METHODS AND COMPOSITIONS FOR WEED CONTROL

Abstract
The present invention provides novel compositions for use to enhance weed control. Specifically, the present invention provides for methods and compositions that modulate glutamine synthetase in weed species. The present invention also provides for combinations of compositions and methods that enhance weed control.
Description
FIELD

The methods and compositions generally relate to the field of weed management. More specifically, related to glutamine synthetase (GS) genes in plants and compositions containing polynucleotide molecules for modulating their expression. Further provided are methods and compositions useful for weed control.


BACKGROUND

Weeds are plants that compete with cultivated plants in an agronomic environment and cost farmers billions of dollars annually in crop losses and the expense of efforts to keep weeds under control. Weeds also serve as hosts for crop diseases and insect pests. The losses caused by weeds in agricultural production environments include decreases in crop yield, reduced crop quality, increased irrigation costs, increased harvesting costs, reduced land value, injury to livestock, and crop damage from insects and diseases harbored by the weeds. The principal means by which weeds cause these effects are: 1) competing with crop plants for water, nutrients, sunlight and other essentials for growth and development, 2) production of toxic or irritant chemicals that cause human or animal health problem, 3) production of immense quantities of seed or vegetative reproductive parts or both that contaminate agricultural products and perpetuate the species in agricultural lands, and 4) production on agricultural and nonagricultural lands of vast amounts of vegetation that must be disposed of. Herbicide tolerant weeds are a problem with nearly all herbicides in use, there is a need to effectively manage these weeds. There are over 365 weed biotypes currently identified as being herbicide resistant to one or more herbicides by the Herbicide Resistance Action Committee (HRAC), the North American Herbicide Resistance Action Committee (NAHRAC), and the Weed Science Society of America (WSSA).


The glutamine synthetase (GS) enzyme is an essential enzyme in the metabolism of nitrogen by catalyzing the condensation of glutamate and ammonia to form glutamine. This enzyme is the target of phosphinic acids herbicides that include glufosinate-ammonium and bialaphos.


SUMMARY

In one aspect, the invention provides a method of plant control comprising an external application to a plant of a composition comprising a polynucleotide and a transfer agent, wherein the polynucleotide is essentially identical or essentially complementary to a glutamine synthetase (GS) gene sequence or fragment thereof, or to the RNA transcript of said GS gene sequence or fragment thereof, wherein said GS gene sequence is selected from the group consisting of SEQ ID NO:1-59 or a polynucleotide fragment thereof, whereby the weedy plant growth or development or reproductive ability is reduced or the weedy plant is made more sensitive to a GS inhibitor herbicide relative to a weedy plant not treated with said composition. In this manner, plants that have become resistant to the application of GS inhibitor contanining herbicides may be made more susceptible to the herbicidal effects of a GS inhibitor containing herbicide, thus potentiating the effect of the herbicide. The polynucleotide fragment is at least 18 contiguous nucleotides, at least 19 contiguous nucleotides, at least 20 contiguous nucleotides or at least 21 contiguous nucleotides in length and at least 85 percent identical to a GS gene sequence selected from the group consisting of SEQ ID NO:1-59 and the transfer agent is an organosilicone composition or compound. The polynucleotide fragment can also be sense or anti-sense ssDNA or ssRNA, dsRNA, or dsDNA, or dsDNA/RNA hybrids. The composition can include more than one polynucleotide fragments, and the composition can include a GS inhibitor herbicide and/or other herbicides (co-herbicides) that enhance the weed control activity of the composition.


In another aspect, polynucleotide molecules and methods for modulating GS gene expression in plant species are provided. The method reduces, represses or otherwise delays expression of a GS gene in a plant comprising an external application to a plant of a composition comprising a polynucleotide and a transfer agent, wherein the polynucleotide is essentially identical or essentially complementary to a GS gene sequence or fragment thereof, or to the RNA transcript of the GS gene sequence or fragment thereof, wherein the GS gene sequence is selected from the group consisting of SEQ ID NO:1-59 or a polynucleotide fragment thereof. The polynucleotide fragment is at least 18 contiguous nucleotides, at least 19 contiguous nucleotides, at least 20 contiguous nucleotides at least 21 contiguous nucleotides in length and at least 85 percent identical to a GS gene sequence selected from the group consisting of SEQ ID NO:1-59 and the transfer agent is an organosilicone compound. The polynucleotide fragment can also be sense or anti-sense ssDNA or ssRNA, dsRNA, or dsDNA, or dsDNA/RNA hybrids. Polynucleotide molecules comprising SEQ ID NOs 37-1056 are fragments of the GS gene.


In a further aspect, the polynucleotide molecule containing composition may be combined with other herbicidal (co-herbicides) compounds to provide additional control of unwanted plants in a field of cultivated plants.


In a further aspect, the polynucleotide molecule composition may be combined with any one or more additional agricultural chemicals, such as, insecticides, fungicides, nematocides, bactericides, acaricides, growth regulators, chemosterilants, semiochemicals, repellents, attractants, pheromones, feeding stimulants, biopesticides, microbial pesticides or other biologically active compounds to form a multi-component pesticide giving an even broader spectrum of agricultural protection.







DETAILED DESCRIPTION

Provided are methods and compositions containing a polynucleotide that provide for regulation, repression or delay of GS (glutamine synthetase) gene expression and enhanced control of weedy plant species and importantly GS inhibitor resistant weed biotypes. Aspects of the method can be applied to manage various weedy plants in agronomic and other cultivated environments.


The following definitions and methods are provided to better define the present invention and to guide those of ordinary skill in the art in the practice of the present invention. Unless otherwise noted, terms are to be understood according to conventional usage by those of ordinary skill in the relevant art. Where a term is provided in the singular, the inventors also contemplate aspects of the invention described by the plural of that term.


By “non-transcribable” polynucleotides is meant that the polynucleotides do not comprise a complete polymerase II transcription unit. As used herein “solution” refers to homogeneous mixtures and non-homogeneous mixtures such as suspensions, colloids, micelles, and emulsions.


Weedy plants are plants that compete with cultivated plants, those of particular importance include, but are not limited to important invasive and noxious weeds and herbicide resistant biotypes in crop production, such as, Amaranthus species—A. albus, A. blitoides, A. hybridus, A. palmeri, A. powellii, A. retroflexus, A. spinosus, A. tuberculatus, and A. viridis; Ambrosia species—A. trifida, A. artemisifolia; Lolium species—L. multiflorum, L. rigidium, L. perenne; Digitaria species—D. insularis; Euphorbia species—E. heterophylla; Kochia species—K. scoparia; Sorghum species—S. halepense; Conyza species—C. bonariensis, C. canadensis, C. sumatrensis; Chloris species—C. truncate; Echinochola species—E. colona, E. crus-galli; Eleusine species—E. indica; Poa species—P. annua; Plantago species—P. lanceolata; Avena species—A. fatua; Chenopodium species—C. album; Setaria species—S. viridis, Abutilon theophrasti, Ipomoea species, Sesbania, species, Cassia species, Sida species, Brachiaria, species and Solanum species.


Additional weedy plant species found in cultivated areas include Alopecurus myosuroides, Avena sterilis, Avena sterilis ludoviciana, Brachiaria plantaginea, Bromus diandrus, Bromus rigidus, Cynosurus echinatus, Digitaria ciliaris, Digitaria ischaemum, Digitaria sanguinalis, Echinochloa oryzicola, Echinochloa phyllopogon, Eriochloa punctata, Hordeum glaucum, Hordeum leporinum, Ischaemum rugosum, Leptochloa chinensis, Lolium persicum, Phalaris minor, Phalaris paradoxa, Rottboellia exalta, Setaria faberi, Setaria viridis var, robusta-alba schreiber, Setaria viridis var, robusta-purpurea, Snowdenia polystachea, Sorghum sudanese, Alisma plantago-aquatica, Amaranthus lividus, Amaranthus quitensis, Ammania auriculata, Ammania coccinea, Anthemis cotula, Apera spica-venti, Bacopa rotundifolia, Bidens pilosa, Bidens subalternans, Brassica tournefortii, Bromus tectorum, Camelina microcarpa, Chrysanthemum coronarium, Cuscuta campestris, Cyperus difformis, Damasonium minus, Descurainia sophia, Diplotaxis tenuifolia, Echium plantagineum, Elatine triandra var, pedicellata, Euphorbia heterophylla, Fallopia convolvulus, Fimbristylis miliacea, Galeopsis tetrahit, Galium spurium, Helianthus annuus, Iva xanthifolia, Ixophorus unisetus, Ipomoea indica, Ipomoea purpurea, Ipomoea sepiaria, Ipomoea aquatic, Ipomoea triloba, Lactuca serriola, Limnocharis flava, Limnophila erecta, Limnophila sessiliflora, Lindernia dubia, Lindernia dubia var, major, Lindernia micrantha, Lindernia procumbens, Mesembryanthemum crystallinum, Monochoria korsakowii, Monochoria vaginalis, Neslia paniculata, Papaver rhoeas, Parthenium hysterophorus, Pentzia suffruticosa, Phalaris minor, Raphanus raphanistrum, Raphanus sativus, Rapistrum rugosum, Rotala indica var, uliginosa, Sagittaria guyanensis, Sagittaria montevidensis, Sagittaria pygmaea, Salsola iberica, Scirpus juncoides var, ohwianus, Scirpus mucronatus, Setaria lutescens, Sida spinosa, Sinapis arvensis, Sisymbrium orientale, Sisymbrium thellungii, Solanum ptycanthum, Sonchus asper, Sonchus oleraceus, Sorghum bicolor, Stellaria media, Thlaspi arvense, Xanthium strumarium, Arctotheca calendula, Conyza sumatrensis, Crassocephalum crepidiodes, Cuphea carthagenenis, Epilobium adenocaulon, Erigeron philadelphicus, Landoltia punctata, Lepidium virginicum, Monochoria korsakowii, Solanum americanum, Solanum nigrum, Vulpia bromoides, Youngia japonica, Hydrilla verticillata, Carduus nutans, Carduus pycnocephalus, Centaurea solstitialis, Cirsium arvense, Commelina diffusa, Convolvulus arvensis, Daucus carota, Digitaria ischaemum, Echinochloa crus-pavonis, Fimbristylis miliacea, Galeopsis tetrahit, Galium spurium, Limnophila erecta, Matricaria perforate, Papaver rhoeas, Ranunculus acris, Soliva sessilis, Sphenoclea zeylanica, Stellaria media, Nassella trichotoma, Stipa neesiana, Agrostis stolonifera, Polygonum aviculare, Alopecurus japonicus, Beckmannia syzigachne, Bromus tectorum, Chloris inflate, Echinochloa erecta, Portulaca oleracea, and Senecio vulgaris. It is believed that all plants contain a glutamine synthetase (GS) gene in their genome, the sequence of which can be isolated and polynucleotides made according to the methods of the present invention that are useful for regulation, suppressing or delaying the expression of the target GS gene in the plants and the growth or development of the treated plants.


Some cultivated plants may also be weedy plants when they occur in unwanted environments. For example, corn plants growing in a soybean field. Transgenic crops with one or more herbicide tolerances will need specialized methods of management to control weeds and volunteer crop plants. The present invention enables the targeting of a transgene for herbicide tolerance to permit the treated plants to become sensitive to the herbicide. For example, transgene GS DNA sequences in transgenic events that include but are not limited to DP-004114-3, DAS-44406-6, DAS-68416-4, T304-40XGHB119, LLRICE601, TC-6275, LLCotton25, MS1 & RF1/RF2, Topas 19/2, Line 1507, MS6, GU262, A5547-127, T-120-7, W62, W98, A2704-12, A2704-21, A5547-35, and B16.


A “trigger” or “trigger polynucleotide” of the present invention is a polynucleotide molecule that is homologous or complementary to a target gene polynucleotide. The trigger polynucleotide molecules modulate expression of the target gene when topically applied to a plant surface with a transfer agent, whereby a plant treated with said composition has its growth or development or reproductive ability regulated, suppressed or delayed or said plant is more sensitive to a GS inhibitor herbicide as a result of said polynucleotide containing composition relative to a plant not treated with a composition containing the trigger molecule. Trigger polynucleotides disclosed herein are generally described in relation to the target gene sequence and maybe used in the sense (homologous) or antisense (complementary) orientation as single stranded molecules or comprise both strands as double stranded molecules or nucleotide variants and modified nucleotides thereof depending on the various regions of a gene being targeted.


It is contemplated that the composition of the present invention will contain multiple polynucleotides and herbicides that include but not limited to GS gene trigger polynucleotides and a GS inhibitor herbicide and anyone or more additional herbicide target gene trigger polynucleotides and the related herbicides and anyone or more additional essential gene trigger polynucleotides. Essential genes are genes in a plant that provide key enzymes or other proteins, for example, a biosynthetic enzyme, metabolizing enzyme, receptor, signal transduction protein, structural gene product, transcription factor, or transport protein; or regulating RNAs, such as, microRNAs, that are essential to the growth or survival of the organism or cell or involved in the normal growth and development of the plant (Meinke, et al., Trends Plant Sci. 2008 September; 13(9):483-91). The suppression of an essential gene enhances the effect of a herbicide that affects the function of a gene product different than the suppressed essential gene. The compositions of the present invention can include various trigger polynucleotides that modulate the expression of an essential gene other than a GS gene.


Herbicides for which transgenes for plant tolerance have been demonstrated and the method of the present invention can be applied, include but are not limited to: auxin-like herbicides, glyphosate, glufosinate, sulfonylureas, imidazolinones, bromoxynil, delapon, dicamba, cyclohezanedione, protoporphyrionogen oxidase inhibitors, 4-hydroxyphenyl-pyruvate-dioxygenase inhibitors herbicides. For example, transgenes and their polynucleotide molecules that encode proteins involved in herbicide tolerance are known in the art, and include, but are not limited to an 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), for example, as more fully described in U.S. Pat. Nos. 7,807,791 (SEQ ID NO:5); 6,248,876 B1; 5,627,061; 5,804,425; 5,633,435; 5,145,783; 4,971,908; 5,3372,910; 5,188,642; 4,940,835; 5,866,775; 6,225,114 B1; 6,130,366; 5,3370,667; 4,535,060; 4,769,061; 5,633,448; 5,510,471; U.S. Pat. No. Re. 36,449; U.S. Pat. Nos. RE 37,287 E; and 5,491,288; tolerance to sulfonylurea and/or imidazolinone, for example, as described more fully in U.S. Pat. Nos. 5,605,011; 5,013,659; 5,141,870; 5,767,361; 5,7337,180; 5,304,732; 4,761,373; 5,3337,107; 5,928,937; and 5,378,824; and international publication WO 96/33270; tolerance to hydroxyphenylpyruvatedioxygenases inhibiting herbicides in plants are described in U.S. Pat. Nos. 6,245,968 B1; 6,268,549; and 6,069,115; US Pat.Pub. 20110191897 and U.S. Pat. No. 7,3372,379 SEQ ID NO:3; U.S. Pat. No. 7,935,869; U.S. Pat. No. 7,304,209, SEQ ID NO:1, 3,5 and 15; aryloxyalkanoate dioxygenase polynucleotides, which confer tolerance to 2,4-D and other phenoxy auxin herbicides as well as to aryloxyphenoxypropionate herbicides as described, for example, in WO2005/107437; U.S. Pat. No. 7,838,733 SEQ ID NO:5;) and dicamba-tolerance polynucleotides as described, for example, in Herman et al. (2005) J. Biol. Chem. 280: 24759-24767. Other examples of herbicide-tolerance traits include those conferred by polynucleotides encoding an exogenous phosphinothricin acetyltransferase, as described in U.S. Pat. Nos. 5,969,213; 5,489,520; 5,550,3378; 5,874,265; 5,919,675; 5,561,236; 5,648,477; 5,646,024; 6,177,616; and 5,879,903. Plants containing an exogenous phosphinothricin acetyltransferase can exhibit improved tolerance to glufosinate herbicides, which inhibit the enzyme glutamine synthetase. Additionally, herbicide-tolerance polynucleotides include those conferred by polynucleotides conferring altered protoporphyrinogen oxidase (protox) activity, as described in U.S. Pat. Nos. 6,288,306 B1; 6,282,837 B1; and 5,767,373; and WO 01/12825. Plants containing such polynucleotides can exhibit improved tolerance to any of a variety of herbicides which target the protox enzyme (also referred to as protox inhibitors). Polynucleotides encoding a glyphosate oxidoreductase and a glyphosate-N-acetyl transferase (GOX described in U.S. Pat. No. 5,463,175 and GAT described in U.S. Patent publication 20030083480, dicamba monooxygenase U.S. Patent publication 20030135879, all of which are incorporated herein by reference); a polynucleotide molecule encoding bromoxynil nitrilase (Bxn described in U.S. Pat. No. 4,810,648 for Bromoxynil tolerance, which is incorporated herein by reference); a polynucleotide molecule encoding phytoene desaturase (crtl) described in Misawa et al, (1993) Plant J. 4:833-840 and Misawa et al, (1994) Plant J. 6:481-489 for norflurazon tolerance; a polynucleotide molecule encoding acetohydroxyacid synthase (AHAS, aka ALS) described in Sathasiivan et al. (1990) Nucl. Acids Res. 18:3378-2193 for tolerance to sulfonylurea herbicides; and the bar gene described in DeBlock, et al. (1987) EMBO J. 6:2513-2519 for glufosinate and bialaphos tolerance. The transgenic coding regions and regulatory elements of the herbicide tolerance genes are targets in which polynucleotide triggers and herbicides can be included in the composition of the present invention.


The compositions include a component that is a GS inhibitor herbicide, which include members of the Phosphinic acids herbicide group such as glufosinate-ammonium and bialaphos.


Numerous herbicides with similar or different modes of action (herein referred to as co-herbicides) are available that can be added to the composition of the present invention, for example, members of the herbicide families that include but are not limited to amide herbicides, aromatic acid herbicides, arsenical herbicides, benzothiazole herbicides, benzoylcyclohexanedione herbicides, benzofuranyl alkylsulfonate herbicides, carbamate herbicides, cyclohexene oxime herbicides, cyclopropylisoxazole herbicides, dicarboximide herbicides, dinitroaniline herbicides, dinitrophenol herbicides, diphenyl ether herbicides, dithiocarbamate herbicides, halogenated aliphatic herbicides, imidazolinone herbicides, inorganic herbicides, nitrile herbicides, organophosphorus herbicides, oxadiazolone herbicides, oxazole herbicides, phenoxy herbicides, phenylenediamine herbicides, pyrazole herbicides, pyridazine herbicides, pyridazinone herbicides, pyridine herbicides, pyrimidinediamine herbicides, pyrimidinyloxybenzylamine herbicides, quaternary ammonium herbicides, thiocarbamate herbicides, thiocarbonate herbicides, thiourea herbicides, triazine herbicides, triazinone herbicides, triazole herbicides, triazolone herbicides, triazolopyrimidine herbicides, uracil herbicides, and urea herbicides. In particular, the rates of use of the added herbicides can be reduced in compositions comprising the polynucleotides of the invention. Use rate reductions of the additional added herbicides can be 10-25 percent, 26-50 percent, 51-75 percent or more can be achieved that enhance the activity of the polynucleotides and herbicide composition and is contemplated as an aspect of the invention. Representative co-herbicides of the families include but are not limited to acetochlor, acifluorfen, acifluorfen-sodium, aclonifen, acrolein, alachlor, alloxydim, allyl alcohol, ametryn, amicarbazone, amidosulfuron, aminopyralid, amitrole, ammonium sulfamate, anilofos, asulam, atraton, atrazine, azimsulfuron, BCPC, beflubutamid, benazolin, benfluralin, benfuresate, bensulfuron, bensulfuron-methyl, bensulide, bentazone, benzfendizone, benzobicyclon, benzofenap, bifenox, bilanafos, bispyribac, bispyribac-sodium, borax, bromacil, bromobutide, bromoxynil, butachlor, butafenacil, butamifos, butralin, butroxydim, butylate, cacodylic acid, calcium chlorate, cafenstrole, carbetamide, carfentrazone, carfentrazone-ethyl, CDEA, CEPC, chlorflurenol, chlorflurenol-methyl, chloridazon, chlorimuron, chlorimuron-ethyl, chloroacetic acid, chlorotoluron, chlorpropham, chlorsulfuron, chlorthal, chlorthal-dimethyl, cinidon-ethyl, cinmethylin, cinosulfuron, cisanilide, clethodim, clodinafop, clodinafop-propargyl, clomazone, clomeprop, clopyralid, cloransulam, cloransulam-methyl, CMA, 4-CPB, CPMF, 4-CPP, CPPC, cresol, cumyluron, cyanamide, cyanazine, cycloate, cyclosulfamuron, cycloxydim, cyhalofop, cyhalofop-butyl, 2,4-D, 3,4-DA, daimuron, dalapon, dazomet, 2,4-DB, 3,4-DB, 2,4-DEB, desmedipham, dicamba, dichlobenil, ortho-dichlorobenzene, para-dichlorobenzene, dichlorprop, dichlorprop-P, diclofop, diclofop-methyl, diclosulam, difenzoquat, difenzoquat metilsulfate, diflufenican, diflufenzopyr, dimefuron, dimepiperate, dimethachlor, dimethametryn, dimethenamid, dimethenamid-P, dimethipin, dimethylarsinic acid, dinitramine, dinoterb, diphenamid, diquat, diquat dibromide, dithiopyr, diuron, DNOC, 3,4-DP, DSMA, EBEP, endothal, EPTC, esprocarb, ethalfluralin, ethametsulfuron, ethametsulfuron-methyl, ethofumesate, ethoxyfen, ethoxysulfuron, etobenzanid, fenoxaprop-P, fenoxaprop-P-ethyl, fentrazamide, ferrous sulfate, flamprop-M, flazasulfuron, florasulam, fluazifop, fluazifop-butyl, fluazifop-P, fluazifop-P-butyl, flucarbazone, flucarbazone-sodium, flucetosulfuron, fluchloralin, flufenacet, flufenpyr, flufenpyr-ethyl, flumetsulam, flumiclorac, flumiclorac-pentyl, flumioxazin, fluometuron, fluoroglycofen, fluoroglycofen-ethyl, flupropanate, flupyrsulfuron, flupyrsulfuron-methyl-sodium, flurenol, fluridone, fluorochloridone, fluoroxypyr, flurtamone, fluthiacet, fluthiacet-methyl, fomesafen, foramsulfuron, fosamine, glufosinate, glufosinate-ammonium, glyphosate, halosulfuron, halosulfuron-methyl, haloxyfop, haloxyfop-P, HC-252, hexazinone, imazamethabenz, imazamethabenz-methyl, imazamox, imazapic, imazapyr, imazaquin, imazethapyr, imazosulfuron, indanofan, iodomethane, iodosulfuron, iodosulfuron-methyl-sodium, ioxynil, isoproturon, isouron, isoxaben, isoxachlortole, isoxaflutole, karbutilate, lactofen, lenacil, linuron, MAA, MAMA, MCPA, MCPA-thioethyl, MCPB, mecoprop, mecoprop-P, mefenacet, mefluidide, mesosulfuron, mesosulfuron-methyl, mesotrione, metam, metamifop, metamitron, metazachlor, methabenzthiazuron, methylarsonic acid, methyldymron, methyl isothiocyanate, metobenzuron, metolachlor, S-metolachlor, metosulam, metoxuron, metribuzin, metsulfuron, metsulfuron-methyl, MK-66, molinate, monolinuron, MSMA, naproanilide, napropamide, naptalam, neburon, nicosulfuron, nonanoic acid, norflurazon, oleic acid (fatty acids), orbencarb, orthosulfamuron, oryzalin, oxadiargyl, oxadiazon, oxasulfuron, oxaziclomefone, oxyfluorfen, paraquat, paraquat dichloride, pebulate, pendimethalin, penoxsulam, pentachlorophenol, pentanochlor, pentoxazone, pethoxamid, petrolium oils, phenmedipham, phenmedipham-ethyl, picloram, picolinafen, pinoxaden, piperophos, potassium arsenite, potassium azide, pretilachlor, primisulfuron, primisulfuron-methyl, prodiamine, profluazol, profoxydim, prometon, prometryn, propachlor, propanil, propaquizafop, propazine, propham, propisochlor, propoxycarbazone, propoxycarbazone-sodium, propyzamide, prosulfocarb, prosulfuron, pyraclonil, pyraflufen, pyraflufen-ethyl, pyrazolynate, pyrazosulfuron, pyrazosulfuron-ethyl, pyrazoxyfen, pyribenzoxim, pyributicarb, pyridafol, pyridate, pyriftalid, pyriminobac, pyriminobac-methyl, pyrimisulfan, pyrithiobac, pyrithiobac-sodium, quinclorac, quinmerac, quinoclamine, quizalofop, quizalofop-P, rimsulfuron, sethoxydim, siduron, simazine, simetryn, SMA, sodium arsenite, sodium azide, sodium chlorate, sulcotrione, sulfentrazone, sulfometuron, sulfometuron-methyl, sulfosate, sulfosulfuron, sulfuric acid, tar oils, 2,3,6-TBA, TCA, TCA-sodium, tebuthiuron, tepraloxydim, terbacil, terbumeton, terbuthylazine, terbutryn, thenylchlor, thiazopyr, thifensulfuron, thifensulfuron-methyl, thiobencarb, tiocarbazil, topramezone, tralkoxydim, tri-allate, triasulfuron, triaziflam, tribenuron, tribenuron-methyl, tricamba, triclopyr, trietazine, trifloxysulfuron, trifloxysulfuron-sodium, trifluralin, triflusulfuron, triflusulfuron-methyl, trihydroxytriazine, tritosulfuron, [3-[2-chloro-4-fluoro-5-(-methyl-6-trifluoromethyl-2,4-dioxo-,2,3,4-t-etrahydropyrimidin-3-yl)phenoxy]-2-pyridyloxy]acetic acid ethyl ester (CAS RN 353292-3-6), 4-[(4,5-dihydro-3-methoxy-4-methyl-5-oxo)-H-,2,4-triazol-ylcarbonyl-sulfamoyl]-5-methylthiophene-3-carboxylic acid (BAY636), BAY747 (CAS RN 33504-84-2), topramezone (CAS RN 2063-68-8), 4-hydroxy-3-[[2-[(2-methoxyethoxy)methyl]-6-(trifluoro-methyl)-3-pyridi-nyl]carbonyl]-bicyclo[3,2]oct-3-en-2-one (CAS RN 35200-68-5), and 4-hydroxy-3-[[2-(3-methoxypropyl)-6-(difluoromethyl)-3-pyridinyl]carbon-yl]-bicyclo[3.2.]oct-3-en-2-one. Additionally, including herbicidal compounds of unspecified modes of action as described in CN101279950A, CN101279951A, DE10000600A1, DE10116399A1, DE102004054666A1, DE102005014638A1, DE102005014906A1, DE102007012168A1, DE102010042866A1, DE10204951A1, DE10234875A1, DE10234876A1, DE10256353A1, DE10256354A1, DE10256367A1, EP1157991A2, EP1238586A1, EP2147919A1, EP2160098A2, JP03968012B2, JP2001253874A, JP2002080454A, JP2002138075A, JP2002145707A, JP2002220389A, JP2003064059A, JP2003096059A, JP2004051628A, JP2004107228A, JP2005008583A, JP2005239675A, JP2005314407A, JP2006232824A, JP2006282552A, JP2007153847A, JP2007161701A, JP2007182404A, JP2008074840A, JP2008074841A, JP2008133207A, JP2008133218A, JP2008169121A, JP2009067739A, JP2009114128A, JP2009126792A, JP2009137851A, US20060111241A1, US20090036311A1, US20090054240A1, US20090215628A1, US20100099561A1, US20100152443A1, US20110105329A1, US20110201501A1, WO2001055066A2, WO2001056975A1, WO2001056979A1, WO2001090071A2, WO2001090080A1, WO2002002540A1, WO2002028182A1, WO2002040473A1, WO2002044173A2, WO2003000679A2, WO2003006422A1, WO2003013247A1, WO2003016308A1, WO2003020704A1, WO2003022051A1, WO2003022831A1, WO2003022843A1, WO2003029243A2, WO2003037085A1, WO2003037878A1, WO2003045878A2, WO2003050087A2, WO2003051823A1, WO2003051824A1, WO2003051846A2, WO2003076409A1, WO2003087067A1, WO2003090539A1, WO2003091217A1, WO2003093269A2, WO2003104206A2, WO2004002947A1, WO2004002981A2, WO2004011429A1, WO2004029060A1, WO2004035545A2, WO2004035563A1, WO2004035564A1, WO2004037787A1, WO2004067518A1, WO2004067527A1, WO2004077950A1, WO2005000824A1, WO2005007627A1, WO2005040152A1, WO2005047233A1, WO2005047281A1, WO2005061443A2, WO2005061464A1, WO2005068434A1, WO2005070889A1, WO2005089551A1, WO2005095335A1, WO2006006569A1, WO2006024820A1, WO2006029828A1, WO2006029829A1, WO2006037945A1, WO2006050803A1, WO2006090792A1, WO2006123088A2, WO2006125687A1, WO2006125688A1, WO2007003294A1, WO2007026834A1, WO2007071900A1, WO2007077201A1, WO2007077247A1, WO2007096576A1, WO2007119434A1, WO2007134984A1, WO2008009908A1, WO2008029084A1, WO2008059948A1, WO2008071918A1, WO2008074991A1, WO2008084073A1, WO2008100426A2, WO2008102908A1, WO2008152072A2, WO2008152073A2, WO2009000757A1, WO2009005297A2, WO2009035150A2, WO2009063180A1, WO2009068170A2, WO2009068171A2, WO2009086041A1, WO2009090401A2, WO2009090402A2, WO2009115788A1, WO2009116558A1, WO2009152995A1, WO2009158258A1, WO2010012649A1, WO2010012649A1, WO2010026989A1, WO2010034153A1, WO2010049270A1, WO2010049369A1, WO2010049405A1, WO2010049414A1, WO2010063422A1, WO2010069802A1, WO2010078906A2, WO2010078912A1, WO2010104217A1, WO2010108611A1, WO2010112826A3, WO2010116122A3, WO2010119906A1, WO2010130970A1, WO2011003776A2, WO2011035874A1, WO2011065451A1, all of which are incorporated herein by reference.


An agronomic field in need of plant control is treated by application of the composition directly to the surface of the growing plants, such as by a spray. For example, the method is applied to control weeds in a field of crop plants by spraying the field with the composition. The composition can be provided as a tank mix, a sequential treatment of components (generally the polynucleotide containing composition followed by the herbicide), or a simultaneous treatment or mixing of one or more of the components of the composition from separate containers. Treatment of the field can occur as often as needed to provide weed control and the components of the composition can be adjusted to target specific weed species or weed families through utilization of specific polynucleotides or polynucleotide compositions capable of selectively targeting the specific species or plant family to be controlled. The composition can be applied at effective use rates according to the time of application to the field, for example, preplant, at planting, post planting, post harvest. GS inhibitor herbicides can be applied to a field at rates of 100 to 500 g ai/ha (active ingredient per hectare) or more. The polynucleotides of the composition can be applied at rates of 1 to 30 grams per acre depending on the number of trigger molecules needed for the scope of weeds in the field.


Crop plants in which weed control is needed include but are not limited to, i) corn, soybean, cotton, canola, sugar beet, alfalfa, sugarcane, rice, and wheat; ii) vegetable plants including, but not limited to, tomato, sweet pepper, hot pepper, melon, watermelon, cucumber, eggplant, cauliflower, broccoli, lettuce, spinach, onion, peas, carrots, sweet corn, Chinese cabbage, leek, fennel, pumpkin, squash or gourd, radish, Brussels sprouts, tomatillo, garden beans, dry beans, or okra; iii) culinary plants including, but not limited to, basil, parsley, coffee, or tea; or, iv) fruit plants including but not limited to apple, pear, cherry, peach, plum, apricot, banana, plantain, table grape, wine grape, citrus, avocado, mango, or berry; v) a tree grown for ornamental or commercial use, including, but not limited to, a fruit or nut tree; or, vi) an ornamental plant (e.g., an ornamental flowering plant or shrub or turf grass). The methods and compositions provided herein can also be applied to plants produced by a cutting, cloning, or grafting process (i.e., a plant not grown from a seed) include fruit trees and plants that include, but are not limited to, citrus, apples, avocados, tomatoes, eggplant, cucumber, melons, watermelons, and grapes as well as various ornamental plants.


Pesticidal Mixtures

The polynucleotide compositions may also be used as mixtures with various agricultural chemicals and/or insecticides, miticides and fungicides, pesticidal and biopesticidal agents. Examples include but are not limited to azinphos-methyl, acephate, isoxathion, isofenphos, ethion, etrimfos, oxydemeton-methyl, oxydeprofos, quinalphos, chlorpyrifos, chlorpyrifos-methyl, chlorfenvinphos, cyanophos, dioxabenzofos, dichlorvos, disulfoton, dimethylvinphos, dimethoate, sulprofos, diazinon, thiometon, tetrachlorvinphos, temephos, tebupirimfos, terbufos, naled, vamidothion, pyraclofos, pyridafenthion, pirimiphos-methyl, fenitrothion, fenthion, phenthoate, flupyrazophos, prothiofos, propaphos, profenofos, phoxime, phosalone, phosmet, formothion, phorate, malathion, mecarbam, mesulfenfos, methamidophos, methidathion, parathion, methyl parathion, monocrotophos, trichlorphon, EPN, isazophos, isamidofos, cadusafos, diamidaphos, dichlofenthion, thionazin, fenamiphos, fosthiazate, fosthietan, phosphocarb, DSP, ethoprophos, alanycarb, aldicarb, isoprocarb, ethiofencarb, carbaryl, carbosulfan, xylylcarb, thiodicarb, pirimicarb, fenobucarb, furathiocarb, propoxur, bendiocarb, benfuracarb, methomyl, metolcarb, XMC, carbofuran, aldoxycarb, oxamyl, acrinathrin, allethrin, esfenvalerate, empenthrin, cycloprothrin, cyhalothrin, gamma-cyhalothrin, lambda-cyhalothrin, cyfluthrin, beta-cyfluthrin, cypermethrin, alpha-cypermethrin, zeta-cypermethrin, silafluofen, tetramethrin, tefluthrin, deltamethrin, tralomethrin, bifenthrin, phenothrin, fenvalerate, fenpropathrin, furamethrin, prallethrin, flucythrinate, fluvalinate, flubrocythrinate, permethrin, resmethrin, ethofenprox, cartap, thiocyclam, bensultap, acetamiprid, imidacloprid, clothianidin, dinotefuran, thiacloprid, thiamethoxam, nitenpyram, chlorfluazuron, diflubenzuron, teflubenzuron, triflumuron, novaluron, noviflumuron, bistrifluoron, fluazuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, chromafenozide, tebufenozide, halofenozide, methoxyfenozide, diofenolan, cyromazine, pyriproxyfen, buprofezin, methoprene, hydroprene, kinoprene, triazamate, endosulfan, chlorfenson, chlorobenzilate, dicofol, bromopropylate, acetoprole, fipronil, ethiprole, pyrethrin, rotenone, nicotine sulphate, BT (Bacillus Thuringiensis) agent, spinosad, abamectin, acequinocyl, amidoflumet, amitraz, etoxazole, chinomethionat, clofentezine, fenbutatin oxide, dienochlor, cyhexatin, spirodiclofen, spiromesifen, tetradifon, tebufenpyrad, binapacryl, bifenazate, pyridaben, pyrimidifen, fenazaquin, fenothiocarb, fenpyroximate, fluacrypyrim, fluazinam, flufenzin, hexythiazox, propargite, benzomate, polynactin complex, milbemectin, lufenuron, mecarbam, methiocarb, mevinphos, halfenprox, azadirachtin, diafenthiuron, indoxacarb, emamectin benzoate, potassium oleate, sodium oleate, chlorfenapyr, tolfenpyrad, pymetrozine, fenoxycarb, hydramethylnon, hydroxy propyl starch, pyridalyl, flufenerim, flubendiamide, flonicamid, metaflumizole, lepimectin, TPIC, albendazole, oxibendazole, oxfendazole, trichlamide, fensulfothion, fenbendazole, levamisole hydrochloride, morantel tartrate, dazomet, metam-sodium, triadimefon, hexaconazole, propiconazole, ipconazole, prochloraz, triflumizole, tebuconazole, epoxiconazole, difenoconazole, flusilazole, triadimenol, cyproconazole, metconazole, fluquinconazole, bitertanol, tetraconazole, triticonazole, flutriafol, penconazole, diniconazole, fenbuconazole, bromuconazole, imibenconazole, simeconazole, myclobutanil, hymexazole, imazalil, furametpyr, thifluzamide, etridiazole, oxpoconazole, oxpoconazole fumarate, pefurazoate, prothioconazole, pyrifenox, fenarimol, nuarimol, bupirimate, mepanipyrim, cyprodinil, pyrimethanil, metalaxyl, mefenoxam, oxadixyl, benalaxyl, thiophanate, thiophanate-methyl, benomyl, carbendazim, fuberidazole, thiabendazole, manzeb, propineb, zineb, metiram, maneb, ziram, thiuram, chlorothalonil, ethaboxam, oxycarboxin, carboxin, flutolanil, silthiofam, mepronil, dimethomorph, fenpropidin, fenpropimorph, spiroxamine, tridemorph, dodemorph, flumorph, azoxystrobin, kresoxim-methyl, metominostrobin, orysastrobin, fluoxastrobin, trifloxystrobin, dimoxystrobin, pyraclostrobin, picoxystrobin, iprodione, procymidone, vinclozolin, chlozolinate, flusulfamide, dazomet, methyl isothiocyanate, chloropicrin, methasulfocarb, hydroxyisoxazole, potassium hydroxyisoxazole, echlomezol, D-D, carbam, basic copper chloride, basic copper sulfate, copper nonylphenolsulfonate, oxine copper, DBEDC, anhydrous copper sulfate, copper sulfate pentahydrate, cupric hydroxide, inorganic sulfur, wettable sulfur, lime sulfur, zinc sulfate, fentin, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium hypochlorite, silver, edifenphos, tolclofos-methyl, fosetyl, iprobenfos, dinocap, pyrazophos, carpropamid, fthalide, tricyclazole, pyroquilon, diclocymet, fenoxanil, kasugamycin, validamycin, polyoxins, blasticiden S, oxytetracycline, mildiomycin, streptomycin, rape seed oil, machine oil, benthiavalicarbisopropyl, iprovalicarb, propamocarb, diethofencarb, fluoroimide, fludioxanil, fenpiclonil, quinoxyfen, oxolinic acid, chlorothalonil, captan, folpet, probenazole, acibenzolar-S-methyl, tiadinil, cyflufenamid, fenhexamid, diflumetorim, metrafenone, picobenzamide, proquinazid, famoxadone, cyazofamid, fenamidone, zoxamide, boscalid, cymoxanil, dithianon, fluazinam, dichlofluanide, triforine, isoprothiolane, ferimzone, diclomezine, tecloftalam, pencycuron, chinomethionat, iminoctadine acetate, iminoctadine albesilate, ambam, polycarbamate, thiadiazine, chloroneb, nickel dimethyldithiocarbamate, guazatine, dodecylguanidine-acetate, quintozene, tolylfluanid, anilazine, nitrothalisopropyl, fenitropan, dimethirimol, benthiazole, harpin protein, flumetover, mandipropamide and penthiopyrad.


Polynucleotides

As used herein, the term “DNA”, “DNA molecule”, “DNA polynucleotide molecule” refers to a single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA) molecule of genomic or synthetic origin, such as, a polymer of deoxyribonucleotide bases or a DNA polynucleotide molecule. As used herein, the term “DNA sequence”, “DNA nucleotide sequence” or “DNA polynucleotide sequence” refers to the nucleotide sequence of a DNA molecule. As used herein, the term “RNA”, “RNA molecule”, “RNA polynucleotide molecule” refers to a single-stranded RNA (ssRNA) or double-stranded RNA (dsRNA) molecule of genomic or synthetic origin, such as, a polymer of ribonucleotide bases that comprise single or double stranded regions. Unless otherwise stated, nucleotide sequences in the text of this specification are given, when read from left to right, in the 5′ to 3′ direction. The nomenclature used herein is that required by Title 37 of the United States Code of Federal Regulations §1.822 and set forth in the tables in WIPO Standard ST.25 (1998), Appendix 2, Tables 1 and 3.


As used herein, “polynucleotide” refers to a DNA or RNA molecule containing multiple nucleotides and generally refers both to “oligonucleotides” (a polynucleotide molecule of typically 50 or fewer nucleotides in length) and polynucleotides of 51 or more nucleotides. Embodiments of this invention include compositions including oligonucleotides having a length of 18-25 nucleotides (18-mers, 19-mers, 20-mers, 21-mers, 22-mers, 23-mers, 24-mers, or 25-mers) for example, oligonucleotides SEQ ID NO:1444-2045 or fragments thereof, or medium-length polynucleotides having a length of 26 or more nucleotides (polynucleotides of 26, 27, 28, 29, 30, 337, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, about 65, about 70, about 75, about 80, about 85, about 90, about 95, about 100, about 110, about 120, about 130, about 140, about 150, about 160, about 170, about 180, about 190, about 200, about 210, about 220, about 230, about 240, about 250, about 260, about 270, about 280, about 290, or about 300 nucleotides), for example, oligonucleotides of SEQ ID NO:60-1443 or fragments thereof or long polynucleotides having a length greater than about 300 nucleotides (for example, polynucleotides of between about 300 to about 400 nucleotides, between about 400 to about 500 nucleotides, between about 500 to about 600 nucleotides, between about 600 to about 700 nucleotides, between about 700 to about 800 nucleotides, between about 800 to about 900 nucleotides, between about 900 to about 1000 nucleotides, between about 300 to about 500 nucleotides, between about 300 to about 600 nucleotides, between about 300 to about 700 nucleotides, between about 300 to about 800 nucleotides, between about 300 to about 900 nucleotides, or about 1000 nucleotides in length, or even greater than about 1000 nucleotides in length, for example up to the entire length of a target gene including coding or non-coding or both coding and non-coding portions of the target gene), for example, polynucleotides of Table 1 (SEQ ID NO:1-59), wherein the selected polynucleotides or fragments thereof are homologous or complementary to SEQ ID NO:1-59, suppresses, represses or otherwise delays the expression of the target GS gene. A target gene comprises any polynucleotide molecule in a plant cell or fragment thereof for which the modulation of the expression of the target gene is provided by the methods and compositions of the present invention. Where a polynucleotide is double-stranded, its length can be similarly described in terms of base pairs. Oligonucleotides and polynucleotides of the present invention can be made that are essentially identical or essentially complementary to adjacent genetic elements of a gene, for example, spanning the junction region of an intron and exon, the junction region of a promoter and a transcribed region, the junction region of a 5′ leader and a coding sequence, the junction of a 3′ untranslated region and a coding sequence.


Polynucleotide compositions used in the various embodiments of this invention include compositions including oligonucleotides or polynucleotides or a mixture of both, including RNA or DNA or RNA/DNA hybrids or chemically modified oligonucleotides or polynucleotides or a mixture thereof. In some embodiments, the polynucleotide may be a combination of ribonucleotides and deoxyribonucleotides, for example, synthetic polynucleotides consisting mainly of ribonucleotides but with one or more terminal deoxyribonucleotides or synthetic polynucleotides consisting mainly of deoxyribonucleotides but with one or more terminal dideoxyribonucleotides. In some embodiments, the polynucleotide includes non-canonical nucleotides such as inosine, thiouridine, or pseudouridine. In some embodiments, the polynucleotide includes chemically modified nucleotides. Examples of chemically modified oligonucleotides or polynucleotides are well known in the art; see, for example, US Patent Publication 20110171287, US Patent Publication 20110171176, and US Patent Publication 20110152353, US Patent Publication, 20110152346, US Patent Publication 20110160082, herein incorporated by reference. For example, including but not limited to the naturally occurring phosphodiester backbone of an oligonucleotide or polynucleotide can be partially or completely modified with phosphorothioate, phosphorodithioate, or methylphosphonate internucleotide linkage modifications, modified nucleoside bases or modified sugars can be used in oligonucleotide or polynucleotide synthesis, and oligonucleotides or polynucleotides can be labeled with a fluorescent moiety (for example, fluorescein or rhodamine) or other label (for example, biotin).


The polynucleotides can be single- or double-stranded RNA or single- or double-stranded DNA or double-stranded DNA/RNA hybrids or modified analogues thereof, and can be of oligonucleotide lengths or longer. In more specific embodiments of the invention the polynucleotides that provide single-stranded RNA in the plant cell are selected from the group consisting of (a) a single-stranded RNA molecule (ssRNA), (b) a single-stranded RNA molecule that self-hybridizes to form a double-stranded RNA molecule, (c) a double-stranded RNA molecule (dsRNA), (d) a single-stranded DNA molecule (ssDNA), (e) a single-stranded DNA molecule that self-hybridizes to form a double-stranded DNA molecule, and (f) a single-stranded DNA molecule including a modified Pol III gene that is transcribed to an RNA molecule, (g) a double-stranded DNA molecule (dsDNA), (h) a double-stranded DNA molecule including a modified Pol III gene that is transcribed to an RNA molecule, (i) a double-stranded, hybridized RNA/DNA molecule, or combinations thereof. In some embodiments these polynucleotides include chemically modified nucleotides or non-canonical nucleotides. In some embodiments, the oligonucleotides may be blunt-ended or may comprise a 3′ overhang of from 1-5 nucleotides of at least one or both of the strands. Other configurations of the oligonucleotide are known in the field and are contemplated herein. In embodiments of the method the polynucleotides include double-stranded DNA formed by intramolecular hybridization, double-stranded DNA formed by intermolecular hybridization, double-stranded RNA formed by intramolecular hybridization, or double-stranded RNA formed by intermolecular hybridization. In one embodiment the polynucleotides include single-stranded DNA or single-stranded RNA that self-hybridizes to form a hairpin structure having an at least partially double-stranded structure including at least one segment that will hybridize to RNA transcribed from the gene targeted for suppression. Not intending to be bound by any mechanism, it is believed that such polynucleotides are or will produce single-stranded RNA with at least one segment that will hybridize to RNA transcribed from the gene targeted for suppression. In certain other embodiments the polynucleotides further includes a promoter, generally a promoter functional in a plant, for example, a pol II promoter, a pol III promoter, a pol IV promoter, or a pol V promoter.


The term “gene” refers to chromosomal DNA, plasmid DNA, cDNA, intron and exon DNA, artificial DNA polynucleotide, or other DNA that encodes a peptide, polypeptide, protein, or RNA transcript molecule, and the genetic elements flanking the coding sequence that are involved in the regulation of expression, such as, promoter regions, 5′ leader regions, 3′ untranslated regions. Any of the components of the gene are potential targets for the oligonucleotides and polynucleotides of the present invention.


The polynucleotide molecules of the present invention are designed to modulate expression by inducing regulation or suppression of an endogenous GS gene in a plant and are designed to have a nucleotide sequence essentially identical or essentially complementary to the nucleotide sequence of an endogenous GS gene of a plant or to the sequence of RNA transcribed from an endogenous GS gene of a plant, including a transgene in a plant that provides for a herbicide resistant GS enzyme, which can be coding sequence or non-coding sequence. Effective molecules that modulate expression are referred to as “a trigger molecule, or trigger polynucleotide”. By “essentially identical” or “essentially complementary” is meant that the trigger polynucleotides (or at least one strand of a double-stranded polynucleotide or portion thereof, or a portion of a single strand polynucleotide) are designed to hybridize to the endogenous gene noncoding sequence or to RNA transcribed (known as messenger RNA or an RNA transcript) from the endogenous gene to effect regulation or suppression of expression of the endogenous gene. Trigger molecules are identified by “tiling” the gene targets with partially overlapping probes or non-overlapping probes of antisense or sense polynucleotides that are essentially identical or essentially complementary to the nucleotide sequence of an endogenous gene. Multiple target sequences can be aligned and sequence regions with homology in common, according to the methods of the present invention, are identified as potential trigger molecules for the multiple targets. Multiple trigger molecules of various lengths, for example 18-25 nucleotides, 26-50 nucleotides, 51-100 nucleotides, 101-200 nucleotides, 201-300 nucleotides or more can be pooled into a few treatments in order to investigate polynucleotide molecules that cover a portion of a gene sequence (for example, a portion of a coding versus a portion of a noncoding region, or a 5′ versus a 3′ portion of a gene) or an entire gene sequence including coding and noncoding regions of a target gene. Polynucleotide molecules of the pooled trigger molecules can be divided into smaller pools or single molecules inorder to identify trigger molecules that provide the desired effect.


The target gene RNA and DNA polynucleotide molecules (Table 1, SEQ ID NO: 1-59) are sequenced by any number of available methods and equipment. Some of the sequencing technologies are available commercially, such as the sequencing-by-hybridization platform from Affymetrix Inc. (Sunnyvale, Calif.) and the sequencing-by-synthesis platforms from 454 Life Sciences (Bradford, Conn.), Illumina/Solexa (Hayward, Calif.) and Helicos Biosciences (Cambridge, Mass.), and the sequencing-by-ligation platform from Applied Biosystems (Foster City, Calif.), as described below. In addition to the single molecule sequencing performed using sequencing-by-synthesis of Helicos Biosciences, other single molecule sequencing technologies are encompassed by the method of the invention and include the SMRT™ technology of Pacific Biosciences, the Ion Torrent™ technology, and nanopore sequencing being developed for example, by Oxford Nanopore Technologies. A GS target gene comprising DNA or RNA can be isolated using primers or probes essentially complementary or essentially homologous to SEQ ID NO:1-59 or a fragment thereof. A polymerase chain reaction (PCR) gene fragment can be produced using primers essentially complementary or essentially homologous to SEQ ID NO:1-59 or a fragment thereof that is useful to isolate a GS gene from a plant genome. SEQ ID NO: 1-59 or fragments thereof can be used in various sequence capture technologies to isolate additional target gene sequences, for example, including but not limited to Roche NimbleGen® (Madison, Wis.) and Streptavdin-coupled Dynabeads® (Life Technologies, Grand Island, N.Y.) and US20110015084, herein incorporated by reference in its entirety.


Embodiments of functional single-stranded polynucleotides have sequence complementarity that need not be 100 percent, but is at least sufficient to permit hybridization to RNA transcribed from the target gene or DNA of the target gene to form a duplex to permit a gene silencing mechanism. Thus, in embodiments, a polynucleotide fragment is designed to be essentially identical to, or essentially complementary to, a sequence of 18 or more contiguous nucleotides in either the target GS gene sequence or messenger RNA transcribed from the target gene. By “essentially identical” is meant having 100 percent sequence identity or at least about 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 percent sequence identity when compared to the sequence of 18 or more contiguous nucleotides in either the target gene or RNA transcribed from the target gene; by “essentially complementary” is meant having 100 percent sequence complementarity or at least about 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 percent sequence complementarity when compared to the sequence of 18 or more contiguous nucleotides in either the target gene or RNA transcribed from the target gene. In some embodiments of this invention polynucleotide molecules are designed to have 100 percent sequence identity with or complementarity to one allele or one family member of a given target gene (coding or non-coding sequence of a gene for of the present invention); in other embodiments the polynucleotide molecules are designed to have 100 percent sequence identity with or complementarity to multiple alleles or family members of a given target gene.


In certain embodiments, the polynucleotides used in the compositions that are essentially identical or essentially complementary to the target gene or transcript will comprise the predominant nucleic acid in the composition. Thus in certain embodiments, the polynucleotides that are essentially identical or essentially complementary to the target gene or transcript will comprise at least about 50%, 75%, 95%, 98% or 100% of the nucleic acids provided in the composition by either mass or molar concentration. However, in certain embodiments, the polynucleotides that are essentially identical or essentially complementary to the target gene or transcript can comprise at least about 1% to about 50%, about 10% to about 50%, about 20% to about 50%, or about 30% to about 50% of the nucleic acids provided in the composition by either mass or molar concentration. Also provided are compositions where the polynucleotides that are essentially identical or essentially complementary to the target gene or transcript can comprise at least about 1% to 100%, about 10% to 100%, about 20% to about 100%, about 30% to about 50%, or about 50% to a 100% of the nucleic acids provided in the composition by either mass or molar concentration.


“Identity” refers to the degree of similarity between two polynucleic acid or protein sequences. An alignment of the two sequences is performed by a suitable computer program. A widely used and accepted computer program for performing sequence alignments is CLUSTALW v1.6 (Thompson, et al. Nucl. Acids Res., 22: 4673-4680, 1994). The number of matching bases or amino acids is divided by the total number of bases or amino acids, and multiplied by 100 to obtain a percent identity. For example, if two 580 base pair sequences had 145 matched bases, they would be 25 percent identical. If the two compared sequences are of different lengths, the number of matches is divided by the shorter of the two lengths. For example, if there are 100 matched amino acids between a 200 and a 400 amino acid protein, they are 50 percent identical with respect to the shorter sequence. If the shorter sequence is less than 150 bases or 50 amino acids in length, the number of matches are divided by 150 (for nucleic acid bases) or 50 (for amino acids), and multiplied by 100 to obtain a percent identity.


Trigger molecules for specific gene family members can be identified from coding and/or non-coding sequences of gene families of a plant or multiple plants, by aligning and selecting 200-300 polynucleotide fragments from the least homologous regions amongst the aligned sequences and evaluated using topically applied polynucleotides (as sense or anti-sense ssDNA or ssRNA, dsRNA, or dsDNA) to determine their relative effectiveness in inducing the herbicidal phenotype. The effective segments are further subdivided into 50-60 polynucleotide fragments, prioritized by least homology, and reevaluated using topically applied polynucleotides. The effective 50-60 polynucleotide fragments are subdivided into 19-30 polynucleotide fragments, prioritized by least homology, and again evaluated for induction of the yield/quality phenotype. Once relative effectiveness is determined, the fragments are utilized singly, or again evaluated in combination with one or more other fragments to determine the trigger composition or mixture of trigger polynucleotides for providing the yield/quality phenotype.


Trigger molecules for broad activity can be identified from coding and/or non-coding sequences of gene families of a plant or multiple plants, by aligning and selecting 200-300 polynucleotide fragments from the most homologous regions amongst the aligned sequences and evaluated using topically applied polynucleotides (as sense or anti-sense ssDNA or ssRNA, dsRNA, or dsDNA) to determine their relative effectiveness in inducing the yield/quality phenotype. The effective segments are subdivided into 50-60 polynucleotide fragments, prioritized by most homology, and reevaluated using topically applied polynucleotides. The effective 50-60 polynucleotide fragments are subdivided into 19-30 polynucleotide fragments, prioritized by most homology, and again evaluated for induction of the yield/quality phenotype. Once relative effectiveness is determined, the fragments may be utilized singly, or in combination with one or more other fragments to determine the trigger composition or mixture of trigger polynucleotides for providing the yield/quality phenotype.


Methods of making polynucleotides are well known in the art. Chemical synthesis, in vivo synthesis and in vitro synthesis methods and compositions are known in the art and include various viral elements, microbial cells, modified polymerases, and modified nucleotides. Commercial preparation of oligonucleotides often provides two deoxyribonucleotides on the 3′ end of the sense strand. Long polynucleotide molecules can be synthesized from commercially available kits, for example, kits from Applied Biosystems/Ambion (Austin, Tex.) have DNA ligated on the 5′ end in a microbial expression cassette that includes a bacterial T7 polymerase promoter that makes RNA strands that can be assembled into a dsRNA and kits provided by various manufacturers that include T7 RiboMax Express (Promega, Madison, Wis.), AmpliScribe T7-Flash (Epicentre, Madison, Wis.), and TranscriptAid T7 High Yield (Fermentas, Glen Burnie, Md.). dsRNA molecules can be produced from microbial expression cassettes in bacterial cells (Ongvarrasopone et al. ScienceAsia 33:35-39; Yin, Appl. Microbiol. Biotechnol 84:323-333, 2009; Liu et al., BMC Biotechnology 10:85, 2010) that have regulated or deficient RNase III enzyme activity or the use of various viral vectors to produce sufficient quantities of dsRNA. In the present invention, GS gene fragments are inserted into the microbial expression cassettes in a position in which the fragments are express to produce ssRNA or dsRNA useful in the methods described herein to regulate expression on a target GS gene. Long polynucleotide molecules can also be assembled from multiple RNA or DNA fragments. In some embodiments design parameters such as Reynolds score (Reynolds et al. Nature Biotechnology 22, 326-330 (2004), Tuschl rules (Pei and Tuschl, Nature Methods 3(9): 670-676, 2006), i-score (Nucleic Acids Res 35: e123, 2007), i-Score Designer tool and associated algorithms (Nucleic Acids Res 32: 936-948, 2004. Biochem Biophys Res Commun 316: 1050-1058, 2004, Nucleic Acids Res 32: 893-901, 2004, Cell Cycle 3: 790-5, 2004, Nat Biotechnol 23: 995-1001, 2005, Nucleic Acids Res 35: e27, 2007, BMC Bioinformatics 7: 520, 2006, Nucleic Acids Res 35: e123, 2007, Nat Biotechnol 22: 326-330, 2004) are known in the art and may be used in selecting polynucleotide sequences effective in gene silencing. In some embodiments the sequence of a polynucleotide is screened against the genomic DNA of the intended plant to minimize unintentional silencing of other genes.


The trigger polynucleotide and oligonucleotide molecule compositions of this invention are useful in compositions, such as liquids that comprise the polynucleotide molecules at low concentrations, alone or in combination with other components, for example one or more herbicide molecules, either in the same solution or in separately applied liquids that also provide a transfer agent. While there is no upper limit on the concentrations and dosages of polynucleotide molecules that can useful in the methods, lower effective concentrations and dosages will generally be sought for efficiency. The concentrations can be adjusted in consideration of the volume of spray or treatment applied to plant leaves or other plant part surfaces, such as flower petals, stems, tubers, fruit, anthers, pollen, or seed. In one embodiment, a useful treatment for herbaceous plants using 25-mer oligonucleotide molecules is about 1 nanomole (nmol) of oligonucleotide molecules per plant, for example, from about 0.05 to 1 nmol per plant. Other embodiments for herbaceous plants include useful ranges of about 0.05 to about 100 nmol, or about 0.1 to about 20 nmol, or about 1 nmol to about 10 nmol of polynucleotides per plant. Very large plants, trees, or vines may require correspondingly larger amounts of polynucleotides. When using long dsRNA molecules that can be processed into multiple oligonucleotides, lower concentrations can be used. To illustrate embodiments of the invention, the factor 1×, when applied to oligonucleotide molecules is arbitrarily used to denote a treatment of 0.8 nmol of polynucleotide molecule per plant; 10×, 8 nmol of polynucleotide molecule per plant; and 100×, 80 nmol of polynucleotide molecule per plant.


The polynucleotide compositions of this invention are useful in compositions, such as liquids that comprise polynucleotide molecules, alone or in combination with other components either in the same liquid or in separately applied liquids that provide a transfer agent. As used herein, a transfer agent is an agent that, when combined with a polynucleotide in a composition that is topically applied to a target plant surface, enables the polynucleotide to enter a plant cell. In certain embodiments, a transfer agent is an agent that conditions the surface of plant tissue, e.g., leaves, stems, roots, flowers, or fruits, to permeation by the polynucleotide molecules into plant cells. The transfer of polynucleotides into plant cells can be facilitated by the prior or contemporaneous application of a polynucleotide-transferring agent to the plant tissue. In some embodiments the transferring agent is applied subsequent to the application of the polynucleotide composition. The polynucleotide transfer agent enables a pathway for polynucleotides through cuticle wax barriers, stomata and/or cell wall or membrane barriers into plant cells. Suitable transfer agents to facilitate transfer of the polynucleotide into a plant cell include agents that increase permeability of the exterior of the plant or that increase permeability of plant cells to oligonucleotides or polynucleotides. Such agents to facilitate transfer of the composition into a plant cell include a chemical agent, or a physical agent, or combinations thereof. Chemical agents for conditioning or transfer include (a) surfactants, (b) an organic solvent or an aqueous solution or aqueous mixtures of organic solvents, (c) oxidizing agents, (d) acids, (e) bases, (f) oils, (g) enzymes, or combinations thereof. Embodiments of the method can optionally include an incubation step, a neutralization step (e.g., to neutralize an acid, base, or oxidizing agent, or to inactivate an enzyme), a rinsing step, or combinations thereof. Embodiments of agents or treatments for conditioning of a plant to permeation by polynucleotides include emulsions, reverse emulsions, liposomes, and other micellar-like compositions. Embodiments of agents or treatments for conditioning of a plant to permeation by polynucleotides include counter-ions or other molecules that are known to associate with nucleic acid molecules, e.g., inorganic ammonium ions, alkyl ammonium ions, lithium ions, polyamines such as spermine, spermidine, or putrescine, and other cations. Organic solvents useful in conditioning a plant to permeation by polynucleotides include DMSO, DMF, pyridine, N-pyrrolidine, hexamethylphosphoramide, acetonitrile, dioxane, polypropylene glycol, other solvents miscible with water or that will dissolve phosphonucleotides in non-aqueous systems (such as is used in synthetic reactions). Naturally derived or synthetic oils with or without surfactants or emulsifiers can be used, e.g., plant-sourced oils, crop oils (such as those listed in the 9th Compendium of Herbicide Adjuvants, publicly available on the worldwide web (internet) at herbicide.adjuvants.com can be used, e.g., paraffinic oils, polyol fatty acid esters, or oils with short-chain molecules modified with amides or polyamines such as polyethyleneimine or N-pyrrolidine. Transfer agents include, but are not limited to, organosilicone preparations.


In certain embodiments, an organosilicone preparation that is commercially available as Silwet® L-77 surfactant having CAS Number 27306-78-1 and EPA Number: CAL.REG.NO. 5905-50073-AA, and currently available from Momentive Performance Materials, Albany, N.Y. can be used to prepare a polynucleotide composition. In certain embodiments where a Silwet L-77 organosilicone preparation is used as a pre-spray treatment of plant leaves or other plant surfaces, freshly made concentrations in the range of about 0.015 to about 2 percent by weight (wt percent) (e.g., about 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06, 0.065, 0.07, 0.075, 0.08, 0.085, 0.09, 0.095, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.5 wt percent) are efficacious in preparing a leaf or other plant surface for transfer of polynucleotide molecules into plant cells from a topical application on the surface. In certain embodiments of the methods and compositions provided herein, a composition that comprises a polynucleotide molecule and an organosilicone preparation comprising Silwet L-77 in the range of about 0.015 to about 2 percent by weight (wt percent) (e.g., about 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06, 0.065, 0.07, 0.075, 0.08, 0.085, 0.09, 0.095, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.5 wt percent) is used or provided.


In certain embodiments, any of the commercially available organosilicone preparations provided such as the following Breakthru S 321, Breakthru S 200 Cat #67674-67-3, Breakthru OE 441 Cat#68937-55-3, Breakthru S 278 Cat #27306-78-1, Breakthru S 243, Breakthru S 233 Cat#134180-76-0, available from manufacturer Evonik Goldschmidt (Germany), Silwet® HS 429, Silwet® HS 312, Silwet® HS 508, Silwet® HS 604 (Momentive Performance Materials, Albany, N.Y.) can be used as transfer agents in a polynucleotide composition. In certain embodiments where an organosilicone preparation is used as a pre-spray treatment of plant leaves or other surfaces, freshly made concentrations in the range of about 0.015 to about 2 percent by weight (wt percent) (e.g., about 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06, 0.065, 0.07, 0.075, 0.08, 0.085, 0.09, 0.095, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.5 wt percent) are efficacious in preparing a leaf or other plant surface for transfer of polynucleotide molecules into plant cells from a topical application on the surface. In certain embodiments of the methods and compositions provided herein, a composition that comprises a polynucleotide molecule and an organosilicone preparation in the range of about 0.015 to about 2 percent by weight (wt percent) (e.g., about 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06, 0.065, 0.07, 0.075, 0.08, 0.085, 0.09, 0.095, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.5 wt percent) is used or provided.


Organosilicone preparations used in the methods and compositions provided herein can comprise one or more effective organosilicone compounds. As used herein, the phrase “effective organosilicone compound” is used to describe any organosilicone compound that is found in an organosilicone preparation that enables a polynucleotide to enter a plant cell. In certain embodiments, an effective organosilicone compound can enable a polynucleotide to enter a plant cell in a manner permitting a polynucleotide mediated suppression of a target gene expression in the plant cell. In general, effective organosilicone compounds include, but are not limited to, compounds that can comprise: i) a trisiloxane head group that is covalently linked to, ii) an alkyl linker including, but not limited to, an n-propyl linker, that is covalently linked to, iii) a poly glycol chain, that is covalently linked to, iv) a terminal group. Trisiloxane head groups of such effective organosilicone compounds include, but are not limited to, heptamethyltrisiloxane. Alkyl linkers can include, but are not limited to, an n-propyl linker. Poly glycol chains include, but are not limited to, polyethylene glycol or polypropylene glycol. Poly glycol chains can comprise a mixture that provides an average chain length “n” of about “7.5”. In certain embodiments, the average chain length “n” can vary from about 5 to about 14. Terminal groups can include, but are not limited to, alkyl groups such as a methyl group. Effective organosilicone compounds are believed to include, but are not limited to, trisiloxane ethoxylate surfactants or polyalkylene oxide modified heptamethyl trisiloxane.




embedded image


(Compound I: polyalkyleneoxide heptamethyltrisiloxane, average n=7.5).


In certain embodiments, an organosilicone preparation that comprises an organosilicone compound comprising a trisiloxane head group is used in the methods and compositions provided herein. In certain embodiments, an organosilicone preparation that comprises an organosilicone compound comprising a heptamethyltrisiloxane head group is used in the methods and compositions provided herein. In certain embodiments, an organosilicone composition that comprises Compound I is used in the methods and compositions provided herein. In certain embodiments, an organosilicone composition that comprises Compound I is used in the methods and compositions provided herein. In certain embodiments of the methods and compositions provided herein, a composition that comprises a polynucleotide molecule and one or more effective organosilicone compound in the range of about 0.015 to about 2 percent by weight (wt percent) (e.g., about 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06, 0.065, 0.07, 0.075, 0.08, 0.085, 0.09, 0.095, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.5 wt percent) is used or provided.


Compositions of the present invention include but are not limited components that are one or more polynucleotides essentially identical to, or essentially complementary to a GS gene sequence (promoter, intron, exon, 5′ untranslated region, 3′ untranslated region), a transfer agent that provides for the polynucleotide to enter a plant cell, a herbicide that complements the action of the polynucleotide, one or more additional herbicides that further enhance the herbicide activity of the composition or provide an additional mode of action different from the complementing herbicide, various salts and stabilizing agents that enhance the utility of the composition as an admixture of the components of the composition.


Methods include one or more applications of a polynucleotide composition and one or more applications of a permeability-enhancing agent for conditioning of a plant to permeation by polynucleotides. When the agent for conditioning to permeation is an organosilicone composition or compound contained therein, embodiments of the polynucleotide molecules are double-stranded RNA oligonucleotides, single-stranded RNA oligonucleotides, double-stranded RNA polynucleotides, single-stranded RNA polynucleotides, double-stranded DNA oligonucleotides, single-stranded DNA oligonucleotides, double-stranded DNA polynucleotides, single-stranded DNA polynucleotides, chemically modified RNA or DNA oligonucleotides or polynucleotides or mixtures thereof.


Compositions and methods are useful for modulating the expression of an endogenous GS gene (for example, Pest Manag Sci 2009; 65: 216-222, GS249 mutants) or transgenic GS gene (for example, U.S. Pat. Nos. 7,910,805; 5,969,213; 5,489,520; 5,550,318; 5,874,265; 5,919,675; 5,561,236; 5,648,477; 5,646,024; 6,177,616; and 5,879,903) in a plant cell. In various embodiments, a GS gene includes coding (protein-coding or translatable) sequence, non-coding (non-translatable) sequence, or both coding and non-coding sequence. Compositions of the invention can include polynucleotides and oligonucleotides designed to target multiple genes, or multiple segments of one or more genes. The target gene can include multiple consecutive segments of a target gene, multiple non-consecutive segments of a target gene, multiple alleles of a target gene, or multiple target genes from one or more species.


One aspect is a method for modulating expression of a GS gene in a plant including (a) conditioning of a plant to permeation by polynucleotides and (b) treatment of the plant with the polynucleotide molecules, wherein the polynucleotide molecules include at least one segment of 18 or more contiguous nucleotides cloned from or otherwise identified from the target GS gene in either anti-sense or sense orientation, whereby the polynucleotide molecules permeate the interior of the plant and induce modulation of the target gene. The conditioning and polynucleotide application can be performed separately or in a single step. When the conditioning and polynucleotide application are performed in separate steps, the conditioning can precede or can follow the polynucleotide application within minutes, hours, or days. In some embodiments more than one conditioning step or more than one polynucleotide molecule application can be performed on the same plant. In embodiments of the method, the segment can be cloned or identified from (a) coding (protein-encoding), (b) non-coding (promoter and other gene related molecules), or (c) both coding and non-coding parts of the target gene. Non-coding parts include DNA, such as promoter regions or the RNA transcribed by the DNA that provide RNA regulatory molecules, including but not limited to: introns, 5′ or 3′ untranslated regions, and microRNAs (miRNA), trans-acting siRNAs, natural anti-sense siRNAs, and other small RNAs with regulatory function or RNAs having structural or enzymatic function including but not limited to: ribozymes, ribosomal RNAs, t-RNAs, aptamers, and riboswitches.


All publications, patents and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.


The following examples are included to demonstrate examples of certain preferred embodiments. It should be appreciated by those of skill in the art that the techniques disclosed in the examples that follow represent approaches the inventors have found function well in the practice of the invention, and thus can be considered to constitute examples of preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments that are disclosed and still obtain a like or similar result without departing from the spirit and scope.


EXAMPLES
Example 1
Polynucleotides Related to the GS Gene Sequences

The target GS polynucleotide molecule naturally occurs in the genome of Abutilon theophrasti, Amaranthus albus, Amaranthus chlorostachys, Amaranthus graecizans, Amaranthus hybridus, Amaranthus lividus, Amaranthus palmeri, Amaranthus rudis, Amaranthus spinosus, Amaranthus thunbergii, Ambrosia trifida, Ambrosia artemisiifolia, Chenopodium album, Commelina diffusa, Convulvulus arvensis, Conyza candensis, Lolium multiflorum, Euphorbia heterophylla, Kochia scoparia, Sorghum halepense and Digitaria sanguinalis and include molecules related to the expression of a polypeptide identified as a GS, that include regulatory molecules, cDNAs comprising coding and noncoding regions of a GS gene and fragments thereof as shown in Table 1.


Polynucleotide molecules were extracted from these plant species by methods standard in the field, for example, total RNA is extracted using Trizol Reagent (Invitrogen Corp, Carlsbad, Calif. Cat. No. 15596-018), following the manufacturer's protocol or modifications thereof by those skilled in the art of polynucleotide extraction that may enhance recover or purity of the extracted RNA. Briefly, start with 1 gram of ground plant tissue for extraction. Prealiquot 10 milliliters (mL) Trizol reagent to 15 mL conical tubes. Add ground powder to tubes and shake to homogenize. Incubate the homogenized samples for 5 minutes (min) at room temperature (RT) and then add 3 mL of chloroform. Shakes tubes vigorously by hand for 15-30 seconds(sec) and incubate at RT for 3 min. Centrifuge the tubes at 7,000 revolutions per minute (rpm) for 10 min at 4 degrees C. Transfer the aqueous phase to a new 1.5 mL tube and add 1 volume of cold isopropanol. Incubate the samples for 20-30 min at RT and centrifuge at 10,000 rpm for 10 min at 4 degrees C. Wash pellet with Sigma-grade 80 percent ethanol. Remove the supernatant and briefly air-dry the pellet. Dissolve the RNA pellet in approximately 200 microliters of DEPC treated water. Heat briefly at 65 degrees C. to dissolve pellet and vortex or pipet to resuspend RNA pellet. Adjust RNA concentration to 1-2 microgram/microliter.


DNA was extracted using EZNA SP Plant DNA Mini kit (Omega Biotek, Norcross Ga., Cat#D5511) and Lysing Matrix E tubes (Q-Biogen, Cat#6914), following the manufacturer's protocol or modifications thereof by those skilled in the art of polynucleotide extraction that may enhance recover or purity of the extracted DNA. Briefly, aliquot ground tissue to a Lysing Matrix E tube on dry ice, add 800 μl Buffer SP1 to each sample, homogenize in a bead beater for 35-45 sec, incubate on ice for 45-60 sec, centrifuge at ≧14000 rpm for 1 min at RT, add 10 microliter RNase A to the lysate, incubate at 65° C. for 10 min, centrifuge for 1 min at RT, add 280 μl Buffer SP2 and vortex to mix, incubate the samples on ice for 5 min, centrifuge at ≧10,000 g for 10 min at RT, transfer the supernatant to a homogenizer column in a 2 ml collection tube, centrifuge at 10,000 g for 2 min at RT, transfer the cleared lysate into a 1.5 ml microfuge tube, add 1.5 volumes Buffer SP3 to the cleared lysate, vortex immediately to obtain a homogeneous mixture, transfer up to 650 μl supernatant to the Hi-Bind column, centrifuge at 10,000 g for 1 min, repeat, apply 100 μl 65° C. Elution Buffer to the column, centrifuge at 10,000 g for 5 min at RT.


Next-generation DNA sequencers, such as the 454-FLX (Roche, Branford, Conn.), the SOLiD (Applied Biosystems,), and the Genome Analyzer (HiSeq2000, Illumina, San Diego, Calif.) were used to provide polynucleotide sequence from the DNA and RNA extracted from the plant tissues. Raw sequence data is assembled into contigs. The contig sequence is used to identify trigger molecules that can be applied to the plant to enable regulation of the gene expression.


The target DNA sequence isolated from genomic (gDNA) and coding DNA (cDNA) from the various weedy plant species for the GS gene and the assembled contigs as set forth in SEQ ID NOs 1-59 and Table 1.


Example 2
Polynucleotides of the Invention Related to the Trigger Molecules

The gene sequences and fragments of Table 1 were divided into 200 polynucleotide (200-mer) lengths with 25 polynucleotide overlapping regions as in SEQ ID NO:37-1056. These polynucleotides are tested to select the most efficacious trigger regions across the length of any target sequence. The trigger polynucleotides are constructed as sense or anti-sense ssDNA or ssRNA, dsRNA, or dsDNA, or dsDNA/RNA hybrids and combined with an organosilicone based transfer agent to provide a polynucleotide preparation. The polynucleotides are combined into sets of two to three polynucleotides per set, using 4-8 nmol of each polynucleotide. Each polynucleotide set is prepared with the transfer agent and applied to a plant or a field of plants in combination with a GS inhibitor containing herbicide, or followed by a GS inhibitor treatment one to three days after the polynucleotide application, to determine the effect on the plant's susceptibility to a GS inhibitor. The effect is measured as stunting the growth and/or killing of the plant and is measured 8-14 days after treatment with the polynucleotide set and GS inhibitor. The most efficacious sets are identified and the individual polynucleotides are tested in the same methods as the sets are and the most efficacious single 200-mer identified. The 200-mer sequence is divided into smaller sequences of 50-70-mer regions with 10-15 polynucleotide overlapping regions and the polynucleotides tested individually. The most efficacious 50-70-mer is further divided into smaller sequences of 25-mer regions with a 12 to 13 polynucleotide overlapping region and tested for efficacy in combination with GS inhibitor treatment. By this method it is possible to identify an oligonucleotide or several oligonucleotides that are the most efficacious trigger molecule to effect plant sensitivity to a GS inhibitor or modulation of a GS gene expression. The modulation of GS gene expression is determined by the detection of GS siRNA moleclules specific to a GS gene or by an observation of a reduction in the amount of GS RNA transcript produced relative to an untreated plant or by merely observing the anticipated phenotype of the application of the trigger with the GS inhibiting herbicide. Detection of siRNA can be accomplished, for example, using kits such as mirVana (Ambion, Austin Tex.) and mirPremier (Sigma-Aldrich, St Louis, Mo.).


The target DNA sequence isolated from genomic (gDNA) and coding DNA (cDNA) from the various weedy plant species for the GS gene and the assembled contigs as set forth in SEQ ID NOs 1-59 were divided into polynucleotide fragments as set forth in SEQ ID NOs 60-1444.


The gene sequences and fragments of Table 1 were compared and 21-mers of contiguous polynucleotides were identified that had homology across the various GS gene sequences. The purpose is to identify trigger molecules that are useful as herbicidal molecules or in combination with a GS inhibitor herbicide across a broad range of weed species. The SEQ ID NO: 1444-2045 sequences represent the 21-mers that are present in the GS gene of at least two of the weed species of Table 1. It is contemplated that additional 21-mers can be selected from the sequences of Table 1 that are specific for a single weed species or a few weeds species within a genus or trigger molecules that are at least 18 contiguous nucleotides, at least 19 contiguous nucleotides, at least 20 contiguous nucleotides or at least 21 contiguous nucleotides in length and at least 85 percent identical to a GS gene sequence selected from the group consisting of SEQ ID NO:1-59 or fragment thereof.


By this method it is possible to identify an oligonucleotide or several oligonucleotides that are the most efficacious trigger molecule to effect plant sensitivity to GS inhibitor or modulation of GS gene expression. The modulation of GS gene expression is determined by the detection of GS siRNA moleclules specific to GS gene or by an observation of a reduction in the amount of GS RNA transcript produced relative to an untreated plant or by merely observing the anticipated phenotype of the application of the trigger with the GS inhibitor containing herbicide. Detection of siRNA can be accomplished, for example, using kits such as mirVana (Ambion, Austin Tex.) and mirPremier (Sigma-Aldrich, St Louis, Mo.).


The target DNA sequence isolated from genomic (gDNA) and coding DNA (cDNA) from the various weedy plant species for the GS gene and the assembled contigs as set forth in SEQ ID NOs 1-59 were divided into fragments as set forth in SEQ ID NOs 1444-2045.


Example 3
Methods Used in the Invention Related to Treating Plants or Plant Parts with a Topical Mixture of the Trigger Molecules

Glyphosate-sensitive Palmer amaranth (A. palmeri R-22) plants were grown in the greenhouse (30/20 C day/night T; 14 hour photoperiod) in 4 inch square pots containing Sun Gro® Redi-Earth and 3.5 kg/cubic meter Osmocote® 14-14-14 fertilizer. Palmer amaranth plants at 5 to 10 cm in height were treated with a mixture of 5 short (40-mer) single-strand antisense single strand DNA polynucleotides (ssDNA) targeting GS coding sequence at 4 nm (nanomole) each, formulated in 20 millimolar sodium phosphate buffer (pH 6.8) containing 2 percent ammonium sulfate and 1 percent Silwet L-77. Three pools of ssDNA polynucleotides were tested. One pool named the GS CpGS 1 contained 5 polynucleotides (SEQ ID NO: 2046-2050) that were selected to target the gene encoding the chloroplastic targeted glutamine synthetase1 gene. The second pool named GS CytGS 1 contained 5 polynucleotides (SEQ ID NO: 2051-2055) that were selected to target the cytosolic glutamine synthetase1 gene. The third pool (GS Mix) was a combination of ssDNA trigger molecules, two each from the GS CpGS1 and GS CytGS 1 pool plus one ssDNA (SEQ ID NO: 2056) targeting a cytosolic glutamine synthetase2 gene. Plants are treated manually by pipetting 10 μL of polynucleotide solution on four fully expanded mature leaves, for a total of 40 microliters of solution per plant. Three days after the trigger polynucleotide treatment, the plants were treated with Ignite® rate (Bayer Cropscience) at 1/32× (23 grams/hectare) field rate. There were four replications of each treatment. Plant growth and development was visually rated sixteen days after herbicide treatment to determine the efficacy of the polynucleotide pool and herbicide treatments. The result shown in Table 2 as the average percent efficacy observed of the four replications relative to the untreated control.









TABLE 2







ssDNA trigger polynucleotide activity on Palmer Amaranth, percent


efficacy












Formulation control
GS CpGS1
GS CytGS1
GS Mix







3
19
15
36










Example 4
A Method to Control Weeds in a Field

A method to control weeds in a field comprises the use of trigger polynucleotides that can modulate the expression of a GS gene in one or more target weed plant species. In SEQ ID NO: 1444-2045, an analysis of GS gene sequences from twenty-two plant species provided a collection of 21-mer polynucleotides that can be used in compositions to affect the growth or develop or sensitivity to GS inhibitor herbicide to control multiple weed species in a field. A composition containing 1 or 2 or 3 or 4 or more of the polynucleotides of SEQ ID NO: 1444-2045 would enable broad activity of the composition against the multiple weed species that occur in a field environment.


The method includes creating a composition that comprises components that include at least one polynucleotide of SEQ ID NO: 1444-2045 or any other effective gene expression modulating polynucleotide essentially identical or essentially complementary to SEQ ID NO:1-59 or fragment thereof, a transfer agent that mobilizes the polynucleotide into a plant cell and a GS inhibiting herbicide and optionally a polynucleotide that modulates the expression of an essential gene and optionally a herbicide that has a different mode of action relative to a GS inhibitor. The polynucleotide of the composition includes a dsRNA, ssDNA or dsDNA or a combination thereof. A composition containing a polynucleotide can have a use rate of about 1 to 30 grams or more per acre depending on the size of the polynucleotide and the number of polynucleotides in the composition. The composition may include one or more additional herbicides as needed to provide effective multi-species weed control. A field of crop plants in need of weed plant control is treated by spray application of the composition. The composition can be provided as a tank mix, a sequential treatment of components (generally the polynucleotide followed by the herbicide), a simultaneous treatment or mixing of one or more of the components of the composition from separate containers. Treatment of the field can occur as often as needed to provide weed control and the components of the composition can be adjusted to target specific weed species or weed families.









TABLE 1







Glutamine synthetase gene sequences isolated from various weed species











SEQ






ID


NO
SPECIES
TYPE
LENGTH
SEQ














1

Amaranthus

cDNAContig
1759
ATTATTCCACACTCCACACTACCCATTTCATTCTGCTC




palmeri



GCTCTCCTTCCTTCTTTCTCACTCCTTTATCTCTCTATA






TTCATCTCTCTCTCTAGCTTGTTCACGACGCCGACCA






CCCTTTTCCGATCCCAGGTAAAAGTGACCAAACATG






GCACAAATACTTGCACCTTACATGCAATGTCAGATG






AAGTTTTCAAAAGGCTCCACAAGTTCAATGACATCA






AATCCTTGGACTTCAATATTTCTTAAAGAAAATAAAA






AGGGATCAATTAAATGCTCTAGTAAGTTCAGAGTAT






GTGCTTCTCTCCAATCTGATAATAGCACAGTAAACA






GGGTGGAGCAGCTACTCAACTTGGATGTCACTCCAT






ACACTGACAAGATAATTGCAGAGTACATTTGGATTG






GAGGATCTGGCATTGATGTTCGTAGCAAATCAAGGA






CAATCTCTAAACCTGTTGAGCACCCATCTGAGCTTCC






CAAGTGGAATTATGATGGCTCAAGCACTGGACAAG






CGCCAGGAGAGGACAGTGAAGTAATCTTATACCCTC






AAGCAATTTTCAAGGATCCATTCCGTGGTGGTAATA






ATATCCTTGTAATCTGTGACACATACACACCAGCAG






GCGAACCCATCCCCACTAATAAAAGATACAGGGCTG






CACAGATCTTTAGCGACCCAAAGGTTGTTTCTGAGA






TTCCATGGTTTGGAATAGAGCAGGAATACACGTTGC






TCCAACAAAATGTTAAATGGCCTTTGGGATGGCCTG






TGGGAGCCTATCCTGGTCCTCAGGGTCCATACTATT






GTGGTGCTGGTGCTGACAAATCTTTTGGACGTGACA






TATCTGATGCTCATTACAAAGCTTGCTTGTATGCTGG






CATCAACATTAGTGGCACAAATGGGGAAGTTATGCC






TGGCCAGTGGGAATTCCAAGTTGGCCCAAGTGTTGG






TATTGAAGCTGGAGATCATATCTGGTGTGCGAGATA






TATTCTTGAGAGAATTACTGAACAAGCTGGTGTGGT






TCTGACTCTTGATCCAAAGCCTATTGAGGGTGATTG






GAACGGTGCAGGTTGCCATACCAATTACAGTACAAA






GACCATGAGAGAAGATGGTGGTTATGAAGCAATTA






AGAAGGCAATTTTGAATCTTTCATTACGCCACAAGG






ACCATATCAGTGCATATGGAGAAGGAAATGAACGA






AGGTTGACAGGGAAGCACGAGACCGCCAGCATCGA






CACATTCTCTTGGGGTGTTGCCAATCGTGGTTGCTCT






ATCCGTGTGGGTCGTGACACGGAAAAGGCAGGAAA






AGGTTATCTGGAAGATAGACGGCCTGCCTCAAACAT






GGACCCATACGTGGTAACAGGTTTGCTCGCAGAAAC






TACAATACTTTGGGAGCCAACACTTGAGGCTGAGGC






ACTCGCAGCCCAAAAACTCGCTCTTAATGTGTAATTC






ATTCATAAATCGTACCAGAGTATCGCATATTCATGAA






CGAGGGAACTCTTTCACGTGCCCAGAATTCGCTTATT






TTTAGTTTTTAGTATCCTGGGTATGTGAGTGTTTTCA






TTCATGACATTTGCTTCCGATCATTGTTTGTTTTGGG






AATTCTAGAGAATAATTTGTAACTGTTGCCTTTATTT






TTGCTCTTATGAAGCTCAAGCTCAGTATTAGTTATAT






TCCAGTTTAAGGAATGAACTTCAAAATCGTTTGTTAC






TCATCTTCAACTCCATTGAATACAAACTTAATAACTT






ATGTCTTAGTTTGCTAC





2

Amaranthus

gDNAContig
8486
CATGTAAAAATCAATGTGAACACAAAACCCGATTTT




palmeri



GAACCTACCCGAAACACCTGACCCTAAATCAACTCG






ATGACCCGAATGAACATCTGTAGGTGGGAGTAACA






ATCACGTTTTATGAGTCCATTTCCCCTTTAGGATATT






GTTTTCTCTATTTGGCTTTCCCAAAAAGTCAATGCTT






GGCTTTAGATTGATACAAACAATGAGCATGCATGTG






AGTGACAGAATGAGTAGACACAAACAAGAACCCTA






ATTAAATATCTAAATCATTACATACAATTTGATTTTCC






ATTAATTTAGTCCAGAGATTCTTTTGCATTCTCCAAA






TCTTGTTCAGATTGTTTATTCACCACTCAATTTCAGCA






TCCCTATCCTCTATGGAAGAGCCACACTTCATTTTCA






ACCATTATTCCACACTCCACACTACCCATTTCATTCTG






CTTACTCTCCTTCCTTCTTTCTCACTCCTTTATCTCTCT






ATATTCATCTTTCTCTCTCTAGTTTGTTCACGACGCCG






ACCACCCTTTTCCGATCCCAGGTTCTGCTGTTTATTTA






GCTTTTTTTGGTTATGTTTGCAATTGACTGTTGTGCT






GCTTGTAGTATCAGATTTGTGGAATTATCAGTGTTTT






GTGTTTGTGTGTTGAAACATGGCAAATGGGTTTGCA






TTGTGTTAATTTTTTCTTACTCGGATTGACATTGACC






GATCAACTCATTACCGCTAAAACACCCTTTTTTTTAAT






GGTGGAATGGCATTTGTTAAATGTTAGTCGTTTTGG






TATAGTAGCTTCAGATTAAGACTGCATAATGTTTACT






GGAGCTGTATTAAGATGCTATATTAGGGTTTTTGCT






ACACTTGAACATGGGTAAATGGTACCCAATTGGTTG






AAACTTGAAACTAGGATATTTCAATTGTGATTTTTCC






CTTTGTTTGACTTTCCCCGGATGCTTTGTGGGTTGAT






ATTGGCGTGGTAATGGGGAAGATCAATTGTTTTAGG






ATCAGGATTTAGGTATTCATTACCTCTAAACTCCCTT






TATGGTATGATTTGTCGCCTTCCTTCCCTTTCCAGAC






CCTGATCATAGTTTCCTTATGAGTGGGATACACTAGT






CAAGATGATCATGATGATGATGATAATTTTAGCTATT






CCTTGTGCTAGAGTCATTGATCAGTGTTACAAATTTC






CCAAACAAATTTGATGAGATGGAAGATAATTATTAA






AGCTACATTTTGTCGGAATACTATTGAAATTAATCAC






TTGTTAGAATATGTAAGTAGGTTATTACATTACTAAT






CACTTGTTAATGTCATTTTAATATGGAGGGAGTATG






GTTTTGTGGTTTTCCTAGCTAACAATCTATACCTGCG






GTCCTGCTGGCTATTTCTTTCCAGGCTCATGTTAGTA






TAGTGTATAAGTGGCCCCAACTTATCAGAAAGATGG






ATTTTGGCATTAACTATGTGACTATGTCCAAGTATAT






TGAACACTTTTATTTCTAGTTTCATTTATCTCCTGTAC






TTATTTGAGACCTGCTCTTGTGCTTCATATAAAAAAT






TACACAAAGGTTACAAAACACTGTTGGACTAAAACA






TAAGGAACTCGCCTTTACAACAATTGAAATTTTCTCA






TCTCATTCATATAGTGAGCTACTATTTGTGCGCGAGC






GATTACCGAATAGTGATTACATCATCTCTTTTGCCTA






TGTGTTTGTATTACTTGCATTTGCATACTCATGTCAT






GTACATGTGGATTTTCATGCTCAAACTTGAATACTTT






ATGAAGACATATCTGAAACACATGTGCATTTGTATT






ACCACATTTTTTTATCCAAAATGATATTCCAAATGTA






TTGTATGTCGGGGTGCCCAGCATTTAATCCAAAAGT






TTCATAAACCTTGAGTGACCGAGATGCAAATCTGTG






GCAATCTGATCTAAAGGTTTCATAAATCCTAGAATTC






AAAGCAGACATATCTGAAACACATAAATTAACGTGT






TATGCCCATGTACTCGAAAATGTTTCCTGGAAACTG






AGATTGGTTTTTCAACATAAGTTGACTCTTGACCATT






GTGTGTTTGGTTAGCAATCTACCTGAGTAACCCACAT






ATGTAAAACCCTAACATATTTTATTTGTGTTGTAGGT






AAAAGTGACCAAACATGGCACAAATACTTGCACCTT






ACATGCAATGTCAGATGAAGTTTTCAAAAGGCTCCA






CAAGTTCAATGACATCAAATCCTTGGACTTCAATATT






TCTTAAAGAAAATAAAAAGGGATCAATTAAATGCTC






TAGTAAGTTCAGAGTATGTGCTTCTCTCCAATCTGAT






AATAGCACAGTAAACAGGGTGGAGCAGCTACTCAA






CTTGGATGTCACTCCATACACTGACAAGATAATTGC






AGAGTACATTTGGTATATGGTTTTCCTTTCTATAGGC






CAGATGTCACATTAATTTTTTTTAGCTAATGTTTGTG






CTACTTTTAGTTTTTTCTCATCTGTAGATAAGACATTC






TTGGTGGTTTCTACTTTCAATCTGATTATAGAACTAA






TTGATCTACGATTGTTCTTTGGAACAGGATTGGAGG






ATCTGGTATTGATGTCCGTAGCAAATCAAGGGTACA






ATAACACTGATGCTGTCGATTTATTGTTAAACCAGCA






TTTAGATGTTAAGTTTACTTCATTTTTTCCCTGACCGA






TGTTTCTTAATATACCAGACAATCTCTAAACCTGTTG






AGCACCCATCTGAGCTTCCCAAGTGGAATTATGATG






GCTCAAGCACTGGACAAGCGCCAGGAGAGGACAGT






GAAGTAATCTTATAGTAAGATCTTGGGGCAGCTATA






AACCTTTATTACTTTGCTCAATTATTGTTGTCCTTGTT






TTTGCTTGACTATCTTTTGGGGCTTGAGAGTTCTTGT






CACTGAACTAACTCAAAAAGCTTAAGCTTTCATTTGA






GTCGATTCCTTGACATGGTATGGGAAGGTTAGCTTA






CGGGTTTGAATCTCATTTACCCTCCGGGAATTATTAT






TACTAAGTAAATGTGTCGTGTCCACACTTCTAGTTAG






GGCTTTCGTGTGAGGGGGCGTAGTAGGACCTCAAC






CATCAACTTAAGATTTATTTGAGTTGATTCCTAGAAA






ATTCTTGTCACTCATTAATTCGTAATCATGTCATTCAT






ATGCAGCCCTCAAGCAATTTTCAAGGATCCATTCCGT






GGTGGTAATAATATCCTTGTGAGTCATATTCTTTCTG






ACTGTTGTGAAACTCAATATTTATTCCAAAATTATGA






TGTTACCTCAATTGTTGAGATTAGAATTTTAATTATG






CATTGCCATGTAAATTTAGGTAATCTGTGACACATAC






ACACCAGCAGGCGAACCCATCCCCACTAATAAAAGA






TACAGGGCTGCACAGATCTTTAGCGACCCAAAGGTT






GTTTCTGAGATTCCATGGTAAGAAATTCCCATCATTG






ACAATATTTTGTTCCTAATCATATTTCCTAATTTAACA






CTCTCCACTGCAAGGGTGAACTTTATAGAAAGTTGA






CCCACTATCTGAGAAATGACAAATTAAAAACTGATT






TCTCTAGTTTTCTAATAAAAGACAATGCATAAATTAT






GTGATGGATACCACTAAGGGAATAACCTCACCAAAG






TTCACTTAAATTTGAAGGTTAAATTGTGGGATGTAC






AATCTAAACTCTCAATGTTTCTTTTGGATTCTAGGGA






ATGCTTATCCAAGCTTAAAACTGATCTTTTTGAATTTT






GAGTAAGATTGAACTCCGAATTCATTCAAAATTTTCA






AGAGCTCGTCAATATTACAACTCAAGCTTTGACAAA






ATCAAAACAATCATTCGTGTAAACACAATGAATTTGT






TTAAGGTGTTCAACTTTGTATTCTCTAAATAATGCAT






ACAACCTAGGGCCCCAGGCTACTTCAACGAGAACAT






ACCTCTAGTCCGACTCTTACTAGGAATTTCCTAAATA






ATGCTAAATCAAATATCTTCTGGATTGATTTAGCTGC






AAGTATCAAACAATATATTACTATTACTCGAATTAAA






AAGTAATCCTACCCTTATCCGGAGTGTAAAAATATCC






GGCTATCCTGTAAGAAAACCATAACCTAAACCTACG






TCTACTAGGATATGGTCAAACTATGAAGAAGCTTCC






AAGGATATTTGACATGGATAGAACTTTGACTTTTAA






CTCATACAAGCCAACATCACTTTGCAAACAAGTGAA






TAAATGATCCAAGCTGGGACTACGGAGAGGACAAA






ATGCGCACTTGTTCACATTAGAAAAATTACTAACAG






GAAGTATTCATTTGAACAAGCTAGGACTTCAAGTAA






TGCCTTTGATCTTGTGTCAATGGTTAGCAGTCGTAAT






ACAGTATGTCACACTTGTAATTAACATAACAAATCTG






TTGTTTTAAATATGACGGTTTGAATACCCATGTTCTA






CGGGAGGCATTTCACTATAAAGGTCAACCGTTTTTG






CCTAGTTTGGAGCTTGACAATTGCAAAAGTAATTCA






GGGGTCTGCTTTTCTAGAATTCTGGATCATTATGAGT






CTCTTCTGCTCTTTGTTTTCGCCTTTCTTTTTTCACTCT






CTAGTCTCTACTTTTGGGTTTATTCTTTATATTATACT






TTTGTAGGTTTGGAATAGAGCAGGAATACACTTTGC






TCCAACAAAATGTTAAATGGCCTTTGGGATGGCCTG






TGGGAGCATATCCTGGTCCTCAGGTGTGTTAATTCC






CCATATTATCAACAGTTTCTTTGAAGATAATGCTTTG






TTTCTGTTATATAATATGATTTTTTTGATATGTCTAGG






GTCCATACTATTGTGGTGCTGGTGCTGACAAGTCTTT






TGGACGTGACATATCTGATGCTCATTACAAAGCTTG






CTTGTATGCTGGCATCAACATTAGTGGCACAAATGG






GGAAGTTATGCCTGGCCAGGTGTCCTCTCGTATCAT






TCTTATGTCTTATTGCTATTTAATATGTCTTTGAAGTT






GGTTATGAATAGCTACATCTGCTTACACCTGCAGTG






GGAATTCCAAGTTGGTCCAAGTGTTGGCATTGAAGC






TGGAGATCATATCTGGTGTGCTAGATATATTCTTGA






GGTATTCTCCTGAAATTTGTATGTTTGCCCCTTTCAA






GTTATATTGTGGCAACTTTGAGTACATTCGAATGATC






AGGAATTCAGTCTTAGTGGTTAATTTTATAATTTTTA






CTAAGAGAACTGATAAATTAATCGACCTGACATTGA






AATTGTGCGTGATTCTCTGATCAAATGGGGACCACA






TTATGATAGAAATAATATGCATTATTATGACCCATAT






TTAGTCTACAATTGATTCAATCAAAAATCCTTATGGA






CCAGAAAAAGAAATTGTAATAATGATTCTCTAAAAA






TTTAGTTGAAATGTTGAATATAGGATCAAGCGTGAT






CCAAACCCAATCAAGATGGTATAAGGTGTCTTATCA






TCTATGTTTGTGAGAAAATGAGTTGTATCAGATTAAT






GGGAAACAACGGATGGAAGTTGATCACTTTTAGGC






ACATAAACAACAAACTTTCTTATATAATGTATATACT






CCTTCGGATGCGTAATTTTATTCAATCAAGCTGTTCA






ACAAGATTAAGCTACATGTCCTTTTGTTTTGTATGGG






ATGAACCAGAAAACTCTCATCTTTTTATGACCCTCAC






AAACCATTAACAATGTCTATTTATAGAGCATGTGTG






AATCTTAGGGCCTAGGGGTGTTAACGAGCTAAACCA






AGCCAAGTCGGGCTAGTGTGAGTGCTCAACTTGACT






TCATGTTTTTCAAACTCAAGCTAAATATTTGGATGTT






TTAGCTCAAAATTTAAGCTTCAAATCTCTATTTGGTG






TGATACTTTATATATATTAAGAGTTAAAAAGTTTCAC






TAACTACATATTAGAATATGCATTCGTATTGTATAAA






ACTTTAATAAGATTTTAAAATCTATTTAAAAACGATT






CTAATTCTCAAAACGAATATTGATAAAACCATTTTGA






GTATATTCACGAGCATATCAAGCTGAATGAGTTGGT






TTGCCTCTTAATCTTAGTTTCTTAAATGCTCGATAAG






CACCGAGGCACACAAGGTCCTCGGAGCCTAGGCGC






ATATCACAAGGCAAAAATGCGAGTTTTTTGTAGGCA






AGGAGCAAATCTTCACTAAAAAAATATTAAATATCA






AATTTAAAACATAAATATACTTATATTCATATTATAA






TAGCAACAAGCTTGAAAATATTCGTTATCATTGTTGT






AAACACTAATTTAGCATATAAGTGATATGTTTGAAA






ATGTGAAAATACCCAGTTATATTCTTCTTCTTCATGT






GGTTGTCTAGCCTATTTATTATGCAAGCAATAATTTC






TCGAACTTCATATTCAAGTGAATTTGGGTTTCTATGT






TTTATTTATTTTCAAACAAACAAGTTTAAGTTAATGT






CCAAGCCCAACAAGGAGGTGTATTGAGCGCACATG






GCCCGAAACGCGTCGAGGCACACCAAGATGCGCGC






CTCTTATAGTGGTTTTTGCCTCACCTTGCTAAGGCGT






CTTCGGCCGTGCAAAGCAATGCACACTTTTTAAAACT






AAGCTCTTGATAATCTGAGTTGTGCTCAAATAGTTTG






CAAATCGTGTGGGATCATAAATACCCCTCCATTAAG






CAGTAGAGATTCACAATTTCATTTCATTTGCGGTGTA






TCCTCAAATCGCTGCACCTGTAAAGGCAGCTGAACC






AAGATCTCAGTTTTTTATTGACTGTCTAGTCTGTAGA






AAAATTAAGAGATATCACCATTCAAGCTATTTTAATT






GAATTTAACAAGCTTTCTCTCCTTCAAACAGAGAATT






ACTGAACAAGCTGGTGTGGTTCTGACTCTTGATCCA






AAGCCTATTGAGGTACTGCCTTGTCCTTTTGTATTTC






TTATGAGCAGCTGTCTTTTCTAAAGAACCAGACTGA






ATTCCTCTCCAATATCTGCTTTTTTCAACAGGGTGAT






TGGAATGGTGCAGGTTGTCATACAAATTACAGGTAT






CTCGAATGTTTTAAATATTTTATACTGGTTATAATAC






ACGTAGCCCCTTGAACAGGATATATTACTCGAAATG






GTATTAAATTTGTAATTCATGGCAAACCACACGTCAA






TTTATTTTGTAAATGACAAATACTTCTTTTAGCATTAT






GGCATATCCATCTTAATGCAGCACAGTACACTATTG






AATTAGCATTCCAAAACTTCGAATATCGCCTGGCTGT






CTTAAGTACCCTTATATAGACATTTAAATCTATACTT






GTTACTGTAATTGCTAGTGTCTATGGAATTCACTATA






CTTCACATAGCTGAGTTGAAGTTGATGTTAGTGTCT






GTGATTTTTGTAGTACAAAGACCATGAGAGAAGATG






GTGGTTATGAAGCAATTAAGAAGGCAATTTTGAATC






TATCATTACGCCACAAGGACCATATCAGTGCATATG






GAGAAGGAAATGAACGAAGATTGACAGGGAAGCA






CGAGACCGCCAGCATCGACACTTTCTCTTGGGTATA






CAGATATATATGCCTTTTCTTGACGTCATGTTGAATA






TATTATTTTGCATATTATCTAACAAAAATATGATTTTT






TTTGTAACTTTCAGGGTGTTGCCAATCGTGGTTGCTC






TATCCGTGTGGGTCGTGACACGGAAAAGGCAGGAA






AAGGTAATAGTATCCTCTTGGACCTTGGTTAAAGAC






TATGACTACTGATTGGATGTTCTTTTTGTTTGCATTTT






GCTCCCCGGATTTAGAAATAACTCTTTCTCCCATTTC






CGTGCTCTGCAGTGAGTAACAACCAAATAGAATTCA






CTCCTTCCGTTTTTCTCAATTCACCGCACCTTCTATTT






TTGTCTATCCCCACGAAACTGCCCCATTACTATTTTC






GGACATGACTCACTACTTTAACACATCTTTACTCTCG






ATATTCTCTCTCTTATTTGCAAATGACCCCACCATTAA






CCCATTCAACCCAACTTTTAATCGCCGTCCCATTCCC






ACTTGGGGCAAAATCACAAGGACAAAGGAGTACAA






ATCAATTGCAATCCTGGCTAGTTCTGATTTCCAATCT






CCGATTTCTCTGCAGGTTATCTAGAAGATAGGCGAC






CTGCCTCAAACATGGACCCATACGTGGTAACAGGTT






TGCTCGCCGAAACTACAATACTTTGGGAACCCACGC






TTGAGGCCGAGTCACTTGCAGCTCAAAAACTCGCTC






TTAATGTGTAATTCCAACCATAAAATGAACCAGAAT






ATCGCATATTCTTGAGCGAAGAAACTGTTTCATGTG






CCCAGAATTTGCTTGTTTTTAGTTTTTAGTATCCTGG






GACTGAGACTGGCACTGGGGCTCAAAAACCTTTGCT






TCTGGTAGTTTGTTTTGGGAGTTAGAAGAGAAGAAT






AGTTTGTGATTGTTACTAATTTATGAAGCTCAAGCTC






AGCATTAGTTCTATTCCAGTTTAAGG





3

Amaranthus

gDNAContig
6862
AGCTGTATTAAGATGCTATATTAGGGTTTTTGCTACA




palmeri



CTTGAACATGGGTAAATGGTACCCAATTGGTTGAAA






CTTGAAACTAGGATATTTCAATTGTGATTTTTCCCTTT






GTTTGACTTTCCCCGGATGCTTTGTGGGTTGATATTG






GCGTGGTAATGGGGAAGATCAATTGTTTTAGGATCA






GGTTTTAGGTATTCATTACCTCTAAACTCCCTTTATG






GTATGATTTGTCGCCTTCCTTCCCTTTCCAGACCCTG






ATCATAGTTTCCTTATGAGTGGGATACACTAGTCAA






GATGATCATGATGATGATGATAATTTTAGCTATTCCT






TGTGCTAGAGTCATTGATCAGTGTTACAAATTTCCCA






AACAAATTTGATGAGATGGAAGATAATTATTAAAGC






TACATTTTGTCGGAATACTATTGAAATTAATCACTTG






TTAGAATATGTAAGTAGGTTATTACATTATTAGTCAC






TTGTTAATGTCATTTTAATATGGAGGGAGTATGGTTT






TGTGGTTTTCCTAGCTAACAATCTATACCTGCGGTCC






TGCTGGCTATTTCTTTCCAGGCTCATGTTAGTATAGT






GTATAAGTGGCCCCAACTTATCAGAAAGATGGATTT






TGGCATTAACTATGTGACTATGTCCAAGTATATTGAA






CACTTTTATTTCTAGTTTCATTTATCTCCTGTACTTATT






TGAGACCTGCTCTTGTGCTTCATATAAAAAATTACAC






AAAGGTTACAAAACACTGTTGGACTAAAACATAAGG






AACTCGCCTTTACAACAATTGAAATTTTCTCATCTCAT






TCATATAGTGAGCTACTATTTGTGCGCGAGCGATTA






CCGAATAGTGATTACATCATCTCTTTTGCCTATGTGT






TTGTATTACTTGCATTTGCATACTCATGTCATGTACA






TGTGGATTTTCATGCTCAAACTTGAATACTTTATGAA






GACATATCTGAAACACATGTGCATTTGTATTACCACA






TTTTTTTATCCAAAATGATATTCCAAATGTATTGTATG






TCGGGGTGCCCAGCATTTAATCCAAAAGTTTCATAA






ACCTTGAGTGACCGAGATGCAAATCTGTGGCAATCT






GATCTAAAGGTTTCATAAATCCTAGAATTCAAAGCA






GACATATCTGAAACACATAAATTAACGTGTTATGCC






CATGTACTCGAAAATGTTTCCTGGAAACTGAGATTG






GTTTTTTAACATAAGTTGACTCTTGACCATTGTGTGT






TTGGTTAGCAATCTACCTGAGTAACTCACATATGTAA






TACCCTAACATATTTTATTTGTGTTGTAGGTAAAAGT






GACCAAACATGGCACAAATACTTGCACCTTACATGC






AATGTCAGATGAAGTTTTCAAAAGGCTCCACAAGTT






CAATGACATCAAATCCTTGGACTTCAATATTTCTTAA






AGAAAATAAAAAGGGATCAATTAAATGCTCTAGTAA






GTTCAGAGTATGTGCTTCTCTCCAATCTGATAATAGC






ACAGTAAACAGGGTGGAGCAGCTACTCAACTTGGA






TGTCACTCCATACACTGACAAGATAATTGCAGAGTA






CATTTGGTATATGTTTTTTCTTTGCTATATGATCAAAA






ATGTCGCTGACTCTAGGCCAGACGTAACATTAATTTT






TTTTAGCTAATGTTTGTGCTACTTTTGGTTTTTTCTCA






TCTGTAGATAAGACATTCTTGGTGGTTTCTACTTTCA






ATCTGATTATAGAACTAATTGATCTACGATTGTTCTT






TGGAACAGGATTGGAGGATCTGGTATTGATGTCCGT






AGCAAATCAAGGGTACAATAACACTGATGCTGTCGA






TTTATTGTTAAACCAGCATTTAGATGTTAAGTTTACT






CCATTTTTTCCCTGACCGATGTTTCTTAATATACCAGA






CAATCTCTAAACCTGTTGAGCACCCATCTGAGCTTCC






CAAGTGGAATTATGATGGCTCAAGCACTGGACAAG






CGCCAGGAGAGGACAGTGAAGTAATCTTATAGTAA






GATCTTGGGGCAGCTATAAACCTTTATTACTTTGCTC






AATTATTGTTGTCCTTGTTTTTGCTTGACTATCTTTTG






AGGCTTGAGAGTTCTTGTCACTGAACTAACTCAAAA






AGCTTAAGCTTTCATTTGGTTCGATTCCTTGACATGG






TATCGGAAGGTTAGCTTACGGGTTTGAATCTCATTT






ACCCTCCGGTAATTATTATTACTAAGTATTTGTGTCG






TGTCCACACTTCTAGTTAGGGCTTTCGTGTGAGGGG






GCGTGGTAGGACCTCAACCATCAACTTAAGATTTGT






TTGAGTTGATTCCTAGACAATTCTTGTCACTCATTAA






TTCATAATCATGTCATTCATATGCAGCCCTCAAGCAA






TTTTCAAGGATCCATTCCGTGGTGGTAATAATATCCT






TGTGAGTCATATTCTATCTGACTGTTATGAAACTCAA






TATTTATTCCAAAATTATGATGTTACCTCAATTGTTG






AGATTAGAATTTTAATTATGCATTGCCATGTAAATTT






AGGTAATCTGTGACACATACACACCAGCAGGCGAAC






CCATCCCCACTAATAAAAGATACAGGGCTGCACAGA






TCTTTAGCGACCCAAAGGTTGTTTCTGAGATTCCATG






GTAAGAAATTCCCATCATTGACAATATTTTGTTCCTA






ATCATATTTCCTAATTTAACACTCTCCCTTGCAAGGG






TGAACTTTATAGAAAGTTGACCCACTATCTGAGAAA






TGACAAATTAAAAACTGATTTCTCTAGTTTTCTAATA






AAAGACAATGCATAAATTATGTGATGGATACCACTA






AGGGAATAACCTCACCAAAGTTCACTTAAATTTGAA






GGTTAAATTGTGGGATGTACAATCTAAACTCTCAAT






GTTTCTTTTGGATTCTAGGGAATGCTTATCCAAGCTT






AAAACTGATCTTTTTGAATTTTGAGTAAGATTGAACT






CCGAATTCATTCAAAATTTTCAAGAGCTCGTCAATAT






TACAACTCAAGCTTTGACAAAATCAAAACAATCATTC






GTGTAAACACAATGAATTTGTTTAAGGTGTTCAACTT






TGTATTCTCTAAATAATGCATACAACCTAGGGCCCCA






GGCTACTTCAACGAGAACATACCTCTAGTCCGACTCT






TACTAGGAATTTCCTAAATAATGCTAAATCAAATATC






TTCTGGATTGATTTAGCTGCAAGTATCAAACAATATA






TTACTATTACTCGAATTAAAAAGTAATCCTACCCTTA






TCCGGAGTGTAAAAATATCCGGCTATCCTGTAAGAA






AACCATAACCTAAACCTACGTCTACTAGGATATGGT






CAAACTATGAAGAAGCTTCCAAGGATATTTGACATG






GATAGAACTTTGACTTTTAACTCATACAAGCCAACAT






CACTTTGCAAACAAGTGAATAAATGATCCAAGCTGG






GACTACGGAGAGGACAAAATGCGCACTTGTTCACAT






TAGAAAAATTACTAACAGGAAGTATTCATTTGAACA






AGCTAGGACTTCAAGTAATGCCTTTGATCTTGTGTCA






ATGGTTAGCAGTCGTAATACAGTATGTCACACACTT






GTAATTAACATAACAAATCTGTTGTTTTAAATATGAC






GGTTTGAATACCCATGTTCTACGGGAGGCATTTCAC






TATAAAGGTCAACCGTTTTTGCCCAGTTTGGAGCTT






GACAATTGCAAAAGTAATTCAGGGGTCTGCTTTTCT






AGAATTCTAGATCATAAAAGCCTCTTTGATCTGTGTT






TTCTCTTTTTTTTTTCCCTCTCTACTCTTCGATTTATTC






TGTTAATTTTACTTCTACAGGTTTGGAATAGAGCAG






GAATACACGTTGCTCCAACAAAATGTTAAATGGCCT






TTGGGATGGCCTGTGGGAGCCTATCCTGGTCCTCAG






GTGTGTTAATTCCCCATATTATCAACAGTTTCTTTGA






AGATAATGCTTTGTTTCTGTTATATAATATGATTTTTT






TGATATGTCTAGGGTCCATACTATTGTGGTGCTGGT






GCTGACAAGTCTTTTGGACGTGACATATCTGATGCT






CATTACAAAGCTTGCTTGTATGCTGGCATCAACATTA






GTGGCACAAATGGGGAAGTTATGCCTGGCCAGGTT






TCGTCTTGCATCACTCTCATGTGTTATTGTTAATTAAT






ATGTCTTTGAAGTTGGTTACGAATAGCTACCTCCACT






TGCCCCTGCAGTGGGAATTCCAAGTTGGCCCAAGTG






TTGGTATTGAAGCTGGAGATCATATCTGGTGTGCGA






GATATATTCTTGAGGTACTCTCCTGATAGTTTTATGT






TTGTCGATTTTGTGTTAAATTGTGGTAAACCATAAAG






TACATTTGTTTAATTAAAAATTTGGCCTTAGTGGTTA






AAATTATATAATTAACCTTCAAACTAATAAGTCAATA






GATTTGACATTGAAGTTGTGGCTGATCAAGATCAAA






CTAGGACCATATTATGATGGAAACAAAAACATAATT






TTGACCCATATTCGGTATGCGATTGATTCAATCAAGA






AACTTAATGGACTTTCGAAAGTAAATAAAATAATCC






TTCTTTATGAAGAAAATTTGAATACAGGTTTATAAGT






GATCCAAATTCAAGCCCAATCAATGGAAGAAAGCCT






ATTACACTTCTAGGAACATAGACACGGCAGTTTTCTT






ATAGAATGTTATTGACTCATCGAGAGTTGCAATTAA






ACTTGGTTGTTCAACAAGATTAAGCTACATGTCTTTT






GGTTTTGTATGGGATGCACCGTAAATTCTGGTTTTTC






CTATGACCCTCACAAGCCAAGCCTATTGAGGGGATC






AGATCTCAGTTCTTTTAATGATTGTATACTCTGTAGA






AAAATTGAGGAGATATCACCATTTACAAGCTATTTTC






ATTGAATTTAACAAGTTTTCTCTCCTTCAAACAGAGA






ATTACTGAACAAGCTGGTGTGGTTTTGACTCTTGATC






CAAAGCCTATTGAGGTACCGCCTTGTGCTTTTGTATA






TGTAATGATCAGCTGTCTTTCCTGAAGAACCAGACT






GAATTCCTCTCCAATATCTGCCTTTTTCAACAGGGTG






ATTGGAATGGTGCAGGTTGCCATACAAATTACAGGT






ATCTCGAATGTTTTAAATATTTTATACTGGTTATAAT






ACACGTAGCCCTTGAACAGGATATATTACTCGAAAT






GGTATTAAATTTGTAATTCATGGCAAACCACACGTC






AATTTATTTTGTAAATAACAAATATCTCTTCTTTTAGC






TTCTTATGCATATTCCTTAGTGCAACAAATATCATTT






GCCTTTTGTTTTAGTACTAATATATGTTACTGATTTTG






TAAGACATTATGGGATATCCGTGTAAATGTAGCACA






GTATCTAATGAATCAGCATCCAAGTGTTCGAATTTTG






GTTAACTGCCTCAAATCTGATTTTTCTGTTGGCGCTC






AACCAAAATTGTAAAATGAATGATGTTCTCATGTAC






ACGCTAGCCTGTAGCTTCAGCCACAAGTTTGAACGA






GCTACCCATATTTTCTCACTGTACCTTTTTGATATAGA






TTTTATGCTCCGTATAACCAATATTTCTGAGATATGA






GATGAGGCCTATCTAGTGTGGGGTGGATAAAAAGA






TTTTCACCGCAATTCTTTTTAAAGCGTTAGTAACACT






AACATAGACCTTTTAAACTATTCTTGTAAGCGTAAGT






ACTGTAGTTGAGTTGAAACATTCCGAGAGCTTAATT






GTCTCATTTTGCCAACGCTAAGAAAATTGATGAGCA






AGGTTGTAATTTTTGTAGTACAAAGACCATGAGAGA






AGATGGTGGTTATGAAGCAATTAAGAAGGCAATTTT






GAATCTTTCATTACGCCACAAGGACCATATCAGTGC






ATATGGAGAAGGAAATGAACGAAGGTTGACAGGG






AAGCACGAGACCGCCAGCATTGACACATTCTCTTGG






GTATACTGATATATATGCCTATTCTTGACGTCATGTT






GAATATATTATTTTGCATATTATCTAACAAAAATATG






ATTTTTTTTGTAACTTTCAGGGTGTTGCCAATCGTGG






TTGCTCTATCCGTGTGGGTCGTGACACGGAAAAGGC






AGGAAAAGGTAATATTATTCTCTCGTTGGAAGACTA






TGACTGTCTCACATTGTCGTTGTCTGTAGTAAGTAAT






GTCCAAATATAAAATCATCATCATACCCAATATCCCG






CTCGAAAGCAGGGTTGGGTGAGGGAAGGTGACGG






ACAATCCATACCCGTAATCCCTTCACAGGGAGGACT






AGAACATACTACTCATTTACACATCTTGAATGAAGCA






GTCTCGTTTCATGGGGTGACATCATAATAGTCGGAT






ATAAAGCAATATTTATGATTTCCAAGGTTTGATTTCT






CTACAGGTTATCTGGAAGATAGACGGCCTGCCTCAA






ACATGGACCCATACGTGGTAACAGGTTTGCTCGCAG






AAACTACAATACTTTGGGAGCCAACACTTGAGGCTG






AGGCACTCGCAGCCCAAAAACTCGCCCTTAATGTGT






AATTCATTCATAAATCGTACCAGAGTATCGCATATTC






ATGAACGAGGGAACTCTTTCACGCGCCCAGAATTCG






CTTTTTTTTAGTTTTTAGTATCCTGGGTATGTGAGTG






TTTTCATTTGTGACCTTTGCTTCTGATCATTGTTTGTT






TTGGGAGTTCAAGAGAAGAATAATTTGTAACAGTTG






CCTTCTTTATTTTTGCTCTTATGAAGCTCAAGCTCAGT






ATTAGTTATATTCCAGATTAAGGAATGAACTTCAAA






ATCCTTTGTTACTCATCTTCAACTCCATTGAATATACA






CTTATGTCCCGTTGG





4

Amaranthus

cDNAContig
1618
GGGACAATCATACTCCTATAACAACTTTAATCATACA




rudis



CTCTCTCTTCTTTATCTCTCTATATTCTTCACTCTCTCT






CTAGTTAGTTGACGCCGCCGACCACCTTTTCCGAACC






CAGTGACCAATTATGGCACAGATACTTGCACCTTAC






ATGCAATGTCAGATGAAGTTTTCCAAAGGCTCGACT






AGTTCAATGACATTAAGTCCTTGGACTTCCATATTTC






TGAAAGAAAACCAAAAGAAATCGATTAAATGTTCTA






GTAAGTTCAGAGTATGTGCTTCTCTCAAGTCTGAAA






ACGGCACTGTAAACAGGGTGGAGCAGCTACTCAAC






TTGGATGTCACTCCATACACTGACAAGATAATTGCG






GAGTACATTTGGATTGGAGGATCTGGTATTGATGTC






CGTAGCAAATCAAGGACAATCTCTAAACCTGTTGAG






CACCCATCTGAGCTTCCCAAGTGGAATTATGATGGC






TCAAGCACTGGACAAGCGCCAGGAGAGGACAGTGA






AGTAATCTTATACCCTCAAGCAATTTTCAAGGATCCA






TTCCGTGGTGGTAATAATATCCTTGTAATCTGTGACA






CATACACCCCAGCAGGCGAACCTATTCCCACTAATA






AAAGATACAGGGCTGCACAGATATTCAGCGACCCA






AAGGTTGTATCTGAGGTTCCATGGTTTGGAATAGAG






CAGGAATACACTTTGCTCCAACAAAATGTTAAATGG






CCTTTGGGGTGGCCAGTGGGAGCTTATCCTGGTCCT






CAGGGTCCATACTACTGTGGTGCTGGTGCTGACAAG






TCTTTTGGACGTGACATATCTGATGCTCATTACAAAG






CTTGCTTGTATGCTGGCATCAACATTAGTGGCACAA






ATGGGGAAGTTATGCCTGGCCAGTGGGAATTCCAA






GTTGGCCCAAGTGTTGGTATTGAAGCTGGAGATCAT






ATCTGGTGTGCGAGATATATTCTTGAGAGAATTACT






GAACAAGCTGGTGTGGTTCTAACTCTTGATCCAAAG






CCTATTGAGGGTGATTGGAACGGTGCAGGTTGCCAT






ACAAATTACAGTACAAAGACCATGAGAGAAGATGG






TGGTTATGAAGCAATTAAGAAGGCAATTTTGAATCT






ATCATTACGCCACAAGGACCATATCAGTGCATATGG






AGAAGGAAATGAACGAAGATTGACAGGGAAGCAC






GAGACCGCCAGCATCGACACTTCTCTTGGGGTGTTG






CCAATCGTGGTTGCTCTATCCGTGTGGGTCGTGACA






CGGAAAAGGCAGGCAAAGGTTATCTGGAAGATAGG






CGGCCTGCCTCAAACATGGACCCATACGTGGTAACA






GGTTTGCTCGCAGAAACTACAATACTTTGGGAACCA






ACACTTGAGGCTGAGGCACTAGCAGCCCAAAAACTC






GCTCTTAATGTGTAATTCAATCATAATCGTGCCAGAA






TATCGCATATTCATGAACGAGGGAACTCTTTCACGT






GCCCAGAATTTGCTTATTTTTAGTTTTTAGTATCCTG






GGTATGTGAGTGTTTTCATTCATGACCTTTGCTTCTG






ATCATTGTTTGTTTTGGGAGTTCAAGAGAAGAATAA






TTTGTAACTGTTGCCTTCATTATTTTTGCT





5

Amaranthus

cDNAContig
1550
GATTTCTTAATTGAAGTTCCCAAAAACAAATAACATA




rudis



CTCATCTTCCTCTTCTCTTATTCATCCAATTTTATTCTT






CCCCAAAAAACATGTCTCTTCTTACAGATCTCATCAA






TCTTAACCTCTCTGACTCCACTGAGAAGATCATTGCT






GAATACATATGGATTGGTGGATCTGGTATGGACATG






AGAAGTAAAGCAAGAACACTTGATGAACCTGTGAG






TGATCCTAAAAAGCTTCCAAAATGGAATTATGATGG






ATCTAGCACTAATCAGGCTCCTGGTGAAGATAGTGA






AGTCATTCTATACCCACAAGCTATCTTTAGAGATCCA






TTCAGGAGGGGCAACAATATCCTTGTTATGTGTGAT






GCCTATACTCCACAAGGAGAGCCAATCCCAACCAAC






AAGAGACATAATGCTGAAAAGATATTCAGCCATCCA






GATGTTGTTGCCGAGGAACCATGGTACGGTATCGAA






CAGGAGTACACCTTGCTGCAAAAGGATGTTAACTGG






CCCCTTGGTGGCCTGTAGGGGGTTTCCCTGGTCCAC






AGGGCCCGTACTACTGTGGTGTTGGTGCTGATAAAG






CTTTTGGAAGGGACATTGTTGATTCACACTACAAGG






CTTGCCTCTATGCAGGAATCAACATTAGTGGAATCA






ATGGAGAAGTTATGCCCGGACAGTGGGAATTTCAA






GTCGGCCCGTCTGTTGGAATCTCTGCTGGAGACGAG






TTGTGGGTTGCTCGTTACATTTTGGAGAGGATTACC






GAGATTGCTGGAGTAGCTCTTTCTTTTGATCCGAAA






CCAATTCCAGGTGACTGGAATGGTGCTGGTGCTCAC






ACCAATTACAGCACCAAGTCGATGAGGGAAGATGG






GGGCTACGAGGTGATTAAGAAGGCCATCGAGAAGC






TCGGGTTGAGGCACAAAGAGCACATCTCTGCTTATG






GAGAAGGAAACGAACGTCGTCTCACTGGTAGACAC






GAAACCGCCAGCATTTCCACTTTCTTGTGGGGGGTA






GCCAACCGAGGAGCATCAGTTCGTGTTGGACGAGA






CACGGAGAAGAATGGCAAAGGATATTTTGAAGACA






GGAGGCCGGCTTCTAACATGGACCCATATGTCGTTA






CATCAATGATCGCAGAAACTACTCTTCTTTGGAAGCC






ATAGAGCGGCCACGAGCTTAATCAAGTAATTTGCTA






TTAACCAGCAGATCGATTCGCCTCTTGTGTTCTGCAT






CTGCCTATTCAAGTTGTTCGCCTTTTTGTTCATTTTTT






ACACTTCCATTCAGACCGATTATCATGTACAAACCGT






CGCTTGCTGTTTGCTGTGCGCGGGTAATAACATCAA






ATCCTTTGTCGCTTCGACAATATTGAAAATAACATTG






TACCCTTCTTATTTCTTCCTAGAAAATATGGAAAGTC






GGAGAGGATCATTTCTCTGCCATTATTGTGATGAAT






TTTTTTTGCATTGTTTGCAATTTATTGTCTTCAAATCT






TTGAGCCTTATCTCGATCATCTCGATCTTAATAAGCT






ATTAATCGTATGTGGGTGTTTTCAAGCA





6

Amaranthus

gDNAContig
2000
TGTAATACCCTAACATATTTTTTTTGTCGTTGGGAGA




rudis



AGTGACCAATTATGGCACAGATACTTGCACCTTACA






TGCAATGTCAGATGAAGTTCTCAAAAGGCTCAACAA






GTTCAATGACATCAAATCCTTGGACTTCAATATTTCT






TAAAGAAAATAAAAAGGGATCAATTAAATGCTCTAG






TAAGTTCAGAGTATGTGCTTCTCTCCAATCTGAAAAT






AGCACAATAAACAGGGTGGAGCAGCTACTCAACTT






GGATGTCACTCCATACACTGACAAGATAATTGCAGA






GTACATTTGGTATATGTTTTTTCTTTGTTATATGATCA






AAAGTGTTGATGACTTTAGGCCAGATGTCACATTAA






TTATTTCAAGCTAATGGTTGTACCAATATGAGTTTCT






GCTCATCTGTAGATAAGGCATTCTTGGTGTTTCCTAC






TTTCAATCTGATTATAGAACTAATTGATCTACGATTG






TGCTTTGGAACAGGATTGGAGGATCTGGTATTGACG






TCCGTAGCAAATCAAGGGTACAATAACACTGATGCT






GTTGATTGATTGTTAAACCAGCATTTAGATGCTGAG






CATACTTCATTTTTTCTCTGACCAATGTTTCTTAATAT






ACCAGACTATCTCTAAACCTGTTGAGCACCCATCTGA






GCTTCCCAAGTGGAATTATGATGGGTCAAGCACTGG






ACAAGCGCCAGGAGAGGATAGTGAAGTAATCTTAT






AGTAAGATTTTGGGGAAGCTACAAACCTTATTACAT






TTGCTTGATAATTATTGTCCTTGTTTTTGAGTGATTAT






CTTTTGAGGCTTGAGAGTTATTGTGACTGATCATTAA






TTCATTATTGTGTGTCATATTTTCATATACAGCCCTCA






AGCAATTTTCAAGGATCCATTCCGTGGTGGTAATAA






TATCCTTGTGAGTCATAGTCTCTGACTTAGTCATGAA






TCAGAATATTTATTCCAACGCTTTTGATGTTACCTCA






ATTGTTGAGAATATCAATATAATTTTGCTATGCAATG






TAAACTTAGGTAATCTGTGACACATACACCCCAGCA






GGCGAACCTATTCCCACTAATAAAAGATACAGGGCT






GCACAGATATTCAGCGACCCAAAGGTTGTATCTGAG






GTTCCATGGTAAGAAATTCCCATCATTGACAATATTT






TGGTCTTAATTGCATTTCATAGTTAACACTTTGCACT






GCAAGGATGAATTTTATAGAAAGTTGACACACTATG






AGAAATGACAAATGAAAAATTGATTTCTCTCGTCTTT






TTTTAAAAGACAATGCATAGACAAATGAAAAATTGA






TTTCTCTCGTCTTCTTCTAAAAGACAATGCATAGATT






ATGTGATGGGTACCACTAAGGGAATAACTTAACCAA






AGTTCACATAAATTTGAAGGGTAAATTGTGGGATGT






ACAATCTAATCTCTCAATGGTTCTTCTGGTGTCTAGG






GTTAAAACTAATCTTTTTGAGTAAGATAAGATTGAA






CTCTCCGAATTCATTAAAAATTTTCAAGAACTCGTCA






ATGTTACAACTCAAGGTTGGACAAAATCAACACAAT






CATTCGTGTAAACACAGCGAATTTGCTTAAGGTGTT






CAACTTTGTATTCTCTAAATAATGCATACAATCTAGG






GCCCTCGGCTACTTCGACGAGAACATACCTCTAGTA






TGACTCTTATTAGGATTTTCCTGAATATTGCTAAATC






AAATGTCTTTTGATTTAAAAGTAATCCTACCCTTATCT






GGAGTGTAAAAATATCCGGCAATCCAACAAGAAAA






CCACAACCTAAACCTACTTCTACTAGGATATGGTCAA






ACGATGAAGAAGCTTCCAAGGACATTTGACATGGAT






AGAACTTTGAGTATTAACTCATGCAATCCAAGATCA






ATTTGCAAACAAGTGAATAAAGGATCCAAGTTGGG






ACTTAGGAGAGGACAAAATGCACACTTGTCCACCTT






AGAGAAATTACTAACAGGAAATATTTCATT





7

Amaranthus

gDNAContig
208
TGCAGGGGGTAGCCAACCGAGGAGCATCGGTTCGT




rudis



GTTGGACGAGACACGGAGAAGAATGGCAAAGGAT






ATTTTGAAGACAGGAGGCCGGCTTCTAACATGGACC






CATATGTCGTTACATCAATGATCGCAGAAACTACTCT






TCTTTGGAAGCCATAGAGCGGCCACGAGCTTAATCA






AGTAATTTGCTATTAACCAGCAGATCGATT





8

Ambrosia

cDNAContig
1723
TTTTCCCTTTTTTTATTATATTTATATTTATTTTTATATT




trifida



TATAAACAACCTTTTATATTTTATTTGTACCCATTTTA






CAACTTCCATTTTTCTCCCGCCACATAACCACTTTCCG






GCCACTTCTTTGGTGAAAATGGCACAATGTTTGGCG






CCTTCGGTGCAATGGCAGATGAGGTTAACAAGGAG






TTCAATGGAAACAAGCTCTATGACCTCCAAAATGTG






GAACTCTTTTTCTTTGAAGCAGAGCAAGAAAGGCGC






GCTCAAAACGTCCACAAAGTTTAGAATATGCGCTTC






GTCAAATGGAACCATTAACAGGATGGAAGACCTACT






AAACTTGGATGTATCGCCTTACACCGATAAGATCATT






GCTGAATACATTTGGATTGGGGGTTCTGGGACAGAT






GTGCGCAGCAAATCAAGGACAATCTCGAAAGCGGT






TGAGCATCCTTCCGAGCTTCCAAAGTGGAACTATGA






TGGATCAAGTACTGGACAAGCACCAGGAGAAGATA






GTGAAGTTATCTTATACCCCCAGGCGATCTTTAAGG






ATCCTTTCCGTGGTGGGAACAACATACTGGTCATAT






GTGATACATACACACCACAAGGCGAGCCTATCCCTA






CAAACAAACGTGCTAAGGCTGCTGAGATTTTCAGTG






ATCCTAAAGTTGTCGATCAAGTGCCCTGGTTTGGAA






TTGAGCAAGAGTACACTTTGCTTCAGCCAAATGTGA






ATTGGCCTTTGGGTTGGCCAACAGGAGGTTACCCTG






GTCCACAGGGTCCATACTACTGTGGCGCTGGAGCAG






ATAAGTCTTTCGGAAGAGACATATCGGATGCACATT






ACAAGGCTTGCCTGTATGCTGGAATTAACATCAGTG






GAACCAACGGCGAAGTTATGCCCGGACAGTGGGAA






TTCCAAGTTGGTCCTAGTGTCGGAATTGAAGCTGGA






GACCATATCTGGTGTGCTAGATACCTCCTTGAGAGA






ATTACTGAGCAAGCCGGTGTTGTCCTAACACTTGAC






CCTAAACCGATTGAGGGAGACTGGAATGGCGCAGG






ATGCCACACTAACTACAGTACAAAGGCCATGAGAGA






AGAAGGTGGATTTGAGGTGATTAAAAAGGCGATTT






TGAACCTTTCTCTTCGCCACAAAGAACACATCAGTGC






TTATGGTGAAGGAAACGAGAGAAGATTGACTGGGA






AACACGAAACTGCCAGCATCAACCAATTTTCATGGG






GAGTAGCTAACCGTGGTTGCTCAATCCGTGTGGGTC






GTGACACTGAGAAGGCCGGCAAAGGTTACTTGGAA






GACAGGCGTCCGGCATCAAACATGGACCCATATACA






GTGACTGGATTACTTGCAGAAACAACCATCCTGTGG






GAGCCTAGTCTTGAGGCCGAAGCACTTGCTGCGCAG






AAGTTGGCATTGAATGTGTAGACTCAAGTCAACCCA






TGATCTTCGAAAGCTCGGTGTTCTGTTTCTAGTTTGA






TTTCTTCAACATCTTGTAAATAAAGGTCCCCACGCTT






CATGTTCAACGCTATTTTTAGCGACTGGGTGCTTTTT






TTTACAAATGGTTACTGGACAGTTTATGCACATTTTG






ATGTGTCCTTGGTCACAACTGAGTCAACTTTATTCTC






TTCTTGAATTGTAGAAAATACCTTCAGGTTTTGGGGT






AATCTTTATATAAATATCGAGCATAAAACACCGGCTT






GTTAAAAAAGAAAAAAGTACCG





9

Ambrosia

gDNAContig
1000
TATTATTATTAACTATGCAATATCCTAACTTTTTGTTT




trifida



TTTACGATATAATTTATCGCTTTAACAGAGAATTACT






GAGCAAGCTGGTGTTGTCCTAACACTTGACCCTAAA






CCGATTGAGGTAATAGAAATCAATTTCAACCGTTTTA






ATAAATTATTATTATTGTGGCGAATTGGACGTACAA






AAAGATAATATTTTTTCCATTAGTTATGTTAGTGAGC






TTATATCTAACTGCACAAATTCTTCTGGTTTGCGCTG






ACAGGGAGACTGGAATGGCGCAGGATGCCACACTA






ACTACAGGTACTCGCTTTCTCATACTAATCATCACCG






TTTCGGAATAAAACCAAAATATTATCATGTTTTTTCA






ACCTTTATTACATTTAAATTTATTTTCTAAACAATTTG






CAGTACAAAGGCCATGAGAGAAGACGGTGGATTTG






AGGTGATTAAAAAGGCGATTTTGAACCTTTCTCTTCG






CCACAAAGAACACATCAGTGCTTACGGTGAAGGAA






ATGAGAGAAGATTGACTGGGAAACACGAAACTGCC






AGCATCAACCAATTTTCATGGGTATATATAGAACACT






TTCTACTCAATTTTATAAAAAAAAAGTGCGAAGGTTT






CGTAAGTTTTTCTCAACTTGTATATTTTGCATTTGGCC






AACTTTCAGGGAGTAGCTAACCGTGGTTGCTCAATC






CGTGTGGGTCGTGACACTGAGAAGGCCGGCAAAGG






TATTGAATTTTTTTTATTTATTTATTTTTTTTTTTAATT






CGAACATGCATAGTAAACACATAACCTGGTTTTATT






GAAATAATTCTCCTTTGTTCTGATTTTTTTTCATGGTT






AATTTGGATTACGCGTAGGTTACTTGGAAGACAGGC






GTCCGGCATCAAACATGGACCCATATACAGTGACAG






GATTACTTGCAGAAACCACCATCCTGTGGGAGCCCA






CGCTCGAGGCTGAAGCACTCGCTGCTCAGAAGTTGG






CATTGAATGTGTA





10

Ambrosia

gDNAContig
841
TTAATGTGTAGGTTACTTGGAAGACAGGCGTCCGGC




trifida



ATCAAACATGGACCCATATACAGTGACTGGATTACT






TGCAGAAACCACCATCCTGTGGGAGCCTAGTCTTGA






GGCCGAAGCACTGGCTGCGCAGAAGCTGGCATTGA






ATGTGTAGACTCAAGTCAACTTATGATCTTCGAAAG






CTCGGTGTTCTGTTTCTAGTTTGATTTGTTCAACATCT






TGTAAATAAAGGTCCCAAAAAGTCATCATATTCAAA






GCTTTTTGTAGCAACTGGTTGTTTTTTTATGAGATGA






TTATTGGACAATTTATGCACATTTTGATGTGTCCTTG






GTCCCAACTGAGTCAACTTTATTCTCTTCTTGAATTG






TAGAAAATACCTTCAGGTTTTGGGGTAATCTTTATAT






AAATATCGAGCATAAAACACCGGCTTGTTAACTTGA






TTTGCCTCTGTGTTTTTTAATTCAGCGGCGTGCATGT






GGCTACTAAATTAGTAAGGATTAAAGTGTAGATGTT






GTTAACTTATCATAAGGCTAGAACGTGTGAACACGA






GCATGATCAATATAACAATGGCAAGGTCCAAACCCC






TGTCACTTGGAAGTATGTTGGTTGGATTGGACGGTT






ATAGGTGTTGAGCATATTATTTTGCCAACCCATCACG






CGTATGATATTTTGGTCCCGACCCGTTTATAATACGT






CAACATGTATGTGGTCATTCATGGTTCTATTTGATGT






CAAAGTGCAATAGATGAGTATATTGTGAAACCATCC






ACTTGTCATGCACTTAGAGTATGTTTGGATAAACTTA






TTTGAGTCCAAAAGGACTTTTTGTTAAAAGGACTTAT






TA





11

Conyza

cDNAContig
1955
CATGGATGGATTCTACATTGCCCGGTACTAACGTAC




canadensis



TCGTAGGAGCTCATGACAGCAAAAATGGGTTCCAGC






ATCTTGGGGAGCTTGGAAAAGGGAATCAACCATAC






CCACACCCCTATCTCTTTAGGAAAGGCCAATCTCCCC






TCCTTTGTTTTCTCCTTTTATTTTTTATATATACTTTTT






ATTAAAATAAAACATATACTATTTATTTATTTTTACAT






CCATTTATCAAACAAACTTGCAACTTTCTTCTTTTCAT






TCATTTTGCCGCTCTCAACCATCACTTTTCTCTACTTT






CCGGCCGGTGAAAATGGCACAATGTTTGGCTCCTTC






AGTACAATGGCAGATGAGGTTAACAAAAAATGGTA






TGGAATCAAGCTCTATGTCATCCAAAATGTGGAACT






CTTTGTCCTTGAAGCAAAGCAAGAAAGGAGCACTTA






AGAACGCCACAAAATTCAGCATCTGTGCTTCAGCAA






ATGGAACCATTAACAGGATGGAAGACCTACTAAACT






TGGATGTCACTCCTTACACCAATAAGATCATTGCTGA






ATACATTTGGATTGGAGGTTCTGGGACAGATGTGCG






CAGCAAATCAAGGACACTCTCAAAACCAGTTGAGCA






TCCTTCTGAGCTTCCAAAATGGAACTATGATGGATC






AAGTACTGGACAAGCTCCAGGAGAAGATAGTGAAG






TTATCTTATACCCCCAGGCAATCTTTAAGGATCCTTT






CCGTGGTGGCAACAACATCTTGGTGATCTGTGACGC






ATACACTCCGCAAGGCGAGCCTATCCCTACTAACAA






ACGTGCTAAGGCTGCTGAGATTTTCAGTAATCCTAA






AGTTGTATCGCAAGTGCCCTGGTTTGGAATTGAGCA






AGAGTACACTTTGCTTCAGACAGATGTGAAGTGGCC






TTTGGGTTGGCCTGTTGGAGGCTACCCTGGTCCTCA






GGGTCCATACTACTGTGGTGCTGGAGCTGATAAGTC






GTTTGGAAGAGATATATCGGATGCACATTACAAGGC






CTGCCTGTATGCCGGAATTAACATCAGTGGGACCAA






TGGAGAAGTTATGCCTGGACAGTGGGAATTTCAAGT






TGGTCCTAGTGTGGGAATTGAAGCTGGAGACCATAT






CTGGTGTGCTAGATACCTCCTTGAGAGAATTACTGA






ACAAGCTGGTGTCGTGTTGACCCTTGACCCTAAGCC






TATTGATGGAGACTGGAATGGAGCAGGATGCCACA






CTAACTACAGTACATTGGCCATGAGAGAAGAAGGT






GGGTTTGAAGTAATTAAAAAGGCGATTCTGAACTTG






TCACTTCGCCACACTGAGCACATCAGTGCTTATGGA






GAAGGCAATGAGAGAAGATTGACAGGGAAGCACG






AAACTGCCAGCATTAACCAGTTTTCATGGGGTGTAG






CAAATCGTGGTTGCTCAATCCGTGTGGGGCGTGACA






CTGAGAGGGAAGGCAAAGGTTATTTGGAAGACAGA






CGCCCGGCATCAAACATGGACCCGTACACCGTGACC






GGATTACTCGCCGAAACAACCATCCTTTGGGAGCCT






ACCCTTGAGGCTGAAGCACTTGCTGCCCAGAAGTTG






GCATTGAATGTGTAAGACTCTCCCACGAGGTGATAT






ACAACGAAGAAAGTGTCAACATGCATATTCATCCAT






GTTCTTCGTAAACTCGGTTTCCTGTTTCTAGTTGATTT






CTTGAAGATCTTGTAAATAAAGGTCATCACTGCTTCA






AATTCAAGCTATTTTTAGCAAATGGGTGTTTTTCAGA






TGATTATTGGACAGTTTATGCACAATTTGAAGTGTG






CACAAGTGCACTTGACCCGGTCTGAGCAGACATTAT






TTTCTCTTCTTGATTTAAAGAAAGCACCCTCACATTTT






GGGGGTATTTTCTCTTCATTTGATCATATCATATAAT






TATCAATCGGTTTAGATGGGCTGCTGCTCCTTTTTT





12

Conyza

gDNAContig
8676
AAAAAAAAACTTTAACCTTTTTATGATCATGTGGTTT




canadensis



GAAAAGATGGGGCTTGAAAAGGTTCAAAATTTTAG






ACCTTTCCAAAATTAGATAATTTATTATTTTTTTCTTT






TTAAGAATTAAGACATTTAATTTATTTAGAAAGCTAT






AAGTGTTGAATCATCATGAAAATTGGCTTATAAAAA






TATGTTAATATTAATATTATGAACCTTCAGAAAGATT






TTATGCCATAAATATTTTTTATGTATGATGACTGATG






ATATTGTGTAAATATCATAGATTGAAGACCCTTTCAA






ACTTTAAAAACGGTGTTGATATCATCACTATTTAGAA






AAAGAACTCTTTTTTTTTTTAATGTGATTTATCTCAAA






CTTTTTATTTAAATCGTTAACTACCTGATCAACAGGC






GGATTTAAGTACAACTAATATCACACAAATGTCCAA






TTAAAAAATCATCTCATAATCTATATGGTCCATAACA






AAAGTTGATAACAACAAAGTTATTAAGCACCTGAAT






ATACTTTTGTAAAAGGTTAGCTAGAAAAAGACAATA






TATATCATACCATCAGACTTCTACTTGTGGAAATAAC






GTTACCAAGCACATATTTCCATATGAATTACAACATG






CTAACCTATATTAAATTACGTCTATGATCATTAACCC






AACTCGATTTGGTATTGTGATGTGGTGATTATAACTT






ACAACAAAGTACAATATGATAAAACTTGCTTTTTTTA






TATTATTATTATATCCAAAGTCTCTATATTAATCATAT






TTAAAAAAGCTATTGACAAATCATAACAAACAACAC






ATTTAAGTTCCATATATACTATCCATGAATCAATCAA






TGAATCCAAAATTTTATTTTCATGATGATAAAAAGGA






AAATAAGAAGAAAAAAAAAATAGTTTGAGGTTGTG






AGAAAAAGCCTTATCTAGTTTCTCATCATATATGTTG






AGTTGAGGCAAGGAATGAAAGGGAGAGGGGGGCT






TTTGTTTTGTTATGATGACCTTAAAAAGAGACCAAAA






ACCAATTTCCTCCACCCACACCCCTATCTCTTTAGGA






AAGGCCAATCTCCCCTCCTTTGTTTTCTCCTTTTATTT






TTTATATATACTTTTTATTAAAATAAAACATATACTAT






TTATTTATTTTTACATCCATTTATCAAACAAACTTGCA






ACTTTCTTCTTTTCATTCATTTTGCCGCTCTCAACCAT






CACTTTTCTCTACTTTCCGGCCGGTACGTTCCTCCCTC






CCTCCCTACATTACGTCATTGTTTTACTCATCACTATT






TACACACAAACATATGACTTAATGTATACATATAATT






TTGTACGGAACTTTTGCGATTTATCAGCCGCACACTC






GAACTAAATTTTTTGATCGGAAATGTAGCCATTATAT






ATATATATACACACAGAGAGAGTATATTAAATATAT






ATATATATACACAGAGAGATATCAAATATATGCATA






GCATATATATGCGTGTGTGTGTGTATGTATATATAA






CTTTGCTAGTGTTAATTACTCGAAATGACGATGTATA






ACAAGTAGTAGTAAATCAGTAGAAACGGCGTCGTCC






TATTAGTGTATGATGGCAACTACAAGTAGTAAATCA






AGCCTAAAAGTTTGTTCAATATTAAAAATTAAAATAA






AAACCAGGCCTGAAAATGTGGAAGGGTTGTTAGTG






GTTAAATTAGTTGACCTGGATGGAGGTAGGTCAGAT






GATAATAGTAGCTGTTGATCCAGGCCAAGTGGAGG






ATCACCACACACTTGTATCTACTCTTGATTATTTTATT






ATTTTTAAACTGCTACTTTTGATTAATCATTAATTTCA






TATGAACATTTTAATATAAACATTTTTGCATCTGAAA






ATGTTTTTCCATCTGCTAAGGATGAAAGGACCAAAA






TGCCCTTCCATGCTGTTCAATGTTTTTCATAATTTAAA






AGGTTATATATATATTTACTAATCTAGCTAGTGATTA






TATATGTTGCCTTTTGAATCTGATGATCTTTTTTTGGC






CAGCTACTTGAATATTGTTAAATAAATTTAGAAAAAT






AAATATATGAATGATAAGTTTTAACTTTTAGGTAAAA






GGATCTTGATAAGCAATAGCTGAAAGTCCGGAGCTA






GAAAGGGCTTGGTATTGGTGGGACGTAATTGAAAA






GATATACAAAATTAAACATTTATGATTTTTGCATCTG






TTTGTATTTAGTGTGTCGAATGAAAAGTAAATGTAT






AAAGAGTTGTGATAAATTTTTGGATCCGAACTGGTA






CAGTGGTACATTACAGACACGGGCGAAAGCTTGGA






GTGTTACTTTGATCCTAGATCTTAATAGACGAGATTC






GTTACATATTAACTAATAATAGAAATGCAGCAATGC






CCCCCTTGTTTATATTAAAGATTCATTTTTCTCATGTG






TGAATTATGATTTTTTGATAAGACAAAAGTTGTTTAC






TTGAAGTTGAATGATGTGGGTTCCTACTTGTTTTAAA






AATGTGTAACCTCTTATCTAAAAACTCTGTACTTACG






ATGATCACAAGAACCTGCATTGCTGACCATTTATCTT






ATTTATTGATATTTTTGTGTCTGATAATATGGGTAGG






TGAAAATGGCACAATGTTTGGCTCCTTCAGTACAAT






GGCAGATGAGGTTAACAAAAAATGGTATGGAATCA






AGCTCTATGTCATCCAAAATGTGGAACTCTTTGTCCT






TGAAGCAAAGCAAGAAAGGAGCACTTAAGAACGCC






ACAAAATTCAGCATCTGTGCTTCAGCAAATGGAACC






ATTAACAGGATGGAAGACCTACTAAACTTGGATGTC






ACTCCTTACACCAATAAGATCATTGCTGAATACATTT






GGTATATTTCATTCTTTGGATACACTTACCATACAAA






TTTCAGGCTTACTAACATATTAACAAAAGTTTGTTAC






GTTACTCTAAAGGCTTGTTCAATTCTTATTTAGTCCT






ATGCTTTCTACTTTCTGAAACAGGATTGGAGGTTCTG






GGACAGATGTGCGCAGCAAATCAAGGGTATGTTGG






GTTTTGATGCTTTGGTTTCTTTCAGTAATTATCTATAG






CTTCGCTAAAAGGAAAGATTGTAATATATGTTTCATT






ATATCTCTTGTAGACACTCTCAAAACCAGTTGAGCAT






CCTTCTGAGCTTCCAAAATGGAACTATGATGGATCA






AGTACTGGACAAGCTCCAGGAGAAGATAGTGAAGT






TATCTTATAGTAAGTTTTATTTCAAAAAATCACAAGT






CTCTTTACATGTGGTGATGTAACCAAAGTTGAAATTC






TGTATTTCAGCCCCCAGGCAATCTTTAAGGATCCTTT






CCGTGGTGGCAACAACATCTTGGTGAGTATAACGTT






GGTTCATTATACTATAAAGTCTTATGTATAAGCTGAG






AAACTCCCACCAACCAAAAGGTTGCAGTTTCGAGTT






CTATATGGACAAGTGCATGCGAATTTTTTCCCCTTGA






AAAATAAGGATACAAACTGAAATTGGACAACATATG






GCTTAAACTGATTCTGTACTGTTTTTATAGGTGATCT






GTGACGCATACACTCCGCAAGGCGAGCCTATCCCTA






CTAACAAACGTGCTAAGGCTGCTGAGATTTTCAGTA






ATCCTAAAGTTGTATCGCAAGTGCCCTGGTAGGCTT






TTTGGGTGAAAATGTTCTTTTTTTTCCCCCATAGAAC






TAAACTCTTAAATCCCTGTGTTTGATAATTGATACAT






ACATTAAACTTCTTGTCACATGAATAAGGGGCAGAT






AGGTCTGACTTTATTAGTCAACATACACCTCCCTTTT






ATGTGAACGGGGATACTCTACTAAAACAACAAAATA






AACAAATATTGCCTCTGTTTATTTCCCGGTAAAATTG






ATTTTAAATTTGGTTTTAGGTTTGGAATTGAGCAAGA






GTACACTTTGCTTCAGACAGATGTGAAGTGGCCTTT






GGGTTGGCCTGTTGGAGGCTACCCTGGTCCTCAGGT






ACTATTCATGATCTAACTTTTGTAAACTTCTACACCTT






CCTCATTTATAAATGGGATTTAATATCAGTTAAAGCT






AAAGGTGGCAAAATGAGTGGGCTAGATTGACCTGA






AAGACTTTTTTTTAAACTAATTTTTTAGTTTTCCCTAT






TTATAATTAGTGTGCCAAATATTGTTATAATCATTTA






ATTTCAAAAATAGTTTATCTTTTTTTGAGTAACCATTA






TACTAAATTCACTCGTTTGAACCATTAGAGATAAAGC






ATAACTGAAGAGCGATTCTTTCATAAGCAATGAATG






AAATTTTCCACCCTTAAAAACAAGTGTTCTTATTAAA






TGTATTTCCTTTTGAAACTACAGGGTCCATACTACTG






TGGTGCTGGAGCTGATAAGTCGTTTGGAAGAGACA






TATCGGATGCACATTACAAGGCCTGCCTGTATGCCG






GAATTAACATCAGTGGGACCAATGGAGAAGTTATG






CCTGGACAGGTTTTTTTTCTACTTCTTCACCTTATTAT






CTAATGAATTATGAAAAGAAGTATCATGGCAACAAT






TGTGTTTCACAGTGGGAATTTCAAGTTGGTCCTAGT






GTGGGAATTGAAGCTGGAGACCATATCTGGTGTGCT






AGATACCTCCTTGAGGTAAATCATCTTCAGCAATTTG






ATACAGTAACAACTTAATATATCCTACCGTGTTTTTTT






AATCTATATCTAATTGTTTCTTGTGACTTTACTGTATT






TAACAGAGAATTACTGAACAAGCTGGTGTCGTGTTG






ACCCTTGACCCTAAGCCTATTGATGTAAGATATATCT






TGTTTGATGACTACTTTCCTTCAATTTTCCATCATAGT






GTTCAAATCTTGCTTAGGGAGAACATTTGAGCAACA






TGTAATGTCACTCTTTTGTAATTAGAGGTGGTTAGAT






AGGCATGTTGGTTAATGTGTCCAAATGTACAATTCTT






TGATGACACAAGCTTAGTTGACCATAAACACTTTTTT






CCTTTTGTTTTTCTTACAAAAAAGACGAACAAGATAA






TTGGCAATTCAAGCTATATTAAAATTCAAAAATTTAA






ACTTTTTGAGTAAAAAGGAATTTCAGGAGGTGTTAT






GAGCTAATAAAAGTATACATTTTAGGTCACTCATTTG






TGTCGATTTCATTTTAAGCTACTTCTATTGGGTTTAA






CAATGGGAGGCACAGAAAACGCCTCAGTTGACCCTT






TGATAACTAAACGGGTTGAATTTGCCACCTCTACCC






GCTCTGAATGATTCTGATTTTATTCTTAACTTACACA






ACGCTTGTTGATTTGAATTGGCAGGGAGACTGGAAT






GGAGCAGGATGCCACACTAACTACAGGTACTTGTTT






TCTTTACTCATAATAGACCTGCGTATTGTTTTTGAAA






CGCTCTAATGTGTGTGAACGTTGATTTCTTTCTTATA






TTAAAAATCCATTCACTTACTTTTGTGCTTTCAAATTT






CAGTACATTGGCCATGAGAGAAGAAGGTGGGTTTG






AAGTAATTAAAAAGGCGATTCTGAACTTGTCACTTC






GCCACACTGAGCACATCAGTGCTTATGGAGAAGGC






AATGAGAGAAGATTGACAGGGAAGCACGAAACTGC






CAGCATTAACCAGTTTTCATGGGTATAAAACATTTTA






TATCGAATTATAAGAGATAAACCAAAAAAAATAATT






TACACTTTCATAAGCTTTCTCAACTGATGGTTTTTGT






ATTCGGTGAACTTGCAGGGTGTAGCAAATCGTGGTT






GCTCAATCCGTGTGGGGCGTGACACTGAGAGGGAA






GGCAAAGGTATTGCTATCTTCACACTACAGTCTTTAT






CATTGGTGGATAATTGGATATTGGTAACTCGTCAAA






CTGGGTAAATATATGTTATGGTTCAACGTGTTGGGA






TGACCAAATAAACATTTTATATAATTATCAAAATCTT






CATAAACATATTGTTAATATACCAAACATGTTTCCAG






AAATTATAAAATTTCAACAGTAATCTGCCTTCTTGAA






TTAATCGATTTAGGAGGTGTAATGCATTAGAATCAC






AAATCGCCAACTGATTTTATTTTTATTTTTTCTTTCTG






AAATAACCTAAATTGACCGTTCATTAGTGAGTCTAA






ATTTCCACCTTTAAAAAAATTCTCTTTCGAAATCTGTT






TTTTCACGGGTCATGTTTACTATGTGCAGGTTATTTG






GAAGACAGACGCCCGGCATCAAACATGGACCCGTA






CACCGTGACCGGATTACTCGCCGAAACAACCATCCT






TTGGGAGCCTACCCTTGAGGCTGAAGCACTTGCTGC






CCAGAAGTTGGCATTGAATGTGTAAGACTCTCCCAC






GAGGTGATATACAACGAAGAAAGTGTCAACATGCA






TATTCATCCATGTTCTTCGTAAACTCGGTTTCCTGTTT






CTAGTTGATTTCTTGAAGATCTTGTAAATAAAGGTCA






TCACTGCTTCAAATTCAAGCTATTTTTAGCAAATGGG






TGTTTTTCAGATGATTATTGGACAGTTTATGCACAAT






TTGAAGTGTGCACAAGTGCACTTGACCCGGTCTGAG






CAGACATTATTTTCTCTTCTTGATTTAAAGAAAGCAC






CCTCACATTTTGGGGGTATTTTCTCTTCATTTGATCAT






ATCATATAATTATCAATCGGTTTAGATGGGCTGCTGC






TCCTTTTTTGGTCAATTTTATTACTAGATTGCTTGTCA






ATGCTAATTATTTCGTTAAAATTGGAAAATGATGTAA






TTCATACTTACAATTCTTACTGCGAAAAGGGAGGCT






AAATAACAGTAGAACACTAGAACTTCAACAACAACG






AGAGTTATAATACAAGAGAGTTAAATAAGCATTTAT






ATAACTTAACTAAGTAAAATATACAACTATCTCTTTT






GCCCTCCCTGCTTGAAAACAATGGACTTAATATTGTG






GAATCACAGTCAGGAATCTCAACGAGTTAAAAAAAA






TGACGATGATGTACGTTACCATTTTTTAGTTATACAT






CACAAACATGTGTTCTATCATACAATGATGTGAAAC






ATGTATGTGTTGGTCAATGGTCATAATAAAATCATAT






GCACGAACCGACCAACTAGGAAAGGATGGATTGTT






CAGACCTTGATGGATTAAGATCAAAACAAATGTCTC






TACGGTAATGTTATCATCTAGTAGCTAGTAATTGGTT






ATAGAAACAATCGTTACACAAATCATCTACTAAAATT






ACAATAGTAAAAACCATCTTTCAACCATTGTCAAACT






AACAATGTATTACACATTCAACCGGTTACTAGTCTAT






AGATAGTTTTTATTATTGGTTACATGGTTTGTAGTTT






CCATAATGTAATCAAAGTTCGTTATTATTTTACCTGA






TTAGTGGTACCCATCATGTGACCACACGATCTTACAT






ATAAAAGTTAAAGCAAGTGGAGAAATCATATATCTT






GTGATCCATGTGTGAGAATAATGATTTATCGGATAT






GAGTCTTATGTGGTGTGCGAGCTAGATAAGAAAATA






GTATATATGTTTTATGAAATGATCCGCGGTTTACAG






GACCAAAGAGTTCTAGCTCGTTCACCTTTTTATTTAA






CTTTAGGCTGAAGACATTAAAAAAAAAAAAAGGTTA






TAATACTACTTTGACCTCCATTGAAACCAAAACTATT






TGTCTTTCCAAACAGTCTCCCAAATGTACACCCAACT






TCTTCAAACTCACCCAATCTTCACTTTCAAACCCTGTT






CAATCTCTTCCAGCCATCCCCTTATCTTCATCAACACC






AGTCACCAATTTCCCATAAACCAAAGACCCCCAAATT






CATCCTTTCATTACAATCACAAAACCCTGTTCAAAAC






TCTCATAAACTGTACTCAAAATGCCGATTCTAATACA






CCAAAATGGGAAAACTTGTTGCCAAAGAATGTAATC






TCTGCTGAGAAAATATTGAGGTCAATTGCTGGGGCA






ACTTCTAGTCCTATTTGTCAGTTCATCTCTTCACCTAC






TACTTTCTTGCACTCTGTTGACCCCAGGATTAAATTG






GTAAAGTTTGTTGCTTTTTTGAAAATTCTTGTTATTG






GTTTTTGGGTTTTTTCTTTATTGATAATTTTAAGTCTT






TAACCATATTGTGATGTGATTTACCTTCTTCTTTCATG






TTGAGTGTTGGGCTGGTCAGGGGGAATGGGTCAGT






TACCCATTTATTCTGATGGTGTGCTTTTATGATTTAA






GTTGATAAATTCCATGACTTTTTAGGGGATTCTTGCA






ATTCTTCCTGGGTATTGCTTTATTGGGTATTTTGTAA






ATTGGTTTATATGCTTTAGTATGTGTTAGTTCAATTT






GTTCATTGTTGTTGAAAATATGTTGTGAAACATAGCC






ATGGCTTTGATGGTCGTGCTTTTTTGTATAAAAAGTT






GTTTTTATCTTTATGTAAGAAAAGATAGAGTGTCACT






AGTAGTCTCTGTGATGGTAGCTTAGTTGCCGGGAAA






GTTAAGTTTAATGCACTTTAGGTGGTGCGGAGTTCA






CGCTCTTGCATTTTTTTTTATTTTTATTTTTTGCATTGT






CTTGCAGTAGAATTTGCTTATCCTTAGGGACCTGATT






GGGTTGAAATACTACTTAAGAAAAGTAAGTTTATAG






TGATCAGAGCATTATCCAAGTCAGTTCGATTATTACA






GAATTTATAGCTAGGGGATGTCT





13

Conyza

gDNAContig
8635
AAAGATGGGGCTTGAAAAGGTTCAAAATTTTAGACC




canadensis



TTTCCAAAATTAGATAATTTATTATTTTTTTCTTTTTA






AGAATTAAGACATTTAATTTATTTAGAAAGCTATAA






GTGTTGAATCATCATGAAAATTGGCTTATAAAAATA






TGTTAATATTAATATTATGAACCTTCAGAAAGATTTT






ATGCCATAAATATTTTTTATGTATGATGACTGATGAT






ATTGTGTAAATATCATAGATTGAAGACCCTTTCAAAC






TTTAAAAACGGTGTTGATATCATCACTATTTAGAAAA






AGAACTCTTTTTTTTTTAATGTGATTTATCTCAAACTT






TTTATTTAAATCGTTAACTACCTGATCAACAGGCGGA






TTTAAGTACAACTAATATCACACAAATGTCCAATTAA






AAAATCATCTCATAATCTATATGGTCCATAACAAAAG






TTGATAACAACAAAGTTATTAAGCACCTGAATATACT






TTTGTAAAAGGTTAGCTAGAAAAAGACAATATATAT






CATACCATCAGACTTCTACTTGTGGAAATAACGTTAC






CAAGCACATATTTCCATATGAATTACAACATGCTAAC






CTATATTAAATTACGTCTATGATCATTAACCCAACTC






GATTTGGTATTGTGATGTGGTGATTATAACTTACAA






CAAAGTACAATATGATAAAACTTGCTTTTTTTATATT






ATTATTATATCCAAAGTCTCTATATTAATCATATTTAA






AAAAGCTATTGACAAATCATAACAAACAACACATTT






AAGTTCCATATATACTATCCATGAATCAATCAATGAA






TCCAAAATTTTATTTTCATGATGATAAAAAGGAAAAT






AAGAAGAAAAAAAAAATAGTTTGAGGTTGTGAGAA






AAAGCCTTATCTAGTTTCTCATCATATATGTTGAGTT






GAGGCAAGGAATGAAAGGGAGAGGGGGGCTTTTG






TTTTGTTATGATGACCTTAAAAAGAGACCAAAAACC






AATTTCCTCCACCCACACCCCTATCTCTTTAGGAAAG






GCCAATCTCCCCTCCTTTGTTTTCTCCTTTTATTTTTTA






TATATACTTTTTATTAAAATAAAACATATACTATTTAT






TTATTTTTACATCCATTTATCAAACAAACTTGCAACTT






TCTTCTTTTCATTCATTTTGCCGCTCTCAACCATCACT






TTTCTCTACTTTCCGGCCGGTACGTTCCTCCCTCCCTC






CCTACATTACGTCATTGTTTTACTCATCACTATTTACA






CACAAACATATGACTTAATGTATACATATAATTTTGT






ACGGAACTTTTGCGATTTATCAGCCGCACACTCGAA






CTAAATTTTTTGATCGGAAATGTAGCCATTATATATA






TATATACACACAGAGAGAGATATTAAATATATATAT






ATATACACAGAGAGATATCAAATATATGCATAGCAT






ATATATGCGTGTGTGTGTGTATGTATATATAACTTTG






CTAGTGTTAATTACTCGAAATGACGATGTATAACAA






GTAGTAGTAAATCAGTAGAAACGGCGTCGTCCTATT






AGTGTATGATGGCAACTACAAGTAGTAAATCAAGCC






TAAAAGTTTGTTCAATATTAAAAATTAAAATAAAAAC






CAGGCCTGAAAATGTGGAAGGGTTGTTAGTGGTTA






AATTAGTTGACCTGGATGGAGGTAGGTCAGATGAT






AATAGTAGCTGTTGATCCAGGCCAAGTGGAGGATC






ACCACACACTTGTATCTACTCTTGATTATTTTATTATT






TTTAAACTGCTACTTTTGATTAATCATTAATTTCATAT






GAACATTTTAATATAAACATTTTTGCATCTGAAAATG






TTTTTCCATCTGCTAAGGATGAAAGGACCAAAATGC






CCTTCCATGCTGTTCAATGTTTTTCATAATTTAAAAG






GTTATATATATATTTATTAATCTAGCTAGTGATTATAT






ATGTTGCCTTTTGAATCTGATGATCTTTTTTTGGCCA






GCTACTTGAATATTGTTAAATAAATTTAGAAAAATAA






ATATATGAATGATAAGTTTTAACTTTTAGGTAAAAG






GATCTTGATAAGCAATAGCTGAAAGTCCGGAGCTAG






AAAGGGCTTGGTATTGGTGGGACGTAATTGAAAAG






ATATACAAAATTAAACATTTATGATTTTTGCATCTGT






TTGTATTTAGTGTGTCGAATGAAAAGTAAATGTATA






AAGAGTTGTGATAAATTTTTGGATCCGAACTGGTAC






AGTGGTACATTACAGACACGGGCGAAAGCTTGGAG






TGTTACTTTGATCCTAGATCTTAATAGACGAGATTCG






TTACATATTAACTAATAATAGAAATGCAGCAATGCC






CCCCTTGTTTATATTAAAGATTCATTTTTCTCATGTGT






GAATTATGATTTTTTGATAAGACAAAAGTTGTTTACT






TGAAGTTGAATGATGTGGGTTCCTACTTGTTTTAAA






AATGTGTAACCTCTTATCTAAAAACTCTGTACTTACG






ATGATCACAAGAACCTGCATTGCTGACCATTTATCTT






ATTTATTGATATTTTTGTGTCTGATAATATGGGTAGG






TGAAAATGGCACAATGTTTGGCTCCTTCAGTACAAT






GGCAGATGAGGTTAACAAAAAATGGTATGGAATCA






AGCTCTATGTCATCCAAAATGTGGAACTCTTTGTCCT






TGAAGCAAAGCAAGAAAGGAGCACTTAAGAACGCC






ACAAAATTCAGCATCTGTGCTTCAGCAAATGGAACC






ATTAACAGGATGGAAGACCTACTAAACTTGGATGTC






ACTCCTTACACCAATAAGATCATTGCTGAATACATTT






GGTATATTTCATTCTTTGGATACACTTACCATACAAA






TTTCAGGCTTACTAACATATTAACAAAAGTTTGTTAC






GTTACTCTAAAGGCTTGTTCAATTCTTATTTAGTCCT






ATGCTTTCTACTTTCTGAAACAGGATTGGAGGTTCTG






GGACAGATGTGCGCAGCAAATCAAGGGTATGTTGG






GTTTTGATGCTTTGGTTTCTTTCAGTAATTATCTATAG






CTTCGCTAAAAGGAAAGATTGTAATATATGTTTCATT






ATATCTCTTGTAGACACTCTCAAAACCAGTTGAGCAT






CCTTCTGAGCTTCCAAAATGGAACTATGATGGATCA






AGTACTGGACAAGCTCCAGGAGAAGATAGTGAAGT






TATCTTATAGTAAGTTTTATTTCAAAAAATCACAAGT






CTCTTTACATGTGGTGATGTAACCAAAGTTGAAATTC






TGTATTTCAGCCCCCAGGCAATCTTTAAGGATCCTTT






CCGTGGTGGCAACAACATCTTGGTGAGTATAACGTT






GGTTCATTATACTATAAAGTCTTATGTATAAGCTGAG






AAACTCCCACCAACCAAAAGGTTGCAGTTTCGAGTT






CTATATGGACAAGTGCATGCGAATTTTTTCCCCTTGA






AAAATAAGGATACAAACTGAAATTGGACAACATATG






GCTTAAACTGATTCTGTACTGTTTTTATAGGTGATCT






GTGACGCATACACTCCGCAAGGCGAGCCTATCCCTA






CTAACAAACGTGCTAAGGCTGCTGAGATTTTCAGTA






ATCCTAAAGTTGTATCGCAAGTGCCCTGGTAGGCTT






TTTGGGTGAAAATGTTCTTTTTTTTCCCCCATAGAAC






TAAACTCTTAAATCCCTGTGTTTGATAATTGATACAT






ACATTAAACTTCTTGTCACATGAATAAGGGGCAGAT






AGGTCTGACTTTATTAGTCAACATACACCTCCCTTTT






ATGTGAACGGGGATACTCTACTAAAACAACAAAATA






AACAAATATTGCCTCTGTTTATTTCCCGGTAAAATTG






ATTTTAAATTTGGTTTTAGGTTTGGAATTGAGCAAGA






GTACACTTTGCTTCAGACAGATGTGAAGTGGCCTTT






GGGTTGGCCTGTTGGAGGCTACCCTGGTCCTCAGGT






ACTATTCATGATCTAACTTTTGTAAACTTCTACACCTT






CCTCATTTATAAATGGGATTTAATATCAGTTAAAGCT






AAAGGTGGCAAAATGAGTGGGCTAGATTGACCTGA






AAGACTTTTTTTTAAACTAATTTTTTAGTTTTCCCTAT






TTATAATTAGTGTGCCAAATATTGTTATAATCATTTA






ATTTCAAAAATAGTTTATCTTTTTTTGAGTAACCATTA






TACTAAATTCACTCGTTTGAACCATTAGAGATAAAGC






ATAACTGAAGAGCGATTCTTTCATAAGCAATGAATG






AAATTTTCCACCCTTAAAAACAAGTGTTCTTATTAAA






TGTATTTCCTTTTGAAACTACAGGGTCCATACTACTG






TGGTGCTGGAGCTGATAAGTCGTTTGGAAGAGATAT






ATCGGATGCACATTACAAGGCCTGCCTGTATGCCGG






AATTAACATCAGTGGGACCAATGGAGAAGTTATGCC






TGGACAGGTTTTTTTTCTACTTCTTCACCTTATTATCT






AATGAATTATGAAAAGAAGTATCATGGCAACAATTG






TGTTTCACAGTGGGAATTTCAAGTTGGTCCTAGTGT






GGGAATTGAAGCTGGAGACCATATCTGGTGTGCTA






GATACCTCCTTGAGGTAAATCATCTTCAGCAATTTGA






TACAGTAACAACTTAATATATCCTACCGTGTTTTTTTA






ATCTATATCTAATTGTTTCTTGTGACTTTACTGTATTT






AACAGAGAATTACTGAACAAGCTGGTGTCGTGTTGA






CCCTTGACCCTAAGCCTATTGATGTAAGATATATCTT






GTTTGATGACTACTTTCCTTCAATTTTCCATCATAGTG






TTCAAATCTTGCTTAGGGAGAACATTTGAGCAACAT






GTAATGTCACTCTTTTGTAATTAGAGGTGGTTAGAT






AGGCATGTTGGTTAATGTGTCCAAATGTACAATTCTT






TGATGACACAAGCTTAGTTGACCATAAACACTTTTTT






CCTTTTGTTTTTCTTACAAAAAAGACGAACAAGATAA






TTGGCAATTCAAGCTATATTAAAATTCAAAAATTTAA






ACTTTTTGAGTAAAAAGGAATTTCAGGAGGTGTTAT






GAGCTAATAAAAGTATACATTTTAGGTCACTCATTTG






TGTCGATTTCATTTTAAGCTACTTCTATTGGGTTTAA






CAATGGGAGGCACAGAAAACGCCTCAGTTGACCCTT






TGATAACTAAACGGGTTGAATTTGCCACCTCTACCC






GCTCTGAATGATTCTGATTTTATTCTTAACTTACACA






ACGCTTGTTGATTTGAATTGGCAGGGAGACTGGAAT






GGAGCAGGATGCCACACTAACTACAGGTACTTGTTT






TCTTTACTCATAATAGACCTGCGTATTGTTTTTGAAA






CGCTCTAATGTGTGTGAACGTTGATTTCTTTCTTATA






TTAAAAATCCATTCACTTACTTTTGTGCTTTCAAATTT






CAGTACATTGGCCATGAGAGAAGAAGGTGGGTTTG






AAGTAATTAAAAAGGCGATTCTGAACTTGTCACTTC






GCCACACTGAGCACATCAGTGCTTATGGAGAAGGC






AATGAGAGAAGATTGACAGGGAAGCACGAAACTGC






CAGCATTAACCAGTTTTCATGGGTATAAAACATTTTA






TATCGAATTATAAGAGATAAACCAAAAAAAATAATT






TACACTTTCATAAGCTTTCTCAACTGATGGTTTTTGT






ATTCGGTGAACTTGCAGGGTGTAGCAAATCGTGGTT






GCTCAATCCGTGTGGGGCGTGACACTGAGAGGGAA






GGCAAAGGTATTGCTATCTTCACACTACAGTCTTTAT






CATTGGTGGATAATTGGATATTGGTAACTCGTCAAA






CTGGGTAAATATATGTTATGGTTCAACGTGTTGGGA






TGACCAAATAAACATTTTATATAATTATCAAAATCTT






CATAAACATATTGTTAATATACCAAACATGTTTCCAG






AAATTATAAAATTTCAACAGTAATCTGCCTTCTTGAA






TTAATCGATTTAGGAGGTGTAATGCATTAGAATCAC






AAATCGCCAACTGATTTTATTTTTATTTTTTCTTTCTG






AAATAACCTAAATTGACCGTTCATTAGTGAGTCTAA






ATTTCCACCTTTAAAAAAATTCTCTTTCGAAATCTGTT






TTTTCACGGGTCATGTTTACTATGTGCAGGTTATTTG






GAAGACAGACGCCCGGCATCAAACATGGACCCGTA






CACCGTGACCGGATTACTCGCCGAAACAACCATCCT






TTGGGAGCCTACCCTTGAGGCTGAAGCACTTGCTGC






CCAGAAGTTGGCATTGAATGTGTAAGACTCTCCCAC






GAGGTGATATACAACGAAGAAAGTGTCAACATGCA






TATTCATCCATGTTCTTCGTAAACTCGGTTTCCTGTTT






CTAGTTGATTTCTTGAAGATCTTGTAAATAAAGGTCA






TCACTGCTTCAAATTCAAGCTATTTTTAGCAAATGGG






TGTTTTTCAGATGATTATTGGACAGTTTATGCACAAT






TTGAAGTGTGCACAAGTGCACTTGACCCGGTCTGAG






CAGACATTATTTTCTCTTCTTGATTTAAAGAAAGCAC






CCTCACATTTTGGGGGTATTTTCTCTTCATTTGATCAT






ATCATATAATTATCAATCGGTTTAGATGGGCTGCTGC






TCCTTTTTTGGTCAATTTTATTACTAGATTGCTTGTCA






ATGCTAATTATTTCGTTAAAATTGGAAAATGATGTAA






TTCATACTTACAATTCTTACTGCGAAAAGGGAGGCT






AAATAACAGTAGAACACTAGAACTTCAACAACAACG






AGAGTTATAATACAAGAGAGTTAAATAAGCATTTAT






ATAACTTAACTAAGTAAAATATACAACTATCTCTTTT






GCCCTCCCTGCTTGAAAACAATGGACTTAATATTGTG






GAATCACAGTCAGGAATCTCAACGAGTTAAAAAAAA






TGACGATGATGTACGTTACCATTTTTTAGTTATACAT






CACAAACATGTGTTCTATCATACAATGATGTGAAAC






ATGTATGTGTTGGTCAATGGTCATAATAAAATCATAT






GCACGAACCGACCAACTAGGAAAGGATGGATTGTT






CAGACCTTGATGGATTAAGATCAAAACAAATGTCTC






TACGGTAATGTTATCATCTAGTAGCTAGTAATTGGTT






ATAGAAACAATCGTTACACAAATCATCTACTAAAATT






ACAATAGTAAAAACCATCTTTCAACCATTGTCAAACT






AACAATGTATTACACATTCAACCGGTTACTAGTCTAT






AGATAGTTTTTATTATTGGTTACATGGTTTGTAGTTT






CCATAATGTAATCAAAGTTCGTTATTATTTTACCTGA






TTAGTGGTACCCATCATGTGACCACACGATCTTACAT






ATAAAAGTTAAAGCAAGTGGAGAAACCATATATCTT






GTGATCCATGTGTGAGAATAATGATTTATCGAATAT






TAGTCTTATGTGGTGTGCGAGCTAGATAAGAAAATA






GTATATATGTTTTATGAAATGATCCGCGGTTTACAG






GACCAAAGAGTTCTAGCTCGTTCACCTTTTTATTTAA






CTTTAGGCTGAAGACATTAAAAAAAAAAAAAGGTTA






TAATACTACTTTGACCTCCATTGAAACCAAAACTATT






TGTCTTTCCAAACAGTCTCCCAAATGTACACCCAACT






TCTTCAAACTCACCCAATCTTCACTTTCAAACCCTGTT






CAATCTCTTCCAGCCATCCCCTTATCTTCATCAACACC






AGTCACCAATTTCCCATAAACCAAAGACCCCCAAATT






CATCCTTTCATTACAATCACAAAACCCTGTTCAAAAC






TCTCATAAACTGTACTCAAAATGCCGATTCTAATACA






CCAAAATGGGAAAACTTGTTGCCAAAGAATGTAATC






TCTGCTGAGAAAATATTGAGGTCAATTGCTGGGGCA






ACTTCTAGTCCTATTTGTCAGTTCATCTCTTCACCTAC






TACTTTCTTGCACTCTGTTGACCCCAGGATTAAATTG






GTAAAGTTTGTTGCTTTTTTGAAAATTCTTGTTATTG






GTTTTTGGGTTTTTTCTTTATTGATAATTTTAAGTCTT






TAACCATATTGTGATGTGATTTACCTTCTTCTTTCATG






TTGAGTGTTGGGCTGGTCAGGGGGAATGGGTCAGT






TACCCATTTATTCTGATGGTGTGCTTTTATGATTTAA






GTTGATAAATTCCATGACTTTTTAGGGGATTCTTGCA






ATTCTTCCTGGGTATTGCTTTATTGGGTATTTTGTAA






ATTGGTTTATATGCTTTAGTATGTGTTAGTTCAATTT






GTTCATTGTTGTTGAAAATATGTTGTGAAACATAGCC






ATGGCTTTGATGGTCGTGCTTTTTTGTATAAAAAGTT






GTTTTTATCTTTATGTAAGAAAAGATAGAGTGTCACT






AGTAGTCTCTGTGATGGTAGCTTAGTTGCCGGGAAA






GTTAAGTTTAATGCACTTTAGGTGGTGCGGAGTTCA






CGCTCTTGCATTTTTTTTTATTTTTATTTTTTGCATTGT






CTTGCAGTAGAATTTGCTTATCCTTAGGGACCTGATT






GGGTTGAAATACTACTTAAGAAAAGTAAGTTTATAG






TGATCAGAGCATTATCCAAGTCAGTTCGATTATTACA






GAATTTATACCTAGGGGATGTCT





14

Euphorbia

cDNAContig
1550
CTCTCTCTATCCCAAATTTCTGCAATACCCACTTCCTT




heterophylla



TTTTCACCCAAAGCTAGGAGTGGGCGAAAATGGCG






CAAATCTTGGCACCATGTGCACAGTTACAGATGAGA






GTCCCAAAGAACTCGACACCTGCAAGCCCCTTATCA






ACAAAGATGTGGAGCTCTCTATTCTTAAAGCAGAAC






AAGAAATCAACGGCTAGGAACACTTCCAAGCTTAGA






GTTTATGCCGTCAAGTCCGAAAGTGGCACAATCAAT






AGGCTAGAGGACCTTCTAAATTTGGACATTACCCCTT






ACACCGACAAGATCATTGCCGAGTATATTTGGATTG






GAGGAACCGGTGTAGATGTCCGAAGCAAATCAAGG






ACTATCTCGAAGCCAGTTGAACATCCATCCGAGCTTC






CGAAGTGGAACTACGATGGATCGAGTACCGGACAA






GCGCCAGGCGAGGATAGTGAAGTTATTCTATATCCT






CAGGCTATCTTTAAGGACCCATTCCGAGGGGGTAAC






AATATCTTGGTCATTTGTGATGCATATACTCCAGCTG






GCGAGCCAATCCCAACCAATAAGCGCCATCGAGCTG






CCGAAATTTTCAGTAACCAGAAGGTTATTGATGAAG






TACCATGGTATGGGATCGAGCAAGAGTACACCTTGC






TTCAAACAAATGTGAATTGGCCTTTGGGTTGGCCAG






TTGGAGGCTATCCTGGTCCTCAGGGTCCTTACTATTG






TGCAGCTGGGGCGGATAAGTCATTTGGCCGTGACAT






ATCGGACGCTCATTATAAGGCTTGTTTATATGCCGG






AATTAACATTAGTGGCACCAATGGGGAGGTTATGCC






TGGCCAGTGGGAGTATCAAGTCGGTCCAAGTGTGG






GAATTGAGGCTGGCGATCACATTTGGTGTTCAAGAT






ACATTCTTGAGAGAATCACCGAACAAGCTGGAGTTG






TTCTCACATTGGACCCCAAGCCGATCGAGGGTGATT






GGAATGGTGCTGGGTGTCACACTAATTACAGTACAA






AAAGTATGAGAGAAGAAGGTGGATTTGAAGTGATA






AAGAAAGCGATTTTGAACCTCTCACTTCGCCATAAG






GATCACATTAGTGCCTATGGTGAAGGAAATGAGAG






AAGGTTGACCGGAAAACACGAAACCGCCAGCATTG






ACTCGTTTTCTTGGGGAGTGGCAAATCGTGGATGCT






CGATTCGAGTAGGTCGTGATACTGAGAAGAATGGC






AAAGGTTACTTGGAAGACAGAAGACCCGCGTCGAA






CATGGACCCTTATGTGGTGACCTCGTTACTAGCCGA






GACTACGCTTTTATGGGAGCCAACTTTGGAGGCTGA






AGCTCTTGCAGCTCAAAAATTATCCTTGAAAGTATAA






TCGACTCGGTTCGAGAAATTCTCGAGCTTTCGGGAA






TTAGTAATTTCGTTAAAGTTCGCGTCTTTGGGAAAAA






TCATTTGTAAATAAAGGTTCCGATGCGAGTAATTTCT






TTTTCTTGTAAAATGGTCTATAACTGATGTTTGACAT






CAAAAGGACCACTTTTTTTTTTTACTTTTTACTTTAT





15

Euphorbia

gDNAContig
3777
AAAAATATTTGCACTATTAAAGTTTCAAATTTTTTTAT




heterophylla



GACTTTTATTTCATATGTGATTATGCTTGTTCTGCTTC






GTAAAATGTCGACTTTTTCGTTGTCACACAGTGGGA






GTATCAAGTCGGTCCAAGTGTGGGAATTGAGGCTG






GCGATCACATTTGGTGTTCAAGATACATTCTTGAGG






TATTATTAATTTTATTTTACCGAGTCTCATCTATCAAG






TCGGTCCAAGTTTGTGAATTAATTTCGAAGAAAGGC






GGTCTATGTTTTAGTTTCGGATAAATACCGTTTCAAT






AATCACCTTTTATGACAGAGAATCACCGAACAAGCT






GGAGTTGTTCTCACACTGGACCCCAAGCCGATCGAG






GTGATTCCGACTCACATCTTCATATTGCTTTTTCTTGT






TTTAGAAAATAAAAAAAATCAACTTAAATCGAACTT






GTTTTTCGATAGGGTGATTGGAATGGTGCTGGGTGT






CACACTAATTACAGGTAACTTAATGTTAATCGATCTC






GATTTTGAACTCTTTTTTAGTTTTTCCATCGAAAATAA






CAAGAAATTTCGATTTTTTTAAACCCGTATCTTTCAG






TACAAAAAGTATGAGAGAAGAAGGTGGATTTGAAG






TGATAAAGAAAGCGATTTTGAACCTCTCACTTCGCC






ATAAGGATCACATTAGTGCCTATGGTGAAGGAAATG






AGAGAAGGTTGACCGGAAAACACGAAACCGCCAGC






ATTGACTCGTTTTCTTGGGTAAGCCTAAAAACGAAA






CTTTATCCGAAACAAATAAAAAGACGACGACTTTTC






GTAGCTAATTTGGTTCTAATCATGATTCATCGAAATT






TGATTTTAGGGAGTGGCAAATCGTGGATGCTCGATT






CGAGTAGGTCGTGATACTGAGAAGAACGGCAAAGG






TATTCTATCTTAGGGGTGAGCAAATGTCAGTTTGAA






AACCGAACCGAAAACCGAATAGAGAAAAGGAGTGA






ACCGAATACAGAACCAAATTAATTTCGGTTCAGTTC






AAACTGAACCGAATTATTTCGGTTCGATTCGTTTTGG






TTTTGAACCAAATAAATTTTTCGTTAACTTTATATTTT






TAAATATACATTTAAATATATAAAATGACAAAAAAAT






CAACATAGTTATCTTTGAACACAAATACATTATTGTT






AATTTGAAAAGAATAACTTTATTTTCAAGTATAAAAT






GTAAATTGAACTAAAAACATAAATAAATTAAACATG






AAAAAAATAAAAAAAATCCAATTCGGTTCGGTTTTC






GGTTTTTTCAGGTTATGACCATAAAAACCGAACCGA






ATAAGTTCGGTTCGGTTTCTTGGTTTGGTTCGGTTTC






CGATTTTTTTGCTCTCCCCTAGTCTATCTCGAGGAAA






TTTGATTGAATTTCTCAAATGGAAATTCTCGATATTT






TGCTGACCTGGCGCGTAATTCTTCGGTTTTTTAGGTT






ACTTGGAAGACAGAAGACCCGCGTCGAACATGGAC






CCTTATGTGGTGACCTCGTTACTAGCCGAGACTACG






CTTTTATGGGAGCCAACTTTGGAGGCTGAAGCTCTT






GCAGCCCAAAAATTATCCTTGAAAGTATAATCGACT






CGGTTCGAGAAATTCTCGAGCTTTCGGGAATTAGTA






ATTTCGTTAAAGTTCGCGTCTTTGGGAAAAATCATTT






GTAAATAAAGGTTCCGATGCGAGTAATTTCTTTTTCT






TGTAAAATGGTCTATAACTGATGTTTGACATCAAAA






GGACCACTTTTTTTTTTTTTTTTTACTTTTGACTAGTC






GAGAACCCGAGTAATTTTTTGTTGTTTGAAGCATCG






GCGCCTTTGACTATGATTTGATTATATAACATTTCTG






TTCTTGATTTAATTGCATTTAAAATATAATAATTCGA






GGCCTCTCGGAAGTTTGGAAATCAGGTTTTCGGTAT






AAACCCAGGAAGCCGAAAAAGCTTGTGGCACACTA






AAGGAGAGATAAAGTGAACAAAGATAAAATTACAG






GTATTAGTATAACTTTATTCCATTTGTCTGCAAAAGA






CGAAAACTTGTAAACTATGCAAGAATCAATTTCGAT






TCTTTGCCCTCAAAAGACCGAAACATTTCTTTCGTTTT






AAGATAGTATGTTCTAAAACAAAAAATATTCGTTAA






AAAAACTCTGCTTTGCATTTATATAACTCTACTCTAA






CCTCAGCAAAGGCCAAAAAGGCAAAAAAACATTGA






AATTTCTCGGCTTTCCAAGGCGAAAAAACCGATCAA






ATGGCATCCGGATCATCGAAATCGGTAGCCTTATTG






CTTTCGATAGTCAACATTGCCCTCTACTTCATCATTAT






AGTAATTGCTTCATGGGCTATAAACAAAGCAATTCA






CCGAACTCACGAAACCGGTAAATATTTTAATTTTAAG






TTAATTCTAAATTTAATTTAGTTTTACTATACTAATCA






TAATTTTTTAATTCAGTTTCGGTTTTGTCAATCCCGGC






TCGAATTTTCCCCATATTTTTTCCGATGGGAAATATG






GCAACCGGGTTTTTCATCATATATTCCCTACTCGCCG






GAGTTGTGGGAATCGCTTCCTCACTCACCGGAATTC






AAAATTTATCGAAACCGAGTGTCTCGAGTCTACATG






CCGCTGCGGCGATTTCTATGACTGCCCTTTCACTTAC






TTTACTAGCCATGGGGTAGTTTTTGAAAAATTCGTTA






CTTATTTATGCTTATTTGTGTTTCCTATGAACATAAA






GTTTTGAACTTTTTTTTTTCGGGATTTTGTTTCGTAGA






CTGGCGTGTAAGGAAATACAACAGGGTTGGACCGA






TTCGAACCTGAGGACTTTGGAGATTGTGACAATAGT






TGTGAGTGGTACGCAATTGGTGAGCACCGGTGCTAT






ATTTTCTGGGATTAATTGAAGATGTTGCGTTAGAAG






AAAACCGAGCCGTGTGGATTGGGAGGGTAGCTCGA






AAAGTTTTTCGAAACTCGGATTTGAATTTCGATTTAT






TCTAACTGGAGTTTTCAAGTACAAATGTATGTTTGCG






AGTTCAGTTTGAAGTCTTTAAGCATTTGTTTGAATTT






GCATGTTGGTTGTGTAATTTAGTTAATATTTTTACAA






TGTTAATAATGAACCTAGCTATTTCATATATTCTCTTG






ACATGGTTAAGAGTATAAATATGAATATATATTTATA






TATGAATATGAACCTAGTTATGTAGTTAAGAATTTAT






ATATATTTTATAAACAAAACATTTCAAGTTGTTATTA






TATAAACCTAACAACAAAAAAAAGTAATAGTTAAAT






TATAATGATAATATTATTAATATATACTACTTTATAA






AGCTAACTCGATTACATTTTTAATCAAAATTTCGTAT






TATATGAAATTAAATATTTAAGACATATTTTAACTAA






TCCGTAGCATTATTATTTCTCTTTCAAATCGAATTATT






AGTTGAATAAAAGGAAAATTTATAATTTATGATTAA






AATCAAACTATTTAAATACAAAAGATCAGACGATTTT






TCTCGAATGTATACCTTAATTGCAATTTTATTAGAAT






TGAATTGGACCGACCAATTGCACTGATTTGATTTAC






GGTTGAACTCGATTTTACAAATAAAATTATAAACTAT






TATCTTAATGTCTAGTCCAATTTCAATAACATTTGAA






CTGAATTTTTCAAGCCGAATTTATGGTTAAATTTAAA






TCTTATAAATTCTAATTAATTACATGTATAAAAGGTA






AATTCCAATTTTAAACAAATAAAAAAAAAACCTTTTT






CCGAGGTAATC





16

Euphorbia

gDNAContig
1755
TTTATGCCGTTAAGTCAGAAAGTGGCACAATCAATA




heterophylla



GGCTAGAGGACCTTCTAAATTTGGACATTACCCCTTA






CACCGACAAGATCATCGCCGAATATATTTGGTACAT






TTTTTTTCGCCCTTTTTAATCTTTTACCGAAATGTTCG






TCATATTTTGTATTATCACATATTGATAATCACATTTT






GAATTAGGATTGGAGGAACCGGTGTAGATGTTCGA






AGCAAGTCAAGGGTAATTCGGCATTTTGAATATTTC






GGCGAATCGATAAGTTTATTTATTTGTACGGTTTTTG






ATTTATTGTTGACTTTTCGTGTTTTTCAGACAATCTCG






AAGCCAGTTGAACATCCATCCGAGCTTCCGAAGTGG






AACTACGATGGATCGAGTACCGGACAAGCACCTGG






CGAGGATAGTGAAGTTATTCTATAGTAAGATCACGC






AAAAAAAACTCTTTGCAATTTATTCTTATTTACGATA






AGCATAGTTTTGACTTTATGTTTTTTCCAGTCCTCAG






GCTATCTTTAAGGACCCATTCCGTGGGGGCAACAAT






ATCTTGGTAAGTTTTTCTATCAAATAGCTAGCAAATT






GGTCCTGAAATTTAGTCCATATTTTGTTTGCGTGGCT






AAATTTTTTGGGCTTTTTCTAAAATCCCAAGATTTTTA






GATTTTTTTTATAAAGTATATCCTAAACATAATTTATT






CTAAAAATACAAGATTTTAAATTTTAAATTTTGAGAA






TACCTTCTTTTTGGTCATAATAGATTTTATACCTTTTT






ATATCTTGATTTATGTATATTATACCTTCAATTAAAAT






ATACCGTATAAGTCAATTACCAAAGCTAAAAAAATA






AAATCATTATAAAATGCAAAATAAAATCGGTATAAT






ATCGAAGTTAGAAAAAACATCAAAACCATTACAAAG






AACAGAATCAAAGAATATAATACATATTATACCAGA






TATTAGAAAAGGTGTAATACATATTATACGCAATTAT






AAAAAGGTATAATATCTATAATACCAAAAATCTTGT






ATTTTTAGAATAAAATATTATTTAAGATATTTTTTTGC






AAAAAAAATCTAAAAATCTTGTGTTTGTTACAATTTC






CCAAATTTTTTTCGTTATTGTGTGAAGGTCATTTGTG






ACGCATATACCCCAGCTGGCGAGCCAATCCCAACCA






ATAAGCGCCATCGAGCTGCCGAAATTTTCAGTAACC






AGAAGGTTATTGATGAAGTACCATGGTAAAAACTCT






TCAGTTACTTTTTTTATTTCCGGGTTTTTACTGTTTGA






CCAAAAGATTCGATTTTTAATCATTTGAAAAGGTATG






GGATCGAGCAAGAGTACACCTTGCTTCAAACAAATG






TGAATTGGCCTTTGGGTTGGCCAGTTGGAGGCTATC






CTGGTCCTCAGGTAAAATTGTTTATGAGCTCTAAGTT






AAGTTCCTTATCGGTTTTTTTTTCGAACTTGGGCAGT






TAAATTACGTTTGGGTCCTTTTTTCAGGGTCCTTACT






ATTGTGCAGCTGGGGCGGATAAGTCTTTTGGCCGTG






ACATATCGGACGCTCATTATAAGGCTTGTTTATATGC






CGGAATTAACATTAGTGGCACCAATGGGGAGGTTAT






GCCTGGCCAGGTACACTTTTTTTCAGGGTTTTATTTT






TTTAACAATTCAACATTCTAATAATTTAACCTTATTAT






TGAAAAATTATGCGTCTTGATTTGAGTAATTTTCGGA






GATTTTTTTTATTTTTTAAAGTTTGTTA





17

Commelina

cDNAContig
1587
TTTTTAAGCTCCTTCAAATCATCCATTCCCACATTGCC




diffusa



ATTTCCATTTCCTCAATCTCTTGAAATGATGGCTCAA






ATGATGGCAAGTCCTATGCATTGCCAGATGCGGCTT






CCGGGCAAATCCATGAGTTCCAAGCCTTTACTGGAT






TCGAAAATGTGGAGCTCTCTGCTGCTCAACTCCCAG






AAGAGCAAGACCAAGAGGAGGACCATCAACTTCAG






GGTGAGCGCAAAGTTCGAGAATGGCGTTGTGCCGA






GGATGGAAGATCTTCTCAATTTGGACACTAGCCCCT






ACACTGACAAAATCATAGCAGAATATATTTGGATTG






GAGGGACAGGCATCGACCTTCGAAGCAAATCAAGG






ACGATATCGAAGCCTGTGGAGCACCCGTCAGAGCT






GCCCAAGTGGAACTACGACGGGTCGAGCACTGGGC






AGGCCCCAGGAGAAGACAGTGAAGTCATCTTATATC






CTCAGGCTATATTTAAAGACCCATTTCGCGGAGGAA






ACCACATTTTGGTGATCTGCGACACGTATACGCCGG






CCGGGGAGCCAATACCGACAAACAAGAGGCACAGG






GCTGCCCAGATATTCAGCGACAAGAAGGTCGTCGAC






GAAGTACCATGGTTCGGTATTGAGCAGGAGTACACC






TTGCTCCAGACAAATGTGAACTGGCCTCTTGGATGG






CCCGTCGGAGGGTACCCCGGGCCCCAGGGCCCCTA






CTACTGTGCTGTTGGCGCGGACAAGTCCTTCGGGAG






GGACATCTCGGATGCTCACTACAAGGCCTGCCTTTA






CGCCGGCATCAACATAAGTGGCACTAACGGAGAAG






TTATGCCTGGTCAGTGGGAGTTCCAAGTCGGGCCGA






GTGTTGGAATTGAAGCAGGAGATCACATATGGTGT






GCAAGATACCTTCTTGAGAGAATCACCGAGCAAGCG






GGCGTTGTTCTCTCAGTTGACCCAAAGCCGATTGAG






GGTGACTGGAATGGCGCGGGTTGTCACACTAACTAC






AGCACAAAGAGCATGAGGGAAGAGGGCGGCTTCG






AGGTAATAAAGAAGGCAATTCTGAACCTTTCTCTTC






GGCACAAGGAGCACATAAGCGCATACGGAGAGGG






GAATGAGCGAAGGTTGACAGGCAAACACGAGACAG






CCAGCATTAACACTTTCTCTTGGGGAGTTGCAAACC






GTGGTTGCTCCATTCGTGTGGGACGGGACACAGAG






AAAGAAGGCAAAGGATATTTGGAAGATCGCCGCCC






GGCGTCAAACATGGACCCATATGTTGTTACTGCCTT






GCTAGCAGAAACCACTCTTCTTTGGGAGCCAACACT






AGAAGCTGAGGCTTTAGCTGCCCAGAAGTTGGCACT






GCAGGTGTGAGATGGTGGCCATGAAGTTGAGGTCT






AGCCATGAAATGTTAATGTCCAAAGAATTCAATCGT






TCACTGAATTCAGCCTCTCCTGAATGTTTGTTGTCAT






CTTACATTAATTCCTCTTGATTTTTATGTTGTTGGAGC






TGTTTTTTTCTTGTGGTAATGTTCAGTTTCTCCATCAC






AAGGAGTATGGCACTAGAGAGAATATAATTATCAAT






AATTATATTTAT





18

Commelina

gDNAContig
6900
TTGTTTCAGTATTAAATTTAGAACAAATATTTTTAGC




diffusa



TTAGGGTTAGTTCTTGAACTTATTTAGAATGCTCGCA






AAAGTGTAGTATAATGTGAAGGTATACTTTGTTCTA






GAACAATATTTCTTAAGCTTAGCATTAGTCCATGTAT






TTAATTTCAGAATATTAGCAATAGTATGTAGTATAAT






GTGAAGGTGTACTTTGTTTTAGAACAATAATTTTTAG






CTTGGCAATAATTTCATAATACTAGCAAAAATATAGT






ATAATTTTTAGCTTGGCACTAATTTCAAAAGTATAGC






AAAAGTATAGTATAATTTTTAGCTTAGCATAAGACC






ACTTTAATTTTAAGTTATTCGCAGAAAATACGTAAAA






TGTAAAGTAAGGCATACTTTGTTTCAGTATTAAATTT






AGAACAATATTTTGTAGCTTAGTATTATTCCTTGAAC






TTAATATCAGAATCTTTGCAAAATGTATGTATAATGT






GTAGGCATACTTTGTTTCAACATTAAATTTAGAACAA






TACTTCTTTAGCTTAGCATTATCCCTAAACTTGATTTT






CAGAATACTCATAAAACTTATATAATGTGAATTAAG






GTATACTTTGTTTCAGTGTTGCCTGAACTTAATTTTA






GAACATTCGAAAAAGTATAATATAATGTGAAGGCAT






ACTTTATTTCAATGTTAAATTTAGAACACTATTTTTCA






GCTCAGAGAACATTCACAAAAGTACAATATAATTTC






AACGGGCATACTTTGTTTCAGTATCAAATTTAGTTTC






AATTTGTGTTCTTATCAAGTTTTTGTGCTAAAAAATA






GGATTGGAGGGACAGGCATCGACCTTCGAAGCAAA






TCAAGGGTAAGTACACAGTTAAAACCTGCAAAAAGT






AATGTCCAAATGGTGGTTCTGCTGTATCTTTTGTAAG






TGTTTCGATTGTGTTTCAGACGATATCGAAGCCTGT






GGAGCACCCGTCAGAGCTGCCCAAGTGGAACTACG






ACGGGTCGAGCACTGGGCAGGCCCCAGGAGAAGAC






AGTGAAGTCATCTTATAGTAAGATATCTGCGCCATT






ACCATTTTATCTTATAGTAAGATATCTGCGCCGTTAC






CATTTTAATAAGTAACTGTAACTGCTCGCGCTTTGCA






GTCCTCAGGCTATATTTAAAGACCCATTTCGCGGAG






GAAACCACATTTTGGTATGCATTTCATTATAAACATT






ACACTAATCTATTCTTGAGTTATCTGTAACTCAAAGG






GTCTAAATATTGAGTCCAGACTACTGTCGTTCTTCAA






CTAATGAACAACTAATTCAGGTGATCTGCGACACGT






ATACGCCGGCCGGGGAGCCAATACCGACAAACAAG






AGGCACAGGGCTGCCCAGATATTCAGCGACAAGAA






GGTCGTCGACGAAGTACCATGGTAAGTCCTGGCCTC






AGCAGTTTTAGTTGAGTACATGGTTTAATATTGTCCC






TACTAAAATTTATTTTTTGATGACAAATCCGAAACCT






TCAGGTTCGGTATTGAGCAGGAGTACACCTTGCTCC






AGACAAATGTGAACTGGCCTCTTGGATGGCCCGTCG






GAGGGTACCCCGGGCCCCAGGTAACATTTTTTTCTG






TTACTTAGTAATTACAACACTAGTCATTTGGTAACGC






AGTTTGGCTGTCACCAAAGCCTGTGTCTGTGAGATT






TTATTACAATTCAGCACCTTTACAGCTTCAGACCGTT






GAGACAATCTCCTCAATTTGTAGCCAAAACTTGAGA






GAAAACCAAAGCTATAAATTGACAAATTTAGTCCAT






AAGACCTATCATACACCTATATATAGCCTAGCATCCC






AGCTGTAAAAAATGTCTCGCTCCAAGCAGCCTACAA






CACTACAACTTGGAACTTGCAAAACTTTAGAATCCCA






GTTAGATACATTATCGACAACAGGGTTGCAACCAGT






CAGCAATTCCAGCAGAATTCCAGTAGCTTTATCGCA






CCAGCTTCCAAGTTTTTTCCACCGTCTTTGCAACTTCT






ATGTGAAACAAAATGTCGACACAAAGACTAACAATC






AAATTCCGAAGCTGAACATTCACAGTTACTGTCACAT






TTTATGTCGTCGAAATGTTATTTCTCTTAGTACCTGA






AATGTTAGCTGAATTCAAGAAATGTAAAGATCAACG






TGGAGTCTAGGAAATGTTATTCCTATTAGTTCTTATC






AAAATATTGAATACTTTCAGGGCCCCTACTACTGTGC






TGTTGGCGCGGACAAGTCCTTCGGGAGGGACATCTC






GGATGCTCACTACAAGGCCTGCCTTTACGCCGGCAT






CAACATAAGTGGCACTAACGGAGAAGTTATGCCTG






GTCAGGTGCGGAATTCATTTCATTTCAGCTCATTTTG






ATTTGAACATACCCGAAAAAATAAATTCCTGAAATTT






TATTCAAATCTGAACATGACCAACATTAGGGCACGC






CATTGTACTTCTCACAAGCTTCTCGGATTTTATCTGT






AGTGCTTGGAAATGCTGCTAAAATCTTTGACTTTCTC






TTACTGTCTATAAAAATATGTTGATAGTTTGGGAATT






TCAGATAAGTACTATTTTAGCTGTGAAATTAAAATAC






AGTGTACTGACCAATCGATGGATTCTGTAGTGGGAG






TTCCAAGTCGGGCCGAGTGTTGGAATTGAAGCAGG






AGATCACATATGGTGTGCAAGATACCTTCTTGAGGT






AATTTGGGAACATTTTTCTTAGTTTTATAAAATTAAG






AGTCGAAAAAACCATACATTATAACTTATACGGTTG






AACTCAGACTCAAACTCGATTGACATTTTTTTTTAGT






CTTCAAAGATGTTCCCAAAATTCGGAAGAAAAAGTA






ATAATTAAGAGAACATACTTGCAACGTACCTAAAGG






CACAAAGTTTTTCCCTTTTTGCGATATCTGACTAATTC






TTTGCATTACATGTATTAACTATTTCAAAATTACTCA






GAGAATCACCGAGCAAGCGGGCGTTGTTCTCTCAGT






TGACCCAAAGCCGATTGAGGTACTTCTAAAGGCAGT






TGCAGAAAGCCTGAAAGAAAAAAGCATTATCGTGA






ATAACTTCTTCTAAAGACTCAAAAAATTTATTTTATTT






TATTTTTGTTTAGGGTGACTGGAATGGCGCGGGTTG






TCACACTAACTACAGGTGACTGAAAAAACACACATT






TATTTATTTATTTATTTATTTATTTTGACGATACTGAA






TGAAGAACTAAGTCAGAATATGTGACTAATTAACGT






GTAGCACAAAGAGCATGAGGGAAGAGGGCGGCTTC






GAGGTAATAAAGAAGGCAATTCTGAACCTTTCTCTT






CGGCACAAGGAGCACATAAGCGCATACGGAGAGG






GGAATGAGCGAAGGTTGACAGGCAAACACGAGACA






GCCAGCATTAACACTTTCTCTTGGGTACAGACAAGC






ATTTCCCTGAAATTTACTCAACTGTTGTGAATTTTTTT






TTGGGTTGAAATTTTGATATGTTTTGTGTTTAAAGGG






AGTTGCAAACCGTGGTTGCTCCATTCGTGTGGGACG






GGACACAGAGAAAGAAGGCAAAGGTATGGAGCTTA






AATTACGAGATTAAGTATTGTTTTACATAGAAGCTTC






AGACGAGCTCAAAAAATGGCTTTAAGCTCATTCACA






TTGCTATATTAATTTTTTAAAAAGAAGGAAATCTTAG






ATTACGAGATTAGGTAGTGTCATATACAGAAGCTTC






AATGGAGCTCAATAATGGTTTTAAGCGCGCATTCAT






ACATGCTAGATTCAGTATTGAAATGGTTTATTTATTT






TGCTATAGAATTTTTAGAGGAGTTCAAAAATGATTA






TAAGTGTACATTCACAGATGCTAGGTTTTGTATTGAA






ATGATTATTTTTTTTTTAATAGAAGCTTTAGAGGAAC






TAAGAAATAGTTTAAGCACGCATCCACGTGCTAGAT






TGAAATGATTATTTCTTTAACTACAAAAGCTTCAGAT






GAATTAGAGATGACAATCAAGTGTCGCATTCACTAT






ATTCACATATGCTAGATTTTTTGTATTGAAATGATTA






TTTCTTTCACTATAGAAGCTTCAGGAGCTAAAAAATG






GTTTTAAGCACAGACTCGCTATATTCTGTACTGAAAT






TATTTCTTTCATCGTAGAAGCTTCGGAGGAACTTAAA






AATGACTTTAAGTGTGCATTCACACATCTAGATTTAT






ATTGAAATGATTATTTCTTTCACTATAGAAGCTTCAG






ACGAGCTTAAAAATCTTAAGCACATATGCTAGATTTT






GTATCGAAATGATTATATCTTTCGCTATAGAAGATTT






AGATGAGCTCAAAAATGGCATTGAGCGGGCACTCA






CATATGCTAGATTCTATATTGAAATGATTTATTCTTTC






ACTATATATAGAAGTTTTAGATGAACTCAGATATGA






CTTTAAGCATGCATTCTTACATGATAAATTCTATATT






GAAATGATTATTTCTTTCACTATAAATAGAAGCTTTA






GTTGAACTCACATATGCTAGATTCTGTATTGAAATGA






TTATTTCTTTCACCATATATAGAATCTTTAGAGAAATT






CAACAATAACTTTTGAGTGTGCATTCACATATTCTTT






ATTCAAATGATTATTTCATTCGCTATAGAAACTTTAC






ATGAGCTCCAAAATGTTTTTTAAGTGCGCAATCACAT






ATGCTAGATTCTGTATTGAAATGATGATTTCTTTCAC






TATATATAGAAGCTTTAGATAAACTAAAAAATGATTT






TAACTACACAGTCACATTTGCTAGATTCTGTATTGAA






ATGATTTTTTCTTCCATTATATATAGAAGCTTTAGAT






GAACTAAAAAATGATTCAAAGTTAACATTACATATG






CTAGATTCTGTATTGAAATGATTATGTCTTTCACTAT






ATAGAGAAGCTTTAGATGAACTCCAAACTGGCTTTA






AACGCACATTCACAGATGCTAGATCCTATATTGGAA






TGATTATTTCTTCACTACATATAGAAGCTTGAGATGA






ACTAAAAAATGATTTAAAGTGCACATTCACATATGCT






AGATCCTATATTGAAATGATTATTTCTTCACTAAATA






TAGAAGCTTGAGATGAACTAAAAAATGATTTAAAGT






GCACATTCACACATGCTAGATTTTGTATTGAAATGAT






TATTTCTTTCATTCCATATAAAAGCTTTCTCCAATGGC






TTTAAATTCTCATTCACATATGCTAGATCCTATATTGA






AATGATTATTTCTTCACTACATATAGAAGCTTGAGAT






GAACTAAATAATGATTCAAAGTGCACATTCACACGC






TAGATTTTGTATTGAAATGATTATTGCTTTCACTACA






TATAGAAGCTTTAGATGAACTAAAAATTAACTTAGT






GCACATTCACATATGTTAGATCTTATATCGAAATAAT






TAATTTTCAACTACAGAAGCTTCAGAAGAGCTCAAA






AAATGGCTTTAAGTGCTTATTCATACATTTTTACTAC






CTTCTATATTGAAATGATTATTTCTTTCACTATAGTAT






GACACTCATTTACACAATTACACCACAAATACAGGA






TATTTGGAAGATCGCCGCCCGGCGTCAAACATGGAC






CCATATGTTGTTACTGCCTTGCTAGCAGAAACCACTC






TTCTTTGGGAGCCAACACTAGAAGCTGAGGCTTTAG






CTGCCCAGAAGTTGGCACTGCAGGTGTGAGATGGT






GGCCATGAAGTTGAGGTCTAGCCATGAAATGTTAAT






GTCCAAAGAATTCAATCGTTCACTGAATTCAGCCTCT






CCTGAATGTTTGTTGTCATCTTACATTAATTCCTCTTG






ATTTTTATGTTGTTGGAGCTGTTTTTTTCTTGTGGTAA






TGTTCAGTTTCTCCATCACAAGGAGTATGGCACTAG






AGAGAATATAATTATCAATAATTATATTTATGAAATG






GACTGTATTTATTTTTATATATTAACGGGATGGATAA






CTTGAAACAAGTATTTGTGTTTATGCTCTGGGTGTTG






ATTGACTAGTATTAATACTAGCAATCATAACTCCTAA






CAGAGCTGCGAAACTTTGAACCCGGAACCTCCTGGA






GAGATAAGATGCGGTGGTTTGCGAAATGAAATGCA






ATGGTTGTTGGGTTGAGGCATATGTATGGAAGTCAT






GCATATGATGCTTTGTGTCAGGGTTGCAAGTATTGG






TTTTTGGGATAGGTATAGGTTCTAAATAATCCAATGC






ATAACAATATCAATAGCTATCCACATCAGATTTGTTA






TTAGATACAATGAAACAAATAATATGGACAAAAAAT






AAGTTTTAAATGGAATTTTTTTTTCTTATATGGTTTCG






GCTCAAACTAACTAAAATTACACGAATACGACCAAT






TTTGCCTTATCTATTATCAAAATCGACTCATCGACCA






ACTTAAAAAATTGAACCAATAATTTGTAGGGGCGAA






TGGCCCGAGGGGCATATTTGACTCGCATCAGGGGA






AGTTTTACAACCGAACATAAACAAACGCCATTGCAA






CAAAGGATATTATGAGAAACCGTGGTATGTTGGTG






GGCGCAACTTATGTGTCATGTGGCGGGGATGAAAC






TGCTTCCCACCTGTTGATGTTCGGTATTCAAGCCTTA






CCTAATGTGAGTCTGACTTAGCTTGGTTATTCGGTTC






GGCCCAGATGTGGGTTCAAGGGGGAGTACCTCCGG






TCCAATTTGGTCCTTCTCTTAAGGTCGGGAGTCACCT






GCAAGACCCGTGGATGTTGCCCTCGGGGTAGAGCC






TCTAACGCTCAAGTCAGTTATTTGGTCCCTAAAAGA






GTGCACGAGAGAGAGAGAGAGATACCTGTGGAGAT






ATGGAGTATTTATAGCTCCTGTCACGTCAACATCGCA






TCAGTACGGCTCCACGTGGCGAGCTCGATCGTTCGGC





19

Digitaria

cDNAContig
1535
CCTTCACTTCAACCACCACTCTCCGGCCACTTTTCCG




sanguinalis



GCCCCTCTCCGTCACTCCTCCGGTGAAAATGGCACA






ATGTTTGGCTCCTTCAGTGCAATGGCAGATGAGGGT






AACAAAGAACGCGATGGAACCAAACTCTATGACATC






CAAAATGTTTAACTCTTTTGCTTTGAAGCCAAGCAAG






AAAGGAGCCATGAAAACCTCCACAAAATTTAGAATA






TGCGCTTCAGCAAGTGGAACGATTAACAGGATGGA






AGACCTGCTAAATTTGGATGTGACTCCTTACACTGAC






AAGATCATTGCTGAATACATTTGGATTGGAGGTTCT






GGGACAGACGTTCGCAGCAAATCGAGGACAATCTC






TAAACCAGTTGAGCATGCTTCTGAGCTTCCAAAGTG






GAACTATGATGGATCAAGTACTGGACAAGCACCCG






GCGAAGACAGTGAAGTTATCTTATACCCCCAGGCAA






TCTTTAAGGATCCTTTCCGTGGTGGAAACAACATTTT






GGTGATCTGTGATGCATATACGCCACAAGGCGAGCC






TATCCCAACAAACAAACGTGCTAAGGCTGCTGAGAT






TTTCAGTGATCCTAAAGTTGTAGAACAGGTTCCCTG






GTTTGGAATTGAGCAAGAGTACACTTTGCTTCAACC






AAATGTGAAGTGGCCTTTGGGTTGGCCAGTTGGAG






GCTACCCTGGTCCTCAGGGTCCATACTACTGTGGTG






CTGGAGCGGATAAGTCCTTTGGAAGAGACATTTCAG






ATGCACATTACAAGGCTTGCTTATATGCTGGAATTA






ACATCAGTGGAACCAACGGAGAAGTTATGCCTGGA






CAGTGGGAATTCCAAGTTGGTCCTAGTGTGGGAATT






GAAGCAGGAGACCATATCTGGTGTGCTAGATACCTC






CTTGAGAGAATTACTGAGCAAGCCGGTGTTGTCCTG






ACACTTGACCCTAAGCCAATTGAGGGAGACTGGAAT






GGAGCAGGATGCCACACTAACTACAGTACAAAAGC






CATGAGAGAAGAAGGTGGATTTGAGGTAATCAAAA






AGGCGATTCTAAACCTTTCACTTCGCCACACTGAACA






CATCAGTGCTTACGGAGAAGGAAATGAAAGAAGAT






TGACAGGGAAACATGAAACTGCCAGCATCAACCAAT






TTTCATGGGGAGTAGCTAATCGTGGTTGCTCAATCC






GTGTGGGGCGTGACACTGAGAAAGCCGGCAAAGGT






TACTTGGAAGACAGGCGCCCGGCATCAAACATGGA






CCCATATACAGTGACAGGATTACTTGCAGAAACCAC






CATCCTGTGGGAGCCCACACTTGAGGCTGAAGCCCT






CGCAGCTCAGAAGTTGGCATTGAATGTCTAGGGCCG






ATCCATGTTCTTTGAAAATTCGGATTTCTGTTTCTAG






TTTGATTTCTTCGACGTCTTGTAAATAAAGGTCCCAA






AAAGTCATCATATTTAAAGCTTTTTGTAGCAACTGGG






TGGTTTTTTATGAGACGATTATTGGACAGCTTATGCA






CATTTTGATGTGTGTATAAGTACA





20

Digitaria

gDNAContig
7358
GAAGGGGAAAATGCCTCATCATTTCCCTTGGAAAGA




sanguinalis



GAGGGTGTCTAACTTTAGCAAGTGCATATGCGGAAT






CGGCAATTAATACTACAGTTGAGATTCATGGAATCA






AAGATGGAAAGATACAGAAATATTCATTTCACCACA






TGCGTGGCTGTAATGAATAACCAACCAGGTATTTCT






GTACTGTCACTAATGTGCTGGCATTGCAGCAGGACA






AACCTTTCCTCCTTTTTCGTACGGTGCATCACGTGCC






ATGGGTTCATAATCTCTAGATCATGCTCAGAGAGAC






TTTCTTTTTCTTGCGGAACAAAATATTTGCACGCACG






AAACAAAATTAGATGGACCAACTATTATTTTGTGCG






TAACATCTTATAGATATATAGGAACGGTCCAAATAA






TACAATACAATATCTTATATAGATATATGTGAAAATC






AAAACAATATCCTTATGGATATTGACATATTGTGGA






AAAATCCAAACAACTCCACATAATGTGACATGCATA






TTGTATGAAAAATCCAAACTACACCATGATACACCTC






AAGGATGTTGTGGGAATAATTCAAACAACACGATA






GAACATCTTCTAGATATTGTAGAAGCCATGCAAACA






ATACATGCAACATCTTATAGATATTATGCGAAAATAC






CAACAACACTATGGAATATCTCTTAGATATTGTAGTA






ACAATCCAAATAACACAATAAAATATTTTGTGGATAT






AACGAACAATACAAAAACATAATGAAACATCTCACA






AATAATATATGAACAATCAAAATGACACCACCAAAC






ATCTCGTAGATACCATGGAACATCTCGTGGATGTTG






CGAAAACTGTCTTAAGAAATATTGTGATATATATTAT






GAGACAATTTTTTAGAAAAAACATCATGAAATATGA






GGCAATCCAAGTAATACCAGAGAAAATATCATATTA






TAGTAGGAACAATCTAATCAAATATCATACAAATAA






TATAAATAACACCATAAAATATCTAATGAATTATATA






AAAACAGAACGCAGGCACGGAGCAATGAAAGCACA






GGGCAATTTCCAGCCCTTGTGCCGATGAGGTGGCTT






TAGGTACGAGCGTGATTGAATAAAAAAAACATTTTA






AAAATAATTTCGGCTCCTTTTTGGGCTATCCCCAGAC






ATGGGAAAAGTTTTCAAATTTCTTTTACCCCTCCCTCT






GTGCTCGGAACTCATAATCAAATCAACCACTTCCGG






AGATAAAGCTGCCTGTGCGCAATTCAATATTTTCCCA






CACCAACTACTGCACGTCCTGATCCACGTCTCACTGA






CAGGCTGCCCCCAATTGGTTGGTCCCGCTTGTCAGC






GACGAGGCTGAGCGATCTCCTGGTACGGGATGGTC






CTACTTGTCAGCGACGAGGTGAGCGATCTTCTGTAC






GGGGTGGTCCCTCCCCGCACCTACCGCGTCGAAGAA






ATAATCGAATAGAATATACGCGGAACTCGAAAGGT






AAGATTTTGCAGCGGTATTTGTACGTGTATGGCGTA






TAGTATACGTATTTTGTTGGGATCAAGGGCTGGAAG






CTTGACGCCAACTTGTTTCCATCCCTTGGGTCGTCGC






CATTATATAGCCGCCCTCCTCTCCACCGATCTCTAAT






CCAGCACCACATCCTCCTCTTCTTCCTCCGCCTCCCAA






GCCTGCCCGTGCCACCGCCAGCCGCCGGCCATGGCC






TGCCTCACCGACCTCGTCAACCTCAACCTCTCCGACA






CCACCGAGAAGATCATCGCCGAGTACATATGGTACG






TCACGTCTCCTACTCCTTGTTAAGCGTCCGTCAGAGA






GAATCGATCTTGCTGGCCGCCGGCTGCCTTTCATGG






CGTCTCGGCGGCCGGAAACGGGCTCTGGTCGACCG






TCGCGTGTAAACGAAAGATCTTTGGGGGCGTTTGG






GGAGGGTTTTTGGGGGAGACGGAGGTTTCTCGTAG






ATTGTTGCGGATTTGCCTCCCTTTTCGTCTTCACCGG






CTGAAGCGGCGGCGGTATTAGTTCCCCCCTTCTCCTC






TGCCAGACACCAGAGCCTGCCACCCTGTGCAACTTC






TCTGTTTTCTCTTGGTGGTGATCAATTAATTGGTTGT






CTGCTCAATCTTCATGTAAAAAAAAAATCAAACTGTT






TTTTCTTTTATTTTTTTGCCGGTTTATTCTCCCATGAAT






ATTTGACTTCAGTTGGGGATATGCTTCAAGAGAGAT






GCAGTCGAAACTCGAAGTACTTGATGTACGTCTCTT






GTTCCTCCTGTTGGGGGAGGATATCTGAAGCGGCA






GTCGCTGCTGGCCAACTGGTTGGTCCCTCACGACAC






CGCGACGGCCAGATGATCTGTTGGCACAGTAATCCT






ATGTTTATGTGTTAATTTATCCCCCTGATGCCCTCAA






ATAGATTGCTCTTCTCCGATGAACATGGCGTGGAGT






TGTTCGGTTTGTTGGTGATTTGACCCTATCTTAATGC






ATGGCTCCTTTTCTGTTACAGGATCGGTGGATCTGG






CATGGATCTCAGGAGCAAGGCCAGGGTAAGATGAT






AAAGATTCCCACGCTTGGACTGGAATACTGTTTGCT






GTGACTCATCACTTATCTCTGAAGTCATCCTCTGAGC






TGTTCTTTGGCTTATATATCGGATCTCAGCTGGCTGC






CATGCTGCTTTCCTTTTTATTTTTTCTTAAAACTAGAA






AGATCTTTTTTAAACATTAAAATTCATATCGATCTGG






TTGGTGCTTCGCAGACCCTCCCCGGGCCGGTGACCG






ATCCCAGCAAGCTGCCTAAGTGGAACTACGATGGCT






CCAGTACCGGCCAGGCCCCCGGTGAGGACAGTGAG






GTCATCCTGTAGTAAGTATCATGGCATGCCATCCCTT






CGCTTTTGTTCTATTGCTAGCAAAAAAGGAATGATCC






TTATCTCTTGTGCATGTGCCATCCTGCAGCCCGCAGG






CTATCTTCAAGGACCCATTCAGGAAGGGCAACAACA






TCCTTGTGAGTTTCCACTTTTAACATCCAAGGGATCT






GAATCATATGTTACTATTGTCATACAGCTACAGTTAA






ATTGATACAACTCAATCAGTCCACCCCTGTGAAAAA






AGTTTGTCTTGTTACTAATTACAGTAGGTATAAATTA






TGTTTTTAGTTTTTAATCTGCCTGCTGTATAGGTCAA






ATTATGGTAATGCAGCACTAAAGATTCCTAATGCAG






GTTCTCAACTCTGAATCTCTGTCTAGTTAGCAGAATT






GCAAATTATATAACATGCTGACCTGGTGACATGAGC






TTAGATATTTTTTGAACTAAAAGTCTGATTGTCCAGT






GTACCTAACCATAGGTTTAGGAATCTGATCGGTTGT






TTTGTCAACCTCTAATAATAGGGACCATTTTTGGGCA






TTCAATGAATTCGTTTGACCCGCAGGTCATGTGCGA






TTGCTACACCCCAGCTGGTGAGCCAATTCCCACCAA






CAAGAGGCACAATGCTGCCAAGATCTTCAGCAGCCC






TGAGGTCGCTGCTGAGGAGCCCTGGTACGCAAATCT






TTACTGAATAACTATGATAAAAGGCGAAACAATCAA






TATATTTACAAAATTGACCATGATTGTTTTGCCAATG






GCAGGTATGGTATTGAGCAGGAGTACACCCTCCTCC






AGAAGGACATCAACTGGCCCCTTGGGTGGCCTGTTG






GTGGCTTCCCTGGCCCTCAGGTAGACGATCACTTCA






TTAGTTGGCTTGCTTAAGATTTTATTCATTGATTCGG






TCCTACATTGGTTGGAGTGTCCCTTGACAGATTTCAA






TTATCTTTTAGGGTCCTTACTACTGTAGTATTGGTGC






GGACAAGTCGTTTGGGCGTGACATAGTTGACTCCCA






CTACAAGGCTTGCCTGTATGCTGGCATCAACATCAG






TGGCATCAACGGGGAGGTCATGCCAGGACAGGTGA






AATTTTACTAGACTTGGCAACCTGTTTTGTACCCTGA






AGTTAACATCTTTCTGACCATGGTAAAAATGCTGTG






GTTGGTTTCAGTGGGAGTTCCAAGTTGGCCCGTCCG






TTGGCATTTCTGCCGGTGACCAGGTGTGGGTTGCTC






GCTACATTCTTGAGGTATGGATCCAACTTCTGGAATC






TATATGTGATCAAATATAACACGATCTTCTTGAACCA






AACAAGATTTGCAGCACTTGAGCTAATCTGTCCCTTT






TTCAACAGAGGATCACTGAGATCGCCGGTGTGGTTG






TGTCATTCGACCCCAAGCCCATCCCGGGAGACTGGA






ACGGTGCTGGTGCTCACACCAACTACAGCACCAAGT






CCATGAGGAACGATGGCGGGTACGAGGTGATCAAG






TCCGCGATCGAGAAGCTGAAGCTGCGCCACAAGGA






GCACATCGCCGCCTATGGCGAGGGCAACGAGCGCC






GGCTGACCGGCAGGCACGAGACCGCCGACATCAAC






ACCTTCAGCTGGGTACGTCGTCCCCCATTGTGGACTT






GGATTCCCCAATCCGTGGAAAGGGAGATTCGTGTGC






CAACTCTGTTTGTTCTGTCTCTTGCAGGGAGTCGCCA






ACCGTGGCGCGTCTGTGCGCGTGGGCAGGGAGACG






GAGCAGAATGGCAAGGGCTACTTCGAGGACCGCCG






GCCGGCGTCCAACATGGACCCCTACGTGGTGACCTC






CATGATCGCCGAGACCACCATCGTCTGGAAGCCCTG






ATTCGTCCCCTCTCCAGCTCCCCGTCTCGTGTCAACT






GCTTCTGCTTCGGGCGGTGGCGGCCATGGCTACTAC






CTCTGGCGATTGCGTTGAACTGGGCACAACAAATGT






CCGATGATTCCGTTCCATTCCGTCTGGTTATACTATT






GGCATTTAGTTAGATCCATGTCGAGGGTTGTGCGAA






AACAAAACAGAACAAAAACCATTGTTTGCTTTGATG






CTTTCCACTTCCCATGCCTTCCGTTTGGGTGGTCACT






TGTGTAATCCTCCAATAATGACCGTACCGCAGCGGT






GGTACCTTCAGTACTTGCATCACTAGTGCTAGCCCTC






TTTTTTTTTTTCTACATGTGCATTGTGAGTGACAGTG






AGTGGGTGGGTGTAAATTGTATCACAAAAGTGGCTT






GCTTTGCTGCACCTCCAATGGCAATGGCTTTCTTCCG






GCGATAAAGAATCAATCATCATGGCTGTGGCGAGT






GCGGGCAGTGCGTGGCCGCACTGTGGTCGCCGATT






AAAGTAATCCTGTTTTAGGTCAGATTCTTGAACGGG






TTACTTGTCTTTTCTCCGAAAATTCAGCACCACCGGC






CATTGATCACTCAGGAATCTTGATCGGTTGGTGGAG






GGAGGGTCACGGAAGAGCTGAATGCTTGTCATCTT






GCACGGACGGACAAGTGGGGGGCACGAGAATCCAT






CAGAGATCACACAACAACTTCCCAGTTAGTTCCATG






ACGTATGGGCCCGCTGCTCTGTGGACCCCGTATCCC






ATCTTTGCAGCGAGTATGGGCCCGCTGCTCTGTGGA






CCCCGTATCCCATCTTTGCAGCGAGACCGCGTCCCGT






GCAGTTAGCGCTGCAACAGCCAACGCGCGTCAGCTC






CAGCCCTAGCCGGCACCAGCCCAGCCAACCGAATCT






TCCTCTCATCACACAGACACAGCAACTACTAGATGTT






GCTATCCAATGACTGTTCCACAACATGGCCCCTCTTC






TCTCAGTTCGACTGGTCCGATCGGATCATCTGGTGG






AGCAGTACTAGCAGCTTGCAGCGCCAGCAATCCAGC






ATGTTATCGTCTCGAGCTCTCAACAACCCAACTACTC






TCAAAAAGAGAGGATGGCCCGGCCGGCGTTCTTGA






CGACGCTGATTTACAAAGTTGACCCGCGGGCACAAG






CACTTTTACACAGCATCCTCACCAACTCCGGCGACAT






TGTACGGGCACATCTTAACCGCTCGGCTTGAAACGG






CGATGCCATATGTTTTCTTTTCTCGCTAATCCCTGCCA






GGTCAAAGCTTGACAGTATCTGGGCTACCCACGGCA






CACTGAAAGCCTGAAACATCCAGTATCTTCATCCTCG






CACGTCTCGCCGCCGGGCTTTCTTTATGAGAAAATCC






AGCGTCTCTACTCCCAACTACAATTTTGTTCGTTGCC






GAGTCAAAGCATACCGTGCAGGTTGGTTCCAGTAGA






ACAGTGGCCCAAAGGCACGGCTAAGGTCAGCCATC






CTTTTGCGGCTGGAAAGGGCTGATTGGCCGGCACTA






TCTGTCACCCACGGAAGGATGGACGGAGAAGGAAA






CACATCAGCAGGCCGAGGCGCCACTTCGTGCTACCA






AAAGCTACTCGTGGCTCTCTGTCTTGTAGCCATGGA






TTACAGGATTAGAGCTCTGATTTCAGCGTAAACAAC






TCTGTTTCCAAGGAAAGCATTGTTTAGTACAATGGC






AGCAAACTGCGGCCCTGATGGTGAGAGAAACTCCG






GCGGAAGCGACAGAAACATGGTGCAAGCTAATCAG






ATGCTTCAGATAGGTATAATTATCCATGACACTGCCA






GATGTTGCTCGATTTCAATTTCTTTTAGGAAGAATGT






TCAATACACCTATATTCTGCTGCTGCTGCTGATCTGG






GCAAGAAACCTGAGCGATAGATGTGCGCATATCATT






TGTCATGCGCTGAGTACTGACAGATGACCGTGCAAT






TTGGAATCCTGGCTAGCGGTCATATTTGCGCACGAA






ATGATATTGGGTAAGGATTTATCTTTTATGAATGGA






CACAAACACACAAGTACTAGCGGTGGAGGTGGATT






TGGATTATCAACACTATAGTTGACCTTTTTTCTTTCAA






ATTTATTGGATTGCATCTATATTTGGATTTTGGATAT






ATTGGATTGGATCTATATTTGGATTTTGGATATATGT






GGATTACGAAGTTCACACTTGATATGGACATGGAAG






CAAAGCTTGCTGGCCGAGTGTGGCAAGAAAGCTGA






GCGACGGATAGATGGGAGCACATCACTTGCCATGT






ACTGACAAATGACCGTGCAATTTGGAATCCTGGGTA






GAGGTCATTTTTGCGCACGGAATGATATTGGGAAAG






CATTTATTTTCTATGGACGGACACAAACACACAAGT






ATACACAGGCACGTCAAAAATCCATGTGTGACGATC






TTGTGCTCAAGATCAATCATTCAAGGTTGAGCCATC






AGCACGAATGGACCAAATGGCATTGGAATCTGAGG






CTGCTGTCAACAAACAATTATTGACAGTATGGACTG






CTTTTCCTAATCACAATTGATGAAGCAGCTACGCTCC






AGTTTGCGGTGATGCGGAGGGCCCATTCAGCCAGA






CAGCAGCTGAAAATAACAAGGCACACAAAACATTCT






CTCACGTTCCAGGCTTAGACATGGAGCACACGACTG






TG





21

Kochia

cDNAContig
918
ATGTCGCTTCTCTCAGATCTCATTAACCTTGATCTTTC




scoparia



TGATTCTACTGATAAGATCATTGCTGAGTACATATG






GATTGGTGGATCTGGTATGGACATGAGAAGTAAAG






CTAGAACATTGGAGGGGCCTGTTTCTGATCCGAAAA






AGCTTCCAAAATGGAATTATGATGGATCCAGCACTG






GTCAAGCTCCTGGTGAAGACAGTGAAGTTATTCTCT






ACCCACAAGCTATCTTCAGAGATCCATTCAGGAGGG






GAAACAATATCCTTGTTATGTGTGATGCCTACACCCC






ACAAGGAGAGCCGATCCCAACTAACAATAGATGCA






ATGCCGAAAAGATATTCAGCAACCCAGAAGTTGCCG






CTGAAGTACCTTGGTATGGTATCGAGCAAGAATATA






CTTTACTGCAGAAGGATGTAAACTGGCCCGTTGGCT






GGCCTTTAGGCGGCTTTCCTGGTCCACAGGGCCCAT






ACTACTGTGGTGTTGGTGCTGATAAAGCTTTCGGAA






GGGACATCGTTGATTCCCACTACAAAGCCTGCCTTTA






TGCTGGAATTAACATCAGTGGAATTAACGGTGAAGT






GATGCCAGGACAGTGGGAATTTCAAGTTGGTCCATC






TGTTGGAATTTCTGCTGGTGATGAATTGTGGGTAGC






TCGTTACATATTGGAGAGGATTACTGAGGTTGCTGG






AGTTGCTCTTTCATTTGATCCAAAACCCATTCCAGGT






GATTGGAATGGTGCTGGTGCTCACACAAACTACAGC






ACAAAATCTATGAGGGAAGATGGTGGTTACGAGGT






CATTAAGAAAGCTATCGAAAAGCTTGGGTTGAAACA






CGCGGAACACATCTCTGCTTATGGTGAGGGAAATGA






ACGCCGCCTAACTGGTAAACATGAAACAGCCAGCAT






TTCAACTTTCCTGTGG





22

Kochia

cDNAContig
867
ATGGCCCAGATTCTCGCTCCTAGCATGCAATGTCAG




scoparia



TTGAAATTCTCAAAAAGCTCATTAAGCTCGCTAGCAT






CGAACACGTGGACCTCCATTTTGCTAAAAGGAAACC






AAAAGAGATCGCTTCATTGCTCAACTAAGTTCAAGG






TATCCGCTGCTCTCAAATCTGATGATGGTACTATCAA






CAGGGTAGAGCAGCTACTCAATTTGGATGTCACTCC






ATACACTGACAAGATTATTGCTGAATACATATGGAT






TGGAGGATCTGGGATTGATGTTCGCAGTAAATCCAG






GACAATCTCAAGACCTATTGAGGATCCATCTGAACT






TCCCAAATGGAACTTTGATGGGTCAAGCACTGGACA






AGCGCCGGGAGAAGACAGTGAAGTAATCTTATACC






CTCAAGCAATTTTTAAGGATCCTTTTCGTGGTGGTAA






CAATATCTTGGTGATCTGTGATGCATACACACCAGC






AGGTGAACCCATCCCAACTAATAAACGACACAAAGC






TGCACAGATCTTCAGCAACCAAAAGGTTGTTTCTGA






GGTTCCATGGTTTGGAATAGAGCAGGAATACACACT






TCTTCAACCAAATGTTAATTGGCCCTTGGGATGGCCT






GTAGGAGCTTATCCCGGTCCTCAAGGTCCATATTATT






GTGGTGTTGGTGCTGAAAAATCTTTTGGACGTGACA






TTTCTGATGCTCACTATAAAGCTTGCCTGTATGCTGG






AATTAACATCAGTGGCACCAATGGGGAAGTTATGCC






TGGCCAGCTGTATATCCACTTGTACCTACAGTGGGA






ATTCCAGGTTGGTCCTAGTGTTGGGATTGAAGCAGG






AGATCATATCTGGTGTGCCAGATATATTCTTGAG





23

Kochia

cDNAContig
360
ACTAAAACAATGAGAGAAGATGGTGGTTTCGAAGT




scoparia



GATAAAAAAAGCGATTTTGAATCTTTCATTACGCCAT






AAGGAGCATATTAGTGCATATGGAGAAGGCAATGA






GAGAAGGTTGACTGGAAAGCATGAAACTGCCAGCA






TCGATTCATTCTCTTGGGGTGTTGCCAACCGTGGTTG






CTCAATCCGTGTGGGCCGTGATACTGAAAAGGAAG






GCAAAGGATACTTGGAAGATCGACGACCTGCTTCAA






ATATGGACCCATATGTGGTAACAGGTTTGCTAGCTG






AGACCACAATACTCTGGGAACCCACACTCGAGGCTG






AGGCATTAGCAGCTCAAAAACTTGCTCTCAACGTGT






AA





24

Kochia

gDNAContig
5248
ATAAAGGGAATTTTTAATTTTTTTATATTTAAATGCT




scoparia



AAATTAGGTCTCAAAATCTTAGGATAAAAAATGGAT






GGAAAGAAAGGGAGAGAATCCTAACTCCGTATACG






TATGAACTTTAAACATTAAAAAAAAATTGATTAAAG






TTTGTCTAAAATAATTTCCTTCTTTTAAAAATGTGTAA






TGTTGTTTGGATGCAAGTAATAAAAAACAAAGAAAG






TATATACGAAAGTATGTAGACTGGTGTATTGGTGGA






GGGAGATTTAAATATTGTGTTAGTTTATAAAAAGAT






TGCTTTATTACTTAGGAGACTCCAAAAGATTGCTTTA






TTTACTTAGCTAGATTTGTTCTAAAATATTTCATCATT






TAATAATCCAAACCCCTTTCTCTTTCCTCTCCTTAGAC






GGCGTGGGCCCACTCGACGGACGGCGTTGGTCCAC






TCGACGGACGGAGTTGGACCACTCGACGGACGGCG






TCTCTGTGTCTATCTCTCTTGTGTTGCGCTGCTGTTAT






TCTTGCGTTGCGTTGCTTTGCTTTGCTACTGCTGTGT






GGTTGCTCGATCTTAATATCATTGTTAGGATTTCGGT






TTTTTTAAGGTATTCTACTTCTCTCAGTCTCTCTCCTC






ATCTTCCCCCAATTCTGTGTTGAATTCTTTTTAATGTT






TGAATTATTTTGCTAGAGTTTTGTGTGAATTTTGTTG






GAATTATTTATGAGTTGTGTTTCAATTTCTATTGTTTG






TGAGGTTACACATTATTGTTTGGTTTTGGGTGATTTT






GGGGGCAGAATTATTGATGATTCTGGGGCTGAATTT






AAAGACCAACAAAGAACTATAATATAATAATCAAAC






TGCAACAAACAAAGCATAACACACATTGGAAATCAA






GTTTGGTAATGGGCATTTAACACACATTGAGAATTT






GTACCTTGAATTGGACAAAAATCAGAAGATAATTGT






CCAACATTATCACAACAGGAACAACTGGTATACAGT






AATTAAATCAATTGATACGGTAAATCGAGGAGGTCC






CCTCGATAATTGGAAATGGACAACGAAAACCTTATC






TAAAAAGTTGGAACCCTTTTTTTAAAAAAAAATGTTT






GATCAAATTTAGTCCAGAGATTCTTTTAAAACACAAT






TTTCACCACTCAATCACAAACACCCCTATCTACTATG






GAAAAGCCATGCTCAGCCATTTTTCCTCCTCTTTTCTT






TTCAACCCACTATTTGCCCTTTCCCATTCTCCAAAATT






ATATTATCAATATTATTCTTTCTATATACTACAAACAC






TATCTTACATTTGGTCACTCTCTTCTCTTTCTCTCTCCT






GGCAGTTGACTCTCTCCATTCCCAATTGATTAGCAAC






AAGGTAGTATCTACATTTTCCCACCCATGTTTCTTTCT






TGCATTCAATTCTTGTTACTCTTTCTTGTGCTACTTCA






CTATCTTGGCAATTGTGATCTCGTCATTAAATGCATT






GCTGTCTCATCATCGCATTTATTTCATCTCTCATATGA






GTTAATGAGTACTACTTGCTATTATTGACAATGTATA






AGGTGATCTACTTTGTTTCTAATAAGTCACTGCTATT






CTGTGCTAAACTAGATTTATACTTATTTACAACTGAT






GACTGCTGATTTAGTGATTTAGTGATTTAGTGATTTA






GATCGTACTTTCTTTGTTTTGCTCGATTTTCGGACGT






CGATTCGATATATACAGATTTGATGAACAGCATTGTT






GCCAATGATCAGTAGTAGTAATGTTGTTGAAAGCTT






TCAGTTATAGTGATATCTTCCATCTGCTAGTTTTTTTT






AGAGGAAATCAGTTTTTGCTAGGAGGAAAAAGGGA






ATTACTAAAAAAAATTATAAATGTTCTTTCAAAATTT






GAGTGAAGAAAATAATGGTTATTAAACACTAATTTT






GAGCTGAAAGAATATGATCAGATGCTTTTGTATTCT






AATGTCTTGAATCCTAATATGCACCTTTAAAACCTTT






TGTTTTTCAATGAAAAAGTAAGGAAAAAGATTATTT






GCATTAGTGGCACGAGTCTAATCTAATAACCGTGGT






TTCGTCTCTTCTCTTTCAAAAATTGGAAAAGTGTTGA






TGTCATTTTCTAACATTTCCTACTAAGTACTAACCAA






AACAAGGTTTTCTTTCCACTAATAGAATTTTCCTTTAC






CACATTTATACAGTATAAAAATCTCTAACTTTAGACT






TTAGAGCATACTATCACATCATGGTGTTGTCATAGTA






TATTCATATTAGAGCAGGTTTAGCCCCAAGTCTGAA






GACTTGGGATGAAATTACCTTTATTGTCTTAAGATTT






AGATTTAAGATTTTCCCATTTTTCTTTTAAAATCTTAG






CCAGATCTCAAGTTGATTTCAAGGCTCAACTTAAGA






CTTGAAACACGGGACCCACCCTAATTTAATAATGTTT






GTTTTCATATAGATAACATAAAGAGATAAAAAAAAA






GTAAAATATCATGGTATATATTTAAGACTAGGAGTC






TTAGGGCTAAAGTGATAAAGTTGGACAAGTTTTATG






GAGTTTAAGAAAACATTATTTTTTGTGGGAACCACT






AAAAAATGATGTTACACCCAAGTTTTAAGACTTGGT






GCTAAGCTTGCTGTTACAAATTGGTTTCAATCATAAC






AGTTATTCCTTATCTTTGACTTGGAATTTAGTCCAAA






TCTTTTGTTGTGGTGTACTGGTGTCGAGGATACAAC






ATGGATACCTAACGGGAAGAAAAGAGTTTTTGCAAC






TTATATTGTCTGTCTGTGTTTAATGTTGCCACTTCTAC






GGGAATTCTGGTTTCTGTAATCCAGGATTAAAGAGC






TGTCAGCTGTTGTACTGTAAATTGTTTGTGTAATAGT






TTTAATTTTTGTAGGGAAAGGACCAAATATGGCCCA






GATTCTCGCTCCTAGCATGCAATGTCAGTTGAAATTC






TCAAAAAGCTCATTAAGCTCGCTAGCATCGAACACG






TGGACCTCCATTTTGCTAAAAGGAAACCAAAAGAGA






TCGCTTCATTGCTCAACTAAGTTCAAGGTATCCGCTG






CTCTCAAATCTGATGATGGTACTATCAACAGGGTAG






AGCAGCTACTCAATTTGGATGTCACTCCATACACTGA






CAAGATTATTGCTGAATACATATGGTATAGTTTCCCA






TTCTGATTTTGGCATCTTTATCGAGGGTTATTTTTTCT






CAAATATGCTTGATGAGGTTATGGTAGAATCAACAT






ATTAGGGCTTTACTTGCATGGTTGTATTAGGCTCTTT






TGTTGTAGAAAAGCCTGCTTGGTAATTCAGTGTCCA






GGTGTTGATGGAACTAATTGAATTATGATTGTTCATT






GGAATAGGATTGGAGGATCTGGGATTGATGTTCGC






AGTAAATCCAGGGTATAGTAACATCCATTCTGTAGC






TTGATTATTAACCACCTATTAGATGCTGACTAATGTT






TTCTTAATAATACCAGACAATCTCAAGACCTATTGAG






GATCCATCTGAACTTCCCAAATGGAACTTTGATGGG






TCAAGCACTGGACAAGCGCCGGGAGAAGACAGTGA






AGTAATCTTATAGTAAGATCCTGTTACATCTATGAAT






CTTCATCATTTTCCCCATAAATTCATTATTCATTATTT






CCGAGTCTTTCTTTTATTCTCGTCTTTTAATGACTGAT






CATTAGTCATTGTTGTCTTGCATTTCTTCTGCAATAG






CCCTCAAGCAATTTTTAAGGATCCTTTTCGTGGTGGT






AACAATATCTTGGTGAGTTTGATAGAGCATATGAAT






CGGTTATTCTAAAGTTATAGTGTTTCTTATAAATAGT






AAATTTATTTGTTAAGGTTGCAACCATAATTTATGAT






TTGTAAATCTAGGTGATCTGTGATGCATACACACCA






GCAGGTGAACCCATCCCAACTAATAAACGACACAAA






GCTGCACAGATCTTCAGCAACCAAAAGGTTGTTTCT






GAGGTTCCATGGTATGAAGTTCCTTGTACTGATAAA






ATCCATTTATGAATTGTTAATAACCACTTTGCATTTG






AACATTAAATTTTGTGTACAAAGTTTCCTATTATAGG






AAGGATAATTAATTAATCATAATTGGGAGGGTGAAA






TTGAGAAGAAAAAAGAGGATTGCATGAACAGTCCA






ATGCATTTTGTTGCTGACATGAGAGGCAATTTGGGG






CTTTGTAGAGCTGGCTGGATTGTGGAATGTAATCGA






CAGGAAACTGATGACTGACCACTGTGAATATGATCT






GTTATGACACATTTCATTTTTCGAATAGAGGAATTTC






ATTGCCAGGTTGACCTATAACAGTATAACTATGTCA






GAACAGAGCTTCTCGATTTCAAAATTGTGTTGGCTTT






TCATTTTCAAATAATCAGAAGAGACTCATCTTTTGTT






TTCTGTGTTATCGTTCTACTTTAAGCTTTTATACTCTT






TGTTTTAGTCATTTAATCATATTTTTACAGGTTTGGA






ATAGAGCAGGAATACACACTTCTTCAACCAAATGTT






AATTGGCCCTTGGGATGGCCTGTAGGAGCTTATCCC






GGTCCTCAAGTATGTTATTCAGTTGCTCCTATTTCAT






ATTCATTTTGTCCAATGAAGATGCTTTGTTGTGTTAT






AGATTAGAATCGTTTTGTTACGCAAAATGATTTTTTT






TCGCATTTTCTAGGGTCCATATTATTGTGGTGTTGGT






GCTGAAAAATCTTTTGGACGTGACATTTCTGATGCTC






ACTATAAAGCTTGCCTGTATGCTGGAATTAACATCA






GTGGCACCAATGGGGAAGTTATGCCTGGCCAGGTA






TTCCCTTACATCATTCTAGTATGTCTTCCAGTCATAAA






TTTGCTTTGAATCTTGTAACTCAATAGCTGTATATCC






ACTTGTACCTACAGTGGGAATTCCAGGTTGGTCCTA






GTGTTGGGATTGAAGCAGGAGATCATATCTGGTGT






GCCAGATATATTCTTGAGGTATTCTCCTGCAATTTGT






ATGTTCCCCTCTGCGCTTATCAGTTACAACTATAGTT






TTGTAATTTGCTGCCCTATCGTTTTATTATTCATTATT






TTTCTACTTGAATTCTGCTTGAAAGATAATAAGCTAC






TTTGACACAGACTCGAAGTGAAAGTGACCATATGAG






AATCAAACTGACCTTGGAATTATGTGTGATTAACAA






CCGAATCTAATCTCTTATGGAAGACATAAATTAATAA






TACTTAATAGGCTCCAATGTGGATGACCTCCCGGAA






TAA





25

Kochia

gDNAContig
3994
GTCTATTTTATGAGTAAAACAATTCCCGCTAATTTTC




scoparia



TCCGGGAGATGCTTGCAATCTCAAGAAATTTAATGG






TGTGCAATCTACATGTTTGATGGACAAAGTTTTCCCC






CAAATTTTAATGGGACATTGGGTAGGTGAAATACTC






AATCATTAGTGAAGTACGTAATTGCATTCTAAATCAT






TAATTTTTTTAACTCCTTTTGTGACTAAATAAATACTT






TTTTTATCATTTACAATTTTTACTTTGACCGTAATTTTT






GACTTATAGATAAGAAAAAATATATTTATCAGAATT






CTTGTCGAATTTCTCTCAACTTGTAATTTTTTAAAATC






TAATGTTTATAATTTTTGCAAATACATAATTACAGAT






ATTAATATAAAAAGTTTTATCTCAACATGCGTGAAAA






GTACAATTATTATAATAATTTTGTCCCAATAAAATAT






TTTTGTTGTTAAAGATTTTTAAGAGGTTGAAAAAGTA






GTATATTTTTTTTGGCTGAAAAAGAATGGAGAATAA






ACAATATCAAAACAATAAATAAAGCAGTATCTAAAA






GTAGAGTGTAATTTGTGTAGTCCACTCTTTAAAAGA






GTACCAAAAGTTGAGGACTTCCTCATCAATTCATCAT






ACCATTTTATATTGGTTGTTTCAGACATCACTCTATAT






ATTAGGCGTCATTTTGCGACTCATTTCACGCATTTCT






TGATCACATTCTCACAATATCTTTCTTTCTCTCAATAT






TTTCCATAAACAATCACAACAACAACATGTCGCTTCT






CTCAGATCTCATTAACCTTGATCTTTCTGATTCTACTG






ATAAGATCATTGCTGAGTACATATGGTCAGTTCTTTA






TTATTGCACACCATCTTTTCGATTTTATTACCCAATGA






ATAAAGTTTTATTTTTTCTGGGTTTTTCTCTTTTAGCA






GAAAGATTTCATTAACAACTTAATTCACAATGAAGG






ATTTCAGCTTTTTTAGTTATGAATAGTTTGATGAAGA






AAAGTGATGGGTTGTATCTTATATATTTTATCTGTTT






GTTCTTAATATGGGATATTTTCCAGTGTTACAATATT






GCTTATTTGACTAGCAAAATATATTTATCTTATTTTTC






ATTGAACAAAATATGCACATAATGATTTTCTTTTTAT






TGGAAGTCATAGTGTAGTAATCAAGAACTTGCTGTG






AATTTATTTTCAGGATTGGTGGATCTGGTATGGACA






TGAGAAGTAAAGCTAGAGTGAGTTTTTTTTTTTCTTT






TTTTTTTGTTATTGATATTTTTAACCTTAAACCTTCAC






CTACCAAAATGAATGAATAAATAAATAAATAAATAA






ATTTTTGTTTATATTACGAAGTACATTTAAAAAAAAC






AGAGATGATGAGTTTATGATGGTTGGTTTATTGTGT






AGACATTGGAGGGGCCTGTTTCTGATCCGAAAAAGC






TTCCAAAATGGAATTATGATGGATCCAGCACTGGTC






AAGCTCCTGGTGAAGACAGTGAAGTTATTCTCTAGT






ATGTTTTTCTGTTCTCTTTACTTTTGTAATCATTTGAT






GGTTTAAATGAGTCTCTTGGTTGGTATTGGAAATCG






ATGTCTACCCACTCGGTAAATGACCCACCACAGATG






GATAGATAGATTGATAGACAGACGGGAATTATTATA






GTTTAGTCGAAACTACAAGAAGAATCTCTCAAAGCC






ATTAGGTATTAGTCATTGTCTAAAGATATTTGGACCT






ACTCATGTATAGTAATTACTGGTACAAACTTCAATCC






GATGATCATATCATAATTTTTGTGGCCCATGTATTGA






TTTTTGTTGGTTGGAAGGAATGTTTTCTAGCTTCTAT






TTCGCTTTCGTATGGTAACTTATTACTTAAAATAAAG






GACAAGAAAATGATTTTTGATTTTGGAAAGTATCGA






GAAATGTTTTTTGAAAGCTATTTTCTTATGAATATAC






TAAAAATGTGATCTAATCTTTATTAAATAATGCCATA






CTTGTCCACTGAAAATATATTTATTTGGGGGTCAACT






GTTAATTAATTCTTGATCATGGTTGTAACAGCCCACA






AGCTATCTTCAGAGATCCATTCAGGAGGGGAAACAA






TATCCTTGTGAGTTTCGTTGTTACCTATTTTGTTCGTG






ACATCTGTTAGCATCATTGGCTGTTAGTAGGCTAATT






CAGTAATGCTGATGATCACAACTCACAAGTAATAAT






TTGGTGCTGATTTCAGGTTATGTGTGATGCCTACACC






CCACAAGGAGAGCCGATCCCAACTAACAATAGATGC






AATGCCGAAAAGATATTCAGCAACCCAGAAGTTGCC






GCTGAAGTACCTTGGTAAAACTTTAGTCAATGCTGG






CTGGACAATTGTTTCTAGATTTGATAGTTGTAGTGA






ACTTCAGTATTGTGAAATGTATAGGTATGGTATCGA






GCAAGAATATACTTTACTGCAGAAGGATGTAAACTG






GCCCGTTGGCTGGCCTTTAGGCGGCTTTCCTGGTCC






ACAGGTGAATTATTTGAGCTATTATCTAATTTGACTG






CTGTTTTGCAATTTCTTTGCATTAAACTTTGCAACTGT






AAAATTTCACCTGTAAGAAATTACTTAAATACTGTTG






CGTACTTGTTATATTTGTGCCTGTCATTATGTGATGT






TTAAGAATGTTTTCCACTCATAATTTTCCTAGTATTTG






AGTAAAGAAGCTTAAGATAATGATCAGACCACAAAA






GAGAATATTGAAAGAAACAGGGGAAGTATGTGTTT






TTGAAAAATATGGACAGGACACAACCAATTAACAGT






CGTTAAAAAAAAAATAAAAATCCGTGGGTTAAAAGA






TTTCTGGGACTGCTGACTGTCTAGTCAAATGGTTTGC






TTGGTAATTTGATTTTATTAGAACTTTCTATCGCTCAT






TAAGGATTTGTAACGAAGTGACAATTTTAATGATAC






TTACAGGGCCCATACTACTGTGGTGTTGGTGCTGAT






AAAGCTTTCGGAAGGGACATCGTTGATTCCCACTAC






AAAGCCTGCCTTTATGCTGGAATTAACATCAGTGGA






ATTAACGGTGAAGTGATGCCAGGACAGGTGAATTG






GAAATACCTTTCTATTACTACAAAAAATTGTTATATT






AGTTCGAGTATTGTAATGCATTCTATGTGGCTAATGT






TTTCTTCCTTTTCGTTCCTTAGTGGGAATTTCAAGTTG






GTCCATCTGTTGGAATTTCTGCTGGTGATGAATTGT






GGGTAGCTCGTTACATATTGGAGGTACTTTAAAAAA






AGTTGTCGATTTTTATCTTTTCAGACGAATTAAATCT






TACAAATGATTTTGAATGTCAATATGAAACTGTGCAT






TGGTTTTTCTGTTTACAGAGGATTACTGAGGTTGCTG






GAGTTGCTCTTTCATTTGATCCAAAACCCATTCCAGG






TGATTGGAATGGTGCTGGTGCTCACACAAACTACAG






GTGTTTGATTTCTAAACACTTTATCTTAGTCTTATGA






GCTCTTTGTATACAATAATGATTTATTAATAGATCAT






GATCACTAATGCTTGTTAATGTTTATAGCACAAAATC






TATGAGGGAAGATGGTGGTTACGAGGTCATTAAGA






AAGCTATCGAAAAGCTTGGGTTGAAACACGCGGAA






CACATCTCTGCTTATGGTGAGGGAAATGAACGCCGC






CTAACTGGTAAACATGAAACAGCCAGCATTTCAACT






TTCCTGTGGGTGAGTATTTTCTGAATATATTCTCTCC






AATTTGTAACCATCAAACTTCACTTGATCTGCAGTGG






TGCCTTTTGATTTTTGAAGTACTTTTCTTTTGTTTCAA






AGTTGCAAAATTACCTTTTGCACATGATTCCTTTCAT






CTCAGCTTAACGTTTGTGTCCCTCATTTACTCTCTATA






TGGTCCATCTCATCATATCGGCTTTCTTCCTACATATC






CTTTAAAAGAACCGACAGGAAATCTTTAATCCCATAT






GGAGTATATTGTCTTAAAAGAAGAAA





26

Kochia

gDNAContig
2204
ATTAAGGAATGTAAACAGCTCAGATATATTAGACCT




scoparia



AGGCACCTAGCAAGTTATTAAAAATAATGAGCATGC






TGGTTGGTTTTTGTAGCACTAAAACAATGAGAGAAG






ATGGTGGTTTCGAAGTGATAAAAAAAGCGATTTTGA






ATCTTTCATTACGCCATAAGGAGCATATTAGTGCATA






TGGAGAAGGCAATGAGAGAAGGTTGACTGGAAAG






CATGAAACTGCCAGCATCGATTCATTCTCTTGGGTAT






AGTCATTATGCCTTCCCTTTAATTGACATTATATTTAG






AGTTATATTTCTCATGAGAGGGTGTTCAACAAACAA






TTTGATTATGTCCAGGGTGTTGCCAACCGTGGTTGC






TCAATCCGTGTGGGCCGTGATACTGAAAAGGAAGG






CAAAGGTAACAATGCTCCTTTTGCCATAACTTACTGT






CTTACTTGATATGGCTTGATTTTAGAGTCAGGGTTTA






GAAGACTGTCTATATTTTCCTATGAATTTACAATGTA






CAACGATTGTTGGATTTTCTCAAAGTTAATTGTTAAC






CTAAAAACAAACTAGATGTCTGGTTAAAGAAAATGA






ACATGGTACATTTTTTATTTATTTTTAGATGGTTAGA






GCTTATCATCCACTTCCGGGAGATCTTGAGATTGATT






CTCGCCCTTATGGCTTTCTAAACACCCAGTAAAAAAC






AAAGCTATATAACTGAACTACCTCTATATGTTTAAAT






TATTAATATTATATTAATGCGGAAGTAACTTGCTTCA






AGTTGCATCATAGCATGCGATTTGGCTACTCACATTG






TTTAGGGTGTCATCTATGGACTATATGGATTCCCTCA






AATGTCTGTAGCTTTACTTCAATTTTCCTATCAAGAC






AACAAAAACAAGTTGATTCCTGCTAGACAATGTTTA






ATTTCTTGAATATAAATTACTTCGTAAAAAACACATT






GTTAATGTTATGATTTAATACTCATCAGGATACTTGG






AAGATCGACGACCTGCTTCAAATATGGACCCATATG






TGGTAACAGGTTTGCTAGCTGAGACCACAATACTCT






GGGAACCCACACTCGAGGCTGAGGCATTAGCAGCT






CAAAAACTTGCTCTCAACGTGTAATTCCATCCAAGAC






AAACTTAAACAAGAATAAGAAATATTGCATATTGCT






GTCTTAAACAACTAAGACAACTTTTCAACTGGATCG






AACTTGCTATATTTAGTGATTAGGATTGTTTAAAGCT






GTCAAAGCTTTCTCCATATATCTTAGCTTTTCTATGTT






TTGTTCATTCAAGGTTTGATGAACAACTATTTGATAT






CGTTGCCCTTAATGCGTTTGGTCCCGTTAGTTGCCAA






GGCCAATTCGCATCGTGTTTACTACTGAGAGTAGTT






GAAATGCGAATTTTATTTGTGTTAATGTATTTGTTGC






CAGAAAGTGTCTTGGAAGTTTTGTCAATGGTTTATT






GATCTACTTGCTCATGAAGTTGGATGAGACATTTTG






CATAATGTGTCTTTTCACTCCCAAACGTGTAGTAATT






TGTTCGACTTCCTCATATCACTCGATATCTTTGTGCA






AAGTACAAACCCTAAGGGATTAGGGAATTTGTTCTT






GTTAACATTTATGGGAAAAAATAATCAACTTTCGTGT






TTATTTTATAAATAGTTGTTGTTGTGACAAGTGTAAC






GAGATATTTGAAATTAGAGGAACTGGGGTGAACAG






GCTCCACTTCAACAATGAATGTTGATTCTCCGACTTG






TGCTTGTCAAGACGTTAGAATCAATCTCCGATTCTCT






AAGTCTGAAAGCTTGAGCATCCTCCGGATCACCTGA






AACAAAAGAGATAATCTAATCGATTATCTCCCTTCGA






GTCAACACTTCTACAAAAAAAAAGGTAATAGAGTAA






ATAGAGTGACTTAAATGAAATTTTCCTATTTTGTTGA






AAAAGTAGGTGAGTTAATGAATGAAAGATTGAGGT






GATGTAAAGGAATCTAACTTGAAAAATGTGCAATCA






TTGATGGGTATTTATATTGTCTATCAATGATTGTCCT






CCTAATGGTTATGCGACATGTGGCATACGCCTATAG






GTCACTTGTTATTGGCTAGCCTTAATGATACGTGTCG






TTTACCGTATTAAATTAATTATGGGATATTTCCCCAT






ATACCCCTGAATTTAAGCCTAATAACTCATATACCCT






CGTGTTTTTAGAA





27

Kochia

gDNAContig
135
CCCCTCACATTAGAGAAAATAGCCCAAATATCCTTAA




scoparia



TGAGACCAAAAACCGTGAAATAGTTAACATCGTTAG






TATTTTTTCCAATTAACCTCTAATTCAACCTAATTAAC






CCATAATCTCATCTCTCTCCTCCA





28

Lolium

cDNAContig
1673
CGCGATCTTGCAGTCGCCGACCGTTTCTCCTCCTCTC




multiflorum



CCCTCGTCTGCGTCTGCTGCCGCCTCTGCTAGCGTTG






ACAAGCAAGGCGGCAGAGTAGCTACCTACTAGCTA






GCCTGATGGCGCAGGCGGTGGTGCCGGCGATGCAG






TGCCAGATGGGCGCGCTGGGCAAGTCGGCCGTCCG






TGCCAGGCCGGCGGCGGCCGGGGGAAGGGTGTGG






GGCGTCAGGAGGCCGCCCGCGGCACGGCCGGGTTC






AAGGTGCTGGCCCTCGGCCCGAGACCACCGGGGTC






GTGCAGAGGATGAACCAGCTGCTCGACATGGACAC






CACGCCCTTCACCGACAAGATCATCGCAGAGTACAT






CTGGGTTGGAGGGTCTGGAATCGACATCAGAAGCA






AATCAAGGACGATATCGAAACCGGTGGAGGACCCT






TCCGAGCTACCGAAGTGGAACTACGATGGATCGAG






CACAGGGCAAGCTCCTGGAGAAGACAGTGAAGTCA






TCCTATACCCACAGGCTATATTCAAGGACCCATTCCG






AGGAGGCAACAACATCATAGTTATGTGTGACACGTA






CACACCACAAGGGGAACCCATCCCTACCAACAAACG






CGCCAGGGCTGCACAAATTTTCAGTGACCCAAAGGT






TTCTTCGCAAGTGCCATGGTTTGGAATCGAACAGGA






GTACACTTTGATGCAGAGAGACGTGAACTGGCCTCT






TGGCTGGCCTGTTGGAGGGTACCCTGGCCCCCAGG






GTCCATACTACTGCGCCGTGGGATCAGACAAGTCAT






TTGGCCGTGACATATCAGATGCTCACTACAAGGCAT






GCCTTTACGCTGGAATTGAAATCAGTGGAACAAACG






GGGAGGTCATGCCTGGTCAGTGGGAGTACCAGGTT






GGACCTAGTGTGGGTATTGATGCTGGAGATCACATA






TGGGCTTCAAGATATCTTCTCGAGAGAATCACGGAG






CAAGCTGGTGTAGTGCTCACTCTGGACCCAAAACCA






ATCCAGGGTGACTGGAATGGAGCTGGCTGCCACAC






AAATTACAGCACAAAGAGCATGCGTGAAGATGGAG






GTTTTGAAGTGATTAAGAAAGCAATCCTGAACCTTT






CACTTCGTCACGACTTGCACATCAGTGAATATGGTG






AAGGAAATGAACGGAGATTGACAGGGTTACATGAG






ACAGCTAGCATATCAGACTTTTCATGGGGTGTAGCA






AACCGTGGTTGTTCTATTCGGGTGGGGCGAGACACT






GAGGCAAAAGGGAAAGGATACCTGGAGGACCGGC






GTCCGGCCTCAAACATGGACCCATACACTGTGACTG






CCCTACTGGCTGAAACCACGATTCTCTGGGAGCCGA






CCCTTGAAGCAGAGGCTCTTGCTGCCAAGAAGCTGG






CGATGAACGTATGAAGGACTGAAAAGGATGAATTT






CTGGGAAAAATAAATCGACAACGACACTGTTTGTCG






TCCATTCTTCCTGATCTTGTGGTTCCATCGGGGCACT






GTCTGTACAAAATTTACAGTTTGTAGAACCACTTTGC






CTTTCGCTTGAACTTCACATTTGATCTGGGTCTGTAT






CTGATTCCACTTGGAACTACGTTAAAGGATAATGAA






ACACACAGGATTTTGATTCTGCTATTTTATTTCCTTTG






AATGGTTCATCTTTAAGACTAGTGTCATG





29

Lolium

cDNAContig
820
CCAGCCTTCCTCCCTTAATCCTGCTCCTCGCCCTCAGT




multiflorum



CCCCACGCCATGGCGCTCCTCACCGATCTCCTCAACC






TCGACCTCTCCGGCTCCACGGAGAAGATCATCGCCG






AGTACATATGGATCGGCGGATCTGGCATGGATCTCA






GGAGCAAGGCCAGGACTCTCCCCGGCCCGGTCTCTG






ATCCCAGCAAGCTGCCCAAGTGGAACTACGACGGCT






CCAGCACCGGCCAGGCCCCCGGCGAGGACAGCGAG






GTCATCCTATACCCACAGGCTATCTTCAAGGACCCAT






TCAGGAGGGGAAACAACATCCTTGTCATGTGCGATT






GCTACACCCCAGCTGGCGAGCCCATCCCCACCAACA






AGAGGAACGCGGCTGCTAAGATCTTCAGCAACCCTG






CTGTTGCTGCCGAGGAGCCATGGTACGGTATTGAGC






AGGAGTACACCCTCCTGCAGAAGGATATCAACTGGC






CTCTTGGCTGGCCCGTTGGTGGGTTCCCGGTCCTCA






GGGTCCTTACTACTGCAGTATCGGTGCTGAGAAGTC






CTTTGGTCGTGACATCGTTGACTCCCACTACAAGGCT






TGCCTCTTCGCCGGCATCAACATCAGTGGCATCAAT






GGCGAGGTCATGCCCGGACAGTGGGAGTTCCAAGT






TGGCCCAAGTGTTGGCATTTCTGCTGGTGACCAAGT






GTGGGTTGCTCGCTACATTCTTGAGAGGATCACTGA






GATCGCTGGAGTCGTTGTCACATTCGACCCCAAGCC






CATCCCAGGTGACTGGAACGGTGCTGGTGCTCACAC






AAACTACAGCACTGAGTCAATGAGG





30

Lolium

gDNAContig
1888
CCCTTGGTTCCTGAAACTACTTGCACTGTTTGGAAAT




multiflorum



GCAGGAAAGAGTTCTACCCAGAAATAAAATTCAAG






GACATTATGCAAGCATAATTCTTGGGGAGTAGAAAG






CCCTTAAACTGTCTAACCTGGGTCTTAGGTTCTTTAG






CTCATTTTACCCATATGGCCATATAACGAATATGGAT






GCCATTCTGATGATTTTGAATAGTTCTGGGCCAAATC






CACACCCTTGAATTCGCTATTCTGCACCCTCTACGTG






TTGAGTGTTATCAATTTGAAAAATGTTCCTTCACTCA






TACATATCTAGTCACCAACTGATGGCCTAGCTCACA






GTTGAAAGAAAAATACATTGGCACCAAATTGATATC






TTACTATACTATTATCAGTACCCATTCATTATGACAT






GGTAATTTGCATGGAGCCATACACTGACAGCGCTGC






TGACTGAAACTAAAAGGACTTCATCTTCATGCCAAC






AGGATACCTGGAGGACCGGCGTCCGGCCTCAAACA






TGGACCCATACACTGTGACTGCCCTACTGGCTGAAA






CCACGATTCTCTGGGAGCCGACCCTTGAAGCAGAGG






CTCTTGCTGCCAAGAAGCTGGCGATGAACGTATGAA






GGACTGAAAAGGATGAATTTCTGGGAAAAATAAAT






CGACAACGACACTGTTTGTCGTCCATTCTTCCTGATC






TTGTGGTTCCATCGGGGCACTGTCTGTACAAAATTT






ACAGTTTGTAGAACCACTTTGCCTTTCGCTTGAACTT






CACATTTGATCTGGGTCTGTATCTGATTCCACTTGGA






ACTACGTTAAAGGATAATGAAACACACAGGATTTTG






ATTCTGCTATTTTATTTCCTTTGAATGGTTCAATCTTT






AAGACTAGTGTCATGGGTGGTTCGTCTGTCTCGAGA






ATTTATCTATAGCGTTAAAGTTTCTCATGTTTATAAA






GCTTTGATGGGGAATGTTGGTGCTATTCCTGCAATT






AAATGGATGTGGGATGGTTGTTGTCAACAGAGGCA






CAAGGTTTTCTTTTGGCCGCTTGTTCATAATTGCCTC






AACACCAGGGCCCTGCTCCAACGAAAGAAAAACACC






AGGGCCCTGCTCCAACGAAAGAATTTTGTGATGAAT






GATTATTCTTGTGTCATGTGTAATCAGCAGCATCTTG






AGACAAGAGATCATCTGTTCTTCCAATGTCCTTTTGT






TGTGCTGTGCTGGCAATATCTCTGTCCTCTTTGAATT






TCCCTCCTTTGGGGTAGTTTGATCTTCAAGATACATT






ATCTGGCCTTAAGCTTGCTATCTCCAAGCCTTTCTTT






ATGGAGCTGATAATGTTGATCATATGGTTTATATGG






CTCACCCGCAATGATTTTATCTTCAAGGCTGTTCCTC






CAATGATTTTATCTTCAAAGCTGTTCCTCCAAGTGTT






TACAGATGTCGGAAGAGATTTAAGGATGGGCTTGC






CCTTCTAGTTCACAAAGCGAAGAGAAAATCTTATCA






TGGCATAGTCACTTGGGTGGAAATTTTAGATAGCCT






TTGCTTTCTCTTTGGGCTTATGGCCTCTTTTATTTGCT






CCTCTCAAGCAACTGTTCTCTTTTGTAGACCTTTTAA






GCCTTTATAAATAAAATAAAAAATATACAGTGGGGA






AACTCACTGTTTAGCCTAAAAAAAGAATTTATCTATA






GCCATACCAATATAATGCCATGATACTAACACAAGT






TAAAAATCAGTGGCGAAGCTAGAGATTCTGACCAGT






AGGGCCAGTTATCTTGTTTATGGTGTAATTTTTCAGT






AATGAGCAATGTAAAGAACCACATCAATGAAGATTT






CTGAATTTCTACTGGGTTCGTTTGAACACGAGAACT






GTATGCAAGCTCTACCCTGTGAAAATAATCA





31

Lolium

gDNAContig
1737
TGAAATTATTGCAAACAGATGACGCTCCTAAAACCG




multiflorum



GTAATCTGGGCCTCCAATTATTGGTGCGCCTGGTCA






GAGCCTTCCAAGTTCCAAAACTATGAATGGAAAACA






ATAACAATGGCCATGCCGGTCAATCACTGTACATAT






AAACAACCCAGGCCGTTGAGGTTTGGCTGTTGCTCG






TGTTTATTTTGATTGGAGAGGTCGCCTGGGCTTGGC






CGGCTCGCATGTGGAGACGGACGTGACAAGGAGAG






GCAGCCGCATCTTTCATATCCAGAGCACAAAAACAC






ATTGTAAACTCTATCCAAGATGTGTGTGCCTGCCTTC






TGAGCGGCGCTTCCCTTTGCTGTCTTTGCCTCCGGTG






GTGCTGCAAGGGCCGCCAGAAATCTCGTCCACCCAA






AGCCCTATCGCCTAATCAAGAGCCAGATGCCACTGC






CCCAGCCGCGGCCACTAGAATCTCTCTCGCAAATCT






AAAATACTTATACGCCTCTTGCTCTGCCCCCGTAGAT






AGATAAATAATTCCAGCGCGATCTTGCAGTCGCCGA






CCGTTTCTCCTCCTCTCCCCTCGTCTGCCCGTCTGCTG






CCGCCTCTGGTGAGTGGTCGAACCAATGCCTAGTTT






CGTTCCTTCTCTGTTGCATTCGCTGCTGGCTAGTGAT






CGATCCGATGTGGTAATGGCGCCTATCTGCTTTGGT






TGGTTGATCAGCTAGCGTTGACAAGCAAGGCGGCA






GAGTAGCTACCTACTAGCTAGCCTGATGGCGCAGGC






GGTGGTGCCGGCGATGCAGTGCCAGATGGGCGCGC






TGGGCAAGTCGGCCGTCCGTGCCAGGGCCGGGGGA






AGGGTGTGGGGCGTCAGGAGGGCCGCCCGCGGCA






CGGCCGGGTTCAAGGTGCTGGCCCTCGGCCCGGAG






ACCACCGGGGTGGTGCAGAGGATGAACCAGCTGCT






CGACATGGACACCACGCCCTTCACCGACAAGATCAT






CGCAGAGTACATCTGGTACGTACGTCCTCCCAATGT






TGCATTCCTCGGTTGCGCCGGAGCGGGCTTTGTTCG






CTTCCGTTGACTCCCCACGACAGAACACCACCAGTA






GCTTCAGATAGGCCAAACCCGCACTTTTTGGGACTA






GATTAGTGCCGGGGCAAGCAGATTCGCCCCCCTTTT






AAGGTTTGATGATAGTGGTTATTTAATTTTCTGTCTA






AAGCTTCCTGGGCATGGTGGGTGATGAGTGACGAA






TTCAAAAGTGCTTGCTTTTTAGTTAGTTCCAGCACTT






GAATAAGCTTAGGAAAATGCACATCGCACTTTGGGG






GAGCAATAAGGGTCAAACAAATTGGTCCTGGCATCT






ACTAAGTACTAGTACCTCTGTGGCAAAATATAAGAC






GCTTTGGTAGCCTATTTTTGGGACACATGTAATATTA






CTAGTATTTTAACAATTCTGCCTTTCTCTCTTCACATT






CCGCAGGGTTGGAGGGTCTGGAATCGACATCAGAA






GCAAATCAAGGGTACGCAGCCCATTATATTCATGAA






ATTGACATTAGATTTGTTTTTTTTTTTGAAAGGATTTT






TTTCTAGAAGTTTAGCGGATGAGAAGTTGGTTTTGT






ATGCAGAGTTCTCCTTCCTTACATCCTTTTTGGTTCCT






GACAAGAAAATTTAATGCTTGCATTTCAGACGATAT






CGAAACCGGTGGAGGACCCTTCCGAGCTACCGAAA






TGGAACTACGATGGATCGAGCACAGGGCAAGCTCC






GGGAGA





32

Lolium

gDNAContig
975
ATGACCAGAATATGGTCAATAAAGCAATTGGTTGGT




multiflorum



TAACCCTTTAGCTGCATGCACTATGAACTTGTGATTT






GTTCGAAACTTCAGTTTTAATTCATTTCCTGAAAACC






GTCAGACCATTTTTCTTCAAAATATGATGAAACCAAA






TCCTATAACTGGCCAGCCCTTTGGTCAAATCATATTT






CCCATCTGTAAAGCCTTCTAATTATCATCGTACTGAC






CTTAATCAGAGAATCACGGAGCAAGCTGGTGTAGT






GCTCACTCTGGACCCAAAACCAATCCAGGTATATCC






CTGTAAGTTGTTGGAAGCACTTTATATATTGAAACTT






AGTAAACTGAAGATTAATTTGATATAGGGTGACTGG






AATGGAGCTGGCTGCCACACAAATTACAGGTTCCAA






TCTCTTCTGTTAAATAATGCATTTTTCCTGCTTAACAT






TTACAGAATATCTTATTGTATATTAACAATACATCAG






AAAACCTAATATAGCTTTGCTTTAGTAAATGCTGTGG






GGTTCACATCAGAAGGAAATGTATGCTGGGACTAAT






AGAAAAAACCCCTCCAAATACAAATTTAAACTGGCT






ATAAATGGGAAACCATTATTAGTCGTCGGTTTTTTAT






TGAGCATGATTCAGAATAAGCATTTATTCACATTAGT






TAATCGCTAAATTTGGTTAGTTGTTTTTCTCAATACTC






GATACAGTTTGTCCTTAATGTGCAAGTGAGAAACTA






TCTTTTCTTGTTGTTGCAAATATAGCACAAAGAGCAT






GCGTGAAGATGGAGGTTTTGCAGTGATTAAGAAAG






CAATCCTGAACCTTTCACTTCGTCACGACTTGCACAT






CAGTGAATATGGTGAAGGAAATGAACGGAGATTGA






CAGGGTTACATGAGACAGCTAGCATATCAGACTTTT






CATGGGTACGGGTGGAGCAGCCTTTCATTATTTTTC






AGCTGTAATTTACTTCATGTTTATTT





33

Lolium

gDNAContig
781
CCACTTGCATTATTCATTTCTGGTTTTGCTTTTATGCA




multiflorum



GCTATACTGAAAGGGTCAATAGTGGACACTTTTACC






TGTTTGTTACATGTGCCAAGTGCCATGTGAGTTAAA






ATGATTTTTTTTTTTGCCTTTCAGGTTATGTGTGACAC






GTACACACCACAAGGGGAACCCATCCCTACCAACAA






ACGCGCCAGGGCTGCACAAATTTTCAGTGACCCAAA






GGTTTCTTCGCAAGTGCCATGGTAATTATGCGTTGA






GCACCTGTATGCCGTGCAAAGGCCTGCTGTTCTTTTA






CCTCCCTTTATTCGCCTGCAGACTATAGAGTTGAAAA






ATCTTCTTTTCTAGGTTTGGAATCGAACAGGAGTACA






CTTTGATGCAGAGAGACGTGAACTGGCCTCTTGGCT






GGCCTGTTGGAGGGTACCCTGGCCCCCAGGTACTGT






ACCAAGAAGCTTCATTTACTATTCAAAAAATAAATCT






TAGGCTGGCTGAAATACACTTTTTAGTTAAACACTGT






TGAGTAGTAATATTGTGCTGAAATATTGCAGGGTCC






ATACTACTGCGCCGTGGGATCAGACAAGTCATTTGG






CCGTGACATATCGGATGCTCACTACAAGGCATGCCT






TTACGCTGGAATTGAAATCAGTGGAACAAACGGGG






AGGTCATGCCTGGTCAGGTGAGCCTTTGTGTTTATA






CGTGCGCACGTATACTTATCTTGTGTGAACCCGAAC






CAGAGATGTTTTTTACATTTTCTTTCTAATGAAGTGT






TTAATAAGTGGAATTT





34

Lolium

gDNAContig
766
CAAACATTAGATGCTCTACGATTAGGTGTTGGAGAT




multiflorum



TATAATCGGGATACAGGTATGTATGGGATGATGTCT






AATTATCATATGGTGCTGACTATGAAAGTATGAGGA






ATAATGCTAGATATTTTGCATCAGATGAAAAGTACA






AATATAAATAATTTCCAACGTAAGAGCTAAGAAAAA






CATTAGAAATTCAGTTCCTGGAAAAGAAAAGCTACT






ACCAGGAAAGTGATCAGAGCATTTGGCACCTTTGTA






TCCACTTTCCTGCCTTATCTGTTTTATGATAGCACTAG






CACACACAGTAGGCTTATCTCTGAATCCAAAAACAG






GTACGGTATCGAGCAGGAGTACACCCTCCTTCAGAA






GGACGTGAACTGGCCCCTTGGCTGGCCCATTGGTG






GCTACCCTGGTCCTCAGGGCCCCTACTACTGCGCCG






CCGGTGCGGACAAGGCGTTCGGCCGTGACATCGTT






GACGCTCACTACAAGGCCTGCCTCTACGCCGGGATC






AACATCAGCGGCATCAACGGGGAGGTCATGCCCGG






CCAGGTACTACACATCCTCTTGCAGCAACTTGGTTTC






TGTCTTGTCAGAAACACTTCTAACGGTGATATGGCT






GATGCGTGTGCCGCCAACTCTGACTGTGAACCTGAT






TCCTGTGTGACAGTGGGAGTTCCAAGTTGGCCCGTC






CGTTGGGATCGCCGCCTCCGACCAGCTCTGGGTGGC






CCGCTACATCCTCGAGGTCAGTGCCCTCCGAACATA






TTCGATTCTC





35

Lolium

gDNAContig
575
GTACACACCACAAGGGGAACCCATCCCTACCAACAA




multiflorum



ACGCGCCAGGGCTGCACAAATTTTCAGTGACCCAAA






GGTTTCTTCGCAAGTGCCATGGTAATTATGCGTTGA






GCACCTGTATGCCGTGCAAAGGCCTGCTGTTCTTTTA






CCTCCCTTTATTTGCCTACAGACTGTAGAGTTGAAAA






AACTTCTTTTCTAGGTTTGGAATCGAACAGGAGTAC






ACTTTGATGCAGAGAGACGTGAACTGGCCTCTTGGC






TGGCCTGTTAGAGGGTACCCTGGCCCCCAGGTACTG






TACCAAGAAGATTGATTTACTATACAAAAATAAAGC






TTAGGCTGGCTGAAATACACTTTATTAGTTAAACACT






GTTGAGTAGTAATATTGTGCTGAAATATTGCAGGGT






CCATACTACTGCGCCGTGGGATCAGACAAGTCATTT






GGCCGTGACATATCAGATGCTCACTACAAGGCATGC






CTTTACGCTGGAATTGAAATCAGTGGAACAAACGGG






GAGGTCATGCCTGGTCAGGTGAGCCTTTGTGTTTAT






ATGTGCGCACGTATACTTATCTTGTGTGAACC





36

Lolium

gDNAContig
455
GTATTTAACAATTCTGCCTTTCTCTCTTCACATTTCGC




multiflorum



AGGGTTGGAGGATCTGGAATTGACATAAGAAGCAA






ATCAAGGGTACGCAGCCCACAATCTTCATGGACTTG






ACATTATATATATTTTTTTAAATGATTTCTTTTCTAGA






AGTTTAGGGGATGGGAAGTTGGTTTTGTACGCAGA






GTACTACTTCCTTACTACCTTTTCGGCTCCTGACAAG






AAAATTTAATGCCTGCATTTCAGACGATATCGAAAC






CGGTGGAGGACCCTTCCGAGCTACCCAAGTGGAACT






ACGATGGATCGAGCACAGGGCAGGCTCCTGGAGAA






GACAGTGAAGTCATCCTATAGTAAGGGGGAAATTG






CAGTATATGTGTTCTTCATCCTTGCATATAAGAAGTA






TCCTAGATTTATACATGTGTTACTCTCTTTATGTTTTT






CGTATCCTGTTTCAGCCCA





37

Abutilon

cDNAContig
1270
TTTTCCCCTCTCTTTCTTCTTAGTTTCGCTGTTGTTCAA




theophrasti



TATGTTGCTCCTCAATGATCTCATCAACCTCGACCTC






ACCGAGACCACCGAGAAGATCATAGCCGAATACAT






ATGGATCGGTGGATCTGGTATGGATTTGAGAAGCA






AAGCAAGAACTTTGCCTGGACCGGTGTCGGACCCTG






CAAAACTTCCGAAATGGAACTACGATGGTTCAAGCA






CAAATCAAGCTCCTGGAGACGATAGTGAAGTGATTC






TATATCCTCAAGCTATATTCAAGGATCCATTCAGAAG






AGGAAACAACATCTTGGTGATGTGCGATGCTTACAC






ACCAGCCGGTGAGCCCATTCCCACGAACAAGAGATA






TAATGCAGCCAAGATATTTAGCAACCCTGATGTTGTT






GCCGAGGAACCATGGTATGGCATTGAGCAAGAGTA






CACTCTTCTTCAAAAGGATACCAAGTGGCCTCTTGG






ATGGCCTGTTGGAGGATTTCCAGGACCACAGGGCCC






CTACTACTGTGGAGTAGGAGCTGACAAGTCCTTTGG






CAGGGACATTGTGGATTCCCACTACAAGGCTTGCCT






TTATGCTGGCATTAACATCAGTGGAATCAACGGTGA






AGTTATGCCCGGTCAATGGGAGTTCCAAGTTGGTCC






AGCGGTTGGAATATCTGCGGGTGATCAAGTATGGA






TGGCTCGATACATACTCGAGCGAATCACCGAAATTG






CAGGAGTGGTTCTTTCTTTCGATCCCAAACCCATTCC






GGGTGACTGGAATGGTGCTGGTGCTCATACCAACTA






CAGCACAAAGTCCATGAGAAATGATGGCGGCATCA






AAGTTATCAAGGAGGCGATTGAGAAGTTGGGTAAG






CGCCACAAGGAGCACATTGCCGCCTACGGTGAGGG






TAACGAGAGACGCTTAACTGGTCGTCACGAGACTGC






TGATATCAACACATTCTCTTGGGGTGTGGCAAACAG






GGGAGCCTCCATCCGTGTTGGCCGTGACACCGATAA






GGACGGAAAAGGCTACTTCGAAGACAGAAGGCCGG






CATCAAACATGGATCCTTATGTCGTGACATCGATGA






TTGCCGAGACCACCATTATATGGAAGCCTTGAGAGG






TGAAAATTGGAGCTTGCGGATGATGAGAAAGAAAA






TCCTACATTCATATTAATAACCCCTTCTCTCATCTTCT






TTGTTGTGCCAGTGGTTGAACTTGTAGTTTTATTGCT






TTGGATTTGCTGGTTTGCCATTAAAATTCTGCCCGTC






TTTTTTTT





38

Abutilon

gDNAContig
1252
AATTTTCAATCTGTTGTCTAGTTTGTTTTATCTTATGT




theophrasti



TCTTTTGGACGTTCTTCCAACCTTCAGACAATAGCAA






AGCCAGTTGAGCATCCCTCTGAACTTCCCAAGTGGA






ACTATGATGGATCAAGCACCGGTCAAGCACCTGGTG






ATGACAGTGAAGTTATTTTATAGTAAGATCTTTAATG






AAAACTAAAACTTCCTTTATTGCTTGTTTTCATCAAA






ACACTATTTGACTGAAAATTTTATCCAGCCCTCAGGC






AATCTTTAAGGACCCTTTCCGAGGAGGTAACAATAT






CTTGGTGAGTATTAACAAAGGCTTATAATTGAAAAT






TTCTGATGAATTGTTGAAATTTTTGTGGGTAAATTAT






ATAGTGTGGTTAACATTTTCATGCATGTTTCCCATAG






GTTATTTGTGATGCATACACACCGGCTGGTGAGCCC






ATTCCAACGAACAAGCGCCACAAAGCTGCCGAGATT






TTCAGTAACAAGAAGGTGATAGATGAAATACCATG






GTACGAATTACTTTATTGTAACTATCTTATTCTTTTGT






TCAAATCTGGATTAATTGAGAATTATATTGTAATCTT






GTGTTCGCTTTATTCTATCTCGGCATTCATACAAAAG






GAAATGCCCTCATTTTGTTGTACTATTCTGTTAAGGT






TTGGGATTGAGCAAGAGTACACCTTACTTCAACAAA






ATGTAAAATGGCCTTTGGGTTGGCCTGTTGGAGGCT






ACCCCGGTCCTCAGGTAATAATATGACTCGATTTTTA






TACAGGAGTAAATTGGTTGTAGGGGGTCTGTAAATT






CTTGCTAATAACATAGTCCTACTTGAACTTATACTTG






AATGTGGTTGTTTGATGCCAAATTCAGGGTCCTTATT






ACTGTGGAGCTGGAGCTGACAAGTCATTCGGGCGT






GACATCTCAGATGCTCATTACAAGGCTTGCTTATATG






CTGGCATCAACATTAGTGGCACCCAATGGGGAGGTT






ATGCCCGGCCAGGTCTGCTGCCTTTGAGTCCTCATCT






TGCTAATGAAAATGAAGTGCTATTGCAGTCATGTTT






GTTTGTGTATTAGGTATCACCATTTGATTCTGTAAAT






TACTATGCAGTGGGAGTATCAAGTTGGTCCAAGTGT






TGGTATTGAGGCTGGAGATCATATCTGGTGTTCTAG






ATACATTCTTGAGGTATTTATTCTCACATGATTTGGT






TAATCTTATGGAGGCCGCTGCAAAATTCCAGCCTTC






GCACACATAG





39

Abutilon

gDNAContig
885
TGGATGGCCTCTTGGTGGCTATCCTGGACCTCAGGT




theophrasti



ACTCCCATCTTTCTTTCTTTCAAAAGCAATGTTTAAAT






GTTGGATGATATATATATCGGACTGGACGGAGAGC






CGATTTGTTCAACCAATCGGTGAATATGTAACCCTG






ATTCGGGTGAATATTTTGTTGATAGGGTCCCTACTAT






TGTGGTGTTGGTGTGGACAAAGCCTATGGGCGTGA






CATTGTGGATTCTCACTACAAAGCTTGTTTATATGCT






GGAATCAATATCAGTGGCATCAATGGAGAAGTGAT






GCCAGGGCAGGTAAAAATGACTGGTTTTTTACTCTT






TTATGCTTCTCTCGGTTATTGGTTATGTTAAAGCTTA






ATCTATCTTCTATTTTCTTTACAGTGGGAATTTCAGG






TCGGTCCATCACTTGGCATCTCTGCTGGAGACGAAT






TGTGGGTTGCACGTTACATTTTGGAGGTAATCAACC






TATGTTACTCTCGAACTTGAGTGTCGTAGTTTTTAAA






GGTTCTTCATGTGTTTGGTTATCCTTGGTCATATCTA






TCAACCCCACATATACTCGAACAAGAATGAAAAATC






GAAGCAACATAGTTATCGAGGGTTTCACTTCGACTC






TCTTCAGTTATTTTAATCTATGTTTCTGAAATACAGA






GGATTACCGAGATTGCTGGAGTGGTGCTCTCCTTTG






ATCCTAAGCCAATTCAGGTTCGAATTGCTGGTTCCAT






TAGCCTTTTCTTTTGCTCCGGATAGACTCGAAATCTT






AAGCTTATTACAATTTTGTTTTAACTTTGATCCCAGG






GAGACTGGAATGGTGCTGGTGCTCACACAAACTACA






GGTACCATTTGAATCTACTTCAAGAAGTTGGTGGAG






GAACTGAATGAT





40

Abutilon

gDNAContig
1075
GTATGGATGGCTCGATACATACTCGAGGTATGATCT




theophrasti



GTATACTATAGTGTATTTGATTAATGAATTTTTACCT






CTTTAAGGATTGAAGTTTAACTAATAAACTTCTGTTT






TTCTTGTTTTAAACAGCGAATCACCGAAATTGCAGG






AGTGGTTCTTTCTTTTTGTATCCCAAACCCATTCCGG






TTTGTTTTTCTATGCTACATTTTCTCCTATATTCAACTT






TATATCGCCTTTTATGTTCTTTTTCCCCTTTTTTCTCGT






CCTGCCTCTTTAACTTTTCATCTTTGCATTTCATTTCG






ATAACTAGGGTGACTGGAATGGTGCTGGTGCTCATA






CCAACTACAGGTAGATACTAAACTCATTGTGCACTTC






ACTTTTATAAAGTATATAATATATACCCTTTTGCATG






GATGAAGAGTTAATTAGTTGAATTGAAACTCTCTCA






GCACAAAGTCCATGAGAAATGATGGCGGCATCAAA






GTTATCAAGGAGGCGATTGAGAAGTTGGGTAAGCG






CCACAAGGAGCACATTGCCGCCTACGGTGAGGGTA






ACGAGAGACGCTTAACTGGTCGTCACGAGACTGCTG






ATATCAACACATTCTCTTGGGTAAGTTTGAACAATTG






TAGGCCTATAGCATCCCCTTTCCAACAAGCTAGAAT






GGTATTGAATTCTCTTATGGTTAAACATCTCCATTTT






CTAATTTCTTGTTGCTGTTTTGATTGCCATGTCCAAA






CTCCAGGGTGTGGCAAACAGGGGAGCCTCCATCCG






TGTTGGCCGTGACACCGATAAGGACGGAAAAGGTT






AGCACTATGCAGATATTGATCAAACTTCGATTCTAAT






ATGAACCTCCATTTTTTTCTCATTCCTTGAATTTTAAC






ATTCATGGTCATGTAATTCGCAGGCTACTTCGAAGA






CAGAAGGCCGGCATCAAACATGGATCCTTATGTCGT






GACATCGATGATTGCCGAGACCACCATTATATGGAA






GCCTTGAGAGGTTAAAATTGGAGCTTGCGGATGAT






GAGAAAGAAAATCCTCCATTCATATTAAAAAACCCC






TCTCTCATCTTCTTTGTT





41

Amaranthus

cDNAContig
1603
TTCTTTATCTCTCTATATTCATCTCTCTCTCTAGCTTAT




albus



TCACGACGCCGATCACCCTTTTCCGAACCCAGGTAA






AAGTGACCAAACATGGCACAGATACTTGCACCTTAC






ATGCAATGTCAGCTGAAGTTCTCAAAAGGTTCAACA






AGTTCAATGACATCAAATCCTTGGACTTCAATATTTC






TTAAAGAAAATAAAAAGGGATCAATTAAATGCTCGA






GTAAGTTCAGAGTATGTGCTTCTCTCCAATCTGAAAA






TAGCACAATAAACAGGGTGGAGCAGCTACTCAACTT






GGATGTCACTCCATACACTGACAAGATAATTGCAGA






GTACATTTGGATTGGAGGATCTGGTATTGATGTCCG






TAGCAAATCAAGGACTATCTCTAAACCTGTTGAGCA






CCCATCTGAGCTTCCCAAGTGGAATTATGATGGCTC






AAGCACAGGACAAGCACCAGGAGAGGACAGTGAA






GTAATCTTATACCCTCAAGCAATTTTCAAGGATCCAT






TCCGTGGTGGTAATAATATCCTTGTAATCTGTGACAC






ATACACACCAGCAGGCGAACCCATCCCCACTAATAA






AAGATACAGGGCTGCACAGATATTCAGCGACCCAA






AGGTTGTTTCTGAGATTCCATGGTTCGGAATAGAGC






AGGAATACACTTTGCTCCAACAAAATGTTAAATGGC






CTTTGGGATGGCCTGTGGGAGCCTATCCTGGTCCTC






AGGGTCCATACTATTGTGGTGCTGGTGCTGACAAAT






CTTTTGGACGTGACATATCTGATGCTCATTACAAAGC






TTGCTTGTATGCTGGTATTAACATTAGTGGCACAAAT






GGGGAAGTTATGCCTGGCCAGTGGGAATTCCAAGT






TGGTCCAAGTGTTGGCATTGAAGCTGGAGATCATAT






CTGGTGTGCTAGATATATTCTGGAGAGAATTACTGA






ACAAGCTGGTGTGGTTCTAACTCTTGATCCAAAGCC






TATTGAGGGTGATTGGAATGGTGCAGGTTGCCATAC






AAATTACAGTACAAAGACCATGAGAGAAGATGGTG






GTTATGAAGCAATTAAGAAGGCAATTTTGAATCTAT






CATTACGTCACAAGGACCATATCAGTGCATATGGAG






AAGGAAATGAACGAAGATTGACAGGGAAGCACGA






GACCGCCAGCATCGACACATTCTCTTGGGGTGTTGC






CAATCGTGGTTGCTCTATCCGTGTGGGTCGTGACAC






GGAAAAGGCAGGCAAAGGTTATCTGGAAGATAGGC






GGCCTGCTTCAAACATGGACCCATACGTGGTAACAG






GTTTGCTCGCAGAAACTACAATACTTTGGGAACCAA






CACTTGAGGCTGAGGCACTCGCAGCCCAAAAACTCG






CTCTTAATGTGTAATTCAATCATAAATCGTACGAGAA






TATCGCATATTCTTGAGGGAGGAACTGTTTCACGAG






CCCCGAATTTGCTTGTTTTTAGTTTTTAGTATCCTGG






GACTGGGACTGGGTATGTATTTCTTGACCTTTGCTTC






TGGTCGTTTGTTTTGGGAGTTAGAAGAGAAGAATAG






TTTGTGATTGTTACCTATTTATTTTTGCTCTTATGAAG






CTCAAGCTCAGCA





42

Amaranthus

cDNAContig
514
CTCTCTAGCTCACCCTTTTCCGAACCCAGGTATAAGT




chlorostachys



GATCAAACATGGCACAAATACTTGCACCTTACATGC






AATGTCAGATGAAGTTCTCAAAAGGCTCAACAAGTT






CAATGACATCAAATCCTTGGACTTCAATATTTCTTAA






AGAAAATAAAAAGGGATCAATTAAATGCTCTAGTAA






GTTCAGAGTATGTGCTTCTCTCCAATCTGAAAATAGC






ACAATAAACAGGGTGGAGCAGCTACTCAACTTGGAT






GTCACTCCATACACTGACAAGATAATTGCAGAGTAC






ATTTGGATTGGAGGATCTGGTATTGATGTTCGTAGC






AAATCAAGGACAATCTCTAAACCTGTTGAGCACCCA






TCTGAGCTTCCCAAGTGGAATTATGATGGCTCAAGC






ACTGGACAAGCGCCAGGAGAGGACAGTGAAGTAAT






CTTATACCCTCAAGCAATTTTCAAGGATCCGTTCCGT






GGTGGTAATAATATCCTTGTAATCTGTGACACATAC






ACACCAG





43

Amaranthus

cDNAContig
1140
TACAGGGCTGCACAGATCTTTAGCGACCCAAAGGTT




chlorostachys



GTTTCTGAGATTCCATGGTTTGGAATAGAGCAGGAA






TACACGTTGCTCCAACAAAATGTTAAATGGCCTTTG






GGATGGCCTGTTGGAGCCTATCCTGGTCCTCAGGGT






CCATACTATTGTGGTGCTGGTGCTGACAAATCTTTTG






GACGTGACATATCTGATGCTCATTACAAAGCTTGCTT






GTATGCTGGCATCAACATTAGTGGCACAAATGGGG






AAGTTATGCCTGGCCAGTGGGAATTCCAAGTTGGCC






CAAGTGTTGGTATTGAAGCTGGAGATCATATCTGGT






GTGCAAGATATATTCTTGAGAGAATTACTGAACAAG






CTGGTGTGGTTCTGACTCTTGATCCAAAGCCTATTGA






GGGTGATTGGAATGGTGCAGGTTGCCATACAAATTA






CAGTACAAAGACCATGAGAGAAGATGGTGGTTATG






AAGCAATTAAGAAGGCAATTTTGAATCTATCATTAC






GCCACAAGGACCATATCAGTGCATATGGAGAAGGA






AATGAACGAAGATTGACAGGGAAGCACGAGACCGC






CAGCATCGACACTTTCTCTTGGGGTGTTGCCAATCGT






GGTTGCTCTATCCGTGTGGGCCGTGACACAGAAAAA






GCAGGCAAAGGTTATCTGGAAGACAGGCGGCCTGC






CTCAAACATGGACCCATACGTGGTGACAGGTTTGCT






CGCAGAAACTACAATACTTTGGGAACCAACACTTGA






GGCTGAGGCACTAGCAGCCCAAAAACTCGCTCTTAA






TGTGTAATTCAACCATAATCGTGCCAGAATATCGCAT






ATTCATGAACGAGGGAACCCTTTCACGTGCCCAGAA






TTTGCTTATTTTTAGTTTTTAGTATCCTGGGTATGTGA






GTGTTTTCATTCATGACCTTTGCTTCTGATCATTGTTT






GTTTTGGGAGTTCAAGAGAAGAATAATTTGTAACTG






TTGCCTTCATTATTTTTGCTCTTATGAAGCTCAAGCTC






AGTATTAGTTATATTCCAGATTAAGGAATGAACTTCA






AAATCCTTTGTTACTCATCTTCAACTCCATTGAATATA






CACTTATGTCCCTTTAGTTTGCTACAATTACACTATG






ATTACAAATTTACA





44

Amaranthus

cDNAContig
1691
CATTATTCCATTCTACCCATACTTGGGACAATCATAC




graecizans



CTTTATAACACCTTTAACCATACACACTCTCTCTTCTT






TATCTCTCTAAATTCTTCACTCTCTCTCTAGTTAGTTG






ACGCCGCCGACCACCTTTTCCGAACCCAGTGACCAA






TTATGGCACAGATACTTGCACCTAACATGCAATGTC






AGATGAAGTTCTCCAAAGTCTCGACAAGTTCAATGA






CATTAAGTCCTTGGACTTCCATATTTCTGAAAGAAAA






CCAAAAGAAATCGATTAAATGCTCTAGTAAGTTCAG






AGTATGTGCTTCTCTCAAGTCTGAAAACAGCACTGT






AAACAGGGTGGAGCAGCTACTCAACTTGGATGTCAC






TCCATACACTGACAAGATTATTGCGGAGTACATTTG






GATTGGAGGATCTGGTATTGATGTCCGTAGCAAATC






AAGGACTATCTCTAAACCTGTTGAGCACCCATCTGA






GCTTCCCAAGTGGAATTATGATGGCTCAAGCACAGG






ACAAGCACCAGGAGAGGATAGTGAAGTAATCTTAT






ACCCTCAAGCAATTTTCAAGGATCCATTCCGTGGTG






GTAATAATATCCTTGTAATCTGTGACACATACACCCC






AGCAGGCGAACCTATTCCCACTAACAAAAGATACAG






GGCTGCACAGATATTCAGCGACCCAAAGGTTGTTTC






TGAGGTTCCATGGTTTGGAATAGAGCAGGAATACAC






TTTGCTCCAACAAAATGTTAAATGGCCTTTGGGATG






GCCTGTGGGAGCCTATCCTGGTCCTCAGGGTCCATA






CTATTGTGGTGCTGGTGCTGACAAATCTTTTGGACG






TGACATATCTGATGCTCATTACAAAGCTTGCTTGTAT






GCTGGTATTAACATTAGTGGCACAAATGGGGAAGTT






ATGCCTGGCCAGTGGGAATTCCAAGTTGGTCCAAGT






GTTGGCATTGAAGCTGGAGATCATATCTGGTGTGCT






AGATATATTCTGGAGAGAATTACTGAACAAGCTGGT






GTGGTTCTGACTCTTGATCCAAAGCCTATTGAGGGT






GATTGGAATGGTGCAGGTTGCCATACAAATTACAGT






ACAAAGACCATGAGAGAAGATGGTGGTTATGAAGC






AATTAAGAAGGCAATTTTGAATCTATCATTACGTCAC






AAGGACCATATCAGTGCATATGGAGAAGGAAATGA






ACGAAGATTGACAGGGAAGCACGAGACCGCCAGCA






TCGACACATTCTCTTGGGGTGTTGCCAATCGTGGTT






GCTCTATCCGTGTGGGTCGTGACACGGAAAAGGCA






GGCAAAGGTTATCTAGAAGATAGGCGGCCTGCCTC






AAACATGGACCCATACGTGGTAACAGGTTTGCTCGC






AGAAACTACAATACTTTGGGAACCCACACTTGAGGC






CGAGTCACTTGCAGCTCAAAAACTCGCTCTTAATGT






GTAATTCCAACCATAAAACGAAGCAGAATATCTCAT






ATTCTTGAGGGAGGGAACTGTTTCACGAGCCCCGAA






TTTGCTTGTTTTTAGTTTTTAGTATCCTGGGACTGGG






ACTGGGTATGTATTTCTTGACCTTTGCTTCTGGTCGT






TTGTTTTGGGAGTTAGAAGAGAAGAATAGTTTGTGA






TTGTTACCTATTTATTTTTGCTCTTATGAAGCTCAAGC






TCAGCATTAGTTCTATTCCAGTTTAAAG





45

Amaranthus

cDNAContig
1883
CCCGTCGTTCCCGTCCGGTTCCGATCTGTAAACAATC




hybridus



AAAACCGACGCTTCTGATAGCCAAGATCAATGCACT






GCAATCGGCTAGAACGGTTCCTCGACGTAGTCGTCT






CCTTCTAATAGATGACAGCCAAGAAAACGCCACAAA






ATCGTGTTCAAATGAAAAGATATACGGCTTAGATTC






AATGCTCAAATGTACAAGTCCAGGCTACACTCCATC






CTTCTTTCTCACTCCTTTATCTCTCTCTCTCTAGCTCAC






CCTTTTCCGAACCCAGGTAAAAGTGATCAAACATGG






CACAAATACTTGCACCTTACATGCAATGTCAGATGA






AGTTCTCAAAAGGCTCAACAAGTTCAATGACATCAA






ATCCTTGGACTTCAATATTTCTTAAAGAAAATAAAAA






GGGATCAATTAAATGCTCTAGTAAGTTTAGAGTATG






TGCTTCTCTCCAATCTGAAAATAGCACAATAAACAG






GGTGGAGCAGCTACTCAACTTGGATGTCACTCCATA






CACTGACAAGATAATTGCAGAGTACATTTGGATTGG






AGGATCTGGTATTGATGTTCGTAGCAAATCAAGGAC






AATCTCTAAACCTGTTGAGCACCCATCTGAGCTTCCC






AAGTGGAATTATGATGGCTCAAGCACTGGACAAGC






GCCAGGAGAGGACAGTGAAGTAATCTTATACCCTCA






AGCAATTTTCAAGGATCCGTTCCGTGGTGGTAATAA






TATCCTTGTAATCTGTGACACATACACACCAGCAGG






CGAACCCATCCCCACTAATAAAAGATACAGGGCTGC






ACAGATCTTTAGCGACCCAAAGGTTGTTTCTGAGAT






TCCATGGTTTGGAATAGAGCAGGAATACACGTTGCT






CCAACAAAACGTTAAATGGCCTTTGGGATGGCCTGT






TGGAGCCTATCCTGGTCCTCAGGGTCCATACTATTGT






GGTGCTGGTGCTGACAAATCTTTTGGACGTGACATA






TCTGATGCTCATTACAAAGCTTGCTTGTATGCTGGCA






TCAACATTAGTGGCACAAATGGGGAAGTTATGCCTG






GCCAGTGGGAATTCCAAGTTGGCCCAAGTGTTGGTA






TTGAAGCTGGAGATCATATCTGGTGTGCAAGATATA






TTCTTGAGAGAATCACTGAACAAGCTGGTGTGGTTC






TGACTTTGGATCCAAAGCCTATTGAGGGTGATTGGA






ACGGTGCAGGTTGCCATACCAATTACAGTACAAAGA






CCATGAGAGAAGATGGTGGTTATGAAGCAATTAAG






AAGGCAATTTTGAATCTATCATTACGCCACAAGGAC






CATATCAGTGCATATGGAGAAGGAAATGAACGAAG






ATTGACAGGGAAGCACGAGACCGCCAGCATCGACA






CATTCTCTTGGGGTGTTGCCAATCGTGGTTGCTCTAT






CCGTGTGGGCCGTGACACAGAAAAAGCAGGCAAAG






GTTATCTGGAAGACAGGCGGCCTGCCTCAAACATGG






ACCCATACGTGGTGACAGGTTTGCTCGCAGAAACTA






CAATACTTTGGGAACCAACACTTGAGGCTGAGGCAC






TAGCAGCCCAAAAACTCGCTCTTAATGTGTAATTCAA






TCATAATCGTGCCAGAATATCGCATATTCATGAACG






AGGGAACTCTTTCACGTGCCCAGAATTTGCTTATTTT






TAGTTTTTAGTATCCTGGGTATGTGAGTGTTTTCATT






CATGACCTTTGCTTCTGATCATTGTTTGTTTTGGGAG






TTCAAGAGAAGAATAATTTGTAACTGTTGCCTTCATT






ATTTTTGCTACTCCGCCAATTGTAGTACATCATGAAA






ATATGACTGCAACAGTTAAGCTACTCCGCCGATTCG






GAAAATATAGATTGAAGGTGATATTTAAGTTTTCCTT





46

Amaranthus

cDNAContig
1683
CCCATTTCATTCTGCTTACTCTCCATCCTTCTTTCTCAC




lividus



TCCTTTATCTCTCTCTCTCTAGCTCACCCTTTTCCGAA






CCCAGGTAAAAGTGATCAAACATGGCACAAATACTT






GCACCTTACATGCAATGTCAGATGAAGTTCTCAAAA






GGCTCAACAAGTTCAATGACATCAAATCCTTGGACT






TCAATATTTCTTAAAGAAAATAAAAAGGGATCAATT






AAATGCTCTAGTAAGTTCAGAGTATGTGCTTCTCTCC






AATCTGAAAATAGCACAATAAACAGGGTGGAGCAG






CTACTCAACTTGGATGTCACTCCATACACTGACAAGA






TAATTGCAGAGTACATTTGGATTGGAGGATCTGGTA






TTGATGTTCGTAGCAAATCAAGGACAATCTCTAAAC






CTGTTGAGCACCCATCTGAGCTTCCCAAGTGGAATT






ATGATGGCTCAAGCACTGGACAAGCGCCAGGAGAG






GACAGTGAAGTAATCTTATACCCTCAAGCAATTTTCA






AGGATCCGTTCCGTGGTGGTAATAATATCCTTGTAA






TCTGTGACACATACACACCAGCAGGCGAACCCATCC






CCACTAATAAAAGATACAGGGCTGCACAGATCTTTA






GCGACCCAAAGGTTGTTTCTGAGATTCCATGGTTTG






GAATAGAGCAGGAATACACGTTGCTCCAACAAAAT






GTTAAATGGCCTTTGGGATGGCCTGTTGGAGCCTAT






CCTGGTCCTCAGGGTCCATACTATTGTGGTGCTGGT






GCTGACAAATCTTTTGGACGTGACATATCTGATGCTC






ATTACAAAGCTTGCTTGTATGCTGGCATCAACATTAG






TGGCACAAATGGGGAAGTTATGCCTGGCCAGTGGG






AATTCCAAGTTGGCCCAAGTGTTGGTATTGAAGCTG






GAGATCATATCTGGTGTGCAAGATATATTCTTGAGA






GAATTACTGAACAAGCTGGTGTGGTTCTGACTCTTG






ATCCAAAGCCTATTGAGGGTGATTGGAACGGTGCA






GGTTGCCATACCAATTACAGTACAAAGACCATGAGA






GAAGATGGTGGTTATGAAGCAATTAAGAAGGCAAT






TTTGAATCTATCATTACGCCACAAGGACCATATCAGT






GCATATGGAGAAGGAAATGAACGAAGATTGACAGG






GAAGCACGAGACCGCCAGCATCGACACTTTCTCTTG






GGGTGTTGCCAATCGTGGTTGCTCTATCCGTGTGGG






CCGTGACACAGAAAAAGCAGGCAAAGGTTATCTGG






AAGACAGGCGGCCTGCCTCAAACATGGACCCATAC






GTGGTGACAGGTTTGCTCGCAGAAACTACAATACTT






TGGGAACCAACACTTGAGGCTGAGGCACTAGCAGC






CCAAAAACTCGCTCTTAATGTGTAATTCAACCATAAT






CGTGCCAGAATATCGCATATTCATGAACGAGGGAAC






TCTTTCACGTGCCCAGAATTTGCTTATTTTAGTTTTAG






TATCCTGGGTATGTGAGTGTTTTCATTCATGACCTTT






GCTTCTGATCATTGTTTGTTTTGGGAGTTCAAGAGA






AGAATAATTTGTAACTGTTGCCTTCATTATTTTTGCT






ACTCCGCCAATTGTAGAACACCATGAAAATATGACT






GCAACAGTTAAGCTACTCCGCCGATTCGGAAAATAT






AGATTGAAGGTGATATTTAAG





47

Amaranthus

cDNAContig
1743
CCATTATTCCACACTCCACACTACCCATTTCATTCTGC




spinosus



TCACTCTCCATCCTTCTTTCTCGCTCCTTTATCTCTCTA






TATTCATCTCTCTCTCTAGCTTGTTCACGACGCCGAC






CACCCTTTTCCGATCCCAGGTAAAAGTGACCAAACA






TGGCACAAATACTTGCACCTTACATGCAATGTCAGA






TGAAGTTTTCAAAAGGCTCCACAAGTTCAATGACAT






CAAATCCTTGGACTTCAATATTTCTTAAAGAAAATAA






AAAGGGATCAATTAAATGCTCTAGTAAGTTCAGAGT






ATGTGCTTCTCTCCAATCTGATAATAGCACAGTAAAC






AGGGTGGAGCAGCTACTCAACTTGGATGTCACTCCA






TACACTGACAAGATAATTGCAGAGTACATTTGGATT






GGAGGATCTGGCATTGATGTTCGTAGCAAATCAAG






GACAATCTCTAAACCTGTTGAGCACCCATCTGAGCTT






CCCAAGTGGAATTATGATGGCTCAAGCACTGGACAA






GCGCCAGGAGAGGACAGTGAAGTAATCTTATACCCT






CAAGCAATTTTCAAGGATCCATTCCGTGGTGGTAAT






AATATCCTTGTAATCTGTGACACATACACACCAGCA






GGCGAACCCATCCCCACTAATAAAAGATACAGGGCT






GCACAGATATTTAGCGACCCAAAGGTTGTTTCTGAG






ATTCCATGGTTTGGAATAGAGCAGGAATACACGTTG






CTCCAACAAAATGTTAAATGGCCTTTGGGATGGCCT






GTGGGAGCCTATCCTGGTCCTCAGGGTCCATACTAT






TGTGGTGCTGGTGCTGACAAATCTTTTGGACGTGAC






ATATCTGATGCTCATTACAAAGCTTGCTTGTATGCTG






GCATCAACATTAGTGGCACAAATGGGGAAGTTATGC






CTGGCCAGTGGGAATTCCAAGTTGGCCCAAGTGTTG






GTATTGAAGCTGGAGATCATATCTGGTGTGCGAGAT






ATATTCTTGAGAGAATTACTGAACAAGCTGGTGTGG






TTCTGACTCTTGATCCAAAGCCTATTGAGGGTGATT






GGAACGGTGCAGGTTGCCATACCAATTACAGTACAA






AGACCATGAGAGAAGATGGTGGTTATGAAGCAATT






AAGAAGGCAATTTTGAATCTTTCATTACGCCACAAG






GACCATATCAGTGCATATGGAGAAGGAAATGAACG






AAGGCTGACAGGGAAGCACGAGACCGCCAGCATCG






ACACATTCTCTTGGGGTGTTGCCAATCGTGGTTGCTC






TATCCGTGTGGGTCGTGACACGGAAAAGGCAGGAA






AAGGTTATCTGGAAGATAGACGGCCTGCCTCAAACA






TGGACCCATACGTGGTAACAGGTTTGCTCGCAGAAA






CTACAATACTTTGGGAACCAACACTTGAGGCTGAGG






CACTCGCAGCCCAAAAACTCGCTCTTAATGTCTAATT






CAATCATAATTCGTGCCAGAATATCGCATATTCTTGA






ACGAGGGAACTCTTTCACGTGCCCAGAATTCGCTTTT






TTTAGTTTTAGTATCCTGGGTATGTGAGTGTTTTCAT






TCGTGACCTTTGCTTCTGATCATTGTTTGTTTTGGGT






GTTCAAGAGAAGAATAATTTGTAACTGTTGCCTTCTT






TATTTTTGCTCTTATGAAGCTCAAGCTCGGTATTTTA






GTTATATTCCAGTTTAAGGAATGAACTTCAAAATCCT






TTGTTACTCATCTTCAACTCCATTGAATATATACGCT





48

Amaranthus

cDNAContig
1702
CATTATTCCACACTCCACACTACCCATTTCATTCTGCT




thunbergii



TACTCTCCATCCTTCTTTCTCACTCCTTTATCTCTCTCT






CTCTCTAGCTCACCCTTTTCCGAACCCAGGTAAAAGT






GATCAAACATGGCACAAATACTTGCACCTTACATGC






AATGTCAGATGAAGTTCTCAAAAGGCTCAACAAGTT






CAATGACATCAAATCCTTGGACTTCAATATTTCTTAA






AGAAAATAAAAAGGGATCAATTAAATGCTCTAGTAA






GTTCAGAGTATGTGCTTCTCTCCAATCTGAAAATAGC






ACAATAAACAGGGTGGAGCAGCTACTCAACTTAGAT






GTCACTCCATACACTGACAAGATAATTGCAGAGTAC






ATTTGGATTGGAGGATCTGGTATTGATGTTCGTAGC






AAATCAAGGACAATCTCTAAACCTGTTGAGCACCCA






TCTGAGCTTCCCAAGTGGAATTATGATGGCTCAAGC






ACTGGACAAGCGCCAGGAGAGGACAGTGAAGTAAT






CTTATACCCTCAAGCAATTTTCAAGGATCCGTTCCGT






GGTGGTAATAATATCCTTGTAATCTGTGACACATAC






ACACCAGCAGGCGAACCCATCCCCACTAATAAAAGA






TACAGGGCTGCACAGATCTTTAGCGACCCAAAGGTT






GTTTCTGAGATTCCATGGTTTGGAATAGAGCAGGAA






TACACGTTGCTCCAACAAAATGTTAAATGGCCTTTG






GGATGGCCTGTTGGAGCCTATCCTGGTCCTCAGGGT






CCATACTATTGTGGTGCTGGTGCTGACAAATCTTTTG






GACGTGACATATCTGATGCTCATTACAAAGCTTGCTT






GTATGCTGGCATCAACATTAGTGGCACAAATGGGG






AAGTTATGCCTGGCCAGTGGGAATTCCAAGTTGGCC






CAAGTGTTGGTATTGAAGCTGGAGATCATATCTGGT






GTGCAAGATATATTCTTGAGAGAATTACTGAACAAG






CTGGTGTGGTTCTGACTCTTGATCCAAAGCCTATTGA






GGGTGATTGGAACGGTGCAGGTTGCCATACCAATTA






CAGTACAAAGACCATGAGAGAAGATGGTGGTTATG






AAGCAATTAAGAAGGCAATTTTGAATCTATCATTAC






GCCACAAGGACCATATCAGTGCATATGGAGAAGGA






AATGAACGAAGATTGACAGGGAAGCACGAGACCGC






CAGCATCGACACTTTCTCTTGGGGTGTTGCCAATCGT






GGTTGCTCTATCCGTGTGGGCCGTGACACAGAAAAA






GCAGGCAAAGGTTATCTGGAAGACAGGCGGCCTGC






CTCAAACATGGACCCATACGTGGTAACAGGTTTGCT






TGCAGAAACTACAATACTTTGGGAACCAACACTTGA






GGCTGAGGCACTAGCAGCCCAAAAACTCGCTCTTAA






TGTGTAATTCAATCATAATCGTGCCAGAATATCGCAT






ATTCATGAACGAGGGAACTCTTTCACGTGCCCAGAA






TTTGCTTATTTTTAGTTTTTAGTATCCTGGGTATGTGA






GTGTTTTCATTCATGACCTTTGCTTCTGATCATTGTTT






GTTTTGGGAGTTCAAGAGAAGAATAATTTGTAACTG






TTGCCTTCATTATTTTTGCTACTCCACCAATTGTAGAA






CACCATGAAAATATGACTGCAACAGTTAAGCTACTC






CGCCGATTCGGAAAATATAGATTGAAGTGATA





49

Amaranthus

cDNAContig
1744
CCATTATTCCATTCTACCCATACTTGGGACAATCATA




viridis



CTCCTCTAACTCCTTTAACCATACTCATTACACACTCT






CTCTTCTTTATCTCTCTATATTCTTCACTCTCTCTCTAG






TTACTTGACGCCGCCGACCACCTTTTCCGAACCCAGT






GACCAATTATGGCACAGATACTTGCACCTAACATGC






AATGTCAGATGAAGTTTTCCAAAGGCTCGACAAGTT






CAATGACATTAAGTCCTTGGACTTCCATATTTCTGAA






AGAAAACCAAAAGAAATCGATTAAATGCTCTAGTAA






GTTCAGAGTGTGTGCTTCTCTCAAATCTGAAAACAG






CACTGTAAACAGGGTGGAGCAGCTACTCAACTTGGA






TGTCACTCCATACACTGACAAGATAATTGCAGAGTA






CATTTGGATTGGAGGATCCGGTATTGATGTCCGTAG






CAAATCAAGGACAATCTCTAAACCTGTTGAGCACCC






ATCTGAGCTTCCCAAGTGGAATTATGATGGCTCAAG






TACAGGACAAGCTCCCGGAGAGGACAGTGAAGTAA






TCTTATACCCTCAAGCAATTTTCAAGGATCCATTCCG






TGGTGGTAATAATATCCTTGTAATCTGTGACACATAC






ACCCCAGCAGGCGAACCTATTCCCACTAACAAAAGA






TACAGGGCTGCACAGATATTCAGCGACCCAAAGGTT






GTTTCCGAGGTTCCATGGTTTGGAATAGAGCAGGAA






TACACTTTGCTCCAACAAAATGTTAAATGGCCTTTGG






GATGGCCCGTGGGAGCCTATCCTGGTCCTCAGGGTC






CATACTACTGTGGTGCTGGTGCTGACAAATCTTTTG






GACGTGACATATCTGATGCTCATTACAAAGCTTGTTT






GTATGCCGGTATTAACATTAGTGGCACAAATGGGGA






AGTTATGCCTGGCCAGTGGGAATTCCAAGTTGGTCC






AAGTGTTGGCATTGAAGCTGGAGATCATATCTGGTG






TGCTAGATACATTCTCGAGAGAATTACTGAACAAGC






TGGTGTGGTTCTGACTCTTGATCCAAAGCCTATTGA






GGGTGATTGGAATGGTGCAGGTTGCCATACAAACT






ACAGTACAAAGACCATGAGAGAAGATGGTGGTTAT






GAAGCAATTAAGAAGGCAATTTTGAATCTATCATTA






CGCCACAAGGACCATATCAGTGCATATGGAGAAGG






AAATGAACGAAGATTGACAGGGAAGCACGAGACCG






CCAGCATCGACACTTTCTCTTGGGGTGTTGCCAATC






GTGGTTGCTCTATCCGTGTGGGCCGTGACACAGAAA






AAGCAGGCAAAGGTTATCTGGAAGACAGGCGGCCT






GCCTCAAACATGGACCCATACGTGGTGACAGGTTTG






CTCGCAGAAACTACAATACTTTGGGAACCAACACTT






GAGGCTGAGGCACTAGCAGCCCAAAAACTCGCTCTT






AATGTGTAATTCAACCATAATCGTGCCAGAATATCG






CATATTCATGAACGAGGGAACTCTTTCACGTGCCCA






GAATTTGCTTATTTTAGTTTTAGTATCCTGGGTATGT






GAGTGTTTTCATTCATGACCTTTGCTTCTGATCATTG






TTTGTTTTGGGAGTTCAAGAGAAGAATAATTTGTAA






CTGTTGCCTTCATTATTTTTGCTACTCCGCCAATTGTA






GAACACCATGAAAATATGACTGCAACAGTTAAGCTA






CTCCGCCGATTCGGAAAATATAGATTGAAGGTGATA






TTTAAG





50

Euphorbia

gDNAContig
4893
AAGTCACTGCTATTCTGTGCTAAACTAGATTTATACT




heterophylla



TATTTACAACTGATGACTGCTGATTTAGTGATTTAGT






GATTTAGATCGTACTTTCTTTGTTTTGCTCGATTTTCG






GACGTCGATTCGATATATACAGATTTGATGAACAGC






ATTGTTGCCAATGATCAGTAGTAGTAATGTTGTTGA






AAGCTTTCAGTTATAGTGATATCTTCCATCTGCTAGT






TTTTTTAGAGAAAATCAGTTTTTGCTAGGAGGAAAA






AGGGAATTACTAAAAAAATTATAAATGTTCTTTCAA






AATTTGAGCGAAGAAAATAATGGTTATTAAACACTA






ATTTTGAGCTGAAAGAATATGATCAGATGCTTTTGT






ATTCTAATGTCTTGAATCCTAATATGCACCTTTAAAA






CCTTTTGTTTTTCAATGAAAAAGTAAGGAAAAAGAT






TATTTGCATTAGTGGCACGAGTCTAATCTAATAACCG






TGGTTTCGTCTCTTCTCTTTCAAAAATTGGAAAAGTG






TTGATGTCATTTTCTAACATTTCCTACTAAGTACTAAC






CAAAACAAGGTTTTCTTTCCACTAATAGAATTTTCCT






TTACCACATTTATACAGTATAAAAATCTCTAACTTTA






GACTTTAGAGCATACTATCACATCATGGTGTTGTCAT






AGTATATTCATATTAGAGCAGGTTTAGCCCCAAGTCT






GAAGACTTGGGATGAAATTACCTTTATTGTCTTAAG






ATTTAGATTTAAGATTTTCCCATTTTTCTTTTAAAATC






TTAGCCAGATCTCAAGTTGATTTCAAGGCTCAACTTA






AGACTTGAAACACGGGACCCACCCTAATTTAATAAT






GTTTGTTTTCATATAGATAACATAAAGAGATAAAAA






AAAGTAAAATATCATGGTATATATTTAAGACTAGGA






GTCTTAGGGCTAAAGTGATAAAGTTGGACAAGTTTT






ATGGAGTTTAAGAATAATTGATAACATTATTTTTGTG






GGAACCACTAAAAAATGATGTTACACCCAAGTTTTA






AGACTTGGTGCTAAGCTTGCTGTTACAAATTGGTTTC






AATCATAACAGTTATTCCTTATCTTTGACTAGGAATT






TAGTCCAAATCTTTTGTTGTGGTGTACTGGTGTCGA






GGATACAACATGGATACCTAACGGGAAGAAAAGAG






TTTTTGCAACTTATATTGTCTGTCTGTGTTTAATGTTG






CCACTTCTACGGGAATTCTGGTTTCTGTAATCCAGGA






TTAAAGAGCTGTCAGCTGTTGTACTGTAAATTGTTTG






TGTAATAGTTTTAATTTTTGTAGGGAAAGGACCAAA






TATGGCCCAGATTCTCGCTCCTAGCATGCAATGTCA






GTTGAAATTCTCAAAAAGCTCATTAAGCTCGCTAGC






ATCGAACACGTGGACCTCCATTTTGCTAAAAGGAAA






CCAAAAGAGATCGCTTCATTGCTCAACTAAGTTCAA






GGTATCCGCTGCTCTCAAATCTGATGATGGTACTATC






AACAGGGTAGAGCAGCTACTCAATTTGGATGTCACT






CCATACACTGACAAGATTATTGCTGAATACATATGG






TATAGTTTCCCATTCTGATTTTGGCATCTTTATCGAG






GGTTATTTTTTCTCAAATATGCTTGATGAGGTTATGG






TAGAATCAACATATTAGGGCTTTACTTGCATGGTTGT






ATTAGGCTCTTTTGTTGTAGAAAAGCCTGCTTGGTA






ATTCAGTGTCCAGGTGTTGATGGAACTAATTGAATT






ATGATTGTTCATTGGAATAGGATTGGAGGATCTGGG






ATTGATGTTCGCAGTAAATCCAGGGTATAGTAACAT






CCATTCTGTAGCTTGATTGTTAACCACCTATTAGATG






CTGACTAATGTTTTCTTAATAATACCAGACAATCTCA






AGACCTATTGAGGATCCATCTGAACTTCCCAAATGG






AACTTTGATGGGTCAAGCACTGGACAAGCGCCGGG






AGAAGACAGTGAAGTAATCTTATAGTAAGATCCTCT






TACATCTATGAATCTTCATCATTTTCCCCATAAATTCA






TTATTCATTATTTCCGAGTCTTTCTTTTATTCTTGTCTT






TTAATGACTGATCATTAGTCATTGTTGTCTTGCATTT






CTTCTGCAATAGCCCTCAAGCAATTTTTAAGGATCCT






TTTCGTGGTGGTAACAATATCTTGGTGAGTTTGATA






GAGCATATGAATCGGTTATTCTAAAGTTATAGTATTT






CTTATAAATAATAAATTTATTTGTTAAGGTTGCAACC






ATAATTTATGATTTGTAAATCTAGGTGATCTGTGATG






CATACACACCAGCAGGTGAACCCATCCCAACTAATA






AACGACACAAAGCTGCACAGATCTTCAGCAACCAAA






AGGTTGTTTCTGAGGTTCCATGGTATGAAGTTCCTT






GTACTGATAAAATCCATTTATGAATTGTTAATAACCA






CTTTGCATTTGAACATTAAATTTTGTGTACAAAGTTT






CCTATTATAGGAAGGATAATTAATTAATCATAATTG






GGAGGGTGAAATTGAGAAGAAAAAAGAGGATTGC






ATGAACAGTCCAATGCATTTTGTTGCTGACATGAGA






GCAATTTGGGGCTTTGTAGAGCTGGCTGGATTGTGG






AATGTAATCAACAGGAAACTGATGACTGACCACTGT






GAATATGATCTGTTATGACACATTTCATTTTTCGAAT






AGAGGAATTTCATTGCCAGGTTGACCTATAACAGTA






TAACTATGTCAGAACAGAGCTTCTCGATTTCAAAATT






GTGTTGGCTTTTTTCTTTTTCAAATAATCAGAAGAGA






CTCATCTTTAGTTTTCTGTGTTATCGTTCTACTTTAAG






CTTTTATTACTCTTTGTTTTAGTCATTTAATCATATTTT






TACAGGTTTGGAATAGAGCAGGAATACACGCTTCTT






CAACCAAATGTTAATTGGCCCTTGGGATGGCCTGTG






GGAGCTTATCCCGGTCCTCAAGTATGTTACTCAGTT






GCTCCTATTTCATATTCATTTTGTCCAATGAAGATGC






TTTGTTGTGTTATAGATTAGAATCGTTTTGTTACGCA






AAATGATTTTTTTCGCATTTTCTAGGGTCCATATTATT






GTGGTGTTGGTGCTGAAAAATCTTTTGGACGTGACA






TTTCTGATGCTCACTATAAAGCTTGCCTGTATGCTGG






AATTAACATCAGTGGCACCAATGGGGAAGTTATGCC






TGGCCAGGTATTCACTTACATCATTCTAGTATGTCTA






CCAGTCATAAATTTGCTTTGAATCTTGTAACTCAATA






GCTGTATATCCACTTGTACCTACAGTGGGAATTCCA






GGTTGGTCCTAGTGTTGGGATTGAAGCAGGAGATC






ATATCTGGTGTGCCAGATATATTCTTGAGGTATTCTC






CTGCAATTTGTATGTTTCCCTCTGCGCTTATCAGTTA






CAACTATAGTTTTGTAATTTGCTGCCCTATCGTTTTAT






TATTCATTATTTTTCTACTTGAATTCTGCTTGAAAGAA






AATAAGCTACTTTGACACAGACTCGAAGTGAAAGTG






ACCATATGAGAATCAAACTGACCTTGGAATTATATG






TGATTAACAACCGAATCTAATCTCTTATGGAAGACAT






AAATTAATAATACTTAATAGGCTCCAATGTGGATGA






CCTCCCGGAATAATCACTTTTGGTTCATGTTAGCCGA






CCCCTCATATGTGATTAAGGCTTTGATTGATTGATTG






AATAGGCTCCAATGTGACCCAAACTCACCAAGGGTA






AATAAATGCTATTTTACCTGTATTGTATGGCTAACTA






TGGCTAACCAGATATAACCATAACTGAATTGTTAAA






CTGAATAATTTAAGAATCATAAGTAGCTTTATAATGT






AGGGACATTGGGGTGACTCATGACGAGGGAGTGAG






GCACAAATGAAATAGGTCTAAAATGAACTATTGATG






AATATTTAAGTTTGCAATTGAAGATCCACATTATCAT






CTAATTGTAAAACATAATTGCTAATGCTCAACAGAA






CCTAGTCCTTTAAGTAGAAGCCAAATTCATTAGAAG






TTTAGCACATTGTGAAACCTTGATCCATATCAATATA






TGTAGGCTGAAGAAATTACAGCTCAAATTTTGTTATT






AGTTGTAGCTTTAGTGTTGAGTTAAGTATAAACTATA






AAGATGGGCACTCAACTTTAGACAAAATCGCAATTT






GAGCACTCAACTTTAGACAAAATTGCAATTTGAGCA






CTCAACTTTGAAAAGTTGCAAGTTGATTACTAATTTT






GGTTAACTATAGTTCTACCCTCCTCCATCCTTAAATCT






CTTGCTACTAGTCCAGCACCACAATCAAAATCCTAGC






AGTCATGCTACCAATTTGCCACTGACCATTCAATCCA






CTAGAGAACCCCCCAAAAAGCACCATGCACCAGTGC






ACCACCACCCAAAAAAATCACGGGTCACCACGATGG






AACCAACTATTAAGAAAAAACCCACCATTACCACCAT






TAAATTTGAACCAACTATTAAAGAATTGCTTAATTTG






TACACAATGATCATAAAAAAAAAGTTTGCACCCCAT






TCAATAGAAGTGAAGAATGTTATACGGAGTACAATG






AATCAAACATAAAATTCAGCCAATTGACAATTACAA






TTTCTTCAAAGCTGCCATAAATGAAAAACCATACTCA






CTATCAAATTTGAAAGAAAACCATCAAATTCAAACC






CATAATTAGAAGTAAAAGTGTTGGGTAAAGCGGGT






TTCCGTTAACATTAATGAAAACGATCTAATATACTGT






AATTTTGATAGTATTTTTTTGTGTAACTTTAACATTTT






TATTGTAACCTGGATGGTTGAGGGTTGAAGATTTGG






AATGTCGAATTAACTTGGATGAACAATGG





51

Sorghum

cDNAContig
1581
CCACAAGTGTGGTACGGCCATTATTGGAGGATTACA




halepense



CAAGAAGAAGAAGGTAGGAGGAGATCACCCAAGC






GGACGGACGGCATGGAATGGAAGTGGGAAGCGTC






AAAGTTTTTATGTGTTTTGTTTTGGCACACCACGACC






TGACCCAAATTCTAGCTAAATTGCAGTAGTAGAGTA






GTATAAGCAAACGGAACGGGAAGGAACAATTGTTG






CGCAAATCGCTGGACGGGACCCTGCAATGCAACGG






CCGGACACTGCCGCGGAACAAACCGACACGACAAA






CGGCGAGCTGGATGGAGGAAACCTTCCGCTTCAGG






GCTTCCAGAGGATGGTGGTGTCGGCGATCATGGAG






GTCACCACGTATGGGTCCATGTTGGACGCCGGCCGG






CGGTCCTCGAAGTAGCCCTTGCCGTTCTGCTCCGTCT






CCCGGCCCACGCGCACTGACGCGCCACGGTTTGCCA






CTCCCCAGCTGAAGGTGTTGATGTCGGCGGTCTCGT






GCCTGCCGGTGAGGCGGCGCTCGTTGCCCTCGCCGT






AGGCCGCGATGTGCTCCTTGTGCCGCAGCTTCAGCT






TCTCGATGGCGGCCTTGATCACCTCGTACCCGCCCTC






GTTCCTCATGGACTTGGTGCTGTAGTTGGTGTGTGC






GCCGGCACCGTTCCAGTCACCAGGGATGGGCTTTGG






GTCGAATGTCAACACCACACCGGCGATCTCGGTGAT






CCTCTCAAGAATGTAGCGAGCAACCCAGACCTGATC






GCCTGAAGAAATGCCGACGGACGGTCCAACTTGGA






ATTCCCACTGCCCTGGCATGACCTCTCCGTTGATGCC






ACTGATGTTGATGCCTGCATAAATGCAAGCCTTGTA






GTGGGCATCAACTATATCACGCCCGAATGACTTGTC






CGCACCAACTCCACAGTAGTACGGACCCTGAGGGCC






AGGGAAGCCACCAAGAGGCCACCCAAGGGGCCAGT






TGGTGTCCTTCTGAAGGAGGGTGTACTCCTGCTCAA






TACCGTACCAGGGCTCCTCAGCGGCGACCTCAGGGT






TGCTGAAGATCTTGGCGGCGTTGTGCCTCTTGTTGG






TGGGAATTGGCTCGCCAGCTGGGGTGTAGCAATCG






CACATGACAAGGATGTTGTTGCCCCTCCGGAATGGG






TCCTTGAAGATAGCCTGCGGGTACAGGATGACCTCA






CTGTCCTCGCCGGGGGCCTGGCCGGTGCTGGAGCC






GTCGTAGTTCCACTTGGGCAGCTTGCTGGGATCGGT






CACCGGGCCGGAGAGGGTCCTGGCTTTGCTCCTGA






GATCCATGCCAGATCCACCGATCCATATGTACTCGG






CGATGATCTTCTCGGTGGTGTCCGAGAGGCTGAGGT






TGACGAGGTCGGTGAGGGAGGCCATGGCCGGCGG






CGGCTGGGAAGGACCCAAAGGAGGAAGAAGAGGG






AGGAGGTGGTGGTAGCGATCAAGAACTTCTCTGGTT






TTGTTGAGGCTGACAAGGATGGAAATTGGTCTTGTC






CAACTGACAAGAAGCGTAAGCAAGAGATATTTCCG






AACCCTGTATTAGAAGTTAACAGACTAGTTGCTAGT






CTTCAATCGTAC





52

Convulvulus

cDNAContig
710
AAGAATATACTCTCCTTCAAAAAGATGTTAATTGGCC




arvensis



ACTTGGGTGGCCTGCTGGAGGTTATCCTGGTCCACA






GGGACCATACTACTGTGGAATTGGAGCCGATAAGG






CTTTTGGGCGTGACATTGTCGACTCGCACTATAAGG






CCTGCCTTTACGCGGGGATTAACATCAGCGGTATCA






ATGGCGAAGTGATGCCTGGACAGTGGGAATTCCAA






GTTGGACCGGCTGTTGGCATCTCAGCTGGCGATGA






GGTGTGGGTAGCTCGCTATATTCTCGAGAGGATTTC






TGAGATTGCTGGAGTTGTTGTCTCATTCGACCCCAA






ACCTATCCCGGGTGATTGGAATGGTGCTGGAGCTCA






CACAAACTACAGCACTAAGTCAATGAGGAATGAGG






GTGGATTTGAAGTCATCAAGAAGGCAATTGCAAAG






CTTCAGGTGAGGCACAAGGAGCACATTGCTGCATAT






GGTGAGGGCAACGAGCGCCGCTTGACCGGAAAACA






CGAGACAGCTGACATCAACACCTTCTCATGGGGAGT






TGCGAATAGGGGTGCATCGGTTCGTGTGGGCCGGG






ACACGGAGAAAGATGGCAAGGGTTACTTTGAGGAC






CGAAGGCCGGCTTCGAACATGGATCCCTACACTGTG






ACCTCCATGATTGCAGAGACCACCATCCTGAACAAA






GATTGAGCTGTTTCTTGGTGGGATGTGTTTGGA





53

Chenopodium

cDNAContig
1276
TCATATTCTGAAAGTCTCATAAAAAGAGAAAGATCT




album



CTTTATTATTTTCCAATCAATCAACCAAATTGTTTCAT






CCAAATCCCAAAAAAAATATGTCGCTTCTTTCAGATC






TTGTTAACATTAATCTCTCAGACTCCACTGATAAGGT






CATTGCTGAGTACATATGGATTGGTGGATCTGGTAT






GGACATGAGAAGTAAAGCAAGAACACTCAATGGAC






CAGTTTCTGATCCAAAAGAGTTGCCAAAATGGAATT






ATGATGGATCTAGCACTGGTCAAGCTCCTGGTGAAG






ACAGTGAAGTCATTCTCTACCCACAAGCTATCTTCAA






AGATCCATTCAGGAGGGGCAACAATATTCTTGTCAT






GTGCGACGCATATACCCCTCAAGGAGAACCAATCCC






CACCAACAAGAGACACGATGCTGCAAAGATATTCAG






CCATCCAGGTGTAGCTGCTGAGTGCCTTGGTATGGT






ATCGAGCAGGAGTACACCTTGCTGCAAAAGGACGTT






AATTGGCCCATTGGCTGGCCTGTCGGAGGTTTTCCT






GGTCCACAGGGCCCCTACTACTGTGGTATTGGTGCT






GATAAAGCTTTTGGAAGGGACATTGTTGATTCACAC






TACAAGGCTTGCCTTTATGCAGGAATTAACATTAGT






GGAATCAATGGAGAAGTGATGCCAGGACAGTGGGA






ATTCCAAGTCGGTCCATCAGTTGGAATCTCTGCTGG






AGATGAGTTATGGGTAGCTCGTTACATTTTGGAGAG






GATTACTGAGATTGCTGGAGTGGCTCTTTCTTTTGAT






CCAAAGCCAATTCCAGGTGATTGGAACGGTGCTGGT






GCTCACACAAACTACAGCACAAAGTCCATGAGGGA






AGATGGTGGCTATGAAATCATTAAACAAGCTATTGA






AAAGCTTGGATTAAGGCACAAGGAACACATTGCTGC






TTATGGTGAAGGAAATGAACGCCGTCTCACTGGTAA






ACACGAAACAGCCAGCATTTCAACCTTCTTGTGGGG






AGTAGCCAACCGAGGTGCATCAGTTCGTGTTGGACG






AGACACTGAAAAGGAGGGAAAAGGATATTTCGAGG






ACAGGAGGCCGGCTTCTAACATGGACCCTTACGTTG






TCACTTCCATGATTGCAGAAACCACTATTCTTTGGAA






ACCATAGAGTCCAAGCTTCAATCTTTAACCACCCTTT






CTATATTAAGTCATTTGCTTTAAATCAGCAGCTGTCT






ACTCAAGCTGTTAGGATTTTTCGATTTTCTATACATA






ATGGCCATTG





54

Ambrosia

gDNAContig
671
TTTAACAATTTAATACATTTTTGTTGTGAAAAGATTT




artemisiifolia



GATCTTTATGTTTTATTTGTTGCAGGGCGTTGCAAAC






CGTGGAGCATCTATTCGGGTCGGGAGGGACACTGA






GAAAGAGGGGAAAGGGTACTTTGAGGACCGAAGG






CCGGCTTCTAACATGGATCCATATGTGGTGACCTCC






ATGATTGCTGAGACCACCATCTTGTGGAACAAATCT






TGAAGATAACAAGATTTGGATGATGACATTATGAAG






CCTGATATGGAGGGAGATTGAAAAAAGTAACTGGA






ATTTGGAAACAACCCTTCTATATGTACTTTGTTAAAA






TTTAGGTGCATCCTACTCTGTTTGCTTGTTTATTTTTA






CTTGATGTTTCATATGTTCTTTATAATGGAAAGCATT






TTGAGTCCAAAATGCTAATGGTAGCTACTTGATTTG






ATTTGAGATTTTCCCATTGGGAATATTGTCAATATGT






CTATTTTGAATAACAATATGGAGGGGTTGATTCCTAT






TTGTGTTTGTGTTTTTGTTTGCTTGACATGCATTCATT






ATACTCATTAAGTACATAAAATTTAAGAAAATTTTCT






AAAAGCATCATTCAATCATATTCTTTATCCTTATACCC






TATTCATATATTTATTTGAAAACTAAAGTGAGTTCTT






ATATTAAAGAAAT





55

Euphorbia

gDNAContig
3047
AACAATTAATCAATCATATTTGCGTAACTTTTTAATA




heterophylla



AGGAATGTAGGTATAGATTTCGAGAAAATCCAAAG






CTCGATATAAGTTTTAATTGTCACTCACCACCCACCT






TTTTTTTGAAAATATATAAATTAAAACATAAACGGAA






TTATCGGTTAATGAAATATAATTGTATATACTAACCG






AAAAAATAATTGTGAGATGAGTAAATAACTTATATT






GTGTTATTTGATTTTTGCACTTTGTGTATGAATTTGC






GGGTAATAACAATTTATTTAATCAAATACTATCGTTT






ATTTTATGATAAAAAATATACAGATATTTTTAATTTT






GTTTATTTTGTCTAAATTATTTATTTTGTCTAAATTAA






TACCACAGATCATTTAATTGGCCTCGCTAAATTATGA






ATAAATAATGATGACCAAGTGTCCAAGTACACAAGC






TTGTTTTCATCATAGTTGTTGGCTTGTTCCAACTTGC






AATTGTCGCTTAGCTTATCCCACTACACAACAATTGA






AGGCTAAAAATGCTCATTAGCTTATGTCATGCACCA






AATATGGGGTCATGTGCACCATATGATGCACTCTAT






GCAAACATACCCTATTCATTTAGTGCGCGTTTTTTTT






CACCTTATTAAACCCGAACTTAAATTCAAACTAAACT






TAATGTTTATTACCCCAATGTTTCAGGTATGGCATTG






AGCAAGAATACACACTCCTTCAGAAGGAGGTCAACT






GGCCTCTTGGTTGGCCAGTTGGTGGCTTCCCTGGTC






CTCAGGTGCGCTATCAAAACCAAACTTTCTTCATTTG






TTACTCTTTTCGTATACATTTATTTTCTTATACTTTCGC






GCTGTTTTGCAACTGATCTAAAACTTTTTGTGTGATT






GTCTTTGGCGGGTGCAGGGTCCATACTACTGTGGTG






TAGGGGCTGATAAATCGTTTGGCCGTGACATTGTGG






ATGCTCACTACAAGGCTTGCCTGTATGCCGGTATCA






ATATCAGTGGAATCAACGGTGAAGTCATGCCAGGA






CAGGTATGAAACTATGAATGCATAGTGTCTATTCAG






TTGGTTTCGACAGCTGATCCATAACACAACAATAGTT






TCACACTAATAGTGGATTCGATGATCTGATCAACATT






GCTTGCTTGATCTTTTTTCGTGCAGTGGGAATTCCAA






GTCGGACCTACTGTTGGAATTTCTTCTGGTGATCAA






GTCTGGGTTGCCAGATACATCCTAGAGGTAATCTGT






TAGTCCTTTTCTGCTCTACTTATTGTTCGTGTTTCTCG






CGTCTTGCATTCTTTGGCTATCTCGGTGTCTGACCCA






ATGCTCGCTCTCATCTACAGAGGATTGCAGAGATTG






CTGGAGTAGTTGTTACTTTCGACCCTAAACCAGTGA






AGGTCTGCCTAATATACCAATCTTTTTTTCTGTGAAA






ATTTATGCAAGAGAATATCAGTTATCATGAACCAAA






TATACTTTTCTTAATTTTTGTCTGTTTATTTCAAAAAA






CATCAGGGTGACTGGAACGGTGCTGGTGCTCACACT






AACTACAGGTAATTACTCCCTCCATTCCGTTTTATAT






GATCGCTTGATTAATCGTCAATGAGGAATACTTGAA






TTACCTGATTTACTAATGCAATACTTGAATTTATTATC






TACGAGTCTTCTTCAATGCCAATTTTATCAGGGTTTT






GTTTGCTTAATTGTTCATGCAGCACTAAGTCAATGAG






GAACGATGGTGGAATCGATGTGATCAAGAAAGCAA






TCGAGAAGTTGAGCCTGCGCCATAAGGAACACATTT






CCGCCTATGGTGAGGGTAATGAGAGGAGGCTCACT






GGTCGCCATGAGACAGCCGACATCAACACTTTCTCC






TGGGTAAACTTCGTTATACTTCAACTAACTGTTATTA






AGCATTAGCTAGTTTTCTAACAAGAGACCGATTAAT






CTTGTTTAATCTTACTGTTCTATGTATAATGTATGTTC






ATTAGATTTGTGTAAGCTGTTTCTTGTATCGTACGAC






TAATAATTTGATACGTAACTAATTGGAATTCAGGGA






GTGGCGAATAGAGGTGCTTCTGTTCGTGTTGGTCGC






GACACAGAGAAAGATGGCAAAGGTTAGGAATTCTG






TTTAATCTTTTCTTTTCTGCTTAACGTTTGTTTATGTTC






TTCTCAAGTGCTTTTATTTCGCCCACATTATTTGGCTT






AAGCTTAAATCACGAATTTTATACTCCGTACCACATA






GGTACATATATATAGATATAGATTATAGCGGAATGA






GAGTAAACACTGTAATATATAGTTCGAGTTTTGAAC






CTTTTATTTGAATCTAACGCGTATATTTTTTGTTACGT






TAATAGGTTACTTCGAAGACCGAAGGCCGGCATCAA






ACATGGATCCCTATGTCGTGACCTCCATGATTGCCG






AGACAACTATCCTATGGAAGCCTTGATTGGAGAATC






TGAACGAATTTGCATTGTTTAGACATTTCAACGAACC






CACATCATGTTTATGTGCATTTGAATAATCATACATT






GATGTCGTATTTGGGACTAGAATTCCTAAAATGCTT






GACATATCGTTTGGTTGATCATTTGTGAGTAGTGTA






ACGTGTACTCCTTTTCATCTCATGCAAGTGAATTGTT






CTTTTAAGTTGGATTTTGTTTACCAAATTGTGATTGG






TTGTTTTTATTTATTATAATTCTTGCATTTGATTGAAT






TAGAATCTATTCCGAAATTTGCAACTTTCAATCGATT






TAACAAAAACATACACTAATCGTAATCTAAAGACAA






AATTAGGGCAAAATCAAGGGGTTTTTCTAAGGTATA






CCCTTGAAGTTTTGGGTTTTCCAAGGTCTACTTATGC






CTTTTGAAACTTTCAAGGGATACCCCTGAACTCAATA






CACATTATTATTCATATCCTCCCCTAGTTAAAACACTC






ACCTTAGAATAAAATAAAAAATAAAAACAAAATAAA






TTAAAAAGCCCTAAATCTCCTCCTTCCTCCCTCACCAC






CATCCACTCACCACTGCCAACTGCAGCCAACCGTTG






GACCA





56

Euphorbia

gDNAContig
2153
CAAAAGCACTTTATCTTTTCATTGTATTTTCCTTTTGG




heterophylla



GTTGGAAAGAGCATTTTAAAGTTAAGCTGAATAAAG






GCTACAAAGTTGCACATTCAAACTATCCTAGGAAAT






GGCAAAGATATGCTTTACGTATAAACTCTGCATAAA






TTGTTGTTCACATGTAGAAGAGGGCTTTCGTTTTTGT






AGTTTGCTATAGAATGAATGGGAAGAGGTCTTTGG






GACTTCTTTTTGTTTCCAATTTCTTCCTATTCTAGGTG






TTTTGTTGATATAATGTTCGTTTTCCATTAATTTGTTA






TTGTGCAGTTGATAAATAAATAAAATTGTGCTTCTTA






TTTATAAGAATGTATCCCACTGACCTTTCTTTCTACTA






CCTCTAAACATACTGGGCTTATATGTTTTCCTCGTCA






GGGGTAATGGCGAAGAGATGGTTTTGTCAGACATG






CATGTTAAACCTGGTGAACCTTGGGAATATTGCCCG






AGGGAGGCATTAAGGAGGGCTGCAAAAGTGCTGAA






AGAAGAATTCAATTTGGTATCTTTGTAATGCCTAAAA






TGTTTCAATAACTTAGTTCTATCTATTTTTATATCTGA






CTGTTTCGTGTTGCATGTTTAGGAATTGGATTCAGG






CTTTGAGAATGAATTTTATCTCTTGAAACCTATCACA






AGGTGATTAGATTGAACCCTGTTTTTTCTTTTCATTTT






CCTTTGATTAGTATCTGATTGCTGGTTAATTATAGGG






ATGGAAGAGAAGAATGGGTTCCATTTGATTCGAGCC






CATATTGTTCAACTTCATCTTTTGATGCAGCTTCTCCC






ATCCTTCAGGAAATGTTCGGTGCACTGCAGTCTCTA






GATATTACAATGGAACAGGTAGGGAGTGAATAATA






TTTATTGTTGGCCTCTGTATGTTACTTTGAGAAGACA






AAAATATTCTACTGTCACCTGACCTCTATATGTATCTT






TATAAGCTTAATTGTCTAGAGAATTTTATCTTGATAA






CCATCGGTGGACCTATGTTGTACCACAGTGATGCAC






GTGCTACACGTAAAAAATTAAAAATATATTGGTGAA






ATGGTCAACTAAAATTATATAAAATATTAGAACCCTA






ATTAATTTATACCATATCTTATAAAATAAAAATAAAA






AATATATTCAAATGTTACTTTATACATATTTTCATTTA






AATTCATGTATTCACACAACCTCAGATAATTTAATTT






GTATTTTGTAATTTAATGCTACAATTAATATATATATT






CCCTCCGTTCCATATTGTTCTGTGCACTTTTCCCATTT






GGACGTTCCATAATGATTTGTGCATTGTGCTTTATTT






CATTTTTAGACATGCCTTTATTATTTTTTAATAGGGT






GGACCTACCACTTTCTCCATTTACACATTCTCTCTCCA






ATCTATTTTTGCTTTTTGACCCAACTTCTATTATAATA






TGTTATTCTTACTTTTTCCCCAAATAGTAAATGCACA






AAACAATATGGAACGGAGGGAGTACAATAATATGT






AAGTTATTTTAGTTGATACTACACTTGATATAATATA






TAATATCTATTTTTGGTGATTCGATGTGGGTGAGGTT






AAACACTAAATTATTTGTACATATTATGTACAAATAC






AACTTAACACAATAATTTGTATTTAAGAATAATTTAC






CAAGAGGTTTCTGATGATTAGTATTGCTTTCCTATTC






ATTCTTAAGCGTTCCTTGAAATCACTTGTAGCCGAAA






GCTGTCTTTACAATCCTATTTCATCATAGAGTTTCTG






ATTTTCTAACTACTGCTGAATGCGAAGAATTTTGTAA






CTACATTGCTGAATGCGAAGAATTTTGTAACTACATT






GCTGAATGCGATGAATTTTGTAAACTACATTCTTAGC






AATGCATGTTAAATGATTATTTGACATGGACAAAAT






AAGTGTAACAATAGCAAGTTGATCGCCGATTGTGAC






ATAATTAATTAATCAAATTCAAAAGCTCTCAATTTTTT






TTATTGCAGGATATTATTTGAAAAGCTATTTAAATTC






TTGTTTTGGCTCACTTATATACAACCAAATGCTCTTTC






TCTCGATGTGAATTAGAAATCTTATTTTCTTCATTGG






TTTGGCGCCACACCTATTGTCAGTCCCTCTATATGCT






TATTACTTGTGTT





57

Euphorbia

gDNAContig
946
AATATGCGTGAAAAGTACAATTATTAATAATTTGTCC




heterophylla



AATAAATATTTTGTTGTTAAAGATTTTAAGAGGTTGA






AAAAGTAGTATATTTTTTGGTTGAAAAAGAATGGAG






AATAAACAATATCAAAACAATAAATAAAGCAGTATC






TAAAAGTAGAGTGTAATTTGTGTAGTCCACTCTTTAA






AAGAGTACCAAAAGTTGAGGACTTCCTCATCATACC






ATTTTATATTGGTTGTTTCAGACATCACTCTATATATT






AGGCGTCATTTTGCGATTCATTTCACGCATTTCTTGA






TCACATTCTCACAATATCTTTCGTTCTCTCAATATTTT






CCATAAACAATATTCACAACAACAACATGTCGCTTCT






CTCAGATCTCATTAACCTTGATCTTTCTGATTCTACTG






ATAAGATCATTGCTGAGTACATATGGTCAGTTCTTTA






TTATTGCACACCATCTTTTCGATTTTATTACCCAATGA






ATAAAGTTTTATTTTTTCTGGGTTTTTCTCTTTTAGCA






GAAAGATTTCATTAACAACTTAATTCACAATGAAGG






ATTTCAGCTTTTTTAGTTATGAATAGTTTGATGAAGA






AAAGTGATGGGTTGTATCTTATATATTTTATCTGTTT






GTTCTTAATATGGGATATTTTCCAGTGTTACAATATT






GCTTATTTGACTAGCAAAAGATATTTATCTTATTTTTC






ATTGAACAAAATATGCACATAATGATTTTCTTTTATT






GGAAGTCATAGTGTAGTAATCAAGAACTTGCTGTGA






ATTTATTTTCAGGATTGGTGGATCTGGTATGGACAT






GAGAAGTAAAGCTAGAGTGTAGTTTTTTTTTCTTTTT






TTGTTTATTGTATTATTTTTAACCTTAAACCTTCACCT






ACCAAAATGAATGAATAAATAAATAAATAAATTTTT






AGTTTATTATTACGTAAGTAC





58

Euphorbia

gDNAContig
375
TTTTGTTGGTTGGAAGGAATGTTTTCTAGCTTCTATT




heterophylla



TCGCTTTCGTATGGTAACTTATTACTTTAAATAAAGG






ACAAGAAAATGATTTTTGATTTTGGAAAGTATCGAG






AAATGTTTTTTGAAAGCTATTTTCTTATGAATATACT






AAAAATGTGATCTAATCTTTATTAAATAATGCCATAC






TTGTCCACTGAAAATATATTTATTTGGGGGTCAACTG






TTAATTAATTCTTGATCATGGTTGTAACAGCCCACAA






GCTATCTTCAGAGATCCATTCAGGAGGGGAAACAAT






ATCCTTGTGAGTTTCGTTGTTACCTATTTCGTTCGTG






ACATCTGTTAGCATCATTGGCTGTTAGTAGGCTAATT






CAGTAAT





59

Euphorbia

gDNAContig
459
AAAAGTTAATAGAGAGTGAGGGATAGCTCAAGTGG




heterophylla



TTAAAGCTTCCTTCTCGAGGTGATCCTGTGATCGATT






CTCATCCCGCCCTTGTATATATATATAACAGAGGATC






TACAAATGATTACTCTAACTGCAACTTATCTCATTTT






GCAACTTTCAATAAACTTTAGTACTTTCCATTACCTTA






ACTCCTTTAGTGTTATGGATTTGTTAACAAACTCCTT






GATTTACTTTAACAAGTTAATTTCCCTTTAAACAGAG






AATTACTGAACAAGCTGGTGTAGTTTTGACTCTTGAT






CCAAAGCCCATCGAGGTACTAATAACTTTTCTTTTGT






ATTAGTAATACGAATTTTTCATGTGTTATCCGTCTGA






AATCTTTGCAACTCGTCAACAGGGTGACTGGAATGG






TGCAGGTTGCCATACCAATTACAGGTATCTTCTTGAA






GAATTTAGTATTTATTC








Claims
  • 1. A method of plant control comprising: treating a plant with a composition comprising a polynucleotide and a transfer agent, wherein said polynucleotide is essentially identical or essentially complementary to a glutamine synthetase (GS) gene sequence or fragment thereof, or to an RNA transcript of said GS gene sequence or fragment thereof, wherein said GS gene sequence is selected from the group consisting of SEQ ID NO:1-59 or a polynucleotide fragment thereof, whereby said plant growth or development or reproductive ability is regulated, suppressed, or delayed or said plant is more sensitive to a GS inhibitor herbicide as a result of said polynucleotide containing composition relative to a plant not treated with said composition.
  • 2. The method as claimed in claim 1, wherein said transfer agent is an organosilicone surfactant composition or compound contained therein.
  • 3. The method as claimed in claim 1, wherein said polynucleotide fragment is 18 contiguous, 19 contiguous nucleotides, 20 contiguous nucleotides or at least 21 contiguous nucleotides in length and at least 85 percent identical to a GS gene sequence selected from the group consisting of SEQ ID NO:1-59.
  • 4. The method as claimed in claim 3, wherein said polynucleotide fragment is selected from the group consisting of sense or anti-sense ssDNA or ssRNA, dsRNA, or dsDNA, or dsDNA/RNA hybrids.
  • 5. The method as claimed in claim 1, wherein said plant is selected from the group consisting of Abutilon theophrasti, Amaranthus albus, Amaranthus chlorostachys, Amaranthus graecizans, Amaranthus hybridus, Amaranthus lividus, Amaranthus palmeri, Amaranthus rudis, Amaranthus spinosus, Amaranthus thunbergii, Ambrosia trifida, Ambrosia artemisiifolia, Chenopodium album, Commelina diffusa, Convulvulus arvensis, Conyza candensis, Lolium multiflorum, Euphorbia heterophylla, Kochia scoparia, Sorghum halepense and Digitaria sanguinalis
  • 6. The method as claimed in claim 1, wherein said composition further comprises said GS inhibitor herbicide and external application to a plant with said composition.
  • 7. The method as claimed in claim 6, wherein said composition further comprises one or more co-herbicides similar or different from said GS inhibitor herbicide.
  • 8. The method as claimed in claim 3, wherein said composition comprises any combination of two or more of said polynucleotide fragments and external application to a plant with said composition.
  • 9. A composition comprising a polynucleotide and a transfer agent, wherein said polynucleotide is essentially identical or essentially complementary to a GS gene sequence, or to an RNA transcript of said GS gene sequence, wherein said GS gene sequence is selected from the group consisting of SEQ ID NO:1-59 or a polynucleotide fragment thereof, and whereby a plant treated with said composition has its growth or development or reproductive ability regulated, suppressed or delayed or said plant is more sensitive to a GS inhibitor herbicide as a result of said polynucleotide containing composition relative to a plant not treated with said composition.
  • 10. The composition of claim 9, wherein said transfer agent is an organosilicone composition.
  • 11. The composition of claim 9, wherein said polynucleotide fragment is 18 contiguous, 19 contiguous nucleotides, 20 contiguous nucleotides or at least 21 contiguous nucleotides in length and at least 85 percent identical to a GS gene sequence selected from the group consisting of SEQ ID NO:1-59.
  • 12. The composition of claim 9, wherein said polynucleotide is selected from the group consisting of SEQ ID NO:60-1443.
  • 13. The composition of claim 9, wherein said polynucleotide is selected from the group consisting of SEQ ID NO: 1444-2045.
  • 14. The composition of claim 9, further comprising a GS inhibitor herbicide.
  • 15. The composition of claim 14, wherein said GS inhibitor molecule is selected from the group consisting of glufosinate-ammonium and bialaphos.
  • 16. The composition of claim 14, further comprising a co-herbicide.
  • 17. A method of reducing expression of a GS gene in a plant comprising: external application to a plant of a composition comprising a polynucleotide and a transfer agent, wherein said polynucleotide is essentially identical or essentially complementary to a GS gene sequence or fragment thereof, or to the RNA transcript of said GS gene sequence or fragment thereof, wherein said GS gene sequence is selected from the group consisting of SEQ ID NO:1-59 or a polynucleotide fragment thereof, whereby said expression of said GS gene is reduced relative to a plant in which the composition was not applied.
  • 18. The method as claimed in claim 17, wherein said transfer agent is an organosilicone compound.
  • 19. The method as claimed in claim 17, wherein said polynucleotide fragment is 19 contiguous nucleotides, 20 contiguous nucleotides or at least 21 contiguous nucleotides in length and at least 85 percent identical to a GS gene sequence selected from the group consisting of SEQ ID NO:1-59.
  • 20. The method as claimed in 17, wherein said polynucleotide molecule is selected from the group consisting of sense or anti-sense ssDNA or ssRNA, dsRNA, or dsDNA, or dsDNA/RNA hybrids.
  • 21. A microbial expression cassette comprising a polynucleotide fragment of 18 contiguous, 19 contiguous nucleotides, 20 contiguous nucleotides or at least 21 contiguous nucleotides in length and at least 85 percent identical to a GS gene sequence selected from the group consisting of SEQ ID NO:1-59.
  • 22. A method of making a polynucleotide comprising a) transforming the microbial expression cassette of claim 21 into a microbe; b) growing said microbe; c) harvesting a polynucleotide from said microbe, wherein said polynucleotide is 18 contiguous, 19 contiguous nucleotides, 20 contiguous nucleotides or at least 21 contiguous nucleotides in length and at least 85 percent identical to a GS gene sequence selected from the group consisting of SEQ ID NO:1-59.
  • 23. A method of identifying polynucleotides useful in modulating GS gene expression when externally treating a plant comprising: a) providing a plurality of polynucleotides that comprise a region essentially identical or essentially complementary to a polynucleotide fragment of 18 contiguous, 19 contiguous nucleotides, 20 contiguous nucleotides or at least 21 contiguous nucleotides in length and at least 85 percent identical to a GS gene sequence selected from the group consisting of SEQ ID NO:1-59; b) externally treating said plant with one or more of said polynucleotides and a transfer agent; c) analyzing said plant or extract for modulation of GS gene expression, and whereby a plant treated with said composition has its growth or development or reproductive ability regulated, suppressed or delayed or said plant is more sensitive to a GS inhibitor herbicide as a result of said polynucleotide containing composition relative to a plant not treated with said composition.
  • 24. The method as claimed in 23, wherein said plant is selected from the group consisting of Abutilon theophrasti, Amaranthus albus, Amaranthus chlorostachys, Amaranthus graecizans, Amaranthus hybridus, Amaranthus lividus, Amaranthus palmeri, Amaranthus rudis, Amaranthus spinosus, Amaranthus thunbergii, Ambrosia trifida, Ambrosia artemisiifolia, Chenopodium album, Commelina diffusa, Convulvulus arvensis, Conyza candensis, Lolium multiflorum, Euphorbia heterophylla, Kochia scoparia, Sorghum halepense and Digitaria sanguinalis
  • 25. The method as claimed in 23, wherein said GS gene expression is reduced relative to a plant not treated with said polynucleotide fragment and a transfer agent.
  • 26. The method as claimed in 23, wherein said transfer agent is an organosilicone compound.
  • 27. An agricultural chemical composition comprising an admixture of a polynucleotide and a GS inhibitor and a co-herbicide, wherein said polynucleotide is essentially identical or essentially complementary to a portion of a GS gene sequence, or to a portion of an RNA transcript of said GS gene sequence, wherein said GS gene sequence is selected from the group consisting of SEQ ID NO:1-78 or a polynucleotide fragment thereof, and whereby a plant treated with said composition has its growth or development or reproductive ability regulated, suppressed or delayed or said plant is more sensitive to a GS inhibitor herbicide as a result of said polynucleotide containing composition relative to a plant not treated with said composition.
  • 28. The agricultural chemical composition of claim 27, wherein said co-herbicide is selected from the group consisting of amide herbicides, arsenical herbicides, benzothiazole herbicides, benzoylcyclohexanedione herbicides, benzofuranyl alkylsulfonate herbicides, cyclohexene oxime herbicides, cyclopropylisoxazole herbicides, dicarboximide herbicides, dinitroaniline herbicides, dinitrophenol herbicides, diphenyl ether herbicides, dithiocarbamate herbicides, glycine herbicides, halogenated aliphatic herbicides, imidazolinone herbicides, inorganic herbicides, nitrile herbicides, organophosphorus herbicides, oxadiazolone herbicides, oxazole herbicides, phenoxy herbicides, phenylenediamine herbicides, pyrazole herbicides, pyridazine herbicides, pyridazinone herbicides, pyridine herbicides, pyrimidinediamine herbicides, pyrimidinyloxybenzylamine herbicides, quaternary ammonium herbicides, thiocarbamate herbicides, thiocarbonate herbicides, thiourea herbicides, triazine herbicides, triazinone herbicides, triazole herbicides, triazolone herbicides, triazolopyrimidine herbicides, uracil herbicides, and urea herbicides.
  • 29. An agricultural chemical composition comprising an admixture of a polynucleotide and a GS inhibitor herbicide and a pesticide, wherein said polynucleotide is essentially identical or essentially complementary to a portion of a GS gene sequence, or to a portion of an RNA transcript of said GS gene sequence, wherein said GS gene sequence is selected from the group consisting of SEQ ID NO:1-78 or a polynucleotide fragment thereof, whereby a field of crop plants in need of weed and pest control are treated with said composition, and whereby a plant treated with said composition has its growth or development or reproductive ability regulated, suppressed or delayed or said plant is more sensitive to a GS inhibitor herbicide as a result of said polynucleotide containing composition relative to a plant not treated with said composition.
  • 30. The agricultural chemical composition of claim 29, wherein said pesticide is selected from the group consisting of insecticides, fungicides, nematocides, bactericides, acaricides, growth regulators, chemosterilants, semiochemicals, repellents, attractants, pheromones, feeding stimulants, and biopesticides.
  • 31. A composition comprising a polynucleotide and a transfer agent, wherein said polynucleotide is essentially identical or essentially complementary to a GS gene sequence, wherein said polynucleotide is selected from the group consisting of SEQ ID NO:2046-2056 or a complement or polynucleotide fragment thereof, and whereby a plant treated with said composition has its growth or development or reproductive ability regulated, suppressed or delayed or said plant is more sensitive to a GS inhibitor herbicide as a result of said polynucleotide containing composition relative to a plant not treated with said composition.
Parent Case Info

This application claims benefit under 35 USC §119(e) of U.S. provisional application Ser. No. 61/534,076 filed Sep. 13, 2011, herein incorporated by reference in it's entirety. The sequence listing that is contained in the file named “40—21(58638)B seq listing.txt”, which is 849,153 bytes (measured in operating system MS-Windows) and was created on 6 Sep. 2012, is filed herewith and incorporated herein by reference.

Provisional Applications (1)
Number Date Country
61534076 Sep 2011 US