Methods and Compositions for the Treatment and Diagnosis of Bladder Cancer

Information

  • Patent Application
  • 20140154691
  • Publication Number
    20140154691
  • Date Filed
    June 22, 2012
    12 years ago
  • Date Published
    June 05, 2014
    10 years ago
Abstract
Embodiments of the disclosure are directed to methods of diagnosis, prognosis and treatment of cancer. The methods are particularly suited for bladder cancer. The methods include targeting a marker that is expressed at abnormal levels in bladder cancer tissue in comparison to normal somatic tissue. Also disclosed are methods of treating cancer comprising administering a composition including a therapeutic that affects the expression or function of a target marker.
Description
FIELD OF THE INVENTION

The field of the invention relates to cancer and the diagnosis and treatment of cancer.


BACKGROUND

Bladder cancer is a type of malignant growths of the urinary bladder. The most common type of bladder cancer begins in cells lining the inside of the bladder and is called transitional cell carcinoma (sometimes urothelial cell carcinoma). Types of bladder cancers include transitional cell carcinoma, squamous cell carcinoma, adenocarcinoma, sarcoma, small cell carcinoma and secondary deposits from cancers elsewhere in the body. Bladder cancer characteristically causes blood in the urine; this may be visible to the naked eye (gross hematuria) or detectable only by microscope (microscopic hematuria). Other possible symptoms include pain during urination, frequent urination (polyuria) or feeling the need to urinate without results


The gold standard for diagnosing bladder cancer is biopsy obtained during cystoscopy. Sometimes it is an incidental finding during cystoscopy. Urine cytology can be obtained in voided urine or at the time of the cystoscopy (“bladder washing”). Cytology is very specific (a positive result is highly indicative of bladder cancer) but suffers from low sensitivity (inability of a negative result to reliably exclude bladder cancer). There are newer urine bound markers for the diagnosis of bladder cancer. These markers are not currently used routinely in clinical practice due to absence of clear professional guidelines. They are much more expensive as well. Bladder cancer may also be diagnosed with a Cysview™ guided fluorescence cystoscopy, as an adjunct to conventional white-light cystoscopy. This procedure improves the detection of bladder cancer and reduces the rate of early tumor recurrence, compared with white-light cystoscopy alone.


Many patients with a history, signs, and symptoms of bladder cancer are referred to a urologist or other physician trained in cystoscopy, a procedure in which a flexible tube bearing a camera and various instruments is introduced into the bladder through the urethra. Suspicious lesions may be biopsied and sent for pathologic analysis. These procedures are invasive.


There is a need in the field of cancer diagnostics for a highly specific, highly sensitive, rapid, inexpensive, and relatively non-invasive method of diagnosing bladder cancer. Various embodiments of the invention described below meet this need as well as other needs in the field of diagnosing and treating bladder cancer.


SUMMARY OF THE INVENTION

Embodiments of the disclosure provide for methods of diagnosis, prognosis and treatment of bladder cancer.


In certain embodiments the invention provides a method of detecting bladder cancer in a subject comprising a) contacting a sample obtained from the subject with one or more agents that detect one or more markers expressed by a bladder cancer cell b) contacting a non-cancerous cell with the one or more agents from a); and c) comparing the expression level of the marker in the sample obtained from the subject with the expression level in the non-cancerous cell, wherein a higher level of expression of the marker in the sample compared to the non-cancerous cell indicates that the subject has bladder cancer.


In certain embodiments the invention provides a method of detecting bladder cancer in a subject comprising a) contacting a sample obtained from the subject with one or more agents that detect expression of at least one of the markers listed in Table 2 or 3; b) contacting a non-cancerous cell, e.g., a non-cancerous cell from bladder tissue or a noncancerous bladder cell line, with the one or more agents from a); and c) comparing the expression level of one or more of the markers listed in Table 2 or 3 in the sample obtained from the subject with the expression level of one or more of the markers listed in Table 2 or 3 in the non-cancerous cell, wherein a higher level of expression of one or more of the markers listed in Table 2 or 3 in the sample compared to the non-cancerous cell indicates that the subject has bladder cancer.


In some embodiments the invention provides a method of detecting bladder cancer in a subject comprising a) contacting a sample obtained from the subject with one or more agents that detect expression of at least one of the markers chosen from MAGEA10, DSCR8, MMP12, CXCL9, DSCR8, KRT81, LOC729826, PTHLH, MMP11, S100A7, WISP3, CXCL10, NMU, GBP5, TOP2A, SERPINB4, GNLY, GTSF1, PI3, S100A7A, IDO1, GJB6, CALML3, SERPINB3, CXCL6, OLFM4, TCN1, VSNL1, UBD, AIM2, ABCC9, SERPINB13, INDO, KRT5, LOC100130897, KRT14, FAM83A, FAM181B, GZMB, DSG3, TYMP, KRT6A, KRT6B, HLA-DRB1, LCN2, KRT4, IFI30, LOC100134370, KIAA1618, S100A8, MMP7, MMP7, SPRR2A, GJB2, COL10A1, FCRLB, SFN, S100A2, IL1A, KRT16 SLC1A6, and SERPINB5; b) contacting a non-cancerous cell, e.g. a non-cancerous cell from bladder tissue or a non-cancerous bladder cell line, with the one or more agents that detect expression of at least one of the markers chosen from MAGEA10, DSCR8, MMP12, CXCL9, DSCR8, KRT81, LOC729826, PTHLH, MMP11, S100A7, WISP3, CXCL10, NMU, GBP5, TOP2A, SERPINB4, GNLY, GTSF1, PI3, S100A7A, IDO1, GJB6, CALML3, SERPINB3, CXCL6, OLFM4, TCN1, VSNL1, UBD, AIM2, ABCC9, SERPINB13, INDO, KRT5, LOC100130897, KRT14, FAM83A, FAM181B, GZMB, DSG3, TYMP, KRT6A, KRT6B, HLA-DRB1, LCN2, KRT4, IFI30, LOC100134370, KIAA1618, S100A8, MMP7, MMP7, SPRR2A, GJB2, COL10A1, FCRLB, SFN, S100A2 IL1A, KRT16 SLC1A6, and SERPINB5; and c) comparing the expression level of one or more of the markers chosen from MAGEA10, DSCR8, MMP12, CXCL9, DSCR8, KRT81, LOC729826, PTHLH, MMP11, S100A7, WISP3, CXCL10, NMU, GBP5, TOP2A, SERPINB4, GNLY, GTSF1, PI3, S100A7A, IDO1, GJB6, CALML3, SERPINB3, CXCL6, OLFM4, TCN1, VSNL1, UBD, AIM2, ABCC9, SERPINB13, INDO, KRT5, LOC100130897, KRT14, FAM83A, FAM181B, GZMB, DSG3, TYMP, KRT6A, KRT6B, HLA-DRB1, LCN2, KRT4, IFI30, LOC100134370, KIAA1618, S100A8, MMP7, MMP7, SPRR2A, GJB2, COL10A1, FCRLB, SFN, S100A IL1A, KRT16 SLC1A6, and SERPINB52 in the sample obtained from the subject with the expression level of one or more of the markers chosen from MAGEA10, DSCR8, MMP12, CXCL9, DSCR8, KRT81, LOC729826, PTHLH, MMP11, S100A7, WISP3, CXCL10, NMU, GBP5, TOP2A, SERPINB4, GNLY, GTSF1, PI3, S100A7A, IDO1, GJB6, CALML3, SERPINB3, CXCL6, OLFM4, TCN1, VSNL1, UBD, AIM2, ABCC9, SERPINB13, INDO, KRT5, LOC100130897, KRT14, FAM83A, FAM181B, GZMB, DSG3, TYMP, KRT6A, KRT6B, HLA-DRB1, LCN2, KRT4, IFI30, LOC100134370, KIAA1618, S100A8, MMP7, MMP7, SPRR2A, GJB2, COL10A1, FCRLB, SFN, S100A2 IL1A, KRT16 SLC1A6, and SERPINB5 in the non-cancerous cell, wherein a higher level of expression of one or more of the markers chosen from MAGEA10, DSCR8, MMP12, CXCL9, DSCR8, KRT81, LOC729826, PTHLH, MMP11, S100A7, WISP3, CXCL10, NMU, GBP5, TOP2A, SERPINB4, GNLY, GTSF1, PI3, S100A7A, IDO1, GJB6, CALML3, SERPINB3, CXCL6, OLFM4, TCN1, VSNL1, UBD, AIM2, ABCC9, SERPINB13, INDO, KRT5, LOC100130897, KRT14, FAM83A, FAM181B, GZMB, DSG3, TYMP, KRT6A, KRT6B, HLA-DRB1, LCN2, KRT4, IFI30, LOC100134370, KIAA1618, S100A8, MMP7, MMP7, SPRR2A, GJB2, COL10A1, FCRLB, SFN, S100A2 IL1A, KRT16 SLC1A6, and SERPINB5 in the sample compared to the non-cancerous cell indicates that the subject has bladder cancer.


With regard to the embodiments described in the preceding paragraphs, the sample may be any sample as described infra, for example, a bodily fluid, such as blood, serum or urine. The sample may be a cellular sample, a tissue sample or the extract of a cellular or tissue sample. The agent may be one or more molecules that bind specifically to one or more proteins expressed by the cancer cell or one or more nucleic acids expressed by the cell. For example, the agent may be a protein such as an antibody that binds specifically to the protein expressed by one of the marker genes identified infra. The agent may be one or more nucleic acids that hybridize to a nucleic acid expressed by the cancer cell. The nucleic acid expressed by the cancer cell may be an RNA molecule, e.g. an mRNA molecule. The nucleic acid molecule that hybridizes to the nucleic acid expressed by the cancer cell may be a DNA molecule, such as a DNA probe.


In still other embodiments the invention provides a composition of matter useful in distinguishing a bladder cancer cell from a non-cancerous cell comprising one or more molecules that specifically bind to a molecule expressed at higher levels on a bladder cancer cell compared to a non-cancer cell. As an example, the composition may comprise a protein, that binds to one or more molecules expressed by the cancer cell at higher levels compared to the non-cancer cell. As another example, the composition may comprise a nucleic acid that binds to one or more molecules expressed by the bladder cancer cell at higher levels compared to the non-cancer cell.


In some embodiments the invention provides a composition of matter comprising a protein, such as an antibody, that specifically binds to a molecule expressed by a bladder cancer cell chosen from the markers listed in Table 3. The molecule expressed by the bladder cancer cell may be expressed by the bladder cancer cell at level that is higher than the level expressed by a non-cancerous cell such as a non-cancerous bladder tissue cell or non-cancerous bladder cell line.


In certain embodiments the invention provides a composition of matter comprising a protein, such as an antibody, that specifically binds to a molecule expressed by a bladder cancer cell chosen from MAGEA10, DSCR8, MMP12, CXCL9, DSCR8, KRT81, LOC729826, PTHLH, MMP11, S100A7, WISP3, CXCL10, NMU, GBP5, TOP2A, SERPINB4, GNLY, GTSF1, PI3, S100A7A, IDOL GJB6, CALML3, SERPINB3, CXCL6, OLFM4, TCN1, VSNL1, UBD, AIM2, ABCC9, SERPINB13, INDO, KRT5, LOC100130897, KRT14, FAM83A, FAM181B, GZMB, DSG3, TYMP, KRT6A, KRT6B, HLA-DRB1, LCN2, KRT4, IFI30, LOC100134370, KIAA1618, S100A8, MMP7, MMP7, SPRR2A, GJB2, COL10A1, FCRLB, SFN, S100A2 IL1A, KRT16 SLC1A6, and SERPINB5. The molecule expressed by the bladder cancer cell may be expressed by the bladder cancer cell at level that is higher than the level expressed by a non-cancerous cell such as a non-cancerous bladder tissue cell.


In other embodiments the invention provides a composition of matter comprising a nucleic acid that specifically binds to a molecule, such as an mRNA molecule, expressed by a bladder cancer cell wherein the molecule is chosen from a marker listed in Table 1 or 2. The molecule expressed by the bladder cancer cell may be expressed by the bladder cancer cell at level that is higher than the level expressed by a non-cancerous cell such as a non-cancerous bladder tissue cell.


In other embodiments the invention provides a composition of matter comprising a nucleic acid that specifically binds to a molecule, such as an mRNA molecule, expressed by a bladder cancer cell wherein the molecule is chosen from a nucleic acid encoding MAGEA10, DSCR8, MMP12, CXCL9, DSCR8, KRT8I, LOC729826, PTHLH, MMP11, S100A7, WISP3, CXCL10, NMU, GBP5, TOP2A, SERPINB4, GNLY, GTSF1, PI3, S100A7A, IDO1, GJB6, CALML3, SERPINB3, CXCL6, OLFM4, TCN1, VSNL1, UBD, AIM2, ABCC9, SERPINB13, INDO, KRT5, LOC100130897, KRT14, FAM83A, FAM181B, GZMB, DSG3, TYMP, KRT6A, KRT6B, HLA-DRB1, LCN2, KRT4, IFI30, LOC100134370, KIAA1618, S100A8, MMP7, MMP7, SPRR2A, GJB2, COL10A1, FCRLB, SFN, S100A2 IL1A, KRT16 SLC1A6, and SERPINB5. The molecule expressed by the bladder cancer cell may be expressed by the bladder cancer cell at level that is higher than the level expressed by a non-cancerous cell such as a non-cancerous bladder tissue cell.


In still further embodiments the invention provides a method of determining if a cancer in a subject is advancing comprising a) measuring the expression level of one or more markers associated with cancer at a first time point; b) measuring the expression level of the one or more markers measured in a) at a second time point, wherein the second time point is subsequent to the first time point; and c) comparing the expression level measured in a) and b), wherein an increase in the expression level of the one or more markers in b) compared to a) indicates that the subject's cancer is advancing. In certain embodiments the cancer is bladder cancer.


In some embodiments the invention provides a method of determining if a bladder cancer in a subject is advancing comprising a) measuring the expression level of one or more markers listed in Table 2 or 3 at a first time point; b) measuring the expression level of the one or more markers measured in a) at a second time point, wherein the second time point is subsequent to the first time point; and c) comparing the expression level measured in a) and b), wherein an increase in the expression level of the one or more markers at the second time point compared to the first time point indicates that the subject's bladder cancer is advancing.


In other embodiments the invention provides a method of determining if a bladder cancer in a subject is advancing comprising a) measuring the expression level of one or more markers chosen from MAGEA10, DSCR8, MMP12, CXCL9, DSCR8, KRT81, LOC729826, PTHLH, MMP11, S100A7, WISP3, CXCL10, NMU, GBP5, TOP2A, SERPINB4, GNLY, GTSF1, PI3, S100A7A, IDO1, GJB6, CALML3, SERPINB3, CXCL6, OLFM4, TCN1, VSNL1, UBD, AIM2, ABCC9, SERPINB13, INDO, KRT5, LOC100130897, KRT14, FAM83A, FAM181B, GZMB, DSG3, TYMP, KRT6A, KRT6B, HLA-DRB1, LCN2, KRT4, IFI30, LOC100134370, KIAA1618, S100A8, MMP7, MMP7, SPRR2A, GJB2, COL10A1, FCRLB, SFN, S100A2 IL1A, KRT16 SLC1A6, and SERPINB5 at a first time point; b) measuring the expression level of the one or more markers measured in a) at a second time point, wherein the second time point is subsequent to the first time point; and c) comparing the expression level measured in a) and b), wherein an increase in the expression level of the one or more markers at the second time point compared to the first time point indicates that the subject's bladder cancer is advancing.


In some embodiments the invention provides antigens (i.e. cancer-associated polypeptides) associated with bladder cancer as targets for diagnostic and/or therapeutic antibodies. In some embodiments, the antigen may be chosen from a protein encoded by, a gene listed in Table 2, a fragment thereof, or a combination of proteins encoded by a gene listed in Table 2.


In some embodiments the invention provides antigens (i.e. cancer-associated polypeptides) associated with bladder cancer as targets for diagnostic and/or therapeutic antibodies. In some embodiments, the antigen may be chosen from a protein encoded by, a gene chosen from MAGEA10, DSCR8, MMP12, CXCL9, DSCR8, KRT81, LOC729826, PTHLH, MMP11, S100A7, WISP3, CXCL10, NMU, GBP5, TOP2A, SERPINB4, GNLY, GTSF1, PI3, S100A7A, IDO1, GJB6, CALML3, SERPINB3, CXCL6, OLFM4, TCN1, VSNL1, UBD, AIM2, ABCC9, SERPINB13, INDO, KRT5, LOC100130897, KRT14, FAM83A, FAM181B, GZMB, DSG3, TYMP, KRT6A, KRT6B, HLA-DRB1, LCN2, KRT4, IFI130, LOC100134370, KIAA1618, S100A8, MMP7, MMP7, SPRR2A, GJB2, COL10A1, FCRLB, SFN, S100A2 IL1A, KRT16 SLC1A6, and SERPINB5, a fragment thereof, or a combination of proteins encoded by a gene chosen from MAGEA10, DSCR8, MMP12, CXCL9, DSCR8, KRT81, LOC729826, PTHLH, MMP11, S100A7, WISP3, CXCL10, NMU, GBP5, TOP2A, SERPINB4, GNLY, GTSF1, PI3, S100A7A, IDO1, GJB6, CALML3, SERPINB3, CXCL6, OLFM4, TCN1, VSNL1, UBD, AIM2, ABCC9, SERPINB13, INDO, KRT5, LOC100130897, KRT14, FAM83A, FAM181B, GZMB, DSG3, TYMP, KRT6A, KRT6B, HLA-DRB1, LCN2, KRT4, IFI30, LOC100134370, KIAA1618, S100A8, MMP7, MMP7, SPRR2A, GJB2, COL10A1, FCRLB, SFN, S100A2 IL1A, KRT16 SLC1A6, and SERPINB5.


In yet other embodiments the invention provides a method of eliciting an immune response to a bladder cancer cell comprising contacting a subject with a protein or protein fragment that is expressed by a bladder cancer cell thereby eliciting an immune response to the cancer cell. As an example the subject may be contacted intravenously or intramuscularly.


In further embodiments the invention provides a method of eliciting an immune response to a bladder cancer cell comprising contacting a subject with one or more proteins or protein fragments that is encoded by a gene chosen from the genes listed in Table 3, thereby eliciting an immune response to a bladder cancer cell. As an example the subject may be contacted intravenously or intramuscularly.


In still other embodiments the invention provides a method of eliciting an immune response to a bladder cancer cell comprising contacting a subject with one or more proteins or protein fragments that is encoded by a gene chosen from MAGEA10, DSCR8, MMP12, CXCL9, DSCR8, KRT81, LOC729826, PTHLH, MMP11, S100A7, WISP3, CXCL10, NMU, GBP5, TOP2A, SERPINB4, GNLY, GTSF1, PI3, S100A7A, IDO1, GJB6, CALML3, SERPINB3, CXCL6, OLFM4, TCN1, VSNL1, UBD, AIM2, ABCC9, SERPINB13, INDO, KRT5, LOC100130897, KRT14, FAM83A, FAM181B, GZMB, DSG3, TYMP, KRT6A, KRT6B, HLA-DRB1, LCN2, KRT4, IFI30, LOC100134370, KIAA1618, S100A8, MMP7, MMP7, SPRR2A, GJB2, COL10A1, FCRLB, SFN, S100A2 IL1A, KRT16 SLC1A6, and SERPINB5, thereby eliciting an immune response to a bladder cancer cell. As an example the subject may be contacted intravenously or intramuscularly.


In other embodiments the invention provides a kit for detection of cancer in a sample obtained from a subject. The kit may comprise one or more agents that bind specifically to a molecule expressed by a bladder cancer cell. The molecule may be expressed at a higher level in the bladder cancer cell compared to a non-cancerous cell, such as a non-cancerous bladder cell. The kit may comprise one or more containers and instructions for determining if the sample is positive for cancer. The kit may optionally contain one or more multiwell plates, a detectable substance or label such as a dye, a radioactively labeled molecule, a chemiluminescently labeled molecule and the like. The kit may further contain a positive control (e.g. one or more cancerous bladder cells; or specific known quantities of the molecule expressed by the cancer cell) and a negative control (e.g. a tissue or cell sample that is non-cancerous).


In some embodiments the invention provides a kit for the detection of bladder cancer comprising one or more agents that specifically bind one or more markers chosen from MAGEA10, DSCR8, MMP12, CXCL9, DSCR8, KRT81, LOC729826, PTHLH, MMP11, S100A7, WISP3, CXCL10, NMU, GBP5, TOP2A, SERPINB4, GNLY, GTSF1, PI3, S100A7A, IDO1, GJB6, CALML3, SERPINB3, CXCL6, OLFM4, TCN1, VSNL1, UBD, AIM2, ABCC9, SERPINB13, INDO, KRT5, LOC100130897, KRT14, FAM83A, FAM181B, GZMB, DSG3, TYMP, KRT6A, KRT6B, HLA-DRB1, LCN2, KRT4, IFI30, LOC100134370, KIAA1618, S100A8, MMP7, MMP7, SPRR2A, GJB2, COL10A1, FCRLB, SFN, S100A2 IL1A, KRT16 SLC1A6, and SERPINB5. The kit may comprise one or more containers and instructions for determining if the sample is positive for cancer. The kit may optionally contain one or more multiwell plates, a detectable substance such as a dye, a radioactively labeled molecule, a chemiluminescently labeled molecule and the like. The kit may further contain a positive control (e.g. one or more cancerous cells; or specific known quantities of the molecule expressed by the cancer cell) and a negative control (e.g. a tissue or cell sample that is non-cancerous). As an example the kit may take the form of an ELISA or a DNA microarray.


Some embodiments herein are directed to a method of treating bladder cancer in a subject, the method comprising administering to a subject in need thereof a therapeutic agent capable of modulating the activity of a cancer associated protein, wherein the cancer associated protein is encoded by gene listed in Table 2, homologs thereof, combinations thereof, or a fragment thereof. In some embodiments, the therapeutic agent binds to the bladder cancer associated protein. In some embodiments, the therapeutic agent is an antibody. In some embodiments, the antibody may be a monoclonal antibody or a polyclonal antibody. In some embodiments, the antibody is a humanized or human antibody.


Some embodiments herein are directed to a method of treating bladder cancer in a subject, the method comprising administering to a subject in need thereof a therapeutic agent modulating the activity of a cancer associated protein, wherein the cancer associated protein is encoded by gene chosen from MAGEA10, DSCR8, MMP12, CXCL9, DSCR8, KRT81, LOC729826, PTHLH, MMP11, S100A7, WISP3, CXCL10, NMU, GBP5, TOP2A, SERPINB4, GNLY, GTSF1, PI3, S100A7A, IDO1, GJB6, CALML3, SERPINB3, CXCL6, OLFM4, TCN1, VSNL1, UBD, AIM2, ABCC9, SERPINB13, INDO, KRT5, LOC100130897, KRT14, FAM83A, FAM181B, GZMB, DSG3, TYMP, KRT6A, KRT6B, HLA-DRB1, LCN2, KRT4, IFI130, LOC100134370, KIAA1618, S100A8, MMP7, MMP7, SPRR2A, GJB2, COL10A1, FCRLB, SFN, S100A2 IL1A, KRT16 SLC1A6, and SERPINB5, homologs thereof, combinations thereof, or a fragment thereof. In some embodiments, the therapeutic agent binds to the bladder cancer associated protein. In some embodiments, the therapeutic agent is an antibody. In some embodiments, the antibody may be a monoclonal antibody or a polyclonal antibody. In some embodiments, the antibody is a humanized or human antibody.


In some embodiments, a method of treating bladder cancer in a subject may comprise administering to a subject in need thereof a therapeutic agent that modulates the activity of one or more genes chosen from those listed in Table 2.


In some embodiments, a method of treating bladder cancer in a subject may comprise administering to a subject in need thereof a therapeutic agent that modulates the activity of one or more genes chosen from MAGEA10, DSCR8, MMP12, CXCL9, DSCR8, KRT81, LOC729826, PTHLH, MMP11, S100A7, WISP3, CXCL10, NMU, GBP5, TOP2A, SERPINB4, GNLY, GTSF1, PI3, S100A7A, IDO1, GJB6, CALML3, SERPINB3, CXCL6, OLFM4, TCN1, VSNL1, UBD, AIM2, ABCC9, SERPINB13, INDO, KRT5, LOC100130897, KRT14, FAM83A, FAM181B, GZMB, DSG3, TYMP, KRT6A, KRT6B, HLA-DRB1, LCN2, KRT4, IFI30, LOC100134370, KIAA1618, S100A8, MMP7, MMP7, SPRR2A, GJB2, COL10A1, FCRLB, SFN, S100A2 IL1A, KRT16 SLC1A6, and SERPINB5.


In further embodiments, the invention provides a method of treating bladder cancer may comprise a gene knockdown of one or more genes listed in Table 2. In some embodiments, a method of treating bladder cancer may comprise treating cells to knockdown or inhibit expression of a gene encoding an mRNA of one or more genes chosen from those listed n Table 2.


In other embodiments, a method of treating bladder cancer may comprise gene knockdown of one or more genes selected from MAGEA10, DSCR8, MMP12, CXCL9, DSCR8, KRT81, LOC729826, PTHLH, MMP11, S100A7, WISP3, CXCL10, NMU, GBP5, TOP2A, SERPINB4, GNLY, GTSF1, PI3, S100A7A, IDO1, GJB6, CALML3, SERPINB3, CXCL6, OLFM4, TCN1, VSNL1, UBD, AIM2, ABCC9, SERPINB13, INDO, KRT5, LOC100130897, KRT14, FAM83A, FAM181B, GZMB, DSG3, TYMP, KRT6A, KRT6B, HLA-DRB1, LCN2, KRT4, IFI30, LOC100134370, KIAA1618, S100A8, MMP7, MMP7, SPRR2A, GJB2, COL10A1, FCRLB, SFN, S100A2 IL1A, KRT16 SLC1A6, and SERPINB5. In some embodiments, a method of treating bladder cancer may comprise treating cells to knockdown or inhibit expression of a gene encoding an mRNA of one or more genes chosen from MAGEA10, DSCR8, MMP12, CXCL9, DSCR8, KRT81, LOC729826, PTHLH, MMP11, S100A7, WISP3, CXCL10, NMU, GBP5, TOP2A, SERPINB4, GNLY, GTSF1, PI3, S100A7A, IDO1, GJB6, CALML3, SERPINB3, CXCL6, OLFM4, TCN1, VSNL1, UBD, AIM2, ABCC9, SERPINB13, INDO, KRT5, LOC100130897, KRT14, FAM83A, FAM181B, GZMB, DSG3, TYMP, KRT6A, KRT6B, HLA-DRB1, LCN2, KRT4, IFI30, LOC100134370, KIAA1618, S100A8, MMP7, MMP7, SPRR2A, GJB2, COL10A1, FCRLB, SFN, S100A2 IL1A, KRT16 SLC1A6, and SERPINB5


In still other embodiments, the present invention provides methods of screening a drug candidate for activity against bladder cancer, the method comprising: (a) contacting a cell that expresses one or more cancer associated genes chosen from those listed in Table 2 with a drug candidate; (b) detecting an effect of the drug candidate on an expression of the one or more bladder cancer associated genes in the cell from a); and (c) comparing the level of expression of one or more of the genes recited in a) in the absence of the drug candidate to the level of expression of the one or more genes in the presence of the drug candidate; wherein a decrease in the expression of the bladder cancer associated gene in the presence of the drug candidate indicates that the candidate has activity against bladder cancer.


In further embodiments, the present invention provides methods of screening a drug candidate for activity against bladder cancer, the method comprising: (a) contacting a cell that expresses one or more bladder cancer associated genes chosen from MAGEA10, DSCR8, MMP12, CXCL9, DSCR8, KRT81, LOC729826, PTHLH, MMP11, S100A7, WISP3, CXCL10, NMU, GBP5, TOP2A, SERPINB4, GNLY, GTSF1, PI3, S100A7A, IDO1, GJB6, CALML3, SERPINB3, CXCL6, OLFM4, TCN1, VSNL1, UBD, AIM2, ABCC9, SERPINB13, INDO, KRT5, LOC100130897, KRT14, FAM83A, FAM181B, GZMB, DSG3, TYMP, KRT6A, KRT6B, HLA-DRB1, LCN2, KRT4, IFI30, LOC100134370, KIAA1618, S 100A8, MMP7, MMP7, SPRR2A, GJB2, COL10A1, FCRLB, SFN, S100A2 IL1A, KRT16 SLC1A6, and SERPINB5 with a drug candidate; (b) detecting an effect of the drug candidate on an expression of the one or more bladder cancer associated genes in the cell from a); and (c) comparing the level of expression of one or more of the genes recited in a) in the absence of the drug candidate to the level of expression in the presence of the drug candidate; wherein a decrease in the expression of the bladder cancer associated gene in the presence of the drug candidate indicates that the candidate has activity against bladder cancer.


In some embodiments, the present invention provides methods of visualizing a bladder cancer tumor in a subject comprising a) targeting one or more bladder cancer associated proteins with a labeled molecule that binds specifically to the bladder cancer tumor, wherein the cancer associated protein is selected from a protein encoded for by one or more genes chosen from those listed in Table 2; and b) detecting the labeled molecule, wherein the labeled molecule visualizes the tumor in the subject.


In still other embodiments, the present invention provides methods of visualizing a bladder cancer tumor in a subject comprising a) targeting one or more bladder cancer associated proteins with a labeled molecule that binds specifically to the bladder cancer associated protein, wherein the cancer associated protein is selected from a protein encoded for by one or more genes chosen from MAGEA10, DSCR8, MMP12, CXCL9, DSCR8, KRT81, LOC729826, PTHLH, MMP11, S100A7, WISP3, CXCL10, NMU, GBP5, TOP2A, SERPINB4, GNLY, GTSF1, PI3, S100A7A, IDO1, GJB6, CALML3, SERPINB3, CXCL6, OLFM4, TCN1, VSNL1, UBD, AIM2, ABCC9, SERPINB13, INDO, KRT5, LOC100130897, KRT14, FAM83A, FAM181B, GZMB, DSG3, TYMP, KRT6A, KRT6B, HLA-DRB1, LCN2, KRT4, IFI30, LOC100134370, KIAA1618, S100A8, MMP7, MMP7, SPRR2A, GJB2, COL10A1, FCRLB, SFN, S100A2 IL1A, KRT16 SLC1A6, and SERPINB5; and b) detecting the labeled molecule, wherein the labeled molecule visualizes the tumor in the subject.


The invention also provides the use of one or more of the markers disclosed infra in the detection of bladder cancer in a subject.


The invention also provides the use of one or more of the markers disclosed infra in estimating the risk of morbidity of bladder cancer in a subject.





DESCRIPTION OF DRAWINGS

For a fuller understanding of the nature and advantages of the present invention, reference should be had to the following detailed description taken in connection with the accompanying drawings, in which:



FIG. 1 is a chart of the microarray analysis data showing expression of all mRNA probe sequences in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIGS. 2A-2L is a chart containing the sequence information for the cancer associated sequences including the sequences of the probes used to detect the gene sequences.



FIG. 3 shows the expression of the MAGEA10 mRNA (SEQ ID NO: 111) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 4 shows the expression of the DSCR8 mRNA (SEQ ID NO: 112) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 5 shows the expression of the MMP12 in RNA (SEQ ID NO: 113) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 6 shows the expression of the CXCL9 mRNA (SEQ ID NO: 114) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 7 shows the expression of the DSCR8 mRNA (SEQ ID NO: 115) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 8 shows the expression of the KRT81 mRNA (SEQ ID NO: 116) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 9 shows the expression of the LOC729826 mRNA (SEQ ID NO: 117) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 10 shows the expression of the PTHLH mRNA (SEQ ID NO: 118) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 11 shows the expression of the MMP11 mRNA (SEQ ID NO: 119) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 12 shows the expression of the S100A7 mRNA (SEQ ID NO: 120) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 13 shows the expression of the WISP3 mRNA (SEQ ID NO: 121) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 14 shows the expression of the CXCL10 mRNA (SEQ ID NO: 122) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 15 shows the expression of the NMU mRNA (SEQ ID NO: 123) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 16 shows the expression of the GBP5 mRNA (SEQ ID NO: 124) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 17 shows the expression of the TOP2A mRNA (SEQ ID NO: 125) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 18 shows the expression of the SERPINB4 mRNA (SEQ ID NO: 126) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 19 shows the expression of the GLNY mRNA (SEQ ID NO: 127) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 20 shows the expression of the GTSF1 mRNA (SEQ ID NO: 128) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 21 shows the expression of the PI3 mRNA (SEQ ID NO: 129) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 22 shows the expression of the S100A7A mRNA (SEQ ID NO: 130) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 23 shows the expression of the IDO1 mRNA (SEQ ID NO: 131) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 24 shows the expression of the GJB6 mRNA (SEQ ID NO: 132) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 25 shows the expression of the CALML3 mRNA (SEQ ID NO: 133) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 26 shows the expression of the SERPINB3 mRNA (SEQ ID NO: 134) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 27 shows the expression of the CXCL6 mRNA (SEQ ID NO: 135) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 28 shows the expression of the OLFM4 mRNA (SEQ ID NO: 136) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 29 shows the expression of the TCN1 mRNA (SEQ ID NO: 137) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 30 shows the expression of the VSNL1 mRNA (SEQ ID NO: 138) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 31 shows the expression of the UBD mRNA (SEQ ID NO: 139) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 32 shows the expression of the AIM2 mRNA (SEQ ID NO: 140) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 33 shows the expression of the ABCC9 mRNA (SEQ ID NO: 141) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 34 shows the expression of the SERPINB13 mRNA (SEQ ID NO: 142) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 35 shows the expression of the INDO mRNA (SEQ ID NO: 143) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 36 shows the expression of the KRT5 mRNA (SEQ ID NO: 144) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 37 shows the expression of the LOC100130897 mRNA (SEQ ID NO: 145) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 38 shows the expression of the KRT14 mRNA (SEQ ID NO: 146) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 39 shows the expression of the FAM83A mRNA (SEQ ID NO: 147) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 40 shows the expression of the FAM181B mRNA (SEQ ID NO: 148) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 41 shows the expression of the SEQ ID NO: 149 in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 42 shows the expression of the GZMB mRNA (SEQ ID NO: 150) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 43 shows the expression of the DSG3 mRNA (SEQ ID NO: 151) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 44 shows the expression of the TYMP mRNA (SEQ ID NO: 152) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 45 shows the expression of the KRT6A mRNA (SEQ ID NO: 153) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 46 shows the expression of the KRT6B mRNA (SEQ ID NO: 154) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 47 shows the expression of the HLA-DRB1 mRNA (SEQ ID NO: 155) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 48 shows the expression of the LCN2 mRNA (SEQ ID NO: 156) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 49 shows the expression of the KRT4 mRNA (SEQ ID NO: 157) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 50 shows the expression of the IFI30 mRNA (SEQ ID NO: 158) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 51 shows the expression of the LOC100134370 mRNA (SEQ ID NO: 159) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 52 shows the expression of the KIAA1618 mRNA (SEQ ID NO: 160) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 53 shows the expression of the S100A8 mRNA (SEQ ID NO: 161) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 54 shows the expression of the MMP7 mRNA (SEQ ID NO: 162) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 55 shows the expression of the MMP7 mRNA (SEQ ID NO: 163) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 56 shows the expression of the SPRR2A mRNA (SEQ ID NO: 164) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 57 shows the expression of the GJB2 mRNA (SEQ ID NO: 165) in normal somatic cells, normal tissues, malignant tumors, and cancer cell lines.



FIG. 58 shows the relative expression of SP100 in diverse cultured normal somatic cell types including coronary artery endothelial cells (mesoderm), astrocytes (ectoderm), bronchial epithelial cells (endoderm), melanocytes (neural crest) as well as diverse clonal hES-derived embryonic progenitor cell lines compared to hES and iPS cells as measured by Illumina microarray analysis. All hES and established iPS cell lines showed no evidence of SP100 transcripts above background signal.



FIG. 59 shows the expression level of MMP11 in normal bladder tissue and cancerous bladder tissue by qPCR.



FIG. 60 shows the expression level of MMP12 in normal bladder tissue and cancerous bladder tissue by qPCR.



FIG. 61 shows the expression level of COL10A1 in normal bladder tissue and cancerous bladder tissue by qPCR.



FIG. 62 shows the expression level of FCRLBin normal bladder tissue and cancerous bladder tissue by qPCR.



FIG. 63 shows the expression level of SERPINB5 in normal bladder tissue and cancerous bladder tissue by qPCR.



FIG. 64 shows the expression level of SFN in normal bladder tissue and cancerous bladder tissue by qPCR.



FIG. 65 shows the expression level of KRT6Ain normal bladder tissue and cancerous bladder tissue by qPCR.



FIG. 66 shows the expression level of FCRLB in normal bladder tissue and cancerous bladder tissue by qPCR.



FIG. 67 shows the expression level of IL1A in normal bladder tissue and cancerous bladder tissue by qPCR.



FIG. 68 shows the expression level of KRT16 in normal bladder tissue and cancerous bladder tissue by qPCR.



FIG. 69 shows the expression level of SLC1A6 in normal bladder tissue and cancerous bladder tissue by qPCR.



FIG. 70 shows the expression level of S100A2 in normal bladder tissue and cancerous bladder tissue by qPCR.



FIG. 71 shows the expression level of S100A7A in normal bladder tissue and cancerous bladder tissue by qPCR.



FIG. 72 shows the expression level of MMP12 in normal bladder tissue and cancerous bladder tissue by ELISA.



FIG. 73 shows the expression level of ColX in normal bladder tissue and cancerous bladder tissue by ELISA.



FIG. 74 shows the expression level of MMP11 in normal bladder tissue and cancerous bladder tissue by ELISA.



FIG. 75 is agarose gel analysis of a qPCR expression data for markers COL10A1, MMP11, SFN, FCRLB in human urine.



FIG. 76 shows the expression level of SERPINB5 in normal bladder tissue and cancerous bladder tissue by qPCR.





DETAILED DESCRIPTION

Before the present compositions and methods are described, it is to be understood that this invention is not limited to the particular processes, compositions, or methodologies described, as these may vary. It is also to be understood that the terminology used in the description is for the purpose of describing the particular versions or embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims. Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of embodiments of the present invention, specific methods, devices, and materials are now described.


The invention provides for the rapid, accurate, and cost effective means to detect bladder cancer in a subject. The method comprises detecting one or more markers that are specifically expressed on bladder cancer tumors in a sample as disclosed infra. The sample may be a bodily fluid such as serum, or urine. Thus in some embodiments the invention provides for a non-invasive test for detecting bladder cancer in a subject. In other embodiments the sample may be a tissue or cell sample. Also provided are methods of screening for drugs having activity against bladder cancer, therapeutics for bladder cancer as well as compositions and kits useful in detecting, and prognosing bladder cancer.


DEFINITIONS

As used herein, the singular forms “a,” “an,” and “the” include plural reference unless the context clearly dictates otherwise. Thus, for example, reference to a “therapeutic” is a reference to one or more therapeutics and equivalents thereof known to those skilled in the art, and so forth.


As used herein, the term “about” means plus or minus 10% of the numerical value of the number with which it is being used. Therefore, about 50% means in the range of 45% to 55%.


“Administering,” when used in conjunction with a therapeutic, means to administer a therapeutic directly into or onto a target tissue or to administer a therapeutic to a patient whereby the therapeutic positively impacts the tissue to which it is targeted. Thus, as used herein, the term “administering”, when used in conjunction with elastin digest, can include, but is not limited to, providing an elastin digest into or onto the target tissue; providing an elastin digest systemically to a patient by, e.g., intravenous injection whereby the therapeutic reaches the target tissue; providing an elastin digest in the form of the encoding sequence thereof to the target tissue (e.g., by so-called gene-therapy techniques). “Administering” a composition may be accomplished by oral administration, intravenous injection, intraperitoneal injection, intramuscular injection, subcutaneous injection, transdermal diffusion or electrophoresis, local injection, extended release delivery devices including locally implanted extended release devices such as bioerodible or reservoir-based implants, as protein therapeutics or as nucleic acid therapeutic via gene therapy vectors, topical administration, or by any of these methods in combination with other known techniques. Such combination techniques include heating, radiation and ultrasound.


The term “animal,” “patient” or “subject” as used herein includes, but is not limited to mammals, including humans and non-human primates, farm animals such as pigs, goats, horses, sheep, cows, rodents including rats and mice, rabbits, cats, dogs and the like. In some embodiments, the term “subject,” may refer to humans. In some embodiments, the term “subject,” may refer to a male. In some embodiments, the term “subject,” may refer to a female.


The term “bladder cancer” as used herein, may include transitional cell carcinoma, squamous cell carcinoma, adenocarcinoma, sarcoma, small cell carcinoma, secondary deposits from cancers elsewhere in the body or a combination thereof.


The term “inhibiting” includes the administration of a compound of the present invention to prevent the onset of the symptoms, alleviating the symptoms, or eliminating the disease, condition or disorder.


By “pharmaceutically acceptable”, it is meant the carrier, diluent or excipient must be compatible with the other ingredients of the formulation and not deleterious to the recipient thereof.


In some embodiments, the present disclosure provides for nucleic acid and protein sequences that are associated with cancer, herein termed “cancer associated” or “CA” sequences. In some embodiments, the present disclosure provides nucleic acid and protein sequences that are associated with cancers or carcinomas that originate in bladder or urinary tissue, herein termed “bladder cancer associated” sequences.


The term “pluripotent stem cells” refers to animal cells capable of differentiating into more than one differentiated cell type. Such cells include hES cells, hED cells, hEG cells, hEC cells, and adult-derived cells including mesenchymal stem cells, neuronal stem cells, and bone marrow-derived stem cells. Pluripotent stem cells may be genetically modified or not genetically modified. Genetically modified cells may include markers such as fluorescent proteins to facilitate their identification.


The term “embryonic stem cells” (ES cells) refers to cells derived from the inner cell mass of blastocysts, blastomeres, or morulae that have been serially passaged as cell lines while maintaining an undifferentiated state (e.g. expressing TERT, OCT4, and SSEA and TRA antigens specific for ES cells of the species). Established cell lines may be available from cell banks such as WiCell. The ES cells may be derived from in vitro fertilization of an egg cell with sperm or DNA, nuclear transfer, parthenogenesis, or by means to generate hES cells with hemizygosity or homozygosity in the MHC region. The term “human embryonic stem cells” (hES cells) refers to human ES cells.


The term “human embryonic germ cells” (hEG cells) refer to pluripotent stem cells derived from the primordial germ cells of fetal tissue or maturing or mature germ cells such as oocytes and spermatogonial cells, that can differentiate into various tissues in the body. The hEG cells may also be derived from pluripotent stem cells produced by gynogenetic or androgenetic means, i.e., methods wherein the pluripotent cells are derived from oocytes containing only DNA of male or female origin and therefore will comprise all female-derived or male-derived DNA (see U.S. application Nos. 60/161,987, filed Oct. 28, 1999; Ser. No. 09/697,297, filed Oct. 27, 2000; Ser. No. 09/995,659, filed Nov. 29, 2001; Ser. No. 10/374,512, filed Feb. 27, 2003; PCT application no. PCT/US/00/29551, filed Oct. 27, 2000; the disclosures of which are incorporated herein in their entirety).


The term human iPS cells refers to cells with properties similar to hES cells, including the ability to form all three germ layers when transplanted into immunocompromised mice wherein said iPS cells are derived from cells of varied somatic cell lineages following exposure to hES cell-specific transcription factors such as KLF4, SOX2, MYC, and OCT4 or the factors SOX2, OCT4, NANOG, and LIN28. Said iPS cells may be produced by the expression of these gene through vectors such as retroviral vectors as is known in the art, or through the introduction of these factors by permeabilization or other technologies taught by PCT application number PCT/US2006/030632 (WO2007/019398).


The term “differentiated cells” when used in reference to cells made by methods of this invention from pluripotent stem cells refer to cells having reduced potential to differentiate when compared to the parent pluripotent stem cells. The differentiated cells of this invention comprise cells that could differentiate further (i.e., they may not be terminally differentiated).


The term embryonal carcinoma (“EC”) cells, including human EC cells, refers to embryonal carcinoma cells such as TERA-1, TERA-2, and NTera-2.


As used herein, the term “naturally occurring” refers to sequences or structures that may be in a form normally found in nature. “Naturally occurring” may include sequences in a form normally found in any animal.


As used herein, the term “cancer associated sequences” refers to nucleotide or protein sequences that are either differentially expressed, activated, inactivated or altered in cancers as compared to normal tissue. Cancer associated sequences may include those that are up-regulated (i.e. expressed at a higher level), as well as those that are down-regulated (i.e. expressed at a lower level), in cancers when compared to a non-cancerous or normal sample. Cancer associated sequences can also include sequences that have been altered (i.e., translocations, truncated sequences or sequences with substitutions, deletions or insertions, including, but not limited to, point mutations) and show either the same expression profile or an altered profile. In some embodiments, the cancer associated sequences are from humans; however, as will be appreciated by those in the art, cancer associated sequences from other subjects may be useful in animal models of disease and drug evaluation; thus, other cancer associated sequences may be useful such as any subject, e.g., without limitation, sequences from vertebrates, including mammals, including rodents (rats, mice, hamsters, guinea pigs, etc.), primates, and farm animals (including sheep, goats, pigs, cows, horses, etc). Cancer associated sequences from other organisms may be obtained using the techniques outlined below.


The term “homology,” as used herein, refers to a degree of complementarity. There may be partial homology or complete homology. The word “identity” may substitute for the word “homology.” A partially complementary nucleic acid sequence that at least partially inhibits an identical sequence from hybridizing to a target nucleic acid is referred to as “substantially homologous.” The inhibition of hybridization of the completely complementary sequence to the target sequence may be examined using a hybridization assay (Southern or northern blot, solution hybridization, and the like) under conditions of reduced stringency. A substantially homologous sequence or hybridization probe will compete for and inhibit the binding of a completely homologous sequence to the target sequence under conditions of reduced stringency. This is not to say that conditions of reduced stringency are such that non-specific binding is permitted, as reduced stringency conditions require that the binding of two sequences to one another be a specific (i.e., a selective) interaction. The absence of non-specific binding may be tested by the use of a second target sequence which lacks even a partial degree of complementarity (e.g., less than about 30% homology or identity). In the absence of non-specific binding, the substantially homologous sequence or probe will not hybridize to the second non-complementary target sequence.


The phrases “percent homology,” “% homology,” “percent identity” or “% identity” refer to the percentage of sequence similarity found in a comparison of two or more amino acid or nucleic acid sequences. Percent identity can be determined electronically, e.g., by using the MEGALIGN program (LASERGENE software package, DNASTAR). The MEGALIGN program can create alignments between two or more sequences according to different methods, e.g., the Clustal Method. (Higgins, D. G. and P. M. Sharp (1988) Gene 73:237-244.) The Clustal algorithm groups sequences into clusters by examining the distances between all pairs. The clusters are aligned pairwise and then in groups. The percentage similarity between two amino acid sequences, e.g., sequence A and sequence B, is calculated by dividing the length of sequence A, minus the number of gap residues in sequence A, minus the number of gap residues in sequence B, into the sum of the residue matches between sequence A and sequence B, times one hundred. Gaps of low or of no homology between the two amino acid sequences are not included in determining percentage similarity. Percent identity between nucleic acid sequences can also be calculated by the Clustal Method, or by other methods known in the art, such as the Jotun Hein Method. (See, e.g., Hein, J. (1990) Methods Enzymol. 183:626-645.) Identity between sequences can also be determined by other methods known in the art, e.g., by varying hybridization conditions.


As used herein, a polynucleotide “derived from” a designated sequence refers to a polynucleotide sequence which is comprised of a sequence of approximately at least about 6 nucleotides, at least about 8 nucleotides, at least about 10-12 nucleotides, and at least about 15-20 nucleotides corresponding to a region of the designated nucleotide sequence. “Corresponding” means homologous to or complementary to the designated sequence. Preferably, the sequence of the region from which the polynucleotide is derived is homologous to or complementary to a sequence that is unique to a cancer associated gene.


In the broadest sense, use of “nucleic acid,” “polynucleotide” or “oligonucleotide” or equivalents herein means at least two nucleotides covalently linked together. In some embodiments, an oligonucleotide is all oligomer of 6, 8, 10, 12, 20, 30 or up to 100 nucleotides. In some embodiments, an oligonucleotide is an oligomer of at least 6, 8, 10, 12, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 300, 400, or 500 nucleotides. A “polynucleotide” or “oligonucleotide” may comprise DNA, RNA, PNA or a polymer of nucleotides linked by phosphodiester and/or any alternate bonds. The nucleic acid, polynucleotide or oligonucleotide may be modified by linking a detectable substance or label to it.


Similarly, a “recombinant protein” is a protein made using recombinant techniques, for example, but not limited to, through the expression of a recombinant nucleic acid as depicted above. A recombinant protein may be distinguished from naturally occurring protein by at least one or more characteristics. For example, the protein may be isolated or purified away from some or all of the proteins and compounds with which it is normally associated in its wild type host, and thus may be substantially pure. For example, an isolated protein is unaccompanied by at least some of the material with which it is normally associated in its natural state, preferably constituting at least about 0.5%, more preferably at least about 5% by weight of the total protein in a given sample. A substantially pure protein comprises about 50-75%, about 80%, or 90% by weight of the total protein. In some embodiments, a substantially pure protein comprises about 80-99%, 85-99%, 90-99%, 95-99%, or 97-99% by weight of the total protein. A recombinant protein can also include the production of a cancer associated protein from one organism (e.g. human) in a different organism (e.g. yeast, E. coli, and the like) or host cell (e.g. yeast, E. coli, and the like). Alternatively, the protein may be made at a significantly higher concentration than is normally seen, through the use of an inducible promoter or high expression promoter, such that the protein is made at increased concentration levels. Alternatively, the protein may be in a form not normally found in nature, as in the addition of an epitope tag e.g. a detectable substance or label, or amino acid substitutions, insertions and deletions, as discussed herein.


As used herein, the term “tag,” “sequence tag” or “primer tag sequence” refers to an oligonucleotide with specific nucleic acid sequence that serves to identify a batch of polynucleotides bearing such tags therein. Polynucleotides from the same biological source are covalently tagged with a specific sequence tag so that in subsequent analysis the polynucleotide can be identified according to its source of origin. The sequence tags also serve as primers for nucleic acid amplification reactions.


A “microarray” is a linear or two-dimensional array of, for example, discrete regions, each having a defined area, formed on the surface of a solid support. The density of the discrete regions on a microarray is determined by the total numbers of target polynucleotides to be detected on the surface of a single solid phase support, preferably at least about 50/cm2, more preferably at least about 100/cm2, even more preferably at least about 500/cm2, and still more preferably at least about 1,000/cm2. As used herein, a DNA microarray is an array of oligonucleotide primers placed on a chip or other surfaces used to identify, amplify, detect, or clone target polynucleotides. Since the position of each particular group of primers in the array is known, the identities of the target polynucleotides can be determined based on their binding to a particular position in the microarray.


The term “label” or “detectable substance” refers to a composition capable of producing a detectable signal indicative of the presence of the target polynucleotide in an assay sample. Suitable labels include radioisotopes, nucleotide chromophores, enzymes, substrates, fluorescent molecules, chemiluminescent moieties, magnetic particles, bioluminescent moieties, and the like. As such, a label is any composition detectable by a device or method, such as but not limited to, a spectroscopic, photochemical, biochemical, immunochemical, electrical, optical, chemical detection device or any other appropriate device. The label can also be detectable visually without the aid of a device. The term “label” is used to refer to any chemical group or moiety having a detectable physical property or any compound capable of causing a chemical group or moiety to exhibit a detectable physical property, such as an enzyme that catalyzes conversion of a substrate into a detectable product. The term “label” also encompasses compounds that inhibit the expression of a particular physical property. The label may also be a compound that is a member of a binding pair, the other member of which bears a detectable physical property.


The term “support” refers to conventional supports such as beads, particles, dipsticks, fibers, filters, membranes, and silane or silicate supports such as glass slides.


The term “amplify” is used in the broad sense to mean creating an amplification product which may include, for example, additional target molecules, or target-like molecules or molecules complementary to the target molecule, which molecules are created by virtue of the presence of the target molecule in the sample. In the situation where the target is a nucleic acid, an amplification product can be made enzymatically with DNA or RNA polymerases or reverse transcriptases, or any combination thereof.


As used herein, a “biological sample” refers to a sample of tissue or fluid isolated from a subject, including but not limited to, for example, blood, plasma, serum, spinal fluid, lymph fluid, skin, respiratory, intestinal and genitourinary tracts, tears, saliva, milk, cells (including but not limited to blood cells), tumors, organs, and also samples of in vitro cell culture constituents.


The term “biological sources” as used herein refers to the sources from which the target polynucleotides may be derived. The source can be of any form of “sample” as described above, including but not limited to, cell, tissue or fluid. “Different biological sources” can refer to different cells/tissues/organs of the same individual, or cells/tissues/organs from different individuals of the same species, or cells/tissues/organs from different species.


As used herein, the term “therapeutic” or “therapeutic agent” means an agent that can be used to treat, combat, ameliorate, prevent or improve an unwanted condition or disease of a patient. In part, embodiments of the present invention are directed to the treatment of cancer or the decrease in proliferation of cells. In some embodiments, the term “therapeutic” or “therapeutic agent” may refer to any molecule that associates with or affects the target marker, its expression or its function. In various embodiments, such therapeutics may include molecules such as, for example, a therapeutic cell, a therapeutic peptide, a therapeutic gene, a therapeutic compound, or the like, that associates with or affects the target marker, its expression or its function.


A “therapeutically effective amount” or “effective amount” of a composition is a predetermined amount calculated to achieve the desired effect, i.e., to inhibit, block, or reverse the activation, migration, or proliferation of cells. In some embodiments, the effective amount is a prophylactic amount. In some embodiments, the effective amount is an amount used to medically treat the disease or condition. The specific dose of a composition administered according to this invention to obtain therapeutic and/or prophylactic effects will, of course, be determined by the particular circumstances surrounding the case, including, for example, the composition administered, the route of administration, and the condition being treated. It will be understood that the effective amount administered will be determined by the physician in the light of the relevant circumstances including the condition to be treated, the choice of composition to be administered, and the chosen route of administration. A therapeutically effective amount of composition of this invention is typically an amount such that when it is administered in a physiologically tolerable composition, it is sufficient to achieve an effective systemic concentration or local concentration in the targeted tissue.


The terms “treat,” “treated,” or “treating” as used herein can refer to both therapeutic treatment or prophylactic or preventative measures, wherein the object is to prevent or slow down (lessen) an undesired physiological condition, disorder or disease, or to obtain beneficial or desired clinical results. In some embodiments, the term may refer to both treating and preventing. For the purposes of this disclosure, beneficial or desired clinical results include, but are not limited to, alleviation of symptoms; diminishment of the extent of the condition, disorder or disease; stabilization (i.e., not worsening) of the state of the condition, disorder or disease; delay in onset or slowing of the progression of the condition, disorder or disease; amelioration of the condition, disorder or disease state; and remission (whether partial or total), whether detectable or undetectable, or enhancement or improvement of the condition, disorder or disease. Treatment includes eliciting a clinically significant response without excessive levels of side effects. Treatment also includes prolonging survival as compared to expected survival if not receiving treatment. Treat, treated, or treating may include inhibiting the growth a bladder cancer tumor and/or inhibiting the metastasis of a bladder cancer tumor.


Generally speaking, the term “tissue” refers to any aggregation of similarly specialized cells that are united in the performance of a particular function.


“Optional” or “optionally” means that the subsequently described structure, event or circumstance may or may not occur, and that the description includes instances where the event occurs and instances where it does not.


Cancer Associated Nucleic Acid Sequences and Cancer Detection

Some embodiments herein are directed to one or more of sequences associated with cancers, such as, bladder cancer. A list of genes associated with bladder cancer is provided in Table 2 and the corresponding nucleic acid sequences are provided in Table 5.


In some embodiments, the cancer associated sequences are nucleic acids. As will be appreciated by those skilled in the art and is described herein, cancer associated sequences of embodiments herein may be useful in a variety of applications including diagnostic applications to detect nucleic acids or their expression levels in a subject, therapeutic applications or a combination thereof. Further, the cancer associated sequences of embodiments herein may be used in screening applications; for example, generation of biochips comprising nucleic acid probes to the cancer associated sequences.


In some embodiments, cancer associated sequences may include nucleic acid and/or amino acid sequences. In some embodiments, the cancer associated sequences may include sequences having at least about 60% homology with the disclosed sequences. In some embodiments, the cancer associated sequences may have at least about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 97%, about 99%, about 99.8% homology with the disclosed sequences. In some embodiments, the cancer associated sequences may be “mutant nucleic acids”. As used herein, “mutant nucleic acids” refers to deletion mutants, insertions, point mutations, substitutions, translocations.


A nucleic acid of the present invention may include phosphodiester bonds, although in some cases, as outlined below (for example, in antisense applications or when a nucleic acid is a candidate drug agent), nucleic acid analogs may have alternate backbones, comprising, for example, phosphoramidate (Beaucage et al., Tetrahedron 49(10):1925 (1993) and references therein; Letsinger, J. Org. Chem. 35:3800 (1970); Sprinzl et al., Eur. J. Biochem. 81:579 (1977); Letsinger et al., Nucl. Acids Res. 14:3487 (1986); Sawai et al., Chem. Lett. 805 (1984), Letsinger et al., J. Am. Chem. Soc. 110:4470 (1988); and Pauwels et al., Chemica Scripta 26:141 91986)), phosphorothioate (Mag et al., Nucleic Acids Res. 19:1437 (1991); and U.S. Pat. No. 5,644,048), phosphorodithioate (Briu et al., J. Am. Chem. Soc. 111:2321 (1989), O-methylphosphoroamidite linkages (see Eckstein, Oligonucleotides and Analogues: A Practical Approach, Oxford University Press), and peptide nucleic acid backbones and linkages (see Egholm, J. Am. Chem. Soc. 114:1895 (1992); Meier et al., Chem. Int. Ed. Engl. 31:1008 (1992); Nielsen, Nature, 365:566 (1993); Carlsson et al., Nature 380:207 (1996), all of which are incorporated by reference). Other analog nucleic acids include those with positive backbones (Denpcy et al., Proc. Natl. Acad. Sci. USA 92:6097 (1995); non-ionic backbones (U.S. Pat. Nos. 5,386,023, 5,637,684, 5,602,240, 5,216,141 and 4,469,863; Kiedrowshi et al., Angew. Chem. Intl. Ed. English 30:423 (1991); Letsinger et al., J. Am. Chem. Soc. 110:4470 (1988); Letsinger et al., Nucleoside & Nucleotide 13:1597 (1994); Chapters 2 and 3, ASC Symposium Series 580, “Carbohydrate Modifications in Antisense Research”, Ed. Y. S. Sanghui and P. Dan Cook; Mesmaeker et al., Bioorganic & Medicinal Chem. Lett. 4:395 (1994); Jeffs et al., J. Biomolecular NMR 34:17 (1994); Tetrahedron Lett. 37:743 (1996)) and non-ribose backbones, including those described in U.S. Pat. Nos. 5,235,033 and 5,034,506, and Chapters 6 and 7, ASC Symposium Series 580, “Carbohydrate Modifications in Antisense Research”, Ed. Y. S. Sanghui and P. Dan Cook. Nucleic acids containing one or more carbocyclic sugars are also included within one definition of nucleic acids (see Jenkins et al., Chem. Soc. Rev. (1995) pp 169-176). Several nucleic acid analogs are described in Rawls, C & E News Jun. 2, 1997 page 35. These modifications of the ribose-phosphate backbone may be done for a variety of reasons, for example to increase the stability and half-life of such molecules in physiological environments for use in anti-sense applications or as probes on a biochip.


As will be appreciated by those skilled in the art, such nucleic acid analogs can be used in some embodiments. In addition, mixtures of naturally occurring nucleic acids and analogs can be made; alternatively, mixtures of different nucleic acid analogs, and mixtures of naturally occurring nucleic acids and analogs may be made.


In some embodiments, the nucleic acids may be single stranded or double stranded or may contain portions of both double stranded or single stranded sequence. As will be appreciated by those skilled in the art, the depiction of a single strand also defines the sequence of the other strand; thus the sequences described herein also includes the complement of the sequence. The nucleic acid may be DNA, both genomic and cDNA, RNA, or a hybrid, where the nucleic acid contains any combination of deoxyribo- and ribo-nucleotides, and any combination of bases, including uracil, adenine, thymine, cytosine, guanine, inosine, xanthine, hypoxanthine, isocytosine, isoguanine, etc. As used herein, the term “nucleoside” includes nucleotides and nucleoside and nucleotide analogs, and modified nucleosides such as amino modified nucleosides. In addition, “nucleoside” includes non-naturally occurring analog structures. Thus, for example, the subject units of a peptide nucleic acid, each containing a base, are referred to herein as a nucleoside.


In some embodiments, the cancer associated sequences may be recombinant nucleic acids. By the term “recombinant nucleic acid” herein refers to nucleic acid molecules, originally formed in vitro, in general, by the manipulation of nucleic acid by polymerases and endonucleases, in a form not normally found in nature. Thus a recombinant nucleic acid may also be an isolated nucleic acid, in a linear form, or cloned in a vector formed in vitro by ligating DNA molecules that are not normally joined, are both considered recombinant for the purposes of this invention. It is understood that once a recombinant nucleic acid is made and reintroduced into a host cell or organism, it can replicate using the in vivo cellular machinery of the host cell rather than in vitro manipulations; however, such nucleic acids, once produced recombinantly, although subsequently replicated in vivo, are still considered recombinant or isolated for the purposes of the invention. As used herein, a “polynucleotide” or “nucleic acid” is a polymeric form of nucleotides of any length, either ribonucleotides or deoxyribonucleotides. This term includes double- and single-stranded DNA and RNA. It also includes known types of modifications, for example, labels which are known in the art, methylation, “caps”, substitution of one or more of the naturally occurring nucleotides with an analog, internucleotide modifications—such as, for example, those with uncharged linkages (e.g., phosphorothioates, phosphorodithioates, etc.), those containing pendant moieties, such as, for example proteins (including e.g., nucleases, toxins, antibodies, signal peptides, poly-L-lysine, etc.), those with intercalators (e.g., acridine, psoralen, etc.), those containing chelators (e.g., metals, radioactive metals, etc.), those containing alkylators, those with modified linkages (e.g., alpha anomeric nucleic acids, etc.), as well as unmodified forms of the polynucleotide.


In some embodiments, a method of identifying a target marker comprises the steps of: 1) obtaining a molecular profile of the mRNAs, miRNAs, proteins, or protein modifications of immortal pluripotent stem cells (such as embryonic stem (“ES”) cells, induced pluripotent stem (“iPS”) cells, and germ-line cells such as embryonal carcinoma (“EC”) cells); 2) ES, iPS, or EC-derived clonal embryonic progenitor (“EP”) cell lines malignant cancer cells including cultured cancer cell lines or human tumor tissues, and comparing those molecules to those present in mortal somatic cell types such as cultured clonal human embryonic progenitors, cultured somatic cells from fetal or adult sources, or normal tissue counterparts to malignant cancer cells. Target markers that are shared between pluripotent stem cells such as hES cells and malignant cancer cells, but are not present in a majority of somatic cell types may be candidate diagnostic markers and therapeutic targets.


Some embodiments are directed to a biochip comprising a nucleic acid segment which encodes a cancer associated protein, for example, but not limited to, selected from the sequences outlined in Table 2 (SEQ ID NOs: 1-55).


Also provided herein is a method for diagnosing or determining the propensity to cancers, e.g., bladder cancer. The method of diagnosing may comprise measuring the level of expression of a cancer associated marker disclosed herein in a suitable sample and comparing the level of expression with a non-cancerous or normal sample.


In some embodiments, an isolated nucleic acid comprises at least 10, 12, 15, 20 or 30 contiguous nucleotides of a sequence selected from the group consisting of the cancer associated polynucleotide sequences disclosed in Table 2 (SEQ ID NOs: 1-55).


In some embodiments, the polynucleotide, or its complement or a fragment thereof, further comprises a detectable label, is attached to a solid support, is prepared at least in part by chemical synthesis, is an antisense fragment, is single stranded, is double stranded or comprises a microarray.


Cancer associated sequences associated with bladder cancer are disclosed in Table 2. These sequences were extracted from hotpop, fold-change and filter analysis KCKC110608.1. Once expression was determined, the gene sequence results were further filtered by considering fold-change in bladder cancer vs. normal bladder; general specificity; secreted or not, level of expression in bladder cancer; and signal to noise ratio. The cancer associated polynucleotide sequences include SEQ ID NOs: 1-55 shown in Table 2. In some embodiments, the polynucleotide sequences may be mRNA sequences selected from: Homo sapiens melanoma antigen family A, 10 (MAGEA10), transcript variant 2; Homo sapiens Down syndrome critical region gene 8 (DSCR8), transcript variant 2; Homo sapiens matrix metallopeptidase 12 (macrophage elastase) (MMP12); Homo sapiens chemokine (C-X-C motif) ligand 9 (CXCL9); Homo sapiens Down syndrome critical region gene 8 (DSCR8), transcript variant 3; Homo sapiens keratin 81 (KRT81); Homo sapiens hypothetical protein LOC729826 (LOC729826); Homo sapiens parathyroid hormone-like hormone (PTHLH), transcript variant 3; Homo sapiens matrix metallopeptidase 11 (stromelysin 3) (MMP11); Homo sapiens S100 calcium binding protein A7 (S100A7); Homo sapiens WNT1 inducible signaling pathway protein 3 (WISP3), transcript variant 1; Homo sapiens chemokine (C-X-C motif) ligand 10 (CXCL10); Homo sapiens neuromedin U (NMU); Homo sapiens guanylate binding protein 5 (GBP5); Homo sapiens topoisomerase (DNA) II alpha 170 kDa (TOP2A); Homo sapiens serpin peptidase inhibitor, clade B (ovalbumin), member 4 (SERPINB4); Homo sapiens granulysin (GNLY), transcript variant 519; Homo sapiens gametocyte specific factor 1 (GTSF1); Homo sapiens peptidase inhibitor 3, skin-derived (SKALP) (PI3); Homo sapiens S100 calcium binding protein A7A (S100A7A); Homo sapiens indoleamine 2,3-dioxygenase 1 (IDO1); Homo sapiens gap junction protein, beta 6 (GJB6); Homo sapiens calmodulin-like 3 (CALML3); Homo sapiens serpin peptidase inhibitor, clade B (ovalbumin), member 3 (SERPINB3); Homo sapiens chemokine (C-X-C motif) ligand 6 (granulocyte chemotactic protein 2) (CXCL6); Homo sapiens olfactomedin 4 (OLFM4); Homo sapiens transcobalamin I (vitamin B12 binding protein, R binder family) (TCN1); Homo sapiens visinin-like 1 (VSNL1); Homo sapiens ubiquitin D (UBD); Homo sapiens absent in melanoma 2 (AIM2); Homo sapiens ATP-binding cassette, sub-family C (CFTR/MRP), member 9 (ABCC9), transcript variant SUR2B; Homo sapiens serpin peptidase inhibitor, clade B (ovalbumin), member 13 (SERPINB13); Homo sapiens indoleamine-pyrrole 2,3 dioxygenase (INDO); Homo sapiens keratin 5 (KRT5); Homo sapiens hypothetical LOC100130897 (LOC100130897); Homo sapiens keratin 14 (epidermolysis bullosa simplex, Dowling-Meara, Koebner) (KRT14); Homo sapiens family with sequence similarity 83, member A (FAM83A), transcript variant 1; Homo sapiens family with sequence similarity 181, member B (FAM181B); RST24587 Athersys RAGE Library Homo sapiens cDNA mRNA sequence; Homo sapiens granzyme B (granzyme 2, cytotoxic T-lymphocyte-associated serine esterase 1) (GZMB); Homo sapiens desmoglein 3 (pemphigus vulgaris antigen) (DSG3); Homo sapiens thymidine phosphorylase (TYMP), transcript variant 3; Homo sapiens keratin 6A (KRT6A); Homo sapiens keratin 6B (KRT6B); a polynucleotide derived therefrom or any combination thereof. In some embodiments, the bladder cancer associated sequences may be DNA sequences encoding the above mRNA or the cancer associated protein or cancer associated polypeptide expressed by the above mRNA. In some embodiments, the cancer associated sequence may be a mutant nucleic acid of the above disclosed sequences. In some embodiments, the cancer associated protein or polypeptide sequence may be selected from SEQ ID NOs: 56-110 or a homolog thereof. In some embodiments, the homolog may have at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 97%, at least about 98%, at least about 99%, at least about 99.5% identity with the disclosed polypeptide sequence.


In some embodiments, a method for diagnosing cancer comprises a) determining the expression of one or more genes comprising a nucleic acid sequence selected from the group consisting of the human genomic and mRNA sequences described in Table 2, in a first sample type (e.g. tissue) of a first individual; and b) comparing said expression of said gene(s) from a second normal sample type from said first individual or a second unaffected individual; wherein a difference in said expression indicates that the first individual has cancer. In some embodiments, the expression is increased as compared to the normal sample. In some embodiments, the expression is decreased as compared to the normal sample.


In some embodiments, the present invention provides methods of diagnosing bladder cancer in a subject, the method comprising: a) determining the expression of one or more genes or gene products or homologs thereof; and b) comparing said expression of the one or more nucleic acid sequences from a second normal sample from said first subject or a second unaffected subject, wherein a difference in said expression indicates that the first subject has cancer, wherein the gene or the gene product is referred to as a gene selected from the group consisting of: MAGEA10, DSCR8, MMP12, CXCL9, DSCR8, KRT81, LOC729826, PTHLH, MMP1, S100A7, WISP3, CXCL10, NMU, GBP5, TOP2A, SERPINB4, GNLY, GTSF1, PI3, S100A7A, IDO1, GJB6, CALML3, SERPINB3, CXCL6, OLFM4, TCN1, VSNL1, UBD, AIM2, ABCC9, SERPINB13, INDO, KRT5, LOC100130897, KRT14, FAM83A, FAM181B, GZMB, DSG3, TYMP, KRT6A, KRT6B, HLA-DRB1, LCN2, KRT4, IFI30, LOC100134370, KIAA1618, S100A8, MMP7, MMP7, SPRR2A, and GJB2.


In some embodiments, the present invention provides methods of detecting bladder cancer in a test sample, comprising: (i) detecting a level of activity of at least one polypeptide that is a gene product; and (ii) comparing the level of activity of the polypeptide in the test sample with a level of activity of polypeptide in a normal sample, wherein an altered level of activity of the polypeptide in the test sample relative to the level of polypeptide activity in the normal sample is indicative of the presence of bladder cancer in the test sample, wherein said gene product is a product of a gene selected from the group consisting of MAGEA10, DSCR8, MMP12, CXCL9, DSCR8, KRT81, LOC729826, PTHLH, MMP11, S100A7, WISP3, CXCL10, NMU, GBP5, TOP2A, SERPINB4, GNLY, GTSF1, PI3, S100A7A, IDO1, GJB6, CALML3, SERPINB3, CXCL6, OLFM4, TCN1, VSNL1, UBD, AIM2, ABCC9, SERPINB13, INDO, KRT5, LOC100130897, KRT14, FAM83A, FAM181B, GZMB, DSG3, TYMP, KRT6A, KRT6B, HLA-DRB1, LCN2, KRT4, IFI30, LOC100134370, KIAA1618, S100A8, MMP7, MMP7, SPRR2A, and GJB2.


In certain embodiments the invention provides a panel of markers associated with bladder cancer comprising nucleic acid sequences, or fragments thereof of the genes: MMP11, MMP12, COL10A1, FCRLB, SFN, KRT6A, S100A2, S100A7 FCRLB, IL1A, KRT16, SLC1A6.


In other embodiments the invention provides a method of detecting bladder cancer in a subject comprising measuring the expression level of the genes MMP11, MMP12, COL10A1, FCRLB, SFN, KRT6A, S100A2, S100A7 IL1A, KRT16, SLC1A6. in a sample, comparing the expression level of the genes MMP11, MMP12, COL10A1, FCRLB, SFN, KRT6A, S100A2, S100A7, IL1A, KRT16, SLC1A6 in a non-cancerous sample such as normal bladder tissue, wherein elevated expression of at least one of the genes MMP11, MMP12, COL10A1, FCRLB, SFN, KRT6A, S100A2, S100A7, IL1A, KRT16, SLC1A6 relative to the non-cancerous sample indicates the subject has cancer. The method may also include comparing the expression level of the genes MMP11, MMP12, COL10A1, FCRLB, SFN, KRT6A, S100A2, S100A7, IL1A, KRT16, SLC1A6 to a known cancerous sample, e.g., a bladder cancer sample, wherein an expression level of at least one of the genes in the subject sample that is at least as high as the known cancer sample indicates the subject has cancer.


In still other embodiments the invention provides a method of detecting bladder cancer in a subject comprising measuring the expression level of the genes MMP11, MMP12, COL10A1, FCRLB, SFN, KRT6A, S100A2, S100A7, IL1A, KRT16, SLC1A6 in sample, comparing the expression level of the genes MMP11, MMP12, COL10A1, FCRLB, SFN, KRT6A, S100A2, S100A7, IL1A, KRT16, SLC1A6 in a non-cancerous sample such as normal bladder tissue, wherein elevated expression of a plurality of the genes MMP11, MMP12, COL10A1, FCRLB, SFN, KRT6A, S100A2, S100A7, IL1A, KRT16, SLC1A6 relative to the non-cancerous sample indicates the subject has cancer. The method may also include comparing the expression level of the genes MMP11, MMP12, COL10A 1, FCRLB, SFN, KRT6A, S100A2, S100A7, IL1A, KRT16, SLC1A6 to a known cancerous sample, e.g., a bladder cancer sample, wherein an expression level of a plurality of the genes in the subject sample that is at least as high as the known cancer sample indicates the subject has cancer.


In still other embodiments the invention provides a method of detecting bladder cancer in a subject comprising measuring the expression level of the genes MMP11, MMP12, COL10A1, FCRLB, SFN, KRT6A, S100A2, S100A7 in sample, comparing the expression level of the genes MMP11, MMP12, COL10A1, FCRLB, SFN, KRT6A, S100A2, S100A7, IL1A, KRT16, SLC1A6 in a non-cancerous sample such as normal bladder tissue, wherein elevated expression of the genes MMP11, MMP12, COL10A1, FCRLB, SFN, KRT6A, S100A2, S100A7, IL1A, KRT16, SLC1A6 relative to the non-cancerous sample indicates the subject has cancer. The method may also include comparing the expression level of the genes MMP11, MMP12, COL10A1, FCRLB, SFN, KRT6A, S100A2, S100A7, IL1A, KRT16, SLC1A6 to a known cancerous sample, e.g., a bladder cancer sample, wherein an expression level of the genes in the subject sample that is at least as high as the known cancer sample indicates the subject has cancer.


Cancer Associated Proteins and Cancer Detection

Cancer associated sequences may also include proteins or peptides encoded by the nucleic acid sequences described above. A list of proteins or peptides associated with bladder cancer is provided in Table 3. The amino acid sequences encoding these proteins or peptides are provided in Table 6.


In some embodiments, the cancer associated sequence comprises a sequence of a naturally occurring protein. In some embodiments, the cancer associate sequence does not comprise a naturally occurring sequence. Thus in some embodiments the cancer associated sequence may encode a mutant protein or a fragment of a naturally occurring protein.


In some embodiments, the invention provides a method for detecting a cancer associated sequence with the expression of a polypeptide in a test sample, comprising detecting a level of expression of at least one polypeptide selected from the group consisting of SEQ ID NOs: 56-110 shown in Table 3, or a fragment thereof. In some embodiments, the method comprises comparing the level of expression of the polypeptide in the test sample with a level of expression of polypeptide in a normal sample, wherein an altered level of expression of the polypeptide, e.g. elevated expression, in the test sample relative to the level of polypeptide expression in the normal sample is indicative of the presence of cancer in the test sample. In some embodiments, the polypeptide expression is compared to a cancer sample, wherein the level of expression is at least the same as the cancer is indicative of the presence of cancer in the test sample. In some embodiments, the sample is a cell sample.


In some embodiments, the invention provides an isolated polypeptide, encoded within an open reading frame of a cancer associated sequence selected from the polynucleotide sequences of SEQ ID NOs: 56-110 shown in Table 3, or its complement. In some embodiments, the invention provides an isolated polypeptide, wherein said polypeptide comprises the amino acid sequence encoded by a polynucleotide selected from the group consisting of SEQ ID NOs: 1-55. In some embodiments, the invention provides an isolated polypeptide, wherein said polypeptide comprises the amino acid sequence encoded by a polypeptide selected from the group consisting of SEQ ID NOs: 56-110, shown in Table 3.


In some embodiments, the invention further provides an isolated polypeptide, comprising the amino acid sequence of an epitope of the amino acid sequence of a cancer associated polypeptide selected from the group consisting of SEQ ID. NOs: 56-110 shown in Table 3, wherein the polypeptide or fragment thereof may be attached to a solid support. In some embodiments the invention provides an isolated antibody (monoclonal or polyclonal) or antigen binding fragment thereof, that binds to such a polypeptide. The isolated antibody or antigen binding fragment thereof may be attached to a solid support, or further comprises a detectable label.


In some embodiments, the invention provides a method for detecting cancer by detecting the presence of an antibody in a test serum sample. In some embodiments, the antibody recognizes a polypeptide or an epitope thereof disclosed herein. In some embodiments, the antibody recognizes a polypeptide or epitope thereof encoded by a nucleic acid sequence disclosed herein. In some embodiments, the method comprises detecting a level of an antibody against an antigenic polypeptide selected from the group consisting of SEQ ID NOs: 56-110 shown in Table 3, or antigenic fragment thereof. In some embodiments, the method comprises comparing the level of the antibody in the test sample with a level of the antibody in the control sample, wherein an altered level of antibody in said test sample relative to the level of antibody in the control sample is indicative of the presence of cancer in the test sample. In some embodiments, the control sample is a sample derived from a normal cell or non-cancerous sample. In some embodiments, the control is derived from a cancer sample, and, therefore, in some embodiments, the method comprises comparing the levels of binding and/or the amount of antibody in the sample, wherein when the levels or amount are the same as the cancer control sample is indicative of the presence of cancer in the test sample.


In some embodiments, the invention also provides a method for detecting presence or absence of cancer cells in a subject. In some embodiments, the method comprises contacting one or more cells from the subject with an antibody as described herein. In some embodiments, the method comprises detecting a complex of a cancer associated protein (CAP) and the antibody, wherein detection of the complex indicates with the presence of cancer cells in the subject.


In still other embodiments the invention provides a method of detecting bladder cancer in a subject comprising measuring the protein expression level of the protein encoded for by the genes MMP11, MMP12, COL10A1, FCRLB, SFN, KRT6A, S100A2, S100A7, IL1A, KRT16, SLC1A6 in sample, comparing the expression level of the protein encoded for by the genes MMP11, MMP12, COL10A1, FCRLB, SFN, KRT6A, S100A2, S100A7, IL1A, KRT16, SLC1A6 in a non-cancerous sample such as normal bladder tissue, wherein elevated expression of at least one of the protein encoded for by the genes MMP11, MMP12, COL10A1, FCRLB, SFN, KRT6A, S100A2, S100A7, IL1A, KRT16, SLC1A6 relative to the non-cancerous sample indicates the subject has cancer. The method may also include comparing the expression level of the protein encoded for by the genes MMP11, MMP12, COL10A1, FCRLB, SFN, KRT6A, S100A2, S100A7, IL1A, KRT16, SLC1A6 to a known cancerous sample, e.g., a bladder cancer sample, wherein an expression level of at least one of the proteins encoded for by the genes in the subject sample that is at least as high as the known cancer sample indicates the subject has cancer.


In still other embodiments the invention provides a method of detecting bladder cancer in a subject comprising measuring the protein expression level of the protein encoded for by the genes MMP11, MMP12, COL10A1, FCRLB, SFN, KRT6A, S100A2, S100A7, IL1A, KRT16, SLC1A6 in sample, comparing the expression level of the protein encoded for by the genes MMP11, MMP12, COL10A1, FCRLB, SFN, KRT6A, S100A2, S100A7, IL1A, KRT16, SLC1A6 in a non-cancerous sample such as normal bladder tissue, wherein elevated expression of a plurality of the protein encoded for by the genes MMP11, MMP12, COL10A1, FCRLB, SFN, KRT6A, S100A2, S100A7, IL1A, KRT16, SLC1A6 relative to the non-cancerous sample indicates the subject has cancer. The method may also include comparing the expression level of the protein encoded for by the genes MMP11, MMP12, COL10A1, FCRLB, SFN, KRT6A, S100A2, S100A7, IL1A, KRT16, SLC1A6 to a known cancerous sample, e.g., a bladder cancer sample, wherein an expression level of a plurality of the proteins encoded for by the genes in the subject sample that is at least as high as the known cancer sample indicates the subject has cancer.


In still other embodiments the invention provides a method of detecting bladder cancer in a subject comprising measuring the protein expression level of the protein encoded for by the genes MMP11, MMP12, COL10A1, FCRLB, SFN, KRT6A, S100A2, S100A7, IL1A, KRT16, SLC1A6 in sample, comparing the expression level of the protein encoded for by the genes MMP11, MMP12, COL10A1, FCRLB, SFN, KRT6A, S100A2, S100A7, IL1A, KRT16, SLC1A6 in a non-cancerous sample such as normal bladder tissue, wherein elevated expression of the proteins encoded for by the genes MMP11, MMP12, COL10A1, FCRLB, SFN, KRT6A, S100A2, S100A7, IL1A, KRT16, SLC1A6 relative to the non-cancerous sample indicates the subject has cancer. The method may also include comparing the expression level of the protein encoded for by the genes MMP11, MMP12, COL10A1, FCRLB, SFN, KRT6A, S100A2, S100A7, IL1A, KRT16, SLC1A6 to a known cancerous sample, e.g., a bladder cancer sample, wherein an expression level of the proteins encoded for by the genes in the subject sample that is at least as high as the known cancer sample indicates the subject has cancer.


Immune Response to Cancer Associated Proteins

Some embodiments are directed to the use of cancer associated polypeptides and polynucleotides encoding a cancer associated sequence, a fragment thereof, or a mutant thereof, and antigen presenting cells (such as, without limitation, dendritic cells), to elicit an immune response against cells expressing a cancer-associated polypeptide sequence, such as, without limitation, cancer cells, (in a subject, or in vitro) such as bladder cancer cells. In some embodiments, the method of eliciting an immune response against cells expressing a cancer associated sequence comprises (1) isolating a hematopoietic stem cell, (2) genetically modifying the cell to express a cancer associated sequence, (3) differentiating the cell into DCs; and (4) administering the DCs to the subject (e.g., human patient). In some embodiments, antigen presenting cells (APCs) may used to activate T lymphocytes in vivo or ex vivo, to elicit an immune response against cells expressing a cancer associated sequence. APCs are highly specialized cells and may include, without limitation, macrophages, monocytes, and dendritic cells (DCs). APCs may process antigens and display their peptide fragments on the cell surface together with molecules required for lymphocyte activation. In some embodiments, the APCs may be dendritic cells. DCs may be classified into subgroups, including, e.g., follicular dendritic cells, Langerhans dendritic cells, and epidermal dendritic cells. In some embodiments, dendritic cell precursor cells are isolated for transduction with a cancer associated sequence, and induced to differentiate into dendritic cells. The genetically modified DCs express the cancer associated sequence, and may display peptide fragments on the cell surface.


In some embodiments, the method of eliciting an immune response includes (1) isolating DCs (or isolation and differentiation of DC precursor cells), (2) pulsing the cells with a cancer associated sequence, and; (3) administering the DCs to the subject. These approaches are discussed in greater detail, infra. In some embodiments, the pulsed or expressing DCs may be used to activate T lymphocytes ex vivo. These general techniques and variations thereof may be within the skill of those in the art (see, e.g., WO97/29182; WO 97/04802; WO 97/22349; WO 96/23060; WO 98/01538; Hsu et al., 1996, Nature Med. 2:52-58), and that still other variations may be discovered in the future.


In some embodiments, the cancer associated sequence is contacted with a subject to stimulate an immune response. In some embodiments, the immune response is a therapeutic immune response. In some embodiments, the immune response is a prophylactic immune response. For example, the cancer associated sequence can be contacted with a subject under conditions effective to stimulate an immune response. The cancer associated sequence can be administered as, for example, a DNA molecule (e.g. DNA vaccine), RNA molecule, or polypeptide, or any combination thereof. Administering sequence to stimulate an immune responses are known, but the identity of which sequences to use was not known prior to the present disclosure. Any sequence or combination of sequences disclosed herein or a homolog thereof can be administered to a subject to stimulate an immune response.


In some embodiments, the cancer associated sequence comprises a sequence of a naturally occurring protein. In some embodiments, the cancer associate sequence does not comprise a naturally occurring sequence. As already noted, fragments of naturally occurring proteins may be used; in addition, the expressed polypeptide may comprise mutations such as deletions, insertions, or amino acid substitutions when compared to a naturally occurring polypeptide, so long as at least one peptide epitope can be processed by the DC and presented on a MHC class I or II surface molecule. In some embodiments, it may be desirable to use sequences other than “wild type,” in order to, for example, increase antigenicity of the peptide or to increase peptide expression levels. In some embodiments, the introduced cancer associated sequences may encode variants such as polymorphic variants (e.g., a variant expressed by a particular human patient) or variants characteristic of a particular cancer (e.g., a cancer in a particular subject).


In some embodiments, a cancer associated expression sequence may be introduced (transduced) into DCs or stem cells in any of a variety of standard methods, including transfection, recombinant vaccinia viruses, adeno-associated viruses (AAVs), retroviruses, etc.


In some embodiments, the transformed DCs of the invention may be introduced into the subject (e.g., without limitation, a human patient) where the DCs may induce an immune response. Typically, the immune response includes a cytotoxic T-lymphocyte (CTL) response against target cells bearing antigenic peptides (e.g., in a MHC class I/peptide complex). These target cells are typically cancer cells.


In some embodiments, when the DCs of the invention are to be administered to a subject, they may preferably isolated from, or derived from precursor cells from, that subject (i.e., the DCs may administered to an autologous subject). However, the cells may be infused into HLA-matched allogeneic, or HLA-mismatched allogeneic subject. In the latter case, immunosuppressive drugs may be administered to the subject.


In some embodiments, the cells tray be administered in any suitable manner. In some embodiments, the cell may be administered with a pharmaceutically acceptable carrier (e.g., saline). In some embodiments, the cells may be administered through intravenous, intra-articular, intramuscular, intradermal, intraperitoneal, or subcutaneous routes. Administration (i.e., immunization) may be repeated at time intervals. Infusions of DC may be combined with administration of cytokines that act to maintain DC number and activity (e.g., GM-CSF, IL-12).


In some embodiments, the dose administered to a subject may be a dose sufficient to induce an immune response as detected by assays which measure T cell proliferation, T lymphocyte cytotoxicity, and/or effect a beneficial therapeutic response in the patient over time, e.g., to inhibit growth of cancer cells or result in reduction in the number of cancer cells or the size of a tumor.


In some embodiments, DCs are obtained (either from a patient or by in vitro differentiation of precursor cells) and pulsed with antigenic peptides having a cancer associated sequence. The pulsing results in the presentation of peptides onto the surface MHC molecules of the cells. The peptide/MHC complexes displayed on the cell surface may be capable of inducing a MHC-restricted cytotoxic T-lymphocyte response against target cells expressing cancer associated polypeptides (e.g., without limitations, cancer cells).


In some embodiments, cancer associated sequences used for pulsing may have at least about 6 or 8 amino acids and fewer than about 30 amino acids or fewer than about 50 amino acid residues in length. In some embodiments, an immunogenic peptide sequence may have from about 8 to about 12 amino acids. In some embodiments, a mixture of human protein fragments may be used; alternatively a particular peptide of defined sequence may be used. The peptide antigens may be produced by de novo peptide synthesis, enzymatic digestion of purified or recombinant human peptides, by purification of the peptide sequence from a natural source (e.g., a subject or tumor cells from a subject), or expression of a recombinant polynucleotide encoding a human peptide fragment.


In some embodiments, the amount of peptide used for pulsing DC may depend on the nature, size and purity of the peptide or polypeptide. In some embodiments, an amount of from about 0.05 ug/ml to about 1 mg/ml, from about 0.05 ug/ml to about 500 ug/ml, from about 0.05 ug/ml to about 250 ug/ml, from about 0.5 ug/ml to about 1 mg/ml, from about 0.5 ug/ml to about 500 ug/ml, from about 0.5 ug/ml to about 250 ug/ml, or from about 1 ug/ml to about 100 ug/ml of peptide may be used. After adding the peptide antigen(s) to the cultured DC, the cells may then be allowed sufficient time to take up and process the antigen and express antigen peptides on the cell surface in association with either class I or class II MHC. In some embodiments, the time to take up and process the antigen may be about 18 to about 30 hours, about 20 to about 30 hours, or about 24 hours.


Numerous examples of systems and methods for predicting peptide binding motifs for different MHC Class I and II molecules have been described. Such prediction could be used for predicting peptide motifs that will bind to the desired MHC Class I or II molecules. Examples of such methods, systems, and databases that those of ordinary skill in the art might consult for such purpose include NIH's Center for Information Technology and Peptide Binding Motifs for MHC Class I and II Molecules; William E. Biddison, Roland Martin, Current Protocols in Immunology, Unit 1I (DOI: 10.1002/0471142735.ima01 is 36; Online Posting Date: May, 2001), which provides an overview of the use of peptide-binding motifs to predict interaction with a specific MHC class I or II allele, and gives examples for the use of MHC binding motifs to predict T-cell recognition.


Table I provides an exemplary result for a HLA peptide motif search at the NIH Center for Information Technology website, BioInformatics and Molecular Analysis Section. The fill length MAGEA10 peptide sequence (SEQ ID NO: 56 as shown in Table 3 and 5) was used as the search query.


In some embodiments, the present invention provides methods of eliciting an immune response against cells expressing a cancer associated sequence comprising contacting a subject with a a cancer associated sequence under conditions effective to elicit an immune response in the subject, wherein said cancer associated sequence comprises a sequence or fragment thereof a gene selected from the group consisting of MAGEA10, DSCR8, MMP12, CXCL9, DSCR8, KRT81, LOC729826, PTHLH, MMP11, S100A7, WISP3, CXCL10, NMU, GBP5, TOP2A, SERPINB4, GNLY, GTSF1, PI3, S100A7A, IDO1, GJB6, CALML3, SERPINB3, CXCL6, OLFM4, TCN1, VSNL1, UBD, AIM2, ABCC9, SERPINB13, INDO, KRT5, LOC100130897, KRT14, FAM83A, FAM181B, GZMB, DSG3, TYMP, KRT6A, KRT6B, HLA-DRB1, LCN2, KRT4, IFI30, LOC100134370, KIAA1618, S100A8, MMP7, MMP7, SPRR2A, and GJB2.


Immunotherapy

In some embodiments, implementation of an immunotherapy strategy for treating, reducing the symptoms of, or preventing cancer or neoplasms, (e.g., a vaccine) may be achieved using many different techniques available to the skilled artisan.


Immunotherapy, or the use of antibodies for therapeutic purposes has been used in recent years to treat cancer. Passive immunotherapy involves the use of monoclonal antibodies in cancer treatments. See for example, Cancer: Principles and Practice of Oncology, 6th Edition (2001) Chapt. 20 pp. 495-508. Inherent therapeutic biological activity of these antibodies include direct inhibition of tumor cell growth or survival, and the ability to recruit the natural cell killing activity of the body's immune system. These agents may be administered alone or in conjunction with radiation or chemotherapeutic agents. Alternatively, antibodies may be used to make antibody conjugates where the antibody is linked to a toxic agent and directs that agent to the tumor by specifically binding to the tumor.


Some embodiments also provide for antigens (cancer-associated polypeptides) associated with a variety of cancers, including bladder cancer, as targets for diagnostic and/or therapeutic antibodies. These antigens may also be useful for drug discovery (e.g., small molecules) and for further characterization of cellular regulation, growth, and differentiation.









TABLE 1







User Parameters and Scoring Information











method selected to limit number of
explicit


results
number


number of results requested
 20


HLA molecule type selected
A_0201


length selected for subsequences to be
  9


scored


echoing mode selected for input sequence
Y


echoing format
numbered



lines


length of user's input peptide sequence
369


number of subsequence scores calculated
361


number of top scoring subsequences
 20


reported back in scoring output table










Scoring Results













Score (Estimate





of Half Time of





Disassociation of



Start
Subsequence
a Molecule Containing


Rank
Position
Residue Listing
This Subsequence)





 1
310
SLLKFLAKV
2249.173





 2
183
MLLVFGIDV
1662.432





 3
137
KVTDLVQFT
339.313





 4
254
GLYDGMEHL
315.870





 5
228
ILILSIIFI
224.357





 6
296
FLWGPRAHA
189.678





 7
245
VIWEALNHH
90.891





 8
308
KMSLLKFLA
72.836





 9
166
KMYEDHFPL
37.140





10
201
FVLVTSLGL
31.814





11
174
LLFSEASEC
31.249





12
213
GMLSDVQSM
30.534





13
226
ILILLILSII
16.725





14
225
GILILILSI
12.208





15
251
NKMGLYCGH
9.758





16
88
QIACSSPSV
9.563





17
66
LIFSTPEEV
7.966





18
220
SHPKTGILI
7.535





19
233
IIFIEGYCT
6.445





20
247
WEALNMMGL
4.395





Rank 1-20 are assigned SEQ ID NOS: 198-217 respectively
















TABLE 2





SEQ ID


mRNA


NO:
Symbol
Definition
Sequence


















1
MAGEA10

Homo sapiens melanoma antigen family A, 10 (MAGEA10),

NM_021048.3




transcript variant 2, mRNA.


2
DSCR8

Homo sapiens Down syndrome critical region gene 8

NM_203428.1




(DSCR8), transcript variant 2, mRNA.


3
MMP12

Homo sapiens matrix metallopeptidase 12 (macrophage

NM_002426.2




elastase) (MMP12), mRNA.


4
CXCL9

Homo sapiens chemokine (C-X-C motif) ligand 9 (CXCL9),

NM_002416.1




mRNA.


5
DSCR8

Homo sapiens Down syndrome critical region gene 8

NM_203429.1




(DSCR8), transcript variant 3, mRNA.


6
KRT81

Homo sapiens keratin 81 (KRT81), mRNA.

NM_002281.2


7
LOC729826
PREDICTED: Homo sapiens hypothetical protein
XM_001131447.1




LOC729826 (LOC729826), mRNA.


8
PTHLH

Homo sapiens parathyroid hormone-like hormone (PTHLH),

NM_198964.1




transcript variant 3, mRNA.


9
MMP11

Homo sapiens matrix metallopeptidase 11 (stromelysin 3)

NM_005940.3




(MMP11), mRNA.


10
S100A7

Homo sapiens S100 calcium binding protein A7 (S100A7),

NM_002963.3




mRNA.


11
WISP3

Homo sapiens WNT1 inducible signaling pathway protein 3

NM_003880.2




(WISP3), transcript variant 1, mRNA.


12
CXCL10

Homo sapiens chemokine (C-X-C motif) ligand 10

NM_001565.2




(CXCL10), mRNA.


13
NMU

Homo sapiens neuromedin U (NMU), mRNA.

NM_006681.1


14
GBP5

Homo sapiens guanylate binding protein 5 (GBP5), mRNA.

NM_052942.2


15
TOP2A

Homo sapiens topoisomerase (DNA) II alpha 170 kDa

NM_001067.2




(TOP2A), mRNA.


16
SERPINB4

Homo sapiens serpin peptidase inhibitor, clade B

NM_002974.2




(ovalbumin), member 4 (SERPINB4), mRNA.


17
GNLY

Homo sapiens granulysin (GNLY), transcript variant 519,

NM_012483.1




mRNA.


18
GTSF1

Homo sapiens gametocyte specific factor 1 (GTSF1),

NM_144594.1




mRNA.


19
PI3

Homo sapiens peptidase inhibitor 3, skin-derived (SKALP)

NM_002638.2




(PI3), mRNA.


20
S100A7A

Homo sapiens S100 calcium binding protein A7A

NM_176823.3




(S100A7A), mRNA.


21
IDO1

Homo sapiens indoleamine 2,3-dioxygenase 1 (IDO1),

NM_002164.4




mRNA.


22
GJB6

Homo sapiens gap junction protein, beta 6 (GJB6), mRNA.

NM_006783.2


23
CALML3

Homo sapiens calmodulin-like 3 (CALML3), mRNA.

NM_005185.2


24
SERPINB3

Homo sapiens serpin peptidase inhibitor, clade B

NM_006919.1




(ovalbumin), member 3 (SERPINB3), mRNA.


25
CXCL6

Homo sapiens chemokine (C-X-C motif) ligand 6

NM_002993.2




(granulocyte chemotactic protein 2) (CXCL6), mRNA.


26
OLFM4

Homo sapiens olfactomedin 4 (OLFM4), mRNA.

NM_006418.3


27
TCN1

Homo sapiens transcobalamin I (vitamin B12 binding

NM_001062.3




protein, R binder family) (TCN1), mRNA.


28
VSNL1

Homo sapiens visinin-like 1 (VSNL1), mRNA.

NM_003385.4


29
UBD

Homo sapiens ubiquitin D (UBD), mRNA.

NM_006398.2


30
AIM2

Homo sapiens absent in melanoma 2 (AIM2), mRNA.

NM_004833.1


31
ABCC9

Homo sapiens ATP-binding cassette, sub-family C

NM_020297.1




(CFTR/MRP), member 9 (ABCC9), transcript variant




SUR2B, mRNA.


32
SERPINB13

Homo sapiens serpin peptidase inhibitor, clade B

NM_012397.2




(ovalbumin), member 13 (SERPINB13), mRNA.


33
INDO

Homo sapiens indoleamine-pyrrole 2,3 dioxygenase (INDO),

NM_002164.3




mRNA.


34
KRT5

Homo sapiens keratin 5 (KRT5), mRNA.

NM_000424.3


35
LOC100130897
PREDICTED: Homo sapiens hypothetical LOC100130897
XM_001718498.1




(LOC100130897), mRNA.


36
KRT14

Homo sapiens keratin 14 (epidermolysis bullosa simplex,

NM_000526.3




Dowling-Meara, Koebner) (KRT14), mRNA.


37
FAM83A

Homo sapiens family with sequence similarity 83, member

NM_032899.4




A (FAM83A), transcript variant 1, mRNA.


38
FAM181B

Homo sapiens family with sequence similarity 181, member

NM_175885.3




B (FAM181B), mRNA.


39

RST24587 Athersys RAGE Library Homo sapiens cDNA,
BG205162




mRNA sequence


40
GZMB

Homo sapiens granzyme B (granzyme 2, cytotoxic T-

NM_004131.3




lymphocyte-associated serine esterase 1) (GZMB), mRNA.


41
DSG3

Homo sapiens desmoglein 3 (pemphigus vulgaris antigen)

NM_001944.2




(DSG3), mRNA.


42
TYMP

Homo sapiens thymidine phosphorylase (TYMP), transcript

NM_001113756.1




variant 3, mRNA.


43
KRT6A

Homo sapiens keratin 6A (KRT6A), mRNA.

NM_005554.3


44
KRT6B

Homo sapiens keratin 6B (KRT6B), mRNA.

NM_005555.3


45
HLA-DRB1

Homo sapiens major histocompatibility complex, class II,

NM_002124.1




DR beta 1 (HLA-DRB1), mRNA.


46
LCN2

Homo sapiens lipocalin 2 (LCN2), mRNA.

NM_005564.3


47
KRT4

Homo sapiens keratin 4 (KRT4), mRNA.

NM_002272.2


48
IFI30

Homo sapiens interferon, gamma-inducible protein 30

NM_006332.3




(IFI30), mRNA.


49
LOC100134370
PREDICTED: Homo sapiens hypothetical protein
XM_001713687.1




LOC100134370 (LOC100134370), mRNA.


50
KIAA1618

Homo sapiens KIAA1618 (KIAA1618), mRNA.

NM_020954.2


51
S100A8

Homo sapiens S100 calcium binding protein A8 (S100A8),

NM_002964.3




mRNA.


52
MMP7

Homo sapiens matrix metallopeptidase 7 (matrilysin,

NM_002423.3




uterine) (MMP7), mRNA.


53
MMP7

Homo sapiens matrix metallopeptidase 7 (matrilysin,

NM_002423.3




uterine) (MMP7), mRNA.


54
SPRR2A

Homo sapiens small proline-rich protein 2A (SPRR2A),

NM_005988.2




mRNA.


55
GJB2

Homo sapiens gap junction protein, beta 2, 26 kDa (GJB2),

NM_004004.4




mRNA.



















TABLE 3





SEQ ID


Peptide


NO:
Symbol
Definition
Sequence


















56
MAGEA10

Homo sapiens melanoma antigen family A, 10 (MAGEA10), transcript

NP_066386.1




variant 2


57
DSCR8

Homo sapiens Down syndrome critical region gene 8 (DSCR8), transcript

NP_982252.1




variant 2


58
MMP12

Homo sapiens matrix metallopeptidase 12 (macrophage elastase) (MMP12)

NP_002417.2


59
CXCL9

Homo sapiens chemokine (C-X-C motif) ligand 9 (CXCL9)

NP_002407.1


60
DSCR8

Homo sapiens Down syndrome critical region gene 8 (DSCR8), transcript

NP_982253.1




variant 3.


61
KRT81

Homo sapiens keratin 81 (KRT81).

NP_002272.1


62
LOC729826
PREDICTED: Homo sapiens hypothetical protein LOC729826
XP_001131447.1




(LOC729826).


63
PTHLH

Homo sapiens parathyroid hormone-like hormone (PTHLH), transcript

NP_945315.1




variant 3


64
MMP11

Homo sapiens matrix metallopeptidase 11 (stromelysin 3) (MMP11)

NP_005931.2


65
S100A7

Homo sapiens S100 calcium binding protein A7 (S100A7)

NP_002954.2


66
WISP3

Homo sapiens WNT1 inducible signaling pathway protein 3 (WISP3),

NP_003871.1




transcript variant 1


67
CXCL10

Homo sapiens chemokine (C-X-C motif) ligand 10 (CXCL10)

NP_001556.2


68
NMU

Homo sapiens neuromedin U (NMU)

NP_006672.1


69
GBP5

Homo sapiens guanylate binding protein 5 (GBP5)

NP_443174.1


70
TOP2A

Homo sapiens topoisomerase (DNA) II alpha 170 kDa (TOP2A)



71
SERPINB4

Homo sapiens serpin peptidase inhibitor, clade B (ovalbumin), member 4

NP_002965.1




(SERPINB4)


72
GNLY

Homo sapiens granulysin (GNLY), transcript variant 519

NP_036615.1


73
GTSF1

Homo sapiens gametocyte specific factor 1 (GTSF1)

NP_653195.1


74
PI3

Homo sapiens peptidase inhibitor 3, skin-derived (SKALP) (PI3)

NP_002629.1


75
S100A7A

Homo sapiens S100 calcium binding protein A7A (S100A7A)

NP_789793.1


76
IDO1

Homo sapiens indoleamine 2,3-dioxygenase 1 (IDO1)

NP_002155.1


77
GJB6

Homo sapiens gap junction protein, beta 6 (GJB6)

NP_006774.2


78
CALML3

Homo sapiens calmodulin-like 3 (CALML3)

NP_005176.1


79
SERPINB3

Homo sapiens serpin peptidase inhibitor, clade B (ovalbumin), member 3

NP_008850.1




(SERPINB3)


80
CXCL6

Homo sapiens chemokine (C-X-C motif) ligand 6 (granulocyte chemotactic

NP_002984.1




protein 2) (CXCL6)


81
OLFM4

Homo sapiens olfactomedin 4 (OLFM4)

NP_006409.3


82
TCN1

Homo sapiens transcobalamin I (vitamin B12 binding protein, R binder

NP_001053.2




family) (TCN1)


83
VSNL1

Homo sapiens visinin-like 1 (VSNL1)

NP_003376.2


84
UBD

Homo sapiens ubiquitin D (UBD)

NP_006389.1


85
AIM2

Homo sapiens absent in melanoma 2 (AIM2)

NP_004824.1


86
ABCC9

Homo sapiens ATP-binding cassette, sub-family C (CFTR/MRP), member

NP_064693.1




9 (ABCC9), transcript variant SUR2B


87
SERPINB13

Homo sapiens serpin peptidase inhibitor, clade B (ovalbumin), member 13

NP_036529.1




(SERPINB13)


88
INDO

Homo sapiens indoleamine-pyrrole 2,3 dioxygenase (INDO)

NP_002155.1


89
KRT5

Homo sapiens keratin 5 (KRT5)

NP_000415.2


90
LOC100130897
PREDICTED: Homo sapiens hypothetical LOC100130897
XP_001718550.1




(LOC100130897)


91
KRT14

Homo sapiens keratin 14 (epidermolysis bullosa simplex, Dowling-Meara,

NP_000517.2




Koebner) (KRT14)


92
FAM83A

Homo sapiens family with sequence similarity 83, member A (FAM83A),

NP_116288.2




transcript variant 1


93
FAM181B

Homo sapiens family with sequence similarity 181, member B (FAM181B)

NP_787081.2


94

RST24587 Athersys RAGE Library Homo sapiens cDNA


95
GZMB

Homo sapiens granzyme B (granzyme 2, cytotoxic T-lymphocyte-

NP_004122.1




associated serine esterase 1) (GZMB)


96
DSG3

Homo sapiens desmoglein 3 (pemphigus vulgaris antigen) (DSG3)

NP_001935.2


97
TYMP

Homo sapiens thymidine phosphorylase (TYMP), transcript variant 3

NP_001107228.1


98
KRT6A

Homo sapiens keratin 6A (KRT6A)

NP_005545.1


99
KRT6B

Homo sapiens keratin 6B (KRT6B)

NP_005546.2


100
HLA-DRB1

Homo sapiens major histocompatibility complex, class II, DR beta 1 (HLA-

NP_002115.1




DRB1)


101
LCN2

Homo sapiens lipocalin 2 (LCN2)

NP_005555.2


102
KRT4

Homo sapiens keratin 4 (KRT4)

NP_002263.2


103
IFI30

Homo sapiens interferon, gamma-inducible protein 30 (IFI30)

NP_006323.2


104
LOC100134370
PREDICTED: Homo sapiens hypothetical protein LOC100134370
XP_001713739.1




(LOC100134370)


105
KIAA1618

Homo sapiens KIAA1618 (KIAA1618)

NP_066005.2


106
S100A8

Homo sapiens S100 calcium binding protein A8 (S100A8)

NP_002955.2


107
MMP7

Homo sapiens matrix metallopeptidase 7 (matrilysin, uterine) (MMP7)

NP_002414.1


108
MMP7

Homo sapiens matrix metallopeptidase 7 (matrilysin, uterine) (MMP7)

NP_002414.1


109
SPRR2A

Homo sapiens small proline-rich protein 2A (SPRR2A)

NP_005979.1


110
GJB2

Homo sapiens gap junction protein, beta 2, 26 kDa (GJB2)

NP_003995.2


















TABLE 4





SEQ ID




No.
Probe Sequence
Symbol







111
GCCATGGCCAGTGCAAGTTCTAGCGCTACAGGTAGCTTCTCCTACCCTGA
MAGEA10





112
TCCCACTTGGCAGGGGCCGTCTTGTCCACTCGTTTCTGTAAACATGGGTG
DSCR8





113
TCTATTTGAAGCATGCTCTGTAAGTTGCTTCCTAACATCCTTGGACTGAG
MMP12





114
TGATTGGTGCCCAGTTAGCCTCTGCAGGATGTGGAAACCTCCTTCCAGGG
CXCL9





115
GAAGGCTGGCTCATACATTTTCCCAGACAGGAATTTGGCTGCCAACAGGG
DSCR8





116
CAGTGGGAAAGGCCACCCTAGAAAGAAGTCCGCTGGCACCCATAGGAAGG
KRT81





117
CCTGCAGACACCGGAGGCCTCTGCTGTGGCTGCCCACTGGCTGTGCTCAG
LOC729826





118
TGGTTAGACTCTGGAGTGACTGGGAGTGGGCTAGAAGGGGACCACCTGTC
PTHLH





119
CAGGTCTTGGTAGGTGCCTGCATCTGTCTGCCTTCTGGCTGACAATCCTG
MMP11





120
GCTGAGAGGTCCATAATAGGCATGATCGACATGTTTCACAAATACACCAG
S100A7





121
GCTGTGGATTACATCTTGTGTGTGTCAGAGAAACTGCAGAGAACCTGGAG
WISP3





122
GACTTCCACTGCCATCCTCCCAAGGGGCCCAAATTCTTTCAGTGGCTACC
CXCL10





123
GCTGCAGCTCGTTCCTCACCTGCATGAGAGAAGAATGAAGAGATTCAGAG
NMU





124
GCAGGAACAACAGATGCAGGAACAGGCTGCACAGCTCAGCACAACATTCC
GBP5





125

TOP2A





126
GCATGACCTGGAGCCACGGTCTCTCAGTATCTAAAGTCCTACACAAGGCC
SERP1NB4





127
CTACAGGTCCCCTCTGAGCCCTCTCACCTTGTCCTGTGGAAGAAGCACAG
GNLY





128
GGGGCACAACTCACTACTCTGACAACAACAGCCCTGCGAGCAACATAGTT
GTSF1





129
CTGACTGCCCAGGAATCAAGAAGTGCTGTGAAGGCTCTTGCGGGATGGCC
PI3





130
AGAGTTCTGACCAGCACCAGATAAGCTTCAGTGCTCTCCTTTCTTTGGCC
S100A7A





131
CGCCTGTGTGAAAGCTCTGGTCTCCCTGAGGAGCTACCATCTGCAAATCG
IDO1





132
GCTGCGTCATAAGGAGACTTCTGTCTTCTCCAGAAGGCAATACCAACCTG
GJB6





133
AAAACAGCACTGCCTTCCGCGCTGCCCCAGCTTGCCCCATTCCTTGTCCG
CALML3





134
TGACCGGGAGCCGCGGTCTCGTGCTATCTGGAGTCCTACACAAGGCCTTT
SERPINB3





135
GTGTGCTGTTGAGGGAGGTATCCTGTTGTTCTTACTCACTCTTCTCATAA
CXCL6





136
TGTTCAAGTCCTAGTCTATAGGATTGGCAGTTTAAATGCTTTACTCCCCC
OLFM4





137
TGAGTGGAGGCGAACCACTGAGCCAAGGAGCTGGTAGTTACGTTGTCCGC
TCN1





138
GAGGGACCCTTGGCTCCTGTGTCTGGTCCACACACCACAGAAGCTTGTAT
VSNL1





139
CCTCCTCCAGGTGCGAAGGTCCAGCTCAGTGGCACAAGTGAAAGCAATGA
UBD





140
GCTGGTGAAACCCCGAAGATCAACACGCTTCAAACTCAGCCCCTTGGAAC
AIM2





141
CGAGTACACACTATTCTGACGGCAGACCTGGTTATTGTGATGAAGCGAGG
ABCC9





142
CTAGGTTCACCAGTTGAGGGACATTTGGATTGTTCCCACTTCTTGGGCTG
SERPINB13





143
CTGATTCCTGCAAGCCAGCAGCCAAAGGAGAATAAGACCTCTGAAGACCC
INDO





144
ACCACATTCTTTGGTTCCCAGGAGAGCCCCATTCCCAGCCCCTGGTCTCC
KRT5





145
TGCTGCTGGAAGCCTCCAAAGTACTTAGTGTCTATTGTTTCCCCTGTGTG
LOC100130897





146
GTGGACACAGATCCCACTGGAAGATCCCCTCTCCTGCCCAAGCACTTCAC
KRT14





147
CAGCCTGGTCACCTCCTGAGGAATAAATGCTGAACCTCACAAGCCCCATC
FAM83A





148
GCTGGCTTCTGTAGCCACCTGTCCCTTCTATTTTTCAGCGAAGGTCAGTG
FAM181B





149
CCTGTGGCAAGCCAGCAAGATGGCCCTGGTGACAGCAAAAGAAACTGCAC





150
ACAGGAAGCAAACTAAGCCCCCGCTGTAATGAAACACCTTCTCTGGAGCC
GZMB





151
CAGAAAGGGTGATCTGTCCCATTTCCAGTGTTCCTGGCAACCTAGCTGGC
DSG3





152
AGAAACTCGTGGAGGGGCTGTCCGCTCTGGTGGTGGACGTTAAGTTCGGA
TYMP





153
GTGTTGTGAACCCCCACCCAGGCAGTATCCATGAAAGCACAAGTGACTAG
KRT6A





154
CTCTTGCAGTGTCCCTGAATGGCAAGTGATGTACCTTCTGATGCAGTCTG
KRT6B





155
GGACTTCAGCCAACAGGATTCCTGAGCTGAAATGCAGATGACCACATTCA
HLA-DRB1





156
CCACATCGTCTTCCCTGTCCCAATCGACCAGTGTATCGACGGCTGAGTGC
LCN2





157
CCAGGATGATCTTCTGTGCTGGGACAGGGACTCTGCCTCTTGGAGTTTGG
KRT4





158
TGGAAGATCAGACCCAGCTCCTTACCCTTGTCTGCCAGTTGTACCAGGGC
IFI30





159
CTACAGGCGCCTGCTGGAGGGCGAGGAGCATAGGCTGTGTGAAGGTGTTG
LOC100134370





160
CCCCGTTTATCCATGTGTCCATTGACGGCCATCTATGTTGCTTCTTCGGC
KIAA1618





161
TAACTTCCAGGAGTTCCTCATTCTGGTGATAAAGATGGGCGTGGCAGCCC
S100A8





162
GCTCACTTCGATGAGGATGAACGCTGGACGGATGGTAGCAGTGTAGGGAT
MMP7





163
GCAACTCATGAACTTGGCCATTCTTTGGGTATGGGACATTCCTCTGATCC
MMP7





164
GCTCCACCTTCATCTTCTCATCAAAGCCTACCATGGATACACAGGGAGCT
SPRR2A





165
GATGAGCTTTGTCTACTTCAAAAGTTTGTTTGCTTACCCCTTCAGCCTCC
GJB2









Cancer Therapeutics

In some embodiments, the cancer cell may be targeted specifically with a therapeutic based upon the differentially expressed gene or gene product. For example, in some embodiments, the differentially expressed gene product is an enzyme, which can convert a anticancer prodrug into its active form. Therefore, in normal cells, where the differentially expressed gene product is not expressed or expressed at significantly lower levels, the prodrug is either not activated or activated in a lesser amount, and is, therefore less toxic to normal cells. Therefore, the cancer prodrug can, in some embodiments, be given in a higher dosage so that the cancer cells can metabolize the prodrug, which will, for example, kill the cancer cell, and the normal cells will not metabolize the prodrug or not as well, and, therefore, be less toxic to the patient. An example of this is where tumor cells overexpress a metalloprotease, which is described in Atkinson et al., British Journal of Pharmacology (2008) 153, 1344-1352. Using proteases to target cancer cells is also described in Carl et al., PNAS, Vol. 77, No. 4, pp. 2224-2228, April 1980. For example, doxorubicin or other type of chemotherapeutic can be linked to a peptide sequence that is specifically cleaved or recognized by the differentially expressed gene product. The doxorubicin or other type of chemotherapeutic is then cleaved from the peptide sequence and is activated such that it can kill or inhibit the growth of the cancer cell whereas in the normal cell the chemotherapeutic is never internalized into the cell or is not metabolized as efficiently, and is, therefore, less toxic.


In some embodiments, a method of treating cancer may comprise gene knockdown of one or more cancer associated sequences described herein. Gene knockdown refers to techniques by which the expression of one or more of an organism's genes is reduced, either through genetic modification (a change in the DNA of one of the organism's chromosomes such as, without limitation, chromosomes encoding cancer associated sequences) or by treatment with a reagent such as a short DNA or RNA oligonucleotide with a sequence complementary to either an mRNA transcript or a gene. In some embodiments, the oligonucleotide used may be selected from RNase-H competent antisense, such as, without limitation, ssDNA oligonucleotides, ssRNA oligonucleotides, phosphorothioate oligonucleotides, or chimeric oligonucleotides; RNase-independent antisense, such as morpholino oligonucleotides, 2′-O-methyl phosphorothioate oligonucleotides, locked nucleic acid oligonucleotides, or peptide nucleic acid oligonucleotides; RNAi oligonucleotides, such as, without limitation, siRNA duplex oligonucleotides, or shRNA oligonucleotides; or any combination thereof. In some embodiments, a plasmid may be introduced into a cell, wherein the plasmid expresses either an antisense RNA transcript or an shRNA transcript. The oligo introduced or transcript expressed may interact with the target mRNA (ex. SEQ ID NOs. 1-55) by complementary base pairing (a sense-antisense interaction).


The specific mechanism of silencing may vary with the oligo chemistry. In some embodiments, the binding of a oligonucleotide described herein to the active gene or its transcripts may cause decreased expression through blocking of transcription, degradation of the mRNA transcript (e.g. by small interfering RNA (siRNA) or RNase-H dependent antisense) or blocking either mRNA translation, pre-mRNA splicing sites or nuclease cleavage sites used for maturation of other functional RNAs such as miRNA (e.g. by Morpholino oligonucleotides or other RNase-H independent antisense). For example, RNase-H competent antisense oligonucleotides (and antisense RNA transcripts) may form duplexes with RNA that are recognized by the enzyme RNase-H, which cleaves the RNA strand. As another example, RNase-independent oligonucleotides may bind to the mRNA and block the translation process application. In some embodiments, the oligonucleotides may bind in the 5′-UTR and halt the initiation complex as it travels from the 5′-cap to the start codon, preventing ribosome assembly. A single strand of RNAi oligonucleotides may be loaded into the RISC complex, which catalytically cleaves complementary sequences and inhibits translation of some mRNAs bearing partially-complementary sequences. The oligonucleotides may be introduced into a cell by any technique including, without limitation, electroporation, microinjection, salt-shock methods such as, for example, CaCl2 shock; transfection of anionic oligo by cationic lipids such as, for example, Lipofectamine; transfection of uncharged oligonucleotides by endosomal release agents such as, for example, Endo-Porter; or any combination thereof. In some embodiments, the oligonucleotides may be delivered from the blood to the cytosol using techniques selected from nanoparticle complexes, virally-mediated transfection, oligonucleotides linked to octaguanidinium dendrimers (Morpholino oligonucleotides), or any combination thereof.


In some embodiments, a method of treating bladder cancer may comprise treating cells to knockdown or inhibit expression of a gene encoding the mRNA disclosed in SEQ ID NOs. 1-55. The method may comprise culturing hES cell-derived clonal embryonic progenitor cell lines CM02 and EN13 (see U.S. Patent Publication 20080070303, entitled “Methods to accelerate the isolation of novel cell strains from pluripotent stem cells and cells obtained thereby”; and U.S. patent application Ser. No. 12/504,630 filed on Jul. 16, 2009 and titled “Methods to Accelerate the Isolation of Novel Cell Strains from Pluripotent Stem Cells and Cells Obtained Thereby”, each of which is incorporated by reference herein in its entirety) with a retrovirus expressing silencing RNA directed to a cancer-associated sequence. In some embodiments, the method may further comprise confirming down-regulation by qPCR. In some embodiments, the method further comprises cryopreserving the cells. In some embodiments, the method further comprises reprogramming the cells. In some embodiments, the method comprises cryopreserving or reprogramming the cells within two days by the exogenous administration of OCT4, MYC, KLF4, and SOX2 (see Takahashi and Yamanaka 2006 Aug. 25; 126(4):663-76; U.S. patent application Ser. No. 12/086,479, published as US2009/0068742 and entitled “Nuclear Reprogramming Factor”) and by the method described in PCT/US06/30632, published as WO/2007/019398 and entitled “Improved Methods of Reprogramming Animal Somatic Cells”. In some embodiments, the method may comprise culturing mammalian differentiated cells under conditions that promote the propagation of ES cells. In some embodiments, any convenient ES cell propagation condition may be used, e.g., on feeders or in feeder free media capable of propagating ES cells. In some embodiments, the method comprises identifying cells from ES colonies in the culture. Cells from the identified ES colony may then be evaluated for ES markers, e.g., Oct4, TRA 1-60, TRA 1-81, SSEA4, etc., and those having ES cell phenotype may be expanded. Control lines that have not been preconditioned by the knockdown may be reprogrammed in parallel to demonstrate the effectiveness of the preconditioning.


In some embodiments, a method for treating bladder cancer comprises administering to a subject in need thereof a therapeutic agent modulating the activity of a cancer associated protein (CAP), wherein said CAP is encoded by a nucleic acid comprising a nucleic acid sequence selected from the group consisting of the human nucleic acid sequences in Table 2 and further wherein the therapeutic agent binds to the cancer associated protein; wherein the cancer associated protein is selected from the group consisting of SEQ ID NOs: 56-110 shown in Table 3.


In some embodiments, a method of treating bladder cancer comprises administering an antibody (e.g. monoclonal antibody, human antibody, humanized antibody, chimeric antibody, and the like) that specifically binds to a cancer associated protein (CAP) that is expressed on a cell surface, wherein the cancer associated protein is selected from the group consisting of SEQ ID NOs: 56-110. In some embodiments, the antibody binds to an extracellular domain of the cancer associated protein. In some embodiments, the antibody binds to a cancer associated protein differentially expressed on a cancer cell surface relative to a normal cell surface, or, in some embodiments, to at least one human cancer cell line. In some embodiments, the antibody is linked to a therapeutic agent. Kits and pharmaceutical compositions for detecting a presence or an absence of cancer cells in a subject, and comprising such antibodies are also provided.


In some embodiments the invention provides a method for inhibiting growth of cancer cells in a subject. In some embodiments, the method comprises administering to the subject an effective amount of a pharmaceutical composition as described herein. In some embodiments the invention provides a method for delivering a therapeutic agent to cancer cells in a subject, the method comprising: administering to the subject an effective amount of a pharmaceutical composition according to according to the invention.


Methods of Analyzing a Sample

The pattern of gene expression in a particular living cell may be characteristic of its current state. Nearly all differences in the state or type of a cell are reflected in the differences in RNA levels of one or more genes. Comparing expression patterns of uncharacterized genes may provide clues to their function. High throughput analysis of expression of hundreds or thousands of genes can help in (a) identification of complex genetic diseases, (b) analysis of differential gene expression over time, between tissues and disease states, and (c) drug discovery and toxicology studies. Increase or decrease in the levels of expression of certain genes correlate with cancer biology. For example, oncogenes are positive regulators of tumorigenesis, while tumor suppressor genes are negative regulators of tumorigenesis. (Marshall, Cell, 64: 313-326 (1991); Weinberg, Science, 254: 1138-1146 (1991)). Accordingly, some embodiments herein provide for polynucleotide and polypeptide sequences involved in cancer and, in particular, in oncogenesis.


Oncogenes are genes that can cause cancer. Carcinogenesis can occur by a wide variety of mechanisms, including infection of cells by viruses containing oncogenes, activation of protooncogenes in the host genome, and mutations of protooncogenes and tumor suppressor genes. Carcinogenesis is fundamentally driven by somatic cell evolution (i.e. mutation and natural selection of variants with progressive loss of growth control). The genes that serve as targets for these somatic mutations are classified as either protooncogenes or tumor suppressor genes, depending on whether their mutant phenotypes are dominant or recessive, respectively.


The detection of the expression level of the one or more markers disclosed infra may be by any means known in the art. For example where the marker is a protein associated with breast cancer an ELISA may used to detect the expression level of the marker. Other suitable assays for detecting the presence of a protein marker include a radio-immunoassay, a western blot, an immunoprecipitation assay, such as a bead based assay, e.g. a magnetic bead based assay. In some embodiments the marker may be isolated from the sample before detection, but in other embodiments it is not isolated from the sample. In some embodiments the protein marker may be expressed in a cellular context (i.e., on the surface of the cell or within the cell). In these instances immunoecytochemistry may be used to detect the marker. Alternatively, the flow cytometry can used to detect the marker. Where the marker is contained within the cell, the cells may be treated with a detergent to make the marker accessible to a detection reagent. Suitable detection reagents would include any molecule that specifically binds the marker, such as an antibody that specifically binds to an epitope on the marker.


Suitable agents for detecting a protein marker as disclosed infra include any specific binding partner of the breast cancer marker. For example the specific binding partner may be a protein that binds the breast cancer marker, such as an antibody. Other suitable specific binding partners may include a receptor that binds the breast cancer marker or an enzyme that specifically binds the breast cancer marker.


The cancer can also be diagnosed to a specific tissue type as well by visualizing the labeled molecule. The molecule can be visualized or detected using any method, such as but not limited to, MRI, CAT scan, PET scan, and the like. In some embodiments, an antibody can bind to the protein and then be detected. In some embodiments, the level of antibody binding can be quantified to determine whether the protein is overexpressed. Differential expression can also be determined by known methods. Accordingly, embodiments hereof provide a method for imaging structures in tissues and cells of a subject having cancer, is suspected of having cancer, or is undergoing a diagnostic procedure to determine if the person has cancer. If the imaging demonstrates that the cancer associated protein is overexpressed or differentially expressed then the patient is diagnosed as having cancer or suspected of having cancer. Other tests can also be done, such as but not limited to, a biopsy to confirm, or otherwise aid, the diagnosis.


The label molecules can also be labeled by, but not limited to, any radioisotopes that can be imaged with a PET or SPECT camera. For example, radiopharmaceuticals of various embodiments may be radiolabeled with radioisotopes such as, but not limited to, 76Br, 123I, 125I, 131I, 99mTc, 11C, 18F, or other gamma- or positron-emitting radionuclides. In other embodiments, the label molecules may be radiolabeled with a combination of radioisotopes.


In some embodiments the marker associated with breast cancer may be a nucleic acid, e.g. an mRNA molecule. The nucleic acid may be isolated from the sample. Detection of the nucleic acid may be by any means known in the art. For example the nucleic acid molecule may be detected by Southern blot or northern blot mass spectroscopy, microarray and the like. The nucleic acid may be detected using PCR, for example where the nucleic acid is an RNA molecule, such as an mRNA molecule, rtPCR may be used. The PCR may be quantitative PCR (e.g. qPCT) or real time PCR. The nucleic acid may be detected by in situ hybridization where the sample includes breast cancer cells.


The assays described above may include the use of a probe to detect the nucleic acid marker. Probes are described infra. Briefly, the probe may be a nucleic acid molecule ranging from 5-40, 10-35, 15-30 nucleotides long. The probe may be about 5, about 10, about 20, about 25, about 30, about 35 nucleotides long. The probe may include a portion of a gene encoding the breast cancer marker, or a complement of a gene encoding a breast cancer marker.


It will be appreciated that there are various methods of obtaining expression data and uses of the expression data. For example, the expression data that can be used to detect or diagnose a subject with cancer can be obtained experimentally. In some embodiments, obtaining the expression data comprises obtaining the sample and processing the sample to experimentally determine the expression data. The expression data can comprise expression data for one or more of the cancer associated sequences described herein. The expression data can be experimentally determined by, for example, using a microarray or quantitative amplification method such as, but not limited to, those described herein. In some embodiments, obtaining expression data associated with a sample comprises receiving the expression data from a third party that has processed the sample to experimentally determine the expression data.


The use of microarray analysis of gene expression allows the identification of sequences associated with cancer. These sequences may then be used in a number of different ways, including diagnosis, prognosis, screening for modulators (including both agonists and antagonists), antibody generation (for immunotherapy and imaging), etc. However, as will be appreciated by those skilled in the art, sequences that are identified in one type of cancer may have a strong likelihood of being involved in other types of cancers as well. Thus, while the sequences outlined herein are initially identified as correlated with bladder cancer, they may also be found in other types of cancers as well.


The comparison of gene expression on an mRNA level using Illumina gene expression microarrays hybridized to RNA probe sequences (SEQ ID NOs: 111-165, shown in Table 4) prepared from the diverse categories of cell types: 1) human embryonic stem (“ES”) cells, or gonadal tissues 2) ES, iPS, or EC-derived clonal embryonic progenitor (“EP”) cell lines, 3) nucleated blood cells including but not limited to CD34+ cells and CD133+ cells; 4) Normal mortal somatic adult-derived tissues and cultured cells including: skin fibroblasts, vascular endothelial cells, normal non-lymphoid and non-cancerous tissues, and the like, and 5) malignant cancer cells including cultured cancer cell lines or human tumor tissue and filters was performed to detect genes that are generally expressed (or not expressed) in categories 1, 3, and 5, or categories 1 and 5 but not expressed (or expressed) in categories 2 and 4. Therapies in these cancers based on this observation would be based on reducing the expression of the above referenced transcripts up-regulated in cancer, or otherwise reducing the expression of the gene products.


Gene Expression Assays: Measurement of the gene expression levels may be performed by any known methods in the art, including but not limited to quantitative PCR, or microarray gene expression analysis, bead array gene expression analysis and Northern analysis. The gene expression levels may be represented as relative expression normalized to the ADPRT (Accession number NM001618.2), GAPD (Accession number NM002046.2), or other housekeeping genes known in the art. In the case of microarrayed probes of mRNA expression, the gene expression data may also be normalized by a median of medians method. In this method, each array gives a different total intensity. Using the median value is a robust way of comparing cell lines (arrays) in an experiment. As an example, the median was found for each cell line and then the median of those medians became the value for normalization. The signal from the each cell line was made relative to each of the other cell lines.


RNA extraction. Cells from a suitable subject may be incubated with 0.05% trypsin and 0.5 mM EDTA, followed by collecting in DMEM (Gibco, Gaithersburg, Md.) with 0.5% BSA. Total RNA is purified from cells using the RNeasy Mini kit (Qiagen, Hilden, Germany).


Isolation of total and miRNA may be obtained from human embryonic stem cells and differentiated progeny cells. Total RNA or samples enriched for small RNA species were isolated from cell cultures that underwent serum starvation prior to harvesting RNA to approximate cellular growth arrest observed in many mature tissues. Cellular growth arrest was performed by changing to medium containing 0.5% serum for 5 days, with one medium change 2-3 days after the first addition of low serum medium. RNA were harvested according to the vendors instructions for Qiagen RNEasy kits to isolate total RNA or Ambion mirVana kits to isolate RNA enriched for small RNA species. The RNA concentrations were determined by spectrophotometry and RNA quality determined by denaturing agarose gel electrophoresis to visualize 28S and 18S RNA. Samples with clearly visible 28S and 18S bands without signs of degradation and at a ratio of approximately 2:1, 28S:18S, were used for subsequent miRNA analysis.


Assay for miRNA in samples isolated from human embryonic stem cells and differentiated progeny cells. The miRNAs were quantitated using a Human Panel TaqMan MicroRNA Assay from Applied Biosystems, Inc. This is a two-step assay that uses stem-loop primers for reverse transcription (RT) followed by real-time TaqMan®. A total of 330 miRNA assays were performed to quantitate the levels of miRNA in the H9 human embryonic stem cell line, a differentiated fibroblast cell line, and nine cell lines differentiated from human embryonic stem cells. The assay includes two steps, reverse transcription (RT) and quantitative PCR. Real-time PCR was performed on an Applied Biosystems 7500 Real-Time PCR System. The copy number per cell was estimated based on the standard curve of synthetic mir-16 miRNA and assuming a total RNA mass of approximately 15 pg/cell.


The reverse transcription reaction was performed using 1× cDNA archiving buffer, 3.35 units MMLV reverse transcriptase, 5 mM each dNTP, 1.3 units AB RNase inhibitor, 2.5 nM 330-plex reverse primer (RP), 3 ng of cellular RNA in a final volume of 5 μl. The reverse transcription reaction was performed on a BioRad or MJ thermocycler with a cycling profile of 20° C. for 30 sec; 42° C. for 30 see; 50° C. for 1 see, for 60 cycles followed by one cycle of 85° C. for 5 min.


Real-time PCR. Two microlitres of 1:400 diluted Pre-PCR product is used for a 20 ul reaction. All reactions are duplicated. Because the method is very robust, duplicate samples are sufficient and accurate enough to obtain values for miRNA expression levels. TaqMan universal PCR master mix of ABI is used according to manufacturer's suggestion. Briefly, 1× TaqMan Universal Master Mix (ABI), 1 uM Forward Primer, 1 uM Universal Reverse Primer and 0.2 uM TaqMan Probe is used for each real-time PCR. The conditions used are as follows: 95° C. for 10 min, followed by 40 cycles at 95° C. for 15 s, and 60° C. for 1 min. All the reactions are run on ABI Prism 7000 Sequence Detection System.


Microarray hybridization and data processing. cDNA samples and cellular total RNA (5 μg in each of eight individual tubes) are subjected to the One-Cycle Target Labeling procedure for biotin labeling by in vitro transcription (IVT) (Affymetrix, Santa Clara, Calif.) or using the Illumina Total Prep RNA Labelling kit. For analysis on Affymetix gene chips, the cRNA is subsequently fragmented and hybridized to the Human Genome U133 Plus 2.0 Array (Affymetrix) according to the manufacturer's instructions. The microarray image data are processed with the GeneChip Scanner 3000 (Affymetrix) to generate CEL data. The CEL data are then subjected to analysis with dChip software, which has the advantage of normalizing and processing multiple datasets simultaneously. Data obtained from the eight nonamplified controls from cells, from the eight independently amplified samples from the diluted cellular RNA, and from the amplified cDNA samples from 20 single cells are normalized separately within the respective groups, according to the program's default setting. The model based expression indices (MBEI) are calculated using the PM/MM difference mode with log-2 transformation of signal intensity and truncation of low values to zero. The absolute calls (Present, Marginal and Absent) are calculated by the Affymetrix Microarray Software 5.0 (MAS 5.0) algorithm using the dChip default setting. The expression levels of only the Present probes are considered for all quantitative analyses described below. The GEO accession number for the microarray data is GSE4309. For analysis on Illumina Human HT-12 v4 Expression Bead Chips, labeled cRNA are hybridized according to the manufacturer's instructions.


Calculation of coverage and accuracy. A true positive is defined as probes called Present in at least six of the eight nonamplified controls, and the true expression levels are defined as the log-averaged expression levels of the Present probes. The definition of coverage is (the number of truly positive probes detected in amplified samples)/(the number of truly positive probes). The definition of accuracy is (the number of truly positive probes detected in amplified samples)/(the number of probes detected in amplified samples). The expression levels of the amplified and nonamplified samples are divided by the class interval of 20.5 (20, 20.5, 21, 21.5 . . . ), where accuracy and coverage are calculated. These expression level bins are also used to analyze the frequency distribution of the detected probes.


Analysis of gene expression profiles of cells. The unsupervised clustering and class neighbor analyses of the microarray data from cells are performed using GenePattern software available online from MIT, which performs the signal-to-noise ratio analysis/T-test in conjunction with the permutation test to preclude the contribution of any sample variability, including those from methodology and/or biopsy, at high confidence. The analyses are conducted on the 14,128 probes for which at least 6 out of 20 single cells provided Present calls and at least 1 out of 20 samples provided expression levels >20 copies per cell. The expression levels calculated for probes with Absent/Marginal calls were truncated to zero. To calculate relative gene expression levels, the Ct values obtained with Q-PCR analyses are corrected using the efficiencies of the individual primer pairs quantified either with whole human genome (BD Biosciences) or plasmids that contain gene fragments. The relative expression levels are further transformed into copy numbers with a calibration line calculated using the spike RNAs included in the reaction mixture (log10 [expression level]=1.05×log10 [copy number]+4.65). The Chi-square test for independence is performed to evaluate the association of gene expressions with Gata4, which represents the difference between cluster 1 and cluster 2 determined by the unsupervised clustering and which is restricted to PE at later stages. The expression levels of individual genes measured with Q-PCR are classified into three categories: high (>100 copies per cell), middle (10-100 copies per cell), and low (<10 copies per cell). The Chi-square and P-values for independence from Gata4 expression are calculated based on this classification. Chi squared is defined as follows: χ2=ΣΣ(n fij−fi fj)2/n fi fj, where i and j represent expression level categories (high, middle or low) of the reference (Gata4) and the target gene, respectively; fi, fj, and fij represent the observed frequency of categories i, j and ij, respectively; and n represents the sample number (n=24). The degrees of freedom are defined as (r−1)×(c−1), where r and c represent available numbers of expression level categories of Gata4 and of the target gene, respectively.


Expression of Cancer Associated Sequences in Cells

Electroporation may be used to introduce the cancer associated nucleic acids described herein into mammalian cells (Neumann, E. et al. (1982) EMBO J. 1, 841-845), plant and bacterial cells, and may also be used to introduce proteins (Marrero, M. B. et al. (1995) J. Biol. Chem. 270, 15734-15738; Nolkrantz, K. et al. (2002) Anal. Chem. 74, 4300-4305; Rui, M. et al. (2002) Life Sci. 71, 1771-1778). Cells (such as the cells of this invention) suspended in a buffered solution of the purified protein of interest are placed in a pulsed electrical field. Briefly, high-voltage electric pulses result in the formation of small (nanometer-sized) pores in the cell membrane. Proteins enter the cell via these small pores or during the process of membrane reorganization as the pores close and the cell returns to its normal state. The efficiency of delivery may be dependent upon the strength of the applied electrical field, the length of the pulses, temperature and the composition of the buffered medium. Electroporation is successful with a variety of cell types, even some cell lines that are resistant to other delivery methods, although the overall efficiency is often quite low. Some cell lines may remain refractory even to electroporation unless partially activated.


Microinjection may be used to introduce femtoliter volumes of DNA directly into the nucleus of a cell (Capecchi, M. R. (1980) Cell 22, 470-488) where it can be integrated directly into the host cell genome, thus creating an established cell line bearing the sequence of interest. Proteins such as antibodies (Abarzua, P. et al. (1995) Cancer Res. 55, 3490-3494; Theiss, C. and Meller, K. (2002) Exp. Cell Res. 281, 197-204) and mutant proteins (Naryanan, A. et al. (2003) J. Cell Sci. 116, 177-186) can also be directly delivered into cells via microinjection to determine their effects on cellular processes firsthand. Microinjection has the advantage of introducing macromolecules directly into the cell, thereby bypassing exposure to potentially undesirable cellular compartments such as low-pH endosomes.


Several proteins and small peptides have the ability to transduce or travel through biological membranes independent of classical receptor-mediated or endocytosis-mediated pathways. Examples of these proteins include the HIV-1 TAT protein, the herpes simplex virus 1 (HSV-1) DNA-binding protein VP22, and the Drosophila Antennapedia (Antp) homeotic transcription factor. In some embodiments, protein transduction domains (PTDs) from these proteins may be fused to other macromolecules, peptides or proteins such as, without limitation, a cancer associated polypepdtide to successfully transport the polypeptide into a cell (Schwarze, S. R. et al (2000) Trends Cell Biol. 10, 290-295). Exemplary advantages of using fusions of these transduction domains is that protein entry is rapid, concentration-dependent and appears to work with difficult cell types (Fenton, M. et al. (1998) J. Immunol. Methods 212, 41-48.).


In some embodiments, liposomes may be used as vehicles to deliver oligonucleotides, DNA (gene) constructs and small drug molecules into cells (Zabner, J. et al. (1995) J. Biol. Chem. 270, 18997-19007; Felgner, P. L. et al. (1987) Proc. Natl. Acad. Sci. USA 84, 7413-7417). Certain lipids, when placed in an aqueous solution and sonicated, form closed vesicles consisting of a circularized lipid bilayer surrounding an aqueous compartment. The vesicles or liposomes of embodiments herein may be formed in a solution containing the molecule to be delivered. In addition to encapsulating DNA in an aqueous solution, cationic liposomes may spontaneously and efficiently form complexes with DNA, with the positively charged head groups on the lipids interacting with the negatively charged backbone of the DNA. The exact composition and/or mixture of cationic lipids used can be altered, depending upon the macromolecule of interest and the cell type used (Felgner, J. H. et al. (1994) J. Biol. Chem. 269, 2550-2561). The cationic liposome strategy has also been applied successfully to protein delivery (Zelphati, O, et al. (2001) J. Biol. Chem. 276, 35103-35110). Because proteins are more heterogeneous than DNA, the physical characteristics of the protein, such as its charge and hydrophobicity, may influence the extent of its interaction with the cationic lipids.


Screening Assays for Cancer Drugs

In some embodiments, a method of screening drug candidates includes comparing the level of expression of the cancer-associated sequence in the absence of the drug candidate to the level of expression in the presence of the drug candidate.


Some embodiments are directed to a method of screening for a therapeutic agent capable of binding to a cancer-associated sequence (nucleic acid or protein), the method comprising combining the cancer-associated sequence and a candidate therapeutic agent, and determining the binding of the candidate agent to the cancer-associated sequence.


Further provided herein is a method for screening for a therapeutic agent capable of modulating the activity of a cancer-associated sequence. In some embodiments, the method comprises combining the cancer-associated sequence and a candidate therapeutic agent, and determining the effect of the candidate agent on the bioactivity of the cancer-associated sequence. An agent that modulates the bioactivity of the cancer associate sequence is said to be a therapeutic agent capable of modulating the activity of the cancer-associated sequence


A method of screening for anticancer activity, the method comprising: (a) contacting a cell that expresses a cancer associated gene which transcribes a cancer associated sequence selected from SEQ ID NOs: 1-55, homologs thereof, combinations thereof, or fragments thereof with an anticancer drug candidate; (b) detecting an effect of the anticancer drug candidate on an expression of the cancer associated polynucleotide in the cell; and (c) comparing the level of expression in the absence of said drug candidate to the level of expression in the presence of the drug candidate; wherein an effect on the expression of the cancer associate polynucleotide indicates that the candidate has anticancer activity.


In some embodiments, a method of evaluating the effect of a candidate cancer drug may comprise administering the drug to a patient and removing a cell sample from the patient. The expression profile of the cell is then determined. In some embodiments, the method may further comprise comparing the expression profile of the patient to an expression profile of a healthy individual. In some embodiments, the expression profile comprises measuring the expression of one or more or any combination thereof of the sequences disclosed herein. In some embodiments, where the expression profile of one or more or any combination thereof of the sequences disclosed herein is modified (increased or decreased) the candidate cancer drug is said to be effective.


In some embodiments, the invention provides a method of screening for anticancer activity comprising: (a) providing a cell that expresses a cancer associated gene encoded by a nucleic acid sequence selected from the group consisting of the cancer associated sequences shown in Table 2 (SEQ ID NOs: 1-55), or fragment thereof, (b) contacting the cell, which can be derived from a cancer cell with an anticancer drug candidate; (c) monitoring an effect of the anticancer drug candidate on an expression of the cancer associated sequence in the cell sample, and optionally (d) comparing the level of expression in the absence of said drug candidate to the level of expression in the presence of the drug candidate. The drug candidate may be an inhibitor of transcription, a G-protein coupled receptor antagonist, a growth factor antagonist, a serine-threonine kinase antagonist, a tyrosine kinase antagonist. In some embodiments, where the candidate modulates the expression of the cancer associated sequence the candidate is said to have anticancer activity. In some embodiments, the anticancer activity is determined by measuring cell growth. In some embodiments, the candidate inhibits or retards cell growth and is said to have anticancer activity. In some embodiments, the candidate causes the cell to die, and thus, the candidate is said to have anticancer activity.


In some embodiments, the invention provides a method for screening for a therapeutic agent capable of modulating the activity of a cancer associated sequence, wherein said sequence can be encoded by a nucleic acid comprising a nucleic acid sequence selected from the group consisting of the polynucleotide sequences SEQ ID NOs: 1-55 shown in Table 2, said method comprising: a) combining said cancer associated sequence and a candidate therapeutic agent; and b) determining the effect of the candidate agent on the bioactivity of said cancer associated sequence. According to the method the therapeutic agent: affects the expression of the cancer associated sequence; affects the activity of the cancer associated sequence, wherein such activity is selected from the activities listed in Table 21. In some embodiments, the cancer associated sequence is a cancer associate protein (CAP). In some embodiments, the cancer associated sequence is a cancer associate nucleic acid molecule.


Pharmaceutical Formulations and Administration

Modes of administration for a therapeutic (either alone or in combination with other pharmaceuticals) can be, but are not limited to, sublingual, injectable (including short-acting, depot, implant and pellet forms injected subcutaneously or intramuscularly), or by use of vaginal creams, suppositories, pessaries, vaginal rings, rectal suppositories, intrauterine devices, and transdermal forms such as patches and creams.


Specific modes of administration will depend on the indication. The selection of the specific route of administration and the dose regimen is to be adjusted or titrated by the clinician according to methods known to the clinician in order to obtain the optimal clinical response. The amount of therapeutic to be administered is that amount which is therapeutically effective. The dosage to be administered will depend on the characteristics of the subject being treated, e.g., the particular animal treated, age, weight, health, types of concurrent treatment, if any, and frequency of treatments, and can be easily determined by one of skill in the art (e.g., by the clinician).


Pharmaceutical formulations containing the therapeutic of the present invention and a suitable carrier can be solid dosage forms which include, but are not limited to, tablets, capsules, cachets, pellets, pills, powders and granules; topical dosage forms which include, but are not limited to, solutions, powders, fluid emulsions, fluid suspensions, semi-solids, ointments, pastes, creams, gels and jellies, and foams; and parenteral dosage forms which include, but are not limited to, solutions, suspensions, emulsions, and dry powder; comprising an effective amount of a polymer or copolymer of the present invention. It is also known in the art that the active ingredients can be contained in such formulations with pharmaceutically acceptable diluents, fillers, disintegrants, binders, lubricants, surfactants, hydrophobic vehicles, water soluble vehicles, emulsifiers, buffers, humectants, moisturizers, solubilizers, preservatives and the like. The means and methods for administration are known in the art and an artisan can refer to various pharmacologic references for guidance. For example, Modern Pharmaceutics, Banker & Rhodes, Marcel Dekker, Inc. (1979); and Goodman & Gilman's The Pharmaceutical Basis of Therapeutics, 6th Edition, MacMillan Publishing Co., New York (1980) can be consulted.


The compositions of the present invention can be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. The compositions can be administered by continuous infusion subcutaneously over a period of about 15 minutes to about 24 hours. Formulations for injection can be presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with an added preservative. The compositions can take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and can contain formulatory agents such as suspending, stabilizing and/or dispersing agents.


For oral administration, the compositions can be formulated readily by combining the therapeutic with pharmaceutically acceptable carriers well known in the art. Such carriers enable the therapeutic of the invention to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a patient to be treated. Pharmaceutical preparations for oral use can be obtained by adding a solid excipient, optionally grinding the resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients include, but are not limited to, fillers such as sugars, including, but not limited to, lactose, sucrose, mannitol, and sorbitol; cellulose preparations such as, but not limited to, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and polyvinylpyrrolidone (PVP). If desired, disintegrating agents can be added, such as, but not limited to, the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate.


Dragee cores can be provided with suitable coatings. For this purpose, concentrated sugar solutions can be used, which can optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments can be added to the tablets or dragee coatings for identification or to characterize different combinations of active therapeutic doses.


Pharmaceutical preparations which can be used orally include, but are not limited to, push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with filler such as, e.g., lactose, binders such as, e.g., starches, and/or lubricants such as, e.g., talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active therapeutic can be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols. In addition, stabilizers can be added. All formulations for oral administration should be in dosages suitable for such administration.


For buccal administration, the pharmaceutical compositions can take the form of, e.g., tablets or lozenges formulated in a conventional manner.


For administration by inhalation, the therapeutic for use according to the present invention is conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebulizer, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit can be determined by providing a valve to deliver a metered amount. Capsules and cartridges of, e.g., gelatin for use in an inhaler or insufflator can be formulated containing a powder mix of the therapeutic and a suitable powder base such as lactose or starch.


The compositions can also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides.


In addition to the formulations described previously, the therapeutic of the present invention can also be formulated as a depot preparation. Such long acting formulations can be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection.


Depot injections can be administered at about 1 to about 6 months or longer intervals. Thus, for example, the compositions can be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.


In transdermal administration, the compositions of the present invention, for example, can be applied to a plaster, or can be applied by transdermal, therapeutic systems that are consequently supplied to the organism.


Pharmaceutical compositions can include suitable solid or gel phase carriers or excipients. Examples of such carriers or excipients include but are not limited to calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, and polymers such as, e.g., polyethylene glycols.


The compositions can also be administered in combination with other active ingredients, such as, for example, adjuvants, protease inhibitors, or other compatible drugs or compounds where such combination is seen to be desirable or advantageous in achieving the desired effects of the methods described herein.


In some embodiments, the disintegrant component comprises one or more of croscarmellose sodium, carmellose calcium, crospovidone, alginic acid, sodium alginate, potassium alginate, calcium alginate, an ion exchange resin, an effervescent system based on food acids and an alkaline carbonate component, clay, talc, starch, pregelatinized starch, sodium starch glycolate, cellulose floe, carboxymethylcellulose, hydroxypropylcellulose, calcium silicate, a metal carbonate, sodium bicarbonate, calcium citrate, or calcium phosphate.


In some embodiments, the diluent component may include one or more of mannitol, lactose, sucrose, maltodextrin, sorbitol, xylitol, powdered cellulose, microcrystalline cellulose, carboxymethylcellulose, carboxyethylcellulose, methylcellulose, ethylcellulose, hydroxyethylcellulose, methylhydroxyethylcellulose, starch, sodium starch glycolate, pregelatinized starch, a calcium phosphate, a metal carbonate, a metal oxide, or a metal aluminosilicate.


In some embodiments, the optional lubricant component, when present, comprises one or more of stearic acid, metallic stearate, sodium stearylfumarate, fatty acid, fatty alcohol, fatty acid ester, glycerylbehenate, mineral oil, vegetable oil, paraffin, leucine, silica, silicic acid, talc, propylene glycol fatty acid ester, polyethoxylated castor oil, polyethylene glycol, polypropylene glycol, polyalkylene glycol, polyoxyethylene-glycerol fatty ester, polyoxyethylene fatty alcohol ether, polyethoxylated sterol, polyethoxylated castor oil, polyethoxylated vegetable oil, or sodium chloride.


Kits

In some embodiments, the invention provides a kit for diagnosing the presence of cancer in a test sample, said kit comprising at least one polynucleotide that selectively hybridizes to a cancer associated polynucleotide sequence shown in Table 2, or its complement. In another embodiment the invention provides an electronic library comprising a cancer associated polynucleotide, a cancer associated polypeptide, or fragment thereof, shown in Table 2. In other embodiments the invention provides a kit for diagnosing the presence of cancer in a test sample, said kit comprising at least one polypeptide or protein shown in Table 3. In further embodiments the invention provides at least one polynucleotide that selectively hybridizes to a cancer associated polynucleotide chosen from MMP11, MMP12, COL10A1, FCRLB, SFN, KRT6A, S100A2, S100A7. In still other embodiments the invention provides a plurality of polynucleotide that selectively hybridizes to a cancer associated polynucleotide chosen from MMP11, MMP12, COL10A1, FCRLB, SFN, KRT6A, S100A2, S100A7


The kits and systems for practicing the subject methods, as described above, may be configured to diagnose cancer in a subject, treat cancer in a subject, or perform basic research experiments on cancer cells (e.g., either derived directly from a subject, grown in vitro or ex vivo, or from an animal model of cancer. The various components of the kits may be present in separate containers or certain compatible components may be precombined into a single container, as desired.


The subject systems and kits may also include one or more other reagents for performing any of the subject methods. The reagents may include one or more matrices, solvents, sample preparation reagents, buffers, desalting reagents, enzymatic reagents, denaturing reagents, probes, polynucleotides, vectors (e.g., plasmid or viral vectors), etc., where calibration standards such as positive and negative controls may be provided as well. As such, the kits may include one or more containers such as vials or bottles, with each container containing a separate component for carrying out a sample processing or preparing step and/or for carrying out one or more steps for producing a normalized sample according to the present invention.


In addition to above-mentioned components, the subject kits typically further include instructions for using the components of the kit to practice the subject methods. The instructions for practicing the subject methods are generally recorded on a suitable recording medium. For example, the instructions may be printed on a substrate, such as paper or plastic, etc. As such, the instructions may be present in the kits as a package insert, in the labeling of the container of the kit or components thereof (i.e., associated with the packaging or sub-packaging) etc. In other embodiments, the instructions are present as an electronic storage data file present on a suitable computer readable storage medium, e.g. CD-ROM, diskette, etc. In yet other embodiments, the actual instructions are not present in the kit, but means for obtaining the instructions from a remote source, e.g. via the internet, are provided. An example of this embodiment is a kit that includes a web address where the instructions can be viewed and/or from which the instructions can be downloaded. As with the instructions, this means for obtaining the instructions is recorded on a suitable substrate.


In addition to the subject database, programming and instructions, the kits may also include one or more control samples and reagents, e.g., two or more control samples for use in testing the kit.


Example 1

The Differential Expression of SP100—We utilized the screen of the present invention with a large gene expression microarray dataset performed on Illumina microarrays including >400 samples comprised of normal human cell lines including such cell types derived from all three embryonic germ layers as normal human astrocytes, normal human articular chondrocytes, normal bronchial epithelial cells, adult-derived stein cells such as mesenchymal, adipocyte, and dental pulp stem cells, hES-derived clonal embryonic progenitor lines, pluripotent stem (hESCs), hESCs, iPS lines and an EC line. As shown in FIG. 58, SP100 is expressed in essentially all somatic cell types but is not expressed at all in hES cell lines or established iPS cell lines.


Example 2

Knockdown/inhibition of SP100 expression followed by transcriptional reprogramming accelerates reprogramming while reducing the accumulation of mutations. The hES cell-derived clonal embryonic progenitor cell lines CM02 and EN13 (see U.S. Patent Publication 20080070303, entitled “Methods to accelerate the isolation of novel cell strains from pluripotent stem cells and cells obtained thereby”; and U.S. patent application Ser. No. 12/504,630 filed on Jul. 16, 2009 and titled “Methods to Accelerate the Isolation of Novel Cell Strains from Pluripotent Stem Cells and Cells Obtained Thereby”, each of which is incorporated by reference herein in its entirety) are first cultured with retrovirus expressing silencing RNA directed to SP100 and the down-regulation is confirmed by qPCR. The cells are then cryopreserved or reprogrammed within two days by the exogenous administration of OCT4, MYC, KLF4, and SOX2 (see Takahashi and Yamanaka 2006 Aug. 25; 126(4):663-76; U.S. patent application Ser. No. 12/086,479, published as US2009/0068742 and entitled “Nuclear Reprogramming Factor”, each of which is incorporated herein by reference) and by the method described in PCT/US06/30632, published as WO/2007/019398 and entitled “Improved Methods of Reprogramming Animal Somatic Cells”, incorporated by reference herein in its entirety. The cells may also be conditioned to knockdown/inhibit the expression of the LMNA gene. Control lines that have not been preconditioned by the knockdown of SP100 or LMNA or both SP100 and LMNA are reprogrammed in parallel to demonstrate the shorted time to reprogramming to pluripotency and are sequenced to compare the accumulated mutations in the cells and the lower rate of mutations in the cells preconditioned to lower SP100, LMNA, or both gene products. LMNA expression has been shown previously to be low/absent from ES cells but present in many somatic cells.


Example 3

Knockdown/inhibition of SP100 expression followed by culturing under conditions for propagating ES cells.—Differentiated mammalian cells (e.g., human cells) are treated to knockdown or inhibit SP100 gene expression (e.g., as described above). The cells may also be treated to knockdown/inhibit the expression of LMNA gene. The cells are cultured under conditions that promote the propagation of ES cells. Any convenient ES cell propagation condition can be used, e.g., on feeders or in feeder free media capable of propagating ES cells. ES colonies are identified in the culture. Cells from the identified ES colony are then evaluated for ES markers, e.g., Oct4, TRA 1-60, TRA 1-81, SSEA4, etc., and those having ES cell phenotype are expanded. In certain embodiments, LMNA-negative cells are used in the above protocol, such as peripheral mononuclear cells (e.g., CD34+ or CD133+ cells). Control lines that have not been preconditioned by the knockdown of SP100 or LMNA or both SP00 and LMNA can be reprogrammed in parallel to demonstrate the effectiveness of the preconditioning.


Example 4

Additional genes differentially expressed in normal versus diverse cancer types. RNA was obtained from cultured diverse cultured human cell types, normal human tissues, and malignant human tumors and analyzed on Illumina gene expression microarrays. As shown in Table VI, genes are easily identified that provide novel diagnostics for cancer and targets for cancer therapy.


Example 5

DSCR8 expression in diverse cancer types. RNA was obtained from cultured diverse cultured human cell types, normal human tissues, and malignant human tumors and analyzed on Illumina gene expression microarrays. The gene encoding the protein down syndrome critical region gene 8 DSCR8 also known as MMA-1a (Illumina Probe ID 4280132, accession number NM203428.1) was detected as a gene expressed in relatively higher levels in testis and diverse cancers compared to normal cultured somatic cell types and tissues. There are reports that DSCR8 is expressed in testis and in melanoma (de Wit, N. J. et al Expression profiling of MMA-1a and splice variant MMA-1b: new cancer/testis antigens identified in human melanoma. Int. J. Cancer 98:547-553) and uterine (Risinger, J. I. et al (2007) Global expression analysis of cancer/testis genes in uterine cancers reveals a high incidence of BORIS expression. Clin. Cancer Res. 13:1713-1719) cancer. Measurements of DSCR8 may be useful for screening or diagnosing a wide array of cancers. While these previous reports suggest DSCR8 is expressed in relatively specifically in testis compared to other human tissues and report that it is expressed in uterine cancers and melanomas, they do not report that the relative expression of DSCR8 is diagnostic of the malignant tumors described herein. Surprisingly, as shown in FIG. 18, while diverse cultured normal somatic cell types such as brain microvascular endothelial cells, dermal fibroblasts, smooth muscle cells, esophageal epithelial cells, urothelial cells, pulmonary epithelial cells, prostate epithelial cells, hepatocytes, astrocytes, as well as others and normal tissues tested express relatively low levels of signal (i.e. either background signal of <100 RFU or in the case of eye-derived cells low (<250 RFUs)), samples of normal testis, and diverse malignant tumors expressed the gene at relatively high levels (>250 RFU). Examples of such tumors are: endometrial adenocarcinoma (as predicted based on the art), small cell lung cancer, bladder carcinoma, seminoma of the testis, adenocarcinoma of the stomach, the myelogenous leukemia cell line K562, the ovarian cancer cell line OVCAR3, and the melanoma cell line G361 (as expected in the art). Since sensitive technologies exist to express to detect genes such as DSCR8, said nucleotide probes such as PCR primers or the oligonucleotide probe used in the microarray described herein (TCCCACTTGGCAGGGGCCGTCTTGTCCACTCGTTTCTGTAAACATGGGTG), (SEQ ID NO:190) as well as other detection techniques described herein including but not limited to the detection of the protein in tissue samples or blood using monoclonal or polyclonal antibodies, may be used in the unexpected manner described herein to screen for or to otherwise stage the wide array of cancers described above.


In addition, the specific expression of DSCR8 in varied malignancies may provide novel therapeutic strategies wherein the knockdown or inhibition of the activity of the protein encoded by DSCR8 or down-regulating the expression or translation of the gene may be used in reducing tumor mass and treating cancer.


Example 6

qPCR was performed on bladder tumor tissue, normal bladder tissue and normal bladder tissue that was located adjacent to a bladder tumor. Positive controls were bladder tumors previously assayed by microarray.


Total RNA was extracted with the RNeasy Mini Kit (Qiagen) and cDNA generated using the SuperScript III reverse transcriptase in combination with random hexamer primers alone or in combination with oligo-dT primers (all reverse transcription components from Invitrogen/Life Technologies). PCRs were carried out on a 7900HT Sequence Detection System or a 7500 Real Time PCR System (Applied Biosystems/Life Technologies) utilizing SYBR Green or TaqMan chemistries. The primers used for the PCR reactions are listed in Tables 7 and 8, PCR parameters were: activation at 50° C. for 2 minutes; denature at 95° C. for 10 minutes; followed by 40-42 cycles of 95° C. for 15 seconds and 60° C. for 1 minute (72° C. for amplicons >than 120 bp) followed by dissociation at 95° C. for 15 seconds; 60° C. for 15 seconds, and 95° C. for 15 seconds.


The results are provided in FIGS. 59-70 and showed that MMP-1, MMP-12, COL10A1, FCRLB, SERPINB5, SFN, KRT6A, FCRLB, IL1A, KRT16, SLC1A6, and S100A2 were all elevated relative to normal bladder tissue (normalized to β-actin expression). Moreover, the signal pattern seen for the positive controls previously analyzed by microarray, was the same obtained by microarray confirming that the PCR reaction worked.


Example 7

The UPL System contains a relatively small number of short hydrolysis probes that cover an extensive proportion of the human mRNA transcriptome. UPL probes contain locked nucleic acids (LNAs) lowering the probes' melting temperatures. This allowed the probe and the longer, unmodified, primers to anneal at the same temperature.


Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed as follows:


Total RNA was extracted with the RNeasy Mini Kit (Qiagen) and cDNA generated using the SuperScript III reverse transcriptase in combination with random hexamer primers alone or in combination with oligo-dT primers (all reverse transcription components from Invitrogen/Life Technologies). PCRs were carried out on a 7900HT Sequence Detection System or a 7500 Real Time PCR System (Applied Biosystems/Life Technologies) utilizing SYBR® Green I (Applied Biosystems/Life Technologies) or TaqMan chemistries. TaqMan PCR was conducted with probes from the Universal Probe Library (UPL) (Roche) in combination with correspondingly designed primers. Primers: AAGCCTGCTGACGATGATG (Forward) (SEQ ID NO:191) and GCGAGGTAATGTATGCCCTTT (Reverse) (SEQ ID NO:192) were used with UPL 60. The results were normalized to β-actin expression levels.


The result, indicating that S100A7A was elevated in bladder cancer, is shown in FIG. 71.


Example 8

Example 8 provides ELISA data for MMP12, ColX and MMP11 (FIGS. 71-73).


Levels of the three protein markers were assayed in serum using a USCN ELISA kit (USCN) according to the manufacturer's instructions. In brief, 100 μL of the blank, standards, and samples with specified dilutions were added to the appropriate wells of a 96 well plate followed by 2 hours of incubation at 37° C. After removal of the liquid, 100 ul of Detection Reagent A was added to each well and incubated for 1 hour at 37° C. After removal of Reagent A, each well was washed 3 times with 350 uL of wash solution. 100 uL of Detection Reagent B was added to each well and then incubated for 30 minutes at 37° C. After removal of Reagent B, each well was washed 5 times with 350 uL of wash solution. 90 uL of Substrate solution was added to each well and incubated for 15-25 minutes at 37° C. 50 uL of Stop Solution was added to each well. The plate was read either on the Molecular Devices SpectraMax250 or the BioTek Synergy H1 plate reader at 450 nm. A standard curve was derived from the standards supplied in the kit and the sample values were extrapolated from this curve.


The results are shown in FIGS. 72-74 that MMP12, ColX and MMP11 are all elevated in bladder cancer samples.


Example 9

Human urine samples from healthy subjects and cancer patients were analyzed by qPCR for expression of the markers COL10A1, MMP11, SFN, FCRLB, as described below.


RNA was extracted from cells in voided urine with the ZR Urine RNA Isolation Kit™ (Zymo Research) then reverse-transcribed using SuperScript III reverse transcriptase in the presence of random hexamer and oligo-dT primers (Invitrogen/Life Technologies). Following PCR with 50 cycles, products were analyzed on pre-cast 4% Agarose (HR) gels containing ethidium bromide (E-Gel®, Invitrogen/Life Technologies). Urine specimens: all from male individuals, three with bladder cancer (1-3), and three healthy controls (A-C). GAPDH served as loading and/or positive control. The following primers were used: COL10A1: ES577-COL10A1-F and ES578-COL10A1-R, MMP11: JK1178-MMP11-F and JK1179-MMP111-R, SFN: JK1206-SFN-F and JK1207-SFN-R, FCRLB: JK1200-FCRLB-F and JK1201-FCRLB-R, GAPDH: ES312-GAPD-F2 and ES313-GAPD-R2.


The results shown in FIG. 75 indicate that elevated levels of the markers COL10A1, MMP11, SFN, FCRLB are seen in the urine of cancer patients relative to healthy patients.


Example 10

qPCR was performed on bladder tumor tissue, normal bladder tissue and normal bladder tissue that was located adjacent to a bladder tumor. Positive controls were bladder tumors previously assayed by microarray.


Total RNA was extracted with the RNeasy Mini Kit (Qiagen) and cDNA generated using the SuperScript III reverse transcriptase in combination with random hexamer primers alone or in combination with oligo-dT primers (all reverse transcription components from Invitrogen/Life Technologies). PCRs were carried out on a 7900HT Sequence Detection System or a 7500 Real Time PCR System (Applied Biosystems/Life Technologies) utilizing SYBR Green or TaqMan chemistries. The primers used for the PCR reactions were: ACTGGTGGCAGGGGCTTCTAGC (SEQ ID NO:196) (Forward primer) and GCCATCTAAAGTAACTAAACCCATAGAC (SEQ ID NO: 197) (REVERSE PRIMER). PCR parameters were: activation at 50° C. for 2 minutes; denature at 95° C. for 10 minutes; followed by 40-42 cycles of 95° C. for 15 seconds and 60° C. for 1 minute (72° C. for amplicons >than 120 bp) followed by dissociation at 95° C. for 15 seconds; 60° C. for 15 seconds, and 95° C. for 15 seconds.


The results are provided in FIG. 76 and showed that SERPINB5 were all elevated relative to normal bladder tissue (normalized to β-actin expression). Moreover, the signal pattern seen for the positive controls previously analyzed by microarray, was the same obtained by microarray confirming that the PCR reaction worked.


Although the present invention has been described in considerable detail with reference to certain preferred embodiments thereof, other versions are possible. Therefore the spirit and scope of the appended claims should not be limited to the description and the preferred versions contained within this specification.









TABLE 5





SEQUENCES


Cancer-associated sequences disclosed in this application may


include the sequences disclosed below as well as any homologs,


complementary sequences, or combinations thereof.
















Homo sapiens melanoma antigen family A, 10 (MAGEA10), transcript variant 2,



mRNA


NCBI Reference Sequence: NM_021048.3 (SEQ ID. NO. 1)












1
gagaagcgag gttctcgttc tgagggacag gcttgagatc ggctgaagag agcgggccca



61
ggctctgtga ggaggcaagg gaggtgagaa ccttgctctc agagggtgac tcaagtcaac
121



acagggaacc cctcttttct acagacacag tgggtcgcag gatctgacaa gagtccaggt
181



tctcagggga cagggagagc aagaggtcaa gagctgtggg acaccacaga gcagcactga
241



aggagaagac ctgcctgtgg gtccccatcg cccaagtcct gcccacactc ccacctgcta
301



ccctgatcag agtcatcatg cctcgagctc caaagcgtca gcgctgcatg cctgaagaag
361



atcttcaatc ccaaagtgag acacagggcc tcgagggtgc acaggctccc ctggctgtgg
421



aggaggatgc ttcatcatcc acttccacca gctcctcttt tccatcctct tttccctcct
481



cctcctcttc ctcctcctcc tcctgctatc ctctaatacc aagcacccca gaggaggttt
541



ctgctgatga tgagacacca aatcctcccc agagtgctca gatagcctgc tcctccccct
601



cggtcgttgc ttcccttcca ttagatcaat ctgatgaggg ctccagcagc caaaaggagg
661



agagtccaag caccctacag gtcctgccag acagtgagtc tttacccaga agtgagatag
721



atgaaaaggt gactgatttg gtgcagtttc tgctcttcaa gtatcaaatg aaggagccga
781



tcacaaaggc agaaatactg gagagtgtca taaaaaatta tgaagaccac ttccctttgt
841



tgtttagtga agcctccgag tgcatgctgc tggtctttgg cattgatgta aaggaagtgg
901



atcccactgg ccactccttt gtccttgtca cctccctggg cctcacctat gatgggatgc
961



tgagtgatgt ccagagcatg cccaagactg gcattctcat acttatccta agcataatct
1021



tcatagaggg ctactgcacc cctgaggagg tcatctggga agcactgaat atgatggggc
1081



tgtatgatgg gatggagcac ctcatttatg gggagcccag gaagctgctc acccaagatt
1141



gggtgcagga aaactacctg gagtaccggc aggtgcctgg cagtgatcct gcacggtatg
1201



agtttctgtg gggtccaagg gctcatgctg aaattaggaa gatgagtctc ctgaaatttt
1261



tggccaaggt aaatgggagt gatccaagat ccttcccact gtggtatgag gaggctttga
1321



aagatgagga agagagagcc caggacagaa ttgccaccac agatgatact actgccatgg
1381



ccagtgcaag ttctagcgct acaggtagct tctcctaccc tgaataaagt aagacagatt
1441



cttcactgtg ttttaaaagg caagtcaaat accacatgat tttactcata tgtggaatct
1501



aaaaaaaaaa aaaaaaaaa











Homo sapiens Down syndrome critical region gene 8 (DSCR8), transcript variant



2, mRNA


NCBI Reference Sequence: NM_203428.1 (SEQ ID. NO. 2)












1
accccaccct aatcttgtta tgcaaatagg cttcccactt ggcaggggcc gtcttgtcca



61
ctcgtttctg taaacatggg tggcaaaaag agaagatgga gctgccattt agaacatgcc
121



taatcccagc ttcatcttgc tgagcaaaaa tgaaggagcc tggacccaac tttgttactg
181



tgagaaaggg tcttcattca ttcaagatgg catttgttaa gcacctacta caaaccttgg
241



aaatcaagaa agttctggaa tgatgaagct gttcatgcca agaccgaaag tgctggccca
301



gtatgagtcc attcagttca tgccgtgaca attttcttgg aactcctttt tattgttagt
361



tctcacttgt ttccatattt agtgaatgta catttaattg caaagctgtc attaataaaa
421



attcttatag tacctcaaaa a











Homo sapiens matrix metallopeptidase 12 (macrophage elastase) (MMP12), mRNA



NCBI Reference Sequence: NM_002426.2 (SEQ ID. NO. 3)












1
agaaaggaac acagtaaact gaattgatcc gtttagaagt ttacaatgaa gtttcttcta



61
atactgctcc tgcaggccac tgcttctgga gctcttcccc tgaacagctc tacaagcctg
121



gaaaaaaata atgtgctatt tggtgaaaga tacttagaaa aattttatgg ccttgagata
181



aacaaacttc cagtgacaaa aatgaaatat agtggaaact taatgaagga aaaatctcaa
241



gaaatgcagc acttcttggg tctgaaagtg accgggcaac tggacacatc taccctggag
301



atgatgcacg cacctcgatg tggagtcccc gatgtccatc atttcaggga aatgccaggg
361



gggcccgtat ggaggaaaca ttatatcacc tacagaatca ataattacac acctgacatg
421



aaccgtgagg atgttgacta cgcaatccgg aaagctttcc aagtatggag taatgttacc
481



cccttgaaat tcagcaagat taacacaggc atggctgaca ttttggtggt ttttgcccgt
541



ggagctcatg gagacttcca tgcttttgat ggcaaaggtg gaatcctagc ccatgctttt
601



ggacctggat ctggcattgg aggggatgca catttcgatg aggacgaatt ctggactaca
661



cattcaggag gcacaaactt gttcctcact gctgttcacg agattggcca ttccttaggt
721



cttggccatt ctagtgatcc aaaggccgta atgttcccca cctacaaata tgttgacatc
781



aacacatttc gcctctctgc tgatgacata cgtggcattc agtccctgta tggagaccca
841



aaagagaacc aacgattgcc aaatcctgac aattcagaac cagctctctg tgaccccaat
901



ttgagttttg atgctgtcac taccgtggga aataagatct ttttcttcaa agacaggttc
961



ttctggctga aggtttctga gagaccaaag accagtgtta atttaatttc ttccttatgg
1021



ccaaccttgc catctggcat tgaagctgct tatgaaattg aagccagaaa tcaagttttt
1081



ctttttaaag atgacaaata ctggttaatt agcaatttaa gaccagagcc aaattatccc
1141



aagagcatac attcttttgg ttttcctaac tttgtgaaaa aaattgatgc agctgttttt
1201



aacccacgtt tttataggac ctacttcttt gtagataacc agtattggag gtatgatgaa
1261



aggagacaga tgatggaccc tggttatccc aaactgatta ccaagaactt ccaaggaatc
1321



gggcctaaaa ttgatgcagt cttctactct aaaaacaaat actactattt cttccaagga
1381



tctaaccaat ttgaatatga cttcctactc caacgtatca ccaaaacact gaaaagcaat
1441



agctggtttg gttgttagaa atggtgtaat taatggtttt tgttagttca cttcagctta
1501



ataagtattt attgcatatt tgctatgtcc tcagtgtacc actacttaga gatatgtatc
1561



ataaaaataa aatctgtaaa ccataggtaa tgattatata aaatacataa tatttttcaa
1621



ttttgaaaac tctaattgtc cattcttgct tgactctact attaagtttg aaaatagtta
1681



ccttcaaagg ccaagagaat tctatttgaa gcatgctctg taagttgctt cctaacatcc
1741



ttggactgag aaattatact tacttctggc ataactaaaa ttaagtatat atattttggc
1801



tcaaataaaa ttgaaaaaaa aatca











Homo sapiens chemokine (C—X—C motif) ligand 9 (CXCL9), mRNA



NCBI Reference Sequence: NM_002416.1 (SEQ ID. NO. 4)












1
atccaataca ggagtgactt ggaactccat tctatcacta tgaagaaaag tggtgttctt



61
ttcctcttgg gcatcatctt gctggttctg attggagtgc aaggaacccc agtagtgaga
121



aagggtcgct gttcctgcat cagcaccaac caagggacta tccacctaca atccttgaaa
181



gaccttaaac aatttgcccc aagcccttcc tgcgagaaaa ttgaaatcat tgctacactg
241



aagaatggag ttcaaacatg tctaaaccca gattcagcag atgtgaagga actgattaaa
301



aagtgggaga aacaggtcag ccaaaagaaa aagcaaaaga atgggaaaaa acatcaaaaa
361



aagaaagttc tgaaagttcg aaaatctcaa cgttctcgtc aaaagaagac tacataagag
421



accacttcac caataagtat tctgtgttaa aaatgttcta ttttaattat accgctatca
481



ttccaaagga ggatggcata taatacaaag gcttattaat ttgactagaa aatttaaaac
541



attactctga aattgtaact aaagttagaa agttgatttt aagaatccaa acgttaagaa
601



ttgttaaagg ctatgattgt ctttgttctt ctaccaccca ccagttgaat ttcatcatgc
661



ttaaggccat gattttagca atacccatgt ctacacagat gttcacccaa ccacatccca
721



ctcacaacag ctgcctggaa gagcagccct aggcttccac gtactgcagc ctccagagag
781



tatctgaggc acatgtcagc aagtcctaag cctgttagca tgctggtgag ccaagcagtt
841



tgaaattgag ctggacctca ccaagctgct gtggccatca acctctgtat ttgaatcagc
901



ctacaggcct cacacacaat gtgtctgaga gattcatgct gattgttatt gggtatcacc
961



actggagatc accagtgtgt ggctttcaga gcctcctttc tggctttgga agccatgtga
1021



ttccatcttg cccgctcagg ctgaccactt tatttctttt tgttcccctt tgcttcattc
1081



aagtcagctc ttctccatcc taccacaatg cagtgccttt cttctctcca gtgcacctgt
1141



catatgctct gatttatctg agtcaactcc tttctcatct tgtccccaac accccacaga
1201



agtgctttct tctcccaatt catcctcact cagtccagct tagttcaagt cctgcctctt
1261



aaataaacct ttttggacac acaaattatc ttaaaactcc tgtttcactt ggttcagtac
1321



cacatgggtg aacactcaat ggttaactaa ttcttgggtg tttatcctat ctctccaacc
1381



agattgtcag ctccttgagg gcaagagcca cagtatattt ccctgtttct tccacagtgc
1441



ctaataatac tgtggaacta ggttttaata attttttaat tgatgttgtt atgggcagga
1501



tggcaaccag accattgtct cagagcaggt gctggctctt tcctggctac tccatgttgg
1561



ctagcctctg gtaacctctt acttattatc ttcaggacac tcactacagg gaccagggat
1621



gatgcaacat ccttgtcttt ttatgacagg atgtttgctc agcttctcca acaataagaa
1681



gcacgtggta aaacacttgc ggatattctg gactgttttt aaaaaatata cagtttaccg
1741



aaaatcatat aatcttacaa tgaaaaggac tttatagatc agccagtgac caaccttttc
1801



ccaaccatac aaaaattcct tttcccgaag gaaaagggct ttctcaataa gcctcagctt
1861



tctaagatct aacaagatag ccaccgagat ccttatcgaa actcatttta ggcaaatatg
1921



agttttattg tccgtttact tgtttcagag tttgtattgt gattatcaat taccacacca
1981



tctcccatga agaaagggaa cggtgaagta ctaagcgcta gaggaagcag ccaagtcggt
2041



tagtggaagc atgattggtg cccagttagc ctctgcagga tgtggaaacc tccttccagg
2101



ggaggttcag tgaattgtgt aggagaggtt gtctgtggcc agaatttaaa cctatactca
2161



ctttcccaaa ttgaatcact gctcacactg ctgatgattt agagtgctgt ccggtggaga
2221



tcccacccga acgtcttatc taatcatgaa actccctagt tccttcatgt aacttccctg
2281



aaaaatctaa gtgtttcata aatttgagag tctgtgaccc acttaccttg catctcacag
2341



gtagacagta tataactaac aaccaaagac tacatattgt cactgacaca cacgttataa
2401



tcatttatca tatatataca tacatgcata cactctcaaa gcaaataatt tttcacttca
2461



aaacagtatt gacttgtata ccttgtaatt tgaaatattt tctttgttaa aatagaatgg
2521



tatcaataaa tagaccatta atcag











Homo sapiens Down syndrome critical region gene 8 (DSCR8), transcript variant



3, mRNA. NM_203429.1 (SEQ ID. NO. 5)












1
accccaccct aatcttgtta tgcaaatagg cttcccactt ggcaggggcc gtcttgtcca



61
ctcgtttctg taaacatggg tggcaaaaag agaagatgga gctgccattt agaacatgcc
121



taatcccagc ttcatcttgc tgagcaaaaa tgaaggagcc tggacccaac tttgttactg
181



tgagaaaggg tcttcattca ttcaagatgg catttgttaa gcacctactg tgagtagatg
241



atctcctgtc aaagacagtt aacaaatcct cggaatattg cttcatgtac agttattgga
301



gatgagtaac ttacattctc ttaattgtaa tggttccttg gaaagtcatc gtggaaaatg
361



aaggctggct catacatttt cccagacagg aatttggctg ccaacaggga attctaaaca
421



actaaaaact ccagatgatg aatgcacaac ataatgatgg ttaaattaaa aaaaaaaaag
481



agcacgacaa accttggaaa tcaagaaagt tctggaatga tgaagctgtt catgccaaga
541



ccgaaagtgc tggcccagta tgagtccatt cagttcatgc cgtgacaatt ttcttggaac
601



tcctttttat tgttagttct cacttgtttc catatttagt gaatgtacat ttaattgcaa
661



agctgtcatt aataaaaatt cttatagtac ctcaaaaa











Homo sapiens keratin 81 (KRT81), mRNA



NCBI Reference Sequence: NM_002281.2 (SEQ ID. NO. 6)












1
actccaggtc ccctatcctg tcctctgcaa cccaaacgtc caggaggatc atgacctgcg



61
gatcaggatt tggtgggcgc gccttcagct gcatctcggc ctgcgggccg cgccccggcc
121



gctgctgcat caccgccgcc ccctaccgtg gcatctcctg ctaccgcggc ctcaccgggg
181



gcttcggcag ccacagcgtg tgcggaggct ttcgggccgg ctcctgcgga cgcagcttcg
241



gctaccgctc cgggggcgtg tgcgggccca gtcccccatg catcaccacc gtgtcggtca
301



acgagagcct cctcacgccc ctcaacctgg agatcgaccc caacgcgcag tgcgtgaagc
361



aggaggagaa ggagcagatc aagtccctca acagcaggtt cgcggccttc atcgacaagg
421



tgcgcttcct ggagcagcag aacaaactgc tggagacaaa gctgcagttc taccagaacc
481



gcgagtgttg ccagagcaac ctggagcccc tgtttgaggg ctacatcgag actctgcggc
541



gggaggccga gtgcgtggag gccgacagcg ggaggctggc ctcagagctt aaccacgtgc
601



aggaggtgct ggagggctac aagaagaagt atgaggagga ggtttctctg agagcaacag
661



ctgagaacga gtttgtggct ctgaagaagg atgtggactg cgcctacctc cgcaagtcag
721



acctggaggc caacgtggag gccctgatcc aggagatcga cttcctgagg cggctgtatg
781



aggaggagat ccgcattctc cagtcgcaca tctcagacac ctccgtggtt gtcaagctgg
841



acaacagccg ggacctgaac atggactgca tcattgccga gattaaggca cagtatgacg
901



acattgtcac ccgcagccgg gccgaggccg agtcctggta ccgcagcaag tgtgaggaga
961



tgaaggccac ggtgatcagg cacggggaga ccctgcgccg caccaaggag gagatcaatg
1021



agctgaaccg catgatccaa aggctgacgg ccgaggtgga gaatgccaag tgccagaact
1081



ccaagctgga ggccgcggtg gctcagtctg agcagcaggg tgaggcagcc ctcagtgatg
1141



cccgctgcaa gctggccgag ctggagggcg ccctgcagaa ggccaagcag gacatggcct
1201



gcctgatcag ggagtaccag gaggtgatga actccaagct gggcctggac atcgagatcg
1261



ccacctacag gcgcctgctg gagggcgagg agcagaggct atgtgaaggc attggggctg
1321



tgaatgtctg tgtcagcagc tcccggggcg gggtcgtgtg cggggacctc tgcgtgtcag
1381



gctcccggcc agtgactggc agtgtctgca gcgctccgtg caacgggaac gtggcggtga
1441



gcaccggcct gtgtgcgccc tgcggccaat tgaacaccac ctgcggaggg ggttcctgcg
1501



gcgtgggctc ctgtggtatc agctccctgg gtgtggggtc ttgcggcagc agctgccgga
1561



aatgttaggc accccaactc aagtcccagg ccccaggcat ctttgcctgc cctgccttgc
1621



ttggcccagt cagtcaggcg cctggagaag tgctcagcta cttctcctgc actttgaaag
1681



acccctccca ctcctggcct cacatttctc tgtgtgatcc cccacttctg ggctctgcca
1741



ccccacagtg ggaaaggcca ccctagaaag aagtccgctg gcacccatag gaaggggcct
1801



caggagcagg aagggccagg accagaacct tgcccacggc aactgccttc ctgcctctcc
1861



ccttcctcct ctgctcttga tctgtgtttc aataaattaa tgtagccaaa aaaaaaaaaa
1921



aaaaa










PREDICTED: Homo sapiens hypothetical protein LOC729826 (LOC729826), mRNA


NCBI Reference Sequence: XM_001131447.1 (SEQ ID. NO. 7)












1
aagagtaaaa tgtctcttta tctggaactt acatgatgat ttttccaaca aaataatttc



61
caaatagatc acatagaaaa tgtctctttt aatatacttt acagtagtaa aactataaca
121



tctcaattgt tttttttaaa taaatttgaa taatggttta ggtcatttga taaatatcac
181



cttgtaacta ataagatgaa acaaggctaa ataggaccaa ttaagcacgt gatttaaata
241



tcgatatgta gtgagtaaaa gagtaatcca actaccagta gaagattact acatttagta
301



ctataacaag tataacactg ttcctaaaaa aaagtgcttt cttatgttta agatttattt
361



taatgtcaaa cacaaataat tagatcttta aatgaacaat ttgggagtta aatccattgc
421



ttctgatttt tatagatttt atggtctagg aaatctatac tgtctgattt gatcccattt
481



aactgtaaga tttttacaca tgttgcactc tactagctgg caggaaaatt attttaatcg
541



actgaatgaa agtattattt catgtaaaag tttattatat caaggaaatg atttaggtca
601



gaagctagaa tctatataaa gtcagctttt gaaaataaag acagacaaat ctttttttac
661



attattataa aagagctaag ttgcaaacaa ctatccttga gaccagacca ttttttttta
721



agctgaaatt ttctaataat tgcaatggca aaacaccatt tgcaatttct tccctcccac
781



ctcccaggtg gttcaacaat tccacttcca aacagcattt cccatcagtt tttaaaagct
841



acttacaaag tgttattcta ctaccacttt taaatacatc aagcacttcc aaatatctag
901



aaagactaga tatttcatat aacttgtcca ccacatacac atcactgtta aataaaattg
961



cacacacata acaatggtta tcatctgagg tatcttctaa atgtggccat tttggccttg
1021



aatcattccc tcctcccttc cttctctgcc ttcaatccag tggacaagta caggcacatg
1081



taatgcttag agatggtcga acaaattcct atgcaaaagt ctttacagaa gacaagtttt
1141



cctatgaatt ttaacacaaa gcgtacaaaa tatgctaatt ttactacttt gtcatacact
1201



ggcaacctct ttaacaacta gagactagat gttgaaaaat taggactatt tgtccattat
1261



atatactata tacagagcaa aacaaaatgc acaaaacgta tagaaaaatg gtgtctgaaa
1321



atgtccaagt atgaacacac tagtatatta cctcttgcaa tttcttccct cctacctcct
1381



ctaaaccatt gaacaagtat acacattact atactgctca caaaggtggc ttcacaattc
1441



aatttccaaa agcatttcct atgaatttta gcaaaaagat atttacaaag tggtatttta
1501



ctacctatac atttaacata catcgggcac ttctaaacat ctagatagac tagatgtttc
1561



aagtaaggag ttaatttgtc tactatgtat acagcagtct tgaataaact gcaaacatgt
1621



aacaacagtt ataatttgaa agagtcttcc aaatgtgaac attctggcct agaacccttc
1681



ccatcgccat caacccagaa gacatcaaat tttcagaaga caatctttcc taggacttgt
1741



aaaacaaaat gtacaaaata tattagttta ctaactctac ttttgtcata cactggcaac
1801



ctctttaaca tccagaaaga ctagatgttg tcaattagga ctcgtctgtc ctttatgtac
1861



attatataca cagataagta aaacaaaatg cacagacata catcttgcct cgctgtaaac
1921



aggatggcat agagctctct gcacctcccc ctcctctctc ctcccctgaa ccactgcaca
1981



aacacaatga gtattactca acaggtgatt tgaccattcc ccccaaaaaa tatttcctat
2041



gaattgtaac aaaaaggtat ttacaaaatg tgattttgct acctctaatt ttaacatatc
2101



aggcacttca gaacatctaa aaagaagaga catttcaaaa aagcttagca ttgtcaacta
2161



tatacacagt agtgaggaat aaaatgcaca caaaacaatg gatagaatat gaaaatgtct
2221



tctaaatatg accagtctag catagaacct tcttctcttc cttctcaggt cttccagctc
2281



catgtcatct aacccactta acaaacgtga acgtatcgct tccagaggcc gtcttaacaa
2341



ttccatttcc aaaagtcatc tccagaagac atgtattttc tacgatttct tttaaacaaa
2401



tgagaattta caagatgtgt aactttctaa ctcttttatc ataactcgac aacctctttc
2461



catctagaag ggctagatgt gacaaatgtt ttctattaaa aggttggggt ggagttgaga
2521



gcagcttttt catattatat acacaggcct tccataaacg gccagtaaat cttcccagag
2581



ggtggtgggc atttccaact ggccaaacgt ggcctgtcat tctaccattt ctctcttccg
2641



acagcaaagt ctggtagaat gaagaccaac cgcccgatgg ccgctaaccg ttccacccgt
2701



cgttgttcgg gacttcgctc acctttcagg ccccttaagg cctttgtccg ttgtcgtcag
2761



gactaggtag gtctcgccca atggcgacag agtggtcacc cgggaaccgg atctgcgcgg
2821



ctccgtggcc gaaagaggcg gccaagcctg cttgcgtccc taggccgcct tccgggccgt
2881



ccacgcctta atggcctccg ccgcgcggcg ttcgagcggc cgccatactt cccggcccac
2941



cacgcccggc gccgcccaaa ggcgctgcgt cctggcggct ctgcgggggt ttcgtcgagg
3001



cccagcaggc ttgggtcggg agacccgggt gccggcgggg gccgggctgg gagacgccac
3061



ggccgccatc agtcaccgag gtggggtggg aaagagaggt tcgctgcggc ttcaaggtct
3121



gagcacagcc agtgggcagc cacagcagag gcctccggtg tctgcagggc agagggctcg
3181



gcctgtcccg aggcccccca gttcatccgc cggcccgggg ccagagggcc ctgaaggcgc
3241



gggctgcgtt ctgcgtctct ccgcgatctc tgccggaccg gaactaagac cagaccattt
3301



tcttctggag taa











Homo sapiens parathyroid hormone-like hormone (PTHLH), transcript variant 3,



mRNA


NCBI Reference Sequence: NM_198964.1 (SEQ ID. NO. 8)












1
ctggttcgca aagaagctga cttcagaggg ggaaactttc ttcttttagg aggcggttag



61
ccctgttcca cgaacccagg agaactgctg gccagattaa ttagacattg ctatgggaga
121



cgtgtaaaca cactacttat cattgatgca tatataaaac cattttattt tcgctattat
181



ttcagaggaa gcgcctctga tttgtttctt ttttcccttt ttgctctttc tggctgtgtg
241



gtttggagaa agcacagttg gagtagccgg ttgctaaata agtcccgagc gcgagcggag
301



acgatgcagc ggagactggt tcagcagtgg agcgtcgcgg tgttcctgct gagctacgcg
361



gtgccctcct gcgggcgctc ggtggagggt ctcagccgcc gcctcaaaag agctgtgtct
421



gaacatcagc tcctccatga caaggggaag tccatccaag atttacggcg acgattcttc
481



cttcaccatc tgatcgcaga aatccacaca gctgaaatca gagctacctc ggaggtgtcc
541



cctaactcca agccctctcc caacacaaag aaccaccccg tccgatttgg gtctgatgat
601



gagggcagat acctaactca ggaaactaac aaggtggaga cgtacaaaga gcagccgctc
661



aagacacctg ggaagaaaaa gaaaggcaag cccgggaaac gcaaggagca ggaaaagaaa
721



aaacggcgaa ctcgctctgc ctggttagac tctggagtga ctgggagtgg gctagaaggg
781



gaccacctgt ctgacacctc cacaacgtcg ctggagctcg attcacggta acaggcttct
841



ctggcccgta gcctcagcgg ggtgctctca gctgggtttt ggagcctccc ttctgccttg
901



gcttggacaa acctagaatt ttctcccttt atgtatctct atcgattgtg tagcaattga
961



cagagaataa ctcagaatat tgtctgcctt aaagcagtac ccccctacca cacacacccc
1021



tgtcctccag caccatagag aggcgctaga gcccattcct ctttctccac cgtcacccaa
1081



catcaatcct ttaccactct accaaataat ttcatattca agcttcagaa gctagtgacc
1141



atcttcataa tttgctggag aagtgtgttt cttcccctta ctctcacacc tgggcaaact
1201



ttcttcagtg tttttcattt cttacgttct ttcacttcaa gggagaatat agaagcattt
1261



gatattatct acaaacactg cagaacagca tcatgtcata aacgattctg agccattcac
1321



actttttatt taattaaatg tatttaatta aatctcaaat ttattttaat gtaaagaact
1381



taaattatgt tttaaacaca tgccttaaat ttgtttaatt aaatttaact ctggtttcta
1441



ccagctcata caaaataaat ggtttctgaa aatgtttaag tattaactta caaggatata
1501



ggtttttctc atgtatcttt ttgttcattg gcaagatgaa ataatttttc tagggtaatg
1561



ccgtaggaaa aataaaactt cacatttatg tggcttgttt atccttagct cacagattga
1621



ggtaataatg acactcctag actttgggat caaataactt agggccaagt cttgggtctg
1681



aatttattta agttcacaac ctagggcaag ttactctgcc tttctaagac tcacttacat
1741



cttctgtgaa atataattgt accaacctca tagagtttgg tgtcaactaa atgagattat
1801



atgtggacta aatatctgtc atatagtaaa cactcaataa attgcaacat attaaaaaaa
1861



aa











Homo sapiens matrix metallopeptidase 11 (stromelysin 3) (MPH), mRNA



NCBI Reference Sequence: NM_005940.3 (SEQ ID. NO. 9)












1
aagcccagca gccccggggc ggatggctcc ggccgcctgg ctccgcagcg cggccgcgcg



61
cgccctcctg cccccgatgc tgctgctgct gctccagccg ccgccgctgc tggcccgggc
121



tctgccgccg gacgcccacc acctccatgc cgagaggagg gggccacagc cctggcatgc
181



agccctgccc agtagcccgg cacctgcccc tgccacgcag gaagcccccc ggcctgccag
241



cagcctcagg cctccccgct gtggcgtgcc cgacccatct gatgggctga gtgcccgcaa
301



ccgacagaag aggttcgtgc tttctggcgg gcgctgggag aagacggacc tcacctacag
361



gatccttcgg ttcccatggc agttggtgca ggagcaggtg cggcagacga tggcagaggc
421



cctaaaggta tggagcgatg tgacgccact cacctttact gaggtgcacg agggccgtgc
481



tgacatcatg atcgacttcg ccaggtactg gcatggggac gacctgccgt ttgatgggcc
541



tgggggcatc ctggcccatg ccttcttccc caagactcac cgagaagggg atgtccactt
601



cgactatgat gagacctgga ctatcgggga tgaccagggc acagacctgc tgcaggtggc
661



agcccatgaa tttggccacg tgctggggct gcagcacaca acagcagcca aggccctgat
721



gtccgccttc tacacctttc gctacccact gagtctcagc ccagatgact gcaggggcgt
781



tcaacaccta tatggccagc cctggcccac tgtcacctcc aggaccccag ccctgggccc
841



ccaggctggg atagacacca atgagattgc accgctggag ccagacgccc cgccagatgc
901



ctgtgaggcc tcctttgacg cggtctccac catccgaggc gagctctttt tcttcaaagc
961



gggctttgtg tggcgcctcc gtgggggcca gctgcagccc ggctacccag cattggcctc
1021



tcgccactgg cagggactgc ccagccctgt ggacgctgcc ttcgaggatg cccagggcca
1081



catttggttc ttccaaggtg ctcagtactg ggtgtacgac ggtgaaaagc cagtcctggg
1141



ccccgcaccc ctcaccgagc tgggcctggt gaggttcccg gtccatgctg ccttggtctg
1201



gggtcccgag aagaacaaga tctacttctt ccgaggcagg gactactggc gtttccaccc
1261



cagcacccgg cgtgtagaca gtcccgtgcc ccgcagggcc actgactgga gaggggtgcc
1321



ctctgagatc gacgctgcct tccaggatgc tgatggctat gcctacttcc tgcgcggccg
1381



cctctactgg aagtttgacc ctgtgaaggt gaaggctctg gaaggcttcc cccgtctcgt
1441



gggtcctgac ttctttggct gtgccgagcc tgccaacact ttcctctgac catggcttgg
1501



atgccctcag gggtgctgac ccctgccagg ccacgaatat caggctagag acccatggcc
1561



atctttgtgg ctgtgggcac caggcatggg actgagccca tgtctcctca gggggatggg
1621



gtggggtaca accaccatga caactgccgg gagggccacg caggtcgtgg tcacctgcca
1681



gcgactgtct cagactgggc agggaggctt tggcatgact taagaggaag ggcagtcttg
1741



ggcccgctat gcaggtcctg gcaaacctgg ctgccctgtc tccatccctg tccctcaggg
1801



tagcaccatg gcaggactgg gggaactgga gtgtccttgc tccatccctg ttgtgaggtt
1861



ccttccaggg gctggcactg aagcaagggt gctggggccc catggccttc agccctggct
1921



gagcaactgg gctgtagggc agggccactt cctgaggtca ggtcttggta ggtgcctgca
1981



tctgtctgcc ttctggctga caatcctgga aatctgttct ccagaatcca ggccaaaaag
2041



ttcacagtca aatggggagg ggtattcttc atgcaggaga ccccaggccc tggaggctgc
2101



aacatacctc aatcctgtcc caggccggat cctcctgaag cccttttcgc agcactgcta
2161



tcctccaaag ccattgtaaa tgtgtgtaca gtgtgtataa accttcttct tctttttttt
2221



tttttaaact gaggattgtc attaaacaca gttgttttct aaaaaaaaaa aaaaaa











Homo sapiens S100 calcium binding protein A7 (S100A7), mRNA



NCBI Reference Sequence: NM_002963.3 (SEQ ID. NO. 10)












1
gtccaaacac acacatctca ctcatccttc tactcgtgac gcttcccagc tctggctttt



61
tgaaagcaaa gatgagcaac actcaagctg agaggtccat aataggcatg atcgacatgt
121



ttcacaaata caccagacgt gatgacaaga ttgagaagcc aagcctgctg acgatgatga
181



aggagaactt ccccaacttc cttagtgcct gtgacaaaaa gggcacaaat tacctcgccg
241



atgtctttga gaaaaaggac aagaatgagg ataagaagat tgatttttct gagtttctgt
301



ccttgctggg agacatagcc acagactacc acaagcagag ccatggagca gcgccctgtt
361



ccgggggcag ccagtgaccc agccccacca atgggcctcc agagacccca ggaacaataa
421



aatgtcttct cccaccagaa aaaaaaaaaa











Homo sapiens WNT1 inducible signaling pathway protein 3 (WISP3), transcript



variant 1, mRNA


NCBI Reference Sequence: NM_003880.2 (SEQ ID. NO. 11)












1
cctgagtccc gggaggaaag tgctcgccca ttcctgacct gtgacacgct cactgcgaag



61
gcaggttatt agaagagtcc catgaaaggt ggctccacgg tcccagcgac atgcaggggc
121



tcctcttctc cactcttctg cttgctggcc tggcacagtt ctgctgcagg gtacagggca
181



ctggaccatt agatacaaca cctgaaggaa ggcctggaga agtgtcagat gcacctcagc
241



gtaaacagtt ttgtcactgg ccctgcaaat gccctcagca gaagccccgt tgccctcctg
301



gagtgagcct ggtgagagat ggctgtggat gctgtaaaat ctgtgccaag caaccagggg
361



aaatctgcaa tgaagctgac ctctgtgacc cacacaaagg gctgtattgt gactactcag
421



tagacaggcc taggtacgag actggagtgt gtgcatacct tgtagctgtt gggtgcgagt
481



tcaaccaggt acattatcat aatggccaag tgtttcagcc caaccccttg ttcagctgcc
541



tctgtgtgag tggggccatt ggatgcacac ctctgttcat accaaagctg gctggcagtc
601



actgctctgg agctaaaggt ggaaagaagt ctgatcagtc aaactgtagc ctggaaccat
661



tactacagca gctttcaaca agctacaaaa caatgccagc ttatagaaat ctcccactta
721



tttggaaaaa aaaatgtctt gtgcaagcaa caaaatggac tccctgctcc agaacatgtg
781



ggatgggaat atctaacagg gtgaccaatg aaaacagcaa ctgtgaaatg agaaaagaga
841



aaagactgtg ttacattcag ccttgcgaca gcaatatatt aaagacaata aagattccca
901



aaggaaaaac atgccaacct actttccaac tctccaaagc tgaaaaattt gtcttttctg
961



gatgctcaag tactcagagt tacaaaccca ctttttgtgg aatatgcttg gataagagat
1021



gctgtatccc taataagtct aaaatgatta ctattcaatt tgattgccca aatgaggggt
1081



catttaaatg gaagatgctg tggattacat cttgtgtgtg tcagagaaac tgcagagaac
1141



ctggagatat attttctgag ctcaagattc tgtaaaacca agcaaatggg ggaaaagtta
1201



gtcaatcctg tcatataata aaaaaattag tgagtaaaaa aaaaaaaaaa aaaaaaaaaa
1261



aaaaaaaaaa aaaaaaaaaa aaaaaagaaa aaaaaaaaaa aaaaaaa











Homo sapiens chemokine (C—X—C motif) ligand 10 (CXCL10), mRNA



NCBI Reference Sequence: NM_001565.2 (SEQ ID. NO. 12)












1
gggggagaca ttcctcaatt gcttagacat attctgagcc tacagcagag gaacctccag



61
tctcagcacc atgaatcaaa ctgccattct gatttgctgc cttatctttc tgactctaag
121



tggcattcaa ggagtacctc tctctagaac tgtacgctgt acctgcatca gcattagtaa
181



tcaacctgtt aatccaaggt ctttagaaaa acttgaaatt attcctgcaa gccaattttg
241



tccacgtgtt gagatcattg ctacaatgaa aaagaagggt gagaagagat gtctgaatcc
301



agaatcgaag gccatcaaga atttactgaa agcagttagc aaggaaaggt ctaaaagatc
361



tccttaaaac cagaggggag caaaatcgat gcagtgcttc caaggatgga ccacacagag
421



gctgcctctc ccatcacttc cctacatgga gtatatgtca agccataatt gttcttagtt
481



tgcagttaca ctaaaaggtg accaatgatg gtcaccaaat cagctgctac tactcctgta
541



ggaaggttaa tgttcatcat cctaagctat tcagtaataa ctctaccctg gcactataat
601



gtaagctcta ctgaggtgct atgttcttag tggatgttct gaccctgctt caaatatttc
661



cctcaccttt cccatcttcc aagggtacta aggaatcttt ctgctttggg gtttatcaga
721



attctcagaa tctcaaataa ctaaaaggta tgcaatcaaa tctgcttttt aaagaatgct
781



ctttacttca tggacttcca ctgccatcct cccaaggggc ccaaattctt tcagtggcta
841



cctacataca attccaaaca catacaggaa ggtagaaata tctgaaaatg tatgtgtaag
901



tattcttatt taatgaaaga ctgtacaaag tagaagtctt agatgtatat atttcctata
961



ttgttttcag tgtacatgga ataacatgta attaagtact atgtatcaat gagtaacagg
1021



aaaattttaa aaatacagat agatatatgc tctgcatgtt acataagata aatgtgctga
1081



atggttttca aaataaaaat gaggtactct cctggaaata ttaagaaaga ctatctaaat
1141



gttgaaagat caaaaggtta ataaagtaat tataactaaa aaaa











Homo sapiens neuromedin U (NMU), mRNA



NCBI Reference Sequence: NM_006681.1 (SEQ ID. NO. 13)












1
agtcctgcgt ccgggccccg aggcgcagca gggcaccagg tggagcacca gctacgcgtg



61
gcgcagcgca gcgtccctag caccgagcct cccgcagccg ccgagatgct gcgaacagag
121



agctgccgcc ccaggtcgcc cgccggacag gtggccgcgg cgtccccgct cctgctgctg
181



ctgctgctgc tcgcctggtg cgcgggcgcc tgccgaggtg ctccaatatt acctcaagga
241



ttacagcctg aacaacagct acagttgtgg aatgagatag atgatacttg ttcgtctttt
301



ctgtccattg attctcagcc tcaggcatcc aacgcactgg aggagctttg ctttatgatt
361



atgggaatgc taccaaagcc tcaggaacaa gatgaaaaag ataatactaa aaggttctta
421



tttcattatt cgaagacaca gaagttgggc aagtcaaatg ttgtgtcgtc agttgtgcat
481



ccgttgctgc agctcgttcc tcacctgcat gagagaagaa tgaagagatt cagagtggac
541



gaagaattcc aaagtccctt tgcaagtcaa agtcgaggat attttttatt caggccacgg
601



aatggaagaa ggtcagcagg gttcatttaa aatggatgcc agctaatttt ccacagagca
661



atgctatgga atacaaaatg tactgacatt ttgttttctt ctgaaaaaaa tccttgctaa
721



atgtactctg ttgaaaatcc ctgtgttgtc aatgttctca gttgtaacaa tgttgtaaat
781



gttcaatttg ttgaaaatta aaaaatctaa aaataaa











Homo sapiens guanylate binding protein 5 (GBP5), mRNA



NCBI Reference Sequence: NM_052942.2 (SEQ ID. NO. 14)












1
ctccaggctg tggaaccttt gttctttcac tctttgcaat aaatcttgct gctgctcact



61
ctttgggtcc acactgcctt tatgagctgt aacactcact gggaatgtct gcagcttcac
121



tcctgaagcc agcgagacca cgaacccacc aggaggaaca aacaactcca gacgcgcagc
181



cttaagagct gtaacactca ccgcgaaggt ctgcagcttc actcctgagc cagccagacc
241



acgaacccac cagaaggaag aaactccaaa cacatccgaa catcagaagg agcaaactcc
301



tgacacgcca cctttaagaa ccgtgacact caacgctagg gtccgcggct tcattcttga
361



agtcagtgag accaagaacc caccaattcc ggacacgcta attgttgtag atcatcactt
421



caaggtgccc atatctttct agtggaaaaa ttattctggc ctccgctgca tacaaatcag
481



gcaaccagaa ttctacatat ataaggcaaa gtaacatcct agacatggct ttagagatcc
541



acatgtcaga ccccatgtgc ctcatcgaga actttaatga gcagctgaag gttaatcagg
601



aagctttgga gatcctgtct gccattacgc aacctgtagt tgtggtagcg attgtgggcc
661



tctatcgcac tggcaaatcc tacctgatga acaagctggc tgggaagaac aagggcttct
721



ctgttgcatc tacggtgcag tctcacacca agggaatttg gatatggtgt gtgcctcatc
781



ccaactggcc aaatcacaca ttagttctgc ttgacaccga gggcctggga gatgtagaga
841



aggctgacaa caagaatgat atccagatct ttgcactggc actcttactg agcagcacct
901



ttgtgtacaa tactgtgaac aaaattgatc agggtgctat cgacctactg cacaatgtga
961



cagaactgac agatctgctc aaggcaagaa actcacccga ccttgacagg gttgaagatc
1021



ctgctgactc tgcgagcttc ttcccagact tagtgtggac tctgagagat ttctgcttag
1081



gcctggaaat agatgggcaa cttgtcacac cagatgaata cctggagaat tccctaaggc
1141



caaagcaagg tagtgatcaa agagttcaaa atttcaattt gccccgtctg tgtatacaga
1201



agttctttcc aaaaaagaaa tgctttatct ttgacttacc tgctcaccaa aaaaagcttg
1261



cccaacttga aacactgcct gatgatgagc tagagcctga atttgtgcaa caagtgacag
1321



aattctgttc ctacatcttt agccattcta tgaccaagac tcttccaggt ggcatcatgg
1381



tcaatggatc tcgtctaaag aacctggtgc tgacctatgt caatgccatc agcagtgggg
1441



atctgccttg catagagaat gcagtcctgg ccttggctca gagagagaac tcagctgcag
1501



tgcaaaaggc cattgcccac tatgaccagc aaatgggcca gaaagtgcag ctgcccatgg
1561



aaaccctcca ggagctgctg gacctgcaca ggaccagtga gagggaggcc attgaagtct
1621



tcatgaaaaa ctctttcaag gatgtagacc aaagtttcca gaaagaattg gagactctac
1681



tagatgcaaa acagaatgac atttgtaaac ggaacctgga agcatcctcg gattattgct
1741



cggctttact taaggatatt tttggtcctc tagaagaagc agtgaagcag ggaatttatt
1801



ctaagccagg aggccataat ctcttcattc agaaaacaga agaactgaag gcaaagtact
1861



atcgggagcc tcggaaagga atacaggctg aagaagttct gcagaaatat ttaaagtcca
1921



aggagtctgt gagtcatgca atattacaga ctgaccaggc tctcacagag acggaaaaaa
1981



agaagaaaga ggcacaagtg aaagcagaag ctgaaaaggc tgaagcgcaa aggttggcgg
2041



cgattcaaag gcagaacgag caaatgatgc aggagaggga gagactccat caggaacaag
2101



tgagacaaat ggagatagcc aaacaaaatt ggctggcaga gcaacagaaa atgcaggaac
2161



aacagatgca ggaacaggct gcacagctca gcacaacatt ccaagctcaa aatagaagcc
2221



ttctcagtga gctccagcac gcccagagga ctgttaataa cgatgatcca tgtgttttac
2281



tctaaagtgc taaatatggg agtttccttt ttttactctt tgtcactgat gacacaacag
2341



aaaagaaact gtagaccttg ggacaatcaa catttaaata aactttataa ttattttttc
2401



aaactttaaa aaaaaaaaaa aaaaaaaaaa a











Homo sapiens topoisomerase (DNA) II alpha 170 kDa (TOP2A), mRNA



NCBI Reference Sequence: NM_001067.2 (SEQ ID. NO. 15)












1
aggttcaagt ggagctctcc taaccgacgc gcgtctgtgg agaagcggct tggtcggggg



61
tggtctcgtg gggtcctgcc tgtttagtcg ctttcagggt tcttgagccc cttcacgacc
121



gtcaccatgg aagtgtcacc attgcagcct gtaaatgaaa atatgcaagt caacaaaata
181



aagaaaaatg aagatgctaa gaaaagactg tctgttgaaa gaatctatca aaagaaaaca
241



caattggaac atattttgct ccgcccagac acctacattg gttctgtgga attagtgacc
301



cagcaaatgt gggtttacga tgaagatgtt ggcattaact atagggaagt cacttttgtt
361



cctggtttgt acaaaatctt tgatgagatt ctagttaatg ctgcggacaa caaacaaagg
421



gacccaaaaa tgtcttgtat tagagtcaca attgatccgg aaaacaattt aattagtata
481



tggaataatg gaaaaggtat tcctgttgtt gaacacaaag ttgaaaagat gtatgtccca
541



gctctcatat ttggacagct cctaacttct agtaactatg atgatgatga aaagaaagtg
601



acaggtggtc gaaatggcta tggagccaaa ttgtgtaaca tattcagtac caaatttact
661



gtggaaacag ccagtagaga atacaagaaa atgttcaaac agacatggat ggataatatg
721



ggaagagctg gtgagatgga actcaagccc ttcaatggag aagattatac atgtatcacc
781



tttcagcctg atttgtctaa gtttaaaatg caaagcctgg acaaagatat tgttgcacta
841



atggtcagaa gagcatatga tattgctgga tccaccaaag atgtcaaagt ctttcttaat
901



ggaaataaac tgccagtaaa aggatttcgt agttatgtgg acatgtattt gaaggacaag
961



ttggatgaaa ctggtaactc cttgaaagta atacatgaac aagtaaacca caggtgggaa
1021



gtgtgtttaa ctatgagtga aaaaggcttt cagcaaatta gctttgtcaa cagcattgct
1081



acatccaagg gtggcagaca tgttgattat gtagctgatc agattgtgac taaacttgtt
1141



gatgttgtga agaagaagaa caagggtggt gttgcagtaa aagcacatca ggtgaaaaat
1201



cacatgtgga tttttgtaaa tgccttaatt gaaaacccaa cctttgactc tcagacaaaa
1261



gaaaacatga ctttacaacc caagagcttt ggatcaacat gccaattgag tgaaaaattt
1321



atcaaagctg ccattggctg tggtattgta gaaagcatac taaactgggt gaagtttaag
1381



gcccaagtcc agttaaacaa gaagtgttca gctgtaaaac ataatagaat caagggaatt
1441



cccaaactcg atgatgccaa tgatgcaggg ggccgaaact ccactgagtg tacgcttatc
1501



ctgactgagg gagattcagc caaaactttg gctgtttcag gccttggtgt ggttgggaga
1561



gacaaatatg gggttttccc tcttagagga aaaatactca atgttcgaga agcttctcat
1621



aagcagatca tggaaaatgc tgagattaac aatatcatca agattgtggg tcttcagtac
1681



aagaaaaact atgaagatga agattcattg aagacgcttc gttatgggaa gataatgatt
1741



atgacagatc aggaccaaga tggttcccac atcaaaggct tgctgattaa ttttatccat
1801



cacaactggc cctctcttct gcgacatcgt tttctggagg aatttatcac tcccattgta
1861



aaggtatcta aaaacaagca agaaatggca ttttacagcc ttcctgaatt tgaagagtgg
1921



aagagttcta ctccaaatca taaaaaatgg aaagtcaaat attacaaagg tttgggcacc
1981



agcacatcaa aggaagctaa agaatacttt gcagatatga aaagacatcg tatccagttc
2041



aaatattctg gtcctgaaga tgatgctgct atcagcctgg cctttagcaa aaaacagata
2101



gatgatcgaa aggaatggtt aactaatttc atggaggata gaagacaacg aaagttactt
2161



gggcttcctg aggattactt gtatggacaa actaccacat atctgacata taatgacttc
2221



atcaacaagg aacttatctt gttctcaaat tctgataacg agagatctat cccttctatg
2281



gtggatggtt tgaaaccagg tcagagaaag gttttgttta cttgcttcaa acggaatgac
2341



aagcgagaag taaaggttgc ccaattagct ggatcagtgg ctgaaatgtc ttcttatcat
2401



catggtgaga tgtcactaat gatgaccatt atcaatttgg ctcagaattt tgtgggtagc
2461



aataatctaa acctcttgca gcccattggt cagtttggta ccaggctaca tggtggcaag
2521



gattctgcta gtccacgata catctttaca atgctcagct ctttggctcg attgttattt
2581



ccaaaaaaag atgatcacac gttgaagttt ttatatgatg acaaccagcg tgttgagcct
2641



gaatggtaca ttcctattat tcccatggtg ctgataaatg gtgctgaagg aatcggtact
2701



gggtggtcct gcaaaatccc caactttgat gtgcgtgaaa ttgtaaataa catcaggcgt
2761



ttgatggatg gagaagaacc tttgccaatg cttccaagtt acaagaactt caagggtact
2821



attgaagaac tggctccaaa tcaatatgtg attagtggtg aagtagctat tcttaattct
2881



acaaccattg aaatctcaga gcttcccgtc agaacatgga cccagacata caaagaacaa
2941



gttctagaac ccatgttgaa tggcaccgag aagacacctc ctctcataac agactatagg
3001



gaataccata cagataccac tgtgaaattt gttgtgaaga tgactgaaga aaaactggca
3061



gaggcagaga gagttggact acacaaagtc ttcaaactcc aaactagtct cacatgcaac
3121



tctatggtgc tttttgacca cgtaggctgt ttaaagaaat atgacacggt gttggatatt
3181



ctaagagact tttttgaact cagacttaaa tattatggat taagaaaaga atggctccta
3241



ggaatgcttg gtgctgaatc tgctaaactg aataatcagg ctcgctttat cttagagaaa
3301



atagatggca aaataatcat tgaaaataag cctaagaaag aattaattaa agttctgatt
3361



cagaggggat atgattcgga tcctgtgaag gcctggaaag aagcccagca aaaggttcca
3421



gatgaagaag aaaatgaaga gagtgacaac gaaaaggaaa ctgaaaagag tgactccgta
3481



acagattctg gaccaacctt caactatctt cttgatatgc ccctttggta tttaaccaag
3541



gaaaagaaag atgaactctg caggctaaga aatgaaaaag aacaagagct ggacacatta
3601



aaaagaaaga gtccatcaga tttgtggaaa gaagacttgg ctacatttat tgaagaattg
3661



gaggctgttg aagccaagga-aaaacaagat gaacaagtcg gacttcctgg gaaagggggg
3721



aaggccaagg ggaaaaaaac acaaatggct gaagttttgc cttctccgcg tggtcaaaga
3781



gtcattccac gaataaccat agaaatgaaa gcagaggcag aaaagaaaaa taaaaagaaa
3841



attaagaatg aaaatactga aggaagccct caagaagatg gtgtggaact agaaggccta
3901



aaacaaagat tagaaaagaa acagaaaaga gaaccaggta caaagacaaa gaaacaaact
3961



acattggcat ttaagccaat caaaaaagga aagaagagaa atccctggtc tgattcagaa
4021



tcagatagga gcagtgacga aagtaatttt gatgtccctc cacgagaaac agagccacgg
4081



agagcagcaa caaaaacaaa attcacaatg gatttggatt cagatgaaga tttctcagat
4141



tttgatgaaa aaactgatga tgaagatttt gtcccatcag atgctagtcc acctaagacc
4201



aaaacttccc caaaacttag taacaaagaa ctgaaaccac agaaaagtgt cgtgtcagac
4261



cttgaagctg atgatgttaa gggcagtgta ccactgtctt caagccctcc tgctacacat
4321



ttcccagatg aaactgaaat tacaaaccca gttcctaaaa agaatgtgac agtgaagaag
4381



acagcagcaa aaagtcagtc ttccacctcc actaccggtg ccaaaaaaag ggctgcccca
4441



aaaggaacta aaagggatcc agctttgaat tctggtgtct ctcaaaagcc tgatcctgcc
4501



aaaaccaaga atcgccgcaa aaggaagcca tccacttctg atgattctga ctctaatttt
4561



gagaaaattg tttcgaaagc agtcacaagc aagaaatcca agggggagag tgatgacttc
4621



catatggact ttgactcagc tgtggctcct cgggcaaaat ctgtacgggc aaagaaacct
4681



ataaagtacc tggaagagtc agatgaagat gatctgtttt aaaatgtgag gcgattattt
4741



taagtaatta tcttaccaag cccaagactg gttttaaagt tacctgaagc tcttaacttc
4801



ctcccctctg aatttagttt ggggaaggtg tttttagtac aagacatcaa agtgaagtaa
4861



agcccaagtg ttctttagct ttttataata ctgtctaaat agtgaccatc tcatgggcat
4921



tgttttcttc tctgctttgt ctgtgttttg agtctgcttt cttttgtctt taaaacctga
4981



tttttaagtt cttctgaact gtagaaatag ctatctgatc acttcagcgt aaagcagtgt
5041



gtttattaac catccactaa gctaaaacta gagcagtttg atttaaaagt gtcactcttc
5101



ctccttttct actttcagta gatatgagat agagcataat tatctgtttt atcttagttt
5161



tatacataat ttaccatcag atagaacttt atggttctag tacagatact ctactacact
5221



cagcctctta tgtgccaagt ttttctttaa gcaatgagaa attgctcatg ttcttcatct
5281



tctcaaatca tcagaggcca aagaaaaaca ctttggctgt gtctataact tgacacagtc
5341



aatagaatga agaaaattag agtagttatg tgattatttc agctcttgac ctgtcccctc
5401



tggctgcctc tgagtctgaa tctcccaaag agagaaacca atttctaaga ggactggatt
5461



gcagaagact cggggacaac atttgatcca agatcttaaa tgttatattg ataaccatgc
5521



tcagcaatga gctattagat tcattttggg aaatctccat aatttcaatt tgtaaacttt
5581



gttaagacct gtctacattg ttatatgtgt gtgacttgag taatgttatc aacgtttttg
5641



taaatattta ctatgttttt ctattagcta aattccaaca attttgtact ttaataaa











Homo sapiens serpin peptidase inhibitor, clade B (ovalbumin), member 4



(SERPINB4), mRNA


NCBI Reference Sequence: NM_002974.2 (SEQ ID. NO. 16)












1
ccttcattcc acagacacac acagcctctc tgcccacctc tgcttcctct aggaacacag



61
gagttccaga tcacatcgag ttcaccatga attcactcag tgaagccaac accaagttca
121



tgttcgatct gttccaacag ttcagaaaat caaaagagaa caacatcttc tattccccta
181



tcagcatcac atcagcatta gggatggtcc tcttaggagc caaagacaac actgcacaac
241



aaattagcaa ggttcttcac tttgatcaag tcacagagaa caccacagaa aaagctgcaa
301



catatcatgt tgataggtca ggaaatgttc atcaccagtt tcaaaagctt ctgactgaat
361



tcaacaaatc cactgatgca tatgagctga agatcgccaa caagctcttc ggagaaaaga
421



cgtatcaatt tttacaggaa tatttagatg ccatcaagaa attttaccag accagtgtgg
481



aatctactga ttttgcaaat gctccagaag aaagtcgaaa gaagattaac tcctgggtgg
541



aaagtcaaac gaatgaaaaa attaaaaacc tatttcctga tgggactatt ggcaatgata
601



cgacactggt tcttgtgaac gcaatctatt tcaaagggca gtgggagaat aaatttaaaa
661



aagaaaacac taaagaggaa aaattttggc caaacaagaa tacatacaaa tctgtacaga
721



tgatgaggca atacaattcc tttaattttg ccttgctgga ggatgtacag gccaaggtcc
781



tggaaatacc atacaaaggc aaagatctaa gcatgattgt gctgctgcca aatgaaatcg
841



atggtctgca gaagcttgaa gagaaactca ctgctgagaa attgatggaa tggacaagtt
901



tgcagaatat gagagagaca tgtgtcgatt tacacttacc tcggttcaaa atggaagaga
961



gctatgacct caaggacacg ttgagaacca tgggaatggt gaatatcttc aatggggatg
1021



cagacctctc aggcatgacc tggagccacg gtctctcagt atctaaagtc ctacacaagg
1081



cctttgtgga ggtcactgag gagggagtgg aagctgcagc tgccaccgct gtagtagtag
1141



tcgaattatc atctccttca actaatgaag agttctgttg taatcaccct ttcctattct
1201



tcataaggca aaataagacc aacagcatcc tcttctatgg cagattctca tccccataga
1261



tgcaattagt ctgtcactcc atttagaaaa tgttcaccta gaggtgttct ggtaaactga
1321



ttgctggcaa caacagattc tcttggctca tatttctttt ctatctcatc ttgatgatga
1381



tagtcatcat caagaattta atgattaaaa tagcatgcct ttctctcttt ctcttaataa
1441



gcccacatat aaatgtactt ttccttccag aaaaatttcc cttgaggaaa aatgtccaag
1501



ataagatgaa tcatttaata ccgtgtcttc taaatttgaa atataattct gtttctgacc
1561



tgttttaaat gaaccaaacc aaatcatact ttctcttcaa atttagcaac ctagaaacac
1621



acatttcttt gaatttaggt gatacctaaa tccttcttat gtttctaaat tttgtgattc
1681



tataaaacac atcatcaata aaataatgac ataaaatcaa aaaaaaaaaa aaaaaa











Homo sapiens granulysin (GNLY), transcript variant 519, mRNA



NCBI Reference Sequence: NM_012483.1 (SEQ ID. NO. 17)












1
cctgggccct cctgctcctt gcagccatgc tcctgggcaa cccagcccct gcctccgcat



61
ctgcgtggtg aaggccattg gcctcatcgg tggatctgcg tttcctcggg cccacactgt
121



ctaggattgt gcggggctgg tgagagaaca agatctcttc cgtgttcaag gcagacttcc
181



tgccccctgc accctgctct ctcccgggcc ttgaggtcag tgtgagcccc aagggcaaga
241



acacttctgg aagggagagt ggatttggct gggcctctgg atggaaggtc tggtcttctc
301



tcgtctgagc cctgagtact acgacccggc aagagcccac ctgcgtgatg gggagaaatc
361



ctgcccgtgc gggcaggagg gcccccaggg tgacctgttg accaaaacac aggagctggg
421



ccgtgactac aggacctgtc tgacgatagt ccaaaaactg aagaagatgg tggataagcc
481



cacccagaga agtgtttcca atgctgcgac ccgggtgtgt aggacgggga ggtcacgatg
541



gcgcgacgtc tgcagaaatt tcatgaggag gtatcagtct agagttatcc aaggcctcgt
601



ggccggagaa actgcccagc agatctgtga ggacctcagg ttgtgtatac cttctacagg
661



tcccctctga gccctctcac cttgtcctgt ggaagaagca caggctcctg tcctcagatc
721



ccgggaacgt cagcaacctc tgccggctcc tcgcttcctc gatccagaat ccactctcca
781



gtctccctcc cctgactccc tctgctgtcc tcccctctca ggggaataaa gtgtcaagca
841



agattttagc cgc











Homo sapiens gametocyte specific factor 1 (GTSF1), mRNA



NCBI Reference Sequence: NM_144594.1 (SEQ ID. NO. 18)












1
agcggagggg tgtgtccacc gagcacttgg attcagcttc ttcatttcca acatggaaga



61
aacttacacc gactccctgg accctgagaa gctattgcaa tgcccctatg acaaaaacca
121



tcaaatcagg gcttgcaggt ttccttatca tcttatcaag tgcagaaaga atcatcctga
181



tgttgcaagc aaattggcta cttgtccctt caatgctcgc caccaggttc ctcgagctga
241



aattagtcat catatctcaa gctgtgatga cagaagttgt attgagcaag atgttgtcaa
301



ccaaaccagg agccttagac aagagactct ggctgagagc acttggcagt gccctccttg
361



cgatgaagac tgggataaag atttgtggga gcagaccagc accccatttg cctggggcac
421



aactcactac tctgacaaca acagccctgc gagcaacata gttacagaac ataagaataa
481



cctggcttca ggcatgcgag ttcccaaatc tctgccgtat gttctgccat ggaaaaacaa
541



tggaaatgca cagtaactga atacctatct catcaaatgc cagaccctag aagactgttg
601



cttcttcttc taccagtggg ttctcatttt cctcctaatc taattataga atagtaaact
661



ccctgtgact ttccaaactg acaagcacac ttttttcctc cccccttgaa tcctcattta
721



atgcaagaac cctcatactc agaagcttcc aaataaacct ttgatacaga aaaaaaaaaa
781



aaaaa











Homo sapiens peptidase inhibitor 3, skin-derived (SKALP) (PI3), mRNA



NCBI Reference Sequence: NM_002638.2 (SEQ ID. NO. 19)












1
aggccaagct ggactgcata aagattggta tggccttagc tcttagccaa acaccttcct



61
gacaccatga gggccagcag cttcttgatc gtggtggtgt tcctcatcgc tgggacgctg
121



gttctagagg cagctgtcac gggagttcct gttaaaggtc aagacactgt caaaggccgt
181



gttccattca atggacaaga tcccgttaaa ggacaagttt cagttaaagg tcaagataaa
241



gtcaaagcgc aagagccagt caaaggtcca gtctccacta agcctggctc ctgccccatt
301



atcttgatcc ggtgcgccat gttgaatccc cctaaccgct gcttgaaaga tactgactgc
361



ccaggaatca agaagtgctg tgaaggctct tgcgggatgg cctgtttcgt tccccagtga
421



gagggagccg gtccttgctg cacctgtgcc gtccccagag ctacaggccc catctggtcc
481



taagtccctg ctgcccttcc ccttcccaca ctgtccattc ttcctcccat tcaggatgcc
541



cacggctgga gctgcctctc tcatccactt tccaataaag agttccttct gctccaaaaa
601



aaaaaaaaaa aaaaaaaaaa aaa











Homo sapiens S100 calcium binding protein A7A (S100A7A), mRNA



NCBI Reference Sequence: NM_176823.3 (SEQ ID. NO. 20)












1
atctcactca tccttctact cgtgacactt cccagttctg gctttttgaa agcaaagatg



61
agcaacactc aagctgagag gtccataata ggcatgatcg acatgtttca caaatacacc
121



ggacgtgatg gcaagattga gaagccaagc ctgctgacga tgatgaagga gaacttcccc
181



aatttcctca gtgcctgtga caaaaagggc atacattacc tcgccactgt ctttgagaaa
241



aaggacaaga atgaggataa gaagattgat ttttctgagt ttctgtcctt gctgggagac
301



atagccgcag actaccacaa gcagagccat ggagcggcgc cctgttctgg gggaagccag
361



tgatccagcc ccaccaaggg gcctccagag accccaggaa caataagtgt ctcctcccac
421



cagacacttg ccttatttct tcttctcttt ggtgacctac attgtcaaaa ctaccaattc
481



caggttaact ttgttggaga atttccccca cccccatcca gtgggtcacc caggagtaat
541



gtccctccag caacgttccc cctatggcct ccagcagagc tgatctgcct ctcacacagg
601



tcctggtgtc tgcctctgca ccgttcccta aatgcagcca ccttggcagg ttccaggtgg
661



aagttggtag aaggcccctg ccaggtcaca gcaatgctct ccttgtcaag gcatggacca
721



gggtcattca gacacattca gatactgcac tgagaaggag ctggcatctc tcagtgtgct
781



cctgccctcc cactcctgcc ccagctgttc tccagggctt ggggaaacag aaaccactca
841



catagggatt cctggatggc ttcaggttca gcgcccttgg ggctatgaat gggaggctca
901



gcagtgccct gaggatgggc ttccttgtcc tgtggcctct gctccagggg cagtgtcctt
961



tccctgtgct gtgtgcttgt gtgcatgtgc ctatgtgggt gaccctgtgg aagtgagaag
1021



gagtcactgt gatgcttagc tgtcctaaat gatggtttgc tcaatgccag gactgggttt
1081



ctggtgatga atgaatattc cagattttga ggagctctaa gtggtccagg agtccaagta
1141



agcagtctgg ctggaataag gcagcatcac ggaaattcg taaggactga cacagagagc
1201



tcatgctgac tgtgatgaga aattgcagca cctctatatc gcaggtaatg gagtagtttg
1261



ttattggtag tctactccag gccaggcagt gtgttatggg ctgaggatgc agaaacaggc
1321



aggacacagt gctgtcctag cagtgcactg gcgggtctct ccatgcaggc cacaacacag
1381



ggtcagtgtt cacctggtgt cacttccagg caatgttctg tgcagccgct cttagtattc
1441



ttccttgagg ctcacatcat gtgtccctat cactcttact actctggtca gtctccagct
1501



aacctctcaa tcaggcaaac attcttcttg gaggaatcag gcaaacatct caaaaattct
1561



ctttccatcc taccagcagc agtgtgtaag atgggctatt tgttctttgg aatgactgct
1621



ccactccaca ctcacacctc tattcacaga ccagcatctc ctctccttat caggaacatt
1681



ccttcctgaa catattctgc acctcgtcag ccttcaggac tgatctgcca ttttcacctc
1741



taaatcccca tgtctgacca ttagttttct tctatttcct tctctccctt tctcattctc
1801



attccacctg ttcttggaac tcacggagac ctacagtccc tgggctttca ttttctcctc
1861



ccagccccct gctgccttct ctatgcagcc tgccctccat catccacccc agaattgctc
1921



tctttcctct cttagctctg ttgcccactt tccttgggcc ataccttccc tgcagatctc
1981



cagcccagaa ccatcttccc ctgttgtcct cctctctcct ccaccgggac tgctggtcac
2041



tgcttagaac cgtcatgcca gggtcccaaa agtgtgggtg cctgacttcc tctctgtgca
2101



gcactctctg aatccctcct attcaccttg ctgctgttat tccccgaatg cgcaacatac
2161



cccccatcaa tatatctcag tatttcatgt ctcaatacca atcttttaaa ctactgcctc
2221



taccagaaat gtcttttaat acttcttctg tctcattaac attacatttc aaggctgagc
2281



tttaatgtca gtgtctctta gacattcaga gggtgaacca ccatcccttc accccaaaga
2341



aatgatctct gcttcatttg tgcctccctc accatgaccc cactcttacc atagtggcta
2401



cattacttca gattccccta atgtctttcc agccagactt ggaatcatgg agggaaaaca
2461



ttgttacctc ggatctcctg gttacccagc acatagtagt actggattcc agctcataat
2521



aagtactcta tatcattttt caatataaaa tgtatttgtg caaattctag tcaatactac
2581



tttatgtaaa cagcagtgta aaatccaaaa acttccagtc ctggaggcag gttgtgcagc
2641



ttaggggagg accccagaat ctggacccca gagtctggaa gcaggccaga aaggataagg
2701



caaatgactg aacagttccc tcaggactca cgtactgatc tcccaaaaga agagagggtc
2761



tccctggggt ggggttgctg gaccttcaat ccatcgctac agtccagaag gcaattggcc
2821



actcctaatg tgggcctgcc ctccctttat ttttccagtt cttatttcac ctgataatat
2881



tccgtccaat tggcaatggc acataaaaat taggatggag tgtgtggaca aatacttctt
2941



catcttcttg tctaggtttt agaaatcacc ttctcaaggg agccttgtct aatgttcctg
3001



agactatttc acactctcca tgcttatgtc aatgcaggac tcatcacatc tattcggata
3061



ttctgtttac acacccatgt catcccagag aggtgatcac agggcaggga cacatgtgtg
3121



gcatacagtt cctagttaag atcccaaatc ctgagatatt gctgatttgc tatggcaggt
3181



cgtcaagaga actgtgtcat tccaaactca ccaaggtggc ttatagaaca gaagcagatg
3241



gatatgaaga ggagagggga ccagaccatc tccgcaacca cagcccagag ctccagtcac
3301



cagatagaaa attgatttga tttcatccaa tattccttcg aaagagtgtc aaggaatagg
3361



gtggggcaat gtgtcattct gcattggaag gaggacattt tagagcaagg cctaagggca
3421



caggtattag tgtcatattg atcagaattc aacctttgtt ctaacacata ctagagcaag
3481



aatttacttg atttggaata attaatagct actggacatt atattggtac taaagagaaa
3541



gaatacttga cagctctatg cccacactca cattacagct gatgtgaaag agattctgga
3601



aatccaaatg ttccccagaa attctgatat caaaacattc caataacttt tttttttcag
3661



gcgcagtctc actctgtcgc ccgggctgga gtgctgtgag ctgtccgtgg tgctgaattc
3721



actgtgacgt cactcctgtc tctctttgct ttcttctgac tgacatttat tcagccttct
3781



ctacaggaat ctcttatgtt cccccacatg caggtggttt ttcagtaggc tcctgaagag
3841



tgatctcaac tttccaggaa gaaaagaggg caaagggaac aatgtgaaaa gaagcagaaa
3901



atcataaaag accatgtgtt tgataaacaa ccagattgtt tctggttccc tgccactata
3961



aaaacaccat gagagcatac tcatacatgt tcccttataa atctgcgagg tagtttcttt
4021



ggtattcttg cccaggaaat gggttgattc atcacagatt ttatatatat actttttttt
4081



aactaagtgt gagataatat cttattgttt ttgtaacttg cattttacaa gagttctgac
4141



cagcaccaga taagcttcag tgctctcctt tctttggcct taatattatt ggattaaaga
4201



attactgcct ctcactagga gcatcattta tttaccatta ttttcaattt catattaaaa
4261



ctcaatttct agtagagtc











Homo sapiens indoleamine 2,3-dioxygenase 1 (IDO1), mRNA



NCBI Reference Sequence: NM_002164.4 (SEQ ID. NO. 21)












1
aatttctcac tgcccctgtg ataaactgtg gtcactggct gtggcagcaa ctattataag



61
atgctctgaa aactcttcag acactgaggg gcaccagagg agcagactac aagaatggca
121



cacgctatgg aaaactcctg gacaatcagt aaagagtacc atattgatga agaagtgggc
181



tttgctctgc caaatccaca ggaaaatcta cctgattttt ataatgactg gatgttcatt
241



gctaaacatc tccgtgagtt catagagtct ggccagcttc gagaaagagt tgagaagtta
301



aacatgctca gcattgatca tctcacagac cacaagtcac agcgccttgc acgtctagtt
361



ctgggatgca tcaccatggc atatgtgtgg ggcaaaggtc atggagatgt ccgtaaggtc
421



ttgccaagaa atattgctgt tccttactgc caactctcca agaaactgga actgcctcct
481



attttggttt atgcagactg tgtcttggca aactggaaga aaaaggatcc taataagccc
541



ctgacttatg agaacatgga cgttttgttc tcatttcgtg atggagactg cagtaaagga
601



ttcttcctgg tctctctatt ggtggaaata gcagctgctt ctgcaatcaa agtaattcct
661



actgtattca aggcaatgca aatgcaagaa cgggacactt tgctaaaggc gctgttggaa
721



atagcttctt gcttggagaa agcccttcaa gtgtttcacc aaatccacga tcatgtgaac
781



ccaaaagcat ttttcagtgt tcttcgcata tatttgtctg gctggaaagg caacccccag
841



ctatcagacg gtctggtgta tgaagggttc tgggaagacc caaaggagtt tgcagggggc
901



agtgcaggcc aaagcagcgt ctttcagtgc tttgacgtcc tgctgggcat ccagcagact
961



gctggtggag gacatgctgc tcagttcctc caggacatga gaagatatat gccaccagct
1021



cacaggaact tcctgtgctc attagagtca aatccctcag tccgtgagtt tgtcctttca
1081



aaaggtgatg ctggcctgcg ggaagcttat gacgcctgtg tgaaagctct ggtctccctg
1141



aggagctacc atctgcaaat cgtgactaag tacatcctga ttcctgcaag ccagcagcca
1201



aaggagaata agacctctga agacccttca aaactggaag ccaaaggaac tggaggcact
1261



gatttaatga atttcctgaa gactgtaaga agtacaactg agaaatccct tttgaaggaa
1321



ggttaatgta acccaacaag agcacatttt atcatagcag agacatctgt atgcattcct
1381



gtcattaccc attgtaacag agccacaaac taatactatg caatgtttta ccaataatgc
1441



aatacaaaag acctcaaaat acctgtgcat ttcttgtagg aaaacaacaa aaggtaatta
1501



tgtgtaatta tactagaagt tttgtaatct gtatcttatc attggaataa aatgacattc
1561



aataaataaa aa











Homo sapiens gap junction protein, beta 6 (GJB6), mRNA



NCBI Reference Sequence: NM_006783.2 (SEQ ID. NO. 22)












1
ctgggaagac gctggtcagt tcacctgccc cactggttgt tttttaaaca aattctgata



61
caggcgacat cctcactgac cgagcaaaga ttgacattcg tatcatcact gtgcaccatt
121



ggcttctagg cactccagtg gggtaggaga aggaggtctg aaaccctcgc agagggatct
181



tgccctcatt ctttgggtct gaaacactgg cagtcgttgg aaacaggact cagggataaa
241



ccagcgcaat ggattggggg acgctgcaca ctttcatcgg gggtgtcaac aaacactcca
301



ccagcatcgg gaaggtgtgg atcacagtca tctttatttt ccgagtcatg atcctcgtgg
361



tggctgccca ggaagtgtgg ggtgacgagc aagaggactt cgtctgcaac acactgcaac
421



cgggatgcaa aaatgtgtgc tatgaccact ttttcccggt gtcccacatc cggctgtggg
481



ccctccagct gatcttcgtc tccaccccag cgctgctggt ggccatgcat gtggcctact
541



acaggcacga aaccactcgc aagttcaggc gaggagagaa gaggaatgat ttcaaagaca
601



tagaggacat taaaaagcag aaggttcgga tagaggggtc gctgtggtgg acgtacacca
661



gcagcatctt tttccgaatc atctttgaag cagcctttat gtatgtgttt tacttccttt
721



acaatgggta ccacctgccc tgggtgttga aatgtgggat tgacccctgc cccaaccttg
781



ttgactgctt tatttctagg ccaacagaga agaccgtgtt taccattttt atgatttctg
841



cgtctgtgat ttgcatgctg cttaacgtgg cagagttgtg ctacctgctg ctgaaagtgt
901



gttttaggag atcaaagaga gcacagacgc aaaaaaatca ccccaatcat gccctaaagg
961



agagtaagca gaatgaaatg aatgagctga tttcagatag tggtcaaaat gcaatcacag
1021



gtttcccaag ctaaacattt caaggtaaaa tgtagctgcg tcataaggag acttctgtct
1081



tctccagaag gcaataccaa cctgaaagtt ccttctgtag cctgaagagt ttgtaaatga
1141



ctttcataat aaatagacac ttgagttaac tttttgtagg atacttgctc cattcataca
1201



caacgtaatc aaatatgtgg tccatctctg aaaacaagag actgcttgac aaaggagcat
1261



tgcagtcact ttgacaggtt ccttttaagt ggactctctg acaaagtggg tactttctga
1321



aaatttatat aactgttgtt gataaggaac atttatccag gaattgatac ttttattagg
1381



aaaagatatt tttataggct tggatgtttt tagttctgac tttgaattta tataaagtat
1441



ttttataatg actggtcttc cttacctgga aaaacatgcg atgttagttt tagaattaca
1501



ccacaagtat ctaaatttgg aacttacaaa gggtctatct tgtaaatatt gttttgcatt
1561



gtctgttggc aaatttgtga actgtcatga tacgcttaag gtggaaagtg ttcattgcac
1621



aatatatttt tactgctttc tgaatgtaga cggaacagtg tggaagcaga aggctttttt
1681



aactcatccg tttgccaatc attgcaaaca actgaaatgt ggatgtgatt gcctcaataa
1741



agctcgtccc cattgcttaa gccttcaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa
1801



aaaaa











Homo sapiens calmodulin-like 3 (CALML3), mRNA



NCBI Reference Sequence: NM_005185.2 (SEQ ID. NO. 23)












1
gagacagccc gccggccgcc cggatctcca cctgccaccc cagagctggg acagcagccg



61
ggctgcggca ctgggaggga gaccccacag tggcctcttc tgccacccac gcccccaccc
121



ctggcatggc cgaccagctg actgaggagc aggtcacaga attcaaggag gccttctccc
181



tgtttgacaa ggatggggac ggctgcatca ccacccgcga gctgggcacg gtcatgcggt
241



ccctgggcca gaaccccacg gaggccgagc tgcgggacat gatgagtgag atcgaccggg
301



acggcaacgg caccgtggac ttccccgagt tcctgggcat gatggccagg aagatgaagg
361



acacggacaa cgaggaggag atccgcgagg ccttccgcgt gttcgacaag gacggcaacg
421



gcttcgtcag cgccgccgag ctgcgacacg tcatgacccg gctgggggag aagctgagtg
481



acgaggagtt ggacgagatg atccgggccg cggacacgga cggagacgga caggtgaact
541



acgaggagtt tgtccgtgtg ctggtgtcca agtgaggccg gcgcccacca tgctcctggg
601



cgcccacgcg gcccacaggg caagaacccg gggcctcccg cctcctcccc catccccctg
661



cctcccctgg gcactgtggc ttcctcctgc gcctggttga ttcagcccac ctctctgcat
721



cccgcttccc gcgtctcttc tctgcactcc tgccgacctt cccacctgct catctgaatg
781



acacggaacg ctcccactgc aggcaaaccg tgacgccctc cccactcggg agaagcagag
841



ctgaccttag gaccgagcac cagggcaggt tgcgctgact ctgcggccct ccaggacgga
901



caccgggtga ccccttaggg ctctcaggca agatccctaa gaggcaccca atgcccaggc
961



caggggggct gcagccctca gcccccgcca ggattcccgc aggctcctgg actggaagct
1021



ccctccgcgg tcggattctg gagggtggga ggcatcttgg cctgcagtaa gcggtgctga
1081



cggggactct ggccacagag gtcaggcctc ctgaaaacag cactgccttc cgcgctgccc
1141



cagcttgccc cattccttgt ccgccaaccc accgtgattc atcttctgaa gctgggagtg
1201



aaactgggtc agctgtaacc tgttcctatt catctggaag gagggaggct tggatgagca
1261



ggggatgaga gctgcaggga aataaatgag atattcgtcc tt











Homo sapiens serpin peptidase inhibitor, clade B (ovalbumin), member 3



(SERPINB3), mRNA


NCBI Reference Sequence: NM_006919.1 (SEQ ID. NO. 24)












1
ctctctgccc acctctgctt cctctaggaa cacaggagtt ccagatcaca tcgagttcac



61
catgaattca ctcagtgaag ccaacaccaa gttcatgttc gacctgttcc aacagttcag
121



aaaatcaaaa gagaacacca tcttctattc ccctatcagc atcacatcag cattagggat
181



ggtcctctta ggagccaaag acaacactgc acaacagatt aagaaggttc ttcactttga
241



tcaagtcaca gagaacacca caggaaaagc tgcaacatat catgttgata ggtcaggaaa
301



tgttcatcac cagtttcaaa agcttctgac tgaattcaac aaatccactg atgcatatga
361



gctgaagatc gccaacaagc tcttcggaga aaaaacgtat ctatttttac aggaatattt
421



agatgccatc aagaaatttt accagaccag tgtggaatct gttgattttg caaatgctcc
481



agaagaaagt cgaaagaaga ttaactcctg ggtggaaagt caaacgaatg aaaaaattaa
541



aaacctaatt cctgaaggta atattggcag caataccaca ttggttcttg tgaacgcaat
601



ctatttcaaa gggcagtggg agaagaaatt taataaagaa gatactaaag aggaaaaatt
661



ttggccaaac aagaatacat acaagtccat acagatgatg aggcaataca catcttttca
721



ttttgcctcg ctggaggatg tacaggccaa ggtcctggaa ataccataca aaggcaaaga
781



tctaagcatg attgtgttgc tgccaaatga aatcgatggt ctccagaagc ttgaagagaa
841



actcactgct gagaaattga tggaatggac aagtttgcag aatatgagag agacacgtgt
901



cgatttacac ttacctcggt tcaaagtgga agagagctat gacctcaagg acacgttgag
961



aaccatggga atggtggata tcttcaatgg ggatgcagac ctctcaggca tgaccgggag
1021



ccgcggtctc gtgctatctg gagtcctaca caaggccttt gtggaggtta cagaggaggg
1081



agcagaagct gcagctgcca ccgctgtagt aggattcgga tcatcaccta cttcaactaa
1141



tgaagagttc cattgtaatc accctttcct attcttcata aggcaaaata agaccaacag
1201



catcctcttc tatggcagat tctcatcccc gtagatgcaa ttagtctgtc actccatttg
1261



gaaaatgttc acctgcagat gttctggtaa actgattgct ggcaacaaca gattctcttg
1321



gctcatattt cttttctttc tcatcttgat gatgatcgtc atcatcaaga atttaatgat
1381



taaaatagca tgcctttctc tctttctctt aataagccca catataaatg tactttttct
1441



tccagaaaaa ttctccttga ggaaaaatgt ccaaaataag atgaatcact taataccgta
1501



tcttctaaat ttgaaatata attctgtttg tgacctgttt taaatgaacc aaaccaaatc
1561



atactttttc tttgaattta gcaacctaga aacacacatt tctttgaatt taggtgatac
1621



ctaaatcctt cttatgtttc taaattttgt gattctataa aacacatcat caataaaata
1681



gtgacataaa atca











Homo sapiens chemokine (C—X—C motif) ligand 6 (granulocyte chemotactic



protein 2) (CXCL6), mRNA


NCBI Reference Sequence: NM_002993.2 (SEQ ID. NO. 25)












1
ccagtctccg cgcctccacc cagctcagga acccgcgaac cctctcttga ccactatgag



61
cctcccgtcc agccgcgcgg cccgtgtccc gggtccttcg ggctccttgt gcgcgctgct
121



cgcgctgctg ctcctgctga cgccgccggg gcccctcgcc agcgctggtc ctgtctctgc
181



tgtgctgaca gagctgcgtt gcacttgttt acgcgttacg ctgagagtaa accccaaaac
241



gattggtaaa ctgcaggtgt tccccgcagg cccgcagtgc tccaaggtgg aagtggtagc
301



ctccctgaag aacgggaagc aagtttgtct ggacccggaa gccccttttc taaagaaagt
361



catccagaaa attttggaca gtggaaacaa gaaaaactga gtaacaaaaa agaccatgca
421



tcataaaatt gcccagtctt cagcggagca gttttctgga gatccctgga cccagtaaga
481



ataagaagga agggttggtt tttttccatt ttctacatgg attccctact ttgaagagtg
541



tgggggaaag cctacgcttc tccctgaagt ttacagctca gctaatgaag tactaatata
601



gtatttccac tatttactgt tattttacct gataagttat tgaacccttt ggcaattgac
661



catattgtga gcaaagaatc actggttatt agtctttcaa tgaatattga attgaagata
721



actattgtat ttctatcata cattccttaa agtcttaccg aaaaggctgt ggatttcgta
781



tggaaataat gttttattag tgtgctgttg agggaggtat cctgttgttc ttactcactc
841



ttctcataaa ataggaaata ttttagttct gttttcttgg ggaatatgtt actctttacc
901



ctaggatgct atttaagttg tactgtatta gaacactggg tgtgtcatac cgttatctgt
961



gcagaatata tttccttatt cagaatttct aaaaatttaa gttctgtaag ggctaatata
1021



ttctcttcct atggttttag atgtttgatg tcttcttagt atggcataat gtcatgattt
1081



actcattaaa ctttgatttt gtatgctatt ttttcactat aggatgacta taattctggt
1141



cactaaatat acactttaga tagatgaaga agcccaaaaa cagataaatt cctgattgct
1201



aatttacata gaaatgtatt ctcttggttt tttaaataaa agcaaaatta acaatgatct
1261



gtgctctgca aagttttgaa aatatatttg aacaatttga atataaattc atcatttagt
1321



cctcaaaata tatacagcat tgctaagatt ttcagatatc tattgtggat cttttaaagg
1381



ttttgaccat tttgttatga ggaattatac atgtatcaca ttcactatat taaaattgca
1441



cttttatttt ttcctgtgtg tcatgttggt ttttggtact tgtattgtca tttggagaaa
1501



caataaaaga tttctaaacc aaaaaaaaaa aaaaaaaaa











Homo sapiens olfactomedin 4 (OLFM4), mRNA



NCBI Reference Sequence: NM_006418.3 (SEQ ID. NO. 26)












1
atgaggcccg gcctctcatt tctcctagcc cttctgttct tccttggcca agctgcaggg



61
gatttggggg atgtgggacc tccaattccc agccccggct tcagctcttt cccaggtgtt
121



gactccagct ccagcttcag ctccagctcc aggtcgggct ccagcttcag ccgcagctta
181



ggcagcggag gttctgtgtc ccagttgttt tccaatttca ccggctccgt ggatgaccgt
241



gggacctgcc agtgctctgt ttccctgcca gacaccacct ttcccgtgga cagagtggaa
301



cgcttggaat tcacagctca tgttctttct cagaagtttg agaaagaact ttccaaagtg
361



agggaatatg tccaattaat tagtgtgtat gaaaagaaac tgttaaacct aactgtccga
421



attgacatca tggagaagga taccatttct tacactgaac tggacttcga gctgatcaag
481



gtagaagtga aggagatgga aaaactggtc atacagctga aggagagttt tggtggaagc
541



tcagaaattg ttgaccagct ggaggtggag ataagaaata tgactctctt ggtagagaag
601



cttgagacac tagacaaaaa caatgtcctt gccattcgcc gagaaatcgt ggctctgaag
661



accaagctga aagagtgtga ggcctctaaa gatcaaaaca cccctgtcgt ccaccctcct
721



cccactccag ggagctgtgg tcatggtggt gtggtgaaca tcagcaaacc gtctgtggtt
781



cagctcaact ggagagggtt ttcttatcta tatggtgctt ggggtaggga ttactctccc
841



cagcatccaa acaaaggact gtattgggtg gcgccattga atacagatgg gagactgttg
901



gagtattata gactgtacaa cacactggat gatttgctat tgtatataaa tgctcgagag
961



ttgaggatca cctatggcca aggtagtggt acagcagttt acaacaacaa catgtacgtc
1021



aacatgtaca acaccgggaa tattgccaga gttaacctga ccaccaacac gattgctgtg
1081



actcaaactc tccctaatgc tgcctataat aaccgctttt catatgctaa tgttgcttgg
1141



caagatattg actttgctgt ggatgagaat ggattgtggg ttatttattc aactgaagcc
1201



agcactggta acatggtgat tagtaaactc aatgacacca cacttcaggt gctaaacact
1261



tggtatacca agcagtataa accatctgct tctaacgcct tcatggtatg tggggttctg
1321



tatgccaccc gtactatgaa caccagaaca gaagagattt tttactatta tgacacaaac
1381



acagggaaag agggcaaact agacattgta atgcataaga tgcaggaaaa agtgcagagc
1441



attaactata acccttttga ccagaaactt tatgtctata acgatggtta ccttctgaat
1501



tatgatcttt ctgtcttgca gaagccccag taagctgttt aggagttagg gtgaaagaga
1561



aaatgtttgt tgaaaaaata gtcttctcca cttacttaga tatctgcagg ggtgtctaaa
1621



agtgtgttca ttttgcagca atgtttaggt gcatagttct accacactag agatctagga
1681



catttgtctt gatttggtga gttctcttgg gaatcatctg cctcttcagg cgcattttgc
1741



aataaagtct gtctagggtg ggattgtcag aggtctaggg gcactgtggg cctagtgaag
1801



cctactgtga ggaggcttca ctagaagcct taaattagga attaaggaac ttaaaactca
1861



gtatggcgtc tagggattct ttgtacagga aatattgccc aatgactagt cctcatccat
1921



gtagcaccac taattcttcc atgcctggaa gaaacctggg gacttagtta ggtagattaa
1981



tatctggagc tcctcgaggg accaaatctc caactttttt ttcccctcac tagcacctgg
2041



aatgatgctt tgtatgtggc agataagtaa atttggcatg cttatatatt ctacatctgt
2101



aaagtgctga gttttatgga gagaggcctt tttatgcatt aaattgtaca tggcaaataa
2161



atcccagaag gatctgtaga tgaggcacct gctttttctt ttctctcatt gtccacctta
2221



ctaaaagtca gtagaatctt ctacctcata acttccttcc aaaggcagct cagaagatta
2281



gaaccagact tactaaccaa ttccaccccc caccaacccc cttctactgc ctactttaaa
2341



aaaattaata gttttctatg gaactgatct aagattagaa aaattaattt tctttaattt
2401



cattatgaac ttttatttac atgactctaa gactataaga aaatctgatg gcagtgacaa
2461



agtgctagca tttattgtta tctaataaag accttggagc atatgtgcaa cttatgagtg
2521



tatcagttgt tgcatgtaat ttttgccttt gtttaagcct ggaacttgta agaaaatgaa
2581



aatttaattt ttttttctag gacgagctat agaaaagcta ttgagagtat ctagttaatc
2641



agtgcagtag ttggaaacct tgctggtgta tgtgatgtgc ttctgtgctt ttgaatgact
2701



ttatcatcta gtctttgtct atttttcctt tgatgttcaa gtcctagtct ataggattgg
2761



cagtttaaat gctttactcc cccttttaaa ataaatgatt aaaatgtgct ttgaaaaaaa
2821



aaaaaaaaaa aaaaaaaaaa aaaa











Homo sapiens transcobalamin I (vitamin B12 binding protein, R binder family)



(TCN1), mRNA


NCBI Reference Sequence: NM_001062.3 (SEQ ID. NO. 27)












1
ggctgaggca acctgaagga ggagctctca ttaccttctg cccatcactt aataaatagc



61
cagccaattc atcaacattc tggtacactg ttggagagat gagacagtca caccagctgc
121



ccctagtggg gctcttactg ttttctttta ttccaagcca actatgcgag atttgtgagg
181



taagtgaaga aaactacatc cgcctaaaac ctctgttgaa tacaatgatc cagtcaaact
241



ataacagggg aaccagcgct gtcaatgttg tgttgtccct caaacttgtt ggaatccaga
301



tccaaaccct gatgcaaaag atgatccaac aaatcaaata caatgtgaaa agcagattgt
361



cagatgtaag ctcgggagag cttgccttga ttatactggc tttgggagta tgtcgtaacg
421



ctgaggaaaa cttaatatat gattaccacc tgatcgacaa gctagaaaat aaattccaag
481



cagaaattga aaatatggaa gcacacaatg gcactcccct gactaactac taccagctca
541



gcctggacgt tttggccttg tgtctgttca atgggaacta ctcaaccgcc gaagttgtca
601



accacttcac tcctgaaaat aaaaactatt attttggtag ccagttctca gtagatactg
661



gtgcaatggc tgtcctggct ctgacctgtg tgaagaagag tctaataaat gggcagatca
721



aagcagatga aggcagttta aagaacatca gtatttatac aaagtcactg gtagaaaaga
781



ttctgtctga gaaaaaagaa aatggtctca ttggaaacac atttagcaca ggagaagcca
841



tgcaggccct ctttgtatca tcagactatt ataatgaaaa tgactggaat tgccaacaaa
901



ctctgaatac agtgctcacg gaaatttctc aaggagcatt cagcaatcca aacgctgcag
961



cccaggtctt acctgccctg atgggaaaga ccttcttgga tattaacaaa gactcttctt
1021



gcgtctctgc ttcaggtaac ttcaacatct ccgctgatga gcctataact gtgacacctc
1081



ctgactcaca atcatatatc tccgtcaatt actctgtgag aatcaatgaa acatatttca
1141



ccaatgtcac tgtgctaaat ggttctgtct tcctcagtgt gatggagaaa gcccagaaaa
1201



tgaatgatac tatatttggt ttcacaatgg aggagcgctc atgggggccc tatatcacct
1261



gtattcaggg cctatgtgcc aacaataatg acagaaccta ctgggaactt ctgagtggag
1321



gcgaaccact gagccaagga gctggtagtt acgttgtccg caatggagaa aacttggagg
1381



ttcgctggag caaatactaa taagcccaaa ctttcctcag ctgcataaaa tccatttgca
1441



gtggagttcc atgtttattg tccttatgcc ttcttcttca tttatcccag tacgagcagg
1501



agagttaata acctcccctt ctctctctac atgttcaata aaagttgttg aaagattaac
1561



aactataaaa aaaaaaa











Homo sapiens visinin-like 1 (VSNL1), mRNA



NCBI Reference Sequence: NM_003385.4 (SEQ ID. NO. 28)












1
aggcggcttt tggtcacagg ctcccgagtt ctcctagctg gggctgcgga gctgggggga



61
gggaagagag gaaaggggag ggggtgcctg gagaggcgga ggctcgcgcg cctgcgcatc
121



cagctccagg gaccctaggt tttctatggg attcccaatc tgcagcagag atttacccga
181



gcgtgttgcg gcagcggctg ggcttgcaag gcgcgatcca agagggattt aagcagccca
241



gagctccaga gaaaaagaga gcgagagaga accacacaca gagacggctt aagcgtttac
301



ccgaattaaa tatatatttt taaaaagaac tgttgagttt tatcattttc gttaagtgac
361



cgtgcgcagc gctgtaactg caggatgggg aagcagaata gcaaactggc ccctgaagtg
421



atggaggacc tggtgaagag cacagagttt aatgagcatg aactcaagca gtggtacaaa
481



ggatttctca aggactgtcc aagtgggagg ctaaatctcg aggaatttca gcagctctat
541



gtgaagttct ttccttatgg agacgcctcc aagtttgccc agcatgcctt ccgaaccttc
601



gacaagaatg gggacggcac cattgacttc cgagagttca tctgcgctct gtccatcacc
661



tccaggggca gctttgagca gaagctgaac tgggccttca atatgtatga cctggatggt
721



gatggcaaga tcacccgagt ggagatgctg gagatcatcg aggctatcta caaaatggta
781



ggcactgtga tcatgatgaa aatgaatgag gatggcctga cgcctgagca gcgagtagac
841



aagattttca gcaagatgga taagaacaaa gatgaccaga ttacactgga tgaattcaaa
901



gaagctgcaa agagcgaccc ttccattgta ttacttctgc agtgcgacat ccagaaatga
961



gctgatgtca atgctatgga ctgcacaaaa gtctcaatgt tccattcagt ctgcagctat
1021



tcacacacac acacacacac acacacacac acacacacac acacacaaat attgcttgga
1081



ctacctataa atggacttgc ttcttgtgtt tgaaacactc gtgtgcatga gaatgtcatt
1141



tgctaatgaa ttttaaaagc atatataaaa caaaacaaac aacctgccac aatgtgatat
1201



gtgtaatatc atttcataaa aatccctctt cctccaaagc ctgggcagaa atgtgctgca
1261



aagagttata tgacttcttg ttcatgtttt gctaatgctc gtatctcctt gattacataa
1321



tgttagtagc actgagaccc ccatggtaat gtaacttaat tataagctat gtcactaccc
1381



tcctgtaaaa tactattgga cagacacaga gggacccttg gctcctgtgt ctggtccaca
1441



caccacagaa gcttgtatta tcagtgaata taaatgtact acatttgcat gccttttggg
1501



tttgccttaa ttcttacctc atttgcatcc tatcgatctg gaaagagctg ttttggatga
1561



atgcagtata aaatgtaaaa accctgctaa atgacttatt gattaagtat atctatctat
1621



atatacatat acacaaagat attatttatc gaaagtaaaa aagatggaaq tgtattggtt
1681



tctgtttgaa ttttcaaagg cttccaatgt ggtggcaata aatgtcccaa ataaatttat
1741



aacaattgat tttcccccta attcttattt tataatttta aaattgcagc agttgctagc
1801



aacaacttac taaatctact cttaaatata caactttgga atttgaagaa ttaatgacaa
1861



caaaagggaa aaaagcaact ttccaacttt tcatccaggc tcccaaaaga gggacaacga
1921



acatggcatg tgaaaagtaa aacagatttg ttcattccga aaaaaaaatg ttcattctat
1981



gacaataaat tttatctcag tgtgaaaaaa aaaa











Homo sapiens ubiquitin D (UBD), mRNA



NCBI Reference Sequence: NM_006398.2 (SEQ ID. NO. 29)












1
gattgcttga ggagagaagt atgtgatcag aaagcattct ttgtctatta actcctgccc



61
agcaaaagtg aaagaaaatt catgggagca tgcaagaaca aagagcacag caaagctgga
121



caaacacagc aatccaggca ggggatttcc aactcaactc tggtatgtaa gctgcatgca
181



aagtcctttt tctgtctctg gtttctggcc ccttgtctgc agagatggct cccaatgctt
241



cctgcctctg tgtgcatgtc cgttccgagg aatgggattt aatgaccttt gatgccaacc
301



catatgacag cgtgaaaaaa atcaaagaac atgtccggtc taagaccaag gttcctgtgc
361



aggaccaggt tcttttgctg ggctccaaga tcttaaagcc acggagaagc ctctcatctt
421



acggcattga caaagagaag accatccacc ttaccctgaa agtggtgaag cccagtgatg
481



aggagctgcc cttgtttctt gtggagtcag gtgatgaggc aaagaggcac ctcctccagg
541



tgcgaaggtc cagctcagtg gcacaagtga aagcaatgat cgagactaag acgggtataa
601



tccctgagac ccagattgtg acttgcaatg gaaagagact ggaagatggg aagatgatgg
661



cagattacgg catcagaaag ggcaacttac tcttcctggc atcttattgt attggagggt
721



gaccaccctg ggcatggggt gttggcaggg gtcaaaaagc ttatttcttt taatctctta
781



ctcaacgaac acatcttctg atgatttccc aaaattaatg agaatgagat gagtagagta
841



agatttgggt gggatgggta ggatgaagta tattgcccaa ctctatgttt ctttgattct
901



aacacaatta attaagtgac atgattttta ctaatgtatt actgagacta gtaaataaat
961



ttttaagcca a











Homo sapiens absent in melanoma 2 (AIM2), mRNA



NCBI Reference Sequence: NM_004833.1 (SEQ ID. NO. 30)












1
tcagccaatt agagctccag ttgtcactcc tacccacact gggcctgggg gtgaagggaa



61
gtgtttatta ggggtacatg tgaagccgtc cagaagtgtc agagtctttg tagctttgaa
121



agtcacctag gttatttggg catgctctcc tgagtcctct gctagttaag ctctctgaaa
181



agaaggtggc agacccggtt tgctgatcgc cccagggatc aggaggctga tcccaaagtt
241



gtcagatgga gagtaaatac aaggagatac tcttgctaac aggcctggat aacatcactg
301



atgaggaact ggataggttt aagttctttc tttcagacga gtttaatatt gccacaggca
361



aactacatac tgcaaacaga atacaagtag ctaccttgat gattcaaaat gctggggcgg
421



tgtctgcagt gatgaagacc attcgtattt ttcagaagtt gaattatatg cttttggcaa
481



aacgtcttca ggaggagaag gagaaagttg ataagcaata caaatcggta acaaaaccaa
541



agccactaag tcaagctgaa atgagtcctg ctgcatctgc agccbtcaga aatgatgtcg
601



caaagcaacg tgctgcacca aaagtctctc ctcatgttaa gcctgaacag aaacagatgg
661



tggcccagca ggaatctatc agagaagggt ttcagaagcg ctgtttgcca qttatggtac
721



tgaaagcaaa gaagcccttc acgtttgaga cccaagaagg caagcaggag atgtttcatg
781



ctacagtggc tacagaaaag gaattcttct ttgtaaaagt ttttaataca ctgctgaaag
841



ataaattcat tccaaagaga ataattataa tagcaagata ttatcggcac agtggtttct
901



tagaggtaaa tagcgcctca cgtgtgttag atgctgaatc tgaccaaaag gttaatgtcc
961



cgctgaacat tatcagaaaa gctggtgaaa ccccgaagat caacacgctt caaactcagc
1021



cccttggaac aattgtgaat ggtttgtttg tagtccagaa ggtaacagaa aagaagaaaa
1081



acatattatt tgacctaagt gacaacactg ggaaaatgga agtactgggg gttagaaacg
1141



aggacacaat gaaatgtaag gaaggagata aggttcgact tacattcttc acactgtcaa
1201



aaaatggaga aaaactacag ctgacatctg gagttcatag caccataaag gttattaagg
1261



ccaaaaaaaa aacatagaga agtaaaaagg accaattcaa gccaactggt ctaagcagca
1321



tttaattgaa gaatatgtga tacagcctct tcaatcagat tgtaagttac ctgaaagctg
1381



cagttcacag gctcctctct ccaccaaatt aggatagaat aattgctgga taaacaaatt
1441



cagaatatca acagatgatc acaataaaca tctgtttctc attcc











Homo sapiens ATP-binding cassette, sub-family C (CFTR/MRP), member 9 (ABCC9),



transcript variant SUR2B, mRNA


NCBI Reference Sequence: NM_020297.1 (SEQ ID. NO. 31)












1
atgagccttt cattttgtgg taacaacatt tcttcatata atatcaacga tggtgtacta



61
caaaattcct gctttgtgga tgccctcaac ctggtccctc atgtctttct gttgtttatc
121



acttttccaa tattgtttat tgggtggggg agccaaagct caaaagtaca aattcaccac
181



aacacatggc ttcattttcc gggacataac ctgagatgga ttcttacatt cgctctcctg
241



tttgtgcatg tctgtgaaat agcagaaggc attgtttcag actcgcggcg ggaatcaagg
301



cacctccacc tctttatgcc agccgtgatg ggattcgttg ccactacaac atcgatagtg
361



tattatcata atatcgaaac atcaaatttt cctaaattac ttttagccct gttcctgtat
421



tgggtaatgg cctttattac aaaaacaata aaattggtta agtactgtca gtctggcttg
481



gacatatcaa acctgcgttt ctgcatcaca ggcatgatgg tcatcttgaa tgggctcttg
541



atggctgtgg agatcaatgt cattcgagtc aggagatatg tatttttcat gaatcctcag
601



aaagtaaagc ctcctgaaga cctccaggat ctgggagtga gatttcttca accatttgtg
661



aatttgctgt caaaagcaac atactggtgg atgaacacac ttattatatc tgctcacaaa
721



aagcctattg atctgaaggc aattggaaaa ttgccaatag caatgagagc agtaacaaat
781



tatgtttgcc tgaaagatgc atatgaagaa caaaagaaaa aagttgcaga tcatccaaat
841



cggactccat ctatatggct tgcaatgtac agagcttttg ggcgaccaat tctacttagt
901



agcacattcc gctatctggc tgatttactg ggttttgctg gacctctttg tatttctgga
961



atagttcagc gtgtgaatga aacccagaat gggacaaata acacaactgg aatttcagaa
1021



accctctcat caaaggaatt tcttgaaaac gcttacgttc tagcagttct tctcttcttg
1081



gctcttattc tgcaaaggac atttttgcag gcttcctact atgtaaccat agagactggc
1141



attaacctcc gtggagctct gctggccatg atttataata aaatccttag gctctctacg
1201



tctaacttat ccatggggga gatgactctg gggcagatca acaacttagt cgccattgaa
1261



actaatcaac tcatgtggtt tttgttcctg tgtcccaatc tatgggctat gcctgttcag
1321



atcataatgg gcgtgattct gctctataat ttacttggat caagtgcatt ggtcggtgca
1381



gctgtcattg tgctccttgc gccaattcag tactttattg ctacaaagtt ggcagaggct
1441



cagaaaagta cacttgatta ttccactgag agactcaaga aaacaaatga aatattgaaa
1501



ggcatcaaac ttctaaaatt gtatgcctgg gaacacattt tctgcaaaag tgtggaggaa
1561



acaagaatga aagaactatc tagtctcaaa acctttgcac tatatacatc actctccatc
1621



ttcatgaatg cagcaattcc catagcagct gttcttgcta catttgtgac ccatgcgtat
1681



gccagtggaa acaatctgaa acctgcagag gcctttgctt cactgtctct cttccatatc
1741



ctggtcacac cactgtccct gctcttcacg gtggtcagat ttgcagtcaa agccatcata
1801



agtgttcaaa agctgaatga gtttctcttg agtgatgaga ttggtgacga cagttggcga
1861



actggtgaaa gttcgcttcc ttttgagtcc tgtaagaagc acactggagt tcagccaaaa
1921



actataaaca ggaaacagcc tggaagatat cacctggaca gctatgagca atcaacacgg
1981



cgtctacgtc ccgcagaaac agaggacatt gcaataaagg tcacaaatgg atacttttca
2041



tggggcagtg gtttagctac attatccaat atagatattc gaattccaac aggtcagtta
2101



accatgattg tgggccaagt aggatgtggg aagtcctctc ttctccttgc catcctcggt
2161



gagatgcaga cattggaagg aaaagttcac tggagcaatg taaatgaatc tgagccttct
2221



tttgaagcaa ccagaagtag gaacaggtac tctgtggcat atgcagctca aaagccttgg
2281



ctattaaatg ctacagtaga agaaaatatt acttttggaa gtccttttaa caaacagagg
2341



tacaaagctg tcacagatgc ctgttctctt cagccagata ttgacttatt accatttgga
2401



gatcaaactg aaattggaga gaggggcatc aacctgagtg ggggacagag gcagagaatc
2461



tgtgtggcac gagcgctgta tcaaaacacc aacattgtct ttttggatga tccattctca
2521



gccctggaca ttcacttgag tgatcattta atgcaggagg ggattttgaa attcctgcaa
2581



gatgacaaaa ggacactcgt tcttgtgact cacaaattac agtatctgac gcatgctgac
2641



tggatcatag ccatgaaaga tggaagtgtc ctaagagaag gaactttgaa ggacattcaa
2701



accaaagatg ttgagcttta tgaacactgg aaaacactta tgaatcggca agatcaagaa
2761



ttagaaaagg atatggaagc tgaccaaact actttagaga ggaaaactct ccgacgggcc
2821



atgtattcaa gagaagccaa agcccagatg gaggacgaag acgaagagga agaagaggag
2881



gaagatgagg atgataacat gtccactgta atgaggctca ggactaaaat gccatggaaa
2941



acctgctggc gctacctgac atctggagga ttcttcctgc tcatcctgat gattttctct
3001



aagcttttga agcattcggt cattgtagct atagactatt ggctggccac atggacatcg
3061



gagtacagta taaacaatac tggaaaagct gatcagacct actatgtggc tggctttagc
3121



atactctgtg gagcaggcat tttcctttgc cttgttacat ccctcactgt agaatggatg
3181



ggtctcacag ctgccaaaaa tcttcaccac aaccttctca ataagataat ccttggacca
3241



ataaggtttt ttgataccac acccctggga ctgattctca atcgcttttc agctgatact
3301



aatatcattg atcagcacat ccctccaacc ttggaatctc taactcgctc aacactgctc
3361



tgcctgtctg ccattgggat gatttcttat gctactcctg tgttcctggt tgctctcctg
3421



ccccttggtg ttgcctttta ttttatccag aaatactttc gggttgcctc taaggacctc
3481



caggaactcg acgatagtac ccagctccct ctgctctgtc acttctcaga aacagcagaa
3541



ggactcacca ccattcgggc ctttaggcat gaaaccagat ttaaacaacg tatgctggaa
3601



ctgacggata caaacaacat tgcctactta tttctctcag ctgccaacag atggctggag
3661



gtcaggacgg attatctggg agcttgcatt gtcctcactg catctatagc atccattagt
3721



gggtcttcca attctggatt ggtaggcttg ggtcttctgt atgcacttac gataaccaat
3781



tatttgaatt gggttgtgag gaacttggct gacctggagg tccagatggg tgcagtgaag
3841



aaggtgaaca gtttcctgac tatggagtca gagaactatg aaggcacaat ggatccttct
3901



caagttccag aacattggcc acaagaaggg gagatcaaga tacatgatct gtgtgtcaga
3961



tatgaaaata atctgaaacc tgttcttaag cacgtcaagg cttacatcaa acctggacaa
4021



aaggtgggca tatgtggtcg cactggcagt gggaaatcat cgttatctct ggctttcttc
4081



agaatggttg atatatttga tggaaaaatt gtcattgatg ggatagacat ttccaaatta
4141



ccactgcaca cactacgttc tagactttca atcattctgc aggatccaat actattcagt
4201



ggttccatta gatttaattt agatccagag tgcaaatgca cagatgacag actctgggaa
4261



gccttagaaa ttgctcagct gaagaatatg gtcaaatctc tacctggagg tctagatgcg
4321



gttgtcactg aaggtgggga gaattttagc gtgggacaga gacagctatt ttgccttgcc
4381



agggcctttg tccgcaaaag cagcattctt attatggatg aggcaacagc ttccattgac
4441



atggccacag agaatatttt gcaaaaagta gtaatgacag cctttgcaga ccggaccgtg
4501



gtgacaatgg ctcatcgagt acacactatt ctgagggcag acctggttat tgtgatgaag
4561



cgaggaaata ttttagaata tgacactcca gaaagcctct tggctcagga aaatggagta
4621



tttgcttctt ttgttcgcgc agacatgtga











Homo sapiens serpin peptidase inhibitor, glade B (ovalbumin), member 13



(SERPINB13), mRNA


NCBI Reference Sequence: NM_012397.2 (SEQ ID. NO. 32)












1
ctataaatta aggatcccag ctacttaatt gacttatgct tcctagttcg ttgcccagcc



61
accaccgtct ctccaaaaac ccgaggtctc gctaaaatca tcatggattc acttggcgcc
121



gtcagcactc gacttgggtt tgatcttttc aaagagctga agaaaacaaa tgatggcaac
181



atcttctttt cccctgtggg catcttgact gcaattggca tggtcctcct ggggacccga
241



ggagccaccg cttcccagtt ggaggaggtg tttcactctg aaaaagagac gaagagctca
301



agaataaagg ctgaagaaaa agaggtgatt gagaacacag aagcagtaca tcaacaattc
361



caaaagtttt tgactgaaat aagcaaactc actaatgatt atgaactgaa cataaccaac
421



aggctgtttg gagaaaaaac atacctcttc cttcaaaaat acttagatta tgttgaaaaa
481



tattatcatg catctctgga acctgttgat tttgtaaatg cagccgatga aagtcgaaag
541



aagattaatt cctgggttga aagcaaaaca aatgaaaaaa tcaaggactt gttcccagat
601



ggctctatta gtagctctac caagctggtg ctggtgaaca tggtttattt taaagggcaa
661



tgggacaggg agtttaagaa agaaaatact aaggaagaga aattttggat gaataagagc
721



acaagtaaat ctgtacagat gatgacacag agccattcct ttagcttcac tttcctggag
781



gacttgcagg ccaaaattct agggattcca tataaaaaca acgacctaag catgtttgtg
841



cttctgccca acgacatcga tggcctggag aagataatag ataaaataag tcctgagaaa
901



ttggtagagt ggactagtcc agggcatatg gaagaaagaa aggtgaatct gcacttgccc
961



cggtttgagg tggaggacgg ttacgatcta gaggcggtcc tggctgccat ggggatgggc
1021



gatgccttca gtgagcacaa agccgactac tcgggaatgt cgtcaggctc cgggttgtac
1081



gcccagaagt tcctgcacag ttcctttgtg gcagtaactg aggaaggcac cgaggctgca
1141



gctgccaccg gcataggctt tactgtcaca tccgccccag gtcatgaaaa tgttcactgc
1201



aatcatccct tcctgttctt catcaggcac aatgaatcca acagcatcct cttcttcggc
1261



agattttctt ctccttaaga tgatcttttc catggcattg ctgcttttag caaaaaacaa
1321



ctaccagtgt tactcatatg attatgaaaa tcgtccattc ttttaaatgt tgtctcactt
1381



gcatttccag tcttggccat caaatcaatg atttaatgac tccaataatg tgtgtgttta
1441



taaccatcct cgaaagtgaa atgtcctttt ttttgtgcca tgcgtaaggt gagtcaaacc
1501



aaacctcatt gataatctcc cctttggttt cctttgaaag taaattggta tcttgtagtt
1561



ttgtgcacac gaaaggagag aaagtttctc cagtaaagag tacgaactag taattttggg
1621



gggtctctct aattctggta ttttgacatg ttataatacg caagtaaaat aaaacaatag
1681



tttactcagc tcatgttact attccccaac agatattgtg gcaaatcaca cataggaaag
1741



aggatttggg aatacagtag caaaacataa attaaaactc aaatgcccag gacaaaataa
1801



aacaatatac cagatggaga ggatgcccgt attttcatct tccattctaa cattatccat
1861



tgttagatgc ataagcattt tgatattgtg taataaatgt ggtatttgag aagataaatg
1921



atgtagttga tcagtaatcc tcctctatca cctttttaga ctttgtaagg taaatatttg
1981



gactaacttt tagaaaagtt tccctttttt tctccattta catttttctg gttttttttt
2041



ttttttttga gtgaggtacg agtattacca aatgatattt tctgaagatg ctttttggaa
2101



agctctgaat ctatacctaa tgctcttaat tattggcttg tttcattttt ttcctccagt
2161



ttttaacaag atcacataac tggcttattt ttaacagctt tgtcaaacta caatttacat
2221



gccgtaaaat gtacacactg taattttata attcattgac ttttagtaaa ttttctagcg
2281



ttatgcatcg ccacaatcca gttttagaat atttccatga ccctaagaag tttcctcatg
2341



tctattaata ttcccaatcc taggcaccac tgagttgttt tctgtcttta taagtttttc
2401



tttctacatc ttatataaat ggaatcataa tacatgtagt attttgtgtc tggcgtcttg
2461



cacttagcat ggtgttcttg aggttcatct gttgtagtat gtattgatac ttaggatttt
2521



tttattgccg aatactattc cattgcatgg aaaagaccta ttttatttct aggttcacca
2581



gttgagggac atttggattg ttcccacttc ttgggctgtt aggaataatg ttgctctgaa
2641



catgtaaata aagatctttg tgttcacata tgtttttcat tttctgttgg ggagattccc
2701



taggctagaa attgctgggc catatgaaaa atcaatagtt agctttgtaa gaaacagtca
2761



aactgttttc ccaacgtgac attttatatt cccaccagga atgtttaaaa ctagtgtctt
2821



caaatcctca ccaacatcca ggattgtgtc tttatgatta tagccatttt tgtaggtaca
2881



aagtggcatc tcatggtggt tttaatttgc atttccataa tatctaatta ggttgagctt
2941



tttttatgtg cttattggcc atttgtttga ctttgtttgg tgaaatgtat acaaatcatt
3001



tgctcatttt taatttgggt tgtctgtctt gtcttctcat tttattgagt taaatgagtt
3061



cttaataatc tctggcttac aagtccttaa tttatcaaat atatgatacg tggacatttc
3121



ctcataaaaa aaaaaaaaaa aaa











Homo sapiens indoleamine-pyrrole 2,3 dioxygenase (INDO), mRNA



NCBI Reference Sequence: NM_002164.3 (SEQ ID. NO. 33)












1
aatttctcac tgcccctgtg ataaactgtg gtcactggct gtggcagcaa ctattataag



61
atgctctgaa aactcttcag acactgaggg gcaccagagg agcagactac aagaatggca
121



cacgctatgg aaaactcctg gacaatcagt aaagagtacc atattgatga agaagtgggc
181



tttgctctgc caaatccaca ggaaaatcta cctgattttt ataatgactg gatgttcatt
241



gctaaacatc tgcctgatct catagagtct ggccagcttc gagaaagagt tgagaagtta
301



aacatgctca gcattgatca tctcacagac cacaagtcac agcgccttgc acgtctagtt
361



ctgggatgca tcaccatggc atatgtgtgg ggcaaaggtc atggagatgt ccgtaaggtc
421



ttgccaagaa atattgctgt tccttactgc caactctcca agaaactgga actgcctcct
481



attttggttt atgcagactg tgtcttggca aactggaaga aaaaggatcc taataagccc
541



ctgacttatg agaacatgga cgttttgttc tcatttcgtg atggagactg cagtaaagga
601



ttcttcctgg tctctctatt ggtggaaata gcagctgctt ctgcaatcaa agtaattcct
661



actgtattca aggcaatgca aatgcaagaa cgggacactt tgctaaaggc gctgttggaa
721



atagcttctt gcttggagaa agcccttcaa gtgtttcacc aaatccacga tcatgtgaac
781



ccaaaagcat ttttcagtgt tcttcgcata tatttgtctg gctggaaagg caacccccag
841



ctatcagacg gtctggtgta tgaagggttc tgggaagacc caaaggagtt tgcagggggc
901



agtgcaggcc aaagcagcgt ctttcagtgc tttgacgtcc tgctgggcat ccagcagact
961



gctggtggag gacatgctgc tcagttcctc caggacatga gaagatatat gccaccagct
1021



cacaggaact tcctgtgctc attagagtca aatccctcag tccgtgagtt tgtcctttca
1081



aaaggtgatg ctggcctgcg ggaagcttat gacgcctgtg tgaaagctct ggtctccctg
1141



aggagctacc atctgcaaat cgtgactaag tacatcctga ttcctgcaag ccagcagcca
1201



aaggagaata agacctctga agacccttca aaactggaag ccaaaggaac tggaggcact
1261



gatttaatga atttcctgaa gactgtaaga agtacaactg agaaatccct tttgaaggaa
1321



ggttaatgta acccaacaag agcacatttt atcatagcag agacatctgt atgcattcct
1381



gtcattaccc attgtaacag agccacaaac taatactatg caatgtttta ccaataatgc
1441



aatacaaaag acctcaaaat acctgtgcat ttcttgtagg aaaacaacaa aaggtaatta
1501



tgtgtaatta tactagaagt tttgtaatct gtatcttatc attggaataa aatgacattc
1561



aataaataaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa
1621



aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aa











Homo sapiens keratin 5 (KRT5), mRNA



NCBI Reference Sequence: NM_000424.3 (SEQ ID. NO. 34)












1
tcgacagctc tctcgcccag cccagttctg gaagggataa aaagggggca tcaccgttcc



61
tgggtaacag agccaccttc tgcgtcctgc tgagctctgt tctctccagc acctcccaac
121



ccactagtgc ctggttctct tgctccacca ggaacaagcc accatgtctc gccagtcaag
181



tgtgtccttc cggagcgggg gcagtcgtag cttcagcacc gcctctgcca tcaccccgtc
241



tgtctcccgc accagcttca cctccgtgtc ccggtccggg ggtggcggtg gtggtggctt
301



cggcagggtc agccttgcgg gtgcttgtgg agtgggtggc tatggcagcc ggagcctcta
361



caacctgggg ggctccaaga ggatatccat cagcactagt ggtggcagct tcaggaaccg
421



gtttggtgct ggtgctggag gcggctatgg ctttggaggt ggtgccggta gtggatttgg
481



tttcggcggt ggagctggtg gtggctttgg gctcggtggc ggagctggct ttggaggtgg
541



cttcggtggc cctggctttc ctgtctgccc tcctggaggt atccaagagg tcactgtcaa
601



ccagagtctc ctgactcccc tcaacctgca aatcgacccc agcatccaga gggtgaggac
661



cgaggagcgc gagcagatca agaccctcaa caataagttt gcctccttca tcgacaaggt
721



gcggttcctg gagcagcaga acaaggttct ggacaccaag tggaccctgc tgcaggagca
781



gggcaccaag actgtgaggc agaacctgga gccgttgttc gagcagtaca tcaacaacct
841



caggaggcag ctggacagca tcgtggggga acggggccgc ctggactcag agctgagaaa
901



catgcaggac ctggtggaag acttcaagaa caagtatgag gatgaaatca acaagcgtac
961



cactgctgag aatgagtttg tgatgctgaa gaaggatgta gatgctgcct acatgaacaa
1021



ggtggagctg gaggccaagg ttgatgcact gatggatgag attaacttca tgaagatgtt
1081



ctttgatgcg gagctgtccc agatgcagac gcatgtctct gacacctcag tggtcctctc
1141



catggacaac aaccgcaacc tggacctgga tagcatcatc gctgaggtca aggcccagta
1201



tgaggagatt gccaaccgca gccggacaga agccgagtcc tggtatcaga ccaagtatga
1261



ggagctgcag cagacagctg gccggcatgg cgatgacctc cgcaacacca agcatgagat
1321



ctctgagatg aaccggatga tccagaggct gagagccgag attgacaatg tcaagaaaca
1381



gtgcgccaat ctgcagaacg ccattgcgga tgccgagcag cgtggggagc tggccctcaa
1441



ggatgccagg aacaagctgg ccgagctgga ggaggccctg cagaaggcca agcaggacat
1501



ggcccggctg ctgcgtgagt accaggagct catgaacacc aagctggccc tggacgtgga
1561



gatcgccact taccgcaagc tgctggaggg cgaggaatgc agactcagtg gagaaggagt
1621



tggaccagtc aacatctctg ttgtcacaag cagtgtttcc tctggatatg gcagtggcag
1681



tggctatggc ggtggcctcg gtggaggtct tggcggcggc ctcggtggag gtcttgccgg
1741



aggtagcagt ggaagctact actccagcag cagtgggggt gtcggcctag gtggtgggct
1801



cagtgtgggg ggctctggct tcagtgcaag cagtggccga gggctggggg tgggctttgg
1861



cagtggcggg ggtagcagct ccagcgtcaa atttgtctcc accacctcct cctcccggaa
1921



gagcttcaag agctaagaac ctgctgcaag tcactgcctt ccaagtgcag caacccagcc
1981



catggagatt gcctcttcta ggcagttgct caagccatgt tttatccttt tctggagagt
2041



agtctagacc aagccaattg cagaaccaca ttctttggtt cccaggagag ccccattccc
2101



agcccctggt ctcccgtgcc gcagttctat attctgcttc aaatcagcct tcaggtttcc
2161



cacagcatgg cccctgctga cacgagaacc caaagttttc ccaaatctaa atcatcaaaa
2221



cagaatcccc accccaatcc caaattttgt tttggttcta actacctcca gaatgtgttc
2281



aataaaatgc ttttataata taaaaaaaaa aaaaaaaaaa










PREDICTED: Homo sapiens hypothetical LOC100130897 (LOC100130897), mRNA


NCBI Reference Sequence: XM_001718498.1 (SEQ ID. NO. 35)












1
atgacaccga ctcttttgct cacggtgact gtcccgaggg cggcgggtag cgccgggcag



61
cgccgggctc cagggctccc gcgctccagt ggcccagcct gggcggagag cagagcgcgg
121



cccccgcggc cccgcggcct cgagccccgg cacccccctg gctccccggc cctgcgcccc
181



accgaccgca cgtgctcctc ctcctcggcg ggagtaggcg gcggggtcgg aggagcgcag
241



ccggggtcgg tcccgctggg ccagcacctc gctcttgagc ggggacgaac tctcggacac
301



gggcgtgtcg gccggcgaga tccgcctccg cttggcctgc tcgtaaatcc ccgagtcgct
361



ggagtcgatg gacttgatcg aggagggcgt ctcgatccag ctggaatcgg acaggtcctt
421



gggcttggcg tcctcggcgg cgccgggcgg cagcggcgag cgctcggcgg ccaggccctc
481



ggcctcctcg cccaggtagg gattggcgcc ggccatgcgc gcggcggccg cggcgctgtt
541



gggccagcag ggcagcaccg agcccgactt ggtgccgcag tactgcgggg gactgcgggc
601



gccccagccc gacgggtcgg cgtagtagcc gagcgggcgg ccagtgcagc ctgcagcctg
661



cagcggcagc gccttcacgc ccgccgccgc gtaagagagc agcgtggccg cgttgcccgc
721



gaagtccgtg gccgtgtcat aggccgaggc cgcgaagtcc agccggttgt tggccggcgt
781



cacaaaccag cgttgcggcg agggcgcgcc cgggtcctcg gcctgctgcg gcgacagcag
841



cccgttggtg tgcggcacgc tgcggtccgt acccggcccg gggcccgcgc ccgcgcccgg
901



gtggaagcgg gccttggcgt agttgctcac gaactggtcc tgcaggaaag agccggccat
961



ggcgtagcgg gccccgggca cgatctgcga gcgcggcgag tcgttgggcg agggggtcag
1021



gcggtccatg tcacagccgg tgtagatcct gcgggattgt ttcagaaacc cctaggaaaa
1081



agccgcgcac gcagtaatca tgaaagactg gccttcaccc gtgttctgga acccgaggtt
1141



tgctgctgga agcctccaaa gtacttagtg tctattgttt cccctgtgtg aaactttcac
1201



tcccacctct actaatacaa acaagaatta ctactctgaa











Homo sapiens keratin 14 (epidermolysis bullosa simplex, Dowling-Meara,



Koebner) (KRT14), mRNA


NCBI Reference Sequence: NM_000526.3 (SEQ ID. NO. 36)












1
acccgagcac cttctcttca ctcagccaac tgctcgctcg ctcacctccc tcctctgcac



61
catgactacc tgcagccgcc agttcacctc ctccagctcc atgaagggct cctgcggcat
121



cgggggcggc atcgggggcg gctccagccg catctcctcc gtcctggccg gagggtcctg
181



ccgcgccccc agcacctacg ggggcggcct gtctgtctca tcctcccgct tctcctctgg
241



gggagcctac gggctggggg gcggctatgg cggtggcttc agcagcagca gcagcagctt
301



tggtagtggc tttgggggag gatatggtgg tggccttggt gctggcttgg gtggtggctt
361



tggtggtggc tttgctggtg gtgatgggct tctggtgggc agtgagaagg tgaccatgca
421



gaacctcaat gaccgcctgg cctcctacct ggacaaggtg cgtgctctgg aggaggccaa
481



cgccgacctg gaagtgaaga tccgtgactg gtaccagagg cagcggcctg ctgagatcaa
541



agactacagt ccctacttca agaccattga ggacctgagg aacaagattc tcacagccac
601



agtggacaat gccaatgtcc ttctgcagat tgacaatgcc cgtctggccg cggatgactt
661



ccgcaccaag tatgagacag agttgaacct gcgcatgagt gtggaagccg acatcaatgg
721



cctgcgcagg gtgctggacg aactgaccct ggccagagct gacctggaga tgcagattga
781



gagcctgaag gaggagctgg cctacctgaa gaagaaccac gaggaggaga tgaatgccct
841



gagaggccag gtgggtggag atgtcaatgt ggagatggac gctgcacctg gcgtggacct
901



gagccgcatt ctgaacgaga tgcgtgacca gtatgagaag atggcagaga agaaccgcaa
961



ggatgccgag gaatggttct tcaccaagac agaggagctg aaccgcgagg tggccaccaa
1021



cagcgagctg gtgcagagcg gcaagagcga gatctcggag ctccggcgca ccatgcagaa
1081



cctggagatt gagctgcagt cccagctcag catgaaagca tccctggaga acagcctgga
1141



ggagaccaaa ggtcgctact gcatgcagct ggcccagatc caggagatga ttggcagcgt
1201



ggaggagcag ctggcccagc tccgctgcga gatggagcag cagaaccagg agtacaagat
1261



cctgctggac gtgaagacgc ggctggagca ggagatcgcc acctaccgcc gcctgctgga
1321



gggcgaggac gcccacctct cctcctccca gttctcctct ggatcgcagt catccagaga
1381



tgtgacctcc tccagccgcc aaatccgcac caaggtcatg gatgtgcacg atggcaaggt
1441



ggtgtccacc cacgagcagg tccttcgcac caagaactga ggctgcccag ccccgctcag
1501



gcctaggagg ccccccgtgt ggacacagat cccactggaa gatcccctct cctgcccaag
1561



cacttcacag ctggaccctg cttcaccctc accccctcct ggcaatcaat acagcttcat
1621



tatctgagtt gcat











Homo sapiens family with sequence similarity 83, member A (FAM83A),



transcript variant 1, mRNA


NCBI Reference Sequence: NM_032899.4 (SEQ ID. NO. 37)












1
ggaaagccgg ctcaccttcg cctccccctg cggctgggag gagaggaaat atcccatggc



61
tgactgtgcc aaggaggtgt ctgagccagc cctcccggcc cgagggcagg gcaggtggcc
121



ctgagagata agccaatccc gcagctgcag atgaggagtt ctgagaagca ttgctcagga
181



cagcggtaaa tcacttcttg gaggtgccct gcacgccggt cctgggagca ggcggcctcc
241



cgggggtgcg ggagccccac tcctccgtgg tgtgttccat ttgcttccca catctggagg
301



agctgacgtg ccagcctccc ccagcaccac ccagggacgg gaggcatgag ccggtcaagg
361



cacctgggca aaatccggaa gcgtctggaa gatgtcaaga gccagtgggt ccggccagcc
421



agggctgact ttagtgacaa cgagagtgcc cggctggcca cggacgccct cttggatggg
481



ggttctgaag cctactggcg ggtgctcagc caggaaggcg aggtggactt cttgtcctcg
541



gtggaggccc agtacatcca ggcccaggcc agggagcccc cgtgtccccc agacaccctg
601



ggaggggcgg aagcaggccc taagggactg gactccagct ccctacagtc cggcacctac
661



ttccctgtgg cctcagaggg cagcgagccg gccctactgc acagctgggc ctcagctgag
721



aagccctacc tgaaggaaaa atccagcgcc actgtgtact tccagaccgt caagcacaac
781



aacatcagag acctcgtccg ccgctgcatc acccggacta gccaggtcct ggtcatcctg
841



atggatgtgt tcacggatgt ggagatcttc tgtgacattc tagaggcagc caacaagcgt
901



ggggtgttcg tttgtgtgct cctggaccag ggaggtgtga agctcttcca ggagatgtgt
961



gacaaagtcc agatctctga cagtcacctc aagaacattt ccatccggag tgtggaagga
1021



gagatatact gtgccaagtc aggcaggaaa ttcgctggcc aaatccggga gaagttcatc
1081



atctcggact ggagatttgt cctgtctgga tcttacagct tcacctggct ctgcggacac
1141



gtgcaccgga acatcctctc caagttcaca ggccaggcgg tggagctgtt tgacgaggag
1201



ttccgccacc tctacgcctc ctccaagcct gtgatgggcc tgaagtcccc gcggctggtc
1261



gcccccgtcc cgcccggagc agccccggcc aatggccgcc ttagcagcag cagtggctcc
1321



gccagtgacc gcacgtcctc caaccccttc agcggccgct cggcaggcag ccaccccggt
1381



acccgaagtg tgtccgcgtc ttcagggccc tgtagccccg cggccccaca cccgcctcca
1441



ccgccccggt tccagcccca ccaaggccct tggggagccc cgagtcccca ggcccacctc
1501



tccccgcggc cccacgacgg cccgcccgcc gctgtctaca gcaacctggg ggcctacagg
1561



cccacgcggc tgcagctgga gcagctgggc ctggtgccga ggctgactcc aacctggagg
1621



cccttcctgc aggcctcccc tcacttctga aggtcccatc ccctgctgcc ctccgcaggc
1681



ccagggctgg gcactccctg agacccaaag acccacctca acgacgagtg gcgttgagcc
1741



acttcccttt gaaaagacac tcaaaatcac tgccatggtt caatgttccc aggccccagg
1801



ccatccactt gccggccccc accagttctt gggttccccg ctctagtttg acctgtgcag
1861



cacattccag aaggttccag ggaggttgtg gggcagctag aggacaaaat catgaaaaca
1921



gagtccctgt cttccagaga tcatccgggg ctttaatatt aatggccccc aaaactccgt
1981



aagaagcagg aaatgcagcc caagttttac aaatgggtaa acagaggcac tgagagatag
2041



atggtagttt ggtacttctg gttcccagtg cccaggaatg gtccactccc aagaaattca
2101



ggaaagaaag actgaggaga aggtgtggga acattctgga tgtttcggga gagttgggga
2161



aactcctcct cttaggaaag gctaatacta gggtatcctt gggcccaatg aattaggggt
2221



gaggccccag aacccgttat ctatgagttg tatgggggag ccatctgaag ctgtagccac
2281



cagggatgca gctagctgag gagtttgggg tgttgggttg gacaaggcag gttagtagac
2341



tcagattctt gcttcaaaga gccttgggct ggcctggagg tccctggagt ctagactgga
2401



cctaggagct tgagttgtca ggggccagga ctggccccac tgcagtgccc aggccagtct
2461



tgagcagcag ggagggctca gctgtcccca gatccaggtg cctctgacca gcctggtcac
2521



ctcctgagga ataaatgctg aacctcacaa gccccatcat tcatttcttc tcaattcaca
2581



gtgcccctct ttgtttctgg ggtggaacta ggtcctgagg gcacagccta gctgagtgca
2641



aagaaatata ggatgcttag aaagcataca ggaggggcca ggcgtggtgg ctcatgcctg
2701



taatcccaga actttgggat gccaaggtgg ttggattacc tgagatcagg tggattacct
2761



ggtctcgaga ccagcctgac caatatggtg aaaccccgtc tctactaaaa atacaaaaat
2821



taggctgaga caggagaatt gcttgaaccc aggaagcaga ggttgcaatg agctgagatt
2881



gcatcactgc actccagcat gggcaacaaa gcaagactcc gtcacagaaa aaaaaaaaaa
2941



aaaaaa











Homo sapiens family with sequence similarity 181, member B (FAM181B), mRNA.



NCBI Reference Sequence: NM_175885.3 (SEQ ID. NO. 38)












1
agcgcagcga gccaggcccg gaactagtag gctgcgccgc gcgcgccgcg ccggggcggg



61
agctgggtct gggcggcggg caggagctgg cgggggcgca cgggcagcgc tgcggacagc
121



ccgggagccg cggcgatggc ggtgcaggcg gcgctcctca gcacgcaccc tttcgtgccc
181



ttcggcttcg ggggctcccc ggacgggcta gggggcgcct tcggagccct ggacaagggc
241



tgctgtttcg aggacgatga gaccggggct ccggcgggtg cgctgctgtc gggagccgaa
301



ggaggggacg tgcgcgaggc cacccgcgat ctactcagct tcattgactc ggcgtccagc
361



aacatcaagc tggcgctgga caagccgggc aagtcgaagc ggaaggtgaa ccaccgcaag
421



tacctgcaga agcagatcaa gcgctgcagc ggcctcatgg gcgccgcgcc ccccggcccg
481



ccctccccga gcgccgccga cacgccagcc aaacggccgc tggccgcccc tagcgccccg
541



acagtcgcgg ccccggccca cggcaaggct gccccccggc gggaggcgtc gcaggccgcc
601



gcggccgcca gcttgcaaag ccgaagtctg gccgcgctct tcgactcgct gcgccacgtc
661



cccgggggtg ccgagccggc ggggggtgag gtggctgcgc cggcggccgg gctaggaggt
721



gcgggcactg ggggcgcggg aggggacgtg gcaggccccg cgggggccac ggcgatccca
781



ggggccagga aggtcccgct gcgggcacgc aatctgcctc cgtccttctt cacggagccg
841



tcccgggcag gcggcggcgg gtgtggcccg tcggggccgg acgtgagctt gggcgacctg
901



gagaagggcg cggaggccgt ggagttcttt gagctgctgg ggcccgacta cggcgccggc
961



acggaggcgg cagtcttgct tgccgccgag cctctcgacg tgttccccgc cggagcctcc
1021



gtactgcggg gacccccgga gctggagccc ggcctctttg agccgccgcc ggcagtggtg
1081



ggaaacctac tgtaccccga gccctggagc gtcccgggct gctccccgac caaaaagagc
1141



cccctgactg ccccccgcgg cggcttgacc ttgaacgagc ccttgagccc cctgtacccc
1201



gccgctgcgg attctcccgg cggggaggac gggcggggcc atttggcctc tttcgccccc
1261



ttctttccag actgcgccct gcccccgccg ccgccgcccc atcaggtgtc ctacgattac
1321



agcgcgggct acagccgcac cgcctattcc agcctttgga gatccgacgg ggtttgggaa
1381



ggggcgcggg gggaggaggg ggcgcaccgg gactgacttc gaggcacgct tcccttcatt
1441



agagacggct gtggagagcg ccgcgcctcc gtgggtttct cctaaatctg aagaacgatg
1501



ggaaaatgca cgtggagatg aaaccagatt tttaaaaatt caattaataa aagcaacttc
1561



agaaaaaaga gatgaagacg agttggggat tgtttaatca caacctcaag tgttaaaaca
1621



aaaacaaaca aacacgtttg taggttctta ctggaccaga ggagtcaaga aaccaagatg
1681



gtttggggta tggggtgggg acggcaaaag gggtaagagc tggcttctgt agccacctgt
1741



cccttctatt tttcagcgaa ggtcagtgta tttagtgtaa ttaccccttc taaacagtgt
1801



cctagtccct cccttccctc tccttgagtg cattttgaat taaagcctat attgaaaaga
1861



aaaaaaaaaa aaaaa










RST24587 Athersys RAGE Library Homo sapiens cDNA, mRNA sequence


GenBank: BG205162.1 (SEQ ID. NO. 39)





SEQUENCE


TTTCCGAGGCGTNCCTNCTNCCCTTTTNACCTCGGGACTCANCGTCTTCCTCACAGCACT


TCCATGTCATCTGCCCCGTGAAATCAGCCTAACGCCGTTTCTCAATGACGTGGATCGCCC


TAGGCCACCGCAACCTTCCGGAAGCTCTCTCAGCTCAGTTCCCATTCTCCCACCATCTCT


TGGTTCTCCTTCTACCTCACCGGTTGCTAGTCCTCCGCTTCGCAGCTGAAAATGTGCCCG


GGGCCTACTGTGGGCCTAGCCAGGCCTGCTTACGCAGTGCGGTTTCCCATGAATGATGCC


CAGTCATTATCACATAACCTGTGGCAAGCCAGCAAGATGGCCCTGGTGACAGCAAAAGAA


ACTGCACTAGGACCTGAATGTAGATCTCAGTCATGTTCCTTACTAACAGCACGTTTTGCA


ACCATGCGTTAAAGAAACATCTGACTCACAACAAAATTTTAAAGGGTTTATTTGAGTGAA


AAGCAATTTATGAATTGGGGAACACCTGACTGAAAGAGCGTTAGTATTCCAGAGACAAAA


CATCAAGTGCAAGTTTTTATTGGGAAAATGTAGAAGCACAATAAAGAAATTATTTTGATT


GGTTAAAAAAAAAAAAA



Homo sapiens granzyme B (granzyme 2, cytotoxic T-lymphocyte-associated serine



esterase 1) (GZMB), mRNA


NCBI Reference Sequence: NM_004131.3 (SEQ ID. NO. 40)












1
ccaagagcta aaagagagta agggggaaac aacagcagct ccaaccaggg cagccttcct



61
gagaagatgc aaccaatcct gcttctgctg gccttcctcc tgctgcccag ggcagatgca
121



ggggagatca tcgggggaca tgaggccaag ccccactccc gcccctacat ggcttatctt
181



atgatctggg atcagaagtc tctgaagagg tgcggtggct tcctgataca agacgacttc
241



gtgctgacag ctgctcactg ttggggaagc tccataaatg tcaccttggg ggcccacaat
301



atcaaagaac aggagccgac ccagcagttt atccctgtga aaagacccat cccccatcca
361



gcctataatc ctaagaactt ctccaacgac atcatgctac tgcagctgga gagaaaggcc
421



aagcggacca gagctgtgca gcccctcagg ctacctagca acaaggccca ggtgaagcca
481



gggcagacat gcagtgtggc cggctggggg cagacggccc ccctgggaaa acactcacac
541



acactacaag aggtgaagat gacagtgcag gaagatcgaa agtgcgaatc tgacttacgc
601



cattattacg acagtaccat tgagttgtgc gtgggggacc cagagattaa aaagacttcc
661



tttaaggggg actctggagg ccctcttgtg tgtaacaagg tggcccaggg cattgtctcc
721



tatggacgaa acaatggcat gcctccacga gcctgcacca aagtctcaag ctttgtacac
781



tggataaaga aaaccatgaa acgctactaa ctacaggaag caaactaagc ccccgctgta
841



atgaaacacc ttctctggag ccaagtccag atttacactg ggagaggtgc cagcaactga
901



ataaatacct cttagctgag tggaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaa







DSG3 (SEQ ID. NO. 41)












1
aaagcagcag agacgctgca gagggctttt cttagacatc aactgcagac ggctggcagg



61
atagaagcag cggctcactt ggactttttc accagggaaa tcagagacaa tgatggggct
121



cttccccaga actacagggg ctctggccat cttcgtggtg gtcatattgg ttcatggaga
181



attgcgaata gagactaaag gtcaatatga tgaagaagag atgactatgc aacaagctaa
241



aagaaggcaa aaacgtgaat gggtgaaatt tgccaaaccc tgcagagaag gagaagataa
301



ctcaaaaaga aacccaattg ccaagattac ttcagattac caagcaaccc agaaaatcac
361



ctaccgaatc tctggagtgg gaatcgatca gccgcctttt ggaatctttg ttgttgacaa
421



aaacactgga gatattaaca taacagctat agtcgaccgg gaggaaactc caagcttcct
481



gatcacatgt cgggctctaa atgcccaagg actagatgta gagaaaccac ttatactaac
541



ggttaaaatt ttggatatta atgataatcc tccagtattt tcacaacaaa ttttcatggg
601



tgaaattgaa gaaaatagtg cctcaaactc actggtgatg atactaaatg ccacagatgc
661



agatgaacca aaccacttga attctaaaat tgccttcaaa attgtctctc aggaaccagc
721



aggcacaccc atgttcctcc taagcagaaa cactggggaa gtccgtactt tgaccaattc
781



tcttgaccga gagcaagcta gcagctatcg tctggttgtg agtggtgcag acaaagatgg
841



agaaggacta tcaactcaat gtgaatgtaa tattaaagtg aaagatgtca acgataactt
901



cccaatgttt agagactctc agtattcagc acgtattgaa gaaaatattt taagttctga
961



attacttcga tttcaagtaa cagatttgga tgaagagtac acagataatt ggcttgcagt
1021



atatttcttt acctctggga atgaaggaaa ttggtttgaa atacaaactg atcctagaac
1081



taatgaaggc atcctgaaag tggtgaaggc tctagattat gaacaactac aaagcgtgaa
1141



acttagtatt gctgtcaaaa acaaagctga atttcaccaa tcagttatct ctcgataccg
1201



agttcagtca accccagtca caattcaggt aataaatgta agagaaggaa ttgcattccg
1261



tcctgcttcc aagacattta ctgtgcaaaa aggcataagt agcaaaaaat tggtggatta
1321



tatcctggga acatatcaag ccatcgatga ggacactaac aaagctgcct caaatgtcaa
1381



atatgtcatg ggacgtaacg atggtggata cctaatgatt gattcaaaaa ctgctgaaat
1441



caaatttgtc aaaaatatga accgagattc tactttcata gttaacaaaa caatcacagc
1501



tgaggttctg gccatagatg aatacacggg taaaacttct acaggcacgg tatatgttag
1561



agtacccgat ttcaatgaca attgtccaac agctgtcctc gaaaaagatg cagtttgcag
1621



ttcttcacct tccgtggttg tctccgctag aacactgaat aatagataca ctggccccta
1681



tacatttgca ctggaagatc aacctgtaaa gttgcctgcc gtatggagta tcacaaccct
1741



caatgctacc tcggccctcc tcagagccca ggaacagata cctcctggag tataccacat
1801



ctccctggta cttacagaca gtcagaacaa tcggtgtgag atgccacgca gcttgacact
1861



ggaagtctgt cagtgtgaca acaggggcat ctgtggaact tcttacccaa ccacaagccc
1921



tgggaccagg tatggcaggc cgcactcagg gaggctgggg cctgccgcca tcggcctgct
1981



gctccttggt ctcctgctgc tgctgttggc cccccttctg ctgttgacct gtgactgtgg
2041



ggcaggttct actgggggag tgacaggtgg ttttatccca gttcctgatg gctcagaagg
2101



aacaattcat cagtggggaa ttgaaggagc ccatcctgaa gacaaggaaa tcacaaatat
2161



ttgtgtgcct cctgtaacag ccaatggagc cgatttcatg gaaagttctg aagtttgtac
2221



aaatacgtat gccagaggca cagcggtgga aggcacttca ggaatggaaa tgaccactaa
2281



gcttggagca gccactgaat ctggaggtgc tgcaggcttt gcaacaggga cagtgtcagg
2341



agctgcttca ggattcggag cagccactgg agttggcatc tgttcctcag ggcagtctgg
2401



aaccatgaga acaaggcatt ccactggagg aaccaataag gactacgctg atggggcgat
2461



aagcatgaat tttctggact cctacttttc tcagaaagca tttgcctgtg cggaggaaga
2521



cgatggccag gaagcaaatg actgcttgtt gatctatgat aatgaaggcg cagatgccac
2581



tggttctcct gtgggctccg tgggttgttg cagttttatt gctgatgacc tggatgacag
2641



cttcttggac tcacttggac ccaaatttaa aaaacttgca gagataagcc ttggtgttga
2701



tggtgaaggc aaagaagttc agccaccctc taaagacagc ggttatggga ttgaatcctg
2761



tggccatccc atagaagtcc agcagacagg atttgttaag tgccagactt tgtcaggaag
2821



tcaaggagct tctgctttgt ccacctctgg gtctgtccag ccagctgttt ccatccctga
2881



ccctctgcag catggtaact atttagtaac ggagacttac tcggcttctg gttccctcgt
2941



gcaaccttcc actgcaggct ttgatccact tctcacacaa aatgtgatag tgacagaaag
3001



ggtgatctgt cccatttcca gtgttcctgg caacctagct ggcccaacgc agctacgagg
3061



gtcacatact atgctctgta cagaggatcc ttgctcccgt ctaatatgac cagaatgagc
3121



tggaatacca cactgaccaa atctggatct ttggactaaa gtattcaaaa tagcatagca
3181



aagctcactg tattgggcta ataatttggc acttattagc ttctctcata aactgatcac
3241



gattataaat taaatgtttg ggttcatacc ccaaaagcaa tatgttgtca ctcctaattc
3301



tcaagtacta ttcaaattgt agtaaatctt aaagtttttc aaaaccctaa aatcatattc
3361



gccaggaaat tttcctaaac attcttaagc ttctattttt cccctgccaa aggaaggtgt
3421



ttatcatttt aaaatgcaat gtgatttagt ggattaagca ggagcgctgg ttattgtctc
3481



cattgccttt tcttatatca ttgataatga tgtaagaatc acaaggggcc gggcgcggtg
3541



gctcacgcct gtaatcccag cactttggga ggccgaggca ggtggatcat gaggtcagga
3601



gatcgagacc atcctggcta acaaggtgaa accccgtctc tactaaaaat acaaaaaatt
3661



agccgggcgc agtggcgggc gcctgtagtc ccagctactc gggaggctga ggcaggagaa
3721



tggcatgaac ccgggaagcg gagcttgcag tgagccgaga ttgcgccact gcagtccgca
3781



gtccggcctg ggcgacagag cgagactccg tctcaaaaaa aaaaaaaaaa aaagaatcac
3841



aaggtatttg ctaaagcatt ttgagctgct tggaaaaagg gaagtagttg cagtagagtt
3901



tcttccatct tcttggtgct gggaagccat atatgtgtct tttactcaag ctaaggggta
3961



taagcttatg tgttgaattt gctacatcta tatttcacat attctcacaa taagagaatt
4021



ttgaaataga aatatcatag aacatttaag aaagtttagt ataaataata ttttgtgtgt
4081



tttaatccct ttgaagggat ctatccaaag aaaatatttt acactgagct ccttcctaca
4141



cgtctcagta acagatcctg tgttagtctt tgaaaatagc tcatttttta aatgtcagtg
4201



agtagatgta gcatacatat gatgtataat gacgtgtatt atgttaacaa tgtctgcaga
4261



ttttgtagga atacaaaaca tggccttttt tataagcaaa acgggccaat gactagaata
4321



acacataggg caatctgtga atatgtatta taagcagcat tccagaaaag tagttggtga
4381



aataattttc aagtcaaaaa gggatatgga aagggaatta tgagtaacct ctatttttta
4441



agccttgctt ttaaattaaa cagctacagc catttaagcc ttgaggataa taaagcttga
4501



gagtaataat gttaggttag caaaggttta gatgtatcac ttcatgcatg ctaccatgat
4561



agtaatgcag ctcttcgagt catttctggt cattcaagat attcaccctt ttgcccatag
4621



aaagcaccct acctcacctg cttactgaca ttgtcttagc tgatcacaag atcattatca
4681



gcctccatta ttccttactg tatataaaat acagagtttt atattttcct ttcttcgttt
4741



ttcaccatat tcaaaaccta aatttgtttt tgcagatgga atgcaaagta atcaagtgtt
4801



tgtgctttca cctagaaggg tgtggtcctg aaggaaagag gtcccctaaa tatcccccac
4861



cctggtgctc ctccctctcc ctggtaccct gactaccagg aagtcaggtg ctagagcagc
4921



tggagaagtg caggcagcct gtgcttccac agatgggggt gctgctgcaa caaggctttc
4981



aatgtgccca tcttaggtgg gagaagctag atcctgtgca gcagcctggt aagtcctgag
5041



gaggttccat tgctcttcct gctgctgtcc tttgcttctc aacggtggct cgctctacag
5101



tctagagcac atgcagctaa cttgtgcctc tgcttatgca tgagggttaa attaacaacc
5161



ataaccttca tttgaagttc aaaggtgtat tcaggatcct caaagcattt taaccttgcc
5221



gcttaaaacc caatttaccg tgaaatggga attttgctgc attgttaaac tgtagtggaa
5281



accatgctat agtaataaag gttatataag agagaaattg aaattaaatg tgtttttaaa
5341



tttcaaaaaa aaatcaatct ttaggatgac ttaaaaattg atttgccatg taaaatgtat
5401



ctgcattttt tacacaaaac ttgttttaag cataaaattt taaaactgta ctacttgatg
5461



tattatacat tttgaaccat atgtattaaa ccataaacag tataatgttg ttataataaa
5521



acaggcaata aatttataaa taaaagctga aaaaaaaaaa











Homo sapiens thymidine phosphorylase (TYMP), transcript variant 3, mRNA



NCBI Reference Sequence: NM_001113756.1 (SEQ ID. NO. 42)












1
cgaggggcgg acaccggaga gacacgggaa aggggtcggg acaggagcac gtggctcaga



61
caccgacgcc gggaggccgc agaccccgga cgtgtcaggc atccccgcag gcccggagcg
121



atggcagcct tgatgacccc gggaaccggg gccccacccg cgcctggtga cttctccggg
181



gaagggagcc agggacttcc cgacccttcg ccagagccca agcagctccc ggagctgatc
241



cgcatgaagc gagacggagg ccgcctgagc gaagcggaca tcaggggctt cgtggccgct
301



gtggtgaatg ggagcgcgca gggcgcacag atcggggcca tgctgatggc catccgactt
361



cggggcatgg atctggagga gacctcggtg ctgacccagg ccctggctca gtcgggacag
421



cagctggagt ggccagaggc ctggcgccag cagcttgtgg acaagcattc cacagggggt
481



gtgggtgaca aggtcagcct ggtcctcgca cctgccctgg cggcatgtgg ctgcaaggtg
541



ccaatgatca gcggacgtgg tctggggcac acaggaggca ccttggataa gctggagtct
601



attcctggat tcaatgtcat ccagagccca gagcagatgc aagtgctgct ggaccaggcg
661



ggctgctgta tcgtgggtca gagtgagcag ctggttcctg cggacggaat cctatatgca
721



gccagagatg tgacagccac cgtggacagc ctgccactca tcacagcctc cattctcagt
781



aagaaactcg tggaggggct gtccgctctg gtggtggacg ttaagttcgg aggggccgcc
841



gtcttcccca accaggagca ggcccgggag ctggcaaaga cgctggttgg cgtgggagcc
901



agcctagggc ttcgggtcgc ggcagcgctg accgccatgg acaagcccct gggtcgctgc
961



gtgggccacg ccctggaggt ggaggaggcg ctgctctgca tggacggcgc aggcccgcca
1021



gacttaaggg acctggtcac cacgctcggg ggcgccctgc tctggctcag cggacacgcg
1081



gggactcagg cccagggcgc tgcccgggtg gccgcggcgc tggacgacgg ctcggccctt
1141



ggccgcttcg agcggatgct ggcggcgcag ggcgtggatc ccggtctggc ccgagccctg
1201



tgctcgggaa gtcccgcaga acgccggcag ctgctgcctc gcgcccggga gcaggaggag
1261



ctgctggcgc ccgcagatgg caccgtggag ctggtccggg cgctgccgct ggcgctggtg
1321



ctgcacgagc tcggggccgg gcgcagccgc gctggggagc cgctccgcct gggggtgggc
1381



gcagagctgc tggtcgacgt gggtcagagg ctgcgccgtg ggaccccctg gctccgcgtg
1441



caccgggacg gccccgcgct cagcggcccg cagagccgcg ccctgcagga ggcgctcgta
1501



ctctccgacc gcgcgccatt cgccgccccc tcgcccttcg cagagctcgt tctgccgccg
1561



cagcaataaa gctcctttgc cgcgaaa








Homo sapiens keratin 6A (KRT6A), mRNA



NCBI Reference Sequence: NM_005554.3 (SEQ ID. NO. 43)












1
atatttcata cctttctaga aactgggtgt gatctcactg ttggtaaagc ccagcccttc



61
ccaacctgca agctcacctt ccaggactgg gcccagccca tgctctccat atataagctg
121



ctgccccgag cctgattcct agtcctgctt ctcttccctc tctcctccag cctctcacac
181



tctcctcagc tctctcatct cctggaacca tggccagcac atccaccacc atcaggagcc
241



acagcagcag ccgccggggt ttcagtgcca actcagccag gctccctggg gtcagccgct
301



ctggcttcag cagcgtctcc gtgtcccgct ccaggggcag tggtggcctg ggtggtgcat
361



gtggaggagc tggctttggc agccgcagtc tgtatggcct ggggggctcc aagaggatct
421



ccattggagg gggcagctgt gccatcagtg gcggctatgg cagcagagcc ggaggcagct
481



atggctttgg tggcgccggg agtggatttg gtttcggtgg tggagccggc attggctttg
541



gtctgggtgg tggagccggc cttgctggtg gctttggggg ccctggcttc cctgtgtgcc
601



cccctggagg catccaagag gtcaccgtca accagagtct cctgactccc ctcaacctgc
661



aaatcgatcc caccatccag cgggtgcggg ctgaggagcg tgaacagatc aagaccctca
721



acaacaagtt tgcctccttc atcgacaagg tgcggttcct ggagcagcag aacaaggttc
781



tggaaacaaa gtggaccctg ctgcaggagc agggcaccaa gactgtgagg cagaacctgg
841



agccgttgtt cgagcagtac atcaacaacc tcaggaggca gctggacagc attgtcgggg
901



aacggggccg cctggactca gagctcagag gcatgcagga cctggtggag gacttcaaga
961



acaaatatga ggatgaaatc aacaagcgca cagcagcaga gaatgaattt gtgactctga
1021



agaaggatgt ggatgctgcc tacatgaaca aggttgaact gcaagccaag gcagacactc
1081



tcacagacga gatcaacttc ctgagagcct tgtatgatgc agagctgtcc cagatgcaga
1141



cccacatctc agacacatct gtggtgctgt ccatggacaa caaccgcaac ctggacctgg
1201



acagcatcat cgctgaggtc aaggcccaat atgaggagat tgctcagaga agccgggctg
1261



aggctgagtc ctggtaccag accaagtacg aggagctgca ggtcacagca ggcagacatg
1321



gggacgacct gcgcaacacc aagcaggaga ttgctgagat caaccgcatg atccagaggc
1381



tgagatctga gatcgaccac gtcaagaagc agtgcgccaa cctgcaggcc gccattgctg
1441



atgctgagca gcgtggggag atggccctca aggatgccaa gaacaagctg gaagggctgg
1501



aggatgccct gcagaaggcc aagcaggacc tggcccggct gctgaaggag taccaggagc
1561



tgatgaatgt caagctggcc ctggacgtgg agatcgccac ctaccgcaag ctgctggagg
1621



gtgaggagtg caggctgaat ggcgaaggcg ttggacaagt caacatctct gtggtgcagt
1681



ccaccgtctc cagtggctat ggcggtgcca gtggtgtcgg cagtggctta ggcctgggtg
1741



gaggaagcag ctactcctat ggcagtggtc ttggcgttgg aggtggcttc agttccagca
1801



gtggcagagc cattgggggt ggcctcagct ctgttggagg cggcagttcc accatcaagt
1861



acaccaccac ctcctcctcc agcaggaaga gctataagca ctaaagtgcg tctgctagct
1921



ctcggtccca cagtcctcag gcccctctct ggctgcagag ccctctcctc aggttgcctt
1981



tcctctcctg gcctccagtc tcccctgctg tcccaggtag agctgggtat ggatgcttag
2041



tgccctcact tcttctctct ctctctatac catctgagca cccattgctc accatcagat
2101



caacctctga ttttacatca tgatgtaatc accactggag cttcactgtt actaaattat
2161



taatttcttg cctccagtgt tctatctctg aggctgagca ttataagaaa atgacctctg
2221



ctccttttca ttgcagaaaa ttgccagggg cttatttcag aacaacttcc acttactttc
2281



cactggctct caaactctct aacttataag tgttgtgaac ccccacccag gcagtatcca
2341



tgaaagcaca agtgactagt cctatgatgt acaaagcctg tatctctgtg atgatttctg
2401



tgctcttcgc tgtttgcaat tgctaaataa agcagattta taataca











Homo sapiens keratin 6B (KRT6B), mRNA



NCBI Reference Sequence: NM_005555.3 (SEQ ID. NO. 44)












1
cgcctccagc ctctcacact ctcctaagcc ctctcatctc ctggaaccat ggccagcaca



61
tccaccacca tcaggagcca cagcagcagc cgccggggtt tcagtgccaa ctcagccagg
121



ctccctgggg tcagccgctc tggcttcagc agcatctccg tgtcccgctc caggggcagt
181



ggtggcctgg gtggcgcatg tggaggagct ggctttggca gccgcagtct gtatggcctg
241



gggggctcca agaggatctc cattggaggg ggcagctgtg ccatcagtgg cggctatggc
301



agcagagccg gaggcagcta tggctttggt ggcgccggga gtggatttgg tttcggtggt
361



ggagccggca ttggctttgg tctgggtggt ggagccggcc ttgctggtgg ctttgggggc
421



cctggcttcc ctgtgtgccc ccctggaggc atccaagagg tcactgtcaa ccagagtctc
481



ctgactcccc tcaacctgca aattgacccc gccatccagc gggtgcgggc cgaggagcgt
541



gagcagatca agaccctcaa caacaagttt gcctccttca tcgacaaggt gcggttccta
601



gagcagcaga acaaggttct ggacaccaag tggaccctgc tgcaggagca gggcaccaag
661



actgtgaggc agaacctgga gccgttgttc gagcagtaca tcaacaacct caggaggcag
721



ctggacaaca tcgtggggga acggggtcgt ctggactcgg agctgagaaa catgcaggac
781



ctggtggagg acctcaagaa caaatatgag gatgaaatca acaagcgcac agcagcagag
841



aatgaatttg tgactctgaa gaaggatgtg gatgctgcct acatgaacaa ggttgaactg
901



caagccaagg cagacactct tacagatgag atcaacttcc tgagagcctt gtatgatgca
961



gagctgtccc agatgcagac ccacatctca gacacatccg tggtgatatc catggacaac
1021



aaccgcaacc tggacctgga cagcatcatc gctgaggtca aggcccaata tgaggagatt
1081



gctcagagga gcagggctga ggctgagtcc tggtaccaga caaagtacga ggagctgcag
1141



atcacagcag gcagacatgg ggacgacctg cgcaacacca agcaggagat tgctgagatc
1201



aaccgcatga tccagaggct gagatctgag atcgaccacg tcaagaagca gtgtgccaac
1261



ctacaggccg ccattgctga tgctgagcag cgtggggaga tggccctcaa ggatgctaag
1321



aacaagctgg aagggctgga ggatgccctg cagaaggcca agcaggacct ggcccggctg
1381



ctgaaggagt accaggagct gatgaacgtc aagctggccc tggatgtgga gatcgccacc
1441



taccgcaagc tgctggaggg cgaggagtgc aggctgaatg gcgaaggcgt tggacaagtc
1501



aacatctctg tagtgcagtc caccgtctcc agtggctatg gcggtgccag cggtgtcggc
1561



agtggcttag gcctgggtgg aggaagcagc tactcctatg gcagtggtct tggcgttgga
1621



ggcggcttta gttccagcag cggcagagcc actgggggtg gcctcagctc tgttggaggc
1681



ggcagttcca ccatcaagta caccaccacc tcctcctcca gcaggaagag ctacaagcac
1741



tgaagtgctg ccgccagctc tcagtcccac agctctcagg cccctctctg gcagcagagc
1801



cctctcctca ggttgcttgt cctcccctgg cctccagtct cccctgccct cccgggtaga
1861



gctgggatgc cctcactttt cttctcatca atacctgttc cactgagctc ctgttgctta
1921



ccatcaagtc aacagttatc agcactcaga catgcgaatg tcctttttag ttcccgtatt
1981



attacaggta tctgagtctg ccataattct gagaagaaaa tgacctatat ccccataaga
2041



actgaaactc agtctaggtc cagctgcaga tgaggagtcc tctctttaat tgctaaccat
2101



cctgcccatt atagctacac tcaggagttc tcatctgaca agtcagttgt cctgatcttc
2161



tcttgcagtg tccctgaatg gcaagtgatg taccttctga tgcagtctgc attcctgcac
2221



tgctttctct gctctctttg ccttcttttg ttctgttgaa taaagcatat tgagaatgtg
2281



aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa











Homo sapiens major histocompatibility complex, class II, DR beta 1 (HLA-



DRB1), mRNA


NCBI Reference Sequence: NM_002124.1 (SEQ ID. NO. 45)












1
tagttctccc tgagtgagac ttgcctgctt ctctggcccc tggtcctgtc ctgttctcca



61
gcatggtgtg tctgaagctc cctggaggct cctgcatgac agcgctgaca gtgacactga
121



tggtgctgag ctccccactg gctttggctg gggacacccg accacgtttc ttgtggcagc
181



ttaagtttga atgtcatttc ttcaatggga cggagcgggt gcggttgctg gaaagatgca
241



tctataacca agaggagtcc gtgcgcttcg acagcgacgt gggggagtac cgggcggtga
301



cggagctggg gcggcctgat gccgagtact ggaacagcca gaaggacctc ctggagcaga
361



ggcgggccgc ggtggacacc tactgcagac acaactacgg ggttggtgag agcttcacag
421



tgcagcggcg agttgagcct aaggtgactg tgtatccttc aaagacccag cccctgcagc
481



accacaacct cctggtctgc tctgtgagtg gtttctatcc aggcagcatt gaagtcaggt
541



ggttccggaa cggccaggaa gagaaggctg gggtggtgtc cacaggcctg atccagaatg
601



gagattggac cttccagacc ctggtgatgc tggaaacagt tcctcggagt ggagaggttt
661



acacctgcca agtggagcac ccaagtgtga cgagccctct cacagtggaa tggagagcac
721



ggtctgaatc tgcacagagc aagatgctga gtggagtcgg gggcttcgtg ctgggcctgc
781



tcttccttgg ggccgggctg ttcatctact tcaggaatca gaaaggacac tctggacttc
841



agccaacagg attcctgagc tgaaatgcag atgaccacat tcaaggaaga accttctgtc
901



ccagctttgc agaatgaaaa gctttcctgc ttggcagtta ttcttccaca agagagggct
961



ttctcaggac ctggttgcta ctggttcggc aactgcagaa aatgtcctcc cttgtggctt
1021



cctcagctcc tgcccttggc ctgaagtccc agcattgatg acagcgcctc atcttcaact
1081



tttgtgctcc cctttgccta aaccgtatgg cctcccgtgc atctgtactc accctgtacg
1141



acaaacacat tacattatta aatgtttctc aaagatggag











Homo sapiens lipocalin 2 (LCN2), mRNA



NCBI Reference Sequence: NM_005564.3 (SEQ ID. NO. 46)












1
actcgccacc tcctcttcca cccctgccag gcccagcagc caccacagcg cctgcttcct



61
cggccctgaa atcatgcccc taggtctcct gtggctgggc ctagccctgt tgggggctct
121



gcatgcccag gcccaggact ccacctcaga cctgatccca gccccacctc tgagcaaggt
181



ccctctgcag cagaacttcc aggacaacca attccagggg aagtggtatg tggtaggcct
241



ggcagggaat gcaattctca gagaagacaa agacccgcaa aagatgtatg ccaccatcta
301



tgagctgaaa gaagacaaga gctacaatgt cacctccgtc ctgtttagga aaaagaagtg
361



tgactactgg atcaggactt ttgttccagg ttgccagccc ggcgagttca cgctgggcaa
421



cattaagagt taccctggat taacgagtta cctcgtccga gtggtgagca ccaactacaa
481



ccagcatgct atggtgttct tcaagaaagt ttctcaaaac agggagtact tcaagatcac
541



cctctacggg agaaccaagg agctgacttc ggaactaaag gagaacttca tccgcttctc
601



caaatctctg ggcctccctg aaaaccacat cgtcttccct gtcccaatcg accagtgtat
661



cgacggctga gtgcacaggt gccgccagct gccgcaccag cccgaacacc attgagggag
721



ctgggagacc ctccccacag tgccacccat gcagctgctc cccaggccac cccgctgatg
781



gagccccacc ttgtctgcta aataaacatg tgccctcagg ccaaaaaaaa aaaaaa











Homo sapiens keratin 4 (KRT4), mRNA



NCBI Reference Sequence: NM_002272.2 (SEQ ID. NO. 47)












1
gacttgctcc ggtttgcaga gctaggaggt ggcaggctgt gcgctcaaac tcaggctgtc



61
taactccaca ttctgtgggg tgagaggatg ggtgatgggg tgtcttttct ggaggaggga
121



ggtgctgtga gcctagcgag atggaggtac agtgggtgtg ggcctggagc gctgggccca
181



ggcaggggct tctgattagg aagccctggg gcaccagttc aggttctccc agagagtagt
241



gtgatgggat ccagtaacct gtgccctcca gatgacttct gtaggtgtgt ttagtgacat
301



gctcaacggg tgcgggaagg atgggcttgt gccaagggcc aagcccagag atgtttcaga
361



tttttccctt tatgcccctg caaccaagcc ctgctgctcc aggacatata agagacgaag
421



gctgagggct ccagcactca ccggcctggg ccctgtcact tctctgatag ctcccagctc
481



gctctctgca gccatgattg ccagacagca gtgtgtccga ggcgggcccc ggggcttcag
541



ctgtggctcg gccattgtag gcggtggcaa gagaggtgcc ttcagctcag tctccatgtc
601



tggaggtgct ggccgatgct cttctggggg atttggcagc agaagcctct acaacctcag
661



ggggaacaaa agcatctcca tgagtgtggc tgggtcacga caaggtgcct gctttggggg
721



tgctggaggc tttggcactg gtggctttgg tggtggattt gggggctcct tcagtggtaa
781



gggtggccct ggcttccccg tctgccccgc tgggggaatt caggaggtca ccatcaacca
841



gagcttgctc acccccctcc acgtggagat tgaccctgag atccagaaag tccggacgga
901



agagcgcgaa cagatcaagc tcctcaacaa caagtttgcc tccttcatcg acaaggtgca
961



gttcttagag caacagaata aggtcctgga gaccaaatgg aacctgctcc agcagcagac
1021



gaccaccacc tccagcaaaa accttgagcc cctctttgag acctacctca gtgtcctgag
1081



gaagcagcta gataccttgg gcaatgacaa agggcgcctg cagtctgagc tgaagaccat
1141



gcaggacagc gtggaggact tcaagactaa gtatgaagag gagatcaaca aacgcacagc
1201



agccgagaat gactttgtgg tcctaaagaa ggacgtggat gctgcctacc tgaacaaggt
1261



ggagttggag gccaaggtgg acagtcttaa tgacgagatc aacttcctga aggtcctcta
1321



tgatgcggag ctgtcccaga tgcagaccca tgtcagcgac acgtccgtgg tcctttccat
1381



ggacaacaac cgcaacctgg acctggacag cattattgcc gaggtccgtg cccagtacga
1441



ggagattgcc cagaggagca aggctgaggc tgaagccctg taccagacca aggtccagca
1501



gctccagatc tcggttgacc aacatggtga caacctgaag aacaccaaga gtgaaattgc
1561



agagctcaac aggatgatcc agaggctgcg ggcagagatc gagaacatca agaagcagtg
1621



ccagactctt caggtatccg tggctgatgc agagcagcga ggtgagaatg cccttaaaga
1681



tgcccacagc aagcgcgtag agctggaggc tgccctgcag caggccaagg aggagctggc
1741



acgaatgctg cgtgagtacc aggagctcat gagtgtgaag ctggccttgg acatcgagat
1801



cgccacctac cgcaaactgc tggagggcga ggagtacaga atgtctggag aatgccagag
1861



tgccgtgagc atctctgtgg tcagcggtag caccagcact ggaggcatca gcggaggatt
1921



aggaagtggc tccgggtttg gcctgagtag tggctttggc tccggctctg gaagtggctt
1981



tgggtttggt ggcagtgtct ctggcagttc cagcagcaag atcatctcta ccaccaccct
2041



gaacaagaga cgatagagga gacgaggtcc ctgcagctca ctgtgtccag ctgggcccag
2101



cactggtgtc tctgtgcttc cttcacttca cctccatcct ctgtctctgg ggctcatctt
2161



actagtatcc cctccactat cccatgggct ctctctgccc caggatgatc ttctgtgctg
2221



ggacagggac tctgcctctt ggagtttggt agctacttct tgatttgggc ctggtgaccc
2281



acctggaatg ggaaggatgt cagctgacct ctcacctccc atggacagag aagaaaatga
2341



ccaggagtgt catctccaga attattgggg tcacatatgt cccttcccag tccaatgcca
2401



tctcccacta gatcctgtat tatccatcta catcagaacc aaactacttc tccaacaccc
2461



ggcagcactt ggccctgcaa gcttaggatg agaaccactt agtgtcccat tctactcctc
2521



tcattccctc ttatccatct gcaggtgaat cttcaataaa atgcttttgt cattca











Homo sapiens interferon, gamma-inducible protein 30 (IFI30), mRNA



NCBI Reference Sequence: NM_006332.3 (SEQ ID. NO. 48)












1
ggaccgccgc ctggttaaag gcgcttattt cccaggcagc cgctgcagtc gccacacctt



61
tgcccctgct gcgatgaccc tgtcgccact tctgctgttc ctgccaccgc tgctgctgct
121



gctggacgtc cccacggcgg cggtgcaggc gtcccctctg caagcgttag acttctttgg
181



gaatgggcca ccagttaact acaagacagg caatctatac ctgcgggggc ccctgaagaa
241



gtccaatgca ccgcttgtca atgtgaccct ctactatgaa gcactgtgcg gtggctgccg
301



agccttcctg atccgggagc tcttcccaac atggctgttg gtcatggaga tcctcaatgt
361



cacgctggtg ccctacggaa acgcacagga acaaaatgtc agtggcaggt gggagttcaa
421



gtgccagcat ggagaagagg agtgcaaatt caacaaggtg gaggcctgcg tgttggatga
481



acttgacatg gagctagcct tcctgaccat tgtctgcatg gaagagtttg aggacatgga
541



gagaagtctg ccactatgcc tgcagctcta cgccccaggg ctgtcgccag acactatcat
601



ggagtgtgca atgggggacc gcggcatgca gctcatgcac gccaacgccc agcggacaga
661



tgctctccag ccaccacacg agtatgtgcc ctgggtcacc gtcaatggga aacccttgga
721



agatcagacc cagctcctta cccttgtctg ccagttgtac cagggcaaga agccggatgt
781



ctgcccttcc tcaaccagct ccctcaggag tgtttgcttc aagtgatggc cggtgagctg
841



cggagagctc atggaaggcg agtgggaacc cggctgcctg cctttttttc tgatccagac
901



cctcggcacc tgctacttac caactggaaa attttatgca tcccatgaag cccagataca
961



caaaattcca ccccatgatc aagaatcctg ctccactaag aatggtgcta aagtaaaact
1021



agtttaataa gcaaaaaaaa aaaaaaaaaa










PREDICTED: Homo sapiens hypothetical protein LOC100134370 (LOC100134370),


mRNA


NCBI Reference Sequence: XM_001713687.1 (SEQ ID. NO. 49)












1
gttccatcct ctgccatcta ctccactgtt cagacacctc ctaacctccg tcatgacctg



61
tggcttcaac tccataggct gtgggttccg ccctggaaac ttcagctgtg tctctgcctg
121



cgggccccgg ccaagccgct gctgcatcac cgccgccccc taccgcggca tctcctgcta
181



ccgcggcctc accgggggct ttggcagcca cagcgtgtgc gggggcttcc gcgccggctc
241



ctgcggacgc agcttcggct accgctccgg gggcgtgtgc ggacccagcc ccccatgcat
301



caccaccgtg tcggtcaacg agagcctcct cacgcccctc aacctggaga tagaccccaa
361



cgcgcagtgc gtgaagcagg aggagaagga gcagatcaag tccctcaaca gcagattcgc
421



ggccttcatc gacaaggtgc gcttcctgga gcagcagaac aagctgctgg agacaaagct
481



gcagttctac caaaaccgcg agtgctgcca gagtaacctg gagcccctgt ttgctggcta
541



catcgagact ctgcggcggg aggccgagtg cgtggaggct gacagtggga ggctggcctc
601



agagctcaat cacgtgcagg aggtgctgga gggctacaag aagaagtatg aagaagaagt
661



agcacttcga gccacagcag agaacgagtt tgtggctcta aagaaggatg tggactgcgc
721



ctacctccgc aagtcagacc tggaggccaa cgtggaggcc ctgatccagg agattgactt
781



cctgaggcgg ctgtacgagg aggagatccg cattctccaa tcccacatct cagacacctc
841



cgtggttgtc aagctggaca acagccggga cctgaacatg gactgcatgg ttgctgagat
901



caaggcacag tatgatgaca ttgccacccg tagccgggct gaggccgagt cctggtatcg
961



cagcaagtgt gaggagatga aggccacagt gatcaggcac ggggagaccc tgcgccgcac
1021



caaggaggag atcaatgagc tgaaccgcat gatccagagg ctgacagccg aggtggagaa
1081



tgccaagtgc cagaactcca agctggaggc cgcggtggcc cagtctgagc agcagggtga
1141



ggcggccctc agtgatgccc gctgcaagct ggccgagctg gagggcgccc tgcagaaggc
1201



caagcaagac atggcctgcc tgatcaggga gtaccaggag gtgatgaact ccaagctagg
1261



cctggatatc gagatcgcca cctacaggcg cctgctggag ggcgaggagc ataggctgtg
1321



tgaaggtgtt gaagctgtga atgtctgtgt cagcagctcc cggggtgggg ttgtgtgcgg
1381



ggacctctgc gtgtcgggct cccggccggt gacgggcagc gtctgcagtg ccccctgcaa
1441



cgggaacctg gtggtgagca ctggtttgtg caagccctgt ggccagctga acaccacctg
1501



tggagggggc tcctgcggcc aggggaggta ttaagtggcc caaaagagag ccaggggagc
1561



cccttctgcc tgccagacgt gccactgccc caccaccagc tgaaaacagc agcacatcgc
1621



tggcttttcc ccttgtgttc tgagaataca ccatcggctc attcccacca gcggctcctc
1681



cccacctttc atcccactgg aaaggggtct gtggctgggg aatagaccca ttccttcccc
1741



tgtctcagcc ttcagcccct cccggggaga agggccttgc ttccctggaa gaagcactgt
1801



gagactgttc cccctgcctc tctggcctct tgtctcccct tttccaataa acttggggac
1861



ctgc











Homo sapiens ring finger protein 213 (RNF213), transcript variant 2, mRNA



NCBI Reference Sequence: NM_020954.2 (SEQ ID. NO. 50)












1
cagcgcgcgg caggcggcga gctcgggggc cgcagaaaat gaaactgaag ccgtggtcac



61
gtgacaggac atgtagtata tagcaggctg ccagcgactc ctgctcttgc ttctggatct
121



gcagggcagt cccagcagga cccatggagt gtccttcgtg ccagcatgtc tccaaggagg
181



aaacccccaa gttctgcagc cagtgcggag agaggctgcc tcctgcagcc cccatagcag
241



attctgagaa caataactcc acaatggcgt cggcctcgga gggtgaaatg gagtgtgggc
301



aggagctgaa ggaggaaggg ggcccgtgct tgttcccggg ctcagacagt tggcaagaaa
361



accccgagga gccctgttcc aaagcctcct ggaccgtcca agaaagcaaa aagaagaaaa
421



ggaagaagaa aaagaagggg aacaagtccg cttcctcaga gctggcttcc ttgccccttt
481



ctcctgccag cccctgtcac ctgactttgc tttcaaaccc gtggcctcag gacacagccc
541



tgccccacag ccaagcccag cagagtggcc ccactggcca gccgagccag cccccaggca
601



cagccaccac gccactggag ggtgacggcc tctccgcgcc caccgaggtt ggcgacagcc
661



ccctgcaggc ccaggctttg ggagaggcag gagtggccac aggaagtgag gctcagagca
721



gcccgcaatt ccaggaccac acggaagggg aggaccagga cgcttccatc ccctctgggg
781



gcagaggcct gtcccaggag gggaccggtc cccccacctc tgctggtgaa ggccattcta
841



ggactgaaga tgctgcccag gagctcctgt tgcctgagtc aaaaggaggc agctctgagc
901



ccgggacaga actgcagacc accgagcaac aggcaggggc ctcagcctct atggcagttg
961



atgctgtagc tgagccagcc aatgcagtta aaggggccgg gaaggaaatg aaagagaaga
1021



cccagagaat gaaacagcca ccagcaacca ctcctccttt caaaacacac tgccaggaag
1081



ctgagaccaa gaccaaggac gagatggctg ctgctgaaga aaaagtcggt aagaatgaac
1141



aaggggagcc tgaagacctc aagaagccag aggggaagaa cagaagtgca gctgctgtga
1201



aaaacgagaa ggagcaaaaa aaccaggaag cagatgtcca ggaagtgaag gcaagcacgc
1261



tgagcccggg tggaggagtc accgtgttct tccacgccat catctctctt catttcccat
1321



tcaatcctga cctccataaa gtcttcatca gaggaggaga agaatttggg gagtcaaaat
1381



gggacagcaa tatctgtgag ctgcactaca ccagagactt gggtcatgac cgcgttcttg
1441



ttgaaggcat tgtctgcatt tccaagaagc acctagataa atacattcct tacaagtacg
1501



tcatttataa tggggaatct tttgagtatg agttcattta caagcaccag cagaagaagg
1561



gcgagtacgt caaccgctgt ctgttcataa aatcttcact tctgggctca ggagactggc
1621



atcagtacta tgacatagtt tatatgaagc ctcatgggag actccagaaa gtcatgaacc
1681



acatcacaga cgggccgagg aaggacctgg tgaaggggaa gcagattgcc gctgcgctca
1741



tgctggacag caccttcagc atcctgcaga cctgggacac catcaacctg aacagcttct
1801



tcacccagtt cgagcagttt tgctttgtcc tgcaacagcc tatgatttat gaaggacagg
1861



cacagctgtg gaccgatttg cagtacaggg agaaagaggt gaagagatac ctgtggcaac
1921



atctgaaaaa acacgtggta ccattgccgg acggaaaaag cacggacttt ttgcctgtgg
1981



actgcccagt gaggagtaaa ctgaaaacag gcctgattgt cctttttgta gtggaaaaaa
2041



ttgagctttt attagaaggc agcctggact ggttgtgtca cctcctaacc tcagatgcca
2101



gctcaccaga tgagtttcac cgtgacctaa gccacatcct tgggatacct cagagctggc
2161



ggctgtacct ggtgaacctg tgccaaagat gcatggacac aaggacgtac acctggctgg
2221



gcgccctgcc tgtcctgcac tgctgtatgg agctggcccc gcggcacaag gatgcctgga
2281



gacagcctga ggacacctgg gccgctctgg agggactctc cttctcaccg ttccgggaac
2341



aaatgctaga tacgagttcc ctacttcagt ttatgagaga gaagcagcat ttgctgagca
2401



tagacgagcc tctcttccgg tcctggttta gtctgctacc tctgagtcac ctggttatgt
2461



atatggaaaa cttcattgag cacctgggtc gttttcctgc tcatatcctg gactgtcttt
2521



cagggattta ctaccggctt ccgggacttg agcaagtctt gaatacgcag gatgttcagg
2581



atgttcagaa cgttcagaac attttagaaa tgctgttgcg actcctggac acttaccggg
2641



acaagattcc cgaggaggcc ttgtcaccat cctacctgac tgtgtgtctg aaactgcatg
2701



aagccatctg cagcagcaca aagctactta agttttacga gctgccagcc ttatctgccg
2761



agattgtctg cagaatgatt agacttctat ctctggtgga ttctgcagga cagagagatg
2821



aaactggaaa taattcagtc caaacagtct tccaagggac ccttgctgct acgaaaaggt
2881



ggctccgaga agtttttaca aagaacatgc tcacatcttc aggtgcctca ttcacatacg
2941



tcaaggaaat tgaggtctgg aggcggctgg tggaaatcca attccccgcg gagcatggct
3001



ggaaggagtc gttgctggga gacatggaat ggaggctcac aaaggaggaa cccctctccc
3061



agatcactgc ctactgcaat agttgctggg acaccaaagg cttagaggac agtgtggcca
3121



agaccttcga gaaatgcatc attgaagccg tgagctcagc ctgccaggtg aacaatctct
3181



cctcctggga aacggattcg ggctcacagc tgtgttctgc catgacccag ctaagggcta
3241



tgaagcaccc gctgggtctc agctcctccg ctaactcaga gattgggaag tgggcaccct
3301



cctccctcgc caagggcaat ggcgctgaaa tctagttctc tccggattcc tcagtgtgct
3361



gcacagtccc tgctgctcgc accatcctgc atgtgttcca tatggaatca cggccgtgcg
3421



cgtgtggcac aagtcacacg ggcttgcagg ccgttcctca gatggccctg tcatcactgt
3481



ggctgctggt ttgattgatt gttaacactt gctcagtagg tgtgcgggaa gagactccaa
3541



aggttgacag aacatttatg gaagcaaaat atgtgaaatg gaaaattgta tcaatttatt
3601



tagctctttt cggcaaaggg gaagagattg tgcccccctg tctcccagga acagtctcgc
3661



aggcaatgcc acatgaggaa gctccctgct ggccacggct gccctgctca catttcctaa
3721



ttggacactt aacccctgta caagcacagc cttgcggcca caggggaagt ccagaaacat
3781



tgaggtcatt gaattccggg gaccaagggg ttctaatttt ttaagtgact gatacctttg
3841



ataaggtttt cctttccctt tttcgttaac tctttgttga gatattgttc gtatgccata
3901



cggtacatct gtcaaaagtt ccagttcagc aggttttggg gtagtcacag atatgtacag
3961



tcatcaccac agttaatgac agagcatttt catcacttca aagagaaacc cggccccttt
4021



agccatcatc ctcctcccct ctagtcaccc actcccctct gcaggcataa acaattgctg
4081



aacataaaca actgcttctg tggctttctc tgttctgact gtcatatgaa tggaatcata
4141



tcatatgtgg ccttttgggt atggcttatt tcactgagca taatgttttt ttgttgttgg
4201



tggtggtggt tgtttgttgt ttttgagaca gagtttcact ctttttgccc aggctggagt
4261



gcaatggtgc gatcctggct caccgcaacc gctgcctccc gggttcaagt gattctcctg
4321



cctcagcctc ccaagtgctg gaattacagc tactttttgt ttaaagagtc ttttaattgt
4381



ttaaagaaca atgtgccgcc acactcggtt ccttttgtat ttttagaaga gacagggttt
4441



ctccatgttg gtcaggctgg tctcgaactc ccgacctcag gtgatccacc caccttggcc
4501



tcccgaagtg ccgagattac aggtgtgagc caccgcgccc ggccgagcat aatgttttga
4561



aagaccgctc aggctggaca cggttgctca cgcctgtaat cacggcactt tgggagccca
4621



ggagttcaag acaagcctgg gtaacagagt aagaccctgt ctctataaaa actaaaaaat
4681



aaacaaaaaa aattagccag gcatggccgg gcacacctgt ggtcccagct acttgggagg
4741



ctgaggtggg aggctccctt gggcccagaa ggtcaaggca gcagtgagcc atgatcacac
4801



cactgcactt caacctgggg gacagagcaa gaccctgtct caaaaagcaa taacaacaaa
4861



agtccatcca tattgtagct tgtgtccgtt tacgttaagt attccttacc caaaatgctt
4921



gagaccagaa gtgttttgga tttcagatgt tttcaaattt tggaatattt gcatttacat
4981



aatgagatgt cttccagatg ggacccagag tctaaccaca aaattcactt gtttcatata
5041



catcttatac acatagcctg aaggtaattt tatacaatat ttttaacaat tttgtgcatg
5101



agacaaagtt tgtattaagt atttgtatgt tgaatttttc acttgtggca tcattatact
5161



caaaaagttt gtgttttgga gtattttgga tttggggatt aggaatgctc aacctatatt
5221



tcattttttt ccatggccaa atattccccg tttatccatg tgtccattga cggccatcta
5281



tgttgcttct tcggctatta taaatctgct gatacaaaaa aaaaaa











Homo sapiens S100 calcium binding protein A8 (S100A8), mRNA



NCBI Reference Sequence: NM_002964.3 (SEQ ID. NO. 51)












1
atgtctcttg tcagctgtct ttcagaagac ctggtggggc aagtccgtgg gcatcatgtt



61
gaccgagctg gagaaagcct tgaactctat catcgacgtc taccacaagt actccctgat
121



aaaggggaat ttccatgccg tctacaggga tgacctgaag aaattgctag agaccgagtg
181



tcctcagtat atcaggaaaa agggtgcaga cgtctggttc aaagagttgg atatcaacac
241



tgatggtgca gttaacttcc aggagttcct cattctggtg ataaagatgg gcgtggcagc
301



ccacaaaaaa agccatgaag aaagccacaa agagtagctg agttactggg cccagaggct
361



gggcccctgg acatgtacct gcagaataat aaagtcatca atacctcaaa aaaaaaaaaa
421



aaaaaaaa











Homo sapiens matrix metallopeptidase 7 (matrilysin, uterine) (MMP7), mRNA



NCBI Reference Sequence: NM_002423.3 (SEQ ID. NOs. 52, 53)












1
accaaatcaa ccataggtcc aagaacaatt gtctctggac ggcagctatg cgactcaccg



61
tgctgtgtgc tgtgtgcctg ctgcctggca gcctggccct gccgctgcct caggaggcgg
121



gaggcatgag tgagctacag tgggaacagg ctcaggacta tctcaagaga ttttatctct
181



atgactcaga aacaaaaaat gccaacagtt tagaagccaa actcaaggag atgcaaaaat
241



tctttggcct acctataact ggaatgttaa actcccgcgt catagaaata atgcagaagc
301



ccagatgtgg agtgccagat gttgcagaat actcactatt tccaaatagc ccaaaatgga
361



cttccaaagt ggtcacctac aggatcgtat catatactcg agacttaccg catattacag
421



tggatcgatt agtgtcaaag gctttaaaca tgtggggcaa agagatcccc ctgcatttca
481



ggaaagttgt atggggaact gctgacatca tgattggctt tgcgcgagga gctcatgggg
541



actcctaccc atttgatggg ccaggaaaca cgctggctca tgcctttgcg cctgggacag
601



gtctcggagg agatgctcac ttcgatgagg atgaacgctg gacggatggt agcagtctag
661



ggattaactt cctgtatgct gcaactcatg aacttggcca ttctttgggt atgggacatt
721



cctctgatcc taatgcagtg atgtatccaa cctatggaaa tggagatccc caaaatttta
781



aactttccca ggatgatatt aaaggcattc agaaactata tggaaagaga agtaattcaa
841



gaaagaaata gaaacttcag gcagaacatc cattcattca ttcattggat tgtatatcat
901



tgttgcacaa tcagaattga taagcactgt tcctccactc catttagcaa ttatgtcacc
961



cttttttatt gcagttggtt tttgaatgtc tttcactcct tttaaggata aactccttta
1021



tggtgtgact gtgtcttatt catctatact tgcagtgggt agatgtcaat aaatgttaca
1081



tacacaaata aataaaatgt ttattccatg gtaaatttaa aaaaaaaaaa aaaaaaaaaa
1141



aaaaaaa











Homo sapiens small proline-rich protein 2A (SPRR2A), mRNA



NCBI Reference Sequence: NM_005988.2 (SEQ ID. NO. 54)












1
aaacccctgg tacctgagca ctgatctgcc ttggagaacc tgatcctgag actccagcag



61
gatgtcttat caacagcagc agtgcaagca gccctgccag ccacctcctg tgtgccccac
121



gccaaagtgc ccagagccat gtccaccccc gaagtgccct gagccctgcc caccaccaaa
181



gtgtccacag ccctgcccac ctcagcagtg ccagcagaaa tatcctcctg tgacaccttc
241



cccaccctgc cagtcaaagt atccaccgaa gagcaagtaa cagcttcaga attcatcagg
301



accaagaaag gataaggata tttggctcac ctcgttccac agctccacct tcatcttctc
361



atcaaagcct accatggata cacagggagc ttctttctcc ttagccagta atctgcccat
421



gatgatccct gacagcaaaa agtttctttt ctgaggctgc catactgcca ctgtccaggt
481



ggagactgag caaaggaagt cctgggctgt gccagctccc agagcttcgg aagaaagagc
541



agcagctctc tccctgggaa ccatcagaga attctgttga tgtgttctgt gtctgtctgt
601



cacctggtca cgagcttcta ccacctttgc aattgtcact tatctttcac tccctgaata
661



aagtatctat gcatataaaa aaaaaaaaaa











Homo sapiens gap junction protein, beta 2, 26 kDa (GJB2), mRNA



NCBI Reference Sequence: NM_004004.4 (SEQ ID. NO. 55)












1
ggggtgcggt taaaaggcgc cacggcggga gacaggtgtt gcggccccgc agcgcccgcg



61
cgctcctctc cccgactcgg agcccctcgg cggcgcccgg cccaggaccc gcctaggagc
121



gcaggagccc cagcgcagag accccaacgc cgagaccccc gccccggccc cgccgcgctt
181



cctcccgacg cagagcaaac cgcccagagt agaagatgga ttggggcacg ctgcagacga
241



tcctgggggg tgtgaacaaa cactccacca gcattggaaa gatctggctc accgtcctct
301



tcatttttcg cattatgatc ctcgttgtgg ctgcaaagga ggtgtgggga gatgagcagg
361



ccgactttgt ctgcaacacc ctgcagccag gctgcaagaa cgtgtgctac gatcactact
421



tccccatctc ccacatccgg ctatgggccc tgcagctgat cttcgtgtcc acgccagcgc
481



tcctagtggc catgcacgtg gcctaccgga gacatgagaa gaagaggaag ttcatcaagg
541



gggagataaa gagtgaattt aaggacatcg aggagatcaa aacccagaag gtccgcatcg
601



aaggctccct gtggtggacc tacacaagca gcatcttctt ccgggtcatc ttcgaagccg
661



ccttcatgta cgtcttctat gtcatgtacg acggcttctc catgcagcgg ctggtgaagt
721



gcaacgcctg gccttgtccc aacactgtgg actgctttgt gtcccggccc acggagaaga
781



ctgtcttcac agtgttcatg attgcagtgt ctggaatttg catcctgctg aatgtcactg
841



aattgtgtta tttgctaatt agatattgtt ctgggaagtc aaaaaagcca gtttaacgca
901



ttgcccagtt gttagattaa gaaatagaca gcatgagagg gatgaggcaa cccgtgctca
961



gctgtcaagg ctcagtcgct agcatttccc aacacaaaga ttctgacctt aaatgcaacc
1021



atttgaaacc cctgtaggcc tcaggtgaaa ctccagatgc cacaatggag ctctgctccc
1081



ctaaagcctc aaaacaaagg cctaattcta tgcctgtctt aattttcttt cacttaagtt
1141



agttccactg agaccccagg ctgttagggg ttattggtgt aaggtacttt catattttaa
1201



acagaggata tcggcatttg tttctttctc tgaggacaag agaaaaaagc caggttccac
1261



agaggacaca gagaaggttt gggtgtcctc ctggggttct ttttgccaac tttccccacg
1321



ttaaaggtga acattggttc tttcatttgc tttggaagtt ttaatctcta acagtggaca
1381



aagttaccag tgccttaaac tctgttacac tttttggaag tgaaaacttt gtagtatgat
1441



aggttatttt gatgtaaaga tgttctggat accattatat gttccccctg tttcagaggc
1501



tcagattgta atatgtaaat ggtatgtcat tcgctactat gatttaattt gaaatatggt
1561



cttttggtta tgaatacttt gcagcacagc tgagaggctg tctgttgtat tcattgtggt
1621



catagcacct aacaacattg tagcctcaat cgagtgagac agactagaag ttcctagtga
1681



tggcttatga tagcaaatgg cctcatgtca aatatttaga tgtaattttg tgtaagaaat
1741



acagactgga tgtaccacca actactacct gtaatgacag gcctgtccaa cacatctccc
1801



ttttccatga ctgtggtagc cagcatcgga aagaacgctg atttaaagag gtcgcttggg
1861



aattttattg acacagtacc atttaatggg gaggacaaaa tggggcaggg gagggagaag
1921



tttctgtcgt taaaaacaga tttggaaaga ctggactcta aagtctgttg attaaagatg
1981



agctttgtct acttcaaaag tttgtttgct taccccttca gcctccaatt ttttaagtga
2041



aaatatagct aataacatgt gaaaagaata gaagctaagg tttagataaa tattgagcag
2101



atctatagga agattgaacc tgaatattgc cattatgctt gacatggttt ccaaaaaatg
2161



gtactccaca tatttcagtg agggtaagta ttttcctgtt gtcaagaata gcattgtaaa
2221



agcattttgt aataataaag aatagcttta atgatatgct tgtaactaaa ataattttgt
2281



aatgtatcaa atacatttaa aacattaaaa tataatctct ataataattt (SEQ ID NO: 192)





1
accaggcaac accattgaag gctcatatgt aaaaatccat gccttccttt ctcccaatct


61
ccattcccaa acttagccac tggcttctgg ctgaggcctt acgcatacct cccggggctt


121
gcacacacct tcttctacag aagacacacc ttgggcatat cctacagaag accaggcttc


181
tctctggtcc ttggtagagg gctactttac tgtaacaggg ccagggtgga gagttctctc


241
ctgaagctcc atcccctcta taggaaatgt gttgacaata ttcagaagag taagaggatc


301
aagacttctt tgtgctcaaa taccactgtt ctcttctcta ccctgcccta accaggagct


361
tgtcacccca aactctgagg tgatttatgc cttaatcaag caaacttccc tcttcagaaa


421
agatggctca ttttccctca aaagttgcca ggagctgcca agtattctgc caattcaccc


481
tggagcacaa tcaacaaatt cagccagaac acaactacag ctactattag aactattatt


541
attaataaat tcctctccaa atctagcccc ttgacttcgg atttcacgat ttctcccttc


601
ctcctagaaa cttgataagt ttcccgcgct tccctttttc taagactaca tgtttgtcat


661
cttataaagc aaaggggtga ataaatgaac caaatcaata acttctggaa tatctgcaaa


721
caacaataat atcagctatg ccatctttca ctattttagc cagtatcgag ttgaatgaac


781
atagaaaaat acaaaactga attcttccct gtaaattccc cgttttgacg acgcacttgt


841
agccacgtag ccacgcctac ttaagacaat tacaaaaggc gaagaagact gactcaggct


901
taagctgcca gccagagagg gagtcatttc attggcgttt gagtcagcaa agaagtcaag


961
atggccaaag ttccagacat gtttgaagac ctgaagaact gttacagtga aaatgaagaa


1021
gacagttcct ccattgatca tctgtctctg aatcagaaat ccttctatca tgtaagctat


1081
ggcccactcc atgaaggctg catggatcaa tctgtgtctc tgagtatctc tgaaacctct


1141
aaaacatcca agcttacctt caaggagagc atggtggtag tagcaaccaa cgggaaggtt


1201
ctgaagaaga gacggttgag tttaagccaa tccatcactg atgatgacct ggaggccatc


1261
gccaatgact cagaggaaga aatcatcaag cctaggtcag caccttttag cttcctgagc


1321
aatgtgaaat acaactttat gaggatcatc aaatacgaat tcatcctgaa tgacgccctc


1381
aatcaaagta taattcgagc caatgatcag tacctcacgg ctgctgcatt acataatctg


1441
gatgaagcag tgaaatttga catgggtgct tataagtcat caaaggatga tgctaaaatt


1501
accgtgattc taagaatctc aaaaactcaa ttgtatgtga ctgcccaaga tgaagaccaa


1561
ccagtgctgc tgaaggagat gcctgagata cccaaaacca tcacaggtag tgagaccaac


1621
ctcctcttct tctgggaaac tcacggcact aagaactatt tcacatcagt tgcccatcca


1681
aacttgttta ttgccacaaa gcaagactac tgggtgtgct tggcaggggg gccaccctct


1741
atcactgact ttcagatact ggaaaaccag gcgtaggtct ggagtctcac ttgtctcact


1801
tgtgcagtgt tgacagttca tatgtaccat gtacatgaag aagctaaatc ctttactgtt


1861
agtcatttgc tgagcatgta ctgagccttg taattctaaa tgaatgttta cactctttgt


1921
aagagtggaa ccaacactaa catataatgt tgttatttaa agaacaccct atattttgca


1981
tagtaccaat cattttaatt attattcttc ataacaattt taggaggacc agagctactg


2041
actatggcta ccaaaaagac tctacccata ttacagatgg gcaaattaag gcataagaaa


2101
actaagaaat atgcacaata gcagttgaaa caagaagcca cagacctagg atttcatgat


2161
ttcatttcaa ctgtttgcct tctactttta agttgctgat gaactcttaa tcaaatagca


2221
taagtttctg ggacctcagt tttatcattt tcaaaatgga gggaataata cctaagcctt


2281
cctgccgcaa cagtttttta tgctaatcag ggaggtcatt ttggtaaaat acttcttgaa


2341
gccgagcctc aagatgaagg caaagcacga aatgttattt tttaattatt atttatatat


2401
gtatttataa atatatttaa gataattata atatactata tttatgggaa ccccttcatc


2461
ctctgagtgt gaccaggcat cctccacaat agcagacagt gttttctggg ataagtaagt


2521
ttgatttcat taatacaggg cattttggtc caagttgtgc ttatcccata gccaggaaac


2581
tctgcattct agtacttggg agacctgtaa tcatataata aatgtacatt aattaccttg


2641
agccagtaat tggtccgatc tttgactctt ttgccattaa acttacctgg gcattcttgt


2701
ttcaattcca cctgcaatca agtcctacaa gctaaaatta gatgaactca actttgacaa


2761
ccatgagacc actgttatca aaactttctt ttctggaatg taatcaatgt ttcttctagg


2821
ttctaaaaat tgtgatcaga ccataatgtt acattattat caacaatagt gattgataga


2881
gtgttatcag tcataactaa ataaagcttg caacaaaatt ctctgacaaa aaaaaaaaaa


2941
aaa











Homo sapiens interleukin 1, alpha (IL1A), mRNA.



ACCESSION NM_000575 (SEQ ID NO: 193)












1
agttaggagg gccccgcctt ccccagctgc atataaaggt ctctggggtt ggaggcagcc



61
acagcacgct ctcagccttc ctgagcacct ttccttcttt cagccaactg ctcactcgct


121
cacctccctc cttggcacca tgaccacctg cagccgccag ttcacctcct ccagctccat


181
gaagggctcc tgcggcatcg gaggcggcat cgggggcggc tccagccgca tctcctccgt


241
cctggccgga gggtcctgcc gtgcccccag cacctacggg ggcggcctgt ctgtctcctc


301
tcgcttctcc tctgggggag cctgcgggct ggggggcggc tatggcggtg gcttcagcag


361
cagcagcagc tttggtagtg gcttcggggg aggatatggt ggtggccttg gtgctggctt


421
cggtggtggc ttgggtgctg gctttggtgg tggttttgct ggtggtgatg ggcttctggt


481
gggcagtgag aaggtgacca tgcagaacct caatgaccgc ctggcctcct acctggacaa


541
ggtgcgtgct ctggaggagg ccaacgccga cctggaagtg aagatccgtg actggtacca


601
gaggcagcgg cccagtgaga tcaaagacta cagtccctac ttcaagacca tcgaggacct


661
gaggaacaag atcattgcgg ccaccattga gaatgcgcag cccattttgc agattgacaa


721
tgccaggctg gcagccgatg acttcaggac caagtatgag catgaactgg ccctgcggca


781
gactgtggag gccgacgtca atggcctgcg ccgggtgttg gatgagctga ccctggccag


841
gactgacctg gagatgcaga tcgaaggcct gaaggaggag ctggcctacc tgaggaagaa


901
ccacgaggag gagatgcttg ctctgagagg tcagaccggc ggagatgtga acgtggagat


961
ggatgctgca cctggcgtgg acctgagccg catcctgaat gagatgcgtg accagtacga


1021
gcagatggca gagaaaaacc gcagagacgc tgagacctgg ttcctgagca agaccgagga


1081
gctgaacaaa gaagtggcct ccaacagcga actggtacag agcagccgca gtgaggtgac


1141
ggagctccgg agggtgctcc agggcctgga gattgagctg cagtcccagc tcagcatgaa


1201
agcatccctg gagaacagcc tggaggagac caaaggccgc tactgcatgc agctgtccca


1261
gatccaggga ctgattggca gtgtggagga gcagctggcc cagctacgct gtgagatgga


1321
gcagcagagc caggagtacc agatcttgct ggatgtgaag acgcggctgg agcaggagat


1381
tgccacctac cgccgcctgc tggagggcga ggatgcccac ctttcctccc agcaagcatc


1441
tggccaatcc tattcttccc gcgaggtctt cacctcctcc tcgtcctctt cgagccgtca


1501
gacccggccc atcctcaagg agcagagctc atccagcttc agccagggcc agagctccta


1561
gaactgagct gcctctacca cagcctcctg cccaccagct ggcctcacct cctgaaggcc


1621
cgggtcagga ccctgctctc ctggcgcagt tcccagctat ctcccctgct cctctgctgg


1681
tggtgggcta ataaagctga ctttctggtt gatgcaaaaa











Homo sapiens keratin 16 (KRT16), mRNA.



NM_005557 (SEQ ID NO: 194)












1
gatagaccat gagcagccat ggcaacagcc tgttccttcg ggagagcggc cagcggctgg



61
gccgggtggg ctggctgcag cggctgcagg aaagcctgca gcagagagca ctgcgcacgc


121
gcctgcgcct gcagaccatg accctcgagc acgtgctgcg cttcctgcgc cgaaacgcct


181
tcattctgct gacggtcagc gccgtggtca ttggggtcag cctggccttt gccctgcgcc


241
catatcagct cacctaccgc cagatcaagt acttctcttt tcctggagag cttctgatga


301
ggatgctgca gatgctggtg ttacctctca ttgtctccag cctggtcaca ggtatggcat


361
ccctggacaa caaggccacg gggcggatgg ggatgcgggc agctgtgtac tacatggtga


421
ccaccatcat cgcggtcttc atcggcatcc tcatggtcac catcatccat cccgggaagg


481
gctccaagga ggggctgcac cgggagggcc ggatcgagac catccccaca gctgatgcct


541
tcatggacct gatcagaaat atgtttccac caaaccttgt ggaggcctgc ttcaaacagt


601
tcaagacgca gtacagcacg agggtggtaa ccaggaccat ggtgaggaca gagaacgggt


661
ctgagccggg tgcctccatg cctcctccat tctcagtgga gaacggaacc agcttcctgg


721
aaaatgtcac tcgggccttg ggtaccctgc aggagatgct gagctttgag gagactgtac


781
ccgtgcctgg ctccgccaat ggcatcaacg ccctgggcct cgtggtcttc tctgtggcct


841
ttgggctggt cattggtggc atgaaacaca agggcagagt cctcagggac ttcttcgaca


901
gcctcaatga ggctattatg aggctggtgg gcatcattat ctggtatgca cctgtgggca


961
tcctgttcct gattgctggg aagattctgg agatggaaga catggccgtc ctggggggtc


1021
agctgggcat gtacaccctg accgtcatcg tgggcctgtt cctccatgcc ggcattgtcc


1081
ttcccctcat ctacttcctc gtcactcacc ggaacccctt ccccttcatt gggggcatgc


1141
tacaagccct catcaccgct atgggcacgt cttccagctc ggcaacgctg cccatcacct


1201
tccgctgcct ggaggagggc ctgggtgtgg accgccgcat caccaggttc gtcctgcccg


1261
tgggcgccac ggtcaacatg gatggcactg ccctctacga ggccctggct gccatcttca


1321
ttgctcaagt taacaactac gagctcaacc tgggtcagat cacaaccatc agcatcacgg


1381
ccacagcagc cagtgttggg gctgctggca tcccccaggc gggtctggtc accatggtca


1441
ttgtgcttac gtcggtcggc ttgcccacgg aagacatcac gctcatcatc gccgtggact


1501
ggttccttga ccggcttcgc acaatgacca acgtactggg ggactcaatt ggagcggccg


1561
tcatcgagca cttgtctcag cgggagctgg agcttcagga agctgagctt accctcccca


1621
gcctggggaa accctacaag tccctcatgg cacaggagaa gggggcatcc cggggacggg


1681
gaggcaacga gagtgctatg tgaggggcct ccagctctg











Homo sapiens solute carrier family 1 (high affinity



aspartate/glutamate transporter), member 6 (SLC1A6), mRNA.


ACCESSION NM_005071 (SEQ ID NO: 195)
















TABLE 6 





AMINO ACID SEQUENCES















>gi|4504411|ref|NP_002115.1| major histocompatibility complex, class II, DR


beta 1 precursor [Homosapiens]


MVCLKLPGGSCMTALTVTLMVLSSPLALAGDTRPRFLWQLRFECHFFNGTERVRLLERCIYNQEESVRFD


SDVGEYRAVTELGRPDAEYWNSQKDLLEQRRAAVDTYCRHNYGVGESFTVQRRVEPKVTVYPSKTQPLQH


HNLLVCSVSGFYPGSIEVRWFRNGQEEKAGVVSTGLIQNGDWTFQTLVMLETVPRSGEVYTCQVEHPSVT


SPLTVEWRARSESAQSKMLSGVGGFVLGLLFLGAGLFIYFRNQKGHSGLQPTGFLS (SEQ ID NO: 100)





>gi|4504577|ref|NP_002155.1| indoleamine 2,3-dioxygenase 1 [Homosapiens]


MAHAMENSWTISKEYHIDEEVGFALPNPQENLPDFYNDWMFIAKHLPDLIESGQLRERVEKLNMLSIDHL


TDHKSQRLARLVLGCITMAYVWGKGHGDVRKVLPRNIAVPYCQLSKKLELPPILVYADCVLANWKKKDPN


KPLTYENMDVLFSFRDGDCSKGFFLVSLLVEIAAASAIKVIPTVFKAMQMQERDTLLKALLEIASCLEKA


LQVFHQIHDHVNPKAFFSVLRIYLSGWKGNPQLSDGLVYEGFWEDPKEFAGGSAGQSSVFQCFDVLLGIQ


QTAGGGHAAQFLQDMRRYMPPAHRNFLCSLESNPSVREFVLSKGDAGLREAYDACVKALVSLRSYHLQIV


TKYILIPASQQPKENKTSEDPSKLEAKGTGGTDLMNFLKTVRSTTEKSLLKEG (SEQ ID NO: 88)





>gi|4504931|ref|NP_002272.1| keratin, hair, basic, 1 [Homosapiens]


MTCGSGEGGRAFSCISACGPRPGRCCITAAPYRGISCYRGLTGGEGSHSVCGGFRAGSCGRSEGYRSGGV


CGPSPPCITTVSVNESLLTPLNLEIDPNAQCVKQEEKEQIKSLNSRFAAFIDKVRFLEQQNKLLETKLQF


YQNRECCQSNLEPLFEGYIETLRREAECVEADSGRLASELNHVQEVLEGYKKKYEEEVSLRATAENEFVA


LKKDVDCAYLRKSDLEANVEALIQEIDFLRRLYEEETRILQSHISDTSVVVKLDNSRDLNMDCIIAEIKA


QYDDIVTRSRAEAESWYRSKCEEMKATVIRHGETLRRTKEEINELNRMIQRLTAEVENAKCQNSKLEAAV


AQSEQQGEAALSDARCKLAELEGALQKAKQDMACLIREYQEVMNSKLGLDIEIATYRRLLEGEEQRLCEG


IGAVNVCVSSSRGGVVCGDLCVSGSRPVTGSVCSAPCNGNVAVSTGLCAPCGQLNTTCGGGSCGVGSCGI


SSLGVGSCGSSCRKC (SEQ ID NO: 61)





>gi|4505187|ref|NP_002407.1| C-X-C motif chemokine 9 precursor [Homosapiens]


MKKSGVLELLGITLINLIVQGTPVVRKGRCSCISTNQGTIHLQSLKDLKQEAPSPSCEKIETIATLKNC


VQTCLNPDSADVNELIKKWEKQVSQKKKUNGKKHQKKKVLKVRKSQRSRQKKTT (SEQ ID NO: 59)





>gi|4505219|ref|NP_002414.1| matrilysin preproprotein [Homosapiens]


MRLTVLCAVCLLPGSLALPIPQEAGCMSELQWEQAQDYLKRFYLYDSETKNANSLEAKLKEMQKFFGLPI


TGMLNSRVIEIMQKPRCGVPDVAEYSLFPNSPKWTSKVVTYR1VSYTRDLPHITVDRLVSKALNMWGKEI


PLHERKVVWGTADIMIGEARGAHGDSYPEDGPGNTLAHAPAPGTGLGGDAHEDEDERWTDGSSLGINFLY


AATHELGHSLGMGHSSDPNAVMYPTYGNGDPQNFKLSQDDIKGIQKLYGKRSNSRKK (SEQ ID NO: 107)





>gi|4505219|ref|NP_002414.1| matrilysin preproprotein [Homosapiens]


MRLTVLCAVCLLPGSLALPIPQEAGGMSELQWEQAQDYLKRFYLYDSETKNANSLEAKLREMMEGLPI


TGMLNSRVIEIMQKPRCGVEDVAEYSLEPNSPKWTSKVVTYRIVSYTRDLPHITVDRINSKALNMWGKEI


PLHFRKVVWGTADIMIGFARGAHODSYPEDGPGNTLAHAFAPOTGLOGDAHEDEDERWTDOSSLGINFLY


AATHELGHSLOMGHSSDPNAVMYPTYGNGDPQNFKLSQDDIKGIQKLYGKRSNSRKK (SEQ ID NO: 108)





>gi|4505787|ref|NP_002629.1| elafin preproprotein [Homosapiens]


MRASSFLIVVVFLIAGTLVLEAAVTGVEWKGQDTVKGRVPFNGQDPVKGQVSVKGQDKVKAUPVKGPVS


TKPGSCPIILIRCAMLNPPNRCLKDTDCPGIKKCCEGSCGMACFVPQ (SEQ ID NO: 74)





>gi|4506851|ref|NP_002984.1| C-X-C motif chemokine 6 [Homosapiens]


MSLPSSRAARVPGPSGSIZALLALLLLLTPPGPLASAGPVSAVLTELRCTCLRVTLRVNPKTIGKLQVFP


AGPQCSKVEVVASLKNOKQVCLDPEAPFLKKVIQKILDSGNKKN (SEQ ID NO: 80)





>gi|4507925|ref|NP_003871.1| WNT1-inducible-signaling pathway protein 3


isoform 1 [Homosapiens]


MOLLFSTLLLAGLAQFCCRVOGTGPLDTTPEGRPGEVSDAPQRKUCHWPCKCPQQKPRCPPOVSLVRD


GCGCCKICAKQPGETCNEADLCDPHKGLYCDYSVDRPRYETGVCAYLVAVGCEFNQVHYHNGOVFONPL


FSCLCVSGAIGCTPLFIPKLAGSHCSOAKGGKKSDQSNCSLEPLLQQLSTSYKTMPAYRNLPLIWKKKCL


VQATKWTPCSRTCOMGISNRVTNENSNCEMRKEKRLCYIQPCDSNILKTIKTPKGKTCQPTFQLSKAEKF


VFSGCSSTOSYKPTFCGICLDKRCCIPNKSKMITTQFDCPNEGSFKWKMLWITSCVCQRNCREPGDIFSE


LKIL (SEQ ID NO: 66)





>gi|4757734|ref|NP_004824.1| interferon-inducible protein AIM2 [Homosapiens]


MESKYKEILLLTOLDNITDEELDRFKFFLSDEFNIATGKLEITANHIQVATLMIQNAGAVSAVMKTIRIFQ


KLNYMLLAKRLQEEKEKVDKQYKSVTKPKPLSQAEMSPAASAAIRNDVAKQRAAPKVSPHVKPEQKQMVA


QQESIREGFQKRCLPVMVLKAKKPFTFETQEGKQEMEHATVATEKFFFFVKVFNTLLKDKFIPKRIIIIA


RYYRHSGFLEVNSASRVLDAESDOKVNVPLNIIRKAGETPKINTLOTOPLGTIVNGLEVVQKVTEKKKNI


LFDLSDNTGKMEVLGVRNEDTMKCKEGDKVRLTFFTLSKNGEKLOLTSGVHSTIKVIKAKKKT (SEQ ID


NO: 85)





>gi|4758494|ref|NP_004122.1| granzyme 13 precursor [Homosapiens]


MQPILLLLAFLLLPRADA-6EIIGGHEAKPHSRPYMAYLMIWDOKSLKRCOGFLIQDDEVLTAAHCWOSSI


NVTLGAHNIKEQEPTQUIPVKRPIPHPAYNPKNESNDIMLLQLERKAKRTRAVULRLPSNKAQVKIDGQ


TCSVAGWGQTAPLOKHSHTWEVKMTVQEDRKCESDLRHYYDSTIELCVGDPEIKKTSFKODSOCPLVCN


KVAQGIVSYCRNNGMPPRACTKVSSFVHWIKKTMKRY (SEQ ID NO: 95)





>gi|4885111|ref|NP_005176.1| calmodulin-like protein 3 [Homosapiens]


MADOLTEEQVTEFKEAFSEFDKDODGCITTRELGTVMRSLGQNPTEAELRDMMSEIDRDONGTVDFPEFL


GMMARKMKDTDNEEEIREAFRVEDKDGNOFVSAAELRHVMTRLGEKLSDEEVDEMIRAADTDGDGQVNYE


EFVRVLVSK (SEQ ID NO: 78)





>gi|5031839|ref|NP_005545.1| keratin, type II cytoskeletal 6A [Homosapiens]


MASTSTTIRSHSSSRROF-S-ANSARLPOVSRSGESSVSVSRSRGSGOLOGACGGAGEGSRSLYGLGGSKRI


STOGGSCAISGGYGSRAGGSYGEGGAGSGFGEGGGAGIGFOLOGGAGLAGGEGGPGFETCPPGGIQEVTV


NOSLLTPLNLQIDPTIQRVRAEEREQIKTLNNKFASFIDKVRFLEQQNKVLETKWTIALQFQGTKTVROL


EPLFEQYINNLRRQLDSIVGERGRLDSELROMQDLVEDEKNKYEDEINKRTAAENEFVTLKKDVDAAYMN


KVELQAKADTLTDEINFLRALYDAELSQMOTHISDTSVVLSMDNNRNLDLDSIIAEVKAWEEIAQRSRA


EAESWYOTKYEELQVTAGRHGDDLRNTKQEIAEINRMIQRLRSEIDHVKKOCANLQAAIADAEQRGEMAL


KDAKNKLEGLEDAWKAKQDLARLLKEYQELMNVKLALDVEIATYRKLLEGEECRLNGEGVGQVNISVW


STVSSOYGGASGVGSGLOLGGGSSYSYGSOLGVGGGESSSSGRAIGGOLSSVGCOSSTIKYTTTSSSSRK


SYKH (SEQ ID NO: 98)





>gi|5174693|ref|NP_005979.1| small proline-rich protein 2A [Homosapiens]


MSYQQQQCKQPCQPPPVC-FTPKCPEPCPPPKCPEPCPPPKCPQPCPPQQCQQKYPPVTPSPPCOSKYITK


SK (SEQ ID NO: 109)





>gi|5454144|ref|NP_006389.1| ubiquitin D [Homosapiens]


MAFNASCLCVHVRSEEWDEMTFDANPYDSVKKIKEHVRSKTKVIWODQVULGSKILKPRRSLSSYGIDK


EKTIHLTLKVVKPSDEELPLELVESODEAKRHLLQVRRSSSVAQVKAMIFTKTGIIPETQIVTCNGKRLE


DOKMMADYGIRKGNLLFLASYCIGG (SEQ ID NO: 84)





>gi|5902072|ref|NP_008850.1| serpin B3 [Homosapiens]


MNSLSEANTKFMFDLFQQFRKSKENNIFYSPISITSALGMVLLGAKDNTAQQIKKVLHFDQVTENTTGKA


ATYHVDRSGNVHHQFQKLLTEFNKSTDAYELKIANKLFGEKTYLFWEYLDAIKKEYQTSVESVDFANAP


EESRKKINSWVESQTNEKIKNLIPEGNIGSNTTLVLVNAIYFKGQWEKKFNKEDTKEEKEWPNKNTYKSI


QMMRWTSFHFASLEDWAKVLEIPYKGKDLSMIVLLPNEIDGLQKLEEKLTAEKLMEWTSLQNMRETRV


DLHLPREKVEESYDLKDTLRTMGMVDIFNGDADLSGMTGSRGLVLSGVLHKAFVEVTEEGAEAAAATAVV


GFGSSPTSTNEEFHCNHPFLFFIRQNKTNSILFYGRFSSP (SEQ ID NO: 79)





>gi|7108346|ref|NP_036615.1| granulysin isoform 519 [Homosapiens]


MEGINFSRLSPEYYDPARABLRDGEKSCPCGQEGPQGDLLTKTQELGRDYRTCLTIVOKLKKMVDKPTQR


SVSNAATRVCRTGRSRWRDVCRNFMRRYQSRVIQGLVAGETAQQICEDLRLCIPSTGPL (SEQ ID NO: 72)





>gi|8393956|ref|NP_036529.1| serpin B13 [Homosapiens]


MDSLGAVSTRLGFDLFKEEKKTNDGNIFFSPVGILTAIGMVLLGTRGATASQLEEVFHSEKETKSSRIKA


EEKEVIENTEAVHQQFQKFLTEISKLTNDYELNITNRLFGEKTYLFLOKYLDYVEKYYHASLEPVDEVNA


ADESRKKINSWVESKTNEKIKDLFPDGSISSSTKINLVNMVYFKGQWDREFKKENTKEEKEWMNKSTSKS


VQMMTQSHSFSFTFLEDLOAKILGIPYKNNDLSMFVLLPNDIDOLEKIIDKISPEKLVENTSPGHMEERK


VNLHLPRFEVEDGYDLEAVLAAMCMCDAFSEHKADYSGMSSGSGLYAQKFIASSEVAVTEEGTEAAAATG


IGFTVTSAPGHENVHCNHPFLFFIRHNESNSILFFGRFSSP (SEQ ID NO: 87)





>gi|10567820|ref|NP_066386.1| melanoma-associated antigen 10 [Homosapiens]


MPRAPKRQRCMPEEDLQSQSETQCLEGAQAPLAVEEDASSSTSTSSSFPSSFPSSSSSSSSSCYPLIPST


PEEVSADDETPNPPQSAWACSSPSVVASLPLDQSDEGSSSUEESPSTLQVLPDSESLPRSEIDEKVTD


LVQFLLFKYQMKEPITKAEILESVIKNYEDHFPLLFSEASECMLLVFGIDVKEVDPTGHSFVLVTSLGLT


YDGMLSDVQSMPKTGILILILSIIFIEGYCTPEEVIWEALNMMGLYDGMEHLIYGEPRKLLTQDWVQENY


LEYRQVPGSDPARYEFLWGPRAHAEIRKMSLLKFLAKVNGSDPRSFPLWYEEALKDEEERAQDRIATTDD


TTAMASASSSATGSFSYPE (SEQ ID NO: 56)





>gi|10947122|ref|NP_064693.1| ATP-binding cassette, sub-family C, member 9


isoform SUR2E [Homosapiens]


MSLSFCGNNISSYNINDGVLQNSCFVDALNLVPHVFLLFITFPILFIGWGSQSSKVQIHHNTWLHFPGHN


LRWILTFALLFVHVCEIAEGIVSDSRRESRHLHLEMPAVMGFVATTTSIVYYHNIETSNFPKLLLALFLY


WVMAFITKTIKLVKYCQSGLDISNLRFCITGMMVILNGLLMAVEINVIRVRRYVFFMNPQKVICPPEDLQD


LGVRFLUFVNLLSKATYWWMNTLIISAHKKPIDLKAIGKLPIAMRAVTNYVCLKDAYEEQKKKVADHPN


RTPSIWLAMYRAFGRPILLSSTFRYLADLLGFAGPLCISGIVQRVNETQNGTNNTTGISETLSSKEFLEN


AYVLAVLLFLALILORTFWASYYVTIETGINLRGALLAMIYNKILRLSTSNLSMGEMTLGQINNLVAIE


TNOLMWELFLCPNLWAMPVQIIMGVILLYNLLGSSALVGAAVIVLLAPIQYFIATKLAEAQKSTLDYSTE


RLKKTNEILKGIKLLKLYAWEHIECKSVEETRMKELSSLKTFALYTSLSIFMNAAIPIAAVLATFVTHAY


ASGNNLKPAEAFASLSLFHILVTPLSLLFTVVRFAVKAIISVQKLNEFLLSDEIGDDSWRTGESSLPFES


CKKHTGVQPKTINRKQPGRYHLDSYEQSTRRLRPAETEDTAIKVTNGYFSWGSGLATLSNIDIRIPTGQL


TMIVGQVGCGKSSLLLATLGEMQTLEGKVHWSNVNESEPSFEATRSRNRYSVAYAAOKPWLLNATVEENI


TEGSPFNKQRYKAVTDACSLUDIDLLPFGDQTEIGERGINLSGGQRQRICVARALYQNTNIVFLDDPFS


ALDIHLSDHLMQEGILKFLODDKRTLVINTHKLQYLTHADWIIAMKDGSVLREGTLKDIQTKDVELYEHW


KTLMNRQDQELEKDMEADQTTLERKTLRRAMYSREAKAQMEDEDEEEEEEEDEDDNMSTVMRLRTKMPWK


TCWRYLTSGGEFLLILMIFSKLLKHSVIVAIDYWLATWTSEYSINNTGKADQTYYVAGFSILCGAGIFLC


INTSLTVEWMGLTAAKNLHHNLLNKIILGPIRFFDTTPLGLILNRFSADTNIIDQHIPPTLESLTRSTLL


CLSAIGMISYATPVFLVALLPLGVAFYFIQKYFRVASKDLQELDDSTQLPLLCHFSETAEGLTTIRAFRH


ETRFKQRMLELTDTNNIAYLFLSAANRWLEVRTDYLCACIVLTASIASISGSSNSGLVGLGLLYALTITN


YLNWVVRNLADLEVQMGAVKKVNSFLTMESENYEGTMDPSUPEHWPOEGEIKIHDLCVRYENNLKPVLK


HVKAYIKPGQKVGICGRTGSGKSSLSLAFFRMVDIFDGKIVIDGIDISKLPLHTLRSRLSIILQDPILFS


GSTRFNLDPECKCTDDRLWEALEIAOLKNMVKSLPGGLDAVVTEGGENFSVGQRQLFCLARAFVRKSSIL


IMDEATASIDMATENILQKVVMTAFADBTVVTMAHRVHTILTADLVIVMKRGNILEYDTPESLLAQENGV


FASEVRADM (SEQ ID NO: 86)





>gi|15431310|ref|NP_000517.21 keratin, type I cytoskeletal 14 sapiens)


MTTCSRQFTSSSSMKESCGiGGGIGGGSSRISSVLAGGSCRAPSTYGGGLSVSSSRFSSGGAYGLGGGYG


GGFSSSSSSEGSGEGGGYGGGLGAGLGGGEGGGFAGGDGLLVGSEKVTMOLNDRLASYLDKVRALEEAN


ADLEVKIRDWYQRQRPAEIKDYSPYEKTIEDLRNKILTATVDNANVLLQIDNARLAADDERTKYETELNL


RMSVEADINGLRRVLDELTLARADLEMQIESLKEELAYLKKNHEEEMNALRGQVGGDVNVEMDAAPGVDL


SRILNEMROQYEKMAEKNRKDAEEWPFTKTEELNREVATNSELVQSGKSEISELRRTMQNLEIELQSQLS


MKASLENSLEETKGRYCMQLAQIQEMIGSVEEQLAQLRCEMEQQNQEYKILLDVKTRLEQETATYRRLLE


GEDAHLSSSUSSOSQSSRDVTSSSRQIRTKVMDVHDGKVVSTHEQVLRTKN (SEQ ID NO: 91)





>gi|16418425|ref|NP 443174.1| guanylate-binding protein 5 [Homosapiens]


MALEIHMSDPMCLIENFNEQLKVNQEALEILSAITUVVVVAIVGLYRTGKSYLMNKLAGKNKGESVAST


VQSHTKGIWIWCVPHPNWPNHTLVLLDTEGLGDVEKADNKNDINFALALLLSSTEVYNTVNKIDQGAID


LLHNVTELTDLLKARNSPDLDRVEDPADSASEEPDLVWTLRDFCLGLEIDGQLVTPDEYLENSLRPKQGS


DQRVQNFNLPRLCIUFFPKKKCETEDLPAHQKKLAQLETLPDDELEPEFVQQVTEECSYIESHSMTKTI,


PGGIMVNGSRLKNLVLTYVNAISSGDLPCIENAVLALAQRENSAAVQKAIAHYDQQMGQKVQLPMETLQE


LLDLHRTSEREAIEVEMKNSFKDVDQSFQKELETLLOAKQNDICKRNLEASSDYCSALLKDIEGPLEEAV


KWIYSKPGGHNLFIQKTEELKAKYYREPRKGIQAEEVLQKYLKSKESVSHAILOTDQALTETEKKKKEA


QVKAEAEKAEAQRLAAIQRQNEQMMQERERLHQEQVROMEIAKOWLAEQQKMQEQQMQEQAAQLSTTFQ


AQNRSLLSELQHAQRTVNNDDPCVLL (SEQ ID NO: 69)





>gi|21071008|ref|NP_001053.21 transcobalamin-1 precursor [Homosapiens]


MROSHQLPINGULFSFIPSQLCEICEVSEENYIRLKPLLNTMIQSNYNRGTSAVNVVLSLKLVGIQIQT


LMQKMIQQZKYNVKSRLSDVSSGELALIILALGVCRNAEENLIYDYHLIDKLENKFQAEIENMEAHNGTP


LTNYYQLSLDVLALCLENGNYSTAEVVNHETPENKNYYFGSQFSVDTGAMAVLALTCVMSLINGQIKAD


EGSLKNISIYTKSLVEKILSEKKENGLIGNTESTGEAMOALEVSSDYYNENDWNCQQTLNTVLTETSQGA


FSNPNAAAQVLPALMGKTFLDINKDSSCVSASGNENTSADEPTTVTPPDSQSYTSVNYSVRINETYETNV


TVLNGSVELSVMEKAUMNDTIFGETMEERSWGPYITCIQOLCANNNDRTYWELLSGGEPLSQGAGSYVV


RNGENLEVRWSKY (SEQ ID NO: 82)





>gi|21361559|ref|NP_003376.21 visinin-like protein 1 [Homosapiens]


MGKONSKLAPEVMEDLVKSTEENEHELKQWYKGELKDCPSGRLNLEEFINLYVKFEPYGDASKFAQHAFR


TEDKNGDGTIDEREFICALSITSRGSFEQKLNWAFNMYDLDGDGKITRVEMLEIIEAIYKMVGTVIMMKM


NEDGLTPEQRVDKIFSKMDKNKDDQITLDEFEEAAKSDPSIVLLLQCDIQK


>gi|21389379|ref|NP 653195.1| gametocyte specific factor 1 [Homosapiens]


MEETYTDSLDPEKLLQCPYDKNHQIRACREPYHLIKCRKNHPDVASKLATCPFNARHQVPRAEISHHISS


CDDRSCIEQDVVNQTRSLRQETLAESTWQCPPCDEDWDKDLWEQTSTPFAWGTTHYSDNNSPASNIVTEH


KNNLASGMRVPKSLPYVLPWKNNGNAQ (SEQ ID NO: 73)





>gi|21614544|ref|NP_002955.21 protein S100-A8 [Homosapiens]


MLTELEKALNSIIDVYHKY-S-LIKGNEHAVYRDDLKKLLETECPQYIRKKGADVWFKELDINTDGAVNEQE


FLILVIKMGVAAHKKSHEESHKE (SEQ ID NO: 106)





>gi|28076869|ref|NP_002965.1| serpin B4 [Homosapiens]


MNSLSEANTKFMFDLEQURKSKENNIFYSPISITSALGMVLLGAKDNTAQQISKVLHEDQVTENTTEKA


ATYHVDRSGNVHHQFQKLLTEENKSTDAYELKIANKLFGEKTYQFWEYLDAIKKEYOTSVESTDFANAP


EESRKKINSWVESONEKIKNLEPDGTIGNDTTLVLVNAIYFKGQWENKFKKENTKEEKEWPNKNTYKSV


QMMRUNSENFALLEDVQAKVLEIPYKGKDLSMIVLLPNEIDGLQKLEEKLTAEKLMEWTSLQNMRETCV


DLHLPRFKMEESYDLKDTLRTMGMVNIENGDADLSGMTWSHGLSVSKVLHKAFVEVTEEGVEAAAATAVV


VVELSSPSTNEEFCCNHPFLFFIRQNKTNSILFYGRESSP (SEQ ID NO: 71)





>gi|28827815|ref|NP_789793.1| protein S100-A7A [Homosapiens]


MSNTQAERSIIGMIDMFHKYTORDOKTEKPSLLTMMKENFPNELSACDKKGIHYLATVFEKKDKNEDKKI


DESEFLSLLGDTAADYHKQSHGAAPCSGGSQ (SEQ ID NO: 75)





>gi|29150261|ref|NP_006323.21 gamma-interferon-inducible lysosomal thiol


reductase preproprotein [Homosapiens]


MTLSPLLIJELPPLULLDVPTAAVQASPLQALDFFGNGPPVNYKTGNLYLRGPLKKSNAPINNVTLYYEA


LOGGCRAFLIRELEPTWLLVMEILNVTLVPYGNAQEQNVSGRWEEKCQHGEEECKENKVEACVLDELDME


LAFLTIVCMEEFEDMERSLPLCLQLYAPGLSPDTIMECAMGDRGMQLMHANAQRTDALQPPHEYVPWVTV


NGKPLEDQTQLLTLVCQLYQGKKPDVCPSSTSSLRSVCFK (SEQ ID NO: 103)





>gi|32313593|ref|NP_006409.31 olfactomedin-4 precursor [Homosapiens]


MRPGLSELLALLEFLGQAA6DLGDVGPPIPSPGESSFPGVDSSSSESSSSRSGSSSSRSLGSGGSVSQLF


SNFTGSVDDRGTCQCSVSLPDTTFPVDRVERLEFTAHVLSQKFEKELSKVREYVQLISVYEKKLLNLTVR


IDTMEKDTISYTELDFELIKVEVIKEMEKLVIQLKESEGGSSEIVDQLEVEIRNMTLLVEKLETLDKNNVL


AIRREIVALKTKLKECEASKDQNTPVVHPPPTPGSCGBGGVVNISKPSVVQLNWRGESYLYGAWGRDYSP


QHPNKGLYWVAPLNTDGRLLEYYRLYNTLDDLLLYINARELRITYGQGSGTAVYNNNMYVNMYNTGNIAR


VNLTTNTIAVTOLPNAAYNNRFSYANVAWOIDFAVDENGLWVIYSTEASTGNMVISKLNDTTLQVLNT


WYTKUKPSASNAFMVCGVLYATRTMNTRTEEIFYYYDTNIGKEGKLDIVMHKMQEKVQSINYNPFDQKL


YVYNDGYLLNYDLSVLQKPQ (SEQ ID NO: 81)





>gi|38455402|ref|NP_005555.21 neutrophil gelatinase-associated lipocalin


precursor [Homosapiens]


MPLGLLWLGLALLGALHAQAODSTSDLIPAPPLSKVPLQQNFQDNQFQGKWYVVGLAGNAILREDKDPQK


MYATIYELKEDKSYNVISVLERKKKCDYWIRTFVPGCQPGEFTLGNIKSYPGLTSYLVRVVSTNYNQHAM


VFEKKVSQNREYFKITLYGRTKELTSELKENFIRFSKSLGLPENHIVEPVPIDQCIDG (SEQ ID NO: 101)





>gi|39995089|ref|NP_945315.1| parathyroid hormone-related protein isoform 2


preproprotein [Homosapiens]


MQRRINQQWSVAVELLSYAVPSCGRSVEGLSRRLKRAVSEHQLLHDKGKSIQDLRRRFELHHLIAEIHTA


EIRATSEVSPNSKPSPNTKNHPVREGSDDEGRYLTUTNKVETYKEULKTPGKKKKGKPGKRKEQEKKK


RRTRSAWLDSGVTGSGLEGDHLSDTSTTSLELDSR (SEQ ID NO: 63)





>gi|40254837|ref|NP_006774.21 gap junction beta-6 protein [Homosapiens]


MDWGTLHTFIGGVNKHSTSIGKWITVIFIERVMILVVAAQEVWGDEQEDEVCNTLQPGCKNVCYDHFFP


VSHIRLWALQLIFVSTPALLVAMHVAYYRHETTRKERRGEKRNDETDIEDIKKQKVRIEGSIMWTYTSSI


FFRIIFEAAFMYVEYFLYNGYHLPWVLKCGTDPCPNINDCFISRPTEKTVETIFMISASVICMLLNVAEL


CYLLIWCFRRSKRAQTQKNHPNHALKESKONEMNELISDSGWAITGEPS (SEQ ID NO: 77)





>gi|40254997|ref|NP_116288.21 hypothetical protein LOC84985 isoform a


[Homosapiens]


MSRSRHLGKIRKRLEDVKSQWVRPARADFSDNESARLATDALLOGGSEAYWRVLSQEGEVDEISSVEAQY


IQAQAREPPCPPDTLOGAEAGPKGLDSSSLQSGTYFPVASEGSEPALLHSWASAEKPYLKEKSSATVYFQ


TVKHNNIRDTAVRRCITRTSQVIMILMDANTDVEIFCDILEAANKRGVENCVLLDQGGVKLEQEMCDKVQI


SDSHLKNISIRSVEGEIYCAKSGRKFAGQIREKFITSDWRFVLSGSYSFTWLOGHVHRNILSKFTWAVE


LEDEEFRHLYASSKEWMGLKSPRLVAPVPPGAAPANGRLSSSSGSASDRTSSNPFSGRSAGSHPGTRSVS


ASSGPCSPAAPHPPPPPREQPHQGPWGAPSPQAHLSPRPHDGPPAAVYSNLGAYRPTRLQI,EQLGINPRL


TPTWRPFLQASPHE (SEQ ID NO: 92)





>gi|42558283|ref|NP_003995.21 gap junction beta-2 protein [Homosapiens]


MDWGTLQTILGOVNISHSTSYGKIWLTVLFIFRIMILVVAAKEVWGDEQADFVCNTLQPGCKNVCYDHYFP


ISHIRLWALQLIFVSTPALINAMHVAYRRHEKKRKFIKGEIKSEEKDIEETKTUVRIEGSLWWTYTSSI


FERVIFEAAFMYVEYVMYDGFSMQRINKCNAWPCPNTVDCFVSRPTEKTVFTVFMIAVSGICILLNWEL


CYLLIRYCSGKSKEKPV (SEQ ID NO: 110)





>gi|44680117|ref|NP_982252.1| Down syndrome critical region gene 8 isoform b


[Homosapiens]


MKEPGPNFVTVRKGLHSFKMAFVKHLLULETKIWLE (SEQ ID NO: 57)





>gi|44680119|ref|NP_982253.1| Down syndrome critical region gene 8 isoform c


[Homosapiens]


MKEPGPNFVTVRKGLHSFKMAFVKHLL (SEQ ID NO: 60)





>giJ54873602|ref|NP_787081.21 hypothetical protein LOC220382 [Homosapiens]


MAVQAALLSTHETVPMFGdSPDGLOGAFGALDKGCCFEDDETGAPAGALLSGAEGGDVREATHDLLSFI


DSASSNIKLALDKPOKSKRKVNHRKYLOWIKRCSGLMGAAPPGPMPSAADTPAKRPLAAPSAPTVAAP


AHOKAAPRREAWAAAAASLORSLAALFDSLRHVPGGAEPAGGEVAAPAAGIAGGAGTOGAGODVAGPAG


ATAIPGARKVPLRARNLPPSFFTEPSRAGGGGCGPSGPDVSLODLEKGAEAVEFFELIAGPDYGAGTEAAV


LLAAEPLDVFPAGASVLRGPPELEPOLFEPPPAVVONLLYPEPWSVPGCSPTKKSPLTAPRGGLTLNEPL


SPLYPAAADSPOGEDGRGHLASPAPFFPDCALPPPPPPHIVSYDYSAGYSRTAYSSIMSDGVWEGAPGE


EGAHRD (SEQ ID NO: 93)





>gi|66529203|ref|NP_066005.21 protein AL017 isoform 2 [Homosapiens]


MECPSCQHVSKEETPKFCSOGERLPPAAPIADSENNNSTMASASEGEMECGQELKEEGGPCLEPGSDSW


OENPEEPCSKASWTWESKKKKRKKKKKGNKSASSELASLPLSPASPCHLTLLSNMPQDTALPHSQAQQ


SOPTGQPSUPGTATTPLEGDGLSAPTEVGDSPLQAQALGEAGVATGSEAQSSPQFQDHTEGEDQDASIP


SGGRGLSQEGTGPPTSAGEGHSRTEDAAQELLLPESMOSSEPGTELOTTEQQAGASASMAVDAVAEPAN


AVKGAGKEMKEKTQRMKUPATTPPFKTHCQEAETKTKDEMAAAEEKVGKNEQGEPEDLKKPEGKNRSAA


AVKNEKEQKNQEADVQEVKASTLSPGGGVTVFFHAIISLHFPPNETLHKVFIRGGEEFGESKIIDSNICEL


HYTRDLGHDRVLVEGIVCISKKHLDKYIPYKYVIYNGESFEYEFIYKHQQKKGEYVNRCLFIKSSLLGSG


DWHQYYDIVYMKPHGRLQKVMNHITDOPRKDLVKGKQTAAALMLDSTFSILQTWDTINLNSETTQFEQFC


FVLQIUMIYEGQAQTAWTDLUREKEVICRYLWQHLKKHVVPLPDGKSTDELPVDCPVRSKLKTGLIVLFVV


EKIELLLEGSLDWLCHLLTSDASSPDEFHRDLSHILGIPOWRLYLVNLCQRCMDTRTYTWLGALPVTAHC


CMELAPRHKDAWRQPEDTWAALEGLSFSPFREQMLDTSSLLQFMREKQHIALSIDEPLFRSWFSLLPLSHL


VMYMENFIEHLGREPAHILDCLSGITYRLPOLEWLNTQDVQDVQNVQNILEMLLRLI,DTYRDKIPEEAL


SPSYLTVCLKLHEAICSSTEMLKFYELPALSAEIVCRMIRLI,SLVDSAGQRDETGNNSVQTVFQGTLAAT


KRWLREVFTKNMLTSSGASFTYVKEIEVWRRINEIQFPAEHOWKESLLGDMEWRLTKEEPLSQITAYCNS


CWDTKGLEDSVAKTFEKCIIEAVSSACQVNNIASSWETDSGSQLCSAMTQLRAMKHPLGLSSSANSEIGKW


APSSLAKONGAEI (SEQ ID NO: 105)





>gi|73858572|ref|NP_002417.21 macrophage metalloelastase preproprotein


[Homosapiens]


MKFLLITALQATASGALPLNSSTSLEKNNVLFGERYLEKEYGLEINKLEWTKMKYSGNI,MKEKWEMQHF


LGLKVTGQLDTSTLEMMHAPRCGVPDVHHFREMPGGPVWRKHYTTYRINNYTPDMNREDVDYAIRKAFQV


WSNVTPLKFSKINTGMADILVVFARGAHODFHAFDGKGGILAHAFGPGSGIGGDAHFDEDEFWTTHSGGT


NLFLTAVHEIGHSLOLGHSSDPKAVMETTYKYVDINTFRLSADDIRGIOSLYGDPKENQRLPNETNSEPA


LCDPNLSFDAVTTVGNKIFFFKDRFFWLKVSERPKTSVNLISSIMPTLPSGTEAAYEIEARNQVFLFKDD


KYWLISNLRPEPNYPKSIHSFGFPNFVKKIDAAVFNPRFYRTYFFVDNQYWRYDERRQMMDPGYPKLITK


NFQGIGPKIDAVFYSKNKYYYFFQGSNQFEYDFLDDRITKTLKSNSWFGC (SEQ ID NO: 58)





>gi|l09255249|ref|NP_002263.21 keratin, type II cytoskeletal 4 [Homosapiens]


MTSVGVESDMLNGCGKDGIXT'RAKPRDVSDFSLYAPATKPCCSRTYKRRRLRAPALTGLGPVTSLIAPSS


LSAAMIARQQCVROGPROFSCGSATVGGGECRGAFSSVSMSGGAGRCSSGGEGSRSLYNLRGNKSISMSVA


GSRWACFGGAGGFGTGGFGGGFGGSFSGKGGPGFPVCPAGGIOEVTINQSLLTPLHVEIDETIQKVRTE


EREQIKLLNNKFASFIDKVQFLEQQNKVLETKWNLLQWTTTTSSKNLEPLFETYLSVLRKQLDTLGNDK


GRWSELKTWDSVEDFKTKYEEEINKRTAAENDEVVLKKDVDAAYLNKVELEAKVDSLNDEINELKVLY


DAELSQMQTHVSDTSVVLSMDNNRNLDLDSIIAEVRAINEEIAQRSKAEAEALYQTKVOQLQISVDQHGD


NLKNTKSEIAELNRMIQRLRAEIENIKKOCQTLWSVADAEQRGENALKDAHSKRVELEAALQQAKEELA


RMLREYQELMSVKLALDIEIATYRKLLEGEEYRMSGECQSAVSISVVSGSTSTGGISCGLGSGSGFGLSS


GFGSGSGSGFGEGGSVSGSSSSKIISTTTLNKRR (SEQ ID NO: 102)





>gi|113416509|ref|XP_001131447.1| PREDICTED: hypothetical protein


[Homosapiens]


MASAARRSSGRHTSRPTTPGAAQRRCVLAALRGFRRGPAGLGRETRVPAGAGLGDATAAISHRGGVGKRG


SLRLQGLSTASOQPQQRPPVSAGQRARPVPRPPSSSAGPGPEGPEGAGCVLRLSAISAGPELRETHELLE


(SEQ ID NO: 62)





>gi|115298657|ref|NP_002954.21 protein S100-A7 [Homosapiens]


MSNTQAERSIIGMIDMEHKYYRRDDKTEKPSLLTMMKENFPNFLSACDKKGTNYLADVFEKKDKNEDKKI


DESEFLSLLODIATDYHKQSHGAAPCSGGSQ (SEQ ID NO: 65)





>gi|119395754|ref|NP_000415.21 keratin, type II cytoskeletal 5 [Homosapiens]


MSRQSSVSERSGGSRSFSTASAITPSVSRTSFISVSRSCGGCCGOFCRVSLAGAGOVGGYGSRSLYNLGG


SKRISISTSGGSFRNREGAGAGGGYGEGGGAGSGFOFGGGAOGGFOLGGGAGEGGOEGGPGFPVCPPGGI


QEVTVNQSLLTPLNLQIDPSIQRVRTEEREQIKTLNNKFASEIDKVRFLEQQNKVLDTKWTLLQEQGTKT


VRQNLEPLFEQYINNLRRQLDSTVGERGRLDSELRNMOLVEDEKNKYEDEINKRTTAENEFVMLKKDVD


AAYMNKVELEAKVDALMDEINFMKMFFDAELSQMQTHVSDTSVVLSMDNNRNLDLDSIIAEVKAWEEIA


NRSRTEAESWYOTKYEELQUAGRHGDDLRNTKHEISEMNRMIQRLRAEIDNVKKQGANLQNAIADAEQR


GELALKDARNKLAELEEALQKAKQDMARLLREYQELMNTKLALDVEIATYRKLLEGEECRLSGEGVGPVN


ISVVTSSVSSUGSGSCYGGGLGGGLGGGLGGGLAGGSSGSYYSSSSGGVGLGGGLSVGGSGESASSGRG


LOVGFOSGGGSSSSVKEVSTTSSSRKSEKS (SEQ ID NO: 89)





>gi|119703753|ref|NP_005546.21 keratin, type II cytoskeletal 68


[Homosapiens]


MASTSTTIRSHSSSRRGESANSARLPGVSRSGESSISVSRSRGSGGLGGACGGAGEGSRSLYGLCCSKRI


SIGGGSCAISGGYGSRAGGSYGEGGAGSGEGEGGGAGIGFCLCGGACLAGGEGOPCFPVCPPGGINVTV


NQSLLTPLNLQIDPAIQRVRAEEREQTKILNNKFASFIDKVRFLEQQNKVLDTKWTLLQEQGTKTVROL


EPLFEQYINNLRRQLDNIVGERGRLDSELRNMQDLVEDLKNKYEDEINKRTAAENEFVTLICKDVDAAYMN


KVELQAKADTLTDEINFLRALYDAELSQMOTHISDTSVVLSMDNNRNLDLDSIIAEVKAWEEIAQRSRA


EAESWYQTKYEELQITAGRHGDDLRNTKQEIAEINRMIQRLRSEIDHVKKQCANLQAAIADAEQRGEMAL


KDAKNKLECLEDAWKAKQDLARLLKEITELMNVKLALDVEIATYRKLLEGEECRLNGEGVGQVNISVW


STVSSGYGGASGVGSGLGLGGGSSYSYGSGLGVGGGESSSSGRATGGGLSSVGGGSSTIKYTTTSSSSRK


SYKH (SEQ ID NO: 99)





>gi|119964718|ref|NP_001935.21 desmoglein-3 preproprotein [Homosapiens]


MMGLEPRTTGALAIFVVVILVHGELRIETKGQYDEEEMTMQQAKRRQKREWVKFAKPCREGEDNSKRNPI


AKITSDYQATUITYRISGVGIDQPPEGIFVVDKNTGDINITAIVDREETPSFLITCRALNAWLDVEKP


LILTVKILDINDNPPVESQQIFMGEIEENSASNSLVMILNATDADEPNHLNSKIAFKIVSQEPAGTPMFL


LSRNIGEVRTLTNSLDREQASSYRLVVSGADKDGEGLSTQCECNIKVKDVNDNFPMFRDSUSARIEENI


LSSELLRFUTDLDEEYTDNWLAVYFFTSONEONWEEIQTDPRTNEGILKVVKALDYEQLQSVKLSIAVK


NKAEFHQSVISRYRVQSTPVTIQVINVREGTAFRPASKTFTVQKGISSKKLVDYILGTWAIDEDTNKAA


SNVKYVMGRNDGGYLMIDSKTAEIKEVKNMNRDSTFIVNKTITAEVLAIDEYTGKTSTGTVYVRVPDFND


NCPTAVLEKDAVCSSSPSVVVSARTLNNRYTGPYTFALEDQPVKLPAVWSITTLNATSALLRAQEQIPPG


VYHISINLTDSONRCEMPRSLTLEVCQCDNRGIGGTSYPTTSPGTRYGRPHSGRLGPAAIGLLLLGLLL


LLIJAPLLLLICDCGAGSTCOVTGGFIPVPDGSEGTIHOWGIEGAHPEDKEITNICVPPVTANGADEMESS


EVCINTYARGTAVEGTSGMEMITKLGAATESGGAAGFATGTVSGAASGFGAATGVGICSSGQSGTMRTRH


STGGTNKDYADGAISMNFLDSYESQKAFACAEEDDGQEANDCLLIYDNEGADATGSPVCSVOCCSEIADD


LDDSELDSLGPKEKKLAEISLGVDGECKEVQPPSKDSGYGIESCGHPIEVQQTGFVKCQTLSGSQGASAL


STSGSWPAVSIPDPLUCNYLVTETYSASGSLVUSTAGFDPLLTQNVIVIERVICPISSVPGNLAGPT


QLRGSHTMLCTEDPCSRLI (SEQ ID NO: 96)





>gi|149999382|ref|NP_001556.21 C-X-C motif chemokine 10 precursor


[Homosapiens]


MNQTAILICCLIFLTLSGIQGVPLSRTVRCTCISISNQPVNPRSLEKLEIIPASQFCPRVEIIATMKKKG


EKRCLNPESKAIKNLLKAVSKERSKRSP (SEQ ID NO: 67)





>gi|166158925|ref|NP_001107228.1| thymidine phosphorylase precursor


[Homosapiens]


MAALMTPGTGAPPAPGDFSGEGSQGLPDPSPEPKQLPELIRMKRDGGRLSEADIRGEVAAVVNGSAQGAQ


IGAMLMAIRLRGMDLEETSVLTQALAQSGQQLEWPEAWRQQLVDKHSTGGVGDKVSLVLAPALAACGCKV


PMTSGRGLGHTGGTLDKLESIPGENVIQSPEQMQVLLDQAGCCIVGQSEQLVPADGILYAARDVTATVDS


LPLITASILSKKLVEGLSALVVDVKFGGAAVFPNQEQARELAKTINGVGASLGLRVAAALTAMDKPLGRC


VGHALEVEEALLCMDGAGPPDLRDLVTTLGGALLWLSGHAGTQAWAARVAAALDDGSALGRFERMLAAQ


GVDPGLARALCSGSPAERRQLLPRAREQEELLAPADGTVELVRALPLALVLHELGAGRSRAGEPLRLGVG


AELLVDVGQRLRRGTPWLRVHRDGPALSGPQSRALQEALVLSDRAPFAAPSPFAELVLPPQQ (SEQ ID NO: 97)





>gi|1691647831refj0001718550.1| PREDICTED: hypothetical protein [Homosapiens]


MTPTLLLTVTVPRAAGSAGQRRAPGLPRSSGPAWAESRARPPRPRGLEPRHPPGSPALRPTDRTCSSSSA


GVGGGVGGAQPGSVPLGQHLALERGRTLGHGRVGRRDPPPLGLLVNPRVAGVDGLDRGGRLDPAGIGQVL


GLGVLGGAGRQRRALGGQALGLLAQVGIGAGHARGGRGAVGPAGQHRARLGAAVLRGTAGAPARRVGVVA


ERAASAACSLOQRLHARRRVREQRGRVAREVRGRVIGRGREVQPVVGRRHKPALRRGRARVLGLLRRQQ


PVGVRHAAVRTRPGARARARVEAGLGVVAHELVLQERAGHGVAGPGHDLRARRVVGRGGQAVHVTAGVDP


AGLFQKPLGKSRARSNHERLAFTRVLEPEVCCWKPPKYLVSIVSPV (SEQ ID NO: 90)





>gi|169204721|ref|XP_001713739.1| PREDICTED: hypothetical protein


[Homosapiens]


MTCGENSIGCGFRPGNESCVSACGPRPSRCCITAAPYRGISCYRGLTGGEGSHSVCGGFRAGSCGRSEGY


RSGGVCGPSPPCITTVSVNESLLTPLNLEIDPNAQCVKQEEKEQIKSLNSRFAAFIDKVRFLEQQNKLLE


TKLUYQNRECCQSNLEPLFAGYIETLRREAECVEADSGRLASELNHVOEVLEGYKKRYEEEVALRATAE


NEEVALKKDVDCAYLRKSDLEANVEALIQEIDFLRRLYEEEIRILQSHISDTSVVVKLDNSRDLNMDCMV


AEIKAQYDDIATRSRAEAESWYRSKCEEMKATVIRHGETLRRTKEEINELNRMIQRLTAEVENAKCONSK


LEAAVAQSEQQGEAALSDARCKLAELEGALQKAKUMACLIREYQEVMNSKLGLDIEIATYRRLLEGEEH


RLCEGVEAVNVCVSSSRGGVVCGDLCVSGSRPVTGSVCSAPCNGNLVVSTGLCKPCGQLNTTCGGGSCGQ


GRY (SEQ ID NO: 104)





ILIA [Homosapiens].


ACCESSION CAG33695


  1 MAKVPDMFED LKNCYSENEE DSSSIDHLSL NQKSFYHVSY GPLHEGCMDQ SVSLSISETS


 61 KTSKLTFKES MVVVATNGKV LKKRRLSLSQ SITDDDLEAI ANDSEEEIIK PRSAPFSFLS


121 NVKYNFMRII KYEFILNDAL NOSIIRANDQ YLTAAALHNL DEAVKFDMGA YKSSKDDAKI


181 TVILRISKTQ LYVTAQDEDQ PVLLKEMPEI PKTITGSETN LLFFWETHGT KNYFTSVAHP


241 NLFIATKQDY WVCLAGGPPS ITDFQILENQ A (SEQ ID NO: 166)





keratin, type I cytoskeletal 16 [Homosapiens].


ACCESSION NP_005548


  1 MTTCSRQETS SSSMKGSCGI GGGIGGGSSR ISSVLAGGSC RAPSTYGGGL SVSSRFSSGG


 61 ACGLGGGYGG GFSSSSSFGS GFGGGYGGGL GAGFGGGLGA GEGGGFAGGD GLLVGSEKVT


121 MQNLNDRLAS YLDKVRALEE ANADLEVKIR DWYQRQRPSE IKDYSPYFKT IEDLRNKIIA


181 ATIENAQPIL QIDNARLAAD DFRTKYEHEL ALRQTVEADV NGLRRVLDEL TLARTDLEMQ


241 IEGLKEELAY LRKNHEEEML ALRGQTGGDV NVEMDAAPGV DLSRILNEMR DQYEQMAEKN


301 RRDAETWFLS KTEELNKEVA SNSELVQSSR SEVTELRRVL QGLEIELQSQ LSMKASLENS


361 LEETKGRYCM QLSQIQGLIG SVEEQLAQLR CEMEQQSQEY QILLDVKTRL EQEIATYRRL


421 LEGEDAHLSS QQASGQSYSS REVFTSSSSS SSRQTRPILK EQSSSSFSQG QSS (SEQ ID NO: 167)





solute carrier family 1 (high affinity aspartate/glutamate transporter),


member 6 [Bostaurus]


ACCESSION DAA28190


  1 MSSHGNSLFL RESGQRLGRV GWLQRLQESL QQRALRMRLR LQTMTREHVL RFLRRNAFIL


 61 LTVSAVVIGV SLAFALRPYQ LSYRQIKYFS FPGELLMRML QMLVLPLIVS SLVTGMASLD


121 NKATGRMGMR AAVYYMVTTV IAVFIGILMV TIIHPGKGSK EGLHREGRIE TIPTADAFMD


181 LVRNMFPPNL VEACFKQFKT QYSTRLVTRT VVRTDNGSEL GTSMPPLSSL ENGTGLLENV


241 TRALGTLQEV LSFEETVPVP GSANGINALG LVVFSVAFGL VIGGMKHKGR VLRDFFDSLN


301 EAIMRLVGII IWYAPVGILF LIAGKILEME DMAVLGGQLG MYTLTVIVGL FVHAGGILPL


361 IYFLITHRNP FPFIGGILQA LITAMGTSSS SATLPITFRC LEEGLGVDRR ITRFVLPVGA


421 TVNMDGTALY EALAAIFIAQ VNNYELNLGQ ITTISITATA AS (SEQ ID NO: 168)



















TABLE 7





Gene
GenBank (NCBI) Accession
FORWARD PRIMER



Symbol
number
NAME
FORWARD PRIMER (5′->3′)







FCRLB
NM_001002901.2
FCRLB-F1
AGTGCAAGAGCTGTTCCGGGC (SEQ ID





NO: 169)





IL1A
NM_000575.3
UPL501_IL1A_F2
GGTTGAGTTTAAGCCAATCCA (SEQ ID NO: 170)





KRT16
NM_005557.3
UPL509_KRT16-F1
ATCGAGGACCTGAGGAACAA (SEQ ID NO: 171)





S100A2
NM_005978.3
S100A2-F1
TCTGCCACCTGGTCTGCCACA (SEQ ID NO: 172)





S100A7A
NM_176823.3
UPL507_S100A7A-F2
AAGCCTGCTGACGATGATG (SEQ ID NO: 173)





SLC1A6
NM_005071.1
UPL511_SLC1A6-F1
CTATGGGCACGTCTTCCAG (SEQ ID NO: 174)





KRT6A
NM_005554.3
JK1186-KRT6A-F
TGAGGAGTGCAGGCTGAATGGC (SEQ ID





NO: 175)





MMP12
NM_002426.2
JK1192-MMP12-F
TCTGGACTACACATTCAGGAGGCAC (SEQ ID





NO: 176)





MMP11
NM_005940.3
JK1178-MMP11-F
ACCGCTGGAGCCAGACGCC (SEQ ID NO: 177)





COL10A1
NM_000493.3
ES577-COL10A1-F
GGGCCTCAATGGACCCACCG (SEQ ID NO: 178)





SFN
NM_006142.3
JK1206-SFN-F
GTGGAGAGGGACTGGCAGAGC (SEQ ID





NO: 179)



















TABLE 8





Gene
GenBank (NCBI) Accession




Symbol
number
REVERSE PRIMER NAME
REVERSE PRIMER (5′->3′)







FCRLB
NM_001002901.2
FCRLB-R1
TACTCGGCGCCCCAGTCGAA (SEQ ID NO: 180)





IL1A
NM_000575.3
UPL502_IL1A_R2
TGCTGACCTAGGCTTGATGA (SEQ ID NO: 181)





KRT16
NM_005557.3
UPL510_KRT16-R1
GGGCCAGTTCATGCTCATAC (SEQ ID NO: 182)





S100A2
NM_005978.3
S100A2-R1
AGTGACCAGCACAGCCAGCG (SEQ ID NO: 183)





S100A7A
NM_176823.3
UPL508_S100A7A-R2
GCGAGGTAATGTATGCCCTTT (SEQ ID NO: 184)





SLC1A6
NM_005071.1
UPL512_SLC1A6-R1
GGACGAACCTGGTGATGC (SEQ ID NO: 185)





KRT6A
NM_005554.3
JK1187-KRT6A-R
CAATGGCTCTGCCACTGCTGGAAC (SEQ ID





NO: 186)





MMP12
NM_002426.2
JK1193-MMP12-R
GTCACAGAGAGCTGGTTCTGAATTGTC (SEQ ID





NO: 187)





MMP11
NM_005940.3
JK1179-MMP11-R
CGAGAGGCCAATGCTGGGTAGC (SEQ ID NO: 188)





COL10A1
NM_000493.3
ES578-COL10A1-R
CTGGGCCTTTGGCCTGCCTT (SEQ ID NO: 218)





SFN
NM_006142.3
JK1207-SFN-R
GGGACACTCCTCAATTCCTACGATC (SEQ ID





NO: 189)








Claims
  • 1-13. (canceled)
  • 14. A kit comprising a plurality of agents that bind to a plurality of markers chosen from COL10A1, FCRLB, AIM2, KRT6A, and MMP11.
  • 15. The kit of claim 14 comprising a plurality of agents that binds to each of the following markers COL10A1, FCRLB, AIM2, KRT6A, and MMP11.
  • 16. The kit of claim 14, wherein the plurality of agents are proteins and/or peptides.
  • 17. The kit of claim 16, wherein the proteins are antibodies and/or antibody fragments.
  • 18. The kit of claim 14, wherein the plurality of agents binds to COL10 and AIM2.
  • 19. The kit of claim 14, wherein the plurality of agents are nucleic acid oligonucleotides.
  • 20. The kit of claim 19, wherein the nucleic acid oligonucleotides are DNA oligonucleotides.
  • 21. The kit of claim 19, wherein the nucleic acid oligonucleotides bind to a DNA sequence encoding a plurality of markers chosen from COL10A1, FCRLB, AIM2, KRT6A, and MMP11.
  • 22. The kit of claim 15, wherein the plurality of agents are proteins and/or peptides.
  • 23. The kit of claim 22, wherein the proteins are antibodies and/or antibody fragments.
  • 24. The kit of claim 15, wherein the plurality of agents are nucleic acid oligonucleotides.
  • 25. The kit of claim 24, wherein the nucleic acid oligonucleotides are DNA oligonucleotides.
  • 26. The kit of claim 24, wherein the nucleic acid oligonucleotides bind to a DNA sequence encoding a plurality of markers chosen from COL10A1, FCRLB, AIM2, KRT6A, and MMP11.
  • 27. The use of the kit of claim 14 to detect bladder cancer.
  • 28. The use of the kit of claim 15 to detect bladder cancer.
Parent Case Info

This application claims priority to U.S. Provisional Application Ser. No. 61/500,085 filed Jun. 22, 2011, the entire contents of which is hereby incorporated by reference.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2012/043852 6/22/2012 WO 00 12/23/2013
Provisional Applications (1)
Number Date Country
61500085 Jun 2011 US