This invention relates to methods of treating, preventing and/or delaying the onset or progression of cognitive impairment, which can be associated with various diseases or conditions.
Cognitive impairment is when a person has trouble remembering, learning new things, concentrating, or making decisions that affect their everyday life. Cognitive impairment ranges from mild to severe. With mild impairment, people may begin to notice changes in cognitive functions, but still be able to do their everyday activities. Severe levels of impairment can lead to losing the ability to understand the meaning or importance of something and the ability to talk or write, resulting in the inability to live independently.
Cognitive impairment is costly. People with cognitive impairment report more than three times as many hospital stays as individuals who are hospitalized for some other condition. Alzheimer's disease and related dementias alone are estimated to be the third most expensive disease to treat in the United States. The imminent growth in the number of people living with cognitive impairment will place significantly greater demands on our systems of care. There are now more than 10 million family members providing unpaid care to a person with a cognitive impairment, a memory problem or a disorder like Alzheimer's disease or other dementia.
Aminosterols are amino derivatives of a sterol. Examples of aminosterols include squalamine and Aminosterol 1436 (also known as trodusquemine and MSI-1436).
Squalamine is a unique compound with a structure of a bile acid coupled to a polyamine (spermidine):
The discovery of squalamine, the structure of which is shown above, was reported by Michael Zasloff in 1993 (U.S. Pat. No. 5,192,756). Squalamine was discovered in various tissues of the dogfish shark (Squalus acanthias) in a search for antibacterial agents. The most abundant source of squalamine is in the livers of Squalus acanthias, although it is found in other sources, such as lampreys (Yun et al., 2007).
Several clinical trials have been conducted relating to the use of squalamine, including the following:
(1) ClinicalTrials.gov Identifier NCT01769183 for “Squalamine for the Treatment in Proliferative Diabetic Retinopathy,” by Elman Retina Group (6 participants; study completed August 2014);
(2) ClinicalTrials.gov Identifier NCT02727881 for “Efficacy and Safety Study of Squalamine Ophthalmic Solution in Subjects With Neovascular AMD (MAKO),” by Ohr Pharmaceutical Inc. (230 participants; study completed December 2017);
(3) ClinicalTrials.gov Identifier NCT02614937 for “Study of Squalamine Lactate for the Treatment of Macular Edema Related to Retinal Vein Occlusion,” by Ohr Pharmaceutical Inc. (20 participants; study completed December 2014);
(4) ClinicalTrials.gov Identifier NCT01678963 for “Efficacy and Safety of Squalamine Lactate Eye Drops in Subjects With Neovascular (Wet) Age-related Macular Degeneration (AMD),” by Ohr Pharmaceutical Inc. (142 participants; study completed March 2015);
(5) ClinicalTrials.gov Identifier NCT00333476 for “A Study of MSI-1256F (Squalamine Lactate) To Treat “Wet” Age-Related Macular Degeneration,” by Genaera Corporation (140 participants; study terminated) (https://clinicaltrials.gov/ct2/show/NCT01678963 ?term=squalamine&rank=6);
(6) ClinicalTrials.gov Identifier NCT00094120 for “MSI-1256F (Squalamine Lactate) in Combination With Verteporfin in Patients With “Wet” Age-Related Macular Degeneration (AMD),” by Genaera Corporation (60 participants; study completed February 2007);
(7) ClinicalTrials.gov Identifier NCT00089830 for “A Safety and Efficacy Study of MSI-1256F (Squalamine Lactate) To Treat “Wet” Age-Related Macular Degeneration,” by Genaera Corporation (120 participants; study completed May 2007); and
(8) ClinicalTrials.gov Identifier NCT03047629 for Evaluation of Safety and Tolerability of ENT-01 for the Treatment of Parkinson's Disease Related Constipation (RASMET) (50 participants; study completed Jun. 14, 2018).
Aminosterol 1436 is an aminosterol isolated from the dogfish shark, which is structurally related to squalamine (U.S. Pat. No. 5,840,936). It is also known as MSI-1436, trodusquemine and produlestan.
Several clinical trials have been conducted relating to the use of Aminosterol 1436:
(1) ClinicalTrials.gov Identifier NCT00509132 for “A Phase I, Double-Blind, Randomized, Placebo-Controlled Ascending IV Single-Dose Tolerance and Pharmacokinetic Study of Trodusquemine in Healthy Volunteers,” by Genaera Corp.;
(2) ClinicalTrials.gov Identifier NCT00606112 for “A Single Dose, Tolerance and Pharmacokinetic Study in Obese or Overweight Type 2 Diabetic Volunteer,” by Genaera Corp.;
(3) ClinicalTrials.gov Identifier NCT00806338 for “An Ascending Multi-Dose, Tolerance and Pharmacokinetic Study in Obese or Overweight Type 2 Diabetic Volunteers,” by Genaera Corp.; and
(4) ClinicalTrials.gov Identifier: NCT02524951 for “Safety and Tolerability of MSI-1436C in Metastatic Breast Cancer,” by DepyMed Inc.
Even in view of these trials, the full potential of aminosterols for use in treatment has yet to be determined.
The present invention is directed to methods of treating, preventing and/or slowing the onset or progression of cognitive impairment (CI) and/or related symptoms. In one aspect, the CI is correlated with abnormal α-synuclein (αS) pathology and/or dopaminergic dysfunction, The methods comprise administering at least one aminosterol or a pharmaceutically acceptable salt or derivative thereof to a subject in need. Certain embodiments describe the determination and administration of a “fixed dose” of an aminosterol or a pharmaceutically acceptable salt or derivative thereof that is not age, size, or weight dependent but rather is individually calibrated.
The aminosterol or a salt or derivative thereof can be formulated with one or more pharmaceutically acceptable carriers or excipients. Preferably the aminosterol is a pharmaceutically acceptable grade of the aminosterol.
In one embodiment, the invention encompasses a method of treating, preventing and/or slowing the onset or progression of cognitive impairment (CI) and/or a related symptom in a subject in need comprising administering to the subject a therapeutically effective amount of at least one aminosterol or a salt or derivative thereof. In one aspect, the at least one aminosterol or a salt or derivative thereof is administered via any pharmaceutically acceptable means. Exemplary methods of administration include, for example, oral, nasal, sublingual, buccal, rectal, vaginal, intravenous, intra-arterial, intradermal, intraperitoneal, intrathecal, intramuscular, epidural, intracerebral, intracerebroventricular, transdermal, or any combination thereof. In another aspect, the at least one aminosterol or a salt or derivative thereof is administered nasally. In another aspect, administration of the at least one aminosterol or a salt or derivative thereof comprises non-oral administration.
The therapeutically effect amount of the at least one aminosterol or a salt or derivative thereof in the methods of the invention can be, for example, about 0.1 to about 20 mg/kg, about 0.1 to about 15 mg/kg, about 0.1 to about 10 mg/kg, about 0.1 to about 5 mg/kg, or about 0.1 to about 2.5 mg/kg body weight of the subject. In another aspect, the therapeutically effect amount of the at least one aminosterol or a salt or derivative thereof in the methods of the invention can be, for example, about 0.001 to about 500 mg/day, about 0.001 to about 250 mg/day, about 0.001 to about 125 mg/day, about 0.001 to about 50 mg/day, about 0.001 to about 25 mg/day, or about 0.001 to about 10 mg/day.
In another aspect, the administration comprises nasal administration and the therapeutically effective amount of the at least one aminosterol, or a salt or derivative thereof comprises about 0.001 to about 6 mg/day, about 0.001 to about 4 mg/day, or about 0.001 to about 2 mg/day. In yet another aspect, the administration comprises oral administration and the therapeutically effective amount of the at least one aminosterol, or a salt or derivative thereof comprises about 1 to about 300 mg/day or about 25 to about 300 mg/day.
In another embodiment, the invention encompasses a method of treating, preventing and/or slowing the onset or progression of CI and/or a related symptom in a subject in need, where optionally the CI is correlated with abnormal α-synuclein (αS) pathology and/or dopaminergic dysfunction, comprising (a) determining a dose of an aminosterol or a salt or derivative thereof for the subject, wherein the aminosterol dose is determined based on the effectiveness of the aminosterol dose in improving or resolving a CI symptom being evaluated, (b) followed by administering the aminosterol dose to the subject for a period of time, wherein the method comprises (i) identifying a CI symptom to be evaluated; (ii) identifying a starting aminosterol dose for the subject; and (iii) administering an escalating dose of the aminosterol to the subject over a period of time until an effective dose for the CI symptom being evaluated is identified, wherein the effective dose is the aminosterol dose where improvement or resolution of the CI symptom is observed, and fixing the aminosterol dose at that level for that particular CI symptom in that particular subject.
As noted above, the aminosterol can be administered via any pharmaceutically acceptable means. Exemplary methods of administration include orally, intranasally, or a combination thereof.
In one embodiment, starting dosages of the aminosterol or a salt or derivative thereof for oral administration can range, for example, from about 1 mg up to about 175 mg/day, or any amount in-between these two values. An exemplary starting aminosterol dosage is 25 mg/day. In another embodiment, the composition is administered orally and the dosage of the aminosterol or a salt or derivative thereof is escalated in about 25 mg increments. In yet another embodiment, the composition is administered orally and the dose of the aminosterol or a salt or derivative thereof for the subject following dose escalation is fixed at a range of from about 1 mg up to about 500 mg/day, or any amount in-between these two values. In another aspect, the dose of the aminosterol or a salt or derivative thereof for the subject following escalation is fixed at a dose of about 1, about 5, about 10, about 15, about 20, about 25, about 30, about 35, about 40, about 45, about 50, about 55, about 60, about 65, about 70, about 75, about 80, about 85, about 90, about 95, about 100, about 105, about 110, about 115, about 120, about 125, about 130, about 135, about 140, about 145, about 150, about 155, about 160, about 165, about 170, about 175, about 180, about 185, about 190, about 195, about 200, about 205, about 210, about 215, about 220, about 225, about 230, about 235, about 240, about 245, about 250, about 255, about 260, about 265, about 270, about 275, about 280, about 285, about 290, about 295, about 300, about 305, about 310, about 315, about 320, about 325, about 330, about 335, about 340, about 345, about 350, about 355, about 360, about 365, about 370, about 375, about 380, about 385, about 390, about 395, about 400, about 405, about 410, about 415, about 420, about 425, about 430, about 435, about 440, about 445, about 450, about 455, about 460, about 465, about 470, about 475, about 480, about 485, about 490, about 495, or about 500 mg/day. In another aspect, the starting oral aminosterol dose is about 10, about 15, about 20, about 25, about 30, about 35, about 40, about 45, about 60, about 65, about 70, or about 75 mg/day.
In one embodiment, the aminosterol or a salt or derivative thereof is formulated for oral administration in a composition which is a liquid, capsule, or tablet designed to disintegrate in either the stomach, upper small intestine, or more distal portions of the intestine.
In another embodiment, the composition is administered intranasally (IN) and the starting aminosterol or a salt or derivative thereof dosage ranges from about 0.001 mg to about 3 mg/day, or any amount in-between these two values. For example, the starting aminosterol dosage for IN administration, prior to dose escalation, can be, for example, about 0.001, about 0.005, about 0.01, about 0.02, about 0.03, about 0.05, about 0.06, about 0.07, about 0.08, about 0.09, about 0.1, about 0.15, about 0.2, about 0.25, about 0.3, about 0.35, about 0.4, about 0.45, about 0.5, about 0.55, about 0.6, about 0.65, about 0.7, about 0.75, about 0.8, about 0.85, about 0.9, about 1.0, about 1.1, about 1.25, about 1.3, about 1.4, about 1.5, about 1.6, about 1.7, about 1.75, about 1.8, about 1.9, about 2.0, about 2.1, about 2.25, about 2.3, about 2.4, about 2.5, about 2.6, about 2.7, about 2.75, about 2.8, about 2.9, or about 3 mg/day.
In another embodiment, the composition is administered intranasally and the dosage of the aminosterol or a salt or derivative thereof is escalated in increments of about 0.01, about 0.05, about 0.1, about 0.2, about 0.25, about 0.3, about 0.35, about 0.4, about 0.45, about 0.5, about 0.55, about 0.6, about 0.65, about 0.7, about 0.75, about 0.8, about 0.85, about 0.9, about 0.95, about 1, about 1.1, about 1.2, about 1.3, about 1.4, about 1.5, about 1.6, about 1.7, about 1.8, about 1.9, or about 2 mg.
Finally, in yet another embodiment, the composition is administered intranasally and the dose of the aminosterol or a salt or derivative thereof for the subject following escalation is fixed at a range of from about 0.001 mg up to about 6 mg/day, or any amount in-between these two values. In yet a further embodiment, the aminosterol composition is administered intranasally and the dose of the aminosterol or a salt or derivative thereof for the subject following dose escalation is a dose which is sub therapeutic when given orally or by injection.
In one aspect, the aminosterol or a salt or derivative thereof is formulated for intranasal administration in a composition which is a dry powder nasal spray or liquid nasal spray.
In one embodiment, the dosage of the aminosterol or a salt or derivative thereof is escalated every about 3 to about 5 days. In another embodiment, the dose of the aminosterol or a salt or derivative thereof is escalated about 1×/week, about 2×/week, about every other week, or about ix/month. In yet another embodiment, the dose of the aminosterol or a salt or derivative thereof is escalated every about 1, about 2, about 3, about 4, about 5, about 6, about 7, about 8, about 9, about 10, about 11, about 12, about 13, or about 14 days.
In another embodiment, the fixed dose of the aminosterol or a salt or derivative thereof is given once per day, every other day, once per week, twice per week, three times per week, four times per week, five times per week, six times per week, every other week, or every few days. In addition, the fixed dose of the aminosterol or a salt or derivative thereof can be administered for a first defined period of time of administration, followed by a cessation of administration for a second defined period of time, followed by resuming administration upon recurrence of SZ or a symptom of SZ. For example, the fixed aminosterol dose can be incrementally reduced after the fixed dose of aminosterol or a salt or derivative thereof has been administered to the subject for a period of time. Alternatively, the fixed aminosterol dose is varied plus or minus a defined amount to enable a modest reduction or increase in the fixed dose. For example, the fixed aminosterol dose can be increased or decreased by about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, about 10%, about 11%, about 12%, about 13%, about 14%, about 15%, about 16%, about 17%, about 18%, about 19%, or about 20%.
In another embodiment, the starting aminosterol or a salt or derivative thereof dose is higher if the CI symptom being evaluated is severe. For example, the starting aminosterol dose can be based on a baseline score of a cognitive test or tool, wherein if the baseline score correlates with an assessment of mild cognitive impairment, then the starting aminosterol dose is lower than if the baseline score correlates with an assessment of severe cognitive impairment. In another aspect, a subject experiencing moderate or mild cognitive impairment as determined by a clinical scale or test is administered a starting oral aminosterol dose of from about 10 to about 75 mg/day; or a subject experiencing severe cognitive impairment as determined by a clinical scale or test is administered a starting oral aminosterol dose greater than about 75 mg/day.
In one embodiment, the method results in slowing, halting, or reversing progression or onset of CI over a defined period of time following administration of the fixed escalated dose of the aminosterol or a salt or derivative thereof, as measured by a medically-recognized technique. In addition, the method of the invention can result in positively impacting the CI, as measured by a medically-recognized technique.
The positive impact and/or progression of CI, and/or improvement or resolution of the CI symptom being evaluated, may be measured quantitatively or qualitatively by one or more clinically recognized scales, tools, or techniques). Examples of such techniques include computed tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy, functional MRI (fMRI), diffusion tensor imaging, single photon emission computed tomography (SPECT), and positron emission tomography (PET). In addition, the progression or onset of CI may be slowed, halted, or reversed by about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, or about 100%, as measured by a medically-recognized technique.
In one embodiment, the fixed escalated aminosterol dose reverses dysfunction caused by the CI and treats, prevents, improves, and/or resolves the CI symptom being evaluated. Again, the improvement or resolution of the CI-related symptom can be measured using a clinically recognized scale or tool. Examples of such scales or tools include, for example, the Uniformed Parkinson's Disease Scale (UPDRS), Mini Mental State Examination (MMSE), Mini Mental Parkinson (MMP), Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE), The 7-Minute Screen, Abbreviated Mental Test Score (AMTS), Cambridge Cognitive Examination (CAMCOG), Clock Drawing Test (CDT), General Practitioner Assessment of Cognition (GPCOG), Mini-Cog, Memory Impairment Screen (MIS), Montreal Cognitive Assessment (MoCA), Rowland Universal Dementia Assessment (RUDA), Self-Administered Gerocognitive Examination (SAGE), Short and Sweet Screening Instrument (SAS-SI), Short Blessed Test (SBT), St. Louis Mental Status (SLUMS), Short Portable Mental Status Questionnaire (SPMSQ), Short Test of Mental Status (STMS), Time and Change Test (T&C), Test Your Memory (TYM) test, and Addenbrooke's Cognitive Examination-Revised (ACER). Further, the improvement in the CI-related symptom is at least about 3%, at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, or at least about 100%, as measured using a clinically recognized scale or tool.
In one aspect, the CI correlated with abnormal αS pathology and/or dopaminergic dysfunction is related to or correlated with a neurodegenerative disease or neurological disease associated with neural cell death. In another aspect, the neurodegenerative disease or neurological disease or related symptom associated with neural cell death is: (a) selected from the group consisting of septic shock, intracerebral bleeding, subarachnoidal hemorrhage, multiinfarct dementia, inflammatory diseases, neurotrauma, peripheral neuropathies, polyneuropathies, metabolic encephalopathies, and infections of the central nervous system; or (b) selected from the group consisting of synucleopathies, Alzheimer's disease, Parkinson's disease, dementia with Lewy bodies, multiple system atrophy, Huntington's disease, multiple sclerosis, parkinsonism, amyotrophic lateral sclerosis (ALS), schizophrenia, Friedreich's ataxia, vascular dementia, spinal muscular atrophy, frontotemporal dementia, supranuclear palsy, progressive supranuclear palsy, progressive nuclear palsy, degenerative processes associated with aging, dementia of aging, Guadeloupian parkinsonism, spinocerebellar ataxia, hallucinations, stroke, traumatic brain injury, down syndrome, Gaucher's disease, Krabbe's disease (KD), lysosomal conditions affecting glycosphingolipid metabolism, cerebral palsy, and epilepsy.
In another aspect, the CI correlated with abnormal αS pathology and/or dopaminergic dysfunction is related to or correlated with a psychological or behavioral disorder. For example, the psychological or behavioral disorder can be selected from the group consisting of aberrant motor and obsessive-compulsive behaviors, sleep disorders, REM sleep behavior disorder (RBD), depression, major depressive disorder, agitation, anxiety, delirium, irritability, ADHD, apathy, bipolar disorder, disinhibition, addiction, illusion and delusions, amnesia, autism,
In one embodiment, the CI correlated with abnormal αS pathology and/or dopaminergic dysfunction is related to or correlated with a cerebral ischemic disorder or a general ischemic disorder. For example, the cerebral ischemic disorder can be selected from the group consisting of cerebral microangiopathy, intrapartal cerebral ischemia, cerebral ischemia during/after cardiac arrest or resuscitation, cerebral ischemia due to intraoperative problems, cerebral ischemia during carotid surgery, chronic cerebral ischemia due to stenosis of blood-supplying arteries to the brain, sinus thrombosis or thrombosis of cerebral veins, cerebral vessel malformations, and diabetic retinopathy; or the general ischemic disorder can be selected from the group consisting of high blood pressure, high cholesterol, myocardial infarction, cardiac insufficiency, cardiac failure, congestive heart failure, myocarditis, pericarditis, perimyocarditis, coronary heart disease, angina pectoris, congenital heart disease, shock, ischemia of extremities, stenosis of renal arteries, diabetic retinopathy, thrombosis associated with malaria, artificial heart valves, anemias, hypersplenic syndrome, emphysema, lung fibrosis, and pulmonary edema.
In another embodiment, the cognitive impairment-related symptom is selected from the group consisting of: cognitive impairment as determined by an IQ score; cognitive impairment as determined by a memory or cognitive function test; decline in thinking and reasoning skills; confusion; poor motor coordination; loss of short term memory; loss of long term memory; identity confusion; impaired judgement; forgetfulness; depression; anxiety; irritability; obsessive-compulsive behavior; apathy and/or lack of motivation; emotional imbalance; problem solving ability; impaired language; impaired reasoning; impaired decision-making ability; impaired ability to concentrate; impaired communication; impaired ability to conduct routine tasks such as cooking; self-care, including feeding and dressing; constipation; eurodegeneration; sleep problem, sleep disorder, and/or sleep disturbance; hypertension; hypotension; sexual dysfunction; cardiovascular disease; cardiovascular dysfunction; difficulty with working memory; gastrointestinal (GI) disorders; attention deficit and hyperactivity disorder; seizures; urinary dysfunction; difficulty with mastication; vision problems; and muscle weakness.
In one aspect, the CI-related symptom to be evaluated is cognitive impairment as determined by an IQ score or as determined by a memory or cognitive function test and wherein: (a) progression or onset of the CI is slowed, halted, or reversed over a defined period of time following administration of the fixed escalated dose of the aminosterol or a salt or derivative thereof, as measured by a medically-recognized technique; (b) the CI is positively impacted by the fixed escalated dose of the aminosterol or a salt or derivative thereof, as measured by a medically-recognized technique; (c) the CI is positively impacted by the fixed escalated dose of the aminosterol or a salt or derivative thereof, as measured by a medically-recognized technique and the positive impact on and/or progression of cognitive decline is measured quantitatively or qualitatively by one or more medically-recognized techniques selected from the group consisting of ADASCog, Mini-Mental State Exam (MMSE), Mini-cog test, Woodcock-Johnson Tests of Cognitive Abilities, Leiter International Performance Scale, Miller Analogies Test, Raven's Progressive Matrices, Wonderlic Personnel Test, IQ tests, or a computerized tested selected from Cantab Mobile, Cognigram, Cognivue, Cognision, and Automated Neuropsychological Assessment Metrics Cognitive Performance Test (CPT); and/or (d) the progression or onset of CI is slowed, halted, or reversed by about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, or about 100%, as measured by a medically-recognized technique.
In one embodiment, the CI-related symptom to be evaluated is depression and (a) the method results in improvement in a subject's depression, as measured by one or more clinically-recognized depression rating scale; (b) the method results in improvement in a subject's depression, as measured by one or more clinically-recognized depression rating scale and the improvement is in one or more depression characteristics selected from the group consisting of mood, behavior, bodily functions such as eating, sleeping, energy, and sexual activity, and/or episodes of sadness or apathy; and/or (c) the method results in improvement in a subject's depression, as measured by one or more clinically-recognized depression rating scale, and the improvement a subject experiences following treatment is about 5, about 10, about 15, about 20, about 25, about 30, about 35, about 40, about 45, about 50, about 55, about 60, about 65, about 70, about 75, about 80, about 85, about 90, about 95 or about 100%. For example, the one or more clinically-recognized depression rating scale can be selected from the group consisting of the Patient Health Questionnaire-9 (PHQ-9); the Beck Depression Inventory (BDI); Zung Self-Rating Depression Scale; Center for Epidemiologic Studies-Depression Scale (CES-D); and the Hamilton Rating Scale for Depression (HRSD).
In one embodiment, the CI-related symptom to be evaluated is constipation, and (a) treating the constipation prevents and/or delays the onset and/or progression of the CI; (b) the fixed escalated aminosterol dose causes the subject to have a bowel movement; (c) the method results in an increase in the frequency of bowel movement in the subject; (d) the method results in an increase in the frequency of bowel movement in the subject and the increase in the frequency of bowel movement is defined as: (i) an increase in the number of bowel movements per week of about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, and about 100%; and/or (ii) a percent decrease in the amount of time between each successive bowel movement selected from the group consisting of about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, or about 100%; (e) as a result of the method the subject has the frequency of bowel movement recommended by a medical authority for the age group of the subject; and/or (f) the starting aminosterol dose is determined by the severity of the constipation, wherein: (i) if the average complete spontaneous bowel movement (CSBM) or spontaneous bowel movement (SBM) is one or less per week, then the starting aminosterol dose is at least about 150 mg; and (ii) if the average CSBM or SBM is greater than one per week, then the starting aminosterol dose is about 75 mg or less.
In one embodiment, the CI-related symptom to be evaluated is neurodegeneration correlated with CI, and (a) treating the neurodegeneration prevents and/or delays the onset and/or progression of the CI; (b) the method results in treating, preventing, and/or delaying the progression and/or onset of neurodegeneration in the subject; (c) progression or onset of the neurodegeneration is slowed, halted, or reversed over a defined period of time following administration of the fixed escalated dose of the aminosterol or a salt or derivative thereof, as measured by a medically-recognized technique; and/or (d) the neurodegeneration is positively impacted by the fixed escalated dose of the aminosterol or a salt or derivative thereof, as measured by a medically-recognized technique. For example, the positive impact and/or progression of neurodegeneration can be measured quantitatively or qualitatively by one or more techniques selected from the group consisting of electroencephalogram (EEG), neuroimaging, functional MRI, structural MRI, diffusion tensor imaging (DTI), [18F]fluorodeoxyglucose (FDG) PET, agents that label amyloid, [18F]F-dopa PET, radiotracer imaging, volumetric analysis of regional tissue loss, specific imaging markers of abnormal protein deposition, multimodal imaging, and biomarker analysis. In addition, the progression or onset of neurodegeneration can be slowed, halted, or reversed by about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, or about 100%, as measured by a medically-recognized technique.
In one embodiment, the CI-related symptom to be evaluated is a sleep problem, sleep disorder, or sleep disturbance and (a) the sleep problem, sleep disorder, or sleep disturbance comprises a delay in sleep onset, sleep fragmentation, REM-behavior disorder, sleep-disordered breathing including snoring and apnea, day-time sleepiness, micro-sleep episodes, narcolepsy, circadian rhythm dysfunction, REM disturbed sleep, or any combination thereof; (b) the sleep problem, sleep disorder, or sleep disturbance comprises REM-behavior disorder, which comprises vivid dreams, nightmares, and acting out the dreams by speaking or screaming, or fidgeting or thrashing of arms or legs during sleep; (c) treating the sleep problem, sleep disorder, or sleep disturbance prevents or delays the onset and/or progression of the CI; (d) the method results in a positive change in the sleeping pattern of the subject; wherein the positive change is defined as: (i) an increase in the total amount of sleep obtained of about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, and about 100%; and/or (ii) a percent decrease in the number of awakenings during the night selected from the group consisting of about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, or about 100%; and/or (f) as a result of the method the subject obtains the total number of hours of sleep recommended by a medical authority for the age group of the subject.
For all of the embodiments described herein, each defined period of time is independently selected from the group consisting of about 1 day to about 10 days, about 10 days to about 30 days, about 30 days to about 3 months, about 3 months to about 6 months, about 6 months to about 12 months, and about greater than 12 months.
In another embodiment, the aminosterol or a salt or derivative thereof is administered in combination with at least one additional active agent to achieve either an additive or synergistic effect. For example, the additional active agent can be administered via a method selected from the group consisting of (a) concomitantly; (b) as an admixture; (c) separately and simultaneously or concurrently; or (d) separately and sequentially. In another embodiment, the additional active agent is a different aminosterol from that administered in primary method. In yet a further embodiment, the method of the invention comprises administering a first aminosterol which is aminosterol 1436 or a salt or derivative thereof intranasally and administering a second aminosterol which is squalamine or a salt or derivative thereof orally.
For all of the methods of the invention, in one embodiment each aminosterol dose is taken on an empty stomach, optionally within about two hours of the subject waking. In another embodiment for all of the methods of the invention, no food is taken or consumed after about 60 to about 90 minutes of taking the aminosterol dose. Further, in yet another embodiment applicable to all of the methods of the invention, the aminosterol or a salt or derivative thereof can be a pharmaceutically acceptable grade of at least one aminosterol or a pharmaceutically acceptable salt or derivative thereof. For all of the methods of the invention the subject can be a human.
In another embodiment, the subject to be treated according to the methods of the invention can be a member of a patient population at risk for being diagnosed with CI.
The aminosterol or a salt or derivative thereof utilized in the methods of the invention can be, for example, (a) isolated from the liver of Squalus acanthias; (b) a synthetic aminosterol; (c) squalamine or a pharmaceutically acceptable salt thereof; (d) a squalamine isomer; (e) the phosphate salt of squalamine; (f) aminosterol 1436 or a pharmaceutically acceptable salt thereof; (g) an aminosterol 1436 isomer; (h) the phosphate salt of aminosterol 1436; (i) a compound comprising a sterol nucleus and a polyamine attached at any position on the sterol, such that the molecule exhibits a net charge of at least +1; (j) a compound comprising a bile acid nucleus and a polyamine, attached at any position on the bile acid, such that the molecule exhibits a net charge of at least +1; (k) a derivative modified to include one or more of the following: (i) substitutions of the sulfate by a sulfonate, phosphate, carboxylate, or other anionic moiety chosen to circumvent metabolic removal of the sulfate moiety and oxidation of the cholesterol side chain; (ii) replacement of a hydroxyl group by a non-metabolizable polar substituent, such as a fluorine atom, to prevent its metabolic oxidation or conjugation; and (iii) substitution of one or more ring hydrogen atoms to prevent oxidative or reductive metabolism of the steroid ring system; and/or (1) a derivative of squalamine or aminosterol 1436 modified through medicinal chemistry to improve bio-distribution, ease of administration, metabolic stability, or any combination thereof. In one embodiment, the aminosterol is selected from the group consisting aminosterol 1436 or a pharmaceutically acceptable salt thereof, squalamine or a pharmaceutically acceptable salt thereof, or a combination thereof. In another embodiment, the aminosterol is a phosphate salt.
In another embodiment, the aminosterol in the methods of the invention is selected from the group consisting of:
Further, the aminosterol composition can comprise, for example, one or more of the following: an aqueous carrier, a buffer, a sugar, and/or a polyol compound.
Both the foregoing summary of the invention and the following brief description of the drawings and the detailed description of the invention are exemplary and explanatory and are intended to provide further details of the invention as claimed. Other objects, advantages, and novel features will be readily apparent to those skilled in the art from the following detailed description of the invention.
The present invention is directed to methods of treating, preventing and/or delaying the onset or progression of cognitive impairment and/or related symptoms. In particular, the invention is directed to methods of treating, preventing and/or delaying the onset or progression of cognitive impairment correlated with abnormal α-synuclein (αS) pathology. The methods comprise administering one or more aminosterols or pharmaceutically acceptable salts or derivatives thereof to a subject in need.
It is known that αS is an important presynaptic protein regulating critical aspects of dopamine (DA) neurotransmission. Thus, the present invention is also directed to methods of treating, preventing and/or delaying the onset or progression of cognitive impairment correlated with conditions related to dysfunctional DA neurotransmission, also known as dopaminergic dysfunction.
Examples of conditions or disorders correlated with cognitive impairment, and which are also correlated with abnormal αS pathology, and/or dopaminergic dysfunction, include but are not limited to: (1) neurodegenerative diseases associated with neural cell death, (2) psychological or behavior disorders, and (3) cerebral and general ischemic disorders, as described in more detail below.
Cognition is defined in the Psychiatric Glossary of the American Psychiatric Association as “ . . . the mental process of comprehension, judgment, memory, and reasoning as contrasted with emotional and volitional processes.” The Merriam-Webster Dictionary defines cognition as “the activities of thinking, understanding, learning, and remembering.” Depressive disorders are associated with problems in multiple cognitive domains including attention (concentration), memory (learning), and decision making (judgment). As detailed herein, abnormal αS pathology, as well as dopaminergic dysfunction or dysfunctional DA neurotransmission, are positively correlated with cognitive impairment. Administration of one or more aminosterols treats, prevents and/or slows the onset or progression of cognitive impairment associated with abnormal αS pathology and/or dopaminergic dysfunction.
In one embodiment, the present invention is directed to methods of treating, preventing and/or slowing the onset or progression of cognitive impairment correlated with abnormal αS pathology or dysfunctional DA neurotransmission/dopaminergic dysfunction, comprising: (a) determining a dose of an aminosterol or a salt or derivative thereof for the subject, wherein the aminosterol dose is determined based on the effectiveness of the aminosterol dose in improving or resolving a cognitive impairment symptom being evaluated; (b) followed by administering the dose of the aminosterol or a salt or derivative thereof to the subject for a period of time. The method of determining the aminosterol dose comprises (i) identifying a cognitive impairment symptom to be evaluated; (ii) identifying a starting aminosterol dose for the subject; and (iii) administering an escalating dose of the aminosterol to the subject over a period of time until an effective dose for the cognitive impairment symptom being evaluated is identified, wherein the effective dose is the aminosterol dose where improvement or resolution of the cognitive impairment symptom is observed, and fixing the aminosterol dose at that level for that particular cognitive impairment symptom in that particular subject.
A. Cognitive Impairment
Cognitive abilities are generally described as abilities to learn, solve problems, remember, and appropriately use stored information, and these abilities are central to successful health and aging. A variety of conditions, both age-associated and disease associated, adversely affect cognition. After the age of 70, numerous studies suggest that approximately 16% of persons have MCI and 14% experience dementia (Morley et al. 2015). Alzheimer's disease (AD), Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB) together account for the vast majority of individuals with dementia. Broadstock et al., 2014. Approximately 35 million people worldwide are affected with dementia, and despite decades of research, effective therapies that slow or reverse disease progression have not yet been developed. Thus, cognitive impairment is a serious medical issue having a significant impact on medical resources as well as having significant deleterious effects on a large number of subjects.
Mild cognitive impairment (MCI) is the stage between the expected cognitive decline of normal aging and the more serious decline of dementia. Patients affected with MCI have a higher turn-over rate to AD with the average rate of 10-15% annually over 5 years. MCI can involve problems with memory, language, thinking and judgment that are greater than normal age-related changes. MCI causes a slight but noticeable and measurable decline in cognitive abilities, including memory and thinking skills.
MCI causes cognitive changes that are serious enough to be noticed by the individuals experiencing them or to other people, but the changes are not severe enough to interfere with daily life or independent function. Approximately 15 to 20% of people age 65 or older have MCI.
People with MCI, especially MCI involving memory problems, are more likely to develop AD or other dementias than people without MCI. However, MCI does not always lead to dementia. In some individuals, MCI reverts to normal cognition or remains stable. In other cases, such as when a medication causes cognitive impairment, MCI is mistakenly diagnosed.
MCI is a “clinical” diagnosis representing a doctor's best professional judgment about the reason for a person's symptoms. If a physician has difficulty confirming a diagnosis of MCI or the cause of MCI, biomarker tests such as brain imaging and cerebrospinal fluid tests may be performed to determine if the individual has MCI due to AD.
No medications are currently approved by the U.S. Food and Drug Administration (FDA) to treat MCI. Drugs approved to treat symptoms of AD have not shown any lasting benefit in delaying or preventing progression of MCI to dementia.
B. Cognitive Impairment and Abnormal αS Pathology
Many neurodiseases causing cognitive impairment such as PD are suspected to correlate with the formation of toxic αS aggregates within the enteric nervous system (ENS) (Braak et al. 2003). As a result of the normal trafficking of αS aggregates from the ENS to the central nervous system (CNS) via afferent nerves such as the vagus (Holmqvist et al. 2014; Svensson et al. 2015), neurotoxic aggregates accumulate progressively within the brainstem and more rostral structures. Inhibiting αS aggregation in the ENS may, thus, reduce the continuing neuro disease process in both the ENS and CNS (Phillips et al. 2008), and thereby positively impact cognitive impairment associated with abnormal αS pathology.
αS is a member of the synuclein family of soluble proteins (αS, β-synuclein and γ-synuclein) that are commonly present in CNS of vertebrates. αS is expressed in the neocortex, hippocampus, substantia niagra, thalamus and cerebellum, with the main location within the presynaptic terminals of neurons in both membrane-bound and cytosolic free forms. Presynaptic terminals release chemical messengers, called neurotransmitters, from compartments known as synaptic vesicles. The release of neurotransmitters relays signals between neurons and is critical for normal brain function. αS can be seen in neuroglial cells and melanocytic cells, and is highly expressed in the neuronal mitochondria of the olfactory bulb, hippocampus, striatum and thalamus.
αS aggregates to form insoluble fibrils in pathological conditions characterized by Lewy bodies, such as PD, dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). These disorders are known as synucleinopathies. αS is the primary structural component of Lewy body fibrils. Occasionally, Lewy bodies contain tau protein; however, αS and tau constitute two distinctive subsets of filaments in the same inclusion bodies. αS pathology is also found in both sporadic and familial cases with AD. Thus, one indicator of abnormal αS pathology is the formation of αS aggregates.
At the molecular level, protein misfolding, accumulation, aggregation and subsequently the formation of amyloid deposits are common features in many neurological disorders including AD and PD. Thus neurodegenerative diseases are sometimes referred to as proteinopathies. The existence of a common mechanism suggests that neurodegenerative disorders likely share a common trigger and that the nature of the pathology is determined by the type of the aggregated protein and the localization of the cell affected.
Starting two decades ago with the discoveries of genetic links between αS and PD risk and the identification of aggregated αS as the main protein constituent of Lewy pathology, αS has emerged as the major therapeutic target in PD and related synucleinopathies. Brundin et al., 2017. A recent study reported that plasma αS level correlates with cognitive decline in patients with PD. Lin et al. 2017. In addition, yet another study reported that plasma total and nervous system derived exosomal (NDE) αS have been determined as potential biomarkers of PD and cognitive impairment associated with PD. Wang et al. 2018. Further, it has been reported that αS can induce cognitive impairment. Specifically, a recent study reported that extracellular αS oligomers form a complex with cellular prion protein (PrPC), which through a cascade effect triggers synaptic and cognitive deficits. Ferreira et al. 2017. This data is consistent with cognitive impairment correlated with abnormal αS pathology. These data are also consistent with earlier research examining mouse models of cognitive deficits due to αS pathology. I. Magen and M. Chesselet, 2011. In recent years, several studies have shown that αS aggregation can also be detected outside the central nervous system, particularly in the ENS of the gastrointestinal tract of PD patients using immunohistochemistry. Further, it has also been reported that αS is a common modifier in motor neuron diseases (Kline et al., 2017), many of which have cognitive impairment as a related symptom.
Examples of conditions associated with abnormal αS pathology, and/or dopaminergic dysfunction, correlated with cognitive impairment include, but are not limited to, synucleopathies, neurodiseases, psychological and/or behavior disorders, cerebral and general ischemic disorders, and/or disorders or conditions such as AD, PD, dementia with Lewy bodies (DLB), multiple system atrophy (MSA), Huntington's Disease, Multiple Sclerosis (MS), Amyotorphic Lateral Sclerosis (ALS), schizophrenia, Friedreich's ataxia, vascular dementia, spinal muscular atrophy, supranuclear palsy, fronto temperal dementia (FTD), progressive supranuclear palsy, Guadeloupian Parkinsonism, spinocerebellar ataxia, autism, stroke; traumatic brain injury; sleep disorders such as REM sleep behavior disorder (RBD), depression, down syndrome, Gaucher's disease (GD), Krabbe's disease (KD), lysosomal conditions affecting glycosphingolipid metabolism, ADHD, agitation, anxiety, delirium, irritability, illusion and delusions, amnesia, apathy, bipolar disorder, disinhibition, aberrant motor and obsessive-compulsive behaviors, addiction, cerebral palsy, epilepsy, and major depressive disorder.
Several of these conditions are described in more detail below.
1. Neurodegenerative Diseases Associated with Neural Cell Death
i. Synucleinopathies
Synucleinopathies (also called α-Synucleinopathies) are neurodegenerative diseases characterized by the abnormal accumulation of fibrillary aggregates of αS protein in the cytoplasm of selective populations of neurons and glia. These disorders include PD, DLB, pure autonomic failure (PAF), and MSA. Other rare disorders, such as various neuroaxonal dystrophies, also have αS pathologies.
The synucleinopathies have shared features of impaired cognition, as well as parkinsonism, sleep disorders, and visual hallucinations. Synucleinopathies can sometimes overlap with tauopathies, possibly because of interaction between the synuclein and tau proteins.
αS deposits can affect the cardiac muscle and blood vessels. Almost all people with synucleinopathies have cardiovascular dysfunction, although most are asymptomatic. From chewing to defecation, αS deposits affect every level of gastrointestinal function. Symptoms include upper gastrointestinal tract dysfunction such as delayed gastric emptying or lower gastorintestinal dysfunction, such as constipation and prolonged stool transit time.
Urinary retention, waking at night to urinate, increased urinary frequency and urgency, and over- or underactive bladder are common in people with synucleinopathies. Sexual dysfunction usually appears early in synucleinopathies, and may include erectile dysfunction, and difficulties achieving orgasm or ejaculating.
Cognitive impairment associated with age-related neurodegeneration diseases such as AD and PD remain a significant unsolved problem and challenge. The number of people over 60 years is expected to rise from 841 million in 2013 to more than 2 billion in 2050 (United Nations. World population ageing 2013). As populations get older, age-related neurodegenerative diseases such as AD and PD have become more common (Reitz et al. 2011; Reeve et al. 2014). Even for less common neurodegenerative diseases, such as ALS, this trend seems likely (Beghi et al. 2006).
ii. Frontotemporal Dementia (FTD)
Frontotemporal dementia (FTD) or frontotemporal degenerations is a clinical term that refers to a group of progressive neurodegenerative disorders that affect the frontal and temporal lobes causing personality change (apathy, disinhibition, loss of insight and emotional control), loss of the ability to recognize the meaning of words and objects, language dysfunction, and global cognitive decline. Unlike AD, which attacks the brain's memory centers, FTD causes atrophy in the part of the brain that controls judgment, behavior and executive function. FTDs have an earlier onset than AD and, at an early stage, do not cause the memory loss and visual-spatial disorientation that are so characteristic of AD. There is an overlap between FTDs, amyotrophic lateral sclerosis (ALS), and atypical parkinsonian syndromes (progressive supranuclear palsy and corticobasal degeneration).
In bvFTD, the nerve cell loss is most prominent in areas that control conduct, judgment, empathy and foresight, among other abilities. Primary progressive aphasia (PPA) is the second major form of frontotemporal degeneration that affects language skills, speaking, writing and comprehension. PPA normally comes on in midlife, before age 65, but can occur in late life also.
Prior studies have reported the presence of tau and αS inclusions in a case of FTD and progressive aphasia. Yancopoulou et al., 2005. Similarly, a more resent study reported the significant presence of phosphorylated αS-positive structures were also found in oligodendrocytes and the neuropil of FTD patients. Hosokawa et al., 2017.
iii. Amyotrophic Lateral Sclerosis (ALS)
Amyotrophic lateral sclerosis (ALS), also known as motor neurone disease (MND), or Lou Gehrig's disease, is a specific disease which causes the death of neurons controlling voluntary muscles. ALS is characterized by stiff muscles, muscle twitching, and gradually worsening weakness due to muscles decreasing in size. This results in difficulty speaking, swallowing, and eventually breathing. The cause is not known in 90% to 95% of cases. The remaining 5-10% of cases are genetic. The underlying mechanism involves damage to both upper and lower motor neurons. No cure for ALS is known. The disease can affect people of any age, but usually starts around the age of 60 and in inherited cases around the age of 50. The average survival from onset to death is 2 to 4 years, although about 10% survive longer than 10 years.
Although the degeneration predominantly affects the motor system, cognitive and behavioral symptoms have been described for over a century, and there is evidence that ALS and frontotemporal dementia overlap clinically, radiologically, pathologically, and genetically. Cognitive decline in ALS is characterized by personality change, irritability, obsessions, poor insight, and pervasive deficits in frontal executive tests. This presentation is consistent with the changes to character, social conduct, and executive function in frontotemporal dementia. Phukan et al., 2007.
αS pathology has been examined in the brains and spinal cords of patients with ALS/parkinsonism-dementia complex (PDC). Kokubo et al. 2012. This study reported that various types of phosphorylated αS-positive structures were found in all ALS/PDC cases. This is significant as phosphorylated αS is the main component of Lewy bodies (LBs) that are characteristic of PD and DLB.
iv. Huntington's Disease (HD)
Huntington's disease (HD) is a progressive brain disorder caused by a defective gene. This disease causes changes in the central area of the brain, which affect movement, mood and thinking skills. HD is a progressive brain disorder caused by a single defective gene on chromosome 4—one of the 23 human chromosomes that carry a person's entire genetic code. This defect is “dominant,” meaning that anyone who inherits it from a parent with Huntington's will eventually develop the disease.
The hallmark symptom of HD is uncontrolled movement of the arms, legs, head, face and upper body. HD also causes a decline in thinking and reasoning skills, including memory, concentration, judgment, and ability to plan and organize.
αS also plays a role in the disease pathology of HD. Specifically, recent studies report that αS levels modulate HD in mice. Corrochano et al., December 2012. Similarly, yet another study reported that αS levels affect autophagosome numbers in vivo and modulate HD pathology. Corrochano et al., March 2012.
v. Schizophrenia
Schizophrenia is a chronic progressive disorder that has at its origin structural brain changes in both white and gray matter, and therefore schizophrenia is correlated with cognitive impairment. It is likely that these changes begin prior to the onset of clinical symptoms in cortical regions, particularly those concerned with language processing. Later, they can be detected by progressive ventricular enlargement. Current magnetic resonance imaging (MRI) technology can provide a valuable tool for detecting early changes in cortical atrophy and anomalous language processing, which may be predictive of who will develop schizophrenia.
The duration and strength of the dopaminergic signal are regulated by the dopamine transporter (DAT). Drug addiction and neurodegenerative and neuropsychiatric diseases have all been associated with altered DAT activity. αS, a protein partner of DAT, is implicated in neurodegenerative disease and drug addiction.
A recent study reported that patients with schizophrenia exhibit a decreased expression of αS. Demirel et al. 2017. Specifically, the study reported that schizophrenia subjects exhibited significantly lower serum levels of αS as compared to healthy controls. As serum αS plays a neuromodulator role, this lower amount may result in impaired neuroplasticity in the etiology of schizophrenia, as well as noticeable cognitive impairment which progresses over time.
vi. Multiple Sclerosis
Multiple sclerosis (MS) is a demyelinating disease in which the insulating covers of nerve cells in the brain and spinal cord are damaged. This damage disrupts the ability of parts of the nervous system to communicate, resulting in a range of signs and symptoms, including physical, mental, and sometimes psychiatric problems. Specific symptoms can include double vision, blindness in one eye, muscle weakness, trouble with sensation, or trouble with coordination. MS takes several forms, with new symptoms either occurring in isolated attacks (relapsing forms) or building up over time (progressive forms). Between attacks, symptoms may disappear completely; however, permanent neurological problems often remain, especially as the disease advances. There is no known cure for MS. Life expectancy is on average 5 to 10 years lower than that of an unaffected population. MS is the most common immune-mediated disorder affecting the central nervous system. In 2015, about 2.3 million people were affected globally, and in 2015 about 18,900 people died from MS, up from 12,000 in 1990.
As MS progresses, usually with a series of acute immune attacks and a late-stage steady march of function loss, patients with MS commonly experience fatigue, spasticity, difficulty walking, and cognitive impairment. Rahn et al., 2012.
The Minimal Assessment of Cognitive Function in Multiple Sclerosis (MACFIMS) battery—a seven-test, 90-minute assessment of word fluency, visuospatial ability, learning, memory, processing, and executive function (cognitive skills required to unite learning and memory with behavior)—was established in 2001. The recent development of improved diagnostic tests for cognitive function has allowed researchers to reach a general consensus: Cognitive impairment is a debilitating and widespread comorbidity of MS. Today physicians recognize that MS affects more than 600,000 people in the United States and more than 2 million people worldwide, and 40 to 65% of these patients experience some degree of cognitive impairment. Rahn et al., 2012.
Abnormal αS pathology is correlated with MS. Specifically, a recent study reported that levels of αS in the Cerebrosinal Fluid (CSF) of MS subjects was significantly lower as compared to healthy controls. Antonelou et al., 2015. Similarly, a more recent study reported the low levels of αS in peripheral tissues are related to clinical relapse in relapse-remitting MS. Mejia et al., 2018.
vii. Various Other Conditions
Progressive supranuclear palsy (PSP), also called Steele-Richardson-Olszewski syndrome, is an brain disorder that causes serious problems with walking, balance and eye movements. The disorder results from deterioration of cells in areas of the brain that control body movement and thinking. There is no known cure for PSP and management is primarily supportive. Cognitive impairment is integral to the syndrome of progressive supranuclear palsy. Rittman et al., 2016. Cognitive symptoms including changes in executive function, mood and behavior are also common in PSP. PSP is considered a sporadic neurodegenerative disease, one that develops by chance. Build-up of the Tau protein in the brain causes cellular damage and thus affects the normal function of neurons. PSP is considered a tauopathy as is AD and other frontotemporal brain disorders. Build-up of the Tau protein in PSP is significant, as other researchers have reported that tau and αS appear to promote the fibrillization and solubility of each other in vitro and in vivo. This suggests that interactions between tau and αS form a deleterious feed-forward loop essential for the development and spreading of neurodegeneration. Moussaud et al., 2014.
Vascular dementia, also known as multi-infarct dementia (MID) and vascular cognitive impairment (VCI), is dementia caused by problems in the supply of blood to the brain, typically a series of minor strokes, leading to worsening cognitive decline that occurs step by step. Risk factors for vascular dementia include age, hypertension, smoking, hypercholesterolemia, diabetes mellitus, cardiovascular disease, and cerebrovascular disease. Other risk factors include geographic origin, genetic predisposition, and prior strokes. A characteristic of VCI is cognitive impairment. Vascular dementia is not a single entity, but an umbrella term to describe cognitive decline due to a series of different vessel disorders, frequently seen in combination with other non-vascular changes. These vessel disorders can induce various types of cerebral tissue lesions such as hemorrhage, infarction, hippocampal sclerosis, and white matter lesions.
Spinal muscular atrophy (SMA) is an inherited neuromuscular disorder characterized by loss of motor neurons and progressive muscle wasting, often leading to early death. The disorder is caused by a genetic defect in the SMN1 gene, which encodes SMN, a protein necessary for survival of motor neurons. Lower levels of the protein results in loss of function of neuronal cells in the anterior horn of the spinal cord and subsequent system-wide atrophy of skeletal muscles. It has been reported that significantly lower αS expression were found in tissue samples of SMA patients, suggesting a contribution to the disease pathology. Acsadi et al., 2011.
Friedreich's ataxia (FRDA) is an autosomal recessive inherited disease that causes progressive damage to the nervous system. It manifests in initial symptoms of poor coordination such as gait disturbance; it can also lead to scoliosis, heart disease and diabetes, but does not affect cognitive function. The ataxia of Friedreich's ataxia results from the degeneration of nervous tissue in the spinal cord, in particular sensory neurons essential (through connections with the cerebellum) for directing muscle movement of the arms and legs. The spinal cord becomes thinner and nerve cells lose some of their myelin sheath (the insulating covering on some nerve cells that helps conduct nerve impulses). Recent research reports that cognitive impairment is correlated with FRDA. Dogan et al., 2016.
2. Psychological or Behavior Disorders
i. Sleep Disorders & Sleep Disturbances
Studies have found a correlation between sleep disorders, sleep disturbances and/or sleep fragmentation and a decline in cognitive function, particularly in older adults. E. Cassidy-Eagle and A. Siebern, 2017. Similarly, a correlation has been found between neurocognitive impairment and obstructive sleep apnea. Lal et al., 2012. Further, yet another study reported that sleep disorders are frequent in patients with cognitive impairment, with a prevalence of 25% to 80%, depending on the specific diagnosis. Ramirez-Santos et al., 2015. In yet another study, it was reported that αS overexpression in mice produces sleep disruptions. McDowell et al. 2014.
REM sleep behavior disorder (RBD) is a parasomnia in which individuals with RBD lose the paralysis of muscles (atonia) that is normal during rapid eye movement (REM) sleep, and act out their dreams or have other abnormal movements or vocalizations. Abnormal sleep behaviors may appear decades before any other symptoms, often as an early sign of a synucleinopathy. On autopsy, 94 to 98% of individuals with polysomnography-confirmed RBD are found to have a synucleinopathy-most commonly DLB or PD. Other symptoms of the specific synucleinopathy usually manifest within 15 years of the diagnosis of RBD, but may emerge up to 50 years after RBD diagnosis.
ii. Autism
Autism, or autism spectrum disorder (ASD), refers to a range of conditions characterized by challenges with social skills, repetitive behaviors, speech and nonverbal communication, as well as by unique strengths and differences. There are many types of autism, caused by different combinations of genetic and environmental influences. One trait characteristic of many autism subjects is cognitive impairment.
The Centers for Disease Control and Prevention (CDC) estimates autism's prevalence as 1 in 59 children in the United States. This includes 1 in 37 boys and 1 in 151 girls. Around one third of people with autism remain nonverbal, and around one third of people with autism have an intellectual disability. Certain medical and mental health issues frequently accompany autism. They include gastrointestinal (GI) disorders, seizures, sleep disturbances, attention deficit and hyperactivity disorder (ADHD), anxiety and phobias.
A recent brain-tissue study suggests that children affected by autism have a surplus of synapses, or connections between brain cells. The excess is due to a slowdown in the normal pruning process that occurs during brain development. During normal brain development, a burst of synapse formation occurs in infancy. This is particularly pronounced in the cortex, which is central to thought and processing information from the senses. But by late adolescence, pruning eliminates about half of these cortical synapses. In addition, many genes linked to autism are known to affect the development or function of brain synapses. The study also found that the brain cells from individuals with autism were filled with damaged parts and deficient in signs of a normal breakdown pathway called “autophagy.” Tang et al. 2014.
Abnormal αS pathology plays a role in ASD. In particular, a recent study reported that mean plasma αS levels were significantly lower in autism spectrum disorder (ASD) children as compared to healthy controls. W. Sriwimol and P. Limprasert, 2018. As serum αS plays a in neuromedulator role, this lower amount may correlate with impaired cognitive ability observed with ASD subjects.
iii. Depression
Depression is frequently associated with abnormal αS pathology, and this condition can also correlate with cognitive impairment. Moreover, depressive disorders are associated with problems in multiple cognitive domains including attention (concentration), memory (learning), and decision making (judgment). E. Rubin, 2016.
Depression is found in 30-40% of all patients with PD, and a postmortem analysis of PD subjects found that a higher prevalence of pathological features were present in depressed compared to non-depressed PD patients. Frisina et al., 2009. This is not surprising as αS is a neuronal protein involved in the regulation of brain serotonin and dopamine levels. Frieling et al., 2008. Further, a correlation between depressive symptoms and αS mRNA expression has been reported in subjects with eating disorders. Id.
3. Psychological or Behavior Disorders
The methods and compositions of the invention may also be useful in treating, preventing, and/or delaying the onset or progression of cognitive impairment and/or a cognitive impairment-related symptom, where the cognitive impairment is correlated with abnormal α-synuclein (αS) pathology, and/or correlated with dopaminergic dysfunction, where the cognitive impairment is also correlated with a cerebral or general ischemic disorder.
In some embodiments, the cerebral ischemic disorder comprises cerebral microangiopathy, intrapartal cerebral ischemia, cerebral ischemia during/after cardiac arrest or resuscitation, cerebral ischemia due to intraoperative problems, cerebral ischemia during carotid surgery, chronic cerebral ischemia due to stenosis of blood-supplying arteries to the brain, sinus thrombosis or thrombosis of cerebral veins, cerebral vessel malformations, or diabetic retinopathy.
In some embodiments, the general ischemic disorders comprises high blood pressure, high cholesterol, myocardial infarction, cardiac insufficiency, cardiac failure, congestive heart failure, myocarditis, pericarditis, perimyocarditis, coronary heart disease, angina pectoris, congenital heart disease, shock, ischemia of extremities, stenosis of renal arteries, diabetic retinopathy, thrombosis associated with malaria, artificial heart valves, anemias, hypersplenic syndrome, emphysema, lung fibrosis, or pulmonary edema.
Cognitive impairment has been correlated with ischemic disorders. For example, one study reported MCI in stroke patients. M. Grau-Olivares and A. Arboix, 2009. Yet another study reported a correlation between vascular disease and cognitive impairment. Reitz et al., 2008; Stradecki-Cohan et al., 2017.
Studies have also shown a correlation between abnormal αS pathology and ischemic disorders. For example, one study reported that post-stroke induction of αS mediates ischemic brain damage. Kim et al. 2016. Yet another study conducted a comparison of the amount of αS in ischemic stroke and PD subjects, with the results showing that the levels of oligomeric form of αS of red blood cells in ischemic stroke and PD patients were both significant higher than that of healthy controls. Zhao et al., 2016. Finally, another study reported that cerebral ischemic injury leads to a reduction in αS and consequently causes serious brain damage. P. Kho, 2017.
C. Experimental Results
As described in Example 1, a study was conducted in patients with PD. PD is a progressive neurodegenerative disorder caused by accumulation of the protein αS within the ENS, autonomic nerves and brain. While the study described herein assessed patients with PD, symptoms assessed and contemplated to be resolved by aminosterol treatment, such as cognitive impairment, are not restored by the replacement of dopamine and are thus not unique to PD but rather common across a variety of disorders which involve impaired function of neural pathways, related to abnormal αS pathology, referred to herein as “brain-gut” disorders. Cognitive impairment is a symptom that results from impaired function of neural pathways not restored by replacement of dopamine.
The methods and compositions disclosed herein permit exerting pharmacological control over the ENS in a manner that is without precedent in the literature. A strategy that targets neurotoxic aggregates of αS in the GI tract represents a novel approach to the treatment of cognitive impairment correlated with abnormal αS pathology and/or correlated with dysfunctional DA neurotransmission/dopaminergic dysfunction. Treatment and conditions described herein may restore the function of enteric nerve cells and prevent retrograde trafficking to the brain. Such actions may potentially slow progression of cognitive impairment and/or the underlying disease or condition.
Most surprisingly, as described in Example 1, it was discovered that aminosterol dosing is patient specific, as the dose is likely related to the extent of neuronal damage, with greater neuronal damage correlating with the need for a higher aminosterol dose to obtain a desired therapeutic result (e.g., treating cognitive impairment). This was not known prior to the present invention. Thus, one aspect of the present invention is directed to methods of treating, preventing, and/or slowing the onset or progression of cognitive impairment and/or a cognitive impairment related symptom in a subject in need, where the method comprises determining an effective therapeutic aminosterol dose for the subject. The method comprises a first step of identifying a cognitive impairment-related symptom to be evaluated for determining the effective therapeutic aminosterol dose for the subject.
In addition, it was also surprisingly discovered that the starting dose of the aminosterol or a salt or derivative thereof is dependent upon the severity of cognitive impairment and/or a cognitive impairment related symptom. Specifically, if the cognitive impairment and/or a cognitive impairment related symptom is severe, then the starting aminosterol dose, prior to dose escalation, should be higher than if the cognitive impairment and/or a cognitive impairment related symptom is moderate. “Severe” cognitive impairment can be determined by a clinical scale or tool appropriate for measuring the identified cognitive impairment and/or a cognitive impairment related symptom.
One impact of the present invention is that recognizing that an aminosterol dose useful in treating cognitive impairment and/or a cognitive impairment related symptoms is patient specific can prevent the use of incorrect aminosterol doses for patients. This is a significant discovery, as if a subject is put on an aminosterol dose that is too high, then resultant nausea, vomiting, and abdominal discomfort can result in the patient going off the drug, with the cognitive impairment and/or a cognitive impairment related symptoms remaining untreated. Similarly, if a subject is put on an aminosterol dose that is too low, then the cognitive impairment and/or a cognitive impairment related symptoms will not be successfully treated. Prior to the present invention, there was no recognition that therapeutically effective aminosterol doses had no relation to the sex, age, weight, ethnicity, or other similar patient characteristics. This is unexpected, as it is contrary to dosing strategies for almost all other medications.
Not to be bound by theory, it is believed that aminosterols target the neurotoxic aggregates of αS in the GI tract, and restore function of the enteric nerve cells. The now-functional enteric nerve cells prevent retrograde trafficking of proteins, such as αS, to the brain, resulting in restoring function of the enteric nerve cells and amplification of ascending neural impulse to the brain that may slow disease progression. This relationship between the ENS and CNS is sometimes described herein as “brain-gut” in relation to a class of disorders or the axis of aminosterol activity.
Not to be bound by theory, based on the data described herein, it is believed that aminosterol stimulates the central nervous system by acting locally on the gastrointestinal tract (GIT), as supported by the oral bioavailability <0.3%. An orally administered aminosterol such as squalamine, the active ion of ENT-01, stimulates gastro-intestinal motility in mice with constipation due to overexpression of human αS (West et al, manuscript in preparation). Perfusion of an aminosterol such as squalamine through the lumen of an isolated segment of the bowel from the PD mouse model results in excitation of IPANs (intrinsic primary afferent neuron), the major sensory neurons of the ENS that communicate with the myenteric plexus, increasing the frequency of propulsive peristaltic contractions and augmenting neural signals projecting to the afferent arm of the vagus.
Systemic absorption of the aminosterol following oral administration was negligible both in this study and in prior studies involving mice, rats and dogs. Prior studies demonstrated that intravenous administration of squalamine was not associated with increased gastrointestinal motility, despite reaching systemic blood levels one thousand-fold greater than that achieved by orally administered squalamine. These data suggest that the effect is mediated by local action in the gastrointestinal tract. The topical action would also explain why adverse events were largely confined to the GIT.
Several exploratory endpoints were incorporated into the trial described in Example 1 to evaluate the impact of an aminosterol on neurologic symptoms associated with a neurodisease such as PD. Following aminosterol treatment, the Unified Parkinson's Disease Rating Scale (UPDRS) score, a global assessment of motor and non-motor symptoms, showed significant improvement. The observed improvement in the CNS related symptoms, including cognitive function as determined by Mini Mental State Examination (MMSE) scores, is unlikely to be due to improved gastric motility and increased absorption of dopaminergic medications, since improvement persisted during the 2-week wash-out period, i.e., in the absence of study drug (Table 12).
Interestingly, most indices related to bowel function returned to baseline value by the end of the 2-week wash-out period, i.e., in the absence of study drug, while improvement in the CNS symptoms persisted. The rapid improvement in certain CNS symptoms is consistent with a mechanism whereby nerve impulses initiated from the ENS following aminosterol administration augment afferent neural signaling to the CNS. This may stimulate the clearance of αS aggregates within the afferent neurons themselves as well as the secondary and tertiary neurons projecting rostrally within the CNS, since it is known that neural stimulation is accompanied by increased neuronal autophagic activity (Shehata et al. 2012). It is believed that after cessation of aminosterol administration, the neurons of the CNS gradually re-accumulate an αS burden either locally or via trafficking from αS re-aggregation within the gut.
Low bioavailability: As described in Example 1, in preclinical studies, squalamine (ENT-01) exhibited an oral bioavailability of about 0.1% in both rats and dogs. In Stage 1 of the phase 2 study, oral dosing up to 200 mg (114 mg/m2) yielded an approximate oral bioavailability of about 0.1%, based on a comparison of a pharmacokinetic data of the oral dosing and the pharmacokinetic data measured during prior phase 1 studies of IV administration of squalamine. Thus, in one embodiment of the invention, aminosterol dosing, either oral or intranasal, results in a bioavailability of less than about 3%, less than about 2.5%, less than about 2%, less than about 1.5%, less than about 1%, less than about 0.9%, less than about 0.8%, less than about 0.7%, less than about 0.6%, less than about 0.5%, less than about 0.4%, less than about 0.3%, less than about 0.2%, or about 0.1% or less.
As described in Example 1, aminosterol dosing is patient specific, as the dose is likely related to the extent of neuronal damage, with greater neuronal damage correlating with the need for a higher aminosterol dose to obtain a desired therapeutic result. As described in greater detail herein, aminosterol dosing can range from about 0.01 to about 500 mg/day, with dosage determination described in more detail below.
In one aspect a method of treating, preventing, and/or slowing the onset or progression of cognitive impairment (CI) and/or a related symptom in a subject in need is provided. Optionally the CI is correlated with abnormal α-synuclein (αS) pathology and/or dopaminergic dysfunction. The method comprises administering to the subject a therapeutically effective amount of at least one aminosterol, or a salt or derivative thereof.
In some embodiments, administering comprises administration selected from oral, nasal, sublingual, buccal, rectal, vaginal, intravenous, intra-arterial, intradermal, intraperitoneal, intrathecal, intramuscular, epidural, intracerebral, intracerebroventricular, transdermal, or any combination thereof. In some embodiments, administration is non-oral administration. In some embodiments, administration comprises nasal administration.
In one embodiment, the therapeutically effective amount of the at least one aminosterol, or a salt or derivative thereof comprises about 0.1 to about 20 mg/kg body weight of the subject. In one embodiment, the therapeutically effective amount of the at least one aminosterol, or a salt or derivative thereof comprises about 0.1 to about 15 mg/kg body weight of the subject. In one embodiment, the therapeutically effective amount of the at least one aminosterol, or a salt or derivative thereof comprises about 0.1 to about 10 mg/kg body weight of the subject. In one embodiment, the therapeutically effective amount of the at least one aminosterol, or a salt or derivative thereof comprises about 0.1 to about 5 mg/kg body weight of the subject. In one embodiment, the therapeutically effective amount of the at least one aminosterol, or a salt or derivative thereof comprises about 0.1 to about 2.5 mg/kg body weight of the subject.
In one embodiment, the therapeutically effective amount of the at least one aminosterol, or a salt or derivative thereof comprises about 0.001 to about 500 mg/day. In one embodiment, the therapeutically effective amount of the at least one aminosterol, or a salt or derivative thereof comprises about 0.001 to about 250 mg/day. In one embodiment, the therapeutically effective amount of the at least one aminosterol, or a salt or derivative thereof comprises about 0.001 to about 125 mg/day. In one embodiment, the therapeutically effective amount of the at least one aminosterol, or a salt or derivative thereof comprises about 0.001 to about 50 mg/day. In one embodiment, the therapeutically effective amount of the at least one aminosterol, or a salt or derivative thereof comprises about 0.001 to about 25 mg/day. In one embodiment, the therapeutically effective amount of the at least one aminosterol, or a salt or derivative thereof comprises about 0.001 to about 10 mg/day.
In some embodiments, the administration comprises nasal administration and wherein the therapeutically effective amount of the at least one aminosterol, or a salt or derivative thereof comprises about 0.001 to about 6 mg/day. In some embodiments, the administration comprises nasal administration and wherein the therapeutically effective amount of the at least one aminosterol, or a salt or derivative thereof comprises about 0.001 to about 4 mg/day. In some embodiments, the administration comprises nasal administration and wherein the therapeutically effective amount of the at least one aminosterol, or a salt or derivative thereof comprises about 0.001 to about 2 mg/day.
In one embodiment, the administration comprises oral administration and the therapeutically effective amount of the at least one aminosterol, or a salt or derivative thereof comprises about 1 to about 300 mg/day. In one embodiment, the administration comprises oral administration and the therapeutically effective amount of the at least one aminosterol, or a salt or derivative thereof comprises about 25 to about 300 mg/day. In one embodiment, the administration comprises oral administration and the therapeutically effective amount of the at least one aminosterol, or a salt or derivative thereof comprises about 50 to about 300 mg/day. In one embodiment, the administration comprises oral administration and the therapeutically effective amount of the at least one aminosterol, or a salt or derivative thereof comprises about 75 to about 300 mg/day.
Comprising a “Fixed Dose” of Aminosterol
The present application relates to the surprising discovery of a method to determine a “fixed dose” of an aminosterol composition useful for treating, preventing and/or slowing the onset or progression of cognitive impairment and/or a cognitive impairment related symptom in a subject that is not age, size, or weight dependent but rather is individually calibrated. Preferably, the cognitive impairment is correlated with abnormal αS pathology or dysfunctional DA neurotransmission/dopaminergic dysfunction. The “fixed dose” obtained through this method yields highly effective results in treating, preventing and/or slowing the onset or progression of cognitive impairment and/or a cognitive impairment-related symptom.
A. “Fixed Aminosterol Dose”
A “fixed aminosterol dose,” also referred to herein as a “fixed escalated aminosterol dose,” which will be therapeutically effective, is determined for each subject by establishing a starting dose of an aminosterol composition and a threshold for improvement of cognitive impairment and/or a cognitive impairment-related symptom. Following determining a starting dose of an aminosterol or a salt or derivative thereof for a particular subject, the aminosterol dose is then progressively escalated by a consistent amount over consistent time intervals until the desired improvement in cognitive impairment and/or a cognitive impairment-related symptom is achieved; this aminosterol dosage is the “fixed escalated aminosterol dosage” for that particular subject for that particular cognitive impairment-related symptom.
In exemplary embodiments, an orally administered aminosterol dose is escalated every about 3 to about 5 days by about 25 mg until the desired improvement is reached. Symptoms evaluated, along with tools for measuring symptom improvement, are specifically described below.
This therapeutically effective “fixed dose” is then maintained throughout treatment and/or prevention. Thus, even if the subject goes “off drug” and ceases taking the aminosterol composition, the same “fixed dose” is taken with no ramp up period following re-initiation of aminosterol treatment for cognitive impairment and/or a cognitive impairment related symptoms.
Not to be bound by theory, it is believed that the aminosterol dose is dependent on the severity of nerve damage relating to cognitive impairment and/or a cognitive impairment related symptom, e.g. the dose may be related to the extent of nervous system damage in the subject's gut.
The aminosterol can be administered via any pharmaceutically acceptable means, such as by injection (e.g., IM, IV, or IP), oral, pulmonary, intranasal, etc. Preferably, the aminosterol is administered orally, intranasally, or a combination thereof.
Oral dosage of an aminosterol can range from about 1 to about 500 mg/day, or any amount in-between these two values. Other exemplary dosages of orally administered aminosterols include, but are not limited to, about 5, about 10, about 15, about 20, about 25, about 30, about 35, about 40, about 45, about 50, about 55, about 60, about 65, about 70, about 75, about 80, about 85, about 90, about 95, about 100, about 105, about 110, about 115, about 120, about 125, about 130, about 135, about 140, about 145, about 150, about 155, about 160, about 165, about 170, about 175, about 180, about 185, about 190, about 195, about 200, about 205, about 210, about 215, about 220, about 225, about 230, about 235, about 240, about 245, about 250, about 255, about 260, about 265, about 270, about 275, about 280, about 285, about 290, about 295, about 300, about 305, about 310, about 315, about 320, about 325, about 330, about 335, about 340, about 345, about 350, about 355, about 360, about 365, about 370, about 375, about 380, about 385, about 390, about 395, about 400, about 405, about 410, about 415, about 420, about 425, about 430, about 435, about 440, about 445, about 450, about 455, about 460, about 465, about 470, about 475, about 480, about 485, about 490, about 495, or about 500 mg/day.
Intranasal dosages of an aminosterol are much lower than oral dosages of an aminosterol. Examples of such intranasal aminosterol low dosages include, but are not limited to, about 0.001 to about 6 mg/day, or any amount in-between these two values. For example, the low dosage of an intranasal administered aminosterol can be about 0.001, about 0.005, about 0.01, about 0.02, about 0.03, about 0.04, about 0.05, about 0.06, about 0.07, about 0.08, about 0.09, about 0.1, about 0.2, about 0.3, about 0.4, about 0.5, about 0.6, about 0.7, about 0.8, about 0.9, about 1, about 1.1, about 1.2, about 1.3, about 1.4, about 1.5, about 1.6, about 1.7, about 1.8, about 1.9, about 2, about 2.1, about 2.2, about 2.3, about 2.4, about 2.5, about 2.6, about 2.7, about 2.8, about 2.9, about 3, about 3.1, about 3.2, about 3.3, about 3.4, about 3.5, about 3.6, about 3.7, about 3.8, about 3.9, about 4, about 4.1, about 4.2, about 4.3, about 4.4, about 4.5, about 4.6, about 4.7, about 4.8, about 4.9, about 5, about 5.1, about 5.2, about 5.3, about 5.4, about 5.5, about 5.6, about 5.7, about 5.8, about 5.9, or about 6 mg/day.
For intranasal (IN) administration, it is contemplated that the aminosterol dosage may be selected such that it would not provide any pharmacological effect if administered by any other route and, in addition, does not result in negative effects. For example, Aminosterol 1436 is known to have the pharmacological effects of a reduction in food intake and weight loss. Therefore, in the IN methods of the invention, if the aminosterol is Aminosterol 1436 or a salt or derivative thereof, then if the IN Aminosterol 1436 dosage is administered via another route, such as oral, IP, or IV, then the Aminosterol 1436 dosage will not result in a noticeable reduction in food intake or noticeable weight loss. Similarly, squalamine is known to produce the pharmacological effects of nausea, vomiting and/or reduced blood pressure. Thus, in the IN methods of the invention, if the aminosterol is squalamine or a salt or derivative thereof, then if the IN squalamine dosage is administered via another route, such as oral, IP, or IV, then the squalamine dosage will not result in noticeable nausea, vomiting, and/or a reduction in blood pressure.
Dose escalation: When determining a “fixed aminosterol dosage” for a particular subject, a subject is started at a lower dose and then the dose is escalated until a positive result is observed for cognitive impairment and/or a cognitive impairment-related symptom. For example, determination of the fixed aminosterol dosage for treating cognitive impairment and/or a cognitive impairment related symptoms is shown in Example 1. Aminosterol doses can also be de-escalated (reduced) if any given aminosterol dose induces a persistent undesirable side effect, such as diarrhea, vomiting, or nausea.
The starting aminosterol dose is dependent on the severity of the symptom—e.g. for a subject experiencing severe cognitive impairment based on a baseline score of a cognitive test or tool that correlates with an assessment of severe cognitive impairment, the starting oral aminosterol dose can be about 150 mg/day or greater. In contrast, for a subject having mild or moderate cognitive impairment based on a baseline score of a cognitive test or tool that correlates with an assessment of mild or moderate cognitive impairment, the starting aminosterol dose can be about 75 mg/day or less. Thus, as an example, a subject experiencing mild or moderate cognitive impairment can be started at an aminosterol dosage of about 75 mg/day, whereas a subject experiencing severe cognitive impairment can be started at an aminosterol dosage of about 150 mg/day.
In other embodiments, a subject experiencing mild or moderate cognitive impairment symptoms can be started at an oral aminosterol dosage of from about 10 mg/day to about 75 mg/day, or any amount in-between these values. The mild or moderate symptom may be mild or moderate cognitive impairment based on a baseline score on a cognitive test or tool that correlates with an assessment of mild or moderate cognitive impairment. For example, starting oral aminosterol dosage for patients with moderate or mild cognitive impairment can be about 1, about 5, about 10, about 15, about 20, about 25, about 30, about 35, about 40, about 45, about 50, about 55, about 60, about 65, about 70, up to less than or equal to about 75 mg/day. A fixed escalated oral aminosterol dose for a patient with mild or moderate cognitive impairment is likely to range from about 5 mg up to about 350 mgday, or any amount in-between these two values as described herein. In some embodiments, an oral fixed aminosterol dose, following dose escalation, is from about 50 to about 300 mg/daily, or from about 75 to about 275 mg/daily.
In yet further embodiments, when the subject is experiencing severe cognitive impairment symptoms, as for example defined by a baseline score on a cognitive test or tool that correlates with severe cognitive impairment, the subject can be started at an oral aminosterol dosage ranging from about 75 to about 300 mg/day, or any amount in-between these two values. In other embodiments, the starting oral aminosterol dosage for patients with severe cognitive impairment can be, for example, about 75, about 80, about 85, about 90, about 95, about 100, about 105, about 110, about 115, about 120, about 125, about 130, about 135, about 140, about 145, about 150, about 155, about 160, about 165, about 170, about 175, about 180, about 185, about 190, about 195, about 200, about 205, about 210, about 215, about 220, about 225, about 230, about 235, about 240, about 245, about 250, about 255, about 260, about 265, about 270, about 275, about 280, about 285, about 290, about 295, or about 300 mg/day. A “fixed escalated” oral aminosterol dose for a patient with severe cognitive impairment is likely to range from about 75 mg up to about 500 mg/day.
Starting IN aminosterol dosages prior to dose escalation can be, for example, about 0.001 mg to about 3 mg/day, or any amount in-between these two values. For example, the starting aminosterol dosage for IN administration, prior to dose escalation, can be, for example, about 0.001, about 0.005, about 0.01, about 0.02, about 0.03, about 0.05, about 0.06, about 0.07, about 0.08, about 0.09, about 0.1, about 0.15, about 0.2, about 0.25, about 0.3, about 0.35, about 0.4, about 0.45, about 0.5, about 0.55, about 0.6, about 0.65, about 0.7, about 0.75, about 0.8, about 0.85, about 0.9, about 1.0, about 1.1, about 1.25, about 1.3, about 1.4, about 1.5, about 1.6, about 1.7, about 1.75, about 1.8, about 1.9, about 2.0, about 2.1, about 2.25, about 2.3, about 2.4, about 2.5, about 2.6, about 2.7, about 2.75, about 2.8, about 2.9, or about 3 mg/day.
In exemplary embodiments, the fixed dose of the aminosterol is administered periodically as needed. For example, the fixed aminosterol dose can be administered once per day. The aminosterol dose can also be administered every other day, 2, 3, 4, 5 or 6× per week, once/week, or 2×/week. In another embodiment, the aminosterol dose can be administered every other week, or it can be administered for a first defined period of time of administration, followed by a cessation of administration for a second defined period of time, followed by resuming administration upon recurrence of CI or a symptom of CI.
When calculating a fixed escalated aminosterol dose, the dose can be escalated following any suitable time period. In one embodiment, the aminosterol dose is escalated every about 3 to about 7 days by about a defined amount until a desired improvement is reached. In one embodiment, the aminosterol dose is escalated every about 3 to 5 days until a desired improvement is reached. For example, in some embodiments, the improvement in the cognitive impairment-related symptom is measured using a clinical scale or tool and the improvement is about 3%, about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, or about 100%.
In other embodiments, the aminosterol dose can be escalated every about 1, about 2, about 3, about 4, about 5, about 6, about 7, about 8, about 9, about 10, about 11, about 12, about 13, or about 14 days. In other embodiments, the aminosterol dose can be escalated about 1×/week, about 2×/week, about every other week, or about ix/month.
During dose escalation, the aminosterol dosage can be increased by a defined amount. For example, when the aminosterol is administered orally, the dose can be escalated in increments of about 5, about 10, about 15, about 20, about 25, about 30, about 35, about 40, about 45, or by about 50 mg. When the aminosterol is administered intranasally, then the dosage can be increased in increments of about, for example, about 0.1, about 0.2, about 0.25, about 0.3, about 0.35, about 0.4, about 0.45, about 0.5, about 0.55, about 0.6, about 0.65, about 0.7, about 0.75, about 0.8, about 0.85, about 0.9, about 0.95, about 1, about 1.1, about 1.2, about 1.3, about 1.4, about 1.5, about 1.6, about 1.7, about 1.8, about 1.9, or about 2 mg.
In exemplary embodiments, an orally administered aminosterol dose is escalated every about 3 to about 5 days by about 25 mg until an improvement of cognitive impairment-related symptom is observed. The improvement of the cognitive impairment related symptom may be measured using a clinical scale or tool, and the improvement is about 3%, about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, or about 100%.
In another embodiment, a fixed dose of an aminosterol can be varied plus or minus a defined amount to enable a modest reduction in a dose to eliminate adverse events, or a modest increase in a dose if clinical results suggest this is desirable—e.g., no or minimal adverse events and potential increased efficacy with a modest increase in dose. For example, in one embodiment a fixed aminosterol dose can be increased or decreased by about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, about 10%, about 11%, about 12%, about 13%, about 14%, about 15%, about 16%, about 17%, about 18%, about 19%, or about 20%.
B. Cognitive Impairment and Cognitive
Impairment-Related Symptoms to be Evaluated
The “fixed” dose of an aminosterol or a salt or derivative thereof is determined based upon the effect an escalated aminosterol dose has, over a period of time, on cognitive impairment or a cognitive impairment-related symptom. Measurable cognitive impairment-related symptoms that can be evaluated include, for example: (a) cognitive impairment as determined by an IQ score; (b) cognitive impairment as determined by a memory or cognitive function test; (c) decline in thinking and reasoning skills; (d) confusion; (e) poor motor coordination; (f) loss of short term memory; (g) loss of long term memory; (h) identity confusion; (i) impaired judgement; (j) forgetfulness; (k) depression; (l) anxiety; (m) irritability; (n) obsessive-compulsive behavior; (o) apathy and/or lack of motivation; (p) emotional imbalance; (q) problem solving ability; (r) impaired language; (s) impaired reasoning; (t) impaired decision-making ability; (u) impaired ability to concentrate; (v) impaired communication; (w) impaired ability to conduct routine tasks such as cooking; (x) self-care, including feeding and dressing; (y) constipation; (z) neurodegeneration; (aa) sleep problem, sleep disorder, and/or sleep disturbance; (bb) hypertension; (cc) hypotension; (dd) sexual dysfunction; (ee) cardiovascular disease; (ff) cardiovascular dysfunction; (gg) difficulty with working memory; (hh) gastrointestinal (GI) disorders; (ii) attention deficit and hyperactivity disorder; (jj) seizures; (kk) urinary dysfunction; (ll) difficulty with mastication; (mm) vision problems; and (nn) muscle weakness.
The symptoms can be measured using a clinically recognized scale or tool, as detailed herein. The clinically recognized scale or tool include, for example: Uniformed Parkinson's Disease Scale (UPDRS), Mini Mental State Examination (MMSE), Mini Mental Parkinson (MMP), Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE), The 7-Minute Screen, Abbreviated Mental Test Score (AMTS), Cambridge Cognitive Examination (CAMCOG), Clock Drawing Test (CDT), General Practitioner Assessment of Cognition (GPCOG), Mini-Cog, Memory Impairment Screen (MIS), Montreal Cognitive Assessment (MoCA), Rowland Universal Dementia Assessment (RUDA), Self-Administered Gerocognitive Examination (SAGE), Short and Sweet Screening Instrument (SAS-SI), Short Blessed Test (SBT), St. Louis Mental Status (SLUMS), Short Portable Mental Status Questionnaire (SPMSQ), Short Test of Mental Status (STMS), Time and Change Test (T&C), Test Your Memory (TYM) test, and Addenbrooke's Cognitive Examination-Revised (ACER).
For example, a symptom evaluated or measured the score on Mini Mental State Examination (MMSE), with an increase in the MMSE score equating with an improvement of the cognitive impairment.
C. Aminosterols
U.S. Pat. No. 6,962,909, entitled “Treatment of neovascularization disorders with squalamine,” discloses various aminosterols, and this disclosure is specifically incorporated by reference with respect to its teaching of aminosterol compounds. Any aminosterol known in the art, including those described in U.S. Pat. No. 6,962,909, can be used in the disclosed compositions. In some embodiments, the aminosterol present in the compositions of the invention is Aminosterol 1436 or a salt or derivative thereof, squalamine or a salt or derivative thereof, or a combination thereof.
An aminosterol such as squalamine (ENT-01 in the examples) inhibits the formation of αS aggregates in vitro and in vivo, reverses motor dysfunction in the C. elegans αS model, and restores gastrointestinal motility in mouse models of PD.
Squalamine (ENT-01) has limited bioavailability in rats and dogs. Based on measurement of portal blood concentrations following oral dosing of radioactive ENT-01 to rat's absorption of ENT-01 from the intestine is low. As a consequence, the principal focus of safety is on local effects on the GIT. However, squalamine (ENT-01) appears to be well tolerated in both rats and dogs.
For instance, useful aminosterol compounds comprise a bile acid nucleus and a polyamine, attached at any position on the bile acid, such that the molecule exhibits a net positive charge contributed by the polyamine.
Thus, in some embodiments, the disclosed methods comprise administering a therapeutically effective amount of one or more aminosterols having the chemical structure of Formula I:
wherein,
W is 24S —OSO3 or 24R—OSO3;
X is β-H2N—(CH2)4—NH—(CH2)3—NH— or 3α-H2N—(CH2)4—NH—(CH2)3—NH—;
Y is 20R— CH3; and
Z is 7α or 7β-OH.
In another embodiment of the invention, the aminosterol is one of the naturally occurring aminosterols (1-8) isolated from Squalus acanthias:
Variants or derivatives of known aminosterols, such as squalamine, Aminosterol 1436, or an aminosterol isolated from Squalus acanthias, may be used in the disclosed compositions and methods.
In one aspect of the invention, the aminosterol is Aminosterol 1436 or a salt or derivative thereof. In another embodiment the aminosterol is squalamine or a salt or derivative thereof.
In one embodiment, the aminosterol is squalamine, a squalamine isomer, a squalamine phosphate salt, aminosterol 1436, an aminosterol 1436 isomer, an aminosterol 1436 phosphate salt, or another naturally occurring aminosterol modified through medicinal chemistry to improve biodistribution, ease of administration, metabolic stability, or any combination thereof. In another embodiment, the aminosterol is modified to include one or more of the following: (1) substitutions of the sulfate by a sulfonate, phosphate, carboxylate, or other anionic moiety chosen to circumvent metabolic removal of the sulfate moiety and oxidation of the cholesterol side chain; (2) replacement of a hydroxyl group by a non-metabolizable polar substituent, such as a fluorine atom, to prevent its metabolic oxidation or conjugation; and (3) substitution of various ring hydrogen atoms to prevent oxidative or reductive metabolism of the steroid ring system.
In yet another embodiment, the aminosterol comprises a sterol nucleus and a polyamine, attached at any position on the sterol, such that the molecule exhibits a net charge of at least +1, the charge being contributed by the polyamine. In yet another embodiment, the aminosterol comprises a bile acid nucleus and a polyamine, attached at any position on the bile acid, such that the molecule exhibits a net positive charge being contributed by the polyamine.
In some embodiments, the compositions used in the methods of the invention comprise: (a) at least one pharmaceutical grade aminosterol; and optionally (b) at least one phosphate selected from the group consisting of an inorganic phosphate, an inorganic pyrophosphate, and an organic phosphate. In some embodiments, the aminosterol is formulated as a weakly water soluble salt of the phosphate. In some embodiments, the phosphate is an inorganic polyphosphate, and the number of phosphates can range from about 3 (tripolyphosphate) to about 400, or any number in-between these two values. In other embodiments, the phosphate is an organic phosphate which comprises glycerol 2 phosphates.
In some embodiments, the aminosterol is selected from the group consisting of: (a) squalamine or a pharmaceutically acceptable salt or derivative thereof; (b) a squalamine isomer; (c) a squalamine phosphate salt; (d) Aminosterol 1436 or a pharmaceutically acceptable salt or derivative thereof; (e) an isomer of aminosterol 1436; (f) an aminosterol 1436 phosphate salt, (g) a synthetic aminosterol; (h) an aminosterol comprising a sterol or bile acid nucleus and a polyamine, attached at any position on the sterol or bile acid, such that the molecule exhibits a net charge of at least +1, the charge being contributed by the polyamine; (i) an aminosterol which is a derivative of squalamine modified through medical chemistry to improve biodistribution, ease of administration, metabolic stability, or any combination thereof; (f) an aminosterol modified to include one or more of the following: (i) substitutions of the sulfate by a sulfonate, phosphate, carboxylate, or other anionic moiety chosen to circumvent metabolic removal of the sulfate moiety and oxidation of the cholesterol side chain; (ii) replacement of a hydroxyl group by a non-metabolizable polar substituent, such as a fluorine atom, to prevent its metabolic oxidation or conjugation; and (iii) substitution of various ring hydrogen atoms to prevent oxidative or reductive metabolism of the steroid ring system; (g) an aminosterol that can inhibit the formation of actin stress fibers in endothelial cells stimulated by a ligand known to induce stress fiber formation, having the chemical structure of Formula I (above); or (j) any combination thereof.
In some embodiments, the methods of the invention can employ a formulation of Aminosterol 1436 or squalamine as an insoluble salt of phosphate, polyphosphate, or an organic phosphate ester.
Any pharmaceutically acceptable salt of an aminosterol can be used in the compositions and methods of the invention. For example, a phosphate salt or buffer, free base, succinate, phosphate, mesylate or other salt form associated with low mucosal irritation can be utilized in the methods and compositions of the invention.
D. Routes of Administration
It is appreciated that the “fixed dose” disclosed herein can be administered via any suitable route of administration, including but not limited to oral or intranasal delivery, injection (IP, IV, or IM), or a combination thereof.
Further, co-administration of the “fixed dose” with injectable (e.g., 1P, IV, IM) aminosterol formulations is also contemplated herein. For injectable dosage forms, the dosage form can comprise an aminosterol at a dosage of, for example, about 0.1 to about 20 mg/kg body weight. In other embodiments, the effective daily dosing amount is about 0.1, about 0.5, about 1, about 2, about 3, about 4, about 5, about 6, about 7, about 8, about 9, about 10, about 11, about 12, about 13, about 14, about 15, about 16, about 17, about 18, about 19, or about 20 mg/kg body weight.
The invention also encompasses methods of treatment using a combination of an aminosterol composition administered via one route, e.g., oral, with a second aminosterol composition, comprising the same or a different aminosterol, administered via a different route, e.g., intranasal. For example, in a method of the invention, squalamine can be administered orally and aminosterol 1436 can be administered IN.
E. Dosing Period
The pharmaceutical composition comprising an aminosterol or a derivative or salt thereof can be administered for any suitable period of time, including as a maintenance dose for a prolonged period of time. Dosing can be done on an as needed basis using any pharmaceutically acceptable dosing regimen. Aminosterol dosing can be no more than 1× per day, once every other day, once every three days, once every four days, once every five days, once every six days, once a week, or divided over multiple time periods during a given day (e.g., twice daily).
In other embodiments, the composition can be administered: (1) as a single dose, or as multiple doses over a period of time; (2) at a maintenance dose for an indefinite period of time; (3) once, twice or multiple times; (4) daily, every other day, every 3 days, weekly, or monthly; (5) for a period of time such as about 1, about 2, about 3, or about 4 weeks, about 1, about 2, about 3, about 4, about 5, about 6, about 7, about 8, about 9, about 10, about 11, or about 12 months, about 1 year, about 1.5 years, about 2, about 2.5, about 3, about 3.5, about 4, about 4.5, about 5, about 5.5, about 6, about 6.5, about 7, about 7.5, about 8, about 8.5, about 9, about 9.5, about 10, about 10.5, about 11, about 11.5, about 12, about 12.5, about 13, about 13.5, about 14, about 14.5, about 15, about 15.5, about 16, about 16.5, about 17, about 17.5, about 18, about 18.5, about 19, about 19.5, about 20, about 20.5, about 21, about 21.5, about 22, about 22.5, about 23, about 23.5, about 24, about 24.5, or about 25 years, or (6) any combination of these parameters, such as daily administration for 6 months, weekly administration for 1 or more years, etc.
Yet another exemplary dosing regimen includes periodic dosing, where an effective dose can be delivered once every about 1, about 2, about 3, about 4, about 5, about 6 days, or once weekly.
In a preferred embodiment, the aminosterol dose is taken in the morning, i.e. on an empty stomach preferably within about two hours of waking up and may be followed by a period without food, such as for example about 60 to about 90 minutes. In other embodiments, the aminosterol dose is taken within about 15 min, about 30 min, about 45 min, about 1 hr, about 1.25 hrs, about 1.5 hrs, about 1.75 hrs, about 2 hrs, about 2.25 hrs, about 2.5 hrs, about 2.75 hrs, about 3 hrs, about 3.25 hrs, about 3.5 hrs, about 3.75 hrs, or about 4 hrs within waking up. In yet further embodiments, the aminosterol dose is followed by about period without food, wherein the period is at least about 30 min, about 45 mins, about 60 mins, about 1.25 hrs, about 1.5 hrs, about 1.75 hrs, or about 2 hrs.
Not to be bound by theory, it is believed that since aminosterols have an impact on circadian rhythms, likely due to ENS signaling thereof, taking the aminosterol dose in the morning enables the synchronization of all the autonomic physiological functions occurring during the day. In other embodiments of the invention, the aminosterol dosage is taken within about 15 mins, about 30 mins, about 45 mins, about 1 hour, about 1.25 hrs, about 1.5 hrs, about 1.75 hrs, about 2 hrs, about 2.25 hrs, about 2.5 hrs, about 2.75 hrs, about 3 hrs, about 3.25 hrs, about 3.5 hrs, about 3.75 hrs, or about 4 hrs of waking up. In addition, in other embodiments of the invention, following the aminosterol dosage the subject has a period of about 15 mins, about 30 mins, about 45 mins, about 1 hours, about 1.25 hrs, about 1.5 hrs, about 1.75 hrs, about 2 hrs, about 2.25 hrs, about 2.5 hrs, about 2.75 hrs, or about 3 hours without food.
F. Composition Components
In some embodiments, a pharmaceutical composition disclosed herein comprises one or more pharmaceutically acceptable carriers, such as an aqueous carrier, buffer, and/or diluent.
In some embodiments, a pharmaceutical composition disclosed herein further comprises a simple polyol compound, such as glycerin. Other examples of polyol compounds include sugar alcohols. In some embodiments, a pharmaceutical composition disclosed herein comprises an aqueous carrier and glycerin at about a 2:1 ratio.
The formulations may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art of pharmacy. An exemplary oral dosage form is a tablet or capsule. An exemplary intranasal dosage form is a liquid or powder nasal spray. A nasal spray is designed to deliver drug to the upper nasal cavity, and can be a liquid or powder formulation, and in a dosage form such as an aerosol, liquid spray, or powder.
The aminosterol may be combined or coordinately administered with a suitable carrier or vehicle depending on the route of administration. As used herein, the term “carrier” means a pharmaceutically acceptable solid or liquid filler, diluent or encapsulating material. A water-containing liquid carrier can comprise pharmaceutically acceptable additives such as acidifying agents, alkalizing agents, antimicrobial preservatives, antioxidants, buffering agents, chelating agents, complexing agents, solubilizing agents, humectants, solvents, suspending and/or viscosity-increasing agents, tonicity agents, wetting agents or other biocompatible materials. A tabulation of ingredients listed by the above categories can be found in the U.S. Pharmacopeia National Formulary, 1857-1859, and (1990). Some examples of the materials which can serve as pharmaceutically acceptable carriers are sugars, such as lactose, glucose and sucrose; starches such as corn starch and potato starch; cellulose and its derivatives such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatin; talc; excipients such as cocoa butter and suppository waxes; oils such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; glycols, such as propylene glycol; polyols such as glycerin, sorbitol, mannitol and polyethylene glycol; esters such as ethyl oleate and ethyl laurate; agar; buffering agents such as magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen free water; isotonic saline; Ringer's solution, ethyl alcohol and phosphate buffer solutions, as well as other nontoxic compatible substances used in pharmaceutical formulations. Wetting agents, emulsifiers and lubricants such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, release agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the compositions, according to the desires of the formulator. Examples of pharmaceutically acceptable antioxidants include water soluble antioxidants such as ascorbic acid, cysteine hydrochloride, sodium bisulfite, sodium metabisulfite, sodium sulfite and the like; oil-soluble antioxidants such as ascorbyl palmitate, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), lecithin, propyl gallate, alpha-tocopherol and the like; and metal-chelating agents such as citric acid, ethylenediamine tetraacetic acid (EDTA), sorbitol, tartaric acid, phosphoric acid and the like.
Pharmaceutical compositions according to the invention may also comprise one or more binding agents, filling agents, lubricating agents, suspending agents, sweeteners, flavoring agents, preservatives, buffers, wetting agents, disintegrants, effervescent agents, and other excipients. Such excipients are known in the art. Examples of filling agents include lactose monohydrate, lactose anhydrous, and various starches; examples of binding agents include various celluloses and cross-linked polyvinylpyrrolidone, microcrystalline cellulose, such as Avicel® PH101 and Avicel® PH102, microcrystalline cellulose, and silicified microcrystalline cellulose (ProSolv SMCC™). Suitable lubricants, including agents that act on the flowability of the powder to be compressed, may include colloidal silicon dioxide, such as Aerosil® 200, talc, stearic acid, magnesium stearate, calcium stearate, and silica gel. Examples of sweeteners may include any natural or artificial sweetener, such as sucrose, xylitol, sodium saccharin, cyclamate, aspartame, and acesulfame. Examples of flavoring agents are Magnasweet® (trademark of MAFCO), bubble gum flavor, and fruit flavors, and the like. Examples of preservatives include potassium sorbate, methylparaben, propylparaben, benzoic acid and its salts, other esters of parahydroxybenzoic acid such as butylparaben, alcohols such as ethyl or benzyl alcohol, phenolic compounds such as phenol, or quaternary compounds such as benzalkonium chloride.
Any pharmaceutical used for therapeutic administration can be sterile. Sterility is readily accomplished by for example filtration through sterile filtration membranes (e.g., 0.2 micron membranes). Any pharmaceutically acceptable sterility method can be used in the compositions of the invention.
The pharmaceutical composition comprising an aminosterol derivatives or salts thereof will be formulated and dosed in a fashion consistent with good medical practice, taking into account the clinical condition of the individual patient, the method of administration, the scheduling of administration, and other factors known to practitioners.
G. Kits
Aminosterol formulations or compositions of the invention may be packaged together with, or included in a kit along with instructions or a package insert. Such instructions or package inserts may address recommended storage conditions, such as time, temperature and light, taking into account the shelf-life of the aminosterol or derivatives or salts thereof. Such instructions or package inserts may also address the particular advantages of the aminosterol or derivatives or salts thereof, such as the ease of storage for formulations that may require use in the field, outside of controlled hospital, clinic or office conditions.
The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more aminosterol pharmaceutical compositions disclosed herein. The kits may include, for instance, containers filled with an appropriate amount of an aminosterol pharmaceutical composition, either as a powder, a tablet, to be dissolved, or as a sterile solution. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration. In addition, the aminosterol or a derivative or salt thereof may be employed in conjunction with other therapeutic compounds.
In other aspects, a kit comprising a nasal spray device as described herein is disclosed. In one aspect, the kit may comprise one or more devices as disclosed herein, comprising a disclosed low dose aminosterol composition, wherein the device is sealed within a container sufficient to protect the device from atmospheric influences. The container may be, for example, a foil, or plastic pouch, particularly a foil pouch, or heat sealed foil pouch. Suitable containers sufficient to adequately protect the device will be readily appreciated by one of skill in the art.
In one aspect, the kit may comprise one or more devices as disclosed herein, wherein the device may be sealed within a first protective packaging, or a second protective packaging, or a third protective packaging, that protects the physical integrity of the product. One or more of the first, second, or third protective packaging may comprise a foil pouch. The kit may further comprise instructions for use of the device. In one aspect, the kit contains two or more devices.
In one aspect, the kit may comprise a device as disclosed herein, and may further comprise instructions for use. In one aspect, the instructions may comprise visual aid/pictorial and/or written directions to an administrator of the device.
H. Patient Populations
The disclosed compositions can be used to treat a range of subjects, including human and non-human animals, including mammals, as well as immature and mature animals, including human children and adults. The human subject to be treated can be an infant, toddler, school-aged child, teenager, young adult, adult, or elderly patient.
In embodiments disclosed herein relating to prevention and/or treatment, particular patient populations may be selected based on being “at risk for” the development of one or more disorders correlated with cognitive impairment. For example, genetic markers of AD (e.g. APOE4) or family history may be used as signs to identify subjects likely to develop AD and experience cognitive impairment. Thus, in some embodiments relating to disorders for which certain genetic or hereditary signs are known, prevention may involve first identifying a patient population based on one of the signs. Alternatively, certain symptoms are considered early signs of particular disorders. For example, constipation is considered an early sign of PD. Thus, in some embodiments relating to PD, a patient population may be selected for being “at risk” for developing PD based on age and experiencing constipation. An exemplary population is young adults between the ages of about 20 and about 40 experiencing constipation characterized by less than 3 bowel movements per week. These patients can be targeted and monitored for prevention of PD onset. Further genetic or hereditary signs may be used to refine the patient population.
Aspects of this disclosure relate to methods of treating, preventing, and/or delaying the onset or progression of cognitive impairment and/or a cognitive impairment-related condition by administration of a “fixed dose” of an aminosterol as disclosed herein. The cognitive impairment is correlated with abnormal α-synuclein (αS) pathology. Alternatively, the cognitive impairment is correlated dysfunctional DA neurotransmission, also known as dopaminergic dysfunction.
The disclosure herein provides a detailed protocol for determining a “fixed dose” based on improvement of one symptom associated with Parkinson's disease (PD), e.g., cognitive impairment and cognitive impairment-related symptoms as measured by clinically recognized scales and tools.
As dopaminergic activity distinguishes PD from other neurodegenerative disorders and these data relate to symptoms that do not relate to this distinguishing feature, this dosing regime is believed to be extrapolatable both to cognitive impairment per se and cognitive impairment-related symptoms.
Not to be bound by theory, it is believed that establishing a patient-specific “fixed dose” based on obtaining a threshold improvement in any of the cognitive impairment-related symptoms described herein will successfully treat cognitive impairment and/or cognitive impairment-related symptoms. Further, to the extent that these symptoms are tied to an underlying disorder, administration of the therapeutically effective fixed dose is also believed to offer a means of treating, preventing, and/or delaying onset of an underlying disorder or disease causing the cognitive impairment or cognitive impairment-related symptoms.
A. Cognitive Impairment
As used herein “cognitive impairment” refers to any measurable negative change in cognitive function. The cognitive impairment includes dementia, mild or moderate cognitive impairment (MCI), and aging related reduced cognitive function.
Cognitive functioning is typically characterized into one of 6 domains: 1) learning and memory, 2) language, 3) visual-spatial/perceptual-motor, 4) executive, 5) complex attention, and 6) social cognition (Knopman et al. 2014; Hugo et al. 2014; DSM-5: Diagnostic and Statistical Manual of Mental Disorders, American Psychiatric Association (5th edition, 2013)). For diagnosis of cognitive impairment, the subject exhibits a negative change in at least one of these domains, but the ability to perform normal daily activities is preserved. For a diagnosis of dementia, DSM-5 requires a negative change in at least one of these domains that is severe enough to interfere with normal daily activities.
A subject with impairment in the learning and memory domain of cognitive function will typically demonstrate difficulty in recalling recent events, repeat self, misplace objects, lose track of actions already performed, and rely increasingly on lists and reminders.
A subject with impairment in the language domain of cognitive function will typically demonstrate word-finding difficulties, use of general phrases or wrong words, grammatical errors, difficulties with comprehending other's language or written material.
A subject with impairment in the executive domain of cognitive function will typically display difficulty with multi-stage tasks, planning, organizing, multi-tasking, following directions, keeping up with shifting conversations.
A subject with impairment in the complex attention domain of cognitive function will typically demonstrate changes in how long normal tasks takes, especially when there are competing stimuli; will get increasing distracted; will need to have tasks simplified; and will display a difficulty in holding information in mind to do mental calculations or dial a phone number.
A subject with impairment in the visual-spatial/perceptual motor domain of cognitive function will typically increasingly get lost in familiar places, rely more on notes and maps to find familiar places, and display difficulties with using familiar tools and appliances.
A subject with impairment in the social cognition domain of cognitive function will typically display disinhibition or apathy, loss of empathy, inappropriate behavior, and loss of judgement.
Measurable cognitive impairment-related symptoms that can be evaluated include, for example: (a) cognitive impairment as determined by an IQ score; (b) cognitive impairment as determined by a memory or cognitive function test; (c) decline in thinking and reasoning skills; (d) confusion; (e) poor motor coordination; (f) loss of short term memory; (g) loss of long term memory; (h) identity confusion; (i) impaired judgement; (j) forgetfulness; (k) depression; (l) anxiety; (m) irritability; (n) obsessive-compulsive behavior; (o) apathy and/or lack of motivation; (p) emotional imbalance; (q) problem solving ability; (r) impaired language; (s) impaired reasoning; (t) impaired decision-making ability; (u) impaired ability to concentrate; (v) impaired communication; (w) impaired ability to conduct routine tasks such as cooking; (x) self-care, including feeding and dressing; (y) constipation; (z) neurodegeneration; (aa) sleep problem, sleep disorder, and/or sleep disturbance; (bb) hypertension; (cc) hypotension; (dd) sexual dysfunction; (ee) cardiovascular disease; (ff) cardiovascular dysfunction; (gg) difficulty with working memory; (hh) gastrointestinal (GI) disorders; (ii) attention deficit and hyperactivity disorder; (jj) seizures; (kk) urinary dysfunction; (ll) difficulty with mastication; (mm) vision problems; and (nn) muscle weakness.
Potentially all of these symptoms or characteristics can be positively impacted by the methods of the invention. Further, assessments of these characteristics can be done using clinically recognized scales, as described herein.
In one embodiment of the invention, the method results in a positive impact or improvement in cognitive impairment or a cognitive impairment-related symptom, or an underlying disease or disorder correlated with cognitive impairment, measured using a clinical scale or tool, and the improvement is about 3%, about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, or about 100%.
A variety of clinical scales and tools can be used to evaluate cognitive impairment and related symptoms in the claimed methods (Velayudhan et al. 2014; Hugo et al. 2014). The Uniformed Parkinson's Disease Scale (UPDRS) considers all types of altered level of cognitive function including cognitive slowing, impaired reasoning, memory loss, deficits in attention and orientation, and rates the level of impairment on a scale from 0 to 5 based on the impact the cognitive impairment has on activities of daily living, wherein 0=normal, 1=slight or no concrete inference with normal activities, 2=mild or minimal interference with normal activities, 3=moderate interference with normal activities or the cognitive impairment interferes but does not preclude the patient's ability to carry out normal activities, 4=severe interference with normal activities or the cognitive impairment precludes the patient's ability to carry out normal activities.
A combination of cognitive testing and information from a person in frequent contact with the subject is used to fully assess cognitive impairment. A medical workup includes one or more of an assessment by a physician of a subject's medical history (including current symptoms, previous illnesses, and family history), assessment of independent function and daily activities, assessment of mental status using brief tests to evaluate memory, planning, judgment, ability to understand visual information, and other key thinking skills, neurological examination to assess nerve and reflex function, movement, coordination, balance, and senses, evaluation of mood, brain imaging, or neuropsychological testing. Diagnostic guidelines for MCI have been developed by various groups, including the Alzheimer's Association partnered with the National Institute on Aging (NIA), an agency of the U.S. National Institutes of Health (NIH). (Jack et al. 2011; McKhann et al. 2011; Albert et al. 2011.) Recommendations for screening for cognitive impairment have been issued by the U.S. Preventive Services Task Force. Screening for Cognitive Impairment in Older Adults, U.S. Preventive Services Task Force (March 2014), https://www.uspreventiveservicestaskforce.org/Home/GetFileByID/1882.
For example, the Mini Mental State Examination (MMSE) may be used. (Palsetia et al., 2018; Kirkevold, O. & Selbaek, G. 2015). The MMSE was developed from items selected from different neuropsychological domains and includes five sections: Orientation (10 points); registration (3 points); attention and calculation (5 points); recall (3 points); and language (9 points) for a total of 30 points. An exemplary questionnaire to be used for MMSE is shown in
Another clinically recognized tool that may be used for measuring cognitive impairment is the trail making test that assesses visual attention and task switching. (Arnett et al. 1995.) The trail making test consists of two parts in which the subject is instructed to connect a set of 25 dots as quickly as possible while still maintaining accuracy. Instructions for a typical trail making test is shown in
The Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE) is an informant (proxy)-rated questionnaire that rates the change in function over the last 10 years. In IQCODE, an average score of 3 indicates no cognitive decline and a score greater than 3 indicates some decline. (Jorm, A. F., 2004).
Further examples of clinical scales or tools include but are not limited to the 7-Minute Screener, Abbreviated Mental Test Score (AMTS), Cambridge Cognitive Examination (CAMCOG), Clock Drawing Test (CDT), General Practitioner Assessment of Cognition (GPCOG), Mini-Cog, Memory Impairment Screen (MIS), Montreal Cognitive Assessment (MoCA), Rowland Universal Dementia Assessment (RUDA), Self-Administered Gerocognitive Examination (SAGE), Short and Sweet Screening Instrument (SAS-SI), Short Blessed Test (SBT), St. Louis Mental Status (SLUMS), Short Portable Mental Status Questionnaire (SPMSQ), Short Test of Mental Status (STMS), or Time and Change Test (T&C), Test Your Memory (TYM) test, and Addenbrooke's Cognitive Examination-Revised (ACER) among others, are frequently employed in clinical and research settings. Cordell et al. 2013. Numerous examinations may be used, as no single tool is recognized as the “gold standard,” and improvements in score on any standardized examination indicate successful treatment of cognitive impairment, whereas obtaining a score comparable to the non-impaired population indicates total recovery.
Cognitive ability tests or “IQ tests” for assessing abilities involved in thinking (e.g., reasoning, perception, memory, verbal and mathematical ability, and problem solving), include but are not limited to the Cognitive Abilities Test (CogAT), Wechsler Adult Intelligence Scale for adults and the Wechsler Intelligence Scale for Children for school-age test-takers, the Stanford-Binet Intelligence Scales, Woodcock-Johnson Tests of Cognitive Abilities, the Kaufman Assessment Battery for Children, the Cognitive Assessment System, and the Differential Ability Scales.
As detailed in Example 1, cognitive impairment and the improvement following aminosterol treatment were assessed using several tools:
(1) Mini Mental State Examination (MMSE; see
(2) Trail Making Test (TMT) Parts A and B (see
(3) Unified Parkinson's Disease Rating Scale (UPDRS), sections 1.1 (cognitive impairment).
Assessments were made at baseline and at the end of the fixed dose and washout periods for Example 1, and an analysis was done with respect to the cognition symptoms. The results showed that the total UPDRS score was 64.4 at baseline, 60.6 at the end of the fixed dose period and 55.7 at the end of the wash-out period (a 13.5% improvement). Part 1 of the UPDRS (which includes section 1.1, cognitive impairment) had a mean baseline score of 11.6, a fixed aminosterol dose mean score of 10.6, and a wash-out mean score of 9.5, demonstrating an almost 20% improvement (UPDRS cognitive impairment is rated from 1=slight improvement to 4=severe impairment, so lower scores correlate with better cognitive function). In addition, MMSE improved from 28.4 at baseline to 28.7 during treatment and to 29.3 during wash-out (the MMSE has a total possible score of 30, with higher scores correlating with better cognitive function). Unlike stool-related indices, the improvement in many CNS symptoms persisted during wash-out.
B. Disorders, Conditions & Related Symptoms Correlating with Cognitive Impairment
Examples of conditions and/or symptoms associated with cognitive impairment correlated with abnormal αS pathology, and/or dysfunctional DA neurotransmission, also known as dopaminergic dysfunction, are described herein, such as in Section 1.B. above, as well as below.
Cognitive impairment can be caused by neural cell death inflicted by septic shock, intracerebral bleeding, subarachnoidal hemorrhage, multiinfarct dementia, inflammatory diseases, neurotrauma, peripheral neuropathies, polyneuropathies, epilepsies, schizophrenia, depression, metabolic encephalopathies, or infections of the central nervous system.
Examples of conditions associated with abnormal αS pathology, and/or dopaminergic dysfunction, correlated with cognitive impairment include, but are not limited to, synucleopathies, neurodiseases, psychological and/or behavior disorders, cerebral and general ischemic disorderes, and/or disorders or conditions such as AD, PD, dementia with Lewy bodies (DLB), multiple system atrophy (MSA), Huntington's Disease, Multiple Sclerosis (MS), Amyotorphic Lateral Sclerosis (ALS), schizophrenia, Friedreich's ataxia, vascular dementia, spinal muscular atrophy, supranuclear palsy, fronto temperal dementia (FTD), progressive supranuclear palsy, Guadeloupian Parkinsonism, spinocerebellar ataxia, autism, stroke; traumatic brain injury; sleep disorders such as REM sleep behavior disorder (RBD), depression, down syndrome, Gaucher's disease (GD), Krabbe's disease (KD), lysosomal conditions affecting glycosphingolipid metabolism, ADHD, agitation, anxiety, delirium, irritability, illusion and delusions, amnesia, apathy, bipolar disorder, disinhibition, aberrant motor and obsessive-compulsive behaviors, addiction, cerebral palsy, epilepsy, and major depressive disorder.
1. Neurodegenerative Diseases and Neurological Diseases Associated with Neural Cell Death.
The methods and compositions of the invention may also be useful in treating, preventing, and/or slowing the onset or progression of cognitive impairment correlated with abnormal αS pathology, and/or dysfunctional DA neurotransmission, wherein the underlying disease or disorder is a neurodegenerative disease or neurological disorder. Examples of such neurodegenerative diseases or neurological disorders include, but are not limited to, PD, AD, LBD, FTD, supranuclear palsy, MSA, Parkinsonism, ALS, Huntington's Disease, schizophrenia, Friedreich's ataxia, MS, spinal muscular atrophy, progressive nuclear palsy, degenerative processes associated with aging, dementia of aging, Guadeloupian Parkinsonism, spinocerebellar ataxia, and vascular dementia.
In addition, the methods and compositions of the invention may also be useful in treating, preventing, and/or slowing the onset or progression of cognitive impairment correlated with abnormal αS pathology, and/or dysfunctional DA neurotransmission, wherein the underlying disease or disorder is a neurological disease associated with neural cell death and/or related symptoms of neural cell death such as septic shock, intracerebral bleeding, subarachnoidal hemorrhage, multiinfarct dementia, inflammatory diseases, neurotrauma, peripheral neuropathies, polyneuropathies, epilepsies, schizophrenia, depression, metabolic encephalopathies, or infections of the central nervous system.
A variety of neuroimaging techniques may be useful for the early diagnosis and/or measurement of progression of neurodegeneration correlated with cognitive impairment. Examples of such techniques include but are not limited to neuroimaging, functional MRI, structural MRI, diffusion tensor imaging (DTI) (including for example diffusion tensor measures of anatomical connectivity), [18F]fluorodeoxyglucose (FDG) PET, agents that label amyloid, [18F]F-dopa PET, radiotracer imaging, volumetric analysis of regional tissue loss, specific imaging markers of abnormal protein deposition (e.g., for AD progression), multimodal imaging, biomarker analysis, and electroencephalogram (EEG). Jon Stoessl, 2012; S. Morairty, 2013; Rocca et al., 2017. Combinations of these techniques can also be used to measure disease progression. For example, structural MRI can be used to measure atrophy of the hippocampus and entorhinal cortex in AD, as well as involvement of the lateral parietal, posterior superior temporal and medial posterior cingulate cortices. In frontotemporal dementias (FTD), structural MRI can show atrophy in frontal or temporal poles. DTI can be used to show abnormal white matter in the parietal lobes of patients with dementia with Lewy bodies (DLB) as compared to AD. Functional MRI may reveal reduced frontal but increased cerebellar activation during performance of a working memory task in FTD compared to AD. In another example, [18F]fluorodeoxyglucose (FDG) PET can show reduced glucose metabolism in parietotemporal cortex in AD. Id. In yet another example, an electroencephalogram (EEG) can be used as a biomarker for the presence and progression of a neurodegenerative disease.
i. Parkinson's Disease
PD is the second most common age-related neurodegenerative disease after AD (Reeve et al. (2014)). PD affects over 1% of the population over the age of 60, which in the US equates to over 500,000 individuals, while in individuals over the age of 85 this prevalence reaches 5%, highlighting the impact that advancing age has on the risk of developing this condition. Id.
While motor symptoms are still required for a diagnosis of PD (Hughes et al. 1992), non-motor symptoms represent a greater therapeutic challenge (Zahodne et al. 2012). These symptoms include cognitive dysfunction (Auyeung et al. 2012), as well as constipation (Ondo et al. 2012; Lin et al. 2014), disturbances in sleep architecture (Ondo et al. 2001; Gjerstad et al. 2006), hallucinations (Friedman et al. 2016; Diederich et al. 2009), REM behavior disorder (RBD) and depression (Aarsland et al. 2007), all of which result from impaired function of neural pathways not restored by replacement of dopamine. In fact, long-term institutionalization, caregiver burden and decrease in life expectancy correlate more significantly with the severity of these symptoms than with motor symptoms (Goetz et al. 1995).
PD is a progressive neurodegenerative disorder caused by accumulation of the protein αS within the ENS, autonomic nerves and brain (Braak et al. 2003). In 2003, Braak proposed that PD begins within the GI tract caused when neurotoxic aggregates of αS form within the ENS, evidenced clinically by the appearance of constipation in a majority of people with PD many years before the onset of motor symptoms. A recent study in rats has demonstrated movement of aggregates of αS from the ENS to the CNS via the vagus and other afferent nerves. Neurotoxic aggregates accumulated progressively within the brainstem and then dispersed rostrally to structures within the diencephalon, eventually reaching the cerebral hemispheres.
PD is defined as a synucleinopathy, and synuclein deposition remains the main final arbiter of diagnosis. Additionally, patients with dementia and Lewy bodies are considered as having PD if they meet clinical disease criteria. Imaging (e.g., MRI, single photon emission computed tomography [SPECT], and positron emission tomography [PET]) allows in vivo brain imaging of structural, functional, and molecular changes in PD patients.
There has been research in the last few years identifying particular markers or combinations of markers that are used for probabilistic estimates of prodromal PD. Researchers have identified a timeline of symptoms indicative of prodromal PD and predictive of PD. The presence of each contributes to an estimate of the likelihood of prodromal PD. Some have been adopted for identification of prodromal PD. Other studies use a combination of symptoms and imaging (e.g., hyposmia combined with dopamine receptor imaging has been found to have a high predictive value). In another example, REM sleep behavior disorder (SBD), constipation, and hyposmia were found to be individually common but to rarely co-occur in individuals without PD, leading to a high predictive value for PD. Thus, patient populations having RBD, constipation, and/or hyposmia are considered at risk for developing PD.
Data described in Example 1 shows remarkable improvement in a wide variety of symptoms correlated with PD, including a significant and positive effect on cognitive function. The study demonstrates that administration of an aminosterol can displace αS from membranes in vitro and reduce the formation of neurotoxic αS aggregates in vivo, thereby improving cognitive impairment. The study is the first proof of concept demonstration that directly targeting αS pharmacologically can achieve beneficial GI, autonomic and CNS responses to improve cognitive impairment in patients suffering from neurodiseases such as PD. These results demonstrate that the ENS in PD is not irreversibly damaged and can be restored to normal function.
As described in Example 1, CNS symptoms were evaluated at baseline and at the end of the fixed dose period and the wash-out period (Table 12). Moreover, the improvement in many CNS symptoms persisted during wash-out. The results of treatment were dramatic: MMSE (cognitive ability) improved from 28.4 at baseline to 28.7 during treatment and to 29.3 during wash-out. Other symptoms evaluated and showing improvement included:
(1) Total UPDRS score was 64.4 at baseline, 60.6 at the end of the fixed dose period and 55.7 at the end of the wash-out period; similarly, the motor component of the UPDRS improved from 35.3 at baseline to 33.3 at the end of fixed dose to 30.2 at the end of wash-out. The UPDRS score, a global assessment of motor and non-motor symptoms, showed significant improvement. Improvement was also seen in the motor component. The improvement in the motor component is unlikely to be due to improved gastric motility and increased absorption of dopaminergic medications, since improvement persisted during the 2-week wash-out period, i.e., in the absence of study drug (Table 12).
(2) BDI-II (depression) decreased from 10.9 at baseline to 9.9 during treatment and 8.7 at wash-out.
(3) PDHQ (hallucinations) improved from 1.3 at baseline to 1.8 during treatment and 0.9 during wash-out. Hallucinations were reported by 5 patients at baseline and delusions in 1 patient. Both hallucinations and delusions improved or disappeared in 5 of 6 patients during treatment and did not return for 4 weeks following discontinuation of aminosterol treatment in 1 patient and 2 weeks in another. In one patient the hallucinations disappeared at 100 mg, despite not having reached the colonic prokinetic dose at 175 mg.
(4) Improvements were seen in REM-behavior disorder (RBD) and sleep. RBD and total sleep time also improved progressively in a dose-dependent manner. The frequency of arm or leg thrashing reported in the sleep diary diminished progressively from 2.2 episodes/week at baseline to 0 at maximal dose. Total sleep time increased progressively from 7.1 hours at baseline to 8.4 hours at 250 mg and was consistently higher than baseline beyond 125 mg (
Example 1 describes calibration of a fixed aminosterol dose for a specific PD patient using constipation as the symptom or marker by which improvement was measured. In Example 1, the degree of constipation was measured by the number of complete spontaneous bowel movement (CSBM) or spontaneous bowel movement (SBM) per week, with an increase in the number of CSBM or SBM per week demonstrating a desired escalated aminosterol dose. Data detailed in Example 1 shows that 80% of subjects responded to aminosterol treatment with improved bowel function (see
The observation that the aminosterol dose required to achieve a desired response increases with symptom severity supports the hypothesis that the greater the burden of αS impeding neuronal function, the higher the dose of aminosterol required to restore normal function and improve or resolve the symptom. It is theorized that the aminosterol dose required to obtain a positive effect in a subject for the symptom being evaluated correlates with the extent of neuronal damage. Thus, it is theorized that greater neuronal damage correlates with a higher required aminosterol dose to obtain a positive effect in a subject for the symptom being evaluated. For examples, the symptom to be evaluated may be any one of the symptoms detailed herein for cognitive impairment, and the clinical tools or scales described herein may be used for measuring improvement in cognitive impairment symptoms to calibrate the aminosterol dosage for a particular patient.
In calibrating the fixed aminosterol dose for a specific patient, the starting dose is varied based upon the severity of the cognitive impairment. Thus, for subjects with severe cognitive impairment based on a baseline score on a clinical scale or tool that correlates with severe cognitive impairment, oral aminosterol dosing is started at dose is from about 75 to about 175 mg/day mg or more (or any amount in-between these values as described herein). For subjects with mild or moderate cognitive impairment based on a baseline score on a clinical scale or tool that correlates with mild or moderate cognitive impairment, oral aminosterol dosing is started at about 1 to about 75 mg/day (or any amount in-between these values as described herein). Dosing for both patients is then escalated by defined amounts over a defined period of time until the fixed escalated dose for the patient is identified.
ii. Alzheimer's Disease (AD), MSA, and Schizophrenia
Other conditions or disorders exhibiting cognitive impairment, and correlated with abnormal α-synuclein (αS) pathology, and/or dysfunctional DA neurotransmission, also known as dopaminergic dysfunction, are described above in Section 1.B. and include, for example, AD, MSA, and Schizophrenia.
There are currently a variety of art-accepted methods for diagnosing probable AD. Typically, these methods are used in combination. These methods include determining an individual's ability to carry out daily activities and identifying changes in behavior and personality. Dementia of the AD type is also typically characterized by an amnestic presentation (memory deficit) or language, visuospatial or executive function deficits. Cognitive ability/impairment may be determined by art-accepted methods, including, but not limited to, validated instruments that assess global cognition (e.g., the Modified Mini Mental State Examination (3MS-E)), and specific domains such as visual and verbal memory (e.g., the Brief Visuospatial Memory Test (Revised) (BVMT-R) and the Hopkins Verbal Learning Test (Revised) (HVLT-R), respectively), language (e.g., the Generative Verbal Fluency Test (GVFT)) and executive function and attention (e.g., the Digit Span Test (DST)). Dementia due to AD is also defined by insidious onset and a history of worsening cognitive performance.
The criteria for ‘probable Alzheimer's disease’ are described a National Institute of Aging-Alzheimer's Association workgroup (McKhann et al. 2011). According to this workgroup, for people who first exhibit the core clinical characteristics of AD dementia, evidence of biomarkers associated with the disease may enhance the certainty of the diagnosis.
Multiple system atrophy (MSA) is a progressive neurodegenerative disorder characterized by a combination of symptoms that affect both the autonomic nervous system and movement. This is caused by progressive degeneration of neurons in several parts of the brain including the substantia nigra, striatum, inferior olivary nucleus, and cerebellum. There is no known cure for MSA and management is primarily supportive.
Schizophrenia is a chronic progressive disorder that has at its origin structural brain changes in both white and gray matter. It is likely that these changes begin prior to the onset of clinical symptoms in cortical regions, particularly those concerned with language processing. Later, they can be detected by progressive ventricular enlargement. Current magnetic resonance imaging (MRI) technology can provide a valuable tool for detecting early changes in cortical atrophy and anomalous language processing, which may be predictive of who will develop schizophrenia.
A 2013 study of schizophrenia patients documented brain changes seen in MRI scans from more than 200 patients beginning with their first episode and continuing with scans at regular intervals for up to 15 years. The scans showed that people at their first episode had less brain tissue than healthy individuals. The findings suggest that those who have schizophrenia are being affected by something before they show outward signs of the disease.
While not wished to be bound by theory, it is theorized that administration of a therapeutically effective fixed dose of an aminosterol composition to a schizophrenia patient may treat and/or prevent cognitive impairment related symptoms associated with schizophrenia. In some embodiments, the administration may be oral—resulting in absorption in the ENS. In some embodiments, the administration may be intranasal—resulting in stimulation of neurogenesis, which has a positive impact on the loss of brain tissue characteristic of schizophrenia subjects.
iii. Other Neurodegenerative Disorders
The methods and compositions of the invention may also be useful in treating, preventing, and/or slowing the onset or progression of cognitive impairment correlated with abnormal α-synuclein (αS) pathology, and/or dysfunctional DA neurotransmission, also known as dopaminergic dysfunction, where the underlying condition is a variety of other neurodegenerative disorders. Examples are given above in Section I.B., and include but are not limited to, Huntington's disease (HD), progressive supranuclear palsy, Frontotemporal dementia, vascular dementia, also known as multi-infarct dementia (MID) and vascular cognitive impairment (VCI), ALS, MS, SMA, and Friedreich's ataxia.
2. Psychological or Behavioral Disorders.
The methods and compositions of the invention may also be useful in treating, preventing, and/or slowing the onset or progression of cognitive impairment correlated with abnormal αS pathology, and/or dysfunctional DA neurotransmission, also known as dopaminergic dysfunction, where the underlying condition is a psychological or behavioral disorder. Examples are given above in Section I.B as well as below, and include but are not limited to, agitation, anxiety, delirium, irritability, illusion and delusions, amnesia, autism, apathy, bipolar disorder, depression, disinhibition, aberrant motor and obsessive-compulsive behaviors, or sleep disorders.
i. Sleep Disorders
Normal sleep is critically important for the proper functioning of many organ systems, the most important of which is the brain. As noted in Section I.B., sleep disorders or sleep disturbances are correlated with cognitive impairment.
Disturbances in normal sleep patterns are closely associated with the normal aging process, with the development of cognitive impairment, with impaired memory deposition and consolidation and with the occurrence of neurodevelopmental, neuroaffective and neurodegenerative disorders. The alternating pattern of sleep and wakefulness occurring every 24 hours is known as the circadian rhythm. The rhythm is set by the “zeitgeber” (time setter), an entity known as the suprachiasmatic nucleus (SCN) and located in the hypothalamus. The SCN is normally “entrained” or synchronized by the external light-dark cycle. This relationship between external light and dark and the sleep wake cycle synchronized to it by the SCN can be over ridden during periods of hunger by neural signals emanating in the gut and relayed to the hypothalamus. The circadian sleep-wake cycle can also shift in response to changes in external light-dark cycles, such as the desynchronization that occurs during travel from one time zone to another (jet-lag). Under such circumstances, a progressive adjustment occurs until the SCN is resynchronized with the external light-dark cycle. A similar “phase-shift” and adjustment occurs in night-shift workers.
Certain diseases and conditions may impair the normal functioning of the “zeitgebber” or circadian clock. These conditions may be reversible, such as desynchronization resulting from jet-lag, night-shift work or hunger, conditions easily remedied by adaptation or food intake. In contrast, damage to the nerves carrying light-dark related information from the retina to the SCN (conditions which may lead to blindness), or damage to the enteric nerves and neural structures which relay messages from the intestine to the SCN (conditions which may lead to neurodegenerative disorders) can cause permanent dysfunction of the circadian rhythm and abnormal sleep behavior.
Dysfunction of the circadian rhythm manifests first and foremost by abnormal sleep patterns. Such abnormalities typically are mild at onset and worsen progressively over time. A common symptom of sleep disorder is a delay in the onset of sleep. This delay can be as long as several hours, and the individual may not be able to fall asleep until the early hours of the morning. Another common symptom is sleep fragmentation, meaning that the individual awakens several times during the course of the night. Once awakened, the individual may not be able to get back to sleep, and each awake fragment may last an hour or more, further reducing “total sleep time,” which is calculated by subtracting total time of the awake fragments from total time spent in bed. Total sleep time also diminishes with age, from about 14 to about 16 hours a day in newborns, to about 12 hours by one year of age, to about 7 to about 8 hours in young adults, progressively declining to about 5 to about 6 hours in elderly individuals. Total sleep time can be used to calculate an individual's “sleep age” and to compare it to their chronologic age. Significant discrepancies between sleep age and chronologic age are a reflection of the severity of the sleep disorder. “Sleep efficiency,” defined as the percentage of the time spent in bed asleep is another index that can be used to determine the severity of the sleep disorder. Sleep efficiency is said to be abnormal when the percentage is below about 70%.
Sleep disorders and/or sleep disturbances include but are not limited to REM-behavior disorders, disturbances in the Circadian rhythm, delayed sleep onset, sleep fragmentation, and hallucinations. Other sleep disorders or disturbances that can be treated and/or prevented according to the disclosed methods include but are not limited to hypersomnia (i.e., daytime sleepiness), parasomnias (such as nightmares, night terrors, sleepwalking, and confusional arousals), periodic limb movement disorders (such as Restless Leg Syndrome), jet lag, narcolepsy, advanced sleep phase disorder, non-24 hour sleep-wake syndrome.
Individuals with severe sleep disorders also typically suffer from day-time sleepiness. This can manifest as day-time “napping” for an hour or two, to “dosing off” for a few minutes during a film or to “micro-sleep” episodes lasting seconds to minutes, and of which the individual may or may not be aware. Narcolepsy is a rare and extreme form of day-time sleepiness, with the sudden onset of sleep causing the individual to fall down. Another form of sleep disturbance involves periods of loud snoring alternating with periods of “sleep apnea” (arrested breathing), a condition known as “sleep-disordered breathing.” “REM-behavior disorder” (RBD) or “REM-disturbed sleep”, is yet another sleep disturbance which occurs as a result of dysfunctional neural communication between the enteric nervous system, structures responsible for sleep in the brain stem and the SCN. In individuals with RBD, neural signaling which causes the paralysis (atonia) of muscles under voluntary control is impaired or altogether absent. As a consequence, “acting-out” of dreams occurs. This can range at one end of the spectrum from an increase in muscle tone detectable by electromyography (EMG) and accompanied by small movements of the hands and feet during REM sleep, to violent thrashing of arms and legs, kicking or punching a bed partner, speaking out loud or screaming, at the other end of the spectrum. Episodes of RBD can occur several times a night or very infrequently, once every few months. They can also be clustered, several occurring within a week, followed by periods of normal sleep. Unless the condition can be treated with a medication that restores normal functioning of the circadian rhythm and improves sleep patterns, individuals with RBD progress to neurodegenerative disorders.
Sleep disturbances include but are not limited to RBD, circadian rhythm dysfunction, delayed sleep onset, Restless leg syndrome, daytime sleepiness, and sleep fragmentation.
A “normal” or “restful” sleep period is defined as a sleep period uninterrupted by wakefulness. Alternatively, a said period can be defined by the recommended or appropriate amount of sleep for the subject's age category, e.g., (i) infants 0-3 months=about 11 to about 19 hours; (ii) infants about 4 to about 11 months=about 12 to about 18 hours; (iii) toddlers about 1 to about 2 years=about 9 to about 16 hours; (iv) preschoolers about 3 to about 5 years=about 10 to about 14 hours; (v) school-aged children about 6 to about 13 years=about 7 to about 12 hours; (v) teenagers about 14 to about 17 years=about 7 to about 11 hours; (vi) young adults about 18 to about 25 years=about 6 to about 11 hours; (vii) adults about 26 to about 64 years=about 6 to about 10 hours; and (viii) older adults ≥65 years=about 5 to about 9 hours. Thus, for treating sleep disturbance in a subject, the treatment can result in a restful sleep period of at least about 4, about 5, about 6, about 7, about 8, about 9, about 10, about 11, or about 12 hours.
How much sleep is needed by a subject varies between individuals but generally changes with age. The National Institutes of Health suggests that school-age children need at least 10 hours of sleep daily, teens need 9-10 hours, and adults need 7-8 hours. According to data from the National Health Interview Survey, nearly 30% of adults reported an average of ≤6 hours of sleep per day in 2005-2007. Further, in 2009, only 31% of high school students reported getting at least 8 hours of sleep on an average school night. Similar recommendations are provided by the National Sleep Foundation (https://sleepfoundation.org/press-release/national-sleep-foundation-recommends-new-sleep-times/page/0/1):
There are several different scientifically acceptable ways to measure a sleep period uninterrupted by wakefulness. First, electrodes attached to the head of a subject can measure electrical activity in the brain by electroencephalography (EEG). This measure is used because the EEG signals associated with being awake are different from those found during sleep. Second, muscle activity can be measured using electromyography (EMG), because muscle tone also differs between wakefulness and sleep. Third, eye movements during sleep can be measured using electro-oculography (EOG). This is a very specific measurement that helps to identify Rapid Eye Movement or REM sleep. Any of these methods, or a combination thereof, can be used to determine if a subject obtains a restful sleep period following administration of at least one aminosterol or a salt or derivative thereof to the subject.
Further, circadian rhythm regulation can be monitored in a variety of ways, including but not limited to monitoring wrist skin temperature as described by Sarabia et al. 2008. Similarly symptoms of RBD can be monitored using a daily diary and RBD questionnaire (Stiasny-Kolster et al. 2007).
Example 1 describes several tools used to measure and evaluate the effect of aminosterol treatment on sleep, including for example:
(1) Sleep Diary (participants completed a sleep diary on a daily basis throughout the study. The diaries included time into bed and estimated time to sleep as well as wake time and duration during the night.);
(2) I-Button Temperature Assessment. The I-Button is a small, rugged self-sufficient system that measures temperature and records the results in a protected memory section. The Thermochron I-Button DS1921H (Maxim Integrated, Dallas, Tex.) was used for skin temperature measurement. I-Buttons were programmed to sample every 10 mins., and attached to a double-sided cotton sport wrist band using Velcro, with the sensor face of the I-Button placed over the inside of the wrist, on the radial artery of the dominant hand. Subjects removed and replaced the data logger when necessary (i.e., to have a bath or shower). The value of skin temperature assessment in sleep research is that the endogenous skin warming resulting from increased skin blood flow is functionally linked to sleep propensity. From the collected data, the mesor, amplitude, acrophase (time of peak temperature), Rayleight test (an index of interdaily stability), mean waveforms are calculated);
(3) Unified Parkinson's Disease Rating Scale (UPDRS), sections 1.7 (sleep problems), 1.8 (daytime sleepiness) and 1.13 (fatigue);
(4) Parkinson's Disease Fatigue Scale (PFS-16);
(5) REM Sleep Behavior Disorder Screening Questionnaire; and
(6) Parkinson's Disease Sleep Scale.
The data detailed in Example 1 described how circadian system status was evaluated by continuously monitoring wrist skin temperature (Thermochron iButton DS1921H; Maxim, Dallas) following published procedures (Sarabia et al. 2008). Further, an analysis was done with respect to the sleep data, the body temperature data, and fatigue data. The frequency of arm or leg thrashing reported in the sleep diary diminished progressively from 2.2 episodes/week at baseline to 0 at maximal dose (100% improvement). Total sleep time increased progressively from 7.1 hours at baseline to 8.4 hours at 250 mg (an 18% increase) and was consistently higher than baseline beyond 125 mg (
Circadian rhythm of skin temperature was evaluable in 12 patients (i.e., those who had recordings that extended from baseline through washout). Circadian system functionality was evaluated by continuously monitoring wrist skin temperature using a temperature sensor (Thermochron iButton DS1921H; Maxim, Dallas, Tex.) (Sarabia et al. 2008). Briefly, this analysis includes the following parameters: (i) the inter-daily stability (the constancy of 24-hour rhythmic pattern over days, IS); (ii) intra-daily variability (rhythm fragmentation, IV); (iii) average of 10-minute intervals for the 10 hours with the minimum temperature (L10); (iv) average of 10-minute intervals for the 5 hours with the maximum temperature (M5) and the relative amplitude (RA), which was determined by the difference between M5 and L10, divided by the sum of both. Finally, the Circadian Function Index (CFI) was calculated by integrating IS, IV, and RA. Consequently, CFI is a global measure that oscillates between 0 for the absence of circadian rhythmicity and 1 for a robust circadian rhythm.
A comparison was performed of circadian rhythm parameters during the baseline, fixed dose and washout periods. Aminosterol administration improved all markers of healthy circadian function, including increasing rhythm stability, relative amplitude, and circadian function index, while reducing rhythm fragmentation. The improvement persisted for several of these circadian parameters during the wash-out period. (
iii. Depression
Clinical depression is characterized by a sad, blue mood that goes above and beyond normal sadness or grief. Major depression is an episode of sadness or apathy along with other symptoms that lasts at least two consecutive weeks and is severe enough to interrupt daily activities. Depressive events feature not only negative thoughts, moods, and behaviors but also specific changes in bodily functions (like, eating, sleeping, energy and sexual activity, as well as potentially developing aches or pains). One in 10 people will have a depression in their lifetime. Doctors clinically diagnose depression; there is no laboratory test or X-ray for depression. As detailed above in Section I.B., depression is correlated with cognitive impairment.
Increasingly sophisticated forms of brain imaging, such as positron emission tomography (PET), single-photon emission computed tomography (SPECT), and functional magnetic resonance imaging (fMRI), permit a much closer look at the worki6yng brain than was possible in the past. An fMRI scan, for example, can track changes that take place when a region of the brain responds during various tasks. A PET or SPECT scan can map the brain by measuring the distribution and density of neurotransmitter receptors in certain areas. Use of this technology has led to a better understanding of which brain regions regulate mood and how other functions, such as memory, may be affected by depression. Areas that play a significant role in depression are the amygdala, the thalamus, and the hippocampus.
Research shows that the hippocampus is smaller in some depressed people. For example, in one fMRI study published in The Journal of Neuroscience, investigators studied 24 women who had a history of depression. On average, the hippocampus was 9% to 13% smaller in depressed women as compared with those who were not depressed. The more bouts of depression a woman had, the smaller the hippocampus. Stress, which plays a role in depression, may be a key factor, since experts believe stress can suppress the production of new neurons (nerve cells) in the hippocampus.
Researchers are exploring possible links between sluggish production of new neurons in the hippocampus and low moods. An interesting fact about antidepressants supports this theory. These medications immediately boost the concentration of chemical messengers in the brain (neurotransmitters). Yet people typically don't begin to feel better for several weeks or longer. Experts have long wondered why, if depression were primarily the result of low levels of neurotransmitters, people don't feel better as soon as levels of neurotransmitters increase. The answer may be that mood only improves as nerves grow and form new connections, a process that takes weeks. In fact, animal studies have shown that antidepressants do spur the growth and enhanced branching of nerve cells in the hippocampus. So, the theory holds, the real value of these medications may be in generating new neurons (a process called neurogenesis), strengthening nerve cell connections, and improving the exchange of information between nerve circuits.
As detailed in Example 1, depression and/or mood and the improvement following aminosterol treatment were assessed using several tools:
(1) Beck Depression Inventory (BDI-II);
(2) Unified Parkinson's Disease Rating Scale (UPDRS), sections 1.3 (depressed mood), 1.4 (anxious mood), 1.5 (apathy), and 1.13 (fatigue); and
(3) Parkinson's Disease Fatigue Scale (PFS-16).
Assessments were made at baseline and at the end of the fixed dose and washout periods. An analysis was done with respect to depression and mood scores. Total UPDRS score was 64.4 at baseline, 60.6 at the end of the fixed dose period and 55.7 at the end of the wash-out period, demonstrating a 13.5% improvement, and Part 1 of the UPDRS (which includes mood and depression scores) went from a mean score of 11.6 at baseline, to a mean of 10.6 during the fixed aminosterol dose period, with a mean score of 9.5 during the washout period, demonstrating an improvement of 18%. In addition, BDI-II scores decreased from 10.9 at baseline to 9.9 during treatment and 8.7 at wash-out, showing an improvement in depression scoring of 20%. Unlike stool-related indices, the improvement in many CNS symptoms persisted during wash-out.
iv. Hallucination
A hallucination is a sensory impression or perception of an object or event, in any of the 5 senses (sight, touch, sound, smell, or taste) that has no basis in external stimulation. Hallucinations can have debilitating impact on the subject's health and life including a significant negative cognitive impairment. Further, hallucinations can be a symptom associated with conditions correlated with abnormal αS pathology, and/or dysfunctional DA neurotransmission, also known as dopaminergic dysfunction.
Examples of hallucinations include “seeing” someone not there (visual hallucination), “hearing” a voice not heard by others (auditory hallucination), “feeling” something crawling up your leg (tactile hallucination), “smelling” (olfactory), and “tasting” (gustatory). Other examples of hallucination types include hypnagogic hallucination (a vivid, dreamlike hallucination occurring at sleep onset), hypnopompic hallucination (a vivid, dreamlike hallucination occurring on awakening), kinesthetic hallucination (a hallucination involving the sense of bodily movement), and somatic hallucination a hallucination involving the perception of a physical experience occurring within the body.
In some cases, hallucinations are the result of a psychiatric or neurological disorder. The psychiatric disorder can be, for example, Bipolar disorder, Borderline personality disorder, Depression (mixed), Dissociative identity disorder, Generalized anxiety disorder, Major depression, Obsessive compulsive disorder, Post-traumatic stress disorder, Psychosis (NOS), Schizoaffective disorder, or Schizophrenia.
In other cases, hallucinations can be the result of a neurological disorder. The neurological disorder can be, for example, the result of (a) a brain tumor, (b) a sleep disorder such as narcolepsy, or (c) a focal brain lesion, such as occipital lobe lesions or temporal lobe lesions. The neurological disorder can be, for example, the result of (d) a diffuse involvement of the cerebral cortex, such as that caused by a viral infectious disease. The diffuse involvement of the cerebral cortex can be a result of a cerebral vasculitis condition, and the viral infectious disease can be, for example, acute metabolic encephalopathies, encephalitis, or meningitis. The cerebral vasculitis condition can be caused by an autoimmune disorder, a bacterial or viral infection, or a systemic vasculitis. The autoimmune disorder can be, for example, Systemic Lupus Erythematosus (SLE).
Alternatively, hallucinations can be the result of a neurodegenerative disorder. For example, the neurodegenerative disorder can be, for example, PD, supranuclear palsy, multi-system atrophy, Parkinsonism, AD, FTD, ALS, Huntington's Disease, schizophrenia, Friedreich's ataxia, MS, LBD, spinal muscular atrophy, progressive nuclear palsy, Guadeloupian Parkinsonism, spinocerebellar ataxia, or vascular dementia.
Further still, hallucinations may be caused by a sensory loss. The sensory loss can be, for example, visual, auditory, gustatory, tactile, or olfactory. In a preferred embodiment, the fixed dose aminosterol compositions of the invention reverse the dysfunction of the sensory loss and treat the hallucination. In a preferred embodiment, the aminosterol compositions of the invention reverse the dysfunction of the enteric nervous system and treats the hallucination.
Example 1 describes several tools used to measure and evaluate the effect of aminosterol treatment on hallucinations, including for example:
(1) The University of Miami Parkinson's Disease Hallucinations Questionnaire (UM-PDHQ);
(2) Unified Parkinson's Disease Scale (UPSRS), section 1.2 (Hallucinations and Psychosis); and
(3) direct questioning.
As described in Example 1, the PDHQ score improved from 1.3 at baseline to 0.9 during wash-out. Hallucinations were reported by 5 patients at baseline and delusions in 1 patient. Both hallucinations and delusions improved or disappeared in 5 of 6 patients during treatment and did not return for 4 weeks following discontinuation of aminosterol treatment in 1 patient and 2 weeks in another. In one patient the hallucinations disappeared at 100 mg, despite not having reached the colonic prokinetic dose at 175 mg. Further, unlike stool-related indices, the improvement in many CNS symptoms persisted during wash-out. 3. Cerebral and General Ischemic Disorders
The methods and compositions of the invention may also be useful in treating, preventing, and/or delaying the onset or progression of cognitive impairment and/or a cognitive impairment-related symptom, where the cognitive impairment is correlated with abnormal α-S pathology, and/or correlated with dysfunctional DA neurotransmission, also known as dopaminergic dysfunction, and wherein the cognitive impairment is also correlated with a cerebral or general ischemic disorder.
In some embodiments, the cerebral ischemic disorder comprises cerebral microangiopathy, intrapartal cerebral ischemia, cerebral ischemia during/after cardiac arrest or resuscitation, cerebral ischemia due to intraoperative problems, cerebral ischemia during carotid surgery, chronic cerebral ischemia due to stenosis of blood-supplying arteries to the brain, sinus thrombosis or thrombosis of cerebral veins, cerebral vessel malformations, or diabetic retinopathy.
In some embodiments, the general ischemic disorders comprises high blood pressure, high cholesterol, myocardial infarction, cardiac insufficiency, cardiac failure, congestive heart failure, myocarditis, pericarditis, perimyocarditis, coronary heart disease, angina pectoris, congenital heart disease, shock, ischemia of extremities, stenosis of renal arteries, diabetic retinopathy, thrombosis associated with malaria, artificial heart valves, anemias, hypersplenic syndrome, emphysema, lung fibrosis, or pulmonary edema.
V. Combination Therapy.
In the methods of the invention, the aminosterol compositions may be administered alone or in combination with other therapeutic agents. An example of an additional therapeutic agent is one known to be useful in treating cognitive impairment and/or a cognitive impairment related disease or disorder.
Thus, any active agent known to be useful in treating a condition, disease, or disorder described herein can be used in the methods of the invention, and either combined with the aminosterol compositions used in the methods of the invention, or administered separately or sequentially.
For example, in methods of treating, preventing, and/or delaying the onset or progression of cognitive impairment or related symptoms associated with PD, the aminosterol composition can be co-administered or combined with drugs commonly prescribed to treat PD or related symptoms, such as levodopa (usually combined with a dopa decarboxylase inhibitor or COMT inhibitor), dopamine agonists and MAO-B inhibitors. Exemplary dopa decarboxylase inhibitors are carbidopa and benserazide. Exemplary COMT inhibitors are tolcapone and entacapone. Dopamine agonists include, for example, bromocriptine, pergolide, pramipexole, ropinirole, piribedil, cabergoline, apomorphine, lisuride, and rotigotine. MAO-B inhibitors include, for example, selegiline and rasagiline. Other drugs commonly used to treat PD include, for example, amantadine, anticholinergics, clozapine for psychosis, cholinesterase inhibitors for dementia, and modafinil for daytime sleepiness.
In methods of treating, preventing, and/or delaying the onset or progression of cognitive impairment or related symptoms associated with AD, the aminosterol composition can be co-administered or combined with drugs commonly prescribed to treat AD or related symptoms, such as Glutamate, Antipsychotic drugs, Huperzine A, acetylcholinesterase inhibitors and NMDA receptor antagonists such as memantine (Akatinol®, Axura®, Ebixa®/Abixa®, Memox® and Namenda®). Examples of acetylcholinesterase inhibitors are donepezil (Aricept®), galantamine (Razadyne®), and rivastigmine (Exelon®).
In methods of treating, preventing, and/or delaying the onset or progression of cognitive impairment or related symptoms associated with Diabetes and/or diabetes mellitus, including both Type 1 and Type 2 diabetes, or neuropathy of diabetes, the aminosterol composition can be co-administered or combined with drugs commonly prescribed to treat Diabetes mellitus or related symptoms, such as insulin (ular and NPH insulin, or synthetic insulin analogs) (e.g., Humulin®, Novolin®) and oral antihyperglycemic drugs. Oral antihyperglycemic drugs include but are not limited to (1) biguanides such as metformin (Glucophage®), (2) Sulfonylureas such as acetohexamide, chlorpropamide (Diabinese®), glimepiride (Amaryl®), Glipizide (Glucotrol®), Tolazamide, Tolbutamide, and glyburide (Diabeta®, Micronase®), (3) Meglitinides such as repaglinide (Prandin®) and nateglinide (Starlix®), (4) Thiazolidinediones such as rosiglitazone (Avandia®) and pioglitazone (Actos®), (5) Alpha-glucosidase inhibitors such as acarbose (Precose®) and miglitol (Glyset®), (6) Dipeptidyl peptidase-4 inhibitors such as Sitagliptin (Januvia®), (7) Glucagon-like peptide agonists such as exenatide (Byetta®), and (8) Amylin analogs such as pramlintide (Symlin®).
In methods of treating, preventing, and/or delaying the onset or progression of cognitive impairment or related symptoms associated with Huntington's chorea or disease, the aminosterol composition can be co-administered or combined with drugs commonly prescribed to treat Huntington's chorea or related symptoms, such as medications prescribed to help control emotional and movement problems associated with Huntington's chorea. Such medications include, but are not limited to, (1) antipsychotic drugs, such as haloperidol and clonazepam, (2) drugs used to treat dystonia, such as acetylcholine-regulating drugs (trihexyphenidyl, benztropine (Cogentin®), and procyclidine HCl); GABA-regulating drugs (diazepam (Valium®), lorazepam (Ativan®), clonazepam (Klonopin®), and baclofen (Lioresal®)); dopamine-regulators (levodopa/carbidopa (Sinemet®), bromocriptine (parlodel)), reserpine, tetrabenazine; anticonvulsants (carbamazepine (Tegretol®); and Botulinum toxin (Botox®); and (3) drugs used to treat depression (fluoxetine, sertraline, and nortriptyline). Other drugs commonly used to treat HD include amantadine, tetrabenazine, Dopamine blockers, and co-enzyme Q10.
In methods of treating, preventing, and/or delaying the onset or progression of cognitive impairment or related symptoms associated with peripheral sensory neuropathy, the aminosterol composition can be co-administered or combined with drugs commonly prescribed to treat peripheral sensory neuropathy or related symptoms. Peripheral sensory neuropathy refers to damage to nerves of the peripheral nervous system, which may be caused either by diseases of or trauma to the nerve or the side-effects of systemic illness. Drugs commonly used to treat this condition include, but are not limited to, neurotrophin-3, tricyclic antidepressants (e.g., amitriptyline), antiepileptic therapies (e.g., gabapentin or sodium valproate), synthetic cannabinoids (Nabilone) and inhaled cannabis, opiate derivatives, and pregabalin (Lyrica®).
In methods of treating, preventing, and/or delaying the onset or progression of cognitive impairment or related symptoms associated with traumatic head and/or spine injury, the aminosterol composition can be co-administered or combined with drugs commonly prescribed to treat traumatic head and/or spine injury or related symptoms, such as analgesics (acetaminophen, NSAIDs, salicylates, and opioid drugs such as morphine and opium) and paralytics.
In methods of treating, preventing, and/or delaying the onset or progression of cognitive impairment or related symptoms associated with stroke, the aminosterol composition can be co-administered or combined with drugs commonly prescribed to treat stroke or related symptoms, such as aspirin, clopidogrel, dipyridamole, tissue plasminogen activator (tPA), and anticoagulants (e.g., alteplase, Warfarin, dabigatran).
In methods of treating, preventing, and/or delaying the onset or progression of cognitive impairment or related symptoms associated with ALS, the aminosterol composition can be co-administered or combined with drugs commonly prescribed to treat Amyotrophic lateral sclerosis or related symptoms, such as riluzole (Rilutek®), KNS-760704 (an enantiomer of pramipexole), olesoxime (TRO19622), talampanel, Arimoclomol, medications to help reduce fatigue, ease muscle cramps, control spasticity, reduce excess saliva and phlegm, control pain, depression, sleep disturbances, dysphagia, and constipation.
In methods of treating, preventing, and/or delaying the onset or progression of cognitive impairment or related symptoms associated with multiple sclerosis, the aminosterol composition can be co-administered or combined with drugs commonly prescribed to treat multiple sclerosis or related symptoms, such as corticosteroids (e.g., methylprednisolone), plasmapheresis, fingolimod (Gilenya®), interferon beta-la (Avonex®, CinnoVex®, ReciGen® and Rebift), interferon beta-1b (Betaseron®, Betaferon®), glatiramer acetate (Copaxone®), mitoxantrone, natalizumab (Tysabri®), alemtuzumab (Campath®), daclizumab (Zenapax®), rituximab, dirucotide, BHT-3009, cladribine, dimethyl fumarate, estriol, fingolimod, laquinimod, minocycline, statins, temsirolimus teriflunomide, naltrexone, and vitamin D analogs.
In methods of treating, preventing, and/or delaying the onset or progression of cognitive impairment or related symptoms associated with cerebral palsy, the aminosterol composition can be co-administered or combined with drugs commonly prescribed to treat cerebral palsy or related symptoms, such as Botulinum toxin A injections.
In methods of treating, preventing, and/or delaying the onset or progression of cognitive impairment or related symptoms associated with epilepsy, the aminosterol composition can be co-administered or combined with drugs commonly prescribed to treat epilepsy or related symptoms, such as anticonvulsants (e.g., carbamazepine (Tegretol®), clorazepate (Tranxene®), clonazepam (Klonopin®), ethosuximide (Zarontin®), felbamate (Felbatol®), fosphenytoin (Cerebyx®), gabapentin (Neurontin®), lacosamide (Vimpat®), lamotrigine (Lamictal®), levetiracetam (Keppra®), oxcarbazepine (Trileptal®), phenobarbital (Luminal®), phenytoin (Dilantin®), pregabalin (Lyrica®), primidone (Mysoline®), tiagabine (Gabitril®), topiramate (Topamax®), valproate semisodium (Depakote®), valproic acid (Depakene®), and zonisamide (Zonegran®), clobazam (Frisium®), vigabatrin (Sabril®), retigabine, brivaracetam, seletracetam, diazepam (Valium®, Diastat®), lorazepam (Ativan®), paraldehyde (Paral®), midazolam (Versed®), pentobarbital (Nembutal®), acetazolamide (Diamox®), progesterone, adrenocorticotropic hormone (ACTH, Acthar®), various corticotropic steroid hormones (prednisone), and bromide.
In methods of treating, preventing, and/or delaying the onset or progression of cognitive impairment or related symptoms associated with depression, the aminosterol composition can be co-administered or combined with drugs commonly prescribed to treat depression, such as any of the class of Tricyclic antidepressants, Monoamine oxidase inhibitors, Selective serotonin reuptake inhibitors, and Serotonin and norepinephrine reuptake inhibitors.
In the methods of treating, preventing, and/or delaying the onset or progression of cognitive impairment or related symptoms associated with malignancies, the aminosterol composition can be co-administered or combined with drugs commonly used to treat malignancies. These include all known cancer drugs, such as but not limited to those listed at http://www.cancer.gov/cancertopics/druginfo/alphalist as of May 5, 2014, which is specifically incorporated by reference.
Combinations may be administered either concomitantly, e.g., as an admixture, separately but simultaneously or concurrently; or sequentially. This includes presentations in which the combined agents are administered together as a therapeutic mixture, and also procedures in which the combined agents are administered separately but simultaneously, e.g., as through separate intravenous lines into the same individual. Administration “in combination” further includes the separate administration of one of the compounds or agents given first, followed by the second. The regimen selected can be administered concurrently since activation of the aminosterol induced response does not require the systemic absorption of the aminosterol into the bloodstream and thus eliminate concern over the likelihood systemic of drug-drug interactions between the aminosterol and the administered drug.
The following definitions are provided to facilitate understanding of certain terms used throughout this specification.
Technical and scientific terms used herein have the meanings commonly understood by one of ordinary skill in the art, unless otherwise defined. Any suitable materials and/or methodologies known to those of ordinary skill in the art can be utilized in carrying out the methods described herein.
As used in the description of the invention and the appended claims, the singular forms “a”, “an” and “the” are used interchangeably and intended to include the plural forms as well and fall within each meaning, unless the context clearly indicates otherwise. Also, as used herein, “and/or” refers to and encompasses any and all possible combinations of one or more of the listed items, as well as the lack of combinations when interpreted in the alternative (“or”).
As used herein, “about” will be understood by persons of ordinary skill in the art and will vary to some extent on the context in which it is used. If there are uses of the term which are not clear to persons of ordinary skill in the art given the context in which it is used, “about” will mean up to plus or minus 10% of the particular term.
As used herein the term “aminosterol” encompasses squalamine or a derivative thereof, an isomer or prodrug of squalamine, Aminosterol 1436 or a derivative thereof, an isomer or prodrug of Aminosterol 1436, or a naturally occurring aminosterol isolated from Squalus acanthias or a derivative thereof, as described herein. “Aminosterols” useful in the invention also encompass a pharmaceutically equivalent salt of any aminosterol compound described herein. These compounds, and pharmaceutically acceptable salts thereof, are collectively referred to herein as “squalamine” and “aminosterols.” Thus, the term “aminosterol” as used herein is intended to encompass the broader class that includes both squalamine and the known naturally occurring aminosterols.
As used herein, “therapeutic activity” or “activity” may refer to an activity whose effect is consistent with a desirable therapeutic outcome in humans, or to desired effects in non-human mammals or in other species or organisms. Therapeutic activity may be measured in vivo or in vitro. For example, a desirable effect may be assayed in cell culture.
As used herein, the phrase “therapeutically effective amount” shall mean the drug dosage that provides the specific pharmacological response for which the drug is administered in a significant number of subjects in need of such treatment. It is emphasized that a therapeutically effective amount of a drug that is administered to a particular subject in a particular instance will not always be effective in treating the conditions/diseases described herein, even though such dosage is deemed to be a therapeutically effective amount by those of skill in the art.
The term “administering” as used herein includes prescribing for administration as well as actually administering, and includes physically administering by the subject being treated or by another.
As used herein “subject,” “patient,” or “individual” refers to any subject, patient, or individual, and the terms are used interchangeably herein. In this regard, the terms “subject,” “patient,” and “individual” includes mammals, and, in particular humans. When used in conjunction with “in need thereof,” the term “subject,” “patient,” or “individual” intends any subject, patient, or individual having or at risk for a specified symptom or disorder.
The terms “treatment,” “treating,” or any variation thereof includes reducing, ameliorating, or eliminating (i) one or more specified symptoms and/or (ii) one or more symptoms or effects of a specified disorder. The terms “prevention,” “preventing,” or any variation thereof includes reducing, ameliorating, or eliminating the risk of developing (i) one or more specified symptoms and/or (ii) one or more symptoms or effects of a specified disorder.
The following examples are provided to illustrate the present invention. It should be understood, however, that the invention is not to be limited to the specific conditions or details described in these examples. Throughout the specification, any and all references to a publicly available document, including a U.S. patent, are specifically incorporated by reference.
This example describes an exemplary method of treating, preventing, and/or slowing the onset or progression of symptoms of Parkinson's disease (PD) in a clinical trial setting.
Overview:
The subjects of the trial all had PD and experienced constipation, which is a characteristic of PD. The primary objectives of the trial involving patients with PD and constipation were to evaluate the safety and pharmacokinetics of oral squalamine (ENT-01) and to identify the dose required to improve bowel function, which was used as a clinical endpoint.
Several non-constipation PD symptoms were also assessed as endpoints, including, for example, (1) sleep problems, including daytime sleepiness; (2) non-motor symptoms, such as (i) depression (including apathy, anxious mood, as well as depression), (ii) cognitive impairment (e.g., using trail making test and the UPDRS), (iii) hallucinations (e.g., using The University of Miami Parkinson's Disease Hallucinations Questionnaire (UM-PDHQ) and the UPDRS, (iv) dopamine dysregulation syndrome (UPDRS), (v) pain and other sensations, (vi) urinary problems, (vii) light headedness on standing, and (viii) fatigue (e.g., using Parkinson's Disease Fatigue Scale 9PFS-it and the UPDRS); (3) motor aspects of experiences of daily living, such as (i) speech, (ii) saliva and drooling, (iii) chewing and swallowing, (iv) eating tasks, (v) dressing, (vi) hygiene, (vii) handwriting; (viii) doing hobbies and other activities, (ix) turning in bed, (x) tremor, (xi) getting out of bed, a car, or a deep chair, (xii) walking and balance, (xiii) freezing; (4) motor examination, such as (i) speech, (ii) facial expression, (iii) rigidity, (ix) finger tapping, (v) hand movements, (vi) pronation-supination movements of hands, (vii) toe tapping, (viii) leg agility, arising from chair, (ix) gait, (x) freezing of gait, (xi) postural stability, (xii) posture, (xiii) global spontaneity of movement (body bradykinesia), (xiv) postural tremor of the hands, (xv) kinetic tremor of the hands, (xvi) rest tremor amplitude, (xvii) constancy of rest tremor; (5) motor complications, such as (i) time spent with dyskinesias, (ii) functional impact of dyskinesias, (iii) time spent in the off state, (iv) functional impact of fluctuations, (v) complexity of motor fluctuations, and (vi) painful off-state dystonia.
Active Agent & Dosing:
Squalamine (ENT-01; Enterin, Inc.) was formulated for oral administration in the trial. The active ion of ENT-01, squalamine, an aminosterol originally isolated from the dogfish shark, has been shown to reverse gastrointestinal dysmotility in several mouse models of PD. In addition, ENT-01 has been shown to inhibit the formation of aggregates of αS both in vitro, and in a C. elegans model of PD in vivo (Perni et al. 2017). In the C. elegans model, squalamine produced a complete reversal of muscle paralysis.
ENT-01 is the phosphate salt of squalamine. For this study it has been formulated as a small 25 mg coated tablet. Dosing ranged from 25 mg to 250 mg, with dosages greater than 25 mg requiring multiple pills (e.g., 50 mg=two 25 mg pills). Dosing instructions=take 60 mins before breakfast with 8 oz water. The dose was taken by each patient upon awakening on an empty stomach along with 8 oz. of water simultaneously to dopamine. The subject was not allowed to ingest any food for at least 60 minutes after study medication. The compound is highly charged and will adsorb to foodstuffs, so it was administered prior to feeding.
The phosphate salt of squalamine (ENT-01) is weakly soluble in water at neutral pH but readily dissolves at pH<3.5 (the pH of gastric fluid). Squalamine, as the highly water soluble dilactate salt has been extensively studied in over three Phase 1 and eight Phase 2 human clinical trials as an intravenous agent for the treatment of cancer and diabetic retinopathy. The compound is well tolerated in single and repeat intravenous administration, alone or in combination with other agents, to doses of at least 300 mg/m2).
In the current clinical trial, squalamine (ENT-01) was administered orally to subjects with PD who have long standing constipation. Although this trial was the first in man oral dosing study of ENT-01, humans have long been exposed to low doses of squalamine (milligram to microgram) in the various commercial dogfish shark liver extracts available as nutraceuticals (e.g., Squalamax). In addition, following systemic administration squalamine is cleared by the liver and excreted as the intact molecule (in mice) into the duodenum through the biliary tract. Drug related GI toxicology has not been reported in published clinical trials involving systemic administration of squalamine.
Squalamine (ENT-01) has limited bioavailability in rats and dogs. Based on measurement of portal blood concentrations following oral dosing of radioactive ENT-01 to rat's absorption of ENT-01 from the intestine is low. As a consequence, the principal focus of safety is on local effects on the gastrointestinal tract. However, squalamine (ENT-01) appears to be well tolerated in both rats and dogs.
The starting dose in the Stage 1 segment of the trial was 25 mg (0.33 mg/kg for a 75 kg subject). The maximum single dose in Stage 1 was 200 mg (2.7 mg/kg for a 75 kg subject). The maximum dose evaluated in Stage 2 of the trial was 250 mg/day (3.3 mg/kg/day for a 75 kg subject), and the total daily dosing exposure lasted no longer than 25 days.
The daily dosing range in the clinical trial was from 25 mg (14.7 mg/m2) to 250 mg (147 mg/m2). Oral dosing of squalamine (ENT-01), because of its low oral bioavailability, is not anticipated to reach significant plasma concentrations in human subjects. In preclinical studies, squalamine (ENT-01) exhibited an oral bioavailability of about 0.1% in both rats and dogs. In Stage 1 of this phase 2 study, oral dosing up to 200 mg (114 mg/m2) yielded an approximate oral bioavailability of about 0.1%, based on a comparison of a pharmacokinetic data of the oral dosing and the pharmacokinetic data measured during prior phase 1 studies of IV administration of squalamine.
Study Protocol:
The multicenter Phase 2 trial was conducted in two Stages: a dose-escalation toxicity study in Stage 1 and a dose range-seeking and proof of efficacy study in Stage 2.
PD symptoms were assessed using a number of different tools:
(1) Numeric Rating Scales for Pain and Swelling (scale of 0-10, with 0=no pain and 10=worst pain ever experienced);
(2) Rome-IV Criteria for Constipation (7 criteria, with constipation diagnosis requiring two or more of the following: (i) straining during at least 25% of defecations, (ii) lumpy or hard stools in at least 25% of defecations, (iii) sensation of incomplete evacuation for at least 25% of defecations, (iv) sensation of anorectal obstruction/blockage for at least 25% of defecations; (v) manual maneuvers to facilitate at least 25% of defecations; (vi) fewer than 3 defecations per week; and (vii) loose stools are rarely present without the use of laxatives;
(3) Constipation—Ease of Evacuation Scale (from 1-7, with 7=incontinent, 4=normal, and 1=manual disimpaction);
(4) Bristol Stool Chart, which is a patient-friendly means of categorizing stool characteristics (assessment of stool consistency is a validated surrogate of intestinal motility) and Stool Diary;
(5) Sleep Diary (participants completed a sleep diary on a daily basis throughout the study. The diaries included time into bed and estimated time to sleep as well as wake time and duration during the night.);
(6) I-Button Temperature Assessment. The I-Button is a small, rugged self-sufficient system that measures temperature and records the results in a protected memory section. The Thermochron I-Button DS1921H (Maxim Integrated, Dallas, Tex.) was used for skin temperature measurement. I-Buttons were programmed to sample every 10 mins., and attached to a double-sided cotton sport wrist band using Velcro, with the sensor face of the I-Button placed over the inside of the wrist, on the radial artery of the dominant hand. Subjects removed and replaced the data logger when necessary (i.e., to have a bath or shower). The value of skin temperature assessment in sleep research is that the endogenous skin warming resulting from increased skin blood flow is functionally linked to sleep propensity. From the collected data, the mesor, amplitude, acrophase (time of peak temperature), Rayleight test (an index of interdaily stability), mean waveforms are calculated.);
(7) Non-motor Symptoms Questionnaire (NMSQ);
(8) Beck Depression Inventory (BDI-II);
(9) Unified Parkinson's Disease Rating Scale (UPDRS), which consists of 42 items in four subscales (Part I=Non-Motor Aspects of Experiences of Daily Living (nM-EDL) (1.1 cognitive impairment, 1.2 hallucinations and phychosis, 1.3 depressed mood, Part II=Motor Aspects of Experiences of Daily Living (M-EDL), Part III=Motor Examination, and Part IV=Motor Complications;
(10) Mini Mental State Examination (MMSE);
(11) Trail Making Test (TMT) Parts A and B;
(12) The University of Miami Parkinson's Disease Hallucinations Questionnaire (UM-PDHQ);
(13) Parkinson's Disease Fatigue Scale (PFS-16);
(14) Patient Assessment of Constipation Symptoms (PAC-SYM);
(15) Patient Assessment of Constipation Quality of Life (PAC-QOL);
(16) REM Sleep Behavior Disorder Screening Questionnaire; and
(17) Parkinson's Disease Sleep Scale.
Exploratory end-points, in addition to constipation, included for example, (i) depression assessed using the Beck Depression Inventory (BDI-II) (Steer et al. 2000) and Unified Parkinson's Disease Rating Scale (UPDRS); (ii) cognition assessed using the Mini Mental State Examination (MMSE) (Palsteia et al. 2018), Unified Parkinson's Disease Rating Scale (UPDRS), and Trail Making Test (TMT); (iii) sleep and REM-behavior disorder (RBD) using a daily sleep diary, I-Button Temperature Assessment, a REM sleep behavior disorder (RBD) questionnaire (RBDQ) (Stiasny-Kolster et al. 2007), and the UPDRS; (iv) hallucinations assessed using the PD hallucinations questionnaire (PDHQ) (Papapetropoulos et al. 2008), the UPDRS, and direct questioning; (v) fatigue using the Parkinson's Disease Fatigue Scale (PFS-16) and the UPDRS; (vi) motor functions using the UPDRS; and (vii) non-motor functions using the UPDRS.
Assessments were made at baseline and at the end of the fixed dose and washout periods. Circadian system status was evaluated by continuously monitoring wrist skin temperature (Thermochron iButton DS1921H; Maxim, Dallas) following published procedures (Sarabia et al. 2008).
Based on these data, it is believed that administration of squalamine (ENT-01), a compound that can displace αS from membranes in vitro, reduces the formation of neurotoxic αS aggregates in vivo, and stimulates gastrointestinal motility in patients with PD and constipation. The observation that the dose required to achieve a prokinetic response increases with constipation severity supports the hypothesis that the greater the burden of αS impeding neuronal function, the higher the dose of squalamine (ENT-01) required to restore normal bowel function.
Study Design:
A multicenter Phase 2 trial was conducted in two Stages: a dose-escalation toxicity study in Stage 1 and a dose range-seeking and proof of efficacy study in Stage 2. The protocol was reviewed and approved by the institutional review board for each participating center and patients provided written informed consent.
Following successful screening, all subjects underwent a 14-day run-in period where the degree of constipation was assessed through a validated daily log (Zinsmeister et al. 2013) establishing baseline CSBMs/week. Subjects with an average of <3 CSBMs/week proceeded to dosing.
In Stage 1, ten (10) PD patients received a single escalating dose of squalamine (ENT-01) every 3-7 days beginning at 25 mg and continuing up to 200 mg or the limit of tolerability, followed by 2-weeks of wash-out. Duration of this part of the trial was 22-57 days. The 10 subjects in the sentinel group were assigned to Cohort 1 and participated in 8 single dosing periods. Tolerability limits included diarrhea or vomiting. A given dose was considered efficacious in stimulating bowel function (prokinetic) if the patient had a complete spontaneous bowel movement (CSBM) within 24 hours of dosing.
Each dose period was staggered, so that subjects 1-2 were administered a single dose of the drug at the lowest dose of 25 mg. Once 24 hours have elapsed, and provided there are no safety concerns, the patient was sent home and brought back on day 4-8 for the next dose. During the days the subjects are home, they completed the daily diaries and e-mailed them to the study coordinators. Subjects 3-10 were dosed after the first 2 subjects have been observed for 72 hours, i.e. on Day 4. Subjects 1-2 were also brought back on Day 4-8 and given a single dose of 50 mg. Once another 24 hours have elapsed and provided there are no safety concerns, the patients were all sent home and instructed to return on Day 7 for the next dosing level. This single dosing regimen was continued until each subject was given a single dose of 200 mg or has reached a dose limiting toxicity (DLT). DLT was the dose which induces repeated vomiting, diarrhea, abdominal pain or symptomatic postural hypotension within 24 hours of dosing.
In Stage 2, 34 patients were evaluated. First, 15 new PD patients were administered squalamine (ENT-01) daily, beginning at 75 mg, escalating every 3 days by 25 mg to a dose that had a clear prokinetic effect (CSBM within 24 hours of dosing on at least 2 of 3 days at a given dose), or the maximum dose of 175 mg or the tolerability limit. This dose was then maintained (“fixed dose”) for an additional 3-5 days. After the “fixed dose”, these patients were randomly assigned to either continued treatment at that dose or to a matching placebo, for an additional 4-6 days prior to a 2-week wash-out.
A second cohort of 19 patients received squalamine (ENT-01) escalating from 100 mg/day to a maximum of 250 mg/day without subsequent randomization to squalamine (ENT-01) or placebo. Criteria for dose selection and efficacy were identical to those used in the previous cohort.
Patient Population:
Patients were between 18 and 86 years of age and diagnosed with PD by a clinician trained in movement disorders following the UK Parkinson's Disease Society Brain Bank criteria (Fahn et al. 1987). Patients were required to have a history of constipation as defined by <3 CSBMs/week and satisfy the Rome IV criteria for functional constipation (Mearin et al. 2016) at screening, which requires 2 or more of the following: Straining during at least 25% of defecations; lumpy or hard stools in at least 25% of defecations; sensation of incomplete evacuation in at least 25% of defecations; sensation of anorectal obstruction/blockage in at least 25% of defecations; and/or manual maneuvers to facilitate at least 25% of defecations.
Baseline characteristics of patients are shown in Table 2. Patients in Stage 2 had somewhat longer duration of Parkinson's disease and higher UPDRS scores than participants in Stage 1.
Safety and Adverse Event (AE) Profile:
Fifty patients were enrolled and 44 were dosed. In Stage 1, 10 patients were dosed, 1 (10%) withdrew prior to completion and 9 (90%) completed dosing. In stage 2, 6 (15%) patients had ≥3 CSBM/week at the end of the run-in period and were excluded, 34 patients were dosed and bowel response was assessable in 31 (91%). Two patients (5.8%) were terminated prior to completion because of recurrent dizziness, and 3 others withdrew during dosing (8.8%): 2 because of diarrhea and 1 because of holiday. Fifteen patients were randomized. Study-drug assignments and patient disposition are shown in Table 3 and
Most AEs were confined to the GI tract (88% in Stage 1 and 63% in Stage 2). The most common AE was nausea which occurred in 4/10 (40%) patients in Stage 1 and in 18/34 (52.9%) in Stage 2 (Table 2). Diarrhea occurred in 4/10 (40%) patients in Stage 1 and 15/34 (44%) in Stage 2. One patient withdrew because of recurrent diarrhea. Other GI related AEs included abdominal pain 11/44 (32%), flatulence 3/44 (6.8%), vomiting 3/44 (6.8%), worsening of acid reflux 2/44 (4.5%), and worsening of hemorrhoids 1/44 (2.2%). One patient had a lower GI bleed (Serious adverse event, SAE) during the withdrawal period. This patient was receiving aspirin, naproxen and clopidogrel at the time of the bleed, and colonoscopy revealed large areas of diverticulosis and polyps. This SAE was considered unrelated to study medication. The only other noteworthy AE was dizziness 8/44 (18%). Dizziness was graded as moderate in one patient who was receiving an alpha-adrenergic blocking agent (Terazosin). This patient was withdrawn from the study and recovered spontaneously. All other AEs resolved spontaneously without discontinuation of squalamine (ENT-01). The relationship between dose and AEs is shown in Table 4.
No formal sample size calculation was performed for Stage 1. The number of subjects (n=10) was based on feasibility and was considered sufficient to meet the objectives of the study; which was to determine the tolerability of the treatment across the range of tested doses. For Stage 2, assuming the highest proportion of spontaneous resolution of constipation with no treatment to be 0.10, 34 evaluable subjects who have measurements at both baseline and at the end of the fixed dose period provided 80% power to detect the difference between 0.10 (proportion expected if patients are not treated) and a squalamine (ENT-01) treated proportion of 0.29.
No randomization was performed for Stage 1. During the randomization period of Stage 2, subjects were randomly allocated in equal proportion (1:1) to 1 of 2 double-blind treatment groups in a block size of 4: (1) squalamine (ENT-01) at the identified fixed dose level, or (2) placebo at the identified fixed dose level.
Adverse events were coded using the current version of MedDRA. Severity of AEs were assessed by investigators according to CTCAE (v4.03): Grade 1 is labeled as Mild, Grade 2 as Moderate, and Grade 3 and above as Severe. AEs that have a possible, probable or definite relationship to study drug were defined to be related to the study drug while others were defined as “not related”. The number (percentage) of subjects who experienced an AE during escalation and fixed dosing periods were summarized by dose level and overall for each stage. The denominator for calculating the percentages were based on the number of subjects ever exposed to each dose and overall.
Effect on Bowel Function:
Cumulative responder rates of bowel function are shown in
In Stage 2 (daily dosing), the response rate increased in a dose-dependent fashion from 26% at 75 mg to 85.3% at 250 mg. The dose required for a bowel response was patient-specific and varied from 75 mg to 250 mg. Median efficacious dose was 100 mg. Average CSBM/week increased from 1.2 at baseline to 3.8 at fixed dose (p=2.3×10−8) and SBM increased from 2.6 at baseline to 4.5 at fixed dose (p=6.4×10−6) (Table 7). Use of rescue medication decreased from 1.8/week at baseline to 0.3 at fixed dose (p=1.33×10−5). Consistency based on the Bristol stool scale also improved, increasing from mean 2.7 to 4.1 (p=0.0001) and ease of passage increased from 3.2 to 3.7 (p=0.03). Subjective indices of wellbeing (PAC-QOL) and constipation symptoms (PAC-SYM) also improved during treatment (p=0.009 and p=0.03 respectively).
The dose that proved efficacious in inducing a bowel response was strongly related to constipation severity at baseline (p=0.00055) (
While the improvement in most stool-related indices did not persist beyond the treatment period, CSBM frequency remained significantly above baseline value (Table 8).
The primary efficacy outcome variable was whether or not a subject was a “success” or “failure”. This is an endpoint based on subject diary entries for the “fixed dose” period prior to the endpoint assessment defined as average complete stool frequency increase by 1 or more over baseline, or 3 or more complete spontaneous stools/week. The subject was deemed a “success” if s/he met one or more of the criteria listed above, otherwise the subject was deemed a “failure”. The primary analysis was based on all subjects with a baseline assessment and an assessment at the end of the “fixed-dose” period and was a comparison of the proportion of successes with 0.10 (the null hypothesis corresponding to no treatment effect).
The proportion of subjects for whom the drug was a success was estimated with a binomial point estimate and corresponding 95% confidence interval. A secondary analysis compared the proportions of subjects who are deemed a success at the end of the randomized fixed-dose period between those randomized to the squalamine (ENT-01) arm and those randomized to the placebo arm. A Fisher's exact test was used to compare the proportions of subjects who were deemed a success at the end of randomization period between the two randomized arms
Subgroup Analysis:
Fifteen patients were randomized to treatment (n=6) or placebo (n=9) after the fixed dose period. During the 4-6 days of randomized treatment, the mean CSBM frequency in the treatment group remained higher than baseline as compared to those receiving placebo who returned to their baseline values (Table 9).
CSBM increased in both groups during the treatment period and remained high in the treatment group during the randomized period but fell to baseline values in the placebo group.
Pharmakokinetics:
PK data were collected on the 10 patients enrolled in Stage 1 and 10 patients enrolled in Stage 2 to determine the extent of systemic absorption. In Stage 1, PK data were obtained at each visit, pre-medication, at 1, 2, 4, 8 and 24 hours (Table 10). In Stage 2, PK was measured on days 1 and 6 of the randomization period pre-medication, at 1, 2, 4 and 8 hours (Table 11). Based on the pharmacokinetic behavior of intravenously administered squalamine determined in prior clinical studies it is estimated that squalamine (ENT-01) exhibited oral bio-availability of less than 0.3% (Bhargava et al. 2001; Hao et al. 2003).
The mean Cmax, Tmax and T1/2 and AUC of the squalamine ion following squalamine (ENT-01) oral dosing for Stage 1 patients. The PK analyses are only approximate, as the lower limit of the validated concentration range was 10 ng/ml; most of the measured concentrations fell below that value. The mean Cmax, Tmax and T1/2 and AUC of the squalamine ion following squalamine (ENT-01) oral dosing for Stage 2 patients. The PK analyses are only approximate, as the lower limit of the validated concentration range was 0.5 ng/ml.
CNS Symptoms in Stage 2:
An exploratory analysis was done with respect to the sleep data, the body temperature data, mood, fatigue, hallucinations, cognition and other motor and non-motor symptoms of PD. Continuous measurements within a subject were compared with a paired t-test and continuous measurements between subject groups were compared with a two-group t-test. Categorical data were compared with a chi-squared test or a Fisher's exact test if the expected cell counts are too small for a chi-squared test.
CNS symptoms:
CNS symptoms were evaluated at baseline and at the end of the fixed dose period and the wash-out period (Table 12). Total UPDRS score was 64.4 at baseline, 60.6 at the end of the fixed dose period and 55.7 at the end of the wash-out period (p=0.002); similarly, the motor component of the UPDRS improved from 35.3 at baseline to 33.3 at the end of fixed dose to 30.2 at the end of wash-out (p=0.006). MMSE improved from 28.4 at baseline to 28.7 during treatment and to 29.3 during wash-out (p=0.0006). BDI-II decreased from 10.9 at baseline to 9.9 during treatment and 8.7 at wash-out (p=0.10). PDHQ improved from 1.3 at baseline to 1.8 during treatment and 0.9 during wash-out (p=0.03). Hallucinations were reported by 5 patients at baseline and delusions in 1 patient. Both hallucinations and delusions improved or disappeared in 5 of 6 patients during treatment and did not return for 4 weeks following discontinuation of squalamine (ENT-01) in 1 patient and 2 weeks in another. The frequency of arm or leg thrashing reported in the sleep diary diminished progressively from 2.2 episodes/week at baseline to 0 at maximal dose. Total sleep time increased progressively from 7.1 hours at baseline to 8.4 hours at 250 mg and was consistently higher than baseline beyond 125 mg (
Circadian rhythm of skin temperature was evaluable in 12 patients (i.e., those who had recordings that extended from baseline through washout). Circadian system functionality was evaluated by continuously monitoring wrist skin temperature using a temperature sensor (Thermochron iButton DS1921H; Maxim, Dallas, Tex.) (Sarabia et al. 2008). A nonparametric analysis was performed for each participant to characterize DST as previously described (Sarabia et al. 2008; Ortiz-Tudela et al. 2010).
Briefly, this analysis includes the following parameters: (i) the inter-daily stability (the constancy of 24-hour rhythmic pattern over days, IS); (ii) intra-daily variability (rhythm fragmentation, IV); (iii) average of 10-minute intervals for the 10 hours with the minimum temperature (L10); (iv) average of 10-minute intervals for the 5 hours with the maximum temperature (M5) and the relative amplitude (RA), which was determined by the difference between M5 and L10, divided by the sum of both. Finally, the Circadian Function Index (CFI) was calculated by integrating IS, IV, and RA. Consequently, CFI is a global measure that oscillates between 0 for the absence of circadian rhythmicity and 1 for a robust circadian rhythm (Ortiz-Tudela et al. 2010).
A comparison was performed of circadian rhythm parameters during the baseline, fixed dose and washout periods. ENT-01 administration improved all markers of healthy circadian function, increasing rhythm stability (IS, p=0.026), relative amplitude (RA, p=0.001) and circadian function index (CFI, p=0.016), while reducing rhythm fragmentation (IV, p=0.031). The improvement persisted for several of these circadian parameters during wash-out period (IS, p=0.008 and CFI, p=0.004). (
This Phase 2 trial involving 50 patients with PD assessed the safety of orally administered ENT-01, and the effect on bowel function and neurologic symptoms of PD. In addition, the study aimed to identify a dose of ENT-01 that normalizes bowel function in each patient. The study achieved the objectives of identifying safety and pharmacodynamic responses of ENT-01 in PD. In addition, the study is the first proof of concept demonstration that directly targeting αS pharmacologically can achieve beneficial GI, autonomic and CNS responses.
The effective dose ranged between 75 mg and 250 mg, with 85% of patients responding within this range. This dose correlated positively with constipation severity at baseline consistent with the hypothesis that gastrointestinal dysmotility in PD results from the progressive accumulation of αS in the ENS, and that squalamine (ENT-01) can restore neuronal function by displacing αS and stimulating enteric neurons. These results demonstrate that the ENS in PD is not irreversibly damaged and can be restored to normal function.
Several exploratory endpoints were incorporated into the trial to evaluate the impact of ENT-01 on neurologic symptoms associated with PD. The UPDRS score, a global assessment of motor and non-motor symptoms, showed significant improvement. Improvement was also seen in the motor component. The improvement in the motor component is unlikely to be due to improved gastric motility and increased absorption of dopaminergic medications, since improvement persisted during the 2-week wash-out period, i.e., in the absence of study drug (Table 12).
Improvements were also seen in cognitive function (MMSE scores), hallucinations, REM-behavior disorder (RBD) and sleep. Six of the patients enrolled had daily hallucinations or delusions and these improved or disappeared during treatment in five. In one patient the hallucinations disappeared at 100 mg, despite not having reached the colonic prokinetic dose at 175 mg. The patient remained free of hallucinations for 1 month following cessation of dosing. RBD and total sleep time also improved progressively in a dose-dependent manner.
The prokinetic effect of the aminosterol squalamine appears to occur through local action of the compound on the ENS, since squalamine, the active zwitterion, is not significantly absorbed into the systemic circulation.
This prophetic example describes an exemplary method of (i) treating cognitive impairment and/or (ii) treating and/or preventing a disorder in which cognitive impairment is a known symptom (e.g., a cognitive impairment associated disorder) in a subject.
Patients are selected based on the cognitive impairment assessment using recognized clinical tools and scales for example as described in Example 1. Patients are grouped based on having a particular cognitive impairment associated disorder or having cognitive impairment with no underlying disorder. The groups are then subdivided into a control subgroup and a treatment subgroup. A “fixed dose” of an aminosterol or a salt or derivative thereof for each of the patients in the treatment subgroup is determined using the method described in Example 1 and in the application supra. Treatment and wash-out periods mirror Example 1. Patients are monitored for changes in the severity or occurrence of the symptoms. Patients with an underlying disorder are also monitored for changes in other symptoms associated with the disorder. Patients with no underlying disorder are monitored for the development of a cognitive impairment associated disorder.
Patients having more severe cognitive impairment based on a score on a clinical scale or tool that correlate with severe cognitive impairment are started at a dose of 75 mg or more. Patients having mild or moderate cognitive impairment based on a score on a clinical scale or tool that correlate with severe cognitive impairment are started at a starting dose of less than 75 mg, for example a dose of 25 mg/day. Thus, the starting aminosterol dose is dependent upon cognitive impairment severity. The full aminosterol dosing range is from about 1 to about 500 mg. Once a therapeutically effective dose has been identified for a patient, the subject is started at that same dose following drug cessation and reintroduction of drug dosing; e.g., there is no need to ramp up dosing once a therapeutically effective dose for a patient has been identified.
It will be apparent to those skilled in the art that various modifications and variations can be made in the methods and compositions of the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention, provided they come within the scope of the appended claims and their equivalents.
This application claims the priority benefits under 35 USC § 119 to U.S. provisional Application No. 62/714,470, filed Aug. 3, 2018; U.S. provisional Application No. 62/714,468, filed Aug. 3, 2018; and U.S. provisional Application 62/789,468, filed Jan. 7, 2019, the entire contents of which are incorporated herein by reference in their entirety
Number | Date | Country | |
---|---|---|---|
62714470 | Aug 2018 | US | |
62714468 | Aug 2018 | US | |
62789468 | Jan 2019 | US |