal-dominant kidney disease, cancer-induced cachexia, benign prostatic hyperplasia, rheumatoid arthritis, psoriasis, atherosclerosis, obesity, retinopathies (including diabetic retinopathy and retinopathy of prematurity), retrolental fibroplasia, neovascular glaucoma, age-related macular degeneration, exudative macular degeneration, thyroid hyperplasias (including Grave's disease), corneal and other tissue transplantation, epidemic keratoconjunctivitis, Vitamin A deficiency, contact lens overwear, atopic keratitis, superior limbic keratitis, and pterygium keratitis sicca, viral infections, inflammation associated with viral infections, chronic inflammation, lung inflammation, nephrotic syndrome, preeclampsia, ascites, pericardial effusion (such as that associated with pericarditis), pleural effusion, Sjogren's syndrome, acne rosacea, phylectenulosis, syphilis, lipid degeneration, chemical burns, bacterial ulcers, fungal ulcers, Herpes simplex infection, Herpes zoster infections, protozoan infections, Mooren's ulcer, Terrien's marginal degeneration, marginal keratolysis, systemic lupus, polyarteritis, trauma, Wegener's sarcoidosis, Paget's disease, scleritis, Stevens-Johnson's disease, pemphigoid, radial keratotomy, Eales' disease, Behcet's disease, sickle cell anemia, pseudoxanthoma elasticum, Stargardt's disease, pars planitis, chronic retinal detachment, vein occlusion, artery occlusion, carotid obstructive disease, chronic uveitis/vitritis, ocular histoplasmosis, Mycobacteria infections, Fyme's disease, Best's disease, myopia, optic pits, hyperviscosity syndromes, toxoplasmosis, sarcoidosis, trauma, post-laser complications, diseases associated with rubeosis (neovascularization of the iris and of the angle), and diseases caused by the abnormal proliferation of fibrovascular or fibrous tissue, including all forms of prolific vitreoretinopathy. Certain examples of non-neoplastic conditions that can be prevented and/or treated in accordance with the methods described herein include viral infections, including but not limited to, those associated with viruses belonging to Flaviviridae, flavivims, pestivirus, hepacivirus, West Nile vims, hepatitis C vims (HCV) or human papilloma vims (HPV), cone-rod dystrophy, prostatitis, pancreatitis, retinitis, cataract, retinal degeneration, Wegener's granulomatosis, myopathy, adenoiditis, germ cell tumors, combined methylmalonic aciduria and homocystinuria, cb1C type, Alzheimer's disease, hyperprolinemia, acne, tuberculosis, succinic semialdehyde dehydrogenase deficiency, esophagitis, mental retardation, glycine encephalopathy, Crohn's disease, spina bifida, autosomal recessive disease, schizophrenia, neural tube defects, myelodysplastic syndromes, amyotropic lateral sclerosis, neuronitis, Parkinson's disease, talipes equinovarus, dystrophinopathies, cerebritis, bladder related disorders, cleft lip, cleft palate, cervicitis, spasticity, lipoma, scleroderma, Gitelman syndrome, poliomyelitis, paralysis, Aagenaes syndrome, oculomotor nerve paralysis, and spinal muscular atrophy.


A method of treating, preventing, or delaying a non-cancer disease or condition disease can comprise administering a therapeutically effective amount of a compound described herein or a pharmaceutically acceptable salt thereof to a subject with atypical hemolytic uremic syndrome (aHUS), Hutchinson-Gilford progeria syndrome (HGPS), Limb girdle muscular dystrophy type IB, Familial partial lipodystrophy type 2, Frontotemporal dementia with parkinsonism chromosome 17, Richardson's syndrome, PSP-Parkinsonism, Argyrophilic grain disease, Corticobasal degeneration, Pick's disease, Globular glial tauopathy, Guadeloupean Parkinsonism, Myotonic dystrophy, Down Syndrome, Neonatal Hypoxia-Ischemia, Familial Dysautonomia, Spinal muscular atrophy, Hypoxanthine phosphoribosyltransferase deficiency, Ehlers-Danlos syndrome, Occipital Horn Syndrome, Fanconi Anemia, Marfan Syndrome, thrombotic thrombocytopenic purpura, glycogen Storage Disease Type III, cystic fibrosis, neurofibromatosis, Tyrosinemia (type I), Menkes Disease, Analbuminemia, Congenital acetylcholinesterase deficiency, Haemophilia B deficiency (coagulation factor IX deficiency), Recessive dystrophic epidermolysis bullosa, Dominant dystrophic epidermolysis bullosa, Somatic mutations in kidney tubular epithelial cells, Neurofibromatosis type II, X-linked adrenoleukodystrophy (X-ALD), FVII deficiency, Homozygous hypobetalipoproteinemia, Ataxia-telangiectasia, Androgen Sensitivity, Common congenital afibrinogenemia, Risk for emphysema, Mucopolysaccharidosis type II (Hunter syndrome), Severe type III osteogenesis imperfecta, Ehlers-Danlos syndrome IV, Glanzmann thrombasthenia, Mild Bethlem myopathy, Dowling-Meara epidermolysis bullosa simplex, Severe deficiency of MTHFR, Acute intermittent porphyria, Tay-Sachs Syndrome, Myophosphorylase deficiency (McArdle disease), Chronic Tyrosinemia Type 1, Mutation in placenta, Leukocyte adhesion deficiency, Hereditary C3 deficiency, Neurofibromatosis type I, Placental aromatase deficiency, Cerebrotendinous xanthomatosis, Duchenne and Becker muscular dystrophy, Severe factor V deficiency, Alpha-thalassemia, Beta-thalassemia, Hereditary HL deficiency, Lesch-Nyhan syndrome, Familial hypercholesterolemia, Phosphoglycerate kinase deficiency, Cowden syndrome, X-linked retinitis pigmentosa (RP3), Crigler-Najjar syndrome type 1, Chronic tyrosinemia type I, Sandhoff disease, Maturity onset diabetes of the young (MODY), Familial tuberous sclerosis, Polycystic kidney disease I, or Primary Hyperthyroidism.


In some embodiments, non-cancer diseases that can be prevented and/or treated in accordance with the disclosure of WO2016/196386 al, WO2016/128343 al, WO2015/024876 a2 and EP3053577A1. In some embodiments, non-cancer diseases that can be prevented and/or treated include, but are not limited to, atypical hemolytic uremic syndrome (aHUS), Hutchinson-Gilford progeria syndrome (HGPS), Limb girdle muscular dystrophy type 1B, Familial partial lipodystrophy type 2, Frontotemporal dementia with parkinsonism chromosome 17, Richardson's syndrome, PSP-Parkinsonism, Argyrophilic grain disease, Corticobasal degeneration, Pick's disease, Globular glial tauopathy, Guadeloupean Parkinsonism, Myotonic dystrophy, Down Syndrome, Neonatal Hypoxia-Ischemia, Familial Dysautonomia, Spinal muscular atrophy, Hypoxanthine phosphoribosyltransferase deficiency, Ehlers-Danlos syndrome, Occipital Horn Syndrome, Fanconi Anemia, Marfan Syndrome, thrombotic thrombocytopenic purpura, glycogen Storage Disease Type III, cystic fibrosis, neurofibromatosis, Tyrosinemia (type I), Menkes Disease, Analbuminemia, Congenital acetylcholinesterase deficiency, Haemophilia B deficiency (coagulation factor IX deficiency), Recessive dystrophic epidermolysis bullosa, Dominant dystrophic epidermolysis bullosa, Somatic mutations in kidney tubular epithelial cells, Neurofibromatosis type II, X-linked adrenoleukodystrophy (X-ALD), FVII deficiency, Homozygous hypobetalipoproteinemia, Ataxia-telangiectasia, Androgen Sensitivity, Common congenital afibrinogenemia, Risk for emphysema, Mucopolysaccharidosis type II (Hunter syndrome), Severe type III osteogenesis imperfecta, Ehlers-Danlos syndrome IV, Glanzmann thrombasthenia, Mild Bethlem myopathy, Dowling-Meara epidermolysis bullosa simplex, Severe deficiency of MTHFR, Acute intermittent porphyria, Tay-Sachs Syndrome, Myophosphorylase deficiency (McArdle disease), Chronic Tyrosinemia Type 1, Mutation in placenta, Leukocyte adhesion deficiency, Hereditary C3 deficiency, Neurofibromatosis type I, Placental aromatase deficiency, Cerebrotendinous xanthomatosis, Duchenne and Becker muscular dystrophy, Severe factor V deficiency, Alpha-thalassemia, Beta-thalassemia, Hereditary HL deficiency, Lesch-Nyhan syndrome, Familial hypercholesterolemia, Phosphoglycerate kinase deficiency, Cowden syndrome, X-linked retinitis pigmentosa (RP3), Crigler-Najjar syndrome type 1, Chronic tyrosinemia type I, Sandhoff disease, Maturity onset diabetes of the young (MODY), Familial tuberous sclerosis, or Polycystic kidney disease 1.


Methods of Administering

The compositions described herein can be administered to the subject in a variety of ways, including parenterally, intravenously, intradermally, intramuscularly, colonically, rectally or intraperitoneally. In some embodiments, the small molecule splicing modulator or a pharmaceutically acceptable salt thereof is administered by intraperitoneal injection, intramuscular injection, subcutaneous injection, or intravenous injection of the subject. In some embodiments, the pharmaceutical compositions can be administered parenterally, intravenously, intramuscularly or orally. The oral agents comprising a small molecule splicing modulator can be in any suitable form for oral administration, such as liquid, tablets, capsules, or the like. The oral formulations can be further coated or treated to prevent or reduce dissolution in stomach. The compositions of the present disclosure can be administered to a subject using any suitable methods known in the art. Suitable formulations for use in the present disclosure and methods of delivery are generally well known in the art. For example, the small molecule splicing modulators described herein can be formulated as pharmaceutical compositions with a pharmaceutically acceptable diluent, carrier or excipient. The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions including pH adjusting and buffering agents, tonicity adjusting agents, wetting agents and the like, such as, for example, sodium acetate, sodium lactate, sodium chloride, potassium chloride, calcium chloride, sorbitan monolaurate, triethanolamine oleate, etc.


Pharmaceutical formulations described herein can be administrable to a subject in a variety of ways by multiple administration routes, including but not limited to, oral, parenteral (e.g., intravenous, subcutaneous, intramuscular, intramedullary injections, intrathecal, direct intraventricular, intraperitoneal, intralymphatic, intranasal injections), intranasal, buccal, topical or transdermal administration routes. The pharmaceutical formulations described herein include, but are not limited to, aqueous liquid dispersions, self-emulsifying dispersions, solid solutions, liposomal dispersions, aerosols, solid dosage forms, powders, immediate release formulations, controlled release formulations, fast melt formulations, tablets, capsules, pills, delayed release formulations, extended release formulations, pulsatile release formulations, multiparticulate formulations, and mixed immediate and controlled release formulations.


In some embodiments, the pharmaceutical compositions described herein are administered orally. In some embodiments, the pharmaceutical compositions described herein are administered topically. In such embodiments, the pharmaceutical compositions described herein are formulated into a variety of topically administrable compositions, such as solutions, suspensions, lotions, gels, pastes, shampoos, scrubs, rubs, smears, medicated sticks, medicated bandages, balms, creams or ointments. In some embodiments, the pharmaceutical compositions described herein are administered topically to the skin. In some embodiments, the pharmaceutical compositions described herein are administered by inhalation. In some embodiments, the pharmaceutical compositions described herein are formulated for intranasal administration. Such formulations include nasal sprays, nasal mists, and the like. In some embodiments, the pharmaceutical compositions described herein are formulated as eye drops. In some embodiments, the pharmaceutical compositions described herein are: (a) systemically administered to the mammal; and/or (b) administered orally to the mammal; and/or (c) intravenously administered to the mammal; and/or (d) administered by inhalation to the mammal; and/or (e) administered by nasal administration to the mammal; or and/or (f) administered by injection to the mammal; and/or (g) administered topically to the mammal; and/or (h) administered by ophthalmic administration; and/or (i) administered rectally to the mammal; and/or (j) administered non-systemically or locally to the mammal. In some embodiments, the pharmaceutical compositions described herein are administered orally to the mammal. In certain embodiments, an SMSM described herein is administered in a local rather than systemic manner. In some embodiments, an SMSM described herein is administered topically. In some embodiments, an SMSM described herein is administered systemically.


Oral compositions generally include an inert diluent or an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.


For administration by inhalation, the compounds are delivered in the form of an aerosol spray from pressured container or dispenser that contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.


Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art.


SMSMs suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor EL™ (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS). In all cases, the composition must be sterile and should be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against contamination from microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as manitol, sorbitol, sodium chloride in the composition.


Dosing and Schedules

The SMSMs utilized in the methods of the disclosure can be, e.g., administered at dosages that may be varied depending upon the requirements of the subject the severity of the condition being treated and/or imaged, and/or the SMSM being employed. For example, dosages can be empirically determined considering the type and stage of disease diagnosed in a particular subject and/or the type of imaging modality being used in conjunction with the SMSMs. The dose administered to a subject, in the context of the present disclosure should be sufficient to affect a beneficial diagnostic or therapeutic response in the subject. The size of the dose also can be determined by the existence, nature, and extent of any adverse side-effects that accompany the administration of a SMSM in a particular subject.


It is advantageous to formulate compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the disclosure are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals. Toxicity and therapeutic efficacy of such compounds can be determined by procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50. Compounds that exhibit large therapeutic indices are preferred. While compounds that exhibit toxic side effects may be used, care should be taken to design a delivery system that targets such compounds to the site of affected tissue to minimize potential damage to uninfected cells and, thereby, reduce side effects.


Therapeutic index data obtained from cell culture assays and/or animal studies can be used in predicting the therapeutic index in vivo and formulating a range of dosages for use in subjects, such as human subjects. The data obtained from the cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For any compound used in the method of the disclosure, the therapeutically effective dose can be estimated initially from cell culture assays. A dose may be formulated in animal models to achieve a circulating plasma concentration range that includes the concentration of the test compound which achieves a half-maximal inhibition of symptoms as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma may be measured, for example, by high performance liquid chromatography. Various animal models and clinical assays for evaluating effectiveness of a particular SMSM in preventing or reducing a disease or condition are known in the art may be used in the present disclosure. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. The exact formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition. (See e.g. Fingl et al, 1975, In: The Pharmacological Basis of Therapeutics. Ch. 1 pi).


In some aspects, the SMSMs provided have a therapeutic index (LD50/ED50) of at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 10000, or 100000 or more. In some aspects, the SMSMs provided have a therapeutic index (LD50/ED50) of at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 10000, or 100000 or more as determined in cell culture.


In some aspects, the SMSMs provided have an IC50 viability/EC50 splicing value of at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 10000, or 100000 or more. In some aspects, the SMSMs provided have an IC50 viability/EC50 splicing value of at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 10000, or 100000 or more as determined in cell culture.


A dosage of using an SMSM when administered may be at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 grams/m2 in humans, or a dosage in another subject comparable to that in humans. A dosage (“dosage X”) of an SMSM in a subject other than a human is comparable to a dosage (“dosage Y”) of the SMSM in humans if the serum concentration of the scavenger in the subject post administration of the SMSM at dosage X is equal to the serum concentration of the SMSM in humans post administration of the compound at dosage Y.


Within the scope of the present description, the effective amount of an SMSM compound or a pharmaceutically acceptable salt thereof for use in the manufacture of a medicament, the preparation of a pharmaceutical kit or in a method for preventing and/or treating a disease in a human subject in need thereof, is intended to include an amount in a range of from about 1 μg to about 50 grams.


The compositions of the present disclosure can be administered as frequently as necessary, including hourly, daily, weekly or monthly.


In any of the aforementioned aspects are further embodiments comprising single administrations of an effective amount of an SMSM described herein, including further embodiments in which (i) the compound is administered once; (ii) the compound is administered to the mammal multiple times over the span of one day; (iii) continually; or (iv) continuously.


In any of the aforementioned aspects are further embodiments comprising multiple administrations of the effective amount of an SMSM described herein, including further embodiments in which (i) the compound is administered continuously or intermittently: as in a single dose; (ii) the time between multiple administrations is every 6 hours; (iii) the compound is administered to the mammal every 8 hours; (iv) the compound is administered to the mammal every 12 hours; (v) the compound is administered to the mammal every 24 hours. In further or alternative embodiments, the method comprises a drug holiday, wherein the administration of an SMSM described herein is temporarily suspended or the dose of the compound being administered is temporarily reduced; at the end of the drug holiday, dosing of the compound is resumed. In one embodiment, the length of the drug holiday varies from 2 days to 1 year.


Combination Therapies

In certain instances, it is appropriate to administer at least one SMSM described herein in combination with another therapeutic agent. For example, a compound SMSM described herein can be co-administered with a second therapeutic agent, wherein SMSM and the second therapeutic agent modulate different aspects of the disease, disorder or condition being treated, thereby providing a greater overall benefit than administration of either therapeutic agent alone.


In some embodiments, an SMSM described herein can be used in combination with an anti-cancer therapy. In some embodiments, a steric modulator is used in combination with conventional chemotherapy, radiotherapy, hormonal therapy, and/or immunotherapy. In some embodiments, an SMSM described herein can be used in combination with conventional chemotherapeutic agents including alkylating agents (e.g, temozolomide, cyclophosphamide, ifosfamide, chlorambucil, busulfan, melphalan, mechlorethamine, uramustine, thiotepa, nitrosoureas, etc.), anti-metabolites (e.g., 5-fluorouracil, azathioprine, methotrexate, leucovorin, capecitabine, cytarabine, floxuridine, fludarabine, gemcitabine, pemetrexed, raltitrexed, etc.), plant alkaloids (e.g., vincristine, vinblastine, vinorelbine, vindesine, podophyllotoxin, paclitaxel, docetaxel, etc.), topoisomerase inhibitors (e.g., irinotecan, topotecan, amsacrine, etoposide (VP16), etoposide phosphate, teniposide, etc.), antitumor antibiotics (e.g., doxorubicin, adriamycin, daunorubicin, epirubicin, actinomycin, bleomycin, mitomycin, mitoxantrone, plicamycin, etc.), platinum-based compounds (e.g. cisplatin, oxaloplatin, carboplatin, etc.), EGFR inhibitors (e.g., gefitinib, erlotinib, etc.), and the like.


In some embodiments, an SMSM may be administered in combination with one or more other SMSMs.


A SMSM may be administered to a subject in need thereof prior to, concurrent with, or following the administration of chemotherapeutic agents. For instance, SMSMs may be administered to a subject at least 8 hours, 7 hours, 6 hours, 5 hours, 4 hours, 3 hours, 2 hours, 1.5 hours, 1 hour, or 30 minutes before the starting time of the administration of chemotherapeutic agent(s). In certain embodiments, they may be administered concurrent with the administration of chemotherapeutic agent(s). In other words, in these embodiments, SMSMs are administrated at the same time when the administration of chemotherapeutic agent(s) starts. In other embodiments, SMSMs may be administered following the starting time of administration of chemotherapeutic agent(s) (e.g., at least 30 minutes, 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 7 hours or 8 hours after the starting time of administration of chemotherapeutic agents). Alternatively, SMSMs may be administered at least 30 minutes, 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 7 hours or 8 hours after the completion of administration of chemotherapeutic agents. Generally, these SMSMs are administered for a sufficient period of time so that the disease or condition is prevented or reduced. Such sufficient period of time may be identical to, or different from, the period during which chemotherapeutic agent(s) are administered. In certain embodiments, multiple doses of SMSMs are administered for each administration of a chemotherapeutic agent or a combination of multiple chemotherapeutic agents.


In certain embodiments, an appropriate dosage of a SMSM is combined with a specific timing and/or a particular route to achieve the optimum effect in preventing or reducing the disease or condition. For instance, an SMSM may be administered to a human orally at least 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 7 hours 8 hours, 9 hours, 10 hours, 11 hours or 12 hours; or at least 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 11 days, 12 days; or at least 1 week, 2 weeks, 3 weeks or 4 weeks; or at least 1 month, 2 months, 3 months, 4 months, 5 months, 6 months, 7 months, 8 months, 9 months, 10 months, 11 months or 12 months; prior to or after the beginning or the completion, of the administration of a chemotherapeutic agent or a combination of chemotherapeutic agents.


Subjects

The subjects that can be treated with the SMSMs and methods described herein can be any subject that produces mRNA that is subject to alternative splicing, e.g., the subject may be a eukaryotic subject, such as a plant or an animal. In some embodiments, the subject is a mammal, e.g, human. In some embodiments, the subject is a human. In some embodiments, the subject is a non-human animal. In some embodiments, the subject is a fetus, an embryo, or a child. In some embodiments, the subject is a non-human primate such as chimpanzee, and other apes and monkey species; farm animals such as cattle, horses, sheep, goats, swine; domestic animals such as rabbits, dogs, and cats; laboratory animals including rodents, such as rats, mice and guinea pigs, and the like.


In some embodiments, the subject is prenatal (e.g., a fetus), a child (e.g., a neonate, an infant, a toddler, a preadolescent), an adolescent, a pubescent, or an adult (e.g., an early adult, a middle aged adult, a senior citizen). The human subject can be between about 0 months and about 120 years old, or older. The human subject can be between about 0 and about 12 months old; for example, about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 months old. The human subject can be between about 0 and 12 years old; for example, between about 0 and 30 days old; between about 1 month and 12 months old; between about 1 year and 3 years old; between about 4 years and 5 years old; between about 4 years and 12 years old; about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 years old. The human subject can be between about 13 years and 19 years old; for example, about 13, 14, 15, 16, 17, 18, or 19 years old. The human subject can be between about 20 and about 39 year old; for example, about 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, or 39 years old. The human subject can be between about 40 to about 59 years old; for example, about 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, or 59 years old. The human subject can be greater than 59 years old; for example, about 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, or 120 years old. The human subjects can include living subjects or deceased subjects. The human subjects can include male subjects and/or female subjects.


Assays

Gene expression experiments often involve measuring the relative amount of gene expression products, such as mRNA, expressed in two or more experimental conditions. This is because altered levels of a specific sequence of a gene expression product can suggest a changed need for the protein coded for by the gene expression product, perhaps indicating a homeostatic response or a pathological condition.


In some embodiments, a method can comprise measuring, assaying or obtaining expression levels of one or more genes. In some cases, the method provides a number or a range of numbers, of genes that the expression levels of the genes can be used to diagnose, characterize or categorize a biological sample. In some embodiments, the gene expression data corresponds to data of an expression level of one or more biomarkers that are related to a disease or condition. The number of genes used can be between about 1 and about 500; for example about 1-500, 1-400, 1-300, 1-200, 1-100, 1-50, 1-25, 1-10, 10-500, 10-400, 10-300, 10-200, 10-100, 10-50, 10-25, 25-500, 25-400, 25-300, 25-200, 25-100, 25-50, 50-500, 50-400, 50-300, 50-200, 50-100, 100-500, 100-400, 100-300, 100-200, 200-500, 200-400, 200-300, 300-500, 300-400, 400-500, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, or any included range or integer. For example, at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 33, 35, 38, 40, 43, 45, 48, 50, 53, 58, 63, 65, 68, 100, 120, 140, 142, 145, 147, 150, 152, 157, 160, 162, 167, 175, 180, 185, 190, 195, 200, 300, 400, 500 or more total genes can be used. The number of genes used can be less than or equal to about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 33, 35, 38, 40, 43, 45, 48, 50, 53, 58, 63, 65, 68, 100, 120, 140, 142, 145, 147, 150, 152, 157, 160, 162, 167, 175, 180, 185, 190, 195, 200, 300, 400, 500, or more.


In some embodiments, relative gene expression, as compared to normal cells and/or tissues of the same organ, can be determined by measuring the relative rates of transcription of RNA, such as by production of corresponding cDNAs and then analyzing the resulting DNA using probes developed from the gene sequences as corresponding to a genetic marker. Thus, the levels of cDNA produced by use of reverse transcriptase with the full RNA complement of a cell suspected of being cancerous produces a corresponding amount of cDNA that can then be amplified using polymerase chain reaction, or some other means, such as linear amplification, isothermal amplification, NASB, or rolling circle amplification, to determine the relative levels of resulting cDNA and, thereby, the relative levels of gene expression. General methods for determining gene expression product levels are known to the art and may include but are not limited to one or more of the following: additional cytological assays, assays for specific proteins or enzyme activities, assays for specific expression products including protein or RNA or specific RNA splice variants, in situ hybridization, whole or partial genome expression analysis, microarray hybridization assays, SAGE, enzyme linked immuno-absorbance assays, mass-spectrometry, immuno-histochemistry, blotting, microarray, RT-PCR, quantitative PCR, sequencing, RNA sequencing, DNA sequencing (e.g., sequencing of cDNA obtained from RNA); Next-Gen sequencing, nanopore sequencing, pyrosequencing, or Nanostring sequencing. Gene expression product levels may be normalized to an internal standard such as total mRNA or the expression level of a particular gene including but not limited to glyceraldehyde 3-phosphate dehydrogenase, or tubulin.


Gene expression data generally comprises the measurement of the activity (or the expression) of a plurality of genes, to create a picture of cellular function. Gene expression data can be used, for example, to distinguish between cells that are actively dividing, or to show how the cells react to a particular treatment. Microarray technology can be used to measure the relative activity of previously identified target genes and other expressed sequences. Sequence based techniques, like serial analysis of gene expression (SAGE, SuperSAGE) are also used for assaying, measuring or obtaining gene expression data. SuperSAGE is especially accurate and can measure any active gene, not just a predefined set. In an RNA, mRNA or gene expression profiling microarray, the expression levels of thousands of genes can be simultaneously monitored to study the effects of certain treatments, diseases, and developmental stages on gene expression.


In accordance with the foregoing, the expression level of a gene, marker, gene expression product, mRNA, pre-mRNA, or a combination thereof may be determined using northern blotting and employing the sequences as identified herein to develop probes for this purpose. Such probes may be composed of DNA or RNA or synthetic nucleotides or a combination of these and may advantageously be comprised of a contiguous stretch of nucleotide residues matching, or complementary to, a sequence corresponding to a genetic marker. Such probes will most usefully comprise a contiguous stretch of at least 15-200 residues or more including 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 175, or 200 nucleotides or more. Thus, where a single probe binds multiple times to the transcriptome of experimental cells, whereas binding of the same probe to a similar amount of transcriptome derived from the genome of control cells of the same organ or tissue results in observably more or less binding, this is indicative of differential expression of a gene, marker, gene expression product, mRNA, or pre-mRNA comprising, or corresponding to, sequences corresponding to a genetic marker from which the probe sequence was derived.


In some embodiments of the present disclosure, gene expression may be determined by microarray analysis using, for example, Affymetrix arrays, cDNA microarrays, oligonucleotide microarrays, spotted microarrays, or other microarray products from Biorad, Agilent, or Eppendorf. Microarrays provide particular advantages because they may contain a large number of genes or alternative splice variants that may be assayed in a single experiment. In some cases, the microarray device may contain the entire human genome or transcriptome or a substantial fraction thereof allowing a comprehensive evaluation of gene expression patterns, genomic sequence, or alternative splicing. Markers may be found using standard molecular biology and microarray analysis techniques as described in Sambrook Molecular Cloning a Laboratory Manual 2001 and Baldi, P., and Hatfield, W. G., DNA Microarrays and Gene Expression 2002.


Microarray analysis generally begins with extracting and purifying nucleic acid from a biological sample, (e.g. a biopsy or fine needle aspirate) using methods known to the art. For expression and alternative splicing analysis it may be advantageous to extract and/or purify RNA from DNA. It may further be advantageous to extract and/or purify mRNA from other forms of RNA such as tRNA and rRNA. In some embodiments, RNA samples with RIN≤5.0 are typically not used for multi-gene microarray analysis, and may instead be used only for single-gene RT-PCR and/or TaqMan assays. Microarray, RT-PCR and TaqMan assays are standard molecular techniques well known in the relevant art. TaqMan probe-based assays are widely used in real-time PCR including gene expression assays, DNA quantification and SNP genotyping.


Various kits can be used for the amplification of nucleic acid and probe generation of the subject methods. In some embodiments, Ambion WT-expression kit can be used. Ambion WT-expression kit allows amplification of total RNA directly without a separate ribosomal RNA (rRNA) depletion step. With the Ambion® WT Expression Kit, samples as small as 50 ng of total RNA can be analyzed on Affymetrix® GeneChip® Human, Mouse, and Rat Exon and Gene 1.0 ST Arrays. In addition to the lower input RNA requirement and high concordance between the Affymetrix® method and TaqMan® real-time PCR data, the Ambion® WT Expression Kit provides a significant increase in sensitivity. For example, a greater number of probe sets detected above background can be obtained at the exon level with the Ambion® WT Expression Kit as a result of an increased signal-to-noise ratio. Ambion WT-expression kit may be used in combination with additional Affymetrix labeling kit.


In some embodiments, AmpTec Trinucleotide Nano mRNA Amplification kit (6299-A15) can be used in the subject methods. The ExpressArt® TRinucleotide mRNA amplification Nano kit is suitable for a wide range, from 1 ng to 700 ng of input total RNA. According to the amount of input total RNA and the required yields of a RNA, it can be used for 1-round (input >300 ng total RNA) or 2-rounds (minimal input amount 1 ng total RNA), with a RNA yields in the range of >10 μg. AmpTec's proprietary TRinucleotide priming technology results in preferential amplification of mRNAs (independent of the universal eukaryotic 3′-poly(A)-sequence), combined with selection against rRNAs. This kit can be used in combination with cDNA conversion kit and Affymetrix labeling kit.


In some embodiments, gene expression levels can be obtained or measured in an individual without first obtaining a sample. For example, gene expression levels may be determined in vivo, that is in the individual. Methods for determining gene expression levels in vivo are known to the art and include imaging techniques such as CAT, MRI; NMR; PET; and optical, fluorescence, or biophotonic imaging of protein or RNA levels using antibodies or molecular beacons. Such methods are described in US 2008/0044824, US 2008/0131892, herein incorporated by reference. Additional methods for in vivo molecular profiling are contemplated to be within the scope of the present disclosure.


Provided herein are methods for determining whether an SMSM compound or a pharmaceutically acceptable salt thereof modulates the amount of one, two, three or more RNA transcripts (e.g., pre-mRNA or mRNA transcripts or isoforms thereof) of one, two, three or more genes.


In one embodiment, provided herein is a method for determining whether an SMSM compound or a pharmaceutically acceptable salt thereof modulates the amount of an RNA transcript, comprising: (a) contacting a cell with an SMSM compound or a pharmaceutically acceptable salt thereof, and (b) determining the amount of the RNA transcript produced by the cell, wherein an alteration in the amount of the RNA transcript in the presence of an SMSM compound or a pharmaceutically acceptable salt thereof relative to the amount of the RNA transcript in the absence of an SMSM compound or a pharmaceutically acceptable salt thereof or the presence of a negative control (e.g., a vehicle control such as PBS or DMSO) indicates that an SMSM compound or a pharmaceutically acceptable salt thereof modulates the amount of the RNA transcript. In some embodiments, provided herein is a method for determining whether an SMSM compound or a pharmaceutically acceptable salt thereof modulates the amount of an RNA transcript (e.g., an mRNA transcript), comprising: (a) contacting a first cell with an SMSM compound or a pharmaceutically acceptable salt thereof, (b) contacting a second cell with a negative control (e.g., a vehicle control, such as PBS or DMSO); and (c) determining the amount of the RNA transcript produced by the first cell and the second cell; and (d) comparing the amount of the RNA transcript produced by the first cell to the amount of the RNA transcript expressed by the second cell, wherein an alteration in the amount of the RNA transcript produced by the first cell relative to the amount of the RNA transcript produced by the second cell indicates that an SMSM compound or a pharmaceutically acceptable salt thereof modulates the amount of the RNA transcript. In some embodiments, the contacting of the cell with the compound occurs in cell culture. In other embodiments, the contacting of the cell with the compound occurs in a subject, such as a non-human animal subject. In some embodiments, provided herein is a method for determining whether an SMSM compound or a pharmaceutically acceptable salt thereof modulates the splicing of an RNA transcript (e.g., an mRNA transcript), comprising: (a) culturing a cell in the presence of an SMSM compound or a pharmaceutically acceptable salt thereof; and (b) determining the amount of the two or more RNA transcripts splice variants produced by the cell, wherein an alteration in the amount of the two or more RNA transcripts in the presence of the compound relative to the amount of the two or more RNA transcripts splice variants in the absence of the compound or the presence of a negative control (e.g., a vehicle control such as PBS or DMSO) indicates that an SMSM compound or a pharmaceutically acceptable salt thereof modulates the splicing of the RNA transcript.


In some embodiments, provided herein is a method for determining whether an SMSM compound or a pharmaceutically acceptable salt thereof modulates the splicing of an RNA transcript (e.g., an mRNA transcript), comprising: (a) culturing a cell in the presence of an SMSM compound or a pharmaceutically acceptable salt thereof; (b) isolating two or more RNA transcript splice variants from the cell after a certain period of time; and (c) determining the amount of the two or more RNA transcript splice variants produced by the cell, wherein an alteration in the amount of the two or more RNA transcript in the presence of the compound relative to the amount of the two or more RNA transcript splice variants in the absence of the compound or the presence of a negative control (e.g., a vehicle control such as PBS or DMSO) indicates that an SMSM compound or a pharmaceutically acceptable salt thereof modulates the splicing of the RNA transcript. In some embodiments, provided herein is a method for determining whether an SMSM compound or a pharmaceutically acceptable salt thereof modulates the splicing of an RNA transcript (e.g., an mRNA transcript), comprising (a) culturing a first cell in the presence of an SMSM compound or a pharmaceutically acceptable salt thereof; (b) culturing a second cell in the presence of a negative control (e.g., a vehicle control, such as PBS or DMSO); (c) isolating two or more RNA transcript splice variants produced by the first cell and isolating two or more RNA transcript splice variants produced by the second cell; (d) determining the amount of the two or more RNA transcript splice variants produced by the first cell and the second cell; and (e) comparing the amount of the two or more RNA transcript splice variants produced by the first cell to the amount of the two or more RNA transcript splice variants produced by the second cell, wherein an alteration in the amount of the two or more RNA transcript splice variants produced by the first cell relative to the amount of the two or more RNA transcript splice variants produced by the second cell indicates that an SMSM compound or a pharmaceutically acceptable salt thereof modulates the splicing of the RNA transcript.


In some embodiments, provided herein is a method for determining whether an SMSM compound or a pharmaceutically acceptable salt thereof modulates the amount of an RNA transcript (e.g., an mRNA transcript), comprising: (a) contacting a cell-free system with an SMSM compound or a pharmaceutically acceptable salt thereof, and (b) determining the amount of the RNA transcript produced by the cell-free system, wherein an alteration in the amount of the RNA transcript in the presence of the compound relative to the amount of the RNA transcript in the absence of the compound or the presence of a negative control (e.g., a vehicle control such as PBS or DMSO) indicates that an SMSM compound or a pharmaceutically acceptable salt thereof modulates the amount of the RNA transcript. In some embodiments, provided herein is a method for determining whether an SMSM compound or a pharmaceutically acceptable salt thereof modulates the amount of an RNA transcript (e.g., an mRNA transcript), comprising: (a) contacting a first cell-free system with an SMSM compound or a pharmaceutically acceptable salt thereof, (b) contacting a second cell-free system with a negative control (e.g., a vehicle control, such as PBS or DMSO); and (c) determining the amount of the RNA transcript produced by the first cell-free system and the second cell-free system; and (d) comparing the amount of the RNA transcript produced by the first cell-free system to the amount of the RNA transcript expressed by the second cell-free system, wherein an alteration in the amount of the RNA transcript produced by the first cell-free system relative to the amount of the RNA transcript produced by the second cell-free system indicates that an SMSM compound or a pharmaceutically acceptable salt thereof modulates the amount of the RNA transcript. In some embodiments, the cell-free system comprises purely synthetic RNA, synthetic or recombinant (purified) enzymes, and protein factors. In other embodiments, the cell-free system comprises RNA transcribed from a synthetic DNA template, synthetic or recombinant (purified) enzymes, and protein factors. In other embodiments, the cell-free system comprises purely synthetic RNA and nuclear extract. In other embodiments, the cell-free system comprises RNA transcribed from a synthetic DNA template and nuclear extract. In other embodiments, the cell-free system comprises purely synthetic RNA and whole cell extract. In other embodiments, the cell-free system comprises RNA transcribed from a synthetic DNA template and whole cell extract. In some embodiments, the cell-free system additionally comprises regulatory RNAs (e.g., microRNAs).


In some embodiments, provided herein is a method for determining whether an SMSM compound or a pharmaceutically acceptable salt thereof modulates the splicing of an RNA transcript (e.g., an mRNA transcript), comprising: (a) contacting a cell-free system with an SMSM compound or a pharmaceutically acceptable salt thereof; and (b) determining the amount of two or more RNA transcript splice variants produced by the cell-free system, wherein an alteration in the amount of the two or more RNA transcript splice variants in the presence of the compound relative to the amount of the two or more RNA transcript splice variants in the absence of the compound or the presence of a negative control (e.g., a vehicle control such as PBS or DMSO) indicates that an SMSM compound or a pharmaceutically acceptable salt thereof modulates the splicing of the RNA transcript. In some embodiments, provided herein is a method for determining whether an SMSM compound or a pharmaceutically acceptable salt thereof modulates the splicing of an RNA transcript (e.g., an mRNA transcript), comprising: (a) contacting a first cell-free system with an SMSM compound or a pharmaceutically acceptable salt thereof; (b) contacting a second cell-free system with a negative control (e.g., a vehicle control, such as PBS or DMSO); and (c) determining the amount of two or more RNA transcript splice variants produced by the first cell-free system and the second cell-free system; and (d) comparing the amount of the two or more RNA transcript splice variants produced by the first cell-free system to the amount of the RNA transcript expressed by the second cell-free system, wherein an alteration in the amount of the two or more RNA transcript splice variants produced by the first cell-free system relative to the amount of the two or more RNA transcript splice variants produced by the second cell-free system indicates that an SMSM compound or a pharmaceutically acceptable salt thereof modulates the splicing of the RNA transcript. In some embodiments, the cell-free system comprises purely synthetic RNA, synthetic or recombinant (purified) enzymes, and protein factors. In other embodiments, the cell-free system comprises RNA transcribed from a synthetic DNA template, synthetic or recombinant (purified) enzymes, and protein factors. In other embodiments, the cell-free system comprises purely synthetic RNA and nuclear extract. In other embodiments, the cell-free system comprises RNA transcribed from a synthetic DNA template and nuclear extract. In other embodiments, the cell-free system comprises purely synthetic RNA and whole cell extract. In other embodiments, the cell-free system comprises RNA transcribed from a synthetic DNA template and whole cell extract. In some embodiments, the cell-free system additionally comprises regulatory RNAs (e.g., microRNAs).


In some embodiments, provided herein is a method for determining whether an SMSM compound or a pharmaceutically acceptable salt thereof modulates the amount of an RNA transcript (e.g., an mRNA transcript), comprising: (a) culturing a cell in the presence of an SMSM compound or a pharmaceutically acceptable salt thereof, (b) isolating the RNA transcript from the cell after a certain period of time; and (c) determining the amount of the RNA transcript produced by the cell, wherein an alteration in the amount of the RNA transcript in the presence of the compound relative to the amount of the RNA transcript in the absence of the compound or the presence of a negative control (e.g., a vehicle control such as PBS or DMSO) indicates that an SMSM compound or a pharmaceutically acceptable salt thereof modulates the amount of the RNA transcript. In some embodiments, provided herein is a method for determining whether an SMSM compound or a pharmaceutically acceptable salt thereof modulates the amount of an RNA transcript (e.g., an mRNA transcript), comprising (a) culturing a first cell in the presence of an SMSM compound or a pharmaceutically acceptable salt thereof, (b) culturing a second cell in the presence of a negative control (e.g., a vehicle control, such as PBS or DMSO); (c) isolating the RNA transcript produced by the first cell and isolating the RNA transcript produced by the second cell; (d) determining the amount of the RNA transcript produced by the first cell and the second cell; and (e) comparing the amount of the RNA transcript produced by the first cell to the amount of the RNA transcript produced by the second cell, wherein an alteration in the amount of the RNA transcript produced by the first cell relative to the amount of the RNA transcript produced by the second cell indicates that an SMSM compound or a pharmaceutically acceptable salt thereof modulates the amount of the RNA transcript.


In some embodiments, the cell contacted or cultured with an SMSM compound or a pharmaceutically acceptable salt thereof is a primary cell from a subject. In some embodiments, the cell contacted or cultured with an SMSM compound or a pharmaceutically acceptable salt thereof is a primary cell from a subject with a disease. In specific embodiments, the cell contacted or cultured with an SMSM compound or a pharmaceutically acceptable salt thereof is a primary cell from a subject with a disease associated with an aberrant amount of an RNA transcript for a particular gene. In some specific embodiments, the cell contacted or cultured with an SMSM compound or a pharmaceutically acceptable salt thereof is a primary cell from a subject with a disease associated with an aberrant amount of an isoform of a particular gene. In some embodiments, the cell contacted or cultured with an SMSM compound or a pharmaceutically acceptable salt thereof is a fibroblast, an immune cell, or a muscle cell. In some embodiments, the cell contacted or cultured with an SMSM compound or a pharmaceutically acceptable salt thereof is a diseased cell.


In some embodiments, the cell contacted or cultured with an SMSM compound or a pharmaceutically acceptable salt thereof is from a cell line. In some embodiments, the cell contacted or cultured with an SMSM compound or a pharmaceutically acceptable salt thereof is a cell line derived from a subject with a disease. In some embodiments, the cell contacted or cultured with an SMSM compound or a pharmaceutically acceptable salt thereof is from a cell line known to have aberrant RNA transcript levels for a particular gene. In specific embodiments, the cell contacted or cultured with an SMSM compound or a pharmaceutically acceptable salt thereof is from a cell line derived from a subject with a disease known to have aberrant RNA transcript levels for a particular gene. In some embodiments, the cell contacted or cultured with an SMSM compound or a pharmaceutically acceptable salt thereof is a diseased cell line. In some specific embodiments, the cell contacted or cultured with an SMSM compound or a pharmaceutically acceptable salt thereof is from a cell line derived from a subject with a disease known to have an aberrant amount of an RNA isoform and/or protein isoform of a particular gene. Non-limiting examples of cell lines include 293, 3T3, 4T1, 721, 9L, A2780, A172, A20, A253, A431, A-549, A-673, ALC, B 16, B35, BCP-1, BEAS-2B, bEnd.3, BHK, BR 293, BT20, BT483, BxPC3, C2C12, C3 h-10T1/2, C6/36, C6, Cal-27, CHO, COR-L23, COS, COV-434, CML Tl, CMT, CRL7030, CT26, D17, DH82, DU145, DuCaP, EL4, EM2, EM3, EMT6, FM3, H1299, H69, HB54, HB55, HCA2, HEK-293, HeLa, Hepalclc7, HL-60, HMEC, Hs578T, HsS78Bst, HT-29, HTB2, HUVEC, Jurkat, J558L, JY, K562, Ku812, KCL22, KG1, KYOl, LNCap, Ma-Mel, MC-38, MCF-7, MCF-IOA, MDA-MB-231, MDA-MB-468, MDA-MB-435, MDCK, MG63, MOR/0.2R, MONO-MAC 6, MRC5, MTD-1A, NCI-H69, NIH-3T3, NALM-1, NSO, NW-145, OPCN, OPCT, PNT-1A, PNT-2, Raji, RBL, RenCa, RIN-5F, RMA, Saos-2, Sf21, Sf9, SiHa, SKBR3, SKOV-3, T2, T-47D, T84, THP1, U373, U87, U937, VCaP, Vero, VERY, W138, WM39, WT-49, X63, YAC-1, and YAR cells. In one embodiment, the cells are from a patient.


In some embodiments, a dose-response assay is performed. In one embodiment, the dose response assay comprises: (a) contacting a cell with a concentration of an SMSM compound or a pharmaceutically acceptable salt thereof; (b) determining the amount of the RNA transcript produced by the cell, wherein an alteration in the amount of the RNA transcript in the presence of the compound relative to the amount of the RNA transcript in the absence of the compound or the presence of a negative control (e.g., a vehicle control such as PBS or DMSO) indicates that an SMSM compound or a pharmaceutically acceptable salt thereof modulates the amount of the RNA transcript; (c) repeating steps (a) and (b), wherein the only experimental variable changed is the concentration of the compound or a form thereof; and (d) comparing the amount of the RNA transcript produced at the different concentrations of the compound or a form thereof. In some embodiments, the dose response assay comprises: (a) culturing a cell in the presence of an SMSM compound or a pharmaceutically acceptable salt thereof, (b) isolating the RNA transcript from the cell after a certain period of time; (c) determining the amount of the RNA transcript produced by the cell, wherein an alteration in the amount of the RNA transcript in the presence of the compound relative to the amount of the RNA transcript in the absence of the compound or the presence of a negative control (e.g., a vehicle control such as PBS or DMSO) indicates that an SMSM compound or a pharmaceutically acceptable salt thereof modulates the amount of the RNA transcript; (d) repeating steps (a), (b), and (c), wherein the only experimental variable changed is the concentration of the compound or a form thereof; and (e) comparing the amount of the RNA transcript produced at the different concentrations of the compound or a form thereof. In some embodiments, the dose-response assay comprises: (a) contacting each well of a microtiter plate containing cells with a different concentration of an SMSM compound or a pharmaceutically acceptable salt thereof; (b) determining the amount of an RNA transcript produced by cells in each well; and (c) assessing the change of the amount of the RNA transcript at the different concentrations of the compound or form thereof.


In some embodiments described herein, the cell is contacted or cultured with an SMSM compound or a pharmaceutically acceptable salt thereof, or a tissue sample is contacted with an SMSM compound or a pharmaceutically acceptable salt thereof, or a negative control for a period of 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 8 hours, 12 hours, 18 hours, 24 hours, 48 hours, 72 hours or more. In other embodiments described herein, the cell is contacted or cultured with an SMSM compound or a pharmaceutically acceptable salt thereof, or a tissue sample is contacted with an SMSM compound or a pharmaceutically acceptable salt thereof, or a negative control for a period of 15 minutes to 1 hour, 1 to 2 hours, 2 to 4 hours, 6 to 12 hours, 12 to 18 hours, 12 to 24 hours, 28 to 24 hours, 24 to 48 hours, 48 to 72 hours.


In some embodiments described herein, the cell is contacted or cultured with a concentration of an SMSM compound or a pharmaceutically acceptable salt thereof, or a tissue sample is contacted with a concentration of an SMSM compound or a pharmaceutically acceptable salt thereof, wherein the concentration is 0.01 μM, 0.05 μM, 1 μM, 2 μM, 5 μM, 10 μM, 15 μM, 20 μM, 25 μM, 50 μM, 75 μM, 100 μM, or 150 μM. In other embodiments described herein, the cell is contacted or cultured with concentration of an SMSM compound or a pharmaceutically acceptable salt thereof, or a tissue sample is contacted with a concentration of an SMSM compound or a pharmaceutically acceptable salt thereof, wherein the concentration is 175 μM, 200 μM, 250 μM, 275 μM, 300 μM, 350 μM, 400 μM, 450 μM, 500 μM, 550 μM 600 μM, 650 μM, 700 μM, 750 μM, 800 μM, 850 μM, 900 μM, 950 μM or 1 mM. In some embodiments described herein, the cell is contacted or cultured with concentration of an SMSM compound or a pharmaceutically acceptable salt thereof, or a tissue sample is contacted with a concentration of an SMSM compound or a pharmaceutically acceptable salt thereof, wherein the concentration is 5 nM, 10 nM, 20 nM, 30 nM, 40 nM, 50 nM, 60 nM, 70 nM, 80 nM, 90 nM, 100 nM, 150 nM, 200 nM, 250 nM, 300 nM, 350 nM, 400 nM, 450 nM, 500 nM, 550 nM, 600 nM, 650 nM, 700 nM, 750 nM, 800 nM, 850 nM, 900 nM, or 950 nM. In some embodiments described herein, the cell is contacted or cultured with concentration of an SMSM compound or a pharmaceutically acceptable salt thereof, or a tissue sample is contacted with a concentration of an SMSM compound or a pharmaceutically acceptable salt thereof, wherein the concentration is between 0.01 μM to 0.1 μM, 0.1 μM to 1 μM, 1 μM to 50 μM, 50 μM to 100 μM, 100 μM to 500 μM, 500 μM to 1 nM, 1 nM to 10 nM, 10 nM to 50 nM, 50 nM to 100 nM, 100 nM to 500 nM, 500 nM to 1000 nM.


Techniques known to one skilled in the art may be used to determine the amount of an RNA transcript. In some embodiments, the amount of one, two, three or more RNA transcripts is measured using deep sequencing, such as ILLUMINA® RNASeq, ILLUMINA® next generation sequencing (NGS), ION TORRENT™ RNA next generation sequencing, 454™ pyrosequencing, or Sequencing by Oligo Ligation Detection (SOLID™). In other embodiments, the amount of multiple RNA transcripts is measured using an exon array, such as the GENECHIP® human exon array. In some embodiments, the amount of one, two, three or more RNA transcripts is determined by RT-PCR. In other embodiments, the amount of one, two, three or more RNA transcripts is measured by RT-qPCR. Techniques for conducting these assays are known to one skilled in the art.


In some embodiments, a statistical analysis or other analysis is performed on data from the assay utilized to measure an RNA transcript. In some embodiments, a student t-test statistical analysis is performed on data from the assay utilized to measure an RNA transcript to determine those RNA transcripts that have an alternation in amount in the presence of the compound relative to the amount in the absence of the compound or presence of a negative control. In specific embodiments, the student t-test value of those RNA transcripts with the alternation is 10%, 5%, 4%, 3%, 2%, 1%, 0.5% or 0.1%. In some specific embodiments, p value of those RNA transcripts with the alternation is 10%, 5%, 4%, 3%, 2%, 1%, 0.5% or 0.1%. In certain specific embodiments, the student t-test and p values of those RNA transcripts with the alteration are 10%, 5%, 4%, 3%, 2%, 1%, 0.5% or 0.1% and 10%, 5%, 4%, 3%, 2%, 1%, 0.5% or 0.1%), respectively.


In some embodiments, a further analysis is performed to determine how an SMSM compound or a pharmaceutically acceptable salt thereof is changing the amount of an RNA transcript. In specific embodiments, a further analysis is performed to determine if an alternation in the amount of an RNA transcript in the presence of an SMSM compound or a pharmaceutically acceptable salt thereof relative the amount of the RNA transcript in the absence of the compound or a form thereof, or the presence of a negative control is due to changes in transcription, splicing, and/or stability of the RNA transcript. Techniques known to one skilled in the art may be used to determine whether an SMSM compound or a pharmaceutically acceptable salt thereof changes, e.g., the transcription, splicing and/or stability of an RNA transcript.


In some embodiments, the stability of one or more RNA transcripts is determined by serial analysis of gene expression (SAGE), differential display analysis (DD), RNA arbitrarily primer (RAP)-PCR, restriction endonuclease-lytic analysis of differentially expressed sequences (READS), amplified restriction fragment-length polymorphism (ALFP), total gene expression analysis (TOGA), RT-PCR, RT-qPCR, high-density cDNA filter hybridization analysis (HDFCA), suppression subtractive hybridization (SSH), differential screening (DS), cDNA arrays, oligonucleotide chips, or tissue microarrays. In other embodiments, the stability of one or more RNA transcripts is determined by Northern blots, RNase protection, or slot blots.


In some embodiments, the transcription in a cell or tissue sample is inhibited before (e.g., 5 minutes, 10 minutes, 30 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 8 hours, 12 hours, 18 hours, 24 hours, 36 hours, 48 hours, or 72 hours before) or after (e.g., 5 minutes, 10 minutes, 30 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 8 hours, 12 hours, 18 hours, 24 hours, 36 hours, 48 hours, or 72 hours after) the cell or the tissue sample is contacted or cultured with an inhibitor of transcription, such as a-amanitin, DRB, flavopiridol, triptolide, or actinomycin-D. In other embodiments, the transcription in a cell or tissue sample is inhibited with an inhibitor of transcription, such as α-amanitin, DRB, flavopiridol, triptolide, or actinomycin-D, while the cell or tissue sample is contacted or cultured with an SMSM compound or a pharmaceutically acceptable salt thereof.


In some embodiments, the level of transcription of one or more RNA transcripts is determined by nuclear run-on assay or an in vitro transcription initiation and elongation assay. In some embodiments, the detection of transcription is based on measuring radioactivity or fluorescence. In some embodiments, a PCR-based amplification step is used.


In some embodiments, the amount of alternatively spliced forms of the RNA transcripts of a particular gene are measured to see if there is an alteration in the amount of one, two or more alternatively spliced forms of the RNA transcripts of the gene. In some embodiments, the amount of an isoform encoded by a particular gene is measured to see if there is an alteration in the amount of the isoform. In some embodiments, the levels of spliced forms of RNA are quantified by RT-PCR, RT-qPCR, or northern blotting. In other embodiments, sequence-specific techniques may be used to detect the levels of an individual splice form. In some embodiments, splicing is measured in vitro using nuclear extracts. In some embodiments, detection is based on measuring radioactivity or fluorescence. Techniques known to one skilled in the art may be used to measure alterations in the amount of alternatively spliced forms of an RNA transcript of a gene and alterations in the amount of an isoform encoded by a gene.


Biological Samples

A sample, e.g., a biological sample can be taken from a subject and examined to determine whether the subject produces mRNA that is subject to alternative splicing. A biological sample can comprise a plurality of biological samples. The plurality of biological samples can contain two or more biological samples; for examples, about 2-1000, 2-500, 2-250, 2-100, 2-75, 2-50, 2-25, 2-10, 10-1000, 10-500, 10-250, 10-100, 10-75, 10-50, 10-25, 25-1000, 25-500, 25-250, 25-100, 25-75, 25-50, 50-1000, 50-500, 50-250, 50-100, 50-75, 60-70, 100-1000, 100-500, 100-250, 250-1000, 250-500, 500-1000, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, or more biological samples. The biological samples can be obtained from a plurality of subjects, giving a plurality of sets of a plurality of samples. The biological samples can be obtained from about 2 to about 1000 subjects, or more; for example, about 2-1000, 2-500, 2-250, 2-100, 2-50, 2-25, 2-20, 2-10, 10-1000, 10-500, 10-250, 10-100, 10-50, 10-25, 10-20, 15-20, 25-1000, 25-500, 25-250, 25-100, 25-50, 50-1000, 50-500, 50-250, 50-100, 100-1000, 100-500, 100-250, 250-1000, 250-500, 500-1000, or at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 55, 60, 65, 68, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, to 1000 or more subjects.


The biological samples can be obtained from human subjects. The biological samples can be obtained from human subjects at different ages. The human subject can be prenatal (e.g., a fetus), a child (e.g., a neonate, an infant, a toddler, a preadolescent), an adolescent, a pubescent, or an adult (e.g., an early adult, a middle aged adult, a senior citizen). The human subject can be between about 0 months and about 120 years old, or older. The human subject can be between about 0 and about 12 months old; for example, about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 months old. The human subject can be between about 0 and 12 years old; for example, between about 0 and 30 days old; between about 1 month and 12 months old; between about 1 year and 3 years old; between about 4 years and 5 years old; between about 4 years and 12 years old; about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 years old. The human subject can be between about 13 years and 19 years old; for example, about 13, 14, 15, 16, 17, 18, or 19 years old. The human subject can be between about 20 and about 39 year old; for example, about 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, or 39 years old. The human subject can be between about 40 to about 59 years old; for example, about 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, or 59 years old. The human subject can be greater than 59 years old; for example, about 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, or 120 years old. The human subjects can include living subjects or deceased subjects. The human subjects can include male subjects and/or female subjects.


Biological samples can be obtained from any suitable source that allows determination of expression levels of genes, e.g., from cells, tissues, bodily fluids or secretions, or a gene expression product derived therefrom (e.g., nucleic acids, such as DNA or RNA; polypeptides, such as protein or protein fragments). The nature of the biological sample can depend upon the nature of the subject. If a biological sample is from a subject that is a unicellular organism or a multicellular organism with undifferentiated tissue, the biological sample can comprise cells, such as a sample of a cell culture, an excision of the organism, or the entire organism. If a biological sample is from a multicellular organism, the biological sample can be a tissue sample, a fluid sample, or a secretion.


The biological samples can be obtained from different tissues. The term tissue is meant to include ensembles of cells that are of a common developmental origin and have similar or identical function. The term tissue is also meant to encompass organs, which can be a functional grouping and organization of cells that can have different origins. The biological sample can be obtained from any tissue. Suitable tissues from a plant can include, but are not limited to, epidermal tissue such as the outer surface of leaves; vascular tissue such as the xylem and phloem, and ground tissue. Suitable plant tissues can also include leaves, roots, root tips, stems, flowers, seeds, cones, shoots, stobili, pollen, or a portion or combination thereof.


The biological samples can be obtained from different tissue samples from one or more humans or non-human animals. Suitable tissues can include connective tissues, muscle tissues, nervous tissues, epithelial tissues or a portion or combination thereof. Suitable tissues can also include all or a portion of a lung, a heart, a blood vessel (e.g., artery, vein, capillary), a salivary gland, a esophagus, a stomach, a liver, a gallbladder, a pancreas, a colon, a rectum, an anus, a hypothalamus, a pituitary gland, a pineal gland, a thyroid, a parathyroid, an adrenal gland, a kidney, a ureter, a bladder, a urethra, a lymph node, a tonsil, an adenoid, a thymus, a spleen, skin, muscle, a brain, a spinal cord, a nerve, an ovary, a fallopian tube, a uterus, vaginal tissue, a mammary gland, a testicle, a vas deferens, a seminal vesicle, a prostate, penile tissue, a pharynx, a larynx, a trachea, a bronchi, a diaphragm, bone marrow, a hair follicle, or a combination thereof. A biological sample from a human or non-human animal can also include a bodily fluid, secretion, or excretion; for example, a biological sample can be a sample of aqueous humour, vitreous humour, bile, blood, blood serum, breast milk, cerebrospinal fluid, endolymph, perilymph, female ejaculate, amniotic fluid, gastric juice, menses, mucus, peritoneal fluid, pleural fluid, saliva, sebum, semen, sweat, tears, vaginal secretion, vomit, urine, feces, or a combination thereof. The biological sample can be from healthy tissue, diseased tissue, tissue suspected of being diseased, or a combination thereof.


In some embodiments, the biological sample is a fluid sample, for example a sample of blood, serum, sputum, urine, semen, or other biological fluid. In certain embodiments the sample is a blood sample. In some embodiments the biological sample is a tissue sample, such as a tissue sample taken to determine the presence or absence of disease in the tissue. In certain embodiments the sample is a sample of thyroid tissue.


The biological samples can be obtained from subjects in different stages of disease progression or different conditions. Different stages of disease progression or different conditions can include healthy, at the onset of primary symptom, at the onset of secondary symptom, at the onset of tertiary symptom, during the course of primary symptom, during the course of secondary symptom, during the course of tertiary symptom, at the end of the primary symptom, at the end of the secondary symptom, at the end of tertiary symptom, after the end of the primary symptom, after the end of the secondary symptom, after the end of the tertiary symptom, or a combination thereof. Different stages of disease progression can be a period of time after being diagnosed or suspected to have a disease; for example, at least about, or at least, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 or 24 hours; 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 or 28 days; 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 weeks; 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 months; 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 or 50 years after being diagnosed or suspected to have a disease. Different stages of disease progression or different conditions can include before, during or after an action or state; for example, treatment with drugs, treatment with a surgery, treatment with a procedure, performance of a standard of care procedure, resting, sleeping, eating, fasting, walking, running, performing a cognitive task, sexual activity, thinking, jumping, urinating, relaxing, being immobilized, being emotionally traumatized, being shock, and the like.


The methods of the present disclosure provide for analysis of a biological sample from a subject or a set of subjects. The subject(s) may be, e.g., any animal (e.g., a mammal), including but not limited to humans, non-human primates, rodents, dogs, cats, pigs, fish, and the like. The present methods and compositions can apply to biological samples from humans, as described herein.


A biological sample can be obtained by methods known in the art such as the biopsy methods provided herein, swabbing, scraping, phlebotomy, or any other suitable method. The biological sample can be obtained, stored, or transported using components of a kit of the present disclosure. In some cases, multiple biological samples, such as multiple thyroid samples, can be obtained for analysis, characterization, or diagnosis according to the methods of the present disclosure. In some cases, multiple biological samples, such as one or more samples from one tissue type (e.g., thyroid) and one or more samples from another tissue type (e.g., buccal) can be obtained for diagnosis or characterization by the methods of the present disclosure. In some cases, multiple samples, such as one or more samples from one tissue type (e.g., thyroid) and one or more samples from another tissue (e.g., buccal) can be obtained at the same or different times. In some cases, the samples obtained at different times are stored and/or analyzed by different methods. For example, a sample can be obtained and analyzed by cytological analysis (e.g., using routine staining). In some cases, a further sample can be obtained from a subject based on the results of a cytological analysis. The diagnosis of cancer or other condition can include an examination of a subject by a physician, nurse or other medical professional. The examination can be part of a routine examination, or the examination can be due to a specific complaint including, but not limited to, one of the following: pain, illness, anticipation of illness, presence of a suspicious lump or mass, a disease, or a condition. The subject may or may not be aware of the disease or condition. The medical professional can obtain a biological sample for testing. In some cases the medical professional can refer the subject to a testing center or laboratory for submission of the biological sample. The methods of obtaining provided herein include methods of biopsy including fine needle aspiration, core needle biopsy, vacuum assisted biopsy, incisional biopsy, excisional biopsy, punch biopsy, shave biopsy or skin biopsy. In some cases, the methods and compositions provided herein are applied to data only from biological samples obtained by FNA. In some cases, the methods and compositions provided herein are applied to data only from biological samples obtained by FNA or surgical biopsy. In some cases, the methods and compositions provided herein are applied to data only from biological samples obtained by surgical biopsy. A biological sample can be obtained by non-invasive methods, such methods including, but not limited to: scraping of the skin or cervix, swabbing of the cheek, saliva collection, urine collection, feces collection, collection of menses, tears, or semen. The biological sample can be obtained by an invasive procedure, such procedures including, but not limited to: biopsy, alveolar or pulmonary lavage, needle aspiration, or phlebotomy. The method of biopsy can further include incisional biopsy, excisional biopsy, punch biopsy, shave biopsy, or skin biopsy. The method of needle aspiration can further include fine needle aspiration, core needle biopsy, vacuum assisted biopsy, or large core biopsy. Multiple biological samples can be obtained by the methods herein to ensure a sufficient amount of biological material. Methods of obtaining suitable samples of thyroid are known in the art and are further described in the ATA Guidelines for thyroid nodule management (Cooper et al. Thyroid Vol. 16 No. 2 2006), herein incorporated by reference in its entirety. Generic methods for obtaining biological samples are also known in the art and further described in for example Ramzy, Ibrahim Clinical Cytopathology and Aspiration Biopsy 2001 which is herein incorporated by reference in its entirety. The biological sample can be a fine needle aspirate of a thyroid nodule or a suspected thyroid tumor. The fine needle aspirate sampling procedure can be guided by the use of an ultrasound, X-ray, or other imaging device.


In some cases, the subject can be referred to a specialist such as an oncologist, surgeon, or endocrinologist for further diagnosis. The specialist can likewise obtain a biological sample for testing or refer the individual to a testing center or laboratory for submission of the biological sample. In any case, the biological sample can be obtained by a physician, nurse, or other medical professional such as a medical technician, endocrinologist, cytologist, phlebotomist, radiologist, or a pulmonologist. The medical professional can indicate the appropriate test or assay to perform on the sample, or the molecular profiling business of the present disclosure can consult on which assays or tests are most appropriately indicated. The molecular profiling business can bill the individual or medical or insurance provider thereof for consulting work, for sample acquisition and or storage, for materials, or for all products and services rendered.


A medical professional need not be involved in the initial diagnosis or sample acquisition. An individual can alternatively obtain a sample through the use of an over the counter kit. The kit can contain a means for obtaining said sample as described herein, a means for storing the sample for inspection, and instructions for proper use of the kit. In some cases, molecular profiling services are included in the price for purchase of the kit. In other cases, the molecular profiling services are billed separately.


A biological sample suitable for use by the molecular profiling business can be any material containing tissues, cells, nucleic acids, genes, gene fragments, expression products, gene expression products, and/or gene expression product fragments of an individual to be tested. Methods for determining sample suitability and/or adequacy are provided. The biological sample can include, but is not limited to, tissue, cells, and/or biological material from cells or derived from cells of an individual. The sample can be a heterogeneous or homogeneous population of cells or tissues. The biological sample can be obtained using any method known to the art that can provide a sample suitable for the analytical methods described herein.


Obtaining a biological sample can be aided by the use of a kit. A kit can be provided containing materials for obtaining, storing, and/or shipping biological samples. The kit can contain, for example, materials and/or instruments for the collection of the biological sample (e.g., sterile swabs, sterile cotton, disinfectant, needles, syringes, scalpels, anesthetic swabs, knives, curette blade, liquid nitrogen, etc.). The kit can contain, for example, materials and/or instruments for the storage and/or preservation of biological samples (e.g., containers; materials for temperature control such as ice, ice packs, cold packs, dry ice, liquid nitrogen; chemical preservatives or buffers such as formaldehyde, formalin, paraformaldehyde, glutaraldehyde, alcohols such as ethanol or methanol, acetone, acetic acid, HOPE fixative (Hepes-glutamic acid buffer-mediated organic solvent protection effect), heparin, saline, phosphate buffered saline, TAPS, bicine, Tris, tricine, TAPSO, HEPES, TES, MOPS, PIPES, cadodylate, SSC, MES, phosphate buffer; protease inhibitors such as aprotinin, bestatin, calpain inhibitor 1 and 11, chymostatin, E-64, leupeptin, alpha-2-macroglobulin, pefabloc SC, pepstatin, phenylmethanesufonyl fluoride, trypsin inhibitors; DNAse inhibitors such as 2-mercaptoethanol, 2-nitro-5-thicyanobenzoic acid, calcium, EGTA, EDTA, sodium dodecyl sulfate, iodoacetate, etc.; RNAse inhibitors such as ribonuclease inhibitor protein; double-distilled water; DEPC (diethyprocarbonate) treated water, etc.). The kit can contain instructions for use. The kit can be provided as, or contain, a suitable container for shipping. The shipping container can be an insulated container. The shipping container can be self-addressed to a collection agent (e.g., laboratory, medical center, genetic testing company, etc.). The kit can be provided to a subject for home use or use by a medical professional. Alternatively, the kit can be provided directly to a medical professional.


One or more biological samples can be obtained from a given subject. In some cases, between about 1 and about 50 biological samples are obtained from the given subject; for example, about 1-50, 1-40, 1-30, 1-25, 1-20, 1-15, 1-10, 1-7, 1-5, 5-50, 5-40, 5-30, 5-25, 5-15, 5-10, 10-50, 10-40, 10-25, 10-20, 25-50, 25-40, or at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 biological samples can be obtained from the given subject. Multiple biological samples from the given subject can be obtained from the same source (e.g., the same tissue), e.g., multiple blood samples, or multiple tissue samples, or from multiple sources (e.g., multiple tissues). Multiple biological samples from the given subject can be obtained at the same time or at different times. Multiple biological samples from the given subject can be obtained at the same condition or different condition. Multiple biological samples from the given subject can be obtained at the same disease progression or different disease progression of the subject. If multiple biological samples are collected from the same source (e.g., the same tissue) from the particular subject, the samples can be combined into a single sample. Combining samples in this way can ensure that enough material is obtained for testing and/or analysis.


EXAMPLES

These examples are provided for illustrative purposes only and not to limit the scope of the claims provided herein. The starting materials and reagents used for the synthesis of the compounds described herein may be synthesized or can be obtained from commercial sources, such as, but not limited to, Sigma-Aldrich, Acros Organics, Fluka, and Fischer Scientific.


In some embodiments as used throughout the examples, G1 is H, PMB (p-methoxybenzyl), BOC (tert-butyloxycarbonyl), or other protecting group. In some embodiments, G1 is H or BOC. In some embodiments, G2 is H, alkyl, or bis(pinacolato), or other protective group. In some embodiments, G2 is H or bis(pinacolato). In some embodiments, G3 is H, methyl, MOM (methoxymethyl), benzyl, or other protecting group. In some embodiments, G3 is H, methyl, benzyl, PMB, or MOM.


Synthesis of Amino Alcohols (AA)



embedded image


embedded image


The amino alcohols shown in Scheme AA-1 were used in the synthesis of the compounds contained herein.


AA1. Synthesis of PFDOD (rac-tert-butyl (1R,2R,3S,5S)-2-fluoro-3-hydroxy-9-azabicyclo[3.3.1]nonane-9-carboxylate, a Racemic Mixture of tert-butyl (1S,2S,3R,5R)-2-fluoro-3-hydroxy-9-azabicyclo[3.3.1]nonane-9-carboxylate and tert-butyl (1R,2R,3S,5S)-2-fluoro-3-hydroxy-9-azabicyclo[3.3.1]nonane-9-carboxylate))



embedded image


Step 1. Synthesis of rac-tert-butyl (1R,2R,5S)-2-fluoro-3-oxo-9-azabicyclo[3.3.1]nonane-9-carboxylate LiHMDS (1.5 eq, 941 mL, 1N) was added to a stirred solution of commercially available tert-butyl 3-oxo-9-azabicyclo[3.3.1]nonane-9-carboxylate (150 g, 628 mmol) in THF (1.5 L) at −78° C. under nitrogen protection, then treated with N-fluorobenzenesulfonamide (NFSI, 345 g). After 3 hr, the reaction was quenched with H2O (400 mL) and extracted with EtOAc (300 mL×3). The combined organic solvents were concentrated and purified by silica gel silica gel chromatography (0-10% EtOAc/petroleum ether) to give rac-tert-butyl (1R,2R,5S)-2-fluoro-3-oxo-9-azabicyclo[3.3.1]nonane-9-carboxylate) as a white solid (60 g, 38% yield). LCMS: m/z 202.1 [M−55]+


Step 2. Synthesis of rac-tert-butyl (1R,2R,3S,5S)-2-fluoro-3-hydroxy-9-azabicyclo[3.3.1]nonane-9-carboxylate (Racemic PFDOD)

L-Selectride® (Lithium tri-sec-butyborohydride, 1.2 equiv, 233.4 mmol, 234 mL, 1M in THF) was added to a mixture of rac-tert-butyl (1S,2S,5S)-2-fluoro-3-oxo-9-azabicyclo[3.3.1]nonane-9-carboxylate (50 g, 194.5 mmol) and in THF (2 L) at −78° C. The mixture was stirred at this temperature for 2 h. Water (300 mL) was added and the mixture was extracted with EtOAc (100 mL×3). The combined organic solvents were dried over anhydrous Na2SO4, concentrated and purified by silica gel chromatography (0-10% EtOAc/petroleum ether) to give rac-tert-butyl (1S,2S,3R,5R)-fluoro-3-hydroxy-9-azabicyclo[3.3.1]nonane-9-carboxylate, Racemic PFDOD, as a white solid (30.2 g, 65% yield). LCMS: m/z 204.1 [M−55]+.


AA2. Synthesis of rac-tert-butyl (1S,2S,3R,5R)-2-fluoro-3-hydroxy-8-azabicyclo[3.2.1]octane-8-carboxylate (Racemic TFDOD)



embedded image


Step 1. Synthesis of tert-butyl 3-((trimethylsilyl)oxy)-8-azabicyclo[3.2.1]oct-2-ene-8-carboxylate

TMSCl (19.2 g, 17.78 mmol) and triethylamine (17.78 g, 17.78 mmol) was added to a stirred solution of tert-butyl 3-oxo-8-azabicyclo[3.2.1]octane-8-carboxylate (20 g, 8.89 mmol) in 270 mL of DMF. The mixture was stirred at 100° C. for 16 h. Water (300 mL) was added to the reaction, then the mixture was extracted with ethyl acetate (100 mL×3). The combined organic phases were dried and concentrated, then purified by silica gel chromatography (10% EtOAc/petroleum ether) to give 21 g of tert-butyl 3-((trimethylsilyl)oxy)-8-azabicyclo[3.2.1]oct-2-ene-8-carboxylate (79% yield). LCMS: m/z 298.2 [M+H]+; tR=2.33 min.


Step 2. Synthesis of rac-tert-butyl (1S,2S,5S)-2-fluoro-8-aza-bicyclo[3.2.1]octan-3-one

Selectfluor™ (14.16 g, 40 mmol) was added to a solution of a mixture of toy-butyl 3-((trimethylsilyl)oxy)-8-azabicyclo[3.2.1]oct-2-ene-8-carboxylate (6 g, 20 mmol) in 120 mL of dry CH3CN at 0° C. After addition, the mixture was stirred at room temperature for 2 h. The mixture was concentrated, then purified by silica gel chromatography (50% EtOAc/petroleum ether) to give 3.84 g of rac-tert-butyl (1S,2S,5S)-2-fluoro-8-aza-bicyclo[3.2.1]octan-3-one. (78% yield). LCMS: m/z 188.2 [M−55]+; tR=1.86 min.


Step 3. Synthesis of (1S,2S,5S)-tert-butyl 2-fluoro-3-oxo-8-azabicyclo[3.2.1]octane-8-carboxylate

1M Lithium triisobutylhydroborate in THF (L-Selectride®,19.5 mL, 19.5 mmol) was added to a solution of rac-tert-butyl (1S,2S,5S)-2-fluoro-8-aza-bicyclo[3.2.1]octan-3-one (3.6 g, 15 mmol) in 60 mL of dry THF at −78° C. After addition, the mixture was stirred at −78° C. for 1h. Water (100 mL) was added to quench the reaction, the mixture was concentrated, extracted with ethyl acetate (3×100 mL), and the combined organic phases were dried and concentrated, then purified by silica gel chromatography (80% EtOAc/petroleum ether) to give 2.6 g of rac-(1S,2S,5R)-tert-butyl 2-fluoro-3-oxo-8-azabicyclo[3.2.1]octane-8-carboxylate. (72% yield). LCMS: m/z 190.2 [M+H-56]+; tR=1.63 min.


AA3. Synthesis of 2-(6-((1S,3R,5R)-6,6-difluoro-8-azabicyclo[3.2.1]octan-3-yloxy)pyridazin-3-yl)-5-(1H-pyrazol-4-yl)phenol and 2-(6-((1R,3S,5S)-6,6-difluoro-8-azabicyclo[3.2.1]octan-3-yloxy)pyridazin-3-yl)-5-(1H-pyrazol-4-yl)phenol (Racemic TBdFOD)



embedded image


embedded image


Step 1. Synthesis of 6-hydroxy-8-benzyl 8-azabicyclo[3.2.1]octan-3-one

2,5-Dimethoxy-2,5-dihydrofuran (97.5 g, 750 mmol) was dissolved in water (650 mL) and treated with aqueous hydrochloric acid (3.75 ml, 2M) under an atmosphere of nitrogen. The mixture was heated to 96° C. with stirring and aqueous methanol (about 100 mL) was distilled from the reaction mixture until the reaction solution reached 98-99° C. The reaction was cooled to ambient temperature, acetone dicarboxylic acid (146 g, 1.33 mol) were added in one portion followed by a solution of sodium hydrogen phosphate (53.25 g, 375 mmol) and sodium hydroxide (15.0 g, 375 mmol) in water (500 mL). 1,4-Dioxane (100 mL) was added and a solution of benzylamine hydrochloride (71.75 g, 502 mmol) in water (330 mL) was added dropwise over 10 minutes. The mixture was rapidly stirred for a further 4 hours, acidified with aqueous hydrochloric acid (2M). Dichloromethane (500 mL) was added and the reaction mixture stirred for 10 minutes. The aqueous phase was separated and filtered through a pad of Celite™. The filtrate was extracted with dichloromethane (500 mL×3). The aqueous phase was collected, basified with potassium carbonate and extracted with ethyl acetate (1000 mL×3). The organic fractions were combined, dried over anhydrous Na2SO4 and concentrated under reduced pressure to give 36 g of 6-hydroxy-8-benzyl 8-azabicyclo[3.2.1]octan-3-one as a brown oil, containing a mixture of exo- and endo-6-hydroxy-8-benzyl 8-azabicyclo[3.2.1]octan-3-one, which was used directly to next step (21% yield). LCMS: m/z 232.1 [M+H]+; tR=1.52 min.


Step 2. Synthesis of 8-benzyl-6-((tert-butyldimethylsilyl)oxy)-8-azabicyclo[3.2.1]octan-3-one

TBSCl (18.7 g, 124.6 mmol) was added to a stirred solution of 6-hydroxy-8-benzyl 8-azabicyclo[3.2.1]octan-3-one (24 g, 104 mmol) and imidazole (10.6 g, 156 mmol) in CH2Cl2 (500 mL) at room temperature. The mixture was stirred at room temperature for 18 h, concentrated and purified by silica gel chromatography (14% EtOAc/petroleum ether) to give 28 g of 8-benzyl-6-((tert-butyldimethylsilyl)oxy)-8-azabicyclo[3.2.1]octan-3-one as brown oil (78% yield). LCMS: m/z 346.2 [M+H]+; tR=2.46 min.


Step 3. Synthesis of rac-(S,3R,5R)-8-benzyl-6-((tert-butyldimethylsilyl)oxy)-8-azabicyclo[3.2.1]octan-3-ol

NaBH4 (8.8 g, 232 mmol) was added to a stirred solution of 8-benzyl-6-((tert-butyldimethylsilyl)oxy)-8-azabicyclo[3.2.1]octan-3-one (40 g, 116 mmol) in MeOH (600 mL) at room temperature. The mixture was stirred at room temperature for 2 h, and concentrated to remove most of the solvent. 500 mL of water was added. The resulting mixture was extracted with EtOAc (500 mL×2). The combined organic solvents were concentrated and purified by silica gel chromatography (0-24% EtOAc/petroleum ether) to give 38 g of rac-(1S,2S,3R,5R)-8-benzyl-6-((tert-butyldimethylsilyl)oxy)-8-azabicyclo[3.2.1]octan-3-ol (94% yield). LCMS: m/z 348.1 [M+H]+; tR=1.57 min.


Step 4. Synthesis of rac-(1S,3R,5R)-8-benzyl-6-((tert-butyldimethylsilyl)oxy)-8-azabicyclo[3.2.1]octan-3-yl acetate

Ac2O (7.9 g, 78 mmol) was added to a stirred solution of rac-(1S,3R,5R)-8-benzyl-6-((tert-butyldimethylsilyl)oxy)-8-azabicyclo[3.2.1]octan-3-ol (18 g, 52 mmol), Et3N (10.5 g, 104 mmol) and DMAP (634 mg, 122 mmol) in 200 mL of THF at 0° C. After addition, the mixture was stirred at room temperature for 18 h, concentrated and purified by silica gel chromatography (0-14% EtOAc/petroleum ether) to give 16 g of rac-(1S,3R,5R)-8-benzyl-6-((tert-butyldimethylsilyl)oxy)-8-azabicyclo[3.2.1]octan-3-yl acetate (78% yield). LCMS: m/z 390.1 [M+H]+; tR=2.57 min.


Step 5. Synthesis of rac-(1R,3R,5R)-8-benzyl-6-hydroxy-8-azabicyclo[3.2.1]octan-3-yl acetate

TBAF (43.3 mL, 43.3 mmol, 1 M solution in THF) was added to a stirred solution of rac-(1S,3R,5R)-8-benzyl-6-((tert-butyldimethylsilyl)oxy)-8-azabicyclo[3.2.1]octan-3-yl acetate (13 g, 33.4 mmol) in 100 mL of THF. The mixture was stirred at room temperature for 4 h and 30 mL of H2O was added. The mixture was extracted with EtOAc (50 mL×3). The combined organic solvents were concentrated and purified by silica gel chromatography (0-40% EtOAc/petroleum ether) to give 8.7 g of rac-(1R,3R,5R)-8-benzyl-6-hydroxy-8-azabicyclo[3.2.1]octan-3-yl acetate (91% yield). LCMS: m/z 276.2 [M+H]+; tR=1.76 min.


Step 6. Synthesis of rac-(1S,3R,5R)-8-benzyl-6-oxo-8-azabicyclo[3.2.1]octan-3-yl acetate

Dess-Martin periodinane (13.9 g, 32.7 mmol) was added to a stirred solution of rac-(1R,3R,5R)-8-benzyl-6-hydroxy-8-azabicyclo[3.2.1]octan-3-yl acetate (6 g, 21.8 mmol) in 60 mL of CH2Cl2 at room temperature. The mixture was stirred at room temperature for 16 h, filtered, concentrated and purified by silica gel chromatography (0-20% EtOAc/petroleum ether) to give 4.45 g of rac-(1S,3R,5R)-8-benzyl-6-oxo-8-azabicyclo[3.2.1]octan-3-yl acetate (60% yield). LCMS: m/z 274.1 [M+H]+; tR=1.85 min.


Step 6. Synthesis of rac-(1S,3R,5R)-8-benzyl-6,6-difluoro-8-azabicyclo[3.2.1]octan-3-yl acetate

DAST (52.5 g, 326 mmol) was added to a stirred solution of rac-(1S,3R,5R)-8-benzyl-6-oxo-8-azabicyclo[3.2.1]octan-3-yl acetate (8.9 g, 32.6 mmol) in 90 mL of CH2Cl2 under nitrogen atmosphere. The mixture was stirred at 60° C. (oil bath) for 12 h. After cooling to room temperature, the mixture was quenched with H2O, extracted with CH2Cl2 (30 mL×3), concentrated and purified by silica gel chromatography (0-28% EtOAc/petroleum ether) to give 5.3 g of rac-(1S,3R,5R)-8-benzyl-6,6-difluoro-8-azabicyclo[3.2.1]octan-3-yl acetate (55% yield). LCMS: m/z 296.2 [M+H]+; tR=2.20 min.


Step 7. Synthesis of rac-tert-butyl (1S,3R,5R)-3-acetoxy-6,6-difluoro-8-azabicyclo[3.2.1]octane-8-carboxylate

A mixture of rac-(1S,3R,5R)-8-benzyl-6,6-difluoro-8-azabicyclo[3.2.1]octan-3-yl acetate (1.9 g, 6.44 mmol), Pd/C (500 mg, 10% on activated carbon) and (Boc)2O (1.69 g, 7.73 mmol) in 50 mL of MeOH was stirred under H2 at balloon pressure for 16 h. The mixture was filtered, concentrated and purified by silica gel chromatography (0-37% EtOAc/petroleum ether) to give 1.5 g of rac-tert-butyl (1S,3R,5R)-3-acetoxy-6,6-difluoro-8-azabicyclo[3.2.1]octane-8-carboxylate (76% yield). LCMS: m/z 328.1 [M+23]+; tR=1.94 min.


Synthesis of rac-tert-butyl (1S,3R,5R)-6,6-difluoro-3-hydroxy-8-azabicyclo[3.2H]octane-8-carboxylate

K2CO3 (497 mg, 3.6 mmol) was added to a stirred solution of rac-tert-butyl (1S,3R,5R)-3-acetoxy-6,6-difluoro-8-azabicyclo[3.2.1]octane-8-carboxylate (550 mg, 1.8 mmol) in 5 mL of MeOH. The mixture was stirred at room temperature for 3 h, filtered, concentrated and purified by silica gel chromatography (0-30% EtOAc/petroleum ether) to give 280 mg of rac-tert-butyl (1S,3R,5R)-6,6-difluoro-3-hydroxy-8-azabicyclo[3.2.1]octane-8-carboxylate (Racemic TBdFOD) (68% yield). LCMS: m/z 208.1 [M−55]+; tR=1.62 min.


AA4. Synthesis of rac-tert-butyl (1S,5S,6S,7R)-6-fluoro-7-hydroxy-3-oxa-9-azabicyclo[3.3.1]nonane-9-carboxylate (Racemic MFDOD)



embedded image


Compound MFDOD (rac-tert-butyl (1S,5S,6S,7R)-6-fluoro-7-hydroxy-3-oxa-9-azabicyclo[3.3.1]nonane-9-carboxylate was made in a manner analogous to that described for racemic PFDOD (AA1.) in above, starting from tert-butyl 7-oxo-3-oxa-9-azabicyclo[3.3.1]nonane-9-carboxylate. Data for Racemic MDFOD: LCMS: m/z 284.0 [M+Na]+; tR=1.48 min.


AA5. Synthesis of Racemic TFUOD



embedded image


Step 1. Rac-Tert-butyl (1R,2S,5S)-2-fluoro-3-oxo-8-azabicyclo[3.2.1]octane-8-carboxylate

To a solution of rac-tert-butyl (1R,2R,5S)-2-fluoro-3-oxo-8-azabicyclo[3.2.1]octane-8-carboxylate (See synthesis of TFDOD above) (140 g, 1 Eq, 575 mmol) in methanol (3.0 L) was added potassium carbonate (398 g, 5 Eq, 2.88 mol) and the reaction mixture was stirred overnight at room temperature. The reaction mixture was poured into water (2000 mL) and diluted with TBME (500 mL). The water layer was extracted three times with TBME (3×500 mL). Organic layers were washed with brine (3×500 mL) dried over sodium sulfate and concentrated in vacuo to afford a mixture that was approximately 2:1 rac-tert-butyl (1R,2S,5S)-2-fluoro-3-oxo-8-azabicyclo[3.2.1]octane-8-carboxylate:rac-tert-butyl (1R,2R,5S)-2-fluoro-3-oxo-8-azabicyclo[3.2.1]octane-8-carboxylate as an orange solid. The crude product was dissolved in hot heptane (1.0 L) and filtered. The heptane was concentrated to 800 mL volume. The mixture was heated until reflux and no more solids were present. Then the mixture was allowed to slowly cool to room temperature overnight. Solids were filtered over a p2 filter and washed with heptane (3×350 mL). The pale yellow solid was then transferred to a round bottom flask and dried in vacuo (5 mbar 45° C.) to afford 117 g of rac-tert-butyl (1R,2S,5S)-2-fluoro-3-oxo-8-azabicyclo[3.2.1]octane-8-carboxylate containing approximately 7% of residual rac-tert-butyl (1R,2R,5S)-2-fluoro-3-oxo-8-azabicyclo[3.2.1]octane-8-carboxylate. The recrystallization procedure was repeated to afford rac-tert-butyl (1R,2S,5S)-2-fluoro-3-oxo-8-azabicyclo[3.2.1]octane-8-carboxylate (103 g, containing roughly 3% residual rac-tert-butyl (1R,2R,5S)-2-fluoro-3-oxo-8-azabicyclo[3.2.1]octane-8-carboxylate. 1H NMR (300 MHz, Chloroform-d) δ 4.71 (dd, J=95.1, 40.4 Hz, 3H), 2.55-2.37 (m, 1H), 2.18-1.82 (m, 3H), 1.70-1.55 (m, 2H), 1.51 (d, J=0.8 Hz, 9H).


Step 2. Rac-tert-butyl (1R,2S,3R,5S)-2-fluoro-3-hydroxy-8-azabicyclo[3.2.1]octane-8-carboxylate

To a solution of rac-tert-butyl (1R,2S,5S)-2-fluoro-3-oxo-8-azabicyclo[3.2.1]octane-8-carboxylate (165.0 g, 1 Eq, 678.2 mmol) in MeOH (2000 mL) was added sodium tetrahydroborate (51.31 g, 2 Eq, 1.356 mol) at 0° C. After 1 h at room temperature, the reaction was quenched with water and methanol was removed in vacuo. The aqueous layer was extracted with ethyl acetate twice. The combined organic phase was washed with brine, dried over Na2SO4, filtered, and concentrated. The crude product rac-tert-butyl (1R,2S,3R,5S)-2-fluoro-3-hydroxy-8-azabicyclo[3.2.1]octane-8-carboxylate (156.0 g) was used in the next step without further purification. 1H NMR (300 MHz, Chloroform-d) δ 4.73-4.16 (m, 3H), 4.08 (q, J=7.1 Hz, 2H), 2.45-2.23 (m, 2H), 2.16-1.72 (m, 4H), 1.42 (s, 9H). 19F NMR (282 MHz, Chloroform-d) δ −193.79 (dd, J=345.0, 46.5 Hz).


Step 3. Rac-tert-butyl (1R,2S,3S,5S)-2-fluoro-3-((4-nitrobenzoyl)oxy)-8-azabicyclo[3.2.1]octane-8-carboxylate

To a solution of triphenylphosphine (47.0 g, 2 Eq, 179 mmol) in THF (280 mL) was added Diisopropyl azodicarboxylate (DIAD, 36.3 g, 35.3 mL, 2 Eq, 179 mmol) with stirring under nitrogen at 0° C. The resulting suspension was stirred for 5 min and then rac tert-butyl (1R,2S,3R,5S)-2-fluoro-3-hydroxy-8-azabicyclo[3.2.1]octane-8-carboxylate (22.0 g, 1 Eq, 89.7 mmol) and 4-nitrobenzoic acid (18.0 g, 1.2 Eq, 108 mmol) were added. The resulting orange solution was allowed to warm to room temperature and stirred for 24 h. The mixture was concentrated under reduced pressure, and the residual oil was purified by column chromatography (Heptane/EtOAc=from 0 to 30% EtOAc) to afford rac-tert-butyl (1R,2S,3S,5S)-2-fluoro-3-((4-nitrobenzoyl)oxy)-8-azabicyclo[3.2.1]octane-8-carboxylate (30.0 g, 84.8%) as an off-white solid. 1H NMR (300 MHz, Chloroform-d) δ 8.28-8.21 (m, 2H), 8.21-8.15 (m, 2H), 5.37 (ddd, J=17.1, 10.2, 5.3 Hz, 1H), 4.35 (d, J=39.1 Hz, 3H), 2.12-1.88 (m, 2H), 1.82-1.69 (m, 4H), 1.44 (d, J=14.1 Hz, 9H). 19F NMR (282 MHz, Chloroform-d) δ−187.39 (d, J=274.4 Hz).


Step 4. Rac-Tert-butyl (1R,2S,3S,5S)-2-fluoro-3-hydroxy-8-azabicyclo[3.2.1]octane-8-carboxylate (Racemic TFUOD)

To a solution of rac-tert-butyl (1R,2S,3S,5S)-2-fluoro-3-((4-nitrobenzoyl)oxy)-8-azabicyclo[3.2.1]octane-8-carboxylate (38.0 g, 1 Eq, 96.3 mmol) in THF/Water (380 mL) was added lithium hydroxide (12 g, 2.8 Eq, 270 mmol) in portions at 0° C. After addition, the reaction mixture was allowed to warm to room temperature and stirred overnight. TLC (Heptane/EtOAc=7:3) showed the starting material was consumed completely. The reaction mixture was extracted with EtOAc (3×300 mL). The combined organic layers were washed with brine (500 mL), dried over anhydrous Na2SO4 and purified by flash chromatography ((Heptane/EtOAc=0 to 50% EtOAc) to afford rac tert-butyl (1R,2S,3S,5S)-2-fluoro-3-hydroxy-8-azabicyclo[3.2.1]octane-8-carboxylate (17 g, 70%) as a pale yellow solid. 1H NMR (300 MHz, Chloroform-D) δ 4.35 (d, J=52.5 Hz, 4H), 3.98 (ddt, J=17.9, 10.9, 7.2 Hz, 1H), 2.39 (s, 1H), 2.04-1.82 (m, 3H), 1.79-1.51 (m, 1H), 1.45 (s, 10H). 19F NMR (282 MHz, Chloroform-d) δ−186.72-191.79 (m). 13C NMR (75 MHz, cdcl3) δ 153.11, 95.51, 93.08, 80.18, 68.13, 67.88, 54.83, 52.52, 38.03, 28.39, 28.38, 28.36, 28.34, 23.66.


AA6. Synthesis of rac-tert-butyl (1 S,2R,3R,5R)-2-fluoro-3-hydroxy-9-azabicyclo[3.3.1]nonane-9-carboxylate (Racemic PFUOD)



embedded image


Rac-tert-butyl (1S,2R,3R,5R)-2-fluoro-3-hydroxy-9-azabicyclo[3.3.1]nonane-9-carboxylate (Racemic PFUOD) was synthesized in a manner analogous to that described for Racemic TFUOD (AA5), starting from rac-tert-butyl (1R,2R,5S)-2-fluoro-3-oxo-9-azabicyclo[3.3.1]nonane-9-carboxylate.


AA7. Synthesis of rac-(1S,2S,3R,5R)-2-fluoro-9-(4-methoxybenzyl)-1,5-dimethyl-9-azabicyclo[3.3.1]nonan-3-ol (Racemic SPFDOD)



embedded image


Rac-(1S,2S,3R,5R)-2-fluoro-9-(4-methoxybenzyl)-1,5-dimethyl-9-azabicyclo[3.3.1]nonan-3-ol (Racemic SPFDOD) was synthesized in a manner analogous to that described for Racemic PFDOD starting from 9-(4-methoxybenzyl)-1,5-dimethyl-9-azabicyclo[3.3.1]nonan-3-one (LUZZIO, Michael; MCCARTHY, Kathleen; HANEY, William, METHODS AND COMPOSTIONS FOR MODULATING SPLICING, WO2019/28440, 2019, A1). LCMS: m/z 308.3 [M+H]+.


AA8. Synthesis of rac-tert-butyl (1 S,2S,3R,5R)-2-fluoro-3-hydroxy-1,5-dimethyl-8-azabicyclo[3.2.1]octane-8-carboxylate (Racemic STFDOD)



embedded image


Step 1. Synthesis of tert-butyl 1,5-dimethyl-3-((trimethylsilyl)oxy)-8-azabicyclo[3.2.1]oct-2-ene-8-carboxylate

Chlorotrimethylsilane (8.58 g, 79 mmol) was added to a stirred solution of tert-butyl 1,5-dimethyl-3-oxo-8-azabicyclo[3.2.1]octane-8-carboxylate (10 g, 39.5 mmol) ((LUZZIO, Michael; MCCARTHY, Kathleen; HANEY, William, METHODS AND COMPOSITIONS FOR MODULATING SPLICING, WO2019/28440, 2019, A1) and Et3N (12.8 g, 118.5 mmol) in 140 mL of DMF at 0° C. under nitrogen protection. After the addition, the mixture was then stirred at 100° C. for 18 h. The mixture was cooled to room temperature, quenched with H2O (50 mL) and extracted with EtOAc (50 mL×3). The combined organic solvents were washed with brine (50 mL), dried over anhydrous Na2SO4, concentrated and purified by silica gel chromatography (0-6% EtOAc/petroleum ether) to give 7.14 g of tert-butyl 1,5-dimethyl-3-((trimethylsilyl)oxy)-8-azabicyclo[3.2.1]oct-2-ene-8-carboxylate as colorless liquid (56% yield). LCMS: m/z 326.3 [M+H]+; tR=2.60 min.


Step 2. Synthesis of rac-tert-butyl (1S,2S,5R)-2-fluoro-1,5-dimethyl-3-oxo-8-azabicyclo[3.2.1]octane-8-carboxylate and rac-tert-butyl (1S,2S,5R)-2-fluoro-1,5-dimethyl-3-oxo-8-azabicyclo[3.2.1]octane-8-carboxylate

Selectfluor™ (22.0 g, 64.51 mmol) was added to a stirred solution of tert-butyl 1,5-dimethyl-3-((trimethylsilyl)oxy)-8-azabicyclo[3.2.1]oct-2-ene-8-carboxylate (14.0 g, 43.01 mmol) in CH3CN (150 mL) at 0° C. under nitrogen protection in three portions. The mixture was then stirred at room temperature for 3 h, quenched with H2O (50 mL) and extracted with EtOAc (50 mL×3). The combined organic solvents were concentrated and purified by silica gel chromatography (5-10% EtOAc/petroleum ether) to give 3.8 g of rac-tert-butyl (1S,2S,5R)-2-fluoro-1,5-dimethyl-3-oxo-8-azabicyclo[3.2.1]octane-8-carboxylate (33% yield). LCMS: m/z 216.1 [M−55]+; tR=1.92 min and 4 g of rac-tert-butyl (1S,2R,5R)-2-fluoro-1,5-dimethyl-3-oxo-8-azabicyclo[3.2.1]octane-8-carboxylate (35% yield) was also obtained. LCMS: m/z 216.1 [M−55]+; tR=1.95 min.


Step 3. Synthesis of rac-tert-butyl (1S,2S,3R,5R)-2-fluoro-3-hydroxy-1,5-dimethyl-8-azabicyclo[3.2.1]octane-8-carboxylate

NaBH4 (1.5 g, 40 mmol.) was added to a solution of rac-tert-butyl (1S,2S,5R)-2-fluoro-3-oxo-9-azabicyclo[3.3.1]nonane-9-carboxylate (7.2 g, 26.56 mmol) in 80 mL of MeOH at room temperature. After the addition, the mixture was stirred at room temperature for 2 h. Water (100 mL) was added to quench the reaction. The mixture was concentrated, extracted with ethyl acetate (3×100 mL). The combined organic phases were dried over anhydrous Na2SO4, concentrated and purified by silica gel chromatography (0-20% EtOAc/petroleum ether) to give 1.8 g of rac-tert-butyl (1S,2S,3R,5R)-2-fluoro-3-hydroxy-1,5-dimethyl-8-azabicyclo[3.2.1]octane-8-carboxylate. LCMS: m/z 218.1 [M−55]+; tR=1.36 min. 5.1 g of rac-tert-butyl (1S,2R,3R,5R)-2-fluoro-3-hydroxy-1,5-dimethyl-8-azabicyclo[3.2.1]octane-8-carboxylate was also obtained. LCMS: m/z 218.1 [M−55]+; tR=1.48 min.


AA9. Synthesis of tert-butyl (1R,3s,5S,7r)-3-fluoro-7-hydroxy-9-azabicyclo[3.3.1]nonane-9-carboxylate (PBFDOD)



embedded image


Step 1. Synthesis of ((cyclopent-3-enyloxy)methyl)benzene

NaH (20 g, 500 mmol, 60% in mineral oil) was added to the solution of cyclopent-3-enol (30 g, 357 mmol) in 500 mL of THF at 0° C. After stirring for 20 min, BnBr (60.9 g, 356 mmol) was added. The reaction was stirred at for 5 h, quenched with H2O (200 mL) and extracted with EtOAc (200 mL×3). The combined organic phases were washed with brine, dried over anhydrous Na2SO4, concentrated under reduced pressure and purified by silica gel column (10% EtOAc/petroleum ether) to give 62 g of ((cyclopent-3-enyloxy)methyl)benzene as a colorless oil (98% yield). LCMS: LCMS: m/z 197.2 [M+H]+; tR=2.19 min.


Step 2. Synthesis of 4-(benzyloxy)cyclopentane-1,2-diol

H2O (30 mL), DABCO (1.41 g, 12.6 mmol), K2OsO4 (856 mg, 2.33 mmol), K3Fe(CN)6 (47 g, 142.9 mmol) and K2CO3 (20 g, 145 mmol) were added to a solution of ((cyclopent-3-enyloxy)methyl)benzene (8 g, 46 mmol) in t-BuOH (30 mL) at. The reaction mixture was stirred at for 2 h, quenched with H2O (100 mL) and extracted with EtOAc (200 mL×3). The combined organic solvents were dried over anhydrous Na2SO4, filtered and concentrated and purified by silica gel chromatography (20% EtOAc/petroleum ether) to give 7.2 g of 4-(benzyloxy)cyclopentane-1,2-diol as a colorless oil (70% yield), LCMS: LCMS: m/z 209.2 [M+H]+; tR=1.55 min.


Step 3. Synthesis of 3-(benzyloxy)pentanedial

NaIO4 (8.33 g, 39 mmol) was added to a solution of 4-(benzyloxy)cyclopentane-1,2-diol (8.1 g, 39 mmol) in H2O (85 mL). The mixture was stirred at room temperature for 2 h. CH3CN was added. The mixture was filtered, the filtrate was concentrated. CH3CN was added to the residue, and the resulting mixture was filtered and the filtrate was concentrated to give 8 g of 4-(benzyloxy)cyclopentane-1,2-diol as a white solid, which was used directly to next step. LCMS: m/z 247.2 [M+CH3CN]+; tR=1.52 min.


Step 4. Synthesis of (1R,5S,7r)-7-(benzyloxy)-9-azabicyclo[3.3.1]nonan-3-one

NH4OAc (16 g, 205 mmol) and 3-oxopentanedioic acid (30 g, 205 mmol) were added to a mixture of 4-(benzyloxy)cyclopentane-1,2-diol (crude, 34 mmol) in HOAc (70 mL). The mixture was stirred at 80° C. for 5 h and diluted with H2O. HCl (1N)was added to make pH=3. The mixture was extracted with CH2Cl2 (100 mL). NaOH aqueous solution was added to the aqueous layer to make pH=10. The aqueous layer was extracted with CH2Cl2 (100 mL×3). The combined organics were concentrated and the residue was purified by silica gel chromatography (20% MeOH/CH2Cl2) to give 1 g of (1R,5S,7r)-7-(benzyloxy)-9-azabicyclo[3.3.1]nonan-3-one as a colorless oil (13% yield), LCMS: LCMS: m/z 246.2 [M+H]+; tR=1.14 min.


Step 5. Synthesis of (1R,3r,5S)-benzyl 3-(benzyloxy)-7-oxo-9-azabicyclo[3.3.1]nonane-9-carboxylate

Cbz-Cl (3.29 g, 19.27 mmol) was added to a solution of (1R,5S,7r)-7-(benzyloxy)-9-azabicyclo[3.3.1]nonan-3-one (2.36 g, 9.63 mmol) and Et3N (3.89 g, 38.52 mmol) in CH2Cl2 (20 mL). Then the reaction was stirred at room temperature for 16 h, quenched with H2O (20 mL) and extracted with CH2Cl2 (60 mL×3). The combined organic solvents were dried over anhydrous Na2SO4, concentrated and purified by silica gel chromatography (0-30% EtOAc/petroleum ether) to give 1.92 g of (1R,3r,5S)-benzyl 3-(benzyloxy)-7-oxo-9-azabicyclo[3.3.1]nonane-9-carboxylate as a colorless oil (53% yield). LCMS: m/z 402.2 [M+H]+; tR=2.11 min.


Step 6. Synthesis of (1R,3s,5S,7s)-benzyl 3-(benzyloxy)-7-hydroxy-9-azabicyclo[3.3.1]nonane-9-carboxylate

NaBH4 (459 mg, 12.08 mmol) was added to the solution of (1R,3r,5S)-benzyl 3-(benzyloxy)-7-oxo-9-azabicyclo[3.3.1]nonane-9-carboxylate (2.29 g, 6.04 mmol) in MeOH (30 mL) at room temperature. The reaction was stirred at room temperature for 2 h, quenched with NH4Cl aqueous solution (20 mL) and extracted with EtOAc (60 mL×3). The combined organic solvents were dried over anhydrous Na2SO4, concentrated and purified by silica gel chromatography (0-60% EtOAc/petroleum ether) to give 619 mg of (1R,3s,5S, 7s)-benzyl 3-(benzyloxy)-7-hydroxy-9-azabicyclo[3.3.1]nonane-9-carboxylate as colorless oil (84% yield). LCMS: m/z 404.2 [M+H]+; tR=2.03 min.


Step 7. Synthesis of (1R,3r,5S,7s)-benzyl 3-(benzyloxy)-7-fluoro-9-azabicyclo[3.3.1]nonane-9-carboxylate

To the solution of (1R,3s,5S,7s)-benzyl 3-(benzyloxy)-7-hydroxy-9-azabicyclo[3.3.1]nonane-9-carboxylate (1 g, 2.63 mmol) in CH2Cl2 (40 mL) was added DAST (634 mg, 3.94 mmol) at −78° C. The reaction was stirred at −78° C. for 1 h, quenched with NH4Cl aqueous solution (20 mL) and extracted with CH2Cl2 (60 mL×3). The combined organic solvents were dried over anhydrous Na2SO4, concentrated and purified by Prep-HPLC to give 360 mg of (1R,3r,5S,7s)-benzyl 3-(benzyloxy)-7-fluoro-9-azabicyclo[3.3.1]nonane-9-carboxylate as colorless oil (36% yield). LCMS: m/z 384.2 [M+H]+; tR=2.24 min.


Step 8. Synthesis of (1R,3s,5S,7r)-tert-butyl 3-fluoro-7-hydroxy-9-azabicyclo[3.3.1]nonane-9-carboxylate

Pd/C (200 mg) and (Boc)2O (365 mg, 1.67 mmol) were added to the solution of (1R,3r,5S,7S)-benzyl 3-(benzyloxy)-7-fluoro-9-azabicyclo[3.3.1]nonane-9-carboxylate (320 mg, 0.84 mmol) in 16 mL of MeOH. The reaction was stirred for 5 h at 50° C., filtered. The filtrate was concentrated and purified by silica gel column (40% EtOAc/petroleum ether) to give 190 mg of (1R,3s,5S,7r)-tert-butyl 3-fluoro-7-hydroxy-9-azabicyclo[3.3.1]nonane-9-carboxylate as a white solid (78% yield). LCMS: m/z 282.2 [M−55]+; tR=1.75 min.


AA10. Synthesis of Racemic PFUOU and PFDOU



embedded image


Amino alcohol racemic PFUOU (rac-tert-butyl (1S,2R,3S,5R)-2-fluoro-3-hydroxy-9-azabicyclo[3.3.1]nonane-9-carboxylate) can be made from rac-tert-butyl (1S,2S,5R)-2-fluoro-3-oxo-9-azabicyclo[3.3.1]nonane-9-carboxylate (described above) by epimerization with potassium carbonate and reduction with sodium borohydride. Amino alcohol PFDOU (tert-butyl (1R,2R,3R,5S)-2-fluoro-3-hydroxy-9-azabicyclo[3.3.1]nonane-9-carboxylate) can be obtained as a mixture with PFDOD (previously described) by reduction of from rac-tert-butyl (1S,2S,5R)-2-fluoro-3-oxo-9-azabicyclo[3.3.1]nonane-9-carboxylate with NaBH4. The diastereomers can be separated by chromatography.


AA11. Synthesis of Racemic PFDSD



embedded image


Rac-tert-butyl (1S,2S,3R,5R)-3-(acetylthio)-2-fluoro-9-azabicyclo[3.3.1]nonane-9-carboxylate (Racemic PFDSD) was synthesized from racemic PFDOU according to the procedure outlined above. The procedure used was the same as described for the synthesis of tert-butyl 4-(acetylthio)piperidine-1-carboxylate in Chem. Eur. J. 2018, 24, 8343-8349.


Synthesis of Building Blocks BB1
BB1-1. Synthesis of 4-chloro-2-(methoxymethoxy)phenylboronic acid



embedded image


Step 1. Synthesis of 1-bromo-4-chloro-2-(methoxymethoxy)benzene

NaH (185 mg, 46.3 mmol, 60% in mineral oil) was added to a stirred solution of 2-bromo-5-chlorophenol (8 g, 38.6 mmol) in 150 mL of DMF at 0° C. After stirring at 0° C. for 30 min, MOMBr (7.25 g, 58 mmol) was added. The mixture was then stirred at room temperature for 2 h, quenched with NH4Cl aqueous solution (15 mL), extracted with EtOAc (30 mL×3). The combined organic solvents were dried over anhydrous Na2SO4, concentrated and purified by silica gel chromatography (0-10% EtOAc/petroleum ether) to give 8.1 g of 1-bromo-4-chloro-2-(methoxymethoxy)benzene as colorless oil (84% yield). 1H NMR (500 MHz, Chloroform-d) δ 7.45 (d, J=8.5 Hz, 1H), 7.17 (d, J=2.3 Hz, 1H), 6.89 (dd, J=8.4, 2.3 Hz, 1H), 5.24 (s, 2H). LCMS: tR=1.51 min.


Step 2. Synthesis of 4-chloro-2-(methoxymethoxy)phenylboronic acid

n-BuLi (5.76 mL, 14.4 mmol) was added to a stirred solution of 1-bromo-4-chloro-2-(methoxymethoxy)benzene (3 g, 12 mmol) in 40 mL of THF under nitrogen at −78° C. After stirring at −78° C. for 40 min, B(OMe)3 (2 g, 19.2 mmol) was added. The mixture was allowed to warm up to room temperature and stirred for 16 h. NH4Cl aqueous solution (10 mL) was added to the mixture. The mixture was extracted with EtOAc (20 mL×3). The combined organic solvents were washed with brine (10 mL), dried over Na2SO4, concentrated and recrystallized from 3% EtOAc/petroleum ether to give 1.6 g of 4-chloro-2-(methoxymethoxy)phenylboronic acid as an off white solid (62% yield). LCMS: m/z 199.1 [M-OH]+; tR=1.65 min.


BB1-2. Synthesis of 2-(4-chloro-5-fluoro-2-(methoxymethoxy)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane



embedded image


Step 1. Synthesis of 2-bromo-5-chloro-4-fluorophenol

Bromine (3.52 g, 22 mmol) was added to a stirred solution of 3-chloro-4-fluorophenol (4.02 g, 20 mmol) in 80 mL of CH2Cl2 at room temperature. The mixture was stirred at room temperature for 18 h and quenched with 10 mL of aqueous Na2S2(L solution. The organic phase was collected, concentrated and purified by silica gel chromatography (0-10% EtOAc/petroleum ether) to afford 2.5 g of 2-bromo-5-chloro-4-fluorophenol as a white solid (44% yield). 1H NMR (500 MHz, Chloroform-d) δ 7.29 (d, J=8.0 Hz, 1H), 7.08 (d, J=6.6 Hz, 1H), 5.45 (s, 1H). LCMS: tR=1.44 min.


Step 2. Synthesis of 1-bromo-4-chloro-5-fluoro-2-(methoxymethoxy)benzene

NaH (215 mg, 5.4 mmol, 60% in mineral oil) was added to a stirred solution of 2-bromo-5-chloro-4-fluorophenol (1 g, 4.48 mmol) in 14 mL of DMF at 0° C. After stirring for 30 min, bromo(methoxy)methane (428 mg, 8 mmol) was added. The mixture was then stirred at room temperature for 2 h, quenched with 10 mL of saturated NH4Cl aqueous solution and extracted with EtOAc (30 mL×3). The combined organic solvents were concentrated and purified by silica gel silica gel column (0-8% EtOAc/petroleum ether) to give 1.01 g of 1-bromo-4-chloro-5-fluoro-2-(methoxymethoxy)benzene as a white solid (70% yield). 1H NMR (500 MHz, Chloroform-d) δ 7.37 (d, J=8.1 Hz, 1H), 7.23 (d, J=6.6 Hz, 1H), 5.20 (s, 2H), 3.52 (s, 3H).


Step 3. Synthesis of 2-(4-chloro-5-fluoro-2-(methoxymethoxy)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

A mixture of 1-bromo-4-chloro-5-fluoro-2-(methoxymethoxy)benzene (1.84 g, 6.82 mmol), 4,4,4′,4′,5,5,5′,5′-octamethyl-2,2′-bi(1,3,2-dioxaborolane) (2.60 g, 10.23 mmol), Pd(dppf)Cl2 (749 mg, 1.023 mmol) and KOAc (1.34 g, 13.64 mmol) in 37 mL of dioxane was degassed and stirred at 100° C. for 5 h. After cooling to room temperature, the crude reaction mixture can be purified to afford 2-(4-chloro-5-fluoro-2-(methoxymethoxy)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane or the crude intermediate product can be used in subsequent reactions.


BB1-3. Synthesis of 2-(4-chloro-3-fluoro-2-(methoxymethoxy)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane



embedded image


2-(4-chloro-3-fluoro-2-(methoxymethoxy)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane can be made according to the method described in WO2019/191092A1.


BB1-4. Synthesis of 4-(benzyloxy)-6-chloropyridin-3-ylboronic acid



embedded image


Step1. Synthesis of 5-bromo-2-chloropyridin-4-ol

P-toluenesulfonic acid (22.5 g, 130.5 mmol) and LiCl (5.53 g, 130.5 mmol) were added to a solution of 5-bromo-2-chloro-4-methoxypyridine (5.8 g, 26.1 mmol) in DMF (50 mL). The reaction was stirred at 180° C. for 1 h. After cooling to room temperature, the mixture was quenched with water (250 mL) and extracted with ethyl acetate (150 mL×2). The combined organic solvents were washed with water (125 mL) and brine (125 mL), dried over anhydrous Na2SO4, concentrated and purified silica gel chromatography (40-60% EtOAc/petroleum ether) to yield 5-bromo-2-chloropyridin-4-ol (4.1 g, 78% yield). LCMS: m/z 207.9 [M+H]+; tR=1.45 min.


Step 2. Synthesis of 4-(benzyloxy)-5-bromo-2-chloropyridine

NaH (144 mg, 3.60 mmol, 60% in mineral oil) was added to a solution of 5-bromo-2-chloropyridin-4-ol (0.5 g, 2.4 mmol) in DMF (5 mL) at 0° C. After stirring at 0° C. for 0.5 h, benzylbromide (0.34 mL, 2.88 mmol) was added at 0° C. The mixture was then stirred at room temperature for 16 h, quenched with water (30 mL) and extracted with ethyl acetate (30 mL×3). The combined organic layers were washed with water (30 mL), brine (30 mL), dried over anhydrous Na2SO4, filtered and the filtrate was concentrated and purified by silica gel chromatography (10-20% EtOAc/petroleum ether) to give 4-(benzyloxy)-5-bromo-2-chloropyridine (0.3 g, 42% yield) as a white solid. LCMS: m/z 298.0 [M+H]+; tR=1.48 min.


Synthesis of 4-(benzyloxy)-6-chloropyridin-3-ylboronic acid

A mixture of 4-(benzyloxy)-5-bromo-2-chloropyridine (2.8 g, 9.38 mmol), 4,4,4′,4′,5,5,5′,5′-octamethyl-2,2′-bi(1,3,2-dioxaborolane) (3.6 g, 14.07 mmol), Pd(dppf)Cl2 (1.37 g, 1.88 mmol) and KOAc (1.84 g, 18.76 mmol) in 1,4-dioxane (100 mL) was degassed and stirred at 100° C. for 2 h. The reaction mixture was purified by Prep-HPLC to obtain 4-(benzyloxy)-6-chloropyridin-3-ylboronic acid (1.7 g, 5.43 mmol, 57.9% yield). LCMS: m/z 264.1 [M+H]+; tR=1.63 min.


BB3-1. Synthesis of 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-(1H-1,2,3-triazol-1-yl)phenol



embedded image


Step 1. Synthesis of 2-nitro-5-(1H-1,2,3-triazol-2-yl)phenol



embedded image


To a solution of 5-fluoro-2-nitrophenol (7 g, 44.6 mmol) in DMF (150 ml) were added Cs2CO3 (28.88 g, 89.3 mmol) and 1H-1,2,3-triazole (4.18 g, 60.5 mmol). The resulting mixture was stirred at 150° C. for 1 h. The mixture was cooled to room temperature and added to HCl aqueous solution (3N, 500 mL) slowly, then filtered to give 6.6 g of 2-nitro-5-(177-1,2,3-triazol-2-yl)phenol and 2-nitro-5-(2H-1,2,3-triazol-1-yl)phenol as crude mixture (72% yield in total). The solid was used for subsequent step without further purification. LCMS: m/z 207.1 [M+H]+; tR=1.36 min and 1.42 min.


Step 2. Synthesis of 2-amino-5-(1H-1,2,3-triazol-2-yl)phenol and 2-amino-5-(2H-1,2,3-triazol-1-yl)phenol



embedded image


To a solution of 2-nitro-5-(1H-1,2,3-triazol-2-yl)phenol and 2-nitro-5-(2H-1,2,3-triazol-1-yl)phenol (6.6 g, 32 mmol) in MeOH (50 mL) was added Pd/C (10%, 1.98 g). The resulting mixture was stirred at 30° C. under H2 for 2 hrs. The mixture was filtered and concentrated, the residue was purified by silica gel column (50-100% EtOAc/petroleum ether) to give 3 g of 2-amino-5-(177-1,2,3-triazol-1-yl)phenol (53% yield) and 1.6 g of 2-amino-5-(2H-1,2,3-triazol-1-yl)phenol (28% yield). LCMS: m/z 177.1 [M+H]+; tR=1.06 min and 1.30 min.


Step 3. Synthesis of 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-(1H-1,2,3-triazol-1-yl)phenol



embedded image


To a solution of 2-amino-5-(1H-1,2,3-triazol-1-yl)phenol (2.8 g, 15.9 mmol) in MeOH (30 mL) was added HCl aqueous solution (15.9 mL, 47.7 mmol, 3N) followed by H2O (10 mL). The resulting mixture was stirred for 2 min, NaNO2 (1.1 g in 5 mL H2O, 15.9 mmol) was added. The mixture was stirred at 0° C. for 30 min, B2Pin2 (12.1 g, 47.7 mmol) in MeOH (15 mL) was added. The mixture was stirred at room temperature for overnight. The mixture was extracted with EtOAc (50 mL×3), the combined organic phases were dried over anhydrous Na2SO4, concentrated and purified by silica gel column (0-90% EtOAc/petroleum ether) to give 2.1 g of 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-(1H-1,2,3-triazol-1-yl)phenol as a white solid (46% yield). LCMS: m/z 288.2 [M+H]+; tR=1.99 min.


BB3-3. Synthesis of 4-(3-(methoxymethoxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1-(tetrahydro-2H-pyran-2-yl)-1H-pyrazole



embedded image


Step1. Synthesis of 1-bromo-4-iodo-2-(methoxymethoxy)benzene

MOMBr (1.25 g, 10 mmol) was added to a stirred solution of 2-bromo-5-iodophenol (1.5 g, 5 mmol) and K2CO3 (1.38 g, 10 mmol) in 20 mL of DMF at 0° C. The mixture was then stirred at room temperature for 16 h, quenched with 20 mL of H2O and extracted with EtOAc (20 mL×3). The combined organic solvents were dried over anhydrous Na2SO4, concentrated and purified by silica gel column (0-5% EtOAc/petroleum ether) to give 1.45 g of 1-bromo-4-iodo-2-(methoxymethoxy)benzene as colorless liquid (79% yield). LCMS: tR=1.50 min.


Step2. Synthesis of 4-(4-bromo-3-(methoxymethoxy)phenyl)-1-(tetrahydro-2H-pyran-2-yl)-1H-pyrazole

A mixture of 1-bromo-4-iodo-2-(methoxymethoxy)benzene (3.3 g, 9.6 mmol), 1-(tetrahydro-2H-pyran-2-yl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole (2.67 g, 9.6 mmol), Pd(dppf)Cl2 (866 mg, 1 mmol) and K2CO3 (2.66 g, 19.3 mmol) in 40 mL of dioxane and 4 mL of H2O was degassed and stirred at 105° C. for 8 h. After cooling to, the mixture was extracted with EtOAc (30 mL×3). The combined organic solvents were concentrated and purified by silica gel column (10-50% EtOAc/petroleum ether) to give 2.5 g of 4-(4-bromo-3-(methoxymethoxy)phenyl)-1-(tetrahydro-2H-pyran-2-yl)-1H-pyrazole as colorless oil (69% yield). LCMS: m/z 367.1 [M+H]+; tR=2.03 min.


Step3. Synthesis of 4-(3-(methoxymethoxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1-(tetrahydro-2H-pyran-2-yl)-1H-pyrazole

A mixture of 4-(4-bromo-3-(methoxymethoxy)phenyl)-1-(tetrahydro-2H-pyran-2-yl)-1H-pyrazole (1.5 g, 4.1 mmol), 4,4,4′,4′,5,5,5′,5′-octamethyl-2,2′-bi(1,3,2-dioxaborolane) (2.1 g, 8.2 mmol), Pd(dppf)Cl2 (369 mg, 0.41 mmol) and KOAc (804 mg, 8.2 mmol) in 20 mL of dioxane was degassed and stirred at 105° C. for 8 h. The mixture was filtered, concentrated and purified by silica gel column to give 0.81 g of 4-(3-(methoxymethoxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1-(tetrahydro-2H-pyran-2-yl)-1H-pyrazole as colorless oil (48% yield). LCMS: m/z 415.3 [M+H]+; tR=2.10 min.


General Method BB3-4. Synthesis of bicyclic boroninates



embedded image


MOM-protected Bicyclic borinates such as BB3-X can be obtained from the corresponding halo methyl ethers BB3-A by first removing the methyl ether to afford BB3-B, reprotecting as the MOM-ether BB3-C, and cross coupling with bispinacolatodiboron under palladium catalysis to afford BB3-X.


Alternatively, MOM-protected Bicyclic borinates such as BB3-X can be obtained by reduction of MOM-protected nitro compound BB3-D to the amino BB3-E followed by diazotation and cross-coupling with bispinacolatodiboron to afford intermediates BB3-X




embedded image


BB3-5. Example of method BB3-4: Synthesis of 5-(methoxymethoxy)-3-methyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzo[d]oxazol-2(3H)-one



embedded image


Step 1. Synthesis of 6-bromo-5-hydroxy-3-methylbenzo[d]oxazol-2(3H)-one

To a solution of 6-bromo-5-methoxy-3-methylbenzo[d]oxazol-2(3H)-one (Chen, Xinhai et al, “Preparation of imidazopyridine compounds as p53-mdm2 inhibitors, PCT Int. Appl., 2018161871, 13 Sep. 2018) (2.3 g, 8.91 mmol) in CH2Cl2 (20 mL) was added BBr3 (20 mL, 1N in CH2Cl2). The mixture was stirred at room temperature for 1 hour, quenched with water (100 mL) and pH value was adjusted to 9-10 with K2CO3. The mixture was extracted with CH2Cl2/MeOH (10:1, v/v, 120 mL×3). The combined organic layers were wash with brine, dried over anhydrous Na2SO4 and concentrated under reduced pressure to give 2 g of 6-bromo-5-hydroxy-3-methylbenzo[d]oxazol-2(3H)-one as yellow oil (71% yield), which was used directly to next step. LCMS: m/z 245.9 [M+H]+; tR=1.51 min.


Step 2. Synthesis of 6-bromo-5-(methoxymethoxy)-3-methylbenzo[d]oxazol-2(3H)-one

NaH (656 mg, 16.4 mmol, 60% in mineral oil) was added to a stirred solution of 6-bromo-5-hydroxy-3-methylbenzo[d]oxazol-2(3H)-one (2.0 g, 8.2 mmol) in 20 mL of DMF at 0° C. After stirring at 0° C. for 30 min, MOMBr (2.0 g, 16.4 mmol) was added. The mixture was then stirred at room temperature for 2 h, quenched with NH4Cl aqueous solution (50 mL), extracted with EtOAc (80 mL×3). The combined organic solvents were with LiCl aqueous solution (50 mL×3), dried over anhydrous Na2SO4, concentrated and purified by silica gel chromatography (0-10% EtOAc/petroleum ether) to give 2.0 g of 6-bromo-5-(methoxymethoxy)-3-methylbenzo[d]oxazol-2(3H)-one as yellow oil (72% yield). LCMS: 289.0 [M+H]+; tR=1.72 min.


Step 3. Synthesis of 5-(methoxymethoxy)-3-methyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzo[d]oxazol-2(3H)-one

A mixture of 6-bromo-5-(methoxymethoxy)-3-methylbenzo[d]oxazol-2(3H)-one (2 g, 6.94 mmol), 4,4,4′,4′,5,5,5′,5′-octamethyl-2,2′-bi(1,3,2-dioxaborolane) (2.65 g, 10.41 mmol), Pd(dppf)Cl2 (51 mg, 0.694 mmol) and KOAc (2.04 g, 20.82 mmol) in 30 mL of dioxane was degassed and stirred at 100° C. for 2 h. After cooling to room temperature, the mixture was concentrated and purified by silica gel column (0-50% EtOAc/petroleum ether) to give 2.0 g of 5-(methoxymethoxy)-3-methyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzo[d]oxazol-2(3H)-one as yellow oil (87% yield). LCMS: m/z 336.2 [M+H]+; tR=1.81 min.


BB3-6. Synthesis of 7-(methoxymethoxy)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinoline



embedded image


Step 1. Synthesis of 6-bromo-7-methoxyquinoline

To H2SO4 (10.5 mL) in 12 mL of H2O was added 4-bromo-3-methoxyaniline (10.5 g, 51.7 mmol) and propane-1,2,3-triol (12.5 g, 135.7 mmol). The mixture was heated to 110° C., 3-nitrobenzenesulfonic acid (10 g, 49.5 mmol) was added portion-wise. Then 15 mL of H2O, 15 mL of propane-1,2,3-triol and 15 mL of H2SO4 were added successively. The mixture was stirred at 140° C. for 3 h. After cooling to room temperature, the mixture was poured onto ice, and the pH was adjusted to 8 by addition NH3H2O. The mixture was extracted with EtOAc (100 mL×3). The combined organic solvents were dried over anhydrous Na2SO4, concentrated and purified by silica gel chromatography (25-100% EtOAc/petroleum ether) to give 9.9 g of 6-bromo-7-methoxyquinoline as a gray solid (83% yield). LCMS: m/z 240.1 [M+H]+; tR=1.54 min.


Step 2. Synthesis of 6-bromoquinolin-7-ol

To a solution of 6-bromo-7-methoxyquinoline (2 g, 8.4 mmol) in CH2Cl2 (4 mL) at 25° C. was added BBr3 (40 mL, 1N in CH2Cl2) and stirred at 25° C. for 16 h, monitored by LCMS. Then water (15 mL) and ammonia methanol solution was added to pH to 8˜9. The precipitate was collected by filtration to give 1.02 g of 6-bromoquinolin-7-ol. LCMS: m/z 226.0 [M+H]+; tR=1.15 min.


Step 3. Synthesis of 6-bromo-7-(methoxymethoxy)quinoline

NaH (363 mg, 9.07 mmol, 60% in mineral oil) was added to a stirred solution of 6-bromoquinolin-7-ol (1.02 g, 4.53 mmol) in 65 mL of THF at 25° C. After stirring at 25° C. for 30 min, MOMBr (623 mg, 4.98 mmol) was added. The mixture was then stirred at room temperature for 1 h, quenched with NH4Cl aqueous solution (20 mL), extracted with EtOAc (60 mL×3). The combined organic solvents were dried over anhydrous Na2SO4, concentrated and purified by silica gel chromatography (0-50% EtOAc/petroleum ether) to give 780 mg of 6-bromo-7-(methoxymethoxy)quinoline as colorless oil (64% yield), LCMS: LCMS: m/z 270.0 [M+H]+; tR=1.67 min.


Step 4. Synthesis of 7-(methoxymethoxy)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinoline

A mixture of 6-bromo-7-(methoxymethoxy)quinoline (100 mg, 0.42 mmol), 4,4,4′,4′,5,5,5′,5′-octamethyl-2,2′-bi(1,3,2-dioxaborolane) (159 mg, 0.63 mmol), Pd(dppf)Cl2 (61 mg, 0.084 mmol) and KOAc (82 mg, 0.84 mmol) in 4 mL of dioxane was degassed and stirred at 100° C. for 2 h. After cooling to room temperature, the mixture was used directly to next step.


BB3-7. Synthesis of 6-(methoxymethoxy)-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinoline



embedded image


Step1. Synthesis of 7-bromo-6-methoxyquinoline

A mixture of 3-bromo-4-methoxyaniline (10 g, 49.49 mmol), 3-nitrobenzenesulfonic acid (11.06 g, 54.44 mmol), propane-1,2,3-triol (45.58 g, 494.92 mmol) and H2SO4 (48.54 g, 494.92 mmol) in water (60 mL) was heated to 140° C. for 16 h. LCMS showed most of the starting material disappeared, and the mixture was poured into ice water (200 mL). NH3.H2O was added dropwise to the mixture to make the pH to about 8. The mixture was extracted with ethyl acetate (150 mL). The organic phase was washed with sodium chloride solution, dried, concentrated, and purified by silica gel chromatography (0-20% EtOAc/petroleum ether) to give 7-bromo-6-methoxyquinoline (6.81 g, 57% yield) as a white solid. LCMS: m/z 237.9 [M+H]+; tR=1.44 min.


Step 2. Synthesis of 7-bromoquinolin-6-ol

To a mixture of 7-bromo-6-methoxyquinoline (6.3 g, 26.46 mmol) in DCM (80 mL) was added 1M BBr3 in DCM (66 mL) dropwise at −78° C. The mixture was warmed to room temperature and stirred for 16 h. LCMS showed most of the starting material disappeared, and the mixture was quenched with ice water dropwise at 0° C. Sodium hydroxide solution was added to the mixture to make the pH to about 7. The solid was filtered to give 8.2 g of 7-bromoquinolin-6-ol as a white solid (contained boric acid). LCMS: m/z 224.0 [M+H]+; tR=1.12 mm.


Step 3. Synthesis of 7-bromo-6-(methoxymethoxy)quinoline

To a solution of 7-bromoquinolin-6-ol (2 g, 8.93 mmol) and DIPEA (2.31 g, 17.85 mmol) in DCM (30 mL) was added MOMBr (1.67 g, 13.39 mmol) at 0° C. The solution was stirred at room temperature for 2 h. LCMS showed most of the starting material disappeared, and the mixture was quenched with sodium bicarbonate solution (10 mL). The mixture was extracted with ethyl acetate (50 mL) and water (40 mL). The organic layer was dried over anhydrous Na2SO4, concentrated and purified by silica gel chromatography (0-25% EtOAc/petroleum ether) to give 7-bromo-6-(methoxymethoxy)quinoline (920 mg, 38% yield) as a light yellow solid. LCMS: m/z 268.0 [M+H]+; tR=1.53 min.


Step 4. Synthesis of 6-(methoxymethoxy)-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinoline

A mixture of 7-bromo-6-(methoxymethoxy)quinoline (1.1 g, 4.1 mmol), 4,4,4′,4′,5,5,5′,5′-octamethyl-2,2′-bi(1,3,2-dioxaborolane) (1.56 g, 6.15 mmol), Pd(dppf)Cl2 (300.2 mg, 0.41 mmol) and KOAc (1.21 g, 7.68 mmol) in dioxane (15 mL) was stirred at 100° C. under N2 for 16 h, concentrated and purified by silica gel chromatography (0-40% EtOAc/petroleum ether) to give 6-(methoxymethoxy)-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinoline (800 mg, 61% yield) as light yellow oil. LCMS: m/z 234.0 [M−81]+; tR=1.40 min.


BB3-8. Synthesis of 7-bromo-6-(methoxymethoxy)-2-methylisoquinolin-1(2H)-one



embedded image


Step 1. Synthesis of 7-bromo-6-hydroxy-2-methylisoquinolin-1(2H)-one

BBr3 (20 mL, 1N in CH2Cl2) was added to a solution of 7-bromo-6-methoxy-2-methylisoquinolin-1 (2H)-one (WO 2015017589 A1) (1 g, 3.7 mmol) in 20 mL of DCM. The reaction mixture was stirred for 24 h at room temperature, quenched with ice water, then extracted with EtOAc. The combined organic solvents were concentrated under reduced pressure to give 900 mg crude 7-bromo-6-hydroxy-2-methylisoquinolin-1(2H)-one (yield 95%) as a white solid. LCMS: m/z 254.0 [M+H]+; tR=1.39 min.


Step 2. Synthesis of 7-bromo-6-(methoxymethoxy)-2-methylisoquinolin-1(2H)-one

NaH (425 mg, 10.6 mmol, 60% in mineral oil) was added to a solution of 7-bromo-6-hydroxy-2-methylisoquinolin-1 (2H)-one (900 mg, 3.542 mmol) in 20 mL of DMF. The reaction mixture was stirred for 0.5 h at room temperature. MOMBr (885 mg, 7.1 mmol) was added. After stirring at room temperature for 2 h, the mixture was quenched with ice water, then extracted by EtOAc three times. The combined organic solvents were concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (0-30% EtOAc/petroleum ether) to give 780 mg 7-bromo-6-(methoxymethoxy)-2-methylisoquinolin-1 (2H)-one (yield:74%) as a white solid. LCMS: m/z 300.0 [M+H]+; tR=1.60 min.


BB3-9. The Following Compounds were Made in a Manner Analogous to that Described Above

7-(methoxymethoxy)-2-methyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)isoquinolin-1(2H)-one, 7-(methoxymethoxy)-1-methyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinolin-4(1H)-one, 6-(methoxymethoxy)-2-methyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)isoquinolin-1(2H)-one, 6-(methoxymethoxy)-1-methyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinolin-4(1H)-one, 5-(methoxymethoxy)-N,N-dimethyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzofuran-2-carboxamide, and 7-(methoxymethoxy)-N-methyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinoline-2-carboxamide.




embedded image


BB3-10. Synthesis of 5-(3-(benzyloxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-3-methyloxazol-2(3H)-one



embedded image


Step 1. Synthesis of 1-(3-(benzyloxy)-4-iodophenyl)ethanone

A solution of 1-(3-hydroxy-4-iodophenyl)ethanone (3.00 g, 11.45 mmol), (bromomethyl)benzene (2.15 g, 12.59 mmol) and K2CO3 (3.16 g, 22.90 mmol) in acetone (100 mL) was stirred at 65° C. for 2 h. The reaction mixture was concentrated in vacuum, water (100 mL) was added. The mixture was extracted with EtOAc (100 mL×2). The combined organic solvents were washed with brine (100 mL), dried over anhydrous MgSO4, concentrated in vacuum to and purified by silica gel column (0-20% EtOAc/petroleum ether) to get 1-(3-(benzyloxy)-4-iodophenyl)ethanone (3.39 g, 83.9% yield) as a white solid. LCMS: m/z=353.0 [M+H]+, tR=2.04 min.


Step 2. Synthesis of 1-(3-(benzyloxy)-4-iodophenyl)-2-bromoethanone

To a solution of CuBr2 (4.30 g, 19.25 mmol) in EtOAc (100 mL) was added a solution of 1-(3-(benzyloxy)-4-iodophenyl) ethanone (3.39 g, 9.63 mmol) in CHCl3 (50 mL). The mixture was stirred at 60° C. overnight, filtered through Celite pad and the filtrate was concentrated in vacuum and purified by silica gel column (0-10% EtOAc/petroleum ether) to get 1-(3-(benzyloxy)-4-iodophenyl)-2-bromoethanone (4.3 g, 78% yield) as a white solid. LCMS: m/z=431.7 [M+H]+, tR=2.06 min.


Step 3. Synthesis of 3-(2-(3-(benzyloxy)-4-iodophenyl)-2-oxoethyl)thiazolidine-2,4-dione

To a solution of 1-(3-(benzyloxy)-4-iodophenyl)-2-bromoethanone (4.75 g, 11.02 mmol) and K2CO3 (1.52 g, 11.02 mmol) in DMF (20 mL) was added thiazolidine-2,4-dione (1.29 g, 11.02 mmol). The mixture was stirred at 25° C. for 2 h. Water (100 mL) was added. The reaction mixture was extracted with EtOAc (100 mL×2). The organic layers were washed with saturated ammonium chloride, dried over anhydrous MgSO4, concentrated in vacuum to give crude product, which was purified by silica gel column (0-33% EtOAc/petroleum ether) to get 3-(2-(3-(benzyloxy)-4-iodophenyl)-2-oxoethyl)thiazolidine-2,4-dione (3.8 g, 83% yield) as a yellow solid. LCMS: m/z=467.8 [M+H]+; tR=1.96 min.


Step 4. Synthesis of 5-(3-(benzyloxy)-4-iodophenyl)oxazol-2(3H)-one

To a solution of 3-(2-(3-(benzyloxy)-4-iodophenyl)-2-oxoethyl)thiazolidine-2,4-dione (3.8 g, 8.14 mmol) in THF (100 mL) was added Li OH (2M, 10 ml) at 0° C. The reaction mixture was stirred at 20° C. for 2 h. Water (100 mL) was added. The reaction mixture was neutralized with AcOH and extracted with EtOAc (100 mL×2). The combined organic solvents were washed with brine (100 mL), dried over anhydrous MgSO4, concentrated in vacuum and purified by silica gel column (0-38% EtOAc/petroleum ether) to get 5-(3-(benzyloxy)-4-iodophenyl)oxazol-2(3H)-one (1.3 g, 40.6% yield) as a yellow solid. LCMS: m/z=393.9 [M+H]+, tR=1.96 min.


Step 5. Synthesis of 5-(3-(benzyloxy)-4-iodophenyl)-3-methyloxazol-2(3H)-one

NaH (60%, 397 mg, 9.93 mmol) was added to a solution of 5-(3-(benzyloxy)-4-iodophenyl)oxazol-2(3H)-one (1.3 g, 3.31 mmol) in DMF (10 mL) at 0° C. under N2 atmosphere. After stirring at 0° C. for 30 min, then CH3I (704 mg, 4.96 mmol) was added, and the reaction mixture was stirred at 20° C. for 1 hr. Water (100 mL) was added, the mixture was extracted with EtOAc (100 mL×2). The organic layers were washed with saturated brine (100 mL), dried over anhydrous Na2SO4 and concentrated. The residue was purified by silica gel column (0-50% EtOAc/petroleum ether) to get 5-(3-(benzyloxy)-4-iodophenyl)-3-methyloxazol-2(3H)-one (1.0 g, 74% yield) as a yellow solid. LCMS: m/z=407.9 [M+H]+, tR=1.94 min.


Step 6. Synthesis of 5-(3-(benzyloxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-3-methyloxazol-2(3H)-one

A solution of 5-(3-(benzyloxy)-4-iodophenyl)-3-methyloxazol-2 (3H)-one (1.2 g, 2.95 mmol), 4,4,4′,4′,5,5,5′,5′-octamethyl-2,2′-bi(1,3,2-dioxaborolane) (1.5 g, 5.89 mmol), PdCl2(dppf) (216 mg, 0.30 mmol) and KOAc (578 mg, 5.89 mmol) in DMSO (15 mL) was stirred at 100° C. for 1 h under N2. The reaction was quenched with water and extracted with EtOAc (100 mL×2). The organic layers were washed with brine (100 mL), dried over anhydrous MgSO4, concentrated and purified by silica gel column (0-50% EtOAc/petroleum ether) to get 5-(3-(benzyloxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-3-methyl oxazol-2(3H)-one (900 mg, 75% yield) as a yellow solid. LCMS: m/z=407.9 [M+H]+, tR=1.99 min


BB3-11. Synthesis of 2-(3-(methoxymethoxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1,3,4-oxadiazole



embedded image


Step 1. Synthesis of 4-bromo-3-hydroxybenzohydrazide

To a solution of ethyl 4-bromo-3-hydroxybenzoate (1 g, 4.080 mmol) in 10 mL of ethanol was added NH2NH2 (817 mg, 20.4 mmol). The reaction mixture was stirred at 100° C. overnight. LCMS indicated the reaction was complete. The mixture was concentrated and purified by silica gel column (0-10% MeOH/dichloromethane) to give 447 mg of 4-bromo-3-hydroxybenzohydrazide (40% yield). LCMS: m/z 233.0 [M+H]+; tR=1.24 min.


Step 2. Synthesis of 2-bromo-5-(1,3,4-oxadiazol-2-yl)phenol

The mixture of 4-bromo-3-hydroxybenzohydrazide (2.0 g, 8.66 mmol) and triethoxymethane (20 mL) was stirred at 120° C. for 16 h, cooled to room temperature, 10 mL of hexane was added into the mixture, precipitate filtered and washed the cake with hexane to give 1.8 g 2-bromo-5-(1,3,4-oxadiazol-2-yl)phenol (86% yield). LCMS: m/z 242.1 [M+H]+; tR=1.63 min.


Step 3. Synthesis of 2-(4-bromo-3-(methoxymethoxy)phenyl)-1,3,4-oxadiazole

To a solution of 2-bromo-5-(1,3,4-oxadiazol-2-yl)phenol (1.8 g, 7.47 mmol) in 20 mL of THF was added NaH (896 mg, 22.41, 60% in mineral oil). The mixture was stirred at room temperature for 30 min. MOMBr (1.8 g, 14.94 mmol) was added to this mixture. The mixture was stirred for additional 1 h, quenched with water and extracted with ethyl acetate (50 mL×3). The combined organic layers were dried over anhydrous Na2SO4, concentrated and purified by silica gel column (0-25% EtOAc/petroleum ether) to give 1.8 g of 2-(4-bromo-3-(methoxymethoxy)phenyl)-1,3,4-oxadiazole (85% yield). LCMS: m/z 285.0 [M+H]+; tR=1.86 min.


Step 4. Synthesis of 2-(3-(methoxymethoxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1,3,4-oxadiazole

A mixture of 2-(4-bromo-3-(methoxymethoxy)phenyl)-1,3,4-oxadiazole (100 mg, 0.35 mmol), 4,4,4′,4′,5,5,5′,5′-octamethyl-2,2′-bi(1,3,2-dioxaborolane) (134 mg, 0.53 mmol), Pd(dppf)Cl2 (51 mg, 0.07 mmol) and KOAc (69 mg, 0.7 mmol) in dioxane (4 mL) was degassed and heated at 100° C. for 2h under nitrogen atmosphere. LCMS checked the reaction was complete, which was used directly for next step. LCMS: m/z 333.2 [M+H]+; tR=1.99 min.


BB3-12. The following compounds were made in an analogous manner to that described above

4-(3-(benzyloxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1-methylpyrimidin-2(1H)-one, 2-(3-(benzyloxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1,3,4-thiadiazole, 4-(3-(benzyloxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-2-methyloxazole, 2-(2-(benzyloxy)-4-(5-methylfuran-3-yl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, 2-(3-(methoxymethoxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1,3,4-thiadiazole, and 2-(2-fluoro-5-(methoxymethoxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1,3,4-oxadiazole.




embedded image


BB4-1. Synthesis of 6-(6-chloropyridazin-3-yl)-7-(methoxymethoxy)quinoxaline



embedded image


Step1. Synthesis of 6-(6-chloropyridazin-3-yl)-7-methoxyquinoxaline

A mixture of 6-bromo-7-methoxyquinoxaline (200 mg, 0.837 mmol), 4,4,4′,4′,5,5,5′,5′-octamethyl-2,2′-bi(1,3,2-dioxaborolane) (320 mg, 1.260 mmol), Pd(dppf)Cl2 (120 mg, 0.170 mmol), AcOK (160 mg 1.680 mmol) in 5 mL of dioxane was degassed and heated at 105° C. for 2 h under nitrogen atmoshphere. After cooling to room temperature, 3,6-dichloropyridazine (150 mg, 1.004 mmol), Pd(dppf)Cl2 (120 mg, 0.170 mmol), K2CO3 (230 mg, 1.680 mmol), dioxane (5 mL) and H2O (1 mL) were added. The reaction was stirred for 2 h at 105° C., concentrated under reduced pressure and purified by silica gel column chromatography (0-80% EtOAc/petroleum ether) to give 105 mg of 6-(6-chloropyridazin-3-yl)-7-methoxyquinoxaline (46% yield) as a white solid. LCMS: m/z 273.1 [M+H]+; tR=1.50 min.


Step2. Synthesis of 7-(6-chloropyridazin-3-yl)quinoxalin-6-ol

BBr3 (20 mL, 1N in CH2Cl2) was added to a stirred solution of 6-(6-chloropyridazin-3-yl)-7-methoxyquinoxaline (476 mg, 1.746 mmol) in 20 mL of CH2Cl2. The reaction mixture was stirred for 2 h at room temperature, quenched with ice water, and extracted with CH2Cl2. The organic layers were dried over MgSO4, concentrated under reduced pressure and purified by silica gel column chromatography (0-50% EtOAc/petroleum ether) to give 329 mg 7-(6-chloropyridazin-3-yl)quinoxalin-6-ol (63% yield) as a white solid. LCMS: m/z 259.1 [M+H]+; tR=1.41 min.


Step 3. Synthesis of 6-(6-chloropyridazin-3-yl)-7-(methoxymethoxy)quinoxaline

NaH (153 mg, 3.8 mmol, 60% in mineral oil) was added to a solution of 7-(6-chloropyridazin-3-yl)quinoxalin-6-ol (329 mg, 1.272 mmol) in 33 mL of THE. The reaction mixture was stirred for 0.5 h at room temperature. Bromo(methoxy)methane (318 mg, 2.544 mmol) was added. The reaction mixture was stirred at room temperature for 2 h, concentrated under reduced pressure. The residue was purified by silica gel column chromatography (0-50% EtOAc/petroleum ether) to give 170 mg 6-(6-chloropyridazin-3-yl)-7-(methoxymethoxy)quinoxaline (44% yield) as a white solid. LCMS: m/z 303.1[M+H]+; tR=1.53 min.


General Method F



embedded image


Compounds can be made via General method F wherein an Amino Alcohol AA is treated with base and added to 3,6 dichloropyridazine to afford F1. Pyridazine F1 is coupled to a boronic acid or Ester BB1 to afford compound F2. Compound F2 is further coupled with a group P cycle either via a boronic acid or ester such as BB2, or by making a bond to the nitrogen of a heterocycle P, to afford intermediate F3. Intermediate F3 is then separated by chiral chromatography into the enantiomers F3-Ent1 and F3-Ent2. Unless where noted, the absolute configuration of F3-Ent1 and F3-Ent2 was not determined. Removal of groups G1 and G3, if necessary, gives compounds Compound-Ent1 and Compound-Ent2.


Specific Example of General Method F
Example 1: Synthesis of 2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol and 2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol (Compounds 1-Ent1 and 1-Ent2)



embedded image


embedded image


Step 1. Synthesis of rac-tert-butyl (1S,2S,3R,5R)-3-((6-chloropyridazin-3-yl)oxy)-2-fluoro-9-azabicyclo[3.3.1]nonane-9-carboxylate (Racemic 1-F1)

To a stirred solution of rac-tert-butyl (1S,2S,3R,5R)-2-fluoro-3-hydroxy-9-azabicyclo[3.3.1]nonane-9-carboxylate (Racemic PFDOD, 7.0 g, 27.1 mmol) and NaH (3.2 g, 81.1 mmol, 60% in mineral oil) in 100 mL of THF at 0° C. was added 3,6-dichloropyridazine (4.8 g, 32.4 mmol) was under nitrogen protection. After the addition, the mixture was then stirred at 50° C. for 3 h. The mixture was cooled to room temperature, quenched with H2O (200 mL) and extracted with EtOAc (100 mL×3). The combined organic solvents were washed with brine (100 mL), dried over anhydrous Na2SO4, concentrated and purified by silica gel column (0-25% EtOAc/petroleum ether) to give 8.5 g of rac-tert-butyl (1S,2S,3R,5R)-3-((6-chloropyridazin-3-yl)oxy)-2-fluoro-9-azabicyclo[3.3.1]nonane-9-carboxylate as a white solid (85% yield). LCMS: m/z 316.1 [M−55]+; tR=2.12 min.


Step 2. Synthesis of rac-tert-butyl (1S,2S,3R,5R)-3-((6-(4-chloro-2-(methoxymethoxy)phenyl)pyridazin-3-yl)oxy)-2-fluoro-9-azabicyclo[3.3.1]nonane-9-carboxylate (Racemic 1-F2)

A mixture of rac-tert-butyl (1S,2S,3R,5R)-3-((6-chloropyridazin-3-yl)oxy)-2-fluoro-9-azabicyclo[3.3.1]nonane-9-carboxylate (10 g, 26.9 mmol), (4-chloro-2-(methoxymethoxy)phenyl)boronic acid (6.1 g, 29.6 mmol), Pd(dppf)Cl2 (3.9 g, 5.4 mmol), K2CO3 (7.45 g, 53.9 mmol) in dioxane (150 mL) and water (20 mL) was degassed and heated at 100° C. for 2h under nitrogen atmoshphere. After cooling to room temperature, the reaction was concentrated and purified by silica gel column (0-30% EtOAc/petroleum ether) to give 10 g of rac-tert-butyl (1S,2S,3R,5R)-3-((6-(4-chloro-2-(methoxymethoxy)phenyl)pyridazin-3-yl)oxy)-2-fluoro-9-azabicyclo[3.3.1]nonane-9-carboxylate (73% yield) as a white solid. LCMS: m/z 508.1 [M+H]+; tR=2.32 min.


Step 3. Synthesis of rac-tert-butyl (1S,2S,3R,5R)-2-fluoro-3-((6-(2-(methoxymethoxy)-4-(1-methyl-1H-pyrazol-4-yl)phenyl)pyridazin-3-yl)oxy)-9-azabicyclo[3.3.1]nonane-9-carboxylate

A mixture of rac-tert-butyl (1S,2S,3R,5R)-3-((6-(4-chloro-2-(methoxymethoxy)phenyl)pyridazin-3-yl)oxy)-2-fluoro-9-azabicyclo[3.3.1]nonane-9-carboxylate (10 g, 19.7 mmol), (1-methyl-1H-pyrazol-4-yl)boronic acid (3.5 g, 27.6 mmol), X-phos-Pd 2nd G (3.1 g, 3.9 mmol), K3PO4 (8.4 g, 39.4 mmol) in dioxane (150 mL) and water (20 mL) was degassed and heated at 100° C. for 2h under nitrogen atmoshphere. After cooling to room temperature, concentrated and purified by silica gel column (0-60% EtOAc/petroleum ether) to give 10 g of rac-tert-butyl ((1S,2S,3R,5R)-2-fluoro-3-((6-(2-(methoxymethoxy)-4-(1-methyl-1H-pyrazol-4-yl)phenyl)pyridazin-3-yl)oxy)-9-azabicyclo[3.3.1]nonane-9-carboxylate (91% yield) as a white solid. LCMS: m/z 554.3 [M+H]+; tR=2.12 min.


Step 4. Chiral separation of rac-tert-butyl (1S,2S,3R,5R)-2-fluoro-3-((6-(2-(methoxymethoxy)-4-(1-methyl-1H-pyrazol-4-yl)phenyl)pyridazin-3-yl)oxy)-9-azabicyclo[3.3.1]nonane-9-carboxylate to Yield tert-butyl (1S,2S,3R,5R)-2-fluoro-3-((6-(2-(methoxymethoxy)-4-(1-methyl-1H-pyrazol-4-yl)phenyl)pyridazin-3-yl)oxy)-9-azabicyclo[3.3.1]nonane-9-carboxylate and tert-butyl (1S,2S,3R,5R)-2-fluoro-3-((6-(2-(methoxymethoxy)-4-(1-methyl-1H-pyrazol-4-yl)phenyl)pyridazin-3-yl)oxy)-9-azabicyclo[3.3.1]nonane-9-carboxylate

20 g of racemic material was separated using Supercritical Fluid Chromatography on a chiral column (Daicel AD-H column) to give 9.0 g of the first eluting enantiomer 1-F3-Ent1 (retention time 1.49 min) as a white solid and 8.8 g of the second eluting enantiomer 1-F3-Ent2 (retention time 2.73 min) as a white solid. Additional details are provided in Table B.


Step 5: Synthesis of 2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol and 2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol (Compounds 1-Ent1 and 1-Ent2)

Compound 1-F3-Ent1 was (9 g, 16.2 mmol) in CH2Cl2 (100 mL) and MeOH (300 mL) was treated with 4N HCl in dioxane (360 mL). The mixture was stirred at 50° C. for 2h. The mixture was concentrated to dryness, then dissolved in water and saturated NaHCO3 aqueous solution was added till pH to 8-9. The mixture was extracted with CH2Cl2/MeOH 10:1 (v/v, 100 mL×3). The combined organic solvents were concentrated and dried on lyophilizer to give 6.317 g of 1-Ent1 as a yellow solid (95% yield). 1H NMR (500 MHz, DMSO-d6) δ 13.05 (s, 1H), 8.47 (d, J=9.6 Hz, 1H), 8.23 (s, 1H), 7.98-7.84 (m, 2H), 7.48 (d, J=10.2 Hz, 1H), 7.28-7.05 (m, 2H), 6.05-5.81 (m, 1H), 5.09-4.78 (m, 1H), 3.87 (s, 3H), 3.29-3.18 (m, 2H), 2.12-1.98 (m, 2H), 1.91-1.76 (m, 2H), 1.75-1.56 (m, 4H). LCMS: m/z 410.2 [M+H]+; tR=1.40 min. Specific rotation: [α]20D+60.4 (c=0.1971, CH3OH).


Compound 1-F3-Ent2 (8.8 g, 15.9 mmol) in CH2Cl2 (100 mL) and MeOH (300 mL) was treated with 4N HCl in dioxane (350 mL). The mixture was stirred at 50° C. for 2h. The mixture was concentrated to dryness, then dissolved in water and saturated NaHCO3 aqueous solution was added till pH to 8-9. The mixture was extracted with CH2Cl2/MeOH 10:1 (v/v, 100 mL×3). The combined organic solvents were concentrated and dried on lyophilizer to give compound 1-Ent2 as a yellow solid (92% yield). 1H NMR (500 MHz, DMSO-d6) δ 13.05 (s, 1H), 8.47 (d, J=9.6 Hz, 1H), 8.23 (s, 1H), 7.98-7.84 (m, 2H), 7.48 (d, J=10.2 Hz, 1H), 7.28-7.05 (m, 2H), 6.05-5.81 (m, 1H), 5.09-4.78 (m, 1H), 3.87 (s, 3H), 3.29-3.18 (m, 2H), 2.12-1.98 (m, 2H), 1.91-1.76 (m, 2H), 1.75-1.56 (m, 4H). LCMS: m/z 410.2 [M+H]+; tR=1.40 min. Specific rotation: [α]20D−58.4 (c=0.2036, CH3OH).


Example 2: Synthesis of 2-(6-(((1S,2S,3R,5R)-2-fluoro-1,5-dimethyl-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-5-(1H-pyrazol-4-yl (phenol and 2-(6-(((1S,2S,3R,5R)-2-fluoro-1,5-dimethyl-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-5-(1H-pyrazol-4-yl)phenol (2-Ent1, 2-Ent2)



embedded image


embedded image


Step 1. Synthesis of rac-tert-butyl (1S,2S,3R,5R)-3-((6-chloropyridazin-3-yl)oxy)-2-fluoro-1,5-dimethyl-8-azabicyclo[3.2.1]octane-8-carboxylate

3,6-dichloropyridazine (720 mg, 4.84 mmol) was added to a stirred solution of rac-tert-butyl (1S,2S,3R,5R)-2-fluoro-3-hydroxy-9-azabicyclo[3.3.1]nonane-9-carboxylate (1.1 g, 4.03 mmol) and NaH (484 mg, 12.1 mmol, 60% in mineral oil) in 15 mL of THF at 0° C. under nitrogen protection. After the addition, the mixture was then stirred at 50° C. for 3 h. The mixture was cooled to room temperature, quenched with H2O (100 mL) and extracted with EtOAc (100 mL×3). The combined organic solvents were washed with brine (100 mL), dried over anhydrous Na2SO4, concentrated and purified by silica gel column (0-25% EtOAc/petroleum ether) to give 1.3 g of rac-tert-butyl (1S,2S,3R,5R)-3-((6-chloropyridazin-3-yl)oxy)-2-fluoro-1,5-dimethyl-8-azabicyclo[3.2.1]octane-8-carboxylate (Racemic 2-F1) as a white solid (84% yield). LCMS: m/z 286.0 [M−100]+; tR=2.04 min.


Step 2. Synthesis of rac-tert-butyl (1S,2S,3R,5R)-3-((6-(4-chloro-2-(methoxymethoxy)phenyl)pyridazin-3-yl)oxy)-2-fluoro-1,5-dim ethyl-8-azabicyclo[3.2.1]octane-8-carboxylate

A mixture of rac-tert-butyl (1S,2S,3R,5R)-3-((6-chloropyridazin-3-yl)oxy)-2-fluoro-1,5-dimethyl-8-azabicyclo[3.2.1]octane-8-carboxylate (1.0 g, 2.59 mmol), 4-chloro-2-(methoxymethoxy)phenylboronic acid (616 mg, 2.85 mmol), Pd(dppf)Cl2 (379 mg, 0.52 mmol) and K2CO3(716 mg, 5.18 mmol) in 10 mL of dioxane and 2 mL of water, was degassed and stirred at 110° C. for 2 h. After cooling to room temperature, the mixture was concentrated and purified by silica gel column (10-60% EtOAc/petroleum ether) to give 830 mg of rac-tert-butyl (1S,2S,3R,5R)-3-((6-(4-chloro-2-(methoxymethoxy (phenyl)pyridazin-3-yl)oxy)-2-fluoro-1,5-dimethyl-8-azabicyclo[3.2.1]octane-8-carboxylate (Racemic 2-F2) as a yellow solid (61% yield). LCMS: m/z 522.0 [M+H]+; tR=2.18 min.


Step 3. Synthesis of rac-tert-butyl (1S,2S,3R,5R)-2-fluoro-3-((6-(2-(methoxymethoxy)-4-(1H-pyrazol-4-yl)phenyl)pyridazin-3-yl)oxy)-1,5-dimethyl-8-azabicyclo[3.2.1]octane-8-carboxylate

A mixture of tert-butyl (1S,2S,3R,5R)-3-((6-(4-chloro-2-(methoxymethoxy)phenyl)pyridazin-3-yl)oxy)-2-fluoro-1,5-dimethyl-8-azabicyclo[3.2.1]octane-8-carboxylate (500 mg, 0.96 mmol), (4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole (372 mg, 1.92 mmol), X-phos-Pd 2nd G (151 mg, 0.19 mmol), K3PO4 (407 mg 1.92 mmol) in dioxane (8 mL) and water (2 mL) was degassed and heated at 100° C. for 2h under nitrogen atmoshphere. After cooling to room temperature, concentrated and purified by silica gel column (0-60% EtOAc/petroleum ether). The reaction was repeated and the batches combined to give to give 3.6 g of rac-tert-butyl (1S,2S,3R,5R)-2-fluoro-3-((6-(2-(methoxymethoxy)-4-(1H-pyrazol-4-yl)phenyl)pyridazin-3-yl)oxy)-1,5-dimethyl-8-azabicyclo[3.2.1]octane-8-carboxylate (77% yield) as a white solid. LCMS: m/z 554.0 [M+H]+; tR=1.96 min.


Step 4. Chiral separation of rac-tert-butyl (1S,2S,3R,5R)-2-fluoro-3-((6-(2-(methoxymethoxy)-4-(1H-pyrazol-4-yl)phenyl)pyridazin-3-yl)oxy)-1,5-dimethyl-8-azabicyclo[3.2.1]octane-8-carboxylate

3.6 g of racemic material was separated under by chiral SFC to give 1.5 g of the first eluting enantiomer 2-F3-Ent1 (retention time 1.41 min) as a white solid and 1.5 g of the second eluting enantiomer 2-F3-Ent2 (retention time 1.81 min) as a white solid.


Chiral Separation Conditions:
Instrument: SFC-80 (Thar, Waters)
Column: IG 20*250 mm, 10 um (Daicel)

Column temperature: 35° C.


Mobile phase: CO2/MEOH (0.2% Methanol Ammonia)=50/50


Flow rate: 80 g/min


Backpressure: 100 bar

Detection wavelength: 214 nm


Cycle time: 3 min


Sample solution:200 mg dissolved in 15 ml Methanol


Injection volume: 1 ml


Step 5. Synthesis of 2-(6-(((1S,2S,3R,5R)-2-fluoro-1,5-dimethyl-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-5-(1H-pyrazol-4-yl(phenol and 2-(6-(((1S,2S,3R,5R)-2-fluoro-1,5-dimethyl-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-5-(1H-pyrazol-4-yl)phenol (Compounds 2-Ent1 and 2-Ent2)

To a mixture of compound 2-F3-Ent1 (1.5 g, 2.71 mmol) in MeOH (30 mL) was added 4N HCl in dioxane (50 mL). The reaction was stirred at 50° C. for 2 h and concentrated to dryness. The residue was dissolved in water and saturated NaHCO3 aqueous solution was added to adjust the pH to 8-9. The mixture was extracted with CH2Cl2/MeOH 10:1 (v/v, 100 mL×3). The combined organic solvents were concentrated and dried on lyophilizer to give 1.03 g of 2-Ent1. 1H NMR (500 MHz, DMSO-d6) δ 13.17-12.91 (m, 2H), 8.47 (d, J=9.5 Hz, 1H), 8.29 (s, 1H), 8.02 (s, 1H), 7.94 (d, J=8.2 Hz, 1H), 7.47 (d, J=9.5 Hz, 1H), 7.32-7.16 (m, 2H), 5.52 (d, J=27.9 Hz, 1H), 4.86-4.58 (m, 1H), 2.10-1.99 (m, 1H), 1.80-1.49 (m, 5H), 1.20 (s, 6H). LCMS: m/z 410.0 [M+H]+; tR=1.60 min. Specific Rotation: [α]20D+54.9 (C=0.04, CH3OH).


To a mixture of 2-F3-Ent2 (1.5 g, 2.71 mmol) in MeOH (30 mL) was added 4N HCl in dioxane (50 mL). The mixture was stirred at 50° C. for 2 h and concentrated to dryness. The residue was dissolved in water and saturated NaHCO3 aqueous solution was added to adjust the pH to 8-9. The mixture was extracted with CH2Cl2/MeOH 10:1 (v/v, 100 mL×3). The combined organic solvents were concentrated and dried on lyophilizer to give 1.03 g of 2-Ent2. 1H NMR (500 MHz, DMSO-d6) δ 13.17-12.91 (m, 2H), 8.47 (d, J=9.5 Hz, 1H), 8.29 (s, 1H), 8.02 (s, 1H), 7.94 (d, J=8.2 Hz, 1H), 7.47 (d, J=9.5 Hz, 1H), 7.32-7.16 (m, 2H), 5.52 (d, J=27.9 Hz, 1H), 4.86-4.58 (m, 1H), 2.10-1.99 (m, 1H), 1.80-1.49 (m, 5H), 1.20 (s, 6H). LCMS: m/z 410.0 [M+H]+; tR=1.60 min. Specific Rotation: [α]20D−49.5 (C=0.0404, CH3OH).


Example 3: Synthesis of 2-(6-((1S,2S,3R,5R)-2-fluoro-8-aza-bicyclo[3.2.1]octan-3-yloxy) pyridazin-3-yl)-5-(1H-pyrazol-1-yl)phenol and 2-(6-((1S,2S,3R,5R)-2-fluoro-8-aza-bicyclo[3.2.1]octan-3-yloxy) pyridazin-3-yl)-5-(1H-pyrazol-1-yl)phenol (compounds 35-Ent1 and 35-Ent2)



embedded image


embedded image


Step 1. Synthesis of rac-(1S,2S,3R,5R)-tert-butyl 3-(6-chloropyridazin-3-yloxy)-2-fluoro-8-azabicyclo[3.2.1]octane-8-carboxylate (Racemic 35-F1)

NaH (588 mg, 14.7 mol, 60% in mineral oil) was added to a mixture of rac-(1S,2S,3R,5R)-tert-butyl 2-fluoro-3-oxo-8-azabicyclo[3.2.1]octane-8-carboxylate (1.2 g, 4.9 mol) (Racemic TFDOD) in 30 mL of dry THF, after stirred for 15 min, 3,6-dichloropyridazine (1.09 g, 7.35 mmol) was added to the mixture, the reaction was heated at 50° C. for 6h. Water (10 mL) was added to quenched the reaction, the mixture was concentrated, extracted with ethyl acetate (3×30 mL), the combined organic phases were dried and concentrated, then purified by silica gel chromatography (60% EtOAc/petroleum ether) to give 1.5 g of rac-(1S,2S,3R,5R)-tert-butyl 3-(6-chloropyridazin-3-yloxy)-2-fluoro-8-azabicyclo[3.2.1]octane-8-carboxylate 35-F1 (86% yield). LCMS: m/z 358.2 [M+H−56]+; tR=1.95 min.


Step 2. Synthesis of (1S,2S,3R,5R)-tert-butyl 3-(6-(4-chloro-2-(methoxymethoxy)phenyl)pyridazin-3-yloxy)-2-fluoro-8-azabicyclo[3.2.1]octane-8-carboxylate (Racemic 35-F2)

A mixture of rac-(1S,2S,3R,5R)-tert-butyl 3-(6-chloropyridazin-3-yloxy)-2-fluoro-8-azabicyclo[3.2.1]octane-8-carboxylate (2 g, 5.6 mmol), 4-chloro-2-(methoxymethoxy)phenylboronic acid (1.46 g, 6.72 mmol), Pd(dppf)Cl2(0.41 g, 0.56 mmol) and K2CO3(1.55 g, 11.2 mmol) in 30 mL of dioxane and 6 mL of water, was degassed and stirred at 110° C. for 2 h. After cooling to room temperature, the mixture was concentrated and purified by silica gel column (10-60% EtOAc/petroleum ether) to give 2 g of rac-(1S,2S,3R,5R)-tert-butyl 3-(6-(4-chloro-2-(methoxymethoxy)phenyl)pyridazin-3-yloxy)-2-fluoro-8-azabicyclo[3.2.1]octane-8-carboxylate as a yellow solid (72% yield)(35-F2). LCMS: m/z 494.2 [M+H]+; tR=2.13 min.


Step 3. Synthesis of (1S,2S,3R,5R)-tert-butyl 2-fluoro-3-(6-(2-(methoxymethoxy)-4-(1H-pyrazol-1-yl)phenyl)pyridazin-3-yloxy)-8-azabicyclo[3.2.1]octane-8-carboxylate (racemic 35-F3)

A mixture of rac-(1S,2S,3R,5R)-tert-butyl 3-(6-(4-chloro-2-(methoxymethoxy)phenyl)pyridazin-3-yloxy)-2-fluoro-8-azabicyclo[3.2.1]octane-8-carboxylate (35-F2, 300 mg, 0.61 mmol), 177-pyrazole (83 mg, 1.22 mmol), Pd2(dba)3 (112 mg, 0.122 mmol), t-Bu XPhos (104 mg, 0.224 mmol) and Cs2CO3(398 mg, 1.22 mmol) in 8 mL of 2-methylbutan-2-ol, was degassed and stirred at 130° C. for 2 h under microwave irradiation. After cooling to room temperature, the mixture was concentrated and purified by silica gel column (100% EtOAc/petroleum ether) to give 300 mg of rac-(1S,2S,3R,5R)-tert-butyl 2-fluoro-3-(6-(2-(methoxymethoxy)-4-(1H-pyrazol-1-yl)phenyl)pyridazin-3-yloxy)-8-azabicyclo[3.2.1]octane-8-carboxylate as a yellow solid (racemic 35-F3)(76% yield). LCMS: m/z 525.2 [M+H]+; tR=2.03 min.


Step 4. Chiral resolution of (1S,2S,3R,5R)-tert-butyl 2-fluoro-3-(6-(2-(methoxymethoxy)-4-(1H-pyrazol-1-yl)phenyl)pyridazin-3-yloxy)-8-azabicyclo[3.2.1]octane-8-carboxylate and (1R,2R,3S,5S)-tert-butyl 2-fluoro-3-(6-(2-(methoxymethoxy)-4-(1H-pyrazol-1-yl)phenyl)pyridazin-3-yloxy)-8-azabicyclo[3.2.1]octane-8-carboxylate (35-F3-Ent1 and 35-F3-Ent2)

300 mg of racemic 36-F3 was separated by below conditions to give 100 mg of each enantiomer.


Instrument: SFC-80 (Thar, Waters)
Column: AD 20*250 mm, 10 um (Daicel)

Column temperature: 35° C.


Mobile phase: CO2/EtOH (l % Methanol Ammonia)=50/50


Flow rate: 80 g/min


Backpressure: 100 bar

Detection wavelength: 214 nm


Cycle time: 4.5 min


Sample solution: 300 mg dissolved in 18 ml Methanol


Injection volume: 1.0 ml


The first eluting enantiomer was called 35-F3-Ent1 (retention time 2.86 min), the second eluting enantiomer was called 35-F3-Ent2 (retention time 4.79 min). The absolute configuration was not determined.


Step 5. Synthesis of 2-(6-((1S,2S,3R,5R)-2-fluoro-8-aza-bicyclo[3.2.1]octan-3-yloxy) pyridazin-3-yl)-5-(1H-pyrazol-1-yl)phenol and 2-(6-((1R,2R,3S,5S)-2-fluoro-8-aza-bicyclo[3.2.1]octan-3-yloxy) pyridazin-3-yl)-5-(1H-pyrazol-1-yl)phenol (compounds 35-Ent1 and 35-Ent2)

2 mL of HCl in dioxane (4 N) was added to a stirred solution of 35-F3-Ent1 (100 mg, 0.186 mmol) in 1 mL of CH2Cl2. The mixture was stirred at room temperature for 2 h, concentrated under reduced pressure. The residue was dissolved in water, pH value was adjusted to ˜9 by using K2CO3 aqueous solution. The solid was collected by filtration and dried under reduced pressure to give 63 mg of 35-Ent1 as a yellow solid (73% yield). 1H NMR (500 MHz, DMSO-d6) δ 13.11 (s, 1H), 8.59 (s, 1H), 8.47 (d, J=9.5 Hz, 1H), 8.07 (d, J=8.7 Hz, 1H), 7.78 (s, 1H), 7.56-7.41 (m, 3H), 6.57 (s, 1H), 5.55-5.37 (m, 1H), 4.90-4.82 (m, 1H), 3.58 (s, 1H), 3.49 (s, 1H), 2.40 (s, 1H), 2.09-1.99 (m, 1H), 1.87-1.73 (m, 3H), 1.69-1.58 (m, 2H) LCMS: m/z 382.2 [M+H]+; tR=1.79 min


Separately, 2 mL of HCl in dioxane (4 N) was added to a stirred solution 35-F3-Ent2 (100 mg, 0.186 mmol) in 1 mL of CH2Cl2. The mixture was stirred at room temperature for 2 h, concentrated under reduced pressure. The residue was dissolved in water, pH value was adjusted to ˜9 by using K2CO3 aqueous solution. The solid was collected by filtration and dried under reduced pressure to give 27 mg 35-Ent2 as a yellow solid (35% yield). 1H NMR (500 MHz, DMSO-d6) δ 13.11 (s, 1H), 8.59 (s, 1H), 8.47 (d, J=9.5 Hz, 1H), 8.07 (d, J=8.7 Hz, 1H), 7.78 (s, 1H), 7.56-7.41 (m, 3H), 6.57 (s, 1H), 5.55-5.37 (m, 1H), 4.90-4.82 (m, 1H), 3.58 (s, 1H), 3.49 (s, 1H), 2.40 (s, 1H), 2.09-1.99 (m, 1H), 1.87-1.73 (m, 3H), 1.69-1.58 (m, 2H) LCMS: m/z 382.2 [M+H]+; tR=1.79 min


The following compounds were synthesized by General method F, with Chiral separation at intermediate F3 using conditions described in table B. The absolute configuration of individual enantiomers was not determined.


Synthesis of 36-Ent1 and 36-Ent2



embedded image


Synthesis of 40-Ent1 and 40-Ent2



embedded image


Synthesis of 41-Ent1 and 41-Ent2



embedded image


Synthesis of 42-Ent1 and 42-Ent2



embedded image


Synthesis of 43-Ent1 and 43-Ent2



embedded image


Synthesis of 46-Ent1 and 46-Ent2



embedded image


Synthesis of 49-Ent1 and 49-Ent2



embedded image


Synthesis of 51-Ent1 and 51-Ent2



embedded image


Compounds 53-Ent1 and 53-Ent2



embedded image


Compounds 54-Ent1 and 54-Ent2



embedded image


Compounds 60-Ent1 and 60-Ent2



embedded image


Compounds 61-Ent1 and 61-Ent2



embedded image


Compounds 66-E1 and 66-E2



embedded image


Compounds 67-Ent1 and 67-Ent2



embedded image


Compounds 68-Ent1 and 68-Ent2



embedded image


Compounds 70-Ent1 and 70-Ent2



embedded image


Compounds 118-Ent1 and 118-Ent2



embedded image


Compounds 119-Ent1 and 119-Ent2



embedded image


Compounds 123-Ent1 and 123-Ent2



embedded image


Compounds 124-Ent1 and 124-Ent2



embedded image


Compounds 147-Ent1 and 147-Ent2



embedded image


Compounds 150-Ent1 and 150-Ent2



embedded image


Compounds 153-Ent1 and 153-Ent2



embedded image


Compounds 157-Ent1 and 157-Ent2



embedded image


General Method G



embedded image


Compounds can be made by Synthetic Method G in a manner analogous to that described for Synthetic Method F, except where the chiral separation is performed on intermediate F2 to afford the separated enantiomers F2-Ent1 and F2-Ent2. Compounds F2-Ent1 and F2-Ent2 can then be carried through to final compounds as described in General Method F.


Specific Example of General Method G
Example 4: Compounds 56-Ent1 and 56-Ent2



embedded image


Racemic 56-F2 (rac-tert-butyl (1S,2S,3R,5R)-3-((6-(4-chloro-5-fluoro-2-(methoxymethoxy)phenyl)pyridazin-3-yl)oxy)-2-fluoro-9-azabicyclo[3.3.1]nonane-9-carboxylate) was made via General method F steps 1 and 2 using Amino Alcohol PFDOD and 2-(4-chloro-5-fluoro-2-(methoxymethoxy)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane. Racemic 56-F2 was separated to afford compounds 56-F2-Ent1 and 56-F2-Ent2 using chiral chromatography via the following conditions:


Instrument: SFC-80 (Thar, Waters) Column: AD 20*250 mm, 10 um (Daicel)

Column temperature: 35° C.


Mobile phase: CO2/MeOH (0.2% Methanol Ammonia)=45/55


Flow rate: 80 g/min


Backpressure: 100 bar

Detection wavelength: 214 nm


Cycle time: 5.0 min


Sample solution: 1800 mg dissolved in 25 ml Methanol


Injection volume: 1.9 ml


Compound 56 was then synthesized according to the previously described procedure in General method F.


The following compounds were synthesized by General method G, with Chiral separation at intermediate F2 using conditions described in table B. The absolute configuration of individual enantiomers was not determined.




embedded image


embedded image


embedded image


embedded image


embedded image


General Method I:



embedded image


Starting with an intermediate of type F1, F1 is coupled to a boronic acid or Ester BB1 to afford compound I1. Compound I1 is further coupled with a group P cycle either via a boronic acid or ester such as BB2, or by making a bond to the nitrogen of a heterocycle P, to afford intermediate I2. Intermediate I2 is then separated by chiral chromatography into the enantiomers I2-Ent1 and I2-Ent2. Unless where noted, the absolute configuration of I2-Ent1 and I2-Ent2 was not determined. Removal of groups G1 and G3, if necessary, gives the final compounds Ent1 and Ent2.


Example 5: Synthesis of 5-(6-(((1R,2R,3S,5S)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-2-(1-methyl-1H-pyrazol-4-yl)pyridin-4-ol and 5-(6-(((1S,2S,3R,5R)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-2-(1-methyl-1H-pyrazol-4-yl)pyridin-4-ol (Compounds 63-Ent1 and 63-Ent2)



embedded image


embedded image


Step 1. Synthesis of rac-(1S,1S,3R,5R)-tert-butyl 3-(6-chloropyridazin-3-yloxy)-2-fluoro-8-azabicyclo[3.2.1]octane-8-carboxylate

NaH (588 mg, 14.7 mol, 60% in mineral oil) was added to a mixture of Racemic TFDOD (1.2 g, 4.9 mol) in 30 mL of dry THF and, after stirring for 15 min, 3,6-dichloropyridazine (1.09 g, 7.35 mmol) was added to the mixture. The reaction was heated at 50° C. for 6 h. Water (10 mL) was added to quenched the reaction, the mixture was concentrated, extracted with ethyl acetate (3×30 mL), the combined organic phases were dried and concentrated, then purified by silica gel chromatography (60% EtOAc/petroleum ether) to give 1.5 g of rac-(1S,2S,3R,5R)-tert-butyl 3-(6-chloropyridazin-3-yloxy)-2-fluoro-8-azabicyclo[3.2.1]octane-8-carboxylate (86% yield). LCMS: m/z 358.2 [M+H-56]+; tR=1.95 min.


Step 2. Synthesis of rac-tert-butyl (1S,2S,3R,5R)-3-((6-(4-(benzyloxy)-6-chloropyridin-3-yl)pyridazin-3-yl)oxy)-2-fluoro-8-azabicyclo[3.2.1]octane-8-carboxylate

A solution of 4-(benzyloxy)-6-chloropyridin-3-ylboronic acid (1.0 g, 3.80 mmol), rac-tert-butyl (1S,2S,3R,5R)-3-(6-chloropyridazin-3-yloxy)-2-fluoro-8-aza-bicyclo[3.2.1]octane (1.086 g, 3.03 mmol), Pd(dppf)Cl2(556 mg, 0.76 mmol) and K2CO3 (1.05 g, 5.32 mmol) in 48 mL of dioxane and 12 mL of H2O was degassed stirred at 100° C. for 1 h. The mixture was concentrated and purified by silica gel chromatography (20-50% EtOAc/petroleum ether) to yield rac-tert-butyl (1S,2S,3R,5R)-3-((6-(4-(benzyloxy)-6-chloropyridin-3-yl)pyridazin-3-yl)oxy)-2-fluoro-8-azabicyclo[3.2.1]octane-8-carboxylate (760 mg, 35% yield). LCMS: m/z 541.2 [M+H]+; tR=2.10 min.


Step 3. Synthesis of rac-tert-butyl (1S,2S,3R,5R)-3-((6-(4-(benzyloxy)-6-(1-methyl-1H-pyrazol-4-yl)pyridin-3-yl)pyridazin-3-yl)oxy)-2-fluoro-8-azabicyclo[3.2.1]octane-8-carboxylate (Racemic 63-I2)

A mixture of 1-methyl-1H-pyrazol-4-ylboronic acid (349 mg, 2.77 mmol), rac-tert-butyl (1S,2S,3R,5R)-3-((6-(4-(benzyloxy)-6-chloropyridin-3-yl)pyridazin-3-yl)oxy)-2-fluoro-8-azabicyclo[3.2.1]octane-8-carboxylate (1.0 g, 1.848 mmol), K3PO4(784.5 mg, 3.696 mmol) and X-PhosPdG2 (290.9 mg, 0.370 mmol) in 36 of dioxane and 14 mL of H2O was degassed and stirred at 120° C. for 2 h. The mixture was filtered, concentrated purified by silica gel chromatography (20-50% EtOAc/petroleum ether) to yield rac-tert-butyl (1S,2S,3R,5R)-3-((6-(4-(benzyloxy)-6-(1-methyl-1H-pyrazol-4-yl)pyridin-3-yl)pyridazin-3-yl)oxy)-2-fluoro-8-azabicyclo[3.2.1]octane-8-carboxylate (Racemic 63-I2, 730 mg, 67% yield). LCMS: m/z 587.3 [M+H]+; tR=1.98 min.


Step 4. Chiral separation of rac-tert-butyl (1S,2S,3R,5R)-3-((6-(4-(benzyloxy)-6-(1-methyl-1H-pyrazol-4-yl)pyridin-3-yl)pyridazin-3-yl)oxy)-2-fluoro-8-azabicyclo[3.2.1]octane-8-carboxylate

920 mg of rac-tert-butyl (1S,2S,3R,5R)-3-((6-(4-(benzyloxy)-6-(1-methyl-1H-pyrazol-4-yl)pyridin-3-yl)pyridazin-3-yl)oxy)-2-fluoro-8-azabicyclo[3.2.1]octane-8-carboxylate (Racemic 63-I2) was separated by chiral chromatography to give 410 mg of the first eluting enantiomer (retention time: 2.19 min) called 63-I2-Ent1 and 350 mg of the second eluting enantiomer 63-I2-Ent2 (retention time: 3.4 min).


Instrument: SFC-80 (Thar, Waters)
Column: AD 20*250 mm, 10 um (Daicel)

Column temperature: 35° C.


Mobile phase: CO2/MeOH (0.2% Methanol Ammonia)=30/70


Flow rate: 80 g/min


Backpressure: 100 bar

Detection wavelength: 214 nm


Cycle time: 6.5 min


Sample solution: 920 mg dissolved in 40 ml Methanol


Injection volume:3 ml


Step 5 Synthesis of tert-butyl (1S,2S,3R,5R)-2-fluoro-3-((6-(4-hydroxy-6-(1-methyl-1H-pyrazol-4-yl)pyridin-3-yl)pyridazin-3-yl)oxy)-8-azabicyclo[3.2.1]octane-8-carboxylate and tert-butyl (1S,2S,3R,5R)-2-fluoro-3-((6-(4-hydroxy-6-(1-methyl-1H-pyrazol-4-yl)pyridin-3-yl)pyridazin-3-yl)oxy)-8-azabicyclo[3.2.1]octane-8-carboxylate (63-I3-Ent1 and 63-I3-Ent2)

A mixture of 63-I2-Ent1 (210 mg, 0.358 mmol) and Pd/C (150 mg) in 15 mL of EtOAc and 3 mL of MeOH was stirred at 20° C. under hydrogen atmosphere for 4 h. The mixture was filtered, the filtrate was concentrated and purified by silica gel chromatography (2-5% MeOH/CH2Cl2) to give 63-I3-Ent1 (130 mg, 73% yield) as a white solid. LCMS: m/z 497.3 [M+H]+; tR=1.68 min.


A mixture of tert-butyl 63-I2-Ent2 (150 mg, 0.256 mmol) (210 mg, 0.358 mmol) and Pd/C (120 mg) in 15 mL of EtOAc and 3 mL of MeOH was stirred at 20° C. under hydrogen atmosphere for 4 h. The mixture was filtered, the filtrate was concentrated and purified by silica gel chromatography (2-5% MeOH/CH2Cl2) to give 63-I3-Ent2 (90 mg, 71% yield) as a white solid. LCMS: m/z 497.3 [M+H]+; tR=1.67 min.


Step 6. Synthesis of 5-(6-(((1R,2R,3S,5S)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-2-(1-methyl-1H-pyrazol-4-yl)pyridin-4-ol and 5-(6-(((1S,2S,3R,5R)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-2-(1-methyl-1H-pyrazol-4-yl)pyridin-4-ol (Compounds 63-Ent1 and 63-Ent2)

To a solution of 63-I3-Ent1 (100 mg, 0.201 mmol) in CH2Cl2 (5 mL) at 20° C. was added HCl (5 mL, 4 M in dioxane). The mixture was stirred at 20° C. for 1 h and concentrated. The crude solid was dissolved into water (3 mL). pH value was adjusted to 8˜9 with saturated K2CO3 aqueous solution. The precipitate was collected by filtration, washed with water and dried under reduced pressure to give 63-Ent1 (63 mg, 79% yield) as a white solid. 1H NMR (400 MHz, DMSO-d6) δ 8.54 (d, J=9.3 Hz, 2H), 8.33 (s, 1H), 8.03 (s, 1H), 7.27 (d, J=9.0 Hz, 1H), 6.76 (s, 1H), 5.51-5.40 (m, 1H), 4.95-4.82 (m, 1H), 3.91 (s, 3H), 3.61-3.56 (m, 3H), 2.04-2.01 (m, 1H), 1.84-1.78 (m, 3H), 1.70-1.58 (m, 2H). LCMS: m/z 397.2 [M+H]+; tR=1.29 min.


Similarly, a 63-I3-Ent2 was used to make 63-Ent2 as a white solid. 1H NMR (400 MHz, DMSO-d6) δ 8.54 (d, J=9.3 Hz, 2H), 8.33 (s, 1H), 8.03 (s, 1H), 7.27 (d, J=9.0 Hz, 1H), 6.76 (s, 1H), 5.51-5.40 (m, 1H), 4.95-4.82 (m, 1H), 3.91 (s, 3H), 3.61-3.56 (m, 3H), 2.04-2.01 (m, 1H), 1.84-1.78 (m, 3H), 1.70-1.58 (m, 2H). LCMS: m/z 397.3 [M+H]+; tR=1.30 min.


Example 6: Synthesis of 5-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-2-(1-methyl-1H-pyrazol-4-yl)pyridin-4-ol and 5-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-2-(1-methyl-1H-pyrazol-4-yl)pyridin-4-ol (64-Ent1 and 64-Ent2)



embedded image


Compounds 64-Ent1 and 64-Ent2 were made according to general Method I in a manner analogous to that described for Compounds 63-Ent1 and 63-Ent2 using PFDOD as the starting amino alcohol. The racemic mixture 64-I2 was separated into 64-I2-Ent1 and 64-I2-Ent2 using the following conditions:


Instrument: SFC-80 (Thar, Waters)
Column: AD 20*250 mm, 10 um (Daicel)

Column temperature: 35° C.


Mobile phase: CO2/MeOH (0.2% Methanol Ammonia)=40/60


Flow rate: 80 g/min


Backpressure: 100 bar

Detection wavelength: 214 nm


Cycle time: 8.3 min


Sample solution: 500 mg dissolved in 11 ml Methanol


Injection volume: 1.0 ml


64-I2-Ent1 had a retention time of 2.46 min, 64-I2-Ent2 had a retention time of 4.21 min. Intermediate 64-I2-Ent1 was used to make 64-Ent1, intermediate 64-I2-Ent2 was used to make 64-I2-Ent2. The absolute configuration was not determined.


General Method K:



embedded image


embedded image


In General method K, Chiral intermediates of type F2-Ent1 and F2-Ent2 are independently transformed to aryl boronates of Type K1-Ent1 and K1-Ent2. Intermediates K1-Ent1 and K1-Ent2 are independently cross-coupling with group “P” bearing a halogen X to afford intermediates of type F3-Ent1 and F3-Ent2. Intermediates of type F3-Ent1 and F3-Ent2 are independently transformed to enantiopure final compounds by removal of protecting groups G1 and G3, if necessary. Unless otherwise noted, the absolute stereochemistry of Compound-Ent1 and Compound-Ent2 have not been determined.


Specific Example of Method K
Example 7: Synthesis of 2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(2-methylthiazol-5-yl)phenol and 2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(2-methylthiazol-5-yl)phenol (Compounds 96-Ent1 and 96-Ent2)



embedded image


Step1. Synthesis of tert-butyl (1S,2S,3R,5R)-2-fluoro-3-((6-(2-(methoxymethoxy)-4-(2-methylthiazol-5-yl)phenyl)pyridazin-3-yl)oxy)-9-azabicyclo[3.3.1]nonane-9-carboxylate and tert-butyl (1S,2S,3R,5R)-2-fluoro-3-((6-(2-(methoxymethoxy)-4-(2-methylthiazol-5-yl)phenyl)pyridazin-3-yl)oxy)-9-azabicyclo[3.3.1]nonane-9-carboxylate (96-F3-Ent1 and 96-F3-Ent2)

A mixture of G2-Ent1, (100 mg, 0.20 mmol), 4,4,4′,4′,5,5,5′,5′-octamethyl-2,2′-bi(1,3,2-dioxaborolane) (74.78 mg 0.30 mmol), Pd2(dba)3 (36.02 mg, 0.04 mmol), x-Phos (37.54 mg, 0.08 mmol) and KOAc (38.64 mg, 0.40 mmol) in 2 mL of dioxane was degassed and stirred at 100° C. for 2 h to form 96-K1-Ent1 in situ. The mixture was cooled to room temperature, 5-bromo-2-methylthiazole (78.10 mg, 0.40 mmol), Pd(dppf)Cl2 (28.81 mg, 0.04 mmol), K2CO3 (54.41 mg, 0.40 mmol), 3 mL of dioxane and 1 mL of H2O was added. The mixture was degassed and stirred at 100° C. for 2 h, concentrated and purified by silica gel column (50% EtOAc/petroleum ether) to give 105 mg of 96-F3-Ent1 (93% yield). LCMS: m/z 571.3 [M+H]+; tR=2.02 min.


Separately, A mixture of G2-Ent2 (100 mg, 0.20 mmol), 4,4,4′,4′,5,5,5′,5′-octamethyl-2,2′-bi(1,3,2-dioxaborolane) (74.78 mg 0.30 mmol), Pd2(dba)3 (36.02 mg, 0.04 mmol), x-Phos (37.54 mg, 0.08 mmol) and KOAc (38.64 mg, 0.40 mmol) in 2 mL of dioxane was degassed and stirred at 100° C. for 2 h to form 96-K1-Ent2 in situ. The mixture was cooled to room temperature, 5-bromo-2-methylthiazole (78.10 mg, 0.40 mmol), Pd(dppf)Cl2 (28.81 mg, 0.04 mmol), K2CO3 (54.41 mg, 0.40 mmol), 3 mL of dioxane and 1 mL of H2O was added. The mixture was degassed and stirred at 100° C. for 2 h, concentrated and purified by silica gel column (50% EtOAc/petroleum ether) to give 100 mg of 96-F3-Ent2 as a yellow oil (89% yield). LCMS: m/z 571.3 [M+H]+; tR=2.02 min.


Step2: Synthesis of 2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(2-methylthiazol-5-yl)phenol and 2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(2-methylthiazol-5-yl)phenol (Compounds 96-Ent1 and 96-Ent2)

4 mL of HCl in dioxane (4 N) was added to a stirred solution of 96-F3-Ent1 (105 mg, 0.18 mmol) in 10 mL of CH2Cl2. The mixture was stirred at room temperature for 2 h. The reaction mixture was concentrated, NH3/MeOH (7 N) was added to make pH=9. The mixture was concentrated and purified by silica gel column (0-15% MeOH/CH2Cl2) to give 65 mg of 96-Ent1. 1H NMR (500 MHz, DMSO-d6) δ 8.46 (d, J=9.5 Hz, 1H), 8.14 (s, 1H), 8.00 (d, J=8.1 Hz, 1H), 7.51-7.49 (m, 1H), 7.27-7.21 (m, 2H), 6.05-5.88 (m, 1H), 5.13-5.03 (m 1H), 3.50-3.33 (m, 2H), 2.70 (s, 3H), 2.21-2.07 (m, 2H), 1.95-1.82 (m, 2H), 1.80-1.65 (m, 4H). LCMS: m/z 427.0 [M+H]+; tR=1.32 min.


Separately, 4 mL of HCl in dioxane (4 N) was added to a stirred solution of 96-F3-Ent1 (100 mg, 0.18 mmol) in 10 mL of CH2Cl2. The mixture was stirred at room temperature for 2 h and concentrated. NH3/MeOH (7 N) was added to make pH=9. The mixture was concentrated and purified by silica gel column (0-15% MeOH/CH2Cl2) to give 60 mg 96-Ent2. 1H NMR (500 MHz, DMSO-d6) δ 8.46 (d, J=9.5 Hz, 1H), 8.14 (s, 1H), 8.00 (d, J=8.0 Hz, 1H), 7.50 (d, J=9.5 Hz, 1H), 7.27-7.21 (m, 2H), 6.09-5.78 (m, 1H), 5.13-5.03 (m 1H), 3.54-3.35 (m, 2H), 2.70 (s, 3H), 2.20-2.08 (m, 2H), 1.96-1.81 (m, 2H), 1.80-1.65 (m, 4H). LCMS: m/z 427.0 [M+H]+; tR=1.33 min.


The following compounds were synthesized by General method K, with Chiral separation at intermediate F2 using conditions described in Table B. Unless otherwise noted, the absolute configuration of individual enantiomers was not determined.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


General Method L:



embedded image


embedded image


embedded image


In General Method L a racemic intermediate of type F1 is coupled with a boronic acid or ester of type BB3 to afford racemic L1. Racemic L1 is then separated into the individual enantiomers L1-Ent1 and L1-Ent2. L1-Ent1 is deprotected to yield Ent1 of the final compound; L2-Ent2 is deprotected to yield Ent2 of the final compound.


Specific Example of General Method L
Example 8: Synthesis of 7-(6-((1S,2S,3R,5R)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yloxy)pyridazin-3-yl)-6-hydroxy-2-methylisoquinolin-1 (2H)-one and Synthesis of 7-(6-((1S,2S,3R,5R)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yloxy)pyridazin-3-yl)-6-hydroxy-2-methylisoquinolin-1(2H)-one (129-Ent1 and 129-Ent2)



embedded image


embedded image


Step1. Synthesis of rac-(1S,2S,3R,5R)-tert-butyl 2-fluoro-3-(6-(6-(methoxymethoxy)-2-methyl-1-oxo-1,2-dihydroisoquinolin-7-yl)pyridazin-3-yloxy)-8-azabicyclo[3.2.1]octane-8-carboxylate

A mixture of 7-bromo-6-(methoxymethoxy)-2-methylisoquinolin-1(2H)-one (150 mg, 0.5 mmol), 4,4,4′,4′,5,5,5′,5′-octamethyl-2,2′-bi(1,3,2-dioxaborolane)(190 mg, 0.75 mmol), Pd(dppf)Cl2 (73 mg, 0.1 mmol), AcOK (98 mg, 1 mmol) in 3.75 mL of dioxane was degassed and heated at 105° C. for 2 h under nitrogen atmoshphere. The mixture was cooled to room temperature, rac-(1S,2S,3R,5R)-tert-butyl 3-(6-chloropyridazin-3-yloxy)-2-fluoro-8-azabicyclo[3.2.1]octane-8-carboxylate (racemic 63-F1) (179 mg, 0.5 mmol), Pd(dppf)Cl2 (73 mg, 0.1 mmol), K2CO3 (138 mg, 1 mmol), dioxane (3.75 mL) and H2O (0.75 mL) were added. The mixture was degassed and stirred at 105° C. for 2 h. After cooling to room temperature, the mixture was concentrated and purified by silica gel column chromatography (0-70% EtOAc/petroleum ether) to give 200 mg rac-(1S,2S,3R,5R)-tert-butyl 2-fluoro-3-(6-(6-(methoxymethoxy)-2-methyl-1-oxo-1,2-dihydroisoquinolin-7-yl)pyridazin-3-yloxy)-8-azabicyclo[3.2.1]octane-8-carboxylate (Racemic 129-L1, 61% yield) as a white solid. LCMS: m/z 541.2 [M+H]+; tR=1.78 min.


Step2. Chiral separation of rac-(1S,2S,3R,5R)-tert-butyl 2-fluoro-3-(6-(6-(methoxymethoxy)-2-methyl-1-oxo-1,2-dihydroisoquinolin-7-yl)pyridazin-3-yloxy)-8-azabicyclo[3.2.1]octane-8-carboxylate

200 mg of rac-(1S,2S,3R,5R)-tert-butyl 2-fluoro-3-(6-(6-(methoxymethoxy)-2-methyl-1-oxo-1,2-dihydroisoquinolin-7-yl)pyridazin-3-yloxy)-8-azabicyclo[3.2.1]octane-8-carboxylate was separated under chiral column (OJ-H column) to give 60 mg of of the first eluting isomer called 129-L1-Ent1 (retention time 3.00 min) as a white solid and 70 mg of the second eluting isomer called 129-L1-Ent2 isomer (retention time 3.79 min) as a white solid.


Instrument: SFC-150 (Thar, Waters)
Column: OJ 20*250 mm, 10 um (Daicel)

Column temperature: 35° C.


Mobile phase: CO2/MeOH (0.2% Methanol Ammonia)=80/20


Flow rate: 100 g/min


Backpressure: 100 bar

Detection wavelength: 214 nm


Cycle time: 5 min


Sample solution: 250 mg dissolved in 20 ml Methanol


Injection volume: 1.9 ml


Step 3. Synthesis of 7-(6-((1S,2S,3R,5R)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yloxy)pyridazin-3-yl)-6-hydroxy-2-methylisoquinolin-1(2H)-one and Synthesis of 7-(6-((1S,2S,3R,5R)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yloxy)pyridazin-3-yl)-6-hydroxy-2-methylisoquinolin-1(2H)-one (129-Ent1 and 129-Ent2)

HCl/dioxane (6 mL, 4N in dioxane) was added to a solution of 129-L1-Ent1 (60 mg, 0.111 mmol) in 6 mL of CH2Cl2. The reaction mixture was stirred at room temperature for 2 h and concentrated under reduced pressure. Water was added to dissolve the yellow solid, K2CO3 aqueous solution was added to adjust pH to 8˜9. The solid was collected by filtration and dried under reduced pressure to give 25 mg 129-Ent1′ (yield: 57%) as a white solid. 1H NMR (400 MHz, DMSO-d) δ 12.65 (s, 1H), 8.69 (s, 1H), 8.40 (d, J=9.4 Hz, 1H), 7.46 (d, J=7.3 Hz, 1H), 7.41 (d, J=9.4 Hz, 1H), 7.11 (s, 1H), 6.51 (d, J=7.4 Hz, 1H), 5.60-5.39 (m, 1H), 5.06-4.80 (m, 1H), 3.68-3.52 (m, 2H), 3.48 (s, 3H), 2.11-2.03 (m, 1H), 1.91-1.71 (m, 3H), 1.71-1.57 (m, 2H). LCMS: m/z 397.1 [M+H]+; tR=1.17 min.


HCl/dioxane (6 mL, 4N in dioxane) was added to a solution of 129-L1-Ent2 (70 mg, 0.129 mmol) in 6 mL of CH2Cl2. The reaction mixture was stirred at room temperature for 2 h and concentrated under reduced pressure. Water was added to dissolve the yellow solid, K2CO3 aqueous solution was added to adjust pH to 8˜9. The solid was collected by filtration and dried under reduced pressure to give 20 mg 129-Ent2 (yield:39%) as a white solid. 1H NMR (400 MHz, DMSO-d6) δ 12.65 (s, 1H), 8.69 (s, 1H), 8.40 (d, J=9.4 Hz, 1H), 7.46 (d, J=7.3 Hz, 1H), 7.41 (d, J=9.4 Hz, 1H), 7.11 (s, 1H), 6.51 (d, J=7.4 Hz, 1H), 5.60-5.39 (m, 1H), 5.06-4.80 (m, 1H), 3.68-3.52 (m, 2H), 3.48 (s, 3H), 2.11-2.03 (m, 1H), 1.91-1.71 (m, 3H), 1.71-1.57 (m, 2H). LCMS: m/z 397.1 [M+H]+; tR=1.16 min.


The following compounds were synthesized by General method L, with Chiral separation at intermediate L1 using conditions described in table B. The absolute configuration of individual enantiomers was not determined.




embedded image


embedded image


embedded image


embedded image


embedded image


General Method M:



embedded image


In General Method M a racemic intermediate of type F1 is coupled with a boronic acid or ester of type BB3 to afford racemic L1. Racemic L1 is deprotected to yield a racemic compound which can then be separated into Ent1 and Ent2 of the final compound.


Specific Example of General Method M
Example 9: Synthesis of 6-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)isoquinolin-7-ol and 6-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)isoquinolin-7-ol (Compounds 80-Ent1 and 80-Ent2)



embedded image


embedded image


Step 1. Synthesis of rac-tert-butyl (1S,2S,3R,5R)-2-fluoro-3-((6-(7-methoxyisoquinolin-6-yl)pyridazin-3-yl)oxy)-9-azabicyclo[3.3.1]nonane-9-carboxylate

A mixture of tert-butyl 6-bromo-7-methoxyisoquinoline (Christopher, J. A. et al., J. Med. Chem 2009, 52, 309-3102) (600 mg, 2.52 mmol), 4,4,4′,4′,5,5,5′,5′-octamethyl-2,2′-bi(1,3,2-dioxaborolane) (959.95 mg 3.78 mmol), Pd(dppf)Cl2 (368.80 mg, 0.50 mmol) and KOAc (494.66 mg, 5.04 mmol) in 12 mL of dioxane was degassed and stirred at 100° C. for 2 h. The mixture was cooled to room temperature, tert-butyl (1S,2S,3R,5R)-3-((6-chloropyridazin-3-yl)oxy)-2-fluoro-9-azabicyclo[3.3.1]nonane-9-carboxylate (749.68 mg, 2.02 mmol), Pd(dppf)Cl2 (368.80 mg, 0.50 mmol), K2CO3 (696.62 mg, 5.04 mmol), 6 mL of dioxane and 6 mL of H2O were added. The mixture was degassed and stirred at 100° C. for 2 h, concentrated and purified by silica gel column (50% EtOAc/petroleum ether) to give 600 mg of rac-tert-butyl (1S,2S,3R,5R)-2-fluoro-3-((6-(7-methoxyisoquinolin-6-yl)pyridazin-3-yl)oxy)-9-azabicyclo[3.3.1]nonane-9-carboxylate as yellow oil (41% yield). LCMS: m/z 495.3 [M+H]+; tR=1.89 min.


Step 2. Synthesis of 6-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)isoquinolin-7-ol

15 mL of BBr3 (27%) was added to a stirred solution of rac-tert-butyl (1S,2S,3R,5R)-2-fluoro-3-((6-(7-methoxyisoquinolin-6-yl)pyridazin-3-yl)oxy)-9-azabicyclo[3.3.1]nonane-9-carboxylate (600 mg, 1.21 mmol) in 6 mL of CH2Cl2. The mixture was stirred at room temperature for 4 h and quenched with water (100 mL). Saturated aqueous sodium bicarbonate added to adjust pH to 8˜9. The mixture was extracted with CH2Cl2 (100 mL×3). The combined organic solvents were washed with brine (100 mL), dried over anhydrous Na2SO4, concentrated and purified by silica gel column (0-15% MeOH/CH2Cl2) to give 110 mg of rac-6-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)isoquinolin-7-ol as a yellow solid (24% yield). LCMS: m/z 381.2 [M+H]+; tR=1.59 min.


Step 3. Synthesis of rac-6-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)isoquinolin-7-ol

110 mg of racemic material rac-6-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)isoquinolin-7-ol was separated under below chiral condition to give 40 mg 80-Ent1 as the first eluting enantiomer (retention time 2.45 min) as a yellow solid and 25 mg of 80-Ent2 as the second eluting enantiomer (retention time 3.11 min) as a white solid.


Instrument: SFC-150 (Waters)
Column: AD 20*250 mm, 10 um (Daicel)

Column temperature: 35° C.


Mobile phase: CO2/EtOH (1% Methanol Ammonia)=50/50


Flowrate: 100 g/min


Backpressure: 100 bar

Detection wavelength: 230 nm


Cycle time: 10 min


80-Ent1: 1H NMR (500 MHz, DMSO-d6) δ9.18 (s, 1H), 8.61-8.26 (m, 3H), 7.79 (d, J=5.7 Hz, 1H), 7.54-7.43 (m, 2H), 6.14-5.95 (m, 1H), 4.97 (d, J=58.3 Hz, 1H), 3.28-3.16 (m, 2H), 2.18-2.01 (m, 2H), 1.93-1.78 (m, 2H), 1.78-1.58 (m, 4H). LCMS: m/z 381.2 [M+H]+; tR=1.59 min. 80-Ent2: 1H NMR (500 MHz, DMSO-d6) δ 9.18 (s, 1H), 8.61-8.26 (m, 3H), 7.79 (d, J=5.7 Hz, 1H), 7.54-7.43 (m, 2H), 6.14-5.95 (m, 1H), 4.97 (d, J=58.3 Hz, 1H), 3.28-3.16 (m, 2H), 2.18-2.01 (m, 2H), 1.93-1.78 (m, 2H), 1.78-1.58 (m, 4H). LCMS: m/z 381.2 [M+H]+; tR=1.59 min.


Example 10: Synthesis of compounds 7-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)isoquinolin-6-ol and 7-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)isoquinolin-6-ol (81-Ent1 and 81-Ent)



embedded image


Compounds 81-Ent1 and 81-Ent2 were made in a manner analogous to that described for compounds 80-Ent1 and 80-Ent2. Racemic 81 was separated into 81-Ent1 (retention time=2.68 min) and 81-Ent2 (retention time=3.11 min) using the following conditions:


Instrument: SFC-150 (Thar, Waters)
Column: AD 20*250 mm, 10 um (Daicel)

Column temperature: 35° C.


Mobile phase: CO2/MEOH (0.2% Methanol Ammonia)=50/50


Flow rate: 80 g/min


Backpressure: 100 bar

Detection wavelength: 214 nm


Cycle time: 8 min


Sample solution: 150 mg dissolved in 15 ml Methanol


Injection volume: 2 ml.


General Method N:



embedded image


In General Method N, Intermediate F1 is coupled to a boronic acid or ester BB3 to racemic L1 as described in General Method L. Protecting group G3 is removed to afford N1. Racemic compound N1 is separated into the individual enantiomers N1-Ent1 and N1-Ent2. Unless where noted, the absolute configuration was not determined. Compound N1-Ent1 and N1-Ent2 are individually deprotected to afford Compound-Ent1 and Compound-Ent2.


Specific Example of General Method N
Example 11: Synthesis of 5-(4-(6-((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yloxy)pyridazin-3-yl)-3-hydroxyphenyl)-3-methyloxazol-2(3H)-one and of 5-(4-(6-((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yloxy)pyridazin-3-yl)-3-hydroxyphenyl)-3-methyloxazol-2(3H)-one (Compounds 97-Ent1 and 97-Ent2)



embedded image


embedded image


Step 1. Synthesis of rac-(1S,2S,3R,5S)-tert-butyl 3-(6-(2-(benzyloxy)-4-(3-methyl-2-oxo-2,3-dihydrooxazol-5-yl)phenyl)pyridazin-3-yloxy)-2-fluoro-9-azabicyclo[3.3.1]nonane-9-carboxylate

A solution of rac-(1S,2S,3R,5R)-tert-butyl 3-(6-chloropyridazin-3-yloxy)-2-fluoro-9-azabicyclo[3.3.1]nonane-9-carboxylate (400 mg, 1.07 mmol), 5-(3-(benzyloxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-3-methyloxazol-2(3H)-one (567 mg, 1.39 mmol), K2CO3 (296 mg, 2.14 mmol) and Pd(dppf)Cl2 (78 mg, 0.107 mmol) in dioxane (8 mL) and H2O (2 mL) was degassed and stirred at 95° C. for 0.5 h under N2 atmosphere. Water (50 mL) was added. The mixture was extracted with EtOAc (50 mL×2). The organic layers were dried over anhydrous MgSO4, concentrated in vacuum and purified by silica gel column (0-75% EtOAc/petroleum ether) to give rac-(1S,2S,3R,5R)-tert-butyl 3-(6-(2-(benzyloxy)-4-(3-methyl-2-oxo-2,3-dihydrooxazol-5-yl)phenyl)pyridazin-3-yloxy)-2-fluoro-9-azabicyclo[3.3.1]nonane-9-carboxylate (495 mg, 75% yield) as a white solid. LCMS: m/z=617.0 [M+H]+, in =2.00 min.


Steps 2 and 3. Synthesis of (1S,2S,3R,5R)-tert-butyl 2-fluoro-3-(6-(2-hydroxy-4-(3-methyl-2-oxo-2,3-dihydrooxazol-5-yl)phenyl)pyridazin-3-yloxy)-9-azabicyclo[3.3.1]nonane-9-carboxylate and (1S,2S,3R,5R)-tert-butyl 2-fluoro-3-(6-(2-hydroxy-4-(3-methyl-2-oxo-2,3-dihydrooxazol-5-yl) phenyl)pyridazin-3-yloxy)-9-azabicyclo[3.3.1]nonane-9-carboxylate (Compounds 97-N1-Ent1 and 97-N1-Ent2)

A solution of rac-(1S,2S,3R,5R)-tert-butyl 3-(6-(2-(benzyloxy)-4-(3-methyl-2-oxo-2,3-dihydrooxazol-5-yl)phenyl)pyridazin-3-yloxy)-2-fluoro-9-azabicyclo[3.3.1]nonane-9-carboxylate (450 mg, 0.73 mmol) and Pd/C (200 mg) in EtOH (50 mL) was stirred at 20° C. for 3 h under hydrogen atmosphere. The reaction mixture was flitted through Celite pad and washed with MeOH (100 mL). The filtrate was concentrated in vacuum and purified by silica gel column (0-20% EtOAc/CH2Cl2) to give the racemate 97-N1. The racemate was purified with chiral-HPLC to give the 97-N1-Ent1 as the first eluting isomer (100 mg, tR-Chiral=1.73 min) and 97-N1-Ent2 as the second eluting isomer, (100 mg, tR-Chiral=4.50 min) as a white solid. LCMS: m/z=527.3 [M+H]+, tR=1.89 min.


Chiral HPLC condition:


Instrument: SFC-150 (Waters);
Column: IC 20*250 mm, 10 um (Daicel);

Column temperature: 35° C.;


Mobile phase: CO2/(MeOH/ACN (0.2% Methanol Ammonia)=1:1)=40/60;


Flow rate: 120 g/min;


Backpressure: 100 bar;


Detection wavelength: 214 nm;


Cycle time: 3 min;


Sample solution: 270 mg dissolved in 60 ml Methanol and Dichloromethane;


Injection volume: 1.9 ml)


The absolute configuration of 97-N1-Ent1 and 97-N1-Ent2 was not determined.


Step4. Synthesis of 5-(4-(6-((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yloxy)pyridazin-3-yl)-3-hydroxyphenyl)-3-methyloxazol-2(3H)-one and Synthesis of 5-(4-(6-((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yloxy)pyridazin-3-yl)-3-hydroxyphenyl)-3-methyloxazol-2(3H)-one (97-Ent1 and 97-Ent2)

To a solution of 97-N1-Ent1 (95 mg, 0.18 mmol) in 2 mL of CH2Cl2 was added HCl/dioxane (10 mL, 4N in dioxane). The mixture was stirred at room temperature for 2 h. After concentration, the residue was dissolved in H2O (10 mL) and neutralized with NaHCO3 aqueous solution to pH=8. The solid was collected by filtration, which was further purified by to afford 97-Ent1 (34 mg, 44% Yield) as a yellow solid. 1H NMR (400 MHz, DMSO-d6) δ12.79 (s, 1H), 8.43 (d, J=9.6 Hz, 1H), 8.00 (d, J=8.3 Hz, 1H), 7.72 (s, 1H), 7.47 (d, J=9.5 Hz, 1H), 7.16-7.04 (m, 2H), 6.10-5.86 (m, 1H), 5.08-4.80 (m, 1H), 3.32-3.15 (m, 6H), 2.18-1.96 (m, 2H), 1.94-1.76 (m, 2H), 1.76-1.52 (m, 4H). LCMS: m/z=427.2 [M+H]+, tR=1.57 min.


Separately, a solution of 97-N1-Ent2 (95 mg, 0.18 mmol) in in 2 mL of CH2Cl2 was added HCl/dioxane (10 mL, 4N). The mixture was stirred at room temperature for 2 h and concentrated. The residue was dissolved in H2O (10 mL) and neutralized with NaHCO3 aqueous solution to pH=8. The solid was collected by filtration, which was further purified by silica gel chromatography (0-5% MeOH/CH2Cl2) to afford 97-Ent2 as a yellow solid. 1H NMR (400 MHz, DMSO-d6) δ12.79 (s, 1H), 8.43 (d, J=9.6 Hz, 1H), 8.00 (d, J=8.3 Hz, 1H), 7.72 (s, 1H), 7.47 (d, J=9.5 Hz, 1H), 7.16-7.04 (m, 2H), 6.10-5.86 (m, 1H), 5.08-4.80 (m, 1H), 3.32-3.15 (m, 6H), 2.18-1.96 (m, 2H), 1.94-1.76 (m, 2H), 1.76-1.52 (m, 4H). LCMS: m/z=427.1 [M+H]+, tR=1.57 min.


Compounds made by General Method N:




embedded image


embedded image


General Method O:




embedded image


embedded image


embedded image


In General Method O, a 3,6-dihalopyridazine is cross coupled with a boronic acid or ester BB3 to afford intermediate O1. Intermediate O1 is treated with an AA in the presence of base to form Racemic L1. Racemic L1 is then processed as in General Method L to afford the desired compounds. Unless where noted, the absolute configuration was not determined.


Specific Example of General Method O



embedded image


General Method Q: Method Q is analogous to Method F but employs a final-step deprotection protocol


Specific Example of General Method Q
Example 12: Synthesis of 4-chloro-2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol and 4-chloro-2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol (compounds 120-Ent1 and 120-Ent2)



embedded image


Step 1. Synthesis of rac-4-chloro-2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol

To a solution of rac-tert-butyl (1S,2S,3R,5R)-3-((6-(5-chloro-2-methoxy-4-(1-methyl-1H-pyrazol-4-yl)phenyl)pyridazin-3-yl)oxy)-2-fluoro-9-azabicyclo[3.3.1]nonane-9-carboxylate (prepared by Method F) (170 mg, 0.31 mmol) in CH2Cl2 (5 mL) was added BBr3 (5 mL, 1N in CH2Cl2) and stirred at room temperature for 1 h. The mixture was quenched with water (10 mL) and saturated NaHCO3 aqueous solution was added till pH to 8-9. The mixture was extracted with CH2Cl2/MeOH 10:1 (v/v, 20 mL×3). The combined organic solvents were concentrated and purified by silica gel column (0-10% CH2Cl2/MeOH) to give 30 mg of rac-4-chloro-2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol (Racemic 120) as a yellow solid (22% yield). LCMS: m/z 444.2 [M+H]+; tR=1.769 min


Step2. Chiral Separation of rac-4-chloro-2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol

70 mg of rac-4-chloro-2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol (Racemic 120) was separated using chiral chromatography (see below) to give 25 mg of 120-Ent1 (retention time 1.82 min) as a yellow solid. 1H NMR (400 MHz, DMSO-d6) δ 8.49 (d, J=9.5 Hz, 1H), 8.26 (s, 1H), 8.08 (s, 1H), 7.90 (s, 1H), 7.48 (d, J=9.4 Hz, 1H), 7.22 (s, 1H), 6.14-5.77 (m, 1H), 5.16-4.84 (m, 1H), 3.91 (s, 3H), 3.30-3.19 (m, 2H), 2.10-1.95 (m, 2H), 1.90-1.75 (m, 2H), 1.73-1.59 (m, 4H) and 20 mg 120-Ent2 (retention time 3.03 min) as a yellow solid. 1H NMR (400 MHz, DMSO-d6) δ 8.49 (d, J=9.5 Hz, 1H), 8.26 (s, 1H), 8.08 (s, 1H), 7.90 (s, 1H), 7.47 (d, J=9.5 Hz, 1H), 7.22 (s, 1H), 6.06-5.88 (m, 1H), 5.16-4.84 (m, 1H), 3.91 (s, 3H), 3.30-3.19 (m, 2H), 2.10-1.95 (m, 2H), 1.90-1.75 (m, 2H), 1.73-1.59 (m, 4H).


Chiral Chromatography Conditions:
Instrument: SFC-150 (Thar, Waters)
Column: AY 20*250 mm, 10 um (Daicel)

Column temperature: 35° C.


Mobile phase: CO2/MEOH (0.2% Methanol Ammonia)=40/60


Flow rate: 120 g/min


Backpressure: 100 bar

Detection wavelength: 214 nm


Cycle time: 7 min


Sample solution: 70 mg dissolved in 20 ml Methanol


Injection volume: 1.9 ml


General Method R:



embedded image


General Method R is analogous to General Method L, except chiral separation occurs at the stage of intermediate F1. The separated enantiomers F1-Ent1 and F1-Ent2 are carried through the synthesis independently. Except where noted, the absolute stereochemistry was not determined. Specific Example of General Method R:


Example 13: Synthesis of tert-butyl (1S,2S,3R,5R)-2-fluoro-3-((6-(2-(methoxymethoxy)-4-(1,3,4-oxadiazol-2-yl)phenyl)pyridazin-3-yl)oxy)-8-azabicyclo[3.2.1]octane-8-carboxylate and tert-butyl (1R,2R,3S,5S)-2-fluoro-3-((6-(2-(methoxymethoxy)-4-(1,3,4-oxadiazol-2-yl)phenyl)pyridazin-3-yl)oxy)-8-azabicyclo[3.2.1]octane-8-carboxylate (Compounds 140-Ent1 and 140-Ent2)



embedded image


Step 1. Chiral separation of rac-(1S,2S,3R,5R)-tert-butyl 3-(6-chloropyridazin-3-yloxy)-2-fluoro-8-azabicyclo[3.2.1]octane-8-carboxylate

1.5 g of rac-(1S,2S,3R,5R)-tert-butyl 3-(6-chloropyridazin-3-yloxy)-2-fluoro-8-azabicyclo[3.2.1]octane-8-carboxylate was separated by chiral chromatography by the following method to give 620 mg of the first eluting isomer called 140-F1-Ent1 (retention time: 1.58 min) and 500 mg of the second eluting enantiomer called 140-F1-Ent2 (retention time: 2.45 min):


Instrument: SFC-200 (Thar, Waters)
Column: AD 20*250 mm, 10 um (Daicel)

Column temperature: 35° C.


Mobile phase: CO2/MEOH (0.2% Methanol Ammonia)=90/10


Flow rate: 140 g/min


Backpressure: 100 bar

Detection wavelength: 214 nm


Cycle time: 4.0 min


Sample solution: 1500 mg dissolved in 75 ml Methanol


Injection volume: 2.5 ml


Step 2. Synthesis of tert-butyl (1S,2S,3R,5R)-2-fluoro-3-((6-(2-(methoxymethoxy)-4-(1,3,4-oxadiazol-2-yl)phenyl)pyridazin-3-yl)oxy)-8-azabicyclo[3.2.1]octane-8-carboxylate and Synthesis of tert-butyl (1S,2S,3R,5R)-2-fluoro-3-((6-(2-(methoxymethoxy)-4-(1,3,4-oxadiazol-2-yl)phenyl)pyridazin-3-yl)oxy)-8-azabicyclo[3.2.1]octane-8-carboxylate

To the mixture of 140-F1-Ent2 (130 mg, 0.36 mmol) and of 2-(3-(methoxymethoxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1,3,4-oxadiazole (0.35 mmol, prepared in situ as describe above) was added Pd(dppf)Cl2 (53 mg, 0.075 mmol), K2CO3 (100 mg, 0.75 mmol) and water (2 mL). The mixture was degassed and heated at 100° C. for 1h under nitrogen atmoshphere. After cooling to room temperature, the mixture was concentrated and purified by silica gel column (0-50% EtOAc/petroleum ether) to give 100 mg 140-L1-Ent2 as a yellowish solid. LCMS: m/z 528.3 [M+H]+; tR=1.78 min.


To the mixture of 2-(3-(methoxymethoxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1,3,4-oxadiazole (0.35 mmol, prepared in situ as describe above) was added 140-F1-Ent1 (130 mg, 0.36 mmol), Pd(dppf)Cl2 (53 mg, 0.075 mmol), K2CO3 (100 mg, 0.75 mmol) and water (2 mL). The mixture was degassed and heated at 100° C. for 1h under nitrogen atmoshphere. After cooling to room temperature, concentrated and purified by silica gel column (0-50% EtOAc/petroleum ether) to give 100 mg 140-L1-Ent1 (54% yield) as a yellowish solid. LCMS: m/z 528.3 [M+H]+; tR=1.78 min.


Step 3. Synthesis of 2-(6-(((1S,2S,3R,5R)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-5-(1,3,4-oxadiazol-2-yl)phenol and Synthesis of 2-(6-(((1S,2S,3R,5R)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)pyridazin-3-yl)-5-(1,3,4-oxadiazol-2-yl)phenol

To a mixture of 140-L1-Ent2 (100 mg, 0.19 mmol) in CH2Cl2 (3 mL) was added TLA (3 mL). The mixture was stirred at room temperature for 2 h. The mixture was concentrated to dryness. The residue was dissolved in water and saturated NaHCO3 aqueous solution was added till pH to 8-9. The mixture was extracted with CH2Cl2/MeOH (10/1 v/v, 10 mL×3). The combined organic solvents were concentrated and dried on lyophilizer to give 35 mg of 140-Ent2 (48% yield). 1H NMR (400 MHz, DMSO-d6) δ 12.39 (s, 1H), 9.39 (s, 1H), 8.42 (d, J=9.4 Hz, 1H), 8.13 (d, J=8.1 Hz, 1H), 7.73-7.56 (m, 2H), 7.46 (d, J=9.4 Hz, 1H), 5.68-5.32 (m, 1H), 5.16-4.70 (m, 1H), 3.79-3.55 (m, 2H), 2.16-2.01 (m, 1H), 1.92-1.76 (m, 3H), 1.74-1.61 (m, 2H). LCMS: m/z 384.0 [M+H]+; tR=1.51 min.


To the mixture of 140-L1-Ent1 (100 mg, 0.19 mmol) in CH2Cl2 (3 mL) was added TLA (3 mL). The mixture was stirred at room temperature for 2 h and concentrated to dryness. The residue was dissolved in water and saturated NaHCO3 aqueous solution was added till pH to 8-9. The mixture was extracted with CH2Cl2/MeOH (10/1 v/v, 10 mL×3). The combined organic solvents were concentrated and dried on lyophilizer to give 35 mg of 140-Ent1 (48% yield). 1H NMR (400 MHz, DMSO-d6) δ12.39 (s, 1H), 9.39 (s, 1H), 8.42 (d, J=9.4 Hz, 1H), 8.13 (d, J=8.1 Hz, 1H), 7.73-7.56 (m, 2H), 7.46 (d, J=9.4 Hz, 1H), 5.68-5.32 (m, 1H), 5.16-4.70 (m, 1H), 3.79-3.55 (m, 2H), 2.16-2.01 (m, 1H), 1.92-1.76 (m, 3H), 1.74-1.61 (m, 2H). LCMS: m/z 384.0 [M+H]+; tR=1.51 min.


Compounds Made by General Method R:



embedded image


embedded image


embedded image


General Method S:

General Method S follows the synthetic approach described in General Method L, but no chiral chromatography is necessary




embedded image


Synthesis of (1R,3r,5S)-tert-butyl 3-(6-chloropyridazin-3-yloxy)-7-fluoro-9-azabicyclo[3.3.1]nonane-9-carboxylate

3,6-dichloropyridazine (124 mg, 0.834 mmol) was added to a stirred solution of (1R,3s,5S,7r)-tert-butyl 3-fluoro-7-hydroxy-9-azabicyclo[3.3.1]nonane-9-carboxylate (180 mg, 0.695 mmol) and NaH (111 mg, 2.78 mmol, 60% in mineral oil) in 18 mL of THF at 0° C. under nitrogen protection. After the addition, the mixture was then stirred at 50° C. for 3 h. The mixture was cooled to 0° C., quenched with H2O (20 mL) and extracted with EtOAc (20 mL×3). The combined organic solvents were washed with brine (20 mL), dried over anhydrous Na2SO4, concentrated and purified by silica gel column (0-88% EtOAc/petroleum ether) to give 329 mg of (1R,3r,5S)-tert-butyl 3-(6-chloropyridazin-3-yloxy)-7-fluoro-9-azabicyclo[3.3.1]nonane-9-carboxylate as a white solid (85% yield). LCMS: m/z 394.1 [M+Na]+; tR=2.13 min. Synthesis of (1R,5S,7r)-3-fluoro-7-(6-(2-(methoxymethoxy)-4-(1-(tetrahydro-2H-pyran-2-yl)-1H-pyrazol-4-yl)phenyl)pyridazin-3-yloxy)-9-azabicyclo[3.3.1]nonane


A mixture of (1R,3r,5S)-fart-butyl 3-(6-chloropyridazin-3-yloxy)-7-fluoro-9-azabicyclo[3.3.1]nonane-9-carboxylate (219 mg, 0.59 mmol), 4-(3-(methoxymethoxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1-(tetrahydro-2H-pyran-2-yl)-1H-pyrazole (293 mg, 0.708 mmol), Pd(dppf)Cl2 (86 mg, 0.118 mmol), K2CO3 (163 mg, 1.18 mmol) in 4 mL of dioxane and 0.8 mL of H2O was degassed and stirred at 100° C. for 2 h. The mixture was concentrated and purified by silica gel column (100% EtOAc/petroleum ether) to give 120 mg of (1R,5S,7r)-3-fluoro-7-(6-(2-(methoxymethoxy)-4-(1-(tetrahydro-2H-pyran-2-yl)-1H-pyrazol-4-yl)phenyl)pyridazin-3-yloxy)-9-azabicyclo[3.3.1]nonane as a white solid (45% yield). LCMS: m z 624.3 [M+H]+; tR=2.25 min.


Synthesis of 2-(6-((1R,5S,7r)-7-fluoro-9-azabicyclo[3.3.1]nonan-3-yloxy)pyridazin-3-yl)-5-(1H-pyrazol-4-yl)phenol

To the mixture of (1R,5S,7r)-3-fluoro-7-(6-(2-(methoxymethoxy)-4-(1-(tetrahydro-2H-pyran-2-yl)-1H-pyrazol-4-yl)phenyl)pyridazin-3-yloxy)-9-azabicyclo[3.3.1]nonane (120 mg, 0.19 mmol) in CH2Cl2 (2 mL) and MeOH (1 mL) was added 4N HCl in dioxane (5 mL). The mixture was stirred at 25° C. for 2 h and concentrated to dryness. The residue was dissolved in water and saturated K2CO3 aqueous solution was added till pH to 8-9. The mixture was extracted with CH2Cl2/MeOH 10:1 (v/v, 100 mL×3). The combined organic solvents were concentrated and purified by silica gel column (15% MeOH/CH2Cl2) to give 44 mg of 2-(6-((1R,3r,5S)-7-fluoro-9-azabicyclo[3.3.1]nonan-3-yloxy)pyridazin-3-yl)-5-(1H-pyrazol-4-yl)phenol as a yellow solid (48% yield). 1H NMR (400 MHz, DMSO-d6) δ 13.15 (s, 1H), 13.01 (s, 1H), 8.44 (d, J=9.7 Hz, 1H), 8.28-8.02 (m, 2H), 7.92 (d, J=8.3 Hz, 1H), 7.39 (d, J=9.5 Hz, 1H), 7.28-7.19 (m, 2H), 5.56-5.40 (m, 1H), 5.30-5.03 (m, 1H), 3.42 (s, 2H), 2.28-2.11 (m, 4H), 1.83-1.65 (m, 4H). LCMS: m/z 426.2 [M+H]+; tR=1.52 min.


General Method U:



embedded image


General Method U is analogous to general Method K except the chiral separation was performed on intermediate F1.




embedded image


General Method X:

Compounds prepared by general method X follow general method F, replacing the amino alcohol AA with an amino thiol.




embedded image


Compounds can be made via General method S wherein an Amino Thiol (AT) as either the free thiol or as an acetate is treated with base and added to 2,5 dichloropyridazine to afford X1. Pyridazine X1 is coupled to a boronic acid or Ester BB1 to afford compound X2. Compound X2 is further coupled with a group P cycle either via a boronic acid or ester such as BB2, or by making a bond to the nitrogen of a heterocycle P, to afford intermediate X3. Intermediate X3 is then separated by chiral chromatography into the enantiomers X3-Ent1 and X3-Ent2. Unless where noted, the absolute configuration of X3-Ent1 and X3-Ent2 was not determined.


Compounds 151-Ent1 and 151-Ent2 were made by General Method X:




embedded image


General Method Y: Compounds prepared by Method Y follow the procedure for Method F with chiral separation performed on the final compound rather than at intermediate F3.


Compounds made by General Method Y:




embedded image


In some embodiments, exemplary SMSM compounds are summarized in Table 5.









TABLE 5







exemplary SMSM compounds








Compound
Structure/Name












 1
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-




3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol




2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-




3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol





 2
Ent1/Ent2


embedded image











embedded image









2-(6-(((1R,2R,3S,5S)-2-fluoro-1,5-dimethyl-8-azabicyclo[3.2.1]




octan-3-yl)oxy)pyridazin-3-yl)-5-(1H-pyrazol-4-yl)phenol




2-(6-(((1S,2S,3R,5R)-2-fluoro-1,5-dimethyl-8-azabicyclo[3.2.1]




octan-3-yl)oxy)pyridazin-3-yl)-5-(1H-pyrazol-4-yl)phenol





 35
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3R,5R)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)




pyridazin-3-yl)-5-(1H-pyrazol-1-yl)phenol




2-(6-(((1R,2R,3S,5S)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)




pyridazin-3-yl)-5-(1H-pyrazol-1-yl)phenol





 36
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3R,5R)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)




pyridazin-3-yl)-5-(1H-imidazol-1-yl)phenol




2-(6-(((1R,2R,3S,5S)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)




pyridazin-3-yl)-5-(1H-imidazol-1-yl)phenol





 40
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)




pyridazin-3-yl)-5-(1H-pyrazol-4-yl)phenol




2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)




pyridazin-3-yl)-5-(1H-pyrazol-4-yl)phenol





 41
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2R,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)




pyridazin-3-yl)-5-(1H-pyrazol-4-yl)phenol




2-(6-(((1R,2S,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)




pyridazin-3-yl)-5-(1H-pyrazol-4-yl)phenol





 42
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3R,5R)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)




pyridazin-3-yl)-5-(1H-pyrazol-4-yl)phenol




2-(6-(((1R,2R,3S,5S)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)




pyridazin-3-yl)-5-(1H-pyrazol-4-yl)phenol





 43
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2R,3R,5R)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)




pyridazin-3-yl)-5-(1H-pyrazol-4-yl)phenol




2-(6-(((1R,2S,3S,5S)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)




pyridazin-3-yl)-5-(1H-pyrazol-4-yl)phenol





 46
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,3R,5R)-6,6-difluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)




pyridazin-3-yl)-5-(1H-pyrazol-4-yl)phenol




2-(6-(((1R,3S,5S)-6,6-difluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)




pyridazin-3-yl)-5-(1H-pyrazol-4-yl)phenol





 49
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2R,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)




pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol




2-(6-(((1R,2S,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)




pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol





 51
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,3R,5R)-6,6-difluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)




pyridazin-3-yl)-5-(1H-imidazol-1-yl)phenol




2-(6-(((1R,3S,5S)-6,6-difluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)




pyridazin-3-yl)-5-(1H-imidazol-1-yl)phenol





 53
Ent1/Ent2


embedded image











embedded image









4-(4-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)




pyridazin-3-yl)-3-hydroxyphenyl)pyridin-2(1H)-one




4-(4-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)




pyridazin-3-yl)-3-hydroxyphenyl)pyridin-2(1H)-one





 54
Ent1/Ent2


embedded image











embedded image









4-(4-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)




pyridazin-3-yl)-3-hydroxyphenyl)-1-methylpyridin-2(1H)-one




4-(4-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)




pyridazin-3-yl)-3-hydroxyphenyl)-1-methylpyridin-2(1H)-one





 56
Ent1/Ent2


embedded image











embedded image









4-fluoro-2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)




oxy)pyridazin-3-yl)-5-(1H-pyrazol-4-yl)phenol




4-fluoro-2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)




oxy)pyridazin-3-yl)-5-(1H-pyrazol-4-yl)phenol





 57
Ent1/Ent2


embedded image











embedded image









4-(2-fluoro-4-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-




yl)oxy)pyridazin-3-yl)-5-hydroxyphenyl)pyridin-2(1H)-one




4-(2-fluoro-4-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-




yl)oxy)pyridazin-3-yl)-5-hydroxyphenyl)pyridin-2(1H)-one





 58
Ent1/Ent2


embedded image











embedded image









4-(2-fluoro-4-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-




yl)oxy)pyridazin-3-yl)-5-hydroxyphenyl)-1-methylpyridin-2(1H)-one




4-(2-fluoro-4-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-




yl)oxy)pyridazin-3-yl)-5-hydroxyphenyl)-1-methylpyridin-2(1H)-one





 60
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3R,5R)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)




pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol




2-(6-(((1R,2R,3S,5S)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)




pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol





 61
Ent1/Ent2


embedded image











embedded image









4-fluoro-2-(6-(((1S,2S,3R,5R)-2-fluoro-8-azabicyclo[3.2.1]octan-3-




yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol




4-fluoro-2-(6-(((1R,2R,3S,5S)-2-fluoro-8-azabicyclo[3.2.1]octan-3-




yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol





 63
Ent1/Ent2


embedded image











embedded image









5-(6-(((1S,2S,3R,5R)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)




pyridazin-3-yl)-2-(1-methyl-1H-pyrazol-4-yl)pyridin-4-ol




5-(6-(((1R,2R,3S,5S)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)




pyridazin-3-yl)-2-(1-methyl-1H-pyrazol-4-yl)pyridin-4-ol





 64
Ent1/Ent2


embedded image











embedded image









5-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)




pyridazin-3-yl)-2-(1-methyl-1H-pyrazol-4-yl)pyridin-4-ol




5-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)




pyridazin-3-yl)-2-(1-methyl-1H-pyrazol-4-yl)pyridin-4-ol





 66
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)




pyridazin-3-yl)-5-(1H-pyrazol-3-yl)phenol




2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)




pyridazin-3-yl)-5-(1H-pyrazol-3-yl)phenol





 67
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)




pyridazin-3-yl)-5-(6-methylpyridin-3-yl)phenol




2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)




pyridazin-3-yl)-5-(6-methylpyridin-3-yl)phenol





 68
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)




pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-3-yl)phenol




2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)




pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-3-yl)phenol





 69
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)




pyridazin-3-yl)-5-(1H-1,2,3-triazol-1-yl)phenol




2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)




pyridazin-3-yl)-5-(1H-1,2,3-triazol-1-yl)phenol





 70
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)




pyridazin-3-yl)-5-(3-methyl-1H-1,2,4-triazol-1-yl)phenol




2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)




pyridazin-3-yl)-5-(3-methyl-1H-1,2,4-triazol-1-yl)phenol





 71
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)




pyridazin-3-yl)-5-(2-methylthiazol-4-yl)phenol




2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)




pyridazin-3-yl)-5-(2-methylthiazol-4-yl)phenol





 72
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)




pyridazin-3-yl)-5-(3-methylisoxazol-4-yl)phenol




2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)




pyridazin-3-yl)-5-(3-methylisoxazol-4-yl)phenol





 73
Ent1/Ent2


embedded image











embedded image









5-([1,2,4]triazolo[4,3-a]pyridin-6-yl)-2-(6-(((1S,2S,3R,5R)-2-fluoro-9-




azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)phenol




5-([1,2,4]triazolo[4,3-a]pyridin-6-yl)-2-(6-(((1R,2R,3S,5S)-2-fluoro-9-




azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)phenol





 74
Ent1/Ent2


embedded image











embedded image









6-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)-5-hydroxy-3-methylbenzo[d]oxazol-2(3H)-one




6-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)-5-hydroxy-3-methylbenzo[d]oxazol-2(3H)-one





 75
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)-5-(6-methylpyridazin-3-yl)phenol




2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)-5-(6-methylpyridazin-3-yl)phenol





 76
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)-5-(6-methoxypyridazin-4-yl)phenol




2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)-5-(6-methoxypyridazin-4-yl)phenol





 77
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)-5-(pyridin-2-yl)phenol




2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)-5-(pyridin-2-yl)phenol





 78
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)-5-(5-methylpyrazin-2-yl)phenol




2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)-5-(5-methylpyrazin-2-yl)phenol





 79
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)-3-(pyrazin-2-yl)phenol




2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)-5-(pyrazin-2-yl)phenol





 80
Ent1/Ent2


embedded image











embedded image









6-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)isoquinolin-7-ol




6-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)isoquinolin-7-ol





 81
Ent1/Ent2


embedded image











embedded image









7-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)isoquinolin-6-ol




7-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)isoquinolin-6-ol





 82
Ent1/Ent2


embedded image











embedded image









4-fluoro-2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)




pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol




4-fluoro-2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)




pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol





 83
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)-5-(imidazo[1,2-a]pyridin-7-yl)phenol




2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)-5-(imidazo[1,2-a]pyridin-7-yl)phenol





 84
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-




5-(imidazo[1,2-a]pyridin-6-yl)phenol




2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-




5-(imidazo[1,2-a]pyridin-6-yl)phenol





 85
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)-5-(imidazo[1,5-a]pyridin-6-yl)phenol




2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)-5-(imidazo[1,5-a]pyridin-6-yl)phenol





 86
Ent1/Ent2


embedded image











embedded image









5-([1,2,4]triazolo[4,3-a]pyridin-7-yl)-2-(6-(((1S,2S,3R,5R)-2-fluoro-9-




azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)phenol




5-([1,2,4]triazolo[4,3-a]pyridin-7-yl)-2-(6-(((1R,2R,3S,5S)-2-fluoro-9-




azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)phenol





 87
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)-5-(pyridazin-4-yl)phenol




2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)-5-(pyridazin-4-yl)phenol





 88
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)-5-(2-methylpyridin-4-yl)phenol




2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)-5-(2-methylpyridin-4-yl)phenol





 89
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)-5-(5-methylpyridin-3-yl)phenol




2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)-5-(5-methylpyridin-3-yl)phenol





 90
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)-5-(6-methylpyridazin-4-yl)phenol




2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)-5-(6-methylpyridazin-4-yl)phenol





 91
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)-5-(pyrazolo[1,5-a]pyridin-3-yl)phenol




2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)-5-(pyrazolo[1,5-a]pyridin-3-yl)phenol





 92
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)-5-(2-methyloxazol-4-yl)phenol




2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)-5-(2-methyloxazol-4-yl)phenol





 93
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)-5-(2-methyloxazol-5-yl)phenol




2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)-5-(2-methyloxazol-5-yl)phenol





 94
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)-5-(5-methyl-1,3,4-oxadiazol-2-yl)phenol




2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)-5-(5-methyl-1,3,4-oxadiazol-2-yl)phenol





 95
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)-5-(5-methyl-1,3,4-thiadiazol-2-yl)phenol




2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)-5-(5-methyl-1,3,4-thiadiazol-2-yl)phenol





 96
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,4R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)-5-(2-methylthiazol-5-yl)phenol




2-(6-(((1R,2R,4S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)-5-(2-methylthiazol-5-yl)phenol





 97
Ent1/Ent2


embedded image











embedded image









5-(4-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)-3-hydroxyphenyl)-3-methyloxazol-2(3H)-one




5-(4-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)-3-hydroxyphenyl)-3-methyloxazol-2(3H)-one





 98
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-




5-(5-methylfuran-3-yl)phenol




2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-




5-(5-methylfuran-3-yl)phenol





 99
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)-5-(5-methylfuran-2-yl)phenol




2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)-5-(5-methylfuran-2-yl)phenol





100
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-




yl)-5-(5-methylthiophen-2-yl)phenol




2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-




yl)-5-(5-methylthiophen-2-yl)phenol





101
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-




yl)-5-(5-methylthiophen-3-yl)phenol




2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-




yl)-5-(5-methylthiophen-3-yl)phenol





102
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-




yl)-5-(6-methylpyrazin-2-yl)phenol




2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-




yl)-5-(6-methylpyrazin-2-yl)phenol





103
Ent1/Ent2


embedded image











embedded image









6-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)quinolin-7-ol




6-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)quinolin-7-ol





104
Ent1/Ent2


embedded image











embedded image









7-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)quinoxalin-6-ol




7-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)quinoxalin-6-ol





105
Ent1/Ent2


embedded image











embedded image









7-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)quinolin-6-ol




7-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)quinolin-6-ol





106
Ent1/Ent2


embedded image











embedded image









4-(4-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)-3-hydroxyphenyl)-1-(fluoromethyl)pyridin-2(1H)-one




4-(4-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)-3-hydroxyphenyl)-1-(fluoromethyl)pyridin-2(1H)-one





107
Ent1/Ent2


embedded image











embedded image









4-(4-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)-3-hydroxyphenyl)-1-methylpyrimidin-2(1H)-one




4-(4-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-




3-yl)-3-hydroxyphenyl)-1-methylpyrimidin-2(1H)-one





109
Ent1/Ent2


embedded image











embedded image









5-(3-fluoro-1-methyl-1H-pyrazol-4-yl)-2-(6-(((1S,2S,3R,5R)-2-fluoro-9-




azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)phenol




5-(3-fluoro-1-methyl-1H-pyrazol-4-yl)-2-(6-(((1R,2R,3S,5S)-2-fluoro-9-




azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)phenol





110
Ent1/Ent2


embedded image











embedded image









4-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-




yl)oxy)pyridazin-3-yl)-3-hydroxybenzonitrile




4-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-




yl)oxy)pyridazin-3-yl)-3-hydroxybenzonitrile





111
Ent1/Ent2


embedded image











embedded image









4-(6-(((1S,2S,3R,5R)-2-fluoro-8-azabicyclo[3.2.1]octan-3-




yl)oxy)pyridazin-3-yl)-3-hydroxybenzonitrile




4-(6-(((1R,2R,3S,5S)-2-fluoro-8-azabicyclo[3.2.1]octan-3-




yl)oxy)pyridazin-3-yl)-3-hydroxybenzonitrile





113
Ent1/Ent2


embedded image









2-(6-(((1R,3r,5S,7s)-7-fluoro-9-azabicyclo[3.3.1]nonan-3-




yl)oxy)pyridazin-3-yl)-5-(1H-pyrazol-4-yl)phenol





114
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3R,5R)-2-fluoro-8-azabicyclo[3.2.1]octan-3-




yl)oxy)pyridazin-3-yl)-5-(1H-indazol-1-yl)phenol




2-(6-(((1R,2R,3S,5S)-2-fluoro-8-azabicyclo[3.2.1]octan-3-




yl)oxy)pyridazin-3-yl)-5-(1H-indazol-1-yl)phenol





115
Ent1/Ent2


embedded image











embedded image









5-(3-fluoro-1H-pyrazol-1-yl)-2-(6-(((1R,2R,3S,5S)-2-fluoro-9-




azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)phenol




5-(3-fluoro-1H-pyrazol-1-yl)-2-(6-(((1S,2S,3R,5R)-2-fluoro-9-




azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)phenol





116
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-




yl)oxy)pyridazin-3-yl)-5-(1,3,4-thiadiazol-2-yl)phenol




2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-




yl)oxy)pyridazin-3-yl)-5-(1,3,4-thiadiazol-2-yl)phenol





117
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)




oxy)pyridazin-3-yl)-5-(1,3,4-oxadiazol-2-yl)phenol




2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-




yl)oxy)pyridazin-3-yl)-5-(1,3,4-oxadiazol-2-yl)phenol





118
Ent1/Ent2


embedded image











embedded image









3-fluoro-2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-




3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol




3-fluoro-2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-




3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol





119
Ent1/Ent2


embedded image











embedded image









2-fluoro-6-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-




3-yl)oxy)pyridazin-3-yl)-3-(1-methyl-1H-pyrazol-4-yl)phenol




2-fluoro-6-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-




3-yl)oxy)pyridazin-3-yl)-3-(1-methyl-1H-pyrazol-4-yl)phenol





120
Ent1/Ent2


embedded image











embedded image









4-chloro-2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-




3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol




4-chloro-2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-




3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol





121
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3S,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)




oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol




2-(6-(((1R,2R,3R,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)




oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol





122
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2R,3S,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)




oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol




2-(6-(((1R,2S,3R,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)




oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol





123
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,5S,6S,7R)-6-fluoro-3-oxa-9-azabicyclo[3.3.1]nonan-7-




yl)oxy)pyridazin-3-yl)-5-(1H-pyrazol-4-yl)phenol




2-(6-(((1R,5R,6R,7S)-6-fluoro-3-oxa-9-azabicyclo[3.3.1]nonan-7-




yl)oxy)pyridazin-3-yl)-5-(1H-pyrazol-4-yl)phenol





124
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,5S,6S,7R)-6-fluoro-3-oxo-9-azabicyclo[3.3.1]nonan-7-yl)




oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrzol-4-yl)phenol




2-(6-(((1R,5R,6R,7S)-6-fluoro-3-oxo-9-azabicyclo[3.3.1]nonan-7-yl)




oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrzol-4-yl)phenol





125
Ent1/Ent2


embedded image











embedded image









6-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)




pyridazin-3-yl)-7-hydroxy-2-methylisoquinolin-1(2H)-one




6-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)




pyridazin-3-yl)-7-hydroxy-2-methylisoquinolin-1(2H)-one





126
Ent1/Ent2


embedded image











embedded image









6-(6-(((1R,2R,3S,5S)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)




pyridazin-3-yl)-7-hydroxy-2-methylisoquinolin-1(2H)-one




6-(6-(((1S,2S,3R,5R)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)




pyridazin-3-yl)-7-hydroxy-2-methylisoquinolin-1(2H)-one





127
Ent1/Ent2


embedded image











embedded image









6-(6-(((1S,2S,3R,5R)-2-fluoro-1,5-dimethyl-8-azabicyclo[3.2.1]octan-3-




yl)oxy)pyridazin-3-yl)-7-hydroxy-2-methylisoquinolin-1(2H)-one




6-(6-(((1R,2R,3S,5S)-2-fluoro-1,5-dimethyl-8-azabicyclo[3.2.1]octan-3-




yl)oxy)pyridazin-3-yl)-7-hydroxy-2-methylisoquinolin-1(2H)-one





128
Ent1/Ent2


embedded image











embedded image









7-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)




pyridazin-3-yl)-6-hydroxy-2-methylisoquinolin-1(2H)-one




7-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)




pyridazin-3-yl)-6-hydroxy-2-methylisoquinolin-1(2H)-one





129
Ent1/Ent2


embedded image











embedded image









7-(6-(((1S,2S,3R,5R)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)




pyridazin-3-yl)-6-hydroxy-2-methylisoquinolin-1(2H)-one




7-(6-(((1R,2R,3S,5S)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)




pyridazin-3-yl)-6-hydroxy-2-methylisoquinolin-1(2H)-one





130
Ent1/Ent2


embedded image











embedded image









7-(6-(((1S,2S,3R,5R)-2-fluoro-1,5-dimethyl-8-azabicyclo[3.2.1]octan-3-




yl)oxy)pyridazin-3-yl)-6-hydroxy-2-methylisoquinolin-1(2H)-one




7-(6-(((1R,2R,3S,5S)-2-fluoro-1,5-dimethyl-8-azabicyclo[3.2.1]octan-3-




yl)oxy)pyridazin-3-yl)-6-hydroxy-2-methylisoquinolin-1(2H)-one





131
Ent1/Ent2


embedded image











embedded image









6-(6-(((1S,2S,3R,5R)-2-fluoro-1,5-dimethyl-9-azabicyclo[3.3.1]nonan-




3-yl)oxy)pyridazin-3-yl)-7-hydroxy-1-methylquinolin-4(1H)-one




6-(6-(((1R,2R,3S,5S)-2-fluoro-1,5-dimethyl-9-azabicyclo[3.3.1]nonan-




3-yl)oxy)pyridazin-3-yl)-7-hydroxy-1-methylquinolin-4(1H)-one





132
Ent1/Ent2


embedded image











embedded image









7-(6-(((1S,2S,3R,5R)-2-fluoro-1,5-dimethyl-9-azabicyclo[3.3.1]nonan-




3-yl)oxy)pyridazin-3-yl)-6-hydroxy-1-methylquinolin-4(1H)-one




7-(6-(((1R,2R,3S,5S)-2-fluoro-1,5-dimethyl-9-azabicyclo[3.3.1]nonan-




3-yl)oxy)pyridazin-3-yl)-6-hydroxy-1-methylquinolin-4(1H)-one





133
Ent1/Ent2


embedded image











embedded image









6-(6-(((1S,2S,3R,5R)-2-fluoro-1,5-dimethyl-9-azabicyclo[3.3.1]nonan-




3-yl)oxy)pyridazin-3-yl)-7-hydroxy-3-methylquinazolin-4(3H)-one




6-(6-(((1R,2R,3S,5S)-2-fluoro-1,5-dimethyl-9-azabicyclo[3.3.1]nonan-




3-yl)oxy)pyridazin-3-yl)-7-hydroxy-3-methylquinazolin-4(3H)-one





134
Ent1/Ent2


embedded image











embedded image









6-(6-(((1S,2S,3R,5R)-2-fluoro-1,5-dimethyl-8-azabicyclo[3.2.1]octan-




3-yl)oxy)pyridazin-3-yl)-7-hydroxy-3-methylquinazolin-4(3H)-one




6-(6-(((1R,2R,3S,5S)-2-fluoro-1,5-dimethyl-8-azabicyclo[3.2.1]octan-




3-yl)oxy)pyridazin-3-yl)-7-hydroxy-3-methylquinazolin-4(3H)-one





135
Ent1/Ent2


embedded image











embedded image









6-(6-(((1S,2S,3R,5R)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)




oxy)pyridin-3-yl)-7-hydroxy-N-methylquinoline-2-carboxamide




6-(6-(((1R,2R,3S,5S)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)




oxy)pyridin-3-yl)-7-hydroxy-N-methylquinoline-2-carboxamide





136
Ent1/Ent2


embedded image











embedded image









6-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)




pyridazin-3-yl)-7-hydroxy-N-methylquinoline-2-carboxamide




6-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)




pyridazin-3-yl)-7-hydroxy-N-methylquinoline-2-carboxamide





137
Ent1/Ent2


embedded image











embedded image









6-(6-(((1S,2S,3R,5R)-2-fluoro-1,5-dimethyl-9-azabicyclo[3.3.1]nonan-3-




yl)oxy)pyridazin-3-yl)-7-hydroxy-N-methylquinoline-2-carboxamide




6-(6-(((1R,2R,3S,5S)-2-fluoro-1,5-dimethyl-9-azabicyclo[3.3.1]nonan-3-




yl)oxy)pyridazin-3-yl)-7-hydroxy-N-methylquinoline-2-carboxamide





138
Ent1/Ent2


embedded image











embedded image









6-(4-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)




pyridazin-3-yl)-3-hydroxyphenyl)-3-methylpyrimidin-4(3H)-one




6-(4-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)




pyridazin-3-yl)-3-hydroxyphenyl)-3-methylpyrimidin-4(3H)-one





139
Ent1/Ent2


embedded image











embedded image









6-(4-(6-(((1S,2S,3R,5R)-2-fluoro-1,5-dimethyl-9-azabicyclo[3.3.1]nonan-3-




yl)oxy)pyridazin-3-yl)-3-hydroxyphenyl)-3-methylpyrimidin-4(3H)-one




6-(4-(6-(((1R,2R,3S,5S)-2-fluoro-1,5-dimethyl-9-azabicyclo[3.3.1]nonan-3-




yl)oxy)pyridazin-3-yl)-3-hydroxyphenyl)-3-methylpyrimidin-4(3H)-one





140
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3R,5R)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)




pyridazin-3-3-yl)-5-(1,3,4-oxadiazol-2-yl)phenol




2-(6-(((1R,2R,3S,5S)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)oxy)




pyridazin-3-3-yl)-5-(1,3,4-oxadiazol-2-yl)phenol





141
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3R,5R)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)




oxy)pyridazin-3-yl)-5-(1,3,4-thiadiazol-2-yl)phenol




2-(6-(((1R,2R,3S,5S)-2-fluoro-8-azabicyclo[3.2.1]octan-3-yl)




oxy)pyridazin-3-yl)-5-(1,3,4-thiadiazol-2-yl)phenol





142
Ent1/Ent2


embedded image











embedded image









4-fluoro-2-(6-(((1S,2S,3R,5R)-2-fluoro-8-azabicyclo[3.2.1]




octan-3-yl)oxy)pyridazin-3-yl)-5-(1,3,4-oxadiazol-2-yl)phenol




4-fluoro-2-(6-(((1R,2R,3S,5S)-2-fluoro-8-azabicyclo[3.2.1]




octan-3-yl)oxy)pyridazin-3-yl)-5-(1,3,4-oxadiazol-2-yl)phenol





143
Ent1/Ent2


embedded image











embedded image









4-fluoro-2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]




nonan-3-yl)oxy)pyridazin-3-yl)-5-(1,3,4-oxadiazol-2-yl)phenol




4-fluoro-2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]




nonan-3-yl)oxy)pyridazin-3-yl)-5-(1,3,4-oxadiazol-2-yl)phenol





145
Ent1/Ent2


embedded image











embedded image









4-(6-(((1S,2S,3R,5R)-2-fluoro-1,5-dimethyl-9-azabicyclo[3.3.1]




nonan-3-yl)oxy)pyridazin-3-yl)-3-hydroxybenzonitrile




4-(6-(((1R,2R,3S,5S)-2-fluoro-1,5-dimethyl-9-azabicyclo[3.3.1]




nonan-3-yl)oxy)pyridazin-3-yl)-3-hydroxybenzonitrile





147
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3R,5R)-2-fluoro-1,5-dimethyl-9-azabicyclo[3.3.1]




nonan-3-yl)oxy)pyridazin-3-yl)-5-(1H-pyrazol-4-yl)phenol




2-(6-(((1R,2R,3S,5S)-2-fluoro-1,5-dimethyl-9-azabicyclo[3.3.1]




nonan-3-yl)oxy)pyridazin-3-yl)-5-(1H-pyrazol-4-yl)phenol





149
Ent1/Ent2


embedded image











embedded image









4-(4-(6-(((1S,2S,3R,5R)-2-fluoro-1,5-dimethyl-9-azabicyclo[3.3.1]nonan-




3-yl)oxy)pyridazin-3-yl)-3-hydroxyphenyl)-1-methylpyridin-2(1H)-one




4-(4-(6-(((1R,2R,3S,5S)-2-fluoro-1,5-dimethyl-9-azabicyclo[3.3.1]nonan-




3-yl)oxy)pyridazin-3-yl)-3-hydroxyphenyl)-1-methylpyridin-2(1H)-one





150
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3R,5R)-2-fluoro-1,5-dimethyl-8-azabicyclo[3.2.1]octan-




3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol




2-(6-(((1R,2R,3S,5S)-2-fluoro-1,5-dimethyl-8-azabicyclo[3.2.1]octan-




3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol





151
Ent1/Ent2


embedded image











embedded image









4-fluoro-2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]




nonan-3-yl)thio)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol




4-fluoro-2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]




nonan-3-yl)thio)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol





152
Ent1/Ent2


embedded image











embedded image









4-(6-(((1S,2S,3R,5R)-2-fluoro-1,5-dimethyl-8-azabicyclo[3.2.1]




octan-3-yl)oxy)pyridazin-3-yl)-3-hydroxybenzonitrile




4-(6-(((1R,2R,3S,5S)-2-fluoro-1,5-dimethyl-8-azabicyclo[3.2.1]




octan-3-yl)oxy)pyridazin-3-yl)-3-hydroxybenzonitrile





153
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3R,5R)-2-fluoro-1,5-dimethyl-8-azabicyclo[3.2.1]




octan-3-yl)oxy)pyridazin-3-yl)-5-(1H-pyrazol-1-yl)phenol




2-(6-(((1R,2R,3S,5S)-2-fluoro-1,5-dimethyl-8-azabicyclo[3.2.1]




octan-3-yl)oxy)pyridazin-3-yl)-5-(1H-pyrazol-1-yl)phenol





154
Ent1/Ent2


embedded image











embedded image









2-(6-(((1R,2R,3S,5S)-2-fluoro-1,5-dimethyl-9-azabicyclo[3.3.1]




nonan-3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol




2-(6-(((1S,2S,3R,5R)-2-fluoro-1,5-dimethyl-9-azabicyclo[3.3.1]




nonan-3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol





155
Ent1/Ent2


embedded image











embedded image









6-(6-(((1S,2S,3R,5R)-2-fluoro-1,5-dimethyl-9-azabicyclo[3.3.1]nonan-3-




yl)oxy)pyridazin-3-yl)-5-hydroxy-N,N-dimethylbenzofuran-2-carboxamide




6-(6-(((1R,2R,3S,5S)-2-fluoro-1,5-dimethyl-9-azabicyclo[3.3.1]nonan-3-




yl)oxy)pyridazin-3-yl)-5-hydroxy-N,N-dimethylbenzofuran-2-carboxamide





156
Ent1/Ent2


embedded image











embedded image









6-(6-(((1S,2S,3R,5R)-2-fluoro-1,5-dimethyl-9-azabicyclo[3.3.1]nonan-




3-yl)oxy)pyridazin-3-yl)-7-hydroxy-2-methylisoquinolin-1(2H)-one




6-(6-(((1R,2R,3S,5S)-2-fluoro-1,5-dimethyl-9-azabicyclo[3.3.1]nonan-




3-yl)oxy)pyridazin-3-yl)-7-hydroxy-2-methylisoquinolin-1(2H)-one





157
Ent1/Ent2


embedded image











embedded image









2-(6-(((1S,2S,3R,5R)-2-fluoro-1,5-dimethyl-8-azabicyclo[3.2.1]octan-3-




yl)oxy)pyridazin-3-yl)-5-(6-methoxypyridazin-4-yl)phenol




2-(6-(((1R,2R,3S,5S)-2-fluoro-1,5-dimethyl-8-azabicyclo[3.2.1]octan-3-




yl)oxy)pyridazin-3-yl)-5-(6-methoxypyridazin-4-yl)phenol









In some embodiments, disclosed herein is a pharmaceutically acceptable salt or pharmaceutically acceptable solvate of a compound in Table 5.









TABLE A







Synthetic Route Information and Spectral Data















General
Building
Building
Building
Building




Synthesis
Block 1
Block 2
Block 3
Block 4


Cmpd
Ent
Method
(BB1)
(BB2)
(BB3)
(BB4)















1
Ent1
F
2-(4-chloro-2-
1-methyl-1H-






(methoxymethoxy)phenyl)-
pyrazol-4-





4,4,5,5-tetramethyl-
yl)boronic acid





1,3,2-dioxaborolane


1
Ent2
F
2-(4-chloro-2-
1-methyl-1H-





(methoxymethoxy)phenyl)-
pyrazol-4-





4,4,5,5-tetramethyl-
yl)boronic acid





1,3,2-dioxaborolane


2
Ent1
F
2-(4-chloro-2-
4-(4,4,5,5-





(methoxymethoxy)phenyl)-
tetramethyl-1,3,2-





4,4,5,5-tetramethyl-
dioxaborolan-2-





1,3,2-dioxaborolane
yl)-1H-pyrazole


2
Ent2
F
2-(4-chloro-2-
4-(4,4,5,5-





(methoxymethoxy)phenyl)-
tetramethyl-1,3,2-





4,4,5,5-tetramethyl-
dioxaborolan-2-





1,3,2-dioxaborolane
yl)-1H-pyrazole


35
Ent1
F
2-(4-chloro-2-
Pyrazole





(methoxymethoxy)phenyl)-





4,4,5,5-tetramethyl-





1,3,2-dioxaborolane


35
Ent2
F
2-(4-chloro-2-
Pyrazole





(methoxymethoxy)phenyl)-





4,4,5,5-tetramethyl-





1,3,2-dioxaborolane


36
Ent1
F
2-(4-chloro-2-
Imidazole





(methoxymethoxy)phenyl)-





4,4,5,5-tetramethyl-





1,3,2-dioxaborolane


36
Ent2
F
2-(4-chloro-2-
Imidazole





(methoxymethoxy)phenyl)-





4,4,5,5-tetramethyl-





1,3,2-dioxaborolane


40
Ent1
F
2-(4-chloro-2-
pyrazole-4-





(methoxymethoxy)phenyl)-
boronic acid





4,4,5,5-tetramethyl-
pinacol ester





1,3,2-dioxaborolane


40
Ent2
F
2-(4-chloro-2-
pyrazole-4-





(methoxymethoxy)phenyl)-
boronic acid





4,4,5,5-tetramethyl-
pinacol ester





1,3,2-dioxaborolane


41
Ent2
F
2-(4-chloro-2-
pyrazole-4-





(methoxymethoxy)phenyl)-
boronic acid





4,4,5,5-tetramethyl-
pinacol ester





1,3,2-dioxaborolane


41
Ent1
F
2-(4-chloro-2-
pyrazole-4-





(methoxymethoxy)phenyl)-
boronic acid





4,4,5,5-tetramethyl-
pinacol ester





1,3,2-dioxaborolane


42
Ent1
F
2-(4-chloro-2-
pyrazole-4-





(methoxymethoxy)phenyl)-
boronic acid





4,4,5,5-tetramethyl-
pinacol ester





1,3,2-dioxaborolane


42
Ent2
F
2-(4-chloro-2-
pyrazole-4-





(methoxymethoxy)phenyl)-
boronic acid





4,4,5,5-tetramethyl-
pinacol ester





1,3,2-dioxaborolane


43
Ent1
F
2-(4-chloro-2-
pyrazole-4-





(methoxymethoxy)phenyl)-
boronic acid





4,4,5,5-tetramethyl-
pinacol ester





1,3,2-dioxaborolane


43
Ent2
F
2-(4-chloro-2-
pyrazole-4-





(methoxymethoxy)phenyl)-
boronic acid





4,4,5,5-tetramethyl-
pinacol ester





1,3,2-dioxaborolane


46
Ent1
F
2-(4-chloro-2-
pyrazole-4-





(methoxymethoxy)phenyl)-
boronic acid





4,4,5,5-tetramethyl-
pinacol ester





1,3,2-dioxaborolane


46
Ent2
F
2-(4-chloro-2-
pyrazole-4-





(methoxymethoxy)phenyl)-
boronic acid





4,4,5,5-tetramethyl-
pinacol ester





1,3,2-dioxaborolane


49
Ent1
F
2-(4-chloro-2-
1-methyl-1H-





(methoxymethoxy)phenyl)-
pyrazol-4-





4,4,5,5-tetramethyl-
yl)boronic acid





1,3,2-dioxaborolane


49
Ent2
F
2-(4-chloro-2-
1-methyl-1H-





(methoxymethoxy)phenyl)-
pyrazol-4-





4,4,5,5-tetramethyl-
yl)boronic acid





1,3,2-dioxaborolane


51
Ent1
F
2-(4-chloro-2-
imidazole





(methoxymethoxy)phenyl)-





4,4,5,5-tetramethyl-





1,3,2-dioxaborolane


51
Ent2
F
2-(4-chloro-2-
imidazole





(methoxymethoxy)phenyl)-





4,4,5,5-tetramethyl-





1,3,2-dioxaborolane


53
Ent1
F
2-(4-chloro-2-
4-(4,4,5,5-





(methoxymethoxy)phenyl)-
tetramethyl-1,3,2-





4,4,5,5-tetramethyl-
dioxaborolan-2-





1,3,2-dioxaborolane
yl)-1H-pyridin-2-






one


53
Ent2
F
2-(4-chloro-2-
4-(4,4,5,5-





(methoxymethoxy)phenyl)-
tetramethyl-1,3,2-





4,4,5,5-tetramethyl-
dioxaborolan-2-





1,3,2-dioxaborolane
yl)-1H-pyridin-2-






one


54
Ent1
F
2-(4-chloro-2-
(1-methyl-2-oxo-





(methoxymethoxy)phenyl)-
1,2-





4,4,5,5-tetramethyl-
dihydropyridin-4-





1,3,2-dioxaborolane
yl)boronic acid


54
Ent2
F
2-(4-chloro-2-
(1-methyl-2-oxo-





(methoxymethoxy)phenyl)-
1,2-





4,4,5,5-tetramethyl-
dihydropyridin-4-





1,3,2-dioxaborolane
yl)boronic acid


56
Ent1
G
2-(4-chloro-5-fluoro-2-
pyrazole-4-





(methoxymethoxy)phenyl)-
boronic acid





4,4,5,5-tetramethyl-
pinacol ester





1,3,2-dioxaborolane


56
Ent2
G
2-(4-chloro-5-fluoro-2-
pyrazole-4-





(methoxymethoxy)phenyl)-
boronic acid





4,4,5,5-tetramethyl-
pinacol ester





1,3,2-dioxaborolane


57
Ent1
G
2-(4-chloro-5-fluoro-2-
4-(4,4,5,5-





(methoxymethoxy)phenyl)-
tetramethyl-1,3,2-





4,4,5,5-tetramethyl-
dioxaborolan-2-





1,3,2-dioxaborolane
yl)-1H-pyridin-2-






one


57
Ent2
G
2-(4-chloro-5-fluoro-2-
4-(4,4,5,5-





(methoxymethoxy)phenyl)-
tetramethyl-1,3,2-





4,4,5,5-tetramethyl-
dioxaborolan-2-





1,3,2-dioxaborolane
yl)-1H-pyridin-2-






one


58
Ent1
G
2-(4-chloro-5-fluoro-2-
(1-methyl-2-oxo-





(methoxymethoxy)phenyl)-
1,2-





4,4,5,5-tetramethyl-
dihydropyridin-4-





1,3,2-dioxaborolane
yl)boronic acid


58
Ent2
G
2-(4-chloro-5-fluoro-2-
(1-methyl-2-oxo-





(methoxymethoxy)phenyl)-
1,2-





4,4,5,5-tetramethyl-
dihydropyridin-4-





1,3,2-dioxaborolane
yl)boronic acid


60
Ent1
F
2-(4-chloro-2-
1-methyl-1H-





(methoxymethoxy)phenyl)-
pyrazol-4-





4,4,5,5-tetramethyl-
yl)boronic acid





1,3,2-dioxaborolane


60
Ent2
F
2-(4-chloro-2-
1-methyl-1H-





(methoxymethoxy)phenyl)-
pyrazol-4-





4,4,5,5-tetramethyl-
yl)boronic acid





1,3,2-dioxaborolane


61
Ent1
F
2-(4-chloro-5-fluoro-2-
1-methyl-1H-





(methoxymethoxy)phenyl)-
pyrazol-4-





4,4,5,5-tetramethyl-
yl)boronic acid





1,3,2-dioxaborolane


61
Ent2
F
2-(4-chloro-5-fluoro-2-
1-methyl-1H-





(methoxymethoxy)phenyl)-
pyrazol-4-





4,4,5,5-tetramethyl-
yl)boronic acid





1,3,2-dioxaborolane


63
ENT1
I
(4-(benzyloxy)-6-
1-methyl-1H-





chloropyridin-3-
pyrazol-4-





yl)boronic acid
yl)boronic acid


63
ENT2
I
(4-(benzyloxy)-6-
1-methyl-1H-





chloropyridin-3-
pyrazol-4-





yl)boronic acid
yl)boronic acid


64
ENT1
I
(4-(benzyloxy)-6-
1-methyl-1H-





chloropyridin-3-
pyrazol-4-





yl)boronic acid
yl)boronic acid


64
ENT2
I
(4-(benzyloxy)-6-
1-methyl-1H-





chloropyridin-3-
pyrazol-4-





yl)boronic acid
yl)boronic acid


66
Ent1
F
2-(4-chloro-2-
5-(4,4,5,5-





(methoxymethoxy)phenyl)-
tetramethyl-1,3,2-





4,4,5,5-tetramethyl-
dioxaborolan-2-





1,3,2-dioxaborolane
yl)-1H-pyrazole


66
Ent2
F
2-(4-chloro-2-
5-(4,4,5,5-





(methoxymethoxy)phenyl)-
tetramethyl-1,3,2-





4,4,5,5-tetramethyl-
dioxaborolan-2-





1,3,2-dioxaborolane
yl)-1H-pyrazole


67
Ent2
F
2-(4-chloro-2-
2-methyl-5-





(methoxymethoxy)phenyl)-
(4,4,5,5-





4,4,5,5-tetramethyl-
tetramethyl-1,3,2-





1,3,2-dioxaborolane
dioxaborolan-2-






yl)pyridine


67
Ent1
F
2-(4-chloro-2-
2-methyl-5-





(methoxymethoxy)phenyl)-
(4,4,5,5-





4,4,5,5-tetramethyl-
tetramethyl-1,3,2-





1,3,2-dioxaborolane
dioxaborolan-2-






yl)pyridine


68
Ent1
F
2-(4-chloro-2-
1-methyl-3-





(methoxymethoxy)phenyl)-
(4,4,5,5-





4,4,5,5-tetramethyl-
tetramethyl-1,3,2-





1,3,2-dioxaborolane
dioxaborolan-2-






yl)-1H-pyrazole


68
Ent2
F
2-(4-chloro-2-
1-methyl-3-





(methoxymethoxy)phenyl)-
(4,4,5,5-





4,4,5,5-tetramethyl-
tetramethyl-1,3,2-





1,3,2-dioxaborolane
dioxaborolan-2-






yl)-1H-pyrazole


69
ENT1
L


2-(4,4,5,5-tetramethyl-1,3,2-







dioxaborolan-2-yl)-5-(1H-







1,2,3-triazol-1-yl)phenol


69
Ent2
L


2-(4,4,5,5-tetramethyl-1,3,2-







dioxaborolan-2-yl)-5-(1H-







1,2,3-triazol-1-yl)phenol


70
Ent1
F
2-(4-chloro-2-





(methoxymethoxy)phenyl)-





4,4,5,5-tetramethyl-





1,3,2-dioxaborolane


70
Ent2
F
2-(4-chloro-2-
3-methyl-1H-





(methoxymethoxy)phenyl)-
1,2,4-triazole





4,4,5,5-tetramethyl-





1,3,2-dioxaborolane


71
ENT1
K
2-(4-chloro-2-
4-bromo-2-





(methoxymethoxy)phenyl)-
methylthiazole





4,4,5,5-tetramethyl-





1,3,2-dioxaborolane


71
ENT2
K
2-(4-chloro-2-
4-bromo-2-





(methoxymethoxy)phenyl)-
methylthiazole





4,4,5,5-tetramethyl-





1,3,2-dioxaborolane


72
Ent1
G
2-(4-chloro-2-
3-methyl-4-





(methoxymethoxy)phenyl)-
(4,4,5,5-





4,4,5,5-tetramethyl-
tetramethyl-1,3,2-





1,3,2-dioxaborolane
dioxaborolan-2-






yl)isoxazole


72
Ent2
G
2-(4-chloro-2-
3-methyl-4-





(methoxymethoxy)phenyl)-
(4,4,5,5-





4,4,5,5-tetramethyl-
tetramethyl-1,3,2-





1,3,2-dioxaborolane
dioxaborolan-2-






yl)isoxazole


73
Ent1
K
2-(4-chloro-2-
6-bromo-





(methoxymethoxy)phenyl)-
[1,2,4]triazolo[4,3-





4,4,5,5-tetramethyl-
a]pyridine





1,3,2-dioxaborolane


73
Ent2
K
2-(4-chloro-2-
6-bromo-





(methoxymethoxy)phenyl)-
[1,2,4]triazolo[4,3-





4,4,5,5-tetramethyl-
a]pyridine





1,3,2-dioxaborolane


74
ENT1
L


5-(methoxymethoxy)-3-methyl-







6-(4,4,5,5-tetramethyl-







1,3,2-dioxaborolan-2-







yl)benzo[d]oxazol-2(3H)-one


74
ENT2
L


5-(methoxymethoxy)-3-methyl-







6-(4,4,5,5-tetramethyl-







1,3,2-dioxaborolan-2-







yl)benzo[d]oxazol-2(3H)-one


75
Ent1
K
2-(4-chloro-2-
3-chloro-6-





(methoxymethoxy)phenyl)-
methylpyridazine





4,4,5,5-tetramethyl-





1,3,2-dioxaborolane


75
Ent2
K
2-(4-chloro-2-
3-chloro-6-





(methoxymethoxy)phenyl)-
methylpyridazine





4,4,5,5-tetramethyl-





1,3,2-dioxaborolane


76
Ent1
G
2-(4-chloro-2-
(6-





(methoxymethoxy)phenyl)-
methoxypyridazin-





4,4,5,5-tetramethyl-
4-yl)boronic acid





1,3,2-dioxaborolane


76
Ent2
G
2-(4-chloro-2-
(6-





(methoxymethoxy)phenyl)-
methoxypyridazin-





4,4,5,5-tetramethyl-
4-yl)boronic acid





1,3,2-dioxaborolane


77
ENT2
K
2-(4-chloro-2-
2-chloro-pyridine





(methoxymethoxy)phenyl)-





4,4,5,5-tetramethyl-





1,3,2-dioxaborolane


77
ENT1
K
2-(4-chloro-2-
2-chloro-pyridine





(methoxymethoxy)phenyl)-





4,4,5,5-tetramethyl-





1,3,2-dioxaborolane


78
ENT1
K
2-(4-chloro-2-
2-chloro-5-





(methoxymethoxy)phenyl)-
methylpyrazine





4,4,5,5-tetramethyl-





1,3,2-dioxaborolane


78
ENT2
K
2-(4-chloro-2-
2-chloro-5-





(methoxymethoxy)phenyl)-
methylpyrazine





4,4,5,5-tetramethyl-





1,3,2-dioxaborolane


79
ENT1
K
2-(4-chloro-2-
2-chloropyrazine





(methoxymethoxy)phenyl)-





4,4,5,5-tetramethyl-





1,3,2-dioxaborolane


79
ENT2
K
2-(4-chloro-2-
2-chloropyrazine





(methoxymethoxy)phenyl)-





4,4,5,5-tetramethyl-





1,3,2-dioxaborolane


80
ENT1
M


7-(methoxymethoxy)-6-(4,4,5,5-







tetramethyl-1,3,2-dioxaborolan-







2-yl)isoquinoline


80
Ent2
M


7-(methoxymethoxy)-6-(4,4,5,5-







tetramethyl-1,3,2-dioxaborolan-







2-yl)isoquinoline


81
ENT1
M


6-(methoxymethoxy)-7-(4,4,5,5-







tetramethyl-1,3,2-dioxaborolan-







2-yl)isoquinoline


81
ENT2
M


6-(methoxymethoxy)-7-(4,4,5,5-







tetramethyl-1,3,2-dioxaborolan-







2-yl)isoquinoline


82
Ent1
G
2-(4-chloro-5-fluoro-2-
1-methyl-1H-





(methoxymethoxy)phenyl)-
pyrazol-4-





4,4,5,5-tetramethyl-
yl)boronic acid





1,3,2-dioxaborolane


82
Ent2
G
2-(4-chloro-5-fluoro-2-
1-methyl-1H-





(methoxymethoxy)phenyl)-
pyrazol-4-





4,4,5,5-tetramethyl-
yl)boronic acid





1,3,2-dioxaborolane


83
Ent1
G
2-(4-chloro-2-
7-(4,4,5,5-





(methoxymethoxy)phenyl)-
tetramethyl-1,3,2-





4,4,5,5-tetramethyl-
dioxaborolan-2-





1,3,2-dioxaborolane
yl)imidazo[1,2-






a]pyridine


83
Ent2
G
2-(4-chloro-2-
7-(4,4,5,5-





(methoxymethoxy)phenyl)-
tetramethyl-1,3,2-





4,4,5,5-tetramethyl-
dioxaborolan-2-





1,3,2-dioxaborolane
yl)imidazo[1,2-






a]pyridine


84
ENT1
K
2-(4-chloro-2-
6-





(methoxymethoxy)phenyl)-
bromoimidazo[1,2-





4,4,5,5-tetramethyl-
a]pyridine





1,3,2-dioxaborolane


84
ENT2
K
2-(4-chloro-2-
6-





(methoxymethoxy)phenyl)-
bromoimidazo[1,2-





4,4,5,5-tetramethyl-
a]pyridine





1,3,2-dioxaborolane


85
ENT1
K
2-(4-chloro-2-
6-





(methoxymethoxy)phenyl)-
bromoimidazo[1,5-





4,4,5,5-tetramethyl-
a]pyridine





1,3,2-dioxaborolane


85
ENT2
K
2-(4-chloro-2-
6-





(methoxymethoxy)phenyl)-
bromoimidazo[1,5-





4,4,5,5-tetramethyl-
a]pyridine





1,3,2-dioxaborolane


86
ENT1
K
2-(4-chloro-2-
7-bromo-





(methoxymethoxy)phenyl)-
[1,2,4]triazolo[4,3-





4,4,5,5-tetramethyl-
a]pyridine





1,3,2-dioxaborolane


86
ENT2
K
2-(4-chloro-2-
7-bromo-





(methoxymethoxy)phenyl)-
[1,2,4]triazolo[4,3-





4,4,5,5-tetramethyl-
a]pyridine





1,3,2-dioxaborolane


87
ENT2
K
2-(4-chloro-2-
4-





(methoxymethoxy)phenyl)-
bromopyridazine





4,4,5,5-tetramethyl-





1,3,2-dioxaborolane


87
ENT1
K
2-(4-chloro-2-
4-





(methoxymethoxy)phenyl)-
bromopyridazine





4,4,5,5-tetramethyl-





1,3,2-dioxaborolane


88
ENT1
K
2-(4-chloro-2-
4-bromo-2-





(methoxymethoxy)phenyl)-
methylpyridine





4,4,5,5-tetramethyl-





1,3,2-dioxaborolane


88
ENT2
K
2-(4-chloro-2-
4-bromo-2-





(methoxymethoxy)phenyl)-
methylpyridine





4,4,5,5-tetramethyl-





1,3,2-dioxaborolane


89
ENT1
K
2-(4-chloro-2-
3-bromo-5-





(methoxymethoxy)phenyl)-
methylpyridine





4,4,5,5-tetramethyl-





1,3,2-dioxaborolane


89
ENT2
K
2-(4-chloro-2-
3-bromo-5-





(methoxymethoxy)phenyl)-
methylpyridine





4,4,5,5-tetramethyl-





1,3,2-dioxaborolane


90
ENT1
K
2-(4-chloro-2-
5-chloro-3-





(methoxymethoxy)phenyl)-
methylpyridazine





4,4,5,5-tetramethyl-





1,3,2-dioxaborolane


90
ENT2
K
2-(4-chloro-2-
5-chloro-3-





(methoxymethoxy)phenyl)-
methylpyridazine





4,4,5,5-tetramethyl-





1,3,2-dioxaborolane


91
Ent1
G
2-(4-chloro-2-
3-(4,4,5,5-





(methoxymethoxy)phenyl)-
tetramethyl-1,3,2-





4,4,5,5-tetramethyl-
dioxaborolan-2-





1,3,2-dioxaborolane
yl)pyrazolo[1,5-






a]pyridine


91
Ent2
G
2-(4-chloro-2-
3-(4,4,5,5-





(methoxymethoxy)phenyl)-
tetramethyl-1,3,2-





4,4,5,5-tetramethyl-
dioxaborolan-2-





1,3,2-dioxaborolane
yl)pyrazolo[1,5-






a]pyridine


92
ENT1
N


4-(3-(benzyloxy)-4-(4,4,5-







trimethyl-1,3,2-dioxaborolan-







2-yl)phenyl)-2-methyloxazole


92
Ent2
N


4-(3-(benzyloxy)-4-(4,4,5-







trimethyl-1,3,2-dioxaborolan-







2-yl)phenyl)-2-methyloxazole


93
Ent1
G
2-(4-chloro-2-
2-methyl-5-





(methoxymethoxy)phenyl)-
(4,4,5,5-





4,4,5,5-tetramethyl-
tetramethyl-1,3,2-





1,3,2-dioxaborolane
dioxaborolan-2-






yl)oxazole


93
Ent2
G
2-(4-chloro-2-
2-methyl-5-





(methoxymethoxy)phenyl)-
(4,4,5,5-





4,4,5,5-tetramethyl-
tetramethyl-1,3,2-





1,3,2-dioxaborolane
dioxaborolan-2-






yl)oxazole


94
ENT1
K
2-(4-chloro-2-
2-bromo-5-





(methoxymethoxy)phenyl)-
methyl-1,3,4-





4,4,5,5-tetramethyl-
oxadiazole





1,3,2-dioxaborolane


94
ENT2
K
2-(4-chloro-2-
2-bromo-5-





(methoxymethoxy)phenyl)-
methyl-1,3,4-





4,4,5,5-tetramethyl-
oxadiazole





1,3,2-dioxaborolane


95
ENT1
K
2-(4-chloro-2-
2-bromo-5-





(methoxymethoxy)phenyl)-
methyl-1,3,4-





4,4,5,5-tetramethyl-
thiadiazole





1,3,2-dioxaborolane


95
ENT2
K
2-(4-chloro-2-
2-bromo-5-





(methoxymethoxy)phenyl)-
methyl-1,3,4-





4,4,5,5-tetramethyl-
thiadiazole





1,3,2-dioxaborolane


96
ENT1
K
2-(4-chloro-2-
5-bromo-2-





(methoxymethoxy)phenyl)-
methylthiazole





4,4,5,5-tetramethyl-





1,3,2-dioxaborolane


96
ENT2
K
2-(4-chloro-2-
5-bromo-2-





(methoxymethoxy)phenyl)-
methylthiazole





4,4,5,5-tetramethyl-





1,3,2-dioxaborolane


97
ENT2
N


5-(3-(benzyloxy)-4-(4,4,5,5-







tetramethyl-1,3,2-dioxaborolan-







2-yl)phenyl)-3-methyloxazol-







2(3H)-one


97
ENT1
N


5-(3-(benzyloxy)-4-(4,4,5,5-







tetramethyl-1,3,2-dioxaborolan-







2-yl)phenyl)-3-methyloxazol-







2(3H)-one


98
ENT1
N


2-(2-(benzyloxy)-4-(5-methylfuran-







3-yl)phenyl)-4,4,5,5-tetramethyl-







1,3,2-dioxaborolane


98
ENT2
N


2-(2-(benzyloxy)-4-(5-methylfuran-







3-yl)phenyl)-4,4,5,5-tetramethyl-







1,3,2-dioxaborolane


99
ENT1
K
2-(4-chloro-2-
2-bromo-5-





(methoxymethoxy)phenyl)-
methylfuran





4,4,5,5-tetramethyl-





1,3,2-dioxaborolane


99
ENT2
K
2-(4-chloro-2-
2-bromo-5-





(methoxymethoxy)phenyl)-
methylfuran





4,4,5,5-tetramethyl-





1,3,2-dioxaborolane


100
ENT1
K
2-(4-chloro-2-
2-bromo-5-





(methoxymethoxy)phenyl)-
methylthiophene





4,4,5,5-tetramethyl-





1,3,2-dioxaborolane


100
ENT2
K
2-(4-chloro-2-
2-bromo-5-





(methoxymethoxy)phenyl)-
methylthiophene





4,4,5,5-tetramethyl-





1,3,2-dioxaborolane


101
ENT1
K
2-(4-chloro-2-
4-bromo-2-





(methoxymethoxy)phenyl)-
methylthiophene





4,4,5,5-tetramethyl-





1,3,2-dioxaborolane


101
ENT2
K
2-(4-chloro-2-
4-bromo-2-





(methoxymethoxy)phenyl)-
methylthiophene





4,4,5,5-tetramethyl-





1,3,2-dioxaborolane


102
ENT1
K
2-(4-chloro-2-
2-chloro-6-





(methoxymethoxy)phenyl)-
methylpyrazine





4,4,5,5-tetramethyl-





1,3,2-dioxaborolane


102
ENT2
K
2-(4-chloro-2-
2-chloro-6-





(methoxymethoxy)phenyl)-
methylpyrazine





4,4,5,5-tetramethyl-





1,3,2-dioxaborolane


103
ENT1
L


7-(methoxymethoxy)-6-(4,4,5,5-







tetramethyl-1,3,2-dioxaborolan-







2-yl)quinoline


103
ENT2
L


7-(methoxymethoxy)-6-(4,4,5,5-







tetramethyl-1,3,2-dioxaborolan-







2-yl)quinoline


104
ENT1
O


104
ENT2
O


105
ENT1
L


6-(methoxymethoxy)-7-(4,4,5,5-







tetramethyl-1,3,2-dioxaborolan-







2-yl)quinoline


105
ENT2
L


6-(methoxymethoxy)-7-(4,4,5,5-







tetramethyl-1,3,2-dioxaborolan-







2-yl)quinoline


106
ENT1
K
2-(4-chloro-2-
4-bromo-1-





(methoxymethoxy)phenyl)-
(fluoromethyl)pyridin-





4,4,5,5-tetramethyl-
2(1H)-one





1,3,2-dioxaborolane


106
ENT2
K
2-(4-chloro-2-
4-bromo-1-





(methoxymethoxy)phenyl)-
(fluoromethyl)pyridin-





4,4,5,5-tetramethyl-
2(1H)-one





1,3,2-dioxaborolane


107
ENT1
N


4-(3-(benzyloxy)-4-(4,4,5,5-







tetramethyl-1,3,2-dioxaborolan-







2-yl)phenyl)-1-methylpyrimidin-







2(1H)-one


107
Ent2
N


4-(3-(benzyloxy)-4-(4,4,5,5-







tetramethyl-1,3,2-dioxaborolan-







2-yl)phenyl)-1-methylpyrimidin-







2(1H)-one


109
ENT1
K
2-(4-chloro-2-
4-bromo-3-fluoro-





(methoxymethoxy)phenyl)-
1-methyl-1H-





4,4,5,5-tetramethyl-
pyrazole





1,3,2-dioxaborolane


109
ENT2
K
2-(4-chloro-2-
4-bromo-3-fluoro-





(methoxymethoxy)phenyl)-
1-methyl-1H-





4,4,5,5-tetramethyl-
pyrazole





1,3,2-dioxaborolane


110
ENT1
L


3-(methoxymethoxy)-4-(4,4,5,5-







tetramethyl-1,3,2-dioxaborolan-







2-yl)benzonitrile


110
ENT2
L


3-(methoxymethoxy)-4-(4,4,5,5-







tetramethyl-1,3,2-dioxaborolan-







2-yl)benzonitrile


111
ENT1
L


3-(methoxymethoxy)-4-(4,4,5,5-







tetramethyl-1,3,2-dioxaborolan-







2-yl)benzonitrile


111
ENT2
L


3-(methoxymethoxy)-4-(4,4,5,5-







tetramethyl-1,3,2-dioxaborolan-







2-yl)benzonitrile


113

S


4-(3-(methoxymethoxy)-4-(4,4,5,5-







tetramethyl-1,3,2-dioxaborolan-







2-yl)phenyl)-1-(tetrahydro-2H-







pyran-2-yl)-1H-pyrazole


114
Ent1
G
2-(4-chloro-2-
1H-indazole





(methoxymethoxy)phenyl)-





4,4,5,5-tetramethyl-





1,3,2-dioxaborolane


114
ENT2
G
2-(4-chloro-2-
1H-indazole





(methoxymethoxy)phenyl)-





4,4,5,5-tetramethyl-





1,3,2-dioxaborolane


115
ENT1
G
2-(4-chloro-2-
3-fluoro-1H-





(methoxymethoxy)phenyl)-
pyrazole





4,4,5,5-tetramethyl-





1,3,2-dioxaborolane


115
ENT2
G
2-(4-chloro-2-
3-fluoro-1H-





(methoxymethoxy)phenyl)-
pyrazole





4,4,5,5-tetramethyl-





1,3,2-dioxaborolane


116
ENT1
N


2-(3-(benzyloxy)-4-(4,4,5,5-







tetramethyl-1,3,2-dioxaborolan-







2-yl)phenyl)-1,3,4-thiadiazole


116
ENT2
N


2-(3-(benzyloxy)-4-(4,4,5,5-







tetramethyl-1,3,2-dioxaborolan-







2-yl)phenyl)-1,3,4-thiadiazole


117
ENT1
L


2-(3-(methoxymethoxy)-4-(4,4,5,5-







tetramethyl-1,3,2-dioxaborolan-







2-yl)phenyl)-1,3,4-oxadiazole


117
ENT2
L


2-(3-(methoxymethoxy)-4-(4,4,5,5-







tetramethyl-1,3,2-dioxaborolan-







2-yl)phenyl)-1,3,4-oxadiazole


118
ENT1
F
(4-chloro-2-fluoro-6-
1-methyl-4-





hydroxyphenyl)boronic
(4,4,5,5-





acid
tetramethyl-1,3,2-






dioxaborolan-2-






yl)-1H-pyrazole


118
ENT2
F
(4-chloro-2-fluoro-6-
1-methyl-4-





hydroxyphenyl)boronic
(4,4,5,5-





acid
tetramethyl-1,3,2-






dioxaborolan-2-






yl)-1H-pyrazole


119
Ent1
F
2-(4-chloro-3-fluoro-2-
1-methyl-1H-





(methoxymethoxy)phenyl)-
pyrazol-4-





4,4,5,5-tetramethyl-
yl)boronic acid





1,3,2-dioxaborolane


119
Ent2
F
2-(4-chloro-3-fluoro-2-
1-methyl-1H-





(methoxymethoxy)phenyl)-
pyrazol-4-





4,4,5,5-tetramethyl-
yl)boronic acid





1,3,2-dioxaborolane


120
ENT2
Q


120
ENT1
Q


121
ENT1
G
2-(4-chloro-2-
1-methyl-1H-





(methoxymethoxy)phenyl)-
pyrazol-4-





4,4,5,5-tetramethyl-
yl)boronic acid





1,3,2-dioxaborolane


121
ENT2
G
2-(4-chloro-2-
1-methyl-1H-





(methoxymethoxy)phenyl)-
pyrazol-4-





4,4,5,5-tetramethyl-
yl)boronic acid





1,3,2-dioxaborolane


122
ENT1
G
2-(4-chloro-2-
1-methyl-1H-





(methoxymethoxy)phenyl)-
pyrazol-4-





4,4,5,5-tetramethyl-
yl)boronic acid





1,3,2-dioxaborolane


122
ENT2
G
2-(4-chloro-2-
1-methyl-1H-





(methoxymethoxy)phenyl)-
pyrazol-4-





4,4,5,5-tetramethyl-
yl)boronic acid





1,3,2-dioxaborolane


123
Ent1
F
2-(4-chloro-2-
pyrazole-4-





(methoxymethoxy)phenyl)-
boronic acid





4,4,5,5-tetramethyl-
pinacol ester





1,3,2-dioxaborolane


123
Ent2
F
2-(4-chloro-2-
pyrazole-4-





(methoxymethoxy)phenyl)-
boronic acid





4,4,5,5-tetramethyl-
pinacol ester





1,3,2-dioxaborolane


124
Ent1
F
2-(4-chloro-2-
1-methyl-1H-





(methoxymethoxy)phenyl)-
pyrazol-4-





4,4,5,5-tetramethyl-
yl)boronic acid





1,3,2-dioxaborolane


124
Ent2
F
2-(4-chloro-2-
1-methyl-1H-





(methoxymethoxy)phenyl)-
pyrazol-4-





4,4,5,5-tetramethyl-
yl)boronic acid





1,3,2-dioxaborolane


125
ENT2
L


7-(methoxymethoxy)-2-methyl-







6-(4,4,5,5-tetramethyl-1,3,2-







dioxaborolan-2-yl)isoquinolin-







1(2H)-one


125
ENT1
L


7-(methoxymethoxy)-2-methyl-







6-(4,4,5,5-tetramethyl-1,3,2-







dioxaborolan-2-yl)isoquinolin-







1(2H)-one


126
ENT1
L


7-(methoxymethoxy)-2-methyl-







6-(4,4,5,5-tetramethyl-1,3,2-







dioxaborolan-2-yl)isoquinolin-







1(2H)-one


126
ENT2
L


7-(methoxymethoxy)-2-methyl-







6-(4,4,5,5-tetramethyl-1,3,2-







dioxaborolan-2-yl)isoquinolin-







1(2H)-one


127
Ent1
L


7-(methoxymethoxy)-2-methyl-







6-(4,4,5,5-tetramethyl-1,3,2-







dioxaborolan-2-yl)isoquinolin-







1(2H)-one


127
Ent2
L


7-(methoxymethoxy)-2-methyl-







6-(4,4,5,5-tetramethyl-1,3,2-







dioxaborolan-2-yl)isoquinolin-







1(2H)-one


128
ENT1
L


6-(methoxymethoxy)-2-methyl-







7-(4,4,5,5-tetramethyl-1,3,2-







dioxaborolan-2-yl)isoquinolin-







1(2H)-one


128
ENT1
L


6-(methoxymethoxy)-2-methyl-







7-(4,4,5,5-tetramethyl-1,3,2-







dioxaborolan-2-yl)isoquinolin-







1(2H)-one


129
Ent2
L


6-(methoxymethoxy)-2-methyl-







7-(4,4,5,5-tetramethyl-1,3,2-







dioxaborolan-2-yl)isoquinolin-







1(2H)-one


129
Ent1
L


6-(methoxymethoxy)-2-methyl-







7-(4,4,5,5-tetramethyl-1,3,2-







dioxaborolan-2-yl)isoquinolin-







1(2H)-one


130
Ent2
L


6-(methoxymethoxy)-2-methyl-







7-(4,4,5,5-tetramethyl-1,3,2-







dioxaborolan-2-yl)isoquinolin-







1(2H)-one


130
Ent1
L


6-(methoxymethoxy)-2-methyl-







7-(4,4,5,5-tetramethyl-1,3,2-







dioxaborolan-2-yl)isoquinolin-







1(2H)-one


131
ENT1
L


6-(methoxymethoxy)-1-methyl-







7-(4,4,5,5-tetramethyl-1,3,2-







dioxaborolan-2-yl)quinolin-







4(1H)-one


131
Ent2
L


6-(methoxymethoxy)-1-methyl-







7-(4,4,5,5-tetramethyl-1,3,2-







dioxaborolan-2-yl)quinolin-







4(1H)-one


132
ENT2
L


6-(methoxymethoxy)-1-methyl-







7-(4,4,5,5-tetramethyl-1,3,2-







dioxaborolan-2-yl)quinolin-







4(1H)-one


132
ENT1
L


6-(methoxymethoxy)-1-methyl-







7-(4,4,5,5-tetramethyl-1,3,2-







dioxaborolan-2-yl)quinolin-







4(1H)-one


133
Ent1
L


7-(methoxymethoxy)-3-methyl-







6-(4,4,5,5-tetramethyl-1,3,2-







dioxaborolan-2-yl)quinazolin-







4(3H)-one


133
Ent2
L


7-(methoxymethoxy)-3-methyl-







6-(4,4,5,5-tetramethyl-1,3,2-







dioxaborolan-2-yl)quinazolin-







4(3H)-one


134
ENT1
L


7-(methoxymethoxy)-3-methyl-







6-(4,4,5,5-tetramethyl-1,3,2-







dioxaborolan-2-yl)quinazolin-







4(3H)-one


134
ENT2
L


7-(methoxymethoxy)-3-methyl-







6-(4,4,5,5-tetramethyl-1,3,2-







dioxaborolan-2-yl)quinazolin-







4(3H)-one


135
ENT1
R


7-(methoxymethoxy)-N-methyl-







6-(4,4,5,5-tetramethyl-1,3,2-







dioxaborolan-2-yl)quinoline-







2-carboxamide


135
ENT2
R


7-(methoxymethoxy)-N-methyl-







6-(4,4,5,5-tetramethyl-1,3,2-







dioxaborolan-2-yl)quinoline-







2-carboxamide


136
ENT1
R


7-(methoxymethoxy)-N-methyl-







6-(4,4,5,5-tetramethyl-1,3,2-







dioxaborolan-2-yl)quinoline-







2-carboxamide


136
ENT2
R


7-(methoxymethoxy)-N-methyl-







6-(4,4,5,5-tetramethyl-1,3,2-







dioxaborolan-2-yl)quinoline-







2-carboxamide


137
ENT2
R


7-(methoxymethoxy)-N-methyl-







6-(4,4,5,5-tetramethyl-1,3,2-







dioxaborolan-2-yl)quinoline-







2-carboxamide


137
ENT1
R


7-(methoxymethoxy)-N-methyl-







6-(4,4,5,5-tetramethyl-1,3,2-







dioxaborolan-2-yl)quinoline-







2-carboxamide


138
ENT1
K
2-(4-chloro-2-
6-chloro-3-





(methoxymethoxy)phenyl)-
methylpyrimidin-





4,4,5,5-tetramethyl-
4(3H)-one





1,3,2-dioxaborolane


138
ENT2
K
2-(4-chloro-2-
6-chloro-3-





(methoxymethoxy)phenyl)-
methylpyrimidin-





4,4,5,5-tetramethyl-
4(3H)-one





1,3,2-dioxaborolane


139
ENT1
U
(4-chloro-2-
6-chloro-3-





(methoxymethoxy)phenyl)boronic
methylpyrimidin-





acid
4(3H)-one


139
ENT2
U
(4-chloro-2-
6-chloro-3-





(methoxymethoxy)phenyl)boronic
methylpyrimidin-





acid
4(3H)-one


140
ENT2
R


2-(3-(methoxymethoxy)-4-(4,4,5,5-







tetramethyl-1,3,2-dioxaborolan-







2-yl)phenyl)-1,3,4-oxadiazole


140
ENT1
R


2-(3-(methoxymethoxy)-4-(4,4,5,5-







tetramethyl-1,3,2-dioxaborolan-







2-yl)phenyl)-1,3,4-oxadiazole


141
ENT2
R


2-(3-(methoxymethoxy)-4-(4,4,5,5-







tetramethyl-1,3,2-dioxaborolan-







2-yl)phenyl)-1,3,4-thiadiazole


141
ENT1
R


2-(3-(methoxymethoxy)-4-(4,4,5,5-







tetramethyl-1,3,2-dioxaborolan-







2-yl)phenyl)-1,3,4-thiadiazole


142
ENT2
R


2-(2-fluoro-5-(methoxymethoxy)-







4-(4,4,5,5-tetramethyl-1,3,2-







dioxaborolan-2-yl)phenyl)-1,3,4-







oxadiazole


142
ENT1
R


2-(2-fluoro-5-(methoxymethoxy)-







4-(4,4,5,5-tetramethyl-1,3,2-







dioxaborolan-2-yl)phenyl)-1,3,4-







oxadiazole


143
ENT2
R


2-(2-fluoro-5-(methoxymethoxy)-







4-(4,4,5,5-tetramethyl-1,3,2-







dioxaborolan-2-yl)phenyl)-1,3,4-







oxadiazole


143
ENT1
R


145
Ent1
M


(4-cyano-2-







(methoxymethoxy)phenyl)boronic







acid


145
Ent2
M


(4-cyano-2-







(methoxymethoxy)phenyl)boronic







acid


147
Ent1
F
2-(4-chloro-2-
pyrazole-4-





(methoxymethoxy)phenyl)-
boronic acid





4,4,5,5-tetramethyl-
pinacol ester





1,3,2-dioxaborolane


147
Ent2
F
2-(4-chloro-2-
pyrazole-4-





(methoxymethoxy)phenyl)-
boronic acid





4,4,5,5-tetramethyl-
pinacol ester





1,3,2-dioxaborolane


149
Ent1
Y
2-(4-chloro-2-
(1-methyl-2-oxo-





(methoxymethoxy)phenyl)-
1,2-





4,4,5,5-tetramethyl-
dihydropyridin-4-





1,3,2-dioxaborolane
yl)boronic acid


149
Ent2
Y
2-(4-chloro-2-
(1-methyl-2-oxo-





(methoxymethoxy)phenyl)-
1,2-





4,4,5,5-tetramethyl-
dihydropyridin-4-





1,3,2-dioxaborolane
yl)boronic acid


150
Ent1
F
2-(4-chloro-2-
1-methyl-1H-





(methoxymethoxy)phenyl)-
pyrazol-4-





4,4,5,5-tetramethyl-
yl)boronic acid





1,3,2-dioxaborolane


150
Ent2
F
2-(4-chloro-2-
1-methyl-1H-





(methoxymethoxy)phenyl)-
pyrazol-4-





4,4,5,5-tetramethyl-
yl)boronic acid





1,3,2-dioxaborolane


151
Ent1
X
2-(4-chloro-5-fluoro-2-
1-methyl-1H-





(methoxymethoxy)phenyl)-
pyrazol-4-





4,4,5,5-tetramethyl-
yl)boronic acid





1,3,2-dioxaborolane


151
Ent2
X
2-(4-chloro-5-fluoro-2-
1-methyl-1H-





(methoxymethoxy)phenyl)-
pyrazol-4-





4,4,5,5-tetramethyl-
yl)boronic acid





1,3,2-dioxaborolane


152
Ent2
L


3-(methoxymethoxy)-4-(4,4,5,5-







tetramethyl-1,3,2-dioxaborolan-







2-yl)benzonitrile


152
Ent1
L


3-(methoxymethoxy)-4-(4,4,5,5-







tetramethyl-1,3,2-dioxaborolan-







2-yl)benzonitrile


153
Ent1
F
2-(4-chloro-2-
pyrazole





(methoxymethoxy)phenyl)-





4,4,5,5-tetramethyl-





1,3,2-dioxaborolane


153
Ent2
F
2-(4-chloro-2-
pyrazole





(methoxymethoxy)phenyl)-





4,4,5,5-tetramethyl-





1,3,2-dioxaborolane


154
Ent1
Y
2-(4-chloro-2-
1-methyl-1H-





(methoxymethoxy)phenyl)-
pyrazol-4-





4,4,5,5-tetramethyl-
yl)boronic acid





1,3,2-dioxaborolane


154
Ent2
Y
2-(4-chloro-2-
1-methyl-1H-





(methoxymethoxy)phenyl)-
pyrazol-4-





4,4,5,5-tetramethyl-
yl)boronic acid





1,3,2-dioxaborolane


155
Ent2
L


5-(methoxymethoxy)-N,N-dimethyl-







6-(4,4,5,5-tetramethyl-1,3,2-







dioxaborolan-2-yl)benzofuran-







2-carboxamide


155
Ent1
L


5-(methoxymethoxy)-N,N-dimethyl-







6-(4,4,5,5-tetramethyl-1,3,2-







dioxaborolan-2-yl)benzofuran-







2-carboxamide


156
Ent1
L


7-(methoxymethoxy)-2-methyl-







6-(4,4,5,5-tetramethyl-1,3,2-







dioxaborolan-2-yl)isoquinolin-







1(2H)-one


156
Ent2
L


7-(methoxymethoxy)-2-methyl-







6-(4,4,5,5-tetramethyl-1,3,2-







dioxaborolan-2-yl)isoquinolin-







1(2H)-one


157
Ent1
K
2-(4-chloro-2-
5-chloro-3-





(methoxymethoxy)phenyl)-
methoxypyridazine





4,4,5,5-tetramethyl-





1,3,2-dioxaborolane


157
Ent2
K
2-(4-chloro-2-
5-chloro-3-





(methoxymethoxy)phenyl)-
methoxypyridazine





4,4,5,5-tetramethyl-





1,3,2-dioxaborolane
















TABLE B







Chiral Separation Conditions













Chiral

Chiral Intermediate


Cmpd
Ent
Intermediate
Chiral Chromatography
Retention Time














1
Ent1
1-F3-Ent1
Instrument: SFC-80 (Thar, Waters)
1.49





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH (0.2% Methanol Ammonia) = 50/50






Flow rate: 80 g/ min






Back pressure: 100 bar






Detection wavelength: 280 nm






Cycle time: 8 min






Sample solution: 200 mg dissolved in 15 ml Methanol






Injection volume: 4.5 ml



1
Ent2
1-F3-Ent2
Instrument: SFC-80 (Thar, Waters)
2.73





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH (0.2% Methanol Ammonia) = 50/50






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 280 nm






Cycle time: 8 min






Sample solution: 200 mg dissolved in 15 ml Methanol






Injection volume: 4.5 ml



2
Ent1
2-F3-Ent1
Instrument: SFC-80 (Thar, Waters)
1.41





Column: IG 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH (0.2% Methanol Ammonia) = 50/50






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 3 min






Sample solution: 200 mg dissolved in 15 ml Methanol






Injection volume: 1 ml



2
Ent2
2-F3-Ent2
Instrument: SFC-80 (Thar, Waters)
1.81





Column: IG 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH (0.2% Methanol Ammonia) = 50/50






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 3 min






Sample solution: 200 mg dissolved in 15 ml Methanol






Injection volume: 1 ml



35
Ent1
35-F3-Ent1
Instrument: SFC-80 (Thar, Waters)
2.86





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/EtOH (1% Methanol Ammonia) = 50/50






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 4.5 min






Sample solution: 300 mg dissolved in 18 ml Methanol






Injection volume: 1.0 ml



35
Ent2
35-F3-Ent2
Instrument: SFC-80 (Thar, Waters)
4.79





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/EtOH (l % Methanol Ammonia) = 50/50






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 4.5 min






Sample solution: 300 mg dissolved in 18 ml Methanol






Injection volume: 1.0 ml



36
Ent1
36-F3-Ent1
Instrument: SFC-80 (Thar, Waters)
2.18





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/Methanol(0.2Methanol Ammonia) = 50/50






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 254 nm






Cycle time: 3 min






Sample solution: 400 mg dissolved in 25 ml Methanol






Injection volume: 1 ml



36
Ent2
36-F3-Ent2
Instrument: SFC-80 (Thar, Waters)
3.14





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/Methanol(0.2Methanol Ammonia) = 50/50






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 254 nm






Cycle time: 3 min






Sample solution: 400 mg dissolved in 25 ml Methanol






Injection volume: 1 ml



40
Ent1
40-F3-Ent1
Instrument: SFC-80 (Thar, Waters)
1.3





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 50/50






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 4.5 min






Sample solution: 200 mg dissolved in 25 ml Methanol






Injection volume: 1.0 ml



40
Ent2
40-F3-Ent2
Instrument: SFC-80 (Thar, Waters)
2.42





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 50/50






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 4.5 min






Sample solution: 200 mg dissolved in 25 ml Methanol






Injection volume: 1.0 ml



41
Ent2
41-F3-Ent2
Instrument: SFC-80 (Thar, Waters)
2.81





Column: RRWHELK 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH(0.2% Methanol Ammonia) = 30/70






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.5 min






Sample solution: 280 mg dissolved in 15 ml Methanol






Injection volume: 2 mL



41
Ent1
41-F3-Ent1
Instrument: SFC-80 (Thar, Waters)
2.03





Column: RRWHELK 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH(0.2% Methanol Ammonia) = 30/70






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.5 min






Sample solution: 280 mg dissolved in 15 ml Methanol






Injection volume: 2 mL



42
Ent1
42-F3-Ent1
Instrument: SFC-80 (Thar, Waters)
1.74





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH (0.5% Methanol Ammonia) = 40/60






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 6 min






Sample solution: 300 mg dissolved in 30 ml Methanol






Injection volume: 1.5 ml



42
Ent2
42-F3-Ent2
Instrument: SFC-80 (Thar, Waters)
3.47





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH (0.5% Methanol Ammonia) = 40/60






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 6 min






Sample solution: 300 mg dissolved in 30 ml Methanol






Injection volume: 1.5 ml



43
Ent1
43-F3-Ent1
Instrument: SFC-80 (Thar, Waters)
1.48





Column: SSWHELK 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH (0.2% Methanol Ammonia) = 35/65






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 4.4 min






Sample solution: 200 mg dissolved in 30 ml Methanol






Injection volume: 1.5 ml



43
Ent2
43-F3-Ent2
Instrument: SFC-80 (Thar, Waters)
2.15





Column: SSWHELK 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH (0.2% Methanol Ammonia) = 35/65






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 4.4 min






Sample solution: 200 mg dissolved in 30 ml Methanol






Injection volume: 1.5 ml



46
Ent1
46-F3-Ent1
Instrument: SFC-80 (Thar, Waters)
2.04





Column: IG 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH (0.2% Methanol Ammonia) = 35/65






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 270 nm






Cycle time: 5 min






Sample solution: 180 mg dissolved in 15 ml Methanol






Injection volume: 1.2 ml



46
Ent2
46-F3-Ent2
Instrument: SFC-80 (Thar, Waters)
3.24





Column: IG 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH (0.2% Methanol Ammonia) = 35/65






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 270 nm






Cycle time: 5 min






Sample solution: 180 mg dissolved in 15 ml Methanol






Injection volume: 1.2 ml



49
Ent1
49-F3-Ent1
Instrument: SFC-80 (Thar, Waters)
3.87





Column: OD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 55/45






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 4.5 min






Sample solution: 300 mg dissolved in 12 ml Methanol






Injection volume: 1.0 ml



49
Ent2
49-F3-Ent2
Instrument: SFC-80 (Thar, Waters)
5.23





Column: OD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 55/45






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 4.5 min






Sample solution: 300 mg dissolved in 12 ml Methanol






Injection volume: 1.0 ml



51
Ent1
51-F3-Ent1
Instrument: SFC-80 (Thar, Waters)
2.46





Column: OJ 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH(0.2% Methanol Ammonia) = 80/20






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 6.0 min






Sample solution: 250 mg dissolved in 25 ml Methanol






Injection volume: 1.9 ml



51
Ent2
51-F3-Ent2
Instrument: SFC-80 (Thar, Waters)
3.97





Column: OJ 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH(0.2% Methanol Ammonia) = 80/20






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 6.0 min






Sample solution: 250 mg dissolved in 25 ml Methanol






Injection volume: 1.9 ml



53
Ent1
53-F3-Ent1
Instrument: Gilson-281
9.55





Column: AY 20*250, 10 um






Mobile Phase: n-Hexane(0.1% DEA):ETOH(0.1% DEA) = 65:35






Run time per injection: 15 min






Injection: 0.6 ml






Sample solution: 260 mg in 13 mL MEOH



53
Ent2
53-F3-Ent2
Instrument: Gilson-281
13.6





Column: AY 20*250, 10 um






Mobile Phase: n-Hexane(0.1% DEA):ETOH(0.1% DEA) = 65:35






Run time per injection: 15 min






Injection: 0.6 ml






Sample solution: 260 mg in 13 mL MEOH



54
Ent1
54-F3-Ent1
Instrument: SFC-80 (Thar, Waters)
1.71





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH = 35/65






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 7 min






Sample solution: 250 mg dissolved in 15 ml Methanol






Injection volume: 4.5 ml



54
Ent2
54-F3-Ent2
Instrument: SFC-80 (Thar, Waters)
2.92





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH = 35/65






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 7 min






Sample solution: 250 mg dissolved in 15 ml Methanol






Injection volume: 4.5 ml



56
Ent1
56-F2-Ent1
Instrument: SFC-80 (Thar, Waters)
2.06





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 45/55






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.0 min






Sample solution: 1800 mg dissolved in 25 ml Methanol






Injection volume: 1.9 ml



56
Ent2
56-F2-Ent2
Instrument: SFC-80 (Thar, Waters)
2.87





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 45/55






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.0 min






Sample solution: 1800 mg dissolved in 25 ml Methanol






Injection volume: 1.9 ml



57
Ent1
57-F2-Ent1
Instrument: SFC-80 (Thar, Waters)
2.06





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 45/55






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.0 min






Sample solution: 1800 mg dissolved in 25 ml Methanol






Injection volume: 1.9 ml



57
Ent2
57-F2-Ent2
Instrument: SFC-80 (Thar, Waters)
2.87





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 45/55






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.0 min






Sample solution: 1800 mg dissolved in 25 ml Methanol






Injection volume: 1.9 ml



58
Ent1
58-F2-Ent1
Instrument: SFC-80 (Thar, Waters)
2.06





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 45/55






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.0 min






Sample solution: 1800 mg dissolved in 25 ml Methanol






Injection volume: 1.9 ml



58
Ent2
58-F2-Ent2
Instrument: SFC-80 (Thar, Waters)
2.87





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 45/55






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.0 min






Sample solution: 1800 mg dissolved in 25 ml Methanol






Injection volume: 1.9 ml



60
Ent1
60-F3-Ent1
Instrument: SFC-80 (Thar, Waters)
1.71





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/EtOH (0.5% Methanol Ammonia) = 50/50






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 3.0 min






Sample solution: 200 mg dissolved in 20 ml Methanol






Injection volume: 1.0 ml



60
Ent2
60-F3-Ent2
Instrument: SFC-80 (Thar, Waters)
2.42





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/EtOH (0.5% Methanol Ammonia) = 50/50






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 3.0 min






Sample solution: 200 mg dissolved in 20 ml Methanol






Injection volume: 1.0 ml



61
Ent1
61-F3-Ent1
Instrument: SFC-80 (Thar, Waters)
2.22





Column: AD 4.6*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH(0.2% Methanol Ammonia) = 55/45






Flow rate: 60 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 3.6 min






Sample solution: 0.3 g dissolved in 30 ML Methanol






Injection volume: 1.5 ml



61
Ent2
61-F3-Ent2
Instrument: SFC-80 (Thar, Waters)
2.45





Column: AD 4.6*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH(0.2% Methanol Ammonia) = 55/45






Flow rate: 60 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 3.6 min






Sample solution: 0.3 g dissolved in 30 ML Methanol






Injection volume: 1.5 ml



63
ENT1
63-I2-Ent1
Instrument: SFC-80 (Thar, Waters)
2.19





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 30/70






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 6.5 min






Sample solution: 920 mg dissolved in 40 ml Methanol






Injection volume: 3 ml



63
ENT2
63-I2-Ent2
Instrument: SFC-80 (Thar, Waters)
3.4





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 30/70






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 6.5 min






Sample solution: 920 mg dissolved in 40 ml Methanol






Injection volume: 3 ml



64
ENT1
64-I2-Ent1
Instrument: SFC-80 (Thar, Waters)
2.46





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 40/60






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 8.3 min






Sample solution: 500 mg dissolved in 11 ml Methanol






Injection volume: 1.0 ml



64
ENT2
64-I2-Ent2
Instrument: SFC-80 (Thar, Waters)
4.21





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 40/60






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 8.3 min






Sample solution: 500 mg dissolved in 11 ml Methanol






Injection volume: 1.0 ml



66
Ent1
66-F3-Ent1
Instrument: SFC-80 (Thar, Waters)
1.77





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 55/45






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 4.0 min






Sample solution: 400 mg dissolved in 25 ml Methanol






Injection volume: 1.0 ml



66
Ent2
66-F3-Ent2
Instrument: SFC-80 (Thar, Waters)
3.21





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 55/45






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 4.0 min






Sample solution: 400 mg dissolved in 25 ml Methanol






Injection volume: 1.0 ml



67
Ent2
67-F3-Ent2
Instrument: SFC-200 (Thar, Waters)
1.61





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



67
Ent1
67-F3-Ent1
Instrument: SFC-200 (Thar, Waters)
0.83





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



68
Ent1
68-F3-Ent1
Instrument: SFC-200 (Thar, Waters)
0.83





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



68
Ent2
68-F3-Ent2
Instrument: SFC-200 (Thar, Waters)
1.61





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



69
ENT1
69-L1-Ent1
Instrument: SFC-80 (Thar, Waters)
1.57





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH (0.2% Methanol Ammonia) = 60/40






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 7.3 min






Sample solution: 300 mg dissolved in 20 ml Methanol



69
Ent2
69-L1-Ent2
Instrument: SFC-80 (Thar, Waters)
2.71





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH (0.2% Methanol Ammonia) = 60/40






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 7.3 min






Sample solution: 300 mg dissolved in 20 ml Methanol



70
Ent1
70-F3-Ent1
Instrument: SFC-80 (Thar, Waters)
1.31





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (0.5% Methanol Ammonia) = 60/40






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 3.0 min






Sample solution: 300 mg dissolved in 25 ml Methanol






Injection volume: 0.8 ml



70
Ent2
70-F3-Ent2
Instrument: SFC-80 (Thar, Waters)
2.31





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (0.5% Methanol Ammonia) = 60/40






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 3.0 min






Sample solution: 300 mg dissolved in 25 ml Methanol






Injection volume: 0.8 ml



71
ENT1
71-F2-Ent1
Instrument: SFC-200 (Thar, Waters)
1.61





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



71
ENT2
71-F2-Ent2
Instrument: SFC-200 (Thar, Waters)
0.83





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



72
Ent1
72-F2-Ent1
Instrument: SFC-200 (Thar, Waters)
0.83





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



72
Ent2
72-F2-Ent2
Instrument: SFC-200 (Thar, Waters)
1.61





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



73
Ent1
73-F2-Ent1
Instrument: SFC-200 (Thar, Waters)
0.83





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



73
Ent2
73-F2-Ent2
Instrument: SFC-200 (Thar, Waters)
1.61





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



74
ENT1
74-L1-Ent1
Instrument: SFC-80 (Thar, Waters)
1.37





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 55/45






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 220 nm






Cycle time: 5.0 min






Sample solution: 190 mg dissolved in 20 ml Methanol



74
ENT2
74-L1-Ent2
Instrument: SFC-80 (Thar, Waters)
2.1





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 55/45






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 220 nm






Cycle time: 5.0 min






Sample solution: 190 mg dissolved in 20 ml Methanol



75
Ent1
75-F2-Ent1
Instrument: SFC-200 (Thar, Waters)
0.83





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



75
Ent2
75-F2-Ent2
Instrument: SFC-200 (Thar, Waters)
1.61





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



76
Ent1
76-F2-Ent1
Instrument: SFC-200 (Thar, Waters)
0.83





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



76
Ent2
76-F2-Ent2
Instrument: SFC-200 (Thar, Waters)
1.61





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



77
ENT2
77-F2-Ent2
Instrument: SFC-200 (Thar, Waters)
1.61





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



77
ENT1
77-F2-Ent1
Instrument: SFC-200 (Thar, Waters)
0.83





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



78
ENT1
78-F2-Ent1
Instrument: SFC-200 (Thar, Waters)
0.83





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



78
ENT2
78-F2-Ent2
Instrument: SFC-200 (Thar, Waters)
1.61





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



79
ENT1
79-F2-Ent1
Instrument: SFC-200 (Thar, Waters)
0.83





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



79
ENT2
79-F2-Ent2
Instrument: SFC-200 (Thar, Waters)
1.61





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



80
ENT1
80-Ent1
nstrument: SFC-150 (Waters)
2.45





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/EtOH(1% Methanol Ammonia) = 50/50






Flow rate: 100 g/min






Back pressure: 100 bar






Detection wavelength: 230 nm






Cycle time: 10 min






Sample solution: 140 mg dissolved in 10 ml Methanol



80
Ent2
80-Ent2
nstrument: SFC-150 (Waters)
3.11





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/EtOH(1% Methanol Ammonia) = 50/50






Flow rate: 100 g/min






Back pressure: 100 bar






Detection wavelength: 230 nm






Cycle time: 10 min






Sample solution: 140 mg dissolved in 10 ml Methanol



81
ENT1
81-Ent1
Instrument: SFC-150 (Thar, Waters)
2.68





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH(0.2% Methanol Ammonia) = 50/50






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 8 min






Sample solution: 150 mg dissolved in 15 ml Methanol






Injection volume: 2 ml



81
ENT2
81-Ent2
Instrument: SFC-150 (Thar, Waters)
3.75





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH(0.2% Methanol Ammonia) = 50/50






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 8 min






Sample solution: 150 mg dissolved in 15 ml Methanol






Injection volume: 2 ml



82
Ent1
82-F2-Ent1
Instrument: SFC-80 (Thar, Waters)
2.06





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 45/55






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.0 min






Sample solution: 1800 mg dissolved in 25 ml Methanol






Injection volume: 1.9 ml



82
Ent2
82-F2-Ent2
Instrument: SFC-80 (Thar, Waters)
2.87





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 45/55






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.0 min






Sample solution: 1800 mg dissolved in 25 ml Methanol






Injection volume: 1.9 ml



83
Ent1
83-F2-Ent1
Instrument: SFC-200 (Thar, Waters)
0.83





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



83
Ent2
83-F2-Ent2
Instrument: SFC-200 (Thar, Waters)
1.61





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



84
ENT1
84-F2-Ent1
Instrument: SFC-200 (Thar, Waters)
0.83





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



84
ENT2
84-F2-Ent2
Instrument: SFC-200 (Thar, Waters)
1.61





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



85
ENT1
85-F2-Ent1
Instrument: SFC-200 (Thar, Waters)
0.83





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



85
ENT2
85-F2-Ent2
Instrument: SFC-200 (Thar, Waters)
1.61





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



86
ENT1
86-F2-Ent1
Instrument: SFC-200 (Thar, Waters)
0.83





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



86
ENT2
86-F2-Ent2
Instrument: SFC-200 (Thar, Waters)
1.61





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



87
ENT2
87-F2-Ent2
Instrument: SFC-200 (Thar, Waters)
1.61





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



87
ENT1
87-F2-Ent1
Instrument: SFC-200 (Thar, Waters)
0.83





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



88
ENT1
88-F2-Ent1
Instrument: SFC-200 (Thar, Waters)
0.83





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



88
ENT2
88-F2-Ent2
Instrument: SFC-200 (Thar, Waters)
1.61





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



89
ENT1
89-F2-Ent1
Instrument: SFC-200 (Thar, Waters)
0.83





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



89
ENT2
89-F2-Ent2
Instrument: SFC-200 (Thar, Waters)
1.61





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



90
ENT1
89-F2-Ent1
Instrument: SFC-200 (Thar, Waters)
0.83





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



90
ENT2
90-F2-Ent2
Instrument: SFC-200 (Thar, Waters)
1.61





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



91
Ent1
91-F2-Ent1
Instrument: SFC-200 (Thar, Waters)
0.83





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



91
Ent2
91-F2-Ent2
Instrument: SFC-200 (Thar, Waters)
1.61





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



92
ENT1
92-N1-Ent1
Instrument: SFC-80 (Thar, Waters)
1.37





Column: OJ 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/Methanol(0.2% Methanol Ammonia) = 65/35






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 4 min






Sample solution: 540 mg dissolved in 40 ml Methanol






Injection volume: 1 ml



92
Ent2
92-N1-Ent2
Instrument: SFC-80 (Thar, Waters)
3.13





Column: OJ 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/Methanol(0.2% Methanol Ammonia) = 65/35






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 4 min






Sample solution: 540 mg dissolved in 40 ml Methanol






Injection volume: 1 ml



93
Ent1
93-F2-Ent1
Instrument: SFC-200 (Thar, Waters)
0.83





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



93
Ent2
93-F2-Ent2
Instrument: SFC-200 (Thar, Waters)
1.61





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



94
ENT1
94-F2-Ent1
Instrument: SFC-200 (Thar, Waters)
0.83





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



94
ENT2
94-F2-Ent2
Instrument: SFC-200 (Thar, Waters)
1.61





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



95
ENT1
95-F2-Ent1
Instrument: SFC-200 (Thar, Waters)
0.83





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



95
ENT2
95-F2-Ent2
Instrument: SFC-200 (Thar, Waters)
1.61





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



96
ENT1
96-F2-Ent1
Instrument: SFC-200 (Thar, Waters)
0.83





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



96
ENT2
96-F2-Ent2
Instrument: SFC-200 (Thar, Waters)
1.61





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



97
ENT2
97-N1-Ent2
Instrument: SFC-150 (Waters)
4.5





Column: IC 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/(MeOH/ACN(0.2% Methanol Ammonia) = 1:1) = 40/60






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 3 min






Sample solution: 270 mg dissolved in 60 ml Methanol and Dichloromethane






Injection volume: 1.9 ml



97
ENT1
97-N1-Ent1
Instrument: SFC-150 (Waters)
1.73





Column: IC 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/(MeOH/ACN(0.2% Methanol Ammonia) = 1:1) = 40/60






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 3 min






Sample solution: 270 mg dissolved in 60 ml Methanol and Dichloromethane






Injection volume: 1.9 ml



98
ENT1
98-N1-Ent1
Instrument: SFC-80 (Thar, Waters)
1.97





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 45/55






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 8.0 min






Sample solution: 150 mg dissolved in 20 ml Methanol






Injection volume: 1.9 ml



98
ENT2
98-N1-Ent2
Instrument: SFC-80 (Thar, Waters)
3.66





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 45/55






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 8.0 min






Sample solution: 150 mg dissolved in 20 ml Methanol






Injection volume: 1.9 ml



99
ENT1
99-F2-Ent1
Instrument: SFC-200 (Thar, Waters)
0.83





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



99
ENT2
99-F2-Ent2
Instrument: SFC-200 (Thar, Waters)
1.61





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



100
ENT1
100-F2-Ent1
Instrument: SFC-200 (Thar, Waters)
0.83





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



100
ENT2
100-F2-Ent2
Instrument: SFC-200 (Thar, Waters)
1.61





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



101
ENT1
101-F2-Ent1
Instrument: SFC-200 (Thar, Waters)
0.83





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



101
ENT2
101-F2-Ent2
Instrument: SFC-200 (Thar, Waters)
1.61





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



102
ENT1
102-F2-Ent1
Instrument: SFC-200 (Thar, Waters)
0.83





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



102
ENT2
102-F2-Ent2
Instrument: SFC-200 (Thar, Waters)
1.61





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



103
ENT1
103-L1-Ent1
Instrument: SFC-80 (Thar, Waters)
0.738





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (0.5% Methanol Ammonia) = 60/40






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 4.2 min






Sample solution: 280 mg dissolved in 25 ml Methanol






Injection volume: 0.8 ml



103
ENT2
103-L-Ent2
Instrument: SFC-80 (Thar, Waters)
1.19





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (0.5% Methanol Ammonia) = 60/40






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 4.2 min






Sample solution: 280 mg dissolved in 25 ml Methanol






Injection volume: 0.8 ml



104
ENT1
104-L1-Ent1
Instrument: SFC-80 (Thar, Waters)
1.15





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 55/45






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.0 min






Sample solution: 147 mg dissolved in 20 ml Methanol






Injection volume: 1.9 ml



104
ENT2
104-L1-Ent2
Instrument: SFC-80 (Thar, Waters)
1.96





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 55/45






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.0 min






Sample solution: 147 mg dissolved in 20 ml Methanol






Injection volume: 1.9 ml



105
ENT1
103-L1-Ent1
Instrument: SFC-80 (Thar, Waters)
0.738





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (0.5% Methanol Ammonia) = 60/40






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 4.2 min






Sample solution: 280 mg dissolved in 25 ml Methanol






Injection volume: 0.8 ml



105
ENT2
105-L1-ENT2
Instrument: SFC-80 (Thar, Waters)
1.19





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (0.5% Methanol Ammonia) = 60/40






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 4.2 min






Sample solution: 280 mg dissolved in 25 ml Methanol






Injection volume: 0.8 ml



106
ENT1
106-F2-Ent1
Instrument: SFC-200 (Thar, Waters)
0.83





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



106
ENT2
106-F2-Ent2
Instrument: SFC-200 (Thar, Waters)
1.61





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



107
ENT1
107-N1-Ent1
Chiralcel AD, 45% EtOH 1% Methanol Ammonia
1.95


107
Ent2
107-N1-Ent2
Chiralcel AD, 45% EtOH 1% Methanol Ammonia
3.94


109
ENT1
109-F2-Ent1
Instrument: SFC-200 (Thar, Waters)
0.83





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



109
ENT2
109-F2-Ent2
Instrument: SFC-200 (Thar, Waters)
1.61





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



110
ENT1
110-L1-Ent1
Instrument: SFC-80 (Thar, Waters)
0.479





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (0.5% Methanol Ammonia) = 60/40






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 3.0 min






Sample solution: 300 mg dissolved in 25 ml Methanol






Injection volume: 0.8 ml



110
ENT2
110-L1-Ent2
Instrument: SFC-80 (Thar, Waters)
0.861





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (0.5% Methanol Ammonia) = 60/40






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 3.0 min






Sample solution: 300 mg dissolved in 25 ml Methanol






Injection volume: 0.8 ml



111
ENT1
111-L1-Ent1
Instrument: SFC-150 (Thar, Waters)
2.28





Column: Cellulose-SC 20*250 mm, 10 um (YMC)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 50/50






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.6 min






Sample solution: 400 mg dissolved in 25 ml Methanol






Injection volume: 1.5 ml



111
ENT2
111-L1-Ent2
Instrument: SFC-150 (Thar, Waters)
2.84





Column: Cellulose-SC 20*250 mm, 10 um (YMC)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 50/50






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.6 min






Sample solution: 400 mg dissolved in 25 ml Methanol






Injection volume: 1.5 ml



113






114
Ent1
114-F2-Ent1
Instrument: SFC-150 (Thar, Waters)
1.71





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 55/45






Flow rate: 100 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 7.3 min






Sample solution: 320 mg dissolved in 20 ml Methanol






Injection volume: 1.5 ml



114
ENT2
114-F2-Ent2
Instrument: SFC-150 (Thar, Waters)
2.78





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 55/45






Flow rate: 100 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 7.3 min






Sample solution: 320 mg dissolved in 20 ml Methanol






Injection volume: 1.5 ml



115
ENT1
115-F2-Ent1
Instrument: SFC-200 (Thar, Waters)
0.83





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



115
ENT2
115-F2-Ent2
Instrument: SFC-200 (Thar, Waters)
1.61





Column: AD 50*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (1% Methanol Ammonia) = 65/35






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 3000 mg dissolved in 80 ml MeOH






Injection volume: 3.5 ml



116
ENT1
116-N1-Ent1
Instrument: SFC-80 (Thar, Waters)
1.29





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH(0.2% Methanol Ammonia) = 80/20






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 6.0 min






Sample solution: 5000 mg dissolved in 60 ml Methanol






Injection volume: 1.0 ml



116
ENT2
116-N1-Ent2
Instrument: SFC-80 (Thar, Waters)
1.82





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH(0.2% Methanol Ammonia) = 80/20






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 6.0 min






Sample solution: 5000 mg dissolved in 60 ml Methanol






Injection volume: 1.0 ml



117
ENT1
117-L1-Ent1
Instrument: SFC-80 (Thar, Waters)
1.19





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 50/50






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 4.5 min






Sample solution: 200 mg dissolved in 25 ml Methanol






Injection volume: 1.9 ml



117
ENT2
117-L1-Ent2
Instrument: SFC-80 (Thar, Waters)
1.99





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 50/50






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 4.5 min






Sample solution: 200 mg dissolved in 25 ml Methanol






Injection volume: 1.9 ml



118
ENT1
118-F3-Ent1
Instrument: SFC-150 (Thar, Waters)
2.62





Column: IC 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH(0.2% Methanol Ammonia) = 40/60






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 6 min






Sample solution: 220 mg dissolved in 30 ml Methanol and Dichloromethane






Injection volume: 1.9 ml



118
ENT2
118-F3-Ent2
Instrument: SFC-150 (Thar, Waters)
3.95





Column: IC 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH(0.2% Methanol Ammonia) = 40/60






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 6 min






Sample solution: 220 mg dissolved in 30 ml Methanol and Dichloromethane






Injection volume: 1.9 ml



119
Ent1
119-F3-Ent1
Instrument: SFC-80 (Thar, Waters)
1.33





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/EtOH(0.5% Methanol Ammonia) = 60/40






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 3.5 min






Sample solution: 235 mg dissolved in 25 ml Methanol






Injection volume: 0.6 ml



119
Ent2
119-F3-Ent2
Instrument: SFC-80 (Thar, Waters)
1.63





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/EtOH(0.5% Methanol Ammonia) = 60/40






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 3.5 min






Sample solution: 235 mg dissolved in 25 ml Methanol






Injection volume: 0.6 ml



120
ENT2
120-F3-Ent2
Instrument: SFC-150 (Thar, Waters)
3.03





Column: AY 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH(0.2% Methanol Ammonia) = 40/60






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 7 min






Sample solution: 70 mg dissolved in 20 ml Methanol






Injection volume: 1.9 ml



120
ENT1
120-F3-Ent1
“Instrument: SFC-150 (Thar, Waters)
1.82





Column: AY 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH(0.2% Methanol Ammonia) = 40/60






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 7 min






Sample solution: 70 mg dissolved in 20 ml Methanol






Injection volume: 1.9 ml”



121
ENT1
121-F2-Ent1
Instrument: SFC-80 (Thar, Waters)
1.24





Column: AS 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 75/25






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 3.5 min






Sample solution: 384 mg dissolved in 30 ml Methanol






Injection volume: 1.0 ml



121
ENT2
121-F2-Ent2
Instrument: SFC-80 (Thar, Waters)
1.77





Column: AS 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 75/25






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 3.5 min






Sample solution: 384 mg dissolved in 30 ml Methanol






Injection volume: 1.0 ml



122
ENT1
122-F2-Ent1
Instrument: SFC-80 (Thar, Waters)
1.1





Column: OJ 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 80/20






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 3.5 min






Sample solution: 350 mg dissolved in 25 ml Methanol






Injection volume: 0.6 ml



122
ENT2
122-F2-Ent2
Instrument: SFC-80 (Thar, Waters)
2.07





Column: OJ 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 80/20






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 3.5 min






Sample solution: 350 mg dissolved in 25 ml Methanol






Injection volume: 0.6 ml



123
Ent1
123-F3-Ent1
Instrument: SFC-80 (Thar, Waters)
1.21





Column: IE 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/IPA(0.2% Methanol Ammonia) = 75/25






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 3.8 min






Sample solution: 740 mg dissolved in 25 ml Methanol






Injection volume: 0.6 ml



123
Ent2
123-F3-Ent2
Instrument: SFC-80 (Thar, Waters)
1.61





Column: IE 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/IPA(0.2% Methanol Ammonia) = 75/25






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 3.8 min






Sample solution: 740 mg dissolved in 25 ml Methanol






Injection volume: 0.6 ml



124
Ent1
124-F3-Ent1
Instrument: SFC-80 (Thar, Waters)
1.21





Column: IE 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/IPA(0.2% Methanol Ammonia) = 75/25






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 3.8 min






Sample solution: 740 mg dissolved in 25 ml Methanol






Injection volume: 0.6 ml



124
Ent2
124-F3-Ent2
Instrument: SFC-80 (Thar, Waters)
1.61





Column: IE 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/IPA(0.2% Methanol Ammonia) = 75/25






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 3.8 min






Sample solution: 740 mg dissolved in 25 ml Methanol






Injection volume: 0.6 ml



125
ENT2
I25-L1-Ent2
Column: AD 20*250 mm, 10 um (Daicel)
2.68





Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) == 45/55






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 9 min






Sample solution: 280 mg dissolved in 8 ml Methanol






Injection volume: 1 ml



125
ENT1
I25-L1-Ent1
Column: AD 20*250 mm, 10 um (Daicel)
1.36





Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) == 45/55






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 9 min






Sample solution: 280 mg dissolved in 8 ml Methanol






Injection volume: 1 ml



126
ENT1
126-L1-Ent1
Instrument: SFC-80 (Thar, Waters)
2.21





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) == 60/40






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 8 min






Sample solution: 280 mg dissolved in 10 ml Methanol






Injection volume: 1.5 ml



126
ENT2
126-F2-Ent2
Instrument: SFC-80 (Thar, Waters)
1.63





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) == 60/40






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 8 min






Sample solution: 280 mg dissolved in 10 ml Methanol






Injection volume: 1.5 ml



127
Ent1
127-L1-Ent1
Instrument: Gilson-281
15.2





Column: CHIRALPAKIC 20 × 250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: n-Hexane(0.1% DEA):Ethanol(0.1% DEA) = 50:50






Flow rate: 50 ml/min






Detection wavelength: 214 nm






Cycle time: 24 min






Sample solution: 200 mg dissolved in 7 ml Methanol






Injection volume: 0.5 ml



127
Ent2
127-L1-Ent2
Instrument: Gilson-281
18.3





Column: CHIRALPAKIC 20 × 250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: n-Hexane(0.1% DEA):Ethanol(0.1% DEA) = 50:50






Flow rate: 50 ml/min






Detection wavelength: 214 nm






Cycle time: 24 min






Sample solution: 200 mg dissolved in 7 ml Methanol






Injection volume: 0.5 ml



128
ENT1
128-L1-Ent1
Instrument: SFC-80 (Thar, Waters)
2.96





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 45/55






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 4.6 min






Sample solution: 150 mg dissolved in 25 ml Methanol






Injection volume: 1.9 ml



128
ENT1
128-L1-Ent1
Instrument: SFC-80 (Thar, Waters)
1.61





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 45/55






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 4.6 min






Sample solution: 150 mg dissolved in 25 ml Methanol






Injection volume: 1.9 ml



129
Ent2
129-L1-Ent2
Instrument: SFC-150 (Thar, Waters)
3.79





Column: OJ 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 80/20






Flow rate: 100 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5 min






Sample solution: 250 mg dissolved in 20 ml Methanol






Injection volume: 1.9 ml



129
Ent1
129-L1-Ent1
Instrument: SFC-150 (Thar, Waters)
3





Column: OJ 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 80/20






Flow rate: 100 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5 min






Sample solution: 250 mg dissolved in 20 ml Methanol






Injection volume: 1.9 ml



130
Ent2
130-L1-Ent2
Instrument: SFC-150 (Thar, Waters)
2.87





Column: IG 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH(0.2% Methanol Ammonia) = 50/50






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 9.2 min






Sample solution: 250 mg dissolved in 20 ml Methanol






Injection volume: 1.0 ml



130
Ent1
130-L1-Ent1
Instrument: SFC-150 (Thar, Waters)
2.12





Column: IG 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH(0.2% Methanol Ammonia) = 50/50






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 9.2 min






Sample solution: 250 mg dissolved in 20 ml Methanol






Injection volume: 1.0 ml



131
ENT1
131-L1-Ent1
Instrument: SFC-150 (Thar, Waters)
2.1





Column: IG 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH/ACN(0.2% Methanol Ammonia) = 40/30/30






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.5 min






Sample solution: 135 mg dissolved in 20 ml Methanol






Injection volume: 1.9 ml



131
Ent2
131-L1-Ent2
Instrument: SFC-150 (Thar, Waters)
3.2





Column: IG 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH/ACN(0.2% Methanol Ammonia) = 40/30/30






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.5 min






Sample solution: 135 mg dissolved in 20 ml Methanol






Injection volume: 1.9 ml



132
ENT2
132-L1-Ent2
Instrument: SFC-150 (Thar, Waters)
4.32





Column: IG 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH(0.2% Methanol Ammonia) = 55/45






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 8.0 min






Sample solution: 155 mg dissolved in 20 ml Methanol






Injection volume: 1.9 ml.



132
ENT1
131-L1-Ent1
Instrument: SFC-150 (Thar, Waters)
2.74





Column: IG 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH(0.2% Methanol Ammonia) = 55/45






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 8.0 min






Sample solution: 155 mg dissolved in 20 ml Methanol






Injection volume: 1.9 ml.



133
Ent1
133-L1-Ent1
Instrument: SFC-80 (Thar, Waters)
2.5





Column: OJ 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 60/40






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 241 nm






Cycle time: 5.0 min






Sample solution: 110 mg dissolved in 20 ml Methanol






Injection volume: 1.0 ml



133
Ent2
133-L1-Ent2
Instrument: SFC-80 (Thar, Waters)
3.16





Column: OJ 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 60/40






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 241 nm






Cycle time: 5.0 min






Sample solution: 110 mg dissolved in 20 ml Methanol






Injection volume: 1.0 ml



134
ENT1
134-L1-Ent1
Instrument: SFC-150 (Thar, Waters)
19.3





Column: OJ 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH(0.2% Methanol Ammonia) = 85/15






Flow rate: 100 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 9 min






Sample solution: 190 mg dissolved in 20 ml Methanol






Injection volume: 1.9 ml



134
ENT2
134-L1-Ent1
Instrument: SFC-150 (Thar, Waters)
23.7





Column: OJ 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH(0.2% Methanol Ammonia) = 85/15






Flow rate: 100 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 9 min






Sample solution: 190 mg dissolved in 20 ml Methanol






Injection volume: 1.9 ml



135
ENT1
135-F1-Ent1
Instrument: SFC-200 (Thar, Waters)
1.58





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH(0.2% Methanol Ammonia) = 90/10






Flow rate: 140 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 4.0 min






Sample solution: 1500 mg dissolved in 75 ml Methanol






Injection volume: 2.5 ml



135
ENT2
135-F1-Ent2
Instrument: SFC-200 (Thar, Waters)
2.45





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH(0.2% Methanol Ammonia) = 90/10






Flow rate: 140 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 4.0 min






Sample solution: 1500 mg dissolved in 75 ml Methanol






Injection volume: 2.5 ml



136
ENT1
136-F1-Ent1
Instrument: SFC-80 (Thar, Waters)
1.29





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH(0.2% Methanol Ammonia) = 80/20






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 6.0 min






Sample solution: 5000 mg dissolved in 60 ml Methanol






Injection volume: 1.0 ml



136
ENT2
136-F1-Ent2
Instrument: SFC-80 (Thar, Waters)
1.82





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH(0.2% Methanol Ammonia) = 80/20






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 6.0 min






Sample solution: 5000 mg dissolved in 60 ml Methanol






Injection volume: 1.0 ml



137
ENT2
137-F1-Ent2
Instrument: SFC-80 (Thar, Waters)
1.35





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 45/55






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.5 min






Sample solution: 382 mg dissolved in 25 ml Methanol






Injection volume: 1.9 ml



137
ENT1
137-F1-Ent1
Instrument: SFC-80 (Thar, Waters)
0.531





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 45/55






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.5 min






Sample solution: 382 mg dissolved in 25 ml Methanol






Injection volume: 1.9 ml



138
ENT1
138-F2-Ent1
Instrument: SFC-80 (Thar, Waters)
1.29





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH(0.2% Methanol Ammonia) = 80/20






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 6.0 min






Sample solution: 5000 mg dissolved in 60 ml Methanol






Injection volume: 1.0 ml



138
ENT2
138-F2-Ent2
Instrument: SFC-80 (Thar, Waters)
1.82





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH(0.2% Methanol Ammonia) = 80/20






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 6.0 min






Sample solution: 5000 mg dissolved in 60 ml Methanol






Injection volume: 1.0 ml



139
ENT1
139-F1-Ent1
Instrument: SFC-80 (Thar, Waters)
0.531





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 45/55






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.5 min






Sample solution: 382 mg dissolved in 25 ml Methanol






Injection volume: 1.9 ml



139
ENT2
139-F1-Ent2
Instrument: SFC-80 (Thar, Waters)
1.35





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 45/55






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.5 min






Sample solution: 382 mg dissolved in 25 ml Methanol






Injection volume: 1.9 ml



140
ENT2
140-F1-Ent2
Instrument: SFC-200 (Thar, Waters)
2.45





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH(0.2% Methanol Ammonia) = 90/10






Flow rate: 140 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 4.0 min






Sample solution: 1500 mg dissolved in 75 ml Methanol






Injection volume: 2.5 ml



140
ENT1
140-F1-Ent1
Instrument: SFC-200 (Thar, Waters)
1.58





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH(0.2% Methanol Ammonia) = 90/10






Flow rate: 140 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 4.0 min






Sample solution: 1500 mg dissolved in 75 ml Methanol






Injection volume: 2.5 ml



141
ENT2
141-F1-Ent2
Instrument: SFC-200 (Thar, Waters)
2.45





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH(0.2% Methanol Ammonia) = 90/10






Flow rate: 140 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 4.0 min






Sample solution: 1500 mg dissolved in 75 ml Methanol






Injection volume: 2.5 ml



141
ENT1
141-F1-Ent1
Instrument: SFC-200 (Thar, Waters)
1.58





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH(0.2% Methanol Ammonia) = 90/10






Flow rate: 140 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 4.0 min






Sample solution: 1500 mg dissolved in 75 ml Methanol






Injection volume: 2.5 ml



142
ENT2
142-F1-Ent2
Instrument: SFC-200 (Thar, Waters)
2.45





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH(0.2% Methanol Ammonia) = 90/10






Flow rate: 140 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 4.0 min






Sample solution: 1500 mg dissolved in 75 ml Methanol






Injection volume: 2.5 ml



142
ENT1
142-F1-Ent1
Instrument: SFC-200 (Thar, Waters)
1.58





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH(0.2% Methanol Ammonia) = 90/10






Flow rate: 140 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 4.0 min






Sample solution: 1500 mg dissolved in 75 ml Methanol






Injection volume: 2.5 ml



143
ENT2
143-F2-Ent2
Instrument: SFC-80 (Thar, Waters)
1.82





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH(0.2% Methanol Ammonia) = 80/20






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 6.0 min






Sample solution: 5000 mg dissolved in 60 ml Methanol






Injection volume: 1.0 ml



143
ENT1
143-F2-Ent1
Instrument: SFC-80 (Thar, Waters)
1.29





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH(0.2% Methanol Ammonia) = 80/20






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 6.0 min






Sample solution: 5000 mg dissolved in 60 ml Methanol






Injection volume: 1.0 ml



145
Ent1
145-Ent1
Instrument: SFC-80 (Thar, Waters)
1.02





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 55/45






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 4.3 min






Sample solution: 260 mg dissolved in 40 ml Methanol



145
Ent2
145-Ent2
Instrument: SFC-80 (Thar, Waters)
1.57





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MeOH(0.2% Methanol Ammonia) = 55/45






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 4.3 min






Sample solution: 260 mg dissolved in 40 ml Methanol



147
Ent1
147-F3-Ent1
Instrument: SFC-80 (Thar, Waters)
1.26





Column: OD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (0.5% Methanol Ammonia) = 45/55






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 4.5 min






Sample solution: 151 mg dissolved in 40 ml Methanol






Injection volume: 1.9 ml



147
Ent2
147-F3-Ent2
Instrument: SFC-80 (Thar, Waters)
1.79





Column: OD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH (0.5% Methanol Ammonia) = 45/55






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 4.5 min






Sample solution: 151 mg dissolved in 40 ml Methanol






Injection volume: 1.9 ml



149
Ent1
149-Ent1
Instrument: SFC-150 (Thar, Waters)
1.84





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH(0.5% Methanol Ammonia) = 40/60






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5 min






Sample solution: 150 mg dissolved in 30 ml Methanol and Dichloromethane






Injection volume: 1.9 ml



149
Ent2
149-Ent2
Instrument: SFC-150 (Thar, Waters)
2.47





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/ETOH(0.5% Methanol Ammonia) = 40/60






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5 min






Sample solution: 150 mg dissolved in 30 ml Methanol and Dichloromethane






Injection volume: 1.9 ml



150
Ent1
150-F3-Ent1
Instrument: SFC-80 (Thar, Waters)
2.02





Column: IG 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH(0.2% Methanol Ammonia) = 30/70






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 8 min



150
Ent2
150-F3-Ent2
Instrument: SFC-80 (Thar, Waters)
2.66





Column: IG 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH(0.2% Methanol Ammonia) = 30/70






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 8 min



151
Ent1
151-X3-Ent1
Instrument: SFC-80 (Thar, Waters)
2.08





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/IPA (0.2% Methanol Ammonia) = 75/25






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.0 min






Sample solution: 500 mg dissolved in 16 ml Methanol






Injection volume: 1.0 ml



151
Ent2
151-X3-Ent2
Instrument: SFC-80 (Thar, Waters)
2.72





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/IPA (0.2% Methanol Ammonia) = 75/25






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.0 min






Sample solution: 500 mg dissolved in 16 ml Methanol






Injection volume: 1.0 ml



152
Ent2
152-L1-Ent2
Instrument: SFC-150 (Thar, Waters)
2.55





Column: SC 20*250 mm, 10 um (Regis)






Column temperature: 35° C.






Mobile phase: CO2/MEOH(0.2% Methanol Ammonia) = 80/20






Flow rate: 100 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 3.5 min



152
Ent1
152-L1-Ent1
Instrument: SFC-150 (Thar, Waters)
2.24





Column: SC 20*250 mm, 10 um (Regis)






Column temperature: 35° C.






Mobile phase: CO2/MEOH(0.2% Methanol Ammonia) = 80/20






Flow rate: 100 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 3.5 min



153
Ent1
153-F3-Ent1
Instrument: SFC-80 (Thar, Waters)
2.29





Column: IG 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH (0.5% Methanol Ammonia) = 45/55






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 200 mg dissolved in 15 ml Methanol






Injection volume: 3 ml



153
Ent2
153-F3-Ent2
Instrument: SFC-80 (Thar, Waters)
3.52





Column: IG 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH (0.5% Methanol Ammonia) = 45/55






Flow rate: 80 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 5.7 min






Sample solution: 200 mg dissolved in 15 ml Methanol






Injection volume: 3 ml



154
Ent1
154-Ent1
Instrument: SFC-150 (Thar, Waters)
2.3





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH(0.2% Methanol Ammonia) = 50/50






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 4 min






Sample solution: 210 mg dissolved in 40 ml Methanol






Injection volume: 1.9 ml



154
Ent2
154-Ent2
Instrument: SFC-150 (Thar, Waters)
3.15





Column: AD 20*250 mm, 10 um (Daicel)






Column temperature: 35° C.






Mobile phase: CO2/MEOH(0.2% Methanol Ammonia) = 50/50






Flow rate: 120 g/min






Back pressure: 100 bar






Detection wavelength: 214 nm






Cycle time: 4 min






Sample solution: 210 mg dissolved in 40 ml Methanol






Injection volume: 1.9 ml



155
Ent2
155-L1-Ent2
Instrument: Gilson-281
12.5





Column: IG 20*250, 10 um






Mobile Phase: n-






ACN(0.2% MEA):MEOH(0.2% MEA):DCM(0.2% MEA) = 70:25:5






Flow Rate: 45 ml/min






Run time per injection: 30 min






Injection: 0.7 ml






Sample solution: 420 mg in 19 mL MEOH



155
Ent1
155-L1-Ent1
Instrument: Gilson-281
8.73





Column: IG 20*250, 10 um






Mobile Phase: n-






ACN(0.2% MEA):MEOH(0.2% MEA):DCM(0.2% MEA) = 70:25:5






Flow Rate: 45 ml/min






Run time per injection: 30 min






Injection: 0.7 ml






Sample solution: 420 mg in 19 mL MEOH



156
Ent1
156-L1-Ent1
Instrument: Gilson-281
17.2





Column: IG 20*250, 10 um






Mobile Phase: ACN(0.1% DEA):MEOH(0.1% DEA) = 32:68






Flow Rate: 28 ml/min






Run time per injection: 38 min






Injection: 2.5 ml






Sample solution: 255 mg in 27 mL MEOH



156
Ent2
156-L1-Ent2
Instrument: Gilson-281
22





Column: IG 20*250, 10 um






Mobile Phase: ACN(0.1% DEA):MEOH(0.1% DEA) = 32:68






Flow Rate: 28 ml/min






Run time per injection: 38 min






Injection: 2.5 ml






Sample solution: 255 mg in 27 mL MEOH



157
Ent1
157-F3-Ent1
Instrument: Gilson-281
18.1





Column: IG 20*250, 10 um






Mobile Phase: n-






Hexane(0.1% DEA):ETOH(0.1% DEA) = 50:50






Flow Rate: 30 ml/min






Run time per injection: 20 min






Injection: 0.5 ml






Sample solution: 350 mg in 10 mL MEOH



157
Ent2
157-F3-Ent2
Instrument: Gilson-281
24.1





Column: IG 20*250, 10 um






Mobile Phase: n-






Hexane(0.1% DEA):ETOH(0.1% DEA) = 50:50






Flow Rate: 30 ml/min






Run time per injection: 20 min






Injection: 0.5 ml






Sample solution: 350 mg in 10 mL MEOH
















TABLE C







Spectral data










Cmpd
Ent
NMR data
LC/MS Ion [M + H]













1
Ent1
1H NMR (500 MHz, DMSO-d6) δ 13.05 (s, 1H), 8.47 (d, J = 9.6 Hz,
410




1H), 8.23 (s, 1H), 7.98-7.84 (m, 2H), 7.48 (d, J = 10.2 Hz, 1H), 7.28-




7.05 (m, 2H), 6.05-5.81 (m, 1H), 5.09-4.78 (m, 1H), 3.87 (s, 3H),




3.29-3.18 (m, 2H), 2.12-1.98 (m, 2H), 1.91-1.76 (m, 2H), 1.75-




1.56 (m, 4H).


1
Ent2
1H NMR (500 MHz, DMSO-d6) δ 13.05 (s, 1H), 8.47 (d, J = 9.6 Hz,
410




1H), 8.23 (s, 1H), 7.98-7.84 (m, 2H), 7.48 (d, J = 10.2 Hz, 1H), 7.28-




7.05 (m, 2H), 6.05-5.81 (m, 1H), 5.09-4.78 (m, 1H), 3.87 (s, 3H),




3.29-3.18 (m, 2H), 2.12-1.98 (m, 2H), 1.91-1.76 (m, 2H), 1.75-




1.56 (m, 4H).


2
Ent1
1H NMR (500 MHz, DMSO-d6) δ 13.17-12.91 (m, 2H), 8.47 (d, J =
410




9.5 Hz, 1H), 8.29 (s, 1H), 8.02 (s, 1H), 7.94 (d, J = 8.2 Hz, 1H), 7.47




(d, J = 9.5 Hz, 1H), 7.32-7.16 (m, 2H), 5.52 (d, J = 27.9 Hz, 1H),




4.86-4.58 (m, 1H), 2.10-1.99 (m, 1H), 1.80-1.49 (m, 5H), 1.20 (s, 6H).


2
Ent2
1H NMR (500 MHz, DMSO-d6) δ 13.17-12.91 (m, 2H), 8.47 (d, J =
410




9.5 Hz, 1H), 8.29 (s, 1H), 8.02 (s, 1H), 7.94 (d, J = 8.2 Hz, 1H), 7.47




(d, J = 9.5 Hz, 1H), 7.32-7.16 (m, 2H), 5.52 (d, J = 27.9 Hz, 1H),




4.86-4.58 (m, 1H), 2.10-1.99 (m, 1H), 1.80-1.49 (m, 5H), 1.20 (s, 6H).


35
Ent1
1H NMR (500 MHz, DMSO-d6) δ 13.11 (s, 1H), 8.59 (s, 1H), 8.47
382




(d, J = 9.5 Hz, 1H), 8.07 (d, J = 8.7 Hz, 1H), 7.78 (s, 1H), 7.56-7.41




(m, 3H), 6.57 (s, 1H), 5.55-5.37 (m, 1H), 4.90 (d, J = 52.6 Hz, 1H),




3.58 (s, 1H), 3.49 (s, 1H), 2.40 (s, 1H), 2.09-1.99 (m, 1H), 1.87-




1.73 (m, 3H), 1.69-1.58 (m, 2H).


35
Ent2
1H NMR (500 MHz, DMSO-d6) δ 13.31 (s, 1H), 8.62-8.40 (m, 2H),
382




8.05 (d, J = 8.7 Hz, 1H), 7.77 (d, J = 1.5 Hz, 1H), 7.55-7.29 (m, 3H),




6.63-6.47 (m, 1H), 5.56-5.32 (m, 1H), 5.03-4.71 (m, 1H), 3.63-




3.57 (m, 1H), 3.53-3.45 (m, 1H), 2.46-2.33 (m, 1H), 2.10-1.99




(m, 1H), 1.86-1.71 (m, 3H), 1.69-1.56 (m, 2H).


36
Ent1
1H NMR (500 MHz, DMSO-d6) δ 13.39 (s, 1H), 8.56-8.47 (m, 1H),
382




8.37 (s, 1H), 8.09 (d, J = 8.6 Hz, 1H), 7.84 (s, 1H), 7.49 (d, J = 9.4 Hz,




1H), 7.34-7.23 (m, 2H), 7.12 (s, 1H), 5.63-5.26 (m, 1H), 5.08-




4.76 (m, 1H), 3.69-3.52 (m, 1H), 3.49 (s, 1H), 2.41 (s, 1H), 2.08-




2.00 (m, 1H), 1.89-1.73 (m, 3H), 1.70-1.54 (m, 2H).


36
Ent2
1H NMR (500 MHz, DMSO-d6) δ 13.39 (s, 1H), 8.56-8.47 (m, 1H),
382




8.37 (s, 1H), 8.09 (d, J = 8.6 Hz, 1H), 7.84 (s, 1H), 7.49 (d, J = 9.4 Hz,




1H), 7.34-7.23 (m, 2H), 7.12 (s, 1H), 5.63-5.26 (m, 1H), 5.08-




4.76 (m, 1H), 3.69-3.52 (m, 1H), 3.49 (s, 1H), 2.41 (s, 1H), 2.08-




2.00 (m, 1H), 1.89-1.73 (m, 3H), 1.70-1.54 (m, 2H).


40
Ent1
1H NMR (500 MHz, DMSO-d6) δ 13.05 (s, 2H), 8.48 (d, J = 9.6 Hz,
396




1H), 8.15 (s, 2H), 7.94 (d, J = 8.3 Hz, 1H), 7.48 (d, J = 9.5 Hz, 1H),




7.31-7.12 (m, 2H), 6.01-5.86 (m, 1H), 5.09-4.77 (m, 1H), 3.33-




3.09 (m, 3H), 2.33 (s, 1H), 2.15-1.97 (m, 2H), 1.90-1.75 (m, 2H),




1.75-1.54 (m, 4H).


40
Ent2
1H NMR (500 MHz, DMSO-d6) δ 13.05 (s, 2H), 8.48 (d, J = 9.6 Hz,
396




1H), 8.15 (s, 2H), 7.94 (d, J = 8.3 Hz, 1H), 7.48 (d, J = 9.5 Hz, 1H),




7.31-7.12 (m, 2H), 6.01-5.86 (m, 1H), 5.09-4.77 (m, 1H), 3.33-




3.09 (m, 3H), 2.33 (s, 1H), 2.15-1.97 (m, 2H), 1.90-1.75 (m, 2H),




1.75-1.54 (m, 4H).


41
Ent2
1H NMR (500 MHz, DMSO-d6) δ 13.05 (s, 2H), 8.47 (d, J = 9.5 Hz,
396




1H), 8.14 (s, 2H), 7.93 (d, J = 8.3 Hz, 1H), 7.45 (d, J = 10.4 Hz, 1H),




7.33-7.17 (m, 2H), 6.15-5.92 (m, 1H), 5.01-4.77 (m, 1H), 3.31-




3.28 (m, 1H), 3.15-3.07 (m, 1H), 2.58-2.53 (m, 1H), 2.47-2.40


41
Ent1
1H NMR (500 MHz, DMSO-d6) δ 13.05 (s, 2H), 8.47 (d, J = 9.5 Hz,
396




1H), 8.14 (s, 2H), 7.93 (d, J = 8.3 Hz, 1H), 7.45 (d, J = 10.4 Hz, 1H),




7.33-7.17 (m, 2H), 6.15-5.92 (m, 1H), 5.01-4.77 (m, 1H), 3.31-




3.28 (m, 1H), 3.15-3.07 (m, 1H), 2.58-2.53 (m, 1H), 2.47-2.40


42
Ent1
1H NMR (500 MHz, DMSO-d6) δ 13.05 (s, 2H), 8.49 (d, J = 9.6 Hz,
382




1H), 8.13 (s, 2H), 7.93 (d, J = 8.3 Hz, 1H), 7.44 (d, J = 9.4 Hz, 1H),




7.25 (s, 1H), 7.21 (d, J = 8.4 Hz, 1H), 5.56-5.28 (m, 1H), 5.10-4.67




(m, 1H), 3.64-3.55 (m, 1H), 3.52-3.45 (m, 1H), 2.43-2.33 (m,




1H), 2.07-1.99 (m, 1H), 1.86-1.71 (m, 3H), 1.70-1.58 (m, 2H).


42
Ent2
1H NMR (500 MHz, DMSO-d6) δ 13.05 (s, 2H), 8.49 (d, J = 9.6 Hz,
382




1H), 8.13 (s, 2H), 7.93 (d, J = 8.3 Hz, 1H), 7.44 (d, J = 9.4 Hz, 1H),




7.25 (s, 1H), 7.21 (d, J = 8.4 Hz, 1H), 5.56-5.28 (m, 1H), 5.10-4.67




(m, 1H), 3.64-3.55 (m, 1H), 3.52-3.45 (m, 1H), 2.43-2.33 (m,




1H), 2.07-1.99 (m, 1H), 1.86-1.71 (m, 3H), 1.70-1.58 (m, 2H).


43
Ent1
1H NMR (500 MHz, DMSO-d6) δ 13.01 (s, 2H), 8.46 (d, J = 9.7 Hz,
382




1H), 8.30 (s, 1H), 8.01 (s, 1H), 7.93 (d, J = 8.3 Hz, 1H), 7.46 (d, J =




9.5 Hz, 1H), 7.30-7.17 (m, 2H), 5.65-5.30 (m, 1H), 4.83-4.51 (m,




1H), 3.66-3.55 (m, 1H), 3.53-3.43 (m, 1H), 2.40-2.31 (m, 1H),




1.95-1.82 (m, 1H), 1.83-1.73 (m, 1H), 1.73-1.62 (m, 2H), 1.62-




1.50 (m, 1H).


43
Ent2
1H NMR (500 MHz, DMSO-d6) δ 13.01 (s, 2H), 8.46 (d, J = 9.7 Hz,
382




1H), 8.30 (s, 1H), 8.01 (s, 1H), 7.93 (d, J = 8.3 Hz, 1H), 7.46 (d, J =




9.5 Hz, 1H), 7.30-7.17 (m, 2H), 5.65-5.30 (m, 1H), 4.83-4.51 (m,




1H), 3.66-3.55 (m, 1H), 3.53-3.43 (m, 1H), 2.40-2.31 (m, 1H),




1.95-1.82 (m, 1H), 1.83-1.73 (m, 1H), 1.73-1.62 (m, 2H), 1.62-




1.50 (m, 1H).


46
Ent1
1H NMR (500 MHz, DMSO-d6) δ 13.05 (s, 2H), 8.45 (d, J = 9.4 Hz,
400




1H), 8.14 (s, 2H), 7.92 (d, J = 8.1 Hz, 1H), 7.39 (d, J = 9.3 Hz, 1H),




7.30-7.13 (m, 2H), 5.69-5.50 (m, 1H), 3.69-3.60 (m, 1H), 3.53-




3.46 (m, 1H), 2.96 (s, 1H), 2.47-2.18 (m, 4H), 1.81-1.59 (m, 2H).


46
Ent2
1H NMR (500 MHz, DMSO-d6) δ 13.05 (s, 2H), 8.45 (d, J = 9.4 Hz,
400




1H), 8.14 (s, 2H), 7.92 (d, J = 8.1 Hz, 1H), 7.39 (d, J = 9.3 Hz, 1H),




7.30-7.13 (m, 2H), 5.69-5.50 (m, 1H), 3.69-3.60 (m, 1H), 3.53-




3.46 (m, 1H), 2.96 (s, 1H), 2.47-2.18 (m, 4H), 1.81-1.59 (m, 2H).


49
Ent1
1H NMR (500 MHz, DMSO-d6) δ 12.97 (s, 1H), 8.45 (d, J = 9.6 Hz,
410




1H), 8.22 (s, 1H), 7.97-7.86 (m, 2H), 7.46 (d, J = 9.4 Hz, 1H), 7.23-




7.11 (m, 2H), 6.17-5.98 (m, 1H), 5.03-4.73 (m, 1H), 3.87 (s, 3H),




3.30-3.28 (m, 1H), 3.14-3.07 (m, 1H), 2.55-2.52 (m, 1H), 2.46-




2.40 (m, 1H), 1.81-1.57 (m, 6H).


49
Ent2
1H NMR (500 MHz, DMSO-d6) δ 12.97 (s, 1H), 8.45 (d, J = 9.6 Hz,
410




1H), 8.22 (s, 1H), 7.97-7.86 (m, 2H), 7.46 (d, J = 9.4 Hz, 1H), 7.23-




7.11 (m, 2H), 6.17-5.98 (m, 1H), 5.03-4.73 (m, 1H), 3.87 (s, 3H),




3.30-3.28 (m, 1H), 3.14-3.07 (m, 1H), 2.55-2.52 (m, 1H), 2.46-




2.40 (m, 1H), 1.81-1.57 (m, 6H).


51
Ent1
1H NMR (500 MHz, DMSO-d6) δ 13.49 (s, 1H), 8.51 (d, J = 9.6 Hz,
400




1H), 8.37 (s, 1H), 8.08 (d, J = 8.6 Hz, 1H), 7.84 (s, 1H), 7.42 (d, J =




9.5 Hz, 1H), 7.31 (d, J = 2.1 Hz, 1H), 7.28-7.23 (m, 1H), 7.12 (s,




1H), 5.72-5.50 (m, 1H), 3.67-3.60 (m, 1H), 3.53-3.46 (m, 1H),




2.45-2.22 (m, 4H), 1.80-1.62 (m, 2H).


51
Ent2
1H NMR (500 MHz, DMSO-d6) δ 13.49 (s, 1H), 8.51 (d, J = 9.6 Hz,
400




1H), 8.37 (s, 1H), 8.08 (d, J = 8.6 Hz, 1H), 7.84 (s, 1H), 7.42 (d, J =




9.5 Hz, 1H), 7.31 (d, J = 2.1 Hz, 1H), 7.28-7.23 (m, 1H), 7.12 (s,




1H), 5.72-5.50 (m, 1H), 3.67-3.60 (m, 1H), 3.53-3.46 (m, 1H),




2.45-2.22 (m, 4H), 1.80-1.62 (m, 2H).


53
Ent1
1H NMR (400 MHz, DMSO-d6) δ 12.91 (s, 1H), 8.48 (d, J = 9.6 Hz,
423




1H), 8.04-7.75 (m, 3H), 7.49 (d, J = 9.6 Hz, 1H), 7.26-7.11 (m,




2H), 6.44 (d, J = 9.2 Hz, 1H), 6.06-5.85 (m, 1H), 5.15-4.88 (m,




1H), 3.31-3.23 (m, 1H), 2.14-1.63 (m, 8H).


53
Ent2
1H NMR (400 MHz, DMSO-d6) δ 12.91 (s, 1H), 8.48 (d, J = 9.6 Hz,
423




1H), 8.04-7.75 (m, 3H), 7.49 (d, J = 9.6 Hz, 1H), 7.26-7.11 (m,




2H), 6.44 (d, J = 9.2 Hz, 1H), 6.06-5.85 (m, 1H), 5.15-4.88 (m,




1H), 3.31-3.23 (m, 1H), 2.14-1.63 (m, 8H).


54
Ent1
1H NMR (500 MHz, DMSO-d6) δ 12.70 (s, 1H), 8.47 (d, J = 9.5 Hz,
437




1H), 8.04 (d, J = 8.2 Hz, 1H), 7.79 (d, J = 7.1 Hz, 1H), 7.49 (d, J = 9.2




Hz, 1H), 7.33-7.31 (m, 2H), 6.70 (d, J = 1.8 Hz, 1H), 6.61-6.60 (m,




1H), 6.04-5.90 (m, 1H), 5.04-4.80 (m, 1H), 3.46 (s, 3H), 3.28-3.22




(m, 1H), 3.22 (s, 1H), 2.12-1.98 (m, 2H), 1.85-1.81 (m, 2H), 1.69-




1.62 (m, 4H).


54
Ent2
1H NMR (500 MHz, DMSO-d6) δ 12.70 (s, 1H), 8.47 (d, J = 9.5 Hz,
437




1H), 8.01 (dd, J = 30.9, 8.4 Hz, 1H), 7.79 (d, J = 7.1 Hz, 1H), 7.47 (m,




1H), 7.38-7.25 (m, 2H), 6.70 (d, J = 1.9 Hz, 1H), 6.60 (m, 1H), 5.98




(m, 1H), 4.96 (m, 1H), 3.46 (s, 3H), 3.28 (m, 1H), 3.22 (s, 1H), 2.12-




2.00 (m, 2H), 1.84 (m, 2H), 1.67 (m, 4H).


56
Ent1
1H NMR (400 MHz, DMSO-d6) δ 13.19 (s, 1H), 12.69 (s, 1H), 8.50
414




(d, J = 9.6 Hz, 1H), 8.25 (s, 1H), 8.01 (s, 1H), 7.92 (d, J = 12.4 Hz,




1H), 7.51 (d, J = 9.6 Hz, 1H), 7.36 (d, J = 6.8 Hz, 1H), 6.05-5.86 (m,




1H), 5.08-4.89 (d, J = 50.8 Hz, 1H), 3.31-3.20 (m, 2H), 2.17-1.98




(m, 2H), 1.92-1.76 (m, 2H), 1.75-1.59 (m, 4H).


56
Ent2
1H NMR (400 MHz, DMSO-d6) δ 13.19 (s, 1H), 12.69 (s, 1H), 8.49
414




(d, J = 9.6 Hz, 1H), 8.32-7.98 (m, 2H), 7.91 (d, J = 12.4 Hz, 1H),




7.50 (d, J = 9.6 Hz, 1H), 7.36 (d, J = 6.8 Hz, 1H), 6.06-5.85 (m, 1H),




5.08-4.88 (m, 1H), 3.28-3.13 (m, 2H), 2.17-1.96 (m, 2H), 1.90-




1.75 (m, 2H), 1.74-1.57 (m, 4H).


57
Ent1
1H NMR (400 MHz, DMSO-d6) δ 12.49 (s, 1H), 8.48 (d, J = 9.6 Hz,
441




1H), 7.92 (d, J = 12.4 Hz, 1H), 7.81-7.66 (m, 2H), 7.51 (d, J = 9.2




Hz, 1H), 7.10 (d, J = 7.2 Hz, 1H), 6.45 (d, J = 9.6 Hz, 1H), 6.05-5.90




(m, 1H), 5.08-4.89 (m, 1H), 3.30-3.20 (m, 2H), 2.17-1.99 (m,




2H), 1.95-1.82 (m, 2H), 1.78-1.56 (m, 4H).


57
Ent2
1H NMR (400 MHz, DMSO-d6) δ 12.49 (s, 1H), 8.48 (d, J = 9.6 Hz,
441




1H), 7.92 (d, J = 12.4 Hz, 1H), 7.81-7.66 (m, 2H), 7.51 (d, J = 9.2




Hz, 1H), 7.10 (d, J = 7.2 Hz, 1H), 6.45 (d, J = 9.6 Hz, 1H), 6.05-5.90




(m, 1H), 5.08-4.89 (m, 1H), 3.30-3.20 (m, 2H), 2.17-1.99 (m,




2H), 1.95-1.82 (m, 2H), 1.78-1.56 (m, 4H).


58
Ent1
1H NMR (400 MHz, DMSO-d6) δ 12.27 (s, 1H), 8.47 (d, J = 9.6 Hz,
455




1H), 7.94 (d, J = 12.0 Hz, 1H), 7.80 (d, J = 7.2 Hz, 1H), 7.50 (d, J =




9.2 Hz, 1H), 7.13 (d, J = 6.8 Hz, 1H), 6.58 (s, 1H), 6.44 (d, J = 7.2 Hz,




1H), 6.04-5.91 (m, 1H), 5.08-4.88 (m, 1H), 3.47 (s, 3H), 3.25-




3.20 (m, 2H), 2.14-1.99 (m, 2H), 1.87-1.82 (m, 2H), 1.78-1.57 (m, 4H).


58
Ent2
1H NMR (400 MHz, DMSO-d6) δ 12.27 (s, 1H), 8.47 (d, J = 9.6 Hz,
455




1H), 7.94 (d, J = 12.0 Hz, 1H), 7.80 (d, J = 7.2 Hz, 1H), 7.50 (d, J =




9.2 Hz, 1H), 7.13 (d, J = 6.8 Hz, 1H), 6.58 (s, 1H), 6.44 (d, J = 7.2 Hz,




1H), 6.04-5.91 (m, 1H), 5.08-4.88 (m, 1H), 3.47 (s, 3H), 3.25-




3.20 (m, 2H), 2.14-1.99 (m, 2H), 1.87-1.82 (m, 2H), 1.78-1.57 (m, 4H).


60
Ent1
1H NMR (400 MHz, DMSO-d6) δ 13.13 (brs, 1H), 8.47 (d, J = 9.6
396




Hz, 1H), 8.21 (s, 1H), 7.98-7.83 (m, 2H), 7.44 (d, J = 9.6 Hz, 1H),




7.23-7.08 (m, 2H), 5.58-5.31 (m, 1H), 5.03-4.75 (m, 1H), 3.87 (s,




3H), 3.66-3.44 (m, 2H), 2.48-2.33 (m, 1H), 2.10-1.97 (m, 1H),




1.88-1.71 (m, 3H), 1.68-1.63 (m, 2H).


60
Ent2
1H NMR (400 MHz, DMSO-d6) δ 13.13 (brs, 1H), 8.47 (d, J = 9.6
396




Hz, 1H), 8.21 (s, 1H), 7.98-7.83 (m, 2H), 7.44 (d, J = 9.6 Hz, 1H),




7.23-7.08 (m, 2H), 5.58-5.31 (m, 1H), 5.03-4.75 (m, 1H), 3.87 (s,




3H), 3.66-3.44 (m, 2H), 2.48-2.33 (m, 1H), 2.10-1.97 (m, 1H),




1.88-1.71 (m, 3H), 1.68-1.63 (m, 2H).


61
Ent1
1H NMR (400 MHz, DMSO-d6) δ 12.78 (brs, 1H), 8.48 (d, J = 9.6
414




Hz, 1H), 8.20 (s, 1H), 7.98-7.78 (m, 2H), 7.47 (d, J = 9.6 Hz, 1H),




7.29 (d, J = 7.2 Hz, 1H), 5.57-5.33 (m, 1H), 4.98-4.80 (m, 1H),




3.90 (s, 3H), 3.65-3.46 (m, 2H), 2.48-2.33 (s, 1H), 2.10-1.95 (m,




1H), 1.89-1.70 (m, 3H), 1.70-1.55 (m, 2H).


61
Ent2
1H NMR (400 MHz, DMSO-d6) δ 12.78 (brs, 1H), 8.48 (d, J = 9.6
414




Hz, 1H), 8.20 (s, 1H), 7.98-7.78 (m, 2H), 7.47 (d, J = 9.6 Hz, 1H),




7.29 (d, J = 7.2 Hz, 1H), 5.57-5.33 (m, 1H), 4.98-4.80 (m, 1H),




3.90 (s, 3H), 3.65-3.46 (m, 2H), 2.48-2.33 (s, 1H), 2.10-1.95 (m,




1H), 1.89-1.70 (m, 3H), 1.70-1.55 (m, 2H).


63
ENT1
1H NMR (400 MHz, DMSO-d6) δ 8.54 (d, J = 9.3 Hz, 2H), 8.33 (s,
397




1H), 8.03 (s, 1H), 7.27 (d, J = 9.0 Hz, 1H), 6.76 (s, 1H), 5.51-5.40 (m,




1H), 4.95-4.82 (m, 1H), 3.91 (s, 3H), 3.61-3.56 (m, 3H), 2.04-2.01 (m,




1H), 1.84-1.78 (m, 3H), 1.70-1.58 (m, 2H).


63
ENT2
1H NMR (400 MHz, DMSO-d6) δ 8.54 (d, J = 9.3 Hz, 2H), 8.33 (s,
397




1H), 8.03 (s, 1H), 7.27 (d, J = 9.0 Hz, 1H), 6.76 (s, 1H), 5.51-5.41 (m,




1H), 4.95-4.82 (m, 1H)3.91 (s, 3H), 3.61-3.56 (m, 2H), 2.04-2.01 (m,




1H), 1.84-1.78 (m, 3H), 1.70-1.58 (m, 2H).


64
ENT1
1H NMR (400 MHz, DMSO-d6) δ 8.56 (d, J = 9.3 Hz, 2H), 8.32 (s,
411




1H), 8.03 (s, 1H), 7.28 (d, J = 9.2 Hz, 1H), 6.76 (s, 1H), 6.03-5.90 (m,




1H), 5.01-4.88 (m, 1H), 3.91 (s, 3H), 3.26-3.17 (m, 2H), 2.10-1.95 (m,




2H), 1.84-1.83 (m, 2H), 1.71-1.58 (m, 4H).


64
ENT2
1H NMR (400 MHz, DMSO-d6) δ 8.56 (d, J = 9.3 Hz, 2H), 8.32 (s,
411




1H), 8.03 (s, 1H), 7.28 (d, J = 9.2 Hz, 1H), 6.76 (s, 1H), 6.03-5.90 (m,




1H), 5.01 (s, 0.5H), 4.88 (s, 0.5H), 3.91 (s, 3H), 3.21 (s, 2H), 2.10-




1.95 (m, 2H), 1.84-1.83 (m, 2H), 1.71-1.58 (m, 4H).


66
Ent1
1H NMR (400 MHz, DMSO-d6) δ 8.46 (d, J = 8.8 Hz, 1H), 7.99 (d,
396




1H), 7.81 (d, 1H), 7.58-7.34 (m, 3H), 6.79 (d, J = 2.1 Hz, 1H), 6.04-




5.84 (m, 1H), 5.05-4.90 (m, 1H), 3.31-3.15 (m, 2H), 2.17-1.96




(m, 2H), 1.96-1.76 (m, 2H), 1.76-1.55 (m, 4H).


66
Ent2
1H NMR (400 MHz, DMSO-d6) δ 8.46 (d, J = 8.8 Hz, 1H), 7.98 (d,
396




1H), 7.81 (d, 1H), 7.52-7.32 (m, 3H), 6.79 (d, J = 2.1 Hz, 1H), 6.07-




5.71 (m, 1H), 5.05-4.90 (m, 1H), 3.29-3.09 (m, 2H), 2.25-1.97




(m, 2H), 1.92-1.77 (m, 2H), 1.72-1.54 (m, 4H).


67
Ent2
1H NMR (400 MHz, DMSO-d6) δ 12.89-12.70 (m, 1H), 8.82 (d,
421




1H), 8.49 (d, J = 9.4 Hz, 1H), 8.15-7.93 (m, 2H), 7.50 (s, 1H), 7.34




(dd, J = 14.7, 7.4 Hz, 3H), 5.88 (m, 1H), 5.10-4.68 (m, 1H), 3.25-




3.15 (m, 2H), 2.52 (s, 3H), 2.07 (m, 2H), 1.93-1.74 (m, 2H), 1.76-




1.54 (m, 4H).


67
Ent1
1H NMR (400 MHz, DMSO-d6) δ 12.81 (s, 1H), 8.81 (d, J = 2.0 Hz,
421




1H), 8.49 (d, J = 9.5 Hz, 1H), 8.19-7.84 (m, 2H), 7.46 (d, J = 9.2 Hz,




1H), 7.34 (m, 3H), 5.97 (m, 1H), 5.16-4.71 (m, 1H), 3.30-3.12 (m,




2H), 2.52 (s, 3H), 2.08 (m, 2H), 1.92-1.78 (m, 2H), 1.76-1.60 (m, 4H).


68
Ent1
1H NMR (400 MHz, DMSO-d6) δ 8.41 (d, J = 9.6 Hz, 1H), 7.94 (d, J =
410




8.7 Hz, 1H), 7.75 (d, J = 2.2 Hz, 1H), 7.49-7.37 (m, 3H), 6.77 (d, J =




2.2 Hz, 1H), 6.05-5.87 (m, 1H), 5.12-4.91 (m, 1H), 3.90 (s, 3H),




3.44-3.20 (m, 2H), 2.17-2.03 (m, 2H), 1.95-1.78 (m, 2H), 1.77-




1.58 (m, 4H).


68
Ent2
1H NMR (400 MHz, DMSO-d6) δ 8.45 (d, J = 13.8 Hz, 1H), 7.96 (d,
410




J = 8.1 Hz, 1H), 7.76 (d, J = 2.2 Hz, 1H), 7.56-7.33 (m, 3H), 6.76 (d,




J = 2.3 Hz, 1H), 6.10-5.88 (m, 1H), 5.19-5.07 (m, 1H), 3.66-3.39




(m, 2H), 2.27-2.07 (m, 2H), 1.99-1.83 (m, 2H), 1.86-1.64 (m, 4H).


69
ENT1
1H NMR (400 MHz, DMSO-d6) δ 12.80 (s, 1H), 8.92 (d, J = 1.1 Hz,
397




1H), 8.50 (d, J = 9.5 Hz, 1H), 8.16 (d, J = 8.6 Hz, 1H), 8.01 (d, J = 1.0




Hz, 1H), 7.62 (d, J = 2.1 Hz, 1H), 7.56 (dd, J = 8.8, 2.3 Hz, 2H), 6.02




(d, J = 29.8 Hz, 1H), 5.43-5.31 (m, 1H), 3.99 (d, J = 10.2 Hz, 1H),




3.72 (s, 1H), 2.47-1.71 (m, 9H).


69
Ent2
1H NMR (400 MHz, DMSO-d6) δ 12.80 (s, 1H), 8.92 (d, J = 1.1 Hz,
397




1H), 8.50 (d, J = 9.5 Hz, 1H), 8.16 (d, J = 8.6 Hz, 1H), 8.01 (d, J = 1.0




Hz, 1H), 7.62 (d, J = 2.1 Hz, 1H), 7.56 (dd, J = 8.8, 2.3 Hz, 2H), 6.02




(d, J = 29.8 Hz, 1H), 5.25-5.13 (m, 1H), 3.99 (d, J = 10.2 Hz, 1H),




3.72 (s, 1H), 2.47-1.71 (m, 9H).


70
Ent1
1H NMR (400 MHz, DMSO-d6) δ 13.03 (s, 1H), 9.25 (s, 1H), 8.47
411




(d, J = 9.5 Hz, 1H), 8.11 (d, J = 8.7 Hz, 1H), 7.56-7.38 (m, 3H), 6.07-




5.87 (m, 1H), 5.07-4.88 (m, 1H), 3.29-3.18 (m, 2H), 2.38 (s, 3H),




2.14-2.01 (m, 2H), 1.89-1.59 (m, 6H).


70
Ent2
1H NMR (400 MHz, DMSO-d6) δ 13.03 (s, 1H), 9.25 (s, 1H), 8.47
411




(d, J = 9.5 Hz, 1H), 8.11 (d, J = 8.7 Hz, 1H), 7.56-7.38 (m, 3H), 6.07-




5.87 (m, 1H), 5.07-4.88 (m, 1H), 3.29-3.18 (m, 2H), 2.38 (s, 3H),




2.14-2.01 (m, 2H), 1.89-1.59 (m, 6H).


71
ENT1
1H NMR (500 MHz, DMSO-d6) δ 12.67 (s, 1H), 8.46 (d, J = 9.5 Hz,
427




1H), 8.06 (s, 1H), 8.00 (d, J = 8.4 Hz, 1H), 7.60 (d, J = 1.8 Hz, 1H),




7.58-7.51 (m, 1H), 7.47 (d, J = 9.5 Hz, 1H), 6.05-5.86 (m, 1H),




5.20-5.10 (m, 1H), 3.31-3.18 (m, 2H), 2.73 (s, 3H), 2.13-1.99 (m,




2H), 1.93-1.55 (m, 6H).


71
ENT2
1H NMR (400 MHz, DMSO-d6) δ 12.72 (s, 1H), 8.46 (d, J = 9.6 Hz,
427




1H), 8.05 (s, 1H), 8.00 (d, J = 8.3 Hz, 1H), 7.60 (d, J = 1.6 Hz, 1H),




7.57-7.50 (m, 1H), 7.46 (d, J = 9.5 Hz, 1H), 6.13-5.76 (m, 1H),




5.13-4.75 (m, 1H), 3.47-3.09 (m, 2H), 2.73 (s, 3H), 2.14-1.96 (m,




2H), 1.92-1.75 (m, 2H), 1.75-1.51 (m, 4H).


72
Ent1
1H NMR (400 MHz, DMSO-d6) δ 12.80 (s, 1H), 9.25 (s, 1H), 8.47
411




(d, J = 9.5 Hz, 1H), 8.02 (d, J = 8.2 Hz, 1H), 7.49 (d, J = 9.5 Hz, 1H),




7.27-7.00 (m, 2H), 6.11-5.84 (m, 1H), 4.97 (d, J = 51.4 Hz, 1H),




3.23 (s, 2H), 2.45 (s, 3H), 2.15-1.97 (m, 2H), 1.84 (m, 2H), 1.75-




1.60 (m, 4H).


72
Ent2
1H NMR (400 MHz, DMSO-d6) δ 12.79 (s, 1H), 9.25 (s, 1H), 8.47
411




(d, J = 9.4 Hz, 1H), 8.02 (d, J = 7.9 Hz, 1H), 7.49 (d, J = 9.3 Hz, 1H),




7.22-7.09 (m, 2H), 5.96 (m, 1H), 5.04-4.91 (m, 1H), 3.23 (s, 2H),




2.44 (s, 3H), 2.07 (m, 2H), 1.84 (m, 2H), 1.67 (m, 4H).


73
Ent1
1H NMR (400 MHz, DMSO-d6) δ 12.93 (s, 1H), 9.26 (d, J = 0.7 Hz,
447




1H), 9.03 (s, 1H), 8.52 (d, J = 9.6 Hz, 1H), 8.11 (d, J = 8.2 Hz, 1H),




7.88 (d, J = 9.6 Hz, 1H), 7.80 (dd, J = 9.7, 1.7 Hz, 1H), 7.52 (d, J =




9.5 Hz, 1H), 7.40-7.33 (m, 2H), 6.07-5.90 (m, 1H), 4.99 (d, J =




51.2 Hz, 1H), 3.25 (s, 2H), 2.04-2.10 (m, 2H), 1.80-1.85 (m, 2H), 1.78-




1.60 (m, 4H).


73
Ent2
1H NMR (400 MHz, DMSO-d6) δ 12.92 (s, 1H), 9.26 (s, 1H), 9.03 (s,
447




1H), 8.52 (d, J = 9.6 Hz, 1H), 8.11 (d, J = 8.2 Hz, 1H), 7.88 (d, J = 9.6




Hz, 1H), 7.80 (dd, J = 9.6, 1.7 Hz, 1H), 7.52 (d, J = 9.5 Hz, 1H), 7.41-




7.32 (m, 2H), 5.92-6.00 (m, 1H), 5.01 (d, J = 51.3 Hz, 2H), 3.27 (s,




2H), 2.05-2.10 (m, 2H), 1.83-1.90 (m, 2H), 1.77-1.61 (m, 4H).


74
ENT1
1H NMR (400 MHz, DMSO-d6) δ 8.44 (d, J = 9.6 Hz, 1H), 7.97 (s,
401




1H), 7.48 (d, J = 9.5 Hz, 1H), 6.91 (s, 1H), 6.02-5.82 (m, 1H), 5.08-




4.85 (m, 1H), 3.38 (s, 3H), 3.28-3.20 (m, 2H), 2.10-1.63 (m, 8H).


74
ENT2
1H NMR (400 MHz, DMSO-d6) δ 8.45 (d, J = 9.6 Hz, 1H), 7.97 (s,
401




1H), 7.48 (d, J = 9.5 Hz, 1H), 6.90 (s, 1H), 6.01-5.85 (m, 1H), 5.07-




4.84 (m, 1H), 3.37 (s, 3H), 3.28-3.20 (m, 2H), 2.08-1.62 (m, 8H).


75
Ent1
1H NMR (400 MHz, DMSO-d6) δ 8.44 (d, J = 9.5 Hz, 1H), 8.16 (d, J =
422




8.8 Hz, 1H), 8.07 (d, J = 8.3 Hz, 1H), 7.78 (d, J = 1.5 Hz, 1H), 7.74




(d, J = 8.3 Hz, 1H), 7.69 (d, J = 8.8 Hz, 1H), 7.46 (d, J = 9.5 Hz, 1H),




6.07-5.84 (m, 1H), 5.07-4.95 (m, 1H), 3.46-3.19 (m, 2H), 2.69 (s,




3H), 2.19-2.05 (m, 2H), 1.95-1.78 (m, 2H), 1.76-1.57 (m, 4H).


75
Ent2
1H NMR (400 MHz, DMSO-d6) δ 8.44 (d, J = 9.5 Hz, 1H), 8.16 (d, J =
422




8.8 Hz, 1H), 8.07 (d, J = 8.3 Hz, 1H), 7.78 (d, 1H), 7.74 (d, J = 8.3




Hz, 1H), 7.69 (d, J = 8.8 Hz, 1H), 7.46 (d, J = 9.5 Hz, 1H), 6.14-5.74




(m, 1H), 5.07-4.95 (m, 1H), 3.44-3.14 (m, 2H), 2.69 (s, 3H), 2.18-




2.06 (m, 2H), 1.94-1.79 (m, 2H), 1.79-1.59 (m, 4H).


76
Ent1
1H NMR (400 MHz, DMSO-d6) δ 9.33 (d, J = 1.7 Hz, 1H), 8.54 (d, J =
438




9.5 Hz, 1H), 8.11 (d, J = 8.2 Hz, 1H), 7.60-7.38 (m, 4H), 6.02-5.98




(m, 1H), 5.04-4.97 (m, 1H), 4.09 (s, 3H), 3.29-3.17 (m, 2H), 2.15-




1.99 (m, 2H), 1.92-1.76 (m, 2H), 1.75-1.51 (m, 4H).


76
Ent2
1H NMR (400 MHz, DMSO-d6) δ 9.33 (d, J = 1.7 Hz, 1H), 8.54 (d, J =
438




9.5 Hz, 1H), 8.11 (d, J = 8.2 Hz, 1H), 7.60-7.38 (m, 4H), 6.02-5.98




(m, 1H), 5.04-4.97 (m, 1H), 4.09 (s, 3H), 3.29-3.17 (m, 2H), 2.15-




1.99 (m, 2H), 1.92-1.76 (m, 2H), 1.75-1.51 (m, 4H).


77
ENT2
1H NMR (400 MHz, DMSO-d6) δ 8.69 (d, J = 4.6 Hz, 1H), 8.48 (d, J =
407




9.5 Hz, 1H), 8.10-7.98 (m, 2H), 7.90 (t, J = 7.7 Hz, 1H), 7.75 (s,




1H), 7.69 (d, J = 8.1 Hz, 1H), 7.47 (d, J = 9.5 Hz, 1H), 7.42-7.35 (m,




1H), 6.09-5.87 (m, 1H), 5.12-4.83 (m, 1H), 3.28-3.17 (m, 2H),




2.14-2.02 (m, 2H), 1.93-1.77 (m, 2H), 1.76-1.57 (m, 4H).


77
ENT1
1H NMR (400 MHz, DMSO-d6) δ 12.62 (s, 1H), 8.69 (d, J = 4.6 Hz,
407




1H), 8.48 (d, J = 9.5 Hz, 1H), 8.10-7.98 (m, 2H), 7.90 (t, J = 7.7 Hz,




1H), 7.75 (s, 1H), 7.69 (d, J = 8.1 Hz, 1H), 7.47 (d, J = 9.5 Hz, 1H),




7.42-7.35 (m, 1H), 6.09-5.87 (m, 1H), 5.12-4.83 (m, 1H), 3.28-




3.17 (m, 2H), 2.52-2.49 (m, 1H), 2.14-2.02 (m, 2H), 1.93-1.77 (m,




2H), 1.76-1.57 (m, 4H).


78
ENT1
1H NMR (500 MHz, DMSO-d6) δ 12.64 (s, 1H), 9.16 (s, 1H), 8.64 (s,
422




1H), 8.48 (d, J = 9.5 Hz, 1H), 8.08 (d, J = 8.3 Hz, 1H), 7.76 (s, 1H),




7.72 (d, J = 8.3 Hz, 1H), 7.49 (d, J = 9.4 Hz, 1H), 6.07-5.92 (m, 1H),




5.04-4.93 (m, 1H), 3.32-3.24 (m, 2H), 2.55 (s, 3H), 2.15-2.00 (m,




2H), 1.80-1.88 (m, 2H), 1.64-1.70 (m, 4H).


78
ENT2
1H NMR (500 MHz, DMSO-d6) δ 12.63 (s, 1H), 9.16 (s, 1H), 8.64 (s,
422




1H), 8.48 (d, J = 9.5 Hz, 1H), 8.09 (d, J = 8.3 Hz, 1H), 7.76 (s, 1H),




7.72 (d, J = 8.4 Hz, 1H), 7.49 (d, J = 9.4 Hz, 1H), 6.19-5.82 (m, 1H),




5.08-4.90 (m, 1H), 3.31-3.21 (m, 2H), 2.56 (s, 3H), 2.15-2.00 (m,




2H), 1.92-1.77 (m, 2H), 1.76-1.60 (m, 4H).


79
ENT1
1H NMR (500 MHz, DMSO-d6) δ 12.65 (s, 1H), 9.32 (d, J = 1.5 Hz,
408




1H), 8.76 (s, 1H), 8.65 (d, J = 2.5 Hz, 1H), 8.49 (d, J = 9.5 Hz, 1H),




8.11 (d, J = 8.2 Hz, 1H), 7.80 (d, J = 1.8 Hz, 1H), 7.79-7.74 (m, 1H),




7.50 (d, J = 9.4 Hz, 1H), 6.08-5.89 (m, 1H), 5.06-4.88 (m, 1H),




3.29-3.19 (m, 2H), 2.14-2.00 (m, 2H), 1.90-1.76 (m, 2H), 1.75-




1.59 (m, 4H).


79
ENT2
1H NMR (500 MHz, DMSO-d6) δ 12.65 (s, 1H), 9.32 (d, J = 1.5 Hz,
408




1H), 8.76 (s, 1H), 8.65 (d, J = 2.5 Hz, 1H), 8.49 (d, J = 9.5 Hz, 1H),




8.11 (d, J = 8.2 Hz, 1H), 7.80 (d, J = 1.8 Hz, 1H), 7.79-7.74 (m, 1H),




7.50 (d, J = 9.4 Hz, 1H), 6.08-5.89 (m, 1H), 5.06-4.88 (m, 1H),




3.29-3.19 (m, 2H), 2.14-2.00 (m, 2H), 1.90-1.76 (m, 2H), 1.75-




1.59 (m, 4H).


80
ENT1
1H NMR (500 MHz, DMSO-d6) δ 9.17 (s, 1H), 8.57-8.28 (m, 3H),
381




7.78 (d, J = 7.4 Hz, 1H), 7.59-7.34 (m, 2H), 6.25-5.75 (m, 1H),




4.97 (d, J = 45.9 Hz, 1H), 3.29-3.13 (m, 2H), 2.19-1.98 (m, 2H),




1.95-1.76 (m, 2H), 1.78-1.57 (m, 4H).


80
Ent2
1H NMR (500 MHz, DMSO-d6) δ 9.18 (s, 1H), 8.61-8.26 (m, 3H),
381




7.79 (d, J = 5.7 Hz, 1H), 7.54-7.43 (m, 2H), 6.14-5.95 (m, 1H),




4.97 (d, J = 58.3 Hz, 1H), 3.28-3.16 (m, 2H), 2.18-2.01 (m, 2H),




1.93-1.78 (m, 2H), 1.78-1.58 (m, 4H).


81
ENT1
1H NMR (500 MHz, DMSO-d6) δ 9.22 (s, 1H), 8.69 (s, 1H), 8.44 (d,
381




J = 9.4 Hz, 1H), 8.38 (d, J = 5.8 Hz, 1H), 7.65 (d, J = 5.8 Hz, 1H),




7.50 (d, J = 9.3 Hz, 1H), 7.35 (s, 1H), 6.07-5.94 (m, 1H), 5.15-5.00




(m, 1H), 3.50-3.43 (m, 1H), 3.37-3.31 (m, 1H), 2.20-2.08 (m,




2H), 1.94-1.88 (m, 2H), 1.76-1.68 (m, 4H).


81
ENT2
1H NMR (500 MHz, DMSO-d6) δ 9.22 (s, 1H), 8.69 (s, 1H), 8.44 (d,
381




J = 9.4 Hz, 1H), 8.38 (d, J = 5.8 Hz, 1H), 7.65 (d, J = 5.8 Hz, 1H),




7.50 (d, J = 9.3 Hz, 1H), 7.35 (s, 1H), 6.07-5.94 (m, 1H), 5.15-5.00




(m, 1H), 3.50-3.43 (m, 1H), 3.37-3.31 (m, 1H), 2.20-2.08 (m,




2H), 1.94-1.88 (m, 2H), 1.76-1.68 (m, 4H).


82
Ent1
1H NMR (400 MHz, DMSO-d6) δ 12.66 (s, 1H), 8.48 (d, J = 9.6 Hz,
428




1H), 8.21 (d, J = 2.1 Hz, 1H), 7.96 (s, 1H), 7.91 (d, J = 12.5 Hz, 1H),




7.50 (d, J = 9.5 Hz, 1H), 7.31 (d, J = 6.9 Hz, 1H), 6.06-5.86 (m, 1H),




5.08-4.90 (m, 1H), 3.91 (s, 3H), 3.30-3.39 (m, 2H), 2.16-1.99 (m,




2H), 1.91-1.75 (m, 2H), 1.75-1.58 (m, 4H).


82
Ent2
1H NMR (400 MHz, DMSO-d6) δ 12.63 (s, 1H), 8.49 (d, J = 9.6 Hz,
428




1H), 8.21 (d, J = 2.0 Hz, 1H), 8.00-7.87 (m, 2H), 7.51 (d, J = 9.5 Hz,




1H), 7.31 (d, J = 6.9 Hz, 1H), 6.02-5.92 (m, 1H), 5.12-4.99 (m, 1H),




3.91 (s, 3H), 3.30-3.39 (m, 2H), 2.23-2.05 (m, 2H), 1.84-1.90 (m,




2H), 1.70-1.76 (m, 4H).


83
Ent1
1H NMR (400 MHz, Methanol-d4) δ 8.54 (d, J = 7.2 Hz, 1H), 8.41 (d,
446




J = 9.6 Hz, 1H), 8.02-7.97 (m, 1H), 7.92-7.85 (m, 2H), 7.65 (d, J =




1.3 Hz, 1H), 7.42-7.31 (m, 4H), 6.09 (d, J = 29.1 Hz, 1H), 5.06 (s,




1H), 3.55-3.42 (m, 2H), 2.40-2.21 (m, 2H), 2.15-1.98 (m, 2H),




1.96-1.82 (m, 4H).


83
Ent2
1H NMR (400 MHz, Methanol-d4) δ 8.54 (d, J = 7.1 Hz, 1H), 8.40 (d,
446




J = 9.5 Hz, 1H), 8.02-7.97 (m, 1H), 7.92-7.85 (m, 2H), 7.64 (d, J =




1.3 Hz, 1H), 7.42-7.31 (m, 4H), 6.08 (d, J = 29.2 Hz, 1H), 5.19-




4.99 (m, 1H), 3.53-3.40 (m, 2H), 2.36-2.21 (m, 2H), 2.14-1.93




(m, 2H), 1.92-1.78 (m, 4H).


84
ENT1
1H NMR (400 MHz, Methanol-d4) δ 8.85 (s, 1H), 8.40 (d, J = 9.6 Hz,
446




1H), 8.02-7.94 (m, 2H), 7.72-7.62 (m, 3H), 7.40-7.31 (m, 3H),




6.11-6.04 (m, 1H), 5.16-4.93 (m, 1H), 3.51-3.39 (m, 2H), 2.38-




2.21 (m, 2H), 2.12-1.96 (m, 2H), 1.97-1.79 (m, 4H).


84
ENT2
1H NMR (400 MHz, Methanol-d4) δ 8.85 (s, 1H), 8.40 (d, J = 9.6 Hz,
446




1H), 8.01-7.93 (m, 2H), 7.72-7.61 (m, 3H), 7.40-7.31 (m, 3H),




6.08 (d, J = 29.5 Hz, 1H), 5.11 (d, J = 50.3 Hz, 1H), 3.54-3.39 (m,




2H), 2.37-2.21 (m, 2H), 2.12-2.00 (m, 2H), 1.99-1.80 (m, 4H).


85
ENT1
1H NMR (500 MHz, DMSO-d6) δ 12.90 (s, 1H), 8.83 (s, 1H), 8.51
446




(d, J = 9.5 Hz, 1H), 8.41 (s, 1H), 8.07 (d, J = 8.1 Hz, 1H), 7.66 (d, J =




9.4 Hz, 1H), 7.51 (d, J = 9.4 Hz, 1H), 7.40 (s, 1H), 7.33 (d, J = 8.1 Hz,




2H), 7.20 (d, J = 9.5 Hz, 1H), 6.19-5.82 (m, 1H), 5.09-4.90 (m, 1H),




3.31-3.22 (m, 2H), 2.20-1.93 (m, 2H), 1.93-1.57 (m, 6H).


85
ENT2
1H NMR (500 MHz, DMSO-d6) δ 12.90 (s, 1H), 8.83 (s, 1H), 8.51
446




(d, J = 9.5 Hz, 1H), 8.41 (s, 1H), 8.07 (d, J = 8.1 Hz, 1H), 7.66 (d, J =




9.4 Hz, 1H), 7.51 (d, J = 9.4 Hz, 1H), 7.40 (s, 1H), 7.33 (d, J = 8.1 Hz,




2H), 7.20 (d, J = 9.5 Hz, 1H), 6.19-5.82 (m, 1H), 5.09-4.90 (m, 1H),




3.31-3.22 (m, 2H), 2.20-1.93 (m, 2H), 1.93-1.57 (m, 6H).


86
ENT1
1H NMR (400 MHz, DMSO-d6) δ 12.88 (s, 1H), 9.28 (s, 1H), 8.68-
447




8.46 (m, 2H), 8.23-8.04 (m, 2H), 7.61-7.37 (m, 4H), 5.98 (d, J =




30.1 Hz, 1H), 4.99 (d, J = 51.3 Hz, 1H), 3.29-3.09 (m, 2H), 2.18-




1.95 (m, 2H), 1.94-1.75 (m, 2H), 1.78-1.59 (m, 4H).


86
ENT2
1H NMR (400 MHz, DMSO-d6) δ 12.88 (s, 1H), 9.28 (s, 1H), 8.65
447




(d, J = 7.3 Hz, 1H), 8.53 (d, J = 9.6 Hz, 1H), 8.21-8.06 (m, 2H), 7.57-




7.38 (m, 4H), 6.03-5.95 (m, 1H), 5.06-4.92 (m, 1H), 3.30-3.11 (m,




2H), 2.16-2.01 (m, 2H), 1.91-1.75 (m, 2H), 1.78-1.60 (m, 4H).


87
ENT2
1H NMR (500 MHz, DMSO-d6) δ 9.65 (d, J = 1.2 Hz, 1H), 9.31 (d, J =
408




5.5 Hz, 1H), 8.45 (d, J = 9.5 Hz, 1H), 8.12-8.05 (m, 2H), 7.61-




7.47 (m, 3H), 6.02-5.95 (m, 1H), 5.42-5.33 (m, 1H), 4.04-3.76 (m,




2H), 2.49-2.34 (m, 2H), 2.13-1.93 (m, 4H), 1.78-1.82 (m, 2H).


87
ENT1
1H NMR (500 MHz, DMSO-d6) δ 9.65 (d, J = 1.2 Hz, 1H), 9.31 (d, J =
408




5.5 Hz, 1H), 8.45 (d, J = 9.5 Hz, 1H), 8.12-8.05 (m, 2H), 7.61-




7.47 (m, 3H), 6.02-5.95 (m, 1H), 5.42-5.33 (m, 1H), 4.04-3.76 (m,




2H), 2.49-2.34 (m, 2H), 2.13-1.93 (m, 4H), 1.78-1.82 (m, 2H).


88
ENT1
1H NMR (400 MHz, Methanol-d4) δ 8.49 (d, J = 5.3 Hz, 1H), 8.41 (d,
421




J = 9.6 Hz, 1H), 8.01 (d, J = 8.0 Hz, 1H), 7.66 (s, 1H), 7.58 (d, J = 5.2




Hz, 1H), 7.41-7.36 (m, 3H), 6.14-6.02 (m, 1H), 5.15-5.01 (m, 1H),




3.49-3.37 (m, 2H), 2.64 (s, 3H), 2.34-2.21 (m, 2H), 2.13-1.98 (m,




2H), 1.93-1.77 (m, 4H).


88
ENT2
1H NMR (400 MHz, Methanol-d4) δ 8.49 (d, J = 5.3 Hz, 1H), 8.41 (d,
421




J = 9.6 Hz, 1H), 8.01 (d, J = 8.0 Hz, 1H), 7.66 (s, 1H), 7.58 (d, J = 5.2




Hz, 1H), 7.41-7.36 (m, 3H), 6.14-6.02 (m, 1H), 5.15-5.01 (m, 1H),




3.49-3.37 (m, 2H), 2.64 (s, 3H), 2.34-2.21 (m, 2H), 2.13-1.98 (m,




2H), 1.93-1.77 (m, 4H).


89
ENT1
1H NMR (400 MHz, DMSO-d6) δ 8.75 (d, J = 2.0 Hz, 1H), 8.48 (m,
421




2H), 8.12-7.90 (m, 2H), 7.51 (d, J = 9.5 Hz, 1H), 7.35 (m, 2H),




6.05-5.93 (m, 1H), 5.10-4.98 (m, 1H), 3.51-3.37 (m, 2H), 2.39 (s,




3H), 2.21-2.01 (m, 2H), 2.01-1.59 (m, 6H).


89
ENT2
1H NMR (400 MHz, DMSO-d6) δ 8.75 (d, J = 2.0 Hz, 1H), 8.48 (m,
421




2H), 8.12-7.90 (m, 2H), 7.51 (d, J = 9.5 Hz, 1H), 7.35 (m, 2H),




6.05-5.93 (m, 1H), 5.10-4.98 (m, 1H), 3.51-3.37 (m, 2H), 2.39 (s,




3H), 2.21-2.01 (m, 2H), 2.01-1.59 (m, 6H).


90
ENT1
1H NMR (400 MHz, DMSO-d6) δ 12.93 (s, 1H), 9.50 (d, J = 1.9 Hz,
422




1H), 8.53 (d, J = 9.5 Hz, 1H), 8.14 (d, J = 8.1 Hz, 1H), 7.96 (d, J = 1.9




Hz, 1H), 7.55-7.50 (m, 3H), 6.03-5.93 (m, 1H), 5.03-4.91 (m, 1H),




3.41-3.22 (m, 2H), 2.70 (s, 3H), 2.13-2.04 (m, 2H), 2.02-1.73 (m,




2H), 1.72-1.61 (m, 4H).


90
ENT2
1H NMR (400 MHz, DMSO-d6) δ 12.93 (s, 1H), 9.50 (d, J = 1.9 Hz,
422




1H), 8.53 (d, J = 9.5 Hz, 1H), 8.14 (d, J = 8.1 Hz, 1H), 7.96 (d, J = 1.9




Hz, 1H), 7.55-7.50 (m, 3H), 6.03-5.93 (m, 1H), 5.03-4.91 (m, 1H),




3.41-3.22 (m, 2H), 2.70 (s, 3H), 2.13-2.04 (m, 2H), 2.02-1.73 (m,




2H), 1.72-1.61 (m, 4H).


91
Ent1
1H NMR (400 MHz, DMSO-d6) δ 12.83 (s, 1H), 8.80-8.74 (m, 1H),
446




8.48 (m 2H), 8.03 (dd, J = 8.9, 5.5 Hz, 2H), 7.48 (d, J = 9.5 Hz, 1H),




7.43-7.27 (m, 3H), 7.00 (t, J = 6.3 Hz, 1H), 6.01-5.92 (m, 1H),




5.05-4.91 (m, 1H), 3.33-3.23 (m, 2H), 2.13-2.00 (m, 2H), 1.90-




1.77 (m, 2H), 1.75-1.60 (m, 4H).


91
Ent2
1H NMR (400 MHz, DMSO-d6) δ 12.83 (s, 1H), 8.80-8.74 (m, 1H),
446




8.48 (m 2H), 8.03 (dd, J = 8.9, 5.5 Hz, 2H), 7.48 (d, J = 9.5 Hz, 1H),




7.43-7.27 (m, 3H), 7.00 (t, J = 6.3 Hz, 1H), 6.01-5.92 (m, 1H),




5.05-4.91 (m, 1H), 3.33-3.23 (m, 2H), 2.13-2.00 (m, 2H), 1.90-




1.77 (m, 2H), 1.75-1.60 (m, 4H).


92
ENT1
1H NMR (500 MHz, DMSO-d6) δ 12.69 (s, 1H), 8.57 (s, 1H), 8.46
411




(d, J = 9.5 Hz, 1H), 7.99 (d, J = 8.3 Hz, 1H), 7.48 (d, J = 9.4 Hz, 1H),




7.40 (d, J = 1.5 Hz, 1H), 7.37-7.35 (m, 1H), 6.02-5.91 (m, 1H), 5.09-




4.99 (m, 1H), 3.43-3.40 (m, 2H), 2.48 (s, 3H), 2.19-1.65 (m, 8H).


92
Ent2
1H NMR (500 MHz, DMSO-d6) δ 12.69 (s, 1H), 8.57 (s, 1H), 8.46
411




(d, J = 9.5 Hz, 1H), 7.99 (d, J = 8.3 Hz, 1H), 7.48 (d, J = 9.4 Hz, 1H),




7.40 (d, J = 1.5 Hz, 1H), 7.37-7.35 (m, 1H), 6.02-5.91 (m, 1H), 5.09-




4.99 (m, 1H), 3.43-3.40 (m, 2H), 2.48 (s, 3H), 2.19-1.65 (m, 8H).


93
Ent1
1H NMR (400 MHz, Methanol-d4) δ 8.37 (d, J = 9.6 Hz, 1H), 7.93 (d,
411




J = 8.9 Hz, 1H), 7.47 (s, 1H), 7.39-7.28 (m, 3H), 6.18-5.97 (m,




1H), 5.12-5.01 (m, 1H), 3.36-3.32 (m, 2H), 2.57 (s, 3H), 2.25-2.30 (m,




2H), 2.01-2.04 (m, 2H), 1.98-1.76 (m, 4H).


93
Ent2
1H NMR (400 MHz, Methanol-d4) δ 8.37 (d, J = 9.6 Hz, 1H), 7.93 (d,
411




J = 8.9 Hz, 1H), 7.47 (s, 1H), 7.39-7.28 (m, 3H), 6.18-5.97 (m,




1H), 5.12-5.01 (m, 1H), 3.36-3.32 (m, 2H), 2.57 (s, 3H), 2.25-2.30 (m,




2H), 2.01-2.04 (m, 2H), 1.98-1.76 (m, 4H).


94
ENT1
1H NMR (400 MHz, Methanol-d4) δ 8.42 (d, J = 9.6 Hz, 1H), 8.06 (d,
412




J = 8.2 Hz, 1H), 7.67-7.62 (m, 2H), 7.40 (d, J = 9.5 Hz, 1H), 6.09-




6.03 (m, 1H), 5.15-5.01 (m, 1H), 3.48-3.35 (m, 2H), 2.66 (s, 3H),




2.34-2.20 (m, 2H), 2.12-1.96 (m, 2H), 1.95-1.75 (m, 4H).


94
ENT2
1H NMR (400 MHz, DMSO-d6) δ 12.36 (s, 1H), 8.42 (d, J = 9.4 Hz,
412




1H), 8.12 (d, J = 8.2 Hz, 1H), 7.58-7.53 (m, 2H), 7.47 (d, J = 9.4 Hz,




1H), 6.03-5.95 (m, 1H), 5.03-4.92 (m, 1H), 3.29-3.20 (m, 2H), 2.60




(s, 3H), 2.13-2.03 (m, 2H), 1.88-1.78 (m, 2H), 1.73-1.61 (m, 4H).


95
ENT1
1H NMR (400 MHz, DMSO-d6) δ 8.43 (d, J = 9.5 Hz, 1H), 8.08 (d, J =
428




8.2 Hz, 1H), 7.64-7.40 (m, 3H), 6.15-5.79 (m, 1H), 5.14-4.79




(m, 1H), 3.31-3.13 (m, 2H), 2.80 (s, 3H), 2.19-1.94 (m, 2H), 1.93-




1.76 (m, 2H), 1.75-1.56 (m, 4H).


95
ENT2
1H NMR (400 MHz, DMSO-d6) δ 8.43 (d, J = 9.5 Hz, 1H), 8.08 (d, J =
428




8.2 Hz, 1H), 7.64-7.40 (m, 3H), 6.15-5.79 (m, 1H), 5.14-4.79




(m, 1H), 3.31-3.13 (m, 2H), 2.80 (s, 3H), 2.19-1.94 (m, 2H), 1.93-




1.76 (m, 2H), 1.75-1.56 (m, 4H).


96
ENT1
1H NMR (500 MHz, DMSO-d6) δ 8.46 (d, J = 9.5 Hz, 1H), 8.14 (s,
427




1H), 8.00 (d, J = 8.1 Hz, 1H), 7.51-7.49 (m, 1H), 7.27-7.21 (m, 2H),




6.05-5.88 (m, 1H), 5.13-5.03 (m 1H), 3.50-3.33 (m, 2H), 2.70 (s,




3H), 2.21-2.07 (m, 2H), 1.95-1.82 (m, 2H), 1.80-1.65 (m, 4H).


96
ENT2
1H NMR (500 MHz, DMSO-d6) δ 8.46 (d, J = 9.5 Hz, 1H), 8.14 (s,
427




1H), 8.00 (d, J = 8.0 Hz, 1H), 7.50 (d, J = 9.5 Hz, 1H), 7.27-7.21 (m,




2H), 6.09-5.78 (m, 1H), 5.13-5.03 (m 1H), 3.54-3.35 (m, 2H), 2.70




(s, 3H), 2.20-2.08 (m, 2H), 1.96-1.81 (m, 2H), 1.79-1.61 (m, 4H).


97
ENT2
1H NMR (400 MHz, DMSO-d6) δ 12.79 (s, 1H), 8.43 (d, J = 9.6 Hz,
427




1H), 8.00 (d, J = 8.3 Hz, 1H), 7.72 (s, 1H), 7.47 (d, J = 9.5 Hz, 1H),




7.16-7.04 (m, 2H), 6.10-5.86 (m, 1H), 5.08-4.80 (m, 1H), 3.32-




3.15 (m, 6H), 2.18-1.96 (m, 2H), 1.94-1.76 (m, 2H), 1.76-1.52




(m, 4H).


97
ENT1
1H NMR (400 MHz, DMSO-d6) δ 12.79 (s, 1H), 8.43 (d, J = 9.6 Hz,
427




1H), 8.00 (d, J = 8.3 Hz, 1H), 7.72 (s, 1H), 7.47 (d, J = 9.5 Hz, 1H),




7.16-7.04 (m, 2H), 6.10-5.86 (m, 1H), 5.08-4.80 (m, 1H), 3.32-




3.15 (m, 6H), 2.18-1.96 (m, 2H), 1.94-1.76 (m, 2H), 1.76-1.52




(m, 4H).


98
ENT1
1H NMR (500 MHz, DMSO-d6) δ 12.94 (s, 1H), 8.46 (d, J = 9.6 Hz,
410




1H), 8.10 (s, 1H), 7.94 (d, J = 8.8 Hz, 1H), 7.47 (d, J = 9.5 Hz, 1H),




7.20-7.14 (m, 2H), 6.60 (s, 1H), 6.02-5.88 (m, 1H), 5.05-4.88 (m,




1H), 3.26-3.19 (m, 2H), 2.31 (s, 3H), 2.13-1.98 (m, 2H), 1.87-




1.60 (m, 6H).


98
ENT2
1H NMR (500 MHz, DMSO-d6) δ 12.94 (s, 1H), 8.46 (d, J = 9.6 Hz,
410




1H), 8.10 (s, 1H), 7.94 (d, J = 8.8 Hz, 1H), 7.47 (d, J = 9.5 Hz, 1H),




7.20-7.14 (m, 2H), 6.60 (s, 1H), 6.02-5.88 (m, 1H), 5.05-4.88 (m,




1H), 3.26-3.19 (m, 2H), 2.31 (s, 3H), 2.13-1.98 (m, 2H), 1.87-




1.60 (m, 6H).


99
ENT1
1H NMR (500 MHz, DMSO-d6) δ 8.44 (d, J = 9.5 Hz, 1H), 7.98 (d, J =
410




6.8 Hz, 1H), 7.46 (d, J = 7.6 Hz, 1H), 7.27-7.24 (m, 2H), 6.95 (s,




1H), 6.24 (s, 1H), 6.09-5.76 (m, 1H), 4.96 (d, J = 49.0 Hz, 1H), 3.26-




3.07 (m, 2H), 2.36 (s, 3H), 2.11-1.96 (m, 2H), 1.95-1.76 (m, 2H),




1.74-1.56 (m, 4H).


99
ENT2
1H NMR (500 MHz, DMSO-d6) δ 8.44 (d, J = 9.5 Hz, 1H), 7.98 (d, J =
410




6.8 Hz, 1H), 7.46 (d, J = 7.6 Hz, 1H), 7.27-7.24 (m, 2H), 6.95 (s,




1H), 6.24 (s, 1H), 6.09-5.76 (m, 1H), 4.96 (d, J = 49.0 Hz, 1H), 3.26-




3.07 (m, 2H), 2.36 (s, 3H), 2.11-1.96 (m, 2H), 1.95-1.76 (m, 2H),




1.74-1.56 (m, 4H).


100
ENT1
1H NMR (400 MHz, DMSO-d6) δ 12.79 (s, 1H), 8.44 (d, J = 9.6 Hz,
426




1H), 7.96 (d, J = 8.1 Hz, 1H), 7.48 (d, J = 9.5 Hz, 1H), 7.42 (d, J = 3.5




Hz, 1H), 7.23-7.16 (m, 2H), 6.86 (d, J = 3.5 Hz, 1H), 6.04-5.86 (m,




1H), 5.04-4.89 (m, 1H), 3.32-3.18 (m, 2H), 2.49 (s, 3H), 2.14-1.97




(m, 2H), 1.92-1.76 (m, 2H), 1.75-1.59 (m, 4H).


100
ENT2
1H NMR (400 MHz, DMSO-d6) δ 12.79 (s, 1H), 8.44 (d, J = 9.6 Hz,
426




1H), 7.96 (d, J = 8.1 Hz, 1H), 7.48 (d, J = 9.5 Hz, 1H), 7.42 (d, J = 3.5




Hz, 1H), 7.24-7.16 (m, 2H), 6.86 (d, J = 3.5 Hz, 1H), 6.07-5.86 (m,




1H), 5.04-4.89 (m, 1H), 3.30-3.19 (m, 2H), 2.49 (s, 3H), 2.12-2.00




(m, 2H), 1.90-1.76 (m, 2H), 1.76-1.60 (m, 4H).


101
ENT1
1H NMR (500 MHz, Methanol-d4) δ 8.35 (d, J = 9.5 Hz, 1H), 7.86 (d,
426




J = 8.1 Hz, 1H), 7.47 (d, J = 1.3 Hz, 1H), 7.39-7.31 (m, 1H), 7.28-




7.24 (m, 2H), 7.20 (s, 1H), 6.16-5.89 (m, 1H), 5.15-4.93 (m, 1H),




3.56-3.40 (m, 2H), 2.55 (s, 3H), 2.37-2.21 (m, 2H), 2.14-1.99 (m,




2H), 1.92-1.82 (m, 4H).


101
ENT2
1H NMR (500 MHz, Methanol-d4) δ 8.34 (d, J = 9.6 Hz, 1H), 7.86 (d,
426




J = 8.1 Hz, 1H), 7.47 (d, J = 1.3 Hz, 1H), 7.34 (d, J = 9.5 Hz, 1H),




7.32-7.24 (m, 2H), 7.20 (s, 1H), 6.11-5.93 (m, 1H), 5.15-4.93 (m,




1H), 3.52-3.36 (m, 2H), 2.55 (s, 3H), 2.33-2.22 (m, 2H), 2.13-




2.00 (m, 2H), 1.93-1.75 (m, 4H).


102
ENT1
1H NMR (500 MHz, DMSO-d6) δ 12.55 (s, 1H), 9.10 (s, 1H), 8.54 (s,
422




1H), 8.48 (d, J = 9.5 Hz, 1H), 8.09 (d, J = 8.3 Hz, 1H), 7.80 (d, J = 1.7




Hz, 1H), 7.75 (dd, J = 8.3, 1.7 Hz, 1H), 7.50 (d, J = 9.4 Hz, 1H), 6.03-




5.96 (m, 1H), 5.09-4.99 (m, 1H), 3.51-3.35 (m, 2H), 2.59 (s, 3H),




2.18-2.05 (m, 2H), 1.93-1.82 (m, 2H), 1.68-1.75 (m, 4H).


102
ENT2
1H NMR (500 MHz, DMSO-d6) δ 12.55 (s, 1H), 9.10 (s, 1H), 8.54 (s,
422




1H), 8.48 (d, J = 9.5 Hz, 1H), 8.09 (d, J = 8.3 Hz, 1H), 7.79 (d, J = 1.7




Hz, 1H), 7.75 (dd, J = 8.3, 1.7 Hz, 1H), 7.49 (d, J = 9.4 Hz, 1H), 6.07-




5.92 (m, 1H), 5.09-4.95 (m, 1H), 3.40-3.38 (m, 1H), 3.30-3.25 (m,




1H), 2.59 (s, 3H), 2.18-2.04 (m, 2H), 1.82-1.88 (m, 2H), 1.68-1.75




(m, 4H).


103
ENT1
1H NMR (500 MHz, DMSO-d6) δ 11.98 (s, 1H), 8.82 (dd, J = 4.2, 1.7
381




Hz, 1H), 8.54 (s, 1H), 8.41 (d, J = 9.3 Hz, 1H), 8.33 (d, J = 8.1 Hz,




1H), 7.52-7.44 (m, 2H), 7.36 (dd, J = 8.2, 4.2 Hz, 1H), 6.02 (d, J =




30.6 Hz, 1H), 4.99 (d, J = 51.5 Hz, 1H), 3.23 (s, 2H), 2.05-2.10 (m,




2H), 1.83-1.88 (m, 2H), 1.75-1.61 (m, 5H).


103
ENT2
1H NMR (500 MHz, DMSO-d6) δ 11.98 (s, 1H), 8.82 (dd, J = 4.2, 1.7
381




Hz, 1H), 8.54 (s, 1H), 8.41 (d, J = 9.4 Hz, 1H), 8.33 (d, J = 7.1 Hz,




1H), 7.51-7.44 (m, 2H), 7.36 (dd, J = 8.2, 4.2 Hz, 1H), 6.10-5.96




(m, 1H), 5.06-4.92 (m, 1H), 3.25 (d, J = 24.4 Hz, 2H), 2.14-2.02




(m, 2H), 1.82-1.86 (m, 2H), 1.76-1.61 (m, 4H).


104
ENT1
1H NMR (500 MHz, DMSO-d6) δ 8.86 (d, J = 1.8 Hz, 1H), 8.78 (d, J =
382




1.7 Hz, 1H), 8.55 (s, 1H), 8.47 (d, J = 9.3 Hz, 1H), 7.52-7.45 (m,




2H), 6.12-5.95 (m, 1H), 5.02 (d, J = 51.3 Hz, 1H), 3.29-3.19 (m,




2H), 2.16-2.03 (m, 2H), 1.90-1.80 (m, 2H), 1.78-1.64 (m, 4H).


104
ENT2
1H NMR (500 MHz, DMSO-d6) δ 8.86 (d, J = 1.8 Hz, 1H), 8.78 (d, J =
382




1.7 Hz, 1H), 8.55 (s, 1H), 8.47 (d, J = 9.3 Hz, 1H), 7.52-7.45 (m,




2H), 6.12-5.95 (m, 1H), 5.02 (d, J = 51.3 Hz, 1H), 3.29-3.19 (m,




2H), 2.16-2.03 (m, 2H), 1.90-1.80 (m, 2H), 1.78-1.64 (m, 4H).


105
ENT1
1H NMR (500 MHz, DMSO-d6) δ 12.02 (s, 1H), 8.76-8.75 (m, 1H),
381




8.60-8.44 (m, 2H), 8.21 (d, J = 8.0 Hz, 1H), 7.49-7.46 (m, 2H), 7.39




(s, 1H), 6.13-5.95 (m, 1H), 4.99 (d, J = 51.5 Hz, 1H), 3.26 (d, J =




26.2 Hz, 2H), 2.15-2.01 (m, 2H), 1.85 (s, 2H), 1.78-1.61 (m, 4H).


105
ENT2
1H NMR (500 MHz, DMSO-d6) δ 12.02 (s, 1H), 8.76-8.75 (m, 1H),
381




8.60-8.44 (m, 2H), 8.21 (d, J = 8.0 Hz, 1H), 7.49-7.46 (m, 2H), 7.39




(s, 1H), 6.13-5.95 (m, 1H), 4.99 (d, J = 51.5 Hz, 1H), 3.26 (d, J =




26.2 Hz, 2H), 2.15-2.01 (m, 2H), 1.85 (s, 2H), 1.78-1.61 (m, 4H).


106
ENT1
1H NMR (400 MHz, DMSO-d6) δ 12.74 (s, 1H), 8.49 (d, J = 9.5 Hz,
455




1H), 8.12-8.02 (m, 1H), 7.92 (d, J = 7.3 Hz, 1H), 7.50 (d, J = 9.4 Hz,




1H), 7.42-7.30 (m, 2H), 6.81 (d, J = 1.9 Hz, 1H), 6.75-6.66 (m,




1H), 6.10-5.87 (m, 3H), 5.11-4.88 (m, 1H), 3.31-3.17 (m, 2H),




2.16-1.97 (m, 2H), 1.89-1.57 (m, 6H).


106
ENT2
1H NMR (400 MHz, DMSO-d6) δ 12.74 (s, 1H), 8.49 (d, J = 9.5 Hz,
455




1H), 8.12-8.02 (m, 1H), 7.92 (d, J = 7.3 Hz, 1H), 7.50 (d, J = 9.4 Hz,




1H), 7.42-7.30 (m, 2H), 6.81 (d, J = 1.9 Hz, 1H), 6.75-6.66 (m,




1H), 6.10-5.87 (m, 3H), 5.11-4.88 (m, 1H), 3.31-3.17 (m, 2H),




2.16-1.97 (m, 2H), 1.89-1.57 (m, 6H).


107
ENT1
1H NMR (500 MHz, DMSO-d6) δ 8.46 (d, J = 9.4 Hz, 1H), 8.30 (d, J =
438




6.8 Hz, 1H), 8.07 (d, J = 8.3 Hz, 1H), 7.84-7.62 (m, 2H), 7.48 (d, J =




9.4 Hz, 1H), 7.10 (d, J = 6.8 Hz, 1H), 6.11-5.89 (m, 1H), 5.10-




4.86 (m, 1H), 3.48 (s, 3H), 3.30-3.19 (m, 2H), 2.18-1.99 (m, 2H),




1.94-1.78 (m, 2H), 1.74-1.56 (m, 4H).


107
Ent2
1H NMR (500 MHz, DMSO-d6) δ 8.46 (d, J = 9.4 Hz, 1H), 8.30 (d, J =
438




6.8 Hz, 1H), 8.07 (d, J = 8.3 Hz, 1H), 7.87-7.63 (m, 2H), 7.48 (d, J =




9.4 Hz, 1H), 7.10 (d, J = 6.8 Hz, 1H), 6.11-5.83 (m, 1H), 4.98 (d, J =




53.7 Hz, 1H), 3.48 (s, 3H), 3.29-3.19 (m, 2H), 2.17-1.97 (m,




2H), 1.94-1.77 (m, 2H), 1.76-1.59 (m, 4H).).


109
ENT1
1H NMR (400 MHz, DMSO-d6) δ 12.85 (s, 1H)8.44 (d, J = 9.6 Hz,
428




1H), 8.23 (d, J = 2.2 Hz, 1H), 7.98 (d, J = 8.3 Hz, 1H), 7.48 (d, J = 9.5




Hz, 1H), 7.29-7.02 (m, 2H), 6.12-5.83 (m, 1H), 5.02-4.90 (m, 1H),




3.78 (s, 3H), 3.30-3.15 (m, 2H), 2.17-1.98 (m, 2H), 1.84 (s, 2H),




1.74-1.57 (m, 4H).


109
ENT2
1H NMR (400 MHz, DMSO-d6) δ 12.80 (s, 1H), 8.44 (d, J = 9.6 Hz,
428




1H), 8.23 (d, J = 2.3 Hz, 1H), 7.98 (d, J = 8.2 Hz, 1H), 7.47 (d, J = 9.5




Hz, 1H), 7.26-7.03 (m, 2H), 6.09-5.78 (m, 1H), 5.02-4.90 (m, 1H),




3.78 (s, 3H), 3.31-3.15 (m, 2H), 2.18-1.94 (m, 2H), 1.95-1.75 (m,




2H), 1.75-1.55 (m, 4H).


110
ENT1
1H NMR (400 MHz, DMSO-d6) δ 8.41 (d, J = 9.5 Hz, 1H), 8.12-
355




8.03 (m, 1H), 7.49 (d, J = 9.3 Hz, 1H), 7.45-7.38 (m, 2H), 6.15-




5.81 (m, 1H), 5.14-4.77 (m, 1H), 3.29-3.21 (m, 2H), 2.15-1.98




(m, 2H), 1.93-1.56 (m, 6H).


110
ENT2
1H NMR (500 MHz, DMSO-d6) δ 12.70 (s, 1H), 8.47 (d, J = 9.5 Hz,
355




1H), 8.04 (d, J = 8.2 Hz, 1H), 7.79 (d, J = 7.1 Hz, 1H), 7.49 (d, J = 9.2




Hz, 1H), 7.33-7.31 (m, 2H), 6.70 (d, J = 1.8 Hz, 1H), 6.61-6.60 (m,




1H), 6.04-5.90 (m, 1H), 5.04-4.80 (m, 1H), 3.46 (s, 3H), 3.28-3.22




(m, 1H), 3.22 (s, 1H), 2.12-1.98 (m, 2H), 1.85-1.81 (m, 2H), 1.69-




1.62 (m, 4H).


111
ENT1
1H NMR (400 MHz, DMSO-d6) δ 8.41 (d, J = 9.4 Hz, 1H), 8.07 (d, J =
341




8.5 Hz, 1H), 7.46 (d, J = 9.4 Hz, 1H), 7.40-7.39 (m, 2H), 5.47-5.42




(m, 1H), 4.97-4.82 (m, 1H), 3.61-3.60 (m, 1H), 3.51-3.49 (m, 1H),




2.10-1.97 (m, 1H), 1.87-1.70 (m, 3H), 1.69-1.57 (m, 2H)


111
ENT2
1H NMR (400 MHz, DMSO-d6) δ 8.41 (d, J = 9.4 Hz, 1H), 8.07 (d, J =
341




8.5 Hz, 1H), 7.46 (d, J = 9.4 Hz, 1H), 7.40-7.39 (m, 2H), 5.47-5.42




(m, 1H), 4.97-4.82 (m, 1H), 3.61-3.60 (m, 1H), 3.51-3.49 (m, 1H),




2.10-1.97 (m, 1H), 1.87-1.70 (m, 3H), 1.69-1.57 (m, 2H)


113

1H NMR (400 MHz, DMSO-d6) δ 13.15 (s, 1H), 13.01 (s, 1H), 8.44
396




(d, J = 9.7 Hz, 1H), 8.28-8.02 (m, 2H), 7.92 (d, J = 8.3 Hz, 1H), 7.39




(d, J = 9.5 Hz, 1H), 7.28-7.19 (m, 2H), 5.56-5.40 (m, 1H), 5.30-




5.03 (m, 1H), 3.42 (s, 2H), 2.28-2.11 (m, 4H), 1.83-1.65 (m, 4H).


114
Ent1
1H NMR (400 MHz, DMSO-d6) δ 8.69 (d, J = 9.6 Hz, 1H), 8.32 (s,
432




1H), 8.05 (d, J = 8.5 Hz, 1H), 7.85 (d, J = 8.0 Hz, 1H), 7.79 (d, J = 8.5




Hz, 1H), 7.39-7.30 (m, 1H), 7.27-7.15 (m, 3H), 7.03 (d, J = 7.4 Hz,




1H), 5.58-5.33 (m, 1H), 5.06-4.70 (m, 1H), 3.64-3.46 (m, 2H),




2.39 (s, 1H), 2.06-1.96 (m, 1H), 1.87-1.72 (m, 3H), 1.71-1.60 (m, 2H).


114
ENT2
1H NMR (400 MHz, DMSO-d6) δ 8.69 (d, J = 9.6 Hz, 1H), 8.32 (s,
432




1H), 8.05 (d, J = 8.5 Hz, 1H), 7.85 (d, J = 8.0 Hz, 1H), 7.79 (d, J = 8.5




Hz, 1H), 7.39-7.30 (m, 1H), 7.27-7.15 (m, 3H), 7.03 (d, J = 7.4 Hz,




1H), 5.58-5.33 (m, 1H), 5.06-4.70 (m, 1H), 3.64-3.46 (m, 2H),




2.39 (s, 1H), 2.06-1.96 (m, 1H), 1.87-1.72 (m, 3H), 1.71-1.60 (m, 2H).


115
ENT1
1H NMR (500 MHz, DMSO-d6) δ 8.57 (s, 1H), 8.45 (d, J = 9.4 Hz,
414




1H), 8.07 (d, J = 8.6 Hz, 1H), 7.48 (d, J = 9.4 Hz, 1H), 7.45-7.32 (m,




2H), 6.38 (d, J = 2.7 Hz, 1H), 5.96 (d, J = 31.0 Hz, 1H), 4.96 (d, J =




51.6 Hz, 1H), 3.26-3.14 (m, 2H), 2.12-1.99 (m, 2H), 1.89-1.77




(m, 2H), 1.73-1.53 (m, 4H).


115
ENT2
1H NMR (500 MHz, DMSO-d6) δ 13.71-12.53 (m, 1H), 8.58 (t, J =
414




2.5 Hz, 1H), 8.46 (d, J = 7.9 Hz, 1H), 8.07 (d, J = 8.7 Hz, 1H), 7.49




(d, J = 9.5 Hz, 1H), 7.45-7.32 (m, 2H), 6.38 (d, J = 2.7 Hz, 1H), 5.96




(d, J = 31.0 Hz, 1H), 4.96 (d, J = 51.6 Hz, 1H), 3.26-3.14 (m, 2H),




2.12-1.99 (m, 2H), 1.89-1.77 (m, 2H), 1.73-1.53 (m, 4H).


116
ENT1
1H NMR (400 MHz, DMSO) δ 12.48 (s, 1H), 9.69 (s, 1H), 8.45 (d, J =
414




9.4 Hz, 1H), 8.10 (d, J = 8.2 Hz, 1H), 7.65 (s, 1H), 7.60 (d, J = 8.1




Hz, 1H), 7.49 (d, J = 9.4 Hz, 1H), 6.10-5.89 (m, 1H), 5.11-4.89 (m,




1H), 3.29-3.13 (m, 2H), 2.18-1.99 (m, 2H), 1.94-1.77 (m, 2H),




1.75-1.57 (m, 4H).


116
ENT2
1H NMR (400 MHz, DMSO) δ 12.48 (s, 1H), 9.69 (s, 1H), 8.45 (d, J =
414




9.4 Hz, 1H), 8.10 (d, J = 8.2 Hz, 1H), 7.65 (s, 1H), 7.60 (d, J = 8.1




Hz, 1H), 7.49 (d, J = 9.4 Hz, 1H), 6.10-5.89 (m, 1H), 5.11-4.89 (m,




1H), 3.29-3.13 (m, 2H), 2.18-1.99 (m, 2H), 1.94-1.77 (m, 2H),




1.75-1.57 (m, 4H).


117
ENT1
1H NMR (500 MHz, DMSO-d6) δ 9.37 (d, J = 9.5 Hz, 1H), 8.42 (d, J =
398




9.4 Hz, 1H), 8.13 (d, J = 8.1 Hz, 1H), 7.67-7.56 (m, 2H), 7.47 (d, J =




9.4 Hz, 1H), 6.09-5.92 (m, 1H), 4.99 (d, J = 51.8 Hz, 1H), 3.29-




3.13 (m, 2H), 2.15-1.99 (m, 2H), 1.89-1.79 (m, 2H), 1.74-1.61




(m, 4H).


117
ENT2
1H NMR (500 MHz, DMSO-d6) δ 9.37 (d, J = 9.5 Hz, 1H), 8.42 (d, J =
398




9.4 Hz, 1H), 8.13 (d, J = 8.1 Hz, 1H), 7.67-7.56 (m, 2H), 7.47 (d, J =




9.4 Hz, 1H), 6.09-5.92 (m, 1H), 4.99 (d, J = 51.8 Hz, 1H), 3.29-




3.13 (m, 2H), 2.15-1.99 (m, 2H), 1.89-1.79 (m, 2H), 1.74-1.61




(m, 4H).


118
ENT1
1H NMR (400 MHz, DMSO-d6) δ 11.69 (s, 1H), 8.22 (s, 1H), 7.99-
428




7.91 (m, 2H), 7.40 (d, J = 9.3 Hz, 1H), 7.11-7.00 (m, 2H), 5.98 (dd,




J = 30.8, 7.1 Hz, 1H), 5.00 (d, J = 51.2 Hz, 1H), 3.88 (s, 3H), 3.26 (s,




2H), 2.19-1.99 (m, 2H), 1.85 (s, 2H), 1.79-1.60 (m, 4H).


118
ENT2
1H NMR (400 MHz, DMSO-d6) δ 11.69 (s, 1H), 8.22 (s, 1H), 8.01-
428




7.90 (m, 2H), 7.40 (d, J = 9.3 Hz, 1H), 7.16-6.98 (m, 2H), 5.93-




6.03 (m, 1H), 4.91-5.05 (m, 1H), 3.88 (s, 3H), 3.24-3.33 (m, 2H),




2.16-1.98 (m, 2H), 1.83-1.86 (m, 2H), 1.26-1.73 (m, 4H)


119
Ent1
1H NMR (400 MHz, DMSO-d6) δ 13.39 (s, 1H), 8.50 (d, J = 9.6 Hz,
428




1H), 8.24 (d, J = 2.0 Hz, 1H), 7.98 (d, J = 1.3 Hz, 1H), 7.84-7.75 (m,




1H), 7.53 (d, J = 9.4 Hz, 1H), 7.36-7.24 (m, 1H), 6.06-5.84 (m,




1H), 5.14-4.89 (m, 1H), 3.92 (s, 3H), 3.29-3.18 (m, 2H), 2.16-




2.02 (m, 2H), 1.91-1.62 (m, 6H).


119
Ent2
1H NMR (400 MHz, DMSO-d6) δ 13.39 (s, 1H), 8.50 (d, J = 9.6 Hz,
428




1H), 8.24 (d, J = 2.0 Hz, 1H), 7.98 (d, J = 1.3 Hz, 1H), 7.84-7.75 (m,




1H), 7.53 (d, J = 9.4 Hz, 1H), 7.36-7.24 (m, 1H), 6.06-5.84 (m,




1H), 5.14-4.89 (m, 1H), 3.92 (s, 3H), 3.29-3.18 (m, 2H), 2.16-




2.02 (m, 2H), 1.91-1.62 (m, 6H).


120
ENT2
1H NMR (400 MHz, DMSO-d6) δ 8.49 (d, J = 9.5 Hz, 1H), 8.26 (s,
444




1H), 8.08 (s, 1H), 7.90 (s, 1H), 7.48 (d, J = 9.4 Hz, 1H), 7.22 (s, 1H),




6.14-5.77 (m, 1H), 5.07-4.97 (m, 1H), 3.91 (s, 3H), 3.31-3.18 (m,




2H), 2.09-2.12 (m, 2H), 1.72-1.68 (m, 6H)


120
ENT1
1H NMR (400 MHz, DMSO-d6) δ 8.49 (d, J = 9.5 Hz, 1H), 8.26 (s,
444




1H), 8.08 (s, 1H), 7.90 (s, 1H), 7.48 (d, J = 9.4 Hz, 1H), 7.22 (s, 1H),




6.14-5.77 (m, 1H), 5.07-4.97 (m, 1H), 3.91 (s, 3H), 3.31-3.18 (m,




2H), 2.09-2.12 (m, 2H), 1.72-1.68 (m, 6H)


121
ENT1
1H NMR (500 MHz, DMSO-d6) δ 13.12 (brs, 1H), 8.46 (d, J = 9.6
410




Hz, 1H), 8.22 (s, 1H), 7.93 (t, J = 4.1 Hz, 2H), 7.46 (d, J = 9.5 Hz,




1H), 7.22-7.15 (m, 2H), 5.71-5.53 (m, 1H), 4.87-4.64 (m, 1H),




3.88 (s, 3H), 3.24-3.14 (m, 1H), 2.70-2.62 (m, 1H), 1.74-1.50 (m,




5H), 1.45-1.12 (m, 3H).


121
ENT2
1H NMR (500 MHz, DMSO-d6) δ 8.46 (d, J = 9.6 Hz, 1H), 8.22 (s,
410




1H), 7.93 (t, J = 4.1 Hz, 2H), 7.46 (d, J = 9.5 Hz, 1H), 7.22-7.15 (m,




2H), 5.71-5.53 (m, 1H), 4.87-4.64 (m, 1H), 3.88 (s, 3H), 3.24-




3.14 (m, 1H), 2.70-2.62 (m, 1H), 1.74-1.50 (m, 5H), 1.45-1.12




(m, 3H).


122
ENT1
1H NMR (400 MHz, DMSO-d6) δ 13.04 (s, 1H), 8.47 (d, J = 9.7 Hz,
410




1H), 8.23 (s, 1H), 8.07-7.85 (m, 2H), 7.50 (d, J = 9.5 Hz, 1H), 7.32-




7.13 (m, 2H), 5.86-5.82 (m, 1H), 5.37-5.24 m, 1H), 3.88 (s, 3H), 3.67-




3.64 (m, 1H), 3.44-3.40 (m, 1H), 2.45-2.32 (m, 1H), 2.27-2.12 (m,




1H), 2.01-1.60 (m, 4H), 1.55-1.51 (m, 2H).


122
ENT2
1H NMR (400 MHz, DMSO-d6) δ 13.06 (s, 1H), 8.47 (d, J = 9.5 Hz,
410




1H), 8.23 (s, 1H), 7.95-7.93 (m, 2H), 7.50 (d, J = 9.5 Hz, 1H), 7.29-




7.15 (m, 2H), 5.84-5.81 (m, 1H), 5.37-5.21 (m, 1H), 3.88 (s, 3H),




3.61-3.60 (m, 1H), 3.38 (s, 1H), 2.42-2.29 (m, 1H), 2.17-2.02 (m,




1H), 1.98-1.60 (m, 4H), 1.52-1.02 (m, 2H)


123
Ent1
1H NMR (400 MHz, DMSO-d6) δ 13.07 (s, 1H), δ 13.03 (s, 1H), 8.47
398




(d, J = 9.6 Hz, 1H), 8.31 (s, 1H), 8.01 (s, 1H), 7.94 (d, J = 8.3 Hz,




1H), 7.48 (d, J = 9.5 Hz, 1H), 7.34-7.07 (m, 2H), 6.30-5.99 (m,




1H), 5.15-5.07 (m, 1H), 3.94-3.53 (m, 4H), 3.16-3.15 (m, 1H), 3.03




(s, 1H), 2.70 (s, 1H), 2.21-2.20 (m, 1H), 2.10-2.07 (m, 1H)


123
Ent2
1H NMR (400 MHz, DMSO-d6) δ 13.07 (s, 1H), δ 13.03 (s, 1H), 8.47
398




(d, J = 9.6 Hz, 1H), 8.31 (s, 1H), 8.01 (s, 1H), 7.94 (d, J = 8.3 Hz,




1H), 7.48 (d, J = 9.5 Hz, 1H), 7.34-7.07 (m, 2H), 6.30-5.99 (m,




1H), 5.15-5.07 (m, 1H), 3.94-3.53 (m, 4H), 3.16-3.15 (m, 1H), 3.03




(s, 1H), 2.70 (s, 1H), 2.21-2.20 (m, 1H), 2.10-2.07 (m, 1H)


124
Ent1
1H NMR (400 MHz, DMSO-d6): δ 13.02 (s, 1H), 8.54 (d, J = 8.0 Hz,
412




1H), 8.23 (s, 1H), 7.95-7.93 (m, 2H), 7.48 (d, J = 9.6 Hz, 1H), 7.20-




7.17 (m, 2H), 6.22-6.09 (m, 1H), 6.21-6.07 (m, 1H), 3.83 (s, 3H),




3.80-3.69 (m, 4H), 3.15-3.02 (m, 1H), 3.02-2.50 (m, 1H), 2.22-2.05




(m, 2H);


124
Ent2
1H NMR (400 MHz, DMSO-d6) δ 13.02 (s, 1H), 8.54 (d, J = 8.0 Hz,
412




1H), 8.23 (s, 1H), 7.95-7.93 (m, 2H), 7.48 (d, J = 9.6 Hz, 1H), 7.20-




7.17 (m, 2H), 6.22-6.09 (m, 1H), 6.21-6.07 (m, 1H), 3.83 (s, 3H),




3.80-3.69 (m, 4H), 3.15-3.02 (m, 1H), 3.02-2.50 (m, 1H), 2.22-2.05




(m, 2H)


125
ENT2
1H NMR (400 MHz, DMSO) δ 8.33 ( d, J = 28.6 Hz, 1H), 8.22 (d, =
411




15.9 Hz, 1H), 7.69 (d, J = 45.0 Hz, 1H), 7.45 (d, J = 9.4 Hz, 1H), 7.31




(d, J = 7.3 Hz, 1H), 6.62 (d, J = 7.4 Hz, 1H), 6.20-5.80 (m, 1H), 5.03




(d, J = 50.9 Hz, 1H), 3.50 (s, 3H), 3.46-3.37 (m, 2H), 2.20-2.00




(m, 2H), 1.98-1.57 (m, 6H).


125
ENT1
1H NMR (400 MHz, DMSO) δ 8.37 (d, J = 9.4 Hz, 1H), 8.20 (s, 1H),
411




7.75 (s, 1H), 7.45 (d, J = 9.4 Hz, 1H), 7.32 (d, J = 7.3 Hz, 1H), 6.62




(d, J = 7.3 Hz, 1H), 6.14-5.87 (m, 1H), 4.99 (d, J = 51.5 Hz, 1H),




3.50 (s, 3H), 3.25 (s, 2H), 2.18-1.98 (m, 2H), 1.94-1.55 (m, 6H).


126
ENT1
1H NMR (400 MHz, DMSO) δ 8.36 (d, J = 9.4 Hz, 1H), 8.19 (s, 1H),
397




7.74 (s, 1H), 7.43 (d, J = 9.4 Hz, 1H), 7.32 (d, J = 7.3 Hz, 1H), 6.62




(d, J = 7.3 Hz, 1H), 5.61-5.41 (m, 1H), 4.93 (d, J = 52.5 Hz, 1H),




3.76-3.52 (m, 2H), 3.50 (s, 3H), 2.13-1.98 (m, 1H), 1.96-1.53 (m, 5H).


126
ENT2
1H NMR (400 MHz, DMSO) δ 8.36 (d, J = 9.4 Hz, 1H), 8.19 (s, 1H),
397




7.74 (s, 1H), 7.44 (d, J = 9.3 Hz, 1H), 7.32 (d, J = 7.3 Hz, 1H), 6.62




(d, J = 7.4 Hz, 1H), 5.62-5.37 (m, 1H), 4.94 (d, J = 52.8 Hz, 1H),




3.60 (d, J = 47.0 Hz, 2H), 3.50 (s, 3H), 2.17-2.02 (m, 1H), 1.95-




1.56 (m, 5H).


127
Ent1
1H NMR (400 MHz, DMSO-d6) δ 11.70 (s, 1H), 8.37 (d, J = 9.4 Hz,
425




1H), 8.20 (s, 1H), 7.74 (s, 1H), 7.44 (d, J = 9.4 Hz, 1H), 7.31 (d, J =




7.3 Hz, 1H), 6.62 (d, J = 7.3 Hz, 1H), 5.68-5.42 (m, 1H), 4.89-4.49




(m, 1H), 3.50 (s, 3H), 2.11-1.99 (m, 1H), 1.79-1.68 (m, 2H), 1.67-




1.50 (m, 3H), 1.21 (s, 6H).


127
Ent2
1H NMR (400 MHz, DMSO-d6) δ 11.70 (s, 1H), 8.37 (d, J = 9.4 Hz,
425




1H), 8.20 (s, 1H), 7.74 (s, 1H), 7.44 (d, J = 9.4 Hz, 1H), 7.31 (d, J =




7.3 Hz, 1H), 6.62 (d, J = 7.3 Hz, 1H), 5.68-5.42 (m, 1H), 4.89-4.49




(m, 1H), 3.50 (s, 3H), 2.11-1.99 (m, 1H), 1.79-1.68 (m, 2H), 1.67-




1.50 (m, 3H), 1.21 (s, 6H).


128
ENT1
1H NMR (400 MHz, DMSO) δ 8.69 (s, 1H), 8.41 (d, J = 9.4 Hz, 1H),
411




7.45 (d, J = 7.4 Hz, 1H), 7.42 (d, J = 9.4 Hz, 1H), 7.10 (s, 1H), 6.51




(d, J = 7.3 Hz, 1H), 6.07-5.88 (m, 1H), 5.05-4.88 (m, 1H), 3.48 (s,




3H), 3.29-3.17 (m, 2H), 2.13-2.00 (m, 2H), 1.88-1.77 (m, 2H),




1.75-1.55 (m, 4H).


128
ENT1
1H NMR (400 MHz, DMSO) δ 8.69 (s, 1H), 8.41 (d, J = 9.4 Hz, 1H),
411




7.45 (d, J = 7.4 Hz, 1H), 7.42 (d, J = 9.4 Hz, 1H), 7.10 (s, 1H), 6.51




(d, J = 7.3 Hz, 1H), 6.07-5.88 (m, 1H), 5.05-4.88 (m, 1H), 3.48 (s,




3H), 3.29-3.17 (m, 2H), 2.13-2.00 (m, 2H), 1.88-1.77 (m, 2H),




1.75-1.55 (m, 4H).


129
Ent2
1H NMR (400 MHz, DMSO) δ 12.65 (s, 1H), 8.69 (s, 1H), 8.40 (d, J =
397




9.4 Hz, 1H), 7.46 (d, J = 7.3 Hz, 1H), 7.41 (d, J = 9.4 Hz, 1H), 7.11




(s, 1H), 6.51 (d, J = 7.4 Hz, 1H), 5.60-5.39 (m, 1H), 5.06-4.80 (m,




1H), 3.68-3.52 (m, 2H), 3.48 (s, 3H), 2.11-2.03 (m, 1H), 1.91-




1.71 (m, 3H), 1.71-1.57 (m, 2H).


129
Ent1
1H NMR (400 MHz, DMSO) δ 12.65 (s, 1H), 8.69 (s, 1H), 8.40 (d, J =
397




9.4 Hz, 1H), 7.46 (d, J = 7.3 Hz, 1H), 7.41 (d, J = 9.4 Hz, 1H), 7.11




(s, 1H), 6.51 (d, J = 7.4 Hz, 1H), 5.60-5.39 (m, 1H), 5.06-4.80 (m,




1H), 3.68-3.52 (m, 2H), 3.48 (s, 3H), 2.11-2.03 (m, 1H), 1.91-




1.71 (m, 3H), 1.71-1.57 (m, 2H).


130
Ent2
1H NMR (400 MHz, DMSO-d6) δ 8.67 (s, 1H), 8.48 (d, J = 9.4 Hz,
425




1H), 7.45-7.27 (m, 2H), 6.94 (s, 1H), 6.41 (d, J = 7.2 Hz, 1H), 5.63-




5.41 (m, 1H), 4.84-4.42 (m, 1H), 3.45 (s, 3H), 2.08-2.04 (m, 1H),




1.78-1.71 (m, 2H), 1.65-1.54 (m, 3H), 1.20 (s, 6H).


130
Ent1
1H NMR (400 MHz, DMSO-d6) δ 8.67 (s, 1H), 8.48 (d, J = 9.4 Hz,
425




1H), 7.45-7.27 (m, 2H), 6.94 (s, 1H), 6.41 (d, J = 7.2 Hz, 1H), 5.63-




5.41 (m, 1H), 4.84-4.42 (m, 1H), 3.45 (s, 3H), 2.08-2.04 (m, 1H),




1.78-1.71 (m, 2H), 1.65-1.54 (m, 3H), 1.20 (s, 6H).


131
ENT1
1H NMR (400 MHz, DMSO-d6) δ 13.19 (s, 1H), 8.66 (s, 1H), 8.46
439




(d, J = 9.5 Hz, 1H), 7.90 (d, J = 7.7 Hz, 1H), 7.43 (d, J = 9.5 Hz, 1H),




7.08 (s, 1H), 6.15-5.98 (m, 1H), 5.97 (d, J = 7.7 Hz, 1H), 4.90-4.51




(m, 1H), 3.75 (s, 3H), 2.14-1.97 (m, 1H), 1.81-1.36 (m, 7H), 1.08




(s, 6H).


131
Ent2
1H NMR (400 MHz, DMSO-d6) δ 13.19 (s, 1H), 8.66 (s, 1H), 8.46
439




(d, J = 9.5 Hz, 1H), 7.90 (d, J = 7.7 Hz, 1H), 7.43 (d, J = 9.5 Hz, 1H),




7.08 (s, 1H), 6.15-5.98 (m, 1H), 5.97 (d, J = 7.7 Hz, 1H), 4.90-4.51




(m, 1H), 3.75 (s, 3H), 2.14-1.97 (m, 1H), 1.81-1.36 (m, 7H), 1.08




(s, 6H).


132
ENT2
1H NMR (400 MHz, DMSO-d6) δ 11.29 (s, 1H), 8.41 (d, J = 9.4 Hz,
439




1H), 8.06 (s, 1H), 7.95 (d, J = 8.8 Hz, 1H), 7.71 (s, 1H), 7.42 (d, J =




9.3 Hz, 1H), 6.25-5.99 (m, 1H), 5.96 (d, J = 7.5 Hz, 1H), 4.88-4.55




(m, 1H), 3.87 (s, 3H), 2.14-1.99 (m, 1H), 1.84-1.35 (m, 7H), 1.08




(s, 6H).


132
ENT1
1H NMR (400 MHz, DMSO-d6) δ 11.29 (s, 1H), 8.41 (d, J = 9.4 Hz,
439




1H), 8.06 (s, 1H), 7.95 (d, J = 8.8 Hz, 1H), 7.71 (s, 1H), 7.42 (d, J =




9.3 Hz, 1H), 6.25-5.99 (m, 1H), 5.96 (d, J = 7.5 Hz, 1H), 4.88-4.55




(m, 1H), 3.87 (s, 3H), 2.14-1.99 (m, 1H), 1.84-1.35 (m, 7H), 1.08




(s, 6H).


133
Ent1
1H NMR (400 MHz, DMSO-d6) δ 8.61 (s, 1H), 8.39 (d, J = 9.2 Hz,
440




1H), 8.33 (s, 1H), 7.38 (d, J = 9.6 Hz, 1H), 7.12 (s, 1H), 6.13-6.01




(m, 1H), 4.82-4.61 (m, 1H), 3.47 (s, 3H), 2.15-2.03 (m, 1H), 1.83-




1.52 (m, 6H), 1.46-1.32 (m, 2H), 1.07 (s, 6H).


133
Ent2
1H NMR (400 MHz, DMSO-d6) δ 8.61 (s, 1H), 8.39 (d, J = 9.2 Hz,
440




1H), 8.33 (s, 1H), 7.38 (d, J = 9.6 Hz, 1H), 7.12 (s, 1H), 6.13-6.01




(m, 1H), 4.82-4.61 (m, 1H), 3.47 (s, 3H), 2.15-2.03 (m, 1H), 1.83-




1.52 (m, 6H), 1.46-1.32 (m, 2H), 1.07 (s, 6H).


134
ENT1
1H NMR (400 MHz, DMSO-d6) δ 8.62 (s, 1H), 8.40 (d, J = 8.8 Hz,
426




1H), 8.34 (s, 1H), 7.40 (d, J = 9.6 Hz, 1H), 7.13 (s, 1H), 5.66-5.48




(m, 1H), 4.85-4.65 (m, 1H), 3.48 (s, 3H), 2.10-2.00 (m, 1H), 1.79-




1.75 (m, 2H), 1.68-1.61 (m, 1H), 1.61-1.52 (m, 2H), 1.23 (s, 6H).


134
ENT2
1H NMR (400 MHz, DMSO-d6) δ 8.62 (s, 1H), 8.40 (d, J = 8.8 Hz,
426




1H), 8.34 (s, 1H), 7.40 (d, J = 9.6 Hz, 1H), 7.13 (s, 1H), 5.66-5.48




(m, 1H), 4.85-4.65 (m, 1H), 3.48 (s, 3H), 2.10-2.00 (m, 1H), 1.79-




1.75 (m, 2H), 1.68-1.61 (m, 1H), 1.61-1.52 (m, 2H), 1.23 (s, 6H).


135
ENT1
1H NMR (400 MHz, DMSO-d6) δ 8.95-8.82 (m, 1H), 8.59 (s, 1H),
424




8.50 (d, J = 8.6 Hz, 1H), 8.40 (d, J = 9.5 Hz, 1H), 7.97 (d, J = 8.3 Hz,




1H), 7.55 (s, 1H), 7.46 (d, J = 9.3 Hz, 1H), 5.70-5.40 (m, 1H), 5.07-




4.71 (m, 1H), 3.64 (s, 1H), 3.52 (s, 1H), 2.89 (d, J = 4.7 Hz, 3H), 2.16-




2.03 (m, 1H), 1.90-1.73 (m, 3H), 1.72-1.58 (m, 2H).


135
ENT2
1H NMR (400 MHz, DMSO-d6) δ 8.95-8.82 (m, 1H), 8.59 (s, 1H),
424




8.50 (d, J = 8.6 Hz, 1H), 8.40 (d, J = 9.5 Hz, 1H), 7.97 (d, J = 8.3 Hz,




1H), 7.55 (s, 1H), 7.46 (d, J = 9.3 Hz, 1H), 5.70-5.40 (m, 1H), 5.07-




4.71 (m, 1H), 3.64 (s, 1H), 3.52 (s, 1H), 2.89 (d, J = 4.7 Hz, 3H), 2.16-




2.03 (m, 1H), 1.90-1.73 (m, 3H), 1.72-1.58 (m, 2H).


136
ENT1
1H NMR (400 MHz, DMSO-d6) δ 8.89 (d, J = 4.6 Hz, 1H), 8.59 (s,
438




1H), 8.50 (d, J = 8.4 Hz, 1H), 8.40 (d, J = 9.3 Hz, 1H), 7.97 (d, J = 8.4




Hz, 1H), 7.55 (s, 1H), 7.48 (d, J = 9.4 Hz, 1H), 6.03 (d, J = 30.7 Hz,




1H), 5.14-4.83 (m, 1H), 3.33-3.21 (m, 2H), 2.89 (d, J = 4.8 Hz,




3H), 2.15-2.03 (m, 2H), 1.85 (d, 2H), 1.77-1.57 (m, 4H).


136
ENT2
1H NMR (400 MHz, DMSO-d6) δ 8.89 (d, J = 4.6 Hz, 1H), 8.59 (s,
438




1H), 8.50 (d, J = 8.4 Hz, 1H), 8.40 (d, J = 9.3 Hz, 1H), 7.97 (d, J = 8.4




Hz, 1H), 7.55 (s, 1H), 7.48 (d, J = 9.4 Hz, 1H), 6.03 (d, J = 30.7 Hz,




1H), 5.14-4.83 (m, 1H), 3.33-3.21 (m, 2H), 2.89 (d, J = 4.8 Hz,




3H), 2.15-2.03 (m, 2H), 1.85 (d, 2H), 1.77-1.57 (m, 4H).


137
ENT2
1H NMR (400 MHz, Methanol-d4) δ 8.43 (d, J = 10.2 Hz, 2H), 8.35
466




(d, J = 8.3 Hz, 1H), 7.92 (d, J = 8.2 Hz, 1H), 7.50 (s, 1H), 7.35 (M,




1H), 6.18 (M, 1H), 5.04 (M, 1H), 2.94 (s, 3H), 2.41 (M, 1H), 1.89 (M,




8H), 1.44 (s, 3H), 1.38 (s, 3H).


137
ENT1
1H NMR (400 MHz, Methanol-d4) δ 8.43 (d, J = 10.2 Hz, 2H), 8.35
466




(d, J = 8.3 Hz, 1H), 7.92 (d, J = 8.2 Hz, 1H), 7.50 (s, 1H), 7.35 (M,




1H), 6.18 (M, 1H), 5.04 (M, 1H), 2.94 (s, 3H), 2.41 (M, 1H), 1.89 (M,




8H), 1.44 (s, 3H), 1.38 (s, 3H).


138
ENT1
1H NMR (400 MHz, DMSO-d6) δ 12.59-12.35 (m, 1H), 8.58 (s,
438




1H), 8.46 (d, J = 9.5 Hz, 1H), 8.04 (d, J = 8.4 Hz, 1H), 7.70 (d, J = 1.6




Hz, 1H), 7.68-7.62 (m, 1H), 7.48 (d, J = 9.4 Hz, 1H), 7.01 (s, 1H),




6.13-5.79 (m, 1H), 5.22-4.83 (m, 1H), 3.45 (s, 3H), 3.31-3.24 (m,




2H), 2.19-2.01 (m, 2H), 1.96-1.78 (m, 2H), 1.77-1.60 (m, 4H).


138
ENT2
1H NMR (400 MHz, DMSO-d6) δ 12.59-12.35 (m, 1H), 8.58 (s,
438




1H), 8.46 (d, J = 9.5 Hz, 1H), 8.04 (d, J = 8.4 Hz, 1H), 7.70 (d, J = 1.6




Hz, 1H), 7.68-7.62 (m, 1H), 7.48 (d, J = 9.4 Hz, 1H), 7.01 (s, 1H),




6.13-5.79 (m, 1H), 5.22-4.83 (m, 1H), 3.45 (s, 3H), 3.31-3.24 (m,




2H), 2.19-2.01 (m, 2H), 1.96-1.78 (m, 2H), 1.77-1.60 (m, 4H).


139
ENT1
1H NMR (400 MHz, DMSO-d6) δ 12.76-12.22 (m, 1H), 8.58 (s,
466




1H), 8.46 (d, J = 9.5 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.70 (d, J = 1.5




Hz, 1H), 7.65 (d, J = 8.3 Hz, 1H), 7.45 (d, J = 9.4 Hz, 1H), 7.00 (s,




1H), 6.25-5.86 (m, 1H), 4.88-4.44 (m, 1H), 3.45 (s, 3H), 2.15-




2.01 (m, 1H), 1.85-1.35 (m, 8H), 1.08 (s, 6H).


139
ENT2
1H NMR (400 MHz, DMSO-d6) δ 12.76-12.22 (m, 1H), 8.58 (s,
466




1H), 8.46 (d, J = 9.5 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.70 (d, J = 1.5




Hz, 1H), 7.65 (d, J = 8.3 Hz, 1H), 7.45 (d, J = 9.4 Hz, 1H), 7.00 (s,




1H), 6.25-5.86 (m, 1H), 4.88-4.44 (m, 1H), 3.45 (s, 3H), 2.15-




2.01 (m, 1H), 1.85-1.35 (m, 8H), 1.08 (s, 6H).


140
ENT2
1H NMR (400 MHz, DMSO-d6) δ 12.39 (s, 1H), 9.39 (s, 1H), 8.42
384




(d, J = 9.4 Hz, 1H), 8.13 (d, J = 8.1 Hz, 1H), 7.73-7.56 (m, 2H), 7.46




(d, J = 9.4 Hz, 1H), 5.68-5.32 (m, 1H), 5.16-4.70 (m, 1H), 3.79-




3.55 (m, 2H), 2.16-2.01 (m, 1H), 1.92-1.76 (m, 3H), 1.74-1.61




(m, 2H).


140
ENT1
1H NMR (400 MHz, DMSO-d6) δ 12.39 (s, 1H), 9.39 (s, 1H), 8.42
384




(d, J = 9.4 Hz, 1H), 8.13 (d, J = 8.1 Hz, 1H), 7.73-7.56 (m, 2H), 7.46




(d, J = 9.4 Hz, 1H), 5.68-5.32 (m, 1H), 5.16-4.70 (m, 1H), 3.79-




3.55 (m, 2H), 2.16-2.01 (m, 1H), 1.92-1.76 (m, 3H), 1.74-1.61




(m, 2H).


141
ENT2
1H NMR (400 MHz, DMSO) δ 12.52 (s, 1H), 9.69 (s, 1H), 8.44 (d, J =
400




9.4 Hz, 1H), 8.10 (d, J = 8.2 Hz, 1H), 7.65 (d, J = 1.5 Hz, 1H), 7.60




(dd, J = 8.2, 1.6 Hz, 1H), 7.47 (d, J = 9.4 Hz, 1H), 5.56-5.43 (m,




1H), 5.01-4.86 (m, 1H), 3.67-3.52 (m, 2H), 2.12-2.03 (m, 1H),




1.90-1.75 (m, 3H), 1.72-1.57 (m, 2H).


141
ENT1
1H NMR (400 MHz, DMSO-d6) δ 12.52 (s, 1H), 9.69 (s, 1H), 8.44
400




(d, J = 9.4 Hz, 1H), 8.10 (d, J = 8.2 Hz, 1H), 7.65 (d, J = 1.5 Hz, 1H),




7.60 (dd, J = 8.2, 1.6 Hz, 1H), 7.47 (d, J = 9.4 Hz, 1H), 5.56-5.43




(m, 1H), 5.01-4.86 (m, 1H), 3.67-3.52 (m, 2H), 2.12-2.03 (m,




1H), 1.90-1.75 (m, 3H), 1.72-1.57 (m, 2H).


142
ENT2
1H NMR (400 MHz, DMSO-d6) δ 9.45 (s, 1H), 8.45 (d, J = 9.4 Hz,
402




1H), 8.04 (d, J = 11.7 Hz, 1H), 7.61 (d, J = 6.1 Hz, 1H), 7.47 (d, J =




9.4 Hz, 1H), 5.68-5.28 (m, 1H), 5.05-4.72 (m, 1H), 3.72-3.45 (m,




2H), 2.11-1.97 (m, 1H), 1.88-1.73 (m, 3H), 1.70-1.54 (m, 2H).


142
ENT1
1H NMR (400 MHz, DMSO-d6) δ 9.45 (s, 1H), 8.45 (d, J = 9.4 Hz,
402




1H), 8.04 (d, J = 11.7 Hz, 1H), 7.61 (d, J = 6.1 Hz, 1H), 7.47 (d, J =




9.4 Hz, 1H), 5.68-5.28 (m, 1H), 5.05-4.72 (m, 1H), 3.72-3.45 (m,




2H), 2.11-1.97 (m, 1H), 1.88-1.73 (m, 3H), 1.70-1.54 (m, 2H).


143
ENT2
1H NMR (400 MHz, DMSO-d6) δ 9.46 (s, 1H), 8.45 (d, J = 9.4 Hz,
416




1H), 8.04 (d, J = 11.7 Hz, 1H), 7.62 (d, J = 6.1 Hz, 1H), 7.49 (d, J =




9.4 Hz, 1H), 6.13-5.89 (m, 1H), 5.11-4.81 (m, 1H), 3.29-3.20 (m,




2H), 2.14-2.02 (m, 2H), 1.93-1.78 (m, 2H), 1.73-1.62 (m, 4H).


143
ENT1
1H NMR (400 MHz, DMSO-d6) δ 9.46 (s, 1H), 8.45 (d, J = 9.4 Hz,
416




1H), 8.04 (d, J = 11.7 Hz, 1H), 7.62 (d, J = 6.1 Hz, 1H), 7.49 (d, J =




9.4 Hz, 1H), 6.13-5.89 (m, 1H), 5.11-4.81 (m, 1H), 3.29-3.20 (m,




2H), 2.14-2.02 (m, 2H), 1.93-1.78 (m, 2H), 1.73-1.62 (m, 4H).


145
Ent1
1H NMR (400 MHz, DMSO-d6) δ 8.41 (d, J = 9.5 Hz, 1H), 8.08 (d, J =
383




8.5 Hz, 1H), 7.49-7.40 (m, 3H), 6.12-6.01 (m, 1H), 4.75-4.61 (m,




1H), 2.08 (s, 1H), 1.74-1.34 (m, 7H), 1.09 (s, 6H).


145
Ent2
1H NMR (400 MHz, DMSO-d6) δ 8.41 (d, J = 9.5 Hz, 1H), 8.08 (d, J =
383




8.5 Hz, 1H), 7.49-7.40 (m, 3H), 6.12-6.01 (m, 1H), 4.75-4.61 (m,




1H), 2.08 (s, 1H), 1.74-1.34 (m, 7H), 1.09 (s, 6H).


147
Ent1
1H NMR (500 MHz, DMSO-d6) δ 13.02 (s, 2H), 8.46 (d, J = 9.6 Hz,
424




1H), 8.36-7.97 (m, 2H), 7.93 (d, J = 8.3 Hz, 1H), 7.45 (d, J = 9.5 Hz,




1H), 7.24-7.22 (m, 2H), 6.09-5.95 (m, 1H), 4.72-4.61 (m, 1H), 2.09-




2.01 (m, 1H), 1.82-1.28 (m, 7H), 1.07 (s, 6H).


147
Ent2
1H NMR (500 MHz, DMSO-d6) δ 13.02 (s, 2H), 8.46 (d, J = 9.6 Hz,
424




1H), 8.36-7.97 (m, 2H), 7.93 (d, J = 8.3 Hz, 1H), 7.45 (d, J = 9.5 Hz,




1H), 7.24-7.22 (m, 2H), 6.09-5.95 (m, 1H), 4.72-4.61 (m, 1H), 2.09-




2.01 (m, 1H), 1.82-1.28 (m, 7H), 1.07 (s, 6H).


149
Ent1
1H NMR (500 MHz, DMSO-d6) δ 8.46 (d, J = 9.5 Hz, 1H), 8.04 (d, J =
465




8.8 Hz, 1H), 7.79 (d, J = 7.1 Hz, 1H), 7.46 (d, J = 9.4 Hz, 1H), 7.31




(d, J = 7.2 Hz, 2H), 6.70 (d, J = 1.9 Hz, 1H), 6.60-6.59 (m, 1H), 6.10-




6.00 (m, 1H), 4.72-4.61 (m, 1H), 3.46 (s, 3H), 2.07-2.05 (m, 1H), 1.81-




1.57 (m, 5H), 1.45-1.35 (m, 2H), 1.07 (s, 6H)


149
Ent2
1H NMR (500 MHz, DMSO-d6) δ 8.46 (d, J = 9.5 Hz, 1H), 8.04 (d, J =
465




8.8 Hz, 1H), 7.79 (d, J = 7.1 Hz, 1H), 7.46 (d, J = 9.4 Hz, 1H), 7.31




(d, J = 7.2 Hz, 2H), 6.70 (d, J = 1.9 Hz, 1H), 6.60-6.59 (m, 1H), 6.10-




6.00 (m, 1H), 4.72-4.61 (m, 1H), 3.46 (s, 3H), 2.07-2.05 (m, 1H), 1.81-




1.57 (m, 5H), 1.45-1.35 (m, 2H), 1.07 (s, 6H)


150
Ent1
1H NMR (500 MHz, DMSO-d6) δ 13.06 (s, 1H), 8.47 (d, J = 9.5 Hz,
424




1H), 8.22 (s, 1H), 7.93 (d, J = 6.6 Hz, 2H), 7.45 (d, J = 9.4 Hz, 1H),




7.22-7.14 (m, 2H), 5.60-5.44 (m, 1H), 3.87 (s, 3H), 2.09-1.99 (m,




2H), 1.77-1.69 (m, 2H), 1.64-1.49 (m, 3H), 1.20 (s, 6H).


150
Ent2
1H NMR (500 MHz, DMSO-d6) δ 13.06 (s, 1H), 8.47 (d, J = 9.5 Hz,
424




1H), 8.22 (s, 1H), 7.93 (d, J = 6.6 Hz, 2H), 7.45 (d, J = 9.4 Hz, 1H),




7.22-7.14 (m, 2H), 5.60-5.44 (m, 1H), 3.87 (s, 3H), 2.09-1.99 (m,




2H), 1.77-1.69 (m, 2H), 1.64-1.49 (m, 3H), 1.20 (s, 6H).


151
Ent1
1H NMR (400 MHz, DMSO-d6) δ 12.45 (s, 1H), 8.33 (d, J = 9.3 Hz,
444




1H), 8.22 (d, J = 2.1 Hz, 1H), 7.99-7.88 (m, 2H), 7.83 (d, J = 9.3 Hz,




1H), 7.31 (d, J = 6.8 Hz, 1H), 5.15-4.97 (m, 1H), 4.78 (dt, J = 48.9,




2.5 Hz, 1H), 3.91 (s, 3H), 3.26-3.18 (m, 1H), 3.10-3.04 (m, 1H),




2.14-2.01 (m, 2H), 1.98-1.78 (m, 3H), 1.74-1.63 (m, 3H).


151
Ent2
1H NMR (400 MHz, DMSO-d6) δ 8.33 (d, J = 9.4 Hz, 1H), 8.21 (s,
444




1H), 8.00-7.88 (m, 2H), 7.82 (d, J = 8.8 Hz, 1H), 7.30 (d, J = 6.7 Hz,




1H), 5.20-4.92 (m, 1H), 4.78 (d, J = 48.9 Hz, 1H), 3.91 (s, 3H), 3.26-




3.18 (m, 1H), 3.10-3.04 (m, 1H), 2.12-2.01 (m, 2H), 1.96-1.78




(m, 3H), 1.74-1.62 (m, 3H).


152
Ent2
1H NMR (500 MHz, DMSO-d6) δ 12.61 (s, 1H), 8.41 (d, J = 9.4 Hz,
369




1H), 8.11-8.05 (m, 1H), 7.47 (d, J = 9.4 Hz, 1H), 7.44-7.37 (m,




2H), 5.65-5.49 (m, 1H), 4.84-4.62 (m, 1H), 2.06-1.98 (m, 1H),




1.77-1.68 (m, 2H), 1.64-1.50 (m, 3H), 1.20 (s, 6H).


152
Ent1
1H NMR (500 MHz, DMSO-d6) δ 12.61 (s, 1H), 8.41 (d, J = 9.4 Hz,
369




1H), 8.11-8.05 (m, 1H), 7.47 (d, J = 9.4 Hz, 1H), 7.44-7.37 (m,




2H), 5.65-5.49 (m, 1H), 4.84-4.62 (m, 1H), 2.06-1.98 (m, 1H),




1.77-1.68 (m, 2H), 1.64-1.50 (m, 3H), 1.20 (s, 6H).


153
Ent1
1H NMR (500 MHz, DMSO-d6) δ 13.11 (s, 1H), 8.61 (d, J = 2.6 Hz,
410




1H), 8.47 (d, J = 9.4 Hz, 1H), 8.08 (d, J = 8.6 Hz, 1H), 7.79 (d, J = 1.7




Hz, 1H), 7.57-7.40 (m, 3H), 6.65-6.52 (m, 1H), 5.66-5.44 (m,




1H), 4.84-4.58 (m, 1H), 2.16-1.93 (m, 2H), 1.81-1.45 (m, 5H),




1.20 (s, 6H).


153
Ent2
1H NMR (500 MHz, DMSO-d6) δ 13.11 (s, 1H), 8.61 (d, J = 2.6 Hz,
410




1H), 8.47 (d, J = 9.4 Hz, 1H), 8.08 (d, J = 8.6 Hz, 1H), 7.79 (d, J = 1.7




Hz, 1H), 7.57-7.40 (m, 3H), 6.65-6.52 (m, 1H), 5.66-5.44 (m,




1H), 4.84-4.58 (m, 1H), 2.16-1.93 (m, 2H), 1.81-1.45 (m, 5H),




1.20 (s, 6H).


154
Ent1
1H NMR (500 MHz, DMSO-d6) δ 8.46 (d, J = 9.6 Hz, 1H), 8.30-
438




8.15 (m, 1H), 8.00-7.86 (m, 2H), 7.44 (d, J = 9.5 Hz, 1H), 7.28-




7.05 (m, 2H), 6.23-5.82 (m, 1H), 4.83-4.39 (m, 1H), 3.87 (s, 3H),




2.17-1.94 (m, 1H), 1.85-1.36 (m, 7H), 1.07 (s, 6H).


154
Ent2
1H NMR (500 MHz, DMSO-d6) δ 8.49 (d, J = 9.6 Hz, 1H), 8.19 (s,
438




1H), 7.98-7.83 (m, 2H), 7.41 (d, J = 9.3 Hz, 1H), 7.22-7.08 (m,




2H), 6.18-5.95 (m, 1H), 4.88-4.23 (m, 1H), 3.87 (s, 3H), 2.13-




1.95 (m, 1H), 1.83-1.41 (m, 7H), 1.07 (s, 6H).


155
Ent2
1H NMR (400 MHz, DMSO-d6) δ 8.46 (d, J = 9.5 Hz, 1H), 8.19 (s,
469




1H), 7.47 (d, J = 9.4 Hz, 1H), 7.34 (s, 1H), 7.27 (s, 1H), 6.25-6.01




(m, 1H), 5.05 (d, J = 50.2 Hz, 1H), 3.26 (s, 3H), 3.04 (s, 3H), 2.44-




2.28 (m, 1H), 2.06-1.55 (m, 7H), 1.35 (d, J = 16.1 Hz, 6H).


155
Ent1
1H NMR (400 MHz, DMSO-d6) δ 8.46 (d, J = 9.5 Hz, 1H), 8.19 (s,
469




1H), 7.46 (d, J = 9.4 Hz, 1H), 7.34 (s, 1H), 7.27 (s, 1H), 6.21-5.98




(m, 1H), 4.97 (d, J = 48.8 Hz, 1H), 3.26 (s, 3H), 3.04 (s, 3H), 2.41-




2.23 (m, 1H), 2.18-1.44 (m, 7H), 1.29 (d, J = 12.8 Hz, 6H).


156
Ent1
1H NMR (500 MHz, DMSO-d6) δ 11.65 (s, 1H), 8.36 (d, J = 9.3 Hz,
439




1H), 8.20 (s, 1H), 7.75 (s, 1H), 7.42 (d, J = 9.3 Hz, 1H), 7.31 (d, J =




7.3 Hz, 1H), 6.61 (d, J = 7.3 Hz, 1H), 6.24-5.99 (m, 1H), 4.75-4.60




(m, 1H), 3.50 (s, 3H), 2.13-1.99 (m, 1H), 1.88-1.34 (m, 7H), 1.09




(s, 6H).


156
Ent2
1H NMR (500 MHz, DMSO-d6) δ 11.65 (s, 1H), 8.36 (d, J = 9.3 Hz,
439




1H), 8.20 (s, 1H), 7.75 (s, 1H), 7.42 (d, J = 9.3 Hz, 1H), 7.31 (d, J =




7.3 Hz, 1H), 6.62 (d, J = 7.3 Hz, 1H), 6.24-5.96 (m, 1H), 4.75-4.60




(m, 1H), 3.50 (s, 3H), 2.06 (s, 1H), 1.82-1.35 (m, 7H), 1.08 (s, 6H).


157
Ent1
1H NMR (400 MHz, DMSO-d6) δ 9.30 (d, J = 1.8 Hz, 1H), 8.61 (d, J =
452




9.5 Hz, 1H), 8.08 (d, J = 8.2 Hz, 1H), 7.50 (d, J = 1.7 Hz, 1H), 7.45-




7.40 (m, 2H), 7.37 (d, J = 8.7 Hz, 1H), 5.66-5.40 (m, 1H), 4.71 (d,




J = 53.2, 2.9 Hz, 1H), 4.08 (s, 3H), 2.10-2.04 (m, 1H), 1.80-1.69




(m, 2H), 1.66-1.47 (m, 3H), 1.26-1.19 (m, 6H).


157
Ent2
1H NMR (400 MHz, DMSO-d6) δ 9.30 (d, J = 1.8 Hz, 1H), 8.61 (d, J =
452




9.5 Hz, 1H), 8.08 (d, J = 8.2 Hz, 1H), 7.50 (d, J = 1.7 Hz, 1H), 7.45-




7.40 (m, 2H), 7.37 (d, J = 8.7 Hz, 1H), 5.66-5.40 (m, 1H), 4.71 (d,




J = 53.2, 2.9 Hz, 1H), 4.08 (s, 3H), 2.10-2.04 (m, 1H), 1.80-1.69




(m, 2H), 1.66-1.47 (m, 3H), 1.26-1.19 (m, 6H).









Example 14. Assignment of Absolute Stereochemistry of Compounds 1-Ent1 and 1-Ent2 by Vibrational Circular Dichroism

The absolute configuration of 1-Ent1 was assigned by the technique of Vibration Circular Dichroism (“Absolute Configuration Determination of Chiral Molecules in the Solution State Using Vibrational Circular Dichroism,” Freedman, T. B., Cao, X., Dukor, R. K.; Nafie, L. A. Chirality, 2003, 743-758.) as applied by Biotools, Inc. (Jupiter Fla.). Based on the VCD results, compound 1-Ent1 was assigned to be 2-(6-(((1S,2S,3R,5R)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol and compound 1-Ent2 was assigned to be 2-(6-(((1R,2R,3S,5S)-2-fluoro-9-azabicyclo[3.3.1]nonan-3-yl)oxy)pyridazin-3-yl)-5-(1-methyl-1H-pyrazol-4-yl)phenol.


General Information

VCD-spectrometer: ChiraiiR w/DualPEM


MEASUREMENT PARAMETERS

Concentration: 10 mg/300 ul


Solvent: CDCl3

Resolution: 4 cm−1

PEM setting: 1400 cm−1

Number of scans/Measurement time: 6 hours per enantiomer


Sample cell: BaF2

Path length: 100 um


CALCULATION DETAILS

Gaussian version: Gaussian 09


Total low-energy conformers used for Boltzmann sum: 20


Methodology and basis set for OFT calculations: B3L YP/6311 Gdp w/CPCM (chloroform)


Enantiomer used for calculation: 1S,2S,3R,5R


Total calculated conformers: 53


Number of low-energy conformations shown in report: 1


Confidence Level: 99%



embedded image


BIOLOGY EXAMPLES
Example A-1: Cell Viability and Proliferation

Small molecule splicing modulators are tested in a dose-response assay using different cancer cell lines. Cells are first plated in 96-well plastic tissue culture plates (10,000 cells per well). The cells are treated with 500 nM of SMSM or vehicle alone (DMSO) for 48 hours. Following treatment, the cells are washed with PBS, stained with a crystal violet staining solution, and allowed to dry for 48-72 hrs. After drying, sodium citrate buffer is added to each well and allowed to incubate for 5 min at room temperature. The absorbance is measured at 450 nM using a microplate reader (Biorad; Hercules, Calif.). The relative cell proliferation for each of the cancer cell lines is determined.


To measure cell viability, cells are plated in 96-well plastic tissue culture plates at a density of 5×103 cells/well. Twenty-four hours after plating, cells are treated with various SMSMs. After 72 hours, the cell culture media are removed and plates are stained with 100 mL/well of a solution containing 0.5% crystal violet and 25% methanol, rinsed with deionized water, dried overnight, and resuspended in 100 mL citrate buffer (0.1 M sodium citrate in 50% ethanol) to assess plating efficiency. Intensity of crystal violet staining, assessed at 570 nm and quantified using a Vmax Kinetic Microplate Reader and Softmax software (Molecular Devices Corp., Menlo Park, Calif.), are directly proportional to cell number. Data are normalized to vehicle-treated cells and are presented as the mean±SE from representative experiments. SMSMs that are effective are determined for various cells lines.


Small molecule splicing modulators are tested in a dose-response assay using cancer cells and NHDF cells.


Cancer cells or NHDF cells are first plated in 96-well plastic tissue culture plates (10,000 cells per well). The cells are treated with vehicle alone (DMSO), or increasing concentrations of SMSM compounds for 72 h. Following treatment, cell proliferation is determined using a crystal violet assay. The relative cell proliferation at each concentration is determined.


Example A-2: Maximum Tolerable Dose Study

Survival of mice after administration of SMSMs after 10 or 11 days is assessed.


Tolerance of the drug treatments is determined by measuring the weight of the mice during the period of drug administration. Body weight is measured prior to tumor inoculation and prior to the treatment administration and then daily. The changes in the final weight of the mice for the SMSM treatments are determined.


Example A-3: Dose Range and Time Course Studies

Dose range and time course studies comparing anti-neoplastic effects of SMSMs against vehicle are conducted.


Exemplary experimental groups used for this study are shown in the table below.


















Group
Dose
Dosing
Route of
#


Group
Treatment
(mg/kg)
Schedule
Administration
Mice







1
Vehicle
NA
 QD × 14
PO
10













2
SMSM
3
mg/kg
BID × 14
IP
10


3
SMSM
5
mg/kg
BID × 14
PO
10


4
SMSM
7.5
mg/kg
BID × 14
PO
10


5
SMSM
10
mg/kg
 QD × 14
PO
10









Female NCrNu mice are used. Age range of enrolment is 7-10 weeks. A total of 75 animals are for the studies.


Each mouse are inoculated into a right flank with the single cell suspension of 95% viable tumor cells (5×106 cells/mouse) in serum-free RPMI 1640 Media for tumor development. Treatments are administered when mean tumor size reached approximately 75 mm3.


An acclimation period of a minimum of 72 hrs is allowed between animal receipt and tumor inoculation in order to accustom the animals to the laboratory environment. Immunodeficient NCrNu mice are maintained in a pathogen-free environment. Animals are fed a diet of Irradiated Mouse pellet feed Purina rodent diet #5053 (Fisher Feeds, Bound Brook, N.J.) and chlorinated water from a reverse osmosis (RO) system (4-6 ppm).


Before commencement of treatment, all animals are weighed and assigned to treatment groups using a randomization procedure. Mice are randomized into groups based upon their tumor sizes to ensure that each group had approximately the same mean tumor size and range of tumor size.


After inoculation, the animals are checked daily for morbidity and mortality. At the time of routine monitoring, the animals are checked for any effects of tumor growth on normal behavior such as mobility, food and water consumption, body weight gain/loss, eye/hair matting and any other abnormal effects. Deaths and observed clinical signs are recorded. Animals that are observed to be in a continuing deteriorating condition or bearing a tumor exceeding 2,000 mm3 in size are euthanized.


Body weight is measured prior to tumor inoculation and prior to the treatment administration and then daily. Tumor size are measured 2-3 times per week in two dimensions using a caliper, and the volume are expressed in mm3 using the formula: V=0.5×a×b2 where a and b are the long and short diameters of the tumor, respectively.


Studies are terminated when the tumor size in the vehicle treated group reached 2,000 mm3. Each mouse is bled at 2 hrs after the last dose and at least 50 μl of plasma are collected from each mouse. All of the collected plasma samples and retainer dosing solutions for each dose level are used for bioanalytical measurements. All tumors are also collected and weighed. One necrosis-free tumor fragment of approximately 50 mg is taken from each tumor and flash-frozen for RNA isolation. The remaining tumor is flash frozen for PK analysis.


Example A-4: Quantitative Splicing Assay (HTT)

GM04724 (CAG 70/20) Huntington's disease patient lymphoblasts (Coriell) are plated in 96-wel v-bottom plates at 50,000 cells/well. Immediately after plating, cells are dosed with compound for 24 h at concentrations ranging from 2.5 uM to 0.15 nM (0.1% DMSO). Treated cells are lysed and cDNA synthesized using the Fast Advanced Cells-to-Ct kit (Thermofisher A35378) according to the manufacturer's instructions. 2 uL of each cDNA are used in qPCR reactions to confirm the compound-induced inclusion of a cryptic exon within intron 49 of the Huntingtin (HTT) transcripts. The qPCR reactions are prepared in 384-well plates in 10 uL volume, using TaqMan™ Fast Advanced Master Mix [ThermoFisher; 4444965] with primers and probes shown in the table below. Reactions are run in a Quant Studio 6 qPCR instrument with default settings.


Probe/Primer Sequences:













HTTcryp49b-FAM: 




Probe:









(SEQ ID NO: 77)











5′ CAGCAGAGCCCTGTCCTG 3′








Primer 1:









(SEQ ID NO: 78)











5′ CCCACAGCGCTGAAGGA 3′








Primer 2:









(SEQ ID NO: 79)











5′ TCCAGACTCAGCGGGATCT 3′








HTTex49_50-FAM: 




Probe:









(SEQ ID NO: 80)











5′ TGGCAACCCTTGAGGCCCTGT 3′








Primer 1:









(SEQ ID NO: 81)











5′ CCTCCTGAGAAAGAGAAGGACA 3′








Primer 2:









(SEQ ID NO: 82)











5′ TCTGCTCATGGATCAAATGCC 3′








TBP-YAK (endogenous control)




Probe:









(SEQ ID NO: 83)











5′ CCGCAGCTGCAAAATATTGTATCCACA 3′








Primer 1:









(SEQ ID NO: 84)











5′ TCGGAGAGTTCTGGGATT 3′








Primer 2:









(SEQ ID NO: 85)











5′ AAGTGCAATGGTCTTTAGGT 3′






The quantitative Splicing Assay (HTT) data are shown in Table A-10 of Example A-10.


Example A-5: mHTT Protein Assay

Compounds are tested on GM04724 (CAG 70/20) Huntington's disease patient lymphoblast cells at doses ranging from 10 μM to 0.6 nM. 4,500 cells/well are seeded in 384 well plates. One plate replica is carried out for parallel viability testing by CellTiter Glo (CTG). Compounds are incubated for 48 hours, mHTT protein levels are assessed by the 2B7-MW1 assay via Mesoscale Discovery (MSD) as previously reported (Macdonald et al., 2014). The antibody pair is comprised of previously characterized monoclonals (2B7 and MW1) interrogating two regions for HTT conformation and biological properties: the N17 domain and the polyQ domain (Baldo et al., 2012; Ko et., 2001). 2B7-MW1 is dependent on subject/animal specific levels of HTT at the time of treatment. 2B7-MW1 is dependent on polyQ expansion (e.g., the higher the expansion the higher the signal) and on mHTT size (e.g., a similar polyQ will give higher signal with smaller HTT size). The viability readout is carried out by CTG according to the manufacturer's instructions. The results are shown in Table A-5.









TABLE A-5







HTT Potency Splicing snd Protein Data













HTT Potency -
HTT Potency -
HTT Potency -




Splicing:
Splicing:
Protein




E49-50 EC50
E49b EC50
EC50 mHTT




(average)
(average)
(average)


Compound
ENT
(nM)*
(nM)*
(nM)*














1
ENT1
B
B
A


1
ENT2
B
B
A


2
ENT2
A
A
A


2
ENT1
A
A
A


35
ENT1


D


35
ENT2
D
D
C


36
ENT1


C


36
ENT2


C


40
ENT2
A
A
A


40
ENT1
A
A
A


41
ENT2


B


41
ENT1
A
A
A


42
ENT2
A
A
A


42
ENT1
A
A
A


43
ENT2
B
B
A


43
ENT1
B
B
A


46
ENT2
D
D
D


46
ENT1
E
E
E


49
ENT1
C
C
C


49
ENT2
B
A
B


51
ENT1


E


51
ENT2


E


53
ENT1
D
D
D


53
ENT2
D
D
D


54
ENT1
B
B
A


54
ENT2
B
B
B


56
ENT1
A
A
A


56
ENT2
A
A
A


57
ENT1


D


57
ENT2


D


58
ENT1
B
B
A


58
ENT2
B
B
A


60
ENT1
C
B
B


60
ENT2
B
B
C


61
ENT1
B
A
B


61
ENT2
B
A
A


63
ENT1


E


63
ENT2


E


64
ENT1
E
E
E


64
ENT2
E
E
E


66
ENT1


C


66
ENT2


C


67
ENT1


D


67
ENT2


D


68
ENT1
B
B
B


68
ENT2
B
B
D


69
ENT1


D


69
ENT2


D


70
ENT1


D


70
ENT2


D


71
ENT1
B
B
B


71
ENT2


B


72
ENT2


D


72
ENT1


D


73
ENT1


D


73
ENT2


D


74
ENT1
D
E
E


74
ENT2
E
E
E


75
ENT1
E
E
E


75
ENT2
E
E
E


76
ENT1
A
A
B


76
ENT2
A
A
A


77
ENT1


D


77
ENT2


D


78
ENT1


D


78
ENT2


D


79
ENT1
D
D
D


79
ENT2
C
C
D


80
ENT1


D


80
ENT2


E


81
ENT1


E


81
ENT2


E


82
ENT1
A
A
A


82
ENT2
A
A
A


83
ENT1
E
E
D


83
ENT2
E
E
D


84
ENT1


B


84
ENT2


B


85
ENT1


D


85
ENT2


D


86
ENT1


D


86
ENT2


D


87
ENT1


D


87
ENT2


D


88
ENT1
B
B
B


88
ENT2


B


89
ENT1


E


89
ENT2


E


90
ENT1


D


90
ENT2


D


91
ENT1


D


91
ENT2


E


92
ENT1


D


92
ENT2


D


93
ENT1
B
B
B


93
ENT2


B


94
ENT1


D


94
ENT2


D


95
ENT1


D


95
ENT2


D


96
ENT1
B
B
B


96
ENT2
B
B
B


97
ENT2
B
B
A


97
ENT1
B
B
A


98
ENT1


D


98
ENT2


D


99
ENT1


D


99
ENT2


D


100
ENT1


D


100
ENT2


D


101
ENT1


D


101
ENT2


B


102
ENT1


D


102
ENT2


D


103
ENT1


E


103
ENT2


E


104
ENT1


E


104
ENT2


E


105
ENT1


D


105
ENT2


D


106
ENT1


D


106
ENT2


C


107
ENT1


D


107
ENT2


D


109
ENT1


B


109
ENT2


B


110
ENT1


E


110
ENT2


E


111
ENT1


E


111
ENT2


E


113

A
A
A


114
ENT1


E


114
ENT2


E


115
ENT2
B
B
A


115
ENT1
A
A
B


116
ENT1


B


116
ENT2
D
D
B


117
ENT1
D
D
C


117
ENT2
D
D
B


118
ENT1
C
C
C


118
ENT2


D


119
ENT1
B
B
B


119
ENT2
B
B
C


120
ENT1
B
B
B


120
ENT2
C
B
C


121
ENT1
E
E
E


121
ENT2
E
E
E


122
ENT1


E


122
ENT2


E


123
ENT1
D
D
D


123
ENT2


D


124
ENT1


E


124
ENT2


E


125
ENT2
D
C
B


125
ENT1
D
C
C


126
ENT1
D
C
B


126
ENT2
E
D
D


127
ENT2
C
B
B


127
ENT1
D
D
C


128
ENT1
C
C
B


128
ENT1
C
C
B


129
ENT2
C
B
A


129
ENT1
D
D
B


130
ENT2
B
B
A


130
ENT1
C
B
A


131
ENT2


E


131
ENT1


E


132
ENT2


D


132
ENT1


D


133
ENT2
C
C
A


133
ENT1
D
C
A


134
ENT1


D


134
ENT2


D


135
ENT1
A
A
A


135
ENT2
A
A
A


136
ENT2
A
B
A


136
ENT1


A


137
ENT2
B
A
A


137
ENT1


A


138
ENT1


C


138
ENT2


D


139
ENT1
B
B
A


139
ENT2


A


140
ENT2
D
D
C


140
ENT1
D
D
D


141
ENT2
D
C
B


141
ENT1


D


142
ENT2


C


142
ENT1


C


143
ENT2


C


143
ENT1


C


145
ENT1


E


145
ENT2


E


147
ENT2
A
A
A


147
ENT1
A
A
A


149
ENT2
B
B
B


149
ENT1
C
B
B


150
ENT2
B
B
B


150
ENT1


C


151
ENT1
C
C
C


151
ENT2


D


152
ENT1


E


152
ENT2


E


153
ENT1


C


153
ENT2


B


154
ENT1
B
A
B


154
ENT2
B
A
B


155
ENT1


E


155
ENT2


E


156
ENT1
B
B
A


156
ENT2
B
B
A


157
ENT1
B
B
B


157
ENT2
B
B
B





*HTT EC50 range (nM):


0.01 ≤ A ≤ 15


16 ≤ B ≤ 50


51 ≤ C ≤ 100


101 ≤ D ≤ 500


501 ≤ E ≤ 10,000






Example A-6: Assessment of Blood-Brain-Barrier (BBB) Penetration Potential Via an MDCK-MDR1 Permeability Assay

The permeability of compounds is assessed for BBB penetration potential by use of an MDCK-MDR1 assay (Catalog EA203) performed by Absorption Systems, Exton Pa. See. “Evaluation of the MDR-MDCK cell line as a permeability screen for the blood-brain barrier,” Wang, Q. Rager, J. D.; Weinstein, K.; Kardos, P. S.; Dobson, G. L.; Li, J.; Hidalgo, I. J.


Experimental Procedure

MDR1-MDCK cell monolayers are grown to confluence on collagen-coated, microporous membranes in 12-well assay plates. The permeability assay buffer is Hanks' balanced salt solution containing 10 mM HEPES and 15 mM glucose at a pH of 7.4. The buffer in the receiver chamber also contained 1% bovine serum albumin. The dosing solution concentration is 5 μM of test article in the assay buffer. Cell monolayers are dosed on the apical side (A-to-B) or basolateral side (B-to-A) and incubated at 37° C. with 5% CO2 in a humidified incubator. Samples are taken from the donor and receiver chambers at 120 minutes. Each determination is performed in duplicate. The flux of lucifer yellow is also measured post-experimentally for each monolayer to ensure no damage is inflicted to the cell monolayers during the flux period. All samples are assayed by LC-MS/MS using electrospray ionization. Analytical conditions are outlined below.


The apparent permeability (Papp) and percent recovery are calculated as follows:





Papp=(dCr/dtVr/(A×CA)  (1)





Percent Recovery=100×((Vr×Crfinal)+(Vd×Cdfinal))/(Vd×CN)  (2)


where,


dCr/dt is the slope of the cumulative concentration in the receiver compartment versus time in μM s−1;


Vr is the volume of the receiver compartment in cm3;


Vd is the volume of the donor compartment in cm3;


A is the area of the insert (1.13 cm2 for 12-well);


CA is the average of the nominal dosing concentration and the measured 120 minute donor concentration in μM;


CN is the nominal concentration of the dosing solution in μM;


Crfinal is the cumulative receiver concentration in μM at the end of the incubation period;


Cdfinal is the concentration of the donor in μM at the end of the incubation period.


Efflux ratio (ER) is defined as Papp (B-to-A)/Papp (A-to-B).


Analytical Method:


Liquid Chromatography


Column: Waters ACQUITY UPLC BEH Phenyl 30×2.1 mm, 1.7 μm


M.P. Buffer: 25 mM ammonium formate buffer, pH 3.5


Aqueous Reservoir (A): 90% water, 10% buffer


Organic Reservoir (B): 90% acetonitrile, 10% buffer


Flow Rate: 0.7 mL/minute


Gradient Program:














Time (min)
% A
% B

















0.00
99
1


0.65
1
99


0.75
1
99


0.80
99
1


1.00
99
1









Total Run Time: 1.00 minute


Autosampler: 2 μL injection volume


Wash1: water/methanol/2-propanol: 1/1/1; with 0.2% formic acid


Wash2: 0.1% formic acid in water


The results for exemplary SMSM compounds are shown in Table A-6.









TABLE A-6







Assessment of blood-brain-barrier (BBB) penetration potential via


an MDCK-MDR1 Permeability assay of exemplary SMSM compounds.















MDCK-MDR1:
MDCK-MDR1:
MDCK-MDR1:
MDCK-MDR1:





% Recov A-B
% Recov B-A
Papp A-B
Papp B-A
MDCK-MDR1:


Compound
ENT
(%)
(%)
(10{circumflex over ( )}−6, cm/s)
(10{circumflex over ( )}−6, cm/s)
Efflux
















1
ENT1
85
84
6.16
37.9
6


1
ENT2
76
83
6.05
33.7
6


2
ENT2
90
87
14.5
46.4
3


2
ENT1
77
89
4.15
50.7
12


35
ENT1
77
87
8.31
32.8
4


35
ENT2
62
68
6.25
24
4


36
ENT1
74
83
5.28
26
5


36
ENT2
61
73
5.41
28.9
5


40
ENT2
80
83
2.47
41.6
17


40
ENT1
83
85
2.67
49.9
19


41
ENT2
66
74
4.96
40.9
8


41
ENT1
71
86
4.33
34.7
8


42
ENT2
85
86
3.2
38.5
12


42
ENT1
75
84
3.39
42.4
12


43
ENT2
83
84
6.27
58.7
9


43
ENT1
76
79
7.44
48.9
7


46
ENT2
72
83
14.2
43.2
3


46
ENT1
70
88
18.3
47
3


49
ENT1
49
82
5.36
11.8
2


49
ENT2
46
75
4.62
15.4
3


51
ENT1
90
99
32.2
51.5
2


51
ENT2
86
90
25.8
46.7
2


53
ENT1
91
90
0.22
22.2
103


53
ENT2
104
103
0.22
23.2
106


54
ENT1
94
105
1.1
63
57


54
ENT2
101
107
1.8
61.9
34


56
ENT1
55
74
2.63
39
15


56
ENT2
68
79
2.69
36
13


57
ENT1
94
101
0.26
18.9
73


57
ENT2
77
87
0.35
31.3
90


58
ENT1
97
103
0.92
45.1
49


58
ENT2
83
90
1.17
55.1
47


60
ENT1
68
84
7.46
30.5
4


60
ENT2
67
78
8.12
31.3
4


61
ENT1
43
79
4.83
13.8
3


61
ENT2
36
71
4.5
12.2
3


63
ENT1
103
110
0.29
10.9
37


63
ENT2
96
107
0.26
9.6
38


64
ENT1
99
101
0.18
12.4
68


64
ENT2
92
97
0.21
10.7
50


66
ENT1
79
80
0.93
10.1
11


66
ENT2
79
78
1.18
11.2
9


67
ENT1
44
62
4.42
29.8
7


67
ENT2
59
76
3.34
20.7
6


68
ENT1
87
79
8.61
51.9
6


68
ENT2
76
89
8.23
31.6
4


69
ENT1
89
93
9.2
47.6
5


69
ENT2
86
93
10.7
55.9
5


70
ENT1
93
99
6.62
44.6
7


70
ENT2
94
105
7.47
40.1
5


71
ENT1
47
60
4.96
18.6
4


71
ENT2
50
67
5.78
33.1
6


72
ENT2
64
74
4.67
34.9
7


72
ENT1
74
93
5.74
51
9


73
ENT1
94
85
0.44
40.9
92


73
ENT2
90
87
0.49
41.3
84


74
ENT1
96
88
5.6
22.8
4


74
ENT2
87
75
6.96
31.4
5


75
ENT1
90
92
3.66
32.5
9


75
ENT2
82
78
3.96
39.7
10


76
ENT1
64
70
3.83
32.3
8


76
ENT2
82
85
4.19
39.9
10


77
ENT1
52
70
5.64
22.7
4


77
ENT2
57
79
6.32
30.2
5


78
ENT1
65
78
7.17
24.5
3


78
ENT2
56
83
7.09
30
4


79
ENT1
76
80
7.99
22.9
3


79
ENT2
74
82
9.52
25.8
3


80
ENT1
70
78
7.47
31.4
4


80
ENT2
72
84
9.2
32.1
3


81
ENT1
69
77
7.34
22.8
3


81
ENT2
69
81
9.23
26.4
3


82
ENT1
45
72
4.12
16.8
4


82
ENT2
35
72
3.26
12.8
4


83
ENT1
48
64
1.05
23.8
23


83
ENT2
47
66
0.77
9.61
12


84
ENT1
44
72
1.56
17
11


84
ENT2
43
73
1.63
22.8
14


85
ENT1
33
66
2.12
12.1
6


85
ENT2
33
61
2.26
15.3
7


86
ENT1
89
93
0.54
24.7
46


86
ENT2
75
74
0.42
20.3
48


87
ENT1
92
100
2.75
55.8
20


87
ENT2
105
108
3.9
56.1
14


88
ENT1
51
64
7.03
22.1
3


88
ENT2
51
71
5.13
21.5
4


89
ENT1
68
76
6.05
33.8
6


89
ENT2
55
70
2.61
34
13


90
ENT1
103
99
1.82
60.5
33


90
ENT2
101
97
1.92
64.6
34


91
ENT1
30
57
4.52
15.5
3


91
ENT2
30
48
4.4
10.5
2


92
ENT1
65
74
5.99
30.9
5


92
ENT2
72
89
6.04
54.6
9


93
ENT1
75
78
8.72
38.7
4


93
ENT2
67
88
9.43
41.5
4


94
ENT1
104
70
6.2
41.2
7


94
ENT2
93
87
6.35
46.7
7


95
ENT1
72
78
4.88
48.8
10


95
ENT2
78
87
3.59
33.1
9


96
ENT1
39
72
7.37
15.2
2


96
ENT2
35
67
6.73
11.6
2


97
ENT2
74
82
3.11
32
10


97
ENT1
83
78
3.67
50.4
14


98
ENT1
9
47
1.13
1.39
1


98
ENT2
9
45
1.07
3.23
3


99
ENT1
9
47
2.07
2.37
1


99
ENT2
16
55
6.11
6.02
1


100
ENT1
16
49
0.99
0.68
1


100
ENT2
18
57
1.14
0.68
1


101
ENT1
25
70
0.86
0.76
1


101
ENT2
20
53
0.92
0.55
1


102
ENT1
89
90
7.66
43.1
6


102
ENT2
86
89
7.93
48.4
6


103
ENT1
95
101
3.92
61.5
16


103
ENT2
98
106
5.15
59.9
12


104
ENT1
95
92
7.17
45.7
6


104
ENT2
93
99
10.1
53.6
5


105
ENT1
92
84
8.12
47.1
6


105
ENT2
91
70
6.58
37.2
6


106
ENT1
102
90
1.07
51
48


106
ENT2
79
80
1.45
56.7
39


107
ENT1
90
90
0.11
10
90


107
ENT2
97
103
0.11
11.2
100


109
ENT1
57
76
5.54
18.9
3


109
ENT2
51
80
6.3
24.5
4


110
ENT1
101
100
5.37
68.2
13


110
ENT2
95
97
7.44
56.9
8


111
ENT1
90
92
15.6
44.7
3


111
ENT2
92
96
14.4
58.7
4


113

86
88
1.01
54.2
54


114
ENT1
22
47
4.74
13.5
3


114
ENT2
18
42
3.86
15.1
4


115
ENT2
43
67
6.9
12
2


115
ENT1
44
70
7.15
20.3
3


116
ENT1
88
91
7.76
59.2
8


116
ENT2
90
95
11.3
61.4
5


117
ENT1
85
106
7.92
47.5
6


117
ENT2
78
93
7.22
37.9
5


118
ENT1
52
80
6.21
33.3
5


118
ENT2
52
80
4.5
36.8
8


119
ENT1
56
80
3.4
33
10


119
ENT2
59
64
9.17
29.4
3


120
ENT1
29
77
3.51
29.7
8


120
ENT2
28
71
4.47
30.2
7


121
ENT1
66
73
11
50.3
5


121
ENT2
75
90
13.5
45.9
3


122
ENT1
50
66
4.73
23.3
5


122
ENT2
60
76
6.08
38.4
6


123
ENT1
86
90
6.22
87.8
14


123
ENT2
87
93
7.03
69.8
10


124
ENT1
82
88
17.5
51.5
3


124
ENT2
86
89
16.9
43.5
3


125
ENT2
84
87
3.2
52
16


125
ENT1
101
91
3.35
76
23


126
ENT1
100
95
3.5
48.3
14


126
ENT2
93
92
3.51
45.5
13


127
ENT2
89
103
9.29
55.3
6


127
ENT1
78
70
6.39
46.5
7


128
ENT1
92
81
5.27
38.6
7


128
ENT1
88
85
5.78
65.2
11


129
ENT2
72
79
4.94
45.7
9


129
ENT1
89
91
4.29
52.8
12


130
ENT2
78
79
9.9
49.6
5


130
ENT1
78
80
7.86
43.7
6


131
ENT2
91
96
0.79
44.6
56


131
ENT1
95
99
0.71
49.5
70


132
ENT2
93
95
0.11
13.4
126


132
ENT1
90
95
0.1
14.7
142


133
ENT2
92
90
5.25
60.9
12


133
ENT1
81
87
4.98
52.4
10


134
ENT1
91
99
6.18
51.8
8


134
ENT2
95
96
6.2
48.4
8


135
ENT1
93
100
3.61
68.6
19


135
ENT2
86
93
2.5
55
22


136
ENT2
88
93
2.1
52.1
25


136
ENT1
88
101
2.27
62.3
28


137
ENT2
67
83
2.89
38.2
13


137
ENT1
58
70
2.56
40.1
16


138
ENT1
86
98
1.14
53.9
47


138
ENT2
92
91
1.88
60.7
32


139
ENT1
75
75
2.36
32.1
14


139
ENT2
88
87
1.97
28.7
15


140
ENT2
93
90
14.3
33.3
2


140
ENT1
92
95
18.1
43.3
2


141
ENT2
98
105
10.5
53.1
5


141
ENT1
111
120
9.97
59.7
6


142
ENT2
101
121
9.4
54.5
6


142
ENT1
98
103
6.9
41.8
6


143
ENT2
81
87
6.91
54.8
8


143
ENT1
81
93
6.56
55.7
8


145
ENT1
82
87
9.39
42
4


145
ENT2
89
100
7.75
58.9
8


147
ENT2
71
80
4.46
58.1
13


147
ENT1
78
83
4.61
58.1
13


149
ENT2
76
73
1.94
45.7
24


149
ENT1
76
79
2.23
48.6
22


150
ENT2
78
87
9.06
38.6
4


150
ENT1
77
85
7.55
27.9
4


151
ENT1
42
65
3.78
14.1
4


151
ENT2
48
71
7.03
36.4
5


152
ENT1
88
98
11.6
59.4
5


152
ENT2
92
100
10
53
5


153
ENT1
67
76
7.44
34.4
5


153
ENT2
60
71
7.16
24.7
3


154
ENT1
73
87
9.33
37.7
4


154
ENT2
81
92
6.92
22
3


155
ENT1
90
95
3.71
59.4
16


155
ENT2
102
102
3.84
63.7
17


156
ENT1
86
90
4.79
52.6
11


156
ENT2
80
99
4.9
46.3
9


157
ENT1
77
84
6.28
35.7
6


157
ENT2
82
81
6.79
36.1
5









The examples and embodiments described herein are for illustrative purposes only and various modifications or changes suggested to persons skilled in the art are to be included within the spirit and purview of this application and scope of the appended claims.

Claims
  • 1-73. (canceled)
  • 74. A compound of Formula (II), or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof:
  • 75. The compound of claim 74, or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, wherein the compound of Formula (II) has the structure of Formula (I):
  • 76. The compound of claim 75, or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, wherein the compound of Formula (I) has the structure of Formula (C):
  • 77. The compound of claim 74, or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, wherein ring Q is 2-hydroxy-phenyl substituted with substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl.
  • 78. The compound of claim 77, or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, wherein ring Q is 2-hydroxy-phenyl substituted with substituted or unsubstituted heteroaryl, wherein if heteroaryl is substituted then it is substituted with 1 or 2 substituents independently selected from: deuterium, halogen, —OH, —NO2, oxo, —CN, —SR1, —S(═O)R1, —S(═O)2R1, —N(R1)2, —C(═O)R1, —OC(═O)R1, —C(═O)OR1, —C(═O)N(R1)2, substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C2-C6 alkynyl, substituted or unsubstituted C1-C6 alkoxy, substituted or unsubstituted C3-C7 cycloalkyl, and substituted or unsubstituted C2-C7 heterocycloalkyl; whereineach R1 is independently hydrogen, deuterium, substituted or unsubstituted C1-C4 alkyl, —CD3, substituted or unsubstituted C1-C4 haloalkyl, substituted or unsubstituted C1-C4 heteroalkyl, substituted or unsubstituted C3-C6 cycloalkyl, substituted or unsubstituted C2-C5 heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.
  • 79. The compound of claim 74, or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, wherein: ring Q is
  • 80. The compound of claim 79, or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, wherein ring P is substituted or unsubstituted heteroaryl.
  • 81. The compound of claim 80, or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, wherein ring P is heteroaryl selected from the group consisting of:
  • 82. The compound of claim 74, or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, wherein ring Q is substituted or unsubstituted heteroaryl; wherein if heteroaryl is substituted, then it is substituted with one or more substituents each independently selected from D, halogen, —CN, —NH2, —OH, ═O, —NH(CH3), —N(CH3)2,—NH(cyclopropyl), —CH3, —CH2CH3, —CF3, —OCH3, and —OCF3.
  • 83. The compound of claim 74, or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, wherein ring Q is selected from the group consisting of:
  • 84. The compound of claim 74, or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, wherein ring Q is selected from the group consisting of:
  • 85. The compound of claim 74, or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, wherein W is substituted or unsubstituted C1-C3 alkylene or substituted or unsubstituted C1-C2 heteroalkylene.
  • 86. The compound of claim 85, or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, wherein W is —CH2OCH2—, —CH2CH2— or —CH2CH2CH2—.
  • 87. The compound of claim 74, or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, wherein one or more of R16 and R17 is independently selected from F, —OH, —OCH3, —OCF3, —CH3, —CH2OH, —CH2F, —CHF2, and —CF3.
  • 88. The compound of claim 74, or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, wherein R2 and RA are hydrogen.
  • 89. The compound of claim 74, or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, wherein R16 is F and R17 is hydrogen; or wherein R16 is hydrogen and R17 is F.
  • 90. The compound of claim 74, or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, wherein each RA is independently hydrogen, F, Cl, —CN, —CH3, —CH2CH3, —CH2CH2CH3, —CH(CH3)2, —OH, —OCH3, —OCH2CH3, —OCF3, —CH2F, —CHF2, or —CF3.
  • 91. The compound of claim 74, or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, wherein R15 and R18 are both hydrogen or —CH3.
  • 92. The compound of claim 74, or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, wherein the compound has a structure of Formula (II) and at least one of R11, R12, R13, R14, R15, R16, R17, R18, R19, and R20 is or comprises a fluorine.
  • 93. The compound of claim 75, or a pharmaceutically acceptable salt or pharmaceutically acceptable solvate thereof, wherein the compound has a structure of Formula (I) and at least one of R11, R12, R13, R14, R15, R16, R17, and R18 is or comprises a fluorine.
CROSS-REFERENCE

This application is a continuation of International Application No. PCT/2020/017086 filed on Feb. 6, 2020, which claims benefit of U.S. Provisional Patent Application No. 62/801,729 filed on Feb. 6, 2019 and U.S. Provisional Patent Application No. 62/801,730 filed on Feb. 6, 2019, each of which is incorporated herein by reference in its entirety.

Provisional Applications (2)
Number Date Country
62801729 Feb 2019 US
62801730 Feb 2019 US
Continuations (1)
Number Date Country
Parent PCT/US2020/017086 Feb 2020 US
Child 17388093 US