METHODS AND COMPOSITIONS FOR WEED CONTROL

Abstract
Provided are novel compositions for use in herbicide activity. Specifically, methods and compositions that modulate 5-enolpyruvylshikimate-3-phosphate synthase in plant species. The present invention also provides for combinations of compositions and methods that enhance weed control.
Description
FIELD

The methods and compositions generally relates to the field of weed management. More specifically, relates to 5-enolpyruvylshikimate-3-phosphate synthase genes in plants and compositions containing polynucleotide molecules for modulating and/or regulating their expression. Further provided are methods and compositions useful for weed control.


BACKGROUND

Weeds are plants that compete with cultivated plants in an agronomic environment and cost farmers billions of dollars annually in crop losses and the expense of efforts to keep weeds under control. Weeds also serve as hosts for crop diseases and insect pests. The losses caused by weeds in agricultural production environments include decreases in crop yield, reduced crop quality, increased irrigation costs, increased harvesting costs, reduced land value, injury to livestock, and crop damage from insects and diseases harbored by the weeds. The principal means by which weeds cause these effects are: 1) competing with crop plants for water, nutrients, sunlight and other essentials for growth and development, 2) production of toxic or irritant chemicals that cause human or animal health problem, 3) production of immense quantities of seed or vegetative reproductive parts or both that contaminate agricultural products and perpetuate the species in agricultural lands, and 4) production on agricultural and nonagricultural lands of vast amounts of vegetation that must be disposed of. Herbicide tolerant weeds are a problem with nearly all herbicides in use, there is a need to effectively manage these weeds. There are over 365 weed biotypes currently identified as being herbicide resistant to one or more herbicides by the Herbicide Resistance Action Committee (HRAC), the North American Herbicide Resistance Action Committee (NAHRAC), and the Weed Science Society of America (WSSA).


The EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) enzyme catalyzes the conversion of shikimate-3-phosphate into 5-enolpyruvyl-shikimate-3-phosphate, an intermediate in the biochemical pathway for creating three essential aromatic amino acids (tyrosine, phenylalanine, and tryptophan). The EPSPS enzyme is the target for the herbicide N-phosphonomethyl glycine also known as glyphosate.


SUMMARY

In one aspect, the invention provides a method of plant control comprising an external application to a plant or plant part a composition comprising a polynucleotide and a transfer agent, wherein the polynucleotide is essentially identical or essentially complementary to an EPSPS gene sequence or fragment thereof, or to the RNA transcript of said EPSPS gene sequence or fragment thereof, wherein said EPSPS gene sequence is selected from the group consisting of SEQ ID NO:1-120 or a polynucleotide fragment thereof. As a result of such application, the plant growth or development or reproductive ability is reduced or the plant is made more sensitive to an EPSPS inhibitor herbicide relative to a plant not treated with said composition. In this manner, plants that have become resistant to the application of glyphosate containing herbicides are made more susceptible to the herbicidal effects of a glyphosate containing herbicide, thus potentiating the effect of the herbicide. The polynucleotide fragment is at least 18 contiguous nucleotides, at least 19 contiguous nucleotides, at least 20 contiguous nucleotides or at least 21 contiguous nucleotides in length and at least 85 percent identical to an EPSPS gene sequence selected from the group consisting of SEQ ID NO:1-120 and the transfer agent comprises an organosilicone composition or compound. The polynucleotide fragment can be sense or anti-sense ssDNA or ssRNA, dsRNA, or dsDNA, or dsDNA/RNA hybrids. The composition can include various components that include more than one polynucleotide fragments, an EPSPS inhibitor herbicide and/or other herbicides that enhance the plant control activity of the composition.


In another aspect, polynucleotide molecules and methods for modulating EPSPS gene expression in a plant species are provided. The method reduces, represses or otherwise delays expression of an EPSPS gene in a plant comprising an external application to such plant of a composition comprising a polynucleotide and a transfer agent, wherein the polynucleotide is essentially identical or essentially complementary to an EPSPS gene sequence or fragment thereof, or to the RNA transcript of the EPSPS gene sequence or fragment thereof, wherein the EPSPS gene sequence is selected from the group consisting of SEQ ID NO:1-120 or a polynucleotide fragment thereof. The polynucleotide fragment is at least 18 contiguous nucleotides, at least 19 contiguous nucleotides, at least 20 contiguous nucleotides or at least 21 contiguous nucleotides in length and at least 85 percent identical to an EPSPS gene sequence selected from the group consisting of SEQ ID NO:1-120 and the transfer agent is an organosilicone compound. The polynucleotide fragment can be sense or anti-sense ssDNA or ssRNA, dsRNA, or dsDNA, or dsDNA/RNA hybrids.


In a further aspect, the polynucleotide molecule composition may be combined with other herbicidal (co-herbicides) compounds to provide additional control of unwanted plants in a field of cultivated plants.


In a further aspect, the polynucleotide molecule composition may be combined with any one or more additional agricultural chemicals, such as, insecticides, fungicides, nematocides, bactericides, acaricides, growth regulators, chemosterilants, semiochemicals, repellents, attractants, pheromones, feeding stimulants, biopesticides, microbial pesticides or other biologically active compounds to form a multi-component pesticide giving an even broader spectrum of agricultural protection.





BRIEF DESCRIPTION OF THE FIGURES

The following drawings form part of the present specification and are included to further demonstrate certain aspects of the function of the compositions and method. The function may be better understood by reference to one or more of these drawings in combination with the detailed description of specific embodiments presented herein. The function can be more fully understood from the following description of the figures:



FIG. 1. Regions of the Palmer amaranth EPSPS coding sequence that are sensitive to trigger molecules



FIG. 2. Transgenic glyphosate tolerant corn plants treated with trigger polynucleotides and glyphosate



FIG. 3. Transgenic cotton plants treated with trigger polynucleotides and glyphosate





DETAILED DESCRIPTION

Provided are methods and compositions containing a polynucleotide that provide for regulation, repression or delay and/or modulation of EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) gene expression and enhanced control of weedy plant species and importantly glyphosate resistant weed biotypes. Aspects of the method can be applied to manage various weedy plants in agronomic and other cultivated environments.


The following definitions and methods are provided to guide those of ordinary skill in the art. Unless otherwise noted, terms are to be understood according to conventional usage by those of ordinary skill in the relevant art. Where a term is provided in the singular, the inventors also contemplate aspects described by the plural of that term.


By “non-transcribable” polynucleotides is meant that the polynucleotides do not comprise a complete polymerase II transcription unit.


As used herein “solution” refers to homogeneous mixtures and non-homogeneous mixtures such as suspensions, colloids, micelles, and emulsions.


Weedy plants are plants that compete with cultivated plants, those of particular importance include, but are not limited to important invasive and noxious weeds and herbicide resistant biotypes in crop production, such as, Amaranthus species—A. albus, A. blitoides, A. hybridus, A. palmeri, A. powellii, A. retroflexus, A. spinosus, A. tuberculatus, and A. viridis; Ambrosia species—A. trifida, A. artemisifolia; Lolium species—L. multiflorum, L. rigidium, L perenne; Digitaria species—D. insularis; Euphorbia species—E. heterophylla; Kochia species—K. scoparia; Sorghum species—S. halepense; Conyza species—C. bonariensis, C. canadensis, C. sumatrensis; Chloris species—C. truncate; Echinochola species—E. colona, E. crus-galli; Eleusine species—E. indica; Poa species—P. annua; Plantago species—P. lanceolata; Avena species—A. fatua; Chenopodium species—C. album; Setaria species—S. viridis, Abutilon theophrasti, Ipomoea species, Sesbania, species, Cassia species, Sida species, Brachiaria, species and Solanum species.


Additional weedy plant species found in cultivated areas include Alopecurus myosuroides, Avena sterilis, Avena sterilis ludoviciana, Brachiaria plantaginea, Bromus diandrus, Bromus rigidus, Cynosurus echinatus, Digitaria ciliaris, Digitaria ischaemum, Digitaria sanguinalis, Echinochloa oryzicola, Echinochloa phyllopogon, Eriochloa punctata, Hordeum glaucum, Hordeum leporinum, Ischaemum rugosum, Leptochloa chinensis, Lolium persicum, Phalaris minor, Phalaris paradoxa, Rottboellia exalta, Setaria faberi, Setaria viridis var, robusta-alba schreiber, Setaria viridis var, robusta-purpurea, Snowdenia polystachea, Sorghum sudanese, Alisma plantago-aquatica, Amaranthus lividus, Amaranthus quitensis, Ammania auriculata, Ammania coccinea, Anthemis cotula, Apera spica-venti, Bacopa rotundifolia, Bidens pilosa, Bidens subalternans, Brassica tournefortii, Bromus tectorum, Camelina microcarpa, Chrysanthemum coronarium, Cuscuta campestris, Cyperus difformis, Damasonium minus, Descurainia sophia, Diplotaxis tenuifolia, Echium plantagineum, Elatine triandra var, pedicellate, Euphorbia heterophylla, Fallopia convolvulus, Fimbristylis miliacea, Galeopsis tetrahit, Galium spurium, Helianthus annuus, Iva xanthifolia, Ixophorus unisetus, Ipomoea indica, Ipomoea purpurea, Ipomoea sepiaria, Ipomoea aquatic, Ipomoea triloba, Lactuca serriola, Limnocharis flava, Limnophila erecta, Limnophila sessiliflora, Lindernia dubia, Lindernia dubia var, major, Lindernia micrantha, Lindernia procumbens, Mesembryanthemum crystallinum, Monochoria korsakowii, Monochoria vaginalis, Neslia paniculata, Papaver rhoeas, Parthenium hysterophorus, Pentzia suffruticosa, Phalaris minor, Raphanus raphanistrum, Raphanus sativus, Rapistrum rugosum, Rotala indica var, uliginosa, Sagittaria guyanensis, Sagittaria montevidensis, Sagittaria pygmaea, Salsola iberica, Scirpus juncoides var, ohwianus, Scirpus mucronatus, Setaria lutescens, Sida spinosa, Sinapis arvensis, Sisymbrium orientale, Sisymbrium thellungii, Solanum ptycanthum, Sonchus aspen, Sonchus oleraceus, Sorghum bicolor, Stellaria media, Thlaspi arvense, Xanthium strumarium, Arctotheca calendula, Conyza sumatrensis, Crassocephalum crepidiodes, Cuphea carthagenenis, Epilobium adenocaulon, Erigeron philadelphicus, Landoltia punctata, Lepidium virginicum, Monochoria korsakowii, Solanum americanum, Solanum nigrum, Vulpia bromoides, Youngia japonica, Hydrilla verticillata, Carduus nutans, Carduus pycnocephalus, Centaurea solstitialis, Cirsium arvense, Commelina diffusa, Convolvulus arvensis, Daucus carota, Digitaria ischaemum, Echinochloa crus-pavonis, Fimbristylis miliacea, Galeopsis tetrahit, Galium spurium, Limnophila erecta, Matricaria perforate, Papaver rhoeas, Ranunculus acris, Soliva sessilis, Sphenoclea zeylanica, Stellaria media, Nassella trichotoma, Stipa neesiana, Agrostis stolonifera, Polygonum aviculare, Alopecurus japonicus, Beckmannia syzigachne, Bromus tectorum, Chloris inflate, Echinochloa erecta, Portulaca oleracea, and Senecio vulgaris. It is believed that all plants contain a phytoene desaturase gene in their genome, the sequence of which can be isolated and polynucleotides made according to the methods of the present invention that are useful for regulation, suppressing or delaying the expression of the target EPSPS gene in the plants and the growth or development of the treated plants.


A cultivated plant may also be considered a weedy plant when it occurs in unwanted environments. For example, corn plants growing in a soybean field. Transgenic crops with one or more herbicide tolerances may need specialized methods of management to control weeds and volunteer crop plants. The method enables the targeting of a transgene for herbicide tolerance to permit the treated plants to become sensitive to the herbicide. For example, an EPSPS DNA contained in a transgenic crop event can be a target for trigger molecules in order to render the transgenic crop sensitive to application of the corresponding glyphosate containing herbicide. Such transgenic events are known in the art and include but are not limited to DAS-44406-6, MON883302, MON87427, FG72, HCEM485, H7-1, ASR368, J101, J163, DP-098140, GHB614, 356043, MON89788, MON88913, RT200, NK603, GTSB77, GA21, MON1445, and 40-3-2 and US patent publications: 20110126310, 20090137395, herein incorporated in their entirety by reference hereto.


A “trigger” or “trigger polynucleotide” is a polynucleotide molecule that is homologous or complementary to a target gene polynucleotide. The trigger polynucleotide molecules modulate expression of the target gene when topically applied to a plant surface with a transfer agent, whereby a plant treated with said composition has its growth or development or reproductive ability regulated, suppressed or delayed or said plant is more sensitive to an EPSPS inhibitor herbicide as a result of said polynucleotide containing composition relative to a plant not treated with a composition containing the trigger molecule. Trigger polynucleotides disclosed herein are generally described in relation to the target gene sequence and maybe used in the sense (homologous) or antisense (complementary) orientation as single stranded molecules or comprise both strands as double stranded molecules or nucleotide variants and modified nucleotides thereof depending on the various regions of a gene being targeted.


It is contemplated that the composition may contain multiple polynucleotides and herbicides that include but are not limited to EPSPS gene trigger polynucleotides and an EPSPS inhibitor herbicide and one or more additional herbicide target gene trigger polynucleotides and the related herbicides and one or more additional essential gene trigger polynucleotides. Essential genes are genes in a plant that provide key enzymes or other proteins, for example, a biosynthetic enzyme, metabolizing enzyme, receptor, signal transduction protein, structural gene product, transcription factor, or transport protein; or regulating RNAs, such as, microRNAs, that are essential to the growth or survival of the organism or cell or involved in the normal growth and development of the plant (Meinke, et al., Trends Plant Sci. 2008:13(9):483-91). The suppression of an essential gene enhances the effect of a herbicide that affects the function of a gene product different than the suppressed essential gene. The compositions can include various trigger polynucleotides that modulate the expression of an essential gene other than an EPSPS gene.


Herbicides for which transgenes for plant tolerance have been demonstrated and the method can be applied, include but are not limited to: auxin-like herbicides, glyphosate, glufosinate, sulfonylureas, imidazolinones, bromoxynil, delapon, dicamba, cyclohezanedione, protoporphyrionogen oxidase inhibitors, 4-hydroxyphenyl-pyruvate-dioxygenase inhibitors herbicides. For example, transgenes and their polynucleotide molecules that encode proteins involved in herbicide tolerance are known in the art, and include, but are not limited to an 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), for example, as more fully described in U.S. Pat. Nos. 7,807,791 (SEQ ID NO:5); 6,248,876 B1; 5,627,061; 5,804,425; 5,633,435; 5,145,783; 4,971,908; 5,312,910; 5,188,642; 4,940,835; 5,866,775; 6,225,114 B1; 6,130,366; 5,310,667; 4,535,060; 4,769,061; 5,633,448; 5,510,471; U.S. Pat. No. Re. 36,449; U.S. Pat. Nos. RE 37,287 E; and 5,491,288; tolerance to sulfonylurea and/or imidazolinone, for example, as described more fully in U.S. Pat. Nos. 5,605,011; 5,013,659; 5,141,870; 5,767,361; 5,731,180; 5,304,732; 4,761,373; 5,331,107; 5,928,937; and 5,378,824; and international publication WO 96/33270; tolerance to hydroxyphenylpyruvatedioxygenases inhibiting herbicides in plants are described in U.S. Pat. Nos. 6,245,968 B1; 6,268,549; and 6,069,115; and U.S. Pat. No. 7,312,379 SEQ ID NO:3; U.S. Pat. No. 7,935,869; U.S. Pat. No. 7,304,209, SEQ ID NO:1, 3,5 and 15; aryloxyalkanoate dioxygenase polynucleotides, which confer tolerance to 2,4-D and other phenoxy auxin herbicides as well as to aryloxyphenoxypropionate herbicides as described, for example, in WO2005/107437; U.S. Pat. No. 7,838,733 SEQ ID NO:5;) and dicamba-tolerance polynucleotides as described, for example, in Herman et al. (2005) J. Biol. Chem. 280: 24759-24767. Other examples of herbicide-tolerance traits include those conferred by polynucleotides encoding an exogenous phosphinothricin acetyltransferase, as described in U.S. Pat. Nos. 5,969,213; 5,489,520; 5,550,318; 5,874,265; 5,919,675; 5,561,236; 5,648,477; 5,646,024; 6,177,616; and 5,879,903. Plants containing an exogenous phosphinothricin acetyltransferase can exhibit improved tolerance to glufosinate herbicides, which inhibit the enzyme glutamine synthase. Additionally, herbicide-tolerance polynucleotides include those conferred by polynucleotides conferring altered protoporphyrinogen oxidase (protox) activity, as described in U.S. Pat. Nos. 6,288,306 B1; 6,282,837 B1; and 5,767,373; and WO 01/12825. Plants containing such polynucleotides can exhibit improved tolerance to any of a variety of herbicides which target the protox enzyme (also referred to as protox inhibitors). Polynucleotides encoding a glyphosate oxidoreductase and a glyphosate-N-acetyl transferase (GOX described in U.S. Pat. No. 5,463,175 and GAT described in U.S. Patent publication 20030083480, dicamba monooxygenase U.S. Pat. Nos. 7,022,896 and 7,884,262, all of which are incorporated herein by reference); a polynucleotide molecule encoding bromoxynil nitrilase (Bxn described in U.S. Pat. No. 4,810,648 for Bromoxynil tolerance, which is incorporated herein by reference); a polynucleotide molecule encoding phytoene desaturase (crtl) described in Misawa et al, (1993) Plant J. 4:833-840 and Misawa et al, (1994) Plant J. 6:481-489 for norflurazon tolerance; a polynucleotide molecule encoding acetohydroxyacid synthase (AHAS, aka ALS) described in Sathasiivan et al. (1990) Nucl. Acids Res. 18:2188-2193 for tolerance to sulfonylurea herbicides; and the bar gene described in DeBlock, et al. (1987) EMBO J. 6:2513-2519 for glufosinate and bialaphos tolerance. The transgenic coding regions and regulatory elements of the herbicide tolerance genes are targets in which polynucleotide triggers and herbicides can be included in the composition and combinations thereof to provide for enhanced methods of weed control.


“Glyphosate” (N-phosphonomethylglycine) herbicide inhibits the shikimic acid pathway which leads to the biosynthesis of aromatic compounds including amino acids, plant hormones and vitamins. Specifically, glyphosate curbs the conversion of phosphoenolpyruvic acid (PEP) and 3-phosphoshikimic acid to 5-enolpyruvyl-3-phosphoshikimic acid by inhibiting the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (hereinafter referred to as EPSP synthase or EPSPS). The term “glyphosate” should be considered to include any herbicidally effective form of N-phosphonomethylglycine (including any salt thereof) and other forms which result in the production of the glyphosate anion in planta. Glyphosate is an example of an EPSPS inhibitor herbicide. Herbicides are molecules that affect plant growth or development or reproductive ability.


Glyphosate is commercially available in numerous formulations. Examples of these formulations of glyphosate include, without limitation, those sold by Monsanto Company (St Louis, Mo.) as ROUNDUP®, ROUNDUP® ULTRA, ROUNDUP® ULTRAMAX, ROUNDUP® CT, ROUNDUP® EXTRA, ROUNDUP® BIACTIVE, ROUNDUP® BIOFORCE, RODEO®, POLARIS®, SPARK® and ACCORD® herbicides, all of which contain glyphosate as its isopropylammonium salt, ROUNDUP® WEATHERMAX containing glyphosate as its potassium salt; ROUNDUP® DRY and RIVAL® herbicides, which contain glyphosate as its ammonium salt; ROUNDUP® GEOFORCE, which contains glyphosate as its sodium salt; and TOUCHDOWN® herbicide (Syngenta, Greensboro, N.C.), which contains glyphosate as its trimethylsulfonium salt. Various other salts of glyphosate are available for example, dimethylamine salt, isopropylamine salt, trimesium salt, potassium salt, monoammonium salt, and diammonium salt. Commerical formulations and application rates thereof are often defined in terms of acid equivalent pounds pe acre (a.e. Lb/ac).


Numerous herbicides with similar or different modes of action (herein referred to as co-herbicides) are available that can be added to the composition that provide multi-species weed control or alternative modes of action for difficult to control weed species, for example, members of the herbicide families that include but are not limited to amide herbicides, aromatic acid herbicides, arsenical herbicides, benzothiazole herbicides, benzoylcyclohexanedione herbicides, benzofuranyl alkylsulfonate herbicides, carbamate herbicides, cyclohexene oxime herbicides, cyclopropylisoxazole herbicides, dicarboximide herbicides, dinitroaniline herbicides, dinitrophenol herbicides, diphenyl ether herbicides, dithiocarbamate herbicides, halogenated aliphatic herbicides, imidazolinone herbicides, inorganic herbicides, nitrile herbicides, organophosphorus herbicides, oxadiazolone herbicides, oxazole herbicides, phenoxy herbicides, phenylenediamine herbicides, pyrazole herbicides, pyridazine herbicides, pyridazinone herbicides, pyridine herbicides, pyrimidinediamine herbicides, pyrimidinyloxybenzylamine herbicides, quaternary ammonium herbicides, thiocarbamate herbicides, thiocarbonate herbicides, thiourea herbicides, triazine herbicides, triazinone herbicides, triazole herbicides, triazolone herbicides, triazolopyrimidine herbicides, uracil herbicides, and urea herbicides. In particular, the rates of use of the added herbicides can be reduced in compositions comprising the polynucleotides. Use rate reductions of the additional added herbicides can be 10-25 percent, 26-50 percent, 51-75 percent or more can be achieved that enhance the activity of the polynucleotides and herbicide composition and is contemplated. Representative herbicides of the families include but are not limited to acetochlor, acifluorfen, acifluorfen-sodium, aclonifen, acrolein, alachlor, alloxydim, allyl alcohol, ametryn, amicarbazone, amidosulfuron, aminopyralid, amitrole, ammonium sulfamate, anilofos, asulam, atraton, atrazine, azimsulfuron, BCPC, beflubutamid, benazolin, benfluralin, benfuresate, bensulfuron, bensulfuron-methyl, bensulide, bentazone, benzfendizone, benzobicyclon, benzofenap, bifenox, bilanafos, bispyribac, bispyribac-sodium, borax, bromacil, bromobutide, bromoxynil, butachlor, butafenacil, butamifos, butralin, butroxydim, butylate, cacodylic acid, calcium chlorate, cafenstrole, carbetamide, carfentrazone, carfentrazone-ethyl, CDEA, CEPC, chlorflurenol, chlorflurenol-methyl, chloridazon, chlorimuron, chlorimuron-ethyl, chloroacetic acid, chlorotoluron, chlorpropham, chlorsulfuron, chlorthal, chlorthal-dimethyl, cinidon-ethyl, cinmethylin, cinosulfuron, cisanilide, clethodim, clodinafop, clodinafop-propargyl, clomazone, clomeprop, clopyralid, cloransulam, cloransulam-methyl, CMA, 4-CPB, CPMF, 4-CPP, CPPC, cresol, cumyluron, cyanamide, cyanazine, cycloate, cyclosulfamuron, cycloxydim, cyhalofop, cyhalofop-butyl, 2,4-D, 3,4-DA, daimuron, dalapon, dazomet, 2,4-DB, 3,4-DB, 2,4-DEB, desmedipham, dicamba, dichlobenil, ortho-dichlorobenzene, para-dichlorobenzene, dichlorprop, dichlorprop-P, diclofop, diclofop-methyl, diclosulam, difenzoquat, difenzoquat metilsulfate, diflufenican, diflufenzopyr, dimefuron, dimepiperate, dimethachlor, dimethametryn, dimethenamid, dimethenamid-P, dimethipin, dimethylarsinic acid, dinitramine, dinoterb, diphenamid, diquat, diquat dibromide, dithiopyr, diuron, DNOC, 3,4-DP, DSMA, EBEP, endothal, EPTC, esprocarb, ethalfluralin, ethametsulfuron, ethametsulfuron-methyl, ethofumesate, ethoxyfen, ethoxysulfuron, etobenzanid, fenoxaprop-P, fenoxaprop-P-ethyl, fentrazamide, ferrous sulfate, flamprop-M, flazasulfuron, florasulam, fluazifop, fluazifop-butyl, fluazifop-P, fluazifop-P-butyl, flucarbazone, flucarbazone-sodium, flucetosulfuron, fluchloralin, flufenacet, flufenpyr, flufenpyr-ethyl, flumetsulam, flumiclorac, flumiclorac-pentyl, flumioxazin, fluometuron, fluoroglycofen, fluoroglycofen-ethyl, flupropanate, flupyrsulfuron, flupyrsulfuron-methyl-sodium, flurenol, fluridone, fluorochloridone, fluoroxypyr, flurtamone, fluthiacet, fluthiacet-methyl, fomesafen, foramsulfuron, fosamine, glufosinate, glufosinate-ammonium, glyphosate, halosulfuron, halosulfuron-methyl, haloxyfop, haloxyfop-P, HC-252, hexazinone, imazamethabenz, imazamethabenz-methyl, imazamox, imazapic, imazapyr, imazaquin, imazethapyr, imazosulfuron, indanofan, iodomethane, iodosulfuron, iodosulfuron-methyl-sodium, ioxynil, isoproturon, isouron, isoxaben, isoxachlortole, isoxaflutole, karbutilate, lactofen, lenacil, linuron, MAA, MAMA, MCPA, MCPA-thioethyl, MCPB, mecoprop, mecoprop-P, mefenacet, mefluidide, mesosulfuron, mesosulfuron-methyl, mesotrione, metam, metamifop, metamitron, metazachlor, methabenzthiazuron, methylarsonic acid, methyldymron, methyl isothiocyanate, metobenzuron, metolachlor, S-metolachlor, metosulam, metoxuron, metribuzin, metsulfuron, metsulfuron-methyl, MK-66, molinate, monolinuron, MSMA, naproanilide, napropamide, naptalam, neburon, nicosulfuron, nonanoic acid, norflurazon, oleic acid (fatty acids), orbencarb, orthosulfamuron, oryzalin, oxadiargyl, oxadiazon, oxasulfuron, oxaziclomefone, oxyfluorfen, paraquat, paraquat dichloride, pebulate, pendimethalin, penoxsulam, pentachlorophenol, pentanochlor, pentoxazone, pethoxamid, petrolium oils, phenmedipham, phenmedipham-ethyl, picloram, picolinafen, pinoxaden, piperophos, potassium arsenite, potassium azide, pretilachlor, primisulfuron, primisulfuron-methyl, prodiamine, profluazol, profoxydim, prometon, prometryn, propachlor, propanil, propaquizafop, propazine, propham, propisochlor, propoxycarbazone, propoxycarbazone-sodium, propyzamide, prosulfocarb, prosulfuron, pyraclonil, pyraflufen, pyraflufen-ethyl, pyrazolynate, pyrazosulfuron, pyrazosulfuron-ethyl, pyrazoxyfen, pyribenzoxim, pyributicarb, pyridafol, pyridate, pyriftalid, pyriminobac, pyriminobac-methyl, pyrimisulfan, pyrithiobac, pyrithiobac-sodium, quinclorac, quinmerac, quinoclamine, quizalofop, quizalofop-P, rimsulfuron, sethoxydim, siduron, simazine, simetryn, SMA, sodium arsenite, sodium azide, sodium chlorate, sulcotrione, sulfentrazone, sulfometuron, sulfometuron-methyl, sulfosate, sulfosulfuron, sulfuric acid, tar oils, 2,3,6-TBA, TCA, TCA-sodium, tebuthiuron, tepraloxydim, terbacil, terbumeton, terbuthylazine, terbutryn, thenylchlor, thiazopyr, thifensulfuron, thifensulfuron-methyl, thiobencarb, tiocarbazil, topramezone, tralkoxydim, tri-allate, triasulfuron, triaziflam, tribenuron, tribenuron-methyl, tricamba, triclopyr, trietazine, trifloxysulfuron, trifloxysulfuron-sodium, trifluralin, triflusulfuron, triflusulfuron-methyl, trihydroxytriazine, tritosulfuron, [3-[2-chloro-4-fluoro-5-(-methyl-6-trifluoromethyl-2,4-dioxo-,2,3,44-etrahydropyrimidin-3-yl)phenoxy]-2-pyridyloxy]acetic acid ethyl ester (CAS RN 353292-3-6), 4-[(4,5-dihydro-3-methoxy-4-methyl-5-oxo)-H-,2,4-triazol-1-ylcarbonyl-sulfamoyl]-5-methylthiophene-3-carboxylic acid (BAY636), BAY747 (CAS RN 33504-84-2), topramezone (CAS RN 2063-68-8), 4-hydroxy-3-[[2-[(2-methoxyethoxy)methyl]-6-(trifluoro-methyl)-3-pyridi-nyl]carbonyl]-bicyclo[3.2.]oct-3-en-2-one (CAS RN 35200-68-5), and 4-hydroxy-3-[[2-(3-methoxypropyl)-6-(difluoromethyl)-3-pyridinyl]carbon-yl]-bicyclo[3,2]oct-3-en-2-one. Additionally, including herbicidal compounds of unspecified modes of action as described in CN101279950A, CN101279951A, DE10000600A1, DE10116399A1, DE102004054666A1, DE102005014638A1, DE102005014906A1, DE102007012168A1, DE102010042866A1, DE10204951A1, DE10234875A1, DE10234876A1, DE10256353A1, DE10256354A1, DE10256367A1, EP1157991A2, EP1238586A1, EP2147919A1, EP2160098A2, JP03968012B2, JP2001253874A, JP2002080454A, JP2002138075A, JP2002145707A, JP2002220389A, JP2003064059A, JP2003096059A, JP2004051628A, JP2004107228A, JP2005008583A, JP2005239675A, JP2005314407A, JP2006232824A, JP2006282552A, JP2007153847A, JP2007161701A, JP2007182404A, JP2008074840A, JP2008074841A, JP2008133207A, JP2008133218A, JP2008169121A, JP2009067739A, JP2009114128A, JP2009126792A, JP2009137851A, US20060111241A1, US20090036311A1, US20090054240A1, US20090215628A1, US20100099561A1, US20100152443A1, US20110105329A1, US20110201501A1, WO2001055066A2, WO2001056975A1, WO2001056979A1, WO2001090071A2, WO2001090080A1, WO2002002540A1, WO2002028182A1, WO2002040473A1, WO2002044173A2, WO2003000679A2, WO2003006422A1, WO2003013247A1, WO2003016308A1, WO2003020704A1, WO2003022051A1, WO2003022831A1, WO2003022843A1, WO2003029243A2, WO2003037085A1, WO2003037878A1, WO2003045878A2, WO2003050087A2, WO2003051823A1, WO2003051824A1, WO2003051846A2, WO2003076409A1, WO2003087067A1, WO2003090539A1, WO2003091217A1, WO2003093269A2, WO2003104206A2, WO2004002947A1, WO2004002981A2, WO2004011429A1, WO2004029060A1, WO2004035545A2, WO2004035563A1, WO2004035564A1, WO2004037787A1, WO2004067518A1, WO2004067527A1, WO2004077950A1, WO2005000824A1, WO2005007627A1, WO2005040152A1, WO2005047233A1, WO2005047281A1, WO2005061443A2, WO2005061464A1, WO2005068434A1, WO2005070889A1, WO2005089551A1, WO2005095335A1, WO2006006569A1, WO2006024820A1, WO2006029828A1, WO2006029829A1, WO2006037945A1, WO2006050803A1, WO2006090792A1, WO2006123088A2, WO2006125687A1, WO2006125688A1, WO2007003294A1, WO2007026834A1, WO2007071900A1, WO2007077201A1, WO2007077247A1, WO2007096576A1, WO2007119434A1, WO2007134984A1, WO2008009908A1, WO2008029084A1, WO2008059948A1, WO2008071918A1, WO2008074991A1, WO2008084073A1, WO2008100426A2, WO2008102908A1, WO2008152072A2, WO2008152073A2, WO2009000757A1, WO2009005297A2, WO2009035150A2, WO2009063180A1, WO2009068170A2, WO2009068171A2, WO2009086041A1, WO2009090401A2, WO2009090402A2, WO2009115788A1, WO2009116558A1, WO2009152995A1, WO2009158258A1, WO2010012649A1, WO2010012649A1, WO2010026989A1, WO2010034153A1, WO2010049270A1, WO2010049369A1, WO2010049405A1, WO2010049414A1, WO2010063422A1, WO2010069802A1, WO2010078906A2, WO2010078912A1, WO2010104217A1, WO2010108611A1, WO2010112826A3, WO2010116122A3, WO2010119906A1, WO2010130970A1, WO2011003776A2, WO2011035874A1, WO2011065451A1, all of which are incorporated herein by reference.


Auxin-like herbicides include benzoic acid herbicide, phenoxy carboxylic acid herbicide, pyridine carboxylic acid herbicide, quinoline carboxylic acid herbicide, pyrimidine carboxylic acid herbicide, and benazolin-ethyl herbicide.


The benzoic acid herbicide group (dicamba (3,6-dichloro-o-anisic acid), chloramben (3-amino-2,5-dichlorobenzoic acid), and TBA (2,3,6-trichlorobenzoic acid)) are effective herbicides for both pre-emergence and post-emergence weed management. Dicamba is one of the many auxin-like herbicides that is a low-cost, environmentally friendly herbicide that has been used as a pre-emergence and post-emergence herbicide to effectively control annual and perennial broadleaf weeds and several grassy weeds in corn, sorghum, small grains, pasture, hay, rangeland, sugarcane, asparagus, turf, and grass seed crops (Crop Protection Chemicals Reference, pp. 1803-1821, Chemical & Pharmaceutical Press, Inc., New York, N.Y., 11th ed., 1995). Dicamba refers to 3,6-dichloro-o-anisic acid or 3,6-dichloro-2-methoxy benzoic acid and its acids and salts. Its salts include isopropylamine, diglycoamine, dimethylamine, potassium and sodium. Dicamba includes for example, commercial formulations without limitation, Banvel™ (as DMA salt, BASF, Research Triangle Park, N.C.), Clarity® (DGA salt, BASF), VEL-58-CS-11™ (BASF) and Vanquish™ (DGA salt, BASF). Dicamba is a useful herbicide as a tank mix, concomitantly, or pre or post treatment with the compositions.


An auxin-like herbicide also includes a phenoxy carboxylic acid compound, a pyridine carboxylic acid compound, a quinoline carboxylic acid compound, and a benazolin-ethyl compound. Examples of a phenoxy carboxylic acid compound include, but are not limited to 2,4-dichlorophenoxyacetic acid, (4-chloro-2-methylphenoxy) acetic acid, diclorprop (2,4-DP), mecoprop (MCPP), and clomeprop. Examples of pyridine herbicides include, but are not limited to clopryalid, picloram, fluoroxypyr, aminocyclopyrachlor and triclopyr. These auxin-like herbicides are useful in a tank mix, concomitantly, or pre or post treatment with the compositions. Auxin-like herbicides include commercially available formulations, for example, including but not limited to 2,4-D, 2,4-DB (Butyrac® 200, Bakker), MCPA (Rhonox®, Rhomene), mecoprop, dichlorprop, 2,4,5-T, triclopyr (Garlon®, Dow AgroSciences, Indianapolis, Ind.), chloramben, dicamba (Banvel®, Clarity®, Oracle®, Sterling®), 2,3,6-TBA, tricamba, clopyralid (Stinger®, Dow AgroSciences), picloram (Tordon®, Dow AgroSciences), quinmerac, quinclorac, benazolin, fenac, IAA, NAA, orthonil and fluoroxypyr (Vista®, Starane®, Dow AgroSciences), aminopyralid (Milestone®, Dow AgroSciences) and aminocyclopyrachlor (Dupont, Wilmington, Del.).


The trigger polynucleotide and oligonucleotide molecule compositions are useful in compositions, such as liquids that comprise the polynucleotide molecules at low concentrations, alone or in combination with other components, for example one or more herbicide molecules, either in the same solution or in separately applied liquids that also provide a transfer agent. While there is no upper limit on the concentrations and dosages of polynucleotide molecules that can useful in the methods, lower effective concentrations and dosages will generally be sought for efficiency. The concentrations can be adjusted in consideration of the volume of spray or treatment applied to plant leaves or other plant part surfaces, such as flower petals, stems, tubers, fruit, anthers, pollen, or seed. In one embodiment, a useful treatment for herbaceous plants using 25-mer oligonucleotide molecules is about 1 nanomole (nmol) of oligonucleotide molecules per plant, for example, from about 0.05 to 1 nmol per plant. Other embodiments for herbaceous plants include useful ranges of about 0.05 to about 100 nmol, or about 0.1 to about 20 nmol, or about 1 nmol to about 10 nmol of polynucleotides per plant. Very large plants, trees, or vines may require correspondingly larger amounts of polynucleotides. When using long dsRNA molecules that can be processed into multiple oligonucleotides, lower concentrations can be used. To illustrate embodiments, the factor 1×, when applied to oligonucleotide molecules is arbitrarily used to denote a treatment of 0.8 nmol of polynucleotide molecule per plant; 10×, 8 nmol of polynucleotide molecule per plant; and 100×, 80 nmol of polynucleotide molecule per plant.


The polynucleotide compositions are useful in compositions, such as liquids that comprise polynucleotide molecules, alone or in combination with other components either in the same liquid or in separately applied liquids that provide a transfer agent. As used herein, a transfer agent is an agent that, when combined with a polynucleotide in a composition that is topically applied to a target plant surface, enables the polynucleotide to enter a plant cell. In certain embodiments, a transfer agent is an agent that conditions the surface of plant tissue, e.g., leaves, stems, roots, flowers, or fruits, to permeation by the polynucleotide molecules into plant cells. The transfer of polynucleotides into plant cells can be facilitated by the prior or contemporaneous application of a polynucleotide-transferring agent to the plant tissue. In some embodiments the transferring agent is applied subsequent to the application of the polynucleotide composition. The polynucleotide transfer agent enables a pathway for polynucleotides through cuticle wax barriers, stomata and/or cell wall or membrane barriers into plant cells. Suitable transfer agents to facilitate transfer of the polynucleotide into a plant cell include agents that increase permeability of the exterior of the plant or that increase permeability of plant cells to oligonucleotides or polynucleotides. Such agents to facilitate transfer of the composition into a plant cell include a chemical agent, or a physical agent, or combinations thereof. Chemical agents for conditioning or transfer include (a) surfactants, (b) an organic solvent or an aqueous solution or aqueous mixtures of organic solvents, (c) oxidizing agents, (d) acids, (e) bases, (f) oils, (g) enzymes, or combinations thereof. Embodiments of the method can optionally include an incubation step, a neutralization step (e.g., to neutralize an acid, base, or oxidizing agent, or to inactivate an enzyme), a rinsing step, or combinations thereof. Embodiments of agents or treatments for conditioning of a plant to permeation by polynucleotides include emulsions, reverse emulsions, liposomes, and other micellar-like compositions. Embodiments of agents or treatments for conditioning of a plant to permeation by polynucleotides include counter-ions or other molecules that are known to associate with nucleic acid molecules, e.g., inorganic ammonium ions, alkyl ammonium ions, lithium ions, polyamines such as spermine, spermidine, or putrescine, and other cations. Organic solvents useful in conditioning a plant to permeation by polynucleotides include DMSO, DMF, pyridine, N-pyrrolidine, hexamethylphosphoramide, acetonitrile, dioxane, polypropylene glycol, other solvents miscible with water or that will dissolve phosphonucleotides in non-aqueous systems (such as is used in synthetic reactions). Naturally derived or synthetic oils with or without surfactants or emulsifiers can be used, e.g., plant-sourced oils, crop oils (such as those listed in the 9th Compendium of Herbicide Adjuvants, publicly available on the worldwide web (internet) at herbicide.adjuvants.com can be used, e.g., paraffinic oils, polyol fatty acid esters, or oils with short-chain molecules modified with amides or polyamines such as polyethyleneimine or N-pyrrolidine. Transfer agents include, but are not limited to, organosilicone preparations.


An agronomic field in need of plant control is treated by application of an agricultural chemical composition directly to the surface of the growing plants, such as by a spray. For example, the method is applied to control weeds in a field of crop plants by spraying the field with the composition. The composition can be provided as a tank mix with one or more herbicidal chemical and additional pesticidal chemicals to control pests and diseases of the crop plants in need of pest and disease control, a sequential treatment of components (generally the polynucleotide containing composition followed by the herbicide), or a simultaneous treatment or mixing of one or more of the components of the composition from separate containers. Treatment of the field can occur as often as needed to provide weed control and the components of the composition can be adjusted to target specific weed species or weed families through utilization of specific polynucleotides or polynucleotide compositions capable of selectively targeting the specific species or plant family to be controlled. The composition can be applied at effective use rates according to the time of application to the field, for example, preplant, at planting, post planting, post harvest. Glyphosate can be applied to a field at rates of 11-44 ounces/acre up to 7.2875 pounds/acre. The polynucleotides of the composition can be applied at rates of 1 to 30 grams per acre depending on the number of trigger molecules needed for the scope of weeds in the field.


Crop plants in which weed control may be needed include but are not limited to corn, soybean, cotton, canola, sugar beet, alfalfa, sugarcane, rice, and wheat; vegetable plants including, but not limited to, tomato, sweet pepper, hot pepper, melon, watermelon, cucumber, eggplant, cauliflower, broccoli, lettuce, spinach, onion, peas, carrots, sweet corn, Chinese cabbage, leek, fennel, pumpkin, squash or gourd, radish, Brussels sprouts, tomatillo, garden beans, dry beans, or okra; culinary plants including, but not limited to, basil, parsley, coffee, or tea; or fruit plants including but not limited to apple, pear, cherry, peach, plum, apricot, banana, plantain, table grape, wine grape, citrus, avocado, mango, or berry; a tree grown for ornamental or commercial use, including, but not limited to, a fruit or nut tree; ornamental plant (e.g., an ornamental flowering plant or shrub or turf grass). The methods and compositions provided herein can also be applied to plants produced by a cutting, cloning, or grafting process (i.e., a plant not grown from a seed) including fruit trees and plants that include, but are not limited to, avocados, tomatoes, eggplant, cucumber, melons, watermelons, and grapes as well as various ornamental plants.


Pesticidal Mixtures

The polynucleotide compositions may also be used as mixtures with various agricultural chemicals and/or insecticides, miticides and fungicides, pesticidal and biopesticidal agents. Examples include but are not limited to azinphos-methyl, acephate, isoxathion, isofenphos, ethion, etrimfos, oxydemeton-methyl, oxydeprofos, quinalphos, chlorpyrifos, chlorpyrifos-methyl, chlorfenvinphos, cyanophos, dioxabenzofos, dichlorvos, disulfoton, dimethylvinphos, dimethoate, sulprofos, diazinon, thiometon, tetrachlorvinphos, temephos, tebupirimfos, terbufos, naled, vamidothion, pyraclofos, pyridafenthion, pirimiphos-methyl, fenitrothion, fenthion, phenthoate, flupyrazophos, prothiofos, propaphos, profenofos, phoxime, phosalone, phosmet, formothion, phorate, malathion, mecarbam, mesulfenfos, methamidophos, methidathion, parathion, methyl parathion, monocrotophos, trichlorphon, EPN, isazophos, isamidofos, cadusafos, diamidaphos, dichlofenthion, thionazin, fenamiphos, fosthiazate, fosthietan, phosphocarb, DSP, ethoprophos, alanycarb, aldicarb, isoprocarb, ethiofencarb, carbaryl, carbosulfan, xylylcarb, thiodicarb, pirimicarb, fenobucarb, furathiocarb, propoxur, bendiocarb, benfuracarb, methomyl, metolcarb, XMC, carbofuran, aldoxycarb, oxamyl, acrinathrin, allethrin, esfenvalerate, empenthrin, cycloprothrin, cyhalothrin, gamma-cyhalothrin, lambda-cyhalothrin, cyfluthrin, beta-cyfluthrin, cypermethrin, alpha-cypermethrin, zeta-cypermethrin, silafluofen, tetramethrin, tefluthrin, deltamethrin, tralomethrin, bifenthrin, phenothrin, fenvalerate, fenpropathrin, furamethrin, prallethrin, flucythrinate, fluvalinate, flubrocythrinate, permethrin, resmethrin, ethofenprox, cartap, thiocyclam, bensultap, acetamiprid, imidacloprid, clothianidin, dinotefuran, thiacloprid, thiamethoxam, nitenpyram, chlorfluazuron, diflubenzuron, teflubenzuron, triflumuron, novaluron, noviflumuron, bistrifluoron, fluazuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, chromafenozide, tebufenozide, halofenozide, methoxyfenozide, diofenolan, cyromazine, pyriproxyfen, buprofezin, methoprene, hydroprene, kinoprene, triazamate, endosulfan, chlorfenson, chlorobenzilate, dicofol, bromopropylate, acetoprole, fipronil, ethiprole, pyrethrin, rotenone, nicotine sulphate, BT (Bacillus Thuringiensis) agent, spinosad, abamectin, acequinocyl, amidoflumet, amitraz, etoxazole, chinomethionat, clofentezine, fenbutatin oxide, dienochlor, cyhexatin, spirodiclofen, spiromesifen, tetradifon, tebufenpyrad, binapacryl, bifenazate, pyridaben, pyrimidifen, fenazaquin, fenothiocarb, fenpyroximate, fluacrypyrim, fluazinam, flufenzin, hexythiazox, propargite, benzomate, polynactin complex, milbemectin, lufenuron, mecarbam, methiocarb, mevinphos, halfenprox, azadirachtin, diafenthiuron, indoxacarb, emamectin benzoate, potassium oleate, sodium oleate, chlorfenapyr, tolfenpyrad, pymetrozine, fenoxycarb, hydramethylnon, hydroxy propyl starch, pyridalyl, flufenerim, flubendiamide, flonicamid, metaflumizole, lepimectin, TPIC, albendazole, oxibendazole, oxfendazole, trichlamide, fensulfothion, fenbendazole, levamisole hydrochloride, morantel tartrate, dazomet, metam-sodium, triadimefon, hexaconazole, propiconazole, ipconazole, prochloraz, triflumizole, tebuconazole, epoxiconazole, difenoconazole, flusilazole, triadimenol, cyproconazole, metconazole, fluquinconazole, bitertanol, tetraconazole, triticonazole, flutriafol, penconazole, diniconazole, fenbuconazole, bromuconazole, imibenconazole, simeconazole, myclobutanil, hymexazole, imazalil, furametpyr, thifluzamide, etridiazole, oxpoconazole, oxpoconazole fumarate, pefurazoate, prothioconazole, pyrifenox, fenarimol, nuarimol, bupirimate, mepanipyrim, cyprodinil, pyrimethanil, metalaxyl, mefenoxam, oxadixyl, benalaxyl, thiophanate, thiophanate-methyl, benomyl, carbendazim, fuberidazole, thiabendazole, manzeb, propineb, zineb, metiram, maneb, ziram, thiuram, chlorothalonil, ethaboxam, oxycarboxin, carboxin, flutolanil, silthiofam, mepronil, dimethomorph, fenpropidin, fenpropimorph, spiroxamine, tridemorph, dodemorph, flumorph, azoxystrobin, kresoxim-methyl, metominostrobin, orysastrobin, fluoxastrobin, trifloxystrobin, dimoxystrobin, pyraclostrobin, picoxystrobin, iprodione, procymidone, vinclozolin, chlozolinate, flusulfamide, dazomet, methyl isothiocyanate, chloropicrin, methasulfocarb, hydroxyisoxazole, potassium hydroxyisoxazole, echlomezol, D-D, carbam, basic copper chloride, basic copper sulfate, copper nonylphenolsulfonate, oxine copper, DBEDC, anhydrous copper sulfate, copper sulfate pentahydrate, cupric hydroxide, inorganic sulfur, wettable sulfur, lime sulfur, zinc sulfate, fentin, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium hypochlorite, silver, edifenphos, tolclofos-methyl, fosetyl, iprobenfos, dinocap, pyrazophos, carpropamid, fthalide, tricyclazole, pyroquilon, diclocymet, fenoxanil, kasugamycin, validamycin, polyoxins, blasticiden S, oxytetracycline, mildiomycin, streptomycin, rape seed oil, machine oil, benthiavalicarbisopropyl, iprovalicarb, propamocarb, diethofencarb, fluoroimide, fludioxanil, fenpiclonil, quinoxyfen, oxolinic acid, chlorothalonil, captan, folpet, probenazole, acibenzolar-S-methyl, tiadinil, cyflufenamid, fenhexamid, diflumetorim, metrafenone, picobenzamide, proquinazid, famoxadone, cyazofamid, fenamidone, zoxamide, boscalid, cymoxanil, dithianon, fluazinam, dichlofluanide, triforine, isoprothiolane, ferimzone, diclomezine, tecloftalam, pencycuron, chinomethionat, iminoctadine acetate, iminoctadine albesilate, ambam, polycarbamate, thiadiazine, chloroneb, nickel dimethyldithiocarbamate, guazatine, dodecylguanidine-acetate, quintozene, tolylfluanid, anilazine, nitrothalisopropyl, fenitropan, dimethirimol, benthiazole, harpin protein, flumetover, mandipropamide and penthiopyrad.


Polynucleotides

As used herein, the term “DNA”, “DNA molecule”, “DNA polynucleotide molecule” refers to a single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA) molecule of genomic or synthetic origin, such as, a polymer of deoxyribonucleotide bases or a DNA polynucleotide molecule. As used herein, the term “DNA sequence”, “DNA nucleotide sequence” or “DNA polynucleotide sequence” refers to the nucleotide sequence of a DNA molecule. As used herein, the term “RNA”, “RNA molecule”, “RNA polynucleotide molecule” refers to a single-stranded RNA (ssRNA) or double-stranded RNA (dsRNA) molecule of genomic or synthetic origin, such as, a polymer of ribonucleotide bases that comprise single or double stranded regions. Unless otherwise stated, nucleotide sequences in the text of this specification are given, when read from left to right, in the 5′ to 3′ direction. The nomenclature used herein is that required by Title 37 of the United States Code of Federal Regulations §1.822 and set forth in the tables in WIPO Standard ST.25 (1998), Appendix 2, Tables 1 and 3.


As used herein, “polynucleotide” refers to a DNA or RNA molecule containing multiple nucleotides and generally refers both to “oligonucleotides” (a polynucleotide molecule of typically 50 or fewer nucleotides in length) and polynucleotides of 51 or more nucleotides. Embodiments include compositions including oligonucleotides having a length of 18-25 nucleotides (18-mers, 19-mers, 20-mers, 21-mers, 22-mers, 23-mers, 24-mers, or 25-mers), for example, oligonucleotides SEQ ID NO:3223-3542 or fragments thereof or medium-length polynucleotides having a length of 26 or more nucleotides (polynucleotides of 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, about 65, about 70, about 75, about 80, about 85, about 90, about 95, about 100, about 110, about 120, about 130, about 140, about 150, about 160, about 170, about 180, about 190, about 200, about 210, about 220, about 230, about 240, about 250, about 260, about 270, about 280, about 290, or about 300 nucleotides), for example, oligonucleotides SEQ ID NO:121-3222 or fragments thereof or long polynucleotides having a length greater than about 300 nucleotides (for example, polynucleotides of between about 300 to about 400 nucleotides, between about 400 to about 500 nucleotides, between about 500 to about 600 nucleotides, between about 600 to about 700 nucleotides, between about 700 to about 800 nucleotides, between about 800 to about 900 nucleotides, between about 900 to about 1000 nucleotides, between about 300 to about 500 nucleotides, between about 300 to about 600 nucleotides, between about 300 to about 700 nucleotides, between about 300 to about 800 nucleotides, between about 300 to about 900 nucleotides, or about 1000 nucleotides in length, or even greater than about 1000 nucleotides in length, for example up to the entire length of a target gene including coding or non-coding or both coding and non-coding portions of the target gene), for example, polynucleotides of Table 1 (SEQ ID NO:1-120), wherein the selected polynucleotides or fragments thereof are homologous or complementary to SEQ ID NO:1-120 and suppresses, represses or otherwise delay the expression of the target EPSPS gene. Where a polynucleotide is double-stranded, its length can be similarly described in terms of base pairs. A target gene comprises any polynucleotide molecule in a plant cell or fragment thereof for which the modulation of the expression of the target gene is provided by the methods and compositions. A gene has noncoding genetic elements (components) that provide for the function of the gene, these elements are polynucleotides that provide gene expression regulation, such as, a promoter, an enhancer, a 5′ untranslated region, intron regions, and a 3′ untranslated region. Oligonucleotides and polynucleotides can be made to any of the genetic elements of a gene and to polynucleotides spanning the junction region of a genetic element, such as, an intron and exon, the junction region of a promoter and a transcribed region, the junction region of a 5′ leader and a coding sequence, the junction of a 3′ untranslated region and a coding sequence.


Polynucleotide compositions used in the various embodiments include compositions including oligonucleotides or polynucleotides or a mixture of both, including RNA or DNA or RNA/DNA hybrids or chemically modified oligonucleotides or polynucleotides or a mixture thereof. In some embodiments, the polynucleotide may be a combination of ribonucleotides and deoxyribonucleotides, for example, synthetic polynucleotides consisting mainly of ribonucleotides but with one or more terminal deoxyribonucleotides or synthetic polynucleotides consisting mainly of deoxyribonucleotides but with one or more terminal dideoxyribonucleotides. In some embodiments, the polynucleotide includes non-canonical nucleotides such as inosine, thiouridine, or pseudouridine. In some embodiments, the polynucleotide includes chemically modified nucleotides. Examples of chemically modified oligonucleotides or polynucleotides are well known in the art; see, for example, US Patent Publication 20110171287, US Patent Publication 20110171176, and US Patent Publication 20110152353, US Patent Publication, 20110152346, US Patent Publication 20110160082, herein incorporated in its entirety by reference hereto. For example, including but not limited to the naturally occurring phosphodiester backbone of an oligonucleotide or polynucleotide can be partially or completely modified with phosphorothioate, phosphorodithioate, or methylphosphonate internucleotide linkage modifications, modified nucleoside bases or modified sugars can be used in oligonucleotide or polynucleotide synthesis, and oligonucleotides or polynucleotides can be labeled with a fluorescent moiety (for example, fluorescein or rhodamine) or other label (for example, biotin).


The polynucleotides can be single- or double-stranded RNA or single- or double-stranded DNA or double-stranded DNA/RNA hybrids or modified analogues thereof, and can be of oligonucleotide lengths or longer. In more specific embodiments, the polynucleotides that provide single-stranded RNA in the plant cell are selected from the group consisting of (a) a single-stranded RNA molecule (ssRNA), (b) a single-stranded RNA molecule that self-hybridizes to form a double-stranded RNA molecule, (c) a double-stranded RNA molecule (dsRNA), (d) a single-stranded DNA molecule (ssDNA), (e) a single-stranded DNA molecule that self-hybridizes to form a double-stranded DNA molecule, and (f) a single-stranded DNA molecule including a modified Pol III gene that is transcribed to an RNA molecule, (g) a double-stranded DNA molecule (dsDNA), (h) a double-stranded DNA molecule including a modified Pol III gene that is transcribed to an RNA molecule, (i) a double-stranded, hybridized RNA/DNA molecule, or combinations thereof. In some embodiments these polynucleotides include chemically modified nucleotides or non-canonical nucleotides. In some embodiments, the oligonucleotides may be blunt-ended or may comprise a 3′ overhang of from 1-5 nucleotides of at least one or both of the strands. Other configurations of the oligonucleotide are known in the field and are contemplated herein. In embodiments of the method the polynucleotides include double-stranded DNA formed by intramolecular hybridization, double-stranded DNA formed by intermolecular hybridization, double-stranded RNA formed by intramolecular hybridization, or double-stranded RNA formed by intermolecular hybridization. In one embodiment the polynucleotides include single-stranded DNA or single-stranded RNA that self-hybridizes to form a hairpin structure having an at least partially double-stranded structure including at least one segment that will hybridize to RNA transcribed from the gene targeted for suppression. Not intending to be bound by any mechanism, it is believed that such polynucleotides are or will produce single-stranded RNA with at least one segment that will hybridize to RNA transcribed from the gene targeted for suppression. In certain other embodiments the polynucleotides further includes a promoter, generally a promoter functional in a plant, for example, a pol II promoter, a pol III promoter, a pol IV promoter, or a pol V promoter.


The term “gene” refers to components that comprise chromosomal DNA, plasmid DNA, cDNA, intron and exon DNA, artificial DNA polynucleotide, or other DNA that encodes a peptide, polypeptide, protein, or RNA transcript molecule, and the genetic elements flanking the coding sequence that are involved in the regulation of expression, such as, promoter regions, 5′ leader regions, 3′ untranslated region that may exist as native genes or transgenes in a plant genome. The gene or a fragment thereof is isolated and subjected to polynucleotide sequencing methods that determines the order of the nucleotides that comprise the gene. Any of the components of the gene are potential targets for a trigger oligonucleotide and polynucleotides.


The trigger polynucleotide molecules are designed to modulate expression by inducing regulation or suppression of an endogenous EPSPS gene in a plant and are designed to have a nucleotide sequence essentially identical or essentially complementary to the nucleotide sequence of an endogenous EPSPS gene of a plant or to the sequence of RNA transcribed from an endogenous EPSPS gene of a plant, the sequence thereof determined by isolating the gene or a fragment of the gene from the plant, which can be coding sequence or non-coding sequence. Effective molecules that modulate expression are referred to as “a trigger molecule, or trigger polynucleotide”. By “essentially identical” or “essentially complementary” is meant that the trigger polynucleotides (or at least one strand of a double-stranded polynucleotide or portion thereof, or a portion of a single strand polynucleotide) are designed to hybridize to the endogenous gene noncoding sequence or to RNA transcribed (known as messenger RNA or an RNA transcript) from the endogenous gene to effect regulation or suppression of expression of the endogenous gene. Trigger molecules are identified by “tiling” the gene targets with partially overlapping probes or non-overlapping probes of antisense or sense polynucleotides that are essentially identical or essentially complementary to the nucleotide sequence of an endogenous gene. Multiple target sequences can be aligned and sequence regions with homology in common, according to the methods, are identified as potential trigger molecules for the multiple targets. Multiple trigger molecules of various lengths, for example 18-25 nucleotides, 26-50 nucleotides, 51-100 nucleotides, 101-200 nucleotides, 201-300 nucleotides or more can be pooled into a few treatments in order to investigate polynucleotide molecules that cover a portion of a gene sequence (for example, a portion of a coding versus a portion of a noncoding region, or a 5′ versus a 3′ portion of a gene) or an entire gene sequence including coding and noncoding regions of a target gene. Polynucleotide molecules of the pooled trigger molecules can be divided into smaller pools or single molecules in order to identify trigger molecules that provide the desired effect.


The target gene RNA and DNA polynucleotide molecules (Table 1, SEQ ID NO:1-120) are sequenced by any number of available methods and equipment. Some of the sequencing technologies are available commercially, such as the sequencing-by-hybridization platform from Affymetrix Inc. (Sunnyvale, Calif.) and the sequencing-by-synthesis platforms from 454 Life Sciences (Bradford, Conn.), Illumina/Solexa (Hayward, Calif.) and Helicos Biosciences (Cambridge, Mass.), and the sequencing-by-ligation platform from Applied Biosystems (Foster City, Calif.), as described below. In addition to the single molecule sequencing performed using sequencing-by-synthesis of Helicos Biosciences, other single molecule sequencing technologies are encompassed and include the SMRT™. technology of Pacific Biosciences, the Ion Torrent™. technology, and nanopore sequencing being developed for example, by Oxford Nanopore Technologies. An EPSPS target gene comprising DNA or RNA can be isolated using primers or probes essentially complementary or essentially homologous to SEQ ID NO:1-120 or a fragment thereof. A polymerase chain reaction (PCR) gene fragment can be produced using primers essentially complementary or essentially homologous to SEQ ID NO:1-120 or a fragment thereof that is useful to isolate an EPSPS gene from a plant genome. SEQ ID NO: 1-120 or fragments thereof can be used in various sequence capture technologies to isolate additional target gene sequences, for example, including but not limited to Roche NimbleGen® (Madison, Wis.) and Streptavdin-coupled Dynabeads® (Life Technologies, Grand Island, N.Y.) and US20110015084, herein incorporated by reference in its entirety.


Embodiments of functional single-stranded polynucleotides have sequence complementarity that need not be 100 percent, but is at least sufficient to permit hybridization to RNA transcribed from the target gene or DNA of the target gene to form a duplex to permit a gene silencing mechanism. Thus, in embodiments, a polynucleotide fragment is designed to be essentially identical to, or essentially complementary to, a sequence of 18 or more contiguous nucleotides in either the target EPSPS gene sequence or messenger RNA transcribed from the target gene. By “essentially identical” is meant having 100 percent sequence identity or at least about 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 percent sequence identity when compared to the sequence of 18 or more contiguous nucleotides in either the target gene or RNA transcribed from the target gene; by “essentially complementary” is meant having 100 percent sequence complementarity or at least about 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 percent sequence complementarity when compared to the sequence of 18 or more contiguous nucleotides in either the target gene or RNA transcribed from the target gene. In some embodiments, polynucleotide molecules are designed to have 100 percent sequence identity with or complementarity to one allele or one family member of a given target gene (coding or non-coding sequence of a gene); in other embodiments the polynucleotide molecules are designed to have 100 percent sequence identity with or complementarity to multiple alleles or family members of a given target gene.


“Identity” refers to the degree of similarity between two polynucleic acid or protein sequences. An alignment of the two sequences is performed by a suitable computer program. A widely used and accepted computer program for performing sequence alignments is CLUSTALW v1.6 (Thompson, et al. Nucl. Acids Res., 22: 4673-4680, 1994). The number of matching bases or amino acids is divided by the total number of bases or amino acids, and multiplied by 100 to obtain a percent identity. For example, if two 580 base pair sequences had 145 matched bases, they would be 25 percent identical. If the two compared sequences are of different lengths, the number of matches is divided by the shorter of the two lengths. For example, if there are 100 matched amino acids between a 200 and a 400 amino acid protein, they are 50 percent identical with respect to the shorter sequence. If the shorter sequence is less than 150 bases or 50 amino acids in length, the number of matches are divided by 150 (for nucleic acid bases) or 50 (for amino acids), and multiplied by 100 to obtain a percent identity.


Trigger molecules for specific gene family members can be identified from coding and/or non-coding sequences of gene families of a plant or multiple plants, by aligning and selecting 200-300 polynucleotide fragments from the least homologous regions amongst the aligned sequences and evaluated using topically applied polynucleotides (as sense or anti-sense ssDNA or ssRNA, dsRNA, or dsDNA) to determine their relative effectiveness in providing the herbicidal phenotype. The effective segments are further subdivided into 50-60 polynucleotide fragments, prioritized by least homology, and reevaluated using topically applied polynucleotides. The effective 50-60 polynucleotide fragments are subdivided into 19-30 polynucleotide fragments, prioritized by least homology, and again evaluated for induction of the herbicidal phenotype. Once relative effectiveness is determined, the fragments are utilized singly, or again evaluated in combination with one or more other fragments to determine the trigger composition or mixture of trigger polynucleotides for providing the herbicidal phenotype.


Trigger molecules for broad activity can be identified from coding and/or non-coding sequences of gene families of a plant or multiple plants, by aligning and selecting 200-300 polynucleotide fragments from the most homologous regions amongst the aligned sequences and evaluated using topically applied polynucleotides (as sense or anti-sense ssDNA or ssRNA, dsRNA, or dsDNA) to determine their relative effectiveness in inducing the herbicidal phenotype. The effective segments are subdivided into 50-60 polynucleotide fragments, prioritized by most homology, and reevaluated using topically applied polynucleotides. The effective 50-60 polynucleotide fragments are subdivided into 19-30 polynucleotide fragments, prioritized by most homology, and again evaluated for induction of the herbicidal phenotype. Once relative effectiveness is determined, the fragments may be utilized singly, or in combination with one or more other fragments to determine the trigger composition or mixture of trigger polynucleotides for providing the herbicidal phenotype.


Methods of making polynucleotides are well known in the art. Chemical synthesis, in vivo synthesis and in vitro synthesis methods and compositions are known in the art and include various viral elements, microbial cells, modified polymerases, and modified nucleotides. Commercial preparation of oligonucleotides often provides two deoxyribonucleotides on the 3′ end of the sense strand. Long polynucleotide molecules can be synthesized from commercially available kits, for example, kits from Applied Biosystems/Ambion (Austin, Tex.) have DNA ligated on the 5′ end in a microbial expression cassette that includes a bacterial T7 polymerase promoter that makes RNA strands that can be assembled into a dsRNA and kits provided by various manufacturers that include T7 RiboMax Express (Promega, Madison, Wis.), AmpliScribe T7-Flash (Epicentre, Madison, Wis.), and TranscriptAid T7 High Yield (Fermentas, Glen Burnie, Md.). dsRNA molecules can be produced from microbial expression cassettes in bacterial cells (Ongvarrasopone et al. ScienceAsia 33:35-39; Yin, Appl. Microbiol. Biotechnol. 84:323-333, 2009; Liu et al., BMC Biotechnology 10:85, 2010) that have regulated or deficient RNase III enzyme activity or the use of various viral vectors to produce sufficient quantities of dsRNA. EPSPS gene fragments are inserted into the microbial expression cassettes in a position in which the fragments are express to produce ssRNA or dsRNA useful in the methods described herein to regulate expression on a target EPSPS gene. Long polynucleotide molecules can also be assembled from multiple RNA or DNA fragments. In some embodiments design parameters such as Reynolds score (Reynolds et al. Nature Biotechnology 22, 326-330 (2004) Tuschl rules (Pei and Tuschl, Nature Methods 3(9): 670-676, 2006), i-score (Nucleic Acids Res 35: e123, 2007), i-Score Designer tool and associated algorithms (Nucleic Acids Res 32: 936-948, 2004. Biochem Biophys Res Commun 316: 1050-1058, 2004, Nucleic Acids Res 32: 893-901, 2004, Cell Cycle 3: 790-5, 2004, Nat Biotechnol 23: 995-1001, 2005, Nucleic Acids Res 35: e27, 2007, BMC Bioinformatics 7: 520, 2006, Nucleic Acids Res 35: e123, 2007, Nat Biotechnol 22: 326-330, 2004) are known in the art and may be used in selecting polynucleotide sequences effective in gene silencing. In some embodiments the sequence of a polynucleotide is screened against the genomic DNA of the intended plant to minimize unintentional silencing of other genes.


Ligands can be tethered to a polynucleotide, for example a dsRNA, ssRNA, dsDNA or ssDNA. Ligands in general can include modifiers, e.g., for enhancing uptake; diagnostic compounds or reporter groups e.g., for monitoring distribution; cross-linking agents; nuclease-resistance conferring moieties; and natural or unusual nucleobases. General examples include lipophiles, lipids (e.g., cholesterol, a bile acid, or a fatty acid (e.g., lithocholic-oleyl, lauroyl, docosnyl, stearoyl, palmitoyl, myristoyl oleoyl, linoleoyl), steroids (e.g., uvaol, hecigenin, diosgenin), terpenes (e.g., triterpenes, e.g., sarsasapogenin, Friedelin, epifriedelanol derivatized lithocholic acid), vitamins (e.g., folic acid, vitamin A, biotin, pyridoxal), carbohydrates, proteins, protein binding agents, integrin targeting molecules, polycationics, peptides, polyamines, and peptide mimics. The ligand may also be a recombinant or synthetic molecule, such as a synthetic polymer, e.g., polyethylene glycol (PEG), PEG-40K, PEG-20K and PEG-5K. Other examples of ligands include lipophilic molecules, e.g, cholesterol, cholic acid, adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, glycerol (e.g., esters and ethers thereof, e.g., C.sub.10, C.sub.11, C.sub.12, C.sub.13, C.sub.14, C.sub.15, C.sub.16, C.sub.17, C.sub.18, C.sub.19, or C.sub.20 alkyl; e.g., lauroyl, docosnyl, stearoyl, oleoyl, linoleoyl 1,3-bis-0(hexadecyl)glycerol, 1,3-bis-O(octaadecyl)glycerol), geranyloxyhexyl group, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid, O3-(oleoyl)lithocholic acid, O3-(oleoyl)cholenic acid, dodecanoyl, lithocholyl, 5.beta.-cholanyl, N,N-distearyl-lithocholamide, 1,2-di-O-stearoylglyceride, dimethoxytrityl, or phenoxazine) and PEG (e.g., PEG-5K, PEG-20K, PEG-40K). Preferred lipophilic moieties include lipid, cholesterols, oleyl, retinyl, or cholesteryl residues.


Conjugating a ligand to a dsRNA can enhance its cellular absorption, lipophilic compounds that have been conjugated to oligonucleotides include 1-pyrene butyric acid, 1,3-bis-O-(hexadecyl)glycerol, and menthol. One example of a ligand for receptor-mediated endocytosis is folic acid. Folic acid enters the cell by folate-receptor-radiated endocytosis. dsRNA compounds bearing folic acid would be efficiently transported into the cell via the folate-receptor-mediated endocytosis. Other ligands that have been conjugated to oligonucleotides include polyethylene glycols, carbohydrate clusters, cross-linking agents, porphyrin conjugates, delivery peptides and lipids such as cholesterol. In certain instances, conjugation of a cationic ligand to oligonucleotides results in improved resistance to nucleases. Representative examples of cationic ligands are propylammonium and dimethylpropylammonium. Interestingly, antisense oligonucleotides were reported to retain their high binding affinity to mRNA when the cationic ligand was dispersed, throughout the oligonucleotide. See M. Manoharan Antisense & Nucleic Acid Drug Development 2002, 12, 103 and references therein.


A biologic delivery can be accomplished by a variety of methods including, without limitation, (1) loading liposomes with a dsRNA acid molecule provided herein and (2) complexing a dsRNA molecule with lipids or liposomes to form nucleic acid-lipid or nucleic acid-liposome complexes. The liposome can be composed of cationic and neutral lipids commonly used to transfect cells in vitro. Cationic lipids can complex (e.g., charge-associate) with negatively charged, nucleic acids to form liposomes. Examples of cationic liposomes include, without limitation, lipofectin, lipofectamine, lipofectace, and DOTAP. Procedures for forming liposomes are well known in the art. Liposome compositions can be formed, for example, from phosphatidylcholine, dimyristoyl phosphatidylcholine, dipalmitoyl phosphatidylcholine, dimyristoyl phosphatidyl glycerol, dioleoyl phosphatidylethanolamine or liposomes comprising dihydrosphingomyelin (DHSM) Numerous lipophilic agents are commercially available, including Lipofectin® (Invitrogen/Life Technologies, Carlsbad, Calif.) and Effectene™ (Qiagen, Valencia, Calif.), In addition, systemic delivery methods can be optimized using commercially available cationic lipids such as DDAB or DOTAP, each of which can be mixed with a neutral lipid such as DOPE or cholesterol. In some eases, liposomes such as those described by Templeton et al. (Nature Biotechnology, 15:647-652 (1997)) can be used. In other embodiments, polycations such as polyethyleneimine can be used to achieve delivery in vivo and ex vivo (Boletta et al., J. Am. Soc. Nephrol. 7:1728 (1996)). Additional information regarding the use of liposomes to deliver nucleic acids can be found in U.S. Pat. No. 6,271,359, PCT Publication WO 96/40964 and Morrissey, D. et al. 2005. Nat. Biotechnol. 23(8):1002-7.


In certain embodiments, an organosilicone preparation that is commercially available as Silwet® L-77 surfactant having CAS Number 27306-78-1 and EPA Number: CAL.REG.NO. 5905-50073-AA, and currently available from Momentive Performance Materials, Albany, N.Y. can be used to prepare a polynucleotide composition. In certain embodiments where a Silwet L-77 organosilicone preparation is used as a pre-spray treatment of plant leaves or other plant surfaces, freshly made concentrations in the range of about 0.015 to about 2 percent by weight (wt percent) (e.g., about 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06, 0.065, 0.07, 0.075, 0.08, 0.085, 0.09, 0.095, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.5 wt percent) are efficacious in preparing a leaf or other plant surface for transfer of polynucleotide molecules into plant cells from a topical application on the surface. In certain embodiments of the methods and compositions provided herein, a composition that comprises a polynucleotide molecule and an organosilicone preparation comprising Silwet L-77 in the range of about 0.015 to about 2 percent by weight (wt percent) (e.g., about 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06, 0.065, 0.07, 0.075, 0.08, 0.085, 0.09, 0.095, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.5 wt percent) is used or provided.


In certain embodiments, any of the commercially available organosilicone preparations provided such as the following Breakthru S 321, Breakthru S 200 Cat#67674-67-3, Breakthru OE 441 Cat#68937-55-3, Breakthru S 278 Cat #27306-78-1, Breakthru S 243, Breakthru S 233 Cat#134180-76-0, available from manufacturer Evonik Goldschmidt (Germany), Silwet® HS 429, Silwet® HS 312, Silwet® HS 508, Silwet® HS 604 (Momentive Performance Materials, Albany, N.Y.) can be used as transfer agents in a polynucleotide composition. In certain embodiments where an organosilicone preparation is used as a pre-spray treatment of plant leaves or other surfaces, freshly made concentrations in the range of about 0.015 to about 2 percent by weight (wt percent) (e.g., about 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06, 0.065, 0.07, 0.075, 0.08, 0.085, 0.09, 0.095, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.5 wt percent) are efficacious in preparing a leaf or other plant surface for transfer of polynucleotide molecules into plant cells from a topical application on the surface. In certain embodiments of the methods and compositions provided herein, a composition that comprises a polynucleotide molecule and an organosilicone preparation in the range of about 0.015 to about 2 percent by weight (wt percent) (e.g., about 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06, 0.065, 0.07, 0.075, 0.08, 0.085, 0.09, 0.095, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.5 wt percent) is used or provided.


Organosilicone preparations used in the methods and compositions provided herein can comprise one or more effective organosilicone compounds. As used herein, the phrase “effective organosilicone compound” is used to describe any organosilicone compound that is found in an organosilicone preparation that enables a polynucleotide to enter a plant cell. In certain embodiments, an effective organosilicone compound can enable a polynucleotide to enter a plant cell in a manner permitting a polynucleotide mediated suppression of a target gene expression in the plant cell. In general, effective organosilicone compounds include, but are not limited to, compounds that can comprise: i) a trisiloxane head group that is covalently linked to, ii) an alkyl linker including, but not limited to, an n-propyl linker, that is covalently linked to, iii) a poly glycol chain, that is covalently linked to, iv) a terminal group. Trisiloxane head groups of such effective organosilicone compounds include, but are not limited to, heptamethyltrisiloxane. Alkyl linkers can include, but are not limited to, an n-propyl linker Poly glycol chains include, but are not limited to, polyethylene glycol or polypropylene glycol. Poly glycol chains can comprise a mixture that provides an average chain length “n” of about “7.5”. In certain embodiments, the average chain length “n” can vary from about 5 to about 14. Terminal groups can include, but are not limited to, alkyl groups such as a methyl group. Effective organosilicone compounds are believed to include, but are not limited to, trisiloxane ethoxylate surfactants or polyalkylene oxide modified heptamethyl trisiloxane.




embedded image


In certain embodiments, an organosilicone preparation that comprises an organosilicone compound comprising a trisiloxane head group is used in the methods and compositions provided herein. In certain embodiments, an organosilicone preparation that comprises an organosilicone compound comprising a heptamethyltrisiloxane head group is used in the methods and compositions provided herein. In certain embodiments, an organosilicone composition that comprises Compound I is used in the methods and compositions provided herein. In certain embodiments, an organosilicone composition that comprises Compound I is used in the methods and compositions provided herein. In certain embodiments of the methods and compositions provided herein, a composition that comprises a polynucleotide molecule and one or more effective organosilicone compound in the range of about 0.015 to about 2 percent by weight (wt percent) (e.g., about 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06, 0.065, 0.07, 0.075, 0.08, 0.085, 0.09, 0.095, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.5 wt percent) is used or provided.


Compositions include but are not limited components that are one or more polynucleotides essentially identical to, or essentially complementary to an EPSPS gene sequence (promoter, intron, exon, 5′ untranslated region, 3′ untranslated region), a transfer agent that provides for the polynucleotide to enter a plant cell, a herbicide that complements the action of the polynucleotide, one or more additional herbicides that further enhance the herbicide activity of the composition or provide an additional mode of action different from the complementing herbicide, various salts and stabilizing agents that enhance the utility of the composition as an admixture of the components of the composition.


In certain aspects, methods include one or more applications of a polynucleotide composition and one or more applications of a transfer agent for conditioning of a plant to permeation by polynucleotides. When the agent for conditioning to permeation is an organosilicone composition or compound contained therein, embodiments of the polynucleotide molecules are double-stranded RNA oligonucleotides, single-stranded RNA oligonucleotides, double-stranded RNA polynucleotides, single-stranded RNA polynucleotides, double-stranded DNA oligonucleotides, single-stranded DNA oligonucleotides, double-stranded DNA polynucleotides, single-stranded DNA polynucleotides, chemically modified RNA or DNA oligonucleotides or polynucleotides or mixtures thereof.


Compositions and methods are useful for modulating the expression of an endogenous EPSPS gene or transgenic EPSPS gene (for example, CP4 EPSPS, U.S. Pat. No. RE39,247 and 2mEPSPS, U.S. Pat. No. 6,040,497) gene in a plant cell. In various embodiments, an EPSPS gene includes coding (protein-coding or translatable) sequence, non-coding (non-translatable) sequence, or both coding and non-coding sequence. Compositions can include polynucleotides and oligonucleotides designed to target multiple genes, or multiple segments of one or more genes. The target gene can include multiple consecutive segments of a target gene, multiple non-consecutive segments of a target gene, multiple alleles of a target gene, or multiple target genes from one or more species.


Provided is a method for modulating expression of an EPSPS gene in a plant including (a) conditioning of a plant to permeation by polynucleotides and (b) treatment of the plant with the polynucleotide molecules, wherein the polynucleotide molecules include at least one segment of 18 or more contiguous nucleotides cloned from or otherwise identified from the target EPSPS gene in either anti-sense or sense orientation, whereby the polynucleotide molecules permeate the interior of the plant and induce modulation of the target gene. The conditioning and polynucleotide application can be performed separately or in a single step. When the conditioning and polynucleotide application are performed in separate steps, the conditioning can precede or can follow the polynucleotide application within minutes, hours, or days. In some embodiments more than one conditioning step or more than one polynucleotide molecule application can be performed on the same plant. In embodiments of the method, the segment can be cloned or identified from (a) coding (protein-encoding), (b) non-coding (promoter and other gene related molecules), or (c) both coding and non-coding parts of the target gene. Non-coding parts include DNA, such as promoter regions or the RNA transcribed by the DNA that provide RNA regulatory molecules, including but not limited to: introns, 5′ or 3′ untranslated regions, and microRNAs (miRNA), trans-acting siRNAs, natural anti-sense siRNAs, and other small RNAs with regulatory function or RNAs having structural or enzymatic function including but not limited to: ribozymes, ribosomal RNAs, t-RNAs, aptamers, and riboswitches.


All publications, patents and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.


The following examples are included to demonstrate examples of certain preferred embodiments. It should be appreciated by those of skill in the art that the techniques disclosed in the examples that follow represent approaches the inventors have found function well in the practice, and thus can be considered to constitute examples of preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments that are disclosed and still obtain a like or similar result without departing from the spirit and scope.


EXAMPLES
Example 1
Polynucleotides Related to the EPSPS Gene Sequences

The target EPSPS gene polynucleotide molecules have been found that naturally occur in the genome of Amaranthus palmeri, Amaranthus rudis, Amaranthus graecizans, Amaranthus hybridus, Amaranthus lividus, Amaranthus spinosus, Amaranthus thunbergii, Amaranthus viridis, Lolium multiflorum, Lolium rigidium, Ambrosia artemisiifolia, Ambrosia trifida, Euphorbia heterophylla, Kochia scoparia, Abutilon theophrasti, Sorghum halepense, Chenopodium album, Commelina diffusa, Conyza candensis, Digitaria sanguinalis, and include molecules related to the expression of a polypeptide identified as an EPSPS, that include regulatory molecules, cDNAs comprising coding and noncoding regions of an EPSPS gene and fragments of the plant genes thereof as shown in Table 1. Additionally, the EPSPS gene coding sequence isolated from Agrobacterium tumefaciens that encodes for a glyphosate resistant EPSPS enzyme and that is commonly used to produce glyphosate resistant crop plants is shown in SEQ ID NO: 1 in Table 1.


Polynucleotide molecules were extracted from these plant species by methods standard in the field, for example, total RNA was extracted using Trizol Reagent (Invitrogen Corp, Carlsbad, Calif. Cat. No. 15596-018), following the manufacturer's protocol or modifications thereof by those skilled in the art of polynucleotide extraction that may enhance recover or purity of the extracted RNA. Briefly, start with 1 gram of ground plant tissue for extraction. Prealiquot 10 milliliters (mL) Trizol reagent to 15 mL conical tubes. Add ground powder to tubes and shake to homogenize. Incubate the homogenized samples for 5 minutes (min) at room temperature (RT) and then add 3 mL of chloroform. Shakes tubes vigorously by hand for 15-30 seconds(sec) and incubate at RT for 3 min. Centrifuge the tubes at 7,000 revolutions per minute (rpm) for 10 min at 4 degrees C. Transfer the aqueous phase to a new 1.5 mL tube and add 1 volume of cold isopropanol. Incubate the samples for 20-30 min at RT and centrifuge at 10,000 rpm for 10 min at 4 degrees C. Wash pellet with Sigma-grade 80 percent ethanol. Remove the supernatant and briefly air-dry the pellet. Dissolve the RNA pellet in approximately 200 microliters of DEPC treated water. Heat briefly at 65 degrees C. to dissolve pellet and vortex or pipet to resuspend RNA pellet. Adjust RNA concentraiton to 1-2 microgram/microliter.


DNA was extracted using EZNA SP Plant DNA Mini kit (Omega Biotek, Norcross Ga., Cat#D5511) and Lysing Matrix E tubes (Q-Biogen, Cat#6914), following the manufacturer's protocol or modifications thereof by those skilled in the art of polynucleotide extraction that may enhance recover or purity of the extracted DNA. Briefly, aliquot ground tissue to a Lysing Matrix E tube on dry ice, add 800 μl Buffer SP1 to each sample, homogenize in a bead beater for 35-45 sec, incubate on ice for 45-60 sec, centrifuge at ≧14000 rpm for 1 min at RT, add 10 microliter RNase A to the lysate, incubate at 65° C. for 10 min, centrifuge for 1 min at RT, add 280 μl Buffer SP2 and vortex to mix, incubate the samples on ice for 5 min, centrifuge at ≧10,000 g for 10 min at RT, transfer the supernatant to a homogenizer column in a 2 ml collection tube, centrifuge at 10,000 g for 2 min at RT, transfer the cleared lysate into a 1.5 ml microfuge tube, add 1.5 volumes Buffer SP3 to the cleared lysate, vortex immediately to obtain a homogeneous mixture, transfer up to 650 μl supernatant to the Hi-Bind column, centrifuge at 10,000 g for 1 min, repeat, apply 100 μl 65° C. Elution Buffer to the column, centrifuge at 10,000 g for 5 min at RT.


Next-generation DNA sequencers, such as the 454-FLX (Roche, Branford, Conn.), the SOLiD (Applied Biosystems), and the Genome Analyzer (HiSeq2000, Illumina, San Diego, Calif.) were used to provide polynucleotide sequence from the DNA and RNA extracted from the plant tissues. Raw sequence data was assembled into contigs as illustrated in Table 1 and SEQ ID NO: 2-120. The contig sequence was used to identify trigger molecules that can be applied to the plant to enable regulation of the gene expression.


Example 2
Polynucleotides Related to the Trigger Molecules

The gene sequences and fragments of Table 1 were divided into 200 polynucleotide (200-mer) lengths with 25 polynucleotide overlapping regions (SEQ ID NO:121-3222). These polynucleotides are tested to select the most efficacious trigger regions across the length of any target sequence. The trigger polynucleotides are constructed as sense or anti-sense ssDNA or ssRNA, dsRNA, or dsDNA, or dsDNA/RNA hybrids and combined with an organosilicone based transfer agent to provide a polynucleotide preparation. The polynucleotides are combined into sets of two to three polynucleotides per set, using 4-8 nmol of each polynucleotide. Each polynucleotide set is prepared with the transfer agent and applied to a plant or a field of plants in combination with a glyphosate containing herbicide, or followed by a glyphosate treatment one to three days after the polynucleotide application, to determine the effect on the plant's susceptibility to glyphosate. The effect is measured as stunting the growth and/or killing of the plant and is measured 8-14 days after treatment with the polynucleotide set and glyphosate. The most efficacious sets are identified and the individual polynucleotides are tested in the same methods as the sets are and the most efficacious single 200-mer identified. The 200-mer sequence is divided into smaller sequences of 50-70-mer regions with 10-15 polynucleotide overlapping regions and the polynucleotides tested individually. The most efficacious 50-70-mer is further divided into smaller sequences of 25-mer regions with a 12 to 13 polynucleotide overlapping region and tested for efficacy in combination with glyphosate treatment. By this method it is possible to identify an oligonucleotide or several oligonucleotides that are the most efficacious trigger molecule to effect plant sensitivity to glyphosate or modulation of EPSPS gene expression. The modulation of EPSPS gene expression is determined by the detection of EPSPS siRNA molecules specific to EPSPS gene or by an observation of a reduction in the amount of EPSPS RNA transcript produced relative to an untreated plant or by merely observing the anticipated phenotype of the application of the trigger with the glyphosate containing herbicide. Detection of siRNA can be accomplished, for example, using kits such as mirVana (Ambion, Austin Tex.) and mirPremier (Sigma-Aldrich, St Louis, Mo.).


The gene sequences and fragments of Table 1 were compared and 21-mers of contiguous polynucleotides were identified that have homology across the various EPSPS gene sequences (SEQ ID NO: 1-120). The purpose was to identify trigger molecules that are useful as herbicidal molecules or in combination with glyphosate herbicide enhance effective weed control across a broad range of weed species including glyphosate resistant weed biotypes. SEQ ID NO: 3223-3542 represent the 21-mers that are present in the EPSPS gene of at least eight of the weed species of Table 1. It is contemplated that additional 21-mers can be selected from the sequences of Table 1 that are specific for a single weed species or a few weeds species within a genus or trigger molecules that are at least 18 contiguous nucleotides, at least 19 contiguous nucleotides, at least 20 contiguous nucleotides or at least 21 contiguous nucleotides in length and at least 85 percent identical to an EPSPS gene sequence selected from the group consisting of SEQ ID NO:1-120 or fragments thereof. The 21-mer oligonucleotides are combined into a 6-12 oligonucleotide set and tested for efficacy against the broadest range of weed species in which the oligonucleotide is essentially identical or essentially complementary to the EPSPS gene sequence in the genome of the weed species. Efficacious sets are divided into smaller sets of 2-3 oligonucleotides and tested for efficacy. Each polynucleotide set is prepared with the transfer agent and applied to a plant or a field of plants in combination with a glyphosate containing herbicide, or followed by a glyphosate treatment one to three days after the oligonucleotide application, to determine the effect in the plant's susceptibility to glyphosate. The effect is measured as stunting the growth and/or killing of the plant and is measured 8-14 days after treatment with the polynucleotide set and glyphosate.


By this method it is possible to identify an oligonucleotide or several oligonucleotides that are the most efficacious trigger molecule to effect plant sensitivity to glyphosate or modulation of EPSPS gene expression. The modulation of EPSPS gene expression is determined by the detection of EPSPS siRNA molecules specific to EPSPS gene or by an observation of a reduction in the amount of EPSPS RNA transcript produced relative to an untreated plant. Detection of siRNA can be accomplished, for example, using kits such as mirVana (Ambion, Austin Tex.) and mirPremier (Sigma-Aldrich, St Louis, Mo.).


Example 3
Methods Related to Treating Plants or Plant Parts with a Topical Mixture of the Modified Trigger Oligonucleotide Molecules

Single stranded or double stranded DNA or RNA fragments in sense or antisense orientation or both were identified and mixed with a transfer agent and other components in the composition. This composition was topically applied to plants to effect expression of the target EPSPS genes in the specified plant to obtain the desired effect on growth or development.


In this example, growing Amaranthus palmeri plants were treated with a topically applied composition for inducing modulation of a target gene in a plant including (a) an agent for conditioning of a plant to permeation by polynucleotides and (b) polynucleotides including at least one polynucleotide strand including at least one segment of 17-25 contiguous nucleotides of the target gene in either anti-sense (AS) or sense (S) orientation. Amaranthus palmeri plants were treated with a topically applied adjuvant solution comprising dsRNA, ssDNA, and DNA/RNA hybrid polynucleotides shown in Table 2 (SEQ ID NO: 3544-3587, respectively) essentially homologous or essentially complementary to the Amaranthus palmeri EPSPS coding sequence. The polynucleotide sequences of the trigger molecules used in each treatment are shown in column 2. The trigger molecules, 5.2-RNA-M1 through M6 are modified for mismatch nucleotides (n) relative to 5.2.RNA-wt (wildtype). The type of polynucleotide for each trigger is shown in column 3, its' length in column 4 and the results observed in column 5. The results are expressed as a relative measure of activity, the tested oligonucleotide was either active, less active, or inactive in the bioassay.


A trigger sequence was identified to target the EPSPS promoter of glyphosate resistant Amaranthus palmeri and tests conducted to determine some activities of the trigger identified as AS83 (SEQ ID NO: 3670). The trigger sequence was made as ssDNA, dsDNA or dsRNA and various 3′ and 5′ deletions of AS83 were tested along with internal mismatch mutations. The following procedure was used for all assays described in this example. Approximately four-week old Amaranthus palmeri plants (glyphosate-resistant Palmer amaranth, “R-22”) were used in this assay. Plants were treated with 0.1% Silwet L-77 solution freshly made with ddH2O. Two fully expanded leaves per plant (one cotyledon, one true leaf) awere treated with the polynucleotide/Silwet L-77 solution. Final concentration for each oligonucleotide or polynucleotide was 25 microM (in 0.01% Silwet L-77, 5 mM sodium phosphate buffer, pH 6.8) unless otherwise stated. Twenty microliters of the solution was applied to the top surface of each of the two pre-treated leaves to provide a total of 40 microliters (1 nmol oligonucleotide or polynucleotide) for each plant.


Spray solutions were prepared the same day as spraying. Single oligonucleotide molecules shown in Table 2 and Table 4 were applied at rates between 0.04 and 0.18 mg/ml in 20 mM potassium phosphate buffer (pH 6.8) are added to spray solutions 15 to 50 minutes before spraying. One-to-two-ml spray solutions were applied using a custom low-dead-volume sprayer (“milli applicator”) at 8-30 gpa (gallons per acre) to one-to-four inch tall plants. Treated plants were place in a greenhouse set for either a 26.7/21.1° C. or 29.4/21.1° C. 14/10 hour temperature and supplemental light schedule. The amount of response relative to unsprayed treatments was collected at various time intervals up to 21 days after treatment.


The current default spray nozzle used for all applications made with the track sprayer is the Turbo Teejet air induction nozzle (015) nozzle with air pressure set at a minimum of 20 psi (160 kpa). The height of the spray nozzle was 16-18 inches above top of plant material. Treatments were made when plants reach the desired size, height or leaf stage.


Application rates are chosen so as to achieve percent control ratings in the range of 50% at the lowest rate to 90% control at the highest rate. The rates in this control range provide the best possible efficacy comparisons among formulations, allowing separation of relative performance of test samples. The rate of glyphosate used in these studies is typically held constant at 1680 g ae/ha (grams acid equivalent/hectare). On occasion lower or higher rates may be necessary depending on test objectives. The rate structure used for a given test will be dependent on the environmental conditions at the time of spray application (time of year), the plant species being treated (highly susceptible or tough to kill) and age (or size) of plants to be treated.


These results illustrated in Table 2 shows that dsRNA, dsDNA and ssDNA were effective oligonucleotides trigger molecules for activity against EPSPS gene exon coding sequence and noncoding (promoter) sequence. Generally, 3 mismatches in a 21-mer or about 85 percent sequence homology can be tolerated, oligonucleotides shorter than 21 appear to have less activity in this assay Other modifications, such as the addition of some 3′ synthetic nucleotides (ddC and IdT) did not seem to be tolerated in this bioassay.









TABLE 2







Various polynucleotide types and modified sequence homologies












2. Sequence (AS strand, unless





1. Oligo name
otherwise indicated)
3. Type
4. length
5. Activity





5.2-RNA-wt
GTC ATA GCA ACA TCT GGC
dsRNA
21
active



ATT





5.2-DNA-wt
GTC ATA GCA ACA TCT GGC
dsDNA
21
active



ATT





5.2-ssDNA-S
AAT GCC AGA TGT TGC TAT
ssDNA
21
less active



GAC





5.2-ssDNA-AS
GTC ATA GCA ACA TCT GGC
ssDNA
21
less active



ATT





5.2-sDNA/asRNA
GTC ATA GCA ACA TCT GGC
DNA/RNA
21
inactive



ATT
hybrid





5.2-asDNA/sRNA
GTC ATA GCA ACA TCT GGC
DNA/RNA
21
inactive



ATT
hybrid





5.2-RNA-5′-20
TC ATA GCA ACA TCT GGC
dsRNA
20
active



ATT





5.2-RNA-5′-19
C ATA GCA ACA TCT GGC
dsRNA
19
less active



ATT





5.2-RNA-5′-18
ATA GCA ACA TCT GGC ATT
dsRNA
18
inactive





5.2-RNA-M1
GTC ATA GCA ACA TCT GGC
dsRNA
21
active



AT custom-character





5.2-RNA-M2
GTC ATA GCA ACA TCT GGC
dsRNA
21
active



A custom-character





5.2-RNA-M3
GTC ATA GCA A custom-character  A TCT GGC
dsRNA
21
inactive



ATT





5.2-RNA-M4
GTC ATA GCA custom-character  TCT GGC
dsRNA
21
less active



ATT





5.2-RNA-M5
GTC Aat GCA ACA TCT GGC
dsRNA
21
active



ATT





5.2-RNA-M6
GTC ATA GCA ACA TCT custom-character  C
dsRNA
21
active



ATT





5.2-RNA-3′ddC
GTC ATA GCA ACA TCT GGC
dsRNA
22
inactive



ATT-3′ddC





5.2-RNA-3′IdT
GTC ATA GCA ACA TCT GGC
dsRNA
22
inactive



ATT-3′IdT





3′ Deletion


Analysis


AS83-DNA-25-wt
CTC TTT GTT TTT CTT CTG
ssDNA
25
active



CCA ATT T





AS83-DNA-24-
CTC TTT GTT TTT CTT CTG
ssDNA
24
active


3′D
CCA ATT





AS83-DNA-23-
CTC TTT GTT TTT CTT CTG
ssDNA
23
active


3′D
CCA AT





AS83-DNA-22-
CTC TTT GTT TTT CTT CTG
ssDNA
22
active


3′D
CCA A





AS83-DNA-21-
CTC TTT GTT TTT CTT CTG
ssDNA
21
active


3′D
CCA





AS83-DNA-20-
CTC TTT GTT TTT CTT CTG CC
ssDNA
20
active


3′D





AS83-DNA-19-
CTC TTT GTT TTT CTT CTG C
ssDNA
19
inactive


3′D





AS83-DNA-18-
CTC TTT GTT TTT CTT CTG
ssDNA
18
inactive


3′D





AS83-DNA-17-
CTC TTT GTT TTT CTT CT
ssDNA
17
inactive


3′D





5′ Deletion


Analysis


AS83-DNA-24-
TCT TTG TTT TTC TTC TGC
ssDNA
24
active


5′D
CAA TTT





AS83-DNA-23-
CTT TGT TTT TCT TCT GCC
ssDNA
23
active


5′D
AAT TT





AS83-DNA-22-
TTT GTT TTT CTT CTG CCA
ssDNA
22
active


5′D
ATT T





AS83-DNA-21-
TTG TTT TTC TTC TGC CAA
ssDNA
21
active


5′D
TTT





AS83-DNA-20-
TTG TTT TTC TTC TGC CAA
ssDNA
20
active


5′D
TT





AS83-DNA-19-
TTG TTT TTC TTC TGC CAA T
ssDNA
19
less active


5′D





AS83-DNA-18-
TTG TTT TTC TTC TGC CAA
ssDNA
18
inactive


5′D





AS83-DNA-17-
TTG TTT TTC TTC TGC CA
ssDNA
17
inactive


5′D





Mutational


Analysis


AS83-DNA-5′M1

custom-character  TC TTT GTT TTT CTT CTG

ssDNA
25
less active



CCA ATT T





AS83-DNA-5′M2

custom-character  C TTT GTT TTT CTT CTG

ssDNA
25
less active



CCA ATT T





AS83-DNA-M3
CTC TTT GTT TTT custom-character  TT CTG
ssDNA
25
less active



CCA ATT T





AS83-DNA-M4
CTC TTT GTT TTcustom-charactercustom-character  T CTG
ssDNA
25
less active



CCA ATT T





AS83-DNA-M5
CTC TTT custom-character  TTT CTT CTG
ssDNA
25
less active



CCA ATT T





AS83-DNA-M6
CTC TTT GTT TTT CTT C custom-character
ssDNA
25
less active



gCA ATT T





AS83-DNA-3′M1
CTC TTT GTT TTT CTT CTG
ssDNA
25
less active



CCA ATT custom-character





AS83-DNA-3′M2
CTC TTT GTT TTT CTT CTG
ssDNA
25
inactive



CCA AT custom-charactercustom-character





AS83-DNA-3′ddC
CTC TTT GTT TTT CTT CTG
ssDNA
26
inactive



CCA ATT T-3′ddC





AS83-DNA-
CTC TTT GTT TTT CTT CTG
ssDNA
26
inactive


3′InvdT
CCA ATT T-3′InvdT









Example 4
Identification of Effective Trigger Polynucleotides

One non-limiting example of a method for selecting a polynucleotide for use in a composition for topical application to the surface of a parent plant involves the mapping of efficacious oligonucleotide or polynucleotide sequences (or segments of sequences) using a whole-gene (or full-length reference sequence) tiling array approach. The available full-length reference sequence is divided into “tiling sequences” or segments of 25 contiguous nucleotides along the entire length of the available sequence. For convenience, an Excel template was developed to allow convenient generation of sense and anti-sense tiling sequences for any given full-length reference sequence, providing as output a list of sense and anti-sense sequences for submission to oligonucleotide synthesis providers such as IDT (Integrated DNA Technologies, Coralville, Iowa). Oligonucleotides corresponding to each 25-mer tiling sequence (in sense, anti-sense, or both sense and anti-sense orientation) are synthesized for efficacy screening. Oligonucleotides are screened in sets. It is clear to one skilled in the art that the tiling sequences can be of sizes other than 25 nucleotides (such as about 18, 19, 20, 21, 22, 23, or 24 nucleotides, or larger than 25 nucleotides), that these tiling sequences can be designed to be contiguous segments with no overlap or to overlap adjacent segments, and that such tiling sequences can be grouped into sets of any size. For example, sets of five individual oligonucleotides are pooled into a single polynucleotide composition using 20 mM phosphate buffer and 2 percent w/v ammonium sulfate and 1 percent Silwet L-77, and topically applied to plants at a rate known to be efficacious for the plant species of interest (e.g., 4 nanomoles per plant). Those oligonucleotide sets showing better efficacy are then re-screened by testing the individual component oligonucleotides for efficacy.


A specific example of selecting a polynucleotide for use in a composition for topical application to the surface of a parent plant follows. An EPSPS promoter 1302 nucleotide sequence was identified from genomic sequence of Palmer amaranth (Amaranthus palmeri) as having the sequence SEQ ID NO: 3543. A 1152 nucleotide segment of the 1302 nucleotides EPSPS promoter sequence was used in this example.


The 1152-nt EPSPS promoter sequence was “tiled” (i.e., the full-length sequence covered by overlapping shorter sequences) by 25-mer anti-sense (AS) and sense (S) ssDNAs. A total of 96 25-mer ssDNA oligonucleotides were designed and grouped into 16 sets of 6 ssDNA oligonucleotides each (each set covering 150 contiguous nucleotides of the promoter sequence). The oligonucleotides were synthesized by IDT in 96-well plate format. Oligonucleotide sequences are provided in Table 3 (SEQ ID NO: 3588-3779). The oligonucleotides in a given set consisted of six contiguous sequences (in terms of their position within the 1152-nt full-length sequence) where each oligonucleotide did not overlap the adjacent oligonucleotide(s).









TABLE 3







Polynucleotides for targeting Amaranthus palmeri EPSPS promoter














SEQ







ID


SEQ ID


Name
Antisense Sequence
NO:
Name
Sense Sequence
NO:





AS1
cgaatcaaaggaaaaagttatccaa
3588
S_1
ttggataactttttcctttgattcg
3684





AS2
aataatccgattcgaatcaaaggaa
3589
S_3
gaatcggattatttttaatacagta
3686





AS3
tactgtattaaaaataatccgattc
3590
S_5
attatgaactgatttaatgaaagtg
3688





AS4
atcagttcataatactgtattaaaa
3591
S_7
ggaggaagtttcaatttttaaagtt
3690





AS5
cactttcattaaatcagttcataat
3592
S_9
tgtaggtgtaatgttttctcatttt
3692





AS6
tgaaacttcctccactttcattaaa
3593
S_11
tggatatgaaagtggaggaagtttc
3694





AS7
aactttaaaaattgaaacttcctcc
3594
S_2
ttcctttgattcgaatcggattatt
3685





AS8
cattacacctacaactttaaaaatt
3595
S_4
ttttaatacagtattatgaactgat
3687





AS9
aaaatgagaaaacattacacctaca
3596
S_6
tttaatgaaagtggaggaagtttca
3689





AS10
actttcatatccaaaatgagaaaac
3597
S_8
aatttttaaagttgtaggtgtaatg
3691





AS11
gaaacttcctccactttcatatcca
3598
S_10
gttttctcattttggatatgaaagt
3693





AS12
tgattcgaaattgaaacttcctcca
3599
S_12
tggaggaagtttcaatttcgaatca
3695





AS13
aactggcaaacatgattcgaaattg
3600
S_13
caatttcgaatcatgtttgccagtt
3696





AS14
attcattgaatcaactggcaaacat
3601
S_15
tgattcaatgaatgctcttggaaat
3698





AS15
atttccaagagcattcattgaatca
3602
S_17
tgaccaagagttcaaggcttcttgt
3700





AS16
gaactcttggtcatttccaagagca
3603
S_19
ttataaaacatttcaattttgatct
3702





AS17
acaagaagccttgaactcttggtca
3604
S_21
taagaatgaactatttagaacttaa
3704





AS18
aaatgttttataacaagaagccttg
3605
S_23
aagtaattaaattattagttataac
3706





AS19
agatcaaaattgaaatgttttataa
3606
S_14
atgtttgccagttgattcaatgaat
3697





AS20
tagttcattcttagatcaaaattga
3607
S_16
tgctcttggaaatgaccaagagttc
3699





AS21
ttaagttctaaatagttcattctta
3608
S_18
caaggcttcttgttataaaacattt
3701





AS22
aatttaattactttaagttctaaat
3609
S_20
tcaattttgatctaagaatgaacta
3703





AS23
gttataactaataatttaattactt
3610
S_22
atttagaacttaaagtaattaaatt
3705





AS24
atttttttataagttataactaata
3611
S_24
tattagttataacttataaaaaaat
3707





AS25
ggttaaaattgaatttttttataag
3612
S_25
cttataaaaaaattcaattttaacc
3708





AS26
ttataaatttaaggttaaaattgaa
3613
S_27
cttaaatttataaattatgacctta
3710





AS27
taaggtcataatttataaatttaag
3614
S_29
aaaaagatcaagtattgaacgcata
3712





AS28
acttgatctttttaaggtcataatt
3615
S_31
atttagaaaaattataattcggctt
3714





AS29
tatgcgttcaatacttgatcttttt
3616
S_33
tatcagtctcatattgagacggtct
3716





AS30
aatttttctaaatatgcgttcaata
3617
S_35
Tcgtccaagacaagttgtatcattt
3718





AS31
aagccgaattataatttttctaaat
3618
S_26
ttcaattttaaccttaaatttataa
3709





AS32
tatgagactgataagccgaattata
3619
S_28
aattatgaccttaaaaagatcaagt
3711





AS33
agaccgtctcaatatgagactgata
3620
S_30
tattgaacgcatatttagaaaaatt
3713





AS34
Ttgtcttggacgagaccgtctcaat
3621
S_32
tataattcggcttatcagtctcata
3715





AS35
aaatgatacaacttgtcttggacga
3622
S_34
attgagacggtctcgtccaagacaA
3717





AS36
atttgattatataaatgatacaact
3623
S_36
Agttgtatcatttatataatcaaat
3719





AS37
actcataattatatttgattatata
3624
S_37
Tatataatcaaatataattatgagt
3720





AS38
ctacatgaatacactcataattata
3625
S_39
Tgtattcatgtaggtttcaacttta
3722





AS39
taaagttgaaacctacatgaataca
3626
S_41
Aaagcctaggtgaaagatatgttgt
3724





AS40
tcacctaggctttaaagttgaaacc
3627
S_43
Tagcatctttgtgaaagtcagccta
3726





AS41
acaacatatctttcacctaggcttt
3628
S_45
Ataacttggttctaaaattttgaag
3728





AS42
cacaaagatgctacaacatatcttt
3629
S_47
Gcataaccatatagtccctcgaatt
3730





AS43
taggctgactttcacaaagatgcta
3630
S_38
Tataattatgagtgtattcatgtag
3721





AS44
agaaccaagttataggctgactttc
3631
S_40
Ggtttcaactttaaagcctaggtga
3723





AS45
cttcaaaattttagaaccaagttat
3632
S_42
Aaagatatgttgtagcatctttgtg
3725





AS46
tatatggttatgcttcaaaatttta
3633
S_44
Gaaagtcagcctataacttggttct
3727





AS47
aattcgagggactatatggttatgc
3634
S_46
Taaaattttgaagcataaccatata
3729





AS48
acaacttgaatgaattcgagggact
3635
S_48
Agtccctcgaattcattcaagttgt
3731





AS49
aaagtaaattggacaacttgaatga
3636
S_49
Tcattcaagttgtccaatttacttt
3732





AS50
ggcaagtataaaaaagtaaattgga
3637
S_51
Ttttatacttgccgagacaacattt
3734





AS51
aaatgttgtctcggcaagtataaaa
3638
S_53
Ttaaacccttaatatttctaattaa
3736





AS52
attaagggtttaaaatgttgtctcg
3639
S_55
Atcttaattaaaaattatgaaaatt
3738





AS53
ttaattagaaatattaagggtttaa
3640
S_57
Ttgatattaataatctttgtattga
3740





AS54
ttttaattaagattaattagaaata
3641
S_59
Aaacgaatttaacaagatctcacat
3742





AS55
aattttcataatttttaattaagat
3642
S_50
Tccaatttacttttttatacttgcc
3733





AS56
ttattaatatcaaattttcataatt
3643
S_52
Cgagacaacattttaaacccttaat
3735





AS57
tcaatacaaagattattaatatcaa
3644
S_54
Tatttctaattaatcttaattaaaa
3737





AS58
gttaaattcgtttcaatacaaagat
3645
S_56
Aattatgaaaatttgatattaataa
3739





AS59
atgtgagatcttgttaaattcgttt
3646
S_58
Atctttgtattgaaacgaatttaac
3741





AS60
taaaacatagtcatgtgagatcttg
3647
S_60
Caagatctcacatgactatgtttta
3743





AS61
taatctataagttaaaacatagtca
3648
S_61
Tgactatgttttaacttatagatta
3744





AS62
ttgtattttttttaatctataagtt
3649
S_63
Aaaaaaaatacaaattaagagtgat
3746





AS63
atcactcttaatttgtatttttttt
3650
S_65
Taagtgaatagtgccccaaaacaaa
3748





AS64
cactattcacttatcactcttaatt
3651
S_67
Atgggacaacttagatgaattggag
3750





AS65
tttgttttggggcactattcactta
3652
S_69
Ggtaatattaggtagcaagtgatct
3752





AS66
taagttgtcccatttgttttggggc
3653
S_71
Tagcaagtgatcactttaacatcaa
3754





AS67
ctccaattcatctaagttgtcccat
3654
S_62
Aacttatagattaaaaaaaatacaa
3745





AS68
acctaatattacctccaattcatct
3655
S_64
Aattaagagtgataagtgaatagtg
3747





AS69
agatcacttgctacctaatattacc
3656
S_66
Gccccaaaacaaatgggacaactta
3749





AS70
tgatcacttgctagatcacttgcta
3657
S_68
Agatgaattggaggtaatattaggt
3751





AS71
ttgatgttaaagtgatcacttgcta
3658
S_70
Tagcaagtgatctagcaagtgatca
3753





AS72
aagtgatcaattttgatgttaaagt
3659
S_72
Actttaacatcaaaattgatcactt
3755





AS73
atttgaacctataagtgatcaattt
3660
S_73
Aaattgatcacttataggttcaaat
3756





AS74
gtaaaagtttcaatttgaacctata
3661
S_75
Ttgaaacttttactttaattgatat
3758





AS75
atatcaattaaagtaaaagtttcaa
3662
S_77
Tgtttaaatactactttaaattgaa
3760





AS76
tagtatttaaacatatcaattaaag
3663
S_79
Aattgatatttttaaggtcaaaatt
3762





AS77
ttcaatttaaagtagtatttaaaca
3664
S_81
Tgaaacctttaagattataattgaa
3764





AS78
aaaaatatcaatttcaatttaaagt
3665
S_83
Aaattggcagaagaaaaacaaagag
3766





AS79
aattttgaccttaaaaatatcaatt
3666
S_74
Tataggttcaaattgaaacttttac
3757





AS80
cttaaaggtttcaattttgacctta
3667
S_76
Ctttaattgatatgtttaaatacta
3759





AS81
ttcaattataatcttaaaggtttca
3668
S_78
Actttaaattgaaattgatattttt
3761





AS82
cttctgccaattttcaattataatc
3669
S_80
Taaggtcaaaattgaaacctttaag
3763





AS83
ctctttgtttttcttctgccaattt
3670
S_82
Gattataattgaaaattggcagaag
3765





AS84
cttatattctttctctttgtttttc
3671
S_84
Gaaaaacaaagagaaagaatataag
3767





AS85
caatttgcgtgtcttatattctttc
3672
S_85
Gaaagaatataagacacgcaaattg
3768





AS86
agtagatcggtacaatttgcgtgtc
3673
S_87
Gtaccgatctactcttatttcaatt
3770





AS87
aattgaaataagagtagatcggtac
3674
S_89
Tttgagacggtctcgcccaagacta
3772





AS88
agaccgtctcaaaattgaaataaga
3675
S_91
Agatgttcggtcatcctacaccaac
3774





AS89
tagtcttgggcgagaccgtctcaaa
3676
S_93
Ccccaaaaaattcaacaacaaagtc
3776





AS90
tgaccgaacatctagtcttgggcga
3677
S_95
Cttataatgattccctctaatctac
3778





AS91
gttggtgtaggatgaccgaacatct
3678
S_86
Gacacgcaaattgtaccgatctact
3769





AS92
gaattttttggggttggtgtaggat
3679
S_88
Tcttatttcaattttgagacggtct
3771





AS93
gactttgttgttgaattttttgggg
3680
S_90
Tcgcccaagactagatgttcggtca
3773





AS94
gaatcattataagactttgttgttg
3681
S_92
Atcctacaccaaccccaaaaaattc
3775





AS95
gtagattagagggaatcattataag
3682
S_94
Caacaacaaagtcttataatgattc
3777





AS96
gtgtagactgtagtagattagaggg
3683
S_96
Ccctctaatctactacagtctacac
3779









Oligonucleotide sets assigned an even number n contain oligonucleotides with a sequence shifted by 12 or 13 nucleotides (nt) relative to the 3′ end of the oligonucleotides in sets assigned a number equal to (n−1). For example, the oligonucleotide sequences in set number 2 have a sequence shifted by 12 or 13 nt relative to the 3′ end of the oligonucleotides in set number 1.


The ssDNA oligonucleotides were formulated as 100 micromolar (per oligonucleotide) mixtures (each consisting of a set of 6 oligonucleotides) in 20 millimolar phosphate buffer (pH 7.0), 2% ammonium sulfate, 1% Silwet® L-77, and were hand applied by pipetting to the surface of four fully expanded source leaves of glyphosate-resistant Palmer amaranth (Amaranthus palmeri R-22) plants. Each leaf received 10 microliters of 100 micromolar ssDNA solution (a total of 1 nanomole per oligonucleotide per leaf for a total 4 nanomole per oligonucleotide per plant). Silwet-containing buffer without oligonucleotides was applied as a negative control. A composition of four EPSPS short dsRNA1, 3, 4 and 5 (see Example 6) were applied at 4 nm each oligonucleotide per plant as positive control. The Palmer plants were then sprayed with 2× WeatherMax (1.5 lb/ac) at either 2 or 3-day after oligos treatment.


The first round of efficacy testing showed that sets 8 and 13 gave better herbicidal control of Palmer amaranth (for both sense and anti-sense strands). A second round of efficacy testing used the 12 individual oligonucleotides in sets 8 and 13 and showed that five individual ssDNA oligonucleotides numbered 44, 48, 79, 81, and 83 gave better herbicidal control of Palmer amaranth than the other seven ssDNA oligonucleotides. These five ssDNA oligonucleotides were individually tested at 16 nmol/plant followed by 2× WMax on Palmer R-22 plants. The treated Palmer amaranth plants were observed ten days after treatment and showed that ssDNA oligonucleotides numbers 79 (SEQ ID NO: 3666), 81(SEQ ID NO: 3668), and 83(SEQ ID NO: 3670) gave 95, 98 and 99 percent control respectively when applied in combination with dsRNA5 (EPSPS) and dsRNATIF1 (SEQ ID NO: 3780).


Further experimental testing of the AS83 trigger that targets the EPSPS promoter in Palmer R-22 was conducted in which the AS83 trigger was used to make ssDNA, dsRNA (SEQ ID NO:3789) and dsDNA. These AS83 molecules were tested as described in Example 3 and the results shown in Table 4 determined that all of the molecular forms of AS83 were active in making the Palmer R-22 plant sensitive to glyphosate.









TABLE 4







EPSPS promoter AS83 trigger molecules











Oligo Name
Sequence (AS/bottom strand)
Type
Size
Activity





AS83-DNA-wt-
CTC TTT GTT TTT CTT CTG
ssDNA
25
active



CCA ATT T





AS83-RNA-wt-
CUC UUU GUU UUU CUU CUG
dsRNA
25
active



CCA AUU U





AS83-DNA-blunt
CTC TTT GTT TTT CTT CTG
dsDNA
25
active



CCA ATT T









Example 5

Tiling of tigger oligonucleotides was conducted on a Palmer amaranth EPSPS coding region using a similar testing protocol as described in Example 3. In this test, approximately 700 base pairs of coding region were used to select 46 individual antisense ssDNA oligonucleotides each 25 nucleotides long. These were applied to Palmer amaranth plants (R-22) at 12 nmole per oligonucleotide per plant, followed by 2× WeatherMax 2 days after oligonucleotide treatment later. The plants were scored for glyphosate effect on growth. As shown in FIG. 1, there were two regions identified in the coding sequence where many of the trigger molecules were able to provide a glyphosate sensitive phenotype to the treated plants, these are identified by the boxes in FIG. 1. The 5′ region (Region 1, SEQ ID NO:3787) is approximately 150 nucleotides including and between antisense oligo 34 (SEQ ID NO: 3781) and 57 (SEQ ID NO: 3782) and the 3′ region (Region 2, SEQ ID NO:3788) is approximately 100 nucleotides including and between antisense oligo 32 (SEQ ID NO:3783) and oligo 36 (SEQ ID NO:3784). The triggers plus glyphosate provided 30-70 percent and 25-45 percent control in the 5′ region and in the 3′ region, respectively. Additional trigger polynucleotides in these regions include oligo 81 (SEQ ID NO: 3785) and oligo 95 (SEQ ID NO: 3786). It is contemplated that additional trigger molecules can be identified in these regions and combinations of triggers would be useful to provide a high level of glyphosate sensitivity.


Example 6
Effects on Transgenic Herbicide Tolerant Plants

This example demonstrates that the topical application of a polynucleotide trigger molecule can be used to make transgenic herbicide tolerant crops sensitive to the herbicide for which they were engineered to be tolerant. In this example, a gene coding sequence for Agrobacterium tumefaciens CP4 EPSPS (SEQ ID NO: 1) was targeted with two dsRNA trigger molecules referred to as CP4-12 (82-462 of SEQ ID NO:1) a 381 polynucleotide, and CP4-34 (594-1043 of SEQ ID NO:1) a 450 polynucleotide. Corn and cotton plants that were transformed with the CP4 EPSPS gene and are resistant to glyphosate were planted in pots in a greenhouse along with negative isolines for each and grown to the first true leaf emergence stage then treated with a trigger solution containing 0.5% Silwet L77, 2% ammonium sulfate, 20 mM Na Phoshpate (pH 6.8) at different rates of trigger amount, 0 picomoles (pmol), 210 pmol, 630 pmol and 1890 pmol. For each replication (8-10 plants), two fully expanded cotyledons were treated by pipette with 50 microliters of trigger solution each, then sprayed two-three days later with 1.5 a.e.lb/acre) of RoundUp™ Ultra (glyphosate, Monsanto, St Louis, Mo.). The cotton and corn plants were scored for stunting and injury 7-16 days after spray treatment. FIGS. 2 and 3 show the corn and cotton plant results, respectively. The corn plants in FIG. 2 shows the number of treated plants that showed glyphosate injury after treatment with the trigger polynucleotides and glyphosate, injury was observed as dead or damaged terminal leaves 2-4 days after RoundUp treatment, and stunting was evident 7-14 days after RoundUp treatment. The nontransgenic control is labeled “Minus CP4”, these plant were killed by the RoundUp treatment. FIG. 3 shows the results of glyphosate tolerant cotton plants treated with the trigger polynucleotides and glyphosate, symptoms observed on the cotton plants were severe stunting and death of the apical meristem. These results demonstrate that topical treatment with a trigger polynucleotide can be used to effect a herbicide tolerant trait in a transgenic herbicide tolerant crop plant.


Example 7
Enhancement with the Addition of Non-EPSPS Herbicides

This example demonstrates that the addition of herbicides with a mode of action different than glyphosate that enhance the effect of the treatment comprising glyphosate, an EPSPS trigger polynucleotides, and an essential gene (transcription initiation factor, TIF) trigger polynucleotide. Glyphosate is applied as a Roundup WeatherMAX® formulation (RU Wmax, Monsanto, St Louis, Mo.) at 2× (1.5 pounds acid equivalent/acre), 4× and 8× in a field test plot infested with glyphosate resistant A. palmeri. Clarity® (Diglycolamine salt, BASF) is a dicamba formulation applied at 0.25 pounds/acre (lb/ac) is equal to half of the recommended use rate for broadleaf weed control. The polynucleotides are all dsRNA, 4001 is mixture of the following four A. palmeri EPSPS dsRNA trigger polynucleotides: dsRNA1: sense strand sequence CUACCAUCAACAAUGGUGUCC (1479-1499 of SEQ ID NO: 10) and complementary anti-sense strand, and dsRNA3: sense strand GUCGACAACUUGCUGUAUAGU (4241-4261 of SEQ ID NO: 10) and complementary anti-sense strand, and dsRNA4: sense strand GGUCACCUGGACAGAGAAUAG(9919-9939 of SEQ ID NO: 10) and complementary anti-sense strand, and dsRNA5: sense strand AAUGCCAGAUGUUGCUAUGAC (10015-10035 of SEQ ID NO: 10) and complementary anti-sense strand and one A. palmeri TIF dsRNA trigger polynucleotide (dsRNATIF1: sense strand GCACAAAUGUAAAUAAACCGUCUCC (SEQ ID NO: 3780) and complementary anti-sense strand), 4002 is mixture of one EPSPS dsRNA trigger polynucleotide (dsRNA5) and one A. palmeri TIF dsRNA trigger polynucleotide (dsRNATIF1). The composition of the herbicides and polynucleotides also contain one percent Silwet L77.


The treatments of the field plots containing glyphosate resistant A. palmeri plants (mostly 4-6 inches tall) with compositions shown in Table 6 with 4 replications per treatment at a spray volume of 10 gallons per acre, the total polynucleotide concentration was in the composition was approximately 160 nmol. The treated glyphosate resistant A. palmeri were scored for percent injury between 10-14 days post treatment. The results show that glyphosate (RU Wmax) was not effective in controlling this population of resistant A. palmeri even at 8× the recommended field rates, 52.5 percent. The addition of the 4001 and 4002 polynucleotides substantially increased the observed glyphosate percent injury, 83.75 and 72.5 percent respectively. The treatments that also included 0.25 lb/ac Clarity (dicamba) increased the injury rate to 95.75 percent when included in the composition with the 4001 trigger polynucleotides and to 93.25 percent when included in the composition with the 4002 trigger polynucleotides. The RU Wmax and Clarity alone showed a 83.75 percent injury rate on the glyphosate resistant A. palmeri.









TABLE 5







Addition of Dicamba to glyphosate and EPSPS and essential


gene trigger polynucleotides enhances injury rates to


glyphosate resistant A. palmeri.












Percent injury




Treatment
Mean
std err















RU Wmax 2X
28.75
12.045



RU Wmax 4X
30
4.291



RU Wmax 8X
52.5
11.219



2X RU Wmax + 4001
83.75
3.1



2X RU Wmax + 4001 + 0.25 lb
95.75
4.095



Clarity



2X RU Wmax + 4002
72.5
3.067



2X RU Wmax + 4002 + 0.25 lb
93.25
3.513



Clarity



2X RU Wmax + 0.25 lb Clarity
83.75
6.221










A greenhouse test was conducted to determine the effect of a composition containing 2,4-D herbicide, an EPSPS dsRNA, an essential gene dsRNA and a glyphosate herbicide. The polynucleotides used in the test was 4002 which is a mixture of 1 EPSPS dsRNA trigger polynucleotide (dsRNA5) and 1 A. palmeri TIF dsRNA trigger polynucleotide (dsRNATIF1), at a concentration of 80 nm applied with a 9501E nozzle at 93 L/ha (liters/hectare). Roundup WeatherMax® was the glyphosate herbicide and applied at the 2× rate. The 2,4-D herbicide is 2,4D amine (dimethylamine salt) at a concentration of 3.8 lb/gal and tested at 2 rates, 0.0625 pounds/acre (lb/ac) and 0.125 lb/ac. The composition of the herbicides and polynucleotides also contain one percent Silwet L77.



A. palmeri (R-22) were treated with the compositions listed in Table 6 when they were between 4-8 centimeters tall and had 6-12 leaves, there were 6 replications in the experiment. The effect of the composition was measured as percent control relative to an untreated control 14 days after treatment. Table 6 shows that the composition containing the polynucleotides and glyphosate had enhanced herbicidal activity when 2,4-D was included in the composition as demonstrated by the reduced rate needed to provide the same level of percent control as twice the amount.









TABLE 6







Addition of 2,4-D to glyphosate and trigger polynucleotides











% Control



Treatment Description
(mean)














Roundup WeatherMAX (1.5/A)
51.7



2,4-D (0.0625 lb/A)
60



2,4-D (0.125 lb/A)
80.8



RU Wmax (1.5 lb/A) + 2,4-D (0.0625 lb/A)
57.5



RU Wmax (1.5 lb/A) + 2,4-D (0.125 lb/A)
77.5



4002 + RU Wmax (1.5 lb/A) + 2,4-D (0.0625 lb/A)
80.8



4002 + RU Wmax (1.5 lb/A) + 2,4-D (0.125 lb/A)
88.3










Example 8
A Method to Control Weeds in a Field

A method to control weeds in a field comprises the use of trigger polynucleotides that can modulate the expression of an EPSPS gene in one or more target weed plant species. Example 5 showed that a weed control composition comprising multiple herbicides and multiple polynucleotides can be used in a field environment to control A. palmeri plant growth. An analysis of EPSPS gene sequences from 20 plant species provided a collection of 21-mer polynucleotides (SEQ ID NO:3223-3542) that can be used in compositions to affect the growth or develop or sensitivity to glyphosate herbicide to control multiple weed species in a field. A composition containing 1 or 2 or 3 or 4 or more of the polynucleotides of SEQ ID NO:3223-3542 would enable broad activity of the composition against the multiple weed species or variant populations that occur in a field environment.


The method includes creating an agricultural chemical composition that comprises components that include at least one polynucleotide of SEQ ID NO:3223-3542 or any other effective gene expression modulating polynucleotide essentially identical or essentially complementary to SEQ ID NO:1-120 or fragment thereof, a transfer agent that mobilizes the polynucleotide into a plant cell and a glyphosate containing herbicide and optionally a polynucleotide that modulates the expression of an essential gene and optionally a herbicide that has a different mode of action relative to glyphosate. The polynucleotide of the composition includes a dsRNA, ssDNA or dsDNA or a combination thereof. A composition containing a polynucleotide can have a use rate of about 1 to 30 grams or more per acre depending on the size of the polynucleotide and the number of polynucleotides in the composition. The composition may include one or more additional herbicides as needed to provide effective multi-species weed control. For example, a composition comprising an EPSPS gene trigger oligonucleotide, the composition further including a co-herbicide but not limited to acetochlor, acifluorfen, acifluorfen-sodium, aclonifen, acrolein, alachlor, alloxydim, allyl alcohol, ametryn, amicarbazone, amidosulfuron, aminopyralid, amitrole, ammonium sulfamate, anilofos, asulam, atraton, atrazine, azimsulfuron, BCPC, beflubutamid, benazolin, benfluralin, benfuresate, bensulfuron, bensulfuron-methyl, bensulide, bentazone, benzfendizone, benzobicyclon, benzofenap, bifenox, bilanafos, bispyribac, bispyribac-sodium, borax, bromacil, bromobutide, bromoxynil, butachlor, butafenacil, butamifos, butralin, butroxydim, butylate, cacodylic acid, calcium chlorate, cafenstrole, carbetamide, carfentrazone, carfentrazone-ethyl, CDEA, CEPC, chlorflurenol, chlorflurenol-methyl, chloridazon, chlorimuron, chlorimuron-ethyl, chloroacetic acid, chlorotoluron, chlorpropham, chlorsulfuron, chlorthal, chlorthal-dimethyl, cinidon-ethyl, cinmethylin, cinosulfuron, cisanilide, clethodim, clodinafop, clodinafop-propargyl, clomazone, clomeprop, clopyralid, cloransulam, cloransulam-methyl, CMA, 4-CPB, CPMF, 4-CPP, CPPC, cresol, cumyluron, cyanamide, cyanazine, cycloate, cyclosulfamuron, cycloxydim, cyhalofop, cyhalofop-butyl, 2,4-D, 3,4-DA, daimuron, dalapon, dazomet, 2,4-DB, 3,4-DB, 2,4-DEB, desmedipham, dicamba, dichlobenil, ortho-dichlorobenzene, para-dichlorobenzene, dichlorprop, dichlorprop-P, diclofop, diclofop-methyl, diclosulam, difenzoquat, difenzoquat metilsulfate, diflufenican, diflufenzopyr, dimefuron, dimepiperate, dimethachlor, dimethametryn, dimethenamid, dimethenamid-P, dimethipin, dimethylarsinic acid, dinitramine, dinoterb, diphenamid, diquat, diquat dibromide, dithiopyr, diuron, DNOC, 3,4-DP, DSMA, EBEP, endothal, EPTC, esprocarb, ethalfluralin, ethametsulfuron, ethametsulfuron-methyl, ethofumesate, ethoxyfen, ethoxysulfuron, etobenzanid, fenoxaprop-P, fenoxaprop-P-ethyl, fentrazamide, ferrous sulfate, flamprop-M, flazasulfuron, florasulam, fluazifop, fluazifop-butyl, fluazifop-P, fluazifop-P-butyl, flucarbazone, flucarbazone-sodium, flucetosulfuron, fluchloralin, flufenacet, flufenpyr, flufenpyr-ethyl, flumetsulam, flumiclorac, flumiclorac-pentyl, flumioxazin, fluometuron, fluoroglycofen, fluoroglycofen-ethyl, flupropanate, flupyrsulfuron, flupyrsulfuron-methyl-sodium, flurenol, fluridone, fluorochloridone, fluoroxypyr, flurtamone, fluthiacet, fluthiacet-methyl, fomesafen, foramsulfuron, fosamine, glufosinate, glufosinate-ammonium, halosulfuron, halosulfuron-methyl, haloxyfop, haloxyfop-P, HC-252, hexazinone, imazamethabenz, imazamethabenz-methyl, imazamox, imazapic, imazapyr, imazaquin, imazethapyr, imazosulfuron, indanofan, iodomethane, iodosulfuron, iodosulfuron-methyl-sodium, ioxynil, isoproturon, isouron, isoxaben, isoxachlortole, isoxaflutole, karbutilate, lactofen, lenacil, linuron, MAA, MAMA, MCPA, MCPA-thioethyl, MCPB, mecoprop, mecoprop-P, mefenacet, mefluidide, mesosulfuron, mesosulfuron-methyl, mesotrione, metam, metamifop, metamitron, metazachlor, methabenzthiazuron, methylarsonic acid, methyldymron, methyl isothiocyanate, metobenzuron, metolachlor, S-metolachlor, metosulam, metoxuron, metribuzin, metsulfuron, metsulfuron-methyl, MK-66, molinate, monolinuron, MSMA, naproanilide, napropamide, naptalam, neburon, nicosulfuron, nonanoic acid, norflurazon, oleic acid (fatty acids), orbencarb, orthosulfamuron, oryzalin, oxadiargyl, oxadiazon, oxasulfuron, oxaziclomefone, oxyfluorfen, paraquat, paraquat dichloride, pebulate, pendimethalin, penoxsulam, pentachlorophenol, pentanochlor, pentoxazone, pethoxamid, petrolium oils, phenmedipham, phenmedipham-ethyl, picloram, picolinafen, pinoxaden, piperophos, potassium arsenite, potassium azide, pretilachlor, primisulfuron, primisulfuron-methyl, prodiamine, profluazol, profoxydim, prometon, prometryn, propachlor, propanil, propaquizafop, propazine, propham, propisochlor, propoxycarbazone, propoxycarbazone-sodium, propyzamide, prosulfocarb, prosulfuron, pyraclonil, pyraflufen, pyraflufen-ethyl, pyrazolynate, pyrazosulfuron, pyrazosulfuron-ethyl, pyrazoxyfen, pyribenzoxim, pyributicarb, pyridafol, pyridate, pyriftalid, pyriminobac, pyriminobac-methyl, pyrimisulfan, pyrithiobac, pyrithiobac-sodium, quinclorac, quinmerac, quinoclamine, quizalofop, quizalofop-P, rimsulfuron, sethoxydim, siduron, simazine, simetryn, SMA, sodium arsenite, sodium azide, sodium chlorate, sulcotrione, sulfentrazone, sulfometuron, sulfometuron-methyl, sulfosate, sulfosulfuron, sulfuric acid, tar oils, 2,3,6-TBA, TCA, TCA-sodium, tebuthiuron, tepraloxydim, terbacil, terbumeton, terbuthylazine, terbutryn, thenylchlor, thiazopyr, thifensulfuron, thifensulfuron-methyl, thiobencarb, tiocarbazil, topramezone, tralkoxydim, tri-allate, triasulfuron, triaziflam, tribenuron, tribenuron-methyl, tricamba, triclopyr, trietazine, trifloxysulfuron, trifloxysulfuron-sodium, trifluralin, triflusulfuron, triflusulfuron-methyl, trihydroxytriazine, tritosulfuron, [3-[2-chloro-4-fluoro-5-(-methyl-6-trifluoromethyl-2,4-dioxo-,2,3,4-t-etrahydropyrimidin-3-yl)phenoxy]-2-pyridyloxy]acetic acid ethyl ester (CAS RN 353292-3-6), 4-[(4,5-dihydro-3-methoxy-4-methyl-5-oxo)-H-,2,4-triazol-1-ylcarbonyl-sulfamoyl]-5-methylthiophene-3-carboxylic acid (BAY636), BAY747 (CAS RN 33504-84-2), topramezone (CAS RN 2063-68-8), 4-hydroxy-3-[[2-[(2-methoxyethoxy)methyl]-6-(trifluoro-methyl)-3-pyridi-nyl]carbonyl]-bicyclo[3.2.]oct-3-en-2-one (CAS RN 35200-68-5), and 4-hydroxy-3-[[2-(3-methoxypropyl)-6-(difluoromethyl)-3-pyridinyl]carbon-yl]-bicyclo[3.2.]oct-3-en-2-one.


A field of crop plants in need of weed plant control is treated by spray application of the composition. The composition can be provided as a tank mix, a sequential treatment of components (generally the polynucleotide followed by the herbicide), a simultaneous treatment or mixing of one or more of the components of the composition from separate containers. Treatment of the field can occur as often as needed to provide weed control and the components of the composition can be adjusted to target specific weed species or weed families.


Example 9
Herbicidal Compositions Comprising Pesticidal Agents

A method of controlling weeds and plant pest and pathogens in a field of glyphosate tolerant crop plants is provided, wherein the method comprises applying a composition comprising an EPSPS trigger oligonucleotide, a glyphosate composition and an admixture of a pest control agent. For example, the admixture comprises insecticides, fungicides, nematocides, bactericides, acaricides, growth regulators, chemosterilants, semiochemicals, repellents, attractants, pheromones, feeding stimulants or other biologically active compounds or biological agents, such as, microorganisms.


For example, the admixture comprises a fungicide compound for use on a glyphosate tolerant crop plant to prevent or control plant disease caused by a plant fungal pathogen, The fungicide compound of the admixture may be a systemic or contact fungicide or mixtures of each. More particularly the fungicide compound includes, but is not limited to members of the chemical groups strobilurins, triazoles, chloronitriles, carboxamides and mixtures thereof. The composition may additional have an admixture comprises an insecticidal compound or agent.


The EPSPS trigger oligonucleotides and WeatherMAX® (WMAX) tank mixes with fungicides, insecticides or both are tested for use in soybean. Soybean rust is a significant problem disease in South America and serious concern in the U.S. Testing is conducted to develop a method for use of mixtures of the WMAX formulation and various commercially available fungicides for weed control and soy rust control. The field plots are planted with Roundup Ready® soybeans. All plots receive a post plant application of the EPSPS trigger+WMAX about 3 weeks after planting. The mixtures of trigger+WMAX or trigger+WMAX+fungicide+insecticides are used to treat the plots at the R1 stage of soybean development (first flowering) of treatment. Data is taken for percent weed control at 7 and 21 days after R1 treatment, soybean safety (percent necrosis, chlorosis, growth rate): 5 days after treatment, disease rating, and soybean yield (bushels/Acre). These mixtures and treatments are designed to provide simultaneous weed and pest control of soybean, such as fungal pest control, for example, soybean rust disease; and insect pest control, for example, aphids, armyworms, loopers, beetles, stinkbugs, and leaf hoppers.


Agricultural chemicals are provided in containers suitable for safe storage, transportation and distribution, stability of the chemical compositions, mixing with solvents and instructions for use. A container of a mixture of a trigger oligonucleotide+glyphosate+fungicide compound, or a mixture of a trigger oligonucleotide+glyphosate compound and an insecticide compound, or a trigger oligonucleotide+a glyphosate compound and a fungicide compound and an insecticide compound (for example, lambda-cyhalothrin, Warrier®). The container may further provide instructions on the effective use of the mixture. Containers of the present invention can be of any material that is suitable for the storage of the chemical mixture. Containers of the present invention can be of any material that is suitable for the shipment of the chemical mixture. The material can be of cardboard, plastic, metal, or a composite of these materials. The container can have a volume of 0.5 liter, 1 liter, 2 liter, 3-5 liter, 5-10 liter, 10-20 liter, 20-50 liter or more depending upon the need. A tank mix of a trigger oligonucleotide+glyphosate compound and a fungicide compound is provided, methods of application to the crop to achieve an effective dose of each compound are known to those skilled in the art and can be refined and further developed depending on the crop, weather conditions, and application equipment used.


Insecticides, fungicides, nematocides, bactericides, acaricides, growth regulators, chemosterilants, semiochemicals, repellents, attractants, pheromones, feeding stimulants or other biologically active compounds can be added to the trigger oligonucleotide to form a multi-component pesticide giving an even broader spectrum of agricultural protection. Examples of such agricultural protectants with which compounds of this invention can be formulated are: insecticides such as abamectin, acephate, azinphos-methyl, bifenthrin, buprofezin, carbofuran, chlorfenapyr, chlorpyrifos, chlorpyrifos-methyl, cyfluthrin, beta-cyfluthrin, cyhalothrin, lambda-cyhalothrin, deltamethrin, diafenthiuron, diazinon, diflubenzuron, dimethoate, esfenvalerate, fenoxycarb, fenpropathrin, fenvalerate, fipronil, flucythrinate, tau-fluvalinate, fonophos, imidacloprid, isofenphos, malathion, metaldehyde, methamidophos, methidathion, methomyl, methoprene, methoxychlor, methyl 7-chloro-2,5-dihydro-2-[[N-(methoxycarbonyl)-N-[4-(trifluoromethoxy)phenyl]amino]carbonyl]indeno[1,2-e][1,3,4]oxadiazine-4-a(3H)-carboxylate (DPX-JWO62), monocrotophos, oxamyl, parathion, parathion-methyl, permethrin, phorate, phosalone, phosmet, phosphamidon, pirimicarb, profenofos, rotenone, sulprofos, tebufenozide, tefluthrin, terbufos, tetrachlorvinphos, thiodicarb, tralomethrin, trichlorfon and triflumuron; most preferably a glyphosate compound is formulated with a fungicide compound or combinations of fungicides, such as azoxystrobin, benomyl, blasticidin-S, Bordeaux mixture (tribasic copper sulfate), bromuconazole, captafol, captan, carbendazim, chloroneb, chlorothalonil, copper oxychloride, copper salts, cymoxanil, cyproconazole, cyprodinil (CGA 219417), diclomezine, dicloran, difenoconazole, dimethomorph, diniconazole, diniconazole-M, dodine, edifenphos, epoxiconazole (BAS 480F), famoxadone, fenarimol, fenbuconazole, fenpiclonil, fenpropidin, fenpropimorph, fluazinam, fluquinconazole, flusilazole, flutolanil, flutriafol, folpet, fosetyl-aluminum, furalaxyl, hexaconazole, ipconazole, iprobenfos, iprodione, isoprothiolane, kasugamycin, kresoxim-methyl, mancozeb, maneb, mepronil, metalaxyl, metconazole, S-methyl 7-benzothiazolecarbothioate (CGA 245704), myclobutanil, neo-asozin (ferric methanearsonate), oxadixyl, penconazole, pencycuron, probenazole, prochloraz, propiconazole, pyrifenox, pyroquilon, quinoxyfen, spiroxamine (KWG4168), sulfur, tebuconazole, tetraconazole, thiabendazole, thiophanate-methyl, thiram, triadimefon, triadimenol, tricyclazole, trifloxystrobin, triticonazole, validamycin and vinclozolin; combinations of fungicides are common for example, cyproconazole and azoxystrobin, difenoconazole, and metalaxyl-M, fludioxonil and metalaxyl-M, mancozeb and metalaxyl-M, copper hydroxide and metalaxyl-M, cyprodinil and fludioxonil, cyproconazole and propiconazole; commercially available fungicide formulations for control of Asian soybean rust disease include, but are not limited to Quadris® (Syngenta Corp), Bravo® (Syngenta Corp), Echo 720® (Sipcam Agro Inc), Headline® 2.09EC (BASF Corp), Tilt® 3.6EC (Syngenta Corp), PropiMax™ 3.6EC (Dow AgroSciences), Bumper® 41.8EC (MakhteshimAgan), Folicur® 3.6F (Bayer CropScience), Laredo® 25EC (Dow AgroSciences), Laredo™ 25EW (Dow AgroSciences), Stratego® 2.08F (Bayer Corp), Domark™ 125SL (Sipcam Agro USA), and Pristine®38% WDG (BASF Corp) these can be combined with glyphosate compositions as described in the present invention to provide enhanced protection from soybean rust disease; nematocides such as aldoxycarb and fenamiphos; bactericides such as streptomycin; acaricides such as amitraz, chinomethionat, chlorobenzilate, cyhexatin, dicofol, dienochlor, etoxazole, fenazaquin, fenbutatin oxide, fenpropathrin, fenpyroximate, hexythiazox, propargite, pyridaben and tebufenpyrad; and biological agents such as Bacillus thuringiensis, Bacillus thuringiensis delta endotoxin, baculovirus, and entomopathogenic bacteria, virus and fungi.









TABLE 1







EPSPS gene polynucleotide sequences











SEQ






ID NO
SPECIES
TYPE
LENGTH
SEQ














1

Agrobacterium

cDNA
1362
CACGGTGCAAGCAGCCGGCCCGCAACCGCCCGCAAATCC




tumefaciens



TCTGGCCTTTCCGGAACCGTCCGCATTCCCGGCGACAAG






TCGATCTCCCACCGGTCCTTCATGTTCGGCGGTCTCGCG






AGCGGTGAAACGCGCATCACCGGCCTTCTGGAAGGCGAG






GACGTCATCAATACGGGCAAGGCCATGCAGGCCATGGGC






GCCAGGATCCGTAAGGAAGGCGACACCTGGATCATCGAT






GGCGTCGGCAATGGCGGCCTCCTGGCGCCTGAGGCGCCG






CTCGATTTCGGCAATGCCGCCACGGGCTGCCGCCTGACC






ATGGGCCTCGTCGGGGTCTACGATTTCGACAGCACCTTC






ATCGGCGACGCCTCGCTCACAAAGCGCCCGATGGGCCGC






GTGTTGAACCCGCTGCGCGAAATGGGCGTGCAGGTGAAA






TCGGAAGACGGTGACCGTCTTCCCGTTACCTTGCGCGGG






CCGAAGACGCCGACGCCGATCACCTACCGCGTGCCGATG






GCCTCCGCACAGGTGAAGTCCGCCGTGCTGCTCGCCGGC






CTCAACACGCCCGGCATCACGACGGTCATCGAGCCGATC






ATGACGCGCGATCATACGGAAAAGATGCTGCAGGGCTTT






GGCGCCAACCTTACCGTCGAGACGGATGCGGACGGCGTG






CGCACCATCCGCCTGGAAGGCCGCGGCAAGCTCACCGGC






CAAGTCATCGACGTGCCGGGCGACCCGTCCTCGACGGCC






TTCCCGCTGGTTGCGGCCCTGCTTGTTCCGGGCTCCGAC






GTCACCATCCTCAACGTGCTGATGAACCCCACCCGCACC






GGCCTCATCCTGACGCTGCAGGAAATGGGCGCCGACATC






GAAGTCATCAACCCGCGCCTTGCCGGCGGCGAAGACGTG






GCGGACCTGCGCGTTCGCTCCTCCACGCTGAAGGGCGTC






ACGGTGCCGGAAGACCGCGCGCCTTCGATGATCGACGAA






TATCCGATTCTCGCTGTCGCCGCCGCCTTCGCGGAAGGG






GCGACCGTGATGAACGGTCTGGAAGAACTCCGCGTCAAG






GAAAGCGACCGCCTCTCGGCCGTCGCCAATGGCCTCAAG






CTCAATGGCGTGGATTGCGATGAGGGCGAGACGTCGCTC






GTCGTGCGTGGCCGCCCTGACGGCAAGGGGCTCGGCAAC






GCCTCGGGCGCCGCCGTCGCCACCCATCTCGATCACCGC






ATCGCCATGAGCTTCCTCGTCATGGGCCTCGTGTCGGAA






AACCCTGTCACGGTGGACGATGCCACGATGATCGCCACG






AGCTTCCCGGAGTTCATGGACCTGATGGCCGGGCTGGGC






GCGAAGATCGAACTCTCCGATACGAAGGCTGCCTGA





2

Abutilon

cDNA
1622
TTCAGTTTCATTCAGATCAAATCTCAAAGGAGGTTTTTC




theophrasti



CAATTCCCGGGGTTTGTGTTTGAACAGCAATGGTAAGTT






GGGAACAATCAAGGTTCGGCCAGGAGTGGTTTCTGCTTC






AACAGCAGCCACGGCTGAGAAGCCATCCAGCGCATCCGA






AATTGTGCTTCAACCAATCAATGAAATTTCGGGTACTGT






TAAATTACCCGGCTCTAAATCACTCTCCAATCGGATTCT






GCTCCTAGCTGCTCTATCCGAGGGAACTACTGTGGTTGA






CAATTTGTTGAATAGCGACGATGTTCATCACATGCTTGT






CGCTTTGGGAAAACTTGGCCTTCGTGTGGAGCATGACAG






TGAAAAGAAACGAGCCATTGTTGAAGGCTGCGGTGGTCA






ATTTCCAGTAGGGAAAGGGGAAGGTCAAGAAATTGAGCT






TTTCCTCGGGAATGCTGGAACCGCAATGCGACCTCTTAC






TGCTGCTATTACCGCCGCCGGTGGCAATTCAAGCTACGT






ACTTGATGGTGTACCCCGAATGAGAGAGAGGCCAATTGG






GGACTTAGTTACTGGTCTTAAGCAGCTGGGTGCAGATGT






CGATTGTACTCTTGGCACAAATTGCCCCCCTGTCCGTAT






AAATGGAAAGGGTGGTCTTCCTGGAGGAAAGGTGAAACT






TTCAGGATCTATCAGTAGTCAATACTTGACCGCTTTACT






CATGGCAGCTCCTTTGGCTCTTGGGGATGTGGAAATTGA






GATTATTGATAAACTGATTTCAATCCCATATGTTGAAAT






GACCATAAAATTGATGGAAAGGTTTGGGGTCAGTGTGGA






GCACAGTAATAGCTGGGATCGATTCTTTATCCGAGGAGG






TCAAAAGTACAAGTCTCCTGGAAATGCTTACGTCGAAGG






TGACGCTTCAAGTGCTAGTTACTTCCTTGCTGGTGCAGC






TGTTACTGGTGGGACTGTCACAGTAGAAGGATGTGGAAC






AAGTAGTTTGCAGGGTGATGTAAAATTCGCTGAGGTTCT






TGAGATGATGGGTGCCAAAGTTACTTGGACCGAGAACAG






TGTAACCGTCACTGGACCCCCAAGAAATTCCTTTGGGAG






GAAGCAATTGCGTGCTATTGATGTCAACATGAACAAAAT






GCCAGATGTTGCCATGACTCTCGCTGTTGTTGCCCTTTA






CGCTGATGGTCCCACTGCCATAAGAGATGTGGCAAGTTG






GAGGGTGAAAGAGACTGAAAGGATGATTGCTATATGCAC






AGAACTCAGGAAGCTCGGAGCAACAGTTGAAGAAGGGCC






AGATTATTGCGTCATCACTCCACCGGAGAAATTAAACGT






GACAGCAATAGATACTTATGATGATCACCGAATGGCCAT






GGCATTCTCTCTTGCCGCCTGTGCAGAGGTTCCAGTTAC






CATCAATGATCCTGGTTGTACCCGGAAAACCTTCCCTGA






CTACTTTGAAGTTCTCGAGAGGGTTACAAAGCATTGAAT






GGCTCGTTTTACTTCGTTATACAAGAGAAAGAAACAAAG






CATGAGAGATAGGTTCGTACCACTGTTCTTAAAATCAAA






GGCTGAAATCAGTTGAACCTTGTCTTCAATGTTGTCTCC






TGATCTGATAATTTCTCATCGGC





3

Amaranthus

cDNA
958
GCGCCCATTGACAGCTGCGGTTGCCGTTGCTGGAGGAAA




graecizans



TTCAAGTTATGTGCTTGATGGAGTACCAAGAATGAGGGA






GCGCCCCATTGGGGATCTGGTAGCAGGTCTAAAGCAACT






TGGTTCAGATGTTGACTGTTTTCTTGGCACAAATTGCCC






TCCTGTTCGGGTCAATGCTAAAGGAGGCCTTCCAGGGGG






CAAGGTCAAGCTCTCTGGATCAGTTAGTAGCCAATATTT






AACTGCACTTCTCATGGCTACTCCTTTGGGTGTTGGAGA






CGTGGAGATTGAGATAGTTGATAAATTGATTTCTGTACC






GTATGTTGAAATGACAATAAGGTTGATGGAACGCTTTGG






AGTATCTGTTGAACATAGTGATAGTTGGGACAGGTTCTA






CATCCGAGGTGGTCAGAAATACAAATCTCCCGGAAAGGC






ATATGTTGAGGGTGATGCTTCAAGTGCTAGCTACTTTCT






AGCAGGAGCCGCCGTCACTGGTGGGACTGTGACTGTAAA






GGGTTGTGGAACAAGCAGTTTACAGGGTGATGTAAAATT






TGCTGAAGTTCTTGAAAAGATGGGTTGCAAGGTCACCTG






GACAGAGAATAGCGTAACTGTTACCGGACCACCCAGGGA






TTCATCTGGAAGAAAACATCTGCGCGCTATCGACGTCAA






CATGAACAAAATGCCAGATGTTGCTATGACTCTTGCAGT






TGTTGCCTTGTATGCAGATGGGCCCACCGCCATCAGAGA






TGTGGCTAGCTGGAGAGTGAAGGAAACCGAACGGATGAT






TGCCATTTGCACAGAACTGAGAAAGCTTGGGGCAACAGT






TGAGGAAGGATCTGATTTCTGTGTGATCACTCCGCCTGA






AAAGCTAAATCCTACCGCCATCGAAACTTATGACGATCA






CCGAATGGCCATGGCATTCTCTCTTGCTGCCTGTGCAGA






TGTTCCCGTCACTATCCTTGAT





4

Amaranthus

cDNA
490
GAGCCAAGAAACAACGCGAAATTCAGAGATAAAGAGAAA




graecizans



GAATAATGGCTCAAGCTACTACCATCAACAATGGTGTCC






AAACTGGTCAATTGCACCATACTTTACCCAAAACCCACT






TACCCAAATCTTCAAAAACTGTTAATTTTGGATCAAACT






TGAGATTTTCTCCAAAGTTCATGTCTTTAACCAATAAAA






GAGTTGGTGGGCAATCATCAATTGTTCCCAGGATTCAAG






CTACTGTTGCTGCTGCATCTGAGAAGCCTTCATCTGCCC






CAGAAATTGTGTTACAACCCATCAAAGAGATCTCCGGTA






CTGTTCAATTGCCTGGGTCAAAGTCTTTATCCAATCGAA






TCCTTCTTTTAGCTGCTTTGTCTGAGGGCACAACATTGG






TCGACAACTTGCTGTATAGTGATGATATTCGTTATATGC






TGGACGCTCTCAGAGCTCTTGGTTTAAAAGTGGAGGATG






ATAATACAGCCAAAAGGGCAGT





5

Amaranthus

cDNA
1682
CTAAGCCCTCGTCTTTCCCTTCTCTCTCTCTTAAAATCT




hybridus



TAAAATCCACCCAACTTTTTCAGCCAACAAACAACGCCA






AATTCAGAGAAAGAATAATGGCTCAAGCTACTACCATCA






ACAATGGTGTCCAAACTGGTCAATTGCACCATATTTTAC






CCAAAACCCACTTACCCAAATCTTCAAAAACTCTTAATT






TTGGATCAAACTTGAGAATTTCTCCAAAGTTCATGTCTT






TGACCAATAAAAGAGTTGGTGGGCAATCATCAATTGTTC






CCAAGATTCAAGCTTCTGTTGCTGCTGCAGCTGAGAAGC






CTTCATCTGTCCCAGAAATTGTTTTACAACCCATCAAAG






AGATCTCTGGTACTGTTCAATTGCCTGGGTCAAAGTCTT






TATCCAATCGAATCCTTCTTTTAGCTGCTTTGTCTGAGG






GCACAACAGTGGTCGACAACTTGCTGTATAGTGATGATA






TTCTTTATATGTTGGATGCTCTCAGAACTCTTGGTTTAA






AAGTGGAGGATGATAATACAGCCAAAAGGGCAGTCGTGG






AGGGTTGTGGTGGTCTGTTTCCTGTTGGTAAAGATGGAA






AGGAAGAGATTCAACTTTTCCTTGGTAATGCAGGAACAG






CGATGCGCCCATTGACAGCTGCGGTTGCCGTTGCTGGAG






GAAATTCTAGTTATGTGCTTGATGGAGTGCCAAGAATGA






GGGAGCGCCCCATTGGGGATCTGGTAGCAGGTCTAAAGC






AACTTGGTTCAGATGTTGACTGTTTTCTTGGCACAAATT






GCCCTCCTGTTCGGGTTAATGCTAAAGGAGGCCTTCCAG






GGGGCAAGGTCAAGCTCTCTGGATCGGTTAGTAGCCAAT






ATTTAACTGCACTTCTCATGGCTACTCCTTTGGGTCTTG






GAGACGTGGAGATTGAGATAGTTGATAAATTGATTTCTG






TACCGTATGTTGAAATGACAATAAGGTTGATGGAACGCT






TTGGAGTATCTGTAGAACATAGTGATAGTTGGGACAGGT






TCTACATACGAGGTGGTCAAAAATACAAATCTCCTGGAA






AGGCATATGTTGAGGGTGACGCTTCAAGTGCTAGCTACT






TCCTAGCTGGAGCCGCCGTCACTGGTGGGACTGTGACTG






TCAAGGGTTGTGGAACAAGCAGTTTACAGGGTGATGTAA






AATTTGCCGAAGTTCTTGAGAAGATGGGCTGCAAGGTCA






CCTGGACAGAGAATAGCGTAACTGTTACGGGACCACCCA






GGGATTCATCTGGAAGGAAACATCTGCGCGCTGTCGACG






TCAACATGAACAAAATGCCAGATGTTGCTATGACTCTTG






CAGTAGTTGCCTTGTATGCTGATGGGCCCACTGCCATCA






GAGATGTGGCTAGCTGGAGAGTGAAGGAAACCGAACGGA






TGATTGCCATTTGCACAGAACTGAGAAAGCTTGGGGCAA






CAGTTGAGGAAGGATCTGATTACTGTGTGATCACTCCGC






CTGAAAAGCTAAATCCCACCGCCATCGAAACTTATGACG






ATCACCGAATGGCCATGGCATTCTCTCTTGCTGCCTGTG






CAGATGTTCCCGTCACTATCCTTGATCCGGGATGCACCC






GTAAAACCTTCCCGGACTACTTTGAAGTTTTAGAAAAGT






TCGCCAAGCATTGAGTAACATATGGGTTCTTTAAATTGT






ACGCC





6

Amaranthus

cDNA
843
GAGGGTTGTGGTGGTCTGTTTCCTGTTTGGTAAAGATGG




lividus



AAAGGAAGAGATTCAACTTTTCCTTGGTAATGCAGGAAC






AGCGATGCGCCCATTGACAGCTGCGGTTGCCGTTGCTGG






AGGAAATTCTAGTTATGTGCTTGATGGAGTGCCAAGAAT






GAGGGAGCGCCCCATTGGGGATCTGGTAGCAGGTCTAAA






GCAACTTGGTTCAGATGTTGACTGTTTTCTTGGCACAAA






TTGCCCTCCTGTTCGGGTTAATGCTAAAGGAGGCCTTCC






AGGGGGCAAGGTCAAGCTCTCTGGATCGGTTAGTAGCCA






ATATTTAACTGCACTTCTCATGGCTACTCCTTTGGGTCT






TGGAGACGTGGAGATTGAGATAGTTGATAAATTGATTTC






TGTACCGTATGTTGAAATGACAATAAGGTTGATGGAACG






CTTTGGAGTATCTGTAGAACATAGTGATAGTTGGGACAG






GTTCTACATACGAGGTGGTCAAAAATACAAATCTCCTGG






AAAGGCATATGTTGAGGGTGACGCTTCAAGTGCTAGCTA






CTTCCTAGCTGGAGCCGCCGTCACTGGTGGGACTGTGAC






TGTCAAGGGTTGTGGAACAAGCAGTTTACAGGGTGATGT






AAAATTTGCCGAAGTTCTTGAGAAGATGGGCTGCAAGGT






CACCTGGACAGAGAATAGCGTAACTGTTACGGGACCACC






CAGGGATTCATCTGGAAGGAAACATCTGCGCGCTGTCGA






CGTCAACATGAACAAAATGCCAGATGTTGCTATGACTCT






TGCAGTAGTTGCCTTGTATGCTGATGGGCCCACTGCCAT






CAGAGATGTGGCTAGCTGGAGAGT





7

Amaranthus

cDNAContig
1554
ATGGCTCAAGCTACTACCATCAACAATGGTGTCCATACT




palmeri



GGTCAATTGCACCATACTTTACCCAAAACCCAGTTACCC






AAATCTTCAAAAACTCTTAATTTTGGATCAAACTTGAGA






ATTTCTCCAAAGTTCATGTCTTTAACCAATAAAAGAGTT






GGTGGGCAATCATCAATTGTTCCCAAGATTCAAGCTTCT






GTTGCTGCTGCAGCTGAGAAACCTTCATCTGTCCCAGAA






ATTGTGTTACAACCCATCAAAGAGATCTCTGGTACTGTT






CAATTGCCTGGGTCAAAGTCTTTATCCAATCGAATCCTT






CTTTTAGCTGCTTTGTCTGAGGGCACAACAGTGGTCGAC






AACTTGCTGTATAGTGATGATATTCTTTATATGTTGGAC






GCTCTCAGAACTCTTGGTTTAAAAGTGGAGGATGATAGT






ACAGCCAAAAGGGCAGTCGTAGAGGGTTGTGGTGGTCTG






TTTCCTGTTGGTAAAGATGGAAAGGAAGAGATTCAACTT






TTCCTTGGTAATGCAGGAACAGCGATGCGCCCATTGACA






GCTGCGGTTGCCGTTGCTGGAGGAAATTCAAGTTATGTG






CTTGATGGAGTACCAAGAATGAGGGAGCGCCCCATTGGG






GATCTGGTAGCAGGTCTAAAGCAACTTGGTTCAGATGTA






GATTGTTTTCTTGGCACAAATTGCCCTCCTGTTCGGGTC






AATGCTAAAGGAGGCCTTCCAGGGGGCAAGGTCAAGCTC






TCTGGATCGGTTAGTAGCCAATATTTAACTGCACTTCTC






ATGGCTACTCCTTTGGGTCTTGGAGACGTGGAGATTGAG






ATAGTTGATAAATTGATTTCTGTACCGTATGTTGAAATG






ACAATAAAGTTGATGGAACGCTTTGGAGTATCCGTAGAA






CATAGTGATAGTTGGGACAGGTTCTACATTCGAGGTGGT






CAGAAATACAAATCTCCTGGAAAGGCATATGTTGAGGGT






GATGCTTCAAGTGCTAGCTACTTCCTAGCCGGAGCCGCC






GTCACTGGTGGGACTGTCACTGTCAAGGGTTGTGGAACA






AGCAGTTTACAGGGTGATGTAAAATTTGCCGAAGTTCTT






GAGAAGATGGGTTGCAAGGTCACCTGGACAGAGAATAGT






GTAACTGTTACTGGACCACCCAGGGATTCATCTGGAAAG






AAACATCTGCGTGCTATCGACGTCAACATGAACAAAATG






CCAGATGTTGCTATGACTCTTGCAGTTGTTGCCTTGTAT






GCAGATGGGCCCACCGCCATCAGAGATGTGGCTAGCTGG






AGAGTGAAGGAAACCGAACGGATGATTGCCATTTGCACA






GAACTGAGAAAGCTTGGGGCAACAGTTGAGGAAGGATCT






GATTACTGTGTGATCACTCCGCCTGAAAAGCTAAACCCC






ACCGCCATTGAAACTTATGACGATCACCGAATGGCCATG






GCATTCTCTCTTGCTGCCTGTGCAGATGTTCCCGTCACT






ATCCTTGATCCGGGATGCACCCGTAAAACCTTCCCGGAC






TACTTTGATGTTTTAGAAAAGTTCGCCAAGCAT





8

Amaranthus

Genomic
18729
CCCAAATGAAATTTGACCTATTTTAGTAGGTTATCTTCT




palmeri



TCAATGTCTTCTTCAATGCCTCTTTATAAACCCAGCTAC






TGATTTGTATCCCACAAGCCATTGTTCTTCTTCAATTTA






TTCCACTTTGTTCTTCAATCTTCACCTTTCTTCTTCCAT






TGTGTTCTTCCTTCTTCACTATTAACCCTACGCAAGCCC






TCTTCAAATGTATTACAATTTTGAATCAAATAATACAAT






TGATGCTCATAATTAACACCAAGACTAGTGACCACCAAA






TCATTAAGATCAAACCATGAAATGCAATCAGGATCAAGT






GAAAGGCTTCTATATTCCCCACCCACATAATTCAACCCT






ACCCCAGTCCTTTTGAATTTACCCCCATACCAAAACATC






ACTTGAAATTTTTCAAAATTATTAACCTAAAAAAACAAC






ACAATTGAACATAATTACCAATGCATTTCTATAACAACA






AAGAAAACATTAAAGAATCAAAGATTAAAGTGAGGAATG






GCAAAGAAATTACCATGGTTTGATTGAGAACAAGAAGAC






CCAAAATTCGTCTGCACAGCCCCAAAATTTTCGCACAGA






GCAGCAATACCACCCCCAAAATTCGACACTGTTGATAAA






AAATAAACCCTAATTTTTTTGGGAAATTACAGTTGATGA






ATGTGAGTGTTGATTATGGCGTGAAGCTTGATGATTATG






AATGACAATTGTGCTTCAAGTTTTTGAAATTTTGAAGTT






TTGAAGGAAGATGGTGTGAAGGAATGGTAGAACAGGAAA






TGAAGTTAAGGGTATGCCTTTTTGGGTTGAATGTTTATT






TTATGGAATTAAAGAATATGAAAGATCATACTCTAACCT






GCAATAGTAGGTCAAATTTCATTTGGGGGTGCCACGAGC






AAATACACTTGAAAGGTGAGATTATTCATAAATAATCAA






TACTTGGGATTATTCACATAGGTTTGCGAATAGTTCGGA






TTATTCCCAACAATTTTTCCTTAAGATTATAATTAAAAA






ATCCCCAAAAGATGAAAAAAAGAGAAAGCATGTAAAACA






CGCGAATCAGACCGGTCCACTCTTGTTTTAATTTGAGAC






AATTTTGATGTTGAGTCATCCCACACCAACCCCAAAAAA






TTCAACAACAAACTCTTATAATGATTCCCTCTACTCTAC






TAGAGTCTACACCAACCCACTTTCTCTTTGCCCACCAAA






ACTTTGGTTTGGTAAGAACTAAGCCCTCTTCTTTCCCTT






CTCTCTCTTAAAAGCCTAAAATCCACCTAACTTTTTCAG






CCAACAAACAACGCCAAATTCAGAGGAAGAATAATGGCT






CAAGCTACTACCATCAACAATGGTGTCCATACTGGTCAA






TTGCACCATACTTTACCCAAAACCCAGTTACCCAAATCT






TCAAAAACTCTTAATTTTGGATCAAACTTGAGAATTTCT






CCAAAGTTCATGTCTTTAACCAATAAAAGAGTTGGTGGG






CAATCATCAATTGTTCCCAAGATTCAAGCTTCTGTTGCT






GCTGCAGCTGAGAAACCTTCATCTGTCCCAGAAATTGTG






TTACAACCCATCAAAGAGATCTCTGGTACTGTTCAATTG






CCTGGGTCAAAGTCTTTATCCAATCGAATCCTTCTTTTA






GCTGCTTTGTCTGAGGTATTTATTTCTCAACTGCGAAAA






CAATCTCTATTTGATATTGGAATTTATATTACATACTCC






ATCTTGTTGTAATTGCATTAGTACATACTTATGTTTTGA






CCTTTGTTCGTTTGTTTGTTGAATTGGTAGTGTTGAGAA






TTTGAATCTAATTATTTGTTTTTCCATGTGAATTTAATC






TGATTAAATCCACTTCTTATTTATGTTAAGTTGCAATGA






TGTTTGCCAAACGGTTATCATTGAAGGATAAGTTCGCCT






ACTTTTGACCCTCCCAACTTCGCGTTGGTAGAGCCATTT






TATGTTATTGGGGGAAAGTAGAAAGATTTATTTGTTTTG






CCATTCGAAATAGTAGCGTTCGTGATTCTGATTTGGGTG






TCTTTATAGATATGATATATGGGTTATTCATGTAATGTG






TAGGTTTATGCATTATGTTGGATGCATGTCTGGTGTTAT






TGCTGTAAATGGATGAATGTTGTTATTTGGAGACATTTT






TTCATTCATTTTTTCCCTTTTTAATTGGAACTGGAAGAG






GGAAAGTTATTGGGAGTAATTAAAAGGTTGTGAGTTCGA






TACACTGCATCAAAGACGAAGAACTTGACATAGATGTTG






AAGGCTAATCCTTATCACTGCTTGAATTCAATATGTATC






TGAAAATTTTACCCCTCTATATGCATCTGTTTTTGCTAA






TAAAGTGTTTTTGGACTATCATGTTTTGTGATGCTTAAG






AGGGTGATATTACTGAGATAAATGGAAATATCAAAATAA






CATCTATTGTGAAGTAGTTTTAGAGGCTTTTGATTGGTG






CTTCGACTTTGGATTTACTTGCATCCTAGATTGACTCAG






TTTGTGCAATCTGAAAATGATTTCATCATGGTATGAATA






TGGTTCAAAAACAAGGCTGCATCTCATCGAACACGTTGT






AAAGATTTAAAATTAATCAAATTGATATTTCTAGCATTG






TAAAGGCTTAAAAAACTGTATCTCAGGCTATATTAGGGA






TTCTCATGCTCTTGACCGATATTTAGGTGTTACGATAAC






CACATCACTCCTACGATCGTTACCAGATGTTTGCACTTT






GTTATGTGTTACAAGAGATAAGTGTTGCATGCAGTGGAT






CCCTTGTGATTTTGTTCTAGGTAGACAGTGTTGTTTTTG






AATTTCAAAGCAGGAATTATAACGAGATTTGATATTAGG






GTTTGAATTTTTTTAAAAGTTTTTTGCATTCCTCCGATT






TGCAACACGGTTTACCTACTGTTTATTTGAATTTTTTGT






GTGAGAAAAGGCTTACAGGCTTGCTCTTGTATATGTGTA






TGTATTTGCTTTGTGGTTAAATATGCTGCATGTTGTAAT






GAAAACTCTGCCCGGGGATGGTGGGCTTACACGCCAAAG






AAAAAGATTGTTTTCCACAACTAAAAATATCCCATTGGC






AACAGCGTGCAATTATTTAGGGAATGGTGTTAGAGCATT






AAAATTGGAAAATAAATGAGCTCTCATTTTGTTCAAACC






ATGAGAATTTTCCCCTGGTCCAATATTCAGCGTTTTGTT






TCATTTGTAAAAATTACGATCATATTTCTCTTTAGTGAA






GCAACTGATTGGAAAACTTTGGTATATGCCATGTTTCTT






TCCAAGTTAAAGAGTTCCCAGGCATCATCCTCAATGATC






TTCCTCTATATTCCTGTACAATATTGTTGATAGGAAGTT






CATTCATGCCAATAACAATATGTCTCTTGCGAATTTCTA






GAAGACCAGAAATTTGTTGTGACCTGTGGAGTTCTTCCA






AAAGTATCCTCTGTGCGACGCATGAAAAAAGCCTTTGGG






CTAGACTACTGAGATGCAGCTGCCTGGTAATTCATGCCT






CTCTCCCAAGAGAGTACGAGAAGTCATTTATAGCCGCTT






AAGAGAGCCAAGGATCAATTTAGGCGTGTTCTATTTCCA






TATCTTAATGTATCACTGAAGTTTAGCAAGTAAACAAAC






ATCACAATCCCTGATGCTTGCATAGTCATGGCAAATGTT






ATACTCTTTGTTTACATATGAAAAACCAGATATTACTCC






ATATTTTTAGAAACCAGCAACCAAAGGAGCTTAAATGGT






CCCTGCTCCTAAGTCATATCTCTTGGCAATGGGGTGTTT






GTAGATCTTGAGTGCTGCCAGTCCACTTACTGTAATGCA






ATACATCAATATTGAGCTAGTTTCTCATGGGAAAAAACC






ATAGAAATGGGACAAATTTGATGTTAATGTTCTGTAATC






CAACTTGAGGATTAGTTTTATCACATAAAAGCTACATTG






AAAGTTCTATTATTATTTTGAGTTTGCATCTTATGTTGT






TTTTCCTTTGTGATTTTATCCATTTTCTTAACTAGTTAT






TCGTTTCCTGAAGTTTTTAGTGTCATAACTCCTAATCAC






AATCATGCTACAGGGCACAACAGTGGTCGACAACTTGCT






GTATAGTGATGATATTCTTTATATGTTGGACGCTCTCAG






AACTCTTGGTTTAAAAGTGGAGGATGATAGTACAGCCAA






AAGGGCAGTCGTAGAGGGTTGTGGTGGTCTGTTTCCTGT






TGGTAAAGATGGAAAGGAAGAGATTCAACTTTTCCTTGG






TAATGCAGGAACAGCGATGCGCCCATTGACAGCTGCGGT






TGCCGTTGCTGGAGGAAATTCAAGGTTTGTCCAATTATA






TTCTTTATGTGAGTGTTGTTTTTTGTGTTAGTTTCAATC






ATGAAGGTACTAATGCAGAAGCCGTACCCCTGAAATTTT






CTTATTTTGTATATATCAATTGGTAATTGATGTAAGATA






TTTTTCCGAGAGGAATAAAAAACAGGGGGATAGAGAATA






TTAAAGTATTGTTCTATCACATTAACTTTTTATCAAAGG






TGTACATTGTGTTTGTGAAGTTTATAGAGCTAAAGGGAT






GGAAGGGAAGGGGATTGAAGAAGAGGAGAAAAGAAGAAG






ATCCTCCTTTGAATACCAAGGTTTGAACGGAAGGGAGAA






GGAGGAAACTCTAAACAATATGGAGATGAACTGATGAAG






TTTTTGGATCAGAACCGCTTGAGAATCAGAGTTAAGCCA






TGTGAAAGTCTATGAGCATGACTTCACCTGGTTAATAAT






TTTAAGCTCTCAACTTCTCATCCTCTTTTCTTTGTCGAA






AATGTCATGTCTTCATGTGATACGTGCTTACATAATCGT






TTCTTTTGTAAAGCGATTGTCTCTCCAGATTTCTCCCCT






TACGAAAATAATCCTTGAAGGTTGAAGAAATCCCTTCAT






TTCCTTTTCCCCTATTTCTCTACCCTTCCTACTTTGGTG






AAGGATTTTGTATCCCTCCCTTTTCATGGTCTATAGTGT






TAGATATTCAAACTTAAGCTTCTCAAGTTTCATGTGGGT






TCTGATTATTATTTTATATATGCATTACCAAGGATTCAA






GGTAATTTGAACCAATCAAGACCAGAACCGGATATGAAT






TCTTCAACCTAGTCTGAACTTGTACATCTAAAACATGCT






AGTTACAACTGAAATATGATCAACTTCTATAGCCTATAA






GACTCTCACCTTCATTTGTAGGTTGCCACATAGCACGTA






TTGTCGATCCATCCATCCTCATTATTTGACTCATCAAAT






AAAGGAACCACTCATGTGAAATTCCTGTCCTACAAAATA






ATCCATCTTCCTCATCTCATTTGTATTCATGTAGTTTGC






TTCCTCAATCCTACAAGTAAAAGGACAACTGCGATTCAA






CTCTTGGACCTATTTGACAGTAAATCCACGAATATTAGG






ACAATCACGTTGGTAATGAACCATCGCTTGGCGCTTGAA






ACATTTGATTTCCTCAAAATCCTTTGCTTCCCCCAACAT






TTCATCCTTTGCTTTCCACATTAAAGTTGGTGCCCGAAC






CTCCATAGCCACAAACTTGGTTGTAGACAACACACCAAC






GTTTCTACCTCTAATAGAGATAGGATTTGTATAAGCCTT






ACTCTTCTTAGATCCTTATGTTTCATAGACCTTTTTCAT






CTTGCACGTATCATCAAAAGACAAGTTGGTATGTATCTC






AGGCTTCACGCACAAGTCAACATCCTTATCACCATACCT






CAATATGACAAGCCCTACCTCTCAATCTTCTACAAAGCT






ATAGATCTTCCATCTCAATGCAAGGAACTTCAACACACG






TATAAACTTTTTTTGAATTTAATTGTTCAAAGGAAAAAA






CCTTTCTTTCATGTGCATTTTTATGTCAACATAGCTATT






AATCAACGTCTTTCCTCTTGTACGAGCTAATTCTCAATA






CCTTTAAGCCCACATGAAGCCTTCTTCTTGAGCTTGAAT






TTAAAAAACTGGAAAATTTGCTTTTCGTACGGAGTTCTT






GTTGTTGTAAAAACACTCCGAACTTCTCTCCTATTCACG






ATGATCTTTTGGGTGTAAGGACATACTATCAAAATTTTC






TACGTTATCCTGAAGCCATGATCATCCACCTCGCAATAT






GCTCAACTTTCAGTTCACGCTGATTCAATATCTGCGTGA






ATAGATTGATCAAGCTTGCCATTTGCTCAAGAATAGTTG






AGTTTTCCTCTTGTAATACTCGATTCCTCTCTTCTGTTT






TTTTAGTCATCCTACTATTTGCTAGCGACAATCTCACAA






GAATATAAGAGGGGATTCTCATCTATTATAACGCACTAC






TCTGTACCTAAGGAACTAGTGTGGGTGTCTTATTTTTGT






CCTCTCCTCGTAGGATATAAAAGAGATGTGTATTTGTGA






ATGATTCAACATAAAACAAAAGTATGTAGGCTCTTAGAT






TATACCATCTCATTAACATATGATGAACTCTTACATATG






CTCCTTCACATATATTTGTTTTTTTGGGGTCATTTATTC






TAGTAGTCCATTGATATTGAATCCCTTAGTTATGGCATT






ATTGTCCGTGCACTGTCTCAGGAGAATAGATGGATTGTT






ATTGCTTTTTCTGTATCTGATGGTAATACAAAGATTGCA






ACATTTGCTAGACCTTGCTGTTTGGATATAGAAAGAAAA






TTATTTGCCATTCATTTCCAAGGGGTCGAATGTAGCCTT






ATCCTTATTCGTGATAACAAAGAGATTGATTTGTAGTCC






TTACATTTGAAAATCCTGGACTTCACTGAATTTATGTAA






CTGTTGCATGCCATGAAATGGAATACTTTATTGATTATG






TGTTTGGGATATGTAAGCTGAAGAAGGCAATTTCCCAGC






TCCTATTAATGCTATCTACACTTCATATTATCCTTTCTG






ATATAGTTTACTTTTCTTTGCATGTGTCGAATTAGTTAT






GTGCTTGATGGAGTACCAAGAATGAGGGAGCGCCCCATT






GGGGATCTGGTAGCAGGTCTAAAGCAACTTGGTTCAGAT






GTAGATTGTTTTCTTGGCACAAATTGCCCTCCTGTTCGG






GTCAATGCTAAAGGAGGCCTTCCAGGGGGCAAGGTAATG






TGACTAAACTTCTTTATGTTTTGTTAGATTTTGGGTTTT






ACTCCATCTAATTCAATGAATGATGATTCATGCGTCAAT






TTCTTGGTAGCAATTCCTTTCCCTACCTAACTATGACTT






CTCTGATTGACCTTTTCTATGAGGTGGGGAATAGTGTTT






TTAATGTGAGGAAAAGAGAAACCCGGGGTATGAGCTTTA






GCATGATAGAGTATGTATTTGATACTAAAACTGCAAATT






AAGTTGGAATCAAGAATAAGAAGACTTATACAGTATAAA






TCAACAGAGGTGTCTGCTGTGTATATGTGTAATAGACAG






TTATAGTTAGCAGGAATTCAGGAGATAAAATGAAGATGG






TGTTGATGAAACTTAACAGACAATTCAGAAAACAAAGTT






TGAGTAGTAAGTAGACTTTTGAGAGGCTGCTTCTCTCTC






AAATGAGCTATAAGTTCTAACAAAAGTCTCAATACATAA






TTTAGATAATAATCAGATGCCTCTCTCACGCTCCATCCC






TTTATTATCTAGATTTCTTGATTTTTTTTCATAACTTAT






GCAACTTATTTCAGCCTCTTCCTTCATTCCACCTTCTAC






TTGAAATAAAATGCAATCTCTACCTTGTTTCTTTATGGT






TTGTTCATTTTAATAAAGATTTAGTATGAAAGTCAATAT






TGCTTTTGCATTGTTGTTTGTCTAAGATCCTAATGGCAA






GTCCACATAAGATGTTTGTTGGTATATGCTAGGTTATTA






GGATCGGGATTCTACTTAGGATCGTTGAGGAGGTAGGAT






TGAAATAGGTAGAATCGGTTCGTACTTCGTAGGATTGTG






CCATGCTACAAATATGCATTGATGTGCTTTGGATTATTT






GTTATCAATTATATTTGTTCTTCTGTTCAGTTTTAAGGT






GTAAGTAAAAACTTATTCGATTTCATTTATTAAGTTTTG






AAAAAAATACTTTAATAATCACTTTTAAACTGCAAATTG






AAAAAAAATTGCATTTTTTAGTGATGTTTTTTTTTTTTT






GAATATCAGTGATGTTGATATAATTATTTTATAGAATAT






TTATACATAATTGAAATCTTGATTATATGAAAATATTTT






ACGATTGAAACTACTTTTATAGGATCGGATCGTTTGATT






GTAGGATCTTAGAATCGTATTATGATCCTACCACCTAAA






TTTTTGAGCTAGTTCTACCACATTATGACTCTACCTAAG






ATCCGGATCGATTGTTTATTTTTAGATCGTAGAATCGTA






GATCAAAATCGAGACTCTAATATCTATGGGTATATGTGT






TAAATTATTAGTCAGTAGAACAATTCTCTTTTTCTTGGT






AAATAAAATCGTACGATACTTTAGTCCGGGGGGCGCGCT






TTGTGTCCTGTACGGTAAGTATCCTGTGACAAAACTGTA






CTTCAGGTGTCTTCTTCACTCTTGGGAAAGTGTAAATGT






CTTTTGTCCCGATTAAGGAAGATTTTATGAGAAATTTTC






CCACATGCTTGGCACCAATTTGTTTTTATTTAGTAGAAG






AAGAAATTATGTATAACATGCATACTCAGGATGGTAGTG






AATATGAAATGAAGAAAGGAGGTAAAGTTGCATGCTGGA






AACTTATAAAGAGATGATTCATTCAAAATTTTGATATTC






CTAATAGCATAGTTGTGGTTTTCAATTTCACAGTCATGA






AGTAAGAACCTCTCTAATATTATCCATTTGTTTTGTGAA






TTGATCAAATTAGAACTACAATTTCAATGTTTGTTGTTA






ATGAGAAGTTCTAGCATAGTTGTGGTTTTCAATTTCACA






GTCATGAAGTAAGAACCTCTCTAATATTATCGATTTGTT






TTGTAAACTGTTTGCAGGTCAAGCTCTCTGGATCGGTTA






GTAGCCAATATTTAACTGCACTTCTCATGGCTACTCCTT






TGGGTCTTGGAGACGTGGAGATTGAGATAGTTGATAAAT






TGATTTCTGTACCGTATGTTGAAATGACAATAAAGTTGA






TGGAACGCTTTGGAGTATCCGTAGAACATAGTGATAGTT






GGGACAGGTTCTACATTCGAGGTGGTCAGAAATACAAGT






AAGTCTCTCATCTTATATTACATGTCCTTTTAACGTGTC






TCCATTAGTAGACTGAAAACACATGTAAATACATCAGAT






CTCCTGGAAAGGCATATGTTGAGGGTGATGCTTCAAGTG






CTAGCTACTTCCTAGCCGGAGCCGCCGTCACTGGTGGGA






CTGTCACTGTCAAGGGTTGTGGAACAAGCAGTTTACAGG






TATAATGTTAACCCTTACCCTTCACATTGTTCTGCTAAA






TTCTAGAGGACCCTTTCAATTCTGGGTGGGATAAGCACG






GCAATTTGACCGCAAAAAAATTGCAAAATTATTCTGCTG






ATAGAACATCTCGAGATGAGATCATATTGAGTTTTGGCG






TCAACATAAACCTAATCAAATAATGAAAAATACAAACAT






CATATGGTTTCTTTTGTCTTTATGACTAGACACTCTCTA






TTATTCCTTGATTGGGATCTTATTTGAAATTGCTGTGTA






GCCTACACCTCATGTTCAGATTTTGTTCGTATACCAGAC






TTTTCTTGATTGGGATCTTATTTGTCCCCTGGATTTTGC






ATAGGGTGATGTAAAATTTGCCGAAGTTCTTGAGAAGAT






GGGTTGCAAGGTCACCTGGACAGAGAATAGTGTAACTGT






TACTGGACCACCCAGGGATTCATCTGGAAAGAAACATCT






GCGTGCTATCGACGTCAACATGAACAAAATGCCAGATGT






TGCTATGACTCTTGCAGTTGTTGCCTTGTATGCAGATGG






GCCCACCGCCATCAGAGATGGTATGCTTAACTCTTTTCA






TTGAACTGTGGCTTATGTAGACTCTTTCAAATATTGATA






ATGAAATTTAGTGTGTCATAAGAAAATCGGAATTTGGAC






TTGTTTTTGTTTTGGAATATTCAAACAGCTAGAAAGATG






TTTTTTTTGCTCTAATGGTGGTTAAACTATCACTGTCCT






TGATGGGAAATTATGATTTTTGCTGTCCCCAATGTGTTT






ATTGGCATATCTTGATACAATTAAGTGAGGGACCACTTT






GCACCATTAAGTTTCTCATAGTCATCACCATTTCTAAAT






AATTAAAATTTAGTATTTTGTAGACTTGTTATGAAATGA






CGTTAATTTTTAACAATACTTAATGGTCTTAAAGGGGTG






TTTGGGAAATGACTGCTGATTAAAATTGTTTTGACTAGA






TGATTTTTATCAACTGATTTGACCTATTGAATTTGAACA






TGCTTTTAGGAATAGCTTGTTCAAAAATAGCTTCTTCAG






AACAATAAGTTGTTTCAATCAACTAATATACCAAACACT






AACCAATTATTTACAATTGTGCCAAAATAAGCTAAAATT






GTCAAATCAACTATTATGCAACCTCAGGATGTGTTCCGG






GGATATGAATTGAAACCCATCTTTGGCAGAGTAGAGATA






AGACGAAAATTGATCCAATCTTAGGGATGAATGTTGAGA






TATTATTTCCATAAATATACTGTGGTGGCATTTAGGGTT






TTTTATTTAACAAGGGGTGTTTAGTTTGGAGAACTTTTT






ATTGAAAACCTGTTTTCTCCATATTCCCATACTGGGTTG






ACAATGAAAATTTGAAAATTAGGGTTGAAAAGAATTATT






CCTTCCATTATTAGCTTACAAACTTATATAGTTGGATGA






AAATTAAATTTCATTCACTTTCACTCCATCTCCCTTGGT






AGCATTATCGTATTCCATCAAACAAAACAAAAGAAAAGT






AGTAATAATTAACGTTTAATTGGAAAATTGTTTCTCATG






GAAAATGTTCTCCGCCAGACCAAATACTTTCGGAACGAG






GAAGCATTTTGGAATAAAGAACCTTGTGCTTGGATTAAT






ATATTTGTCTATGAGATAGTTTTCTCTAGAGTTTACTTG






TATGTTTATTAACTGAACACGCCTCCTTTGCAATCAAAG






AAAAAGGAATTATTTCACCTCTAAGCATACCGAAAACAT






CGACGCAAAATACATGTCAAGATGTGTAATGATTTTGTT






ATGTGAATTAACAGTGGCTAGCTGGAGAGTGAAGGAAAC






CGAACGGATGATTGCCATTTGCACAGAACTGAGAAAGGT






TAGCAGCCTTTTACATTCTCGAAAGCTGTAATTGTTCTT






GAGTAATATATATTCAAACTATAACTGATGTTATTTTGC






ATTCCTATCAATACATTCAGCTTGGGGCAACAGTTGAGG






AAGGATCTGATTACTGTGTGATCACTCCGCCTGAAAAGC






TAAACCCCACCGCCATTGAAACTTATGACGATCACCGAA






TGGCCATGGCATTCTCTCTTGCTGCCTGTGCAGATGTTC






CCGTCACTATCCTTGATCCGGGATGCACCCGTAAAACCT






TCCCGGACTACTTTGATGTTTTAGAAAAGTTCGCCAAGC






ATTGAGTAGCTATATACGAGATCCTTAAATTGTACGCCG






AAGGTTTTGATTTGAGTCTAATAGTAGATAAAAGGCTAT






AAATAAACTGGCTTTCTGCTTGAGTAATTATGAAATTCT






TTGTATTATGTTTGTGAGATTTTAAGTAGCTTATAAATT






ACAATGTACTAAAGTCTAGAAATAAGTTATGTATCTTTT






AAATCAATGAGAAATGCATACTTGAAAGGCTTGACCTTG






TATTCGTGACCTAAAGAGTACTAACTTTGGAGTTTCCAA






GTCATTTGTTTATCTCATTTTTTTTTAATTTTTGATTTA






AATTGTTTATTTTCATGAGTAATCATGTACTCCCTCCGT






TCCTTTTTGTTTTTCCACCTTACTAATACAGGTAGTTCC






ATAAGTTTTTCCACTTTAGAATACTTTCCATTTTTGGAA






AGTTTTCATCCCAGTTCCCACATTTACTCCTTAAAACCC






CACTTTCCTTACTTTACACTACTATTTAATTATTTTCTC






TCTTATACTTCCAATACAAGTATTACATTATACTATTAT






TTAATTATTTTTTCTCTCATACTTTCAATACAATCATTA






CTTTTCACTACTATGAAGTAATTAAAATAATACCCATTA






CCACCAAAGATTCCATTTTTCTTAATCTTGGTGAAAAAC






CCAAATAGGAACATCAAAAAGGAACGGAGGGAGTATCCA






AAATAAGGGAACTAATTGTTATTTTTACTATTTTTCATT






ACTTTCTAATTGATTCTCCCACCTCTTTAACAATAAAAT






TCCTTTAGTTAGCAAATTCAAAAAAAAAAAATTCCTTTA






GTTAGCTATTTAATTAATTTTGTTTTCCTAATTTGACTA






ATACTTCTTGAAAATTTACCTACAATCCAAGCGATCTCT






TTGAAATTAAATAGGAATAGTGTGTTGGGGAGCTGGCAG






TTATAGAATACGGGTGATCAAAACAAATTACAAGATCGA






TTCACATATGGATTTTCGGATAATGAAAATCGTAATCCG






GATTATATATCGAATATCCGGTTTATTTATTCTTAATTA






TTTTTTGCTTTTTCTAAAACAAAATTGTATTTTATTACA






CCAAGTAGAAGAGTGAAACGTTGAAACTTTGATGTGTTT






AAAGAAGAGACACTTGAAAGATGACTTGACTTAGAGAAG






TGAAACATAAAAAAATGAAATTTGTAAGAGCATATAACA






TTAGATACAAAAGAATATAAAAGGAGAATATATGTAGAT






GATAATTGTAACTGAATTTGCAAGTTGTATAATCAGGCG






TCCAACATGCGTATTTGGAGTAAAGAGATAAGTCCAAGC






AACATAGTTGTCTATGACCATTTTACATTATGGTATGAT






GATTCATGACTACTGAGCTTGTTTGTTGATTAGTCTTGT






GCACTTCTAATATACAATCTTAAATAGCCTCTTTTTATC






TTCTTTTTGTGACTGGTATGTAACATGGCTACATATATT






CTGTGAGTAATCTTTTAATATTCTTTCTAGTTTCCTTTG






TTCTTATCTTGTGTTACTCTAGTCGTATTACTGGACGAA






CTTAACTTCATAACTTTCAGTTCAATGTGCTGAACCTTT






ATGTTCTTTTGAAATTGGGGCGTGGTGTACCCAACGTGC






AGAATCTATTTGTGAGCTTTGGTATAAATGAGCGATTAC






AATGAAAGGAGCACTCTATGATTTTTGCTATGCCAAGCA






AGCCTGGTGATTTTAGTCAGTTTTTGATTTTCCTAATGT






CCTTCCAGCACCATTTAACGGTTAGTTTGGTAATGAAAT






TTGGAAAATGTCTGTATTAGCAAAAGTCAAACTACTTTT






AATGACTTTCACGAGTCTCTTCATCAAGATGTTTGATGT






GTGCATGTATGTGTGCGCGGAAATAGTATCTACTCCTCT






TGATTTACTCAGTTCTCGAACAAAATTTGACTGCAACAG






ACAATATGTAACCTTAAAATGCTTTGACACGCGATCAAT






TTTCAATCTAGATTTGGATTTATGATCAAAGTAAAGAAG






GTTTGATGTAAAAAGCCTAATAAAAGAAGATATTGTTCT






AATGATATCAATTGAAGTCCAATTCTGCCAGATATATCT






ATAGCTTAAAACTAGGGCATTATATACATGCACCGAAAT






GTAAGTAGCAAATCAACAACGATAAAATTAAGAGCTTAA






CTAGTTGAGCAAGAGCTACCCCTCGGAATCAATCAGTCT






CAGTTTTAGCGACTTTTTATCCTTGAATGTCATTTTGTA






AGTTATCTACTTTGAAATATCGAGAATTTTTTCATAGTT






ATATAGGAAGGTCATTAATGAAGAAATTATTTTGAATAA






GTTAGAACTTCAAAATAAACATTTAACTACAAATCATTG






ACAAACCTAGTACATTGCATAGGGATCCATTATCACAAC






TTCCAAAGAAGATTGTAACTTAAACCCTAATTTGTTTCC






AAGCTTGCAATTTCAACAAAATCTAACAAATTCCAACTT






TTTAAGCTTTAAAACCACGTACATTGGACATTTAATTAT






ATCATTCCTCAGGATTCTAACTTATATATAACATTAATT






ATATTACCTAATATACTATAAAATTTAGAATTTAAAATC






TGAAATTTATCACCAAATTACGTGTCAAAGTATATTATT






TTATATTTATCTTTTCATCGTGTTTCCTGATTAACTCTT






TCGGATATATTATTACTCTTGTTAACAATACCCTCAAAT






GTTCATTTGCTTTTTCCCTTATAAAAAATCGGAAAACTT






TACATAGCATGAATAAGGTTTGATGAAACACCATTGTAG






CACTTTTTTTGTTTTTGTATGATAGCAACAAGATTACAA






GTTTATAAAAACACTTAGCAAATTATGTTAAATACAAGC






CTATTATGTTAATTTTGGACTTTTTTTAAATGTTTTTTT






AGATTTATATTTACGATATACTTGTATATAAATAAAACA






AAATTTAAAAATCAAAATTTTCCTCCCAACTTCCTCCCT






TTCCTTGTTAGTTGTCACAACCCCTAACCCAACCATCCT






TTCCCTTGTGTCAACAAAGAGTACTTAAAATTAGATATC






GTATTATTGTAAAATTCAAATTATCATAAGAGCATGATG






TACATGTAACAAGAAGGTCAAACAAAAGGGAGTTAAAAT






CAATTTAGCTTTTTACTAAATTCTTAAAATCTCGCAACG






AGAAAATTAAATATAAGTTAGATTTTTGCATTATTTACT






AAAAGTTATAAATCTATAGGATGAGCTATATGAATTAAA






TGTTTAGGAAATTTAAAATTATACCCAGTTCTCATATGA






ACATCAAATATTACACGGTATCTATAAACAAAAACCGTA






ATTAAAAGCAGTCTACGTTAATTTGAAAATCTCCTTATA






TTAATCAAGGAATCAGATTAAAACTCTATTAGGTTGTGT






CTTAAACTATTTTTTATTTTACATTTATACATTAAAAAA






TTTATTCGAGGGTATATTAAAAATAAATAATATTCTTCA






TAATCTTAGCTAATCCTAATTCCTAACTATCAAATCAAT






GGTTAACACAGTAAATTACCCTCTAATCCCCCAACAGCC






CATTGTTTGTTTGGAAGTGTAAGCATAAAAAACCTCAAT






AATACTAATTAGTGTGCTGTAACCATGGTGTCTATGACG






TGTGTTGGGAGTTGAGAGCAAATAGAATTCTGTGCCAAT






TGAAGGCTAAAACTTAAAACCAACCAAACACTCTTTTAG






AGACGTATTTTAAGTCCAGCCTATCAAAGACAATACCTA






CCTACTGTATTCTTAATGTCAACTTACATTATCCTTAAT






GCCTACTTTCAATATGTTAAATGTCTACTTACATCATTT






TTAATGCATACTTACAGTATTTTAAACAATTTATAACGG






GTCAGCCCAATCAGAGATGGTCTCTCAAACAGACCGTCT






AAGACCGTCTCTCACAAGAATTTGTGCAAGCCCTTAATC






CTCTAAACAAAGATCTCATTCCCTGGTTTTTGTTCCCTT






ACAACTCAACCTTTGCTTTGTTTTGTATAAACAACCTTC






CCTTTTTTATGCTTTCCTTTGCCAGATTTCTAATCTTCC






ATCCCCCAACTAGCCTACATTGTTTCATTGAATAATTCT






AATTAACACTTCTCAATACTTGTACTTACCGAATTCTTA






GTCATTTGTATTTAAAGATTATGCCCACGTTCACTCCCC






CTCCTTGATAATCACGTTTTTGCTAATCCCAATCTTCTT






GATATTACTCATCTTCACCTTTATGAACTTGTAAGCTTT






GTATATATACACCCACCATATGTATATCCTTTCATATTA






AGTACTTCATCATATCCTTAATACTACTTTCAAAAAAAG






GAAAAACACAATAAAAAGGTTAGTTATGGCTCAAATTCA






ACAATTCACTAGCATTTCTTATGCTCCTTCTAAGAGAAA






GGGGAATGGGTTCACTAGGAAGTGTGCCTCTTTAATTAA






AGAGCAACACGCTCGAATCTATATCCTTAGAAGATGTGC






TACAATGCTTCTTTGCTCGTACATTGAAGCCGATGATGA






CTAAACATCTCCTTTATCTTAGCCTTACGTTCTGATGTA






ATCCGGTGCATACTAGTACTAGCTACAGTATATACGTAA






GTCATAACTATGCCTTTTCCCACTCTCCATTGTATACCA






GGCTCGAGCAGTAATGCACCTTCGTTTAATCGCTTAATC






ATCCAAATTTTTGACCCAAAAGGCAATAATTCGATTGGG






TTTTTTCACTTTTTAGTTTGGATGGTTGCTGGTTTAAGA






ATTTTATGGGTGCATTGCTGCTTTTTTGTAAACCAGCAG






TAGTGCTGATGAGGCTTACAAGCATCAATTCAATGCCGC






TCAGAGAACTGGACTTGAGATTTAGAGATGGCTGAAAAT






GGGGTTATATACTTAAACTTATGTTGAATGTAACTCTAA






GAGTTTTATCCTAAAAGATATATATCTGATAATACGACT






TTGAGAGAGTATTATCATTGTGTTGTGTTACTAATCTTT






ATGAGAAAAATGAAATGAAATTGAGTGGATATGTAATAC






TTCAACATTCCAAAGCATATTCTTTTGTTGATATGAACA






ATCCTTTAAGCTTTCAACTAAATGGAAACATATACATAG






ATTTGCATACAAAAATCAGTATACATGATCAAGAAACCT






TTGAGCAATTTAAATGTTGTCAGCCCAGAATTGAGTTCT






GAATACATAAACGCAGTCTAAATTCAACTCAAATGCATT






TAGAATCTGAAAATTTTTTGGTTGCATCAAAATTTATAT






TAAAAAAATCACAATTACAACACTTTGGAGCTCCAAAAC






CTGATATTACACCGATTCTAAATTTGCTCTTCAAATTAA






AATCCCTAGCAACATTGACTATTAATTACTGATCAATTA






AAATCCCTAACAATTTCATCATCAATTCTTAGAAAATTA






AAATCCAGCAACAATCACAAACTAAATCAAATTCAACGC






TAAAACACAAATCAAAACTCATTATACGCACCAGCTTCA






GCATCAAGAAGACCGCCATAAGGATCTTGATCTCCAAAA






CTGGGAACCCTAAGTACACCGTGTAATCCAACAATTACA






GCAGAAATCACACAGGCAACCATCAGATTCATCCAAGAA






TGAGCGATAAACAAAGCGATAATCGTAATTACAGCAAGA






ACGCCAAAAACGATGCGATCGTCAACGATGAACCCCGTA






ATTTCAAGAGGAAAAATGCGAGGATTAAAATAAAGAAAG






TACCAAGATAATGACACCACAAACACGAGAAGGAGTGAG






AGAGGACGTAAAGCGAGAGTAAAGAAGAAGATGATGAGA






AAGACGTTAATGTAGTTAACTCGGAAGTGAGTTAGATTT






GAGTTGAACCGAGTTGTGGCGTCAGAAAGGGATACTGGG






AATGAAAGGGCGGAGATATCGAAAAATTCCGACCATGGT






CTGGTTGTTGTTGCGGCGGGGTAGTCATCGGAAGATGGT






TGTAAAGACATGTTTGATTTGAGATTTTGTTTTTCTTTG






ACGAAGATTTGGGTTGTCGTGTGGTGGATGGCGAATTTC






TAATTACTCTCCATATATTGTTCAATTTTCATATACTTT






ATCATTTCTTTATTCTTACTAATTCACTAACTTTATACC






TCAAAAAAAATAAATTAATTTACTAACTTTATCGACATC






GTCTTATCGGGAGACTACTTCAATTAGATTATCTCATTT






CCCTATTATTTTAAAAAATTATATTATATACGAGTATGT






CCAATTTTCGTTGTGTTTTTTAAATTTTCTTTCATTAAA






GGGCTGCTTGTATGGGTCCGTCTCACAATGAGAGGTCTT






ATACAAGACTTGTTGTTCTTAATTATATAGAGTCAGAGG






CCGGAGGAAAGAGGGTAGCGACAAATTATAATCGTACGA






CGTACCTATCCAAAAAGAGGACAAGGAGAAATGTGTGTA






CTCAATTTATCACATAAAAAATAGATTTATACATAAAGA






AAGTCAGTTCTTATTTATATGAGTTTGAAAAATTATCAA






TTTGTAATATAAACATGTTAGATCTGTTAGCAATATATG






AGTTTTATTTTTTTAATTTTTACAAGTATTTCGAAAATA






ATTATAACGATCGTGTTCAACCCATGTAATAAAGATCTA






GTTGAATAATAAATCATTTTTATAAAAGAAAATGTTACT






TGCTAGATTTGCAACTAAATGAAAACAAAATGAATATAA






AGTAGTAATATGTTATAATACATTTAAAATTAAAATAAT






AACTATTTTATTATCATACATTCACAAGATGAAATATGC






ATTACATCATGTACATATATTATATACTTATATATACTT






ATACCCCTACATAATTTTCTCTACTATTTATTATTCCTT






ATACATACTATATAACCAAAAATATTTATGCTATAATTA






TCAAATAAAAGATGCATACATATACCTAACTATATATTT






CTTCACTAGGAATTCATTACAAAAAAAAAAAAAGAAAAT






TGTCAAAAATAAATCAACTTTTGCTCAATCCTTTAAAAA






TAAACCCAACTATTAATTATTTTCAAATAAATCCATCTA






CTTGATATAACTGCTGAAAATAAATCCAACTAATGAATA






TTCCTAATTGCTTGATCACAAAGAAGCTTTGAAGATGCT






TATAAACAA





9

Amaranthus

Genomic
668
GAACATATGAGTGATCAATTGTGGAGTTAAACTGATCAA




palmeri



TATCTATCTAAGTATTTGATGTTTTATGATCTAACTCAA






TTTTGAACGTATAAGCTTCAATTATCGTTTTCAAAATAA






GTATTTCAAAGTCTATAAAGATATTGTATAAGTTTTAGT






TCATTTTGAATAAGTTAATAGTTAAATTATGACATATAA






TTTGACCATGATATTTTATAATCTAACTTAATTTTGAAC






TTTTAATATTCAATTATCGTTTTAAAAATAAGTATTCAA






ATTGTATAGATATATTGTATAACATTTTGTTCAAATTTA






ATTATTGATAGTTTTATTTATTGACCATTCATTTTGAAA






TTCATCCATAGAATGATAGAATAACACTATTTTTTATAT






AACTTCGTTCTAAAATTTTAAAGCATAACCAGAAGTATT






AGGTAGCAATTTATCACTTTAACATCAAAATTGATCACT






TATAGGTTCAAATTGAAACTTTTACTTTAATTGATATGC






TTAAGTACTACTTTAAATTGAAAATTAATATCTTTAAGG






TTAAAATTGATACCTTTAAGATTAGGAAAAATTGTCGGG






AATAATCCGAACTATTTGCAAACTGCTGTGAATAATCCC






ACGTATTGATTATTTATGAATAATCCCACCTTTCAAGTG






TATTT





10

Amaranthus

Genomic
13434
TATCTTTAAGGTTAAAATTGATACCTTTAAGATTAGGAA




palmeri



AAATTGTCGGGAATAATCCGAACTATTTGCAAACTGCTG






TGAATAATCCCACGTATTGATTATTTATGAATAATCCCA






CCTTTCAAGTGTATTTGCTCGTGGCACCCCCAAATGAAA






TTTGACCTATTTTAGTAGGTTATCTTCTTCAATGTCTTC






TTCAATGCCTCTTTATAAACCCAGCTACTGATTTGTATC






CCACAAGCCATTGTTCTTCTTCAATTTATTCCACTTTGT






TCTTCAATCTTCACCTTTCTTCTTCCATTGTGTTCTTCC






TTCTTCACTATTAACCCTACGCAAGCCCTCTTCAAATGT






ATTACAATTTTGAATCAAATAATACAATTGATGCTCATA






ATTAACACCAAGACTAGTGACCACCAAATCATTAAGATC






AAACCATGAAATGCAATCAGGATCAAGTGAAAGGCTTCT






ATATTCCCCACCCACATAATTCAACCCTACCCCAGTCCT






TTTGAATTTACCCCCATACCAAAACATCACTTGAAATTT






TTCAAAATTATTAACCTAAAAAAACAACACAATTGAACA






TAATTACCAATGCATTTCTATAACAACAAAGAAAACATT






AAAGAATCAAAGATTAAAGTGAGGAATGGCAAAGAAATT






ACCATGGTTTGATTGAGAACAAGAAGACCCAAAATTCGT






CTGCACAGCCCCAAAATTTTCGCACAGAGCAGCAATACC






ACCCCCAAAATTCGACACTGTTGATAAAAAATAAACCCT






AATTTTTTTGGGAAATTACAGTTGATGAATGTGAGTGTT






GATTATGGCGTGAAGCTTGATGATTATGAATGACAATTG






TGCTTCAAGTTTTTGAAATTTTGAAGTTTTGAAGGAAGA






TGGTGTGAAGGAATGGTAGAACAGGAAATGAAGTTAAGG






GTATGCCTTTTTGGGTTGAATGTTTATTTTATGGAATTA






AAGAATATGAAAGATCATACTCTAACCTGCAATATTAGG






TCAAATTTCATTTGGGGGTGCCACGAGCAAATACACTTG






AAAGGTGAGATTATTCATAAATAATCAATACTTGGGATT






ATTCACATAGGTTTGCGAATAGTTCGGATTATTCCCAAC






AATTTTTCCTTAAGATTATAATTAAAAAATCCCCAAAAG






ATGAAAAAAAGAGAAAGCATGTAAAACACGCGAATCAGA






CCGGTCCACTCTTGTTTTAATTTGAGACAATTTTGATGT






TGAGTCATCCCACACCAACCCCAAAAAATTCAACAACAA






ACTCTTATAATGATTCCCTCTACTCTACTAGAGTCTACA






CCAACCCACTTTCTCTTTGCCCACCAAAACTTTGGTTTG






GTAAGAACTAAGCCCTCTTCTTTCCCTTCTCTCTCTTAA






AAGCCTAAAATCCACCTAACTTTTTCAGCCAACAAACAA






CGCCAAATTCAGAGGAAGAATAATGGCTCAAGCTACTAC






CATCAACAATGGTGTCCATACTGGTCAATTGCACCATAC






TTTACCCAAAACCCAGTTACCCAAATCTTCAAAAACTCT






TAATTTTGGATCAAACTTGAGAATTTCTCCAAAGTTCAT






GTCTTTAACCAATAAAAGAGTTGGTGGGCAATCATCAAT






TGTTCCCAAGATTCAAGCTTCTGTTGCTGCTGCAGCTGA






GAAACCTTCATCTGTCCCAGAAATTGTGTTACAACCCAT






CAAAGAGATCTCTGGTACTGTTCAATTGCCTGGGTCAAA






GTCTTTATCCAATCGAATCCTTCTTTTAGCTGCTTTGTC






TGAGGTATTTATTTCTCAACTGCGAAAACAATCTCTATT






TGATATTGGAATTTATATTACATACTCCATCTTGTTGTA






ATTGCATTAGTACATACTTATGTTTTGACCTTTGTTCGT






TTGTTTGTTGAATTGGTAGTGTTGAGAATTTGAATCTAA






TTATTTGTTTTTCCATGTGAATTTAATCTGATTAAATCC






ACTTCTTATTTATGTTAAGTTGCAATGATGTTTGCCAAA






CGGTTATCATTGAAGGATAAGTTCGCCTACTTTTGACCC






TCCCAACTTCGCGTTGGTAGAGCCATTTTATGTTATTGG






GGGAAAGTAGAAAGATTTATTTGTTTTGCCATTCGAAAT






AGTAGCGTTCGTGATTCTGATTTGGGTGTCTTTATAGAT






ATGATATATGGGTTATTCATGTAATGTGTAGGTTTATGC






ATTATGTTGGATGCATGTCTGGTGTTATTGCTGTAAATG






GATGAATGTTGTTATTTGGAGACATTTTTTCATTCATTT






TTTCCCTTTTTAATTGGAACTGGAAGAGGGAAAGTTATT






GGGAGTAATTAAAAGGTTGTGAGTTCGATACACTGCATC






AAAGACGAAGAACTTGACATAGATGTTGAAGGCTAATCC






TTATCACTGCTTGAATTCAATATGTATCTGAAAATTTTA






CCCCTCTATATGCATCTGTTTTTGCTAATAAAGTGTTTT






TGGACTATCATGTTTTGTGATGCTTAAGAGGGTGATATT






ACTGAGATAAATGGAAATATCAAAATAACATCTATTGTG






AAGTAGTTTTAGAGGCTTTTGATTGGTGCTTCGACTTTG






GATTTACTTGCATCCTAGATTGACTCAGTTTGTGCAATC






TGAAAATGATTTCATCATGGTATGAATATGGTTCAAAAA






CAAGGCTGCATCTCATCGAACACGTTGTAAAGATTTAAA






ATTAATCAAATTGATATTTCTAGCATTGTAAAGGCTTAA






AAAACTGTATCTCAGGCTATATTAGGGATTCTCATGCTC






TTGACCGATATTTAGGTGTTACGATAACCACATCACTCC






TACGATCGTTACCACATGTTACCACATGTTTGCACTTTG






TTATGTGTTACAAGAGATAAGTGTTGCATGCAGTGGATC






CCTTGTGATTTTGTTCTAGGTAGACAGTGTTGTTTTTGA






ATTTCAAAGCAGGAATTATAACGAGATTTGATATTAGGG






TTTGAATTTTTTTAAAAGTTTTTTGCATTCCTCCGATTT






GCAACACGGTTTACCTACTGTTTATTTGAATTTTTTGTG






TGAGAAAAGGCTTACAGGCTTGCTCTTGTATATGTGTAT






GTATTTGCTTTGTGGTTAAATATGCTGCATGTTGTAATG






AAAACTCTGCCCGGGGATGGTGGGCTTACACGCCAAAGA






AAAAGATTGTTTTCCACAACTAAAAATATCCCATTGGCA






ACAGCGTGCAATTATTTAGGGAATGGTGTTAGAGCATTA






AAATTGGAAAATAAATGAGCTCTCATTTTGTTCAAACCA






TGAGAATTTTCCCCTGGTCCAATATTCAGCGTTTTGTTT






CATTTGTAAAAATTACGATCATATTTCTCTTTAGTGAAG






CAACTGATTGGAAAACTTTGGTATATGCCATGTTTCTTT






CCAAGTTAAAGAGTTCCCAGGCATCATCCTCAATGATCT






TCCTCTATATTCCTGTACAATATTGTTGATAGGAAGTTC






ATTCATGCCAAGGGATAACAATATGTCTCTTGCGAATTT






CTAGAAGACCAGAAATTTGTTGTGACCTGTGGAGTTCTT






CCAAAAGTATCCTCTGTGCGACGCATGAAAAAAGCCTTT






GGGCTAGACTACTGAGATGCAGCTGCCTGGTAATTCATG






CCTCTCTCCCAAGAGAGTACGAGAAGTCATTTATAGCCG






CTTAAGAGAGCCAAGGATCAATTTAGGCGTGTTCTATTT






CCATATCTTAATGTATCACTGAAGTTTAGCAAGTAAACA






AACATCACAATCCCTGATGCTTGCATAGTCATGGCAAAT






GTTATACTCTTTGTTTACATATGAAAAACCAGATATTAC






TCCATATTTTTAGAAACCAGCAACCAAAGGAGCTTAAAT






GGTCCCTGCTCCTAAGTCATATCTCTTGGCAATGGGGTG






TTTGTAGATCTTGAGTGCTGCCAGTCCACTTACTGTAAT






GCAATACATCAATATTGAGCTAGTTTCTCATGGGAAAAA






ACCATAGAAATGGGACAAATTTGATGTTAATGTTCTGTA






ATCCAACTTGAGGATTAGTTTTATCACATAAAAGCTACA






TTGAAAGTTCTATTATTATTTTGAGTTTGCATCTTATGT






TGTTTTTCCTTTGTGATTTTATCCATTTTCTTAACTAGT






TATTCGTTTCCTGAAGTTTTTAGTGTCATAACTCCTAAT






CACAATCATGCTACAGGGCACAACAGTGGTCGACAACTT






GCTGTATAGTGATGATATTCTTTATATGTTGGACGCTCT






CAGAACTCTTGGTTTAAAAGTGGAGGATGATAGTACAGC






CAAAAGGGCAGTCGTAGAGGGTTGTGGTGGTCTGTTTCC






TGTTGGTAAAGATGGAAAGGAAGAGATTCAACTTTTCCT






TGGTAATGCAGGAACAGCGATGCGCCCATTGACAGCTGC






GGTTGCCGTTGCTGGAGGAAATTCAAGGTTTGTCCAATT






ATATTCTTTATGTGAGTGTTGTTTTTTGTGTTAGTTTCA






ATCATGAAGGTACTAATGCAGAAGCCGTACCCCTGAAAT






TTTCTTATTTTGTATATATCAATTGGTAATTGATGTAAG






ATATTTTTCCGAGAGGAATAAAAAACAGGGGGATAGAGA






ATATTAAAGTATTGTTCTATCACATTAACTTTTTATCAA






AGGTGTACATTGTGTTTGTGAAGTTTATAGAGCTAAAGG






GATGGAAGGGAAGGGGATTGAAGAAGAGGAGAAAAGAAG






AAGATCCTCCTTTGAATACCAAGGTTTGAACGGAAGGGA






GAAGGAGGAAACTCTAAACAATATGGAGATGAACTGATG






AAGTTTTTGGATCAGAACCGCTTGAGAATCAGAGTTAAG






CCATGTGAAAGTCTATGAGCATGACTTCACCTGGTTAAT






AATTTTAAGCTCTCAACTTCTCATCCTCTTTTCTTTGTC






GAAAATGTCATGTCTTCATGTGATACGTGCTTACATAAT






CGTTTCTTTTGTAAAGCGATTGTCTCTCCAGATTTCTCC






CCTTACGAAAATAATCCTTGAAGGTTGAAGAAATCCCTT






CATTTCCTTTTCCCCTATTTCTCTACCCTTCCTACTTTG






GTGAAGGATTTTGTATCCCTCCCTTTTCATGGTCTATAG






TGTTAGATATTCAAACTTAAGCTTCTCAAGTTTCATGTG






GGTTCTGATTATTATTTTATATATGCATTACCAAGGATT






CAAGGTAATTTGAACCAATCAAGACCAGAACCGGATATG






AATTCTTCAACCTAGTCTGAACTTGTACATCTAAAACAT






GCTAGTTACAACTGAAATATGATCAACTTCTATAGCCTA






TAAGACTCTCACCTTCATTTGTAGGTTGCCACATAGCAC






GTATTGTCGATCCATCCATCCTCATTATTTGACTCATCA






AATAAAGGAACCACTCATGTGAAATTCCTGTCCTACAAA






ATAATCCATCTTCCTCATCTCATTTGTATTCATGTAGTT






TGCTTCCTCAATCCTACAAGTAAAAGGACAACTGCGATT






CAACTCTTGGACCTATTTGACAGTAAATCCACGAATATT






AGGACAATCACGTTGGTAATGAACCATCGCTTGGCGCTT






GAAACATTTGATTTCCTCAAAATCCTTTGCTTCCCCCAA






CATTTCATCCTTTGCTTTCCACATTAAAGTTGGTGCCCG






AACCTCCATAGCCACAAACTTGGTTGTAGACAACACACC






AACGTTTCTACCTCTAATAGAGATAGGATTTGTATAAGC






CTTACTCTTCTTAGATCCTTATGTTTCATAGACCTTTTT






CATCTTGCACGTATCATCAAAAGACAAGTTGGTATGTAT






CTCAGGCTTCACGCACAAGTCAACATCCTTATCACCATA






CCTCAATATGACAAGCCCTACCTCTCAATCTTCTACAAA






GCTATAGATCTTCCATCTCAATGCAAGGAACTTCAACAC






ACGTATAAACTTTTTTTGAATTTAATTGTTCAAAGGAAA






AAACCTTTCTTTCATGTGCATTTTTATGTCAACATAGCT






ATTAATCAACGTCTTTCCTCTTGTACGAGCTAATTCTCA






ATACCTTTAAGCCCACATGAAGCCTTCTTCTTGAGCTTG






AATTTAAAAAACTGGAAAATTTGCTTTTCGTACGGAGTT






CTTGTTGTTGTAAAAACACTCCGAACTTCTCTCCTATTC






ACGATGATCTTTTGGGTGTAAGGACATACTATCAAAATT






TTCTACGTTATCCTGAAGCCATGATCATCCACCTCGCAA






TATGCTCAACTTTCAGTTCACGCTGATTCAATATCTGCG






TGAATAGATTGATCAAGCTTGCCATTTGCTCAAGAATAG






TTGAGTTTTCCTCTTGTAATACTCGATTCCTCTCTTCTG






TTTTTTTAGTCATCCTACTATTTGCTAGCGACAATCTCA






CAAGAATATAAGAGGGGATTCTCATCTATTATAACGCAC






TACTCTGTACCTAAGGAACTAGTGTGGGTGTCTTATTTT






TGTCCTCTCCTCGTAGGATATAAAAGAGATGTGTATTTG






TGAATGATTCAACATAAAACAAAAGTATGTAGGCTCTTA






GATTATACCATCTCATTAACATATGATGAACTCTTACAT






ATGCTCCTTCACATATATTTGTTTTTTTGGGGTCATTTA






TTCTAGTAGTCCATTGATATTGAATCCCTTAGTTATGGC






ATTATTGTCCGTGCACTGTCTCAGGAGAATAGATGGATT






GTTATTGCTTTTTCTGTATCTGATGGTAATACAAAGATT






GCAACATTTGCTAGACCTTGCTGTTTGGATATAGAAAGA






AAATTATTTGCCATTCATTTCCAAGGGGTCGAATGTAGC






CTTATCCTTATTCGTGATAACAAAGAGATTGATTTGTAG






TCCTTACATTTGAAAATCCTGGACTTCACTGAATTTATG






TAACTGTTGCATGCCATGAAATGGAATACTTTATTGATT






ATGTGTTTGGGATATGTAAGCTGAAGAAGGCAATTTCCC






AGCTCCTATTAATGCTATCTACACTTCATATTATCCTTT






CTGATATAGTTTACTTTTCTTTGCATGTGTCGAATTAGT






TATGTGCTTGATGGAGTACCAAGAATGAGGGAGCGCCCC






ATTGGGGATCTGGTAGCAGGTCTAAAGCAACTTGGTTCA






GATGTAGATTGTTTTCTTGGCACAAATTGCCCTCCTGTT






CGGGTCAATGCTAAAGGAGGCCTTCCAGGGGGCAAGGTA






ATGTGACTAAACTTCTTTATGTTTTGTTAGATTTTGGGT






TTTACTCCATCTAATTCAATGAATGATGATTCATGCGTC






AATTTCTTGGTAGCAATTCCTTTCCCTACCTAACTATGA






CTTCTCTGATTGACCTTTTCTATGAGGTGGGGAATAGTG






TTTTTAATGTGAGGAAAAGAGAAACCCGGGGTATGAGCT






TTAGCATGATAGAGTATGTATTTGATACTAAAACTGCAA






ATTAAGTTGGAATCAAGAATAAGAAGACTTATACAGTAT






AAATCAACAGAGGTGTCTGCTGTGTATATGTGTAATAGA






CAGTTATAGTTAGCAGGAATTCAGGAGATAAAATGAAGA






TGGTGTTGATGAAACTTAACAGACAATTCAGAAAACAAA






GTTTGAGTAGTAAGTAGACTTTTGAGAGGCTGCTTCTCT






CTCAAATGAGCTATAAGTTCTAACAAAAGTCTCAATACA






TAATTTAGATAATAATCAGATGCCTCTCTCACGCTCCAT






CCCTTTATTATCTAGATTTCTTGATTTTTTTTCATAACT






TATGCAACTTATTTCAGCCTCTTCCTTCATTCCACCTTC






TACTTGAAATAAAATGCAATCTCTACCTTGTTTCTTTAT






GGTTTGTTCATTTTAATAAAGATTTAGTATGAAAGTCAA






TATTGCTTTTGCATTGTTGTTTGTCTAAGATCCTAATGG






CAAGTCCACATAAGATGTTTGTTGGTATATGCTAGGTTA






TTAGGATCGGGATTCTACTTAGGATCGTTGAGGAGGTAG






GATTGAAATAGGTAGAATCGGTTCGTACTTCGTAGGATT






GTGCCATGCTACAAATATGCATTGATGTGCTTTGGATTA






TTTGTTATCAATTATATTTGTTCTTCTGTTCAGTTTTAA






GGTGTAAGTAAAAACTTATTCGATTTCATTTATTAAGTT






TTGAAAAAAATACTTTAATAATCACTTTTAAACTGCAAA






TTGAAAAAAAATTGCATTTTTTAGTGATGTTTTTTTTTT






TTTGAATATCAGTGATGTTGATATAATTATTTTATAGAA






TATTTATACATAATTGAAATCTTGATTATATGAAAATAC






TTTACGATTGAAACTACTTTTATAGGATCGGATCGTTTG






ATTGTAGGATCTTAGAATCGTATTATGATCCTACCACCT






AAATTTTTGAGCTAGTTCTACCACATTATGACTCTACCT






AAGATCCGGATCGATTGTTTATTTTTAGATCGTAGAATC






GTAGATCAAAATCGAGACTCTAATATCTATGGGTATATG






TGTTAAATTATTAGTCAGTAGAACAATTCTCTTTTTCTT






GGTAAATAAAATCGTACGATACTTTAGTCCGGGGGGCGC






GCTTTGTGTCCTGTACGGTAAGTATCCTGTGACAAAACT






GTACTTCAGGTGTCTTCTTCACTCTTGGGAAAGTGTAAA






TGTCTTTTGTCCCGATTAAGGAAGATTTTATGAGAAATT






TTCCCACATGCTTGGCACCAATTTGTTTTTATTTAGTAG






AAGAAGAAATTATGTATAACATGCATACTCAGGATGGTA






GTGAATATGAAATGAAGAAAGGAGGTAAAGTTGCATGCT






GGAAACTTATAAAGAGATGATTCATTCAAAATTTTGATA






TTCCTAATAGCATAGTTGTGGTTTTCAATTTCACAGTCA






TGAAGTAAGAACCTCTCTAATATTATCCATTTGTTTTGT






GAATTGATCAAATTAGAACTACAATTTCAATGTTTGTTG






TTAATGAGAAGTTCTAGCATAGTTGTGGTTTTCAATTTC






ACAGTCATGAAGTAAGAACCTCTCTAATATTATCGATTT






GTTTTGTAAACTGTTTGCAGGTCAAGCTCTCTGGATCGG






TTAGTAGCCAATATTTAACTGCACTTCTCATGGCTACTC






CTTTGGGTCTTGGAGACGTGGAGATTGAGATAGTTGATA






AATTGATTTCTGTACCGTATGTTGAAATGACAATAAAGT






TGATGGAACGCTTTGGAGTATCCGTAGAACATAGTGATA






GTTGGGACAGGTTCTACATTCGAGGTGGTCAGAAATACA






AGTAAGTCTCTCATCTTATATTACATGTCCTTTTAACGT






GTCTCCATTAGTAGACTGAAAACACATGTAAATACATCA






GATCTCCTGGAAAGGCATATGTTGAGGGTGATGCTTCAA






GTGCTAGCTACTTCCTAGCCGGAGCCGCCGTCACTGGTG






GGACTGTCACTGTCAAGGGTTGTGGAACAAGCAGTTTAC






AGGTATAATGTTAACCCTTACCCTTCACATTGTTCTGCT






AAATTCTAGAGGACCCTTTCAATTCTGGGTGGGATAAGC






ACGGCAATTTGACCGCAAAAAAATTGCAAAATTATTCTG






CTGATAGAACATCTCGAGATGAGATCATATTGAGTTTTG






GCGTCAACATAAACCTAATCAAATAATGAAAAATACAAA






CATCATATGGTTTCTTTTGTCTTTATGACTAGACACTCT






CTATTATTCCTTGATTGGGATCTTATTTGAAATTGCTGT






GTAGCCTACACCTCATGTTCAGATTTTGTTCGTATACCA






GACTTTTCTTGATTGGGATCTTATTTGTCCCCTGGATTT






TGCATAGGGTGATGTAAAATTTGCCGAAGTTCTTGAGAA






GATGGGTTGCAAGGTCACCTGGACAGAGAATAGTGTAAC






TGTTACTGGACCACCCAGGGATTCATCTGGAAAGAAACA






TCTGCGTGCTATCGACGTCAACATGAACAAAATGCCAGA






TGTTGCTATGACTCTTGCAGTTGTTGCCTTGTATGCAGA






TGGGCCCACCGCCATCAGAGATGGTATGCTTAACTCTTT






TCATTGAACTGTGGCTTATGTAGACTCTTTCAAATATTG






ATAATGAAATTTAGTGTGTCATAAGAAAATCGGAATTTG






GACTTGTTTTTGTTTTGGAATATTCAAACAGCTAGAAAG






ATGTTTTTTTTGCTCTAATGGTGGTTAAACTATCACTGT






CCTTGATGGGAAATTATGATTTTTGCTGTCCCCAATGTG






TTTATTGGCATATCTTGATACAATTAAGTGAGGGACCAC






TTTGCACCATTAAGTTTCTCATAGTCATCACCATTTCTA






AATAATTAAAATTTAGTATTTTGTAGACTTGTTATGAAA






TGACGTTAATTTTTAACAATACTTAATGGTCTTAAAGGG






GTGTTTGGGAAATGACTGCTGATTAAAATTGTTTTGACT






AGATGATTTTTATCAACTGATTTGACCTATTGAATTTGA






ACATGCTTTTAGGAATAGCTTGTTCAAAAATAGCTTCTT






CAGAACAATAAGTTGTTTCAATCAACTAATATACCAAAC






ACTAACCAATTATTTACAATTGTGCCAAAATAAGCTAAA






ATTGTCAAATCAACTATTATGCAACCTCAGGATGTGTTC






CGGGGATATGAATTGAAACCCATCTTTGGCAGAGTAGAG






ATAAGACGAAAATTGATCCAATCTTAGGGATGAATGTTG






AGATATTATTTCCATAAATATACTGTGGTGGCATTTAGG






GTTTTTTATTTAACAAGGGGTGTTTAGTTTGGAGAACTT






TTTATTGAAAACCTGTTTTCTCCATATTCCCATACTGGG






TTGACAATGAAAATTTGAAAATTAGGGTTGAAAAGAATT






ATTCCTTCCATTATTAGCTTACAAACTTATATAGTTGGA






TGAAAATTAAATTTCATTCACTTTCACTCCATCTCCCTT






GGTAGCATTATCGTATTCCATCAAACAAAACAAAAGAAA






AGTAGTAATAATTAACGTTTAATTGGAAAATTGTTTCTC






ATGGAAAATGTTCTCCGCCAGACCAAATACTTTCGGAAC






GAGGAAGCATTTTGGAATAAAGAACCTTGTGCTTGGATT






AATATATTTGTCTATGAGATAGTTTTCTCTAGAGTTTAC






TTGTATGTTTATTAACTGAACACGCCTCCTTTGCAATCA






AAGAAAAAGGAATTATTTCACCTCTAAGCATACCGAAAA






CATCGACGCAAAATACATGTCAAGATGTGTAATGATTTT






GTTATGTGAATTAACAGTGGCTAGCTGGAGAGTGAAGGA






AACCGAACGGATGATTGCCATTTGCACAGAACTGAGAAA






GGTTAGCAGCCTTTTACATTCTCGAAAGCTGTAATTGTT






CTTGAGTAATATATATTCAAACTATAACTGATGTTATTT






TGCATTCCTATCAATACATTCAGCTTGGGGCAACAGTTG






AGGAAGGATCTGATTACTGTGTGATCACTCCGCCTGAAA






AGCTAAACCCCACCGCCATTGAAACTTATGACGATCACC






GAATGGCCATGGCATTCTCTCTTGCTGCCTGTGCAGATG






TTCCCGTCACTATCCTTGATCCGGGATGCACCCGTAAAA






CCTTCCCGGACTACTTTGATGTTTTAGAAAAGTTCGCCA






AGCATTGAGTAGCTATATACGAGATCCTTAAATTGTACG






CCGAAGGTTTTGATTTGAGTCTAATAGTAGATAAAAGGC






TATAAATAAACTGGCTTTCTGCTTGAGTAATTATGAAAT






TCTTTGTATTATGTTTGTGAGATTTTAAGTAGCTTATAA






ATTACAATGTACTAAAGTCTAGAAATAAGTTATGTATCT






TTTAAATCAATGAGAAATGCATACTTGAAAGGCTTGACC






TTGTATTCGTGACCTAAAGAGTACTAACTTTGGAGTTTC






CAAGTCATTTGTTTATCTCATTTTTTTTTAATTTTTGAT






TTAAATTGTTTATTTTCATGAGTAATCATGTATCTTTCT






TATTCTAACCAAATGTAATACTCCTTCCAACTCTCTTTA






AACGTCCACACTCTGGGCACAGAGTGTAATAGTGTGGTG






GTTGGAGTCTTTTAAGTGATTATAATAATTGTAAATGTG






GTAGTTAGAGTATTTTAAGTAATGTAGGTGGGGTATTAT






GGTCTTGTTGAACATAGGATATTTAGGTAAAAAATCTAT






GCAAAAAAAGGAAAGTAAGCAAATAAAGCGAATTGACCT






GAAAAGAAAAGTGGACATGTATAGTGAGTTGGAGGAAGT






ATTTTTAATTTCGGCAAATTAATCTTAAATGTCGTATTT






TCTTTTATGATAAGTTTTTCGAATACTTTTACTTTCATG






GGACAACTTTACCATTAATATCATCCTCACTTACCCCAT






TTAACAATCAACTGACATAATAATTAAAACATAAATCTA






ATCTTAAAGTTTTGGTCTAATGTCTCAATAATGATTAAT






TTTATCGGACAGATGCCCTCAATAAGTACTTAAAATTAA






TCCATTGTTTTTGCATGCTTTACTTAAATGTTTAATGAT






AAATAACTTTTGGTCTAAATTCTTTAGGAAATAAACGCT






AAAAAAGATTTAGAAACAGTCCCTATTAAACTAATTTGT






TACTTATATTTACAAAAGTTTCTATTTGTTCCATGAAAT






GTATACTACAAAAACTTGATATTTTTGCTTGTCATGTTC






ATTTTCATTTGGTTTGCAAAATGTTGTTTATATTGATTT






TGTGATGTTTATCTGATCTTCAATGCACCAAGGAAAAAT






ATAACTTTTCATTTTGTTGTGCTACCAAAGTCCATTAGT






ATTTAAAGTATGGCAAGAAAAAAAGATAAACAGTTGCTG






AAGACGTCAATTAAATTTCGATTAAAGATCAAACTAAAA






TTGATAAAAAGATGTAAGATGTTTGTTATTATGTAATAC






AATTTGACGTAGTTTTTGACGTTTTTATTTAAATATAAA






AATTGGCCTATTTTTAATTTAACTGTTGTTTGCGTTTTC






GAAAATCCTAATTTTCACGCATTTAAAGACTTTTTATGT






AATGAAAAATAATTAGAGTTTTAAAAAAGTAAACCTCCT






TTAATATAGACCCAAAAGAGACCCAAAGAGAACGCAACA






CATTGCCTAAGAGAAAAAAGTATGAGTTGATCAATAATA






AAAAAAATTTCGATCAATATCTCTCTTAAAACTATGAGG






CATGAGCAATGACAACCTATTTTAGTTTCCTAAATAAAA






TTTGGAGGATTGGTAGTTCCCATGGCAATGCAATTGAGT






TAAAATTAGGGTTTTAAAAAAAGTAAACATCCTTAAATC






ATAGATCCAAAGAGAACAACGCACACTACAACATAATTT






GTTTTTAGTAGGATATAT





11

Amaranthus

Genomic
38
ATATTTAATTTAAATGTCACTATTACAAATTTCTTATA




palmeri






12

Amaranthus

cDNA
1911
AAACTTTGGTTTGGTAAGAACTAAGCCCTCTTCTTTCCC




palmeri



TTCTCTCTCTTAAAAGCCTAAAATCCACCTAACTTTTTC






AGCCAACAAACAACGCCAAATTCAGAGAAAGAATAATGG






CTCAAGCTACTACCATCAACAATGGTGTCCATACTGGTC






AATTGCACCATACTTTACCCAAAACCCACTTACCCAAAT






CTTCAAAAACTCTTAATTTTGGATCAAACTTGAGAATTT






CTCCAAAGTTCATGTCTTTAACCAATAAAAGAGTTGGTG






GGCAATCATCAATTGTTCCCAAGATTCAAGCTTCTGTTG






CTGCTGCAGCTGAGAAACCTTCATCTGTCCCAGAAATTG






TGTTACAACCCATCAAAGAGATCTCTGGTACTGTTCAAT






TGCCTGGGTCAAAGTCTTTATCCAATCGAATCCTTCTTT






TAGCTGCTTTGTCTGAGGGCACAACAGTGGTCGACAACT






TGCTGTATAGTGATGATATTCTTTATATGTTGGACGCTC






TCAGAACTCTTGGTTTAAAAGTGGAGGATGATAGTACAG






CCAAAAGGGCAGTCGTAGAGGGTTGTGGTGGTCTGTTTC






CTGTTGGTAAAGATGGAAAGGAAGAGATTCAACTTTTCC






TTGGTAATGCAGGAACAGCGATGCGCCCATTGACAGCTG






CGGTTGCCGTTGCTGGAGGAAATTCAAGTTATGTGCTTG






ATGGAGTACCAAGAATGAGGGAGCGCCCCATTGGGGATC






TGGTAGCAGGTCTAAAGCAACTTGGTTCAGATGTAGATT






GTTTTCTTGGCACAAATTGCCCTCCTGTTCGGGTCAATG






CTAAAGGAGGCCTTCCAGGGGGCAAGGTCAAGCTCTCTG






GATCGGTTAGTAGCCAATATTTAACTGCACTTCTCATGG






CTACTCCTTTGGGTCTTGGAGACGTGGAGATTGAGATAG






TTGATAAATTGATTTCTGTACCGTATGTTGAAATGACAA






TAAGGTTGATGGAACGCTTTGGAGTATCCGTAGAACATA






GTGATAGTTGGGACAGGTTCTACATTCGAGGTGGTCAGA






AATACAAATCTCCTGGAAAGGCATATGTAGAGGGGGACG






CTTCTAGTGCTAGCTACTTCCTAGCAGGAGCCGCCGTCA






CTGGTGGGACTGTGACTGTCAAGGGTTGTGGAACAAGCA






GTTTACAGGGTGATGTAAAATTTGCCGAAGTTCTTGAGA






AGATGGGTTGCAAGGTCACCTGGACAGAGAATAGTGTAA






CTGTTACTGGACCACCCAGGGATTCATCTGGAAGGAAAC






ATCTGCGTGCTATCGACGTCAACATGAACAAAATGCCAG






ATGTTGCTATGACTCTTGCAGTTGTTGCCTTGTATGCAG






ATGGGCCCACCGCCATCAGAGATGTGGCTAGCTGGAGAG






TGAAGGAAACCGAACGGATGATTGCCATTTGCACAGAAC






TGAGAAAGCTTGGGGCAACAGTTGAGGAAGGATCTGATT






ACTGTGTGATCACTCCGCCTGAAAAGCTAAACCCCACCG






CCATTGAAACTTATGACGATCACCGAATGGCCATGGCAT






TCTCTCTTGCTGCCTGTGCAGATGTTCCCGTCACTATCC






TTGATCCGGGATGCACCCGTAAAACCTTCCCGGACTACT






TTGATGTTTTAGAAAAGTTCGCCAAGCATTGAGTAGCTA






TATACGAGATCCTTAAATTGTACGCCGAAGGTTTTGATT






TGAGTCTAATAGTAGATAAAAGGCTATAAATAAACTGGC






TTTCTGCTTGAGTAATTATGAAATTCTTTGTATTATGTT






TGTGAGATTTTAAGTAGCTTATAAATTACAATGTACTAA






AGTCTAGAAATAAGTTATGTATCTTTTAAATCAATGAGA






AATGCATACTTGAAAGGCTTGACCTTGTATTTGTGACCT





13

Amaranthus

cDNA
1554
ATGGCTCAAGCTACTGCCATCAACAATGGTGTCCAAACT




rudis

Contig

GGTCAATTGCACCATACTTTACCCAAAACCCACTTACCC






AAATCTTCAAAAATTGTTAATTTTGGATCAAACTTGAGA






ATTTCTCCAAAGTTCATGTCTTTAACCATTAAAAGAGTT






GGTGGGCAATCATCAATTATTCCCAAGATTCAAGCTTCA






GTTGCTGCTGCAGCTGAGAAGCCTTCATCTGTCCCAGAA






ATTGTGTTACAACCCATCAAAGAGATCTCTGGTACCATT






CAATTGCCTGGGTCAAAGTCTCTATCTAATCGAATCCTT






CTTTTAGCTGCTTTGTCTGAGGGCACAACAGTGGTCGAC






AACTTGCTGTATAGTGATGATATTCTTTATATGTTGGAC






GCTCTCAGAACTCTTGGTTTAAAAGTGGATGATGATAAT






ACAGACAAAAGGGCAGTCGTGGAGGGTTGTGGTGGTCTG






TTTCCTGTTGGTAAAGATGGAAAGGAAGAGATTCAACTT






TTCCTTGGAAATGCAGGAACAGCGATGCGCCCATTGACA






GCTGCGGTTGCCGTTGCTGGAGGAAATTCAAGCTATGTT






CTTGACGGAGTACCAAGAATGAGGGAGCGCCCCATTGGG






GATCTGGTAGCAGGTCTAAAGCAACTTGGTTCAGATGTT






GACTGTTTTCTTGGCACAAATTGCCCTCCTGTTCGGGTC






AATGCTAAAGGAGGCCTTCCAGGGGGCAAGGTCAAGCTC






TCTGGATCGGTTAGTAGCCAATATTTAACTGCACTTCTG






ATGGCTACTCCTTTGGGTCTTGGAGATGTGGAGATTGAG






ATAGTTGATAAATTGATTTCCGTACCGTATGTTGAAATG






ACAATAAGGTTGATGGAACGCTTTGGAGTATCTGTTGAA






CATAGTGATAGTTGGGACAGGTTCTTCATCCGAGGTGGT






CAGAAATACAAATCTCCTGGAAAGGCATATGTTGAGGGT






GACGCTTCAAGTGCTAGCTACTTCCTAGCTGGAGCTGCC






GTCACTGGGGGGACTGTGACTGTCAAGGGTTGTGGAACA






AGCAGTTTACAGGGTGATGTAAAATTTGCCGAAGTTCTT






GAGAAGATGGGTTGCAAGGTCACCTGGACAGACAATAGC






GTAACTGTTACTGGACCACCCAGGGAATCATCTGGAAGG






AAACATTTGCGCGCTATCGACGTCAACATGAATAAAATG






CCAGATGTTGCTATGACTCTTGCAGTTGTTGCCTTGTAT






GCAGATGGGCCCACCGCCATCAGAGATGTGGCTAGCTGG






AGAGTGAAGGAAACCGAACGGATGATTGCCATTTGCACA






GAACTGAGAAAGCTTGGGGCAACAGTTGAGGAAGGATCT






GATTACTGTGTGATCACTCCGCCTGAAAAGCTGATACCC






ACCGCCATCGAAACTTATGACGATCACCGAATGGCCATG






GCATTCTCTCTTGCTGCCTGTGCTGATGTTCCCGTCACT






ATCCTTGATCCGGGATGTACACGTAAAACCTTCCCGGAC






TACTTTGATGTCTTAGAAAAGTTCGCCAAGCAT





14

Amaranthus

Genomic
2425
TGATACAAAGATTGCAACATTTGCAAGACCTTGCTGTTC




rudis



GGATTTAGAGCGAAATCTATTTGCCATTAATTTCGAATG






GGTCGAATTTAGCCTTATCCTTATTCGTGATAACAAAGA






GATTGCTTTGAAGTCCTTACGTTTGAAAATCCTGGACTT






CACTGAATTAATGTAATTTTCCAGGATTTCTGTTACGTG






CCATGAAATGGAATACTTTATTGATTATGTGCTAGGGAT






AAATAAGCTTAAGAAGGCAATTTCCCAGGTCCTATTAAT






GCTACCTACACTTCATATTAACCTTTCTGATATAGTTTT






TCTTTTCTTTGCATGTATTGATTTAGCTATGTTCTTGAC






GGAGTACCAAGAATGAGGGAGCGCCCCATTGGGGATCTG






GTAGCAGGTCTAAAGCAACTTGGTTCAGATGTTGACTGT






TTTCTTGGCACAAATTGCCCTCCTGTTCGGGTCAATGCT






AAAGGAGGCCTTCCAGGGGGCAAGGTAATGTAATTAAAC






TTTCTTTTTGTTTTGTTAGATTTTGTGTTTTACTCAATT






TCTTGGTAGTACTTCTTTCCCTACCTAACTCCGACTTCT






CAGATTGACCTTTTTTAAGAGGTGGGGAATAGTGTTTCT






TAAGTGAGGAAAAGAGAAAGCCGGGGTATGAGCTTTAGC






ATGACATCGTATGTATTTGATATTGATACTGCAAATCAA






GTGGGAATCAAGCATAAAATAGCTTCAGAGGGATACATT






TTCTTTTCTTGCATGAAGTTATACAGCATAAATGATCAG






AGGTGTCTGCTGTGTATATGTGTAATAAGACTGTTATAG






TTAGCAGGAATGCAGGAGATAAATTATGAAGATGGTGTT






GATGAATCTTAAAAGACAATTCAGAAACCAAAGTTTGAG






TAGTAAGTGACTTTTGAGAGGTGTACTTCTCTCCCAAAT






GAGCTATAAGCTCTAACAAAAGTCTCAATACTAATCAGA






TGCCTCTCTCACGCTCCATCCCTTTATTTAGATTTCTTG






ATTTCTTTTTTATAACTTTCCCAACTTATTCCCCGCTTT






TCCTTCACGCTACCTTCTAACTGAAATAAAATGCAATTC






TTACCTGGTTTCTTTATGGCTTGTTAATTTTAATAAGGA






TCAAGTATAGTATGAAAGTAATTCTCTTTGGCATTAAGG






CTTTTGCATTGTTGTTTGTCTAAGATCCCAATGGCAAGT






TCACATAAGATATCTGTTGGTATATGTATAAAATAATTA






GTCAGTTGAACAATTTTCTTTTTCTTGGCAAATAAACTC






GTATGATACTTCACCGGGGGAGGGGGGGAGGGGGTTAGA






TTTGGTACGGTAAGTATCCTGTGTATTATTTTTCTTCAG






TTATTTTATTTAGTTGCTTTTTTGGGGTTACTTTTTTCT






CCATCTAGGATCCTGTATGTTAATGTTTCTTCACTTATT






TTATTTAGTTGCTTTTTTGGGGTTACATTTTTTTTCGAG






GGGCTACTGAGTTCATAAGATAAGGGTCTTGTGTATTAA






TATGCTCTTCACTTGGTGCTCGCTATTGGTGTAACTGTA






ATTCAGGTGTCTTCTTCACTCTTAAGATAAGGATGATTT






TATGAGAAATGTTTCCACATGCTTGGCACCAACTTGTTT






ATGTGTAGTAGTAGAAGAAATTATGTATAACATGCATAC






TCAGCATGGCAGTGACTAGTGAATAAGAATTGAAGAAAG






GAGGTAAAGTTGCATGCAAGAAACCTATAAAAAGATGAT






TCATTCAAAACCTTTTGCTATAGCCATGCTTACAAATTG






ATCAAATTAGAACTTCAATTTCAAAGTTTGTTGTTAATG






AGAAGTTAAGCATAGTTGTGATTTTCAATTTCACAGTCA






TGAAGTAAGAAACTCTCTAATATTATCGTTTCCTTTTTG






TAACCTGTTTGCAGGTCAAGCTCTCTGGATCGGTTAGTA






GCCAATATTTAACTGCACTTCTGATGGCTACTCCTTTGG






GTCTTGGAGATGTGGAGATTGAGATAGTTGATAAATTGA






TTTCCGTACCGTATGTTGAAATGACAATAAGGTTGATGG






AACGCTTTGGAGTATCTGTTGAACATAGTGATAGTTGGG






ACAGGTTCTTCATCCGAGGTGGTCAGAAATACAAGTAAG






TCTCTCATCTTACATTACATGTCCTTTTAACGTGTCTCC






ATTAGTAGACTGAAAACGCATGTAAATGCATCAGATCTC






CTGGAAAGGCATATGTTGAGGGTGACGCTTCAAGTGCTA






GCTACTTCCTAGCTGGAGCTGCCGTCACTGGGGGGACTG






TGACTGTCAAGGGTTGTGGAACAAGCAGTTTACAGGTAT






AATGTTAACCCTTACCCTTGACATTGTTCTACTAAATTC






TGGAGGACCCTTTCAATTCTGGGTGGGATAAGCACGACA






ATTTGAC





15

Amaranthus

Genomic
2013
AAATGATGCAAATTAATTGGGATTACATTTTGAAGATTG




rudis



ATATTGAAATTGAGAGAGAGTTAAAATGTATGGATGAGA






GGGTTGCAAATCAAATGAGACGGAGGGGGTAGATTAGCA






AAATTAATAAGTTATTTGAAGATTGAATTTGTAAAATAA






TTGATGAATCGGGCATTACATTTTGCTCATCCCATCCTA






CACCAACCCCAAAACAATTCAACAACAAACTCTTTTTAC






TACACCAACCCACTTTCTCTTTGCCCACCAAAACTTTGG






TTTGGTAAGAACTAAGCCCTCTTCTTTCTCTCCCCCTTC






TCCCTCTTAGAAGGCTAAAATCCACCTAACTTTTTCAGC






CAAGAACACAAAGCGAAATTCAGAGATAAAGAGAAACAA






TAATGGCTCAAGCTACTGCCATCAACAATGGTGTCCAAA






CTGGTCAATTGCACCATACTTTACCCAAAACCCACTTAC






CCAAATCTTCAAAAATTGTTAATTTTGGATCAAACTTGA






GAATTTCTCCAAAGTTCATGTCTTTAACCATTAAAAGAG






TTGGTGGGCAATCATCAATTATTCCCAAGATTCAAGCTT






CAGTTGCTGCTGCAGCTGAGAAGCCTTCATCTGTCCCAG






AAATTGTGTTACAACCCATCAAAGAGATCTCTGGTACCA






TTCAATTGCCTGGGTCAAAGTCTCTATCTAATCGAATCC






TTCTTTTAGCTGCTTTGTCTGAGGTATTTATTTCTCAAC






TGCTAAAACTTTCCAATCTCTATTTGATATTGGAATTTG






TATTACATATTCCATCTTGTTGTAATTGCATTAGTAGAA






AGTTATGTTTTGACCTTTGTTCATTTATTTGTTGAATTA






GTATTGTTGAGAATTTGAATGTAATTATTTTTTTTCCAA






TGTGAATTTAATCTGATTAAATCCACCTCTTATTTATGT






TAAGTTGCAATGAGGTTTGCCAAACGGTTATCATTGAAG






GATAAGTTTGCGTACTTCTGACCCTCCCAACTTCGCGTT






GGTAGAGCCATTTAATGTTATTGGGGGTGATTAAAAAGA






TGTATTTGTTTTGCCATTTGAAATAGTAGCGTTCGTGAT






TCTGTTTTGGGTGTCTTTATAGATATGATATATGGGTTA






TTCATGTAATGTGAAGGTTTATGTAATATCTTGGATGCA






TGTCTGGTGTTGTTTGTTGTAAATGGTTGAATGTTGTTA






TTTGGATACATTTTTTCATCCATTTTTTTTTCCCTTTTT






ACTTGGAACTGGAAGAGGGAGGGTTATTGGGAGTAATTG






AAAGGTTGTGAGTTTGAGACAGTGCATCCAAGACGAAGA






ACTTGAGATAGATGTTGAAGGCTAAACCTTATCACTGCT






TGAATTCATTATATATCTGAAAATTTTACTATATGCATC






CGTTTTGCTAATAAAGTGTTTTTGGACTATCATGTTTTG






TGATGCCCAAGAGGGTGATATTACTGTGATAAATGGAAA






TATCATAATAACATCTATTGTTAAGTAGTTTTAGAGGCT






TTTGATTGGTGCTTCGGCTTTGGTTTTACTTACCTCCTA






GAGAAGATTGATTCTGGTTGTGCAATCTGAACATTATTT






CATCATGGTATGAATATGGTTCAAAAACAAGGCTGCATC






GCATTGGACACGTTGTGAAGATTTAAAAAAATCGAATTG






ATATTTCTAGCATTGTAAAGGCTTAAATAAACTGTATTC






CAGGCTATATTAGGGATCTCTCATGCTTTTGACCGATAT






TAAGGTGTTACGATAACCGCATCACTCCTGCAATCGTGA






CCGCATGTTTTCACTCTATTATGTGTTACAAGAGATTAG






TGTTACATGAAGTGGATCCCCTGTGATTTTGTTCTAGGT






GGACAGTGTTTTTGCCGAATTTTATGGCAGGATTTATAA






AGAGATTGGATATTAGGGATTTGAATTTTTTAAAATGTT






TCCCGTACTCCTATGGTTTTCTACACACAGTTTACCGAC






TGTTTATTTGAATTTTTTGTTTGA





16

Amaranthus

Genomic
1530
CTGTTTATTTGAATTTTTTGTTTGAGAAAAGGCTTACAG




rudis



GCTTGCATATGTATATATGTATATTTATGTATTTGCTTT






GTGGTCAAATGTGCTGCATGTTGTAATGAAAACTCTGCC






CGGGGATGGCAGGCTTACATGCCAAAGAAAAAGATTGTG






TTCCAAAACAGAAAATATCCCATCGGCATCAGCCTGCAA






TTTTTTTGGGAATGGTATTAAATCTTGGAAATCTTCTCA






ATTTGTTCAAACCATGAGGATTTTTCCGTAATCCAATAA






TTAGCGCGTTGTTTCATTTGTAAAAATTACAATTTTTAA






TCATATTTCTCTTTAGTGAAGCAACTGATTGGAAAACTT






TGGTATCTGTCATGTTTCTTTCCAAGTTAAAGTGTTCCC






ATGCATCATCTTCAAAAATCTTTCATAATGTTTTTGTAC






AATATTTTCGATAGGAAGTTCATTCATGCCAAGGGTTAA






CAATATGTCACTTGTGAATTTCTAAAATAGCAGAAAACA






TATTGTGACCTGTAGAGTTCATCCCAAGGTATCCTCTGT






GCGAGGGATGAAAAAAGCCTCTGGTAATTTATGCTACTA






TCCCAAGATAGTATTATTAGAAGTCATTTATAGCCGCGT






AAGAGAGCCAAGGATCATTGTAGGCTTGTTCTATTTCCA






TATCTTAATGTAGCACCCAAGTATTCCTCAGCAATATGA






GTATTTTAAAGTCTTTCAAGTCATACATTATCTCTTGGC






AATGAGTCGTTTCTGGATTTTGAATGCTGCCAGTCCACT






AACTTACTGTAATGCAATACGTCATTATTCAGCTAGTTT






CTTATTGGAAAAAAACCATAAAAATGGGAAAAGTTTGAG






GTATATTTCTGTAATCCAACTTGAGGATTAGCTTTATCA






CATAAAAGCTACATTGCAAGATCTATTATTAGTTTGAAT






TTGCATCTTAAGTCTTGTTTTTCCTTAGTGATTTTTTCT






TTAACTTGTTATTCGTTTCCTGAAGTTTCCAGTGTCATA






ACTCCTAACCACAATCATGCTACAGGGCACAACAGTGGT






CGACAACTTGCTGTATAGTGATGATATTCTTTATATGTT






GGACGCTCTCAGAACTCTTGGTTTAAAAGTGGATGATGA






TAATACAGACAAAAGGGCAGTCGTGGAGGGTTGTGGTGG






TCTGTTTCCTGTTGGTAAAGATGGAAAGGAAGAGATTCA






ACTTTTCCTTGGAAATGCAGGAACAGCGATGCGCCCATT






GACAGCTGCGGTTGCCGTTGCTGGAGGAAATTCAAGGTT






TGTCCAATTATATATTTTATGCGAGTGTGATTTTTGTAA






TATTACTTTTTTTGTGTTAGTTTCAATCATGAAGCTGCT






TATGCAGAAGCCGTACCCCTGAAATTTTCTTATTTTGTA






TATATCAGTTGGTAATTGATGTAAGAGATTTTTCCGAGA






GGAATAAAAATCAGGGGGGGCGAGTACCTATAAACTGTA






ACCTCAAGAATATTAAACTATTGTTCTATCACATTAACT






TTTGATCAA





17

Amaranthus

Genomic
1145
TTCTCATTACCACCGTTTATTACAATCTACCAAACGGGC




rudis



CGTTAAGGTTTTCTTAACTAGGGGTGTTTAGTTTGGAGG






AAAGCTTTTTATTGGAAAACTGTTTTCTCCATATTCCTA






TAATGACTTGACTGGATTTAGATTGGAAAATTAGGGTTG






AAAACAATTTTTCCTTCCATTATAAGCTTATAATTTTAT






AGTTAGATGAAAATCAAATTTCATTCACTTTCACTCCAT






CTCCCTTGTTAGCATTATCGTTTTCCATTAAACAAAACA






AAAGAAAAGTACTAATCATTAACGTTTACCTGGAAAATT






ATTTCTAATGGTAATGTTCTCCGTCAGACCAAACACCTT






CGGAATGAGGAAGCATTATGGATTAAAGAACCTTGTGCT






TGGATTATTTTATTTGTCTATAAGATGCTTGTCTAGAGT






GTGCTTGTATGTTTATTAACTTATCACGCCTCCTTTGCT






ATCGAAGAAATATATATAAAAAAAAGAATTATTTCACCT






GTAAGCGTACCCCAAATATCGACGCAAAATGCATGTCAC






ATATGTGTAATGAATATGTTATGTGAATAAACAGTGGCT






AGCTGGAGAGTGAAGGAAACCGAACGGATGATTGCCATT






TGCACAGAACTGAGAAAGGTTAGCAGTCTTTTACATTCT






TGAAGGTTGTAAATAGTTCTTGAGTAAAATATATTCAAT






GTATAACTGATGTTCATTTGCATTCCTATCAATACTTCC






AGCTTGGGGCAACAGTTGAGGAAGGATCTGATTACTGTG






TGATCACTCCGCCTGAAAAGCTGATACCCACCGCCATCG






AAACTTATGACGATCACCGAATGGCCATGGCATTCTCTC






TTGCTGCCTGTGCTGATGTTCCCGTCACTATCCTTGATC






CGGGATGTACACGTAAAACCTTCCCGGACTACTTTGATG






TCTTAGAAAAGTTCGCCAAGCATTGAGTAGCCTATACGA






GATCTATAAATTGTACGCCGAAGGTTTTGATTTGAGACT






AATAGTAGATAAAAGGCTATTAAACTGGCTTTCTGCTCG






AGTAATTATGAAATTCTTTGTATTATGTTTGTAAGATTT






TAAGTAGCTTATAAATTACAATGTACTAAAGTCTAGAAA






TAAGTTATGTATGG





18

Amaranthus

Genomic
703
TCAAGTCAGTGGTCGGTAATGAAACGAATAATAAATGCT




rudis



AGAGAGAGAGAAAGTATGTGTACCGTAAATGGCATTGAG






TGCGGGTATTTATAGAACAATAAATGACCTGGTTGGTTG






TCCTAGGGGTATTTTAGTAATTTCACCCGTAGGTGGGTT






GAGTCAAGACGTTGACTGGGCTGATTGGGCCCTTTGACT






TAGCCCATAAATTTGGGGCTAGTTGACCCAATTACAATA






ATGATATTTATAATATATAAAGTCCGTCTCTGTTATTTT






CCAAACATCGAATAAAGTCAGCATCGACTCTCCATAAAA






AGGATCCATTTCTTTTAGTTTGTCTAATTGGGCTCATAA






AATACAAGGAACCCCTTTATATTTAGTAATTGATTGTGT






TAAAGAAATGCACCTCAAGAAAATGTTTAACTTGATAGT






TTGAGTCCTAATTTATTTTAGATATATTTTGCGGCTATT






CTTTACATACATGAATTTGTTACGATAAAGTGTGGAGGC






AATATACATCCTATTTATAAATGATTAAAATTAATCTCG






GCCAAGATTAGGTATAGTCTCGCTCACGACTAATCCCAA






TTCTTCATACAAACTTATGCCTTCTACGGAGTTTCACAA






ATTCTTGTAAGAGACGGTCTCTTTGAAAGATCATNTCTA






ATTGAACTGACCCATTAAAAAAAATATAGAGTAAAGTAG






A





19

Amaranthus

Genomic
231
GACGGTGTCTCAGGAGACTAGCTGGCGGAGTTTAGCATC




rudis



AACCGATATTGGGCATTAGACTCGATCAAGACTTCATAA






CCGAGACTCCGATTCTCTTCAAACCAATCATCTTATTTC






AACCCATGTTAGTTTAAGTCATCAAATATCAACCGAATA






AGTTTAGCTAATAAAAAGAAACGGAAGATAATATAATGC






ATTATTGGAAGACAGAAATATACTTCCTCCGTTCCA





20

Amaranthus

Genomic
208
TAAGCTTGAACGATGAATAGTGTCAGTAACGAAAATGTA




rudis



GCAACTATTTCAGAACGGAGGAAGTAATTTGAAACAAAG






AGAAAATTATTGTTCTTCAAGAAAAAGGTAGATAATAGT






AATAAATGAAAAGAGAGAATGAATTGTATGGTTGAAATT






GAGAGAGAGTTAAAATGTATGGATGAGATTTAAAGGAAG






TGGTGGGCCATAG





21

Amaranthus

Genomic
94
AATCCAATACGTTATTTTAATCATTTATATATTGATTTA




rudis



TACACGTCTAAAAATTATAAAAAAATTAAAATAATGAAA






ATATGCGATTAGACGA





22

Amaranthus

Genomic
40
ACTTGACTATATTTTGTCTTACACATTAGCCGCAATATA




rudis



T





23

Amaranthus

Genomic
3681
AAAGATGGAAAGGAAGAGATTCAACTTTTCCTTGGAAAT




rudis



GCAGGAACAGCGATGCGCCCATTGACAGCTGCGGTTGCC






GTTGCTGGAGGAAATTCAAGGTTTGTCCAATTATATATT






TTATGCGAGTGTGATTTTTGTAATATTACTTTTTTTTTT






GTGCTAGTTTCAATCATGAAGCTGCTAATGCAGAAGTGT






TGTAACCTCGCGAATATTAAACTATTGTGCTATCACATT






AACTTTTGATCAAAGATGTACACTGTGTTTGTATAGTTT






ATAGAGCTAAAGGGATGGAAGGGGTCGGGAGAGAAGAAG






AGGAGAAAAGAAGAAGATCCTCCATATGTATACCAAGTG






TTTGAACGGAAGGAAGAAGGAGGAAACTCTACACAATAT






GGAGATGAAGTTTTTGGATAGAAGCCGCTTGAGAATGAG






AGTTAATTCATGTGAAAGTCTATGAGAATGAGTTCACCT






GCTTAATAATTTTAAGCTCTCAACTTCTCATCCTCTTTT






CTTTGTCAAAAATATCATGTCTTCATGTGATAATTGCTT






ACATAATCGATTATTTTGTAAAGCGGTTGTCTCTCTAAA






TCTCTCCACTTACGAAAATAATTCTTCCTTGAAGGTTGA






AGAAATCCCTTCATTTCCTTTTCCTCTATTTCTCCACCC






TTCCTACTTTGGTGTAGCATTTAGTATCCCTCCATTTCC






ATGGCCTATAGTGTTAGATATATTCAAACTTAAGCATCT






CATGTTTTATGTGGGTTCTAATTGTTATTTATATATGCA






TTTCCAAGGATTCAAGGTAATTCGAACCAATCAAGCCCA






AAACAGGATATGAATTCTTCAACCTAGTCTGAACTTGTA






CATCTGAAACATACTAGTTGTAATTGAAATATACTCAAC






TGTAATAGGACTCTCACCTTCATTGTAGGTTGCCACATA






GCACGTATTGTCGATCCACCCATCCTTATTATTTGACAC






ATCAAATAAAGGATCCACTCACGTGGAACTCCTACCCTA






CAAAATAAACCATCTTCCTCATCTCATTTGTATTCACGT






AGTTGCTTCCTCAATCCTACAAGTAAAAGGAGAATTGTG






ATTCAACTTTTGGAGTTTGGACCTATTTTACTGTCAATC






AACGAATATTAGGACAATCACATTGGTCGCTTGGCGCTT






GAAACATTTGATTTCCTCAAAATCCTTTGCTTCCCCCAA






CTTTTCATCCTTTTCTTTCCACATTAAAGTAGGTGCCCG






AACCTCCATAGCCACAAACTTGGTTGTAGACGACATGCC






AACCTTTCTACCTTTAATAAAGATAGGATTTGTAAAAGC






CTTGCTCTTCTTAGATCCTTATCTTTCATAGACCATTGT






CATCTTGTACATATCATCAAAAGACAAGTTGGTATGTAA






CTCAGGCTTCTCGCACAAATTAACATCCTTCTCACCAAT






GAACCTCCCTAGTAGAAATGCCTCTCGTACCTCAATATG






ACAAGCCCTACCTCTCAAACTTCCACAAAGCTATAGATC






TTCCATCCTGATGCAAGGAACTTCAACGCACATGTAAAT






GTGGTTTGAATTTTAATGTTCAAAGGAAAAAACCTTTGT






TTCATGTGCATCTTTATGTCAGCATAGCTATTAATCAGC






TTCTTTTCTCTTGCACTAGCTATACTCTATACATTTAAG






CCAACAAGAAGCTTGCTTCTTGAGCTCAAGTTTAACAAA






CTTGAAAATTCAATTTTTGGGTGGAGTTCTTGTCGTAAA






AACACTCCAAACTTCTCTCCTATTCAAGATAATCTTTTG






GGTGTAAGGACATACTATCTAAATTTTCTACGTCATCTT






GAAGCCATGGTCATCCACCTAGCAATCTGCTCAACTCTC






GGTTCATGTTTATTCAACATCTGTGTGAATAGATTGATC






AAGCTTGCCATCTGCTCAAGGATAGTTGAGTTATTCTCT






TGTAATACTGGATTCCTCTCTTATGTTTTTTTAGTCATC






CTACTATTTGCTAGCAACAAACAATCTTACAAGAATATA






AGAGGGGATTCTCTTGTATTATAAGGCACTACTCAGAAC






CTAAGGAAGTAGTATGGGTGTCTTATTTTTGTCCTTGCC






TCGTAGGACATAAAAGAGAGTTGTATTTGTGAATGATTC






AACATAAACCAAAAGTATGTAGGCTCTTAGGTTATACCA






TCTCATTAATATATGATGAAATCTTACGTATATTCCTTC






ACATATATTTGTTTCTTTGGGGTCATTTATTGTAGCAGG






TCATTGATATGGAATGCCTTAGTTATGGCATTATTGTAC






GTGCACTGTCTCAGGAGAATAGATGGACTGTTTATGCTT






TTTCGCTATTTGATGGTAATACAAAGATTGCAATATTTG






CAAGACCTTGCTGTTCGGATATAGAGCAAAATCTATTAC






CTCGATGCCATTAATTTTGAAGGGATCGAATGTATCCTT






ATCCTTATTCATGATAACAAAGAGATTGCTTTGAAGTCC






TTACGTTTGAAAATCCTGGACTTCACTGAATTAATGTAA






ATTTCAGGTTTTCTGTTGCGTGCCATGAAATGGAATACT






TTATTGCTTATGTGCTGGGAATAAGTAAGCTTAAGAAGG






CAGTTTCCCAACTCCTATTAATGGCACCTACACTTTATA






TTATCCTTTCTGATGTAGTTTTTCTTTTCCTTGCATGTG






TTGATTTAGCTATGTTCTTGACGGAGTACCAAGAATGAG






GGAGCGCCCCATTGGGGATTTGGTAGCAGGTTTGAAGCA






ACTTGGTTCAGATGTTGACTGTTTTCTTGGCACAAATTG






CCCTCCTGTTCGGGTCAATGCTAAAGGAGGCCTACCAGG






GGGCAAGGTACTGTAATTATATTTTCTTTTTGTTAAGTT






AGATTTTGTGTTTTACTCCATCTAATTCGATGAATGATG






ATTCATACGTCAATTTCTTGGTAGTACTTCCTTTCCCTA






CCTAACTCTGACTTCTCTGATTGACCTTTTCTGTGACGT






GGGGAATAGAGTTTTTATTAAGTGAGGAAAAGAGAAACC






CGGTGTATGAGCTTTAGCATGACAGAATATGTATTTGAT






ATTTATACTGCAAATTAAGTTGGAATCAAGAATAAAATA






GCTTCAGTTGGAGACAGTTTCTTTTCTTGCATGAAGTTT






ATACAGCATAAATCATCAGAGGTGTCTGCTGTGTATGTG






TAATAGACTGTTATAGTTAGCAGGAATGCAGTAGATAAA






ATGAAGATGGTGTTGATAAAGCTTAACAGACAATTCAAA






AAACAAAGTTTGAGTAGTAAGTAGACTTTTGAAAGGCGT






GTTTCTCTCCCAAATGAGCTATAAGTTCTAACAAAAGTT






TGAATACTTATCAGATGCCTCTCTCACGCTCTATCCCTT






AATTCAGATTTCTTGATTTCTTTTTTATAACTTTCCCAA






CTTATTTCCGCCTTTTTCTTCATGCCACCTTTTAACTGA






AATAAAATGCAATTCCTACCTTGTTTCTTTAAGGCTTGT






ACATTTTATTAAGGACTTAGTATGAAAGTAATTCTCTTT






GCATTAAGGCTTTTGCATTGTTGTTTGTCTAAGATCCCA






ATGGCAAGTCCACTTAAGATATCTGTTGGTATTAGGAAT






GGTCACGTGTCCAGGACCCTGTTGGACCCGCCCCAGACC






CGCCCCTTTTTTAAG





24

Amaranthus

Genomic
589
TGTGTAAAAAACGAAAACCCAGAGAGGTGAAACACCGGA




rudis



AGACACCTAACTTTTTCAGCTAAGCACACAAAGCGAAAT






TCAGAGATAAAGAGAAACAATAATGGCTCAAGCTACTGC






CATCAACAATGGTGTCCAAACTGGTCAATTGCACCATAC






TTTACCCAAAACCCACTTACCCAAATCTTCAAAAATTGT






TAATTTTGGATCAAACTTGAGAATTTCTCCAAAGTTCAT






GTCTTTAACCATTAAAAGAGTTGGTGGGCAATCATCAAT






TATTCCCAAGATTCAAGCTTCAGTTGCTGCTGCAGCTGA






GAAGCCTTCATCTGTCCCAGAAATTGTGTTACAACCCAT






CAAAGAGATCTCTGGTACCATTCAATTGCCTGGGTCAAA






GTCTCTATCTAATCGAATCCTTCTTTTAGCTGCTTTGTC






TGAGGTATTTATTTCTCAACTACTAAAACTTTCCAATCT






CTATTTGATATTGGAATTTATATTATAGCTGCTTTGGAA






TTTATAAAAACAGGTATGAGTATTAAATTAAATTATCAA






GTTGAAGAAAGAGGATTTTTGAGGGGTTTTAATGGTGGT






GGTG





25

Amaranthus

Genomic
479
GAAACTTATGACGATCACCGAATGGCCATGGCATTCTCT




rudis



CTTGCTGCCTGTGCTGATGTTCCCGTCACTATCCTTGAT






CCGGGATGTACACGTAAAACCTTCCCGGACTACTTTGAT






GTCTTAGAAAAGTTCGCCAAGCATTGAGTAGCCTATACG






AGATCTATAAATTGTACGCCGAAGGTTTTGATTTGAGAC






TAATAGTAGATAAAAGGCTATTAAACTGGCTTTCTGCTC






GAGTAATTATGAAATTCTTTGTATTATGTTTGTAAGATT






TTAAGTAGCTTATAAATTACAATGTACTAAAGTCTAGAA






ATAAGTTATGTATGGGTTATGAATTATGATGCTGAAATC






AATGAGAAATGCATACTTGAAAGGCTTGACCTTGAATTT






GTGACCTAAAGAGTGGTAACTTTGGAGTTTCCAAGTCAT






GTTGTTTATCTTAGTTTTTTTATATTGTTTATTCAAACT






GTTTATTTTCA





26

Amaranthus

Genomic
473
CTCTAATATTATCGTTTCCTTTTTGTAACCTGTTTGCAG




rudis



GTCAAGCTCTCTGGATCGGTTAGTAGCCAATATTTAACT






GCACTTCTGATGGCTACTCCTTTGGGTCTTGGAGATGTG






GAGATTGAGATAGTTGATAAATTGATTTCCGTACCGTAT






GTTGAAATGACAATAAGGTTGATGGAACGCTTTGGAGTA






TCTGTTGAACATAGTGATAGTTGGGACAGGTTCTTCATC






CGAGGTGGTCAGAAATACAAGTAAGTCTCTCATCTTATA






TTACATGTCCTTTTAACGTGTCTCCATTAGTAGACTGAA






AACGCATGTAAATGCATCAGATCTCCTGGAAAGGCATAT






GTTGAGGGTGACGCTTCAAGTGCTAGCTACTTCCTAGCT






GGAGCTGCCGTCACTGGGGGGACTGTGACTGTCAAGGGT






TGTGGAACAAGCAGTTTACAGGTATAATGTTAACCCTTA






CCCTT





27

Amaranthus

Genomic
417
TCATATTGAGTTTTGGCGCCAACATAGACCTAATCAAAT




rudis



AATGAAAAATACAAACAACATCATATGGTTTCTTTTGTC






TTTATGACTAGACACTCTTTATTATTCCTTGATTGGGAT






CTTATTTTGAATGGTTGTTTAGCCTACACCTCATGTTCA






GATTTTGTTCGTATACCAGACTTTTCTTGATTGCGATCT






TATTTGTCCCCTGGATTTTGCATAGGGTGATGTAAAATT






TGCCGAAGTTCTTGAGAAGATGGGTTGCACGGTCACCTG






GACAGAGAATAGCGTAACTGTTACTGGACCACCCAGGGA






ATCATCTGGAAGGAAACATTTGCGCGCTATCGACGTCAA






CATGAATAAAATGCCAGATGTTGCTATGACTCTTGCAGT






TGTTGCCTTGTATGCAGATGGGCCCAC





28

Amaranthus

Genomic
224
TTATCACGCCTCCTTTGCTATCGAAGAAATATATATAAA




rudis



AAAAAGAATTATTTCACCTGTAAGCGTACCCCAAATATC






GACGCAAAATGCATGTCACATATGTGTAATGATTTTTTG






TGTGAATAAACAGTGGCTAGCTGGAGAGTGAAGGAAACC






GAACGGATGATTGCCATTTGCACAGAACTGAGAAAGGTT






AGCAGCCTTTTACATTCTTGAAGGTTGTA





29

Amaranthus

cDNA
2086
ACCACCATCACCATTAAAACCCCTCAAAAATCCTCTTTC




rudis



TTCAACTTGATAATTTAATTTAATACTCATACCTGTTTT






TATAACCCGTAAATCCAGTGTAAAGCTTTGTTAAATTCA






AGCAAAATTGCCAATACACTATGAAACTCTCGAAGATAA






CTGTGTAAAACGAAACCCAGAGGTGAAACACCGGAAGAC






ACCAACTTTTTCAGCCAAGCAAACAAAGCAAATTCAAAA






AAGAGAAAGAATAATGGCTCAAGCTACTACCATCAACAA






TGGTGTCCAAACTGGTCAATTGCACCATATTTTACCCAA






AACCCACTTACCCAAATCTTCAAAAACTCTTAATTTTGG






ATCAAACTTGAGAATTTCTCCAAAGTTCATGTCTTTGAC






CAATAAAAGAGTTGGTGGGCAATCATCAATTGTTCCCAA






GATTCAAGCTTCTGTTGCTGCTGCAGCTGAGAAGCCTTC






ATCTGTCCCAGAAATTGTTTTACAACCCATCAAAGAGAT






CTCTGGTACTGTTCAATTGCCTGGGTCAAAGTCTTTATC






CAATCGAATCCTTCTTTTAGCTGCTTTGTCTGAGGGCAC






AACAGTGGTCGACAACTTGCTGTATAGTGATGATATTCT






TTATATGTTGGACGCTCTCAGAACTCTTGGTTTAAAAGT






GGAGGATGATAATACAGCCAAAAGGGCAGTCGTGGAGGG






TTGTGGTGGTCTGTTTCCTGTTGGTAAAGATGGAAAGGA






AGAGATTCAACTTTTCCTTGGTAATGCAGGAACAGCGAT






GCGCCCATTGACAGCTGCGGTTGCCGTTGCTGGAGGAAA






TTCTAGTTATGTGCTTGATGGAGTGCCAAGAATGAGGGA






GCGCCCCATTGGGGATCTGGTAGCAGGTCTAAAGCAACT






TGGTTCAGATGTTGACTGTTTTCTTGGCACAAATTGCCC






TCCTGTTCGGGTTAATGCTAAAGGAGGCCTTCCAGGGGG






CAAGGTCAAGCTCTCTGGATCGGTTAGTAGCCAATATTT






AACTGCACTTCTCATGGCTACTCCTTTGGGTCTTGGAGA






CGTGGAGATTGAGATAGTTGATAAATTGATTTCTGTACC






GTATGTTGAAATGACAATAAGGTTGATGGAACGCTTTGG






AGTATCTGTAGAACATAGTGATAGTTGGGACAGGTTCTA






CATACGAGGTGGTCAAAAATACAAATCTCCTGGAAAGGC






ATATGTTGAGGGTGACGCTTCAAGTGCTAGCTACTTCCT






AGCTGGAGCCGCCGTCACTGGTGGGACTGTGACTGTCAA






GGGTTGTGGAACAAGCAGTTTACAGGGTGATGTAAAATT






TGCCGAAGTTCTTGAGAAGATGGGCTGCAAGGTCACCTG






GACAGAGAATAGCGTAACTGTTACGGGACCACCCAGGGA






TTCATCTGGAAGGAAACATCTGCGCGCTGTCGACGTCAA






CATGAACAAAATGCCAGATGTTGCTATGACTCTTGCAGT






AGTTGCCTTGTATGCTGATGGGCCCACTGCCATCAGAGA






TGTGGCTAGCTGGAGAGTGAAGGAAACCGAACGGATGAT






TGCCATTTGCACAGAACTGAGAAAGCTTGGGGCAACAGT






TGAGGAAGGATCTGATTACTGTGTGATCACTCCGCCTGA






AAAGCTAAATCCCACCGCCATCGAAACTTATGACGATCA






CCGAATGGCCATGGCATTCTCTCTTGCTGCCTGTGCAGA






TGTTCCCGTCACTATCCTTGATCCGGGATGCACCCGTAA






AACCTTCCCGGACTACTTTGAAGTTTTAGAAAAGTTCGC






CAAGCATTGAGTAACATATGGGTTCTTTAAATTGTACGC






CAAAGGTTTTGATTTGAGACTAATAGTAGATAAAAGGCT






ATAAACTGGCTTTATGCTTGAGTAATTATGAAATTCTTT






GTATTATGTTTGTAAGATTTTAAGTAGCTTATAAATTAC






AATGTACTAAAGTCTAGAAATAAGTTATGTATGGGTTAT






GAATTATGATGCTGAAATCAATGAGAAATGCATACTTGA






AAGGCGAAAAAAAAAAGAAAAAAAAACAAAACATGTCGG






CCGCCTCGGTCTCTACTGA





30

Amaranthus

cDNA
1960
CTTTGGTTTGGTAAGAACTTAGCCCTCTTCTTTCTCTCC




rudis



TCTCTCTCTCTCAGAAGGCTAAAATCCACCTAACTTTTT






CAGCCAAGAAACAAAGCGAAATTCAGAGGTAAAGAGAAA






GAATAATGGCTCAAGCTACTACCATCAACAATGGTGTCC






AAACTGGTCAATTGCACCATACTTTACCCAAAACCCACT






TACCCAAATCTTCAAAAACTGTTAATTTTGGATCAAACT






TTAGAATTTCTCCAAAGTTCATGTCTTTAACCAATAAAA






GAGTTGGTGGGCAATCATCAATTATTCCCAAGATTCAAG






CTTCAGTTGCTGCTGCAGCTGAGAAACCTTCATCTGTCC






CAGAAATTGTGTTACAACCCATCAAAGAGATCTCTGGTA






CCATTCAATTGCCTGGGTCAAAGTCTCTATCTAATCGAA






TCCTTCTTTTAGCTGCTTTGTCTCAGGGCACAACTGTGG






TCGACAACTTGCTGTATAGTGATGATATTCTTTATATGT






TGGACGCTCTCAGAACTCTTGGTTTAAAAGTGGAGGATG






ATAATACAGACAAAAGGGCAGTCGTGGAGGGTTGTGGTG






GTCTGTTTCCTGTTGGTAAAGATGGAAAGGAAGAGATTC






AACTTTTCCTTGGAAATGCAGGAACAGCGATGCGCCCAT






TGACAGCTGCGGTTGCCGTTGCTGGAGGAAATTCAAGCT






ATGTTCTTGACGGAGTACCAAGAATGAGGGAGCGCCCCA






TTGGGGATCTGGTAGCAGGTCTAAAGCAACTTGGTTCAG






ATGTTGACTGTTTTCTTGGCACAAATTGCCCTCCTGTTC






GGGTCAATGCTAAAGGAGGCCTTCCAGGGGGCAAGGTCA






AGCTCTCTGGATCGGTTAGTAGCCAATATTTAACTGCAC






TTCTGATGGCTACTCCTTTGGGTCTTGGAGATGTGGAGA






TTGAGATAGTTGATAAATTGATTTCCGTACCGTATGTTG






AAATGACAATAAGGTTGATGGAACGCTTTGGAGTATCTG






TTGAACATAGTGATAGTTGGGACAGGTTCTTCATCCGAG






GTGGTCAGAAATACAAATCTCCTGGAAAGGCATATGTTG






AGGGTGACGCTTCAAGTGCTAGCTACTTCCTAGCTGGAG






CCGCCGTCACTGGGGGGACTGTGACTGTCAAGGGTTGTG






GAACAAGCAGTTTACAGGGTGATGTAAAATTTGCCGAAG






TTCTTGAGAAGATGGGTTGCAAGGTCACCTGGACAGACA






ATAGCGTAACTGTTACTGGACCACCCAGGGAATCATCTG






GAAGGAAACATTTGCGCGCTATCGACGTCAACATGAATA






AAATGCCAGATGTTGCTATGACTCTTGCAGTTGTTGCCT






TGTATGCAGATGGGCCCACCGCCATTAGAGATGTGGCTA






GCTGGAGAGTGAAGGAAACCGAACGGATGATTGCCATTT






GCACAGAACTGAGAAAGCTTGGGGCAACAGTTGAGGAAG






GATCTGATTACTGTGTGATCACTCCGCCTGAAAAGCTGA






TACCCACCGCCATCGAAACTTATGACGATCACCGAATGG






CCATGGCATTCTCTCTTGCTGCCTGTGCTGATGTTCCCG






TCACTATCCTTGATCCGGGATGTACACGTAAAACCTTCC






CGGACTACTTTGATGTCTTAGAAAAGTTCGCCAAGCATT






GAGTAGCCTATACGAGATCTATAAATTGTACGCCGAAGG






TTTTGATTTGAGACTAATAGTAGATAAAAGGCTATTAAA






CTGGCTTTCTGCTCGAGTAATTATGAAATTCTTTGTATT






ATGTTTGTAAGATTTTAAGTAGCTTATAAATTACAATGT






ACTAAAGTCTAGAAATAAGTTATGTATGGGTTATGAATT






ATGATGCTGAAATCAATGAGAAATGCATACTTGAAAGGC






GAAAAAAAAAAGAAAAAAAAACAAAACATGTCGGCCGCC






TCGGTCTCTA





31

Amaranthus

cDNA
939
CATCAACCTAGAATGCCCATATTTTACATGTTTAGCATT




spinosus



AACCCTAGAACATGAAACATAATGTGGGTGTTGAAATGC






TAAATACAATAAAGTATCAAATTGTTTAGCAGGATTATC






ATCACCTAAATTATCAGAACTCTCTAAAGGGTACCCTAA






AGCTTGTTTAACCTCAAATAAATAATCATCAATCCAAAT






TTTATCATTTTGATTAAGCTTTGAAGAGGGTAAACAAGA






ACTTAATAATGGGAATTGTTTAAGGGACATTTGAGGACT






ATTTAAGAATCTTTGAGCTAGTTTTGCATCATCTAATGG






TGGTTTAAGGATGTATTTTCTAGGGGGTGCTTTTTCTTT






GGGGATATTACTTTTTCTTTCAGCTAGTTCTTTTAGGAG






TCTTTGAGGGCTAGTTTTTGGGAGTTCTTGAGGGTCTAT






GGATGAAACAGCAAGAATTTGGTGATAATGGAAAGTGGG






CTGGAGTTTTTTGATGGGAATTTGGAGGGAAAATGATGG






GAAGGATGAAGTAAAGGAAACATCAGTGGTTTTTGAGAT






GGGTTTAAAAGGGGATGAGAGGTCCATTGTAAGAAGAGA






AATGAGAGGAAAAAGATGGAGTTTTGAGGATTGTTATGG






GAGCTTTAATGGCGGATTGGACGGGACGCCATTGAAGTT






GATGGAGAGTGAGAAAATGGAGGGTTTTAGAGGGTTCTA






GTGAAGAATTGTGGAATTGGGAATTGAGGATAAGGTTGA






TGGAACGCTTTGGAGTATCCGTAGAACATAGTGATAGTT






GGGACAGGTTCTACATCCGAGGTGGTCAGAAATACAAAT






CTCCTGGAAAGGCATATGTAGAGGGGGACGCTTCTAGTG






CTAGCTACTTCCTAGCAGGAGCCGCCGTCACTGGTGGGA






CTGTGACTGTCAAGGGTTGTGGAACAAGCAGTTTACAGG






GTG





32

Amaranthus

cDNA
381
TCCTGTTCGGGTCAATGCTAAAGGAGGCCTTCCAGGGGG




spinosus



CAAGGTCAAGCTCTCTGGATCGGTTAGTAGCCAATATTT






AACTGCACTTCTCATGGCTACTCCTTTGGGGTCTTGGAG






ACGTGGAGATTGAGATAGTTGATAAATTGATTTCTGTAC






CGTATGTTGAAATGACAATAAGGTTGATGGAACGCTTTG






GAGTATCCGTAGAACATAGTGATAGTTGGGACAGGTTCT






ACATCCGAGGTGGTCAGAAATACAAATCTCCTGGAAAGG






CATATGTAGAGGGGGACGCTTCTAGTGCTAGCTACTTCC






TAGCAGGAGCCGCCGTCACTGGTGGGACTGTGACTGTCA






AGGGTTGTGGAACAAGCAGTTTACAGGGTG





33

Amaranthus

cDNA
966
CAGCGATGCGCCCATTGACAGCTGCGGTTGCCGTTGCTG




thunbergii



GAGGAAATTCTAGTTATGTGCTTGATGGAGTGCCAAGAA






TGAGGGAGCGCCCCATTGGGGATCTGGTAGCAGGTCTAA






AGCAACTTGGTTCAGATGTTGACTGTTTTCTTGGCACAA






ATTGCCCTCCTGTTCGGGTTAATGCTAAAGGAGGCCTTC






CAGGGGGCAAGGTCAAGCTCTCTGGATCGGTTAGTAGCC






AATATTTAACTGCACTTCTCATGGCTACTCCTTTGGGTC






TTGGAGACGTGGAGATTGAGATAGTTGATAAATTGATTT






CTGTACCGTATGTTGAAATGACAATAAGGTTGATGGAAC






GCTTTGGAGTATCTGTAGAACATAGTGATAGTTGGGACA






GGTTCTACATACGAGGTGGTCAAAAATACAAATCTCCTG






GAAAGGCATATGTTGAGGGTGACGCTTCAAGTGCTAGCT






ACTTCCTAGCTGGAGCCGCCGTCACTGGTGGGACTGTGA






CTGTCAAGGGTTGTGGAACAAGCAGTTTACAGGGTGATG






TAAAATTTGCCGAAGTTCTTGAGAAGATGGGCTGCAAGG






TCACCTGGACAGAGAATAGCGTAACTGTTACGGGACCAC






CCAGGGATTCATCTGGAAGGAAACATCTGCGCGCTGTCG






ACGTCAACATGAACAAAATGCCAGATGTTGCTATGACTC






TTGCAGTAGTTGCCTTGTATGCTGATGGGCCCACTGCCA






TCAGAGATGTGGCTAGCTGGAGAGTGAAGGAAACCGAAC






GGATGATTGCCATTTGCACAGAACTGAGAAAGCTTGGGG






CAACAGTTGAGGAAGGATCTGATTACTGTGTGATCACTC






CGCCTGAAAAGCTAAATCCCACCGCCATCGAAACTTATG






ACGATCACCGAATGGCCATGGCATTCTCTCTTGCTGCCT






GTGCAGATGTTCCCGTCACTATCCTTGATC





34

Amaranthus

cDNA
484
CACCCAACTTTTTCAGCCAACAAACAACGCCAAATTCAG




thunbergii



AGAAAGAATAATGGCTCAAGCTACTACCATCAACAATGG






TGTCCAAACTGGTCAATTGCACCATATTTTACCCAAAAC






CCACTTACCCAAATCTTCAAAAACTCTTAATTTTGGATC






AAACTTGAGAATTTCTCCAAAGTTCATGTCTTTGACCAA






TAAAAGAGTTGGTGGGCAATCATCAATTGTTCCCAAGAT






TCAAGCTTCTGTTGCTGCTGCAGCTGAGAAGCCTTCATC






TGTCCCAGAAATTGTTTTACAACCCATCAAAGAGATCTC






TGGTACTGTTCAATTGCCTGGGTCAAAGTCTTTATCCAA






TCGAATCCTTCTTTTAGCTGCTTTGTCTGAGGGCACAAC






AGTGGTCGACAACTTGCTGTATAGTGATGATATTCTTTA






TATGTTGGACGCTCTCAGAACTCTTGGTTTAAAAGTGGA






GGATGATAATACAGCC





35

Amaranthus

cDNA
2329
CCCAGGAGCATCCAAATGTTTCATTAATAGCCTCTCGGC




viridis



CATCACAAGATCCTGGATCTTTTGGCCAAGATACTCCAG






TCGCTCAAAACAGAACCTAGGATGTTCAAACTTGTATTT






CGATGGATGTAGGAAACATAGCTGGAGCCCAAGTCCAAG






CTCGATATTCCTTGCTTCAGTGATCTCTGGAAGTCGATC






ATTCTTTGGCAAAGGATAACCCAATATTTTCATAACTTG






TGGTCTGCAATCAAAATCCCAAATGTTTCCTCTGAACCG






ATGCATGCCTGGAGGCACACAAGCTCTAAAAACCCTCGG






ATGAGCAAAAAGAGCATCCTCGGGAGGCCTATAGGTAGC






TACATCTTGCCAATTGAGTTTTCTGCCTTCAAATTCCAC






AGAAACATAATCAACATCTTCGAGCTGCCTTCTTTTCTT






TGGTTGGCATTCTTCATCTTCTGGATCCATCCCAAACAC






TTCAAATAGTACACGATAAACTTCCGGCATCCCATAACA






CAAGTATATAGCACCAAACAAAGCCCAGAAAACAGACTT






TGAAGCAGGCTCTTTCTCAGGGCGCCTCAATTTATCAAT






ATCATCAAAAGGAAACACCAAATTATGCAGACTAGCAGC






TTTAATCCACTTAGGTAAAAACCTCTTCCCTATCAAAGC






AAACACTCTTTCCCTCATTGGTCCTGGAGACTCCCTTGG






ATATCTCTGCAAGAAAAACTCCGCAAACCCTAATTCGAG






CACGAATTGACCCAAAAACATCAACCTAGAATGCCCATA






TTTTACATGTTTAGCATTAACCCTAGAACATGAAACATA






ATGTGGGTGTTGAAATGCTAAATACAATAAAGTATCAAA






TTGTTTAGCAGGATTATCATCACCTAAATTATCAGAACT






CTCTAAAGGGTACCCTAAAGCTTGTTTAACCTCAAACAA






ATAATCATCAATCCAAATTTTATCATTTTGATTAAGCTT






TGAAGAGGGTAAACAAGAACTCAATAATGGGAATTGTTT






AAGGGACATTTGAGGACTATTTAAGAATCTTTGAGCTAG






TTTTGCGTCATCTAATGGTGGTTTAAGGATATATTTTCT






AGGGGGTGCTTTTTTCTTTGGGGATATTATTTTTTCCTT






TCAGCTAGTTCTTTTAGGAGTCTTTGAGGGCTAGTTTTA






GGGAGTTCTTGAGGGTCTATGGATGAAACAGCTAGAATT






TGGTGATAATGGAAAGTGGGTTGGAGTTTTTTGATGGGA






ATTTGGAGAGAAAATGATGGGAAGGATGAAGTAAAGGAA






ATATCAGTGGTTTTTGAGATGGGTTTAAAAGGGGATGAG






AGGTCCATTGTAAGAAGAGAAATGAGAGGAAAAAAAATG






GAGTTTTGAGGATTGTTATGTGAGCTTTAATGGCGGATT






GGACGGGACGCCATTGAAGTTGATGGAGAGTGAGAAAAT






GGAGGGTTTTTAGAGGGTTCGAGTGAAGAATTGTGGAAT






TGGGAATTAAGGATAAGGTGATGGAACGCTTTGGAGTAT






CTGTAGAACATAGTGATAGTTGGGACAGGTTCTACATAC






GAGGTGGTCAAAAATACAAATCTCCTGGAAAGGCATATG






TTGAGGGTGACGCTTCAAGTGCTAGCTACTTCCTAGCTG






GAGCCGCCGTCACTGGTGGGACTGTGACTGTCAAGGGTT






GTGGAACAAGCAGTTTACAGGGTGATGTAAAATTTGCCG






AAGTTCTTGAGAAGATGGGCTGCAAGGTCACCTGGACAG






AGAATAGCGTAACTGTTACGGGACCACCCAGGGATTCAT






CTGGAAGGAAACATCTGCGCGCTGTCGACGTCAACATGA






ACAAAATGCCAGATGTTGCTATGACTCTTGCAGTAGTTG






CCTTGTATGCTGATGGGCCCACTGCCATCAGAGATGTGG






CTAGCTGGAGAGTGAAGGAAACCGAACGGATGATTGCCA






TTTGCACAGAACTGAGAAAGCTTGGGGCAACAGTTGAGG






AAGGATCTGATTACTGTGTGATCACTCCGCCTGAAAAGC






TAAATCCCACCGCCATCGAAACTTATGATGATCACCGAA






TGGCCATGGCATTCTCTCTTGCTGCCTGTGCAGATGTTC






CCGTCACTATCCTTGATCCGGGATGCACCCGTAAAACCT






TCCCGGACTACTTTGAAGTTTTAGAAAAGTTCGCCAAGC






ATTGAGTAACATATGGGTTCTTTAAATTGTACGCCAAGG






TTTTGATTTGAGACTAATAGTAGATAAAAGGCTATAATT






ATGAAATTCTTTGTATTATGTTTGTAAGATTTAAGTAGC






TTATAAATTACAATGTACTAAAGTCTAG





36

Amaranthus

cDNA
1746
ACCCGAACTTTTTCAGCCAACAAACAACGCTAAATTCAG




viridis



AGAAAGAATAATGGCTCAAGCTACTACCATCAACAATGG






TGTCCAAACTGGTCAATTGCACCATATTTTACCCAAAAC






CCACTTACCCAAATCTTCAAAAACTCTTAATTTTGGATC






AAACTTGAGAATTTCTCCAAAGTTCATGTCTTTGACCAA






TAAAAGAGTTGGTGGGCAATCATCAATTGTTCCCAAGAT






TCAAGCTTCTGTTGCTGCTGCAGCTGAGAAGCCTTCATC






TGTCCCAGAAATTGTTTTACAACCCATCAAAGAGATCTC






TGGTACTGTTCAATTGCCTGGGTCAAAGTCTTTATCCAA






TCGAATCCTTCTTTTAGCTGCTTTGTCTGAGGGCACAAC






AGTGGTCGACAACTTGCTGTATAGTGATGATATTCTTTA






TATGTTGGACGCTCTCAGAACTCTTGGTTTAAAAGTGGA






GGATGATAATACAGCCAAAAGGGCAGTCGTGGAGGGTTG






TGGTGGTCTGTTTCCTGTTGGTAAAGATGGAAAGGAAGA






GATTCAACTTTTCCTTGGTAATGCAGGAACAGCGATGCG






CCCATTGACAGCTGCGGTTGCCGTTGCTGGAGGAAATTC






TAGTTATGTGCTTGATGGAGTGCCAAGAATGAGGGAGCG






CCCCATTGGGGATCTGGTAGCAGGTCTAAAGCAACTTGG






TTCAGATGTTGACTGTTTTCTTGGCACAAATTGCCCTCC






TGTTCGGGTTAATGCTAAAGGAGGCCTTCCAGGGGGCAA






GGTCAAGCTCTCTGGATCGGTTAGTAGCCAATATTTAAC






TGCACTTCTCATGGCTACTCCTTTGGGTCTTGGAGACGT






GGAGATTGAGATAGTTGATAAATTGATTTCTGTACCGTA






TGTTGAAATGACAATAAGGTTGATGGAACGCTTTGGAGT






ATCTGTAGAACATAGTGATAGTTGGGACAGGTTCTACAT






ACGAGGTGGTCAAAAATACAAATCTCCTGGAAAGGCATA






TGTTGAGGGTGACGCTTCAAGTGCTAGCTACTTCCTAGC






TGGAGCCGCCGTCACTGGTGGGACTGTGACTGTCAAGGG






TTGTGGAACAAGCAGTTTACAGGGTGATGTAAAATTTGC






CGAAGTTCTTGAGAAGATGGGCTGCAAGGTCACCTGGAC






AGAGAATAGCGTAACTGTTACGGGACCACCCAGGGATTC






ATCTGGAAGGAAACATCTGCGCGCTGTCGACGTCAACAT






GAACAAAATGCCAGATGTTGCTATGACTCTTGCAGTAGT






TGCCTTGTATGCTGATGGGCCCACTGCCATCAGAGATGT






GGCTAGCTGGAGAGTGAAGGAAACCGAACGGATGATTGC






CATTTGCACAGAACTGAGAAAGCTTGGGGCAACAGTTGA






GGAAGGATCTGATTACTGTGTGATCACTCCGCCTGAAAA






GCTAAATCCCACCGCCATCGAAACTTATGATGATCACCG






AATGGCCATGGCATTCTCTCTTGCTGCCTGTGCAGATGT






TCCCGTCACTATCCTTGATCCGGGATGCACCCGTAAAAC






CTTCCCGGACTACTTTGAAGTTTTAGAAAAGTTCGCCAA






GCATTGAGTAACATATGGGTTCTTTAAATTGTACGCCAA






GGTTTTGATTTGAGACTAATAGTAGATAAAAGGCTATAA






TTATGAAATTCTTTGTATTATGTTTGTAAGATTTAAGTA






GCTTATAAATTACAATGTACTAAAGTCTAG





37

Ambrosia

Genomic
1340
GCGTCCAGTCGATGTTAACATGAACAAAATGCCAGATGT




artemisiifolia



TGCCATGACTCTTGCAGTCGTTGCCCTTTATGCCGACGG






TCCCACAGCCATTAGGGACGGTATGATTGAGCATTTTAC






GTCTTTTTAATATTTTTTTCTCCCACAATTGGAATTTAC






CACATATCCTTAAAATATAAAAAAATAGTTGTTTTAGAT






TTTATATAAGACAGGTGCGCAGCGATGATCACATAAACC






GACATGTATCCATATATAAAATTGTAGATGCAAAGACTT






CCCCTCGGCTTTGTTAAATAATAGTTCATAATGACATCA






TTTTCTCCCGGTATTTGGCAGTGGCTAGCTGGAGAGTAA






AAGAAACCGAAAGGATGATTGCCATTTGCACAGAACTAA






GAAAGGTACGAGTCAATATAACCATATTACTCTTAAACA






GCTTTCAACCCATTATTGTTTAATGCTAAAAGACGTTTT






TGCATTTGTAACCTTGTTCAGTTGGGAGCAACAGTCGAA






GAAGGACCCGATTATTGTGTGATCACTCCACCAGAGAAG






TTGAACGTGACAGCCATCGACACATATGATGATCACAGA






ATGGCCATGGCATTCTCCCTTGCTGCATGCGCAGACGTT






CCTGTCACTATCAAGGACCCCGGCTGCACCCGTAAGACT






TTCCCAGACTACTTTGAAGTTCTTGAGAGATTCACAAAG






CATTAAACAGAATCTTTATGGCTGAAATGCTCCCTTCAC






CTGTTGTCTTTCTTTACATATAATTGGTCTTTTTTTATG






TTAAGGTTGTAGCTTTCTCTGAGATGGATCTGAGTGTAA






TTTTAAATCTTTTGCAAAAATATGTTAGCAATGTATGTT






TTTTTGATGCATATTAAATGTGCTATTATAATAAAAGTG






TTTTTTTGACTCTTGAAGACATAAAGGTGTAACCTTGAT






GCTCAAATTAGCATGTTGAACATGATAACTTTTAAGGGG






TGTGACACAATGTTAAGCTTTTGAATCCCTCTTGCAAAA






GTCCTATGTTTGACTTTGGCTCCTACCGGTATTATGTGC






CCAGTGCAAGTGGTGTTTTACCTAATCCCGTTAGTTAGC






ACTCAACATGGTATTGGTGAGGTCCTGTGAGTTTTCCGG






TAACATGTTCTTGTCGTCTAAAAAATAGCACATGGAGGC






TTCAAATTATTGATCTTTTTATGCTGAATAAGTGTATAT






GTTTTGCTAACAGAAGTGGCAATGAGTTGTAAATCTTGA






AAGATTAGAATGGCATAAAAGTGGGCTTGAACTCATGTG






TTTCTCTTGAACCATTTTTATGCTGCTTACAATATAAGA






TTAGTGGGGTCTAA





38

Ambrosia

Genomic
1264
CTATATAATAGTCTGTTTGGACTAAAAGTTGTAAATTTA




artemisiifolia



AAAATATTTCAGGTCTCCTGGAAATGCTTATGTCGAAGG






TGATGCTTCAAGTGCTAGTTACTTCCTTGCTGGTGCAGC






AGTCACTGGTGGCACTATCACTGTAGAAGGATGTGGCAC






AAGTAGTTTACAGGTACATTTTACCAAGAAGTTCATGTT






TGTTAAGAAGTTCCCAACCAATTTAAACAATATCTCCAG






AACGAGTGCATGTATTTTCCTTTTGATTACATACAAGTC






ATGCTGTTTTTCTGGTTTTTCTTTGGGTTAAGGGTGATG






TAAAATTTGCTGAGGTTTTGGAGAATATGGGTGCCAAAG






TCACTTGGACTCAGAACAGTGTCACTGTTACTGGACCGC






CAAGAATTCCGGAAGGAAGGAAACACTTGCGTCCCGTCG






ATGTTAACATGAACAAAATGCCAGATGTTGCCATGACTC






TTGCTGTTGTTGCCCTTTATGCTGGAACTACTGTGGTAG






ACAATTTGTTGAACAGTGAGGATGTTCATCATATGCTTG






TTGCTTTGGGAAAACTTGGATTACATGTGGAACATGACA






GTGAAAAGAAACAAGCCATTGTAGAAGGCTGCGCTGGTC






GGTTTCCGGTGGGGAAAGGGGAAGGTCAAGAAATTGAGC






TTTTCCTTGGGAATGCTGGAACTGCAATGCGACCACTTA






CTGCCGCTGTTACTGCTGCCGGTGGCAATTCAAGGTCTG






TTCAATTTTGATCATTTTTACAATGTAATAATGCAAAAA






AGTGACCATTAAATCAATTTACAATTCAACAGTTAAACT






GAGATGTCAGCTTTTCAATAAATTCTTTTAGTTTTGTAA






ACAAGTATGCTGCATTTTCCATGGAACCATCTGCTTATA






TGCTAATGCACTTTGTTTTATATATAACTATCATGTTTT






TGAGCTAATGCATGTTGTTACTTATATTTTAGCTACATA






CTTGATGGCATACCTCGAATGAGAGAGAGACCTATTGAG






GACTTGGTTACTGGTCTTAAGCAGCTCGGTGCAGACGTT






GATTGCACTCTTGGCACAAATTGTCCCCCTGTTTATATA






AATGGAAAGGGTGGTCTTCCTGGGGGGAAAGGTACGTCT






CATATCAGTTCTGTTATGCTTTTGTGGTTTCATATTGTT






GGATGAATTGTTTTGTAAGGTCGTCGTGGAACTGCTTCA






GAAATTGCTTTTCTAAGGTAGATACAGGAAGCCCCATAA






GATACCACTATAAATG





39

Ambrosia

Genomic
910
TTTTTCTTCCACAATTGGAATTTACCACATATCCCTAAA




artemisiifolia



ATATATAAAAAATATAGTTGTTTTACATTTTATACAAGA






CAGGTGCGCAGCGATGATCATATAAACCAACATGTATCT






ATATATAAAATTGTAGATGCAAAGACTTCCCGTCGGCTT






TGGTAAATTAATGACATCATTTCTCCTGATATTTGGCAG






TGGCTAGCTGGAGAGTAAAAGAAACCGAAAGGATGATTG






CCATTTGCACAGAACTAAGAAAGGTACGAGTTATAACCA






TATTACTCTTAAACAGCCTTCAACCCATTATTGTTTAAT






ATGCTAAAAGACTCGTTTGCATTTGTAACATTTTCAGTT






GGGAGCAACAGTCGAAGAGGGACCCGATTATTGTGTGAT






CACTCCACCAGAGAAGTTGAACGTGACAGCCATCGACAC






GTATGATGATCACAGAATGGCCATGGCATTCTCCCTTGC






AGCATGCGCAGACGTTCCTGTCACTATCAAGGACCCCGG






CTGCACCCGTAAGACTTTCCCAGACTACTTTGAAGTTCT






TGAAAGATTCACAAAGCATTAAACAGAATCTTTATGGCT






GAAATGCTCCCTTCACCTGTTGTCTTTCTTTACATATAA






AATTGGTCCTTTTTTTATGTTAAGGTTGTAGCTTTCTCT






GAGATGGATCTGAGTGTAATTTTAAATCTTTTGCAAAAA






TATGTTAGCAATGTATGTTTTTTGATGCATATTAAATGT






GCTATTATAATAAAAGTGTTTTTGACTCTTGAAGACATA






AAGGTGTAACCTTGATGCCATGGGCGAACCTTTTAAGGG






GCGGGAGGGAGCGCCCCCCTCGAATTTTCGCTCAGAAGT






TGCGATTAAATGTCCTATGTTTGACTTCGGCTCTTACCG






GTATTATGTGCCC





40

Ambrosia

Genomic
732
AATGAAGGGTGATGTGAAATTTGCGGAGGTTCTTGGACA




artemisiifolia



AATGGGGGCTGAAGTAACATGGACCGAAAACTCTGTTAC






GGTGAGGGGCCCACCGAGGGATGCTTCTGGAAGGAAACA






TTTGCGTGCTGTAGATGTCAACATGAACAAAATGCCTGA






TGTTGCCATGACTCTTGCCGTGGTTGCTCTATATGCAGA






TGGTCCTACCGCCATTAGAGATGGTATTTTCCTCAATTC






TGCATTTTACAAAAAAGTTTTACCAGCACAATCTAGATG






CCCATTTTTTCGGCTTTTCTATTCATTATAATTTATATA






CAGTTTGGTTGTTTATTAGCGTGCTCTCTTTTTGTTATT






TTTCAGTNGCTAGCTGGAGAGTCAAAGAAACCGAAAGGA






TGATTGCCATTTGCACAGAACTCAGAAAGGTAAAACAGC






CCATTATCCGATCATAGCACTTATGAATAAGTCACTATG






GGGTATTGTTCGCCTCAAAGAAGTTAAATAAAATAAAAA






AGTTANNNNNNNNNNNNNNNTCCAAAAATCTCTCTCAAG






CAGGCATCCTCCAAAATATTTAGAAGATTTAGATTATTA






TATCGACATTACCGCATTAATATTTATAAAAAGATGGAC






AAAATACTGTTATGGGTCAACCTAATCTCCATTGCCCAT






ACTAAAACATGACATGTATTTTGACCCGTTACCCCGTCT






TGTTACCTCTACTCATACTCATCTAACACT





41

Ambrosia

Genomic
278
TTGTTTATTAGCGTGTTTTCTTTTTGTTATTTTTCAGTT




artemisiifolia



GCTAGCTGGAGAGTCAAAGAAACCGAAAGGATGATTGCC






ATTTGCACAGAACTCAGAAAGGTAAAACAGCGCATTATC






CGATCATAGCACTTATGAATAAGTCACTATATATGGGGT






ATTGTTCACCTCAAAGAAGTTAAATAAAATAAAAAATTA






TATGTTGAAACTCTCCAAAAATCCCTCTCAAGTAGACTT






CCTCCAAAATTGGTCTAATCCCCCTGGCCCATACTAAAA






CATGA





42

Ambrosia

cDNAContig
1503
ATGGCTNNAGCTACTACCATCAACAATGGTGTCCAAACT




trifida



GGTCAATTGCACCATACTTTACCCAAAACCCACTTACCC






AAATCTTCAAAAACTGTTAATTTTGGATCAAACTTGAGA






ATGTCTCCAAAATCACTTGCTGTTGCAGCTTCTGTTGCT






ACCACAGAGAAGTCATCAGTTGAAGAGATTGTGTTGAAG






CCCATTAAAGAGATTTCTGGAACTGTTAACTTACCTGGA






TCCAAGTCTTTGTCTAATCGGATCCTTCTTTTAGCTGCT






CTTGCTGAGGGCACAACAGTGGTCGACAACTTGCTGTAT






AGTGATGATATTCTTTATATGTTGGACGCTCTCAGAACT






CTTGGTTTAAAAGTGGAGGATGATAGTACAGCCAAAAGG






GCAGTCGTAGAGGGTTGTGGTGGTCTGTTTCCTGTTGGT






AAAGATGGAAAGGAAGAGATTCAACTTTTCCTTGGTAAT






GCAGGAACAGCGATGCGCCCATTGACAGCTGCGGTTGCC






GTTGCTGGAGGAAATTCAAGCTACATACTAGATGGTGTT






CCCCGAATGAGAGAGAGACCAATCGGTGATTTAGTCACT






GGTCTTAAACAACTTGGTGCAGATGTTGATTGTTTCCTT






GGTACAAATTGCCCACCTGTTCGTGTAGCTGCCAATGGA






GGCCTTCCTGGTGGAAAGGTCAAACTGTCGGGATCTATT






AGTAGTCAATACTTGACGGCTCTGCTTATGGCAGCTCCG






CTTGCACTGGGAGATGTAGAGATAGAAATTATAGATAAA






TTAATATCTGTACCTTATGTAGAGATGACACTGAAATTG






ATGGAACGGTTTGGTGTTTCTGTAGAACATAGCGATAGT






TGGGACAAGTTTTATGTCCGAGGTGGTCAAAAGTACAAG






TCACCTGGAAATGCTTACGTAGAAGGTGATGCTTCAAGC






GCAAGTTACTTCTTAGCTGGTGCTGCCATTACCGGCGGC






ACCGTTACGGTGGAAGGTTGTGGGACCAGCAGTTTACAG






GGTGATGTGAAATTTGCGGAGGTTCTTGGACAAATGGGG






GCTGAAGTAACATGGACCGAAAACTCTGTTACGGTGAAG






GGCCCACCGAGGGATGCTTTTGGAAGGAAACATTTGCGT






GCTGTAGATGTCAACATGAACAAAATGCCTGATGTTGCC






ATGACTCTTGCCGTGGTTGCTCTATATGCAGATGGTCCT






ACAGCCATTAGAGATGTTGCTAGTTGGAGAGTCAAAGAA






ACCGAAAGGATGATTGCCATTTGCACAGAACTCAGAAAG






TTGGGAGCGACAGTTGAAGAAGGGCCAGACTACTGTGTG






ATCACTCCACCAGAGCGGTTGAATGTGGCAGCAATAGAC






ACGTACGATGATCACAGGATGGCCATGGCTTTCTCCCTT






GCCGCCTGTGCAGATGTTCCTGTCACCATCAAGGATCCT






GCTTGCACTCGTAAGACGTTTCCAGATTACTTTGAAGTT






CTTGAAAGATTCACAAAGCAT





43

Ambrosia

Genomic
1465
GTTTTGGTATGTTATCCAACCCTCCGTTTTTCCGCCTCT




trifida



AGTCAAAATGAGCTATTTCTAAATGACTTGTTTTTCTGA






CACACTTCTATGATTCTTTTTAGCTGAATGAAGGGTGAT






GTGAAATTTGCGGAGGTTCTTGGACAAATGGGGGCTGAA






GTAACATGGACCGAAAACTCTGTTACGGTGAAGGGCCCA






CCGAGGGATGCTTTTGGAAGGAAACATTTGCGTGCTGTA






GATGTCAACATGAACAAAATGCCTGATGTTGCCATGACT






CTTGCCGTGGTTGCTCTATATGCAGATGGTCCTACAGCC






ATTAGAGATGGTACTTTCATCAATTCCCAACAACCCCTA






GATGCCCATTTTTCGGATTTTCTATTCATTATAATTTAT






ATGCAGTTTGGTTGTTAATTAGCGTGTGCTCTTTTTTGT






TATTTTTCAGTTGCTAGTTGGAGAGTCAAAGAAACCGAA






AGGATGATTGCCATTTGCACAGAACTCAGAAAGGTAAAA






CAGCCCATCCTTCAAAATTGGTCTATTTAGAAGACTTAG






ATTATTATATTGACATTAACGCATTAATATTTATAAAAA






TATGGACAAAATATTGTTATGCGTCGACCTAATCTCCCT






GGCCCGTACTAGAACATGACAAGTTTTTTGACCCGTTAC






GCCGTCTTGTTACCTCTGCTCATACTCATCTAACACTTT






ACGGGTCAACAACTTTTTCAGTTGGGAGCGACAGTTGAA






GAAGGGCCAGACTACTGTGTGATCACTCCACCAGAGCGG






TTGAATGTGGCAGCAATAGACACGTACGATGATCACAGG






ATGGCCATGGCTTTCTCCCTTGCCGCCTGTGCAGATGTT






CCTGTCACCATCAAGGATCCTGCTTGCACTCGTAAGACG






TTTCCAGATTACTTTGAAGTTCTTGAAAGATTCACAAAG






CATTAAACAGAATCTTTATGGCTGAAATGCTCTCTTTAC






CTGTTGTGTTTCACATATAATTGGTCCTTTTTTTTTATG






TTAAGGTTGTAGCTTTCTCTGAGATGGATCTGAGTGTAA






TTTTAAATCTTTTGCAAAAATATGTTAGCAATGTATGTT






TTTTTTGATGCATATTAAATGTGCTATTATAATAAAAGT






GTTTTTGATTCTTGAAGACATAAAGGTGTAACCTTGATG






CTCAAATTATGTAACATAATGTTAAGCTTTTGAATCCCT






CTTGCAAATGTCCCATGTTTGACTTCGGCTCTTACTGGT






ATTATGTGCTCAGCGCAAGTGGTGTTTTACCTAATTCCG






TTAGGTGGCACTCAACATGGTATTGGTGGGGTTCTGTGA






GTTTTCCGGTAACATGTTCTCATTGTTTAGAGAAAAAAA






ATGCACATGGAGGCTTCAAATTGTTCATCTATTTGTGTT






GAATAATTTATATGTTGCTAGTAGAAGTGGCAATGAGTT






GTAAATCTTGAAAGATTAGAAT





44

Ambrosia

Genomic
1022
TGTATATATATAAAATACATATACAATACCAAAACGCCT




trifida



AATTTCGCCTAATTTTCGCCTAGTCCCTAGGCTGGACCT






CACCGCCTGCCTAGCGCCTAGCGCCTTTTGCAACCTTGT






AAACATCTTATTAATAATGATACCTTTTGTTTCATCTTT






ATGTAACCTTTTCTGGTCTTAATATGCAGGTCAAACTGT






CGGGATCTATTAGTAGTCAATACTTGACGGCTCTGCTTA






TGGCAGCTCCGCTTGCACTGGGAGATGTAGAGATAGAAA






TTATAGATAAATTAATATCTGTACCTTATGTAGAGATGA






CACTGAAATTGATGGAACGGTTTGGTGTTTCTGTAGAAC






ATAGCGATAGTTGGGACAAGTTTTATGTCCGAGGTGGTC






AAAAGTACAAGTAAGTCTGTTTTTTCATGAAAGTCATTT






CCTTTTTGTGAAGATTGGTCGACGGGTTTATATGGTAAT






TATCTGTTTCCAGGTCACCTGGAAATGCTTACGTAGAAG






GTGATGCTTCAAGCGCAAGTTACTTCTTAGCTGGTGCTG






CCATTACCGGCGGCACCGTTACGGTGGAAGGTTGTGGGA






CCAGCAGTTTACAGGTGTGATCAGTAATCATATTCATCA






GCTTCATAAAGCACATCCAAACACCCCAAACTATCTCTA






CTTACATCTATGCATACGTCATATGATCTTACCCTTTCC






GTTTGTTGTTTCTTTAAACTAGGGGGATGTAAAGTTTGC






TGAGGTCCTCGGACAAATGGGTGCAGAAGTAACATGGAC






AGAGAACTCAGTGACGGTGAAGGGCCCGCCAAGAAACGC






TTCCGGAAGGGGACACTTGCGTCCAGTCGATGTTAACAT






GAACAAAATGCCAGATGTTGCCATGACGCTTGCAGTCGT






TGCCCTTTATGCCGACGGTCCCACAGCCATTAGAGACGG






TATGATTGAGCATTTTATATCTTTTTTTTTAATATTTTT






TTTCTCCCAGAAATCACAATTAGAATTTACCATACATTC






TCAAAATA





45

Ambrosia

Genomic
697
ATATTAGATTTGTGTATTTCAAAAATCTTTTTAGAAAAT




trifida



AAACTAGTAATAATATATTCATGACAAAATAATATTATT






GTGTGGGTTGGTAAGATGTTGGGGGTGGTTGGTGAAGGA






AATGACACTCTAAAAAGCCGCCACCAAACTCCCCACCCT






TTCAAAATCTTGCTTCTCCACGCAATAAATTCTTCATCT






TTTTCTCTGCAAATCACAAACAAACACAATGGCGATTCA






CATTAACAACATATCCAACTTCACAACCAATCTCACCAA






TACCCACAACCCCAAATCATTACCATCATCTTTTTTATC






TTTTGGATCCAAATTCAACAACCCCATGAATCTTGCATC






TCTTTCTTCCACCCAAACCATTAATAAAAGATCACTTGC






TGTTGCAGCTTCTGTTGCTACCACAGAGAAGTCATCAGT






TGAAGAGATTGTGTTGAAGCCCATTAAAGAGATTTCTGG






AACTGTTAACTTACCTGGATCCAAGTCTTTGTCTAATCG






GATCCTTCTTTTAGCTGCTCTTGCTGAGGTATGGTTATT






GTTATTTGATTTGTTCATAATTGTGTTTTATGGTTATGT






TTCTCAAAAGGGTCTTGTTCAAGATTTAATTTTGATAAG






TTTTTTAGTGAATTTTGTGTAATTGAATTATTATTTTGA






ATTGGGTGATAATATTGTATGATATGTGTGATAT





46

Ambrosia

Genomic
439
TATTAAATAAAATGATAAAAACTATACTGTTAAAAATAA




trifida



TACCCCAATAAGCGATATCAAAGATTATAAGCATTTAAA






ACACCTTACCTGATTCTTTTGCCCGTTTTCTTTTAAGCT






AAGTTGTAATTTTTTGGCGGTTTCACTCATTGGAGATTT






GTATATTTGACCTCAGATTTCATCTTTTTATAATATCTT






AAAAAGTTTTAATATGGTTTTTCAGCTACATACTAGATG






GTGTTCCCCGAATGAGAGAGAGACCAATCGGTGATTTAG






TCACTGGTCTTAAACAACTTGGTGCAGATGTTGATTGTT






TCCTTGGTACAAATTGCCCACCTGTTCGTGTAGCTGCCA






ATGGAGGCCTTCCTGGTGGAAAGGTAACCAACATTTGAT






TGTTAATTACAGTGGCGAAGTTTGACCCGAAACTTCGGG






GGGGTCGGAA





47

Ambrosia

Genomic
436
ATGCTACAGGGCACAACAGTGGTCGACAACTTGCTGTAT




trifida



AGTGATGATATTCTTTATATGTTGGACGCTCTCAGAACT






CTTGGTTTAAAAGTGGAGGATGATAGTACAGCCAAAAGG






GCAGTCGTAGAGGGTTGTGGTGGTCTGTTTCCTGTTGGT






AAAGATGGAAAGGAAGAGATTCAACTTTTCCTTGGTAAT






GCAGGAACAGCGATGCGCCCATTGACAGCTGCGGTTGCC






GTTGCTGGAGGAAATTCAAGGTTTGTCCAATTATATTCT






TTATGTGAGTGTTGTTTTTTGTGTTAGTCTCAATCATGA






AGGTACTAATGCAGAAGCCGTACCCCTGAAATTTTCTTA






TTTTGTATATATCAATTGGTAATTGATGTAAGATATTTT






TCCGAGAGGAATAAAAAACAGGGGGATATGAAGAATATT






AAAGTAT





48

Ambrosia

Genomic
404
GATCAGACCGGTCCACTCTTGTTTTAATTTGAGACAATT




trifida



TTGATGTTGAGTCATCCCACACCAACCCCAAAAAATTCA






ACAACAAACTCTTATAATGATTCCCTCTACTCTACTAGA






GTCTACACCAACCGACTTTCTCTTTGCCCACCAAAACTT






TGGTTTGGTAAGAACTAAGCCCCCTTCTTTCCCTTCTCT






CTCTTAAAAGCCTAAAATCCACCTAACTTTTTCAGCCAA






GAACACAAAGCGAAATTCAGAGGTAAAGAGAAAGAATAA






TGGCTNNAGCTACTACCATCAACAATGGTGTCCAAACTG






GTCAATTGCACCATACTTTACCCAAAACCCACTTACCCA






AATCTTCAAAAACTGTTAATTTTGGATCAAACTTGAGAA






TGTCTCCAAAGTTC





49

Ambrosia

Genomic
1209
TGTTATGCCAGCCCTAATTTTATTCATGTAATCACTTCC




trifida



ATAACACACATCCAAAGTTCCCAACAACCCCTAGATGCC






CATTTTTCGGATTTTCTATTCATTATAATTTATATACAG






TTTGGTTGTTTATTAGCGTGTGCTCTTTTTTGTTATTTT






TCAGTTGCTAGTTGGAGAGTCAAAGAAACCGAAAGGATG






ATTGCCATTTGCACAGAACTCAGAAAGGTACGAGTCATA






ATAACCATATTACTCTTAAACAGCCTCCAACCGTTATTT






TTTAACGCTAAAAGATTCTTTTTCATTTGGAACCTTTTC






AGTTGGGAGCAACAGTCGAAGAAGGACCCGATTATTGTG






TAATCACTCCACCAGAGAAGTTGAACGTGACAGCCATCG






ACACGTATGATGATCACAGAATGGCCATGGCATTCTCCC






TTGCTGCATGCGCAGACGTTCCTGTCACTATCAAGGACC






CCGGCTGCACCCGTAAGACTTTCCCAGACTACTTTGAAG






TTCTTGAAAGATTCACAAAGCATTAAACAGAATCTTTAT






GGCTGAAATGCTCCCTTCACCTGTTGTCTTTCACATATA






ATTGGTCCTTTTTTTTTATGTTAAGGTTGTAGCTTTCTC






TGAGATGGATCTGAGTGTAATTTTAAATCTTTTGCAAAA






ATATGTTAGCAATGTATGATTTTTGATGCATATTAAATG






TGCTATTATAATAAAAGTGTTTTTGACTCTTGAAGACAT






AAAGGTGTAACCTTGATGCTCAAATTAGCATGTCACACA






TTATAACTTTCAAGGGGTGACATAATGTTAAGCTTTTGA






ATCCCTCTTGCAAATGTCCTATATGTTTGAATTCGGCTA






TTACCGGTATTATGTACTCAGTGCAAGTGGTATTTTACC






TAATTCTGTTAGGTAGCACTCAACATGGTATTGGTGAGG






TCCTGTGAGTTTTCTGGTAACATGTTCTCGTCGTTTAGA






TAAAAAAAAATGCACATGGAGGCATCAAATTATTGATCT






TTTTGTGTTGAATAGTTTATATGTTGCTAATAGAAGTGG






CAATGAGTTGTAAATCTTGAAAGATTAGAATATATGGCA






TAAAAGTGGGCTTGAACTCATGTGTTTCTCTTGAACCAT






TTTTATGCTGCTTACAATATAAGATTAGTGGGGTCTAAA






AGTCACCTTTACAGAATTAGAGGTCTAAATGAAGTCATA





50

Ambrosia

Genomic
984
TTATTTTCTTCAATTTCTTTGGTTGTTTTGTATTTTATT




trifida



AAAATTTAGTGGTCAAAACAACATTTTAGCACTGATCAA






CCTTTTAATGGAATGATGCAGTGTGTCATGAACCGTAAT






TTGATTTATAACGATAAAATAACAACAAATTTGTGTTTT






TATGTTTACAGGTTAAGCTGTCAGGATCCATTAGTAGCC






AATACCTTACTGCTTTGCTTATGGCTTCCCCCCTTGCCC






TTGGAGATGTAGAAATTGAAATTATTGATAAATTAATTT






CTATACCCTATGTTGAGATGACAATAAAATTGATGGAAC






GGTTTGGTGTCTCAGTCGAACACAGTGATAGTTGGGACA






GGTTCTTCATCAAAGGCGGTCAAAAGTACAAGTAAGTCT






GTTTTTTCATGGAAGTCATTACTTTTTTTGTGAAGATTG






GTCGACGGGTTTATATGGTAATTATCTGTTTCCAGGTCA






CCTGGAAATGCTTACGTAGAAGGTGATGCTTCAAGCGCA






AGTTACTTCTTAGCTGGTGCTGCCATTACCGGCGGCACC






GTTACGGTGGAAGGTTGTGGGACAAGCAGTTTACAGGTG






CATGATGACTTCTTTTTAGTTTAACTTAGAAATCTCTCT






GACTTGGAAGTCAAGTCAATGGCTATAAACGGTTTTTTT






CACGAAAGAAAATATCTTTGTATATTTGGTAATTTTTTA






ATAAAATTATCACATCTTTTGTGAACTTTCTAAAGAAAT






ATAAAGTTATGTTGTTTGACGTAACAAGTCGCGACTAAA






TGTGTCAGTTTCAATTCAAAGTGTTAAACTTGTCAATCT






AAAGTTGTACTTAACTGATAATGGGTAAAAACGTGTAAT






ATTTAGCAATTATCTAAACGTGAAACGGGTGAAATACGT






TGAGCATCTAAAAGGGCAAAAAAATCATCTAAAGTGCAT






TCAAATGTTTACATCATCCTAGATTTAGAAATAAATCAT






ATTGTTATG





51

Ambrosia

Genomic
980
ACTTAATGATTCAGCACTTAACCGTTCAGACCTCATAAT




trifida



GATTCAGCACTTTATCAACCAAACAACCCCTTAGTTAAT






AGGAATCTGTACTGGTTTTGCATTTTACATAGCACTAAC






ATATGATGAAAAGATTGCTATTCGTCATCTATTTGGTAC






AAACTTAGTTGTTCATAGTTGTTTCGACTTTCGTCTATG






GAAATCATGAAAGCTTAAATCGATTTAAACCATTCACGG






TTCGCCTCCATATTGCATGTCTGCTTATGTATTAACTGA






ATGCATGTATTTTCATGATATGAATATTTGATTTGATCA






TTGATTTGAAATAGTGTTTTTGTCATGAGCATATAGAGT






TCGACCATTTGTTATAGTGTGAATTTGTCAAGCTATAAA






TTCATCTACGCCACTTCAGCAAACTATTTCATTGACATT






TTTAGCCTTCAGTTTATATTTAACAGATCTAAGTGAATT






GATATTTTCAGGGGACTATTGTTGTAGACAACTTATTGA






ATAGTGATGATGTTCATTATATGCTTGGAGCTTTGAGAG






CTCTAGGGTTAAATGTTGAAGAAAATGGTGAGATCAAAA






GAGCAACTGTGGAAGGGTGCGGTGGTGTGTTTCCGGTGG






GTAAAGAAGCCAAGGATGAAATCCAGCTTTTTCTTGGAA






ATGCCGGAACTGCTATGCGTTCGTTGACTGCTGCAGTTA






CTGCTGCTGGTGGAAACTCAAGGTATTTTTAAATAGGAC






ACTATTAATAAGGGTCTGCATGTGTCGGGTCGGGTTGTT






GTATTAAATAAAATGATAAAAACTATACCGTTAAAAATA






ATACCCTGATAAGCGATATCAAAGATTATAAGCATTTAA






GAACACCTTACCTGATTCTTTTGCCCGTTTTCTTTTAAG






CTAAGTTGTAAATTTTTGGTGGTTTCACTCATCGGAGAT






TTGTATATTTGACCTCAGATTTCATCTTTTTATAATATC






TTAAA





52

Ambrosia

Genomic
429
TGATCAGTAATCATATTCATCAGCTTCATAAAGCACATC




trifida



CAAACACCCTAAAATAAGTCTACATACATCTATGCATAC






GTCATATGATCTTACCCTTTCCTTTTGTTGTTTCTTTAA






ACAAGGGGGATGTAAAGTTTGCTGAGGTCCTTGGACAAA






TGGGTGCAGAAGTAACCTGGACAGAGAACTCAGTGACAG






TGAAGGGCCCGCCAAGAAACGCTTCCGGAAGGGGACACT






TGCGTCCAGTCGATGTTAACATGAACAAAATGCCAGATG






TTGCCATGACTCTTGCAGTCGTTGCCCTTTATGCCGACG






GTCCCACAGCCATTAGAGACGGTATGATTGAGCATTTTA






TATCTTTTTTTTAATATTTTTTTCTCCCAGAAATCACAA






TTAGAGTTTACCAATCATTCTCAAAATAAAAATAAAAAA





53

Ambrosia

Genomic
234
AAAGAGATTTCTGGAACTGTTAACTTNNNNNGATCCAAG




trifida



TCTTTGTCTAATCGGATCCTTCTTTTAGTTGCTCTTGCT






GAGGTATGGTTATTGTTAGTTGATTTGCTCATAATTGTT






TTTAATGATTATGTTTCTGAAAAGGGTCTTGTTCAAGAT






TTAATTTTGATAAGTTTTTGAGTGAATTTTGCATATTTG






AAATTATTGTTTTGAATTGGGTTATAATATTGTATGATA





54

Ambrosia

Genomic
219
GTTTTAATATGGTTTTTCAGCTACATACTAGATGGTGTT




trifida



CCCCGAATGAGAGAGAGACCAATTGGCGATTTAGTCACT






GGTCTTAAACAACTTGGTGCCGATGTTGATTGCTTCCTT






GGTACAAATTGCCCACCTGTTCGTGTAGCTGCCAATGGA






GGCCTTCCTGGTGGAAAGGTAACCAACATTTGATTGTTA






ATTACAGTGGCGAAGCTTGACCCG





55

Ambrosia

Genomic
26
ACTAGTTTCGGGGGGTCGAAACCGTA




trifida






56

Ambrosia

cDNA
1721
AACAAACACAATGGCGATTCACATTAACAACATATCCAA




trifida



CTTCACAACCATCTCACCAATACCCACAACCCCAAATCA






TTACCATCATCTTTTTTATCTTTTGGATCCAAATTCAAC






AACCCCATGAATCTTGCATCTCTTTCTTGCAACCAAACC






ATTAATAAAAGATCACTTGCTGTTGCAGCTTCTGTTGCT






ACCACAGAGAAGTCCTCTGTTGAAGAGATTGTGTTGAAG






CCCATTAAAGAGATTTCTGGAACTGTTAACTTACCTGGA






TCCAAGTCTTTGTCTAATCGGATCCTTCTTTTAGCTGCT






CTTGCTGAGGGGACTACTGTTGTAGACAACTTATTGAAT






AGTGACGATGTTCATTATATGCTTGGAGCTTTGAGAGCT






CTAGGGTTAAACGTTGAAGAAAATGGTGAGATCAAAAGA






GCAACTGTGGAAGGGTGCGGTGGTGTGTTTCCGGTGGGT






AAAGAAGCTAAGGATGAAATCCAGCTTTTTCTCGGAAAT






GCGGGAACTGCTATGCGTCCGTTGACTGCTGCAGTTACT






GCTGCTGGTGGAAACTCAAGCTACATACTAGATGGTGTT






CCCCGAATGAGAGAGAGACCAATCGGTGATTTAGTCACA






GGTCTTAAACAACTTGGTGCCGATGTTGATTGCTTCCTT






GGTACAAATTGCCCACCTGTTCGTGTAGCTGCCAATGGA






GGCCTTCCTGGTGGAAAGGTCAAACTGTCGGGATCTATT






AGTAGTCAATACTTGACGGCTCTGCTTATGGCAGCTCCG






CTTGCACTGGGAGATGTAGAGATAGAAATTATAGATAAA






TTAATATCTGTACCTTATGTAGAGATGACACTGAAATTG






ATGGAACGGTTTGGTGTTTCTGTAGAACATAGCGATAGT






TGGGACAAGTTTTATGTCCGAGGTGGTCAAAAGTACAAG






TCACCTGGAAATGCTTACGTGGAAGGTGATGCTTCAAGC






GCAAGTTACTTCTTAGCTGGTGCTGCCATTACCGGCGGC






ACCGTTACGGTGGAAGGTTGTGGGACAAGCAGTTTACAG






GGGGATGTAAAGTTTGCTGAGGTCCTCGGACAAATGGGT






GCAGAAGTAACATGGACAGAGAACTCAGTGACGGTGAAG






GGCCCGCCAAGAAACGCTTCCGGAAGGGGACACTTGCGT






CCAGTCGATGTTAACATGAACAAAATGCCAGATGTTGCC






ATGACGCTTGCAGTCGTTGCCCTTTATGCCGACGGTCCC






ACAGCCATTAGAGACGTGGCTAGCTGGAGAGTAAAAGAA






ACCGAAAGGATGATTGCTATTTGCACAGAACTAAGAAAG






TTGGGAGCAACAGTCGAAGAAGGACCCGATTATTGTGTG






ATCACTCCACCAGAGAAGTTGAACGTGACAGCCATCGAC






ACGTATGATGATCACAGAATGGCCATGGCATTCTCCCTT






GCTGCATGCGCAGACGTTCCTGTCACTATCAAGGACCCC






GGCTGCACGCGTAAGACCTTCCCAGACTACTTTGAAGTT






CTTGAAAGATTCACAAAGCATTAAACAGAATCTTTATGG






CTGAAATGCTCCCTTCACCTGTTGTCTTTCTTTACGTAT






AATTGGTCCTTTTTTTTATGTTAAGGTTGTAGCTTTCTC






TGAGATGGATCTGAGTGTAATTTTAAATCTTTTGCAAAA






ATATGTTAGCAATGTATGATTTTTGATGCATATTAAATG






TGCTA





57

Ambrosia

cDNA
1689
TACTACTACGTGTTCTTAGGTGAAAACTCACACACAATG




trifida



GCAGCTCACGTTAGCAACGTTGCTCATATCTCCAAACAT






CCAATTCAATCTTTAATAATCTTTCCAAATCCCAAACCC






CTTCTTCCAAGTCCTCGCCTTTCTTATCTTTTGGATCCA






AATACAAAACCCCATTTACCCATTTCTCTTATTCATCTA






ATAACAGAAAGCTTTTCACTGTTTCTGCTTCTGTTGCTG






CCACGTCAGCAATACCGGAGATAGTGTTGCAACCCATTA






AAGAGATTTCGGGTACTGTTAATTTGCCTGGCTCTAAGT






CTCTGTCTAATCGGATTCTTCTTCTTGCTGCTCTTTCTC






AGGGAACAACCATTGTTGACAACTTACTTAACAGTGACG






ATGTCCATTACATGCTTGGGGCTCTAAGAACTCTAGGTT






TACGTGTTGAGGAAGATGGTGCAATTAAAAGGGCAGTTG






TGGAAGGTTGTGGTGGTGTTTTTCCGGTGGGTAGAGAAG






CTAAAGATGAAATACAGCTTTTTCTTGGTAACGCAGGAA






CTGCTATGCGCCCTTTGACTGCTGCAGTTACCGCTGCTG






GTGGTAATTCAAGCTACATACTAGATGGAGTTCCTCGAA






TGAGAGAGAGACCAATAGGTGACTTAGTCACAGGTCTTA






AGCAGCTTGGTGCAGATGTCGACTGTTTCCTCGGGACAA






ACTGCCCGCCTGTGCGTGTAGTTGGAGGTGGGGGCCTTC






CTGGCGGAAAGGTTAAGCTGTCAGGATCCATTAGTAGCC






AATACCTTACTGCTTTGCTTATGGCTTCCCCCCTTGCCC






TCGGAGACGTAGAAATTGAAATTATTGATAAATTAATTT






CTATACCCTATGTTGAGATGACAATAAAATTGATGGAAC






GGTTTGGTGTCTCGGTCGAACACAGTGATAGTTGGGACA






GGTTCTTCATCAAAGGCGGTCAAAAGTACAAGTCGCCCG






GAAACGCGTACGTAGAGGGTGATGCTTCAAGTGCAAGTT






ACTTCTTGGCTGGTGCTGCTATAACTGGTGGCACCATCA






CTGTTGAAGGTTGTGGAACAAGTAGCTTACAGGGTGATG






TGAAATTTGCGGAGGTTCTTGGACAAATGGGGGCTGAAG






TAACATGGACCGAAAACTCTGTTACGGTGAAGGGCCCAC






CGAGGGATGCTTCTGGAAGGAAACATTTGCGTGCTGTAG






ATGTCAACATGAACAAAATGCCTGATGTTGCCATGACTC






TTGCCGTGGTTGCTCTATATGCAGATGGTCCTACAGCCA






TTAGAGATGTTGCTAGTTGGAGAGTCAAAGAAACCGAAA






GGATGATTGCCATTTGCACAGAACTCAGAAAGTTGGGAG






CGACAGTTGAAGAAGGGCCTGACTACTGTGTGATCACTC






CACCAGAGCGGTTGAATGTGGCAGCAATAGACACGTATG






ATGATCACAGGATGGCCATGGCTTTCTCCCTTGCCGCCT






GTGCGGATGTTCCTGTCACCATCAAGGATCCTGCTTGCA






CTCGTAAGACGTTTCCGGATTACTTTGAAGTTCTTCAGA






GATTCACCAAGCATTGATGTTTTCAATAGAGTTTTTGTT






TTATTTGTAACATGCCAAATATGTGATTTTTGGAATATT






TTATTTGTAATTCTTTGGAAGTATGAATGATAAGATTTG






AGTGTGTATTTT





58

Chenopodium

cDNA
1432
TTTAAGAACTCTTGGGCTAAATGTAGAGGATGATAAGAC




album



AGCCAAAAGGGCAATTGTGGAGGGTTGTGGTGGTCTATT






TCCTGCTGGTAAAGAGGGAGGGGGTGAAGTTGAACTTTT






CCTTGGAAATGCAGGAACAGCAATGCGTCCATTGACAGC






CGCAGTTGCTGTTGCCGGAGGAAAGTCTAGTTATGTACT






TGATGGAGTGCCAAGAATGAGGGAGCGACCCATTGGGGA






TTTGGTAGCTGGTCTGAAGCAACTTGGTGCTGATGTTGA






CTGTTTTCTTGGCACGGATTGTCCTCCTGTCCGGGTTAA






TGCTAATGGGGGCCTTCCAGGGGGAAAGGTCAAGCTCTC






AGGATCAGTTAGTAGCCAATATTTGACTGCGCTGCTCAT






GGCAACACCTTTAGGTCTTGGAGACGTTGAAGTTGAAAT






CATTGATAAATTGATTTCTGTACCTTATGTGGAGATGAC






AATAAAGTTGATGGAACGTTTTGGTGTGTCAGTAGAGCA






TAGTGCTAACTGGGATAGGTTCTTGATCCGAGGTGGTCA






GAAGTACAAATCTCCTGGAAATGCATATGTCGAGGGTGA






TGCTTCAAGTGCTAGTTACTTCCTAGCAGGGGCTGCAGT






CACTGGTGGAACTGTGACTGTTGAGGGTTGTGGAACAAG






CAGTTTACAGGGTGATGTAAAATTTGCCGAAGTTCTTGA






GAAAATGGGTTGCAAGGTTACCTGGACAGAGAACAGTGT






CACTGTAACTGGACCGCCCAGGGATTCATCTGGAAGAAA






ACACTTGCGCGCCGTTGATGTCAACATGAACAAAATGCC






AGATGTCGCTATGACTCTTGCTGTTGTTGCCCTTTATGC






AGATGGGCCCACTGCCATCAGAGACGTTGCTAGCTGGAG






AGTGAAGGAAACAGAACGGATGATTGCCATTTGCACAGA






ACTCAGAAAGCTTGGGGCAACCGTTGAGGAAGGACCTGA






TTACTGTGTGATCACTCCACCTGAGAAACTAAACGTGAC






AGCCATTGACACATATGATGATCACCGAATGGCCATGGC






ATTCTCTCTTGCTGCCTGTGCTGATGTTCCTGTCACCAT






CAACGACCCAGGGTGCACTCGCAAAACCTTCCCAGACTA






CTTTGACGTTTTGGAAAGGTTTGCCAAGCACTGAGTTGC






CATCTATTGGTTATCTAGAGCATACAAATTTGAATCAAG






ATTAAAATGCTTTCAGCTTCAGCTTTCGCCGCATTCTTT






GTATCATGTTTGTAAGATTTTAGTTTATACAGTGTATTA






ATTTTGTATCAGGCCAGTTAGAAATAATATTCTTGAAAA






GATGAACTATGAGAATGTGATTTAGAAACTAGTATTGGG






GTCTGAACTCTACAGCAATAACTGCAGAGTTTTGACACC






ATATTTTGGTAATGTGAGTTCCATACTG





59

Conyza

Genomic
15055
TCAACAAAATCTTTCACCATGTCAAACAACGAAAACCAA




canadensis



AGTAACGACCTTTGGAATCACTTTCAAGAAAACCCGATG






CTGAGTATGCCCCTGATGCCGCCTATACCGGTTATATCA






TCAGCTAACCAAGGCCAAACAAGCCATGTTTCAGGCTCA






TCCAACCCGACCCCAATGGGGAGACCAGTTCCGACGGGT






TTGTCGCAATACGACCTAGAAGCACATATGAGTTATCGC






CAACACTTGCAACAGAACTATGCAAGCTCGTTTTATGCA






CCACCGGCGGCACCGGGGCCACAACCGGGTCCTAGCCAC






GACCCGGAAGAGGACGAGGATGACCAGACCGCCGACGGC






GAGTAGTTTTTTTAAAATACTCGTAATGTTTTATTTTTC






TTTGCAATGTTTTATTTTTAAGTGTGTTATGTGTTTTAT






TTTTAGTGGTAATGTTTAATTGTAATTTTTTTTTAATTT






AGTTGTAATGGTTAATTTTTAATAAAATTAAGTAGTTTT






TTAAGTTTGTGTGTAAATAAATATAAAATAAAATAAAAA






AAATAAAAAGTGTGGAAGAGGGGTTATAGGGAGTGATTG






TGGAAGAGGTGGATGAAGAAAGAGAAAAGCTGACGTGAC






AGTGTGGAAGAGGGTAAGGATGAGGTGCTATAGGGAGAG






GTCTTATTGAGTTATAATGATGTCAATGGCTTAATAACT






TAATGACATTTTGGTGATGCGTAAGACCTTAAGACCAGA






AAGTCTAAGTTTGAATCTTATAAAATAGGTTTTTTTCTA






TTTTCCAAATTTATTGAGTTTTCTCATGAGTTCATGTAT






GAGCATTATTGCATAGTGAAAATATGGTCAGATGGTTTC






ATCGATGACAAGCTAATTTTTAAGAAAGATATATTACTT






TTCTTTTTAACTTGGGAAAATCATAAAAGTGAAATCATC






GTTTTAACTTTTTACGAGCATGGTACTCGCGTAATGCAG






CGGCGGTGGTATAGAAGACGGTCTAATGGTGGCAGTGTC






AAGTGGTGTAGGTCTATGTGCACCGAAACTCCAAACTGA






CATAGCCGTACCCATTTCCGAAACTCCATGGAAACGTTT






TCTCTTACGAAACACGTATGAAACATTCCCTAAAATTTT






CTATAGATTAAACGTTTCTTTGAAGTTTCCATACGGTTT






CTAATTAATATCAAGGTTTTAAAGGACTTTTTCGAATCC






CCAAACCCAAACATGTTATATTATATACAATTTGATCAA






CATTAAATTTTTTATATTACAAAGCCATTATTAAACACT






AAACATTCAATGAGTGATCACTAATCAAACATGTATTAT






AAAGTTCTACATATATAATTATACATAATCTCTCAAGTC






TCAAATCTCCTTTATGAAAAAATTGATATAATTTATATT






TGTATATTTTTTTTATTGTTGTACCCGTATCCTGGATTT






TTTAGTTTTACTGTTCCCCGTTCCCGTATTGTTCCCGTA






CCCTTTTCCCGTACCTGTTTCGGTGCTACATAGGTGTAG






GTTGATGTAATTGTGATAGTGAAAAGTTTTAGAAGATAA






GAGTTTAAAGTGTTAAGTATTAAAATAAGGGTTTATGGT






GTAAATTAATTCATTAAGGGGAAAATTTATAAAACTATT






TCTATAGTGGGTTTTTATTAAGAGACAATTTAGTAATTT






TATATGTGACATATGAGTAACTATTTTTATTTTGAGAGG






GGTGCATAATTTTTATTCGAAGAGTACGGATAAAAGTCA






ATAAATTACGAGCAGTGAAGTATCCCAGACACCCCTTGC






AAGGTAATTTTTTAAAATTTTATTCATGGAGGTTTGGTA






GGAAGTGGTGGTGGTGGTGGTTGGTATGAAATTTTGTTT






TTGACCTTCTTCAAACATCCACCTACTACTGACCCCTCC






CTTCAAACCCAACCCAAAATCCAAATCATTAAATCCTTC






AAACCCACTGTGTGTTTTGTGTGAAATTTCACACACAAC






AAACAATGGCAGCTACTCACATTAACACCACCAACATTG






CCCACAATCTCCAAGCTACCACCAGTCTTTCCAAAACCC






AAACCCCATCAATAAAGTCACAACCTTTTTTATCTTTTG






GGCCAAAACACAAAAACCCGATTGCCCATTTCTCTGTTT






CTTCTAATAATAATAGAAATCTTGGAAAAAAATGTTTAA






TAGTTTCTGCCGTTGCCACCACCGAGAAACCGTCAACGG






TGCCGGAAATTGTGTTACAACCCATTAAAGAAATCTCGG






GTACGGTTAATTTACCCGGGTCCAAGTCGTTGTCTAATC






GGATCCTCCTCCTTGCTGCGCTTGCTGAGGTATAGTTTA






ATTTGGTAATAATGTTTGACCTTTAAAATTTGACATTTG






GGCTACATGATTGATATGGGTCTTGAATGAATTGTGTTA






TAAAATTTGGGAAGTTAAATGTTAATAATAGTTTAATCC






TTTAGAAATTATGAAGTAATGGTTTTAGACCCTGAATTT






TTTTTTATTGCATAGGTTAGTCCCTTAGCTAGTTAGCTT






TTGGTTGACATCTTAGAAAAACCAGTACAGTTTTTATAT






TTTAGTCCTTAAGCTTCAATTTTTTGCAATGTATTGCCA






TTTGAAATGATCTAGTAAAATGTTCAAAATCAATGAATT






GGCGGTTTAAAGATATAATGCTTGGATCAATTGTTATGT






AAAGTGTGCTAGGCGGTCAAAAGCGAATCTTGGATCAAG






GAAGTCGTAGAATACTATTGATTTCATATTATTGATTTC






TTATTATGCATATTTGACATGTGCTTCTAACATCATGGC






ATTTGGGATTTATTTCTATATATAAAGCATGACTGTATG






GTTATAAAGTTCAAAACTTGTATGGTATAAATATACTCT






TCTTACTTCTTAGCAGGAATGTGTTGACTTATAAGCTGA






AAACTTTTATAACTCCAATTGTGTGTAGTAATACTTGAA






AGTGGCTGAGTTCCTAGGACAGTATTACATGCGAACACT






ACAACGTGTTACTAAATTTGAGATAGGTATGATTTGGTT






TTGTTGGATACAAAGTCTAGGTCAGTTAACATAGCCAGT






TGAGGACGATAGCTTTCTTGTCTTATTTCCTTTTTATAG






AGGGTTTGTGTTTCGTGATGGTAATATTGAGTACCACCA






TATAGTTCACAAGTCATATAATAAAATCAGAGCAACATT






CGAGGAGTCGCCTATATGCATATTATTGCACCATGCTAA






AATCCAAGGGCATATTTTGATGCCAATTTGTAATTTATT






TCTCAGGGAACGACCATTGTTGACAACTTACTCAACAGT






GATGATGTTCATTACATGCTTGGAGCTTTAAGAACTCTA






GGGCTAAACGTTGAGGAGGATGTTGCAATTAAAAGGGCA






ATTGTGGAAGGTTGTGGCGGTGTGTTTCCTGTGGGTAAA






GAAGCTAAAGATGACATACAGCTTTTTCTTGGGAATGCA






GGAACTGCTATGCGTCCATTGACTGCCGCAGTTACTGCT






GCTGGTGGTAATTCAAGGTATTTGGACGTTGTCATTGAC






TCATTGCTATAGTAAATATATGTTGACTTGTGCACACAA






GATTTGAAGCATCTTTTAAACATATATGATTAGATACAG






AGAACACTGCATGTTGAAAACTTGAAATACAGGACTTTC






TTAAAATATTGGGATTTCACATATATGGGTTGAATAGTT






GAAATTTCCTCCTTCTACCTTTAACCAATTGTATATTAC






TTATTTAAAGTTGTGTTTTAAACATGGCGATATGATTAG






ATACAGAGAACACTACTTATTGAAAGGTTTATGTGGTAT






AGTATGAATTTTAACCTCAAAAAGGGTATCTCACTATCT






CTTCATATAGAAGCACACATCTGATTCTGTTATATCTTT






ATGGATCATTTTTTCCAGCTACATACTAGATGGCGTTCC






TCGTATGAGAGAGAGACCAATAGGTGATTTGGTCACGGG






TCTTAAGCAGCTTGGGGCAGATGTTGACTGTTCTCTCGG






GACGAACTGCCCTCCCGTGCGTGTAGTTGGTGGAGGTGG






TCTCCCTGGAGGAAAGGTATTGTGTTTTCATTAGTAGTT






GTTTTCTATGCAAATAGCAACACACCTTATATATCATCC






ATTTATAGCTATTTTTCTAATTGGGGCGTACGTTACTGT






AATTTGATCGTCCAACCAGTTGTCATGACCCTCCTTAGC






TAAAATGGATGAAAGCTGGTCCGACAATTGACCATAATA






AATGGGTGTGGGCTATCTTGCTAAATTTAAGTATTTCAC






TTAAAATGAGAGTTGGTTTACAGTGTGCATTCAACCTAA






TTTTTTTTTTTAACGTCGCATACAACCTAAAATTGAATA






ATGTTGTAGACACAAAAGCTCTTAGTGAGCTTTAATAGT






AACATTAGAGGTGGTGATATCAATCAAACAATAAGGGAA






AAGTAATATGTATAAAAATTAGAATTAAACAAGAAGTTT






TAAAAAATAGATCAAATGGTTTGAAAGTCTTCTAAAGTG






TAATTTAATGCATAAATCTTCCTAAATTATTTTATTTAA






AAACTGTATTGTAATATAATTTTCATCATCATATTTGAC






ATTCTATGAAAACAAATATACATTTTGAACAAACAGTGT






TACGGATCGACCCAGGCAATTCAAAGCTGTCCATTCTAA






CCTAAACCAGTTTTCACGGTTACCTCTATTTTCCTGCCT






TTCAATTTGCCAGCTACAAGAAGCTTCATTCCACCATAA






CGGGTTCACGCTAAAGATGCAAAGAGTCATGATTCGTTA






TTTATTATCTTGACTTATTATGATAACAATAGTTTTGGT






GTATTTTGATGTCTTCAGGTTAAGTTGTCGGGATCTATT






AGTAGTCAATACCTTACTGCTCTGCTTATGGCTTCTCCC






CTTGCCCTTGGGGACGTGGAAATTGAAATCATAGATAAA






CTAATTTCCATACCATATGTCGAGATGACACTGAAATTA






ATGGAACGGTTCGGCGTCTCGGTAGAACATAGTGATAGT






TGGGACCAGTTCTTTATTCGAGGCGGCCAAAAGTACAAG






TAAGTCTATTTCTTTCTTTTTAAAGTAAAACTGGAATTT






AAAAAGGTTGCAGTTTCTACCCTATCTCTTGTAATGGGT






TGATTCAGGTTATGTATAATCTCTAATGGGTCAAAGGGG






GTAAAATACAAAAAGGTTATTTTGTCACCAAAACGATAT






GATGCATATTACCTAGTTTTCTTATTGGAATAGTAAACA






TTTTTAATCATTTCAATGTACAACTCTTTTATGTGTCCA






CAGAAATTAAACATAGCCCCTAGGACTATGTTCATCATT






TCCCTTTATAAACTAGTTGGAGAAAAGTATTTTGGCCAA






CCCATTCCGAATTTACACATTTTGGCCTATCACCCAGCC






CGTCTGTCCACTCATTTTCAGGGTTTTGTATGGAGACCC






GTTTGTTAATTAGTTGGATTAATTATCTTCAGGTCACCT






GGAAATGCTTATGTAGAAGGTGATGCGTCAAGTGCGAGT






TACTTCTTGGCTGGTGCTGCCATAACCGGAGGCACCATC






ACCGTTGAAGGCTGCGGAACAAGTAGTCTGCAGGTGCAC






TTTGACCTCCTTTGTTTTTTATTCTTCTCGATTTCAATC






AAACGGCTTTACGGTTTTACATTTTAAATGGATTTTGTG






GAAACAACGAGTATTAAAAGTTCATCAAAAGATTTTATT






ATTATTTTTATGCAACAATTATCAGCATCTGTAGTGAAA






TATTCAGAAGTCCGTTTTTAGTTCAAAGTTTTTCTTTTT






AACCTTAAAGTCAAAAGTGAGATGGCAAATCTTTTACGT






AAAATGATTCAATTGAGGCTGTACTTTGGTCGATTCTGA






CTTAATTGGGAACATAGGTTACGTTAGCTATAAGCCTAT






AACTATAAGTAAGCATGTGTTTATATGTCACAATGACTT






GATTAAAAGTAACCTTATGATTTTCTTAGTATACGTTAG






TAATCTAACAGTATCATAATAACGGACAAAAATGTGCTG






GTGGATCAGCCCACCCAGCCCGTTAGAACATGACATAAA






AATGACCCAACTTGACCTATCACCTAAGCTCATTATAAT






ATGTTATCCAACCCACCCTATCTTGGCACCTGTGACCTG






TATTCAAATGTATACTGTAAGCAACTTCCTGTTTTTCTT






AAACATGTATTCTGTTTTTTCTTTCCAATGAAGGGTGAT






GTGAAGTTTGCGGAGGTACTTGGACAAATGGGTGCGGAA






GTAACATGGACTGAGAACTCAGTCACAGTTAAGGGCCCA






CCAAGGGATTCTTCTGGAAGGAAACATTTACGTGCTGTT






GATGTGAACATGAACAAGATGCCTGATGTTGCCATGACT






CTTGCTGTGGTCGCTCTTTATGCTGATGGCCCTACAGCC






ATTAGAGATGGTATCCTTCCTTTTAATGTGGAAAAAAGT






TCAACATGTTTTCACTAAGTTTTCAAAGTAAATAGATAG






ATATGACTTCAAAATAACTCTATTGCCATGTTAAATCTT






ACACATATTGCAAGCACATTCTAGTGGTGGTTTGGAATG






GCATTATGAAATTGAATATCTAAAATATTTAATTTAAAC






ATGTTCGGTTTCTGATCATTTAGGGTCAGTTTTAACTGA






ATCTCAGAGAAGTCGCGCAAGACATGTCACATATTTGTT






TCTCCGAGTCTCAGACAACTGCTTTTTCAAAATGAAAGC






ATTCTAGAACTATTTTGCTTACAGTTGATTTTCTAATTC






TGGGTGTACATAAATCAAGATAATTACTTTTATAAAACA






CATTCAAAAAGCCTCCTAGATGCCCCTATTATGAATTTT






CTGTTTGCTATACGAGTATCTGCTTTGTTTTTGAAAATG






GTTTTTTTGTTTTTTGCCAGTTGCTAGCTGGAGAGTTAA






AGAAACCGAAAGGATGATTGCCATTTGCACAGAACTTAG






AAAGGTAAAATGATACTTTGTTACTCTGTGATCTATGAT






ACTGCTATTGCTTAGAGGTCACTAAAGTGGTAAGGTCAA






ATAGGATGGGTTTGAATGGGAACACTTTTCGCCCAAAAC






ATATTTAACTAATATAATTTCACTTGTTACTATCTAATT






TCATAAATGAAATGATTTAGAATTAGAATGTTTTGGGTG






TCTTGCAACCTATTCATTTTAAGCTATTTTAATTGTCTT






TTGACCCATTAGAAATATACATAAGAAATATACTTAATC






AGTCCTCTATTGTTAATGTTTATCTGGGGTGAAATTTCT






TCAGTTGGGAGCAACAGTTGAAGAAGGTCCGGACTATTG






TGTGATCACTCCGCCAGAGAAGTTAAACGTGACAGCAAT






AGACACATATGATGATCACAGGATGGCCATGGCTTTCTC






TCTTGCCGCTTGTGCAGATGTTCCTGTGACCATTAAGGA






TCCTTCTTGCACACGTAAGACGTTTCCTGATTACTTTGA






AGTTCTTCAAAGATTTGCCAAGCATTAATGTGATTATGG






GTAGTGGTTTGCTTTTCTATATGTAATTTTTGTTTCATT






TGTAACGAGTAAAATGTGAGTTTTGGGCATAACATATTC






TTATGAACTTGTATTCTTTCGTAAGATTTTTTTAGTGTA






ATAAAATATTTTGCTATTTCAGTTGATGATTTCTATTAC






GGTAATTATGCATCTGACTTCCACTTATACTACGATGTG






CATGGCTTTGCGTGAACAGATTGCCAAACAATTTAGTCA






TGTGGCTGGTTTGATTGCCCACACTTGTTGAGTTGTTGG






CTAGTCGAGTTTGGGTGATCAGAACCCATGTGGCTCGGT






TTACACTTTGCGCCCTAACATGTGTGTTTTAAAGGTTAA






TTAAACTTATTAAACGGCTTAGTAATTTAAGTCAATAAA






ATCATTCAAGTTTCTTTTGTTCCTTTGGAATGATTTAAG






CTAATATGAAAAGGGTACTTTTCTTAGACAAAAGTCAAA






ATGTGAATATTTACTTTCAAATGAACTCTGGTTATTTAC






ACGAGAAATGGGGCATTTTTATTTTGATTTTTTTAAAAA






AAGATCTTTCTTATTTGTTATTTATTGTTTAGATAGTAT






AACACTTCAAATTAAACTAAATAAAAATAAATACGACGA






GTAGTAAACAAGAAGAACCAATAGGAACTTCGGCATTTT






ATGAAGCCCAAGGTGCATGAACCTTTAAGAGCATATTCT






TTTATCATATTTGTAGGAAATTGTATACATACATACATA






CATTATAATATTATATTGTATATAGAGAAGACAAGTTAT






ATGTACCATTTAAGGGAAGGCATGGGACAAGGTGCCAAG






ATTCATAAACAAAGAGAACATGGATGCCTCGACTTGTGA






CTCAAATTGCTCACATGCTTTGCATCAATTTGATGACTT






ATATATAATCTTAACGTATTATAATAACCTTAAAAGTGA






AATTTAACCCATGCTTATTTTTATACCTTTACAATCTTG






ATTATAAGTTAAGATCGAAGCACTTTATGTTTTTTGAAA






ATAGTTTTTCCATCCAAAGATCATCTATGTGAGTAGGGA






CGAAACCAGAACTTTCACTGTGAGAGGACAAATTTAGAA






ATCGTATGTTATACTTAAGATCTTAAGCTTTTTGATGTC






TTAAACTAGTCACTTGCAAATGCATCTACTAAATTATGT






AAAAGTAGAACCTCACTTCAACTTTGTATTTTTAAAAAA






AAATTGGTATTTAAAAAATAAGGCTAGTAAATGTTAATA






TTAACTAAAAAAATCCTTTAAAAATAAATGTTTAGCTTC






ATTTAACAAATTTGAGATTATGTTTATTCTAAAAATATC






AGAAAGGTTAAATGCTTTGAAATTTTCTATTACTTTAAT






ATTTGTCCATAAATTAAAAAACCTATATATAAAATATAA






GGGTTAAAAGGGTTTTCTTTAAAGTAAAAGGGTCAACAT






AACAATCTCAATAAAGTTTTGAGATTTAAAAGGAAAAAA






TCTAAAAGGCAAGGTAACTTTTGCAAATATGTTGTCTTC






CTCCCTTGGTCTCTACAACAGCAAAGTTACAGCACCATT






AAAACACAAAATGCTTTATCTATTGATTTATCCATTGTT






ACTACAATAATAAGCTCTTAATCGTATAAAGCATGGTTC






CGTTATCACCTATTTAGGCTTTTCATTCTTTTTTAAAAA






TAAAATCCAAGTATACTTTAAAATTAAAAAAAAAATAAT






TAGAATTTAGCAAAATTGGACTGGGGGCAGTTGCCCCCA






TTGCCCGCATACTAAATCCGTCCCTGTATGAGAGGTAAA






ACATATTTTTCTTGTTATTGCATATATATACTACAAAAA






AAAATTCATTTGTCCACATTTGGTTATCGAAATTGTGAA






AAAATTTATGAATTTAATCACATTTAAAAGTGTGTAAAA






ATAATTTACATAAAATCACAATACTTATACACTTATAAA






TGTGTAAACAAAATATTAACACTTAAAAGTGTGAACAAT






TGTTAAATATTTTCATACTTAAAAGTGTGAAAGTCAATT






TGTGACACATGATTTCTTCACACCCTACGTGTATAAAGA






AAATAAGTGTTACAAATTAACTTTCACACTTTAAGTGTG






AATACCTCTATATTTTTACACACTTAAAACTATGAACTT






TTCTTTTTCACATGTATAAGTGTGTAAATATTGTGATTT






TTTAAATTTCTTCACACTTTGAAATGTAAATTATACACA






TTTTTAAATGTGATTAAATTAACAAAAATTTTTACACCT






TTTAAAAGTATAAAAAAACAAGTGTGAGGAAATGATATA






TTTGTTGTAGTGATAAAACAATGTAAATATCAATGATAT






TATATCATATCACGAACATGACATGAAAAAGATAAATTA






TCATATTCTTAATCGGAATTATAAAAAAAAAAAAAACAA






AAAACAAAAACTATTTCTCCCTTACGCAATTTTATTATA






AAATTCTTGCAAATACATTAAACTATAAAAATATTGATG






AAGAGTCAAGTGACCAGTCCCTTACAATTTAATTAATAA






TATTAAAATCACTAAATCCCTAGTTTTTAAATGATGCCT






TTTCATTTGTAGTCACGTTGTTTGTAAAGGTAATACTTT






ATTAAACCTTAAGTTAGCAAAAAATAATTAAAACCATTC






TTGTTATCATGTCATTTTCTTAATTATTCAAAATATAAG






CAGTGATATAGAATTGTTAGATTAATTTTGCTATTTTAA






TAATAGGAAGAAATGTGTGGTATAAAATTGTTTTTTTCT






TTTTGTCTTTTTAAAAGTGTTCTAAATTAATTTTTTCAT






ATATGTATATATATACAATATTATTTACAACAAATATAC






TTATTTTATTACATAATATATATAATTATATATAACATA






TACTTTTGTAAATGATTATAAATTATTGTAAATTTATTA






CTCCTTAGAATAGAATTATTAAGTGAAAAAATGCGACAT






ATCATGTGAGAGTTGGATGCCACATTTAGTGTCAAGTTC






ACATGATCCTCGAGTTTTGTCCAACCTTCTTTACAGATA






ATTCCACAGCTACGCCTTTTAGATACGCATACAAGAGTT






TTGTCCAACCTTTTGTGAACAATTTTTCCCCCCCTTTTA






AACGGTAAATACATTTTTATAACATAATGTTAATGGAAC






TTAAACTCGTAAATTTTTGGTATGTACCACATCAAATAT






TATTAGATTATAAATGTCATTTAGTTTGCGATAATATAT






TTTTGGTAACGATCATTCAAAATAATTGATAGAAACAAA






AATAAAATAAAATAAAATATTGTGTTTGCTATTCGTGAA






AAGAAATCCGTGGTTCATTATAAGGTAAACAATTATATG






TGACTTGACATATGCTATACTTCTTAAATGACTTGGATG






TATTTTGTTATTAGATGAGTTATACTTATACACTTATAT






GCCTTGATAATGCCTTGATATTCATAACACGCAACAAGT






TACTGCTTATAATTTGTGAACTACAAATTTGACTCTCCA






ACTCTCCATAGTGATTTAAGAAATTGATTGATGATGAAT






ATACTTTAAAATTTTACCTATTCATATAGTTATAAGAAA






AAAAGAGTAAGTGTTATTTATTTTGAACACAATTTTTTT






TTTAATACATAAAATAGTCAAATCGATTATTTTCAAGTG






TGATATATGTGCATGTTATCTGATTGACGTATCAATGCT






AGCTAATTAAACATTAAATTAAATATATAAACTTATAAA






GGACTTAGGATTGTACTTGCATAATATATATAGTTTTAA






AATGATTCTTCTGATAGTTTTATCATGTCCAATTGATTT






TGTTAGTTGTTAAATAATAACAATAATGATAATAATAAA






ATAAATAAAATAAATAAATAATAATANNAATAATAATAA






TAATAATGTTTAAGGTTGCAATAACGTGTATAAAAAATT






ATATTTATATATCAAAAGTTCTCTCTTGAATTTTATGAT






AAATGTACATTTTATAACAAAATCTTTATCTTTATGAAA






AATAAAAAACTAAATTTTGATATGATTAAAAAAAAAAAA






AATGTTTTAGTATGTTAGGCTCAACTCTCACGTGACATC






AAAGTCATCAATAACTTAAGTTTATTTTACTGTACGAAG






TCCCTGCAGATTGTTAAAGGTGATCTTAAATTAAAAGCG






TAAAAGATCAAGTCTTCCATATAATAACCAATCACACCC






TAATTTTTTTACCCCAAAATCCTAATAAAATTCATGAAG






ATCTTGAATATTCTTTCCCTTTTACACCTCCCCCGTTTG






ACTTTCTTTAAATGTATACTTGAGCTTGATTAATAGTCC






ACCCTAATAAAATCTCACCATTTTCACACCACAATTTTA






TTTCAAATCTTCTTTCAAACTTTCACTCTCTGTTCTTCA






CCATTCTCTCTCCAATCAACTTTTTTCTGCAAACCACAA






TCACTCCCCTGTTCAAGAAACCTCAAGATTCCGCCATTA






TCAAAAAGTTTTGTTCTTTCTTATCTTGTTTTTACATTC






CTTACGCCAAGATTCAAAACCCACAAACCTTTCATAAAA






CCCAAGTCACGTATCAAGAATTTAGCACATAAAGTTGGC






TTCTTTTTTCATCTTCAAGATTACATCTTTTTATTCAAG






ATTTTTGAACAAGAATGAAGCTAATGGATGAAGATGAAA






CCCCATCAACTCCTGGTAAATTCAAAATAGATAATAATA






AATCCATATACATTCATCATAGATTCAGATTTCTACATT






ACAAATCTTTAGCCAAACTTACATTCTGGTCCTTTGTTT






TCTTGGGCTTAATCTTGGTTTTTTTCTTCAATTCCCAAT






CATCATCATCACAAATTGTAGATCTTTCTAGAAGATCTT






TAAAAACAAGTACATGGGGTGGACCCATATGGGAAAAAC






GGGTCAAATCATCAGCCCGGATCCGAACCCGTAATGGGA






TATCCGTATTAGTCACAGGTGCAGCCGGGTTTGTAGGGA






CACATGTCAGTATGGCCTTAAAACGGCGTGGTGATGGTG






TTTTAGGTCTTGATAATTTTAATGACTATTATGATCCGT






CGCTAAAAAGAGCTAGACAGTCTTTGTTAGATAAAAGTG






GGATTTATATAGTTGAAGGTGACTTAAACGATGTCGTTT






TGTTAAAAAAGTTGTTTGAATTAGTCCCATTTAGTCATG






TTATGCATTTGGCTGCACAAGCTGGTGTTAGATATGCTA






TGCAAAACCCTAGTTCTTATATTCATAGTAATATTGCTG






GTTTTGTTAATCTGTTAGAAATTTGTAAAAATGCTGACC






CTCAACCTGCTATTGTTTGGGCTTCATCTAGTTCGGTTT






ACGGGTTAAATACGAAAGTACCCTTTTCAGAAAAGGACC






GGACGGATCAGCCCGCGAGTCTTTATGCTGCCACGAAAA






AGGCAGGGGAAGAAATCGCGCATACTTATAATCATATAT






ACGGGCTGTCATTGACAGGGTTGCGTTTTTTTACTGTTT






ACGGGCCGTGGGGTAGGCCGGATATGGCGTATTTCTTTT






TTACCCGAGACATTTTGAAAGGGAAACCGATACCTATAT






TTGAAGGCCCAAATCATGGAACAGTGGCTAGAGATTTTA






CGTATATTGATGATATCGTAAAGGGGTGTTTAGGGGCGT






TAGATACTGCAGAAAAGAGTACTGGGAGCGGTGGGAAAA






AGCGCGGGCCAGCCCAGTTACGGGTTTTTAATTTGGGCA






ATACGTCGCCTGTGCCTGTTTCCGAGCTAGTTGGGATAT






TGGAAAGGTTGTTGAAGGTTAAGGCGAAACGAATGGTGA






TGAAAATGCCACGAAATGGGGATGTGCAGTTTACGCATG






CGAATATTAGTTTTGCGAAGAGGGAGTTTGGGTATAAGC






CGACAACGGATCTTCAAAGCGGGTTGAAGAAATTTGTGA






GATGGTATGTTAGTTACTATGGAACAGGAAAGAAGACTG






ATCACTGATATGATTAAAAAAGATGGAAATTTGTTACCT






AAAAAAGACTAAATTTTTTTGTGTTATAATTCTTGTTGA






TTTGGATTCTCATATTGATTGTTTTTCATGATATGATGA






TGGTAATTGTTTGATACAAACTATATTGAGACTACAAAA






GGAATATATTGTTTTAGTTCATTATTTTTGTGTGATGTG






TACTAATAAGTAAGATTTCACATATGTTTTTGTAGGCTT






ATTGTTTTGTGGATTTCACGAAAGTTGAGTATAATTCGT






TAGATTTCTGATCTTTCTGAACTCGAATCTGGCAACATT






AATCACACGATCAACCACGCCTGCTTGGATACAAGCACC






ATACAGAAAGTAGTATCACGTTGAAAATGTCCATTGTTA






CCACTGCTTTGGGGTTTTGCCTAATGTCCATGTTTTCAT






TTTCGTTTTTTATCGATCTTGAACGAATCTAAAGCTAAC






TTTAGAAAAGAACTGCAGACGCTTAACAAACCAACGTTA






GTTGTTCAAATCGGATCAAAATGAACATTACTGGTTTCA






ACCCGATTCTTTGTAAACAGACATTGCAAAGAGAGTTGA






TCTGTCCAGGTAGCAATTGATATATTTATTATCACTTAA






AATCAATTAAATGATGGTTTAATGTACATATTTTGCAAG






TCAATAAATTATGTGACATTGTCACGAGTACACTACCAA






ACAGTTGGATTTGATGTTGCTTGTGAGTTGTACATAATG






CATTAAAGTATCTTCATTTGGAGATGTCGATTTCCGTTA






TGAAAAACGGTTGGTAAGCTTTTATGTGCAAGTATTTAA






GAGATGTTAACACAATCTTTTGAGTTGTCACTTAAGAGT






GCTAAAGGAGTTTGTATATGGTGGAACTTGTACTATCAA






ATATTAGTTTGTACATATTTTCCCTCAAATTAGTAATTA






AACGTCAATACTTGAATTTGAATACGGGATTTCCTCATC






TCCTCTTTAGACAAAAGTTGTGCTTTTGATCTACGTTTG






TTGCTTGAAAGTCAAAACCATTTTTTGTTGGAGTTGCTA






GGGACTGTTATCATGGGTCGTCATACATAATCAAAAGAT






TGTGATCTAATCGAGATATAAACTTTGTGGTGTTGAATG






AAATGAGCCATTGTTTGTAGAATCTTAGCTTTGTTACCA






TTGAGTAAGATCATCGGATAACAATTTTAGCAAATCTTG






GCCATCTCATTAATATACGAAATACCATTTTTTATGTAA






AATAATTAGTTACTACGTATATGTACTTATCATACAATG






AACTGACAGTAATTAAGTTATAAATTTGATGTAGGTTTA






GGTAAAACCTAAGAAAAGCTATATTGAATGTGCACTTTA






TTATGTCTAGTTCATGAACATTAAAGGAGAGTAACAACC






CTCGAGCATAAATGTGTGTAAAGAACATGGATGCCAAAT






TTACTAATTTAATAATCAATACTGTAAAGGATTATTAGT






ATTATTATTACTATGGGGATGGGAATATAAGGTTGTCGG






GTATCTAAGCTTAGGTGTAGAACACTCACATATTGTTTT






T





60

Conyza

Genomic
12729
CCTTTGGGTAGAGGCAAGATTGTCTACATCTCACCTCCC




canadensis



CCATACCCTGCTCACTGTGTTGTTTAGTTTATTTAAAGG






TGGAAAGGAAAGGAGATGAGAGGAGAAATATATAAGATG






CATTCTTAAGATTTTTTTAAGTGTGGAAAGGGAAGGAGT






AGAAAGGATTAGAGGGGGAAGTTGATATGGATCTGCGGG






AAGTTTATATTATTTAGTAATATAATATTAATTTTATTA






TTATTATGATTAGGAAAGTATTGTCTTTACTTAGATATC






TTATGATATCTTTTATATTATTTAGTTAGCTTGATCATC






AAGCTATAGGATTAGTATAAAAAGAATATTAGGGTTGTA






ATTCTAAAGTATGAAATATTAATCAGAAGTTTATTGTTC






TTGTTTAATCAATTTAGGAGTTTACTGGTTCTCGAATAC






CAGCCTATCTTTGTTATTGTTCTTATCATTTGATACAAG






CCATTGGTTCGTATCAATTGGTATCAGAGCATCGATCTT






GCAACCTGTGCTTTTCTTCAACTATGGAATCAAGGACGA






TCATTGATGTTGATGCTGATGTACAGCAATACCGTGAAT






CTACTGAGGCTTGGGTGGACATAATGCATGCTCGGATCA






ATCGTTTTCAAGCAGCCACCGCGCGATCTCAGTTGGCCA






CTCAACAATTTCACTTGAGGTTTACAACTAGGCTGGATA






AACTTGAACCAGTTGTAGTTGGGACACAGCAGAAGTTGG






ATGCATTGGCGGCAGTGGCAAACCAGCCTCTACCCCAGC






AACCGATGATTCAGGAAGTTGTCATACCAACAGTCCCTA






CAACTTCACCAAAAACAAATCAGTTTGGGTTGAAGCAAT






CGAAGGTTTCACAAGCAGGGTATCCTTATCCCAGACACC






TTCAGATCTTGCAAGGAATAATCATCCTGATGTGAACCA






AGAACGAGGAGCTGGACTAACATTCAAGGACATAAGCAA






TGCTTATGAAGATCTGGCAGGCGATGAAAAGCGATCCAT






ATATGACATGAATGGGGAGAATGGGCTTAAAGGTACATG






TTTTGGTTTAAGGAATTGTGCAAAAGCTGATGAACTTTC






TGGTTTGATACATATGATTGAGTTTGTTAAACAACTTCG






ATATGATCAGCAAGCTATGGAGTTTCAAGTCAGAATTTG






GGATCCTGGAATTACTCGAAGGAACAATTTAAAGCAACA






CCTTGAGGACAAGGTGTTTTTGGGGTGGGAGTAATGATA






TGGATCTGCTGGAAGTTTATATTATTTAGTATTATAATA






TTAATTTTATTATTAATATGATTAGGAAAGTATTGTCTT






TACTTAGATATCTTATGATGTCTTTTATATTATTTAGTT






AGCTTGATCATCTAGCTATAGGATTAGTATAAAAAGAAT






ATTAGGGTTGTAATTCTAAAGTATGAAATATTAATCAGA






AGTTTATTGTTCTTGTTTAATCAATTTAGGAGTTTACTG






GTTCTCGAATACCAGCCTATCTTTGTTATTGTTTGATAC






AAGCCATTGGTTCGTATCAGAAGTTTAGTTGTTTTTTGT






CTCAAAAGTTTTCCCCTCATTTTTGAGGTGATTAGGAAG






GAAAACTTCTCTTCCCTCTCATCTCCTTTCCTCCCTTAA






GTTAACTAGACATTAATGAATATTGGGTCATTTTGTTGT






TGTGGCTATAAGGAATGACTTGACTTAAAAACTTATAGA






AATGCTGTGTTATCCAGTAAGTAATCGTTTTTTTACTAT






TTGTCTTTTAAGACCATTCATTAAGCACATAAAACAAAC






AACAATCCTGCTTAATCGATGTAGACTACATACATGTAG






ACGGACATTTTATCCATAAAACAGCTAATTAGTCATACA






TACCAGTTATATGTTTTACATCGTGCAGTGTAAAACTTC






TGCCTTTACTGCTAAGATTTTTTGTTTACATATATATTA






GATATATTAAGGTTTGTATTTTGATGCTAACATTTAACA






TTACTTTTTTTTTTTATCGGGGAGTGGGTTAAAGTGGTT






CTTCTACCTGGTTTTAGTTTTTTAGATGTATATCCAATA






TTTATTGTGGGTAATTTAAAGTTTTGAAATTTTTGTTTT






TTTTTGTGAACAGTATAAAGTTTCTGACTTTTTTGATTT






TTTGTGAGGTAAAGTCGTGAATGTGTAATTTGGTATTTG






ATTGATATTCTTGATATTGGTACATAGTGAGGTGCAAGG






TGCTGATGGTTTCTTAGACGGGTCATGTTTGTTTTGTGT






AAAATACATCTGTTTTTTTCTTTGATAACAAGTTATAGA






AGTTGCACCCAAAAATGTTCTTGTTAAAGCGATAAAAAT






TTGGATAGAAGGTGACGGTTAATGATTCGATATATTGAT






TTGAGTTTCCTTTTATCTATTGCATTTTCACAAGTTCAA






CATTCCACCCTCGATTTTTTGATGAATCTATGACTGAAG






AAAAGGGCGATTGTTGCCTTTGGCAATCAGTTTTGGATT






TTATTTTGTCATGGAAAGGGGGTGTTAGTTCCTGAACCT






TAGTAGAAGATGATAAGCTATAGTTTCAATATTGCTTTT






CTTTCTTGCATCTGAACTGGTTTTGCATTTTTCAAAGGA






CTATAAAAGATGCTATTTATCACCTATGACCTATGTTAT






AAATAGTAAGGTATTAAACTATTAATATTGGTATAGTCT






TGAGAAATCCATGAATTTCGATTGAGTTCATAGGACACA






TCTAACTTATGTTTCTTTACATTACGATTTACACATCTT






GTCTTTGACGTCTGATTTTAAAATAGCGTTTCTATTGAC






ATTATGCATTTCTTTGAGTTCTCTATATAAATTTTTGTA






AGCTTTCCATATGTATATACTATGAATCTGAGTGAACTT






ATGCTATCAGGGGACTACTGTTGTAGACAACTTGTTAAA






CAGTGATGATGTTCATTACATGCTTGGAGCTTTAAGAGC






TCTAGGGTTAAATGTTGAAGAAAATAGTGCAATTAAAAG






AGCAATCGTAGAAGGTTGTGGTGGTGTATTTCCCGTGGG






TAAAGAAGCCAAGGATGAAATCCAGCTTTTTCTTGGAAA






TGCAGGAACAGCTATGCGTCCATTGACTGCTGCCGTTAC






TGCTGCCGGTGGAAACTCAAGGTATTTTAACTTAGTGTT






ATATTCTCCTGCATTTTATGTCTGCTTCATCCTCCTACA






CATACATTTCATGACATGTGTACCCATTTCTCTCACCTC






ATCATTTCATTTTTCTATGTGTCACAATTATATGAGTAG






GAGGATTCATACTTTCATAGGCATAAATTGTAGGAATCA






AATATCGTTTCTTTTTAACCTAACATCTCTTGATTAGCT






ATTATAATCCGTAGAACGTATATTAAAGTTTTTTGTGCC






GATATGTAATTTTAAGGTGAATACACAAATAAAAATTTT






ACCTTTCTGTTTGTTGCATGTTCTGTACATATAAATTTT






TAGTTTTTGTTATATATCTAAGAATCTAAGATCTCTAAA






TATTCTTCTATTAGTTGACACAAATTAAGGGATCACATG






AACTGAAAACTCAATAGCATCCACTTGTTGATAATGCTG






CAATTTAATGCCCAAAGAAGAAATTATTGCAATTCTTAT






TATCATTTTATTTATGGGAGACAGTGAGTATGAATTTGG






GAATCGATAATAGAGTTGACCAACTTGGTGGTGCTGGGT






AGCTAAGGTAGTGGGTAAGTTACATTGATATGTAATACC






CTAACAGTTATGAGTTTTTTCTTCAGCTACATACTAGAT






GGTGTTCCTCGAATGAGGGAGAGGCCAATTGGTGATCTG






GTCACCGGTCTAAAACAGCTTGGTGCAAATGTTGATTGT






TCTCTCGGTACAAACTGCCCACCGGTTCGTGTAGTTGGA






AGTGGAGGCCTTCCTGGTGGAAAGGTAATCAACAATAAG






ATTGCTGCATTTTAAAGTCGTAAGAATTAATTATTTGGT






TCCATATATGATTGGAAAATTTGGTTATTTAAGAAACTA






TTAATTAGTAATGAAATTATAGTTTTTGAATCTTTTTGT






AATCTTCTTTCCCTGGCCTTCTTATTGCAGGTGAAATTG






TCAGGATCTATAAGTAGCCAATACTTGACTTCTTTGCTT






ATGGCGGCTCCTCTTGCACTGGGAGACGTAGAGATAGAA






ATTGTAGATAAATTGATCTCTGTACCATATGTGGAGATG






ACACTTAAGTTGATGGAGCGGTTTGGGGTTTCAGTAGAA






CACAGTGATACTTGGGACAGATTCCATGTCCGAGGCGGT






CAAAAGTACAAGTAAGTTGATCATTTCATAAAAGTCAAT






TTTTACGTGAAGATCGGTCAACATCTATTTTAATCCGAT






AAAATCTCTTTAGGTCACCTGGAAATGCTTATGTGGAAG






GTGATGCTTCAAGTGCGAGTTACTTCTTAGCTGGTGCTG






CCATCACTGGCGGAACTGTCACCGTGGAAGGTTGCGGGA






CAAGCAGTTTACAGGTATTATCCATGTGCCCACCTCAAA






GATATTCAAAAACTAAATTGTTTCTCAAGTATATATTCT






TCTAGTTAATTGCAAATTTTTTTGCCCCATACGTCTACC






CATTCTATAAATTTCGTCCAAAGTTGGTGACTCGGTTCA






ATCGTGTAATAAGTCTCTTTTTTGTTTTTTAGAATTGAC






AATTTATGTCAGTTCTTGGTTATATCAACGATGTGGGAG






TGTATTGTGCACACATTCTAAAAGAAGGACATTTAGTCT






TTTTGCTTTCTTTTTGCCTCAAGATCATCTTCATCTTTT






CAAGATACTCTGCACTCATTTGCATTATCAAAGTTTTGG






ATGCATTCTGTAACTGTGGTACAAGGAGGGAGACATAAT






ATGTCATTAGTTCTTATTCTTAAGCTCAATGCACACTAT






CACCTCTTACTTCTTTTTTCTTTCTTTTTTTTTATTAGT






TTATTTAAGCTCAATGCACACTAACACTTCTTCTTTATA






ACTTCAAGTCATTCATTTTAATTTTTGAAGCTGATGGTT






TTTGACATTAAAGATAGAACTATGTATATACATATGTCA






TTTCATCTTACCTATTTGCATGTCTTGTTGATCTTTAAT






CAGGGTGATGTAAAATTTGCTGAGGTCCTTGGACAAATG






GGTGCTGAAGTAACCTGGACAGAGAACTCTGTCACGGTG






AAGGGTCCGCCAAGGAATTCTTCCGGAAGGGGACACTTG






CGTCCAGTAGATGTGAACATGAACAAAATGCCGGATGTT






GCGATGACTCTTGCTGTGGTTGCCCTTTATGCTGATGGC






CCCACTGCCATTAGAGACGGTATGTGTTAGAATTCACCA






CAGCTTTGTAATGTTAAATATATGTTAGTTTAGATTAAC






AAAATGACTATATGATCACAAAAGGAAACATTTATCTCA






AATTTGGAACTAATATAGTATCATACCTATATAGCAATT






GTAGTTTCAAAGAAATCCTTAAGGTCGTGTTGTTTATTA






TACATGACTGGGTATATATTGTTTTTTGTGCTCAAGCTT






TTAAAAATCACATTTGACTATCCTTTATTGAAAGGTTAA






TTTTGTTCATGTCTCATTTTAGGCAATTTACTTTTTATC






AAGGAAAAAATAGCAATCAATGTCTATGTCGTAGTTTAG






GCAATTAAAACCCATCAATCAAAGTGCTGTTGGTTCAAG






GCATATTAGAGATAAATGAGATAATAGTACGTGGATGTC






TTTTCAAAAGAAGTACAAACTTTTTCTTGGGCTCTTTAG






TTTTTACTGAAAATACCAAACTCCTTTAACTGAATTGTC






TAAAATAGAAGAAACTGGAAATTAGTTGCTATTTTGTGA






AAACGAAAAGTAAATCGCCAAAAATTGGAGGTTAAGTAT






GCTTATATTTTATGTAATTCATCTTTTTGAAAAATGTAA






GAACTTAAATGGAAGTGAATTGATTTGAAAAATATATAT






TAAAGCACCACTTATGAAGAAATCTAGAAATTGAGTTTT






AGGATCTGTAAAGACATCCTGTATATTGTATGAGAATAG






ATATATCGTACACCACAATCCATCATTTTTACTTTTCAC






ACGACAAAGTGAATATGAAAAATGTGAGTTAAAACACTT






AAAAGACAGTTTTGGGTGTGCAAAGTAAAATGTAGCACA






AATTGGCCCCTTTCTCATATTGGGTTTACATATTCTTCT






TTACGTATATCCCTATATTGTTCATTTTGTGGGCCCCAT






CTCACGTCGGTAAATCATTAGATGGACTAAATCATATTC






TTCATTCCTTATATTGGGCAGTGGCTAGCTGGAGAGTAA






AAGAAACGGAAAGGATGATTGCCATCTGCACAGAACTAA






GAAAGGTACAAGTCATTAACCCATCTTACTCTAAAAAAT






AGAATGGCCATGAGTACTTTTAAAGTACTCAATGAATCT






GCCCATTATTTGTTTAGTGCTAATAGGCCCTTTTGCCCT






TGGAACTTTTCAGTTGGGAGCAACAGTCGAAGAAGGTCC






AGATTATTGTGTGATCACTCCACCAGAGAAATTGAATGT






GACAGCAATCGACACATACGATGATCACAGAATGGCCAT






GGCTTTCTCGCTTGCCGCCTGTGCAGAGGTTCCTGTCAC






CATTAAGGACCCGGGTTGCACCCGTAAGACCTTCCCCGA






CTACTTTGAAGTTCTTGAAAGATACACTAAGCATTAAAT






CACATATAAGATGTTCAGAAAGAAAGGGGTTAGAGGTTT






TAAAATGACACCTTTACCCTTCAGTCCTTCACCATTATC






TTTCTTCAGAAATGTTTCACTTACAGAGTTACATCATAT






GTATATGGGCGACCTGAGCGTATTTTATCTTTTCTTTTC






GGTGAGTTTGTAGTTTTTGTTGAGGTGGAATAAGTATTA






TCTTGAATATTTATGCTAAATTTGGTTAGCAATGTATTA






TTTTTGATGCATAATGTATTTGTTATATTATAATGAAAA






GTGTTTTTGAATATGGCCAAGATTTGTGAAGGTGAGATG






AGTTTTGAACCTTATACTCAGATTTAGCACATGGTGACA






CTAAATAATTGATCCTTTATTAGTGCTGAAAATAATTAT






ATGTTAAGAAAGATTGGTTACTAACAAAAGTGGTTATGA






GTGAAAGTGGGGTTTAAGTTTGAAGTCATAATTCTCTTG






AGATGTTGATTTGAAGTTGAGATGTACGATAGGGGTGTA






AAGGCACCTTTGGGATATAAACAAAATCATGGATTATCT






TATTCCTTATACTTCTATTGTATGTTAATTTTTAATTCA






ATTTTACTGAATTACTTAAATGATATTTTGAATACTATA






AAAGGTTGGTATTACTCCATATGTTATATGAGTCAGAAA






TACATTTCGTAATTTGCTCTACATTATCTTAAGTAATAT






TTCTCTTCTAAATCCAAATTACTAGTTAATAATATATAC






TAGTAAAAATGTAGCTATAAGCCTATAACTAAAACCTGA






AAAATGAAAAAGAAAATAAACGCTATATAAATTATGGAT






TCATGCATGTATCTATTATATAAATAAAAGAAAATTGTG






ATGACATCATATTTATTAGAAAAAAATCTACTTGGCATC






ATTAGACATTCACATATTAATTATTTATTTTTTTTATTT






AATTGATTTATGACATCAATATAAATAAATAGAATTTGA






TAATTCTATATTAGGAAATATCATTACTTTTAAAGATTT






TGTGGCACTATTACTCTATTAGACATTTATATAATAATA






CTTTCTTTTTTTATTTAATTGATTTATTTATAAATAACT






AAACTTTAATTTTTAATTCCCATATTAGAAAATATCTTT






AGTTTTAAAGATTTTTGTGTGGTAACGGTTATAACTTAA






ATGTTCATAGAGTATTATAAATGAATATGAAAGGTCTTA






CACATTTTAATTCTTATATAGATTGTATATGTGTTTATA






AAAAAAATCACATTTTGTACAATATCTTGAAGTTTTTCT






TGAATTTTATTAAATTTTGTGTTATATATCAATGGGTTG






AATGTTAAATAAATTTTCATTATATAATTTTAGGTAAAT






TTTACATTATATAATTGTCCTCAATAATTATTTCTTTAG






TTTGCCCGCGTAATACGCGGGTTACTTAGCTAGTCAAGT






GATAAAGTTCCATTTAGGTAAAAACTAAAAAACATGATA






GAAGAGTTTACGTTAATTGTATTATTTATCTAAAAATTC






TATTTTTAGTTTCGTAAGTTTAGACTGATCGATCATCTT






GCAACTCGATGTTATACATGGCATTTTATCTTAAAAACT






TTTACCCTTGTATTTTTTTTTTTTTTTTTATTGTTTTTC






TTTAAACATTCATATCTATAATCATGAAAAGAAATAAAA






TAAGAATTAGCGATAAGCCAGATAAATACAAAAGGAGAA






ATTTAAGTACAAATGAAATTTTATTTCATCTTATGGTAC






AATGTAATAAAAAGTTATAGGAAAATTTAACTTCAGTCC






TAAGATTGTTGTTAGCGTGAATAAATAATTATACTTTTT






ATTTTAAAATTAGTTTGAGCGCGTTAAGTCGTTATTGGC






AACCCATAGAGTTGTTATTAGCAATACTAAATTTTTTAA






TTGTGGATAGCCAAAATTAAATGGATGGGAATTTCCAAT






GACACACCGGTCTAGTGTTAAGACACATGAGATTTTCTT






ATAAGTCGGAAGTTCGAGTCTTGTCAAGTACAAGCTTTA






TTCATATTAATCCCCAAGTAGTCTATGGTGATTTCTTTT






GGCATTGTTGCTCGGCACGGGGTAGTAGGATCCGGTTTA






GACAACCGACCAACCGCTTTTTGGGTTAGGACCTCATCA






TTTGATGGTGAAGGATATGTTTCTATTCGAAAGTCATTT






GTTAAAAAATAATAAAAATGAATAAATGAACGGAAATTA






TATGCACCATAACCTTAGAATATACTACCAATATTCCAG






GTTTATACTTGTGACTTGCCAACATTTATTGTTGTTGAT






TGTAATAATGCTCATGTTTCCTTCATTCTTCTTGTATAG






TTCCTTGAAAAAATTTCTTGTTGTTGATTGTAACTACAA






TGATTAATGTAGAAGAAACAATGGTTAAAAAAAAAATGA






TATTTGTACCATTTCTTTTGATTGATGTATCATAAATGT






GCATTGTTAACTTGTACAGTTAGTTATACAATTTGTACA






TTATTATACATTAATAAAAAATAGTGATACTAATATCAC






AAATTAAGCGTTAAAACAGTGTGGGGTGGGGTCTAAAAG






ACTAACTCAGTAATTTATGATACTTGGAAATTACTCTTT






TCCCAATTAAGCTTGCAATAAGTTGAAGTTTGGTGGTGT






AGTAGCCAGCCTTTTTACTCTTTTCACATATATACAAAC






TCACATGATGTAGGTGCTACCCTAACCAACAAAGTTGGG






GAATTTTGACAATAAAGGCATTGAGTGTTTACCTAATTT






ACAGTCAAAATCTTGACACATATGACATATATACATTAT






GGCAAGAAAAAACAAATATATCCTAAGTTTAGACCAACA






CCATGTTGTTTTAAAATGATATTAAATATGTAAGTTATA






TACATTTCTACTTATTGGTTTTAGTGGTTTATTTCTATA






TTTGCTATAAAAGTATAAATTATGGTTTTCCAATATGTT






TTGTTTAGAGCTTTAGCCGTTGAATTCATGGAAGAATGA






CATTTTGGGGTAAGTTATTGACATGAACGGGCTAACACC






TTAGAAAAAATTATTGAAGTATTTATAGATGTGTGTAAT






AACTCGAAGACATGTATCAATGTCAATAAATAAGGTAAC






GAGAGGAAAAATAAACTTATGCATCAACGAATAAATGAA






TTAGGTATTAAGATATGATAAAATTGACATGATGTTTAC






TCTCTTTTCTTTTTTTCCAAAAAAAAAAAATTATCGTTC






ATCTTGAATTAATTAGTTAGTTTTTTTTTTTTTTTTTTT






GAAAAGTAATTAATTAGTTACTATCACAAAGAGTGTTGA






AAAAGCCCTCATTCAAATGATTATTCCAATTCAGGAAAA






TCTTAACACAAAGTACACAACTAAAAAGAGGACATTAAT






CAAAACATCATACTCAAAACATTTGATAGTGAACAATAG






ATCAATTGGCTGGAGTTTTTTTTTTTTTTTTTTTTTTTC






CTGATCATAAGTTTGACTCTTCAAAATGACATACTTTTA






GGTTTTCTTTTGACTAACTTATAACAGCTTATGATTTAC






ATCTTGTAATTTAAAGTATGTGTAGGGATTCACCATTGT






ATGATGAGATATCCCCTGATATCAAATAACAACTGACTC






TTGAAGAAAAACATACTAATCGAAACCAAAAAAAAAAAA






AGAACGCCAAAGTTGTAGATGGAGTTGTTCATAAGCTTA






AATTCCTCTTGATCCAGTGGGTATCTTTGGTGCACCACG






TGAATGCTGATTTCCTCTTGAAGTTATTAAGCTTGTAAT






GACAACAACTATGGTTTAAAATGATTCTAGAAGTTAAAT






ACTACGAGGTAGACATTTTTTCATCATTTGTTAGATAGG






CGCATTTTGAAGATCGTTCAAGTCGTCTTCAAAAACGTC






CTTTTTACCTAATGATCAATCAAGGCACGCACCTAGCTA






TGAGATGAATACGTTGTTGATATTCCGCTTTTCGTTATC






ACCATTCATCTCGACACGACGTATATATCTATATATATC






CCAACTCTAGATTATATTCATAAGTTCGTATATTGATGA






ACTATATATGTGTTATGCACATGCAATGCACCCATAACA






TGGAAGAAGAATTATTGCTTTATTCATTCATGTGGAAAA






TTAGGTATAATGGAATACAATGAAGGAACATGACAAAGG






TGTTACCCAATCACTAAAATTGTGTTTGGCACTAATGGA






GCATTGCAATTGTACTTTCTAAATAATCCATATCTTTAA






TGGATGGAAAGTTTCATACTTACTTATTACAATCAGTAG






ATAACCATAAAAATGACATTAATATTGACCTTTAATTAA






TAGAATTTTAGAGTTTTTAACAAATCTTTTGTCATGGAC






TTCGTATGTAAATTGGGGAAATGCAATTTGTCTTCTATG






CAAAATACGAAACCAATTAGATCCAAAAGGTATGATGAT






AGTAACATCAATCAATACTCATTTATAAAAGAAGGTTTC






CTTTCATTTTCAATTTTTGTGTGCTCTTAATATAAACCT






CACACTAAAAATGACTTATCCCATACTCACATGACATGT






CTCTTAACTTCCCTTTCAATTAGCTTTTTTTTTCTTCCA






CTCCTTTATTGCACATCTAAAATTAATTTTTAAAAATAT






GACTAATGACTTTTAATCAATTATGGGACTAGTTAACTT






ATTAAAAAAGTATCCCCTTATTGAAAGTTACATAGAGAA






ATGTTTAAATTACTCTCCAAATTTAATTATATAATATTT






TCATCTAGCACCCCTTAAAATATATTCACATAAACTATC






CCCTTAACATTAATGATTAAGTTACACTATCAATCGTTA






ATCTTTTAGAATATCTTCATTAACCCTAGCTATAAATAA






ATTACTTTTATATCAATTATTTACACCACTTAGCGTCAC






TTCCACCACCAACAGTTGTCCCATCATCACACCGTCACC






GCCACAACCACTGCTGCATTGCGTGGATATAATGCTACT






ATAAATAATAAATAGTAAGCTTGTAAGGAAAAAGAGTGC






CTCAAATACTTTTCTTATAACCCATTTGCAAAAATAATG






GATATCTTAGAATGGCTAAGGAATAACTTATAGCATATT






TTTTAAAAAAAAATAACACTTTATATTTGGAAGTGTTGA






AAAATATGTAATATTTTTATTTAACACGCCTTAAAATAT






TTTTACATACACTATCCGTTAACATTAGTGATTAAATTA






CACTATCAATCCTTTATTTTTTAAAATATCTCCATTAAC






TCTTTACATCAATTATCTACACCACTCGACGTCGCCTTC






ACTACCAACTATCGCCACCACCACACTGTCATCGTCACG






ATTACCGCCGCATTACGCAGGTACCATGCTAGTTGAATT






TAACTATAATAACTATGAAGTGAAGTTGAATTAATCAAA






GTTATGAAAGACGAAAAAACTTCACTCACTAAAAACAAT






AGAAACCTTATTCTTTTTACAAGTGAATTTTACCTCAAA






CGTGTATGATGTATGCAAATCGCACAACGAATGGGTCCC






GCACTAAGCGGATCTTAAATAGTTTTTCTCACCATAACA






CCTCCTTAATTAGAAAATATCGTCGAGGAGAACCTACCA






AAACTCGAACTCAAGATCTTGGAATAAATTCTCCGGAGG






CCCCGCATAGCAGGTTTAGTGAAACACCACTGGCCATAA






ACGAAATGTAAATAATTTATTTCAAATCGTATAAATTAG






AAAAAGCAACACGTTTGGCAAAGTTTCATTTCCCTGGTA






TTATTTATAAGTTTTCATTAATATTCCAACAACTAAAAA






TGGTAATGATGAGGAGTTATCAACGAATGTCAAAACTAA






ATTCATTTGTATACTCACAATCAAATATTAATCAAAACA






AATCTTTAATATTATATATCATCACTAGAAACTAGAAAG






TAAACATATAAAATTGAGTGGTAGATTATGAAATATTAT






ATAATAACGACCAGTTAAAAAGGTTATAACTAAAGGGTT






GTGATCAAATGAATC





61

Conyza

Genomic
2833
AATCTAATAAAAAGAAATTTGTAAGGAATTTGTAAGCGG




canadensis



AAAGTCCCCTTTGTCCATTTTGTAAAGACAATGAGGAAA






CAATTGACTATCTTCTTACTGCTTGTCCCATTGCAAATG






TGGTATTATGTTTCCTCATGGTGCCATATACCTCCACTA






TAGGCATACTAGGCCAAAGAGTTTTTCCTTACAAACCAG






CTTTCTCCCGAGGTCTCATTAACTAAACTTAGAATCATT






AATCTTATCATCCTCTCATCTGGTTGGCATATTTGAAAA






ACTCGGAAAGATAAAGTCTTTTATTGTAAAGATCTAAAC






CCAAATTCGAAGACATAAACATTCAACACTCATATGGTT






AACTGTGAGATCAAAGTTTAAGGAGCTCGACTCGAACTC






CTGGAGCTCCTTTAATTGTAATACGGTAACTTATTTTGA






CTTTGGTTTTGCTTGTACTTTCCTAGGACAAGGAGCCTA






AATTTTGATTGGAGAAAGAGATACAGTGAGAGTAGGTAT






GTATTTTCTAAAAGACACGTAAACCTCAAAAAGAGCGTG






TGGTAATGATAGGGATTCTTATAACTTATTTTGACATTT






TGTAAAAAAAAATATTTAAAAAGAAAGATTAATTGTCGA






ACCTCATGACAGACCTAAAAAACCAAAACTATATCCAAC






TAATCTAAAACCTTATTTGTTCCATAATCGGTAAACGTT






CTATCAATAGTGTTTATATGAAGTATACAAAGTTAAGCA






TTGCCATTGCCACTAATGATATAACAATCTTAACCATTA






ATTTTCATTCAATGGTCAAGATATTTTCAACATGACGCA






AGTTGAGAAATCAACTTGAGGGAATTTAAATTCCGTAAA






CTCAGCTTTATGTAGAACAAGGTGCTGATAACGTGTGAT






AAGATTATTGTGAAGAGAAATATAGAGAGGAAGAAATTG






TATCTTTCATTGAGAATGGGGAGGGATATATATACACAA






GTCTTGGAGTAGGCTCCAAGATAAATGAGATAAACTAGA






AAATGTAATCTCTCTAAAACATACATGATACACATAATC






ATTTTCATTTACAATAATTCCTTTAATAATAGTCATTGA






AATTAATAGTGTCATCTCCATTGAATGTTTGACACCTGT






AAAAAAAAACGTTATATATTAATCATATACAAAAATTAA






ACAAAATGTGACTTTTGGAAGGAGTGGCTAGAACACATG






CTAATGTTTGAGAGATTGAGTGTTCGAATTTAGGCTGCG






TTTTTTTATATGACCTATAAGTTTTATACTTTTATAAGA






TAAACACATATACACTTTGTAATATTTTTTTCTTTTTAG






TAACATTTTTGTTCGTTTATTAAATATTTGTCTAACTAC






TGTATTTCTTTTTTACATTTTGTTTTACTTTATAGTAGG






TAATTTTATTTTTAATACTTTGTTTTCTTGGGATTTTTA






GGAATACACATATGGTATAGTTGTGACAAATGTATTTGT






ATTGATGTAAAGGTTACATTTGATCAAATGTATAGTTGT






GACAATATTTAAACATGAGAAAACTACGGCGGTGAATTT






GTCTACTTTAAAAATATGGGTTAGTGGGGCGCGGTCAAT






CTTTCTAGTTTAAAAATATGGGTTGGTAAGATGTGTAGC






GGGGGCGGGGGTTGGTGAAGGAAATGACACTCTTCTAAA






AGCCGCCTACCAAACTCCCCCACCATCACCTCATCACCC






ACCTATTCATTGATTCAAATCCCACATTTACTACGTGTT






TTCTCAACCAAAATCCCCCCCGCCCCCCCACAAAACACA






CAATGGCAGTTCACATCAACAACTCCAACATACCCATTT






TCAACACTTCCAATCTCACAACCCAAAACCCATCTTCAA






AGTCATCATCTTTTTTATCTTTTGGATCCAACTTCAAAA






ACCCATTAAAAAACAATAATAACAATAATTATACCTCTG






TTTCTTGTAATGTGAAAAACAACAAAAACCCATTTAAAG






TATCAGCTTTCTCTGCCACTTCCACCAAAGAGAAGCCAT






CTAAAGCTCCAGAAGAAATTGTGTTGAAACCCATTCAAG






AAATTTCGGGTACGGTCCATTTACCCGGATCCAAGTCTT






TGTCTAATCGGATCCTCCTTCTTGCTGCCCTGTCTGAGG






TATCTTTTATAAATTATGTTTTGAATATTTGAATTTAAT






TAGTGTTTTGATTGATTGACTAGAATTTGATTATTATTA






AGATATAGGAAAAGATATGTACATTAGTTTTTGACTGAA






TGTGAAAAATGTCTTAATGTAGTAACTCACAAAGTTTTG






TTTGTGATCTATAAGTTTACTTTATAAGGTTACTCTATG






GGAAAAGGTTACGTAGATTTTGGTTTTCTTTGACCTCTG






TAGTTGGTATGGCCATGAGAAGAAGTAGGCCTAAAAAGA






GCTTTGCTTGTGAGAGGACATGACCATACTTAGAGGACT






AGGATTAGTTTAGAGGAATATGGTAGATCAGTAATCCTT






TTAGGTATTTTAGGGGTAGTCTATATACTTATATGTAGG






AAGGTCAGGCATGATACCTTTCTTATATGCTCGTATACT






CGTAATTGTTGCTCTCAGTCCATTTGCTTGGTTTTATGC






AAACGGTTATGTTTATTATGTTTTTATGCTGATGTCTAA






TATGTTCAAATGTCCTATCTACTATGTATTGTCCATTTT






GCGCTAAAGTGTCCTACGTGGTATGTTTGCTACTCCCCT






TTACTCTTAACGTAGGCAGCTCATACCCGACCGACAAGT






ATGGTTTGCTTAACTCTTTACACTCTCCTACTTTTGCAT






CATATGGCCGGAGGTCCTTATGGAA





62

Conyza

Genomic
15010
AATATCAACAAAATCTTTCACCATGTCAAACAACGAAAA




canadensis



CCAAAGTAACGACCTTTGGAATCACTTTCAAGAAAACCC






GATGCTGAGTATGCCCCTGATGCCGCCTATACCGGTTAT






ATCATCAGCTAACCAAGGCCAAACAAGCCATGTTTCAGG






CTCATCCAACCCGACCCCAATGGGGAGACCAGTTCCGAC






GGGTTTGTCGCAATACGACCTAGAAGCACATATGAGTTA






TCGCCAACACTTGCAACAGAACTATGCAAGCTCGTTTTA






TGCACCACCGGCGGCACCGGGGCCACAACCGGGTCCTAG






CCACGACCCGGAAGAGGACGAGGATGACCAGACCGCCGA






CGGCGAGTAGTTTTTTTAAAATACTCGTAATGTTTTATT






TTTCTTTGCAATGTTTTATTTTTAAGTGTGTTATGTGTT






TTATTTTTAGTGGTAATGTTTAATTGTAATGTTTTTTTA






ATTTAGTTGTAATGGTTAATTTTTAATAAAATTAAGTAG






TTTTTTAAGTTTGTGTAAATATAAAATAAAAAAAATAAA






AAGTGTGGAAGAGGGGTTATAGGGAGTGATTGTGGAAGA






GGTGGATGAAGAAAGAGAAAAGCTGACGTGACAGTGTGG






AAGAGGGTAAGGATGAGGTGCTATAGGGAGAGGTCTTAT






TGAGTTATAATGATGTCAATGGCTTAATAACTTAATGAC






ATTTTGGTGATGCGTAAGACCTTAAGACCAGAAAGTCTA






AGTTTGAATCTTATAAAATAGGTTTTTTTCTATTTTCCA






AATTTATTGAGTTTTCTCATGAGTTCATGTATGAGCATT






ATTGCATAGTGAAAATATGGTCAGATGGTTTCATCGATG






ACAAGCTAATTTTTAAGAAAGATATATTACTTTTCTTTT






TAACTTGGGAAAATCATAAAAGTGAAATCATCGTTTTAA






CTTTTTACGAGCATGGTACTCGCGTAATGCAGCGGCGGT






GGTATAGAAGACGGTCTAATGGTGGCAGTGTCAAGTGGT






GTAGGTCTATGTGCACCGAAACTCCAAACTGACATAGCC






GTACCCATTTCCGAAACTCCATGGAAACGTTTTCTCTTA






CGAAACACGTATGAAACATTCCCTAAAATTTTCTATAGA






TTAAACGTTTCTTTGAAGTTTCCATACGGTTTCTAATTA






ATATCAAGGTTTTAAAGGACTTTTTCGAATCCCCAAACC






CAAACATGTTATATTATATACAATTTGATCAACATTAAA






TTTTTTATATTACAAAGCCATTATTAAACACTAAACATT






CAATGAGTGATCACTAATCAAACATGTATTATAAAGTTC






TACATATATAATTATACATAATCTCTCAAGTCTCAAATC






TCCTTTATGAAAAAATTGATATAATTTATATTTGTATAT






TTTTTTTATTGTTGTACCCGTATCCTGGATTTTTTAGTT






TTACTGTTCCCCGTTCCCGTATTGTTCCCGTACCCTTTT






CCCGTACCTGTTTCGGTGCTACATAGGTGTAGGTTGATG






TAATTGTGAGAGTGAAAATTTTTAGAAGACAAGAGTTTA






AAGTGTTAATTAGTAAAATAAAAGTTTAGAATGTAAATT






AATTCATTAAGGTCAAATTTGGTATTTTATAAAACTCTT






TTCATAATGGGTGTTTATTAAGAGACAATTTAGTAATTT






TATATGTGACATATGAGTAACTATTTTTATTTTGAGAGG






GGTGCATAATTTTTATTCGAAGAGTACGGATAAAAGTCA






ATAAATTACGAGCAGTGAAGTATCCCAGACACCCCTTGC






AAGGTAATTTTTTAAAATTTTATTCATGGAGGTTTGGTA






GGAAGTGGTGGTGGTGGTGGTTGGTATGAAATTTTGTTT






TTGACCTTCTTCAAACATCCACCTACTACTGACCCCTCC






CTTCAAACCCAACCCAAAATCCAAATCATTAAATCCTTC






AAACCCACTGTGTGTTTTGTGTGAAATTTCACACACAAC






AAACAATGGCAGCTACTCACATTAACACCACCAACATTG






CCCACAATCTCCAAGCTACCACCAGTCTTTCCAAAACCC






AAACCCCATCAATAAAGTCACAACCTTTTTTATCTTTTG






GGCCAAAACACAAAAACCCGATTGCCCATTTCTCTGTTT






CTTCTAATAATAATAGAAATCTTGGAAAAAAATGTTTAA






TAGTTTCTGCCGTTGCCACCACCGAGAAACCGTCAACGG






TGCCGGAAATTGTGTTACAACCCATTAAAGAAATCTCGG






GTACGGTTAATTTACCCGGGTCCAAGTCGTTGTCTAATC






GGATCCTCCTCCTTGCTGCGCTTGCTGAGGTATAGTTTA






ATTTGGTAATAATGTTTGACCTTTAAAATTTGACATTTG






GGCTACATGATTGATATGGGTCTTGAATGAATTGTGTTA






TAAAATTTGGGAAGTTAAATGTTAATAATAGTTTAATCC






TTTAGAAATTATGAAGTAATGGTTTTAGACCCTGAATTT






TTTTTTATTGCATAGGTTAGTCCCTTAGCTAGTTAGCTT






TTGGTTGACATCTTAGAAAAACCAGTACAGTTTTTATAT






TTTAGTCCTTAAGCTTCAATTTTTTGCAATGTATTGCCA






TTTGAAATGATCTAGTAAAATGTTCAAAATCAATGAATT






GGCGGTTTAAAGATATAATGCTTGGATCAATTGTTATGT






AAAGTGTGCTAGGCGGTCAAAAGCGAATCTTGGATCAAG






GAAGTCGTAGAATACTATTGATTTCATATTATTGATTTC






TTATTATGCATATTTGACATGTGCTTCTAACATCATGGC






ATTTGGGATTTATTTCTATATATAAAGCATGACTGTATG






GTTATAAAGTTCAAAACTTGTATGGTATAAATATACTCT






TCTTACTTCTTAGCAGGAATGTGTTGACTTATAAGCTGA






AAACTTTTATAACTCCAATTGTGTGTAGTAATACTTGAA






AGTGGCTGAGTTCCTAGGACAGTATTACATGCGAACACT






ACAACGTGTTACTAAATTTGAGATAGGTATGATTTGGTT






TTGTTGGATACAAAGTCTAGGTCAGTTAACATAGCCAGT






TGAGGACGATAGCTTTCTTGTCTTATTTCCTTTTTATAG






AGGGTTTGTGTTTCGTGATGGTAATATTGAGTACCACCA






TATAGTTCACAAGTCATATAATAAAATCAGAGCAACATT






CGAGGAGTCGCCTATATGCATATTATTGCACCATGCTAA






AATCCAAGGGCATATTTTGATGCCAATTTGTAATTTATT






TCTCAGGGAACGACCATTGTTGACAACTTACTCAACAGT






GATGATGTTCATTACATGCTTGGAGCTTTAAGAACTCTA






GGGCTAAACGTTGAGGAGGATGTTGCAATTAAAAGGGCA






ATTGTGGAAGGTTGTGGCGGTGTGTTTCCTGTGGGTAAA






GAAGCTAAAGATGACATACAGCTTTTTCTTGGGAATGCA






GGAACTGCTATGCGTCCATTGACTGCCGCAGTTACTGCT






GCTGGTGGTAATTCAAGGTATTTGGACGTTGTCATTGAC






TCATTGCTATAGTAAATATATGTTGACTTGTGCACACAA






GATTTGAAGCATCTTTTAAACATATATGATTAGATACAG






AGAACACTGCATGTTGAAAACTTGAAATACAGGACTTTC






TTAAAATATTGGGATTTCACATATATGGGTTGAATAGTT






GAAATTTCCTCCTTCTACCTTTAACCAATTGTATATTAC






TTATTTAAAGTTGTGTTTTAAACATGGCGATATGATTAG






ATACAGAGAACACTACTTATTGAAAGGTTTATGTGGTAT






AGTATGAATTTTAACCTCAAAAAGGGTATCTCACTATCT






CTTCATATAGAAGCACACATCTGATTCTGTTATATCTTT






ATGGATCATTTTTTCCAGCTACATACTAGATGGCGTTCC






TCGTATGAGAGAGAGACCAATAGGTGATTTGGTCACGGG






TCTTAAGCAGCTTGGGGCAGATGTTGACTGTTCTCTCGG






GACGAACTGCCCTCCCGTGCGTGTAGTTGGTGGAGGTGG






TCTCCCTGGAGGAAAGGTATTGTGTTTTCATTAGTAGTT






GTTTTCTATGCAAATAGCAACACACCTTATATATCATCC






ATTTATAGCTATTTTTCTAATTGGGGCGTACGTTACTGT






AATTTGATCGTCCAACCAGTTGTCATGACCCTCCTTAGC






TAAAATGGATGAAAGCTGGTCCGACAATTGACCATAATA






AATGGGTGTGGGCTATCTTGCTAAATTTAAGTATTTCAC






TTAAAATGAGAGTTGGTTTACAGTGTGCATTCAACCTAA






TTTTTTTTTTTAACGTCGCATACAACCTAAAATTGAATA






ATGTTGTAGACACAAAAGCTCTTAGTGAGCTTTAATAGT






AACATTAGAGGTGGTGATATCAATCAAACAATAAGGGAA






AAGTAATATGTATAAAAATTAGAATTAAACAAGAAGTTT






TAAAAAATAGATCAAATGGTTTGAAAGTCTTCTAAAGTG






TAATTTAATGCATAAATCTTCCTAAATTATTTTATTTAA






AAACTGTATTGTAATATAATTTTCATCATCATATTTGAC






ATTCTATGAAAACAAATATACATTTTGAACAAACAGTGT






TACGGATCGACCCAGGCAATTCAAAGCTGTCCATTCTAA






CCTAAACCAGTTTTCACGGTTACCTCTATTTTCCTGCCT






TTCAATTTGCCAGCTACAAGAAGCTTCATTCCACCATAA






CGGGTTCACGCTAAAGATGCAAAGAGTCATGATTCGTTA






TTTATTATCTTGACTTATTATGATAACAATAGTTTTGGT






GTATTTTGATGTCTTCAGGTTAAGTTGTCGGGATCTATT






AGTAGTCAATACCTTACTGCTCTGCTTATGGCTTCTCCC






CTTGCCCTTGGGGACGTGGAAATTGAAATCATAGATAAA






CTAATTTCCATACCATATGTCGAGATGACACTGAAATTA






ATGGAACGGTTCGGCGTCTCGGTAGAACATAGTGATAGT






TGGGACCAGTTCTTTATTCGAGGCGGCCAAAAGTACAAG






TAAGTCTATTTCTTTCTTTTTAAAGTAAAACTGGAATTT






AAAAAGGTTGCAGTTTCTACCCTATCTCTTGTAATGGGT






TGATTCAGGTTATGTATAATCTCTAATGGGTCAAAGGGG






GTAAAATACAAAAAGGTTATTTTGTCACCAAAACGATAT






GATGCATATTACCTAGTTTTCTTATTGGAATAGTAAACA






TTTTTAATCATTTCAATGTACAACTCTTTTATGTGTCCA






CAGAAATTAAACATAGCCCCTAGGACTATGTTCATCATT






TCCCTTTATAAACTAGTTGGAGAAAAGTATTTTGGCCAA






CCCATTCCGAATTTACACATTTTGGCCTATCACCCAGCC






CGTCTGTCCACTCATTTTCAGGGTTTTGTATGGAGACCC






GTTTGTTAATTAGTTGGATTAATTATCTTCAGGTCACCT






GGAAATGCTTATGTAGAAGGTGATGCGTCAAGTGCGAGT






TACTTCTTGGCTGGTGCTGCCATAACCGGAGGCACCATC






ACCGTTGAAGGCTGCGGAACAAGTAGTCTGCAGGTGCAC






TTTGACCTCCTTTGTTTTTTATTCTTCTCGATTTCAATC






AAACGGCTTTACGGTTTTACATTTTAAATGGATTTTGTG






GAAACAACGAGTATTAAAAGTTCATCAAAAGATTTTATT






ATTATTTTTATGCAACAATTATCAGCATCTGTAGTGAAA






TATTCAGAAGTCCGTTTTTAGTTCAAAGTTTTTCTTTTT






AACCTTAAAGTCAAAAGTGAGATGGCAAATCTTTTACGT






AAAATGATTCAATTGAGGCTGTACTTTGGTCGATTCTGA






CTTAATTGGGAACATAGGTTACGTTAGCTATAAGCCTAT






AACTATAAGTAAGCATGTGTTTATATGTCACAATGACTT






GATTAAAAGTAACCTTATGATTTTCTTAGTATACGTTAG






TAATCTAACAGTATCATAATAACGGACAAAAATGTGCTG






GTGGATCAGCCCACCCAGCCCGTTAGAACATGACATAAA






AATGACCCAACTTGACCTATCACCTAAGCTCATTATAAT






ATGTTATCCAACCCACCCTATCTTGGCACCTGTGACCTG






TATTCAAATGTATACTGTAAGCAACTTCCTGTTTTTCTT






AAACATGTATTCTGTTTTTTCTTTCCAATGAAGGGTGAT






GTGAAGTTTGCGGAGGTACTTGGACAAATGGGTGCGGAA






GTAACATGGACTGAGAACTCAGTCACAGTTAAGGGCCCA






CCAAGGGATTCTTCTGGAAGGAAACATTTACGTGCTGTT






GATGTGAACATGAACAAGATGCCTGATGTTGCCATGACT






CTTGCTGTGGTCGCTCTTTATGCTGATGGCCCTACAGCC






ATTAGAGATGGTATCCTTCCTTTTAATGTGGAAAAAAGT






TCAACATGTTTTCACTAAGTTTTCAAAGTAAATAGATAG






ATATGACTTCAAAATAACTCTATTGCCATGTTAAATCTT






ACACATATTGCAAGCACATTCTAGTGGTGGTTTGGAATG






GCATTATGAAATTGAATATCTAAAATATTTAATTTAAAC






ATGTTCGGTTTCTGATCATTTAGGGTCAGTTTTAACTGA






ATCTCAGAGAAGTCGCGCAAGACATGTCACATATTTGTT






TCTCCGAGTCTCAGACAACTGCTTTTTCAAAATGAAAGC






ATTCTAGAACTATTTTGCTTACAGTTGATTTTCTAATTC






TGGGTGTACATAAATCAAGATAATTACTTTTATAAAACA






CATTCAAAAAGCCTCCTAGATGCCCCTATTATGAATTTT






CTGTTTGCTATACGAGTATCTGCTTTGTTTTTGAAAATG






GTTTTTTTGTTTTTTGCCAGTTGCTAGCTGGAGAGTTAA






AGAAACCGAAAGGATGATTGCCATTTGCACAGAACTTAG






AAAGGTAAAATGATACTTTGTTACTCTGTGATCTATGAT






ACTGCTATTGCTTAGAGGTCACTAAAGTGGTAAGGTCAA






ATAGGATGGGTTTGAATGGGAACACTTTTCGCCCAAAAC






ATATTTAACTAATATAATTTCACTTGTTACTATCTAATT






TCATAAATGAAATGATTTAGAATTAGAATGTTTTGGGTG






TCTTGCAACCTATTCATTTTAAGCTATTTTAATTGTCTT






TTGACCCATTAGAAATATACATAAGAAATATACTTAATC






AGTCCTCTATTGTTAATGTTTATCTGGGGTGAAATTTCT






TCAGTTGGGAGCAACAGTTGAAGAAGGTCCGGACTATTG






TGTGATCACTCCGCCAGAGAAGTTAAACGTGACAGCAAT






AGACACATATGATGATCACAGGATGGCCATGGCTTTCTC






TCTTGCCGCTTGTGCAGATGTTCCTGTGACCATTAAGGA






TCCTTCTTGCACACGTAAGACGTTTCCTGATTACTTTGA






AGTTCTTCAAAGATTTGCCAAGCATTAATGTGATTATGG






GTAGTGGTTTGCTTTTCTATATGTAATTTTTGTTTCATT






TGTAACGAGTAAAATGTGAGTTTTGGGCATAACATATTC






TTATGAACTTGTATTCTTTCGTAAGATTTTTTTAGTGTA






ATAAAATATTTTGCTATTTCAGTTGATGATTTCTATTAC






GGTAATTATGCATCTGACTTCCACTTATACTACGATGTG






CATGGCTTTGCGTGAACAGATTGCCAAACAATTTAGTCA






TGTGGCTGGTTTGATTGCCCACACTTGTTGAGTTGTTGG






CTAGTCGAGTTTGGGTGATCAGAACCCATGTGGCTCGGT






TTACACTTTGCGCCCTAACATGTGTGTTTTAAAGGTTAA






TTAAACTTATTAAACGGCTTAGTAATTTAAGTCAATAAA






ATCATTCAAGTTTCTTTTGTTCCTTTGGAATGATTTAAG






CTAATATGAAAAGGGTACTTTTCTTAGACAAAAGTCAAA






ATGTGAATATTTACTTTCAAATGAACTCTGGTTATTTAC






ACGAGAAATGGGGCATTTTTATTTTGATTTTTTTAAAAA






AAGATCTTTCTTATTTGTTATTTATTGTTTAGATAGTAT






AACACTTCAAATTAAACTAAATAAAAATAAATACGACGA






GTAGTAAACAAGAAGAACCAATAGGAACTTCGGCATTTT






ATGAAGCCCAAGGTGCATGAACCTTTAAGAGCATATTCT






TTTATCATATTTGTAGGAAATTGTATACATACATACATA






CATTATAATATTATATTGTATATAGAGAAGACAAGTTAT






ATGTACCATTTAAGGGAAGGCATGGGACAAGGTGCCAAG






ATTCATAAACAAAGAGAACATGGATGCCTCGACTTGTGA






CTCAAATTGCTCACATGCTTTGCATCAATTTGATGACTT






ATATATAATCTTAACGTATTATAATAACCTTAAAAGTGA






AATTTAACCCATGCTTATTTTTATACCTTTACAATCTTG






ATTATAAGTTAAGATCGAAGCACTTTATGTTTTTTGAAA






ATAGTTTTTCCATCCAAAGATCATCTATGTGAGTAGGGA






CGAAACCAGAACTTTCACTGTGAGAGGACAAATTTAGAA






ATCGTATGTTATACTTAAGATCTTAAGCTTTTTGATGTC






TTAAACTAGTCACTTGCAAATGCATCTACTAAATTATGT






AAAAGTAGAACCTCACTTCAACTTTGTATTTTTAAAAAA






AAATTGGTATTTAAAAAATAAGGCTAGTAAATGTTAATA






TTAACTAAAAAAATCCTTTAAAAATAAATGTTTAGCTTC






ATTTAACAAATTTGAGATTATGTTTATTCTAAAAATATC






AGAAAGGTTAAATGCTTTGAAATTTTCTATTACTTTAAT






ATTTGTCCATAAATTAAAAAACCTATATATAAAATATAA






GGGTTAAAAGGGTTTTCTTTAAAGTAAAAGGGTCAACAT






AACAATCTCAATAAAGTTTTGAGATTTAAAAGGAAAAAA






TCTAAAAGGCAAGGTAACTTTTGCAAATATGTTGTCTTC






CTCCCTTGGTCTCTACAACAGCAAAGTTACAGCACCATT






AAAACACAAAATGCTTTATCTATTGATTTATCCATTGTT






ACTACAATAATAAGCTCTTAATCGTATAAAGCATGGTTC






CGTTATCACCTATTTAGGCTTTTCATTCTTTTTTAAAAA






TAAAATCCAAGTATACTTTAAAATTAAAAAAAAATAATT






AGAATTTAGCAAAATTGGACTGGGGGCAGTTGCCCCCAT






TGCCCGCATACTAAATCCGTCCCTGTATGAGAGGTAAAA






CATATTTTTCTTGTTATTGCATATATATACTACAAAAAA






AAATTCATTTGTCCACATTTGGTTATCGAAATTGTGAAA






AAATTTATGAATTTAATCACATTTAAAAGTGTGTAAAAA






TAATTTACATAAAATCACAATACTTATACACTTATAAAT






GTGTAAACAAAATATTAACACTTAAAAGTGTGAACAATT






GTTAAATATTTTCATACTTAAAAGTGTGAAAGTCAATTT






GTGACACATGATTTCTTCACACCCTACGTGTATAAAGAA






AATAAGTGTTACAAATTAACTTTCACACTTTAAGTGTGA






ATACCTCTATATTTTTACACACTTAAAACTATGAACTTT






TCTTTTTCACATGTATAAGTGTGTAAATATTGTGATTTT






TTAAATTTCTTCACACTTTGAAATGTAAATTATACACAT






TTTTAAATGTGATTAAATTAACAAAAATTTTTACACCTT






TTAAAAGTATAAAAAAACAAGTGTGAGGAAATGATATAT






TTGTTGTAGTGATAAAACAATGTAAATATCAATGATATT






ATATCATATCACGAACATGACATGAAAAAGATAAATTAT






CATATTCTTAATCGGAATTATAAAAAAAAAAAAAACAAA






AAACAAAAACTATTTCTCCCTTACGCAATTTTATTATAA






AATTCTTGCAAATACATTAAACTATAAAAATATTGATGA






AGAGTCAAGTGACCAGTCCCTTACAATTTAATTAATAAT






ATTAAAATCACTAAATCCCTAGTTTTTAAATGATGCCTT






TTCATTTGTAGTCACGTTGTTTGTAAAGGTAATACTTTA






TTAAACCTTAAGTTAGCAAAAAATAATTAAAACCATTCT






TGTTATCATGTCATTTTCTTAATTATTCAAAATATAAGC






AGTGATATAGAATTGTTAGATTAATTTTGCTATTTTAAT






AATAGGAAGAAATGTGTGGTATAAAATTGTTTTTTTCTT






TTTGTCTTTTTAAAAGTGTTCTAAATTAATTTTTTCATA






TATGTATATATATACAATATTATTTACAACAAATATACT






TATTTTATTACATAATATATATAATTATATATAACATAT






ACTTTTGTAAATGATTATAAATTATTGTAAATTTATTAC






TCCTTAGAATAGAATTATTAAGTGAAAAAATGCGACATA






TCATGTGAGAGTTGGATGCCACATTTAGTGTCAAGTTCA






CATGATCCTCGAGTTTTGTCCAACCTTCTTTACAGATAA






TTCCACAGCTACGCCTTTTAGATACGCATACAAGAGTTT






TGTCCAACCTTTTGTGAACAATTTTTCCCCCCCTTTTAA






ACGGTAAATACATTTTTATAACATAATGTTAATGGAACT






TAAACTCGTAAATTTTTGGTATGTACCACATCAAATATT






ATTAGATTATAAATGTCATTTAGTTTGCGATAATATATT






TTTGGTAACGATCATTCAAAATAATTGATAGAAACAAAA






ATAAAATAAAATAAAATATTGTGTTTGCTATTCGTGAAA






AGAAATCCGTGGTTCATTATAAGGTAAACAATTATATGT






GACTTGACATATGCTATACTTCTTAAATGACTTGGATGT






ATTTTGTTATTAGATGAGTTATACTTATACACTTATATG






CCTTGATAATGCCTTGATATTCATAACACGCAACAAGTT






ACTGCTTATAATTTGTGAACTACAAATTTGACTCTCCAA






CTCTCCATAGTGATTTAAGAAATTGATTGATGATGAATA






TACTTTAAAATTTTACCTATTCATATAGTTATAAGAAAA






AAAGAGTAAGTGTTATTTATTTTGAACACAATTTTTTTT






TTAATACATAAAATAGTCAAATCGATTATTTTCAAGTGT






GATATATGTGCATGTTATCTGATTGACGTATCAATGCTA






GCTAATTAAACATTAAATTAAATATATAAACTTATAAAG






GACTTAGGATTGTACTTGCATAATATATATAGTTTTAAA






ATGATTCTTCTGATAGTTTTATCATGTCCAATTGATTTT






GTTAGTTGTTAAATAATAACAATAATGATAATAATAAAA






TAAATAAAATAAATAAATAATAATAATAATAATAATAAT






AATAATGTTTAAGGTTGCAATAACGTGTATAAAAAATTA






TATTTATATATCAAAAGTTCTCTCTTGAATTTTATGATA






AATGTACATTTTATAACAAAATCTTTATCTTTATGAAAA






ATAAAAAACTAAATTTTGATATGATTAAAAAAAAAAAAA






ATGTTTTAGTATGTTAGGCTCAACTCTCACGTGACATCA






AAGTCATCAATAACTTAAGTTTATTTTACTGTACGAAGT






CCCTGCAGATTGTTAAAGGTGATCTTAAATTAAAAGCGT






AAAAGATCAAGTCTTCCATATAATAACCAATCACACCCT






AATTTTTTTACCCCAAAATCCTAATAAAATTCATGAAGA






TCTTGAATATTCTTTCCCTTTTACACCTCCCCCGTTTGA






CTTTCTTTAAATGTATACTTGAGCTTGATTAATAGTCCA






CCCTAATAAAATCTCACCATTTTCACACCACAATTTTAT






TTCAAATCTTCTTTCAAACTTTCACTCTCTGTTCTTCAC






CATTCTCTCTCCAATCAACTTTTTTCTGCAAACCACAAT






CACTCCCCTGTTCAAGAAACCTCAAGATTCCGCCATTAT






CAAAAAGTTTTGTTCTTTCTTATCTTGTTTTTACATTCC






TTACGCCAAGATTCAAAACCCACAAACCTTTCATAAAAC






CCAAGTCACGTATCAAGAATTTAGCACATAAAGTTGGCT






TCTTTTTTCATCTTCAAGATTACATCTTTTTATTCAAGA






TTTTTGAACAAGAATGAAGCTAATGGATGAAGATGAAAC






CCCATCAACTCCTGGTAAATTCAAAATAGATAATAATAA






ATCCATATACATTCATCATAGATTCAGATTTCTACATTA






CAAATCTTTAGCCAAACTTACATTCTGGTCCTTTGTTTT






CTTGGGCTTAATCTTGGTTTTTTTCTTCAATTCCCAATC






ATCATCATCACAAATTGTAGATCTTTCTAGAAGATCTTT






AAAAACAAGTACATGGGGTGGACCCATATGGGAAAAACG






GGTCAAATCATCAGCCCGGATCCGAACCCGTAATGGGAT






ATCCGTATTAGTCACAGGTGCAGCCGGGTTTGTAGGGAC






ACATGTCAGTATGGCCTTAAAACGGCGTGGTGATGGTGT






TTTAGGTCTTGATAATTTTAATGACTATTATGATCCGTC






GCTAAAAAGAGCTAGACAGTCTTTGTTAGATAAAAGTGG






GATTTATATAGTTGAAGGTGACTTAAACGATGTCGTTTT






GTTAAAAAAGTTGTTTGAATTAGTCCCATTTAGTCATGT






TATGCATTTGGCTGCACAAGCTGGTGTTAGATATGCTAT






GCAAAACCCTAGTTCTTATATTCATAGTAATATTGCTGG






TTTTGTTAATCTGTTAGAAATTTGTAAAAATGCTGACCC






TCAACCTGCTATTGTTTGGGCTTCATCTAGTTCGGTTTA






CGGGTTAAATACGAAAGTACCCTTTTCAGAAAAGGACCG






GACGGATCAGCCCGCGAGTCTTTATGCTGCCACGAAAAA






GGCAGGGGAAGAAATCGCGCATACTTATAATCATATATA






CGGGCTGTCATTGACAGGGTTGCGTTTTTTTACTGTTTA






CGGGCCGTGGGGTAGGCCGGATATGGCGTATTTCTTTTT






TACCCGAGACATTTTGAAAGGGAAACCGATACCTATATT






TGAAGGCCCAAATCATGGAACAGTGGCTAGAGATTTTAC






GTATATTGATGATATCGTAAAGGGGTGTTTAGGGGCGTT






AGATACTGCAGAAAAGAGTACTGGGAGCGGTGGGAAAAA






GCGCGGGCCAGCCCAGTTACGGGTTTTTAATTTGGGCAA






TACGTCGCCTGTGCCTGTTTCCGAGCTAGTTGGGATATT






GGAAAGGTTGTTGAAGGTTAAGGCGAAACGAATGGTGAT






GAAAATGCCACGAAATGGGGATGTGCAGTTTACGCATGC






GAATATTAGTTTTGCGAAGAGGGAGTTTGGGTATAAGCC






GACAACGGATCTTCAAAGCGGGTTGAAGAAATTTGTGAG






ATGGTATGTTAGTTACTATGGAACAGGAAAGAAGACTGA






TCACTGATATGATTAAAAAAGATGGAAATTTGTTACCTA






AAAAAGACTAAATTTTTTTGTGTTATAATTCTTGTTGAT






TTGGATTCTCATATTGATTGTTTTTCATGATATGATGAT






GGTAATTGTTTGATACAAACTATATTGAGACTACAAAAG






GAATATATTGTTTTAGTTCATTATTTTTGTGTGATGTGT






ACTAATAAGTAAGATTTCACATATGTTTTTGTAGGCTTA






TTGTTTTGTGGATTTCACGAAAGTTGAGTATAATTCGTT






AGATTTCTGATCTTTCTGAACTCGAATCTGGCAACATTA






ATCACACGATCAACCACGCCTGCTTGGATACAAGCACCA






TACAGAAAGTAGTATCACGTTGAAAATGTCCATTGTTAC






CACTGCTTTGGGGTTTTGCCTAATGTCCATGTTTTCATT






TTCGTTTTTTATCGATCTTGAACGAATCTAAAGCTAACT






TTAGAAAAGAACTGCAGACGCTTAACAAACCAACGTTAG






TTGTTCAAATCGGATCAAAATGAACATTACTGGTTTCAA






CCCGATTCTTTGTAAACAGACATTGCAAAGAGAGTTGAT






CTGTCCAGGTAGCAATTGATATATTTATTATCACTTAAA






ATCAATTAAATGATGGTTTAATGTACATATTTTGCAAGT






CAATAAATTATGTGACATTGTCACGAGTACACTACCAAA






CAGTTGGATTTGATGTTGCTTGTGAGTTGTACATAATGC






ATTAAAGTATCTTCATTTGGAGATGTCGATTTCCGTTAT






GAAAAACGGTTGGTAAGCTTTTATGTGCAAGTATTTAAG






AGATGTTAACACAATCTTTTGAGTTGTCACTTAAGAGTG






CTAAAGGAGTTTGTATATGGTGGAACTTGTACTATCAAA






TATTAGTTTGTACATATTTTCCCTCAAATTAGTAATTAA






ACGTCAATACTTGAATTTGAATACGGGATTTCCTCATCT






CCTCTTTAGACAAAAGTTGTGCTTTTGATCTACGTTTGT






TGCTTGAAAGTCAAAACCATTTTTTGTTGGAGTTGCTAG






GGACTGTTATCATGGGTCGTCATACATAATCAAAAGATT






GTGATCTAATCGAGATATAAACTTTGTGGTGTTGAATGA






AATGAGCCATTGTTTGTAGAATCTTAGCTTTGTTACCAT






TGAGTAAGATCATCGGATAACAATTTTAGCAAATCTTGG






CCATCTCATTAATATACGAAATACCATTTTTTATGTAAA






ATAATTAGTTACTACGTATATGTACTTATCATACAATGA






ACTGACAGTAATTAAGTTATAAATTTGATGTAGGTTTAG






GTAAAACCTAAGAAAAGCTATATTGAATGTGCACTTTAT






TATGTCTAGTTCATGAACATTAAAGGAGAGTAACAACCC






TCGAGCATAAATGTGTGTAAAGAACATGGATGCCAAATT






TACTAATTTAATAATCAATACTGTAAAGGATTATTAGTA






TTATTATTACTATGGGGATGGGAATATAAGGTTG





63

Conyza

Genomic
12222
CAATTTAGGAGTTTACTGGTTCTCGAATACCAGCCTATC




canadensis



TTTGTTATTGTTTGATACAAGCCATTGGTTCGTATCAGA






AGTTTAGTTGTTTTTTGTCTCAAAAGTTTTCCCCTCATT






TTTGAGGTGATTAGGAAGGAAAACTTCTCTTCCCTCTCA






TCTCCTTTCCTCCCTTAAGTTAACTAGACATTAATGAAT






ATTGGGTCATTTTGTTGTTGTGGCTATAAGGAATGACTT






GACTTAAAAACTTATAGAAATGCTGTGTTATCCAGTAAG






TAATCGTTTTTTTACTATTTGTCTTTTAAGACCATTCAT






TAAGCACATAAAACAAACAACAATCCTGCTTAATCGATG






TAGACTACATACATGTAGACGGACATTTTATCCATAAAA






CAGCTAATTAGTCATACATACCAGTTATATGTTTTACAT






CGTGCAGTGTAAAACTTCTGCCTTTACTGCTAAGATTTT






TTGTTTACATATATATTAGATATATTAAGGTTTGTATTT






TGATGCTAACATTTAACATTACTTTTTTTTTTTATCGGG






GAGTGGGTTAAAGTGGTTCTTCTACCTGGTTTTAGTTTT






TTAGATGTATATCCAATATTTATTGTGGGTAATTTAAAG






TTTTGAAATTTTTGTTTTTTTTTGTGAACAGTATAAAGT






TTCTGACTTTTTTGATTTTTTGTGAGGTAAAGTCGTGAA






TGTGTAATTTGGTATTTGATTGATATTCTTGATATTGGT






ACATAGTGAGGTGCAAGGTGCTGATGGTTTCTTAGACGG






GTCATGTTTGTTTTGTGTAAAATACATCTGTTTTTTTCT






TTGATAACAAGTTATAGAAGTTGCACCCAAAAATGTTCT






TGTTAAAGCGATAAAAATTTGGATAGAAGGTGACGGTTA






ATGATTCGATATATTGATTTGAGTTTCCTTTTATCTATT






GCATTTTCACAAGTTCAACATTCCACCCTCGATTTTTTG






ATGAATCTATGACTGAAGAAAAGGGCGATTGTTGCCTTT






GGCAATCAGTTTTGGATTTTATTTTGTCATGGAAAGGGG






GTGTTAGTTCCTGAACCTTAGTAGAAGATGATAAGCTAT






AGTTTCAATATTGCTTTTCTTTCTTGCATCTGAACTGGT






TTTGCATTTTTCAAAGGACTATAAAAGATGCTATTTATC






ACCTATGACCTATGTTATAAATAGTAAGGTATTAAACTA






TTAATATTGGTATAGTCTTGAGAAATCCATGAATTTCGA






TTGAGTTCATAGGACACATCTAACTTATGTTTCTTTACA






TTACGATTTACACATCTTGTCTTTGACGTCTGATTTTAA






AATAGCGTTTCTATTGACATTATGCATTTCTTTGAGTTC






TCTATATAAATTTTTGTAAGCTTTCCATATGTATATACT






ATGAATCTGAGTGAACTTATGCTATCAGGGGACTACTGT






TGTAGACAACTTGTTAAACAGTGATGATGTTCATTACAT






GCTTGGAGCTTTAAGAGCTCTAGGGTTAAATGTTGAAGA






AAATAGTGCAATTAAAAGAGCAATCGTAGAAGGTTGTGG






TGGTGTATTTCCCGTGGGTAAAGAAGCCAAGGATGAAAT






CCAGCTTTTTCTTGGAAATGCAGGAACAGCTATGCGTCC






ATTGACTGCTGCCGTTACTGCTGCCGGTGGAAACTCAAG






GTATTTTAACTTAGTGTTATATTCTCCTGCATTTTATGT






CTGCTTCATCCTCCTACACATACATTTCATGACATGTGT






ACCCATTTCTCTCACCTCATCATTTCATTTTTCTATGTG






TCACAATTATATGAGTAGGAGGATTCATACTTTCATAGG






CATAAATTGTAGGAATCAAATATCGTTTCTTTTTAACCT






AACATCTCTTGATTAGCTATTATAATCCGTAGAACGTAT






ATTAAAGTTTTTTGTGCCGATATGTAATTTTAAGGTGAA






TACACAAATAAAAATTTTACCTTTCTGTTTGTTGCATGT






TCTGTACATATAAATTTTTAGTTTTTGTTATATATCTAA






GAATCTAAGATCTCTAAATATTCTTCTATTAGTTGACAC






AAATTAAGGGATCACATGAACTGAAAACTCAATAGCATC






CACTTGTTGATAATGCTGCAATTTAATGTTCCAAAAAAG






AAATTATTGCAATTCTTATTATCATTTTATTTATGGGAG






ACAGTGAGTATGAATTTGGGAATCGATAATAGAGTTGAC






CAACTTGGTGGTGCTGGGTAGCTAAGGTAGTGGGTAAGT






TACATTGATATGTAATACCCTAACAGTTATGAGTTTTTT






CTTCAGCTACATACTAGATGGTGTTCCTCGAATGAGGGA






GAGGCCAATTGGTGATCTGGTCACCGGTCTAAAACAGCT






TGGTGCAAATGTTGATTGTTCTCTCGGTACAAACTGCCC






ACCGGTTCGTGTAGTTGGAAGTGGAGGCCTTCCTGGTGG






AAAGGTAATCAACAATAAGATTGCTGCACTTTTAAAGTC






GTAAGAATTAATTATTCGGTTCCATATTGGTTTTGGCAA






ATTTGGTTATTTAAGAAACTATTAGATAGTAATGAACTT






ATAGTTTTTGAATCTTTCCGTAACCTTTTTTCCATGCCC






TTCTTATTGCAGGTGAAATTGTCAGGATCTATAAGTAGT






GTATACTTGACTTCTTTGCTCATGGCAGCTCCCCTTGCA






CTGGGAGACGTAGAGATAGAAATTATAGATAAATTGATC






TCTGTGCCATATGTACGGATGACACTGAAGTTGATGCAA






CGGTTTGGGGTTTCAGTAGAACACAGTGATACTTTGGAC






AGATTCCATGTCCGAGGCGGTCAAAAGTACAAGTAAGTT






GATCATTCCATAAAAGTCAATCTTTACGTGAAGATGGGT






CAACAGCTATTTTAGTCTGATAAAATCTCTTTAGGTCGC






CTGGAAATGCTTATGTGGAAAGTGATGCTTCAAGTGCGA






GTTACTTCTTAGCTGGTGCTGCCATCACTGGCGGAACTG






TCACCGTGGAAGGTTGCGGGACAAGCAGTTTACAGGTAT






TATCCATGTGCCCACCTCAAAGATATTCAAAAACTAAAT






TGTTTCTCAAGTATATATTCTTCTAGTTAATTGCAAATT






TTTTTGCCCCATACGTCTACCCATTCTATAAATTTCGTC






CAAAGTTGGTGACTCGGTTCAATCGTGTAATAAGTCTCT






TTTTTGTTTTTTAGAATTGACAATTTATGTCAGTTCTTG






GTTATATCAACGATGTGGGAGTGTATTGTGCACACATTC






TAAAAGAAGGACATTTAGTCTTTTTGCTTTCTTTTTGCC






TCAAGATCATCTTCATCTTTTCAAGATACTCTGCACTCA






TTTGCATTATCAAAGTTTTGGATGCATTCTGTAACTGTG






GTACAAGGAGGGAGACATAATATGTCATTAGTTCTTATT






CTTAAGCTCAATGCACACTATCACCTCTTACTTCTTTTT






TCTTTCTTTTTTTTTATTAGTTTATTTAAGCTCAATGCA






CACTAACACTTCTTCTTTATAACTTCAAGTCATTCATTT






TAATTTTTGAAGCTGATGGTTTTTGACATTAAAGATAGA






ACTATGTATATACATATGTCATTTCATCTTACCTATTTG






CATGTCTTGTTGATCTTTAATCAGGGTGATGTAAAATTT






GCTGAGGTCCTTGGACAAATGGGTGCTGAAGTAACCTGG






ACAGAGAACTCTGTCACGGTGAAGGGTCCGCCAAGGAAT






TCTTCCGGAAGGGGACACTTGCGTCCAGTAGATGTGAAC






ATGAACAAAATGCCGGATGTTGCGATGACTCTTGCTGTG






GTTGCCCTTTATGCTGATGGCCCCACTGCCATTAGAGAC






GGTATGTGTTAGAATTCACCACAGCTTTGTAATGTTAAA






TATATGTTAGTTTAGATTAACAAAATGACTATATGATCA






CAAAAGGAAACATTTATCTCAAATTTGGAACTAATATAG






TATCATACCTATATAGCAATTGTAGTTTCAAAGAAATCC






TTAAGGTCGTGTTGTTTATTATACATGACTGGGTATATA






TTGTTTTTTGTGCTCAAGCTTTTAAAAATCACATTTGAC






TATCCTTTATTGAAAGGTTAATTTTGTTCATGTCTCATT






TTAGGCAATTTACTTTTTATCAAGGAAAAAATAGCAATC






AATGTCTATGTCGTAGTTTAGGCAATTAAAACCCATCAA






TCAAAGTGCTGTTGGTTCAAGGCATATTAGAGATAAATG






AGATAATAGTACGTGGATGTCTTTTCAAAAGAAGTACAA






ACTTTTTCTTGGGCTCTTTAGTTTTTACTGAAAATACCA






AACTCCTTTAACTGAATTGTCTAAAATAGAAGAAACTGG






AAATTAGTTGCTATTTTGTGAAAACGAAAAGTAAATCGC






CAAAAATTGGAGGTTAAGTATGCTTATATTTTATGTAAT






TCATCTTTTTGAAAAATGTAAGAACTTAAATGGAAGTGA






ATTGATTTGAAAAATATATATTAAAGCACCACTTATGAA






GAAATCTAGAAATTGAGTTTTAGGATCTGTAAAGACATC






CTGTATATTGTATGAGAATAGATATATCGTACACCACAA






TCCATCATTTTTACTTTTCACACGACAAAGTGAATATGA






AAAATGTGAGTTAAAACACTTAAAAGACAGTTTTGGGTG






TGCAAAGTAAAATGTAGCACAAATTGGCCCCTTTCTCAT






ATTGGGTTTACATATTCTTCTTTACGTATATCCCTATAT






TGTTCATTTTGTGGGCCCCATCTCACGTCGGTAAATCAT






TAGATGGACTAAATCATATTCTTCATTCCTTATATTGGG






CAGTGGCTAGCTGGAGAGTAAAAGAAACGGAAAGGATGA






TTGCCATCTGCACAGAACTAAGAAAGGTACAAGTCATTA






ACCCATCTTACTCTAAAAAATAGAATGGCCATGAGTACT






TTTAAAGTACTCAATGAATCTGCCCATTATTTGTTTAGT






GCTAATAGGCCCTTTTGCCCTTGGAACTTTTCAGTTGGG






AGCAACAGTCGAAGAAGGTCCAGATTATTGTGTGATCAC






TCCACCAGAGAAATTGAATGTGACAGCAATCGACACATA






CGATGATCACAGAATGGCCATGGCTTTCTCGCTTGCCGC






CTGTGCAGAGGTTCCTGTCACCATTAAGGACCCGGGTTG






CACCCGTAAGACCTTCCCCGACTACTTTGAAGTTCTTGA






AAGATACACTAAGCATTAAATCACATATAAGATGTTCAG






AAAGAAAGGGGTTAGAGGTTTTAAAATGACACCTTTACC






CTTCAGTCCTTCACCATTATCTTTCTTCAGAAATGTTTC






ACTTACAGAGTTACATCATATGTATATGGGCGACCTGAG






CGTATTTTATCTTTTCTTTTCGGTGAGTTTGTAGTTTTT






GTTGAGGTGGAATAAGTATTATCTTGAATATTTATGCTA






AATTTGGTTAGCAATGTATTATTTTTGATGCATAATGTA






TTTGTTATATTATAATGAAAAGTGTTTTTGAATATGGCC






AAGATTTGTGAAGGTGAGATGAGTTTTGAACCTTATACT






CAGATTTAGCACATGGTGACACTAAATAATTGATCCTTT






ATTAGTGCTGAAAATAATTATATGTTAAGAAAGATTGGT






TACTAACAAAAGTGGTTATGAGTGAAAGTGGGGTTTAAG






TTTGAAGTCATAATTCTCTTGAGATGTTGATTTGAAGTT






GAGATGTACGATAGGGGTGTAAAGGCACCTTTGGGATAT






AAACAAAATCATGGATTATCTTATTCCTTATACTTCTAT






TGTATGTTAATTTTTAATTCAATTTTACTGAATTACTTA






AATGATATTTTGAATACTATAAAAGGTTGGTATTACTCC






ATATGTTATATGAGTCAGAAATACATTTCGTAATTTGCT






CTACATTATCTTAAGTAATATTTCTCTTCTAAATCCAAA






TTACTAGTTAATAATATATACTAGTAAAAATGTAGCTAT






AAGCCTATAACTAAAACCTGAAAAATGAAAAAGAAAATA






AACGCTATATAAATTATGGATTCATGCATGTATCTATTA






TATAAATAAAAGAAAATTGTGATGACATCATATTTATTA






GAAAAAAATCTACTTGGCATCATTAGACATTCACATATT






AATTATTTATTTTTTTTATTTAATTGATTTATGACATCA






ATATAAATAAATAGAATTTGATAATTCTATATTAGGAAA






TATCATTACTTTTAAAGATTTTGTGGCACTATTACTCTA






TTAGACATTTATATAATAATACTTTCTTTTTTTATTTAA






TTGATTTATTTATAAATAACTAAACTTTAATTTTTAATT






CCCATATTAGAAAATATCTTTAGTTTTAAAGATTTTTGT






GTGGTAACGGTTATAACTTAAATGTTCATAGAGTATTAT






AAATGAATATGAAAGGTCTTACACATTTTAATTCTTATA






TAGATTGTATATGTGTTTATAAAAAAAATCACATTTTGT






ACAATATCTTGAAGTTTTTCTTGAATTTTATTAAATTTT






GTGTTATATATCAATGGGTTGAATGTTAAATAAATTTTC






ATTATATAATTTTAGGTAAATTTTACATTATATAATTGT






CCTCAATAATTATTTCTTTAGTTTGCCCGCGTAATACGC






GGGTTACTTAGCTAGTCAAGTGATAAAGTTCCATTTAGG






TAAAAACTAAAAAACATGATAGAAGAGTTTACGTTAATT






GTATTATTTATCTAAAAATTCTATTTTTAGTTTCGTAAG






TTTAGACTGATCGATCATCTTGCAACTCGATGTTATACA






TGGCATTTTATCTTAAAAACTTTTACCCTTGTATTTTTT






TTTTTTTTTTTATTGTTTTTCTTTAAACATTCATATCTA






TAATCATGAAAAGAAATAAAATAAGAATTAGCGATAAGC






CAGATAAATACAAAAGGAGAAATTTAAGTACAAATGAAA






TTTTATTTCATCTTATGGTACAATGTAATAAAAAGTTAT






AGGAAAATTTAACTTCAGTCCTAAGATTGTTGTTAGCGT






GAATAAATAATTATACTTTTTATTTTAAAATTAGTTTGA






GCGCGTTAAGTCGTTATTGGCAACCCATAGAGTTGTTAT






TAGCAATACTAAATTTTTTAATTGTGGATAGCCAAAATT






AAATGGATGGGAATTTCCAATGACACACCGGTCTAGTGT






TAAGACACATGAGATTTTCTTATAAGTCGGAAGTTCGAG






TCTTGTCAAGTACAAGCTTTATTCATATTAATCCCCAAG






TAGTCTATGGTGATTTCTTTTGGCATTGTTGCTCGGCAC






GGGGTAGTAGGATCCGGTTTAGACAACCGACCAACCGCT






TTTTGGGTTAGGACCTCATCATTTGATGGTGAAGGATAT






GTTTCTATTCGAAAGTCATTTGTTAAAAAATAATAAAAA






TGAATAAATGAACGGAAATTATATGCACCATAACCTTAG






AATATACTACCAATATTCCAGGTTTATACTTGTGACTTG






CCAACATTTATTGTTGTTGATTGTAATAATGCTCATGTT






TCCTTCATTCTTCTTGTATAGTTCCTTGAAAAAATTTCT






TGTTGTTGATTGTAACTACAATGATTAATGTAGAAGAAA






CAATGGTTAAAAAAAAAATGATATTTGTACCATTTCTTT






TGATTGATGTATCATAAATGTGCATTGTTAACTTGTACA






GTTAGTTATACAATTTGTACATTATTATACATTAATAAA






AAATAGTGATACTAATATCACAAATTAAGCGTTAAAACA






GTGTGGGGTGGGGTCTAAAAGACTAACTCAGTAATTTAT






GATACTTGGAAATTACTCTTTTCCCAATTAAGCTTGCAA






TAAGTTGAAGTTTGGTGGTGTAGTAGCCAGCCTTTTTAC






TCTTTTCACATATATACAAACTCACATGATGTAGGTGCT






ACCCTAACCAACAAAGTTGGGGAATTTTGACAATAAAGG






CATTGAGTGTTTACCTAATTTACAGTCAAAATCTTGACA






CATATGACATATATACATTATGGCAAGAAAAAACAAATA






TATCCTAAGTTTAGACCAACACCATGTTGTTTTAAAATG






ATATTAAATATGTAAGTTATATACATTTCTACTTATTGG






TTTTAGTGGTTTATTTCTATATTTGCTATAAAAGTATAA






ATTATGGTTTTCCAATATGTTTTGTTTAGAGCTTTAGCC






GTTGAATTCATGGAAGAATGACATTTTGGGGTAAGTTAT






TGACATGAACGGGCTAACACCTTAGAAAAAATTATTGAA






GTATTTATAGATGTGTGTAATAACTCGAAGACATGTATC






AATGTCAATAAATAAGGTAACGAGAGGAAAAATAAACTT






ATGCATCAACGAATAAATGAATTAGGTATTAAGATATGA






TAAAATTGACATGATGTTTACTCTCTTTTCTTTTTTTCC






AAAAAAAAAAAATTATCGTTCATCTTGAATTAATTAGTT






AGTTTTTTTTTTTTTTTAATTAGTTACTATCACAAAGAG






TGTTGAAAAAGCCCTCATTCAAATGATTATTCCAATTCA






GGAAAATCTTAACACAAAGTACACAACTAAAAAGAGGAC






ATTAATCAAAACATCATACTCAAAACATTTGATAGTGAA






CAATAGATCAATTGGCTGGAGTTTTTTTTTTTTTTTTTT






TATTCCTGATCATAAGTTTGACTCTTCAAAATGACATAC






TTTTAGGTTTTCTTTTGACTAACTTATAACAGCTTATGA






TTTACATCTTGTAATTTAAAGTATGTGTAGGGATTCACC






ATTGTATGATGAGATATCCCCTGATATCAAATAACAACT






GACTCTTGAAGAAAAACATACTAATCGAAACCAAAAAAA






AAAAAAGAACGCAAAGTTGTAGATGGAGTTGTTCATAAG






CTTAAATTCCTCTTGATCCAGTGGGTATCTTTGGTGCAC






CACGTGAATGCTGATTTCCTCTTGAAGTTATTAAGCTTG






TAATGACAACAACTATGGTTTAAAATGATTCTAGAAGTT






AAATACTACGAGGTAGACATTTTTTCATCATTTGTTAGA






TAGGCGCATTTTGAAGATCGTTCAAGTCGTCTTCAAAAA






CGTCCTTTTTACCTAATGATCAATCAAGGCACGCACCTA






GCTATGAGATGAATACGTTGTTGATATTCCGCTTTTCGT






TATCACCATTCATCTCGACACGACGTATATATCTATATA






TATCCCAACTCTAGATTATATTCATAAGTTCGTATATTG






ATGAACTATATATGTGTTATGCACATGCAATGCACCCAT






AACATGGAAGAAGAATTATTGCTTTATTCATTCATGTGG






AAAATTAGGTATAATGGAATACAATGAAGGAACATGACA






AAGGTGTTACCCAATCACTAAAATTGTGTTTGGCACTAA






TGGAGCATTGCAATTGTACTTTCTAAATAATCCATATCT






TTAATGGATGGAAAGTTTCATACTTACTTATTACAATCA






GTAGATAACCATAAAAATGACATTAATATTGACCTTTAA






TTAATAGAATTTTAGAGTTTTTAACAAATCTTTTGTCAT






GGACTTCGTATGTAAATTGGGGAAATGCAATTTGTCTTC






TATGCAAAATACGAAACCAATTAGATCCAAAAGGTATGA






TGATAGTAACATCAATCAATACTCATTTATAAAAGAAGG






TTTCCTTTCATTTTCAATTTTTGTGTGCTCTTAATATAA






ACCTCACACTAAAAATGACTTATCCCATACTCACATGAC






ATGTCTCTTAACTTCCCTTTCAATTAGCTTTTTTTTTCT






TCCACTCCTTTATTGCACATCTAAAATTAATTTTTAAAA






ATATGACTAATGACTTTTAATCAATTATGGGACTAGTTA






ACTTATTAAAAAAGTATCCCCTTATTGAAAGTTACATAG






AGAAATGTTTAAATTACTCTCCAAATTTAATTATATAAT






ATTTTCATCTAGCACCCCTTAAAATATATTCACATAAAC






TATCCCCTTAACATTAATGATTAAGTTACACTATCAATC






GTTAATCTTTTAGAATATCTTCATTAACCCTAGCTATAA






ATAAATTACTTTTATATCAATTATTTACACCACTTAGCG






TCACTTCCACCACCAACAGTTGTCCCATCATCACACCGT






CACCGCCACAACCACTGCTGCATTGCGTGGATATAATGC






TACTATAAATAATAAATAGTAAGCTTGTAAGGAAAAAGA






GTGCCTCAAATACTTTTCTTATAACCCATTTGCAAAAAT






AATGGATATCTTAGAATGGCTAAGGAATAACTTATAGCA






TATTTTTTAAAAAAAAATAACACTTTATATTTGGAAGTG






TTGAAAAATATGTAATATTTTTATTTAACACGCCTTAAA






ATATTTTTACATACACTATTCTCTTAATATTAATAATTA






AATTACACTATCAATCCTTTATTTTTCTAAAATATCTCC






ATTAACCTTTTAAATCAATTATCTACACCACTCGACGTC






GCCTTCACTACCAACTATCGCCACCACCACACTGTCATC






GTCACGATTACCGCCGCATTACGCAGGTACCATGCTAGT






TGAATTTAACTATAATAACTATGAAGTGAAGTTGAATTA






ATCAAAGTTATGAAAGACGAAAAAACTTCACTCACTAAA






AACAATAGAAACCTTATTCTTTTTACAAGTGAATTTTAC






CTCAAACGTGTATGATGTATGCAAATCGCACAACGAATG






GGTCCCGCACTAAGCGGATCTTAAATAGTTTTTCTCACC






ATAACACCTCCTTAATTAGAAAATATCGTCGAGGAGAAC






CTACCAAAACTCGAACTCAAGATCTTGGAATAAATTCTC






CGGAGGCCCCGCATAGCAGGTTTAGTGAAACACCACTGG






CCATAAACGAAATGTAAATAATTTATTTCAAATCGTATA






AATTAGAAAAAGCAACACGTTTGGCAAAGTTTCATTTCC






CTGGTATTATTTATAAGTTTTCATTAATATTCCAACAAC






TAAAAATGGTAATGATGAGGAGTTATCAACGAATGTCAA






AACTAAATTCATTTGTATACTCACAATCAAATATTAATC






AAAACAAATCTTTAATATTATATATCATCACTAGAAACT






AGAAAGTAAACATATAAAATTGAGTGGTAGATTATGAAA






TATTATATAATAACGACCAGTTAAAAAGGTTATAACTAA






AGGGTTGTGATCAAATGAATCTAATAAAAATAGTGGATA






TCAAGGACTTAATCACAGCCATAGGATCAGATGAAATAA






ATGGTCCAGATTAGATTTTAAAAAAACACACGGAGGGGT






AAAATGGTAAATTTACCTCCTATGCTCACCTAACATTAT






ATAACAGATCCAGAATCCCAATCAAAACCCTAAAAATAA






AAACAAATCGTGAAATCAAATGGAGATTTCTCCGGCGAT






CAAATCGTGAAATCAAACAATCGTGATATCAAATCGTGA






TATCAAATCGTGAAATTCCGACTAATAACAATAAAAAAC






TCCGGCGATCTGGAATCTGTGAGCGGTGGTACAGCTAAT






TGACATAATCTTTGTTGATAATCTTCAATAATTCAGTGA






TGGAATCAATAGAAGAATTAGTTATGGAATCAAAAGAAC






ATGATGTTTCCGACGACGAGATTATTGAAGATGAAGAAG






GGATATTTGCAGACGAGGAAGAAGACAACACAGGTACAT






AACCAATCAAAGTTGATTTTACATATAATCGTTGATTTC






ACATAGGAATATAGTTTTTCAGCTTGAAGTAACATGCCT






AATAAAATCAAAGTTGATTGTACATAGGAATATAGCTTT






TCTGCTTACAATCAAAGTTGATTGTACATAGGAATATAG






CTTTTATGCTTACAATCAAGGTTGATTCTACATATGCAT






GTAAATTTTGTGTTTGAACTAATCTGGCTAATCCAATCA






AGTTGATTGTACATAGGAATATAGCTTTTGTACTTACAA






TCAAAGCTGATTGTACATAGGAATATAGCTTTTGTGCTT






ACAATCAAGGTTGATTGTACATATGCATCTAAATTTTGT






GTTTGAACTAACCTGCCTAATCCAATCAAGTTGATTGTA






CATAGGAATGTAGCTTTTGTGCTTACAATCAGAGTTGAT






TGTACATAGGAATGTTAATTTTCTCCTTGAAGTAACCTG






CCTAATCAGATCAAA





64

Conyza

cDNA
1882
ATGGAGGTTTGGTAGGAAGTGGTGGTGGTGGTGGTTGGT




canadensis



ATGAAATTTTGTTTTTGACCTTCTTCAAACATCCACCTA






CTACTGACCCCTCCCTTCAAACCCAACCCAAAATCCAAA






TCATTAAATCCTTCAAACCCACTGTGTGTTTTGTGTGAA






ATTTCACACACAACAAACAATGGCAGCTACTCACATTAA






CACCACCAACATTGCCCACAATCTCCAAGCTACCACCAG






TCTTTCCAAAACCCAAACCCCATCAATAAAGTCACAACC






TTTTTTATCTTTTGGGCCAAAACACAAAAACCCGATTGC






CCATTTCTCTGTTTCTTCTAATAATAATAGAAATCTTGG






AAAAAATGTTTAATAGTTTCTGCCGTTGCCACCACCGAG






AAACCGTCAACGGTGCCGGAAATTGTGTTACAACCCATT






AAAGAAATCTCGGGTACGGTTAATTTACCCGGGTCCAAG






TCGTTGTCTAATCGGATCCTCCTCCTTGCTGCGCTTGCT






GAGGGAACGACCATTGTTGACAACTTACTCAACAGTGAT






GATGTTCATTACATGCTTGGAGCTTTAAGAACTCTAGGG






CTAAACGTTGAGGAGGATGTTGCAATTAAAAGGGCAATT






GTGGAAGGTTGTGGCGGTGTGTTTCCTGTGGGTAAAGAA






GCTAAAGATGACATACAGCTTTTTCTTGGGAATGCAGGA






ACTGCTATGCGTCCATTGACTGCCGCAGTTACTGCTGCT






GGTGGTAATTCAAGCTACATACTAGATGGCGTTCCTCGT






ATGAGAGAGAGACCAATAGGTGATTTGGTCACGGGTCTT






AAGCAGCTTGGGGCAGATGTTGACTGTTCTCTCGGGACG






AACTGCCCTCCCGTGCGTGTAGTTGGTGGAGGTGGTCTC






CCTGGAGGAAAGGTTAAGTTGTCGGGATCTATTAGTAGT






CAATACCTTACTGCTCTGCTTATGGCTTCTCCCCTTGCC






CTTGGGGACGTGGAAATTGAAATCATAGATAAACTAATT






TCCATACCATATGTCGAGATGACACTGAAATTAATGGAA






CGGTTCGGCGTCTCGGTAGAACATAGTGATAGTTGGGAC






CAGTTCTTTATTCGAGGCGGCCAAAAGTACAAGTCACCT






GGAAATGCTTATGTAGAAGGTGATGCGTCAAGTGCGAGT






TACTTCTTGGCTGGTGCTGCCATAACCGGAGGCACCATC






ACCGTTGAAGGCTGCGGAACAAGTAGTCTGCAGGGTGAT






GTGAAGTTTGCGGAGGTACTTGGACAAATGGGTGCGGAA






GTAACATGGACTGAGAACTCAGTCACAGTTAAGGGCCCA






CCAAGGGATTCTTCTGGAAGGAAACATTTACGTGCTGTT






GATGTGAACATGAACAAGATGCCTGATGTTGCCATGACT






CTTGCTGTGGTCGCTCTTTATGCTGATGGCCCTACAGCC






ATTAGAGATGTTGCTAGCTGGAGAGTTAAAGAAACCGAA






AGGATGATTGCCATTTGCACAGAACTTAGAAAGTTGGGA






GCAACAGTTGAAGAAGGTCCGGACTATTGTGTGATCACT






CCGCCAGAGAAGTTAAACGTGACAGCAATAGACACATAT






GATGATCACAGGATGGCCATGGCTTTCTCTCTTGCCGCT






TGTGCAGATGTTCCTGTGACCATTAAGGATCCTTCTTGC






ACACGTAAGACGTTTCCTGATTACTTTGAAGTTCTTCAA






AGATTTGCCAAGCATTAATGTGATTATGGGTAGTGGTTT






GCTTTTCTATATGTAATTTTTGTTTCATTTGTAACGAGT






AAAATGTGAGTTTTGGGCATAACATATTCTTATGAACTT






GTATTCTTTCGTAAGATTTTTTTAGTGTAATAAAATATT






TTGCTATTTC





65

Conyza

cDNA
1800
GATTCAAATCCCACATTTACTACGTGTTTTCTCAACCAA




canadensis



AATCCCCCCCGCCCCCCCACAAAACACACAATGGCAGTT






CACATCAACAACTCCAACATACCCATTTTCAACACTTCC






AATCTCACAACCCAAAACCCATCTTCAAAGTCATCATCT






TTTTTATCTTTTGGATCCAACTTCAAAAACCCATTAAAA






AACAATAATAACAATAATTATACCTCTGTTTCTTGTAAT






GTGAAAAACAACAAAAACCCATTTAAAGTATCAGCTTTC






TCTGCCACTTCCACCAAAGAGAAGCCATCTAAAGCTCCA






GAAGAAATTGTGTTGAAACCCATTCAAGAAATTTCGGGT






ACGGTCCATTTACCCGGATCCAAGTCTTTATCTAATCGG






ATCCTCCTCCTTGCTGCCCTGTCTGAGGGGACTACTGTT






GTAGACAACTTGTTAAACAGTGATGATGTTCATTACATG






CTTGGAGCTTTAAGAGCTCTAGGGTTAAATGTTGAAGAA






AATAGTGCAATTAAAAGAGCAATCGTAGAAGGTTGTGGT






GGTGTATTTCCCGTGGGTAAAGAAGCCAAGGATGAAATC






CAGCTTTTTCTTGGAAATGCAGGAACAGCTATGCGTCCA






TTGACTGCTGCCGTTACTGCTGCCGGTGGAAACTCAAGC






TACATACTAGATGGTGTTCCTCGAATGAGGGAGAGGCCA






ATTGGTGATCTGGTCACCGGTCTAAAACAACTTGGTGCA






AATGTTGATTGTTCTCTCGGTACAAACTGCCCACCAGTT






CGTGTAGTTGGAAGTGGAGGCCTTCCTGGTGGAAAGGTG






AAATTGTCAGGATCTATAAGTAGCCAATACTTGACTTCT






TTGCTCATGGCAGCTCCCCTTGCACTGGGAGACGTAGAG






ATAGAAATTATAGATAAATTGATCTCTGTGCCATATGTA






CGGATGACACTGAAGTTGATGCAACGGTTTGGGGTTTCA






GTAGAACACAGTGATACTTTGGACAGATTCCATGTCCGA






GGCGGTCAAAAGTACAAGTCACCTGGAAATGCTTATGTG






GAAGGTGATGCTTCAAGTGCGAGTTACTTCTTAGCTGGT






GCTGCCATCACTGGCGGAACTGTCACCGTGGAAGGTTGC






GGGACAAGCAGTTTACAGGGTGATGTAAAATTTGCTGAG






GTCCTTGGACAAATGGGTGCTGAAGTAACCTGGACAGAG






AACTCTGTCACGGTGAAGGGTCCGCCAAGGAATTCTTCC






GGAAGGGGACACTTGCGTCCAGTAGATGTGAACATGAAC






AAAATGCCAGATGTTGCGATGACTCTTGCTGTGGTTGCC






CTTTATGCTGATGGTCCCCACTGCCATTAGAGACGTGGC






TAGCTGGAGAGTAAAAGAAACGGAAAGGATGATTGCCAT






CTGCACAGAACTAAGAAAGTTGGGAGCAACAGTCGAAGA






AGGTCCAGATTATTGTGTGATCACTCCACCAGAGAAATT






GAATGTGACAGCAATCGACACATACGATGATCACAGAAT






GGCCATGGCTTTCTCGCTTGCCGCCTGTGCAGAGGTTCC






TGTCACCATTAAGGACCCGGGTTGCACCCGTAAGACCTT






CCCCGACTACTTTGAAGTTCTTGAAAGATACACTAAGCA






TTAAATCACATATAAGATGTTCAGAAAGAAAGGGGTTAG






AGGTTTTAAAATGACACCTTTACCCTTCAGTCCTTCACC






ATTATCTTTCTTCAGAAATGTTTCACTTACAGAGTTACA






TCATATGTATATGGGCGACCTGAGCGTATTTTATCTTTT






CTTTTC





66

Conyza

cDNA
1730
ATGGCAGTTCACATCAACAACTCCAACATACCCATTTTC




canadensis



AACACTTCCAATCTCACAACCCAAAACCCATCTTCAAAG






TCATCATCTTTTTTATCTTTTGGGTCCAACTTCAAAAAC






CCATTAAGAAACAATAATAACAATAATTATACCTCTGTT






TCTTGTAATGTGAAAAACAACAAAAACCCATTTAAAGTA






TCAGCTTTCTCTGCCACTTCCACCAAAGAGAAGCCATCT






AAAGCTCCAGAAGAAATTGTGTTGAAACCCATTCAAGAA






ATTTCGGGTACGGTCCATTTACCCGGATCCAAGTCTTTG






TCTAATCGGATCCTCCTTCTTGCTGCCCTGTCTGAGGGG






ACTACTGTTGTAGACAACTTGTTAAACAGTGATGATGTT






CATTACATGCTTGGAGCTTTAAGAGCTCTAGGGTTAAAT






GTTGAAGAAAATAGTGCAATTAAAAGAGCAATCGTAGAA






GGTTGTGGTGGTGTATTTCCCGTGGGTAAAGAAGCCAAG






GATGAAATCCAGCTTTTTCTTGGAAATGCAGGAACAGCT






ATGCGTCCATTGACTGCTGCCGTTACTGCTGCCGGTGGA






AACTCAAGCTACATACTAGATGGTGTTCCTCGAATGAGG






GAGAGGCCAATTGGTGATCTGGTCACCGGTCTAAAACAG






CTTGGTGCAAATGTTGATTGTTCTCTCGGTACAAACTGC






CCACCGGTTCGTGTAGTTGGAAGTGGAGGCCTTCCTGGT






GGAAAGGTGAAATTGTCAGGATCTATAAGTAGCCAATAC






TTGACTTCTTTGCTTATGGCGGCTCCCCTTGCACTGGGA






GACGTAGAGATAGAAATTATAGATAAATTGATCTCTGTG






CCATATGTACGGATGACACTGAAGTTGATGCAACGGTTT






GGGGTTTCAGTAGAACACAGTGATACTTTGGACAGATTC






CATGTCCGAGGCGGTCAAAAGTACAAGTCACCTGGAAAT






GCTTATGTGGAAGGTGATGCTTCAAGTGCGAGTTACTTC






TTAGCTGGTGCTGCCATCACTGGCGGAACTGTCACCGTG






GAAGGTTGCGGGACAAGCAGTTTACAGGGTGATGTAAAA






TTTGCTGAGGTCCTTGGACAAATGGGTGCTGAAGTAACC






TGGACAGAGAACTCTGTCACGGTGAAGGGTCCGCCAAGG






AATTCTTCCGGAAGGGGACACTTGCGTCCAGTAGATGTG






AACATGAACAAAATGCCGGATGTTGCGATGACTCTTGCT






GTGGTTGCCCTTTATGCTGATGGCCCCACTGCCATTAGA






GACGTGGCTAGCTGGAGAGTAAAAGAAACGGAAAGGATG






ATTGCCATCTGCACAGAACTAAGAAAGTTGGGAGCAACA






GTCGAAGAAGGTCCAGATTATTGTGTGATCACTCCACCA






GAGAAATTGAATGTGACAGCAATCGACACATACGATGAT






CACAGAATGGCCATGGCTTTCTCGCTTGCCGCCTGTGCA






GAGGTTCCTGTCACCATTAAGGACCCGGGTTGCACCCGT






AAGACCTTCCCCGACTACTTTGAAGTTCTTGAAAGATAC






ACTAAGCATTAAATCACATATAAGATGTTCAGAAAGAAA






GGGGTTAGAGGTTTTAAAATGACACCTTTACCCTTCAGT






CCTTCACCATTATCTTTCTTCAGAAATGTTTCACTTACA






GAGTTACATCATATGTATATGGGCGACCTGAGCGTATTT






TATCTTTTCTTTTC





67

Conyza

Genomic
7954
GTGTTTTCTCAACCAAAATCCCCCCCGCCCCCCCACAAA




canadensis



ACACACAATGGCAGTTCACATCAACAACTCCAACATACC






CATTTTCAACACTTCCAATCTCACAACCCAAAACCCATC






TTCAAAGTCATCATCTTTTTTATCTTTTGGATCCAACTT






CAAAAACCCATTAAAAAACAATAATAACAATAATTATAC






CTCTGTTTCTTGTAATGTGAAAAACAACAAAAACCCATT






TAAAGTATCAGCTTTCTCTGCCACTTCCACCAAAGAGAA






GCCATCTAAAGCTCCAGAAGAAATTGTGTTGAAACCCAT






TCAAGAAATTTCGGGTACGGTCCATTTACCCGGATCCAA






GTCTTTGTCTAATCGGATCCTCCTTCTTGCTGCCCTGTC






TGAGGTATCTTTTATAAATTATGTTTTGAATATTTGAAT






TTAATTAGTGTTTTGATTGATTGACTAGAATTTGATTAT






TATTAAGATATAGGAAAAGATATGTACATTAGTTTTTGA






CTGAATGTGAAAAATGTCTTAATGTAGTAACTCACAAAG






TTTTGTTTGTGATCTATAAGTTTACTTTATAAGGTTACT






CTATGGGAAAAGGTTACGTAGATTTTGGTTTTCTTTGAC






CTCTGTAGTTGGTATGGCCATGAGAAGAAGTAGGCCTAA






AAAGAGCTTTGCTTGTGAGAGGACATGACCATACTTAGA






GGACTAGGATTAGTTTAGAGGAATATGGTAGATCAGTAA






TCCTTTTAGGTATTTTAGGGGTAGTCTATATACTTATAT






GTAGGAAGGTCAGGCATGATACCTTTCTTATATGCTCGT






ATACTCGTAATTGTTGCTCTCAGTCCATTTGCTTGGTTT






TATGCAAACGGTTATGTTTATTATGTTTTTATACTGATG






TCTAATATGTTCAAATGTCCTATCTACTATGTATTGTCC






ATTTTGCGCTAAAGTGTCCTACGTGGTATGTTTGCTACT






CCCCTTTACTCTTAACGTAGGCAGCTCATACCCGACCGA






CAAGTATGGTTTGCTTAACTCTTTACACTCTCCTACTTT






TGCATCATATGGCCGGAGGTCCTTATGGAAGCAGTCTCT






CTACCTTTGGGTAGAGGCAAGATTGTCTACATCTCACCT






CCCCCATACCCTGCTCACTGTGTTGTTTAGTTTATTTAA






AGGTGGAAAGGAAAGGAGATGAGAGGAGAAATATATAAG






ATGCATTCTTAAGATTTTTTTAAGTGTGGAAAGGGAAGG






AGTAGAAAGGATTAGAGGGGGAAGTTGATATGGATCTGC






GGGAAGTTTATATTATTTAGTAATATAATATTAATTTTA






TTATTATTATGATTAGGAAAGTATTGTCTTTACTTAGAT






ATCTTATGATRTCTTTTATATTATTTAGTTAGCTTGATC






ATCAAGCTATAGGATTAGTATAAAAAGAATATTAGGGTT






GTAATTCTAAAGTATGAAATATTAATCAGAAGTTTATTG






TTCTTGTTTAATCAATTTAGGAGTTTACTGGTTCTCGAA






TACCAGCCTATCTTTGTTATTGTTCTTATCATTTGATAC






AAGCCATTGGTTCGTATCAATTGGTATCAGAGCATCGAT






CTTGCAACCTGTGCTTTTCTTCAACTATGGAATCAAGGA






CGATCATTGATGTTGATGCTGATGTACAGCAATACCGTG






AATCTACTGAGGCTTGGGTGGACATAATGCATGCTCGGA






TCAATCGTTTTCAAGCAGCCACCGCGCGATCTCAGTTGG






CCACTCAACAATTTCACTTGAGGTTTACAACTAGGCTGG






ATAAACTTGAACCAGTTGTAGTTGGGACACAGCAGAAGT






TGGATGCATTGGCGGCAGTGGCAAACCAGCCTCTACCCC






AGCAACCGATGATTCAGGAAGTTGTCATACCAACAGTCC






CTACAACTTCACCAAAAACAAATCAGTTTGGGTTGAAGC






AATCGAAGGTTTCACAAGCAGGGTATCCTTATCCCAGAC






ACCTTCAGATCTTGCAAGGAATAATCATCCTGATGTGAA






CCAAGAACGAGGAGCTGGACTAACATTCAAGGACATAAG






CAATGCTTATGAAGATCTGGCAGGCGATGAAAAGCGATC






CATATATGACATGAATGGGGAGAATGGGCTTAAAGGTAC






ATGTTTTGGTTTAAGGAATTGTGCAAAAGCTGATGAACT






TTCTGGTTTGATACATATGATTGAGTTTGTTAAACAACT






TCGATATGATCAGCAAGCTATGGAGTTTCAAGTCAGAAT






TTGGGATCCTGGAATTACTCGAAGGAACAATTTAAAGCA






ACACCTTGAGGACAAGGTGTTTTTGGGGTGGGAGTAATG






ATATGGATCTGCTGGAAGTTTATATTATTTAGTATTATA






ATATTAATTTTATTATTAATATGATTAGGAAAGTATTGT






CTTTACTTAGATATCTTATGATGTCTTTTATATTATTTA






GTTAGCTTGATCATCTAGCTATAGGATTAGTATAAAAAG






AATATTAGGGTTGTAATTCTAAAGTATGAAATATTAATC






AGAAGTTTATTGTTCTTGTTTAATCAATTTAGGAGTTTA






CTGGTTCTCGAATACCAGCCTATCTTTGTTATTGTTTGA






TACAAGCCATTGGTTCGTATCAGAAGTTTAGTTGTTTTT






TGTCTCAAAAGTTTTCCCCTCATTTTTGAGGTGATTAGG






AAGGAAAACTTCTCTTCCCTCTCATCTCCTTTCCTCCCT






TAAGTTAACTAGACATTAATGAATATTGGGTCATTTTGT






TGTTGTGGCTATAAGGAATGACTTGACTTAAAAACTTAT






AGAAATGCTGTGTTATCCAGTAAGTAATCGTTTTTTTAC






TATTTGTCTTTTAAGACCATTCATTAAGCACATAAAACA






AACAACAATCCTGCTTAATCGATGTAGACTACATACATG






TAGACGGACATTTTATCCATAAACAGCTAATTAGTCATA






CATAGCCAGTTATATGTTTTACATCGTGCAGTGTAAAAC






TTCTGCCTTTACTGCTAAGATTTTTTGTTTACATATATA






TTAGATATATTAAGGTTTGTATTTTGATGCTAACATTTA






ACATTACTTTTTTTTTTTATCGGGGAGTGGGTTAAAGTG






GTTCTTCTACCTGGTTTTAGTTTTTTAGATGTATATCCA






ATATTTATTGTGGGTAATTTAAAGTTTTGAAATTTTTGT






TTTTTTTTGTGAACAGTATAAAGTTTCTGACTTTTTTGA






TTTTTTGTGAGGTAAAGTCGTGAATGTGTAATTTGGTAT






TTGATTGATATTCTTGATATTGGTACATAGTGAGGTGCA






AGGTGCTGATGGTTTCTTAGACGGGTCATGTTTGTTTTG






TGTAAAATACATCTGTTTTTTTCTTTGATAACAAGTTAT






AGAAGTTGCACCCAAAAATGTTCTTGTTAAAGCGATAAA






AATTTGGATAGAAGGTGACGGTTAATGATTCGATATATT






GATTTGAGTTTCCTTTTATCTATTGCATTTTCACAAGTT






CAACATTCCACCCTCGATTTTTTGATGAATCTATGACTG






AAGAAAAGGGCGATTGTTGCCTTTGGCAATCAGTTTTGG






ATTTTATTTTGTCATGGAAAGGGGGTGTTAGTTCCTGAA






CCTTAGTAGAAGATGATAAGCTATAGTTTCAATATTGCT






TTTCTTTCTTGCATCTGAACTGGTTTTGCATTTTTCAAA






GGACTATAAAAGATGCTATTTATCACCTATGACCTATGT






TATAAATAGTAAGGTATTAAACTATTAATATTGGTATAG






TCTTGAGAAATCCATGAATTTCGATTGAGTTCATAGGAC






ACATCTAACTTATGTTTCTTTACATTACGATTTACACAT






CTTGTCTTTGACGTCTGATTTTAAAATAGCGTTTCTATT






GACATTATGCATTTCTTTGAGTTCTCTATATAAATTTTT






GTAAGCTTTCCATATGTATATACTATGAATCTGAGTGAA






CTTATGCTATCAGGGGACTACTGTTGTAGACAACTTGTT






AAACAGTGATGATGTTCATTACATGCTTGGAGCTTTAAG






AGCTCTAGGGTTAAATGTTGAAGAAAATAGTGCAATTAA






AAGAGCAATCGTAGAAGGTTGTGGTGGTGTATTTCCCGT






GGGTAAAGAAGCCAAGGATGAAATCCAGCTTTTTCTTGG






AAATGCAGGAACAGCTATGCGTCCATTGACTGCTGCCGT






TACTGCTGCCGGTGGAAACTCAAGGTATTTTAACTTAGT






GTTATATTCTCCTGCATTTTATGTCTGCTTCATCCTCCT






ACACATACATTTCATGACATGTGTACCCATTTCTCTCAC






CTCATCATTTCATTTTTCTATGTGTCACAATTATATGAG






TAGGAGGATTCATACTTTCATAGGCATAAATTGTAGGAA






TCAAATATCGTTTCTTTTTAACCTAACATCTCTTGATTA






GCTATTATAATCCGTAGAACGTATATTAAAGTTTTTTGT






GCCGATATGTAATTTTAAGGTGAATACACAAATAAAAAT






TTTACCTTTCTGTTTGTTGCATGTTCTGTACATATAAAT






TTTTAGTTTTTGTTATATATCTAAGAATCTAAGATCTCT






AAATATTCTTCTATTAGTTGACACAAATTAAGGGATCAC






ATGAACTGAAAACTCAATAGCATCCACTTGTTGATAATG






CTGCAATTTAATGCCCAAAGAAGAAATTATTGCAATTCT






TATTATCATTTTATTTATGGGAGACAGTGAGTATGAATT






TGGGAATCGATAATAGAGTTGACCAACTTGGTGGTGCTG






GGTAGCTAAGGTAGTGGGTAAGTTACATTGATATGTAAT






ACCCTAACAGTTATGAGTTTTTTCTTCAGCTACATACTA






GATGGTGTTCCTCGAATGAGGGAGAGGCCAATTGGTGAT






CTGGTCACCGGTCTAAAACAGCTTGGTGCAAATGTTGAT






TGTTCTCTCGGTACAAACTGCCCACCGGTTCGTGTAGTT






GGAAGTGGAGGCCTTCCTGGTGGAAAGGTAATCAACAAT






AAGATTGCTGCATTTTAAAGTCGTAAGAATTAATTATTT






GGTTCCATATATGATTGGAAAATTTGGTTATTTAAGAAA






CTATTAATTAGTAATGAAATTATAGTTTTTGAATCTTTT






TGTAATCTTCTTTCCCTGGCCTTCTTATTGCAGGTGAAA






TTGTCAGGATCTATAAGTAGCCAATACTTGACTTCTTTG






CTTATGGCGGCTCCTCTTGCACTGGGAGACGTAGAGATA






GAAATTGTAGATAAATTGATCTCTGTACCATATGTGGAG






ATGACACTTAAGTTGATGGAGCGGTTTGGGGTTTCAGTA






GAACACAGTGATACTTGGGACAGATTCCATGTCCGAGGC






GGTCAAAAGTACAAGTAAGTTGATCATTTCATAAAAGTC






AATYTTTACGTGAAGATCGGTCAACATCTATTTTAATCC






GATAAAATCTCTTTAGGTCACCTGGAAATGCTTATGTGG






AAGGTGATGCTTCAAGTGCGAGTTACTTCTTAGCTGGTG






CTGCCATCACTGGCGGAACTGTCACCGTGGAAGGTTGCG






GGACAAGCAGTTTACAGGTATTATCCATGTGCCCACCTC






AAAGATATTCAAAAACTAAATTGTTTCTCAAGTATATAT






TCTTCTAGTTAATTGCAAATTTTTTTGCCCCATACGTCT






ACCCATTCTATAAATTTCGTCCAAAGTTGGTGACTCGGT






TCAATCGTGTAATAAGTCTCTTTTTTGTTTTTTAGAATT






GACAATTTATGTCAGTTCTTGGTTATATCAACGATGTGG






GGAGTGTATTGTGCACACATTCTAAAAGAAGGACATTTA






GTCTTTTTGCTTTCTTTTTGCCTCAAGATCATCTTCATC






TTTTCAAGATACTCTGCACTCATTTGCATTATCAAAGTT






TTGGATGCATTCTGTAACTGTGGTACAAGGAGGGAGACA






TAATATGTCATTAGTTCTTATTCTTAAGCTCAATGCACA






CTATCACCTCTTACTTCTTTTTTCTTTCTTTTTTTTTAT






TAGTTTATTTAAGCTCAATGCACACTAACACTTCTTCTT






TATAACTTCAAGTCATTCATTTTAATTTTTGAAGCTGAT






GGTTTTTGACATTAAAGATAGAACTATGTATATACATAT






GTCATTTCATCTTACCTATTTGCATGTCTTGTTGATCTT






TAATCAGGGTGATGTAAAATTTGCTGAGGTCCTTGGACA






AATGGGCGCTGAAGTAACCTGGACAGAGAACTCTGTCAC






GGTGAAGGGTCCGCCAAGGAATTCTTCCGGAAGGGGACA






CTTGCGTCCAGTAGATGTGAACATGAACAAAATGCCGGA






TGTTGCGATGACTCTTGCTGTGGTTGCCCTTTATGCTGA






TGGCCCCACTGCCATTAGAGACGGTATGTGTTAGAATTC






ACCACAGCTTTGTAATGTTAAATATATGTTAGTTTAGAT






TAACAAAATGACTATATGATCACAAAAGGAAACATTTAT






CTCAAATTTGGAACTAATATAGTATCATACCTATATAGC






AATTGTAGTTTCAAAGAAATCCTTAAGGTCGTGTTGTTT






ATTATACATGACTGGGTATATATTGTTTTTTGTGCTCAA






GCTTTTAAAAATCACATTTGACTATCCTTTATTGAAAGG






TTAATTTTGTTCATGTCTCATTTTAGGCAATTTACTTTT






TATCAAGGAAAAAATAGCAATCAATGTCTATGGTCGTAG






TTTAGGCAATTAAAACCCATCAATCAAAGTGCTGTTGGT






TCAAGGCATATTTAGAGATAAATGGAGATAATAGTACGT






GGATGTCTTTTCAAAAGAAGTACAAACTTTTTCTTGGGC






TCTTTAGTTTTTACTGAAAATACCAAACTCCTTTAACTG






AATTGTCTAAAATAGAAGAAACTGGAAATTAGTTGCTAT






TTTGTGAAAACGAAAAGTAAATCGCCAAAAATTGGAGGT






TAAGTATGCTTATATTTTATGTAATTCATCTTTTTGAAA






AATGTAAGAACTTAAATGGAAGTGAATTGATTTGAAAAA






TATATATTAAAGCACCACTTATGAAGAAATCTAGAAATT






GAGTTTTAGGATCTGTAAAGACATCCTGTATATTGTATG






AGAATAGATATATCGTACACCACAATCCATCATTTTTAC






TTTTCACACGACAAAGTGAATATGAAAAAATGTGAGTTA






AAACACTTAAAAGGCAGTTTTGGGTGTGCAAAGTAAAAT






GTAGCACAAATTGGCCCCTTTCTCATATTGGGTTTACAT






ATTCTTCTTTACGTATATCCCTATATTGTTCATTTTGTG






GGCCCCATCTCACGTCGGTAAATCATTAGATGGACTAAA






TCATATTCTTCATTCCTTATATTGGGCAGTGGCTAGCTG






GAGAGTAAAAGAAACGGAAAGGATGATTGCCATCTGCAC






AGAACTAAGAAAGGTACAAGTCATTAACCCATCTTACTC






TAAAAAATAGAATGGCCATGAGTACTTTTAAAGTACTCA






ATGAATCTGCCCATTATTTGTTTAGTGCTAATAGGCCCT






TTTGCCCTTGGAACTTTTCAGTTGGGAGCAACAGTCGAA






GAAGGTCCAGATTATTGTGTGATCACTCCACCAGAGAAA






TTGAATGTGACAGCAATCGACACATACGATGATCACAGA






ATGGCCATGGCTTTCTCGCTTGCCGCCTGTGCAGAGGTT






CCTGTCACCATTAAGGACCCGGGTTGCACCCGTAAGACC






TTCCCCGACTACTTTGAAGTTCTTGAAAGATACACTAAG






CATTAAATCACATATAAGATGTTCAGAAAGAAAGGGGTT






AGAGGTTTTAAAATGACACCTTTACCCTTCAGTCCTTCA






CCATTATCTTTCTTCAGAAATGTTTCACTTACAGAGTTA






CATCATATGTATATGGGCGACCTGAGCGTATTTTATC





68

Conyza

Genomic
6988
GGCTGGTGTCATGGCTTAATAACTGTRATGACATTTTGG




canadensis



TGATGCGTAAGACCTGTAAGCACCAGCACAAGTCTAAGT






CTTGAATCTTATACAAATASGTTTTTTTCTATTTTCCAA






ATTTATTGAGTTTTCTCRTGAGTTCATGTATGAGCATTA






TTGCATAGTGAAAATATGGTCAGATGGTTTCATCGATGA






CAAGCTAATTTTTAAGAAAGATATATTACTTTTCTTTTT






AACTTCGGGAAAATCATAAAAGTGAAATCATCGTTTTAA






CTTTTTACGAGCATGGTACTCGCGTAATGCAGCGGCGGT






GGTATAGAAGACGGTCTAATGGTGGCAGTGTCAAGTGGT






GTAGGTCTATGTGCACCGAAACTCCAAACTGACATAGCC






GTACCCATTTCCGAAACTCCATGGAAACGTTTTCTCTTA






CGAAACACGTATGAAACATTCCCTAAAATTTTCTATAGA






TTAAACGTTTCTTTGAAGTTTCCATACGGTTTCTAATTA






ATATCAAGGTTTTAAAGGACTTTTTCGAATCCCCAAACC






CAAACATGTTATATTATATACAATTTGATCAACATTAAA






TTTTTTATATTACAAAGCCATTATTAAACACTAAACATT






CAATGAGTGATCACTAATCAAACATGTATTATAAAGTTC






TACATATATAATTATACATAATCTCTCAAGTCTCAAATC






TCCTTTATGAAAAAATTGATATAATTTATATTTGTATAT






TTTTTTTATTGTTGTACCCGTATCCTGGATTTTTTAGTT






TTACTGTTCCCCGTTCCCGTATTGTTCCCGTACCCTTTT






CCCGTACCTGTTTCGGTGCTACATAGGTGTAGGTTGATG






TAATTGTGATAGTGAAAAGTTTTAGAAGATAAGAGTTTA






AAGTGTTAAGTATTAAAATAAGGGTTTATGGTGTAAATT






AATTCATTAAGGGGAAAATTTATAAAACTATTTCTATAG






TGGGTTTTTATTAAGAGACAATTTAGTAATTTTATATGT






GACATATGAGTAACTATTTTTATTTTGAGAGGGGTGCAT






AATTTTTATTCGAAGAGTACGGATAAAAGTCAATAAATT






ACGAGCAGTGAAGTATCCCAGACACCCCTTGCAAGGTAA






TTTTTTAAAATTTTATTCATGGAGGTTTGGTAGGAAGTG






GTGGTGGTGGTGGTTGGTATGAAATTTTGTTTTTGACCT






TCTTCAAACATCCACCTACTACTGACCCCTCCCTTCAAA






CCCAACCCAAAATCCAAATCATTAAATCCTTCAAACCCA






CTGTGTGTTTTGTGTGAAATTTCACACACAACAAACAAT






GGCAGCTACTCACATTAACACCACCAACATTGCCCACAA






TCTCCAAGCTACCACCAGTCTTTCCAAAACCCAAACCCC






ATCAATAAAGTCACAACCTTTTTTATCTTTTGGGCCAAA






ACACAAAAACCCGATTGCCCATTTCTCTGTTTCTTCTAA






TAATAATAGAAATCTTGGAAAAAAATGTTTAATAGTTTC






TGCCGTTGCCACCACCGAGAAACCGTCAACGGTGCCGGA






AATTGTGTTACAACCCATTAAAGAAATCTCGGGTACGGT






TAATTTACCCGGGTCCAAGTCGTTGTCTAATCGGATCCT






CCTCCTTGCTGCGCTTGCTGAGGTATAGTTTAATTTGGT






AATAATGTTTGACCTTTAAAATTTGACATTTGGGCTACA






TGATTGATATGGGTCTTGAATGAATTGTGTTATAAAATT






TGGGAAGTTAAATGTTAATAATAGTTTAATCCTTTAGAA






ATTATGAAGTAATGGTTTTAGACCCTGAATTTTTTTTTA






TTGCATAGGTTAGTCCCTTAGCTAGTTAGCTTTTGGTTG






ACATCTTAGAAAAACCAGTACAGTTTTTATATTTTAGTC






CTTAAGCTTCAATTTTTTGCAATGTATTGCCATTTGAAA






TGATCTAGTAAAATGTTCAAAATCAATGAATTGGCGGTT






TAAAGATATAATGCTTGGATCAATTGTTATGTAAAGTGT






GCTAGGCGGTCAAAAGCGAATCTTGGATCAAGGAAGTCG






TAGAATACTATTGATTTCATATTATTGATTTCTTATTAT






GCATATTTGACATGTGCTTCTAACATCATGGCATTTGGG






ATTTATTTCTATATATAAAGCATGACTGTATGGTTATAA






AGTTCAAAACTTGTATGGTATAAATATACTCTTCTTACT






TCTTAGCAGGAATGTGTTGACTTATAAGCTGAAAACTTT






TATAACTCCAATTGTGTGTAGTAATACTTGAAAGTGGCT






GAGTTCCTAGGACAGTATTACATGCGAACACTACAACGT






GTTACTAAATTTGAGATAGGTATGATTTGGTTTTGTTGG






ATACAAAGTCTAGGTCAGTTAACATAGCCAGTTGAGGAC






GATAGCTTTCTTGTCTTATTTCCTTTTTATAGAGGGTTT






GTGTTTCGTGATGGTAATATTGAGTACCACCATATAGTT






CACAAGTCATATAATAAAATCAGAGCAACATTCGAGGAG






TCGCCTATATGCATATTATTGCACCATGCTAAAATCCAA






GGGCATATTTTGATGCCAATTTGTAATTTATTTCTCAGG






GAACGACCATTGTTGACAACTTACTCAACAGTGATGATG






TTCATTACATGCTTGGAGCTTTAAGAACTCTAGGGCTAA






ACGTTGAGGAGGATGTTGCAATTAAAAGGGCAATTGTGG






AAGGTTGTGGCGGTGTGTTTCCTGTGGGTAAAGAAGCTA






AAGATGACATACAGCTTTTTCTTGGGAATGCAGGAACTG






CTATGCGTCCATTGACTGCCGCAGTTACTGCTGCTGGTG






GTAATTCAAGGTATTTGGACGTTGTCATTGACTCATTGC






TATAGTAAATATATGTTGACTTGTGCACACAAGATTTGA






AGCATCTTTTAAACATATATGATTAGATACAGAGAACAC






TGCATGTTGAAAACTTGAAATACAGGACTTTCTTAAAAT






ATTGGGATTTCACATATATGGGTTGAATAGTTGAAATTT






CCTCCTTCTACCTTTAACCAATTGTATATTACTTATTTA






AAGTTGTGTTTTAAACATGGCGATATGATTAGATACAGA






GAACACTACTTATTGAAAGGTTTATGTGGTATAGTATGA






ATTTTAACCTCAAAAAGGGTATCTCACTATCTCTTCATA






TAGAAGCACACATCTGATTCTGTTATATCTTTATGGATC






ATTTTTTCCAGCTACATACTAGATGGCGTTCCTCGTATG






AGAGAGAGACCAATAGGTGATTTGGTCACGGGTCTTAAG






CAGCTTGGGGCAGATGTTGACTGTTCTCTCGGGACGAAC






TGCCCTCCCGTGCGTGTAGTTGGTGGAGGTGGTCTCCCT






GGAGGAAAGGTATTGTGTTTTCATTAGTAGTTGTTTTCT






ATGCAAATAGCAACACACCTTATATATCATCCATTTATA






GCTATTTTTCTAATTGGGGCGTACGTTACTGTAATTTGA






TCGTCCAACCAGTTGTCATGACCCTCCTTAGCTAAAATG






GATGAAAGCTGGTCCGACAATTGACCATAATAAATGGGT






GTGGGCTATCTTGCTAAATTTAAGTATTTCACTTAAAAT






GAGAGTTGGTTTACAGTGTGCATTCAACCTAATTTTTTT






TTTTAACGTCGCATACAACCTAAAATTGAATAATGTTGT






AGACACAAAAGCTCTTAGTGAGCTTTAATAGTAACATTA






GAGGTGGTGATATCAATCAAACAATAAGGGAAAAGTAAT






ATGTATAAAAATTAGAATTAAACAAGAAGTTTTAAAAAA






TAGATCAAATGGTTTGAAAGTCTTCTAAAGTGTAATTTA






ATGCATAAATCTTCCTAAATTATTTTATTTAAAAACTGT






ATTGTAATATAATTTTCATCATCATATTTGACATTCTAT






GAAAACAAATATACATTTTGAACAAACAGTGTTACGGAT






CGACCCAGGCAATTCAAAGCTGTCCATTCTAACCTAAAC






CAGTTTTCACGGTTACCTCTATTTTCCTGCCTTTCAATT






TGCCAGCTACAAGAAGCTTCATTCCACCATAACGGGTTC






ACGCTAAAGATGCAAAGAGTCATGATTCGTTATTTATTA






TCTTGACTTATTATGATAACAATAGTTTTGGTGTATTTT






GATGTCTTCAGGTTAAGTTGTCGGGATCTATTAGTAGTC






AATACCTTACTGCTCTGCTTATGGCTTCTCCCCTTGCCC






TTGGGGACGTGGAAATTGAAATCATAGATAAACTAATTT






CCATACCATATGTCGAGATGACACTGAAATTAATGGAAC






GGTTCGGCGTCTCGGTAGAACATAGTGATAGTTGGGACC






AGTTCTTTATTCGAGGCGGCCAAAAGTACAAGTAAGTCT






ATTTCTTTCTTTTTAAAGTAAAACTGGAATTTAAAAAGG






TTGCAGTTTCTACCCTATCTCTTGTAATGGGTTGATTCA






GGTTATGTATAATCTCTAATGGGTCAAAGGGGGTAAAAT






ACAAAAAGGTTATTTTGTCACCAAAACGATATGATGCAT






ATTACCTAGTTTTCTTATTGGAATAGTAAACATTTTTAA






TCATTTCAATGTACAACTCTTTTATGTGTCCACAGAAAT






TAAACATAGCCCCTAGGACTATGTTCATCATTTCCCTTT






ATAAACTAGTTGGAGAAAAGTATTTTGGCCAACCCATTC






CGAATTTACACATTTTGGCCTATCACCCAGCCCGTCTGT






CCACTCATTTTCAGGGTTTTGTATGGAGACCCGTTTGTT






AATTAGTTGGATTAATTATCTTCAGGTCACCTGGAAATG






CTTATGTAGAAGGTGATGCGTCAAGTGCGAGTTACTTCT






TGGCTGGTGCTGCCATAACCGGAGGCACCATCACCGTTG






AAGGCTGCGGAACAAGTAGTCTGCAGGTGCACTTTGACC






TCCTTTGTTTTTTATTCTTCTCGATTTCAATCAAACGGC






TTTACGGTTTTACATTTTAAATGGATTTTGTGGAAACAA






CGAGTATTAAAAGTTCATCAAAAGATTTTATTATTATTT






TTATGCAACAATTATCAGCATCTGTAGTGAAATATTCAG






AAGTCCGTTTTTAGTTCAAAGTTTTTCTTTTTAACCTTA






AAGTCAAAAGTGAGATGGCAAATCTTTTACGTAAAATGA






TTCAATTGAGGCTGTACTTTGGTCGATTCTGACTTAATT






GGGAACATAGGTTACGTTAGCTATAAGCCTATAACTATA






AGTAAGCATGTGTTTATATGTCACAATGACTTGATTAAA






AGTAACCTTATGATTTTCTTAGTATACGTTAGTAATCTA






ACAGTATCATAATAACGGACAAAAATGTGCTGGTGGATC






AGCCCACCCAGCCCGTTAGAACATGACATAAAAATGACC






CAACTTGACCTATCACCTAAGCTCATTATAATATGTTAT






CCAACCCACCCTATCTTGGCCACCTGTGACCTGTATTCA






AATGTATACTGTAAAGCAACTTCCTGTTTTTCTTAAAAC






ATGTATTCTGTTTTTTCTTTCCAATGAAAGGGTGATGTG






AAGTTTGCGGAGGTACTTGGACAAATGGGTGCGGAAGTA






ACATGGACTGAGAACTCAGTCACAGTTAAGGGCCCACCA






AGGGATTCTTCTGGAAGGAAACATTTACGTGCTGTTGAT






GTGAACATGAACAAGATGCCTGATGTTGCCATGACTCTT






GCTGTGGTCGCTCTTTATGCTGATGGCCCTACAGCCATT






AGAGATGGTATCCTTCCTTTTAATGTGGAAAAAAGTTCA






ACATGTTTTCACTAAGTTTTCAAAGTAAATAGATAGATA






TGACTTCAAAATAACTCTATTGCCATGTTAAATCTTACA






CATATTGCAAGCACATTCTAGTGGTGGTTTGGAATGGCA






TTATGAAATTGAATATCTAAAATATTTAATTTAAACATG






TTCGGTTTCTGATCATTTAGGGTCAGTTTTAACTGAATC






TCAGAGAAGTCGCGCAAGACATGTCACATATTTGTTTCT






CCGAGTCTCAGACAACTGCTTTTTCAAAATGAAAGCATT






CTAGAACTATTTTGCTTACAGTTGATTTTCTAATTCTGG






GTGTACATAAATCAAGATAATTACTTTTATAAAACACAT






TCAAAAAGCCTCCTAGATGCCCCTATTATGAATTTTCTG






TTTGCTATACGAGTATCTGCTTTGTTTTTGAAAATGGTT






TTTTTGTTTTTTGCCAGTTGCTAGCTGGAGAGTTAAAGA






AACCGAAAGGATGATTGCCATTTGCACAGAACTTAGAAA






GGTAAAATGATACTTTGTTACTCTGTGATCTATGATACT






GCTATTGCTTAGAGGTCACTAAAGTGGTAAGGTCAAATA






GGATGGGTTTGAATGGGAACACTTTTCGCCCAAAACATA






TTTAACTAATATAATTTCACTTGTTACTATCTAATTTCA






TAAATGAAATGATTTAGAATTAGAATGTTTTGGGTGTCT






TGCAACCTATTCATTTTAAGCTATTTTAATTGTCTTTTG






ACCCATTAGAAATATACATAAGAAATATACTTAATCAGT






CCTCTATTGTTAATGTTTATCTGGGGTGAAATTTCTTCA






GTTGGGAGCAACAGTTGAAGAAGGTCCGGACTATTGTGT






GATCACTCCGCCAGAGAAGTTAAACGTGACAGCAATAGA






CACATATGATGATCACAGGATGGCCATGGCTTTCTCTCT






TGCCGCTTGTGCAGATGTTCCTGTGACCATTAAGGATCC






TTCTTGCACACGTAAGACGTTTCCTGATTACTTTGAAGT






TCTTCAAAGATTTGCCAAGCATTAATGTGATTATGGGTA






GTGGTTTGCTTTTCTATATGTAATTTTTGTTTCATTTGT






AACGAGTAAAATGTGAGTTTTGGGCATAACATATTCTTA






TGAACTTGTATTCTTTCGTAAGATTTTTTTAGTGTAATA






AAATATA





69

Euphorbia

cDNAContig
1563
ATGGCACAAGTTAGCAAATTCTGCAATGGAGTTCAAAAA




heterophylla



ACCTCCATTTTCCCCAATTTTCCTAAACCGGAAACCCCC






AAATCGGTGCCTTCGTTTTCAATTAGGTCAAGTTTTAAC






GGGTCTCCGATTTCATCGGGTCTAAATCGGCGCCGAACA






AAGGGCGATTGTATTGTTGTTAAAGGTAAAGCTAGTTCG






TTTAAAGTTTCAGCTTCAGTAGCCACAACAGAGAAACCC






TCTACTTCACCGGAGATCGTGCTGCAACCAATTAAAGAA






ATCTCCGGCACTGTCACTTTGCCGGGTTCTAAGTCGCTG






TCCAATCGGATTCTTCTCCTCGCTGCTTTATCTGAGGGC






ACAACTGTTGTGGACAACTTGCTAAACAGCGATGATGTT






CATTACATGCTTGGCGCACTTAAAACATTAGGATTACGA






GTAGAAGACAATAGTGAACTCAAACAAGCTATTGTGGAA






GGTTGTGGCGGTCAATTCCCAGTGGGTAAAGAGTCAAAG






AAAGACATTCAACTTTTTCTCGGAAATGCAGGAACTGCA






ATGCGTCCTTTGACTGCTGCAGTTACTGCAGCCGGTGGA






AATTCTAGCTACATACTTGATGGAGTTCCAAGAATGAGG






GAGAGACCAATTGGAGATTTGGTAACCGGTTTGAAGCAG






CTTGGTGCTGATGTCACTTGCTCTTCCACAAATTGCCCC






CCGGTTCATGTCAATGCAAATGGCGGCCTACCTGGGGGA






AAAGTTAAGCTTTCAGGATCAATAAGTAGCCAATACTTG






ACTGCTTTGCTCATGGCAGCTCCTTTGGCTCTGGGAGAT






GTAGAAATCGAGATTATCGATAAACTGATTTCGATTCCT






TACGTTGAGATGACTTTAAAGCTAATGGAACGCTACGGT






GTTTCTGTACAACACAGTAATAGCTGGGATCGTTTCTTC






ATCCCAGGAGGTCAAAAGTACAAGTCGCCTGGAAATTCT






TATGTTGAAGGAGATGCCTCGAGTGCCAGCTACTTTCTA






GCCGGAGCAGCAATTACCGGTGGAACTATCACTGTTGAA






GGTTGTGGGACTAGCAGTTTGCAGGGAGATGTGAAATTC






GCCGAGGTTTTGGAGAAGATGGGAGCTAGAGTTACCTGG






ACGGAGAACAGTGTAACTGTGACTGGACCACCACGCGAT






TCTCCTCGTCAAAAACACTTGCGTGCTATCGATGTGAAT






ATGAACAAAATGCCAGATGTTGCTATGACATTAGCTGTG






GTTGCACTTTTCGCTGATGGTCCCACTGCCATCAGAGAT






GTGGCAAGTTGGAGAGTGAAAGAAACCGAAAGGATGATT






GCTGTTTGCACAGAACTCAGGAAGTTAGGAGCAACAGTA






GAGGAAGGAGCAGATTACTGTGTGATAACTCCGCCGGAA






AAACTAAATATAACGGAGATTGACACTTACGATGATCAC






CGAATGGCGATGGCCTTCTCTCTTGCTGCCTGTGGGGAT






GTTCCGGTCACTATTAAAGATCCCGGTTGTACTCGAAAA






ACTTTCCCTGACTACTTTCAAGTCCTCCAAAGCTTTACC






AAG





70

Euphorbia

Genomic
9336
ATTAATTACTTCAAAATAAGAAAACAACTGACTTCAGTA




heterophylla



ATTATTTTTTCTTAACTTCTATTTTCGTTTTTAGATAGT






ATAGTCAAGCAACACAAATTAGTTCTTCGAGATAGTGTC






ATTGATTGATTTTGGGTCTAAACTTTAGTTCCTTCTAAA






GCCCAAGCCCAAGCTCAAGCTTGGTTATGGGAAATTTTA






CATCCAAGTTCACTTTTTATTTTTTTTTCCTACCTGGTT






CATCGGAGCTTTACTCCGACTACATCCAGATCTGACCCG






GGTCGCGCACCTGGCTATGATGGGTGAGTCTCCCAATAA






GGATTTTTTGCGTTCACCAGGACTCGAACTCGAGACCTT






GCTTAAGCAATACCAAGTCGCTTACCACTTGGACCAAAT






TCACTTTAACTCGAGATAAATAAAAAATTCACATTGACT






CATTAATACACTATTTTTTTTAACCAATTAGTCTTTAAG






CTTCTCCAGATTTATTAAATAATTAAAACAATAATCAAT






ATGAATGTTTTTTTTATCACGTGTAAAACATAATATAAA






ATGGACTTGGAAGACGTGTAGCCTATATCATTTTATAAA






AAAAATTATGTATACACTTATTAAGTTGTATGAATATTT






TTAAATAGTAAACACTTAGCAATTGATATCTCTAGTTAT






AAAGGTTGTCGATTTCCCACCTGATAACATGATTGACAA






AAATGTTTGGTCTAATGAACTTTGATACTATAATAAATT






GGTGAATATTAGGACTTTATTTTTTATAAGGTAATAGTT






ACTTTATTTTTCATTATTGTTGGATTAGTGATGTGGATT






TCAAAACAATGGTAGACTAGATGTAGTAAATTACAAACA






AAGTTATCATAAAATTTTTAATTGTATTTATTATATTTA






TATTATATAATCTCACAAAATATAATTATAAAAGTAGAT






ATGCTTATATATCTATAATAAGCACCAAACCTACCCACT






TTCCCTCCCTCACCAAACATGCCGTTAATGGACCAAAAT






GCTGATTTGGCAAAATCTAATTGGTAAGTTGCTAATCAC






ATAATAACAAAATTGACTCTATATCTTCAAAACCTTGGC






TATCTACCACGTCCCACTACCATACGCCACTTCTCAATC






TTACCAACCCCTTTTTCTTTTTGGCCCCATAATATTCTT






AACATTTCAATTTAGCCCACAAACTTTTAGAGCAAGTCA






AGTCATTTTTTTAAATTTCATTCGTCAAACTCCATTTTG






AGGAATTTCCATTACTTTCATTTTAACTATCATTCTCAT






TTTTCATATTAAATTATCAAAAAATAATAATATTTTATT






ATTATATTAATTTATGTAGATCATTTATGTTATGTTGTA






ATGAACTAATAAAATAATTAAAAACATTAAAATTCAAAC






AAAGTAATAAAATAATGATTCCTTGAAATAGAGAATGCC






CATATACGAGAAACCCTCGTTTTGAAGAATACCGTATGG






AGAATGGTTGGACTTAGGTCATTTTTATTTAGATTAATA






CTCAATGTAGTTCAATTTAGTAACCAATAAGAATTGGTA






CAAGTGGTAAGCGACTTAGTATCGCTTAGGCAAGGTCTC






GAGTTCGAGTCTTGGTGTACGCAAAAAAGTCCTTACTGG






GAGACTCACCCACCATAACTAGGTGCGCGACCCGGGTCG






GATCTGGATGTAGTTGGAGCAAAGCTCCGGTGAACCAGA






TGAAATTAAAAAAAAATGTAATCCAATTCAGTTTAAAAA






AACAAAACTTTTAGTTAATATTTGTTATTGTAATTGAAA






ATCAAATAATGTTGTGGGTCAAATTTGGAAAATTGTGAA






AGATGAGTTAGTTGGAAGAATGAAACACCTCAATTGTCG






TTACAATAACGCCTAAAACCTCACCAATCTCAAATCCAG






AGCAGCCATTTTTCTTCTTCCCCGTCGAGACCAGCAAGA






ATCAGAGATACACGGAGATTGGTGGAGGGGGATCCTGTA






GCTCTAGTTAAATGGCACAAGTTAGCAAATTCTGCAATG






GAGTTCAAAAAACCTCCATTTTCCCCAATTTTCCTAAAC






CGGAAACCCCCAAATCGGTGCCTTCGTTTTCAATTAGGT






CAAGTTTTAACGGGTCTCCGATTTCATCGGGTCTAAATC






GGCGCCGAACAAAGGGCGATTGTATTGTTGTTAAAGGTA






AAGCTAGTTCGTTTAAAGTTTCAGCTTCAGTAGCCACAA






CAGAGAAACCCTCTACTTCACCGGAGATCGTGCTGCAAC






CAATTAAAGAAATCTCCGGCACTGTCACTTTGCCGGGTT






CTAAGTCGCTGTCCAATCGGATTCTTCTCCTCGCTGCTT






TATCTGAGGTATGAATTGTTCTGGATTTTTCGGCGATTG






CATTCTGTGCCGTTGAATTGTAAGCTGCGGTTTTAGTAT






AATCATAATTAGATGAAGCAGAAAGGAACTTAGTTCTTT






TGCATTTTATGTTCAGATTCACATAGATCACTAACTGTT






GGGGAAATCAGGCAATGAAGGCTAGATAAATATGAAGTT






ATATCGAACACTTTGATTGAAACTTATTTAGCTTTCTAC






CAAATAATTTATTCGGATAAAATCAGAAATCGACAAGAA






CTTAGAACGAATGTTGTTGTGATGTTATGAAACAAAAAA






GTCTGTAAAACGTTATATTTGCCAATGCGTTCTCTCTCT






ATATATATAGAGAACCGAAATAACCGTCATATGTTAACT






GTTTTTGTAGTTATTTTCGTCTAAGTCGCGACATGGTCC






AAATCCAAAATTCACGAATTTTCCAAGGGAACTTTTGTT






GGAAATAAAATTTGCTTCCGAAACACCGAGCTGTCGGCC






TGGGGCGCTGCCCCAGGACCCCGCTAGGGGCTGCCGCCC






CTTAGGACTCCGCACTCGGGGGCGATGCCCCCGGACCCC






CTAAATCGTAAACAGTACCCGAACAAGTGTGCACTCCGC






ACTTTTCCAAACTTGTTTCGGTGAGACGTTACAATTACA






TTGGACAAACTTAGTTAATCCAATTACACTAAAATAATA






ACAACTTTTACTTTAGCTCGACCCCAGTTTGGGGCACTA






CCCCCAAAATCCGAATATTGAACTTGAACAAAGCATGCA






CTCCACACTCTCTTGACTTGTTCAATGAAATATCACAAT






CGCACAATTAGTTGATCTAATTACATTAAAATACTACTA






ACAACACTTAATCAACAGTCTATCATGTTGTTGGTTTTT






CTTTGAACTTCTGAAGCAGGATAGATAAAGATCGTTCCT






TCCCACTGATTGATACTATCATTGCATTGACCTTTAAAT






TATCTTCTTTTGGTGCATATAGATTACAGATTTAGTTAA






ATCACGTAAAGTTTGGGCTGAATTTTTGTTAAAATAAAC






TTCAAATTTGAAATCTTACTAATTTTTCAGTCCCTAGGT






TTCCATATCCCCTTTATTTCTAAAAGCCGTTGTTTTGTT






GGCATGCCTTATAATTGATTTTTCGTTTATTTCTTGCAA






TAAACAACTTTAAACTCTGGCCTTGGAAGCTTTTTTACC






TGTGTAAAGTAGTGATTCTGAGTGTTCTACATTCAAAAT






TTTGCTTCTCGAGACCATAAAACGGTGCTTTACATCTAT






TGTCCAGGGCACAACTGTTGTGGACAACTTGCTAAACAG






CGATGATGTTCATTACATGCTTGGCGCACTTAAAACATT






AGGATTACGAGTAGAAGACAATAGTGAACTCAAACAAGC






TATTGTGGAAGGTTGTGGCGGTCAATTCCCAGTGGGTAA






AGAGTCAAAGAAAGACATTCAACTTTTTCTCGGAAATGC






AGGAACTGCAATGCGTCCTTTGACTGCTGCAGTTACTGC






AGCCGGTGGAAATTCTAGGTTTACTTTTCCCCCTTTTTT






TACCCTCTTTAGACATGCCTTGATTTATTGAACAATAAG






CACTTATTTTCCACGACTTATGAGATTCTATATGGTTTA






ACATGTATCTAATGTGCTTCAGCTACATACTTGATGGAG






TTCCAAGAATGAGGGAGAGACCAATTGGAGATTTGGTAA






CCGGTTTGAAGCAGCTTGGTGCTGATGTCACTTGCTCTT






CCACAAATTGCCCCCCGGTTCATGTCAATGCAAATGGCG






GCCTACCTGGGGGAAAAGTATGTATCGATTTGGCTATCT






GTTTGCTATTAATTTCCAGAACTTTTCGTGAAAAATGTA






ACTTTTCAGAAAAGCAATCCTAAATTGGCCCTATAGTCT






TATTAGTAACGGTATCACAATATGTTTCTTCTCTTTTGA






ATTGTACCTAATTTTCCGTGTCTTCACTTTAAAGGTTAA






GCTTTCAGGATCAATAAGTAGCCAATACTTGACTGCTTT






GCTCATGGCAGCTCCTTTGGCTCTGGGAGATGTAGAAAT






CGAGATTATCGATAAACTGATTTCGATTCCTTACGTTGA






GATGACTTTAAAGCTAATGGAACGCTACGGTGTTTCTGT






ACAACACAGTAATAGCTGGGATCGTTTCTTCATCCCAGG






AGGTCAAAAGTACAAGTAAGTATTTTTTCTAGATTCACA






AATTCAGAAAGCTATTGAAAAAACGAAAGCTGAATTATC






GATCGATTAGGTCGCCTGGAAATTCTTATGTTGAAGGAG






ATGCCTCGAGTGCCAGCTACTTTCTAGCCGGAGCAGCAA






TTACCGGTGGAACTATCACTGTTGAAGGTTGTGGGACTA






GCAGTTTGCAGGTAAATCACGGAACTTTTTCGTATTAGA






CATTTACATTTTCACATCTGATGTAAATTAATATGAAAA






TCTAGGGAGATGTGAAATTCGCCGAGGTTTTGGAGAAGA






TGGGAGCTAGAGTTACCTGGACGGAGAACAGTGTAACTG






TGACTGGACCACCACGCGATTCTCCTCGTCAAAAACACT






TGCGTGCTATCGATGTGAATATGAACAAAATGCCAGATG






TTGCTATGACATTAGCTGTGGTTGCACTTTTCGCTGATG






GTCCCACTGCCATCAGAGATGGTAATTTACGTTTCTTTT






CATGAATTATGCTTCGTATTCTTCAAATAATTCGAAAAG






GCAGCCTAACATTTCCATGGATAATGCCGAACTGAATTA






CCGAATTTTCGTAAAAAAATTTACCGAACTGAACTGAAT






TTCATCTAATAATCAAAATTTTCTTACCAAAAATATTTC






GGTTATCCGAACAAAACTAAATTAATTAAAAAATGCAAT






TGGGTTTTTAATAAAATGGTTTATAAATGCAATAAAAAA






ATATTAATCCATCATGTTGCGAACCAAACATATTAGTTA






TCTTATAATAATTCAACCATACATATAAAACAAATCAGA






ATACTATTTTAAGAAACCGAATTATCCGAACCAAACTAT






GAATTATCCGAACTAAAATCCGAAATATACGAACCGAAT






TACATAATTCAGTTCGGAAATTCGGATAAACCCGAATTA






TGCACTGCTTTAAATTTAACAATGATTTGGCTGTAAAAT






CTAATGACTCAAATGTTACTCGGATCCTAAAATACGAAT






TCCCTTTTTTTCCTCTCGATCTTTTACAAGTGATACAGA






CATACAAGGGAAAGACGGATCATTTCCTTAGATTTCGTA






TGTTTAAAACTTTTAGACTATTTTTGTTTCTGTTTGACA






ATTTGTTCGCTACTCTTTATTTCCAGTGGCAAGTTGGAG






AGTGAAAGAAACCGAAAGGATGATTGCTGTTTGCACAGA






ACTTAGGAAGGTTAGTTTCTGATAAATAAATTTCACTGG






GTTTGAATATAGTGAAACAAAATTCGTCGGCTTATCGAT






TCTAATTATAATATTATTGATTGTTGGAATTTCAGTTAG






GAGCAACAGTTGAAGAAGGGGAAGATTACTGTGTGATAA






CTCCACCCGAGAAACTAAATATAACCGAGATTGACACCT






ATGATGATCACAGAATGGCCATGGCTTTCTCTCTTGCTG






CCTGTGGAGAAGTTCCGGTCACTATTAAGGATCCTGGAT






GCACCCGAAAAACTTTCCCGGACTATTTTGAAGTTCTCC






ATAGGTATACTAAGCAATGAACAAAAAACCCGAAAAACT






TGACAATTGATACTAAAGAGAGAATTGTTGCTGTAACCA






TTGAATTCTGATAATTTATTCAAGTGAGTTGAAATTTGT






TGATGTACCAGACTAGCTTTTTTTCTATCTCAAATGTTG






GGTGTTATTGTAGACAATGTATTCTGAATGAATTCGTTT






CGTAATCTTCGAGTTAATAAGCAATGAAAGGATGAATGT






TCTATTTAAGCACTGTTTTTTTGGCTACGACTCAATGGA






GTTCATTTCAGTTCAACTATGTGTACACCAAAATATGTT






CTATTCAGTTCAATTCAGAAAATTGCAATAAAAAAGAAC






ATTGCCTTAATTAATACGGAATATAGGCAAAACCCACAT






TGAGCCCCTTGCCAACTAAACTTTCAAATGTTCTTTAGC






TCCCAACTCGGCACTATTGACCTTCGAGGTCCCTCAAGT






TGTGGCACAAATGAATCTCCGAGCTCCCTCAAGCTTAAA






ATTAGGTATGTAAGCTTGAGGGAGTTAGGTAGTTTTAAG






CTTGACGAAATTTGAAGGGTCATTTGTATCAAATTGAGG






GAGCTCGGAAGGTCATTTGTGCCAACTTGAGGGGATTGA






GAGGGTCAATTGTGTCAAGTTTAGGGGGTTAGGAGTTTC






ATCCGAAAGTTTGGGCACCTTGAGAGTTATTTTTTATCA






TTAATATTTAGTATATTAATTTTAATTGACCATGTAATT






GCTAAAATCTATATTTTTCGCCCACGACCTCGTAATTTA






TAAGGCCAGCCCAGGGTAAGGTGTAAAAGAGTTAATCTA






AAAATAGAATCACATTCTTCGAAACCCAATCTCAATCTA






ACATTAAATAATGAAGCATGTAACATGTTGCCTTTGTCT






ATATGACATAACATTATTGAGGCATATCGCCCTCCTCCT






ATTTATTTTTCTTACACTTTCTCACATGGATGCCTACCT






TTGGTTGTTGGATGTGTCTTTTATATATTTCCTTCATAA






TTTACACATTACAATATTACATTACATATCAATCAATCT






CTTCTAATATAGTACTTTAAGTTGAGAATATTCTCAACT






AAATGTGAATAAAACAACAAATAATTGGGTTCTTTCCAT






GCTCACTTTGTTAAAAACAAAATTATGATTACTTTGCTT






CTTATCACCATTTGATCAATCACCCCACTACTTATTCAA






TAGTGATAAGGACAAAGTTATAGTTACTTAAAGTAACCA






TAGAATTTCCCCAAATAATTGTATCAATAGCGAGACTCA






ATAGATTAATGTTGTATATTATACAAGTAACCATTAAAC






TAGGTTTAGTGGTGACGACTTCCTCTAAAAGTGGAGAAA






GAAGCTGGGATCCTGAATTCGAGCCTCATATTTCTCAAA






ATTTAAATGTTTCTACTACTTAAAAAAATATTATTACAA






GCTATATTAGTTGAGTACTCTAATTTGCTATACATAAGG






TCTAAAAATATTAGATCTAACATTAATGTCGTATGCTTG






AAGTATCAACACTCACTTTATACATTATTCAATCACTTG






CTGATTATTGAAGATAGAGAAGACACTATAAGCTATTAT






AAGGAAGAAAAAGGAAAAGGGAAAAGCAAATAATAAAAG






GACCAATCAAAGACCTAGAAAAAGCTAAAAATAGTGCCA






AAACATTGTAGTATAGATGCAAATAAAAATAATTTTACT






GTTCTATCTTCTGTTCTAAGTAAAGAAGTAAGCTATTTA






TATTTATTAATTGTTTAATTTCACTTTCAGGATATCTTG






TAATTGAATTATTAAGAACATAGGCATTGAGTTTAAGCA






ATCAATTATATAATTAATGAACAATAATTCTTTTTAAGT






GTGATAAGTGGCTTATTTAGTGTAGATAAATGGACAGCA






AATCCTTTTCAAAGTCACTTGCTTATGTATGAAAATCTT






ATATTGTACACTATATAATGAAACCTACCACTAAAGAAG






TGACACACACATATTTTAACCTTTATATATTTTTCTATG






ATAATTCAATTATAATTCCGACTTTCATAAATATGAAAA






ATGGTAGTAGTAATGACAAATTGTCTTAACTTAAATGAT






CGGAAGCTAAAATTCTAATTAAGGAAAGTTGAAAACCTT






AAATCAAGAATCTTGGAAAGCAAAAAGTAAAATAAAAGT






CCAATAATAACCCAATCCCAAAATATATCTCACACACTT






CCAAGGTGTGAAAATAACTAATGGTCCCAATACTAAAAT






TAAGTTAGATTTTCACTATATAAAGTATGTAATCCTCAA






AGTAAGGATTTGATTGGCCAAAATTCATGGTCTCTCATA






CCAATCTAATCAAATTTAAAGACATTTTTGACATTTAAT






CAATCATATTGCAAAAAAAAAAAAAAAACTAAACCAATA






CACCTCCCATTATTGCAAGTGTTTTTTTAAAAAAAGGTG






GCATTTTTCCCTCTTCCTAATACTATTAATGCCTTTTGT






TTATCAATTTAGTGTTACTCCTAAATTAAGTAGTTAACC






TAATTAATTACCCACAATTTCCTATTCCTATCTTTCATA






GCCCCTTCTCCACATCATTTGCTAAACAAAAGAAAAAAA






AAACCTGTCAGCTTTTATATTTTTATATGAACTAGTGTA






GTGCCCGTGCGATGCACGGATAAATTTTAAAAAATATAT






TATATTGCAACATAAAACAAAAATATGTTATATCGTGTA






TTGAATTAAATTGTGAAAAACCTTTTTATATACAACATT






TGCAGATTCATCTATTAATTGTTCATTATCGTTAAGAGA






AAAGGGCATGATATCATATAAATCCGTCTTCAATTACAC






CATAAGTGGGTTGATATCATTAATCATATTATTTTTTCA






CTTCAAAATATGAAAGATATAAATTTCTACAATTACCAT






ATGCTTTCCCATCAAAATTTGATGAGGGGAAAAGAGACA






ATTATTCTTAAATAAGAAGGAATAATTATTGCTAAAAAT






TTTAAAAATTTAATCTTAAATAGAATTGTAACCAACATA






ATTAAATAAAATAAGAATAACAAATTAAATTTTATAATA






GATTTTAGAATTATAATGAGATTTTGATTTGTTTCCATG






ATTCACCCTAATTAATTATTTTCCCATAAAAATAATTAT






TGATATTAATCATTATCATTTTTCTAAATAAATCTATTT






TAGAAATATATTAAAATCAATTTCCTAAAATTCATGAAA






AATACCAATTTCTTTATTACTATAAACGACAATTATTAT






TATTGTTGTTATTAT





71

Euphorbia

Genomic
6002
ATTTTCCCCAATTTTCCTAAACCCGAAACCCCCAAATCC




heterophylla



GTTCCTTCGTTTTCAATCAGGTCAAGTTTTAACGGGTCG






CCGGTGTCATTCGGTCTAAATCGGCGCCGGACAAAGGGC






GACAGTATTGTAATCAAAGGTAAAGCTAGTTCGTTTAAA






GTTTCAGCTTCAGTAGCCACAGCAGAGAAACCCTCTACT






TCACCGGAGATAGTGTTGCAACCAATTAAAGAAATCTCC






GGCACCGTCACTTTGCCGGGTTCCAAGTCGCTGTCCAAT






CGGATTCTTCTCCTTGCTGCTTTATCCGAGGTATGAATT






GTTCAGAAATTTTCGGCTATTGCATTCTGTGCCGTTTAA






TTGTAAGCTGAGCTTTCGTTATTGTCATGATTGCATTGA






CCTTTTGATTTTCTTCTATAGCTGGTTATAGATATCAGA






TTTAGCTTAATTATGTAAAGTTTATGCTAATTTTTTTTG






AATTAAACTTCAAATTTTGAGCTATAACTTATCTTTTAG






TTCATGTGTTTCCCTTGTTCCCTATCTGAAGACTTTTTT






TTTGCAACGATAACTTCATAATATGGCCTCCATAGCTCT






GTAAAGTAGTGATTTTGAGCGTTTTTTGCTTGAATATTT






TGCTTCTCGTAGAATGTTGACTAATAGAACGGTGCGTAA






AATGGTTTTTACATCTATTGTTCAGGGCACAACTGTTGT






GGACAACTTACTAAACAGCGATGATGTTCATTACATGCT






TGGTGCACTTAAAACACTCGGACTACGAGTGGAACACAA






TAGTGAACTCAAACAAGCTATTGTAGAAGGTTGTGGAGG






TCAATTCCCAGTGGGTAAAGAGTCAAAGAAAGATGTCGA






ACTTTTTCTCGGAAATGCAGGAACTGCAATGCGTCCATT






GACAGCTGCAGTTACTGCAGCCGGTGGAAATTCTAGGTC






TTTTTTTACTCCCTTTCTTACCCTCTTTATATAACCCTT






GCTTTACAAAACAATCACACTTCTTTTCCACGACTTATG






AGGTTCTATATGGTTTAACATGTATCTAATGTGCTTCAG






CTACATACTTGATGGGGTTCCAAGAATGAGGGAGAGACC






AATCGGGGATTTGGTAACCGGTTTGAAGCAGCTTGGTGC






TGATGTCACTTGCTCTTCCACAAATTGCCCACCTGTTCA






TGTCAATGCAAATGGCGGCCTACCCGGGGGAAAGGTATG






GTACTGTTGTCACGAAAAGTTCCACTTGCAAACTTTTAT






AAGAACAAAATATTTTGACATTAGAGAAATGATTTTGAC






TATCTGTCTGCTATTAATTTCCGGGTAAATAATTATAAC






CTCCCTCAAGTTTGACATAATACGCTACTACCTCATTGG






GTTTTAAAAACCTAATATATACCTCCCTATGTTTTATAT






TTTCTAATTACTATCTCCCTATACTTTACTTTTATTATA






TTGTTAGGCCCCTTTATAGGTTATTATGTCATTATTATA






TGGAAAATTAACCAAAATATACATTTATAACAAAACTAT






TATTGTTGTGATATTTCTATATTCAATTTTTCTTTGATT






TTTCTATTTTATGTATGTTTTTTCTAACACAATCATAAG






ACTGGAATGTAATAAGATGTTAGAAAATAAGCAAAACAA






ACATCTTATTTGTGAAATATCTTCAAAAATCAATACATA






TGATCACTAGTTAAGAAAATATTGTAAAAAAGTGTATGG






AACATCAATGATTTTGTGTGAAAATGCTTAACGATTGAT






AGAGTGAGGTAGAAATAAGAAAATGCAAAACATACGGAG






GTATAAATTATGTTTTTAAAACACAGGGAGGTGTTAGTA






TATTATGTCAAAACTGAGGGAAGTTGTAATTATTTATCC






TTAATTTCCGGAACTTTTCGGGACAGTAGCTTGGAAAAG






CACGAAAATGTAACTTTTCGGAAAAACAATCCCAAACTG






GCCCACTTATTCAGTAATGTATCACAATATATTTCTTCT






TTTTTGAATTCTACCCTAAATTTCCGTGTCTTCACTTTT






AGGTTAAGCTTTCGGGATCTATTAGTAGCCAATACTTGA






CTGCTTTGCTGATGGCTGCTCCTCTGTCTCTTGGAGACG






TAGAAATCGAGATTATCGATAAACTGATTTCAATTCCTT






ACGTTGAGATGACTTTAAAGCTAATGGAACGCTACGGTG






TTTCTGTACAACACAGTAGTAGCTGGGATCGTTTCTTCA






TTCCAGGAGGTCAAAAGTACAAGTACGTATTTTTTGGGT






TCAACTTCCAAAACTCCCTTGTGGTTTCCTCATTTTCAA






AAAGGCCCTTAGTGTAATTTTTTTTTCAAAAGGGCCCTT






GTGGTATAAAAAATTAGCAAAAAAAGAGGAGTCTCTCTC






AACAAAGATAGTTGTTTTGACTTGGCAAAGGGTATTTTC






ATCAAACCCCAAATTTTTCAAAATTTAAATAAAAAAATT






ATTATATTTCAGATTGTCAACTCAAGGTAACTAACTTTG






ATGTGAAAAATAATCCCCTTTTTGCTTATTCTTGATACC






ACAAGGACTCTTCTGAAAAAAAGTTACACAAGGGCCTTT






TTGTACACGAGTAAAACCACAGGGGGGTTCTTGAAGTTA






ACCCTATTTTTTGGATTAGTAAATTCAGAAAGTTTGATT






ATGCTGAAGAAACGACAACCTGAAATATCGATCAACTAG






GTCTCCCGGAAATTCTTATGTTGAAGGAGATGCCTCAAG






TGCCAGCTACTTTCTAGCCGGAGCAGCAATTACCGGTGG






AACTATCACTGTTGAAGGTTGTGGGACTAGCAGTTTGCA






GGTAAATCACGGAACTTTTTCGTATTAGACATTTACATT






TTCACATGTGATGTAAATTACGTGTTATATGAAAATCTA






GGGAGATGTGAAGTTTGCCGAGGTTTTGGAGAAGATGGG






AGCTAAAGTTACCTGGACGGAGAACAGTGTAACTGTGAC






TGGACCACCACGGAATTCTCCTCATCAAAAACACTTGCG






TGCTATTGATGTGAACATGAACAAAATGCCAGATGTTGC






TATGACATTGGCTGTGGTTGCACTTTTTGCTGATGGCCC






GACCGCCATCAGAGACGGTAATTTCCTTTTATTTTCATG






AAGGGTAAACTTCAAAAAAGAACCTTTTGGTTTCGCTCA






TTTTCAAAACGGGGTCTAAGAATTTTTTTTGTAAAATTG






GGTTTGTAGTTTCAAAAATTTAGCAAAAATGGGCCTTTG






GCTTCGAAATAGTGGTGTTACATTGAATATTTATAAAAA






ATTTAACATTCTAATAATTTAACCTTATCATTTAAAAAT






TAAATGCTAGAGTTTGAATAATTTTCGGAGATTTTTTTA






AGTTTATTATCATAATTTGTTTAAAAAATATATTTGCAC






TTGTCAAAATTTTTTACCGATGTGTATTATATTTTGAAT






AATCATTCCGAAAAAATTCAGATAAAAACAAACAAAGAT






TAACAATTTCCGTGACATGTTTTAATATTGAGTAGCCTT






TATTTGCGAATTTTCTGAAACCACGTACCCCGTTTTGAA






AAAAAAAAAATTCCTCAGACCCCATTTTGTAAATGAGTG






AAATCACAAGGTACTTTTTTGAAGTTTACCCTTTCATGA






ATTATGCTTCGTATTCTTCAAATAATTCGAAAAGGCGGC






CTAACATTTCCATGGACCTGAACTCCATATATAATACCG






AGCAATTTTAACAATGATTCGATTGTAAAACCTATTGAC






TCAAATGTAATTCGGATCCTAAATACGAATTCCCTTTTT






CTCTCTCTCGATCTTTCCAGTGGCAAGTTGGAGAGTGAA






AGAAACCGAAAGGATGATTGCTGTGTGCACGGAACTCAG






GAAGGTTAGTTTCTTATAAATAAATTTCACTGGATTTGT






ATACAGTAAAACGAAAATTTGTCGGCTTATCGACTCTAA






TTATAATATTATCAATTGTTGGAATTTCAGTTAGGAGCA






ACAGTTGAAGAAGGGGAAGATTACTGTGTGATAACTCCA






CCCGAGAAACTAAAAATAGCTGAGATTGACACTTATGAC






GATCACAGAATGGCCATGGCTTTCTCTCTTGCTGCCTGT






GGAGAAGTTCCGGTCACTATCAAGGATCCTGGATGCACT






CGAAAAACTTTCCCGGACTACTTTGAAGTTCTCCATAGG






TATACTAAGCAATGAACAAAAAACCCGAAAAACTTGACA






ATTGATACTAAAGAGAGAATTGTTGCTGCAATCAATGCA






ATTCTGATGATTTATTCAAGTAAGTTGATATTTGTTAAT






GTACTGGACTAGCCTTTTTTCTTACCTCAAATGTTGGCT






GTTATTGTAGACAATGTATTTTGGGTTGAATCCATATTG






TAATCTATCGAGTTAATAAGCAATGAAAGGATGAATGTT






CTATTTAAGCCCTGTACTTTTGGACTACAACTCAATGAA






GTTCAGTTCAGTTTAGCTACGTGTAGTTATAAATTTACT






CTAAAATACGTTCTATTCAGTTTAATTCAGAAAATTGTA






GTAATTAATACAAAATATAGGCAAAACCCATATTGAGCC






CCTTGCCACCTAAACTTTCAGATGTCCCTTTAAGCTCCC






CCAACTTGGTACATTTGACCTCCGAGCTCCCTCAAGCTT






AAAATTAGGCATGAAAGCTTGAGGGATAAAGCTTGAGGG






AGCTCGCGTAGTTTTAAGCTCGAAGGAGCTTGAAGGGTC






ATTTGTGTCAAACTAGGGGAGTTCGAAAGGTCATTTGTG






CCAACTTGAGGGAGCAGAGAGGGTCAATTGTGTCAAGTT






TAGAGGGTTAGGAGGTTCATCCGAAAGTTTGGGCACCCA






AGAGGAAAAAATTGCCAAATTTAGGAGGCTCAATATGGA






TTTCGCCTAGAATATACTTAAATATAGATGCATGACTCT






TATGGTCTATTAATAAATACTATAGTTACAAGTACCGCT






TCCTCTTAGGAGAAAACTAATGCATTTTTAAAAGGTTAT






GGGCTTGCAAGTATCTTTTCAAAGTTTTAAGGGCAATAA






GCGAATGAGATAAGTTGAGGGAGCTAGTTCCATGTAGGG






AAACCCTGCCTGTTGAAAATCGTTTGTAAGCCATATGAT






AGTACGGTGAAAACAAAATTTTAGCGAAACTCATGTGGA






TGGCAAGCAAAGGAAAGGAGAATGACTAAAGGAGGTAAG






GTGTAAAAGAGTAAATCTAAAAATAGAATCACATTCTTT






AAAAGCCAATCTCAATCTAACATTAAATAATGAAGCATG






TAACATGTTGCCTTTGTCCATATGACATAACATTATTAA






GGCATGTCGCCCTCCTCCTATTTATTTTTCTTACACTTT






CTCACATGGATGCCTACCTTGGTTGTTGGATATGTCTTT






TATTTATTTATTTCCTTCTTAATTTACACATTTCACTAT






TAAACATCAATCGATCTCTTCTAATATAGTACTTTAAGT






TAAGAATATTCTCAATTAAATGTGGAATGAAACAAAAAA






TAATTGTATCAATAGCAAGAATAAATAATTATACTTAAA






AAACATGTCCCACAAAATTAGATTCAATAGATGTGAAGT






CAATATTTTACAAGCAACCACTAAATTAGGTTCAGTGGT






CACAACTTCTTTTAAAAGTGGAGAAAGAAGTTGGGGTCC






TGAGTTCGAGCCCCATATTCCTCAAAATTTAAATGTTCT






TATTACCTAAAAATATATTATTACAAGCTATATTTGTTG






AAATCTCTAATTTGCTATACATAAGGTCTAAAAATATTA






GATCTAACATTAATGTCGTATGCTTGAACAACATCCACT






TTATACATTATTCGATCACTTGCTGATTATTGAAAATAC






AAAAGCACTAAAAGCTACTTCCTCCATCTAGATTTAATG






GTTTTTTTAGACCTTTTTTCACATCTTTTTTAGTTGTCA






ATTCCTATTTACCATGTACTTTTCCAGTCATGCCCCTAT






TAATTGCAATTTTGAAAAGCTTTGAGAATGAAATA





72

Euphorbia

Genomic
5555
ATTCGTGCTGCCATTAAGGAGGCTAAGGCTGTAAAAGAC




heterophylla



AAGCCCACTATGATCAAGGTGAAATGATGCCTCTCTTAC






AGTGTGTTTATATATAGATATAAACAATAGAAGTTTTTA






AATGGTGTTTGTACTTGCTTGCAGGTCACTACAACAATT






GGTTATGGATCGCCAAACAAGGCAAACTCATACAGTGTA






CATGGAAGTGCACTTGGTGCCAAGGAAGTTGATGCTACG






AGGGCGAACCTAGGATGGCCCTATGAGCCTTTCCATGTT






CCAGAGGATGTTAAGAAGTAAGCCGACACTACTAGCTAG






GTTTCCGTCTGTTTTTTTTACCGATTTTGATTTGACTTT






GATGACTCTTGTTTCAGGCACTGGAGTCGCCATGCTGCA






GAGGGAGCTTCTTATGAAGCTGAATGGAACGCTAAGTTT






GCCGAGTACGAGAAGAAATACAAGGAGGAAGCTGCAGAG






TTCAAGTCCATCATCACGGGTGAATTACCGGCTGGCTGG






GAGAAAGCACTTCCAGTGAGTATCTGCTTCATATTTCTT






GCCCCTTTTATCTTTTAGGTGGCGTTTGGGTCTCGGAAT






TCCTATTCCGTGGAATAGAAATAGAAGTGTGTGGAAAGA






TGTCAAATATAGAAGAGAATTCTAGACGCATGGAAAAGC






TTTTCCAAGTTTGTATACATCTCATGGAAAAGCTATTCC






TTTGTTTCAAAAAGGAGTAGCTTTTCCTTGAGATGTATA






TAAACTAGGAAAAGCTTTTCCATGCGTCAATGGATTCTA






GATGATTAATGTGTCATATTTGACATCTTTCCATGCATT






TTTACTTCTATTCCATGGAATAGGATTTCTGCTAACCAA






ACGAGCCCTTAGAGTTATTACTTAGTGAATTTCCACTTG






CATTATCTGAAAACAGACATCTCATATTTTCTTTGTCAA






GCTTTATGAGCGTGTTTGGCATCAATGTTTGGCATGAAA






TTTAACTCAATTCAAATTATTTTATACCTAAGATTGTAA






ATATGAAATGAATTCTTTCAAAACAAGATTTCCAACACA






CCCCATGACTAATTTCTCCATATGTTTGACCTCATGCAT






AATTTGGAACCAATCACTTCAGACAACCCGATACACATT






CTTAAGAGTTAGGACAAAACGAACATTGGATTTTCAGAC






TTGATAATCTCTTAATCCTTCACTATTGAAATTTTTACA






GACATACACCCCAGAGACCCCAGCAGATGCCACCAGAAA






TCTATCACAAGCCAATCTAAACGCACTTGCCAAAGTGCT






CCCCGGTCTCATCGGTGGCAGTGCAGATCTTGCCTCATC






AAACATGACCTTGCTGAAAATGTTCGGCGACTTCCAAAA






AGACACTCCAGAAGAAAGAAACGTCCGGTTCGGTGTCAG






GGAGCATGCAATGGGCGCCATCTGCAATGGCATAGCTCT






CCATAGCCCCGGCTTTATCCCCTACTGTGCAACTTTCTT






CGTTTTCACCGACTACATGAGAGCCGCCATGAGGATCTC






CGCCTTGTGTGAGGCCGGCGTAATTTACGTCATGACCCA






CGACTCCATCGGTCTCGGAGAAGACGGGCCCACCCACCA






GCCGATCGAACACCTGGCAAGCTTCCGTGCGATGCCCAA






CATCTTGATGCTCCGACCGGCCGACGGAAACGAAACTGC






CGGTTCGTACAAGGTTGCTGTCCAAAACCGGAAGAGACC






CTCGGTCCTCGCACTTTCTCGACAAAAGCTGCCGAATCT






CGCGGGAACCTCGATTGAGGGGGTTGAAAAGGGCGGGTA






TACAATTTCAGATAATTCGACCGGGAATAAGCCTGATGT






GATTTTGATTGCGACCGGTTCGGAGTTGGAGATTGCGGC






TAAGGCCGGGGATGAGCTTAGGAAGGAGGGCAAGGCGGT






GAGGGTCGTGTCGTTTGTGTCGTGGGAGTTGTTTGAGGA






GCAGTCGGATGAGTACAAGGAAAGTGTTTTGCCGGCGGA






TGTGACTGCTAGGGTTAGCATTGAGGCTGGTTCGACATT






TGGGTGGCACAAGATTGTGGGAAGCAAAGGGAAGGCGAT






TGGGATTGACCACTTTGGAGCAAGTGCGCCGGCTGGGAA






AATATACAAGGAGTTCGGTATTACGGCTGAGGCGGTTGT






TGCTGCTGCCAAAGAAATTTCTTAGACTGAAGAGCGAGA






GTTTGGCGAAATGGGTACCCGAAGAGCGAGAGTTTTACC






ACGACTTGGTCTCTGTTAAAATAATAAGGTAAAAATATC






AAGGTTAGGTTTTTCTTGTGATGAAATGGGCAAGGCAGT






CCAGAAAAAGAGGAGGGTTTGATTATGAACATTGTGGGC






TTTGTAACTGCTCTTGACTTAAGTTGAGTTTTTGTGTTT






TTACTTGTAGCTAGTGAGGTTGACAGTTATTTCATACTG






CGTTTTAATTTATTGAGAAGCAATTGAGTCTCTTTTCTT






TTGTCTATTTGACATAAGTTATTTCTACTTCTAATATCT






GCTAACCACCTTGTTAGTAGCAGTAGGGTTGAGCATTTT






GTTATGCCGAGCCTATTAGGCTGCACTGAATTATCGAAT






ATTGATTGGAGCATTCGGTTATGAAAGTTCAGTATTATG






TGAAACTATTCAGTTCGGTACAACCGATCGCTCTACTCT






AAGTAGCAGACTGGTTTTCGGATATACTCGATAAAATTG






ATAATCTGATCTAAGCCTTTAAAGTTACTTCCGATTTTC






AATTTTTGAGAGCCGAATTGAAGTTTGCCGAATTTAATT






GGATTGAACTTAACTGAAGTATGCTAAATTAAACTACAT






AGAAGTGACTTGAACTTAGTTGAACTTACATTATTGAAT






TGAAATGAAGGAATGGAATGATCTGAATTGTAGTTAAAG






AGAAGTAAAATGTTGCATCAATTGGACCCACCGCATATA






GTAGGAAAAGGGTGAGCAAGTGGATGGAGATATGGTGAA






ATGTTAGCCTAAATGGGGATTTTTGGGGTGGGTGAGGTT






GTTGATCAATCAAGCCCCACCTATCCATGCATGTCCTCT






CGCTGGTTTTGAAGCTATAAATCATAATTGGCCTTCATT






TGATGATGCAAGGAATAACGAATTTTGGCATATTCTTAC






ACCTAACTCCACCATATTCAAAGTAGCTAATAAATTTCA






TGAAAAATAAATCCATGAAAAAGTGTGGTCAGAGACAAC






TTTTTAGGAATTCAATTCATTTTATATGTAAATTTTTAA






ATTTTTTATATAAAATAATTTCAAAAGAAATTAATCGAA






TTCTTTTGAAAAAGAATGATTTCAAGCACATGAGAATTA






TTTTATCCACAATATTGTATCAGTAAATTTTCTCTTAAA






TTGATAAAAAAAATAGTGTTAACTGCCATTCGGTTATAC






TTACAATTGTCTCTTTCAATTACTACTATGCACGTAATT






TAAAAACAAAAGTAGAACTTTATTTCTATGCCTTATTGC






CAAAATACTCAGGCCATAGGCTAGTCATTTTGCAGAAAC






GTTTGCACCAGTGCACAAACAATCGGGCAAAATGTATGG






CCAGTTAGTTGCCTCAGCATTTTGGCAAATCGGCAAGTT






GTATTTACATTTTTCAATAGAAACGTATAAAAAATTTTG






GAATTCGAAAAGATGTCCATTGGTTTCCTTAGATGCATT






TTTAAAGCTAATCTAGTTATTTCGAAGGTATATACTTCT






TCTTCTATATTTACAATTTCATATTATATAGTTTCTGTA






ATTATAGTGATATTAGAAGAAGGGCTAAAAGGCTTTACC






AACACAACCTTTTTGGTTTGGTCTTCATTCAAAAGCCCA






TTCCACAATCTTCATTTTATGTCCCCACAAAACCTACTT






CTCTCTCACCAAACCTACCTATTATAATGACCAAAATAC






TGATTTGGCAATACCTAATTGGTAAGTTGCAAATCATAA






CAATAAAATCGACTTCACACTATCAAAACCTTCGTTAAC






TACCACGTCCCACAGTGTTTGGTATAGACGCCACATTCT






CAGTCTCACCAACCCCCTTTCTTTTCAGTCCTTCAAATT






CACAACATTCCAATTTAGCCCACAAAATTTTATTTTCTG






TGCCTCCAATTCTATTATACACAATCCCCTAACTTAACT






TTTTATCACTAAAAATCAAATAAAGTTGATGGGTCAATT






TCGAAAATTGATGAAATATGAGGTTGGTAGGAAGATTGA






AATACCCTCAATTGATTTGAATACAACCAACTCCTAATT






ACAACTAAACCCTCACCAATCTCAAATCAACGCACCCAT






TTCTCTTCTTCCCCATTGAGAATTCAAGACCTCCATAGG






GATCAGAGAGTTGCAGAGAACTTGATAGCCCTACTTGAA






TGGCTCAAGTTAGCAAATTCTGCAATGGAGTTCAAAAGA






CCTACACTTTCCCCAATTTTTCTAAACCGGAAACCCCCA






AATCTATGCCTTCATTTTCAATCAGGTCAAGGCTTAATG






GGTCGCCGGTTTCATTGGCTGTAAATCGGAGAAGGGGCG






GCTGTATTGTTGCTAAAGGTAAAGGTAGTTCTTTTCAAG






TTTCGGCTTCAGTAGCCACAACAGAGAAACCCTCGACTG






CGCCGGAAATAGTTTTGCAGCCAATCAAAGAAATCTCCG






GCACCGTCACTTTGCCTGGTTCAAAATCGCTGTCCAATC






GGATTCTTCTACTTGCTGCTTTATCTGAGGTATGAATTG






CTCTGGTTTTTCCGGCAACAGCATTATGTGCCTTTGAAT






TGTAAGCTGAGGAGATTTCATTGTTGTCATCATTATAAT






TGGTGCTTCCTTCTTGTTTGTTAGAAACTTAGTTGAAAG






GCAAACGAAATTAGGATCACATAGATTACTAACTGTCAA






TAGTCTATTTAAATTGTTGTTATCGATCGTTCAGGGCAC






AACTGTTGTTGACAACTTGCTGAATAGTGACGATGTTCA






TTATATGCTGGGCGCACTTAAAACACTGGGACTACGAGT






GGAAGACAACAGTGAAATTAAACAAGCTATTGTGGAAGG






TTGTGGAGGTCAGTTCCCTGTGGGTAAAGAATCAAAGAA






GGACATTCAACTTTTTCTCGGAAATGCCGGGACAGCAAT






GCGCCCTTTGACTGCTGCAGTTACTGCAGCCGGTGGAAA






TTCAAGGTCTTTTACCTTCCCCCTTTTTACCCTTGCAGA






ATTATTGGACTTGTATTTTTGAGACTCTATATGGTTTTA






ATCAGAGTATGTGGTTTAGGATTTATAAGCTTGTCTTAT






ACGCACTCAGTATGACCTAATCAGGTTTAACAGCTAGAT






GGAATCAAATTGTTTCCTCTATTTTGTAATTCATATGGT






TTGCATTTTCGTCTGAAATGGGATTTGGGTACAAAGCCT






GAATGAGAAATTTTGATCGTTAATTTGAATGAAGTGGCT






GCTTTATCTGGGCATTAGATGCTGAAATTGTAATAGGGT






GTATTTTCCTGGACATCTTTTTTCAAAGGATTTGGATTC






TCTAAAGTTCAAACTCAATGAATGGTTGAGATTGAGTGA






AATGTACAACTTTAGAG





73

Euphorbia

Genomic
4647
CTTTAGAGAATCCAAATCCTTTTCAAATTATTTCCTAGA




heterophylla



TCTATTGTCGATTTCTCATTTATATTTTCAGTTTTAGGC






AATAACTGAATGATATGCAGTTATGGATGGCTTTGGACT






CTGGTAATGTTTTGTTAATGTACACTACTGCCTCCCAAG






GGCTGAGCATAATGCGGTTTAAACCGAAACACCGATCCA






AACCGAATTATGATATTCGGTTCAGTTATTTAATATTCC






TGTTTTTTATTCGGTTTTCTGTTCGGTCTGGTTTAAGAG






GCAAAAATTGTGAAAAACTGAACCAAATTATAGGTTTTC






ATATGCAAGTAGGCCCAAGCCGAACCCAAACCAATAGTT






TCATTTTCATCTATAAGTCATTATCTAATTCAACCAAAT






GATTCTTTTCTTTTATTTTCTCCAAGTAAACCCCAATTA






ATTGCAATTTTTGATAAATTCTGTTCAGAAAAACCGAAA






TTTAGTCTAAATGTTTTCACTTTCAGCTCTGAAAATTCA






GTTTTTAGGTGTAATTCGTTTCGGTTCGGTAAGCATTTT






TAGATAACTCAGCTGGGCTTATTCAGTTTAGTATAGCCA






AATGTTAAACCCCTGGCCCCTATCGAGCTCTTTCCTCTA






AATTTTTCTAATTGGAATTAACTATCAAATGTGTTTCAG






CTACATACTTGATGGGGTGCCACGAATGAGAGAGAGACC






AATTGGGGATTTGGTAACCGGTCTTAAGCAGCTTGGAGC






CGACGTCAATTGCTCGTCCACAAACTGCCCCCCTGTTCA






TGTAAATGCAAATGGCGGCCTTCCTGGGGGAAAGGTATA






ATATATCGTCTCATTAAGTAAATATGAAAGAACAAGTTT






TCCTCTTGTTTTGACTAGATCCATCATTATTGTATCCCT






TTTAGGTTAAGCTCTCAGGATCAATTAGTAGCCAATACT






TGACTGCTTTGCTCATGGCAGCTCCCCTGGCTCTTGGAG






ACGTAGAAATCGAGATTATCGATAAACTAATTTCCATTC






CTTACGTTGAGATGACTTTGAAGTTAATGGAACGTTACG






GTGTTTCTGTAAAACACACTAGTAGCTGGGATCGTTTCT






TCATTCAAAGAGGTCAAAAGTACAAGTAGGTATTTTCGT






TGATTTACGAATTCCGAAACCCTCGATTTTCGTTCGAAC






AAAAAAATGAAAACCCGGAATGTCAATTAGGTCCCCGGG






AAATTCATATGTTGAAGGCGATGCCTCGAGTGCCAGTTA






TTTCCTGGCCGGTGCAGCAATCACTGGTGGAACTATCAC






TGTAGAAGGTTGTGGCACAACTAGTTTACAGGTATTTTT






TGTAGTTATTGCTTTGTGTTGGTTAAAATTTCAGAATTT






TTTTCGTATTAGGGATACAAAGTGACTTGTTATATGGAA






TTTCAGGGAGATGTGAAGTTTGCCGAGGTTTTAGAGAAG






ATGGGAGCAAAAGTTAGCTGGACAGAGAATAGTGTTACA






GTGACTGGGCCACCGCGAAATTCTCCTCGTGACAAGCAC






TTGCGTGCCATCGATGTGAACATGAACAAAATGCCAGAT






GTCGCTATGACATTGGCTGTCGTTGCGCTTTTTGCTGAT






GGCCCTACTGCCATAAGAGACGGTAACTTCATTTAATCT






TTTCGCAAAAATAAGGCTTAATGCATCTAGACCCCCTAT






AGTTGTCCCTAAAAACCTCTTAGCCCCCTGAACTTGTAA






AAGTGGACCTTATGGCCCCCTGAACTTGTAAAGGTGGNC






CTTATAGCCCCTTGAACTTGGGAAAAGCGAACCTCAAAG






CCCCTTCATGATAACCAGGGCCGTTCCTGGGGCGGGGCA






ATAGGGGCGACGGCCGGGGGCCCAATGGAATAAGGGGCC






CATTTTTAAGGATTATTAAGTTATTTTTATTAAATTAGA






GTTTAAGTTAATTAAATAGTTCTTTTGTGTAAAATATTA






AGAATAAAATACTATTAAATCTAAAGTGATTAGTTAGTT






AAAGACACGTGTTAGCTTTGTTTGAATTAAACTCTAATC






TCATTGATTTTTCTTACCTCCATTATCACCACCATCATC






ATCTCTTAACATTTATTTCCTTACAAATTTTCTTTAGTC






TATTCAACTTCTAAATTTAAAATTGAAGTTGAAGTGCAT






TCATCTTCCATACTATACTGCTATCAATCTCCAAATTTC






ATTCTTGTTCAATCCTTTTAGTACCTATAAATAATTCTT






CATTTACTCTTTCAACAACATGTATCTAAAAAAAAAGTT






AGAGCATGTTGATGTAAACTTTATTAGCGATTTTGCGGT






TAGGTTTACTCATAGACATCATTTTATTTGATCTATGAT






AAAGTTTTAGTTATAGTATTATTTTCTGCTTTATAATGT






GAAATTTTGATGTTCTGTTTAATCTATTATTAAATGTCG






TAGTAAAAGTTCAATATTATATGTTTCATTTTAAATTTT






AACTCATTAATAGGGCCCCGATTTTTATTATCGCCCATA






GGCCCCAAAAAGGTAGGAACGGGCCTGATGATAACATGC






CCAATTTTGTTCCGGTTAATTAATCTTCGATTCAATCTT






TATCAAAACAATCTTGGAGTCAATTTCTAGAAAAATAAT






ATTTGAAATATCAACATCAAGGGCCTGTGGGGTTCACTT






TTAACAAGTTCAGGGAGCTATAATGTCAAGTTTAACAAG






TTTAGGGGGTTCAGGGACCTTTGTAAGTTCAGGGGATTA






AGGGGTTTTTAGGGACAACTATAGGGGGTTTAGATGTAT






TAGGCCCAAAAATAATTATAAATTTGAAAGCGTAGTTTA






AATTGCCAAACCGAGTAAACTGTTTCGGCATTCTCTTGT






TTCCAGTGGCAAGTTGGAGAGTGAAAGAAACCGAAAGGA






TGATTGCTGTTTGCACAGAACTCAGGAAGGTTAGTTGCT






GATAAATTTTGGCTATTATAAAAACAAAACTTATTGGCA






TATAATTATAATTTATAATGTTGGATTAAATTGATTAAT






TATTCCATTATATATTCAGTTAGGAGCAACAGTAGAGGA






AGGAGCAGATTACTGTGTGATAACTCCGCCGGAAAAACT






AAATATAACGGAGATTGACACTTACGATGATCACCGAAT






GGCGATGGCCTTCTCTCTTGCTGCCTGTGGGGATGTTCC






GGTCACTATTAAAGATCCCGGTTGTACTCGAAAAACTTT






CCCTGACTACTTTCAAGTCCTCCAAAGCTTTACCAAGCA






ATGACCACGAACCCCTAAAACATTGGAGTACTAGAAATG






GATCAGGCTCTTATATTCAATGGATCATTCAAGTGAGTT






TATGTTATTAATGTGCCGGACATAACAGATTTTGTTAGA






CAATGTATACCGGATGAATTTGTATTTTATGTTTTGTAT






TTGTATTCTATCAAGTTGATCAGCAATAAATGGGTGAAT






GTGTTAATTTTTGTGATATACTTACAGTGTTATTATTCA






GTTCGACCGGTTTTACTGTGAACCGGCTATGGTCACAGA






GCGATTTAGTTAAAATTGGGTTGAACATGAAAAAATCGG






TAAACCCTTGTGGCAAAAATAAAATGCGTTGCTAAACAC






ATAAAAAAGATTTGTAATAGCCTTATACGTTCTTTTCCA






AAATTCCTTTGGCAACTTTGTGGAACGTCGTAATAGACC






TAGAAAGCGGTGAAATAGTCACTTGAAATCATAAACTCT






CTCTCTATATATACCTTTTAGCCCTTCAATTTCTTTACT






AATTGAAGCAAGTAAAATACAAACTCATTTCTTTTTCAA






GTTAGTGATATAAGTTTGTTTCTTTAACACCCAAAGATA






ACACATCCCCAAGAAGGAATACTCATTCACTTGTTGAAG






AATTATCTTCTTTATTAGTTGAAACATAACTTACATCTG






AATAATCTTCGAAAACCAAAGAAAATTCCGTATAGGTCA






AACCATGATCCTTGGTTCCTTTGAAGTACTTTAATACTC






GGCCTAAAGCTTGTCAACGATGCGAACTATGACTACTAG






TATATCAACCGAGCTTTCCAACAACACAAGCTATATATG






GCTTAGTGCTAATCACATACACACTTTTTATATACACAC






TTGCATACTTGGTTGATAACAAAACCATTAGATAAAATC






ACATCATCGAACTTTTAATGTCACACTTTTCTGTGGGCG






TTTTAGCCCATATAACAAATTCTTTAGCTTGCATACCTT






ATTTTCTCAACCTGACATAACAAACCCTTGAATCTGATT






GTTTTTCGATGCCCGAGACCAAAGAATATCATTATAATA






CCATCTATATAAAAAAATGAGACTGAATCACCTATATTT






CGGATATCAACAGGTTTCCACAACTTCTTCAACACTTAT






TACACAAACTGCCTTAAAATTTACAATTTGATGGGTATA






GTAGATGATTGCAGAAAGGCTTTTTTTAAGCTCAAAAAT






CACGTGGATGACATGGAAAGGAAAAGAGGAAGAAGCTGT






AAAGATAACATCACATTCCTCAAAAACCAATCTCAATCT






AACATTAAATCATTAGGCATGGAACATGTTAGCTTTGTC






TTTATAATTAAAATATTATTTATCTCCATTTTATTTTTA






TTTTTTAATTTTATACACTTTTTCACATGGGCTAGTTTG






TTGGAT





74

Euphorbia

Genomic
378
TTATATTAGCTAAAATTTGGTAGTCTTTGAAATTTAAAC




heterophylla



TCAAAAGCTTGACATGTTTTTTGTAGGTCCTCTTGGACA






GGGAATTGCCAATGCTGTTGGTTTAGCCCTTGCAGAGAA






GCACTTGGCAGCTCGATTCAACAAACCAGACAACGAAAT






TGTTGACCACTACACGTATGATAACCTCCTCTATAATTA






TGTTACTTTGTGTTGTTTTGTTTAATGCTAGATTAATGT






GACATGCTGTAATTTAATATTGTTCTGTGTTTATCTTTT






TGTTAGATATTGTATATTGGGAGATGGTTGTCAAATGGA






AGGAATTGCAAATGAAGCTTGTTCCCTTGCTGGACATTG






GGGGCTTGGAAAGCTTATTGCTTTCTA





75

Euphorbia

Genomic
220
GTGTGAATTAGTTAAAAAGACCATTATTTCTAGACGAAG




heterophylla



GGAATATTAAGTAAGAAAAAGGGAAAAGCAAAAAAATAT






AAGGACCAATCAAAGACCTAGAAAAAGCTAAAAATAGTG






CCAATACATTGTAGTATAGATACAAATAAAAATAATTCA






CATTACTCATTTATATTACCTTAAAGTATGATTAGTGTC






ACAATTTTACTGTTCTATCTTCTGT





76

Euphorbia

Genomic
4459
GTCTAATGAACTTTGATACTATAATCAATTGGTGAATAT




heterophylla



TGTGATTTTATTTTTTATAAGATAATAGGTACTTTATTT






TTCATTATTGTTGGATTAGTGATGTGGAATTCAAACAAT






GGTAGAGTAGCATATAATTTTTAATTATATTTATTACAT






TTATATTATATAATCTCACAAAATATAATTATAAAAGGT






GATATGCTTATATATCTATAATAACCACTATTAATCTTG






GTTGTTAGCAATAAGAGTTAGTCTAAGTGGTGAGTGGTT






TGGTATCGCTTAAGCAAGGTCTTGTGTTTAATTCTGGAG






TACGCAAAAAATTTTATCGAGAGACTCACCTACCATAGT






TAGGTGCGCGACCCGTATCGAATCTGGATGTAGTCGAAA






CAAAGTTTCGGTAAATCAGATGAACAATCGAAGAAAGAA






CCTCAGCGTTTGTTGAATAAGAAATTAGAAGGCTTACCA






AACACAGTATTTTGGTTAGTATTCAAAAGCCCATTTTCA






ATGTCCACCGGGTCCCCACTAAACCTACCCACTTTCTAT






CTCTCACCAAACCTGCCCTTAATGGACCAAAATGCTGAT






TTGGCAAAATCTAATTGGTAAGTTGCTAATCACATAATA






ACAAAATTGACTCTATATCTTCAAAACCTTGGCTATCTA






CCACGTCCCACTACCATACGCCACTTCTCAATCTTACCA






ACCCCTTTTTCTTTTTGGCCCCATAATATTCTTAACATT






TCAATTTAGCGATTTGAGCAAGTCAAATCATTTTTTTAA






TTTCATTTGTCAAACTCCATTTTGAAGAATTTACAGTTC






TTTCATTCTAACTATCATTCTCATTTTTCATATTAAATT






ATCAAAAAATAATAATATTTTATTATTATATTAATTTAT






GTAGATCGTTTATGTTATGTTGTACTGAACTAATAAAAT






AATTAAAAACATCAAAATTCAAACAAAGTAATAAAATAA






TGATTCCCTGAAATAGAGAATGCCCATATACGAGAAACC






CTCGTTTTGAAGAATACCCTATGGAGAATGGTTGGACTT






AGGTCATTTTTATTTAGATTACTACTCAATGTAGTTCAA






TTCAGTAATCAATAAGAATTGGTCCAAGTGGTAAGCGAC






TTAGTATCGCTCAGGCAAGGTCTCGAGTTCGAATCCTGG






TGTATGCAATTCGGATCTGGATGTAGTTGGAGCAAAGCT






CCGGTGAACCAGATGAATAACAAAAAAAATGTAAACTTT






TAGTTAATATTTGTTATTGTAATTGAAAATCAAATAAAG






TTGTGGGTCAAATTTGGAAAATTGTGAAAGATTGGAATA






ATGAAACACCTCAATTGTCGTTACAATAACGCCTAAAAC






CTCACCAATCTCAAATCCAGAGCAGCCATTTTTCTTCTT






CCCCGTTGAGACCAGCAAGAATCAGAGATACACGGAGAT






TGGTGGAGGGGGATCCTGTAGCTCTAGTTAAATGGCACA






AGTTAGCAAATTCTGCAATGGAGTTCAAAAAACCTCCAT






TTTCCCCAATTTTCCTAAACCCGAAACCCCCAAATCCGT






TCCTTCGTTTTCAATCAGGTCAAGTTTTAACGGGTCGCC






GGTTTCATCGGGTCTAAATCGGCGCCGAACAAAGGGCGA






TTGTATTGTTGTTAAAGGTAAAGCTAGTTCGTTTAAAGT






TTCAGCTTCAGTAGCCACAACAGAGAAACCCTCTACTTC






ACCGGAGATCGTGTTGCAACCAATTAAAGAAATCTCCGG






CACTGTCACTTTGCCGGGTTCTAAGTCGCTGTCCAATCG






GATTCTTCTCCTCGCTGCTTTATCTGAGGTATGAATTGT






TCTGGATTTTTCGGCGATTGCATTCTGTGCCGTTGAATT






GTAAGCTGCGGTTTTAGTATAATCATAATTAGATGAAGC






AGAAAGGAACTTAGTTCTTTTGCATTTTATGTTCAGAAT






CACATAGATCACTAATTGTTGGGGAAATCTGGAAATGAA






GGCTAGATAAATATGAAGTTATAGCGAACATTGTGATTG






AAACTTATTGACAAGAACTTAGAACGAATGTTGTTGTGA






TGTTATGAAACAAAAAAGTCTGTAAAACGTTATATTTGC






CAATGCGTTCTCTCTATATATATATATAGAGAACCGAAA






TAACCGTCATATGTTAACTGTTTTTGTAGTTATTTTCGT






CTAAGTCGCGACATGGTCCAAATCCCAAATTCATGAATT






TTCCAAGGGAACTTTTACTTTAGCTCGACCCCAGTTTGG






GGCACTACCCCCGAAATCCGAACATTGAACTTGAACAAA






GCATGCACTCCACACTCTCGTGACTTGTTCAATGAAATA






TCACAATCGCACAACTAGTTGATCTAATTACACTAAAAT






ACTACTAACAACACTTAATCAACAGTCTATCATGTTGTT






GGTTTTTCTTTGAACTTCTGAAGCAGGATAGATAAAGAT






CGTTCCTTCCCACTAATTGATACTATCATTGCATTGACC






TTTAAATTATCTTCTTTTGGTGCATATAGATTACAGATT






TAGTTAAATCACGTAAAGTTTGGGCTGAATTTTTGTTAA






AATAAACTTCAAATTTGAAATCTTTACTAATTTTTCAGT






CCCTAGGTTTCCATATCCCCTTTATTTCTAAAAGCCGTT






GTTTTGTTGGCATGCCTTATAATTGATTTTTGTTTATTT






CTTGCAATAAACAACTTAAAAACTCTGGCCTTGGAAGCC






TTTTTATCTGTGTAAAGTAGTGATTCTGAGTGTTCTACG






TTCAAAATTTTGCTTCTCGAGACCATAAAACGGTGCTTT






ACATCTATTGTCCAGGGCACAACTGTTGTGGACAACTTA






CTAAACAGCGATGATGTTCATTACATGCTTGGCGCACTT






AAAACATTAGGACTACGAGTAGAAGACAATAGTGAACTC






AAACAAGCTATTGTGGAAGGTTGTGGCGGTCAATTCCCA






GTGGGTAAAGAGTCAAAGAAAGACATTCAACTTTTTCTC






GGAAATGCAGGAACTGCAATGCGTCCTTTGACTGCTGCA






GTTACTGCAGCCGGTGGAAATTCTAGGTTTACTTTTCCC






CCTTTTTTTACCCTCTTTAGACATGCCTTGCTTTATAGA






ACAATAAGCACTTATTTTCCACGACTTATGAGATTCTAT






ATGGTTTAACATGTATCTAATGTGTTTCAGCTACATACT






TGATGGGGTGCCACGAATGAGAGAGAGACCAATTGGGGA






TTTGGTAACCGGTCTTAAGCAGCTTGGAGCCGACGTCAA






TTGCTCGTCCACAAACTGCCCCCCTGTTCATGTAAACGC






AAATGGCGGCCTTCCTGGGGGAAAGGTATAAATATATCA






TCTCATTAAGTAAATACGAAAGAACAAGTTTTCCTCTTG






TTTTGACTAGATCCATCATTATTGTATCCCTTTTAGGTT






AAGCTCTCAGGATCAATTAGTAGCCAATACTTGACTGCT






TTGCTCATGGCAGCTCCTTTGGCTCTGGGAGATGTAGAA






ATCGAGATTATCGATAAACTGATTTCGATTCCTTACGTT






GAGATGACTTTAAAGCTAATGGAACGCTACGGTGTTTCT






GTACAACACAGTAATAGCTGGGATCGTTTCTTCATCCCA






GGAGGTCAAAAGTACAAGTAGGTATTTTTATCGATTTAC






GAATTAGGAAACCCTAGATTCTTTCAAACAAAAAACGAA






AACCTTAAATGTCAATCAGGTCCCCGGGAAATTCATATG






TCGAAGGCGATGCCTCGAGTGCCAGTTATTTCCTGGCAG






GTGCAGCAATTACCGGTGGAACTATCACTGTAGAAGGTT






GTGGCACTTCCAGTTTACAGGTATTTTTTAAAATTTCAG






ATTTTTTTTCGTATTAGGGATACAAAGTAACTTGTGATT






GGCTGCTTGTTCTATATGAAAATTAAGGGAGATGTAAAG






TTCGCTGAGGTTTTAGAAAAGATGGGAGCAAAAGTTAGC






TGGACGGAGAACAGTGTTACAGTGACTGGGCCACCACGA






AATTCTCCTCGTGACAAGCACTTGCGTGCCATCGATGTG






AACATGAACAAAATGCCAGATGTCGCTATGACATTGGCT






GTGGTTGCGCTTTTCGCTGATGGCCCCACTGCCATAAGA






GACGGTAACTTCGTTCAATCTTCTCGTGAAAATAATAAT






TAATATTCTTCAAATAATCTGAAAGGACATTTTCTTGAT






TCCAGTGGCAAGTTGGAGAGTGAAAGAAACCGAAAGGAT






GATTGCTGTTTGCACAGAACTAAGAAAGGTTAGTTGCTG






ATAAATTTCGGCTATTAACAAAACAAAACCTATCGGCAT






ATAATTATAAGAGTTAACTTCAAAAACATAACCTGTGGT






TTCACTTATTTTTAAAAGGGGGTCTGTGAAATTTTACAT






TACGAAACATGGTCTGTGGTTTCAAAAACTTTGCAAATA






AAGGATCCTCAAT





77

Euphorbia

Genomic
1339
TATTCAGTTAGGAGCAACAGTAGAGGAAGGAGCAGATTA




heterophylla



CTGTGTGATAACTCCGCCGGAAAAACTAAATATAACGGA






GATTGACACTTACGATGATCACCGAATGGCGATGGCCTT






CTCTCTTGCTGCCTGTGGGGATGTTCCGGTCACTATTAA






AGATCCCGGTTGTACTCGAAAAACTTTCCCCGACTATTT






TCAAGTCCTCCAAAGCTTTACTAAGCAATGACCACGAAC






CCCTGAAACTTTACTAGAATTGGATCAGGCTCTTATATT






CAATGGATCATTCAAGTGAGTTTATGTTATTAATGTGCC






GGGCATAACAGATTTTTTATACCGGATGAATTTGTATTT






TATGTTTTGTATTTGTATTCTATCAAGTTGATCAGCAAT






AAATGGATGAATGTGTTAATTTTTGTGATTTACTTAAGG






TGTTATTAATCAGTTCGACCGGTTTTAGGTGAACCGGCT






ATGGTCTCGGAGTGATTTAGTTAAAAATTGGGTTGAATA






GGAAGAATCAAACCCTTATGGCAAAAAGAAAATGTCATG






TTAAACACATAGGAATGCGTTGTAATAGCCCTTTATGTT






TTATTCAAAATTCCTCTGGTAACATGCAGAATGTTGCAA






AGGACCTAGAAAGCAGTTAAATAGCCACTTGAAACCATA






AATTCTCTCTCTATATATATTCTTTTAAGATAAAAAATC






GGTAAAATTAGCAATCATGTCAATAATATTGATTATACT






ACATATCATTAACTTCACGTTTCACGAGTATGAAGTTTG






GTTTGATATTGATAACAATGTGTACTTATTGAAAGGGAA






TTATAAAAATGACTTGGATAATATCTAAAGTTGTAATAA






TACTTTCAAATAGAAACGAAGTTGATGGTTTTCCCAAAA






TTTTTAGTTGAATAAAATCAAAGTAAAATCATGAACTTA






GAATAAATTTTCATTGTGTAAAAAAATGAACCAATAACA






ATCGTTGCTGAAAATATCCTATAAGTGTTGCCAATGCCA






GATTTTTATAAACCTGGAATGAGCATTTGCAATGCTTTG






AAGACAAAGAGTTGCTAAAAGGCGTGTCCATTAGATCAA






TTGCATCTGTTTATAACAAAAACATTGCAAAATGGCATG






TCCATTCGAGCAGTTGCAATAATTCATAACAAAAGTGTT






GCGAAATGTAGCTTCCGGCTCTCATAAGCTAAGTGTCGT






AATAGAATTCGAACAAGCATGCACTTCCTGCTCTCCTGA






CTTGTTCGACGAAATATTACAACCGCATTGATCAACTAG






TTGATCTAATTACACTTACCTACAATCCTCCACATTTTA






GTGTAATCCATGA





78

Euphorbia

cDNA
1668
CGTTTTCAATTAGGTCAAGTTTTAACGGGTCGCCGGTTT




heterophylla



CATCGGGTCTAAATCGGCGCCGAACAAAGGGCGATTGTA






TTGTTGTTAAAGGTAAAGCTAGTTCGTTTAAAGTTTCAG






CTTCAGTAGCCACAACAGAGAAACCCTCTACTTCACCGG






AGATAGTGTTGCAACCAATTAAAGAAATCTCCGGCACCG






TCACTTTGCCGGGTTCCAAGTCGCTGTCCAATCGGATTC






TTCTCCTTGCTGCTTTATCCGAGGGCACAACTGTTGTTG






ACAACTTGCTGAATAGTGACGATGTTCATTACATGCTTG






GTGCTCTTAAAACACTGGGATTACGAGTGGAAGACAATA






GTGCGATCAAACAAGCTATTGTGGAAGGTTGTGGGGGTC






AGTTCCCTGCGGGTAAAGAACCGAAAAAGGACATTGAAC






TTTTTCTCGGAAACGCCGGGACAGCAATGCGCCCTTTGA






CTGCTGCAGTTACTGCAGCCGGTGGAAATTCGAGCTACA






TACTTGATGGGGTGCCACGTATGAGAGAGAGACCAATCG






GGGATTTGGTAACCGGTCTTAAGCAACTTGGAGCTGACG






TAAATTGCTCGTCCACAAACTGCCCCCCTGTTCATGTAA






ATGCCAATGGTGGTCTTCCTGGGGGAAAGGTTAAGCTAT






CAGGATCAATTAGTAGCCAATACTTGACCGCCTTGCTCA






TGGCAGCTCCCCTGGCTCTTGGAGACGTAGAAATCGAGA






TTATCGATAAACTGATTTCCATTCCTTATGTTGAGATGA






CTCTGAAGTTAATGGAACGCTACGGTGTTTCTGTAAAAC






ACACTAGCAGCTGGGATCGTTTCTTCATTCAAAGAGGTC






AAAAGTACAAGTCCCCGGGAAATTCATATGTCGAAGGCG






ATGCCTCGAGTGCCAGTTATTTCCTGGCCGGTGCAGCAA






TCACTGGTGGAACTATCACTGTAGAAGGTTGTGGCACTT






CCAGTTTACAGGGAGATGTAAAGTTCGCTGAGGTTTTAG






AAAAGATGGGAGCAAAAGTTAGCTGGACGGAGAACAGTG






TTACAGTGACTGGGCCACCACGAAATTCTCCTCGTGATA






AGCACTTGCGTGCTATCGATGTGAACATGAACAAAATGC






CAGATGTCGCTATGACATTGGCTGTGGTTGCGCTTTTCG






CTGATGGCCCCACTGCCATAAGAGACGTGGCAAGTTGGA






GAGTGAAAGAAACCGAAAGGATGATTGCTGTTTGCACAG






AACTAAGAAAGTTAGGAGCAACAGTAGAGGAAGGAGCAG






ATTACTGTGTGATAACTCCGCCCGAAAAACTAAATATAA






CGGAGATTGACACTTACGATGATCACCGAATGGCGATGG






CCTTCTCTCTTGCTGCCTGTGGGGATGTTCCGGTCACTA






TTAAAGATCCCGGTTGTACTCGAAAAACTTTCCCTGACT






ATTTCAAGTCCTCCAAAGCTTTACTAAGCAATGACCACG






AACCCCTGAAACTTTACTAGAATTGGATCAGGCTCTTAT






ATTCAATGGATCATTCAAGTGAGTTTATGTTATTAATGT






GCCGGGCATAACAGATTTTTTATACCGGATGAATTTGTA






TTTTATGTTTTGTATTTGTATTCTATCAAGTTGATCAGC






AATAAATGGATGAATGTGTTAATTTTTGTG





79

Euphorbia

cDNA
783
ATGTTGAAGGAGATGCCTCGAGTGCCAGCTACTTTCTAG




heterophylla



CCGGAGCAGCAATTACCGGTGGAACTATCACTGTTGAAG






GTTGTGGGACTAGCAGTTTGCAGGGAGATGTGAAATTCG






CCGAGGTTTTGGAGAAGATGGGAGCTAGAGTTACCTGGA






CGGAGAACAGTGTAACTGTGACTGGACCACCACGCGATT






CTCCTCGTCAAAAACACTTGCGTGCTATCGATGTGAATA






TGAACAAAATGCCAGATGTTGCTATGACATTAGCTGTGG






TTGCACTTTTCGCTGATGGTCCCACTGCCATCAGAGATG






TGGCAAGTTGGAGAGTGAAAGAAACCGAAAGGATGATTG






CTGTTTGCACAGAACTTAGGAAGTTAGGAGCAAAAGTTG






AAGAAGGGGAAGATTACTGTGTGATAACTCCACCCGAGA






AACTAAATATAACGGAGATTGACACTTACGATGATCACC






GAATGGCGATGGCCTTCTCTCTTGCTGCCTGTGGGGATG






TTCCGGTCACTATTAAAGATCCCGGTTGTACTCGAAAAA






CTTTCCCTGACTATTTCAAGTCCTCCAAAGCTTTACTAA






GCAATGACCACGAACCCCTGAAACTTTACTAGAATTGGA






TCAGGCTCTTATATTCAATGGATCATTCAAGTGAGTTTA






TGTTATTAATGTGCCGGGCATAACAGATTTTTTATACCG






GATGAATTTGTATTTTATGTTTTGTATTTGTATTCTATC






AAGTTGATCAGCAATAAATGGATGAATGTGTTAATTTTT






GTG





80

Euphorbia

Genomic
2185
GACAGACTTTGACCCAGGCAATTGAACAGTACCAGAGAT




heterophylla



CTCTTTGATGGGTTGTAACACAATTTCTGGGACAGATGA






AGGTTTCTCAGCTGCAGCAGCAACAGAAGCTTGAATCTT






GGGAACAATTGATGATTGCCCACCAACTCTTTTATTGGT






TAAAGACATGAACTTTGGAGAAATTCTCAAGTTTGATCC






AAAATTAAGAGTTTTTGAAGATTTGGGTAACTGGGTTTT






GGGTAAAGTATGGTGCAATTGACCAGTATGGACACCATT






GTTGATGGTAGTAGCTTGAGCCATTATTCTTCCTCTGAA






TTTGGCGTTGTTTGTTGGCTGAAAAAGTTAGGTGGATTT






TAGGCTTTTAAGAGAGAGAAGGGAAAGAAGAGGGCTTAG






TTCTTACCAAACCAAAGTTTTGGTGGGCAAAGAGAAAGT






GGGTTGGTGTAGACTCTAGTAGAGTAGAGGGAATCATTA






TAAGAGTTTGTTGTTGAATTTTTTAAAAGTTTTTTGCAT






TCCTCCGATTTGCAACACGGTTTACCTACTGTTTATTTG






AATTTTTTGTGTTGAGAAAAGGCTTACAGGCTTGCTCTT






GTATATGTGTATGTATTTGCTTTGTGGTTAAATATGCTG






CATGTTGTAATGAAAACTCTGCCCGGGGATGGTGGGCTT






ACACGCCAAAGAAAAAGATTGTTTTCCACAAGCAAAAAT






ATCCCATTGGCAACAGCGTGCAATTATTTAGGGAATGGT






GTTAGAGCATTAAAATTGGAAAATAAATGAGCTCTCATT






TTGTTCAAACCATGAGAATTTTCCCCTGGTCCAATATTC






AGGCGTTTTGTTTCATTTGTAAAAATTACGATCATATTT






CTCTTTAGTGAAGCAACTGATTGGAAAACTTTGGTATAT






GCCATATCTTTCCAAGTTAAAGAGTTCCCAGGCATCATC






CTCAATGATCTTCCTCTATATTCCTGTACAAATATTGTT






GATAGGAAGTTCATTCATGCCAATAACAATATGTCTCTT






GCGAATTTCTAGAAGACCAGAAATTTGTTGTGACCTGTG






GAGTTCTTCCAAAAGTATCCTCTGTGCGACGCATGAAAA






AAGCCTTTGGGCTAGACTACTGAGATGCAGCTGCCTGGT






AATTCATGCCTCTCTCCCAAGAGAGTACGAGAAGTCATT






TATAGCCGCTTAAGAGAGCCAAGGATCAATTTAGGCGTG






TTCTATTTCCATATCTTAATGTATCACTGAAGTTTAGCA






AGTAAACAAACATCACAATCCCTGATGCTTGCATAGTCA






TGGCAAATGTTATACTCTTTGTTTACATATGAAAAACCA






GATATTACTCCATATTTTTAGAAACCAGCAACCAAAGGA






GCTTAAATGGTCCCTGCTCCTAAGTCATATCTCTTGGCA






ATGGGGTGTTTGTAGATCTTGAGTGCTGCCAGTCCACTT






ACTGTAATGCAATACATCAATATTGAGCTAGTTTCTCAT






GGGAAAAAACCATAGAAATGGGACAAATTTGATGTTAAT






GTTCTGTAATCCAACTTGAGGATTAGTTTTATCACATAA






AAGCTACATTGAAAGTTCTATTATTATTTTGAGTTTGCA






TCTTATGTTGTTTTTCCTTTGTGATTTTATCCATTTTCT






TAACTAGTTATTCGTTTCCTGAAGTTTTTAGTGTCATAA






CTCCTAATCACAATCATGCTACAGGGCACAACAGTGGTC






GACAACTTGCTGTATAGTGATGATATTCTTTATATGTTG






GACGCTCTCAGAACTCTTGGTTTAAAAGTGGAGGATGAT






AGTACAGCCTAAAGGGCAGTCGTAGAGGGTTGTGGTGGT






CTGTTTCCTGTTGGTAAAGATGGAAAGGAAGAGATTCAA






CTTTCCTTGGTAATGCAGGAACAGCGATGCGCCCATTGA






CAGCTGCGGTTGCCGTTGCTGGAGGAAATTCAAGGTTTG






TCCAATTATATTCTTTATGTGAGTGTTGTTTTTTGTGTT






AGTTTCAATCATGAAGGTACTAATGCAGAAGCCGTACCC






CTGAAATTTTCTTATTTTGTATATATCAATTGGTAATTG






ATGTAAGATATTTTTCCGAGAGGAATAAAAACAGGGGGA






TAGAGAATATTAAAGTATTGTTCTATCACATTAACTTTT






TATCAAAGGTGTACATTGTGTTTGTGAAGTTTATAGAGC






T





81

Euphorbia

Genomic
1702
ATTTTCCTGAACATCTTTTTTCCAAATTATTTCCTAGAT




heterophylla



CACTGTGAATATCTCATTCATATTTTCAGTTTTATGTAA






TAACTGAAGGATACGCAGTTATGTATGGCTTTGGACTCT






TTGTACACCACTGCCCCCCTACTAGGGCTGAGCATAATG






CGGTTTTAACCGAAACACCGACCCAAACTGAATTATGAT






ATTTGGTTCGGTTATTTAATATTTCAGTTTGTTATTCGT






TTTTCTGTTCGGTCTGGTTTCAAGAGGCAAAAATTGTGA






AAAACTGAACCAAATTATAGGTTTTCATATGTAAGTAGG






TCCAAGCCAAACCCAATCCAATAGCTTCATTTTCATATG






CAAGTCATCATCTACTTTAACCAAATAATTCTTTTCTTT






TACTCTCTCCAAGTAAACCCCAATTAATTGCAATTTTTG






TTAAATAAATTCTGTCTGTTCAGAAAAACCGAAATTTAT






CCGAAATGTTTTCAGTTCTGAAAGTTTTATTTTTGGCTG






TAATTCGGTTCGGTTTAATAAGAATTTTAGAAAACTCAG






CTGGGCTTATTCGGTTTGGTTTACCCACATGCTCAACCC






CTGGCTCCTATTGACCTCTTTCCTTAAATTTTTTCTAAT






TGCGATCAACTATCAAAAATGTTTCAGCTACATACTTGA






TGGGGTGCCACGTATGAGAGAGAGACCAATCGGGGATTT






GGTAACCGGTCTTAAGCAACTTGGAGCTGACGTAAATTG






CTCGTCCACAAACTGCCCCCCTGTTCATGTAAATGCCAA






TGGTGGTCTTCCTGGGGGAAAGGTATAAATATATCATCT






CATTAAGTAAATACGAAAGAACAATTTCCTTCTTCTTTT






GACTAGATCCATCATCATTGTATCGCTTCTAGGTTAAGC






TATCAGGATCAATTAGTAGCCAATACTTGACCGCCTTGC






TCATGGCAGCTCCCCTGGCTCTTGGAGACGTAGAAATCG






AGATTATCGATAAACTGATTTCCATTCCTTATGTTGAGA






TGACTCTGAAGTTAATGGAACGCTACGGTGTTTCTGTAC






AACACACTAGCAGCTGGGATCGTTTCTTCATTCAAAGAG






GTCAAAAGTACAAGTAGGTATTTTTATCGATTTACGAAT






TAGGAAACCCTAGATTCTTTCAAACAAAAAACGAAAACC






TTAAATGTCAATCAGGTCCCCGGGAAATTCATATGTCGA






AGGCGATGCCTCGAGTGCCAGTTATTTCCTGGCAGGTGC






AGCAATTACCGGTGGAACTATCACTGTAGAAGGTTGTGG






CACTTCCAGTTTACAGGTATTTTTTAAAATTTCAGATTT






TTTTTCGTATTAGGGATACAAAGTAACTTGTGATTGGCT






GCTTGTTCTATATGAAAATTAAGGGAGATGTAAAGTTCG






CTGAGGTTTTAGAAAAGATGGGAGCAAAAGTTAGCTGGA






CGGAGAACAGTGTTACAGTGACTGGGCCACCACGAAATT






CTCCTCGTGATAAGCACTTGCGTGCTATCGATGTGAACA






TGAACAAAATGCCAGATGTCGCTATGACATTGGCTGTGG






TTGCGCTTTTCGCTGATGGCCCCACTGCCATAAGAGACG






GTAACTTCGTTCAATCTTCTCGTGAAAATAATAATTAAT






ATTCTTCAAATAATCTGAAAGGACATTTTCTTGATTCCA






GTGGCAAGTTGGAGAGTGAAAGAAA





82

Euphorbia

Genomic
1400
TCAACCAAATGATCCTTTTCTTTTATTTTCTCTAAGTAA




heterophylla



ACCCCAATTAATTGCAATTTTTGATGAACTCTGTTCAGA






AAAACCGAAATTTAGTCGAAATGTTTTCACTTTCAGTTC






TGAAAATTCAGTTTTTAGGTGTAATTCGGTTCGGTTCGG






TTCGGTAAGCATTTTTAGATAACTCAGCTGGGTTATTCG






GTTTAGTTCAGCCAAATGCTAAACCCCTGGCCCCTATTG






AGCTCTTTCCTCTAAATTTTTCTAATTGGAATTAACTAT






CAAATGTGTTTCAGCTACATACTTGATGGGGTGCCACGA






ATGAGAGAGAGACCAATTGGGGATTTGGTAACCGGTCTT






AAGCAGCTTGGAGCCGACGTCAATTGCTCGTCCACAAAC






TGCCCCCCTGTTCATGTAAACGCAAATGGCGGCCTTCCT






GGGGGAAAGGTATAATATATAGTCTCATTAAGTAAATAT






GAAAGAACAAGTTTTCCTCTTGTTTTGACTAGATCCATC






ATTATTGTATCCCTTTTAGGTTAAGCTCTCAGGATCAAT






TAGTAGCCAATACTTGACTGCTTTGCTCATGGCAGCTCC






CCTGGCTCTTGGAGATGTAGAAATCGAGATTATCGATAA






ACTAATTTCCATTCCTTACGTTGAGATGACTTTGAAGTT






AATGGAACGTTACGGTGTTTCTGTAAAACACACTAGTAG






CTGGGATCGTTTCTTCATTCAAAGAGGTCAAAAGTACAA






GTAGGTATTTTCGTTGATTTACGAATTCCGAAACCCTCG






ATTTTCGTTCAAACAAAAAAATGAAAACCCGGAATGTCA






ATTAGGTCCCCGGGAAATTCATATGTTGAAGGCGATGCC






TCGAGTGCCAGTTATTTCCTGGCCGGTGCAGCAATCACT






GGTGGAACTATCACTGTAGAAGGTTGTGGCACAACTAGT






TTACAGGTATTTTTTGTAGTTATTGCTTTGTGTTGGTTA






AACTTTCAGAATTTTTTTCGTATTAGGGATACAAAGTGA






CTTGTTATATGAAATTTCAGGGAGATGTGAAGTTTGCCG






AGGTTTTAGAGAAGATGGGAGCAAAAGTTAGCTGGACAG






AGAATAGTGTTACAGTGACTGGGCCACCACGAAATTCTC






CTCGTGACAAGCACTTGCGTGCCATCGATGTGAACATGA






ACAAAATGCCAGATGTCGCTATGACATTGGCTGTCGTTG






CGCTTTTCGCTGATGGCCCTACTGCCATAAGAGACGGTA






ACTTCATTTAATCATTTCGCAGAAATAAGGCTTAATGCA






TCTAGACCCCCTATAGTTGTCCCTAAAAACCTCTTAGCC






CCCTGAACTTGTAAAAGTGGACCTTATGGCCCCCTAAAC






TTATAAAGGTGGACCTTATAGCCCCTTGAACTTGG





83

Euphorbia

Genomic
584
TCTAGAGACGGTATTAACTCCTTTCTGATACATTACACT




heterophylla



TTTCTTGTGCTATATATTGTTTCAAATTTGATAATTCGA






TCATGCTTCAAATTTTGCACACAGCCGTAATCCATGGTT






ATAAAATGACTATGACACTTGTCTTGTTACTGAAAAGTG






CATACAGTAACAAAGCTGATGTTACTTCTTAGTTTACTC






TAATAATGGTTGGACGGTCACTGGCGCACATCCCCATGG






TTGGAAGTTGTGAATATTGTTGTCATAATGGCTTATGGA






GCATCTTTTGGTACACTTCAGGAGTAAAAGACCACTAGT






CCAGTATAGGGTTAATCACCTCTAGAACTAGTTAGTCAC






ATATACTCGGAAAATTATTCATATTTTGTGGTTACATGC






GTTCGTTTATCTGCATCTTGCCTAGTGTCTCCTCTTGAA






ATCATTCATATATGTTCTTTTTTTCCCCTTCATCTGTTA






CATGTTCAAAATATGCTTACAACGAAATTGGGTAACTTG






ACCAGTTGCTAGCTGGAGAGTGAAGGAAACAGAAAGGAT






GATTGCCATCTGTACAGAACTCAGAAAGGTTAGCCACA





84

Commelina

cDNA
1250
CCCAAATCAAAATGGCCGCCAAAACCCTAGCTCTCTCGC




diffusa



CGTCGTCGCCGGCGGCGATCGCCGGAGCTCGCCGGAGCT






CACCAGCGCCGCCGCCGGCGCTGGTACGGCTCGGATCCG






GCCCAAAGGCGGCGCCTTTGGGCGCTCTGAGGGTCTTTG






GGCGGCGGCCGGCGGCGCTGCGGGTCGCGGCGGCGGCGG






CGGTGAAGACGGCGGCGGCGGCGGAGGAGGAGATAGTTT






TGGAGCCGATTCGGGAGGTTTCGGGGGTTGTGAAGTTGC






CCGGATCGAAGTCGCTGTCGAACCGGATTTTGCTGCTCG






CGGCGCTGGCCGAGGGAACAACCGTAGTGGACAACTTGT






TGAACAGTGACGATGTCCGCTACATGCTTGCTGCTCTGA






GGACCCTGGGACTATCCGTGGAGGATGATGTTGCAACCA






AAAGAGCGGTTGTTGAGGGATCTGGTGGCCACTTCCCAG






TCGGTAACGAATCAAAAGAAGTTGAGCTGTTCTTAGGAA






ATGCGGGAACTGCAATGCGACCACTAACTGCTGCTGTTA






CAGCAGCTGGTGGAAATGCAAGCTACATACTTGACGGGG






TGCCAAGGATGAGGGAAAGACCCATCGGAGATTTGGTTG






ATGGCTTGAAGCAGCTTGGTGCTGATGCTGATTGTTTCC






TTGGAACCAACTGCCCACCCGTTCGTGTAAATGCAAAGG






GAGGTCTTCCCGGTGGAAAGGTGAAACTCTCTGGATCGA






TTAGCAGCCAGTACTTAACTGCTTTGCTCATGGCAGCTC






CTTTAGCCCTTGGAGATGTTGAGATTGAGATCATCGACA






AGCTCATATCGGTCCCCTATGTTGAGATGACTCTGAAAT






TGATGGAACGTTTTGGCGTTAAGGTAGAGCATTCTGAAA






GCTGGGACAGGTTCCTCATCAAGGGTGGTCAGAAATACA






AGTCTCCAGGTAAAGCTTATGTCGAAGGTGATGCATCGA






GCGCTAGTTACTTCTTGGCCGGTGCTGCAGTCACTGGTG






GCACTGTCACCGTTGAAGGTTGTGGTACGACCAGTCTGC






AGGGTGATGTGAACTTTGCTGCAGTTCTTGAGAAAATGG






GTGCAAAAGTTACATGGACTGAGAACAGCGTTACAGTTA






CTGGTCCACCACGCGATCCTTCGAAGAGAACAAACTTGC






ACGGAATTGATGTTAATATGAATAAAATGCCAGACGTCG






CTATGACACTTGCGGTTGTTGCACTGTTTGCTGACGGCC






CT





85

Commelina

Genomic
9352
TTATTATTATTATTTTCATTGTTCCGGCTAGTTCTAGCC




diffusa



CCCCCACTGTCCATCTTCCCGTCTACCGCCCTCCTACAT






CCTCTCTCACCCATTTCAGCCCCTCTTCCACACCTGACC






ACTCACAGCCGACGGCCATCTAATCATACTTAGAGGACA






TGTTCTAACAAAAAGATTAGGCTTCCACCTTTTAATACG






AAAAATTAAAGAAATAATTATAAAATTTTAAATCACTTT






CGAAACAACACAAAAAAAAAAAATAAAAAAATGCAACAT






CCTTGATAATAAACTCAAACTAGAAAAATAAACTAAAAC






AAAACCAAAATTTCAAAGTTGTTCTATAAAAAAAAAATA






AAAAAATTCCAAGACTTGCTTCTTCGGCTCTTTTGTAGT






CGATCGGTCTTCAAGACAAGTTAGCTGCTATGCTCGACT






CTTGGAGAAATGTTCATTGCTTGAGCTTGAACCCACCTC






AAACTCTTCGGATAGGCGGTCTCTTCTCCCTACTCCCAC






TTTGTCTTCGGTTCCGAGGAAGAATGCCATCTTTTCTAC






TTCCCCCATCTCTTTGGTTCTCTCAGCCACTCCCTCGGG






GCTTTCTAGGATGTCTCGAGGCAGAACGAGAACCATGGT






GTCTAGGTACTCAGTCGATGTTTGACCTCTCGGAGCTCG






AAGCACGAGGAAGTCGAAACGATGAGAGAAGGTTTGTTT






GTCACCGCTCGGCGTGGCGCAACGTTATCGTAGGTGATT






CCGCGATTCAGGTTAAGCACAGCCTCGATCCAGCTAATG






GATCAGAATAGGGGAGTCTCTTCACTGTAGATTTTTTTT






CTTCTTGAGTTGTTTCACTTTGTTCTTATGGTGGGACCC






TTCGGGGTCCCATATACGTAGGTGCGCACCGATGTTTGT






TTGTATGGCTGTGGACGTCCTTATGTCAACTTTTTCGGC






TTCCCTTCTTGGATCCCAAACACGAGAGGTGCACCGCCA






CTGCATATGTGCACCACACTTTTTCATTCTACTAATACT






AGGTCGTATAGTTCGGGTTGAAAAAAGAATAAAATAATA






AGGGTGTTATACATATTTTTAATGATCTTAGTAAAGCTT






TTGGTTTGATGATATAAAATGTGTTATTTTTGTTTGAAT






ATATGACTACTTCATACATAACTTTTATGATGTCAGTAG






GAATTTTGCATTGATTGTATAAATGTGTCATCTTGCTTA






AATTAAACAAATTCATAACTGGTTTTATACATATTTTTT






ATGATCTTACTAGGACTTCTGCATTGATTGTATAAAGGT






GTTATTTTTGCTTGAATTTATGACTATTTTTATACATAA






CTTTTATGATCTTAGCCTAAATTTTGCATTGATTGTATA






AAGGTGTTATCTCGCTTGAATTTATGATTGGTTGGAATT






TTGTGTATTTGCATTGTATATTGATTGTATAAAGGTGGC






ATCTTGCTTGAATTCATGAGTAGTTTTATTCATAACTTT






TATTATCTTAGTAGGACTAATGTATTGATTATATAAAGG






AAGGAGTCATTTTACTTGAATTTAGAGAGGAGTTTTAGT






TATGTGATTGCTGAGAAATGGAAATCATATTGTTTAATG






GTTGGTAACTTGAACCTTGGGAGAGTGACTATGACTACT






TTAGCATTTTACATATATTATAAGATTCAATGTTTGGTA






GCAGAAAGTATATGCTTTTGAAAAGATCTTTCAGGAGCC






TTGTATCACAATTAACAACTCAATCTGCTAAATCTGAGG






ATAATTGGAGTGTTATACTTGTAGAATGTTAGATTGCTT






ATTTACTTAAAAAATATTCGTCATATATAGGCTGTTCAT






TGATAGCTATGGTATTTTCGGTCAATCTGTCTATTCAAC






AAATAAATGGGAGTTTCATCTATCAATATTTATGATCTT






GGTCATCAATAATGAATTTTCCTTAAGAGTTTGTATACT






TGATTGATCTGCTAACTCCTATTATGTCAATGCTAATTA






CTATTGTCGGAATCTTAGTTCTTATAGGGGAATTGAAGA






ATGTTGTTAGCTTTATTTTTCCGCAACTGATTGCCATTA






ATTCGATCAGGGAACGACCGTAGTGGAGAACTTGTTGAA






CAGCGACGATGTCTCCTATATGATTGCTTCCTTAAGGAC






ACTGGGAATCTCTGTTGAACATGATGTTGCAACCAAAAG






AGCACTTGTTAAAGGATCTGGAGGCCAATTCCCAGTCGG






TAACGAATCGAAAGAAGTTAAGCTGTTCTTAGGAAACGC






GGGAACTGCAATACGACCACTAACTGCTGCTGTTGCAGC






TGCTGGTGGAAATGCAAGGTTTTTTATCACATTTTAAAT






CCTGGCAATGTTTCTTCGTCTGCGTATTCCTAAATTCTA






TTTTTCTGTTTATCTTCAGCTACGTACTTGATGGGTTGT






CGAGGATGAGGGAAAGACCCATCGGAGATTTGGTCGATG






GCTTGAGGCAGTTTGGTTGCGATGCTGATTGTTTCCTGG






GAACCAACTGCCCACCCGTTCGTGTAAATGCGAAGGGAG






GCCTCCGTGGTGGAAAGGTTTGTATGACAATTAGTTGAT






CCAAGAGAGTTTCATGCCATGCTTCACCACCGATGTTTA






CTCAACAAAAGATGCATAAGAAATGAAAGCAAACCACTC






TATTCTGACCAAAGATCCGGTCGAATATGGTCATATTCG






GTTGGAAATTCATATTTTCTGACTGAAAAACCAGTTGTA






GTGATCGGTTGTCTCAGGCCTGGTCGCAAACTGAACCAC






CCCTCAATTCGAAATATACGGTCAGAATAGGACCTGACT






TTTGTAGTGTATGCCCGACAAGTGCTACGCCAGTCATTG






GTATAAAAAAATTAGGGATATGCTTTAGTATCCATGGAA






CAAGAGTAGCCCGGTTCGTTTTCCCAAATTAGTGCTAAA






ATTTCAAGAATGAGTTATTCCTGTGCTCAAAAGATATAT






ATCACTCCTGCCTAAACTTGATTTTAGCTTATCTTTGAT






TAGAGAATTGATGTAGTTAATTCAATTTGCCTAATGATA






GGACTAACAAAAATCCAAAAAAAAAAAAACTTTGATAAT






GCTAAAGACTATTAACTATGCTGATTCATTTTTTGTTTT






TTAATTGATAAAGGTAGTCTTGTTTCCTATTTCCTTCTT






GTTTTTTTATCAATAGAAACTAGGATTTGGAATTGGCTT






GCTAAGACCCTATGATTAATTCGATTGAAAGAGTAACTA






GATGCTGCTGGTGACTAGAAGATGAAGAAGGCGAGAGAT






CGTATTCCATTCCAGTAAATTTAGTGGAATCAAGCAAAA






TGATTCGTCATCGAAGACTAAATAGTATATCATAGGATC






TTGTAAATTCAAAAGGGTTTTCATTTTTGAATTAGGATG






TAACCGAAGTTGATGAACTTGTTTTATAAGGTCTAAGTT






GTTTGTTCCTTTCACTTCCTGCAGATAACTTTTTTTCGA






ATCTTCTTGCATTATGTGTATCTTTTGCTTAATATATAC






ACTCGTAGATTAATGGCTTGGCATCTCTGTACGCAGGTG






AAACTCTCTGGATCGATTAGCAGCCAGTACTTAACTGCT






TTGCTCATGGCAGCTCCTTTAGCCCTTGGAGACGTCGAG






ATCGAGATCATTGACAGGCTCATATCGGCCCCCTATGTG






GAGATGACTCTAAAAGTGATGGAACGTTTTGGCGTTAAG






GTAGAGCATTCCGATAGCTTGGATAGGTTCCTCGTCAAG






TGTGGCCAGAAATACAGGTCAGTATTCAAGTGACTAAAT






CACATTAACATTATCGGCATCACATGTGTGCACATTCTC






TTCTTTGTGGCAGGTCTCCAGGAATAGCTTATGTCGAAG






GCGATGCATCGAGTGCCAGTTACTTCTTAGCTGGTGCTG






CAGTCACTGGCGGTATCGTCACCGTTGAAGGCTGTGGTA






CCACCAGTCTTCAGGTATTTTTATTACTTTGAAACTGTA






CAAAATCCTTTGTTTCTTATCGTCGAATAAAATGATGTT






TCATCTTGTGTTTTCTGCTTAGGGTGATGTGAGATTTGC






TGAAGTTCTTGAGAAAATGGGAGCAAAAGTTACATGGAC






TGAGGACAGTGTTACGGTTACTGGTCCACCACGCGATCC






TTCAAAGAGAGGGAACTTACGGGGAATCGATGTTAACAT






GAATAAAATACCGGATGTCGCTATGACGCTTGCAGTTGT






TGCATTGTTTGCCGATGGCCCTACGGCTATAAGAGATGG






TTAGTTATCGAAAGAAAAATTAGCTGCAAAAGCACTAAA






GAATATCGAATTCAATACCAAATTGCACACGGTGTTTGA






TAACCAACTATCTCAATCTACTTCTGTTTAGGGTCTATT






TGATTTGAGAGACTTGAGAATTAACTTCTGTAGTTGGTA






CTACAATCTAAATGGTGTAATGCGAACTGCGGCAGTTGA






AAGTTTTTTAACATACAAGACGGATTCCGTGACTTATAA






CTCAACTACATCAAACTAAACAAGCGATACAAAATTACT






TCATTTAACTACTCCAGTTCAACTTTAACTACATCAAAC






TAAATAGCCTCCTAGCAGCACAAAAACTCTAATCAACGT






TGCAGCGTTCACAGAACAAGAAAGTGCCAACACTCACAC






TTATATACGATATGCAGAATCTTTTTTATTCGAAATATC






TTCTTTATTAACTTGTTTTCTCTATTTTTAGTGGCTTCT






TGGAGAGTTAAGGAGACGGAGAGGATGATAGCCATTTGC






ACAGAGCTCCGAAAGGTCGGTAATGTTCATTCTCTTGTA






ACTTAGCTCTCGGTTTTCACATTCTGATTTTTCTATTGT






ATTATGTTTTGGTTCAGCTCGGTGCTACAGTTGAAGAAG






GGCCAGATTATTGCATTATCCATCCACCTGAAAAGCTGA






ACGTAACGGCTATCAACACATACGACGATCACCGGATGG






CAATGGCATTCTCTATTGCTGCCTGCGCCGACATCCCCG






TTGCAATCAAAGACCCTGGTTGTACTCGCAAGACTTTTC






CGGACTATTTTGATGTTCTGCATAGTCTTGCCAAGTACT






GAACGAAACCTACGAAAGTTAATTTAGTCGACTTGGTTG






GTGAATCAGTTTTCATGTAAAATTGTGTAATTCGTGTAT






TAATAATCTTTTTCATACAAAATAAACACGGCAAAATTT






TCTTTAGCAACAATTGAGTTGATCAAAACACAGCACAAT






TATTTTGGTACAAAAATATTTTCATATATTAACATAACT






AACCAACTAACTAGTTTGTCTAGAAAATAAAAGCTAAGA






AACAAAAATCATAACAACAAATCAGTAGGCAGTTTATAA






CTGAAATAACTGCCCTCTAGTTTAAACACAACAAAGCCC






TTTCCTTCCCTCCAAAACTAAAACTTCGACCGATTCTCC






GAAAATTCCTTCTCTCCCACCCCCATTTCCTCCCATCTT






CTAGGACTCCAAAGTCATCTTTCCCCTCTCCACCACAGC






TGAACCTTGGTCAGTACAGCCCTGGAGATTGAGGGATAA






TACTGTCAGTGCTATCGTTCGATGTTGGGACAATATCGA






GTGCCTAAAGTCTTCTGTTCCTTTTATGCAGCAACACCT






CAAAGAATTCCGGGTCCCATTTTCCTTTCCTTCCCCTTT






GGAGTTTGTTGGTGATTGTTGTTTTTGTTTGTTTGGTGG






TAGGAAATGATGGAGAGTTATGGGGTAAAGTTGGAGAGA






TGTTGTGAGGAAATTGAAATGAAGAGGGTGGAGATGGAG






ACCGAGGATGTCGAGCGAAAGAAATTGGAGGAGGAGAGA






TCATTGACGCTCCTGTGGGATTTTGGGCCTAGCGTGGAC






TAGTTGTAGACGGGTGGTTTGTCGAGATTTCTCCTGTAG






AGCGTCCTCGGACTTTCTCTAGATTTCTTTGTGGGTTCT






CAAGGAGGGTCCCCCATAAGGTTTGGGCCACTAGGATGA






TGTCAACATGTGCGCTAGGTGAACCTAAGTTCGTTATGA






CTTTGCGTGCGTCATATGATCCGTACTGGACGAACATGA






GAAAGGAGTGAGACACATGCCCCTTGCTTAGTGCCAGTT






GTACTTTTTGTAGGATTTGGGAATGGCTCCCAACTCTTG






AGTCATTAGTGTGGTATTTGTGCCATTAATGCATGGATC






TTCGGGGGTGAGCCCTAAAGACGAGGTCCTACGATCGTG






GGTGTTGGGGATTTAGCCATCCTAAGCATGGGGCTCCTG






GATCTCTGAGGACATTTGTCACGGGGCCGTTGGATCCCC






AGACATATCATGACACTCTTACAAGTGTCTGAGCCTGAC






TGTTCTTGGAATCGCTGGGTCCCAAGACGGATTAGTCAT






TATCCTCTATAGGCCCGTCTTGAAAAATGTTGAGGCCTT






GTGCCAAATTAAAAATAGGGCTTTAACTAAATAAAATAA






ATAAATTTTAATTTTTCGAATACATTAGTCTCTTCCTTA






AAACAACAAAAACTATTAACAAAATAAAAAAATCAATAC






AATACATTAAAATGAAGCTATGAAACAATCGGAGCAATC






ACGAAATACCAACATAACAGTCTAAAATAGCAAAAATTA






GTATATAACTCTTAAAAAATTACACAAATTATATAGCTA






TACTTAAAAAATAAATAATTAAAAAATAAATTTCTAATA






AGTGGAGGATATGGATTGGGCACCCTTAAAGTGGAGGCC






CTGTGCTGTAGGGCTAATAGAACCCCCCACAGAGACCCC






TTATCCTCTAGTTTGTCTTTGATTTTTACTCTTGTTGTC






AATATAGAAGAACAAAAGAGAATAATCTAGTGTGCTTTT






TCTTGTTGTTGTGGTTAATTTTATTGTTTTTGATATGGA






AGAATGCAATAACACTATTGTGTTTCTTGTTGTTGTCGT






CGTCAAAATTCTTCTCATTGTTCTTAGTGTTGACAGATG






GTATTTGGTAATATTTATGAATTTTTTTTGTTGAAGTAA






TATAATCCAATGTTCTTTTTGTTCATGTTAGATTCAACG






AATGATCTAGTGCCTATGTTAGCATTGTGTTGATGTCTA






GGAATGAAATGTTGTTATCGTCTAGTATTGATTATGATT






TGTTATCAATATGCTGAATGAATTTGATTATTGATATAA






TGTTTGGCATTACGCATTTTCAAAGTGCGAGGATTAAGT






ATGATTTGTCGAGACGTAGGAAGCAATCCCTATAAGAGA






TTATTGCTTTCTATAAATGATAGGTATTGTTAACTCTTC






CTGATGTTTTCTCTCATTTCTCTAAAAATGTAGATTTGA






TTCATATGTTAGAATTAGTGATGGTCATAGGGCGGGTTG






GGGTGGGTAGGCACTCCCCCGCGACCCGCCCTGCTAAAT






ACATATCCGCCCCGAAACTCAGCTCGCTTTGGGTTTTAA






AAACATGACTCATGACCCGTCCCACAACGGAATGGGTCG






ACCAGCGGGTCGCCCTGTTCACCAAGTTATTTATAAAAA






AAAATATATGCATACTTATATAAAATATTATAGGCTTAT






GTGCATGTATTTAATTCTATACATTTTAAATTATAATTA






AAGTTTGTAGTTAAATCTATTAAAATTTTATTTTTTAAA






CTATAAAGTACTAAACTATAATATTAAACTTATAAAAAA






ATAGATATATTATACTATAAATATGCGGGGCGGGTACGC






GTGGCAGGAATAACCATGACCTGTGACCCGCTCCGTCCC






GTTGCGGGTCAAAAATAACCGCCCCACTACCCACCCCAC






AACCCGTTTAGTTAACCTGTTTATAATCCATTCGGGTCG






AAAACCCTATAGGACGAGTAATTTTTTGCCCCATGACCA






TCCCTAGCTAGTTAGAACAATGTGTAGTTAGAGTAGGAT






CTCAGCAAGGAACGGAGACTCTTTTCACACATTTTTAAA






AAGTAATGATGGAAAACTAGATAAAGATCTCATACTCTT






TTTGCGAATTCACAAAAAGTAATAAACTAAACTCATAGC






AACAATTATTATCTTACATATAGATAATTCCTCGTATCT






TGTTCATTCGCAATAAATTATTTTAGTTTTAAAGATACA






TGCAACTAGAGTCACATGTATTCGACATATTTATAACCA






ACGATTTTTCGTTCTGAATTATCACTTTTGTAAGATACA






TTTGTCAACAATGTTGTACAAAATCGTTATATTGATCTA






TATGCACTTGTAAGTACACAACATGGACTAACATATGCA






TGTATATTATAAATATCAACTTGTACATATATGATATGG






TTGAACGTATATGCACTATACTTTTATGGCATGAAACTC






CTTGTTCTTTGGGACATGCACATCTTGTCTTTTATTTTC






TTAATATATATACTTTTCTTTTCTTAAGAAAAAAAATAA






ATCTAGAGCTTGTTGTGGTATACATTTGCGTTCTCTGTC






TTTCTTAAATATCTACTATACTAACGATCTATTGCTTGC






TTAGTGCGGCAAAAGGAACCTTTTTTTTTTCTTAATATA






TACTAAAATTTTTACTTCTCTTCTTAAATAAATAAATAA






TAATAAAAAACTTGTTGCTACATACATTTGCACCCTACC






TTTCTTCAATATCAGTTACACTTTCTACTCTTTTACTAA






ATAGCTAGGAAAAAAAAATCTACGGCACAAAGGACAATT






CTTACCTTTCACAAGGAAAAAAAAAAAATAAAAAAAAAT






CATGTTATTTAAAAGACACTTTCAAGTTTGGGTACAAAT






GGCGTCAACCTCGAACATTGTTTGAATCAGAATCGTTTC






AATTATATGTTCCTAGTCCCTAGAGTAAGAAGTCACTTT






TTGCTTAGCACGTGAGACTATCTTACAAGTGGACTACCC






CAACACTCCACATCCCCCTCCACCTCCGCCATCGCCTTC






TGTGCCTGTCTCTTCGCCTCCCTTGCCAACCCCGTGGCC






TCCTCGACCGAAACCGCGCGAGTAGCGGCTGCGAGCATT






AAGTTAGCTTTGTTGGCATTGCCCGCAGCTCTCTGAAAA






CTATATTCCATCATGGAGGCGCAAAGTTCCATCTCGGCT






TTTTCTTCTATGTATTGGGAGTGTTGAAACTCCTCCTTT






GCAGAGGTTGCTTCGGCTTTGTAACTAGGTAGTTTGGGC






TCGTAAAGTGCTTTGGCTTCCCGTAGACGAGACTCCGCT






TTTGCGATATAGAGAGAAGCCTCTTGTAGTTGCATTTTT






AAGGCTTTTCTTGGGTTTGTCTTTGCGAGGATGGAGATG






TAGGATTTTGTGAGACAGTGAGGAAGTTTTGCCCACCAT






GGCTTTGCTATTGTGCTCGGCATTGGTTTATTATTGATT






GATTATCTTTAATCAATCAATATAATATATT





86

Commelina

Genomic
6205
ATATATTAAGCGAAGACGTTTTTGATACTTCTTATCGCG




diffusa



CCGCCTAAGCGCAACTTCATCAATCAAATATATATATTA






TTAAACTCAATTCCTAATATATCTCTAAATCCTATTTGT






GTATTTCTAGTTGCGGAGTTGTATTTGTACACTGAGTTT






GCAGTATACTTTTGTATTTTCCATCTCTGACTTCTAATC






GGAGACTGAGTGGTCAGCTAGGAAGTAATCATCATCAAT






TACAAATATCACATGCAATGTTTTTTGAAAAAATTCTTG






ACAAACATTTTCTTTTAGGGGGTTAATAATCTGTAAAAT






CTCATAGATAACTCTTCGGTGTTGTTTTATAATATGATG






ATACTCAAGGTGGTCATAATCTGAGGTGCTAAGTAGGAT






CGGCAAAGGGTCCAGAGAATTGAAATCATGGAGCTAGAT






AAGGATCGTAAAATTCTACAAAAATAATAAAATATAGTA






TAAATAAATTATAAAGAATATTTTATATGTAAAAATAAT






GTAAATATGTACACAATATTTTTTGTAAATTTATATATA






AGCAATTTCAACATAAGGATTAATATTTACATGACAAAA






TTATCGAATTTAATAATATAACACAATAAAAGTAAAATT






GTGAGTCCTTAATTAATTAACTTAAGCATTCTTATAAAT






GTAGATACTTTGTTTTGAAATTTATGTTGTTTAAATTAT






CTAATATAATAGATATTTTCAAAATAATTTTTGTTCATG






TCATGCATATAAATATTTTTATATTTTTTAAAAAAAGAA






TTCATGCACAAAATAGTCTAATAAATTATTATTTTCAAT






ATTATGGTGAGCATATTTTCTTTTGAGTTATTGTGGATT






TGTGGTGAGCAAATTATTATTAATTAGTTTCAAATTTTA






AAATATAATATGTATATGACATCTATTGCAACTAAACAT






GATTTTATAAATTAATACAAATAATTTTAGGTTAATTAT






TATTGACATCTTAATAATTTAATATATTGTTAAAATAAT






TTAATTTTATAATATATATTTTTAATATTGTGAAAAAGT






TTTTGTCATCTCTTTTTGAATTATAGATTTTTTAATTAC






ATATATACATTTTTAATTATCTATCAGTATATACGCAAT






AAATATCGATATATTTATTTTCATATCTATAAAATGCAT






ATCATAATTATTTATAGCAAAAATGATTTTAAAAATGAA






TATACAATTATCCTATAAATATTTTAGAAATTTTTAGCA






CACAATAATATATTTAATAAAATTTATCATCATATATTA






AATAAAATAATTACTATATTATATGAAAATGCAAATAAT






AATATTTAAAAATCTCTCATGTAATAGGAAAATAATATC






TATTATGTTAATCGAAATTTAGACAGTGAAGTATATCTA






ACCATTTATAATGGTAATTTACTTAGTTATATGATTATA






TAGTTTTTTAATACTAAGAAACGTATATAAAACCCTATG






AAGCATAAACATGATTTGAATCGATGGGGTCCCCCCATC






TTGTTTGTTTGTTTTTTTTTTTCCAATCATTGTTTTTAT






ATCCTAATATTCTTGATTTTTTTTTTTCCAAATATACTC






TATTAGTTTTTCCATCCAAAATGCTGTCATCACATTATT






TTATTAATATTTTATCAATAAAATATTGATATAAATAAA






TGAAATAAAAACACTTTATTTTTTATTTATTAAAATAAT






CATTTAAATTGTTTCTTACTAAAACCAAATAATTCTTAT






AAAGTATACATGATAAAAAGAACTAAAGTATAAATATTT






AAAAATAAAAATATAAAAGATATTTGAAGTTGTATATGT






ATCACAATTGTATAAATATTTTATGAAATTATATTTTAA






AACCAATATTTTAATATAATAATATTTTATTAAAAAATA






CAATAATTTTATAAGCATAATAATAATAATAATATTTTT






TTTTTTCTTCACATTTCTCTATTCATTGTAATAATGTAT






AATTAATATATTGTTTTTAGATGATACTATGGGTTGGTA






TTATTTTAATTTTAATTTTTTTTTTGAATAAAACTAGGT






GCATCTAGTGTGTTATTTCATTCAAAAATATGTAATCAT






GATTACACTAATCTTGAAGACTATCTCGTGAAGAGAGAA






CCCCACATGATAATCCCCCAAAAGAAAATTATATACAAA






AATGTGTAATAAAAAATATGTTATTTTAAATTTTTTGAA






AAAGGAAAAGTATAATTAACTTAATATGCAAAATAATTT






TTGTATACAATAGATGGTTATTATCGTTTAAATACATAT






GGAGTATAATGTCCATGTGAAGCATGGGCCATGTGCTAG






TTTGCTAAAAATATAAATATTTTGCTTTAGTTTTAACTA






TTTAATTCATTTTATTTATTACATTACTATTTAAATTGT






ATTATTGTTTTAAATTAATTGAACATCGTATAACTTTTT






TGAGTTCAAGAAAATTATAAAGAACAACTTAAAAACACA






ATTTTTTAAATTAATCTTTTATAATAAGACCATTTTAAA






TTTATACTATTATGTAAAATAGAGGATTCCCTAAATTTA






ATATATTATTTATTTAATAAATAATTTACATAGAAACTT






ATAAATAGACCTTAAAATTTATTTATTATATATATATGT






ATATATATAATCAGTTCCTATGATTCCTAAAAATTTATT






ACATTCAACAGTATTATATTTTTGATATTTTTTTTATTT






TTCCTAGATCAAAAGTATATTTTTTTAACTTACATAAAT






TTTCTTAAGATAGTTTCCCTTTATTTGAATCCTAATAAA






ATATTTTTTCTGATTAATTTATTAATAAAGATGATTAAA






AATATTTGATTATGATCCTTTTTTTTCCTTGATCAAAAG






TATGGTTTTTTTTTTTTTTTAACTATAGAATTTTAAGAT






AATTTTCCTTTATTTGAATCCTGATATAATTTTTCTAAT






TAATTTATTAATAAATATGATTAAAAATATTTGATTATG






GTGCAAATTTAAAATTTTAGGCCAATAAAAAATATTTTA






ATTAAATAATGATATATTTATATTTGGTATAAGATATTT






TTTTGTATAAAATATTTTTTTTACAAAATTAAATATTTT






CTATTTTATATTAATTTATTCTTTATTTTTTTAAATGTA






TTTTTATTCTTTTATTGTTGAATAAGAGTTATAACTTTA






TTGAACAACTTATATGATTTCAAAAGTATACATATTATT






CAACCTTTTGGGATTCACATGCCCAATCTCCCATGCTAT






TTTGCGATGTAAATATTTGCCGCTTAAGGTACGCATTTT






TGTTTGACTTCTCTCCACAACACATATTGCTACGAGGGA






TCAACTTAGAATAGACATGCATGTTGACTCACACTATGC






ATTCTGCGGAGCCGATAATTCGGCGGATCATCTTTTCCT






CTTGTATCCTATCGGAAGCTTGTTTTGATTTACATGTTA






CTCCTATTCGTGCTCGACCACAATTCAAGAGGTGTGGAT






TAGTGGACGTCGGTGTCAACGTGTCGCCTGGTCGGCATT






CTGCTGGACTCTTTGGAAGGCACGGAACCGCCTCATCTT






TGACCGTTATCCTCCTAAGTTGCGAGCTATTCAGTGGGT






GGTTCACTATCTTTTTGTGGATTGGACGTTGACCATTTA






CTGTTTTAGGTTGGTCTTGCTTTGTTCGCTCTGTAGATA






ATTATTCTGCTTTCTTTTTAGAGCCTGTGCACCAAACCT






CTTTTTGCAATGAAATGCTAGGTCTCCTAGTTTTCAAAA






AAAAAAAGTATATATATTTTAAATAAAATTAAATAAAAA






TATTTTCTTGACATTAAAATATTAATTTTTAATAGTAAT






ATAATGTGATAGATTTATAAAAATGTTTTAAATTTACTA






AATAGAGAAACTTGTTAAATATTTTTGGGTCATAAAAAT






TTAAAATAAAATAATTATAAAAACATAATTATGTTAAAT






TGTTTTTTTAAATATTATTATATTAAATACGATATATAA






TAATGTCATAAAGTTATACCATCACATATACACTAATAT






TTCAATAAAAAAATATGTGTATGATTTTTTTTTCCTTCA






TAATTTCTTTTACAGTGATATTTTTAATAAAAGTAATTA






AATAACAAGTTTGAGAGGTATGATGAGCTCCTGAGACAA






TATTATATTTTCTATATTTTCAATTTGTATATATATGTT






TTTATTTTATTTTTTTGAAATTATAAACATAGAATCTTA






TTATTTTTAATCATTCAATAAATTCTAAGTGGTTTATAT






TTAGTTCACTTTTTACTTATCATATTATTGTTAGGTTGC






TTTCTTTCTTTATGATAGCAATTTTTTTAATTTTTTTTT






TATATTAATGGTAAGATATGTTAAAATTAACACTTCATA






TATATATAATATATATATTAGAAAAAATTAACACTTCAT






ATTGACTCTTCATGTGTTGATTGATTACTATCCAATACT






TGCAATCTTAACGCTATTGTTAAAAATCGTAACGGAACT






ATGAAGCTTTGAACCAAACTACCTCCTCAGAGAAAGATT






GATACAATTCCGGTGGTTTACTTTTTTATTAAATTATAA






CATTGTAAGATGACTTGCTAATTACATACATTACATACA






ATTATAACATAAATATAGTGAATAATAATAGAAACTAAA






TAACCAACTAGGTAATAGCCTAGTTGGGATTTCGTCTCC






AAAAGAGATGGAGGGGCCAGGTTTTGAGCCATGGTGACT






GCGCTTGTCGCAAATTTTCCAAAGAAAAAGAGCATAAAT






GCCATAGAATTATGACATAAACTACAATTTTTAATAATT






CGAACAACAGTACTTAATAATATGCCATAATATTATGAC






ACAAATTACAGCAATTAATAATTCGAACAACTACAAACT






GCAGTACTTAATAATTCGAATAACCACAATACTTAATAA






TTCGAACAAAACAACATAATTATATTAATGCATCACGTG






TTTGCATGAAATTATGACATCATATATATATACACTAAT






TCTTAACCTTACAATTTTTATTTTTTTTTTGAATTATGA






CATAAACTATTATATACACTAATTCTTAACCTTAAAAAA






AAACTATGACAACATGTATATATATATGCTAATTCTTAA






CCTTACAAAAATAAATAAATCTTGAATTATGACATAAAC






TATAGTACTTAATAATTTGAACAAAACAACATAATTACA






TTAATACATCACATGCTTGCATGCAATTATGACATATAT






ATATACATACACACACAAACACACTAATTCTTAACCTTA






AAAAAAATAAAAAATCTTGATCTATTGAAAGCAACAAAA






TAGCATATTAACTTTGGTATAGTACACAAAATTATGACA






TAAAATATTAACTTTGCTGTAAGGCTTTTAAAAAATAAC






TTCTCTATCCCAATTTAATAATAATGATAATGATAATGA






TAATGATAATAATAATAATAATAATAATAGTAGGAGCAG






CAGCAGGATTAGATCTAGATTCTTTTATGACTTCACCAT






ACAGTGATTTTACATTATGAATAATAGGATTTGATTCTC






TTAACTTAATAATAATATTAATAAGAATTAGATCTAGAT






TCTTTTATGACTTCACCGTACAGTGATTTGATTTTACAT






TATGAATAATAGGATTAGATTCTCTTAACTATAATAATA






ATAATAATATATTTGGTAATGCGACTTTATAGAAAGGAC






CCGAATTTAATTCGGAGTTCCGTATAGTTAAACTGTGTC






TCTCACTAATAGTAAATATATATATATTTGCATTCTCAC






TGGTCTCTCAAACATCAATGGCCAAAACCCAACACTTCC






ACTCATCCTCGCCGGCGGCGATGGCCGGAGCATCCCCTG






AGGTCGTTCTCCAGCCCATTCGGCAGATATCCGGGACGG






CGAAGCTCCCCGGATCGAAGTCTCTGTCGCAGAGGATAC






TGCTCCTTGCTGCGCTCTCTGAGGTGAGGATTGTTCGTT






TTATGGTAAAAATGAATTCTTAGTAGTTTTGCTAATGTA






ATTGAGCTGCATTGATATGAATGCATATACTTGGTAACC






TAGTGTTAGTTTTCCAAGAATGTTGGAGATAGTTTGACT






TTTTTTTTAATACAGAAATTTTATTATATTATTATATAA






GGGTGTTACTACTACTACTACTACTTCTACTACTACTAC






TACT





87

Commelina

Genomic
818
CTTAAAAGCCTAAAATCCACCTAACTTTTTCAGCCAACA




diffusa



AACAACGCCAAATTCAGAGGAAGAATAATGGCTCAAGCT






ACTACCATCAACAATGGTGTCCATACTGGTCAATTGCAC






CATACTTTACCCAAAACCCAGTTACCCAAATCTTCAAAA






ACTCTTAATTTNNNNNNNNNNNNNNNNNNNNNNNNNNNN






GGATCAAACTTGAGAATTTCTCCAAAGTTCATGTCTTTA






ACCAATAAAAGAGTTGGTGGGCAATCATCAATTGTTCCC






AAGATTCAAGCTTCTGTTGCTGCTGCAGCTGAGAAACCT






TCATCTGTCCCAGAAATTGTGTTACAACCCATCAAAGAG






ATCTCTGGTACTGTTCAATTGCCTGGGTCAAAGTCTTTA






TCCAATCGAATCCTTCTTTTAGCTGCTTTGTCTGAGGTA






TTTATTTCTCAACTGCGAAAACAATCTCTATTTGATATT






GGAATTTATATTACATACTCCATCTTGTTGTAATTGCAT






TAGTACATACTTATGTTTTGACCTTTGTTCGTTTGTTTG






TTGAATTGGTAGTGTTGAGAATTTGAATCTAATTATTTG






TTTTTCCATGTGAATTTAATCTGATTAAATCCACTTCTT






ATTTATGTTAAGTTGCAATGATGTTTGCCAAACGGTTAT






CATTGAAGGATAAGTTCGCCTACTTTTGACCCTCCCAAC






TTCGCGTTGGTAGAGCCATTTTATGTTATTGGGGGAAAG






TAGAAAGATTTATTTGTTTTGCCATTCGAAATAGTAGCG






TTCGTGATTCTGATTTGGGTGTCTTTATAGATATGATA





88

Commelina

Genomic
127
TGATTAATTTGATGTATATATATAGTTGAAGAGTTGTAC




diffusa



TTGTACGCTGAGTATGTATGTAGTATATTTGTACTCGGA






GACTAGCTAAGTTACCATGTAATTAATTATCCATCATCA






ATTACAAAAA





89

Digitaria

cDNA
783
ATTAATTCTTCGTCTTTTTGTCTGCAAATCACCAAGAAA




sanguinalis



CATAATGGCAGTTCACATTAACAACATATCCAACTTTAC






TTCCAATCTCACCAATACCCACAATCCCAAACCCTTCCC






CAAATCATTACCATCATCTTTTGGATCCAAGTTCAAGAA






CCCCATGAATCTTGCTTCTGTTTCTTGCAACCAAAACTT






TCAAAAAGATCACTTTCTGTTACAGCTTCTGTTGCCACC






ACAGAGAAGTCCTCAGTGGAGGAGATTGTGTTGAAGCCC






ATTAAAGAGATTTCTGGAACTGTTAATTTACCTGGATCT






AAGTCTCTGTCTAATCGGATCCTTCTTTTAGCTGCTCTT






GCTGAGGGGACTACTGTTGTAGACAACTTATTGAACAGT






GACGATGTTCATTATATGCTTGGGGCATTGAGAGCTCTA






GGGTTGAATGTTGAGGAAAATGGTCAGATTAAAAGAGCA






ACTGTGGAAGGGTGTGGTGGTGTGTTTCCGGTGGGTAAA






GAAGCTAAGGATGAAATCAAACTATTTCTTGGAAATGCA






GGAACTGCTATGCGTCCGTTGACTGCTGCAGTTACTGCT






GCTGGTGGAAATTCAAGCTACATACTAGATGGTGTTCCC






CGAATGAGAGAGAGACCAATTGGTGATTTAGTCACAGGT






CTTAAACAACTCGGTGCAGATGTTGATTGCTTCCTTGGT






ACAAATTGCCCACCTGTTCGTGTAGCTGCCAATGGAGGC






CTTCCTGGTGGAAAGGTCAAACTGTCGGGATCTATTAGT






AGT





90

Digitaria

cDNA
679
GGATTGGAGGGCTACCTGGCGGCAAGGTTAAGCTGTCTG




sanguinalis



GTTCAATCAGCAGTCAATACTTGAGTGCCTTGCTGATGG






CTGCTCCTTTAGCTCTTGGGGATGTGGAGATTGAGATCA






TTGATAAACTAATCTCCATTCCCTATGTCGAAATGACAT






TGAGATTGATGGAGCGTTTTGGCGTGAAAGCAGAGCACT






CTGATAGCTGGGACAGGTTCTACATCAAGGGAGGTCAAA






AATACAAGTCCCCTAAAAATGCATATGTGGAAGGAGATG






CCTCAAGTGCTAGCTATTTCTTGGCTGGTGCTGCAATTA






CTGGAGGGACTGTGACAGTTGAAGGGTGTGGCACCACCA






GTTTGCAGGGTGATGTGAAATTTGCTGAGGTTCTGGAGA






TGATGGGAGCGAAGGTTACATGGACTGAGACAAGTGTAA






CTGTTACTGGTCCACCGCGGGAGCCATTTGGGAGGAAAC






ACCTAAAACCCATTGACGTCAACATGAACAAAATGCCTG






ATGTCGCAATGACTCTTGCTGTGGTTGCCCTCTTTGCTG






ATGGCCCAACCGCAATCAGAGATGTGGCTTCCTGGAGAG






TGAAGGAGACTGAGAGGATGGTTGCAATCCGGACTGAGC






TAACTAAGCTTGGAGCATCAGTTGAGGAAGGTCCAGATT






ACTGCATCATCACGCC





91

Digitaria

cDNA
638
TGTAGAGGGTGATGCTTCAAGTGCAAGTTACTTCTTGGC




sanguinalis



TGGAGCTGCTATAACTGGTGGCACTATCACTGTTGAAGG






TTGTGGAACAAGTAGTTTGCAGGGTGATGTGAAATTTGC






GGAGGTTCTTGGACAAATGGGGGCTGAAGTAACATGGAC






CGAAAACTCTGTTACAGTGAGGGGTCCACCGAGGGGTTC






TTCTGGAAGTAAACATTTGCGTGCTGTAGATGTTAACAT






GAACAAAATGCCCGATGTTGCCATGACTCTTGCCGTGGT






TGCTCTCTATGCAGATGGTCCTACAGCCATTAGAGATGT






TGCTAGCTGGAGAGTCAAAGAAACCGAAAGGATGATTGC






CATTTGCACAGAACTCAGAAAGTTGGGAGCGACAGTTGA






AGAAGGGCCTGACTACTGTGTGATCACTCCACCTGAGCG






GTTGAATGTGGCAGCAATAGACACATATGATGATCACAG






GATGGCCATGGCTTTCTCCCTTGCCGCTTGTGCAGATGT






TCCTGTCACCATCAAGGATCCTGCTTGCACTCGTAAGAC






GTTTCCCGATTACTTTGAAGTTCTTCAGAGATTCACCAA






GCATTGATGTTTTCAATAGAGTTTTTGTTTCATTTGTAA






GGTGCCAAATATGT





92

Digitaria

cDNA
605
CTTAGCTGGTGCTGCCATCACCGGTGGCACCGTTACGGT




sanguinalis



GGAAGGTTGTGGGACAAGTAGTTTACAGGGGGATGTAAA






GTTTGCTGAGGTCCTTGGACATATGGGCGCAGAAGTAAC






CTGGACAGAGAACTCAGTGACAGTGAAGGGCCCACCAAG






AAACGCTTCCGGAAGGGGGCACTTGCGTCCAGTCGATGT






TAACATGAACAAAATGCCCGATGTTGCCATGACTCTTGC






CGTGGTTGCTCTCTATGCAGATGGTCCTACAGCCATTAG






AGATGTTGCTAGCTGGAGAGTCAAAGAAACCGAAAGGAT






GATTGCCATTTGCACAGAACTCAGAAAGTTGGGAGCGAC






AGTTGAAGAAGGGCCTGACTACTGTGTGATCACTCCACC






TGAGCGGTTGAATGTGGCAGCAATAGACACATATGATGA






TCACAGGATGGCCATGGCTTTCTCCCTTGCCGCTTGTGC






AGATGTTCCTGTCACCATCAAGGATCCTGCTTGCACTCG






TAAGACGTTTCCCGATTACTTTGAAGTTCTTCAGAGATT






CACCAAGCATTGATGTTTTCAATAGAGTTTTTGTTTCAT






TTGTAAGGTGCCAAATATGT





93

Digitaria

cDNA
605
CTTAGCTGGTGCTGCCATCACCGGTGGCACCGTTACGGT




sanguinalis



GGAAGGTTGTGGGACAAGTAGTTTACAGGGGGATGTAAA






GTTTGCTGAGGTCCTTGGACATATGGGCGCAGAAGTAAC






CTGGACAGAGAACTCAGTGACAGTGAAGGGCCCACCAAG






AAACGCTTCCGGAAGGGGGCACTTGCGTCCAGTCGATGT






TAACATGAACAAAATGCCCGATGTTGCCATGACTCTTGC






CGTCGTTGCTCTCTATGCAGATGGTCCTACAGCCATTAG






AGATGTTGCTAGCTGGAGAGTCAAAGAAACCGAAAGGAT






GATTGCCATTTGCACAGAACTCAGAAAGTTGGGAGCGAC






AGTTGAAGAAGGGCCTGACTACTGTGTGATCACTCCACC






TGAGCGGTTGAATGTGGCAGCAATAGACACATATGATGA






TCACAGGATGGCCATGGCTTTCTCCCTTGCCGCTTGTGC






AGATGTTCCTGTCACCATCAAGGATCCTGCTTGCACTCG






TAAGACGTTTCCCGATTACTTTGAAGTTCTTCAGAGATT






CACCAAGCATTGATGTTTTCAATAGAGTTTTTGTTTCAT






TTGTAAGGTGCCAAATATGT





94

Digitaria

cDNA
510
TGTAGAGGGTGATGCTTCAAGTGCAAGTTACTTCTTGGC




sanguinalis



TGGAGCTGCTATAACTGGTGGCACTATCACTGTTGAAGG






TTGTGGAACAAGTAGTTTGCAGGGTGATGTGAAATTTGC






GGAGGTTCTTGGACAAATGGGGGCTGAAGTAACATGGAC






CGAAAACTCTGTTACAGTGAGGGGTCCACCGAGGGGTTC






TTCTGGAAGTAAACATTTGCGTGCTGTAGATGTTAACAT






GAACAAAATGCCCGATGTTGCCATGACTCTTGCCGTCGT






TGCTCTCTATGCAGATGGTCCTACAGCCATTAGAGATGT






TGCTAGCTGGAGAGTCAAAGAAACCGAAAGGATGATTGC






CATTTGCACAGAACTCAGAAAGTTGGGAGCAACTGTCGA






AGAAGGGCCAGATTATTGTGTTATCACTCCGCCAGAGAA






GTTGAACGTGACAGCCATCGACACATATGATGATCACAG






AATGGCCATGGCATTCTCCCTTGCTGCATGCGCAGACGT






TCC





95

Digitaria

cDNA
510
TGTAGAGGGTGATGCTTCAAGTGCAAGTTACTTCTTGGC




sanguinalis



TGGAGCTGCTATAACTGGTGGCACTATCACTGTTGAAGG






TTGTGGAACAAGTAGTTTGCAGGGTGATGTGAAATTTGC






GGAGGTTCTTGGACAAATGGGGGCTGAAGTAACATGGAC






CGAAAACTCTGTTACAGTGAGGGGTCCACCGAGGGGTTC






TTCTGGAAGTAAACATTTGCGTGCTGTAGATGTTAACAT






GAACAAAATGCCCGATGTTGCCATGACTCTTGCCGTGGT






TGCTCTCTATGCAGATGGTCCTACAGCCATTAGAGATGT






TGCTAGCTGGAGAGTCAAAGAAACCGAAAGGATGATTGC






CATTTGCACAGAACTCAGAAAGTTGGGAGCAACTGTCGA






AGAAGGGCCAGATTATTGTGTTATCACTCCGCCAGAGAA






GTTGAACGTGACAGCCATCGACACATATGATGATCACAG






AATGGCCATGGCATTCTCCCTTGCTGCATGCGCAGACGT






TCC





96

Digitaria

cDNA
477
CTTAGCTGGTGCTGCCATCACCGGTGGCACCGTTACGGT




sanguinalis



GGAAGGTTGTGGGACAAGTAGTTTACAGGGGGATGTAAA






GTTTGCTGAGGTCCTTGGACATATGGGCGCAGAAGTAAC






CTGGACAGAGAACTCAGTGACAGTGAAGGGCCCACCAAG






AAACGCTTCCGGAAGGGGGCACTTGCGTCCAGTCGATGT






TAACATGAACAAAATGCCCGATGTTGCCATGACTCTTGC






CGTCGTTGCTCTCTATGCAGATGGTCCTACAGCCATTAG






AGATGTTGCTAGCTGGAGAGTCAAAGAAACCGAAAGGAT






GATTGCCATTTGCACAGAACTCAGAAAGTTGGGAGCAAC






TGTCGAAGAAGGGCCAGATTATTGTGTTATCACTCCGCC






AGAGAAGTTGAACGTGACAGCCATCGACACATATGATGA






TCACAGAATGGCCATGGCATTCTCCCTTGCTGCATGCGC






AGACGTTCC





97

Kochia

cDNAContig
1548
ATGGCTCAAGCTACCACCTTTAACAATGGTGTCAAAAAT




scoparia



GGTCATCAATTATGCGCCAATTTACCAAAAACCCACTTG






CCCAAATCTCAAAAAGCTGTCAAATTTGGATCAAACTTG






AGATTTTCTCCAAAGTTGAAGTCTTTCAACAATGAAAGA






GTTTCTGGGAAATCATCAGTTGTTTTTAAGGTTCATGCT






TCAGTTGCTGCTGCTCCCTCAACTTCCCCAGAAATTGTG






TTGCAACCCATTAAGGAGATTTCTGGCACTGTTCAATTG






CCTGGTTCTAAGTCTTTATCTAATCGAATTCTTCTTTTA






GCTGCTCTTTCTGAGGGTACAACAGTACTTGACAACTTG






CTATATAGTGATGATATTCGCTATATGTTGGATGCTCTA






AGAACTCTTGGGCTCAACGTAGAGGATGATAATAAGGCC






AAAAGGGCAATCGTGGAGGGTTGTGGCGGTCTATTTCCT






GCTGGTAAAGAGAATAGGAGTGAGATTGAACTTTTCCTT






GGAAACGCGGGAACGGCAATGCGCCCATTGACAGCTGCA






GTTGCCGTTGCTGGAGGAAATTCCAGTTATGTACTTGAT






GGAGTGCCAAGAATGAGGGAGCGACCCATTGGGGATCTG






GTAGCTGGTCTGAAGCAACTGGGTGCAGATGTTGACTGT






TTTCTTGGCACAAATTGTCCTCCTGTAAGAGTAAATGCT






AAAGGAGGTCTTCCAGGGGGCAAGGTCAAGCTCTCAGGA






TCAGTTAGTAGCCAATATCTTACTGCGCTACTCATGGCT






ACCCCTTTGGCTCTTGGAGATGTGGAGGTTGAAATCATT






GATAAATTGATTTCTGTCCCTTACGTAGAGATGACAATA






AAGTTAATGGAACGGTTTGGAGTGTCAATAGAGCATACT






GCTAGCTGGGACAGGTTTTTGATCCGAGGTGGTCAGAAG






TACAAATCTCCTGGAAATGCATTTGTTGAGGGTGATGCT






TCAAGTGCCAGTTACTTCTTAGCAGGGGCCGCGATCACT






GGTGGGACTGTGACTGTTGAGGGTTGTGGAACAAGCAGT






TTGCAGGGTGATGTTAAATTCGCGGAGGTTCTTGAGAAG






ATGGGTTGCAAAGTTACATGGACAGAGACCAGTGTCACT






GTAACTGGACCGCCCAGGGACTCATCTGGAAGAAAACAT






TTGCGTGCCATCGATGTTAACATGAACAAAATGCCAGAT






GTTGCGATGACTCTTGCTGTTGTTGCCCTATATGCAGAT






GGGCCCACAGCTATCAGAGACGTTGCTAGCTGGAGAGTG






AAGGAAACAGAAAGGATGATTGCCATCTGTACAGAACTC






AGAAAGCTTGGAGCAACAGTTGAGGAAGGACCTGATTAC






TGTGTGATCACTCCACCAGAAAAACTAAACGTAACCGCC






ATCGACACATATGATGATCATCGAATGGCCATGGCATTC






TCTCTTGCTGCCTGTGCTGATGTTCCTGTCACTATTAAG






GACCCAGGCTGCACCCGCAAGACCTTCCCAGACTACTTT






GACGTCTTGGAACGGTTTGCCAAGCAT





98

Kochia

Genomic
7037
TTTTCATGAAATAAATCTTGATCCTTCATTCAAAATCCA




scoparia



ACGATCAAAATTGCTTCTCACGTTTCTCATTTTAAGGGT






GCTTCTCATTTGATCCTAAATCTATATACATATGTAAGT






ACCTTGAATGCCATGGAATTGAAATTTTAAATTATGTGT






TGGTTGTGAATGGGGTTAATGAAGTAGATAGAGTAGGCT






GACAAATATTCCAAGGGGTACCTACAGCTACTCTTGGTC






ACTAAGTCATTGTTCTGTTTTTAGATTTTAATTGCTTTC






CCTTATGGTTTTTTCAGTTATGTACTTGATGGAGTGCCA






AGAATGAGGGAGCGACCCATTGGGGATCTGGTAGCTGGT






CTGAAGCAACTGGGTGCAGATGTTGACTGTTTTCTTGGC






ACAAATTGTCCTCCTGTAAGAGTAAATGCTAAAGGAGGT






CTTCCAGGGGGCAAGGTAGAGTAAATTTCTTGTAGATTA






ACTTTGTTGATAATTCACTCATTAATATATCAATGAGAC






ATCCTCAAAAAATAACTCTGTCCTGTTTTCCTGTCATTA






AGCTCTGTTACATAACTTACATTATTTTAAAGCATTTTG






ATGGAATGTATCTGCAGGTCAAGCTCTCAGGATCAGTTA






GTAGCCAATATCTTACTGCGCTACTCATGGCTACCCCTT






TGGCTCTTGGAGATGTGGAGGTTGAAATCATTGATAAAT






TGATTTCTGTCCCTTACGTAGAGATGACAATAAAGTTAA






TGGAACGGTTTGGAGTGTCAATAGAGCATACTGCTAGCT






GGGACAGGTTTTTGATCCGAGGTGGTCAGAAGTACAAGT






AAGTCACTCTTCTTTTACTTGCATGTATTGAACGTCATT






CCATTGGTAGACTGATGCAGCATTAATAATATGTCAGAT






CTCCTGGAAATGCATTTGTTGAGGGTGATGCTTCAAGTG






CCAGTTACTTCTTAGCAGGGGCCGCGATCACTGGTGGGA






CTGTGACTGTTGAGGGTTGTGGAACAAGCAGTTTGCAGG






TATGATCCAAAGCCTCACTTCAATAAATTTTCAAGTACA






CATTCGTTTTACTTCCTCCGTTTTGTATTACTCGCACCG






GTTTCCATTTTGGGAAATTTGCGAATACTTGCACCACTT






TGCTTTATTCCCTTTTTTGGCAATTTATTTTGTTTGAAA






TGACCATTTTAGCCTTATTGTTTTTCCCCACATGGTGGG






ATCAAAGGAATTAACACCATAAAACACACCTCCTTTATA






CCCCACCAACTTAATCACACTACCCTTCCCTCAACTAAT






TATACCAACAAAAAAACGCCTTGGAGTCCGCAATAATGA






AAGTGGTGCGAGTAATATAAAACGGAGGAAGTATTTATT






TTTTAGATTAACTGTTGTAACCATTTTTTGGTTAATTTT






GAGGCTAAAGTATGGCCTTTTGACAATTAACTTTCAATA






TTAATCTCTAATGTGGTGTAAAGTCATCCATTTTAATAT






CAGACAATTGTGTTTGACTCCCAAAAAAGGATAATTTAC






TTCTTATTGTTTTGTGACTGCCAAAAAGGATCACTTGAA






TGTCATGGATTGTTTAATCACCTATTTAGGCATTGTTGT






GTTGTGATTCACCTCATCTTTAGGTCCAATAGATTTTGG






CTGAATCTTACTTGTGACTGCCAAAAAGGATCACTGACA






ATTTACTTGTTTAACGGATTTTACTCAGGGTGATGTTAA






ATTCGCGGAGGTTCTTGAGAAGATGGGTTGCAAAGTTAC






ATGGACAGAGACCAGTGTCACTGTAACTGGACCGCCCAG






GGACTCATCTGGAAGAAAACATTTGCGTGCCATCGATGT






TAACATGAACAAAATGCCAGATGTTGCGATGACTCTTGC






TGTTGTTGCCCTATATGCAGATGGGCCCACAGCTATCAG






AGACGGTATTAACTCCTTTCTGATACATTACACTTTTCT






TGTGCTATATATTGTTTCAAATTTGATAATTCGATCATG






CTTCAAATTTTGCACACAGCCGTAATCCATGGTTATAAA






ATGACTATGACACTTGTCTTGTTACTGAAAAGTGCATAC






AGTAACAAAGCTGATGTTACTTCTTAGTTTACTCTAATA






ATGGTTGGACGGTCACTGGCGCACATCCCCATGGTTGGA






AGTTGTGAATATTGTTGTCATAATGGCTTATGGAGCATC






TTTTGGTACACTTCAGGAGTAAAAGACCACTAGTCCAGT






ATAGGGTTAATCACCTCTAGAACTAGTTAGTCACATATA






CTCGGAAAATTATTCATATTTTGTGGTTACATGCGTTCG






TTTATCTGCATCTTGCCTAGTGTCTCCTCTTGAAATCAT






TCATATATGTTCTTTTTTTTCCCCTTCATCTGTTACATG






TTCAAAATATGCTTACAACGAAATTGGGTAACTTGACCA






GTTGCTAGCTGGAGAGTGAAGGAAACAGAAAGGATGATT






GCCATCTGTACAGAACTCAGAAAGGTTAGCCACATTCTT






TAATCTTGTAGTAAAAAATAAAGTTGCCTGTTTCATGTA






AGTTGATGTTAATTCGGACTTTTAAAATTTTCAGCTTGG






AGCAACAGTTGAGGAAGGACCTGATTACTGTGTGATCAC






TCCACCAGAAAAACTAAACGTAACCGCCATCGACACATA






TGATGATCATCGAATGGCCATGGCATTCTCTCTTGCTGC






CTGTGCTGATGTTCCTGTCACTATTAAGGACCCAGGCTG






CACCCGCAAGACCTTCCCAGACTACTTTGACGTCTTGGA






ACGGTTTGCCAAGCATTGAGCGGCTATCTGCAGATTTTT






CATAAAGTATGCACGAAAGTTTCAATTTAAGAAGATACC






GAGTTGATTATATGCTTTCCGCATAAGTTATTGTCACAT






TTTTTGTATTATGTTTGTAAGATCTTAGGCAATAAGATA






TACTGTTAGAAATTATGTGTATCTGATTATTTAGAGATG






TATACTTGGGTCAGTTGAAATTGTACGAGAAAGGTCTGG






ATTTCGAAAAAAATGTGATCCAGACATTAGTGTGGTCTG






AACTGAAGCAAGTACTCCCTCCGTCTCATAATTCTCACA






ACTCTTGCTATTATTTGTGAGAAATAAAATATTCAAGTG






TTGCGAGAATTGTGTGACAGCGGGAGTAGCAACTTTTCA






AGTTTGGAATTAATTTTGTGATGTGAGTTTTTTGTGTAT






TCTTTGTTTTCCATCAAACCCTCCTCCAAAGTACAAACC






CAATTCATGGTATGGTTGATGCAACAGCAATATGTCAAA






ATCAGTGTTTGTGATGTTGGCTTCTCTACTTCATTATCT






CTTCTTGTTCAGTATGATTTCGCAATCTCTTCCCGTCAA






AATCCCTTCTCTGATAAACGCGGAAATCGTGTCTTCCCC






TCAGTGTGTATCCACCTCTTAAAAATTTGTTGAGAGTTG






AAATGTGCTGCCACTGGATTCATCCTTTAGGGCGAATTT






TGAACGGATTTTAGGTGGTTAGGATTCAATCCCTGTCAA






TTATTGTTACGGGAATTAGACACGCGTTCTGCCTTACCA






ACCCCATTTTTTTTGTCACTATATCAAGTATCCATTGCT






AGTTGTAGTCATGTAGTAGGGTCTGAAATCTAAAGCTAA






GTAGCAAGATTGCAACAACAGGAACAGCAAATAAATCTA






GACTTTTGAGGTTTGTTTTTTTTTTTTTTTTTTTTGACT






TTTGAGCTTAGTTTGTCATATTGGTTAAATAATAAGTTA






CTGTAAATAGATTCAGTTTTAATTTTGTTGTTAGTGTTA






GTGTGTTTGGCGGTGGTTGGTGGTTTATCTATCTTTTCC






ATTACTAGTGTCATAATTCAGAGAAGATCTACTTTGTTG






ATGATAATCTGTGTAGTATTGAATCAGACATCAAATCAA






TTCGTAGAATTTGTTGAATCTAGTATTAGCAAGGTCCCC






TTGTAGACGGCTGCAGATGACAGCGATTCATGAGACGAG






AGTATTTTTTAATGTCAGATTTTACAAGCGATTATAGTG






ATGTTGAATTAGAATTATTATTAGGTTCAATTTTCATTA






TCTTTGTTATTTTTTTTATCTCTGTTGTAAATGTCGTAT






GACTTGTTATTTTTTATCTCTGTCGTAAATAGTTACTTT






TCCCCTAGAAAAAAGTCAGAACTGACATACGACTACCAC






TTCAGTTCGTAATTTATAATTATAATTATTATTATTCTC






CCTTGTTTTACTTTAGACAAAAACAGTAATTGCAAATAA






TAATTTATCATGAATCATGATGAAAAATTGAAAATGGAA






TAGAAGAAGTGAAGAACTGCCTTAGTTTAAAAAAAAACG






AAGATTAGATAGAATTACACTGAAGGTAAGAATATAGTG






AGAGTCTAATTAGTGGTTAATTAACTATCTAGGCTTAAT






TCTCAATCACTTTTTTAAAAACTTGTGCTATCACTTTTG






CCCTTCAATTAGGGTTCATTAGTGGGGTTAAATAATGCA






CAATAGGGTTTGCATTATATGACAACATTAGAGTGAGGG






ATAACTCAAGTGGTTAAAACTCTTCTCTCGATTTCAGAA






TATTCTGAGATCGATTCTCATTTCCATTCTAGTGGCTCT






CTTAACACCAAAAAAAAATAAAAAATAAAAAATTAGTGG






GGTTAAATAATGCACAATAGGGTTTGCATTATATGACAA






CATTAACTTGTTAACTAAACGAACACATACATGTGTAAA






TAAAACGATAAGAAAGTTGTTCTATACTTATTCAAAGGT






CTCGAGTTCGAGCCCTGAGAATGAAGAAGCATGTGTTAA






AAGAACTAATTTCACAATTGTGACTTAACTCGATTCGAA






TCCAAATTAATCAAATCCTAACGGATTTCGAATATTGAA






TACGCTTGTGTAAAACATAACATTTATGAACTTGTTAAG






TAGTTTAATGGAGTAGTTAATAATCCTTTATAACATAGG






TATTATTAAAGTGATAAAGTAAACAAGATTGTAAGACGA






CAATAAGACCAATCAAAGTTGGGGTCAAATGATTGAATA






AAATGAAATAATTTTTTTAAAAAAAATAGAGAAAAGATT






ATGTGATAATATAATTACAAATTATTACATTATCACCGC






CAAAACTTATTGTAGCATGTGAGAATGTGATTATTAAAT






TAAAAAAAGGCAAAGTTGGAAGTTAAACATGTCATCTTT






CTTCCTTTGTAGTCTGCCCTAAGCTTAACCATGTTGTCT






CCCCTTTTTAAAAAAATAAATTAAAAGTTGCATTATTGA






TTATTAAGTTTACAAATTATATCCTATGATAAATTGCTA






ATTGAACCATACCTAATAAGCCTAAGCTATTAGATCTAT






CACTTATATATATAGTTGCACACATTCGTACCCCTTAGG






TCCTTACTAAATCAATTTCGATCTCGGTCATTTAATATT






GCTAACAACTATCTGTATAAGAATCTATTAAAATGTATA






AGCTCGATATTTTTCAAATGAAAACAAATACTTCGTAAT






TCATTTTTGTTCGGTTATCTTTAATTGTCCACAAGGTGG






ATAATAATTAGCTTGGTAGTGCAATAATAAACAAGAATA






ATACTAGCTAGTGCAATAATAATACAAATGTGAAGATTA






TCAATAATAAACACAATTAATTGTAATTAACTCAAGATT






AGGTGAATTTTATGATGAGGAGTGTAGAGTAAAGAATGT






GGGGACATAACATAAGATTATTAAAGTAGATTATCCTAT






AACCTTTTCTCCACATCTCTACTTATCTCTTAGTATTAA






ATTAGAAAGACTTGAAGCTTAAGAATCAAGGTAATATAC






ATGGTATATCTAGCTTGTTTGTTGAAGCAATTTTGTAGG






GCACTTCAACTTTATTTTTTTTATTTTTTTTAATTAAAT






AGTGACAATATATTTAATTTTGATCATTTTTATTTATCT






TGTATGCTAGTAAATTAAAGAATTAAACCTTGGTGTCAG






GAATAAATAAATAAATAATACTGACTTTCGATTAACGGA






ATAATAGAGAAAGTTACATAGGAGATCGAATTCAATTCA






CTTGTTTAAATCTTACCTATAGTTTATACCATGTATGTT






TTTACTACTTCATAAATAAAATTTAGGACATGTTTGGCA






ATTGATTTAATACTAACGATTTTTTTTTATTTTTTTTAT






GACATTTCGTCATCAATTTGAAAAGGTGAATATCCATTA






TCCTAGGCAACACACTTTCGAACAGTCTACAAATAAACG






CAAATAAATCAAACCAGCGAATTGCGATTGAGTGCATAT






GTATGAGATGATGATCAATCATCGCATATTACTCCGAAT






AAAGCATTGATTGATTTGGAATGAAAGATATCCAAAGAA






TATTGAAGGAAAGATGCTAAATTGCTATGAATATATATA






CAATGAAGATTAGCTTGTTTATTATAGTATTCAGGATTA






GCTTGTTTATTATAGTATTCAGGATTGGAACCTAACCAC






CCAAAACGGATTCTCGAATCCGGATTAGTTCAATAGGTT






GAATTGGATGATACACCAAAAAAAAATTATAATATTCAA






GAGTTTGAATTAGCATGTGCAAGTAGCGCGATGACACAT






AGTCCAAAAATAAAAGGATCTGGTCCAAAATTTACTATA






TAACTTATTACATAATTAAAGATAAAATTTGTAACATAC






ATATACGGGACATATTTAAAAATTACACCAATCTTTAAA






ATCCTTGTAATATCGTAGCCACGACATTGTTTGTATTGT






AGTAGCACGTACACCTGCCCAACATAACATCGCTATTCT






ATTGAATTGAACACAAAAATGAAAAAAAGGACTTATTTC






ACATTCTCACAGCATTCACATAATCACATGTCTTTGTCT






CCCGTTCTATTGAATTTAACTCCACTCCTATATTAATTA






TTTCCCATACAATAATACAAACAAACAACTTACACATAA






AAATGAATAATAAAAGACAGTGAGAGATCAGGGCTGCCT






AGTCAATCCAGTGGATTAACAAAAATTGTCAATCTAATG






GCATTTTGGTAAATAAA





99

Kochia

Genomic
5741
ATTTTATTTACAATTTTGCCATTTATTTTTTTCTTTTTT




scoparia



GGTTTTATTTACCAAAATGTCACTAGATTGACAACTTTT






ATCAATCCACTGGATTGACTAAGAATTTTTCGTGAGCGA






TAGTTCGGTAGATAGAAATTTTCTTTTGATCTCGAGAAA






TTTTAGGATCGATTTTCATTTTTGATCCACCCTTGTGAC






TCTTTAAAAATATATATTAAAAAAATGTATAATAACGCC






CACCTTATTTAGGAAAACAAAGTGGATCTTTTTCTGTTT






TATTTTAAACCGTGCCCTGTATCTGTGTGTGTGACCATT






ATTTGGCCTCAATTTTGAACTTCTCCGAGTAGTTGTTAA






TACTTAGCATTTGGGACCTGCAATGTTTAGGTTTTAGGA






TCTGCAATGTCCGGTGGTGGGGAAGCCTCATTGAATGGG






GAAAGATGTACTGGTAATGTAGATGGTCCTTACAGTGAC






TCTTCACCAAGGAATGATACAAACCCTAAGCCTTCTTGT






GATGCTAATGTTCCAACTGTATTAGATGGTCAAGTCGGT






GGTGCTTGTGATGATGTAGATGTTAATGAAATTGTTTTG






GAAGCAGTACCTCCTGTAGTCGGAATGAGTTTTAAAAGT






ATGCTTGAGGTTGATGTGTTTTACAAGAAGTATGCAAAG






AGTAAGGGGTTTGCTGTTGTGAGGGTTGGTGGATCGTCT






AATGTTGCTAAAGAAAGAATAAATCAGACATGGCGTTGT






GAGTGTTATGGCTCTCCTGATGCGAAGATTATTGCCAAG






TCAAAGAGATTTGCTAAGGATCCAGTATCGGAGAATTTA






AAGGATCAGGAACTGTGTAATCCACGTAGGCGCAAGTCT






AAAAAATGTAATTGCACAGCTAAGATTTATGCTAGTGTT






AATGAATGTAGACATTGGATTATACGTGAAGTAGTGCTT






GATCATTTGAATCATGATCCCAAACCTAAGGATGCCAAA






CTAGTGAAGGCATATAGGATGCAGGAGTTTACTTCTACG






GACCGTTCAAGAGTTATAAATGGTGCTGCAGCTGGTGGG






AAGGTGGGTGTTATGTATGGTTCAATGGCGAACGAAAGG






GGTGGTTATGAGAACATGCCCTTTACTCAATGTGACATG






AGGCATGTGCTTAATGAAGAACGTAGGAGAAAGATGAGT






GGTGGTGATTTTAATGCGTTGCTAGCTTATTTTGGGAAG






TTGCAGCGTGATAATTCTAACTTTTATCATGTTCACCGA






GTCGATTCTGGGGGAACAATCAAGGATGTTCTGTGGGTA






GATGCTCGTAGTATGGCCGCATATGAGGAGTTTTCTGAC






GTTGTGTGTTTTGACACCACGTACTTGACTAATCAATAT






TCTTTACCTTTTGCAAATTTCATTGGCGTTAACCATCAT






GGTCAAAGCATCCTTTTTGGGTGTGCTCTGATTTCCAAT






GAAGATAGCGAGACGTTTGAGTGGGTTTTTAGGGAGTGG






CTGTTATGCATGAAGGGAAAGGCTCCGGGTGGTATCTTA






ACCGATCAAGCCGCTGCAATGCGACGACCCTTGGAGAAA






GTCATGCCTGATACCAAACATCGTTGGTGTATTTGGCAT






ATTACCAAGAAACTGCCCTACAAGTTTGGATCTCGCAAG






TGGTATTATTTCGAACCCTAATCTTCCTTGTTTATTCTT






GTATTTGTGTTATTTTGCTGTTTAGTGTCTCCTTGATAA






GTGTCTTGTGACTCCTTGATTTTTTTCACTTGTGCTGAA






TATCTTAGTGAAATGCAATTGTTTAAATCTTAGTGAAAT






GCAATTCTTAGTGGAATATCTTAGTGAAATGCAATATCT






TAGTGAAATGCAATTCTTAGTGGAATATCTTAGTGAAAT






GCAATATCTTAGTGAAATGCAATTCTCTTAACATTCGAT






CAAATTGAAATGCAATTTTTTTGCTTGTTCTGGTGTTGT






TGAATGATTAATTTTCCGGTTTATGCTTGTGTCGTATCT






TTCATAAGTTGCAGCATATTATGGTAATATGTTTTAATT






TGTTAATATTTCCAAACTTGCACAGTTACAAGGAATTTA






AGAAGGAGTGGTTGAATGTTGTTTATAATAGTTTGAATG






AGGCCTCCTTCGAACGCCGTTGGAAGGAGGTTGTGAGTA






AGTATGGTTTGGAAAACGATGAGTGGTTGCAGAATCTAT






TTGCTGAGAAACACATGTGGGTGCCCTCGTTTATGACTG






ATCATTTTTGGGCGGGTATGCGTTCTACGCAAAGGGTGG






AGAGTATAAATAGTTTTTTTGACCAATTTGTTGATCGAA






ACACGTCCTTTGCTGAATTTGGAGAAAAGTACATTAATG






CGGTCGAGAAGAGGATTATGGAGGAGAATGAAGCTGACC






ATAAGGAGGTGAAGTTCTTTAGGAATTATTCTACTGGTT






TTAGTGTCGAGAGGTTTTTTAAGAAAATTTACACCTCAA






GTATGTTTAGGTCTATACAAAAGGAGTGTGAGAAACGAA






CCTATTGTATGATTGATGAGGTGAAGAGGTTGGATGACA






AAAATTTTGAGTATTTGATGGAGGATAGGGTGTGGATTA






AAAAGAAGAAGAGATATATTGAAATATTGACTGATGATC






GTACTCACTATACCGTGTCTTACAATTGTGAGACTAAGG






ATGGTATTTGTGAATGCAAAAAATTTGAGACTGACGGTA






TTATTTGTAGGCACTTGATAACTCTCTTTTATAAGGTCA






GGCTAGATGATATACCAGATAAGTACGTTCTTAGGCGTT






GGAGGAAAGATGTTGTGAGGAAGCACTCTAGTGTCACTG






TCTCCTTTCATGATTTGAGTCGAACAGAACAGGTTAAGA






GGCGTGATAGGTTGGTGGTGGTATTTGAGCCTCTTAGTC






AACTTGCTTCAAAGTCAGAAGTGTGTACTGTAATTATGC






TTAAAGGCATGGCTACAATTGAGGGTGAAATTACTAAAG






TGTTGTCTGAGGATAAGGTTGAAGAGGTTAATGAAGCTG






CTGCTGATGTTGAGATGCAATCAGGTGTAGGATGTGACA






CGGATGACAGCCTTGATGGCTCTGAGTCTGAAATGGGTG






GCCATAGCAATGGTGTTGAATCTCGAGCGAGTGAGGTAG






TAGGCTCATCTACAAGTACCCCTAGCAAAAGTGTAGGAA






TCAAGGATCCAGTTATTAAAAAGAAGCGCGGAAGGCCAG






TTGGTTCTAGGTTCAAGGCAATTTCAGAGACGGGTTGGT






CATTGAAATCAAAATCTCAAAGTGAATCATGCACCTGTC






AGTGCGATGCTCATAAGTGTGTGAGCTCTAAGAAGAAGG






GACGTGGGAAAGGCAAGTGTAACGAGAAGAAGGTGTCCC






AATCTGAGCACACACAGGTATGTTTTTGGTTTCGTGTCT






CATTTTAATCAAAGTGTCCCATTTAATTACAATATTAAC






TATGCTCTGTATGAGTTCATATTTAATGTAGTGTGTTTG






AACTTAGGATGATGGAGCTCAAGCCTGCAGCAATCCCGG






AGATGCCCCTCGTAAGGTGACTGGGATATTAGCTATTCA






TGTTCAGTGTTTTTCATTATTGGTGATTTGATACTTGAT






ATGCATGTTCATTCTTGAGCCGAAGAAGTCTCTTATTGG






TGCTTTGATACTTAATATGCATGTAAATTTGTTTTGATT






TCAATTGTTTGCAGTCGAAACGAATCAAAAAAGTTTCTT






TCGTTGATGAGGAATTGAATCCGGAAGGAGATACTCGTG






TAGGTGATGTTTTTAACAATGCCAATGAAAGTCAGGATT






ATGTTTCCTTAAGTTGACTCAACATTTAAATGTTAAAGG






TATTTTATTTTAAAATTTCCTCTACGGCGGCATAAATTT






TATTTACGAGCATTGCATCATTAGTATGGTTGACTAGAA






TGTTAGATACAATGAATGCTTTTGCGAAAAATGAAAAGA






AATGTTTCTGGGATCATGCTCATGACTTCACCCTTGTTT






GACAGGAAATGATGTTTGAATTGAAGATTGTTGGAACGA






TTTCAGCTGTGCAATCAGGGTGCTTCAAGTGATCCGCTT






CAAAAGATTAATGCTAATTGGAAACTAGTGAAAGACGAT






TATGCGTGTTTCCCTTTAATTATGTATTTGATTGATGCA






TTCTTTCATTAATTTGCTCACTGTGCAACCAGGAATTCT






ATCTTTTGGATTAGAGCTGCAATTTGAAACTTGAAAGAA






TTTGTAAACAGGATTCAAAAGTTCTCGCATTGCATATTA






CGCTATTCTTTTGTTGAGTTATACTTCATTATCCGTCAC






TATTGCCATTATAATACATAGAGATTTTTCTTGAACACA






ATAATCATGTGTTTTGTTGCACGATATTACTAATTACTG






TTTGATGATTTTTAAACCATTAACTTCATATTGTAACTT






TCATTTAATGCTACAGATTTTTATCTAAAATTAAAAAAA






GGGCACCCAAAAAGGATTATAAATTCCATGATGATCTAG






TTAGCTTGTTGATAAGATAACTTCTCTCCCGTATCCTCT






TGAATTTGATCACATTCACATCATATCAAGAAACTAAAA






TAGGTAGAATAGATTGGTGTTAGTTGAAAATAGTGCAAA






GAAACAAGCTAAGGTTAATAAATAAGACTTATTATACAG






GTGACAAGTAATATTATCACTAATTAAGCTAGATTCTAC






GTAATAAATAAGACTTATAATAAGACCCTATTAATATTC






TTGACGTGGACATTGTACGTAAATAATGGTAGTCGAGTC






AAAATGTATAGATAGATTGGAGAGTCAAAATGTAAATAA






TGGTAATCGCAATTATTTCACCCATTTTCTTCTTTTTAA






TCAGCACCATCCATAACAAACATTCGATTATGCTGTGAA






CAAATCAGATCATGAAAGTAAGTCAAGGTGAACAAATCA






GATCATGCAAATTACAATTATGCTACAAAGAACTCAAAC






TTGTTCCAAAGCTCGAAATCCAAGAAAGTCTCAGGGGTT






AAAATAAACAATGCTAGGACAAATTCGAATCCAAAAGTT






TGTCTTTCGTTCATTGCACCATATTTAATTAAACATAAA






TCCATACAAACATAAGAAATTCCTAAACATCATTCAACA






CATAATAGCTAATGCAATTCGCACTCCCTTCCGTATTCT






GCTCGGCCAAACTTGGGTTACTCCACTTCCTTCTTTACA






CCCTGAAATTCAATTGAAATCAGTTTGCAACTTACATGA






GTCGACAACAGGACAATGAAGTTATTAAAATAGGTGACA






CAAAGAGGCAGCACACAAGAATCTAGATTAATACCCCAA






AATGCATTTTGATAATTAAACAAGAATCTAGTTTGCAAT






TTTGTGTTAACAACAAACCAGTGGGCATTTAATTTATGT






TTTAAAATATTACTAAACCCTAAACCCTTAACTTTGTTT






ATATTAAACCATGCACAACCATTAACTTTGTTTATATTA






AAAATTATGTTATAAAATATTACTAAACCCTAAACCCTT






ATTCGGATATGGTCATACCTCGATGCGACCATGCATCTC






CCCCTCTATTAGCTGTGAGCGAGTGAAGTGCACCTTGCC






TTCATCCCAAAGCATTAAGAGGCCGCCTGTTTTCCCTCG






TGGAGGAGTGTACACCATTTTGTAATGTAGGCCAACTGC






TTCAAGGATGTTGTTGGTGTGGAATGGGGAAGTTCTACT






CTCAGAGATGAAGAGTACACATGGCGTGTGATGGGTGGC






CAAGTGAT





100

Kochia

Genomic
4546
CCCTCGTTTTCCTCTTCTTTTTTTCCATACAGGTTTTGT




scoparia



AGTCATTTAGTGGAGGTGGGTTGATCTCCTAATAAAGTG






GGTTTGTCGATTCTTCTTTCTTCTGCAACCAGCAGAGCC






GAGTTGAATTGAGGTGCAGCCTTGAGGAAGACCTGAAAC






AAAGTCATTACAAAGAGAATTATAGATGTTCATGATTCT






GTGTAAGCCTGATGAGCTTTGTAAAACTTTGTAGTTTGT






GCAATTTGGTAATTGATTTTGTAACCACCATCGTTATCT






TTAGCGCGCCTTATGGTAAATTTGGAAGCATAATGAGCT






AAAAGATCCCAATTTGGCTTTGTAAAATTGCTATTGATT






GGAACCTTGTTTTTGGGAGCTTGAAACGATTACTTCAAA






CAAACAAAAAAAATTGTTGATGCCGTAATGCGGTATATA






GTGTTTGTCCTTAATTAGACATTTGGGGTTTTTTTTCCC






AACTTGAATTTGACAAAGATGAGATCCCAGGAATAAGTG






ACAGCCAAAACTTAAGTTGGTGCAACAACTAGTGTAATT






CATAAATTTTGTATGGTGTGATAGTGTCAAAATTATAAC






TAGGGCACACAAAATGACTGCAATAATGCTTAATAAGCA






CTAAATGTACTTTGTGTCGAATTTTGAGTCAAGTCCACG






TGTCTTTGGATCGGATAAGACAGTCCATGGTTTAGCCAA






CGAGTCAGGTTCACGTGTCTTTGGGTCGTATAAGACGAT






CCATGGTCTAACCCGGTGACGATGCGCCGTGCCCTAGTT






GCCCACTAGTAGGCAAGGAAAGTGGTGTTTGCATGGAGC






CTAAGAAGATATGGATTAGGCTGTCACTGATCCCTTGTG






GCCTTGTATGTTAATCAAATTATTAGTAGAGGTTATAAA






GGGGGGGTTGGTGAGCTACTAAACTGATTGCCTTGTTGA






TTGACAAAACCATTTTATGATTTTAGTTCCATCTTTATT






CAATAGTTTATATATGGTGTGCTACACTAGTATTATTAC






TATTATATGATGGAATATTATTCTCTCCTTTTCTTTCAC






ACATATTCTTTTTATCTACTACATTAATTTATATAATAC






CACATGAAGTATATACAAAGTTGCTTATTTCTTATGTAA






TAAGCACATGATCATTGTGATATTAATTAATCTTTTCGT






GGAGAAAATGACTAGAGGAAAATTCAAAATATTAAAGTG






TTTTTATGAACAAATGAACAAATGGTGTTAATCTAATTT






CATAGACAAGTTGGTAACTATGGTCAATCACCTCGGGAA






AAAGTAATGACAATTGTATCGATAGTTTGGTTCATGTGG






AATCAAAAAAATTTATCGAATTCATATTATTAATTTTGT






GTGCGAATGAATATCTATATTTCATGGAATATTGACTAA






ATTGTGTGATTTAGACTAAATAAAAATGCATTAACGAGA






GTCGATGAAATCGTTAAAGGATTAAAACATTAATAAAAT






GATTTATATTTTAACTTTTTCATAGTTAACCTAAAATAG






ACAAAAAATTACTCATACTCGATATAAAAAAGGATTTTT






TTATATATAAATAAACATAGAGATATATAATTTTAAAAA






AAAATAGCTCGAACTTATTCTCCCATTTGTTTTATCCTT






TATTGATGTAAATCACTAACAAAGTTAATTATCATTCCA






TTCTTAATTTTTTTTAATGAAGGTCAATATTCTTACAAT






AGTGATTAGCTTTTTCAATATAATTTTGTTCCAAAAAAA






ATATTAGTGATCTTTCTTTTTAAAAAAAATGGTAGCACT






AGCACACCAACACTCTCACAAATTCAACCACAACAACCC






ATGTTTTTGATTTGCCCAATTTCTTCTTCACCAACCCCC






TTCTCTCTTCCACCTAATTTTGGTTGGTGAATCCTTCTT






CTCATTCTCTCTCCTAAAAAGAAGCTTAAACCCATCGTC






AATCATATAGTATTAGCCATCAAAAACAACAACAAGAGA






GAGAAGAAACAATGGCTCAAGCTACCACCTTTAACAATG






GTGTCAAAAATGGTCATCAATTATGCGCCAATTTACCAA






AAACCCACTTGCCCAAATCTCAAAAAGCTGTCAAATTTG






GATCAAACTTGAGATTTTCTCCAAAGTTGAAGTCTTTCA






ACAATGAAAGAGTTTCTGGGAAATCATCAGTTGTTTTTA






AGGTTCATGCTTCAGTTGCTGCTGCTCCCTCAACTTCCC






CAGAAATTGTGTTGCAACCCATTAAGGAGATTTCTGGCA






CTGTTCAATTGCCTGGTTCTAAGTCTTTATCTAATCGAA






TTCTTCTTTTAGCTGCTCTTTCTGAGGTACTTTTCGATT






GTTTGATTTCATCTTTTACCCTGAATTTGGCGTTTGTTT






AATGCAGTTTTTGTGTTTTGAATCTTTGTAATTTATGTT






AAGTTTTAAAAGAATGATGCTTCTTGTTTCTCTTGTTGT






TTGTGCATTGGTTGTTGGATTGGTATCATTGAGAAATAT






GTATGCATTAGTAAAAATTGGTGTGTTTTGTGTAGTTTT






GCATTAAGTTGTTTAATTGATATCATTGAGAAATTGGGT






TCAGTACATTGTTTGACTTTGGAATATAAAAATTGGTGG






AAAAAAAACAGCAGATTTTTAACAAATGATTGTTATGTG






AAGATTTGTTATCATATAATGGAGGATGAAAGTCCTGAA






GTTGTATGAACTAGATGATAAAACCTCACTTTCACTGAT






TTCGGGGTGGACAATCAAAGAACCTTGATCGAGTAGGAG






CAAAATGACACCCTGAACATAGATGAACAGGCTTCATAA






TATATGTATTCACTTGATGCTTTCGGTTACCTCGAACTG






CTGATGAGGTTGAGGAAATTGGGATGTGTGGTGCACTTT






TTCATTTTGGTGGCAAGAATGCAAGCCTTATGGTACGGC






TTGGGAGCGATCACTGATTAGTTGGCTCAAGCTTGACTT






TTCTAGGGAGACTATCTCGAGGAAGGTGGTTTAGTTTAA






TACGGTGTACAGTAGTCGAATCCTCACAAATCACAACTC






AAATCCAAGTAAAAGGGACAACTACACATGAAACTCAGA






TTAGTTCATTTATCAATACCTCAAGAACATACTTAAGGA






ACCAAGTACAATTTCTTCTCTAGATATTGAAAGGGGAGG






AAGTGATATAAAAACCTAAACTCTTGTCAGGCCACACTT






AAAGGTCCACATCATATACCCCAGAACTATAGGTTAAAG






ACATACAGTACATAAGAATTACGTCGATATGTTGAAAGA






ACTGTCAGATTCTAACATAATTGCACACAAGCATTCCTC






TACAATCTGAGTTTAACGAAATTCCCATCGCCTGCTTGC






AACAATGGGCATCGTAAGTCCATTCACTAGCACCTTCAT






CTTCACCTTCACCTTCACTTGACCCAGATGGCACATTGT






AGTGCAATTTGAAAAACTATTCTGAGAACTTACATAACC






AGCCTTTGTTCATAGTTACAGTCCTTCGAATCCTACTCC






TTAGGCATGCACAATTTCTTCCTATCAATAAGGAGCTTT






TAGGTTCTCAAAACTGAGGTGGGAAGGAAAGTTGAGAAT






AGTATGCATTTAAGTTTGTTTTTTCATTTTTCGTTCCTG






AACAACTACACATGTCTCCTGTAGATGGACTTTGGTACT






AGTGTAATTCTGTGTCAGTCTCATGTCTGCTGCGTTTTT






GCACCCTCCCTTTTTCTTTGACCTTGTGTTGTCCTATTT






TCTAAAGTTTCAACAACCTAACCAAATTTATGCTGCAGG






GTACAACAGTACTTGACAACTTGCTATATAGTGATGATA






TTCGCTATATGTTGGATGCTCTAAGAACTCTTGGGCTCA






ACGTAGAGGATGATAATAAGGCCAAAAGGGCAATCGTGG






AGGGTTGTGGCGGTCTATTTCCTGCTGGTAAAGAGAATA






GGAGTGAGATTGAACTTTTCCTTGGAAACGCGGGAACGG






CAATGCGCCCATTGACAGCTGCAGTTGCCGTTGCTGGAG






GAAATTCCAGGTTAGTGAATAACGATTTCTATGTGGATG






TAATACTGATAGGTTTGTGTAAGGCTTATGATATAGTTG






CACGATAGGTCTACTAGAAAGATGCTATTCATTGTGAAA






AAATATGTTAGATTAATGTTTGTGAAATGAAAATTTAAA






GAGATTGTAACTGTGGAAGTATTGCTGATGGATGAACAC






AAACTAGATATAATTAAAAGGCTAACAGCGTGTATTATC






TCGTTAATATCTGATGAACTTTTTCAGATTTATCTAAAC






ATAAGCTATTGTATTGGGATTAGGATAATTCTCGTAGTC






CAGACATCCTGTCATGGAGTAAGGATTCTTAAGACTATG






GATGGTTAATTCAAACTCTGGCAATCATCTTTTGGTAGT






GAGAAAACTGCTGTCTTTTTTAGAATCTTCTTTATCCAT






AAACTCTTAAATCCTAAATAAACCGGAAGCAATCTTGGT






CGTTGATTTTTGAGATGTATGGTCAAGATGTGCATAAGT






TTAATAGTAAATGTGCATATTT





101

Kochia

Genomic
57
GTTTTTGCACATTCACAGGAAAATTCGTGCACATTTACG




scoparia



TACAAAAATTTGCACATT





102

Kochia

cDNAContig
1548
ATGGCTCAAGCTACCACCTTTAACAATGGTGTCAAAAAT




scoparia



GGTCATCAATTATGCGCCAATTTACCAAAAACCCACTTG






CCCAAATCTCAAAAAGCTGTCAAATTTGGATCAAACTTG






AGATTTTCTCCAAAGTTGAAGTCTTTCAACAATGAAAGA






GTTTCTGGGAAATCATCAGTTGTTTTTAAGGTTCATGCT






TCAGTTGCTGCTGCTCCCTCAACTTCCCCAGAAATTGTG






TTGCAACCCATTAAGGAGATTTCTGGCACTGTTCAATTG






CCTGGTTCTAAGTCTTTATCTAATCGAATTCTTCTTTTA






GCTGCTCTTTCTGAGGGTACAACAGTACTTGACAACTTG






CTATATAGTGATGATATTCGCTATATGTTGGATGCTCTA






AGAACTCTTGGGCTCAACGTAGAGGATGATAATAAGGCC






AAAAGGGCAATCGTGGAGGGTTGTGGCGGTCTATTTCCT






GCTGGTAAAGAGAATAGGAGTGAGATTGAACTTTTCCTT






GGAAACGCGGGAACGGCAATGCGCCCATTGACAGCTGCA






GTTGCCGTTGCTGGAGGAAATTCCAGTTATGTACTTGAT






GGAGTGCCAAGAATGAGGGAGCGACCCATTGGGGATCTG






GTAGCTGGTCTGAAGCAACTGGGTGCAGATGTTGACTGT






TTTCTTGGCACAAATTGTCCTCCTGTAAGAGTAAATGCT






AAAGGAGGTCTTCCAGGGGGCAAGGTCAAGCTCTCAGGA






TCAGTTAGTAGCCAATATCTTACTGCGCTACTCATGGCT






ACCCCTTTGGCTCTTGGAGATGTGGAGGTTGAAATCATT






GATAAATTGATTTCTGTCCCTTACGTAGAGATGACAATA






AAGTTAATGGAACGGTTTGGAGTGTCAATAGAGCATACT






GCTAGCTGGGACAGGTTTTTGATCCGAGGTGGTCAGAAG






TACAAATCTCCTGGAAATGCATTTGTTGAGGGTGATGCT






TCAAGTGCCAGTTACTTCTTAGCAGGGGCCGCGATCACT






GGTGGGACTGTGACTGTTGAGGGTTGTGGAACAAGCAGT






TTGCAGGGTGATGTTAAATTCGCGGAGGTTCTTGAGAAG






ATGGGTTGCAAAGTTACATGGACAGAGACCAGTGTCACT






GTAACTGGACCGCCCAGGGACTCATCTGGAAGAAAACAT






TTGCGTGCCATCGATGTTAACATGAACAAAATGCCAGAT






GTTGCGATGACTCTTGCTGTTGTTGCCCTATATGCAGAT






GGGCCCACAGCTATCAGAGACGTTGCTAGCTGGAGAGTG






AAGGAAACAGAAAGGATGATTGCCATCTGTACAGAACTC






AGAAAGCTTGGAGCAACAGTTGAGGAAGGACCTGATTAC






TGTGTGATCACTCCACCAGAAAAACTAAACGTAACCGCC






ATCGACACATATGATGATCATCGAATGGCCATGGCATTC






TCTCTTGCTGCCTGTGCTGATGTTCCTGTCACTATTAAG






GACCCAGGCTGCACCCGCAAGACCTTCCCAGACTACTTT






GACGTCTTGGAACGGTTTGCCAAGCAT





103

Kochia

Genomic
5426
GGGGTATTTCATGGAAAACGCAAATTTACAGGGGTACCC




scoparia



TGTAGAAAATCCCAACAAAAAAAATTGTTGATGCCGTAA






TGCGGTATATAGTGTTTGTCCTTAATTAGACATTTGGGG






TTTTTTTTCCCAACTTGAATTTGACAAAGATGAGATCCC






AGGAATAAGTGACAGCCAAAACTTAAGTTGGTGCAACAA






CTAGTGTAATTCATAAATTTTGTATGGTGTGATAGTGTC






AAAATTATAACTAGGGCACACAAAATGACTGCAATAATG






CTTAATAAGCACTAAATGTACTTTGTGTCGAATTTTGAG






TCTAGTTTACGTGTCTTTGGATCGGATAAGACAGTCCAT






GGTTTAGCCCATGAGTCAGGTTCACGTGTCTTTGGATCG






TATAAGACGATCCATGGTCTAACCCGGTGACGATGCGCC






GTGCCCTAGTTGCCCACTAGTAGGCAAGGAAAGTGGTGT






TTGCATGGAGCCTAAGAAGATATGGATTAGGCTGTCACT






GATTCCTTGTGGCCTTGTATGTTGATCAAATTATTAGCA






GAGGTTATAAAGGGGGGTTGGTGAGCTACTAAACTGATT






GCCTTGTTGATTGACAAAACCATTTTATGATTTTAGTTC






CATCTTTATTCAATAGTTTATATATGGTGTGCTACACTA






GTATTATATGATGGAATATTATTCTCTCCTTTTCTTTCA






CAAATATTCTTTTTATCTACTACATTAATTTATATAATA






CCACATGAAGTATATAAAAAGTTGCTTTTTCTTATGTAA






TAAGCACATGATCATTGTGATTTTAATTAATCTTTTCGT






GGAGAAAATGACTAGAGGAAAATTCAAAATATTAAAGTG






TTTTTATGAACAAATGAACAAATGGTGTTAATCTAATTT






CATAGACAAGTTGGTAACTATGGTCAATCACCTCGGAAA






AAGTAATGACAATTGTATCGATAGTTTGGTTCATGTGGA






ATCAAAAAAATTTATCGAATTCATATTATTAATTTTGTG






TGCGAATGAATATCTATATTTCATGGAATATTGACTAAA






TTGTGTGATTTAGACTAAATAAAAATGCATTAACGAGAG






TCGATGAAATCGTTAAAGGATTAAAACATTAATAAAATG






ATTTATATTTTAACTTTTTCATAGTTAACCTAAAATAGA






CAAAAAATTACTCATACTCGATATAAAAAAGGATTTTTT






TATATATAAATAAACATAGAGATATATAATTTTAAAAAA






AAATAGCTCGAACTTATTCTCCCATTTGTTTTATCCTTT






ATTGATGTAAATCACTAACAAAGTTAATTATTCCATTCC






TAATTTTTTTTTATGAAGGTCAATATTCTTACAATAGTG






ATTAGCTTTTTCAATATAATTTTTTTCCAAAAAAATATT






AGTGATCTTTCTTTTTTTAAAAATGGTAGCACTAGCACA






CCAACACTCTCACAAATTCAACCACAACAACCCATGTTT






TTGATTTGCCCAATTTCTTCTTCACCAACCCCCTTCTCT






CTTCCACCTAATTTTGGTTGGTGAATCCTTCTTCTCATT






CTCTCTCCTAAAAAGAAGCTTAAACCCATCGTCAATCAT






ATAGTATTAGCCATCAAAAACAACAAGAGAGAGAAGAAA






CAATGGCTCAAGCTACCACCTTTAACAATGGTGTCAAAA






ATGGTCATCAATTATGCGCCAATTTACCAAAAACCCACT






TGCCCAAATCTCAAAAAGCTGTCAAATTTGGATCAAACT






TGAGATTTTCTCCAAAGTTGAAGTCTTTCAACAATGAAA






GAGTTTCTGGGAAATCATCAGTTGTTTTTAAGGTTCATG






CTTCAGTTGCTGCTGCTCCCTCAACTTCCCCAGAAATTG






TGTTGCAACCCATTAAGGAGATTTCTGGCACTGTTCAAT






TGCCTGGTTCTAAGTCTTTATCTAATCGAATTCTTCTTT






TAGCTGCTCTTTCTGAGGTACTTTTCGATTGTTTGATTT






CATCTTTTACCCTGAATTTGGCGTTTGTTTAATGCAGTT






TTTGTGTTTTGAATCTTTGTAATTTATGTTAAGTTTTAA






AAGATTGATGCTTCTTGTTTCTCTTGTTGTTTGTGCATT






GGTTGTTGGATTGGTATCATTGAGAAATATGTATGCATT






AGTAAAAATTGGTGTGTTTTGTGTAGTTTTGCATTAAGT






TGTTTAATTGATATCATTGAGAAATTGGGTTCAGTACAT






TGTTTGACTTTGGAATATAAAAATTGGTGGAAAAAAAAC






AGCAGATTTTTAACAAATGATTGTTATGTGAAGATTTGT






TATCATATAATGGAGGATGAAAGTCCTGAAGTTGTATGA






ACTAGATGATAAAACCTCACTTTCACTGATTTCGGGGTG






GACAATCAAAGAACCTTGATCGAGTAGGAGCAAAATGAC






ACCCTGAACATAGATGAACAGGCTTCATAATATATGTAT






TCACTTGATGCTTTCGGTTACCTCGAACTGCTGATGAGG






TTGAGGAAATTGGGATGTGTGGTGCACTTTTTCATTTTG






GTGGCAAGAATGCAAGCCTTATGGTACGGCTTGGGAGCG






ATCACTGATTAGTTGGCTCAAGCTTGACTTTTCTAGGGA






GACTATCTCGAGGAAGGTGGTTTAGTTTAATACGGTGTA






CAGTAGTCGAATCCTCACAAATCACAACTCAAATCCAAG






TAAAAGGGACAACTACACATGAAACTCAGATTAGTTCAT






TTATCAATACCTCAAGAACATACTTAAGGAACCAAGTAC






AATTTCTTCTCTAGATATTGAAAGGGGAGGAAGTGATAT






AAAAACCTAAACTCTTGTCAGGCCACACTTAAAGGTCCA






CATCATATACCCCAGAACTATAGGTTAAAGACATACAGT






ACATAAGAATTACGTCGATATGTTGAAAGAACTGTCAGA






TTCTAACATAATTGCACACAAGCATTCCTCTACAATCTG






AGTTTAACGAAATTCCCATCGCCTGCTTGCAACAATGGG






CATCGTAAGTCCATTCACTAGCACCTTCATCTTCACCTT






CACCTTCACTTGACCCAGATGGCACATTGTAGTGCAATT






TGAAAAACTATTCTGAGAACTTACATAACCAGCCTTTGT






TCATAGTTACAGTCCTTCGAATCCTACTCCTTAGGCATG






CACAATTTCTTCCTATCAATAAGGAGCTTTTAGGTTCTC






AAAACTGAGGTGGGAAGGAAAGTTGAGAATAGTATGCAT






TTAAGTTTGTTTTTTCATTTTTCGTTCCTGAACAACTAC






ACATGTCTCCTGTAGATGGACTTTGGTACTAGTGTAATT






CTGTGTCAGTCTCATGTCTGCTGCGTTTTTGCACCCTCC






CTTTTTCTTTGACCTTGTGTTGTCCTATTTTCTAAAGTT






TCAACAACCTAACCAAATTTATGCTGCAGGGTACAACAG






TACTTGACAACTTGCTATATAGTGATGATATTCGCTATA






TGTTGGATGCTCTAAGAACTCTTGGGCTCAACGTAGAGG






ATGATAATAAGGCCAAAAGGGCAATCGTGGAGGGTTGTG






GCGGTCTATTTCCTGCTGGTAAAGAGAATAGGAGTGAGA






TTGAACTTTTCCTTGGAAACGCGGGAACGGCAATGCGCC






CATTGACAGCTGCAGTTGCCGTTGCTGGAGGAAATTCCA






GGTTAGTGAATAACGATTTCTATGTGGATGTAATACTGA






TAGGTTTGTGTAAGGCTTATGATATAGTTGCACGATAGG






TCTACTAGAAAGATGCTATTCATTGTGAAAAAATATGTT






AGATTAATGTTTGTGAAATGAAAATTTAAAGAGATTGTA






ACTGTGGAAGTATTGCTGATGGATGAACACAAACTAGAT






ATAATTAAAAGGCTAACAGCGTGTATTATCTCGTTAATA






TCTGATGAACTTTTTCAGATTTATCTAAACATAAGCTAT






TGTATTGGGATTAGGATAATTCTCGTAGTCCAGACATCC






TGTCATGGAGTAAGGATTCTTAAGACTATGGATGGTTAA






TTCAAACTCTGGCAATCATCTTTTGGTAGTGAGAAAACT






GCTGTCTTTTTTAGAATCTTCTTTATCCATAAACTCTTA






AATCCTAAATAAACCGGAAGCAATCTTGGTCGTTGATTT






TTGAGATGTATGGTCAAGATGTGCATAAGTTTAATAGTA






AATGTGCATATTTTTTTGGTTTTTGCACATTCACAGGAA






AATTCGTGCACATTTACGTACAAAAATTTGCACATTTAC






TTTTTTCATGAAATAAATCTTGATCCTTCATTCAAAATC






CAACGATCAAAATTGCTTCTCACGTTTCTCATTTTAAGG






GTGCTTCTCATTTGATCCTAAATCTATATACATATGTAA






GTACCTTGAATGCCATGGAATTGAAATTTTAAATTATGT






GTTGGTTGTGAATGGGGTTAATGAAGTAGATAGAGTAGG






CTGACAAATATTCCAAGGGGTACCTACAGCTACTCTTGG






TCACTAAGTCATTGTTCTGTTTTTAGATTTTAATTGCTT






TCCCTTATGGTTTTTTCAGTTATGTACTTGATGGAGTGC






CAAGAATGAGGGAGCGACCCATTGGGGATCTGGTAGCTG






GTCTGAAGCAACTGGGTGCAGATGTTGACTGTTTTCTTG






GCACAAATTGTCCTCCTGTAAGAGTAAATGCTAAAGGAG






GTCTTCCAGGGGGCAAGGTAGAGTAAATTTCTTGTAGAT






TAACTTTGTTGATAATTCACTCATTAATATATCAATGAG






ACATCCTCAAAAAATAACTCTGTCCTGTTTTCCTGTCAT






TAAGCTCTGTTACATAACTTACATTATTTTAAAGCATTT






TGATGGAATGTATCTGCAGGTCAAGCTCTCAGGATCAGT






TAGTAGCCAATATCTTACTGCGCTACTCATGGCTACCCC






TTTGGCTCTTGGAGATGTGGAGGTTGAAATCATTGATAA






ATTGATTTCTGTCCCTTACGTAGAGATGACAATAAAGTT






AATGGAACGGTTTGGAGTGTCAATAGAGCATACTGCTAG






CTGGGACAGGTTTTTGATCCGAGGTGGTCAGAAGTACAA






GTAAGTCACTCTTCTTTTACTTGCATGTATTGAACGTCA






TTCCATTGGTAGACTGATGCAGCATTAATAATATGTCAG






ATCTCCTGGAAATGCATTTGTTGAGGGTGATGCTTCAAG






TGCCAGTTACTTCTTAGCAGGGGCCGCGATCACTGGTGG






GACTGTGACTGTTGAGGGTTGTGGAACAAGCAGTTTGCA






GGTATGATCCAAAGCCTCACTTCAATAAATTTTCAAGTA






CACATTCGTTTTACTTCCTCCGTTTTGTATTACTCGCAC






CGGTTTCCATTTTGGGAAATTTGCGAATACTTGCACCAC






TTTGCTTTATTCCCTTTTTTGGCAATTTATTTTGTTTGA






AATGA





104

Kochia

Genomic
2430
CACTACCCTTCCCTCAACTAATTATACCAACAAAAAAAC




scoparia



GCCTTGGAGTCCGCAATAATGAAAGTGGTGCGAGTAATA






TAAAACGGAGGAAGTATTTATTTTTTAGATTAACTGTTG






TAACCATTTTTTGGTTAATTTTGAGGCTAAAGTATGGCC






TTTTGACAATTAACTTTCAATATTAATCTCTAATGTGGT






GTAAAGTCATCCATTTTAATATCAGACAATTGTGTTTGA






CTCCCAAAAAAGGATAATTTACTTCTTATTGTTTTGTGA






CTGCCAAAAAGGATCACTTGAATGTCATGGATTGTTTAA






TCACCTATTTAGGCATTGTTGTGTTGTGATTCACCTCAT






CTTTAGGTCCAATAGATTTTGGCTGAATCTTACTTGTGA






CTGCCAAAAAGGATCACTGACAATTTACTTGTTTAACGG






ATTTTACTCAGGGTGATGTTAAATTCGCGGAGGTTCTTG






AGAAGATGGGTTGCAAAGTTACATGGACAGAGACCAGTG






TCACTGTAACTGGACCGCCCAGGGACTCATCTGGAAGAA






AACATTTGCGTGCCATCGATGTTAACATGAACAAAATGC






CAGATGTTGCGATGACTCTTGCTGTTGTTGCCCTATATG






CAGATGGGCCCACAGCTATCAGAGACGGTATTAACTCCT






TTCTGATACATTACACTTTTCTTGTGCTATATATTGTTT






CAAATTTGATAATTCGATCATGCTTCAAATTTTGCACAC






AGCCGTAATCCATGGTTATAAAATGACTATGACACTTGT






CTTGTTACTGAAAAGTGCATACAGTAACAAAGCTGATGT






TACTTCTTAGTTTACTCTAATAATGGTTGGACGGTCACT






GGCGCACATCCCCATGGTTGGAAGTTGTGAATATTGTTG






TCATAATGGCTTATGGAGCATCTTTTGGTACACTTCAGG






AGTAAAAGACCACTAGTCCAGTATAGGGTTAATCACCTC






TAGAACTAGTTAGTCACATATACTCGGAAAATTATTCAT






ATTTTGTGGTTACATGCGTTCGTTTATCTGCATCTTGCC






TAGTGTCTCCTCTTGAAATCATTCATATATGTTCTTTTT






TTTCCCCTTCATCTGTTACATGTTCAAAATATGCTTACA






ACGAAATTGGGTAACTTGACCAGTTGCTAGCTGGAGAGT






GAAGGAAACAGAAAGGATGATTGCCATCTGTACAGAACT






CAGAAAGGTTAGCCACATTCTTTAATCTTGTAGTAAAAA






ATAAAGTTGCCTGTTTCATGTAAGTTGATGTTAATTCGG






ACTTTTAAAATTTTCAGCTTGGAGCAACAGTTGAGGAAG






GACCTGATTACTGTGTGATCACTCCACCAGAAAAACTAA






ACGTAACCGCCATCGACACATATGATGATCATCGAATGG






CCATGGCATTCTCTCTTGCTGCCTGTGCTGATGTTCCTG






TCACTATTAAGGACCCAGGCTGCACCCGCAAGACCTTCC






CAGACTACTTTGACGTCTTGGAACGGTTTGCCAAGCATT






GAGCGGCTATCTGCAGATTTTTCATAAAGTATGCACGAA






AGTTTCAATTTAAGAAGATACCGAGTTGATTATATGCTT






TCCGCATAAGTTATTGTCACATTTTTTGTATTATGTTTG






TAAGATCTTAGGCAATAAGATATACTGTTAGAAATTATG






TGTATCTGATTATTTAGAGATGTATACTTGGGTCAGTTG






AAATTGTACGAGAAAGGTCTGGATTTCGAAAAAAATGTG






ATCCAGACATTAGTGTGGTCTGAACTGAAGCAAGTACTC






CCTCCGTCTCATAATTCTCACAACTCTTGCTATTATTTG






TGAGAAATAAAATATTCAAGTGTTGCGAGAATTGTGTGA






CAGCGGGAGTAGCAACTTTTCAAGTTTGGAATTAATTTT






GTGATGTGAGTTTTTTGTGTATTCTTTGTTTTCCATCAA






ACCCTCCTCCAAAGTACAAACCCAATTCATGGTATGGTT






GATGCAACAGCAATATGTCAAAATCAGTGTTTGTGATGT






TGGCTTCTCTACTTCATTATCTCTTCTTGTTCAGTATGA






TTTCGCAATCTCTTCCCGTCAAAATCCCTTCTCCTCTGA






TAATCGCAGAAATCGTGTCTTCCCCTCGGTGTGTATCCA






CCTCTTAAAAATTTGTTGAGAGTTGAAATGTGCTGCCAC






TGGATTCATCCTTTAGGGCGAATTTTGAACGGATTTTAG






GTGGTTAGGATTCAACCCCTGTCAATTATAGTTACGGGA






ATTAGACACGCGTTCTGCCTTACCAACCCCATTTTTTTG






TCACTATATCAAGTATCCATTGCTAGTTGTAGTCATGTA






GTAGGGTCTGAAATCTAAAGCAAAGTAGCAAGATTGCAA






CAACAGGAACAGCAAATAAATCTAGACTTTTGAGGTTTG






TTTTTTTTTTTT





105

Kochia

Genomic
4880
TCACCTTCACTTGACCCAGATGGCACATTGTAGTGCAAT




scoparia



TTGAAAAACTATTCTGAGAACTTACATAACCAGCCTTTG






TTCATAGTTACAGTCCTTCGAATCCTACTCCTTAGGCAT






GCACAATTTCTTCCTATCAATAAGGAGCTTTTAGGTTCT






CAAAACTGAGGTGGGAAGGAAAGTTGAGAATAGTATGCA






TTTAAGTTTGTTTTTTCATTTTTCGTTCCCTGAACAACT






ACACATGTCTCCTGTAGATGGACTTTGGTACTAGTGTAA






TTCTGTGTCAGTCTCATGTCTGCTGCGTTTTTGCACCCT






CCCTTTTTCTTTGACCTTGTGTTGTCCTATTTTCTAAAG






TTTCAACAACCTAACCAAATTTATGCTGCAGGGTACAAC






AGTACTTGACAACTTGCTATATAGTGATGATATTCGCTA






TATGTTGGATGCTCTAAGAACTCTTGGGCTCAACGTAGA






GGATGATAATAAGGCCAAAAGGGCAATCGTGGAGGGTTG






TGGCGGTCTATTTCCTGCTGGTAAAGAGAATAGGAGTGA






GATTGAACTTTTCCTTGGAAACGCGGGAACGGCAATGCG






CCCATTGACAGCTGCAGTTGCCGTTGCTGGAGGAAATTC






CAGGTTAGTGAATAACGATTTCTATGTGGATGTAATACT






GATAGGTTTGTGTAAGGCTTATGATATAGTTGCACGATA






GGTCTACTAGAAAGATGCTATTCATTGTGAAAAATATGT






TAGATTAATGTTTGTGAAATGAAAATTTAAAGAGATTGT






AACTGTGGAAGTATTGCTGATGGATGAACACAAACTAGA






TATAATTAAAAGGCTAACAGCGTGTATTATCTCGTTAAT






ATCTGATGAACTTTTTCAGATTTATCTAAACATAAGCTA






TTGTATTGGGATTAGGATAATTCTCGTAGTCCAGACATC






CTGTCATGGAGTAAGGATTCTTAAGACTATGGATGGTTA






ATTCAAACTCTGGCAATCATCTTTTGGTAGTGAGAAAAC






TGCTGTCTTTTTTAGAATCTTCTTTATCCATAAACTCTT






AAATCCTAAATAAACCGGAAGCAATCTTGGTCGTTGATT






TTTGAGATGTATGGTCAAGATGTGCATAAGTTTAATAGT






AAATGTGCATATTTTTTTGGTTTTTGCACATTCACAGGA






AAATTCGTGCACATTTACGTACAAAAATTTGCACATTTA






CTTTTTTCATGAAATAAATCTTGATCCTTCATTCAAAAT






CCAACGATCAAAATTGCTTCTCACGTTTCTCATTTTAAG






GGTGCTTCTCATTTGATCCTAAATCTATATACATATGTA






AGTACCTTGAATGCCATGGAATTGAAATTTTAAATTATG






TGTTGGTTGTGAATGGGGTTAATGAAGTAGATAGAGTAG






GCTGACAAATATTCCAAGGGGTACCTACAGCTACTCTTG






GTCACTAAGTCATTGTTCTGTTTTTAGATTTTAATTGCT






TTCCCTTATGGTTTTTTCAGTTATGTACTTGATGGAGTG






CCAAGAATGAGGGAGCGACCCATTGGGGATCTGGTAGCT






GGTCTGAAGCAACTGGGTGCAGATGTTGACTGTTTTCTT






GGCACAAATTGTCCTCCTGTAAGAGTAAATGCTAAAGGA






GGTCTTCCAGGGGGCAAGGTAGAGTAAATTTCTTGTAGA






TTAACTTTGTTGATAATTCACTCATTAATATATCAATGA






GACATCCTCAAAAAATAACTCTGTCCTGTTTTCCTGTCA






TTAAGCTCTGTTACATAACTTACATTATTTTAAAGCATT






TTGATGGAATGTATCTGCAGGTCAAGCTCTCAGGATCAG






TTAGTAGCCAATATCTTACTGCGCTACTCATGGCTACCC






CTTTGGCTCTTGGAGATGTGGAGGTTGAAATCATTGATA






AATTGATTTCTGTCCCTTACGTAGAGATGACAATAAAGT






TAATGGAACGGTTTGGAGTGTCAATAGAGCATACTGCTA






GCTGGGACAGGTTTTTGATCCGAGGTGGTCAGAAGTACA






AGTAAGTCACTCTTCTTTTACTTGCATGTATTGAACGTC






ATTCCATTGGTAGACTGATGCAGCATTAATAATATGTCA






GATCTCCTGGAAATGCATTTGTTGAGGGTGATGCTTCAA






GTGCCAGTTACTTCTTAGCAGGGGCCGCGATCACTGGTG






GGACTGTGACTGTTGAGGGTTGTGGAACAAGCAGTTTGC






AGGTATGATCCAAAGCCTCACTTCAATAAATTTTCAAGT






ACACATTCGTTTTACTTCCTCCGTTTTGTATTACTCGCA






CCGGTTTCCATTTTGGGAAATTTGCGAATACTTGCACCA






CTTTGCTTTATTCCCTTTTTTGGCAATTTATTTTGTTTG






AAATGACCATTTTAGCCTTATTGTTTTTCCCCACATGGT






GGGATCAAAGGAATTAACACCATAAAACACACCTCCTTT






ATACCCCACCAACTTAATCACACTACCCTTCCCTCAACT






AATTATACCAACAAAAAAACGCCTTGGAGTCCGCAATAA






TGAAAGTGGTGCGAGTAATATAAAACGGAGGAAGTATTT






ATTTTTTAGATTAACTGTTGTAACCATTTTTTGGTTAAT






TTTGAGGCTAAAGTATGGCCTTTTGACAATTAACTTTCA






ATATTAATCTCTAATGTGGTGTAAAGTCATCCATTTTAA






TATCAGACAATTGTGTTTGACTCCCAAAAAAGGATAATT






TACTTCTTATTGTTTTGTGACTGCCAAAAAGGATCACTT






GAATGTCATGGATTGTTTAATCACCTATTTAGGCATTGT






TGTGTTGTGATTCACCTCATCTTTAGGTCCAATAGATTT






TGGCTGAATCTTACTTGTGACTGCCAAAAAGGATCACTG






ACAATTTACTTGTTTAACGGATTTTACTCAGGGTGATGT






TAAATTCGCGGAGGTTCTTGAGAAGATGGGTTGCAAAGT






TACATGGACAGAGACCAGTGTCACTGTAACTGGACCGCC






CAGGGACTCATCTGGAAGAAAACATTTGCGTGCCATCGA






TGTTAACATGAACAAAATGCCAGATGTTGCGATGACTCT






TGCTGTTGTTGCCCTATATGCAGATGGGCCCACAGCTAT






CAGAGACGGTATTAACTCCTTTCTGATACATTACACTTT






TCTTGTGCTATATATTGTTTCAAATTTGATAATTCGATC






ATGCTTCAAATTTTGCACACAGCCGTAATCCATGGTTAT






AAAATGACTATGACACTTGTCTTGTTACTGAAAAGTGCA






TACAGTAACAAAGCTGATGTTACTTCTTAGTTTACTCTA






ATAATGGTTGGACGGTCACTGGCGCACATCCCCATGGTT






GGAAGTTGTGAATATTGTTGTCATAATGGCTTATGGAGC






ATCTTTTGGTACACTTCAGGAGTAAAAGACCACTAGTCC






AGTATAGGGTTAATCACCTCTAGAACTAGTTAGTCACAT






ATACTCGGAAAATTATTCATATTTTGTGGTTACATGCGT






TCGTTTATCTGCATCTTGCCTAGTGTCTCCTCTTGAAAT






CATTCATATATGTTCTTTTTTTCCCCTTCATCTGTTACA






TGTTCAAAATATGCTTACAACGAAATTGGGTAACTTGAC






CAGTTGCTAGCTGGAGAGTGAAGGAAACAGAAAGGATGA






TTGCCATCTGTACAGAACTCAGAAAGGTTAGCCACATTC






TTTAATCTTGTAGTAAAAAATAAAGTTGCCTGTTTCATG






TAAGTTGATGTTAATTCGGACTTTTAAAATTTTCAGCTT






GGAGCAACAGTTGAGGAAGGACCTGATTACTGTGTGATC






ACTCCACCAGAAAAACTAAACGTAACCGCCATCGACACA






TATGATGATCATCGAATGGCCATGGCATTCTCTCTTGCT






GCCTGTGCTGATGTTCCTGTCACTATTAAGGACCCAGGC






TGCACCCGCAAGACCTTCCCAGACTACTTTGACGTCTTG






GAACGGTTTGCCAAGCATTGAGCGGCTATCTGCAGATTT






TTCATAAAGTATGCACGAAAGTTTCAATTTAAGAAGATA






CCGAGTTGATTATATGCTTTCCGCATAAGTTATTGTCAC






ATTTTTTGTATTATGTTTGTAAGATCTTAGGCAATAAGA






TATACTGTTAGAAATTATGTGTATCTGATTATTTAGAGA






TGTATACTTGGGTCAGTTGAAATTGTACGAGAAAGGTCT






GGATTTCGAAAAAAATGTGATCCAGACATTAGTGTGGTC






TGAACTGAAGCAAGTACTCCCTCCGTCTCATAATTCTCA






CAACTCTTGCTATTATTTGTGAGAAATAAAATATTCAAG






TGTTGCGAGAATTGTGTGACAGCGGGAGTAGCAACTTTT






CAAGTTTGGAATTAATTTTGTGATGTGAGTTTTTTGTGT






ATTCTTTGTTTTCCATCAAACCCTCCTCCAAAGTACAAA






CCCAATTCATGGTATGGTTGATGCAACAGCAATATGTCA






AAATCAGTGTTTGTGATGTTGGCTTCTCTACTTCATTAT






CTCTTCTTGTTCAGTATGATTTCGCAATCTCTTCCCGTC






AAAATCCCTTCTCCTCTGATAATCGCAGAAATCGTGTCT






TCCCCTCGGTGTGTATCCACCTCTTAAAAATTTGTTGAG






AGTTGAAATGTGCTGCCACTGGATTCATCCTTTAGGGCG






AATTTTGAACGGATTTTAGGTGGTTAGGATTCAACCCCT






GTCAATTATAGTTACGGGAATTAGACACGCGTTCTGCCT






TACCAACCCCATTTTTTTGTCACTATATCAAGTATCCAT






TGCTAGTTGTAGTCATGTAGTAGGGTCTGAAATCTAAAG






CAAAGTAGCAAGATTGCAACAACAGGAACAGCAAATAAA






TCTAG





106

Lolium

Genomic
6967
GATAAACTGATCTCTGTTCCTTATGTTGAAATGACATTG




multiflorum



AGATTGATGGAGCGTTTTGGCGTGACGGCAGAGCATTCT






GATAGCTGGGACAGATTCTACATTAAAGGAGGACAGAAG






TACAAGTAAGTTTTGAATTGTTCTGCTTATTCTAAGCAT






TTGTCACATTTGACTTCTGGATAAACTACAGAATTGAAT






ATTAGAAAGAAATATTGACTGCTCAAGTAACTTTATTTA






TCTGGAAATGACCATGCTGTTATTAGCTATGAAGTCAAG






CTTTACTAGGAAATCAGTGCCTTAGGCAATTGACTATGC






TACTTACAATGCACTGGCTGCACAGCTATGTTTTCTGGT






GCATAAACATTTATTCATCTGGCTAGGACCAAACTTTTA






GTAGCTATGAACTGTACTAGGAAATCACTGCCTAGGCAA






AACTCCACAATTTACAATGACATTGCATGGTTTTATTTT






CTTGTGCATAAATTTGGTCACATCAGAAGTGCCATCCAT






CTAAAAAATCGGCGAAAATTGAGAACATAGGCAGCTTAA






TGACAGCGGTTTGGCAATAAGCATTTTTTGCAGACGATT






CTTGCTTTGCTTCTTTTAGCCCTTTTTATTGTTATATAC






CCTGCCAAATGTCGCATCAGGATATCTGCTGCCAAATGT






TGCATCAGGATATGGATCGTGGTTTTACTGAGCATACTT






CACTGATGTAATTGAAAACTGTCAGTTCAAACTTCATAA






AAGTTGTAGTAATGGCTTCCTAACAAGCCCTCCCTTGCT






CTGGAATTTACAATTGACAGGTCCCCTGGAAATGCCTAT






GTCGAAGGTGATGCCTCAAGTGCGAGCTATTTCTTGGCT






GGCGCTGCAATCACTGGAGGAACTGTGACTGTCCAAGGT






TGCGGCACCACCAGTTTGCAGGTAGAACTGTACTATCAG






TTTTTACCATTGGTTAAGCATACTTGCAGTATAACATAA






TCAAAGATATACTGCTGTCAACCAAACATGCTTTAAGTG






GACATTCATTTATGAATCTATAATATAACTACAGTACCG






TAATTTGGTTTTCTTGTGCTATATCCCTGATGATGCCTA






ATATTGCAGGGTGATGTGAAATTTGCTGAGGTACTAGAA






ATGATGGGAGCAAAGGTTACATGGACCGACACTAGTGTA






ACTGTTACTGGTCCACCGCGTCAGCCCTTTGGACGGAAA






CACCTTAAAGCTGTTGATGTCAACATGAACAAAATGCCT






GATGTTGCCATGACTCTTGCCGTCGTTGCCCTTTTTGCC






GATGGTCCAACTGCTATCAGAGATGGTAAACCGTCTTAT






GTGTTGCTGTTGATTTCATTTGGATGGATTTAGCTACAG






CGCATGATTTGTTGCTGACACTTGTCCATTCTCCTCTGC






AGTTGCCTCCTGGAGAGTGAAGGAAACCGAGAGAATGGT






GGCAATCCGGACGGAACTAACAAAGGTAGCACACCTATC






TCCACTTCTTATATTTCAGCTCACTGTTGCACTCCCCAG






TGCTTAGTCTCACCTGTTGTGTGCCTCGTGCTATAGCTG






GGAGCAACGGTAGAGGAAGGCCCGGACTACTGCATTATC






ACACCACCAGAGAAGCTGAACGTCACGGCGATCGACACC






TACGATGACCACCGGATGGCGATGGCCTTCTCCCTTGCC






GCTTGTGCTGAGGTGCCTGTCACGATCAGGGACCCCGGG






TGCACCCGCAAGACCTTCCCCAACTACTTTGACGTGCTA






AGCACCTTCGTGAAGAACTAGCTCCTTTTGTAGCCTGTC






CATGGTTTGAGGAAATTTTTACTGTTTTGGTCCTTCTTG






CGAAATGATTTATGAGTCTGTAATACTAGTTTTGTAGCA






TGTCGTGGGCCTTTTGAGGTAAAATGAGTTGTAATGCAT






ACCGAGTTCGTTTTGAATAAGAAGCAAGTTAGGCGTACC






ATACTGTGATCTAGATGTTCGTCTTTCGTTTCCAGAAAT






ATTATGTTGGCTGCTGGTACTCGAGTGTGTTCGAAAACA






ACATGATAGCCATGGGATTTGGGAGATGACATGTGGGTA






TGTGGCTACTTGAGGAAGATCTTCATCAAAGCAACCAAG






AACACCAGCCGATGGTAAAACAGTGCAGCTTGCACGAAG






AACGTTTGCCTACACTGCTTGGTAAAAGCGAAGGTTTGG






TTTGATAAATTTCTCAGCAGTATTTTGTAATGCTTCGAT






GGTAATTCTTCTACGCAAACCATCAGCCTCAATAGTAAT






CCTGTGCAGTATTTTTTTAGTAGCCCTCGGCACGCTTGA






ACTGTAATTCTTCAACTAAAAACTCAGCTTGAAAATAAT






TATTCGTTGTTAATTGTTCAACAATAATTTTCCTAGCGC






TTAATTGGTGAGAGGTAATTCTCAGCAGCAGTAATTCTC






CCAATGCAAAATCTTTAACTCCAATTGGAGCGGCTTCTC






CACACTCCACCGTGCTTCACTGTAGAGCTTCATCTTTTA






CCAACCTGGACCCGCGGAACAAGAAGGTCATGGTTACAT






GGACCATGGTACAGGAAACAGAGCAGGCCACACGAGACA






CGACTATAGCAGCACATCGTTGGTTCCCCACAACCGATT






CCAGCGACTGGCCTGGCGGCGCGCATGTAGAGCAGGCGA






CCGGTGAGACACAACGGTACTTCACCGGCGGCTCCTATG






GATTTCACATGGAGGCTGTGAGCAGGTAAGTGCGTGTTT






TTTTCTCGATTGGAAACTATGGGTGAGAAATTTGTCCCC






AATTATGGCGGGCGGCCGATTATTTCTGCCATTGCGGTG






CGCCAATCTACGAGGGCACAGTTGTTGTGCCTGAAAATG






GTGCAAATCCATCCGTGATGCAGTGCTGGAAGGCGGTGC






CTGCAGCCATGTCGGGTCAGTTGAGCCAGATCCATCCGT






GGCGGGCATCTTGCAAGTGCTACCTAGCAGGTGCCGACA






ACGGAAAAGGGGACGGGGAGGCCGATTCAACGCAGTGCA






CCATGAATCAGACATCGATGGACCGCGCCAAGAGGTAAA






AAAGTAAATCATATTCGTAATTTCTGAAATTTTGGAAAA






TGTCAGTCATTGTGTAGGTGGATAACATATAAAAAGCAG






CCCAGGAATCTGAGTTTGGTAGACCGGTGTAAGCAACAC






ATGAGAATTGGCCAGGATAAAAGAAAAATCATGTCGATT






TGAGTAAGCTGATCGTCCATGGTCAGTTAAAGAATTGTT






ATTGTGAATGATGCAGTGATGTGAAGTTAGTGAACATTA






GAAGGGGTTGTGCGTTGTAGTTAAAGTTCAAATTTAGCT






GGAAATGGCATGAATCTGAGCCAGGTTGTGAACTCCTGA






GGTATGAAGTTCTGTATAGAAAAGAAATTGTTCAGTTGT






TGAGTGAACTGGATGTAGGTAAGTGGCAGTGATGATAAG






GTAGAATTTACACATACAAAGATAGCATGAATTTGTAGC






CCTGGCTAGCAGGTTGCCAACAGTTATCAGTTTGTGCAG






TTGCGTGTAAAAAGGAAAAATGATGATGAAAGAATTAGT






ATGAGTGTTCTGTAGACCTAACTAACCTATGGTAGATGT






TGCGAACCTGTGCAGGATAAAGATGGGTCAGGCGCCATC






AGACATGGCGCCATGTCTTTCGAGACCGAGTGCTCTTGA






GAAATCAATATGTGGCTACACAGAAAAGCTAGGTTGGGA






GGGGTGCACATGGAGACACAATGGTTGCCGGTGCAATAG






CGGGTACAGAACAGACACAAAAATACCTTTGATGTTTGC






ATGCATTGGCTGAACAGAATTAGATCACGTATTTGCAGG






GGTTCCAGAAAAAAATGCAGCACACTGAGGCCGAGGGGG






TTGCTGCTGGATTATCATCCGATGAAATATTTACAAGAT






AACTACATGAGCTCTACAGTTTGAACAGTACGTTCCAAT






ATCACTAGTTTTAATAATTTATCCAAACACATCTGTAAA






GAAAATGCAGATAATAACGTTGATCTGACATGTTTGGTC






AGTTCTTGACGTGGACAAGGTAACAAGTGAAACAATAAA






AGGCGCTACAGTCTCGGCACACGCTAGTCGAGTTGCATC






TCTCGGAGGAAAAGGTGCTCCTAAATTTTCAGCAGGTGA






GTTCTCCTTCTGTTTGCAGCACACCTCGTGTTTGTATTC






CCCATGATGGAAAAATTAAGGGGTATGCATGATTTTAAT






TCAGAAAATTGTGTGGCTCCGCAGATGCCCCGTCCAATT






GTGGAGCTGTTGTGATATCGAGGAACTAAAGTGCCAGAA






ATGGATGATGACGTGCTAGATGCTCCAGGGGCTGAAACG






GTGGCGTCAAACCCGTCCATGCCTATCTGAGGTAGGAGA






AACAAACGAGATCACACTGGTTTACCTTTGAATGCACTA






TGCACCGAAGAGAGTTCGGTTTGCATCTGGTGCCACCTC






AGTGGGTGGACAATCTAGCATGAGAGGGTAGGAATCTCA






TGGACGCATGTAATTTTCACAGAGACCTGTGTTTTATGT






TGTGGGGTGTGCAAATTCAGTAACCTAATGATGCCTACT






TTTTGTCAAGAAAAATATAGTTAATGAGTCTGGCTGATC






GTGAGGAACTGACAGCTACCTAATCGGGCAGTGGTAATG






GGTTTAGCTGTGCATATTTGTGATAGTGTGCTCATAGAT






TCTTCTAATTCTGATAATGGTTTACGGTTATCCGTAGGT






CAAGGAGGACATAGTGATAGGGAGTGCAAAGACGACCAG






TACAACTCATCATGGTGCATCAGCAGCAGCTGGTAATTC






ATGAATTTGAGTATATACCTGGGATACAAAAGGTGAGGG






TTGGATAAGTCTTAATGCCATGTTATACTGCGTATTCAG






CAGGTGCAGCGAGTGGCGACGTATCCAGGGGGCGTCGTC






CAGTTGAAGCCTCGGCACTATAACTGGTATGTCGTGCTC






AAGTGGTAATGACATTACTATGTGATGGTGAAAAAACTT






TGCAGTTGAGTGTACTCCGAATCTGATATGGCTAGTTGT






TGCGCACTGTCTGAAAGTTGTGCTTCTACCCTTTGCTGT






AGGTATACGGACTTTCGTTCAGCTTCCAGGCATAGAGAA






GCACATTCGGTGCTCATTCAGATAGACGATAAGGATTGC






GCGAAGAGAGAGCTAGACTAGCAGTTCCCAATCACAGAC






GATGCAGGGGTGCAGCATGATCAGCCAGTCCTTCAATAT






GGATGAGATGGGCGAAGCCATGGATCTCGGGGAATGTAT






CCACAAAGATACCACCCCTGTTCCGCAATGAAGGAGTTC






TAGTCGTGAGCAATGCTACATCTAGGGGCTCGTTTTTAC






AAAATCGAACTTACGGGCTGACGTGGAGAATCATGGAGG






GATTAAGGTTCCTCAAATCAAATCATGGGAGGAGAAAGA






TTTGCACCACCCACGTTCATCCACCTCATCCCGTAAAAC






CACCCCGTAACAAAAATCCCATAGGTGTAGGATTATTGG






TTTATTAATCGGGATACTGACTCCAATACTCACAAATAT






ACGCACATGGGCTTCCATCTGTCTGGGCATGATTGGTCC






AGGACGCGAGTGTAGATGCACCCGGGAGCCAAACCACAT






TTCCTTCTCTCGAAGCTAAAACTCGTTTAGTTTTTCATT






AGTTAGGCTCAGGTTATTCAGATCTTTTTTACGTTGCTA






GCAATGACAATTGTCACAATTCCAAGTGTCATGCAGCAA






AGCAGACGCCACTCTTTCACGCATAGAACAACGATATAA






TCTGCAGAGATACTGCCGAAATGCTAACAATATCAATAG






CAAGCCATATATATAAACTTCCAATCAGATACACCAGAG






AGCAATGAAAATTGGTGATGATGATAACTCAGACGATAG






GGACTCAGAATCGTGATGCAAAGAACCTAGTCATACAAA






AACCGGTCTCATACTAGAAATTCAAAGACATGTCATTCT






CTGGTGTCTCTCCACCTTTTTAATAAACAGATAAAAGGC






ACTGGGTAGGATAACTACTGGTCGGTGATGGTCACTTCG






ACCTCGACACCAGGCTCGATAGTGATAGAGGTGATCTGC






TTCACAACGTCTGGGGAGCTGACAAGGTCAATCACCCTC






TTGTGCACCCGCATCTCGAACCGATCCCAGGTGTTGGTA






CCTGATTTAACAAAACAGAGTTAGCCATTTCATTTTGGA






AGATGATGAAGCTTCAGCATAGCTGCAGGTAATGAATGA






TCTGTGACAGGCTGAGCATCAGTTTTAAAAAGCTCGATT






TTGAAACATCAAATGTATCAGACAAAATCATATGGAATC






ATCATCTGCTCAGCCCATCCACAGGATACATGTTTCCTT






TCCAAAAAAATTAAATCAGGCGTTATTGAACAACAAGAT






CTTACTGCCAGTAGTGCTGGAAGAACCACTAGACGAATT






GTATGTAGAGCAACAAACAAGCATTATACAGGCTAATCA






TCAGTTTTAAAAAGCTCGATTGTGATTCCTCAAAGAAAA






TCTCAGGAATAACTTGGTTTAGCATCATCTGATCAGCCC






GTTACAGAACAAAGGTGTAAAAACTAGCAGCACACACTC






TTAACAGTAGAGACTGGGTTACATAAATGGAGGTAATAT






GTATGAAATACAACTGAGGTATGCTGAGAAGTGTTCATG






TTTAGGATCACAAATAAATCAGCAGATCGCCAGAAGCAA






TGAATGTACTTGCTGCAGATTAGCCCCTAGCTAACTTAC






TAGAAAAACCCAAGCATCAGTTTTAAAAAGCTCGGTTTA






AGATACTTCAACGATGGAACATCTCAGTAGCATCTCCTT






GTAACATCACATGCTCAGTTTACAGTAAACGATTCGCCA






TGTAGACTCCATTTTACTTGAAATCATACCACACTAACA






GAACTACCACGAACATAATAAAAAAGCGATGACATGCTA






AGCATCAGTTTTAAAAAGCTCGATT





107

Lolium

Genomic
1093
GTAGTAGCTGCTGGTGGAAATGCGACGTATGTTTCTTTT




multiflorum



TTTTATCCTTACGGGAATAAGTATGAGTTCCGTGGTTAT






GCTTTGAGACTGATGGTTTACGTCTCTCTTCTGAACTTC






AGTTATGTTCTTGATGGAGTACCAAGAATGATGGAGCGT






CCTATCGGTGACTTAGGTGTCGGTTTGAAACAACTAGGT






GCGAGTGTTGATTGTTTCCTCGGCACTGACTGCCCACCT






GTTCGTATCAACGGCATTGGAGGGCTACCTGGTGGCAAG






GTTAGCTTCATGAACTTCCATGTTATACGCTTTTGTACA






AACATTTCACTTGTCTGGAGAAAAAACAAGATTACTGAC






AGAGTGAGAGTAGTACGGTGCAATGCGACCACACAATAA






CTCCAAAATTGCCATAACCAATAGGCCCTTTTTCGTGTA






AAACAGATATGCTGATTGTATTGTGGTCTTAGATCACAT






GGGTCTATCATGAACTAGCACTTAACATTGAACCACATT






CCACAGGTTAAGCTGTCTGGTTCCATCAGCAGCCAATAC






TTGAGTTCCTTGCTGATGGCTGCTCCTTTAGCTCTTGGG






GATGTCGAGATTGAAATCATTGATAAACTGATCTCTGTT






CCTTACGTTGAAATGACATTGAGATTGATGGAGCGTTTT






GGCGTGACGGCAGAGCATTCTGATAGCTGGGACAGATTC






TACATTAAAGGAGGACAGAAGTACAAGTAAGTTTTGAAT






TGTGCTGCTTATTCTAAACATTTGTCCAAACATTTGACT






TCTGGATAAACTAGGGAATTGAGCATTGGAAAGAACTAT






TGGCTGCTCAACTTTATTCATCTGGAAATGACCATACTG






TTATTAGCTAAGTCAAGCTTTACTATGAAATCAGTGACT






CTGCTACTTACAATGCACTGGCTGCACAACTATGTTTTC






TGGTGCATAAACTATAGTCTGCCCAAATAACTACCAAAC






TTGTAGTAGCTATGAACTGTACAAGGAAATCAGTGTGGC






AAAACTCCGCTACTTACAATGGCATTGCATGGTTATATT






TTGTTGTGCATAAACTTGGTCACATCAGAAGTGTCATCC






A





108

Lolium

Genomic
983
CATTGAAAGTTCTATTATTATTTTGAGTTTGCATCTTAT




multiflorum



GTTGTTTTTCCTTTGTGATTTTATCCATTTTCTTAACTA






GTTATTCGTTTCCTGAAGTTTTTAGTGTCATAACTCCTA






ATCACAATCATGCTACAGGGCACAACAGTGGTCGACAAC






TTGCTGTATAGTGATGATATTCTTTATATGTTGGACGCT






CTCAGAACTCTTGGTTTAAAAGTGGAGGATGATAGTACA






GCCAAAAGGGCAGTCGTAGAGGGTTGTGGTGGTCTGTTT






CCTGTTGGTAAAGATGGAAAGGAAGAGATTCAACTTTTC






CTTGGTAATGCAGGAACAGCGATGCGCCCATTGACAGCT






GCGGTTGCCGTTGCTGGAGGAAATTCAAGGTTTGTCCAA






TTATATTCTTTATGTGAGTGTTGTTTTTTGTGTTAGTTT






CAATCATGAAGGTACTAGTGCAGAAGCCGTACCCCTGAA






ATTTTCTTATTTTGTATATATCAATTGGTAATTGATGTA






AGATATTTTTCCGAGAGGAATAAAAAACAGGGGGATAGA






GAATATTAAAGTATTGTTCTATCACATTAACTTTTTATC






AAAGGTGTACATTGTGTTTGTGAAGTTTATAGAGCTAAA






GGGATGGAAGGGAAGGGGATTGAAGAAGAGGAGAAAAGA






AGAAGATCCTCCTTTGAATACCAAGGTTTGAACGGAAGG






GAGAAGGAGGAAACTCTAAACAATATGGAGATGAACTGA






TGAAGTTTTTGGATCAGAACCGCTTGAGAATCAGAGTTA






AGCCATGTGAAAGTCTATGAGCATGACTTCACCTGGTTA






ATAATTTTAAGCTCTCAACTTCTCATCCTCTTTTCTTTG






TCGAAAATGTCATGTCTTCATGTGATACGTGCTTACATA






ATCGTTTCTTTTGTAAAGCGATTGTCTCTCCAGATTTCT






CCCCTTACGAAAATAATCCTTGAAGGTTGAAGAAATCCC






TTCATTTC





109

Lolium

Genomic
591
AGTCTACACCAACCCACTTTCTCTTTGCCCACCAAAACT




multiflorum



TTGGTTTGGTAAGAACTAAGCCCTCTTCTTTCCCTTCTC






TCTCTTAAAAGCCTAAAATCCACCTAACTTTTTCAGCCA






ACAAACAACGCCAAATTCAGAGGAAGAATAATGGCTCAA






GCTACTACCATCAACAATGGTGTCCATACTGGTCAATTG






CACCATACTTTACCCAAAACCCAGTTACCCAAATCTTCA






AAAACTCTTAATTTTGGATCAAACTTGAGAATTTCTCCA






AAGTTCATGTCTTTAACCAATAAAAGAGTTGGTGGGCAA






TCATCAATTGTTCCCAAGATTCAAGCTTCTGTTGCTGCT






GCAGCTGAGAAACCTTCATCTGTCCCAGAAATTGTGTTA






CAACCCATCAAAGAGATCTCTGGTACTGTTCAATTGCCT






GGGTCAAAGTCTTTATCCAATCGAATCCTTCTTTTAGCT






GCTTTGTCTGAGGTATTTATTTCTCAACTGCGAAAACAA






TCTCTATTTGATATTGGAATTTATATTACATACTCCATC






TTGTTGTAATTGCATTAGTACATACTTATGTTTTGACCT






TTGTTC





110

Lolium

Genomic
514
GGGCGGTGCTCTGGAGAAGGTCGTGCTGCAGCCCATCCG




multiflorum



GGAGATCTCCGGCGCCGTGCAGCTGCCCGGCTCCAAGTC






GCTCTCCAACCGGATCCTTCTCCTCTCCGCCTTGTCCGA






GGTGAGAAAACAAGCAGACAAAGCCCCTCTCCCTACTTC






TCCCCTTTGTGTGAATTGGGTGCCGAGATGGTTTAGGAG






CACCTTATCATGCTTGGTGCTCGTGAGATCATAAGATTT






TTTTCTTTTTACTTAAAACGATCTAGCCATAGGATTTAG






TTCAAGGTTACTCTTCTTAGTAGCCAATTCCTATATTCG






TTTATCGAATCGTTAGAATTATGTAGTTAGTTGGATCAA






TATTATATGTGGCCTTGGATGAGCAAAAGTCAGTTTATT






CACTTTCCACTCATCGGAATATTATAGTGCAGCATGTCC






TGTCAACTTATTTGCAGTACGATAAGCAATTGAAACTGC






TTTGCTTCGCTGTCATCTCTTGCTGATCATTAACTGGCT






TTTGCTC





111

Lolium

Genomic
460
CAAGATATACAACATGCAAATTTTGCCATCGCAAAAGGT




multiflorum



TTTCACGAGCTATAAGGTACTACTAAATCTAGGATCCTC






CTGGGCTTATTCAGTTTAGATCCGTTGGAATATTATAGT






GCAGCATGCCCTGCTAACCTTTGTACAGTAAGATAAGAA






ATTGAAACTGGTTTATTTCGCTGTCGTCTCTTGTTGATC






ATTAACTGGCTTTTGCTCATCAGGGAACAACGGTTGTGG






ATAACCTGTTGAACAGCGAGGATGTCCACTACATGCTCG






AGGCCCTGGACGCGCTTGGGCTCTCAGTGGAAGCAGACA






AAGTTGCAAAAAGAGCTGTAGTCGTCGGCTGCGGCGGCA






GGTTCCCGATTGAAAAGGATGCCAAGGAGGAAGTAAAGC






TCTTCTTGGGCAACGCTGGAACTGCGATGCGGTCATTGA






CGGCAGCTGTAGTAGCTGCTGGTGGAAATGC





112

Lolium

Genomic
1377
ACCTGAATGGGCACTTAGTATTCATGTACCTACATTCAA




multiflorum



GACATACAACATGCAAATTTTGTTATCGCAAAAGGTTTT






CACGATCTGTAAGACACTACATCTAGGATCCTCCTGGGC






TTATTCAGTTTCGACCCGTTCGAATGTTATAGTGCAGCA






TGCCCTGTTAACCTTTGTACATCAAGATAAGAAACTGAA






ACCTGTTTACTTCGCTGTCGTCTCTTGCTGATCCTTACT






TTCTCTCATCAGGGAACAACGGTTGTGGATAACCTGTTG






AACAGCGAGGATGTCCACTACATGCTCGAGGCCCTGGAC






GCGCTCGGGCTCTCCGTGGAAGCAGACAAAGTTGCAAAA






AGAGCTGTAGTCGTTGGCTGCGGCGGCAGGTTCCCGATT






GAAAAGGATGCCAAGGAGGAAGTAAAGCTCTTCTTGGGC






AACGCTGGAACTGCAATGCGGCCATTGACGGCAGCTGTA






GTAGCTGCTGGTGGAAATGCGACGTATGTTTCTTTTTTT






TATCCTTACGGGAATAAGTATGAGTTCCGTGGTTATGCT






TTGAGACTGATGGTTTACGTCTCTCTTCTGAACTTCAGT






TATGTTCTTGATGGAGTACCAAGAATGATGGAGCGTCCT






ATCGGTGACTTAGGTGTCGGTTTGAAACAACTAGGTGCG






AGTGTTGATTGTTTCCTCGGCACTGACTGCCCACCTGTT






CGTATCAACGGCATTGGAGGGCTACCTGGTGGCAAGGTT






AGCTTCATGAACTTCCATGTTATACGCTTTTGTACAAAC






ATTTCACTTGTCTGGAGAAAAAACAAGATTACTGAGAGT






AGTATGGTGCAATGCGACCACACAATAAATTTGAAATAG






CCATAACCAATAGGCCCTATTTTGTGTAAACAGATATGC






TGATTGTGTTGTGGTCTTAGATCACACGGTCTATCATAA






ATTAGCACTTAACATTGAACCACATTCCACAGGTTAAGC






TGTCTGGTTCCATCAGCAGCCAATACTTGAGTTCCTTAC






TGATGGCTGCTCCTTTGGCTCTTGGGGATGTTGAGATTG






AAATTATTGATAAACTAATCTCTGTTCCTTACGTTGAAA






TGACATTGAGATTGATGGAGCGTTTTGGTGTGACGGCAG






AGCATTCTGATAGCTGGGATAGATTCTACATTAAAGGAG






GACAGAAGTACAAGTAAGTTTTGAATTGTTCTGCTTATT






CTAAACATTTGTCACATTTGACTTCTGGATAAATTAGAG






AACTGAACATTGGAAAGAACTATTGGCTGCTCAAGTAAC






TGTATTCATCTGGAAATGACGATACTGTTAGTAGCTATG






AAGTCAAGCTTTACTAGGAAATCAGTGCCTAGGCAATCG






ACTCTCCTACTT





113

Lolium

Genomic
1107
CCTACTTACAATGCACTAGCTGCACAGCTATTTTTTTGG




multiflorum



TGCATAAACTATTGACTGCTCAAATAACTTTATTCATGT






GGATAGGACCAAACTTTTAGTAGCTATGAACTGTACTAG






GAAATCAGTGCCTACGCAAAACTCCGCTACTTACAATGA






CATTGCACGGTTATATTTTCTTGTGCATAAATTTGGTCA






CATCAGAAGTGCCATCCATCTAAAAAAATCGGCGAAAAT






TGAGAACATAGGCAGCTTAATGACATCGGTGGCAATAAG






CATTTTTTGCAGACGATTCTTGCTTTGCTTCTTTTAGCC






CTTTTTATTGTTATGCCCTGCTGCCAAATGTCGCATCAG






GATATCTGCTGCCAAATGTTGCATCCGCATATGGATCCT






GGTTTTACTGAGCATACTTCACTGATGTAATCGAAAACT






GTCAGTTCAAACTTCATAAAAGTTGTAGTAATCGCTTCC






TAACAAGCCCTCCCTTGCTCTGGAATTTACAATTGACAG






GTCCCCTGGAAATGCCTATGTAGAAGGTGATGCCTCAAG






TGCAAGCTACTTCTTGGCTGGCGCTGCAATCACTGGAGG






AACTGTGACTGTCCAAGGTTGCGGCACCACCAGTTTGCA






GGTAGAACTGTACTGTCAATTTTTACCATTTGGTTAAGC






ATACTTGCAGTATAACATAATCAAAGATATACTGCTGTC






AACCAAACATGCTTTAAGTGGACACTCATTTATGAATCT






ATAATATAACTACAGTACAGTAAGTTGGTTTTCTTGGGC






TATCTACCTGACGATGCTTAATATTGCAGGGTGATGTGA






AATTTGCTGAGGTACTAGAAATGATGGGAGCCAAGGTTA






CATGGACCGACACTAGTGTAACTGTTACTGGCCCAACAC






GTCAGCCCTTTGGAAGGAAACACCTAAAAGCTGTTGATG






TCAACATGAACAAAATGCCTAATGTTGCTATGACTCTTG






CCGTTGTTGCCCTTTTTGCAGATGGTCCAACTGCTATCA






GAGATGGTGAACCCTCTTATGTGTTTCTGTTGATTTCTT






TTGGATGACTTCCGCTACAGCTTAAGATTTGTTCCTGAC






ACTTGTCCATTCTCC





114

Lolium

Genomic
480
CTTGTCCATTCTCCTCTGCAGTTGCCTCCTGGAGAGTGA




multiflorum



AGGAAACCGAGAGAATGGTGGCAATCCGTACGGAACTAA






CAAAGGTAGCACACCTGTCTCCACTTCTTATTTTCAGCT






CACTGTTGCACCCCCCCAGTGCTTAGTCTCACCTGTTGT






GTTCCTCGTGCTATAGCTAGGAGCAACGGTAGAGGAAGG






CCCGGACTACTGCATTATCACACCACCAGAGAAGCTGAA






CGTCACGGCGATCGACACCTACGATGACCACCGGATGGC






GATGGCCTTCTCCCTCGCTGCCTGTGCAGAGGTGCCTGT






CACGATCAGGGACCCTGGGTGCACCCGCAAGACCTTCCC






CAACTACTTTGATGTGCTAAGCACCTTCGTGAAGAACTA






GCTCAAGGAAAATCTACAGCATATCGCCTTTGTACTTTT






GTAGCCTGTTGTTCATGGTCTGAGGAATTTTTTACTGTT






TTGATCTTCTTG





115

Lolium

Genomic
318
CCACGTCCGTGGCCGCGCCCGCGGCGCCGGCCGGCGCGG




multiflorum



AGGAGGTCGTGCTGCAGCCCATCCGGGAGATCTCCGGCG






CCGTGCAGCTGCCCGGCTCCAAGTCGCTCTCCAACCGGA






TCCTTCTCCTCTCCGCCTTGTCCGAGGTGAGAAAACAAG






CAGACAAAGCCCCTCTCCCTACTTCTCCCCTTTGTGTGA






ATTGGGTGCCGAGATCGGAATATAGCTAGGTGCTTGTGA






AGTCGTGAGATCATAAGATTTTTTTTCCTTTTTACTTAA






AACGATCTAGCCATAGGATTTAGTTCAAGGTTACTCTTC






TTAGTA





116

Lolium

cDNA
1284
CAGCTGCCCGGCTCCAAGTCGCTCTCCAACCGGATCCTC




multiflorum



CTCCTCTCCGCCTTGTCCGAGGGAACAACGGTCGTGGAT






AACCTGTTGAACAGCGAGGATGTCCACTACATGCTCGAG






GCCCTGGACGCGCTCGGGCTCTCCGTGGAAGCAGACAAA






GTTGCAAAAAGAGCTGTAGTCGTTGGCTGTGGCGGCAGG






TTCCCGATTGAGAAGGATGCCAAGGAGGAAGTAAAGCTC






TTCTTGGGCAACGCTGGAACTGCAATGCGGCCATTGACG






GCAGCTGTAGTAGCTGCTGGTGGAAATGCAACTTATGTT






CTTGATGGAGTACCAAGAATGAGGGAGCGACCTATCGGT






GACTTAGTTGTCGGTTTGAAACAACTAGGTGCGAATGTT






GATTGTTTCCTCGGCACTGACTGCCCACCTGTTCGGATC






AACGGCATTGGAGGGCTACCTGGTGGCAAGGTTAAGCTG






TCTGGTTCCATCAGCAGCCAATACTTGAGTTCCTTGCTG






ATGGCTGCTCCTTTGGCTCTTGGGGATGTCGAGATTGAA






ATCATTGATAAACTGATCTCTGTTCCTTACGTTGAAATG






ACATTGAGATTGATGGAGCGTTTTGGCGTGACAGCAGAG






CATTCTGATAGCTGGGACAGATTCTACATTAAAGGAGGA






CAGAAGTACAAGTCCCCTGGAAATGCCTATGTCGAAGGT






GATGCCTCAAGTGCGAGCTATTTCTTGGCTGGTGCTGCA






ATCACTGGAGGAACTGTGACTGTCCAAGGTTGCGGCACC






ACCAGTTTGCAGGGTGATGTGAAATTTGCTGAGGTACTA






GAAATGATGGGAGCGAAGGTTACATGGACCGACACTAGT






GTAACTGTTACTGGTCCACCGCGTCAGCCCTTTGGAAGG






AAACACCTAAAAGCTGTTGATGTCAACATGAACAAAATG






CCTGATGTTGCCATGACTCTTGCCGTTGTTGCCCTTTTT






GCTGATGGTCCAACTGCTATCAGAGATGTTGCCTCCTGG






AGAGTGAAGGAAACCGAGAGAATGGTGGCAATCCGGACG






GAACTAACAAAGCTGGGAGCAACGGTAGAGGAAGGCCCG






GACTACTGCATTATCACACCACCAGAGAAGCTGAACGTC






ACGGCGATCGACACCTACGATGACCACCGGATGGCGATG






GCCTTCTCCCTCGCTGCCTGTGCAGAGGTGCCTGTCACG






ATCAGGGACCCTGGGTGCACCCGCAAGACCTTCCCCAAT






TACTTTGACGTGCTAAGCACCTTCGTGAAGAACTAG





117

Lolium

Genomic
302
AAACAACATCATATGGTTTCTTTTGTCTTTATGACTAGA




rigidium



CCACTCTTTATTATTCCTTGTATTGGGATCTTATTTTGA






ATGGTTGTTTAGCCTACACCTCATGTTCTAGATTTTGTT






CGTATACCAGACTTTTCTTGATTGCGATCTATTTGTCCC






CTGGATTTTGCATAGGGTGATGTAAAATTTGCCGAAGTT






CTTGAGAAGATGGGTTGCAAGGTCACCTGGACAGTACAA






TAGCGTAACTGTTACTGGACCACCCAGGGAATCATCTGG






AAGGAAACATTTGCGCGCTAATCGACGTC





118

Sorghum

cDNA
608
GAGGAAGTGCAGCTCTTCTTGGGGAATGCTGGAACTGCA




halepense



ATGCGGCCATTGACAGCAGCTGTTACTGCTGCTGGTGGA






AATGCAACTTACGTGCTTGATGGAGTACCAAGAATGAGG






GAGAGACCCATTGGTGACTTGGTTGTCGGATTGAAGCAG






CTTGGTGCGGACGTTGATTGTTTCCTTGGCACTGACTGC






CCACCCGTTCGTATCAATGGAATTGGAGGGCTACCTGGC






GGCAAGGTTAAGCTCTCTGGCTCCATCAGCAGTCAGTAC






TTGAGTGCCTTGCTGATGGCTGCTCCTTTGGCTCTTGGG






GATGTGGAGATTGAAATCATTGATAAATTAATCTCCATT






CCCTATGTTGAAATGACATTGAGATTGATGGAGCGTTTT






GGCGTGAAAGCAGAGCATTCTGATAGCTGGGACAGATTC






TACATTAAGGGAGGTCAAAAATACAAGTCCCCCAAAAAT






GCCTATGTTGAAGGTGATGCCTCAAGTGCAAGCTATTTC






TTGGCTGGTGCTGCAATTACTGGAGGGACTGTGACTGTT






GAAGGTTGTGGCACCACCAGTTTGCAGGGTGATGTGAAG






TTTGCTGAGGTACTGGAGATGAT





119

Lolium

Genomic
647
CGCCACGTCCGTGGCCGCGCCCGCGGCGCCGGCCGGCGC




rigidium



GGAGGAGGTCGTGCTGCAGCCCATCCGGGAGATCTCCGG






CGCCGTGCAGCTGCCCGGCTCCAAGTCGCTCTCCAACCG






GATCCTTCTCCTCTCCGCCTTGTCCGAGGTGAGAAAACA






AGCAGACAAAGCCCCTCTCCCTACTTCTCCCCTTTGTGT






GAATTGGGTGCCGAGATGGGATTTTAGGAGGGTTAGGTG






CATCTTATCATGCTAGGTGCTCGTGAGATCATAAGATTT






TTTTCTTTTTACTTAAAACGATCTAGCCATAGGATTTAG






TTCAAGGTTACTCTTCTTAGTAGCCAATTCCTATGTTCG






TTTATCGAATCGTTAGAATTATGTAGTTAGTTGGATCAA






TATTATATGAGGCCTTGGATGAGCAAAAGTCAGTTAATG






GTAATTAGAATTATGTAGGACCTGGTGATCCTCTTATGT






CAGTCTGATGGCTTCCTCATGAAAGTATTACGCTGCAAC






GCTGTCATGGACACCTAGTATTCATATACCTGCATTCAA






GATGCACGACTTTCAAATCTTGTTATCGCTAAAGGTTTT






CACAAGCTATAAGATCCTAAATCTAGGATCCCCTCCAGA






GTTTATTCACTTTCCACTCATCG





120

Lolium

Genomic
4472
TCCTCTCCGCCTTGTCCGAGGTGACCAAACAACCCGAAA




rigidium



CGCTTCCCCCTCCTCCCCTTCCTTTGGGGTGAATTGGGT






GTACTAAAGATGGGATTTTTGGAGGTTTAGGGGCGCACT






TGTATCTTGTCATGCTAGGTGCTGGCCAGATCATAAGAT






ATTCTTTCATTCTTATTAAGACGATCTAGCCATAAGACA






TATACTTAAGAAGGTAGTCTGTTCAGTAGGCAATTCATA






AGTCTGTTCACCCAATTATTGCATACATACTGTAGCTTG






TATTTGAATGAAGATGATCTCACCATAGGATACTCTACT






CCATTCCAAATAGATTCAAGTTGTATGTGTCCTAATTAA






AACTATTTCTGGTTTCACAGAAAAGTGTGTCACTTTAAT






TTCGTTAGTTTCATCATAAAATATATTTTTTGTACTGTA






CTATAGAGATTTGATGTTGTATATATTATCATTTTTCTC






GTCTACAAACTGGGTCAAACGTAGACAAGGTTGACACAG






GACAAACATAAGACTTCGATTAATTTGGAACCGAGGGAG






TGGTATGTTTACCAGACAAATCCTATGTTCGTTTATTGA






ATCATTAGAATTATGTACTAGCTATTAGTTGGATCAAGA






TGATACATAAGGTTAAAAGGTATTAGTATAATCAGGTGA






TCCTTAGGCTGGTCTTTTTTTTTTCTTCTGATGGCTTCT






TTATGAAAGATTTGTATTGCAATGGTGTCGTGGACACTT






GATAAGAAACTGAAACTGGTTTACTTTGCTGGCATCTCT






AGTTGATCGTTAGCTGACTATTTTGCTCTTCAGGGAACA






ACGGTGGTGGATAACCTGTTGAACAGTGAGGATGTCCAC






TACATGCTCGAGGCCCTGGACGCGCTCGGGCTCTCCGTG






GAAGCAGACAAAGTTGCAAAAAGAGCTCTAGTCGTCGGC






TGTGGCGGCAGGTTCCCGATTGAGAAGGATGCCAAGGAG






GAAGTAAAGCTCTTCTTGGGCAACGCTGGAACTGCGATG






CGGCCATTGACGGCGGCTGTAGTAGCTGCTGGTGGAAAT






GCAACGTATGTTTCTTTTCTTTAATCCTTATTATGGGAA






TAAGTATGAGTTCCGTGGTTATGCTTTGAGACTGATGGT






TTATGTCTCTCTTCTGAACTTCAGTTATGTTCTTGATGG






AGTACCAAGAATGAGGGAGCGACCTATCGGTGACTTAGT






TGTCGGTTTGAAACAACTAGGTGCGAATGTTGATTGTTT






CCTCGGCACCGACTGCCCACCTGTTCGGATCAACGGCAT






TGGAGGGCTACCTGGTGGCAAGGTTAGCCTCATCAACTT






CCCTTTTATGCGCTTTTGTACACACATTTCAGTTCTCTG






AAAAAAACAAGATTATGCGACCTTTAAAATAGCCATAAC






CATTAGGCCCTATTTCGTGTAAAACAGATATGCTGATTG






TGTTGTGGTCTTAGATCACACGGCCTATCATAAATTAGC






ACTTAACATTGAATTGCATTCCACAGGTTAAGCTATCTG






GTTCCATCAGCAGCCAGTACTTGAGTTCCTTGCTGATGG






CTGCTCCTTTGGCTCTTGGGGATGTTGAGATTGAAATCA






TTGATAAACTAATCTCTGTTCCTTATGTTGAAATGACAT






TGAGATTGATGGAGCGTTTTGGCGTGACGGCAGAGCATT






CTGATAGCTGGGACAGATTCTACATTAAAGGAGGACAGA






AGTACAAGTAAGTTTTGAATTGTTCTGCTTATTCTAAAC






ATTTGTCCAAACATTTGACTTCTGGATAAACTAGGGAAT






TGAACATTGGAAAGAACTATTGACTGCTCAACTTACTGT






TATTAGCTAAGTCAAGCTTTACTAGGAAATGAGTAACTC






TGCTACTTACAATGCACTGGCTGCACAGCTATGTTTTCT






GGTGCATAAACTATTGTCTGCCCAAATAACTTTAATCAT






CTGGTTAGGACCAAACTTGTAGTAGTTATGAACTGTACA






AGGAAATCAGTGTGACAAATCTCCGCTACTTACAATGAC






ATTGGACGGTTATATTTTCTTGTGCATAAACTTGGTCAC






ATCAGAAGTGCCATCCATCTAAAAAAGGGTGAGAATTGA






GAACATATGCAGCTTAATGACAGCTGTTTGGCAATAAGC






ATTTCTTTTGCGGATGATTCTTGATTTGCTTCTTTTAGC






CTTTTTTATTGTTACTAGTTGAATGTCCGTGCTTCGCCA






CGGCTCCTTAGTGTATATTTAATGGCATTCGTGTTATAC






GGATAAAGATACTATGTATGTAAATATTGAAAGTACTTT






TTTTGGACCCCCTTCCGGCATGTTCTATTGTCTTCATCG






TCGAAGCCAAATGTTACATTGGGATATCTGCTGCCAAAT






GTTGCAGCAGGATATGCATCCTGATTTTACTGAGCATAC






TTCACTGATGTAATTGAAACTGTCAGTTCAAACTTCATA






AAAGTTGCAGTAATCGCTTCCTAAACAAGCCCTCCCTTG






CTCTGGAATTGACAATTGACAGGTCCCCTGGAAATGCCT






ATGTCGAAGGTGATGCCTCAAGTGCGAGCTATTTCTTGG






CTGGCGCTGCAATCACTGGAGGAACTGTGACTGTCCAAG






GTTGCGGCACCACCAGTTTGCAGGTACAACCAGTTTTAA






CCATTTGGTTAAGCATACTTGCGGTATATAACATAATCA






AAGATATACTGCTGTCAACCAAACTGATTTAAGTGGACA






TTCATTTATGAATCTATATAACTACAGTACTGTAAGTCG






GTTTCTTGTGCTATCTCCCTGACGATGATTAATATTGCA






GGGTGATGTGAAATTTGCTGAGGTACTAGAAATGATGGG






AGCGAAAGTTACATGGACCGACACTAGTGTAACTGTTAC






TGGTCCACCACGTCAGCCCTTTGGAAGGAAACACCTAAA






AGCTGTTGATGTCAACATGAACAAAATGCCTGATGTTGC






CATGACTCTTGCCGTTGTTGCCCTTTTTGCCGATGGTCC






AACTGCTATCAGAGATGGTAAACCCTCTTATGTGTTGCT






GTTGATTTCTTTTGGATGGATTCCGCTACAGCACATGAT






TTGTTCCTGACACTTGTCCATTCTCCTCTGTAGTTGCCT






CTTGGAGAGTGAAGGAAACCGAGAGAATGGTGGCAATCC






GGACGGAACTAACAAAGGTAGCACACCTATCTCCACTTC






TTATATTTCAGCTCACTGTTGCACTCCCCAGTGCTTAGT






CTCACCTGTTGTGTGCCTCTGTGCTATAGCTGGGAGCAA






CGGTAGAGGAAGGCCCAGACTACTGCATTATCACACCAC






CAGAGAAGCTGAACGTCACGGCAATCGACACCTACGATG






ACCACCGGATGGCGATGGCCTTCTCCCTCGCCGCCTGCG






CTGAGGTGCCTGTCACGATCAGGGACCCTGGGTGCACCC






GCAAGACCTTCCCCAACTACTTTGACGTGCTAAGCACCT






TCGTGAAGAACTAGCTCGATGAAAATCTACAGTGTATCG






CATTTGTACTTTTGTAGCCTGTCCATGGTCCGAGGAAAT






TTTTACTGTTTTGGTCTTCTTGCGAAATGATTTATGAGT






GTAATACTAGTTTTGTAGCATGGCGTGGGGCTTTTGAGG






TAAAATGAGTTGTATGCATACTGAGTTCGTTTTGAATAA






GAAGCAAGTTAGGAGTACCATAGACCATACTGTGACCTA






CATGTTCTTCCGTTTCCAGAGGTATTATGTTGGCTGCTG






GTACTCAAGTGTGTTCGAAAACTACTCGACAGCCATGGA






ATTTGGGAGATGCCATTTGGGTATGTGGATGCTTGAGGA






AGATCATCAAAGCAAACAAGAACACCAGTCGATGGTAAA






ACAGTGCAGCTTGCACCAAGAATGTTTGCCTATCAGAGT






AAACAAACCAGACTCAGCAGATATGAAAAAAACTCAGCA






CTGTGACACTCGTGCTAAAACTAATTTCATTTAGGCCGT






GGAGTAGGCCATTGCATACTTACGTATTAGAGCATCTCT






AGTCGAGTCCTAGAGCATCTCTAGTCGAGTCCCCACAAA






CGGCGCCGGATCGAGCGCTTGGGGGACGAGTTTTGTTCG






TGCCGTGTTTGGGGTACATCGCTCCCTAGTCGCGTCCCC






CAAACGCCGTCCCCAATGAGGAATTCAAAATAGTTTGTG






CATTTAAAAAAGATGGTGTTCGTCGAAGTCGTCGCGATC






AAAGTACTTGGCGCGCGATCATATTACAGGCCGACTTGC






ACAAACATAGATCCTCCAGAACGGTCCACTTGGGACAGT






GTGCCCTACGCCTTCTTCTTCTTTTCCTCCGGACCGGGT






CCTGGCTCGTACGTCGGGGAGTAGAACATAGCGTTGGGG






TTGAAGCCGTCACGAGGCAGCGCATCCTCGTACCGCGGC






AACAAGTTTGGTGTCACGCACCCGGGAGTGGCGGAGGGG






CCGTCGTTGTAGAACCCGGATGTCGA








Claims
  • 1. A method of plant control comprising: treating a plant with a composition comprising a polynucleotide and a transfer agent, wherein said polynucleotide is essentially identical or essentially complementary to a portion of an EPSPS gene sequence or fragment thereof, or to a portion of an RNA transcript of said EPSPS gene sequence or fragment thereof, wherein said EPSPS gene sequence is selected from the group consisting of SEQ ID NO:1-120 or a polynucleotide fragment thereof, whereby said plant growth or development or reproductive ability is reduced or said plant is more sensitive to an EPSPS inhibitor herbicide relative to a plant not treated with said composition.
  • 2. The method as claimed in claim 1, wherein said transfer agent is an organosilicone surfactant composition or compound contained therein.
  • 3. The method as claimed in claim 1, wherein said polynucleotide fragment is 19 contiguous nucleotides, 20 contiguous nucleotides or at least 21 contiguous nucleotides in length and at least 85 percent identical to an EPSPS gene sequence selected from the group consisting of SEQ ID NO:1-120.
  • 4. The method as claimed in claim 3, wherein said polynucleotide fragment is selected from the group consisting of sense or anti-sense ssDNA or ssRNA, dsRNA, or dsDNA, or dsDNA/RNA hybrids.
  • 5. The method as claimed in claim 1, wherein said plant is selected from the group consisting of Amaranthus palmeri, Amaranthus rudis, Amaranthus graecizans, Amaranthus hybridus, Amaranthus lividus, Amaranthus spinosus, Amaranthus thunbergii, Amaranthus viridis, Lolium multiflorum, Lolium rigidium, Ambrosia artemisiifolia, Ambrosia trifida, Euphorbia heterophylla, Kochia scoparia, Abutilon theophrasti, Sorghum halepense, Chenopodium album, Commelina diffusa, Conyza candensis, Digitaria sanguinalis.
  • 6. The method as claimed in claim 1, wherein said composition further comprises said EPSPS inhibitor herbicide and external application to a plant with said composition.
  • 7. The method as claimed in claim 6, wherein said composition further comprises one or more herbicides different from said EPSPS inhibitor herbicide.
  • 8. The method as claimed in claim 7, wherein said composition further comprises an auxin-like herbicide.
  • 9. The method as claimed in claim 8, wherein said auxin-like herbicide is dicamba or 2,4-D.
  • 10. The method as claimed in claim 3, wherein said composition comprises any combination of two or more of said polynucleotide fragments and external application to a plant with said composition.
  • 11. A composition comprising a polynucleotide and a transfer agent, wherein said polynucleotide is essentially identical or essentially complementary to an EPSPS gene sequence or fragment thereof, or to an RNA transcript of said EPSPS gene sequence, wherein said EPSPS gene sequence is selected from the group consisting of SEQ ID NO:1-120 or a polynucleotide fragment thereof, and whereby a plant treated with said composition has its growth or development or reproductive ability regulated, suppressed or delayed or said plant is more sensitive to an EPSPS inhibitor herbicide as a result of said polynucleotide containing composition relative to a plant not treated with said composition.
  • 12. The composition of claim 11, wherein said transfer agent is an organosilicone composition.
  • 13. The composition of claim 11, wherein said polynucleotide fragment is 19 contiguous nucleotides, 20 contiguous nucleotides or at least 21 contiguous nucleotides in length and at least 85 percent identical to an EPSPS gene sequence selected from the group consisting of SEQ ID NO:1-120.
  • 14. The composition of claim 11, wherein said polynucleotide is selected from the group consisting of SEQ ID NO:121-3222.
  • 15. The composition of claim 11, wherein said polynucleotide is selected from the group consisting of SEQ ID NO:3223-3542.
  • 16. The composition of claim 11, further comprising an EPSPS inhibitor herbicide.
  • 17. The composition of claim 16, wherein said EPSPS inhibitor molecule is glyphosate.
  • 18. The composition of claim 17, further comprising a co-herbicide.
  • 19. The composition of claim 18, wherein said co-herbicide is an auxin-like herbicide.
  • 20. The method as claimed in claim 8, wherein said auxin-like herbicide is dicamba or 2,4-D.
  • 21. A method of reducing expression of an EPSPS gene in a plant comprising: external application to a plant of a composition comprising a polynucleotide and a transfer agent, wherein said polynucleotide is essentially identical or essentially complementary to an EPSPS gene sequence, or to the RNA transcript of said EPSPS gene sequence, wherein said EPSPS gene sequence is selected from the group consisting of SEQ ID NO:1-120 or a polynucleotide fragment thereof, whereby said expression of said EPSPS gene is reduced relative to a plant in which the composition was not applied.
  • 22. The method as claimed in claim 21, wherein said transfer agent is an organosilicone compound.
  • 23. The method as claimed in claim 21, wherein said polynucleotide fragment is 19 contiguous nucleotides, 20 contiguous nucleotides or at least 21 contiguous nucleotides in length and at least 85 percent identical to an EPSPS gene sequence selected from the group consisting of SEQ ID NO:1-120.
  • 24. The method as claimed in 21, wherein said polynucleotide molecule is selected from the group consisting of sense or anti-sense ssDNA or ssRNA, dsRNA, or dsDNA, or dsDNA/RNA hybrids.
  • 25. A microbial expression cassette comprising a polynucleotide fragment of 19 contiguous nucleotides, 20 contiguous nucleotides or at least 21 contiguous nucleotides in length and at least 85 percent identical to an EPSPS gene sequence selected from the group consisting of SEQ ID NO:1-120.
  • 26. A method of making a polynucleotide comprising a) transforming the microbial expression cassette of claim 25 into a microbe; b) growing said microbe; c) harvesting a polynucleotide from said microbe, wherein said polynucleotide is 19 contiguous nucleotides, 20 contiguous nucleotides or at least 21 contiguous nucleotides in length and at least 85 percent identical to an EPSPS gene sequence selected from the group consisting of SEQ ID NO:1-120.
  • 27. A method of identifying polynucleotides useful in modulating EPSPS gene expression when externally treating a plant comprising: a) providing a plurality of polynucleotides that comprise a region essentially identical or essentially complementary to a polynucleotide fragment of 19 contiguous nucleotides, 20 contiguous nucleotides or at least 21 contiguous nucleotides in length and at least 85 percent identical to an EPSPS gene sequence selected from the group consisting of SEQ ID NO:1-120; b) externally treating said plant with one or more of said polynucleotides and a transfer agent; c) analyzing said plant or extract for modulation of EPSPS gene expression, and whereby a plant treated with said composition has its growth or development or reproductive ability regulated, suppressed or delayed or said plant is more sensitive to an EPSPS inhibitor herbicide as a result of said polynucleotide containing composition relative to a plant not treated with said composition.
  • 28. The method as claimed in 27, wherein said plant is selected from the group consisting of Amaranthus palmeri, Amaranthus rudis, Amaranthus graecizans, Amaranthus hybridus, Amaranthus lividus, Amaranthus spinosus, Amaranthus thunbergii, Amaranthus viridis, Lolium multiflorum, Lolium rigidium, Ambrosia artemisiifolia, Ambrosia trifida, Euphorbia heterophylla, Kochia scoparia, Abutilon theophrasti, Sorghum halepense, Chenopodium album, Commelina diffusa, Conyza candensis, Digitaria sanguinalis.
  • 29. The method as claimed in 27, wherein said EPSPS gene expression is reduced relative to a plant not treated with said polynucleotide fragment and a transfer agent.
  • 30. The method as claimed in 27, wherein said transfer agent is an organosilicone compound.
  • 31. An agricultural chemical composition comprising an admixture of a polynucleotide and a glyphosate herbicide and a co-herbicide, wherein said polynucleotide is essentially identical or essentially complementary to a portion of an EPSPS gene sequence or fragment thereof, or to a portion of an RNA transcript of said EPSPS gene sequence or fragment thereof, wherein said EPSPS gene sequence is selected from the group consisting of SEQ ID NO:1-120 or a polynucleotide fragment thereof, and whereby a plant treated with said composition has its growth or development or reproductive ability regulated, suppressed or delayed or said plant is more sensitive to an EPSPS inhibitor herbicide as a result of said polynucleotide containing composition relative to a plant not treated with said composition.
  • 32. The agricultural chemical composition of claim 31, wherein said co-herbicide is selected from the group consisting of amide herbicides, arsenical herbicides, benzothiazole herbicides, benzoylcyclohexanedione herbicides, benzofuranyl alkylsulfonate herbicides, carbamate herbicides, cyclohexene oxime herbicides, cyclopropylisoxazole herbicides, dicarboximide herbicides, dinitroaniline herbicides, dinitrophenol herbicides, diphenyl ether herbicides, dithiocarbamate herbicides, halogenated aliphatic herbicides, imidazolinone herbicides, inorganic herbicides, nitrile herbicides, organophosphorus herbicides, oxadiazolone herbicides, oxazole herbicides, phenoxy herbicides, phenylenediamine herbicides, pyrazole herbicides, pyridazine herbicides, pyridazinone herbicides, pyridine herbicides, pyrimidinediamine herbicides, pyrimidinyloxybenzylamine herbicides, quaternary ammonium herbicides, thiocarbamate herbicides, thiocarbonate herbicides, thiourea herbicides, triazine herbicides, triazinone herbicides, triazole herbicides, triazolone herbicides, triazolopyrimidine herbicides, uracil herbicides, and urea herbicides.
  • 33. An agricultural chemical composition comprising an admixture of a polynucleotide and a glyphosate herbicide and a pesticide, wherein said polynucleotide is essentially identical or essentially complementary to a portion of an EPSPS gene sequence, or to a portion of an RNA transcript of said EPSPS gene sequence, wherein said EPSPS gene sequence is selected from the group consisting of SEQ ID NO:1-120 or a polynucleotide fragment thereof, and whereby a plant treated with said composition has its growth or development or reproductive ability regulated, suppressed or delayed or said plant is more sensitive to an EPSPS inhibitor herbicide as a result of said polynucleotide containing composition relative to a plant not treated with said composition.
  • 34. The agricultural chemical composition of claim 33, wherein said pesticide is selected from the group consisting of insecticides, fungicides, nematocides, bactericides, acaricides, growth regulators, chemosterilants, semiochemicals, repellents, attractants, pheromones, feeding stimulants, and biopesticides.
  • 35. A polynucleotide molecule applied to the surface of a plant that enhances said plant sensitivity to a glyphosate containing herbicide composition, wherein said polynucleotide comprises a homologous or complementary polynucleotide having at least 85 percent idendity to a polynucleotide selected from the group consisting of SEQ ID NO: 3781-3789.
Parent Case Info

This application claims benefit under 35USC §119(e) of U.S. provisional application Ser. No. 61/534,057 filed Sep. 13, 2011, herein incorporated by reference in it's entirety. The sequence listing that is contained in the file named “40—21(58634)B seq listing.txt”, which is 1,722,262 bytes (measured in operating system MS-Windows) and was created on 7 Sep. 2012, is filed herewith and incorporated herein by reference.

Provisional Applications (1)
Number Date Country
61534057 Sep 2011 US