Methods and compositions for weed control

Information

  • Patent Grant
  • 10568328
  • Patent Number
    10,568,328
  • Date Filed
    Wednesday, March 12, 2014
    10 years ago
  • Date Issued
    Tuesday, February 25, 2020
    4 years ago
Abstract
Provided are novel compositions for use to herbicide activity. Specifically, the present application describes methods and compositions that modulate the expression of a plastid protein import system of a plant. Also provided are combinations of compositions and methods that enhance weed control.
Description
INCORPORATION OF THE SEQUENCE LISTING

This application contains a sequence listing, submitted herewith electronically via EFS web, containing the file named “P34108US01_seqlist.txt” which is 3,451,542 bytes in size (measured in Windows XP), which was created on Mar. 6, 2014, and which is herein incorporated by reference in its entirety.


FIELD OF THE INVENTION

The present disclosure relates generally to the field of weed management. More specifically, compositions containing polynucleotide molecules for altering the physiology of plants and modulating the effect of herbicide treatment are described. Further provided are methods and compositions useful for weed control.


BACKGROUND OF THE INVENTION

Weeds are plants that compete with cultivated plants in an agronomic environment and cost farmers billions of dollars annually in crop losses and the expense of efforts to keep weeds under control. Weeds also serve as hosts for crop diseases and insect pests. The losses caused by weeds in agricultural production environments include decreases in crop yield, reduced crop quality, increased irrigation costs, increased harvesting costs, reduced land value, injury to livestock, and crop damage from insects and diseases harbored by the weeds. The principal means by which weeds cause these effects are: 1) competing with crop plants for water, nutrients, sunlight and other essentials for growth and development, 2) production of toxic or irritant chemicals that cause human or animal health problem, 3) production of immense quantities of seed or vegetative reproductive parts or both that contaminate agricultural products and perpetuate the species in agricultural lands, and 4) production on agricultural and nonagricultural lands of vast amounts of vegetation that must be disposed of Herbicide tolerant weeds are a problem with nearly all herbicides in use, there is a need to effectively manage these weeds. There are over 365 weed biotypes currently identified as being herbicide resistant to one or more herbicides by the Herbicide Resistance Action Committee (HRAC), the North American Herbicide Resistance Action Committee (NAHRAC), and the Weed Science Society of America (WSSA).


Plants have chloroplasts in which nuclear encoded proteins are imported. The import function is a key process related to the normal activity of the chloroplast. Genes associated with the chloroplast protein import and processing include but are not limited to the structural genes that encode for translocon at the outer envelope membrane of a chloroplast (Toc), a translocon at the inner envelope membrane of a chloroplast (Tic), a stroma processing peptidase (SPP) and chaperone like proteins associated with the chloroplast protein import system. The import of essential proteins into the chloroplast can be achieved by modulating the level of import proteins produced by the plants nuclear encoded genes. Many enzymes that are targets for herbicide action are nuclear encoded and imported into the chloroplast.


Embodiments of the present invention provide polynucleotide compositions useful for modulating gene expression in a plant, in particular, weedy plants for the purpose of enhancing control of the weeds in an agronomic environment and for the management of herbicide resistant weeds.


SUMMARY OF THE INVENTION

Several embodiments relate to a method of plant control comprising treating a plant or a part of a plant in need of control with a herbicidal composition comprising a polynucleotide, an organosilicone surfactant and a non-polynucleotide herbicide, wherein the polynucleotide is essentially identical or essentially complementary to a segment of a gene polynucleotide sequence, wherein the protein encoded by the gene coding sequence is a component of a chloroplast protein import system selected from the group consisting of a translocon at the outer envelope membrane of a chloroplast (Toc), a translocon at the inner envelope membrane of a chloroplast (Tic), a stroma processing peptidase (SPP), and chaperone like proteins associated with the chloroplast protein import system, wherein said treated plant is more sensitive to the non-polynucleotide herbicide contained in the herbicidal composition relative to a similar plant treated with a herbicidal composition not containing the polynucleotide.


The polynucleotide alters the rate or activity of importation of proteins or processing of the proteins in a plant cell chloroplast or plastid thereby providing to the plant increased sensitivity to a herbicide. Chloroplast protein import and processing, chloroplast metabolism pathways, chlorophyll function proteins that are provided by genes encoded in the plant nucleus are key in the normal physiology of the plant and in the plant's response to chemical stress, such as, the action of a herbicide or provide proteins and enzymes whose activity is inhibited by a herbicide. Representative weed target gene sequences are aspects of the invention, these include but are not limited to Toc159 (SEQ ID NO: 1-117), Toc 33 (SEQ ID NO:118-155), Toc34 (SEQ ID NO: 156-247), Toc75 (SEQ ID NO: 248-348), OEP80 (349-485), Toc132 (SEQ ID NO: 486-569), Toc64 (SEQ ID NO: 1628-1638), Tic 110 (SEQ ID NO: 570-722), Tic20 (SEQ ID NO:723-771), Tic21 (SEQ ID NO: 772-840), Tic40 (SEQ ID NO: 841-912), Stroma processing peptidase (SPP) (SEQ ID NO: 913-1130), Tic100 (SEQ ID NO: 1131-1207), Tic56 (SEQ ID NO: 1208-1263), Tic22 (SEQ ID NO: 1609-1615), Tic55 (SEQ ID NO: 1616-1623), Tic62 (SEQ ID NO: 1624-1627), and chloroplast protein import system chaperone proteins, for example HSP93 (SEQ ID NO: 1596-1608) and HSP70 (SEQ ID NO: 1584-1595).


Several embodiments relate to a composition comprising a polynucleotide molecule of at least 19 contiguous nucleotides and at least 85 percent identical to a portion of a gene sequence encoding a plant chloroplast import protein and an organosilicone composition or compound. The polynucleotide fragment can be sense or anti-sense ssDNA or ssRNA, dsRNA, or dsDNA, or dsDNA/RNA hybrids and are herein referred to as “chloroplast protein import system trigger polynucleotides”. Representative trigger polynucleotide sequences of chloroplast import protein system genes include but are not limited to those polynucleotides illustrated in Tables 2, 3, 5 and 6 and are aspects of the invention.


Several embodiments relate to a herbicidal composition further comprising any combination of two or more of said polynucleotides wherein at least one is a polynucleotide essentially identical or essentially complementary to a segment of a gene polynucleotide sequence, wherein the protein encoded by the gene coding sequence is a component of a chloroplast protein import system selected from the group consisting of a translocon at the outer envelope membrane of a chloroplast (Toc), a translocon at the inner envelope membrane of a chloroplast (Tic), a stroma processing peptidase (SPP), a chaperone like protein, and another is a polynucleotide essentially identical or essentially complementary to a segment of a herbicide target protein polynucleotide gene sequence, wherein the gene sequence encoding a herbicide target protein or a herbicide detoxifying enzyme is selected from the group consisting of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), an acetohydroxyacid synthase or an acetolactate synthase (ALS), an acetyl-coenzyme A carboxylase (ACCase), a dihydropteroate synthase, a phytoene desaturase (PDS), a protoporphyrin IX oxygenase (PPO), a hydroxyphenylpyruvate dioxygenase (HPPD), a para-aminobenzoate synthase, a glutamine synthase (GS), a glufosinate-tolerant glutamine synthase, a 1-deoxy-D-xylulose 5-phosphate (DOXP) synthase, a dihydropteroate (DHP) synthase, a phenylalanine ammonia lyase (PAL), a glutathione S-transferase (GST), a D1 protein of photosystem II, a mono-oxygenase, a cytochrome P450, a cellulose synthase, a beta-tubulin, and a serine hydroxymethyltransferase.


The composition can include one or more polynucleotide fragment essentially identical or essentially complementary to a portion of a chloroplast import protein or import processing enzyme gene polynucleotide and one or more non-polynucleotide herbicides, for example, a herbicide that can include but not limited to the members of amide herbicides, aromatic acid herbicides, arsenical herbicides, benzothiazole herbicides, benzoylcyclohexanedione herbicides, benzofuranyl alkylsulfonate herbicides, carbamate herbicides, cyclohexene oxime herbicides, cyclopropylisoxazole herbicides, dicarboximide herbicides, dinitroaniline herbicides, dinitrophenol herbicides, diphenyl ether herbicides, dithiocarbamate herbicides, halogenated aliphatic herbicides, imidazolinone herbicides, inorganic herbicides, nitrile herbicides, organophosphorus herbicides, oxadiazolone herbicides, oxazole herbicides, phenoxy herbicides, phenylenediamine herbicides, pyrazole herbicides, pyridazine herbicides, pyridazinone herbicides, pyridine herbicides, pyrimidinediamine herbicides, pyrimidinyloxybenzylamine herbicides, pyrimidinylthio-benzoate herbicides, quaternary ammonium herbicides, thiocarbamate herbicides, thiocarbonate herbicides, thiourea herbicides, triazine herbicides, triazinone herbicides, triazole herbicides, triazolone herbicides, triazolopyrimidine herbicides, uracil herbicides, and urea herbicides.


In some embodiments, a polynucleotide molecule containing composition as described herein may be applied before, concurrent with, or after the treatment of the plant with one or more herbicidal compounds to provide control of unwanted plants in a field of cultivated plants.





BRIEF DESCRIPTION OF THE FIGURES

The following drawings form part of the present specification and are included to further demonstrate certain embodiments described herein. Some embodiments may be better understood by reference to one or more of these drawings in combination with the detailed description presented herein. Some embodiments can be more fully understood from the following description of the FIGURES:



FIG. 1. Treatment of Amaranthus palmeri with dsRNA trigger polynucleotides targeting OEP80.





DETAILED DESCRIPTION

Several embodiments relate to methods and compositions containing a polynucleotide that provide for regulation and/or modulation of plant chloroplast protein import system or import processing enzyme genes, for example, including but not limited Toc159, Toc 33, Toc34, Toc75 OEP80, Toc132, Tic 110, Tic20, Tic21, Tic40, Tic100, Tic56, Toc64, Tic22, Tic55, Tic62, stroma processing peptidase and chloroplast protein import system chaperone proteins, for example Hsp93 and Hsp70.


Chloroplasts have to import more than 95 percent of their protein complement post-translationally from the cytosol. The vast majority of chloroplast proteins are synthesized as precursor proteins (preproteins) in the cytosol and are imported post-translationally into the organelle. Most proteins that are destined for the thylakoid membrane, the stroma and the inner envelope are synthesized with an amino-terminal extension called a presequence, or transit sequence, which is proteolytically removed after import. Preproteins that contain a cleavable transit peptide are recognized in a GTP-regulated manner by receptors of the outer-envelope translocon, which is called the TOC complex. The preproteins cross the outer envelope through an aqueous pore and are then transferred to the translocon in the inner envelope, which is called the TIC complex. The TOC and TIC translocons function together during the translocation process. Completion of import requires energy, which probably comes from the ATP-dependent functioning of molecular chaperones in the stroma. The stromal processing peptidase then cleaves the transit sequence to produce the mature form of the protein, which can fold into its native form. Plant gene polynucleotide sequences regulating the expression or encoding the enzymes involved in the chloroplast protein import system of target weed species are illustrated in SEQ ID NO: 1-1263 and SEQ ID NO: 1584-1638. Representative polynucleotide trigger molecules that are homologous or complementary to a segment of a chloroplast protein import system gene are illustrated in Table 2 (SEQ ID NO: 1264-1483), Table 3 (SEQ ID NO: 1483-1534), Table 5 (SEQ ID NO: 1535-1573) and Table 6 (SEQ ID NO: 1574-1583). The treatment of plants with one or more of the trigger polynucleotides enhances plant sensitivity to one or more chemical herbicides.


Chloroplasts are critical organelles to the plant. Not only are they the centers for photosynthesis, but amino acids, lipid components and fatty acids of the cell membranes are synthesized by chloroplasts and they reduce nitrogen into ammonia and other organic compounds.


Aspects of the method can be applied to manage various weedy plants in agronomic and other cultivated environments.


The following definitions and methods are provided to better define the present embodiments and to guide those of ordinary skill in the art in the practice of the embodiments described herein. Unless otherwise noted, terms are to be understood according to conventional usage by those of ordinary skill in the relevant art. Where a term is provided in the singular, the inventors also contemplate embodiments described by the plural of that term.


Weedy plants are plants that compete with cultivated plants, those of particular importance include, but are not limited to important invasive and noxious weeds and herbicide resistant biotypes in crop production, for example, Amaranthus species—A. albus, A. blitoides, A. hybridus, A. palmeri, A. powellii, A. retroflexus, A. spinosus, A. tuberculatus, and A. viridis; Ambrosia species—A. trifida, A. artemisifolia; Lolium species—L. multiflorum, L. rigidium, L perenne; Digitaria species—D. insularis; Euphorbia species—E. heterophylla; Kochia species—K. scoparia; Sorghum species—S. halepense; Conyza species—C. bonariensis, C. canadensis, C. sumatrensis; Chloris species—C. truncate; Echinochola species—E. colona, E. crus-galli; Eleusine species—E. indica; Poa species—P. annua; Plantago species—P. lanceolata; Avena species—A. fatua; Chenopodium species—C. album; Setaria species—S. viridis; Abutilon species—A. theophrasti, Ipomoea species Sesbania, species, Cassia species, Sida species, Brachiaria, species and Solanum species.


Additional weedy plant species found in cultivated areas include Alopecurus myosuroides, Avena sterilis, Avena sterilis ludoviciana, Brachiaria plantaginea, Bromus diandrus, Bromus rigidus, Cynosurus echinatus, Digitaria ciliaris, Digitaria ischaemum, Digitaria sanguinalis, Echinochloa oryzicola, Echinochloa phyllopogon, Eriochloa punctata, Hordeum glaucum, Hordeum leporinum, Ischaemum rugosum, Leptochloa chinensis, Lolium persicum, Phalaris minor, Phalaris paradoxa, Rottboellia exalta, Setaria faberi, Setaria viridis var, robusta-alba schreiber, Setaria viridis var, robusta-purpurea, Snowdenia polystachea, Sorghum sudanese, Alisma plantago-aquatica, Amaranthus lividus, Amaranthus quitensis, Ammania auriculata, Ammania coccinea, Anthemis cotula, Apera spica-venti, Bacopa rotundifolia, Bidens pilosa, Bidens subalternans, Brassica tournefortii, Bromus tectorum, Camelina microcarpa, Chrysanthemum coronarium, Cuscuta campestris, Cyperus difformis, Damasonium minus, Descurainia sophia, Diplotaxis tenuifolia, Echium plantagineum, Elatine triandra var, pedicellata, Euphorbia heterophylla, Fallopia convolvulus, Fimbristylis miliacea, Galeopsis tetrahit, Galium spurium, Helianthus annuus, Iva xanthifolia, Ixophorus unisetus, Ipomoea indica, Ipomoea purpurea, Ipomoea sepiaria, Ipomoea aquatic, Ipomoea triloba, Lactuca serriola, Limnocharis flava, Limnophila erecta, Limnophila sessiliflora, Lindernia dubia, Lindernia dubia var, major, Lindernia micrantha, Lindernia procumbens, Mesembryanthemum crystallinum, Monochoria korsakowii, Monochoria vaginalis, Neslia paniculata, Papaver rhoeas, Parthenium hysterophores, Pentzia suffruticosa, Phalaris minor, Raphanus raphanistrum, Raphanus sativus, Rapistrum rugosum, Rotala indica var, uliginosa, Sagittaria guyanensis, Sagittaria montevidensis, Sagittaria pygmaea, Salsola iberica, Scirpus juncoides var, ohwianus, Scirpus mucronatus, Setaria lutescens, Sida spinosa, Sinapis arvensis, Sisymbrium orientale, Sisymbrium thellungii, Solanum ptycanthum, Sonchus asper, Sonchus oleraceus, Sorghum bicolor, Stellaria media, Thlaspi arvense, Xanthium strumarium, Arctotheca calendula, Conyza sumatrensis, Crassocephalum crepidiodes, Cuphea carthagenenis, Epilobium adenocaulon, Erigeron philadelphicus, Landoltia punctata, Lepidium virginicum, Monochoria korsakowii, Solanum americanum, Solanum nigrum, Vulpia bromoides, Youngia japonica, Hydrilla verticillata, Carduus nutans, Carduus pycnocephalus, Centaurea solstitialis, Cirsium arvense, Commelina diffusa, Convolvulus arvensis, Daucus carota, Digitaria ischaemum, Echinochloa crus-pavonis, Fimbristylis miliacea, Galeopsis tetrahit, Galium spurium, Limnophila erecta, Matricaria perforate, Papaver rhoeas, Ranunculus acris, Soliva sessilis, Sphenoclea zeylanica, Stellaria media, Nassella trichotoma, Stipa neesiana, Agrostis stolonifera, Polygonum aviculare, Alopecurus japonicus, Beckmannia syzigachne, Bromus tectorum, Chloris inflate, Echinochloa erecta, Portulaca oleracea, and Senecio vulgaris. All plants contain chloroplast import protein system genes, the sequence of which can be isolated and polynucleotides selected according to the methods described herein that are useful for altering the physiology of the plant and making the plant more sensitive to a herbicide.


Numerous chemical herbicide, herein referred to as nonpolynucleotide herbicides, are available that can be added to the composition that provide multi-species weed control or alternative modes of action for difficult to control weed species, for example, members of the herbicide families that include but are not limited to 1,5-Diarylpyrazole herbicides, 2-Thiopyrimidine herbicides, 3-CF3-Benzene herbicides, Acetamide herbicides, Amide herbicides, Aminoacrylate herbicides, Aminotriazine herbicides, Aromatic acid herbicides, Arsenical herbicides, Arylaminopropionic acid herbicides, Arylcarboxamide herbicides, Arylcyclodione herbicides, Aryloxyphenoxy-propionate herbicides, Azolecarboxamide herbicides, Azoloazinone herbicides, Azolotriazine herbicides, Benzamide herbicides, Benzenesulfonamide herbicides, Benzhydryl herbicides, Benzimidazole herbicides, Benzofuran herbicides, Benzofuranyl Alkylsulfonate herbicides, Benzohydrazide herbicides, Benzoic acid herbicides, Benzophenylmethanone herbicides, Benzothiadiazinone herbicides, Benzothiazole herbicides, Benzothiazoleacetate herbicides, Benzoxazole herbicides, Benzoylcyclohexanedione herbicides, Benzyloxymethylisoxazole herbicides, Benzylpyrazole herbicides, Benzylpyridine herbicides, Benzylpyrimidone herbicides, Bipyridylium herbicides, Carbamate herbicides, Chloroacetamide herbicides, Chloroacetamide herbicides, Chlorocarbonic acid herbicides, Cyclohexanedione herbicides, Cyclohexene oxime herbicides, Cyclopropylisoxazole herbicides, Diarylether herbicides, Dicarboximide herbicides, Dihydropyrancarboxamide herbicides, Diketo-epoxide herbicides, Diketopiperazine herbicides, Dinitroaniline herbicides, Dinitrophenol herbicides, Diphenylether herbicides, Diphenylfuranone herbicides, Dithiocarbamate herbicides, Fluoroalkene herbicides, Glyphosate herbicides, Halogenated aliphatic herbicides, Hydantocidin herbicides, Hydroxypyrazole herbicides, Imidazolinone herbicides, Indazole herbicides, Indenedione herbicides, Inorganic herbicides, Isoxazole herbicides, Isoxazolesulfone herbicides, Isoxazolidinone herbicides, Nicotinohydrazide herbicides, Nitrile herbicides, Nitrile-amide herbicides, Nitropyrazole herbicides, N-phenylphthalimide herbicides, Organoarsenical herbicides, Organophosphates herbicides, Organophosphorus herbicides, Oxabicycloheptane herbicides, Oxadiazole herbicides, Oxadiazolebenzamide herbicides, Oxadiazolone herbicides, Oxazole herbicides, Oxazolidinedione herbicides, Oxyacetamide herbicides, Phenoxy herbicides, Phenoxyalkyne herbicides, Phenoxycarboxylic acid herbicides, Phenoxypyridazinol herbicides, Phenylalkanoate herbicides, Phenylcarbamate herbicides, Phenylenediamine herbicides, Phenylethylurea herbicides, Phenylimidazole herbicides, Phenylisoxazole herbicides, Phenylpyrazole herbicides, Phenylpyrazoline herbicides, Phenylpyridazine herbicides, Phenylpyridine herbicides, Phenylpyrrolidone herbicides, Phosphinic acid herbicides, Phosphonate herbicides, Phosphoroamidate herbicides, Phosphorodithioate herbicides, Phthalamate herbicides, Propionamide herbicides, Pyrazole herbicides, Pyrazole-arylether herbicides, Pyrazolium herbicides, Pyridazine herbicides, Pyridazinone herbicides, Pyridine herbicides, Pyridinecarboxamide herbicides, Pyridinecarboxylic acid herbicides, Pyridinone herbicides, Pyridyl-benzylamide herbicides, Pyridyl-ether-carboxamide herbicides, Pyrimidinecarboxylic acid herbicides, Pyrimidinediamine herbicides, Pyrimidinedione herbicides, Pyrimidinetrione herbicides, Pyrimidinone herbicides, Pyrimidinyl(thio)benzoate herbicides, Pyrimidinyloxybenzylamine herbicides, Pyrimidylmethanol herbicides, Pyrrolidone herbicides, Quaternary Ammonium herbicides, Quinoline-carboxylic acid herbicides, Quinoxaline herbicides, Semicarbazone herbicides, Sulfonamide herbicides, Sulfonylamino-carbonyl-triazolinone herbicides, Sulfonylurea herbicides, Sulfonylurea herbicides, Tetrazolinone herbicides, Thiadiazole herbicides, Thiatriazine herbicides, Thienopyrimidine herbicides, Thiocarbamate herbicides, Thiocarbonate herbicides, Thiourea herbicides, Tolyltriazole herbicides, Triazine herbicides, Triazinedione herbicides, Triazine-sulfonanilide herbicides, Triazinone herbicides, Triazole herbicides, Triazolecarboxamide herbicides, Triazoleimine herbicides, Triazolinone herbicides, Triazolone herbicides, Triazolopyrimidine herbicides, Triketone herbicides, Uracil herbicides, and Urea herbicides. In particular, the rates of use of the added herbicides can be reduced in compositions comprising polynucleotides as described herein. Use rate reductions of the additional added herbicides can be 10-25 percent, 26-50 percent, 51-75 percent or more can be achieved that enhance the activity of the polynucleotides and herbicide composition and is contemplated as an aspect of the invention.


Additional herbicidal compounds of unspecified modes of action as described in CN101279950A, CN101279951A, DE10000600A1, DE10116399A1, DE102004054666A1, DE102005014638A1, DE102005014906A1, DE102007012168A1, DE102010042866A1, DE10204951A1, DE10234875A1, DE10234876A1, DE10256353A1, DE10256354A1, DE10256367A1, EP1157991A2, EP1238586A1, EP2147919A1, EP2160098A2, JP03968012B2, JP2001253874A, JP2002080454A, JP2002138075A, JP2002145707A, JP2002220389A, JP2003064059A, JP2003096059A, JP2004051628A, JP2004107228A, JP2005008583A, JP2005239675A, JP2005314407A, JP2006232824A, JP2006282552A, JP2007153847A, JP2007161701A, JP2007182404A, JP2008074840A, JP2008074841A, JP2008133207A, JP2008133218A, JP2008169121A, JP2009067739A, JP2009114128A, JP2009126792A, JP2009137851A, US20060111241A1, US20090036311A1, US20090054240A1, US20090215628A1, US20100099561A1, US20100152443A1, US20110105329A1, US20110201501A1, WO2001055066A2, WO2001056975A1, WO2001056979A1, WO2001090071A2, WO2001090080A1, WO2002002540A1, WO2002028182A1, WO2002040473A1, WO2002044173A2, WO2003000679A2, WO2003006422A1, WO2003013247A1, WO2003016308A1, WO2003020704A1, WO2003022051A1, WO2003022831A1, WO2003022843A1, WO2003029243A2, WO2003037085A1, WO2003037878A1, WO2003045878A2, WO2003050087A2, WO2003051823A1, WO2003051824A1, WO2003051846A2, WO2003076409A1, WO2003087067A1, WO2003090539A1, WO2003091217A1, WO2003093269A2, WO2003104206A2, WO2004002947A1, WO2004002981A2, WO2004011429A1, WO2004029060A1, WO2004035545A2, WO2004035563A1, WO2004035564A1, WO2004037787A1, WO2004067518A1, WO2004067527A1, WO2004077950A1, WO2005000824A1, WO2005007627A1, WO2005040152A1, WO2005047233A1, WO2005047281A1, WO2005061443A2, WO2005061464A1, WO2005068434A1, WO2005070889A1, WO2005089551A1, WO2005095335A1, WO2006006569A1, WO2006024820A1, WO2006029828A1, WO2006029829A1, WO2006037945A1, WO2006050803A1, WO2006090792A1, WO2006123088A2, WO2006125687A1, WO2006125688A1, WO2007003294A1, WO2007026834A1, WO2007071900A1, WO2007077201A1, WO2007077247A1, WO2007096576A1, WO2007119434A1, WO2007134984A1, WO2008009908A1, WO2008029084A1, WO2008059948A1, WO2008071918A1, WO2008074991A1, WO2008084073A1, WO2008100426A2, WO2008102908A1, WO2008152072A2, WO2008152073A2, WO2009000757A1, WO2009005297A2, WO2009035150A2, WO2009063180A1, WO2009068170A2, WO2009068171A2, WO2009086041A1, WO2009090401A2, WO2009090402A2, WO2009115788A1, WO2009116558A1, WO2009152995A1, WO2009158258A1, WO2010012649A1, WO2010012649A1, WO2010026989A1, WO2010034153A1, WO2010049270A1, WO2010049369A1, WO2010049405A1, WO2010049414A1, WO2010063422A1, WO2010069802A1, WO2010078906A2, WO2010078912A1, WO2010104217A1, WO2010108611A1, WO2010112826A3, WO2010116122A3, WO2010119906A1, WO2010130970A1, WO2011003776A2, WO2011035874A1, WO2011065451A1, the chemical compositions of which are herein incorporated by reference are useful to include in combination with polynucleotides targeting the plant chloroplast import protein or import processing enzyme genes.


In some embodiments, the composition includes a nonpolynucleotide herbicide component such as glyphosate (N-phosphonomethylglycine) herbicide inhibits the shikimic acid pathway which leads to the biosynthesis of aromatic compounds including amino acids, plant hormones and vitamins. Specifically, glyphosate curbs the conversion of phosphoenolpyruvic acid (PEP) and 3-phosphoshikimic acid to 5-enolpyruvyl-3-phosphoshikimic acid by inhibiting the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (hereinafter referred to as EPSP synthase or EPSPS). As used herein, the term “glyphosate” should be considered to include any herbicidally effective form of N-phosphonomethylglycine (including any salt thereof) and other forms which result in the production of the glyphosate anion in planta. Glyphosate is an example of an EPSPS inhibitor herbicide. Herbicides are molecules that affect plant growth or development or reproductive ability. Glyphosate is commercially available in numerous formulations. Examples of these formulations of glyphosate include, without limitation, those sold by Monsanto Company (St Louis, Mo.) as ROUNDUP®, ROUNDUP® ULTRA, ROUNDUP®ULTRAMAX, ROUNDUP®CT, ROUNDUP®EXTRA, ROUNDUP®BIACTIVE, ROUNDUP®BIOFORCE, RODEO®, POLARIS®, SPARK® and ACCORD®. herbicides, all of which contain glyphosate as its isopropylammonium salt, ROUNDUP® WEATHERMAX containing glyphosate as its potassium salt; ROUNDUP® DRY and RIVAL® herbicides, which contain glyphosate as its ammonium salt; ROUNDUP® GEOFORCE, which contains glyphosate as its sodium salt; and TOUCHDOWN® herbicide (Syngenta, Greensboro, N.C.), which contains glyphosate as its trimethylsulfonium salt or monopotassium salt. Various other salts of glyphosate are available for example, dimethylamine salt, isopropylamine salt, trimesium salt, potassium salt, monoammonium salt, and diammonium salt.


In some embodiments, the composition may include a nonpolynucleotide herebicide component that is an acetolactate synthase (ALS) inhibitor herbicide which includes but are not limited to amidosulfuron, azimsulfuron, bensulfuron-methyl, chlorimuron-ethyl, chlorsulfuron, cinosulfuron, cyclosulfamuron, ethametsulfuron-methyl, ethoxysulfuron, flazasulfuron, flupyrsulfuron-methyl-Na, foramsulfuron, halosulfuron-methyl, imazosulfuron, iodosulfuron, metsulfuron-methyl, nicosulfuron, oxasulfuron, primisulfuron-methyl, prosulfuron, pyrazosulfuron-ethyl, rimsulfuron, sulfometuron-methyl, sulfosulfuron, thifensulfuron-methyl, triasulfuron, tribenuron-methyl, trifloxysulfuron, triflusulfuron-methyl, tritosulfuron, imazapic, imazamethabenz-methyl, imazamox, imazapyr, imazaquin, imazethapyr, cloransulam-methyl, diclosulam, florasulam, flumetsulam, metosulam, bispyribac-Na, pyribenzoxim, pyriftalid, pyrithiobac-Na, pyriminobac-methyl, flucarbazone-Na, and procarbazone-Na.


In some embodiments, the composition may include a nonpolynucleotide herbicide component that is an acetyl-CoA carboxylase (ACCase) inhibitor herbicide, which include members of the chemical families of aryloxyphenoxypropionates, cyclohexanediones and phenylpyrazoline that include, but are not limited to an aryloxyphenoxypropionate comprising clodinafop (Propanoic acid, 2-[4-[(5-chloro-3-fluoro-2-pyridinyl)oxy]phenoxy]-,2-propynyl ester, (2R)), cyhalofop (butyl(2R)-2-[4-(4-cyano-2-fluorophenoxy)phenoxy]propionate), diclofop (methyl 2-[4-(2,4-dichlorophenoxy)phenoxy]propanoate), fenoxaprop (ethyl (R)-2-[4-(6-chloro-1,3-benzoxazol-2-yloxy)phenoxy]propionate), fluazifop (2R)-2-[4-[[5-(trifluoromethyl)-2-pyridinyl]oxy]phenoxy]propanoic acid), haloxyfop (2-[4-[[3-chloro-5-(trifluoromethyl)-2-pyridinyl]oxy]phenoxy]propanoic acid), propaquizafop (2-[[(1-methylethylidene)amino]oxy]ethyl(2R)-2-[4-[(6-chloro-2quinoxalinyl)oxy]phenoxy]propanoate) and quizalofop (2R)-2-[4-[(6-chloro-2-quinoxalinyl)oxy]phenoxy]propanoic acid; a cyclohexanedione comprising alloxydim (methyl 2,2-dimethyl-4,6-dioxo-5-[(1E)-1-[(2-propen-1-yloxy)imino]butyl]cyclohexanecarboxylate), butroxydim (2-[1-(ethoxyimino)propyl]-3-hydroxy-5-[2,4,6-trimethyl-3-(1-oxobutyl)phenyl]-2-cyclohexen-1-one), clethodim (2-[1-[[[(2E)-3-chloro-2-propen-1-yl]oxy]imino]propyl]-5-[2-(ethylthio)propyl]-3-hydroxy-2-cyclohexen-1-one), cycloxydim (2-[1-(ethoxyimino)butyl]-3-hydroxy-5-(tetrahydro-2H-thiopyran-3-yl)-2-cyclohexen-1-one), profoxydim (2-[1-[[2-(4-chlorophenoxy)propoxy]imino]butyl]-3-hydroxy-5-(tetrahydro-2H-thiopyran-3-yl)-2-cyclohexen-1-one), sethoxydim (2-[1-(ethoxyimino)butyl]-5-[2-(ethylthio)propyl]-3-hydroxy-2-cyclohexen-1-one), tepraloxydim (2-[1-[[[(2E)-3-chloro-2-propen-1-yl]oxy]imino]propyl]-3-hydroxy-5-(tetrahydro-2H-pyran-4-yl)-2-cyclohexen-1-one) and tralkoxydim (2-[1-(ethoxyimino)propyl]-3-hydroxy-5-(2,4,6-trimethylphenyl)-2-cyclohexen-1-one); a phenylpyrazoline comprising pinoxaden (8-(2,6-diethyl-4-methylphenyl)-1,2,4,5-tetrahydro-7-oxo-7H-pyrazolo[1,2-d][1,4,5]oxadiazepin-9-yl 2,2-dimethylpropanoate).


In some embodiments, the composition may include a nonpolynucleoide herbicide component that is an hydroxyphenyl-pyruvate-dioxygenase (HPPD) inhibitor herbicide which includes but are not limited to Triketones, such as, mesotrione, tefuryltrione, tembotrione, and sulcotrione; Isoxazoles, such as, isoxachlortole, pyrasulfotole, and isoxaflutole; Pyrazoles, such as, benzofenap, pyrazolynate, topramezone and pyrazoxyfen. Additional HPPD inhibitors include benzobicyclon and bicyclopyrone,


In some embodiments, the composition may include a nonpolynucleoide herbicide component that is a glutamine synthetase (GS) inhibitor herbicide, which include members of the Phosphinic acids herbicide group such as glufosinate-ammonium and bialaphos.


In some embodiments, the composition may include a nonpolynucleotide herbicide component that is an phytoene desaturase (PDS) inhibitor herbicide, which include but are not limited to norflurazon, diflufenican, picolinafen, beflubutamid, fluridone, flurochloridone and flurtamone.


In some embodiments, the composition may include a nonpolynucleotide herbicide component that is an protoporphyrinogen IX oxidase (PPG oxidas) inhibitor herbicide, which include but is not limited to acifluorfen-Na, bifenox, chlomethoxyfen, fluoroglycofen-ethyl, fomesafen, halosafen, lactofen, oxyfluorfen, fluazolate, pyraflufen-ethyl, cinidon-ethyl, flumioxazin, flumiclorac-pentyl, fluthiacet-methyl, thidiazimin, oxadiazon, oxadiargyl, azafenidin, carfentrazone-ethyl, sulfentrazone, pentoxazone, benzfendizone, butafenacil, pyrazogyl, and profluazol.


In some embodiments, the composition may include a nonpolynucleotide herbicide component that is dihydropteroate synthetase (DHPS) inhibitor herbicides include but are not limited to sulfonamides and asulam.


In some embodiments, the composition may include a nonpolynucleotide herbicide component that is photosystem II D1 protein (psbA) inhibitor herbicides include but are not limited to the chemical families of Triazines, Triazinones, Triazolinone, Uracils, Pyridazinones, Phenyl-carbamates, Ureas, Amides, Nitriles, Benzothiadiazinone, Phenyl-pyridazines and include members such as diuron[3-(3,4-dichlorophenyl)-1,1-dimethylurea)], chlortoluron, isoproturon, linuron, tebuthiuron, bentazone, oxadiazon, bromacil, ametryne, atrazine, cyanazine, hexazinone, metribuzin, simazine, and terbutylazine.


An agronomic field in need of plant control is treated by application of a composition as described herein directly to the surface of the growing plants, such as by a spray. For example, the method is applied to control weeds in a field of crop plants by spraying the field with the composition. The composition can be provided as a tank mix, a sequential treatment of components, or a simultaneous treatment or mixing of one or more of the components of the composition from separate containers. Treatment of the field can occur as often as needed to provide weed control and the components of the composition can be adjusted to target specific weed species or weed families through utilization of specific polynucleotides or polynucleotide compositions capable of selectively targeting the specific species or plant family to be controlled. The composition can be applied at effective use rates according to the time of application to the field, for example, preplant, at planting, post planting, post-harvest. Herbicide components of the composition can be applied at manufacturer's recommended use rates or reduced use rates, for example, 10-25 percent, or 26-50 percent, or 51-75 percent of the recommend use rate. The polynucleotides of the composition can be applied at rates of 1 to 30 grams per acre depending on the number of trigger molecules needed for the scope of weeds in the field.


Crop plants in which weed control may be needed include but are not limited to corn, soybean, cotton, canola, sugar beet, alfalfa, sugarcane, rice, and wheat; vegetable plants including, but not limited to, tomato, sweet pepper, hot pepper, melon, watermelon, cucumber, eggplant, cauliflower, broccoli, lettuce, spinach, onion, peas, carrots, sweet corn, Chinese cabbage, leek, fennel, pumpkin, squash or gourd, radish, Brussels sprouts, tomatillo, garden beans, dry beans, or okra; culinary plants including, but not limited to, basil, parsley, coffee, or tea; or fruit plants including but not limited to apple, pear, cherry, peach, plum, apricot, banana, plantain, oil palm, rubber tree, table grape, wine grape, citrus, avocado, mango, or berry; a tree grown for ornamental or commercial use, including, but not limited to, a fruit or nut tree; ornamental plant (e.g., an ornamental flowering plant or shrub or turf grass). The methods and compositions provided herein can also be applied to plants produced by a cutting, cloning, or grafting process (i.e., a plant not grown from a seed) including fruit trees and plants that include, but are not limited to, avocados, tomatoes, eggplant, cucumber, melons, watermelons, and grapes as well as various ornamental plants.


Polynucleotides


As used herein, the term “DNA”, “DNA molecule”, “DNA polynucleotide molecule” refers to a single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA) molecule of genomic or synthetic origin, such as, a polymer of deoxyribonucleotide bases or a DNA polynucleotide molecule. As used herein, the term “DNA sequence”, “DNA nucleotide sequence” or “DNA polynucleotide sequence” refers to the nucleotide sequence of a DNA molecule. As used herein, the term “RNA”, “RNA molecule”, “RNA polynucleotide molecule” refers to a single-stranded RNA (ssRNA) or double-stranded RNA (dsRNA) molecule of genomic or synthetic origin, such as, a polymer of ribonucleotide bases that comprise single or double stranded regions. Unless otherwise stated, nucleotide sequences in the text of this specification are given, when read from left to right, in the 5′ to 3′ direction and generally represent the plus or sense strand of a double strand polynucleotide. It is recognized that the minus or antisense strand may be the functional moiety of a double strand polynucleotide as described herein although unless indicate the disclosed polynucleotide sequences will represent the plus or sense strand polynucleotide sequence. The nomenclature used herein is that required by Title 37 of the United States Code of Federal Regulations § 1.822 and set forth in the tables in WIPO Standard ST.25 (1998), Appendix 2, Tables 1, 2, and 3.


As used herein, “polynucleotide” refers to a DNA or RNA molecule containing multiple nucleotides and generally refers both to “oligonucleotides” (a polynucleotide molecule of typically 50 or fewer nucleotides in length) and polynucleotides of 51 or more nucleotides. Embodiments include compositions including oligonucleotides having a length of 19-25 nucleotides (19-mers, 20-mers, 21-mers, 22-mers, 23-mers, 24-mers, or 25-mers), for example, oligonucleotides essentially homologous or essentially complementary to a component of a chloroplast protein import system, for example, SEQ ID NO: 1264-1483 (Table 2) or fragments thereof or medium-length polynucleotides having a length of 26 or more nucleotides (polynucleotides of 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, about 65, about 70, about 75, about 80, about 85, about 90, about 95, about 100, about 110, about 120, about 130, about 140, about 150, about 160, about 170, about 180, about 190, about 200, about 210, about 220, about 230, about 240, about 250, about 260, about 270, about 280, about 290, or about 300 nucleotides), for example, polynucleotides fragments thereof or long polynucleotides having a length greater than about 300 nucleotides (for example, polynucleotides of between about 300 to about 400 nucleotides, between about 400 to about 500 nucleotides, between about 500 to about 600 nucleotides, between about 600 to about 700 nucleotides, between about 700 to about 800 nucleotides, between about 800 to about 900 nucleotides, between about 900 to about 1000 nucleotides, between about 300 to about 500 nucleotides, between about 300 to about 600 nucleotides, between about 300 to about 700 nucleotides, between about 300 to about 800 nucleotides, between about 300 to about 900 nucleotides, or about 1000 nucleotides in length, or even greater than about 1000 nucleotides in length, for example up to the entire length of a target gene including coding or non-coding or both coding and non-coding portions of the components of a chloroplast protein import system target gene), for example, polynucleotides of SEQ ID NO: 1-1263 and 1584-1638, wherein the selected polynucleotides or fragments thereof are homologous or complementary to a segment of SEQ ID NO: 1-1263 or SEQ ID NO: 1584-1638 and suppresses, represses or otherwise delay the expression of the target chloroplast import protein or import processing enzyme genes. Where a polynucleotide is double-stranded, its length can be similarly described in terms of base pairs. A target gene comprises any polynucleotide molecule in a plant cell or fragment thereof for which the modulation of the expression of the target gene is provided by the methods and compositions. A gene has noncoding genetic elements (components) that provide for the function of the gene, these elements are polynucleotides that provide gene expression regulation, such as, a promoter, an enhancer, a 5′ untranslated region, intron regions, and a 3′ untranslated region. Oligonucleotides and polynucleotides can be made to any of the genetic elements of a gene and to polynucleotides spanning the junction region of a genetic element, such as, an intron and exon, the junction region of a promoter and a transcribed region, the junction region of a 5′ leader and a coding sequence, the junction of a 3′ untranslated region and a coding sequence.


Polynucleotide compositions used in the various embodiments include compositions including oligonucleotides or polynucleotides or a mixture of both, including RNA or DNA or RNA/DNA hybrids or chemically modified oligonucleotides or polynucleotides or a mixture thereof. In some embodiments, the polynucleotide may be a combination of ribonucleotides and deoxyribonucleotides, for example, synthetic polynucleotides consisting mainly of ribonucleotides but with one or more terminal deoxyribonucleotides or synthetic polynucleotides consisting mainly of deoxyribonucleotides but with one or more terminal dideoxyribonucleotides. In some embodiments, the polynucleotide includes non-canonical nucleotides such as inosine, thiouridine, or pseudouridine. In some embodiments, the polynucleotide includes chemically or enzymatically modified nucleotides. Examples of chemically modified oligonucleotides or polynucleotides are well known in the art; see, for example, US Patent Publication 20110171287, US Patent Publication 20110171176, and US Patent Publication 20110152353, US Patent Publication, 20110152346, US Patent Publication 20110160082, herein incorporated in its entirety by reference hereto. For example, including but not limited to the naturally occurring phosphodiester backbone of an oligonucleotide or polynucleotide can be partially or completely modified with phosphorothioate, phosphorodithioate, or methylphosphonate internucleotide linkage modifications, modified nucleoside bases or modified sugars can be used in oligonucleotide or polynucleotide synthesis, and oligonucleotides or polynucleotides can be labeled with a fluorescent moiety (for example, fluorescein or rhodamine) or other label (for example, biotin).


The polynucleotides can be single- or double-stranded RNA or single- or double-stranded DNA or double-stranded DNA/RNA hybrids or modified analogues thereof, and can be of oligonucleotide lengths or longer. In more specific embodiments, the polynucleotides that provide single-stranded RNA in the plant cell are selected from the group consisting of (a) a single-stranded RNA molecule (ssRNA), (b) a single-stranded RNA molecule that self-hybridizes to form a double-stranded RNA molecule, (c) a double-stranded RNA molecule (dsRNA), (d) a single-stranded DNA molecule (ssDNA), (e) a single-stranded DNA molecule that self-hybridizes to form a double-stranded DNA molecule, and (f) a single-stranded DNA molecule including a modified Pol III gene that is transcribed to an RNA molecule, (g) a double-stranded DNA molecule (dsDNA), (h) a double-stranded DNA molecule including a modified Pol III gene that is transcribed to an RNA molecule, (i) a double-stranded, hybridized RNA/DNA molecule, or combinations thereof. In some embodiments these polynucleotides include chemically modified nucleotides or non-canonical nucleotides. In some embodiments, the oligonucleotides may be blunt-ended or may comprise a 3′ overhang of from 1-5 nucleotides of at least one or both of the strands. Other configurations of the oligonucleotide are known in the field and are contemplated herein. In embodiments of the method the polynucleotides include double-stranded DNA formed by intramolecular hybridization, double-stranded DNA formed by intermolecular hybridization, double-stranded RNA formed by intramolecular hybridization, or double-stranded RNA formed by intermolecular hybridization. In one embodiment the polynucleotides include single-stranded DNA or single-stranded RNA that self-hybridizes to form a hairpin structure having an at least partially double-stranded structure including at least one segment that will hybridize to RNA transcribed from the gene targeted for suppression. Not intending to be bound by any mechanism, it is believed that such polynucleotides are or will produce single-stranded RNA with at least one segment that will hybridize to RNA transcribed from the gene targeted for suppression. In certain other embodiments the polynucleotides further includes a promoter, generally a promoter functional in a plant, for example, a pol II promoter, a pol III promoter, a pol IV promoter, or a pol V promoter.


The term “gene” refers to components that comprise chromosomal DNA, plasmid DNA, cDNA, intron and exon DNA, artificial DNA polynucleotide, or other DNA that encodes a peptide, polypeptide, protein, or RNA transcript molecule, and the genetic elements flanking the coding sequence that are involved in the regulation of expression, such as, promoter regions, 5′ leader regions, 3′ untranslated region that may exist as native genes or transgenes in a plant genome. A component of a gene or a fragment thereof of a component of a chloroplast protein import system is isolated and subjected to polynucleotide sequencing methods that determines the order of the nucleotides that comprise the gene. Any of the components of the gene are potential targets for a trigger oligonucleotide and polynucleotides.


The trigger polynucleotide molecules are designed to modulate expression by inducing regulation or suppression of an endogenous chloroplast import protein system gene in a plant and are designed to have a nucleotide sequence essentially identical or essentially complementary to the nucleotide sequence of an endogenous chloroplast import protein system gene of a plant or to the sequence of RNA transcribed from an endogenous chloroplast import protein or import processing enzyme or chaperone like protein associated with the import protein system gene of a plant, the sequence thereof determined by isolating the gene or a fragment of the gene from the plant, which can be coding sequence or non-coding sequence. Effective molecules that modulate expression are referred to as “a trigger molecule, or trigger polynucleotide”. By “essentially identical” or “essentially complementary” is meant that the trigger polynucleotides (or at least one strand of a double-stranded polynucleotide or portion thereof, or a portion of a single strand polynucleotide) are designed to hybridize to the endogenous gene noncoding sequence or to RNA transcribed (known as messenger RNA or an RNA transcript) from the endogenous gene to effect regulation or suppression of expression of the endogenous gene. Trigger molecules are identified by “tiling” the gene targets with partially overlapping probes or non-overlapping probes of antisense or sense polynucleotides that are essentially identical or essentially complementary to the nucleotide sequence of an endogenous gene. Multiple target sequences can be aligned and sequence regions with homology in common, according to the methods, are identified as potential trigger molecules for the multiple targets. Multiple trigger molecules of various lengths, for example 19-25 nucleotides, 26-50 nucleotides, 51-100 nucleotides, 101-200 nucleotides, 201-300 nucleotides or more can be pooled into a few treatments in order to investigate polynucleotide molecules that cover a portion of a gene sequence (for example, a portion of a coding versus a portion of a noncoding region, or a 5′ versus a 3′ portion of a gene) or an entire gene sequence including coding and noncoding regions of a target gene. Polynucleotide molecules of the pooled trigger molecules can be divided into smaller pools or single molecules in order to identify trigger molecules that provide the desired effect.


The target gene RNA and DNA polynucleotide molecules (SEQ ID NO:1-1263 and 1584-1638) are sequenced by any number of available methods and equipment. Some of the sequencing technologies are available commercially, such as the sequencing-by-hybridization platform from Affymetrix Inc. (Sunnyvale, Calif.) and the sequencing-by-synthesis platforms from 454 Life Sciences (Bradford, Conn.), Illumina/Solexa (Hayward, Calif.) and Helicos Biosciences (Cambridge, Mass.), and the sequencing-by-ligation platform from Applied Biosystems (Foster City, Calif.), as described below. In addition to the single molecule sequencing performed using sequencing-by-synthesis of Helicos Biosciences, other single molecule sequencing technologies are encompassed and include the SMRT™ technology of Pacific Biosciences, the Ion Torrent™ technology, and nanopore sequencing being developed for example, by Oxford Nanopore Technologies. A chloroplast import protein system or import processing enzyme gene comprising DNA or RNA can be isolated using primers or probes essentially complementary or essentially homologous to SEQ ID NO:1-1263 and 1584-1638 or a fragment thereof. A polymerase chain reaction (PCR) gene fragment can be produced using primers essentially complementary or essentially homologous to SEQ ID NO:1-1263 and 1584-1638 or a fragment thereof that is useful to isolate a chloroplast import protein or import processing enzyme gene from a plant genome. SEQ ID NO: 1-1263 and 1584-1638 or fragments thereof can be used in various sequence capture technologies to isolate additional target gene sequences, for example, including but not limited to Roche NimbleGen® (Madison, Wis.) and Streptavdin-coupled Dynabeads® (Life Technologies, Grand Island, N.Y.) and US20110015084, herein incorporated by reference in its entirety.


Embodiments of functional single-stranded polynucleotides have sequence complementarity that need not be 100 percent, but is at least sufficient to permit hybridization to RNA transcribed from the target gene or DNA of the target gene to form a duplex to permit a gene silencing mechanism. Thus, in embodiments, a polynucleotide fragment is designed to be essentially identical to, or essentially complementary to, a sequence of 19 or more contiguous nucleotides in either the target chloroplast import protein or import processing enzyme gene sequence or messenger RNA transcribed from the target gene. By “essentially identical” is meant having 100 percent sequence identity or at least about 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 percent sequence identity when compared to the sequence of 19 or more contiguous nucleotides in either the target gene or RNA transcribed from the target gene; by “essentially complementary” is meant having 100 percent sequence complementarity or at least about 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 percent sequence complementarity when compared to the sequence of 19 or more contiguous nucleotides in either the target gene or RNA transcribed from the target gene. In some embodiments, polynucleotide molecules are designed to have 100 percent sequence identity to or complementarity to one allele or one family member of a given target gene (coding or non-coding sequence of a gene); in other embodiments the polynucleotide molecules are designed to have 100 percent sequence identity to or complementarity to multiple alleles or family members of a given target gene in one or more plant species.


“Identity” refers to the degree of similarity between two polynucleic acid or protein sequences. An alignment of the two sequences is performed by a suitable computer program. A widely used and accepted computer program for performing sequence alignments is CLUSTALW v1.6 (Thompson, et al. Nucl. Acids Res., 22: 4673-4680, 1994). The number of matching bases or amino acids is divided by the total number of bases or amino acids, and multiplied by 100 to obtain a percent identity. For example, if two 580 base pair sequences had 145 matched bases, they would be 25 percent identical. If the two compared sequences are of different lengths, the number of matches is divided by the shorter of the two lengths. For example, if there are 100 matched amino acids between a 200 and a 400 amino acid protein, they are 50 percent identical with respect to the shorter sequence. If the shorter sequence is less than 150 bases or 50 amino acids in length, the number of matches are divided by 150 (for nucleic acid bases) or 50 (for amino acids), and multiplied by 100 to obtain a percent identity.


Trigger molecules for specific gene family members can be identified from coding and/or non-coding sequences of gene families of a plant or multiple plants, by aligning and selecting 200-300 polynucleotide fragments from the least homologous regions amongst the aligned sequences and evaluated using topically applied polynucleotides (as sense or anti-sense ssDNA or ssRNA, dsRNA, or dsDNA) to determine their relative effectiveness in providing the herbicidal phenotype. The effective segments are further subdivided into 50-60 polynucleotide fragments, prioritized by least homology, and reevaluated using topically applied polynucleotides. The effective 50-60 polynucleotide fragments are subdivided into 19-30 polynucleotide fragments, prioritized by least homology, and again evaluated for induction of the herbicidal phenotype. Once relative effectiveness is determined, the fragments are utilized singly, or again evaluated in combination with one or more other fragments to determine the trigger composition or mixture of trigger polynucleotides for providing the herbicidal phenotype.


Trigger molecules for broad activity can be identified from coding and/or non-coding sequences of gene families of a plant or multiple plants, by aligning and selecting 200-300 polynucleotide fragments from the most homologous regions amongst the aligned sequences and evaluated using topically applied polynucleotides (as sense or anti-sense ssDNA or ssRNA, dsRNA, or dsDNA) to determine their relative effectiveness in inducing the herbicidal phenotype. The effective segments are subdivided into 50-60 polynucleotide fragments, prioritized by most homology, and reevaluated using topically applied polynucleotides. The effective 50-60 polynucleotide fragments are subdivided into 19-30 polynucleotide fragments, prioritized by most homology, and again evaluated for induction of the herbicidal phenotype. Once relative effectiveness is determined, the fragments may be utilized singly, or in combination with one or more other fragments to determine the trigger composition or mixture of trigger polynucleotides for providing the herbicidal phenotype.


Methods of making polynucleotides are well known in the art. Chemical synthesis, in vivo synthesis and in vitro synthesis methods and compositions are known in the art and include various viral elements, microbial cells, modified polymerases, and modified nucleotides. Commercial preparation of oligonucleotides often provides two deoxyribonucleotides on the 3′ end of the sense strand. Long polynucleotide molecules can be synthesized from commercially available kits, for example, kits from Applied Biosystems/Ambion (Austin, Tex.) have DNA ligated on the 5′ end in a microbial expression cassette that includes a bacterial T7 polymerase promoter that makes RNA strands that can be assembled into a dsRNA and kits provided by vaious manufacturers that include T7 RiboMax Express (Promega, Madison, Wis.), AmpliScribe T7-Flash (Epicentre, Madison, Wis.), and TranscriptAid T7 High Yield (Fermentas, Glen Burnie, Md.). dsRNA molecules can be produced from microbial expression cassettes in bacterial cells (Ongvarrasopone et al. ScienceAsia 33:35-39; Yin, Appl. Microbiol. Biotechnol 84:323-333, 2009; Liu et al., BMC Biotechnology 10:85, 2010) that have regulated or deficient RNase III enzyme activity or the use of various viral vectors to produce sufficient quantities of dsRNA. Chloroplast import protein or import processing enzyme gene fragments are inserted into the microbial expression cassettes in a position in which the fragments are express to produce ssRNA or dsRNA useful in the methods described herein to regulate expression of a target gene. Long polynucleotide molecules can also be assembled from multiple RNA or DNA fragments. In some embodiments design parameters such as Reynolds score (Reynolds et al. Nature Biotechnology 22, 326-330 (2004), Tuschl rules (Pei and Tuschl, Nature Methods 3(9): 670-676, 2006), i-score (Nucleic Acids Res 35: e123, 2007), i-Score Designer tool and associated algorithms (Nucleic Acids Res 32: 936-948, 2004. Biochem Biophys Res Commun 316: 1050-1058, 2004, Nucleic Acids Res 32: 893-901, 2004, Cell Cycle 3: 790-5, 2004, Nat Biotechnol 23: 995-1001, 2005, Nucleic Acids Res 35: e27, 2007, BMC Bioinformatics 7: 520, 2006, Nucleic Acids Res 35: e123, 2007, Nat Biotechnol 22: 326-330, 2004) are known in the art and may be used in selecting polynucleotide sequences effective in gene silencing. In some embodiments the sequence of a polynucleotide is screened against the genomic DNA of the intended plant to minimize unintentional silencing of other genes.


Ligands can be tethered to a polynucleotide, for example a dsRNA, ssRNA, dsDNA or ssDNA. Ligands in general can include modifiers, e.g., for enhancing uptake; diagnostic compounds or reporter groups e.g., for monitoring distribution; cross-linking agents; nuclease-resistance conferring moieties; and natural or unusual nucleobases. General examples include lipophiles, lipids (e.g., cholesterol, a bile acid, or a fatty acid (e.g., lithocholic-oleyl, lauroyl, docosnyl, stearoyl, palmitoyl, myristoyl oleoyl, linoleoyl), steroids (e.g., uvaol, hecigenin, diosgenin), terpenes (e.g., triterpenes, e.g., sarsasapogenin, Friedelin, epifriedelanol derivatized lithocholic acid), vitamins (e.g., folic acid, vitamin A, biotin, pyridoxal), carbohydrates, proteins, protein binding agents, integrin targeting molecules, polycationics, peptides, polyamines, and peptide mimics. The ligand may also be a recombinant or synthetic molecule, such as a synthetic polymer, e.g., polyethylene glycol (PEG), PEG-40K, PEG-20K and PEG-5K. Other examples of ligands include lipophilic molecules, e.g, cholesterol, cholic acid, adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, glycerol (e.g., esters and ethers thereof, e.g., C.sub.10, C.sub.11, C.sub.12, C.sub.13, C.sub.14, C.sub.15, C.sub.16, C.sub.17, C.sub.18, C.sub.19, or C.sub.20 alkyl; e.g., lauroyl, docosnyl, stearoyl, oleoyl, linoleoyl 1,3-bis-O(hexadecyl)glycerol, 1,3-bis-O(octaadecyl)glycerol), geranyloxyhexyl group, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid, O3-(oleoyl)lithocholic acid, O3-(oleoyl)cholenic acid, dodecanoyl, lithocholyl, 5.beta.-cholanyl, N,N-distearyl-lithocholamide, 1,2-di-O-stearoylglyceride, dimethoxytrityl, or phenoxazine) and PEG (e.g., PEG-5K, PEG-20K, PEG-40K). Preferred lipophilic moieties include lipid, cholesterols, oleyl, retinyl, or cholesteryl residues.


Conjugating a ligand to a dsRNA can enhance its cellular absorption, lipophilic compounds that have been conjugated to oligonucleotides include 1-pyrene butyric acid, 1,3-bis-O-(hexadecyl)glycerol, and menthol. One example of a ligand for receptor-mediated endocytosis is folic acid. Folic acid enters the cell by folate-receptor-radiated endocytosis. dsRNA compounds bearing folic acid would be efficiently transported into the cell via the folate-receptor-mediated endocytosis. Other ligands that have been conjugated to oligonucleotides include polyethylene glycols, carbohydrate clusters, cross-linking agents, porphyrin conjugates, delivery peptides and lipids such as cholesterol. In certain instances, conjugation of a cationic ligand to oligonucleotides results in improved resistance to nucleases. Representative examples of cationic ligands are propylammonium and dimethylpropylammonium. Interestingly, antisense oligonucleotides were reported to retain their high binding affinity to mRNA when the cationic ligand was dispersed, throughout the oligonucleotide. See M. Manoharan Antisense & Nucleic Acid Drug Development 2002, 12, 103 and references therein.


A biologic delivery can be accomplished by a variety of methods including, without limitation, (1) loading liposomes with a dsRNA acid molecule provided herein and (2) complexing a dsRNA molecule with lipids or liposomes to form nucleic acid-lipid or nucleic acid-liposome complexes. The liposome can be composed of cationic and neutral lipids commonly used to transfect cells in vitro. Cationic lipids can complex (e.g., charge-associate) with negatively charged, nucleic acids to form liposomes. Examples of cationic liposomes include, without limitation, lipofectin, lipofectamine, lipofectace, and DOTAP. Procedures for forming liposomes are well known in the art. Liposome compositions can be formed, for example, from phosphatidylcholine, dimyristoyl phosphatidylcholine, dipalmitoyl phosphatidylcholine, dimyristoyl phosphatidyl glycerol, dioleoyl phosphatidylethanolamine or liposomes comprising dihydrosphingomyelin (DHSM) Numerous lipophilic agents are commercially available, including Lipofectin® (Invitrogen/Life Technologies, Carlsbad, Calif.) and Effectene™ (Qiagen, Valencia, Calif.), In addition, systemic delivery methods can be optimized using commercially available cationic lipids such as DDAB or DOTAP, each of which can be mixed with a neutral lipid such as DOPE or cholesterol. In some cases, liposomes such as those described by Templeton et al. (Nature Biotechnology, 15:647-652 (1997)) can be used. In other embodiments, polycations such as polyethyleneimine can be used to achieve delivery in vivo and ex vivo (Boletta et al., J. Am Soc. Nephrol. 7:1728 (1996)). Additional information regarding the use of liposomes to deliver nucleic acids can be found in U.S. Pat. No. 6,271,359, PCT Publication WO 96/40964 and Morrissey, D. et al. 2005. Nat Biotechnol. 23(8):1002-7.


In certain embodiments, an organosilicone preparation that is commercially available as Silwet® L-77 surfactant having CAS Number 27306-78-1 and EPA Number: CAL. REG. NO. 5905-50073-AA, and currently available from Momentive Performance Materials, Albany, N.Y. can be used to prepare a polynucleotide composition. In certain embodiments where a Silwet L-77 organosilicone preparation is used as a pre-spray treatment of plant leaves or other plant surfaces, freshly made concentrations in the range of about 0.1 to about 2 percent by weight (wt percent) (e.g., about 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.5 wt percent) are efficacious in preparing a leaf or other plant surface for transfer of polynucleotide molecules into plant cells from a topical application on the surface. In certain embodiments of the methods and compositions provided herein, a composition that comprises a polynucleotide molecule and an organosilicone preparation comprising Silwet L-77 in the range of about 0.1 to about 2 percent by weight (wt percent) (e.g., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.5 wt percent) is used or provided.


In certain embodiments, any of the commercially available organosilicone preparations provided such as the following Breakthru S 321, Breakthru S 200 Cat #67674-67-3, Breakthru OE 441 Cat #68937-55-3, Breakthru S 278 Cat #27306-78-1, Breakthru S 243, Breakthru S 233 Cat #134180-76-0, available from manufacturer Evonik Goldschmidt (Germany), Silwet® HS 429, Silwet® HS 312, Silwet® HS 508, Silwet® HS 604 (Momentive Performance Materials, Albany, N.Y.) can be used as transfer agents in a polynucleotide composition. In certain embodiments where an organosilicone preparation is used as a pre-spray treatment of plant leaves or other surfaces, freshly made concentrations in the range of about 0.1 to about 2 percent by weight (wt percent) (e.g., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.5 wt percent) are efficacious in preparing a leaf or other plant surface for transfer of polynucleotide molecules into plant cells from a topical application on the surface. In certain embodiments of the methods and compositions provided herein, a composition that comprises a polynucleotide molecule and an organosilicone preparation in the range of about 0.1 to about 2 percent by weight (wt percent) (e.g., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.5 wt percent) is used or provided.


Organosilicone preparations used in the methods and compositions provided herein can comprise one or more effective organosilicone compounds. As used herein, the phrase “effective organosilicone compound” is used to describe any organosilicone compound that is found in an organosilicone preparation that enables a polynucleotide to enter a plant cell. In certain embodiments, an effective organosilicone compound can enable a polynucleotide to enter a plant cell in a manner permitting a polynucleotide mediated suppression of a target gene expression in the plant cell. In general, effective organosilicone compounds include, but are not limited to, compounds that can comprise: i) a trisiloxane head group that is covalently linked to, ii) an alkyl linker including, but not limited to, an n-propyl linker, that is covalently linked to, iii) a poly glycol chain, that is covalently linked to, iv) a terminal group. Trisiloxane head groups of such effective organosilicone compounds include, but are not limited to, heptamethyltrisiloxane. Alkyl linkers can include, but are not limited to, an n-propyl linker. Poly glycol chains include, but are not limited to, polyethylene glycol or polypropylene glycol. Poly glycol chains can comprise a mixture that provides an average chain length “n” of about “7.5”. In certain embodiments, the average chain length “n” can vary from about 5 to about 14. Terminal groups can include, but are not limited to, alkyl groups such as a methyl group. Effective organosilicone compounds are believed to include, but are not limited to, trisiloxane ethoxylate surfactants or polyalkylene oxide modified heptamethyl trisiloxane.




embedded image


In certain embodiments, an organosilicone preparation that comprises an organosilicone compound comprising a trisiloxane head group is used in the methods and compositions provided herein. In certain embodiments, an organosilicone preparation that comprises an organosilicone compound comprising a heptamethyltrisiloxane head group is used in the methods and compositions provided herein. In certain embodiments, an organosilicone composition that comprises Compound I is used in the methods and compositions provided herein. In certain embodiments, an organosilicone composition that comprises Compound I is used in the methods and compositions provided herein. In certain embodiments of the methods and compositions provided herein, a composition that comprises a polynucleotide molecule and one or more effective organosilicone compound in the range of about 0.1 to about 2 percent by weight (wt percent) (e.g., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.5 wt percent) is used or provided.


Compositions include but are not limited components that are one or more polynucleotides essentially identical to, or essentially complementary to a chloroplast import protein or import processing enzyme gene sequence (promoter, intron, exon, 5′ untranslated region, 3′ untranslated region), a transfer agent that provides for the polynucleotide to enter a plant cell, a herbicide that complements the action of the polynucleotide, one or more additional herbicides that further enhance the herbicide activity of the composition or provide an additional mode of action different from the complementing herbicide, various salts and stabilizing agents that enhance the utility of the composition as an admixture of the components of the composition.


In certain aspects, methods include one or more applications of a polynucleotide composition and one or more applications of a transfer agent for conditioning of a plant to permeation by polynucleotides. When the agent for conditioning to permeation is an organosilicone composition or compound contained therein, embodiments of the polynucleotide molecules are double-stranded RNA oligonucleotides, single-stranded RNA oligonucleotides, double-stranded RNA polynucleotides, single-stranded RNA polynucleotides, double-stranded DNA oligonucleotides, single-stranded DNA oligonucleotides, double-stranded DNA polynucleotides, single-stranded DNA polynucleotides, chemically modified RNA or DNA oligonucleotides or polynucleotides or mixtures thereof.


Compositions and methods are useful for modulating the expression a protein of an endogenous gene, wherein the protein is imported into a chloroplast and is a target of a herbicide, for example, an EPSPS gene or a transgenic EPSPS gene (for example, CP4 EPSPS, U.S. Pat. No. RE39,247 and 2mEPSPS, U.S. Pat. No. 6,040,497) gene in a plant cell. In various embodiments, an EPSPS gene includes coding (protein-coding or translatable) sequence, non-coding (non-translatable) sequence, or both coding and non-coding sequence. Compositions can include polynucleotides and oligonucleotides designed to target one or more chloroplast import genes and a herbicide target gene, or multiple segments of one or more the genes. The gene can include multiple consecutive segments, multiple non-consecutive segments of a target gene, multiple alleles of a target gene, or multiple target genes from one or more species.


Provided is a method for modulating expression of a chloroplast import gene or chloroplast protein processing gene in a plant including (a) conditioning of a plant to permeation by polynucleotides and (b) treatment of the plant with the polynucleotide molecules, wherein the polynucleotide molecules include at least one segment of 19 or more contiguous nucleotides cloned from or otherwise identified from the target gene in either anti-sense or sense orientation, whereby the polynucleotide molecules permeate the interior of the plant and induce modulation of the target gene. The conditioning and polynucleotide application can be performed separately or in a single step. When the conditioning and polynucleotide application are performed in separate steps, the conditioning can precede or can follow the polynucleotide application within minutes, hours, or days. In some embodiments more than one conditioning step or more than one polynucleotide molecule application can be performed on the same plant. In embodiments of the method, the segment can be cloned or identified from (a) coding (protein-encoding), (b) non-coding (promoter and other gene related molecules), or (c) both coding and non-coding parts of the target gene. Non-coding parts include DNA, such as promoter regions or the RNA transcribed by the DNA that provide RNA regulatory molecules, including but not limited to: introns, 5′ or 3′ untranslated regions, and microRNAs (miRNA), trans-acting siRNAs, natural anti-sense siRNAs, and other small RNAs with regulatory function or RNAs having structural or enzymatic function including but not limited to: ribozymes, ribosomal RNAs, t-RNAs, aptamers, and riboswitches.


All publications, patents and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.


The following examples are included to demonstrate examples of certain preferred embodiments. It should be appreciated by those of skill in the art that the techniques disclosed in the examples that follow represent approaches the inventors have found function well in the practice, and thus can be considered to constitute examples of preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments that are disclosed and still obtain a like or similar result without departing from the spirit and scope.


EXAMPLES
Example 1. Polynucleotides Related to the Plant Chloroplast Protein Import System and Target Gene Sequences Thereof

The target chloroplast protein import system naturally occurs in the genome of plants, including but not limited to Abutilon theophrasti, Alopecurus myosuroides, Amaranthus albus, Amaranthus chlorostachys, Amaranthus graecizans, Amaranthus hybridus, Amaranthus lividus, Amaranthus palmeri, Amaranthus rudis, Amaranthus spinosus, Amaranthus thunbergii, Amaranthus viridis, Ambrosia artemisifolia, Ambrosia trifida, Avena fatua, Chenopodium album, Commelina diffusa, Convolvulus arvensis, Conyza canadensis, Cyperus esculentus, Digitaria sanguinalis, Echinochloa colona, Echinochloa crus-galli, Euphorbia heterophylla, Festuca arundinacea, Ipomoea hederacea, Kochia scoparia, Lolium arundinaceum, Lolium multiflorum, Lolium rigidium, Portulaca oleracea, Senna obtusifolia, Setaria viridis, Sorghum halepense, Spirodela polyrrhiza, Taraxacum officinale, Trifolium repens, Xanthium strumarium and other weed species that include molecules related to the expression of a polypeptide identified as an enzyme or protein of a chloroplast import protein system, that include regulatory molecules, cDNAs comprising coding and noncoding regions of the gene and fragments thereof as shown in SEQ ID NO: 1-1263 and SEQ ID NO: 1584-1683, summarized in Table 1.


Polynucleotide molecules are extracted from these plant species by methods standard in the field, for example, total RNA is extracted using Trizol Reagent (Invitrogen Corp, Carlsbad, Calif. Cat. No. 15596-018), following the manufacturer's protocol or modifications thereof by those skilled in the art of polynucleotide extraction that may enhance recover or purity of the extracted RNA. Briefly, start with 1 gram of ground plant tissue for extraction. Prealiquot 10 milliliters (mL) Trizol reagent to 15 mL conical tubes. Add ground powder to tubes and shake to homogenize. Incubate the homogenized samples for 5 minutes (min) at room temperature (RT) and then add 3 mL of chloroform. Shakes tubes vigorously by hand for 15-30 seconds (sec) and incubate at RT for 3 min. Centrifuge the tubes at 7,000 revolutions per minute (rpm) for 10 min at 4 degrees C. (centigrade). Transfer the aqueous phase to a new 1.5 mL tube and add 1 volume of cold isopropanol. Incubate the samples for 20-30 min at RT and centrifuge at 10,000 rpm for 10 min at 4 degrees C. Wash pellet with Sigma-grade 80 percent ethanol. Remove the supernatant and briefly air-dry the pellet. Dissolve the RNA pellet in approximately 200 microliters of DEPC treated water. Heat briefly at 65 degrees C. to dissolve pellet and vortex or pipet to resuspend RNA pellet. Adjust RNA to 1-2 microgram/microliter.


DNA is extracted using EZNA SP Plant DNA Mini kit (Omega Biotek, Norcross Ga., Cat # D5511) and Lysing Matrix E tubes (Q-Biogen, Cat #6914), following the manufacturer's protocol or modifications thereof by those skilled in the art of polynucleotide extraction that may enhance recover or purity of the extracted DNA. Briefly, aliquot ground tissue to a Lysing Matrix E tube on dry ice, add 800 μl Buffer SP1 to each sample, homogenize in a bead beater for 35-45 sec, incubate on ice for 45-60 sec, centrifuge at ≥14000 rpm for 1 min at RT, add 10 microliter RNase A to the lysate, incubate at 65° C. for 10 min, centrifuge for 1 min at RT, add 280 μl Buffer SP2 and vortex to mix, incubate the samples on ice for 5 min, centrifuge at ≥10,000 g for 10 min at RT, transfer the supernatant to a homogenizer column in a 2 ml collection tube, centrifuge at 10,000 g for 2 min at RT, transfer the cleared lysate into a 1.5 ml microfuge tube, add 1.5 volumes Buffer SP3 to the cleared lysate, vortex immediately to obtain a homogeneous mixture, transfer up to 650 μl supernatant to the Hi-Bind column, centrifuge at 10,000 g for 1 min, repeat, apply 100 μl 65° C. Elution Buffer to the column, centrifuge at 10,000 g for 5 min at RT.


Next-generation DNA sequencers, such as the 454-FLX (Roche, Branford, Conn.), the SOLiD (Applied Biosystems), and the Genome Analyzer (HiSeq2000, Illumina, San Diego, Calif.) are used to provide polynucleotide sequence from the DNA and RNA extracted from the plant tissues. Raw sequence data is assembled into contigs. The contig sequence is used to identify trigger polynucleotide molecules that can be applied to the plant to enable regulation of the gene expression and result in an agronomic benefit.









TABLE 1







Target chloroplast import protein system DNA sequence


contigs from the various plant species.










SEQ ID NO
GENE
SPECIES
SEQ_TYPE













1
TOC159

Abutilon theophrasti

cDNA


2
TOC159

Abutilon theophrasti

cDNA


3
TOC159

Abutilon theophrasti

gDNA


4
TOC159

Abutilon theophrasti

gDNA


5
TOC159

Abutilon theophrasti

gDNA


6
TOC159

Abutilon theophrasti

gDNA


7
TOC159

Abutilon theophrasti

gDNA


8
TOC159

Abutilon theophrasti

gDNA


9
TOC159

Abutilon theophrasti

gDNA


10
TOC159

Abutilon theophrasti

gDNA


11
TOC159

Abutilon theophrasti

gDNA


12
TOC159

Abutilon theophrasti

gDNA


13
TOC159

Abutilon theophrasti

gDNA


14
TOC159

Alopecurus myosuroides

cDNA


15
TOC159

Amaranthus albus

cDNA


16
TOC159

Amaranthus albus

cDNA


17
TOC159

Amaranthus albus

cDNA


18
TOC159

Amaranthus chlorostachys

cDNA


19
TOC159

Amaranthus graecizans

cDNA


20
TOC159

Amaranthus graecizans

cDNA


21
TOC159

Amaranthus hybridus

cDNA


22
TOC159

Amaranthus hybridus

cDNA


23
TOC159

Amaranthus lividus

cDNA


24
TOC159

Amaranthus palmeri

cDNA


25
TOC159

Amaranthus palmeri

cDNA


26
TOC159

Amaranthus palmeri

cDNA


27
TOC159

Amaranthus palmeri

gDNA


28
TOC159

Amaranthus palmeri

gDNA


29
TOC159

Amaranthus rudis

cDNA


30
TOC159

Amaranthus rudis

gDNA


31
TOC159

Amaranthus rudis

gDNA


32
TOC159

Amaranthus rudis

gDNA


33
TOC159

Amaranthus spinosus

cDNA


34
TOC159

Amaranthus spinosus

cDNA


35
TOC159

Amaranthus thunbergii

cDNA


36
TOC159

Amaranthus thunbergii

cDNA


37
TOC159

Amaranthus thunbergii

cDNA


38
TOC159

Amaranthus thunbergii

cDNA


39
TOC159

Amaranthus viridis

cDNA


40
TOC159

Amaranthus viridis

cDNA


41
TOC159

Ambrosia artemisiifolia

gDNA


42
TOC159

Ambrosia artemisiifolia

gDNA


43
TOC159

Ambrosia trifida

cDNA


44
TOC159

Ambrosia trifida

cDNA


45
TOC159

Ambrosia trifida

gDNA


46
TOC159

Ambrosia trifida

gDNA


47
TOC159

Ambrosia trifida

gDNA


48
TOC159

Ambrosia trifida

gDNA


49
TOC159

Ambrosia trifida

gDNA


50
TOC159

Ambrosia trifida

gDNA


51
TOC159

Ambrosia trifida

gDNA


52
TOC159

Ambrosia trifida

gDNA


53
TOC159

Ambrosia trifida

gDNA


54
TOC159

Ambrosia trifida

gDNA


55
TOC159

Ambrosia trifida

gDNA


56
TOC159

Ambrosia trifida

gDNA


57
TOC159

Ambrosia trifida

gDNA


58
TOC159

Ambrosia trifida

gDNA


59
TOC159

Ambrosia trifida

gDNA


60
TOC159

Avena fatua

cDNA


61
TOC159

Avena fatua

cDNA


62
TOC159

Chenopodium album

cDNA


63
TOC159

Chenopodium album

cDNA


64
TOC159

Chenopodium album

cDNA


65
TOC159

Convolvulus arvensis

cDNA


66
TOC159

Convolvulus arvensis

cDNA


67
TOC159

Conyza canadensis

cDNA


68
TOC159

Conyza canadensis

gDNA


69
TOC159

Cyperus esculentus

gDNA


70
TOC159

Digitaria sanguinalis

cDNA


71
TOC159

Digitaria sanguinalis

cDNA


72
TOC159

Digitaria sanguinalis

cDNA


73
TOC159

Digitaria sanguinalis

cDNA


74
TOC159

Digitaria sanguinalis

cDNA


75
TOC159

Digitaria sanguinalis

gDNA


76
TOC159

Digitaria sanguinalis

gDNA


77
TOC159

Echinochloa colona

cDNA


78
TOC159

Echinochloa colona

cDNA


79
TOC159

Echinochloa crus-galli

cDNA


80
TOC159

Euphorbia heterophylla

cDNA


81
TOC159

Euphorbia heterophylla

cDNA


82
TOC159

Euphorbia heterophylla

cDNA


83
TOC159

Euphorbia heterophylla

gDNA


84
TOC159

Festuca arundinacea

gDNA


85
TOC159

Festuca arundinacea

gDNA


86
TOC159

Festuca arundinacea

gDNA


87
TOC159

Ipomoea hederacea

cDNA


88
TOC159

Kochia scoparia

gDNA


89
TOC159

Lolium arundinaceum

gDNA


90
TOC159

Lolium arundinaceum

gDNA


91
TOC159

Lolium multiflorum

cDNA


92
TOC159

Lolium multiflorum

cDNA


93
TOC159

Lolium multiflorum

gDNA


94
TOC159

Lolium multiflorum

gDNA


95
TOC159

Lolium multiflorum

gDNA


96
TOC159

Lolium multiflorum

gDNA


97
TOC159

Lolium multiflorum

gDNA


98
TOC159

Lolium multiflorum

gDNA


99
TOC159

Lolium rigidium

gDNA


100
TOC159

Lolium rigidium

gDNA


101
TOC159

Portulaca oleracea

gDNA


102
TOC159

Portulaca oleracea

gDNA


103
TOC159

Portulaca oleracea

gDNA


104
TOC159

Senna obtusifolia

cDNA


105
TOC159

Senna obtusifolia

cDNA


106
TOC159

Sorghum halepense

cDNA


107
TOC159

Sorghum halepense

cDNA


108
TOC159

Sorghum halepense

gDNA


109
TOC159

Spirodela polyrrhiza

gDNA


110
TOC159

Taraxacum officinale

gDNA


111
TOC159

Trifolium repens

gDNA


112
TOC159

Trifolium repens

gDNA


113
TOC159

Trifolium repens

gDNA


114
TOC159

Trifolium repens

gDNA


115
TOC159

Trifolium repens

gDNA


116
TOC159

Xanthium strumarium

cDNA


117
TOC159

Xanthium strumarium

cDNA


118
TOC33

Amaranthus palmeri

cDNA


119
TOC33

Amaranthus palmeri

gDNA


120
TOC33

Amaranthus palmeri

gDNA


121
TOC33

Amaranthus palmeri

gDNA


122
TOC33

Amaranthus rudis

cDNA


123
TOC33

Amaranthus rudis

gDNA


124
TOC33

Amaranthus rudis

gDNA


125
TOC33

Amaranthus rudis

gDNA


126
TOC33

Ambrosia artemisiifolia

gDNA


127
TOC33

Ambrosia artemisiifolia

gDNA


128
TOC33

Ambrosia artemisiifolia

gDNA


129
TOC33

Ambrosia artemisiifolia

gDNA


130
TOC33

Ambrosia trifida

cDNA


131
TOC33

Ambrosia trifida

gDNA


132
TOC33

Ambrosia trifida

gDNA


133
TOC33

Commelina diffusa

cDNA


134
TOC33

Cyperus esculentus

gDNA


135
TOC33

Cyperus esculentus

gDNA


136
TOC33

Euphorbia heterophylla

cDNA


137
TOC33

Euphorbia heterophylla

gDNA


138
TOC33

Festuca arundinacea

gDNA


139
TOC33

Festuca arundinacea

gDNA


140
TOC33

Festuca arundinacea

gDNA


141
TOC33

Lolium arundinaceum

gDNA


142
TOC33

Portulaca oleracea

gDNA


143
TOC33

Portulaca oleracea

gDNA


144
TOC33

Senna obtusifolia

cDNA


145
TOC33

Sorghum halepense

gDNA


146
TOC33

Sorghum halepense

gDNA


147
TOC33

Sorghum halepense

gDNA


148
TOC33

Spirodela polyrrhiza

gDNA


149
TOC33

Taraxacum officinale

gDNA


150
TOC33

Taraxacum officinale

gDNA


151
TOC33

Trifolium repens

gDNA


152
TOC33

Trifolium repens

gDNA


153
TOC33

Trifolium repens

gDNA


154
TOC33

Trifolium repens

gDNA


155
TOC33

Xanthium strumarium

cDNA


156
TOC34

Abutilon theophrasti

cDNA


157
TOC34

Abutilon theophrasti

gDNA


158
TOC34

Abutilon theophrasti

gDNA


159
TOC34

Abutilon theophrasti

gDNA


160
TOC34

Abutilon theophrasti

gDNA


161
TOC34

Abutilon theophrasti

gDNA


162
TOC34

Alopecurus myosuroides

cDNA


163
TOC34

Alopecurus myosuroides

cDNA


164
TOC34

Amaranthus albus

cDNA


165
TOC34

Amaranthus graecizans

cDNA


166
TOC34

Amaranthus hybridus

cDNA


167
TOC34

Amaranthus lividus

cDNA


168
TOC34

Amaranthus palmeri

cDNA


169
TOC34

Amaranthus palmeri

gDNA


170
TOC34

Amaranthus palmeri

gDNA


171
TOC34

Amaranthus rudis

cDNA


172
TOC34

Amaranthus rudis

gDNA


173
TOC34

Amaranthus rudis

gDNA


174
TOC34

Amaranthus rudis

gDNA


175
TOC34

Amaranthus rudis

gDNA


176
TOC34

Amaranthus rudis

gDNA


177
TOC34

Amaranthus rudis

gDNA


178
TOC34

Amaranthus spinosus

cDNA


179
TOC34

Amaranthus thunbergii

cDNA


180
TOC34

Amaranthus viridis

cDNA


181
TOC34

Ambrosia artemisiifolia

gDNA


182
TOC34

Ambrosia artemisiifolia

gDNA


183
TOC34

Ambrosia artemisiifolia

gDNA


184
TOC34

Ambrosia artemisiifolia

gDNA


185
TOC34

Ambrosia artemisiifolia

gDNA


186
TOC34

Ambrosia trifida

cDNA


187
TOC34

Ambrosia trifida

gDNA


188
TOC34

Ambrosia trifida

gDNA


189
TOC34

Ambrosia trifida

gDNA


190
TOC34

Ambrosia trifida

gDNA


191
TOC34

Ambrosia trifida

gDNA


192
TOC34

Ambrosia trifida

gDNA


193
TOC34

Chenopodium album

cDNA


194
TOC34

Commelina diffusa

cDNA


195
TOC34

Commelina diffusa

cDNA


196
TOC34

Commelina diffusa

cDNA


197
TOC34

Conyza canadensis

cDNA


198
TOC34

Conyza canadensis

gDNA


199
TOC34

Cyperus esculentus

gDNA


200
TOC34

Cyperus esculentus

gDNA


201
TOC34

Cyperus esculentus

gDNA


202
TOC34

Digitaria sanguinalis

cDNA


203
TOC34

Echinochloa crus-galli

cDNA


204
TOC34

Euphorbia heterophylla

cDNA


205
TOC34

Euphorbia heterophylla

gDNA


206
TOC34

Festuca arundinacea

gDNA


207
TOC34

Festuca arundinacea

gDNA


208
TOC34

Festuca arundinacea

gDNA


209
TOC34

Festuca arundinacea

gDNA


210
TOC34

Festuca arundinacea

gDNA


211
TOC34

Festuca arundinacea

gDNA


212
TOC34

Ipomoea hederacea

cDNA


213
TOC34

Kochia scoparia

gDNA


214
TOC34

Kochia scoparia

gDNA


215
TOC34

Lolium arundinaceum

gDNA


216
TOC34

Lolium arundinaceum

gDNA


217
TOC34

Lolium arundinaceum

gDNA


218
TOC34

Lolium multiflorum

cDNA


219
TOC34

Lolium multiflorum

gDNA


220
TOC34

Lolium multiflorum

gDNA


221
TOC34

Lolium multiflorum

gDNA


222
TOC34

Lolium multiflorum

gDNA


223
TOC34

Lolium rigidium

gDNA


224
TOC34

Lolium rigidium

gDNA


225
TOC34

Lolium rigidium

gDNA


226
TOC34

Lolium rigidium

gDNA


227
TOC34

Portulaca oleracea

gDNA


228
TOC34

Portulaca oleracea

gDNA


229
TOC34

Portulaca oleracea

gDNA


230
TOC34

Portulaca oleracea

gDNA


231
TOC34

Senna obtusifolia

cDNA


232
TOC34

Sorghum halepense

gDNA


233
TOC34

Sorghum halepense

gDNA


234
TOC34

Sorghum halepense

gDNA


235
TOC34

Spirodela polyrrhiza

gDNA


236
TOC34

Taraxacum officinale

gDNA


237
TOC34

Taraxacum officinale

gDNA


238
TOC34

Taraxacum officinale

gDNA


239
TOC34

Taraxacum officinale

gDNA


240
TOC34

Trifolium repens

gDNA


241
TOC34

Trifolium repens

gDNA


242
TOC34

Trifolium repens

gDNA


243
TOC34

Trifolium repens

gDNA


244
TOC34

Trifolium repens

gDNA


245
TOC34

Trifolium repens

gDNA


246
TOC34

Xanthium strumarium

cDNA


247
TOC34

Xanthium strumarium

cDNA


248
TOC75

Abutilon theophrasti

cDNA


249
TOC75

Abutilon theophrasti

gDNA


250
TOC75

Abutilon theophrasti

gDNA


251
TOC75

Abutilon theophrasti

gDNA


252
TOC75

Abutilon theophrasti

gDNA


253
TOC75

Abutilon theophrasti

gDNA


254
TOC75

Amaranthus albus

cDNA


255
TOC75

Amaranthus albus

cDNA


256
TOC75

Amaranthus chlorostachys

cDNA


257
TOC75

Amaranthus graecizans

cDNA


258
TOC75

Amaranthus hybridus

cDNA


259
TOC75

Amaranthus lividus

cDNA


260
TOC75

Amaranthus palmeri

cDNA


261
TOC75

Amaranthus palmeri

gDNA


262
TOC75

Amaranthus palmeri

gDNA


263
TOC75

Amaranthus palmeri

gDNA


264
TOC75

Amaranthus rudis

cDNA


265
TOC75

Amaranthus rudis

gDNA


266
TOC75

Amaranthus rudis

gDNA


267
TOC75

Amaranthus rudis

gDNA


268
TOC75

Amaranthus rudis

gDNA


269
TOC75

Amaranthus rudis

gDNA


270
TOC75

Amaranthus rudis

gDNA


271
TOC75

Amaranthus rudis

gDNA


272
TOC75

Amaranthus spinosus

cDNA


273
TOC75

Amaranthus thunbergii

cDNA


274
TOC75

Amaranthus viridis

cDNA


275
TOC75

Ambrosia artemisiifolia

gDNA


276
TOC75

Ambrosia artemisiifolia

gDNA


277
TOC75

Ambrosia artemisiifolia

gDNA


278
TOC75

Ambrosia artemisiifolia

gDNA


279
TOC75

Ambrosia artemisiifolia

gDNA


280
TOC75

Ambrosia trifida

cDNA


281
TOC75

Ambrosia trifida

gDNA


282
TOC75

Ambrosia trifida

gDNA


283
TOC75

Ambrosia trifida

gDNA


284
TOC75

Ambrosia trifida

gDNA


285
TOC75

Ambrosia trifida

gDNA


286
TOC75

Ambrosia trifida

gDNA


287
TOC75

Ambrosia trifida

gDNA


288
TOC75

Ambrosia trifida

gDNA


289
TOC75

Ambrosia trifida

gDNA


290
TOC75

Ambrosia trifida

gDNA


291
TOC75

Chenopodium album

cDNA


292
TOC75

Commelina diffusa

cDNA


293
TOC75

Commelina diffusa

cDNA


294
TOC75

Convolvulus arvensis

cDNA


295
TOC75

Conyza canadensis

cDNA


296
TOC75

Conyza canadensis

cDNA


297
TOC75

Conyza canadensis

gDNA


298
TOC75

Cyperus esculentus

gDNA


299
TOC75

Digitaria sanguinalis

cDNA


300
TOC75

Digitaria sanguinalis

cDNA


301
TOC75

Digitaria sanguinalis

gDNA


302
TOC75

Digitaria sanguinalis

gDNA


303
TOC75

Echinochloa crus-galli

cDNA


304
TOC75

Echinochloa crus-galli

cDNA


305
TOC75

Euphorbia heterophylla

cDNA


306
TOC75

Euphorbia heterophylla

gDNA


307
TOC75

Festuca arundinacea

gDNA


308
TOC75

Festuca arundinacea

gDNA


309
TOC75

Festuca arundinacea

gDNA


310
TOC75

Festuca arundinacea

gDNA


311
TOC75

Festuca arundinacea

gDNA


312
TOC75

Festuca arundinacea

gDNA


313
TOC75

Festuca arundinacea

gDNA


314
TOC75

Festuca arundinacea

gDNA


315
TOC75

Festuca arundinacea

gDNA


316
TOC75

Festuca arundinacea

gDNA


317
TOC75

Ipomoea hederacea

cDNA


318
TOC75

Kochia scoparia

gDNA


319
TOC75

Kochia scoparia

gDNA


320
TOC75

Kochia scoparia

gDNA


321
TOC75

Kochia scoparia

gDNA


322
TOC75

Kochia scoparia

gDNA


323
TOC75

Kochia scoparia

gDNA


324
TOC75

Lolium arundinaceum

gDNA


325
TOC75

Lolium arundinaceum

gDNA


326
TOC75

Lolium arundinaceum

gDNA


327
TOC75

Lolium arundinaceum

gDNA


328
TOC75

Lolium arundinaceum

gDNA


329
TOC75

Lolium rigidium

gDNA


330
TOC75

Lolium rigidium

gDNA


331
TOC75

Lolium rigidium

gDNA


332
TOC75

Lolium rigidium

gDNA


333
TOC75

Lolium rigidium

gDNA


334
TOC75

Portulaca oleracea

gDNA


335
TOC75

Portulaca oleracea

gDNA


336
TOC75

Portulaca oleracea

gDNA


337
TOC75

Senna obtusifolia

cDNA


338
TOC75

Sorghum halepense

gDNA


339
TOC75

Sorghum halepense

gDNA


340
TOC75

Spirodela polyrrhiza

gDNA


341
TOC75

Taraxacum officinale

gDNA


342
TOC75

Trifolium repens

gDNA


343
TOC75

Trifolium repens

gDNA


344
TOC75

Trifolium repens

gDNA


345
TOC75

Trifolium repens

gDNA


346
TOC75

Trifolium repens

gDNA


347
TOC75

Trifolium repens

gDNA


348
TOC75

Xanthium strumarium

cDNA


349
OEP80

Abutilon theophrasti

cDNA


350
OEP80

Abutilon theophrasti

cDNA


351
OEP80

Abutilon theophrasti

gDNA


352
OEP80

Abutilon theophrasti

gDNA


353
OEP80

Abutilon theophrasti

gDNA


354
OEP80

Abutilon theophrasti

gDNA


355
OEP80

Abutilon theophrasti

gDNA


356
OEP80

Abutilon theophrasti

gDNA


357
OEP80

Abutilon theophrasti

gDNA


358
OEP80

Amaranthus graecizans

cDNA


359
OEP80

Amaranthus graecizans

cDNA


360
OEP80

Amaranthus hybridus

cDNA


361
OEP80

Amaranthus hybridus

cDNA


362
OEP80

Amaranthus lividus

cDNA


363
OEP80

Amaranthus lividus

cDNA


364
OEP80

Amaranthus lividus

cDNA


365
OEP80

Amaranthus palmeri

cDNA


366
OEP80

Amaranthus palmeri

gDNA


367
OEP80

Amaranthus rudis

cDNA


368
OEP80

Amaranthus rudis

cDNA


369
OEP80

Amaranthus rudis

cDNA


370
OEP80

Amaranthus rudis

gDNA


371
OEP80

Amaranthus rudis

gDNA


372
OEP80

Amaranthus rudis

gDNA


373
OEP80

Amaranthus rudis

gDNA


374
OEP80

Amaranthus rudis

gDNA


375
OEP80

Amaranthus rudis

gDNA


376
OEP80

Amaranthus spinosus

cDNA


377
OEP80

Amaranthus spinosus

cDNA


378
OEP80

Amaranthus thunbergii

cDNA


379
OEP80

Amaranthus viridis

cDNA


380
OEP80

Amaranthus viridis

cDNA


381
OEP80

Ambrosia artemisiifolia

gDNA


382
OEP80

Ambrosia artemisiifolia

gDNA


383
OEP80

Ambrosia artemisiifolia

gDNA


384
OEP80

Ambrosia artemisiifolia

gDNA


385
OEP80

Ambrosia artemisiifolia

gDNA


386
OEP80

Ambrosia artemisiifolia

gDNA


387
OEP80

Ambrosia trifida

cDNA


388
OEP80

Ambrosia trifida

cDNA


389
OEP80

Ambrosia trifida

gDNA


390
OEP80

Ambrosia trifida

gDNA


391
OEP80

Ambrosia trifida

gDNA


392
OEP80

Ambrosia trifida

gDNA


393
OEP80

Ambrosia trifida

gDNA


394
OEP80

Ambrosia trifida

gDNA


395
OEP80

Chenopodium album

cDNA


396
OEP80

Conyza canadensis

cDNA


397
OEP80

Conyza canadensis

cDNA


398
OEP80

Conyza canadensis

gDNA


399
OEP80

Conyza canadensis

gDNA


400
OEP80

Cyperus esculentus

gDNA


401
OEP80

Cyperus esculentus

gDNA


402
OEP80

Cyperus esculentus

gDNA


403
OEP80

Echinochloa colona

cDNA


404
OEP80

Echinochloa crus-galli

cDNA


405
OEP80

Echinochloa crus-galli

cDNA


406
OEP80

Euphorbia heterophylla

cDNA


407
OEP80

Euphorbia heterophylla

cDNA


408
OEP80

Euphorbia heterophylla

cDNA


409
OEP80

Euphorbia heterophylla

gDNA


410
OEP80

Euphorbia heterophylla

gDNA


411
OEP80

Euphorbia heterophylla

gDNA


412
OEP80

Euphorbia heterophylla

gDNA


413
OEP80

Euphorbia heterophylla

gDNA


414
OEP80

Festuca arundinacea

gDNA


415
OEP80

Festuca arundinacea

gDNA


416
OEP80

Festuca arundinacea

gDNA


417
OEP80

Festuca arundinacea

gDNA


418
OEP80

Festuca arundinacea

gDNA


419
OEP80

Festuca arundinacea

gDNA


420
OEP80

Festuca arundinacea

gDNA


421
OEP80

Festuca arundinacea

gDNA


422
OEP80

Festuca arundinacea

gDNA


423
OEP80

Festuca arundinacea

gDNA


424
OEP80

Festuca arundinacea

gDNA


425
OEP80

Ipomoea hederacea

cDNA


426
OEP80

Ipomoea hederacea

cDNA


427
OEP80

Kochia scoparia

gDNA


428
OEP80

Lolium arundinaceum

gDNA


429
OEP80

Lolium arundinaceum

gDNA


430
OEP80

Lolium arundinaceum

gDNA


431
OEP80

Lolium arundinaceum

gDNA


432
OEP80

Lolium arundinaceum

gDNA


433
OEP80

Lolium arundinaceum

gDNA


434
OEP80

Lolium arundinaceum

gDNA


435
OEP80

Lolium arundinaceum

gDNA


436
OEP80

Lolium arundinaceum

gDNA


437
OEP80

Lolium arundinaceum

gDNA


438
OEP80

Lolium arundinaceum

gDNA


439
OEP80

Lolium arundinaceum

gDNA


440
OEP80

Lolium multiflorum

cDNA


441
OEP80

Lolium multiflorum

gDNA


442
OEP80

Lolium multiflorum

gDNA


443
OEP80

Lolium multiflorum

gDNA


444
OEP80

Lolium multiflorum

gDNA


445
OEP80

Lolium multiflorum

gDNA


446
OEP80

Lolium rigidium

gDNA


447
OEP80

Lolium rigidium

gDNA


448
OEP80

Lolium rigidium

gDNA


449
OEP80

Lolium rigidium

gDNA


450
OEP80

Lolium rigidium

gDNA


451
OEP80

Lolium rigidium

gDNA


452
OEP80

Lolium rigidium

gDNA


453
OEP80

Lolium rigidium

gDNA


454
OEP80

Lolium rigidium

gDNA


455
OEP80

Portulaca oleracea

gDNA


456
OEP80

Portulaca oleracea

gDNA


457
OEP80

Portulaca oleracea

gDNA


458
OEP80

Portulaca oleracea

gDNA


459
OEP80

Portulaca oleracea

gDNA


460
OEP80

Portulaca oleracea

gDNA


461
OEP80

Senna obtusifolia

cDNA


462
OEP80

Senna obtusifolia

cDNA


463
OEP80

Sorghum halepense

gDNA


464
OEP80

Sorghum halepense

gDNA


465
OEP80

Sorghum halepense

gDNA


466
OEP80

Sorghum halepense

gDNA


467
OEP80

Sorghum halepense

gDNA


468
OEP80

Spirodela polyrrhiza

gDNA


469
OEP80

Spirodela polyrrhiza

gDNA


470
OEP80

Taraxacum officinale

gDNA


471
OEP80

Taraxacum officinale

gDNA


472
OEP80

Taraxacum officinale

gDNA


473
OEP80

Taraxacum officinale

gDNA


474
OEP80

Taraxacum officinale

gDNA


475
OEP80

Taraxacum officinale

gDNA


476
OEP80

Trifolium repens

gDNA


477
OEP80

Trifolium repens

gDNA


478
OEP80

Trifolium repens

gDNA


479
OEP80

Trifolium repens

gDNA


480
OEP80

Trifolium repens

gDNA


481
OEP80

Trifolium repens

gDNA


482
OEP80

Trifolium repens

gDNA


483
OEP80

Trifolium repens

gDNA


484
OEP80

Trifolium repens

gDNA


485
OEP80

Xanthium strumarium

cDNA


486
TOC132

Abutilon theophrasti

cDNA


487
TOC132

Abutilon theophrasti

cDNA


488
TOC132

Abutilon theophrasti

gDNA


489
TOC132

Abutilon theophrasti

gDNA


490
TOC132

Alopecurus myosuroides

cDNA


491
TOC132

Amaranthus albus

cDNA


492
TOC132

Amaranthus graecizans

cDNA


493
TOC132

Amaranthus graecizans

cDNA


494
TOC132

Amaranthus hybridus

cDNA


495
TOC132

Amaranthus hybridus

cDNA


496
TOC132

Amaranthus hybridus

cDNA


497
TOC132

Amaranthus lividus

cDNA


498
TOC132

Amaranthus lividus

cDNA


499
TOC132

Amaranthus lividus

cDNA


500
TOC132

Amaranthus palmeri

cDNA


501
TOC132

Amaranthus palmeri

gDNA


502
TOC132

Amaranthus rudis

cDNA


503
TOC132

Amaranthus rudis

cDNA


504
TOC132

Amaranthus rudis

cDNA


505
TOC132

Amaranthus rudis

cDNA


506
TOC132

Amaranthus rudis

gDNA


507
TOC132

Amaranthus rudis

gDNA


508
TOC132

Amaranthus rudis

gDNA


509
TOC132

Amaranthus rudis

gDNA


510
TOC132

Amaranthus rudis

gDNA


511
TOC132

Amaranthus rudis

gDNA


512
TOC132

Amaranthus spinosus

cDNA


513
TOC132

Amaranthus spinosus

cDNA


514
TOC132

Amaranthus spinosus

cDNA


515
TOC132

Amaranthus thunbergii

cDNA


516
TOC132

Amaranthus thunbergii

cDNA


517
TOC132

Amaranthus viridis

cDNA


518
TOC132

Amaranthus viridis

cDNA


519
TOC132

Ambrosia artemisiifolia

gDNA


520
TOC132

Ambrosia trifida

cDNA


521
TOC132

Ambrosia trifida

cDNA


522
TOC132

Avena fatua

cDNA


523
TOC132

Chenopodium album

cDNA


524
TOC132

Chenopodium album

cDNA


525
TOC132

Commelina diffusa

cDNA


526
TOC132

Convolvulus arvensis

cDNA


527
TOC132

Convolvulus arvensis

cDNA


528
TOC132

Conyza canadensis

cDNA


529
TOC132

Conyza canadensis

cDNA


530
TOC132

Conyza canadensis

cDNA


531
TOC132

Conyza canadensis

gDNA


532
TOC132

Conyza canadensis

gDNA


533
TOC132

Cyperus esculentus

gDNA


534
TOC132

Digitaria sanguinalis

cDNA


535
TOC132

Digitaria sanguinalis

cDNA


536
TOC132

Echinochloa colona

cDNA


537
TOC132

Echinochloa crus-galli

cDNA


538
TOC132

Euphorbia heterophylla

cDNA


539
TOC132

Euphorbia heterophylla

cDNA


540
TOC132

Euphorbia heterophylla

cDNA


541
TOC132

Euphorbia heterophylla

cDNA


542
TOC132

Euphorbia heterophylla

gDNA


543
TOC132

Euphorbia heterophylla

gDNA


544
TOC132

Euphorbia heterophylla

gDNA


545
TOC132

Festuca arundinacea

gDNA


546
TOC132

Festuca arundinacea

gDNA


547
TOC132

Festuca arundinacea

gDNA


548
TOC132

Festuca arundinacea

gDNA


549
TOC132

Festuca arundinacea

gDNA


550
TOC132

Festuca arundinacea

gDNA


551
TOC132

Ipomoea hederacea

cDNA


552
TOC132

Kochia scoparia

gDNA


553
TOC132

Kochia scoparia

gDNA


554
TOC132

Lolium arundinaceum

gDNA


555
TOC132

Lolium arundinaceum

gDNA


556
TOC132

Lolium rigidium

gDNA


557
TOC132

Portulaca oleracea

gDNA


558
TOC132

Portulaca oleracea

gDNA


559
TOC132

Portulaca oleracea

gDNA


560
TOC132

Senna obtusifolia

cDNA


561
TOC132

Senna obtusifolia

cDNA


562
TOC132

Sorghum halepense

gDNA


563
TOC132

Spirodela polyrrhiza

gDNA


564
TOC132

Taraxacum officinale

gDNA


565
TOC132

Taraxacum officinale

gDNA


566
TOC132

Trifolium repens

gDNA


567
TOC132

Trifolium repens

gDNA


568
TOC132

Xanthium strumarium

cDNA


569
TOC132

Xanthium strumarium

cDNA


570
TIC110

Abutilon theophrasti

cDNA


571
TIC110

Abutilon theophrasti

gDNA


572
TIC110

Abutilon theophrasti

gDNA


573
TIC110

Abutilon theophrasti

gDNA


574
TIC110

Abutilon theophrasti

gDNA


575
TIC110

Abutilon theophrasti

gDNA


576
TIC110

Abutilon theophrasti

gDNA


577
TIC110

Abutilon theophrasti

gDNA


578
TIC110

Alopecurus myosuroides

cDNA


579
TIC110

Alopecurus myosuroides

cDNA


580
TIC110

Amaranthus albus

cDNA


581
TIC110

Amaranthus albus

cDNA


582
TIC110

Amaranthus albus

cDNA


583
TIC110

Amaranthus chlorostachys

cDNA


584
TIC110

Amaranthus graecizans

cDNA


585
TIC110

Amaranthus hybridus

cDNA


586
TIC110

Amaranthus hybridus

cDNA


587
TIC110

Amaranthus lividus

cDNA


588
TIC110

Amaranthus palmeri

cDNA


589
TIC110

Amaranthus palmeri

gDNA


590
TIC110

Amaranthus rudis

cDNA


591
TIC110

Amaranthus rudis

cDNA


592
TIC110

Amaranthus rudis

gDNA


593
TIC110

Amaranthus rudis

gDNA


594
TIC110

Amaranthus rudis

gDNA


595
TIC110

Amaranthus rudis

gDNA


596
TIC110

Amaranthus rudis

gDNA


597
TIC110

Amaranthus rudis

gDNA


598
TIC110

Amaranthus rudis

gDNA


599
TIC110

Amaranthus rudis

gDNA


600
TIC110

Amaranthus rudis

gDNA


601
TIC110

Amaranthus rudis

gDNA


602
TIC110

Amaranthus rudis

gDNA


603
TIC110

Amaranthus spinosus

cDNA


604
TIC110

Amaranthus thunbergii

cDNA


605
TIC110

Amaranthus viridis

cDNA


606
TIC110

Ambrosia artemisiifolia

gDNA


607
TIC110

Ambrosia artemisiifolia

gDNA


608
TIC110

Ambrosia artemisiifolia

gDNA


609
TIC110

Ambrosia artemisiifolia

gDNA


610
TIC110

Ambrosia artemisiifolia

gDNA


611
TIC110

Ambrosia artemisiifolia

gDNA


612
TIC110

Ambrosia artemisiifolia

gDNA


613
TIC110

Ambrosia artemisiifolia

gDNA


614
TIC110

Ambrosia artemisiifolia

gDNA


615
TIC110

Ambrosia trifida

cDNA


616
TIC110

Ambrosia trifida

gDNA


617
TIC110

Ambrosia trifida

gDNA


618
TIC110

Ambrosia trifida

gDNA


619
TIC110

Ambrosia trifida

gDNA


620
TIC110

Ambrosia trifida

gDNA


621
TIC110

Ambrosia trifida

gDNA


622
TIC110

Ambrosia trifida

gDNA


623
TIC110

Ambrosia trifida

gDNA


624
TIC110

Ambrosia trifida

gDNA


625
TIC110

Ambrosia trifida

gDNA


626
TIC110

Ambrosia trifida

gDNA


627
TIC110

Ambrosia trifida

gDNA


628
TIC110

Avena fatua

cDNA


629
TIC110

Chenopodium album

cDNA


630
TIC110

Chenopodium album

cDNA


631
TIC110

Convolvulus arvensis

cDNA


632
TIC110

Convolvulus arvensis

cDNA


633
TIC110

Conyza canadensis

cDNA


634
TIC110

Conyza canadensis

gDNA


635
TIC110

Conyza canadensis

gDNA


636
TIC110

Conyza canadensis

gDNA


637
TIC110

Conyza canadensis

gDNA


638
TIC110

Cyperus esculentus

gDNA


639
TIC110

Cyperus esculentus

gDNA


640
TIC110

Digitaria sanguinalis

cDNA


641
TIC110

Digitaria sanguinalis

cDNA


642
TIC110

Digitaria sanguinalis

cDNA


643
TIC110

Digitaria sanguinalis

cDNA


644
TIC110

Digitaria sanguinalis

gDNA


645
TIC110

Digitaria sanguinalis

gDNA


646
TIC110

Digitaria sanguinalis

gDNA


647
TIC110

Digitaria sanguinalis

gDNA


648
TIC110

Echinochloa colona

cDNA


649
TIC110

Echinochloa crus-galli

cDNA


650
TIC110

Euphorbia heterophylla

cDNA


651
TIC110

Euphorbia heterophylla

gDNA


652
TIC110

Euphorbia heterophylla

gDNA


653
TIC110

Euphorbia heterophylla

gDNA


654
TIC110

Euphorbia heterophylla

gDNA


655
TIC110

Festuca arundinacea

gDNA


656
TIC110

Festuca arundinacea

gDNA


657
TIC110

Festuca arundinacea

gDNA


658
TIC110

Festuca arundinacea

gDNA


659
TIC110

Festuca arundinacea

gDNA


660
TIC110

Festuca arundinacea

gDNA


661
TIC110

Festuca arundinacea

gDNA


662
TIC110

Festuca arundinacea

gDNA


663
TIC110

Ipomoea hederacea

cDNA


664
TIC110

Kochia scoparia

gDNA


665
TIC110

Kochia scoparia

gDNA


666
TIC110

Kochia scoparia

gDNA


667
TIC110

Kochia scoparia

gDNA


668
TIC110

Lolium arundinaceum

gDNA


669
TIC110

Lolium arundinaceum

gDNA


670
TIC110

Lolium arundinaceum

gDNA


671
TIC110

Lolium arundinaceum

gDNA


672
TIC110

Lolium arundinaceum

gDNA


673
TIC110

Lolium arundinaceum

gDNA


674
TIC110

Lolium arundinaceum

gDNA


675
TIC110

Lolium arundinaceum

gDNA


676
TIC110

Lolium multiflorum

cDNA


677
TIC110

Lolium multiflorum

cDNA


678
TIC110

Lolium multiflorum

cDNA


679
TIC110

Lolium multiflorum

gDNA


680
TIC110

Lolium multiflorum

gDNA


681
TIC110

Lolium multiflorum

gDNA


682
TIC110

Lolium multiflorum

gDNA


683
TIC110

Lolium multiflorum

gDNA


684
TIC110

Lolium multiflorum

gDNA


685
TIC110

Lolium multiflorum

gDNA


686
TIC110

Lolium multiflorum

gDNA


687
TIC110

Lolium multiflorum

gDNA


688
TIC110

Lolium multiflorum

gDNA


689
TIC110

Lolium rigidium

gDNA


690
TIC110

Lolium rigidium

gDNA


691
TIC110

Lolium rigidium

gDNA


692
TIC110

Portulaca oleracea

gDNA


693
TIC110

Portulaca oleracea

gDNA


694
TIC110

Portulaca oleracea

gDNA


695
TIC110

Portulaca oleracea

gDNA


696
TIC110

Portulaca oleracea

gDNA


697
TIC110

Portulaca oleracea

gDNA


698
TIC110

Portulaca oleracea

gDNA


699
TIC110

Senna obtusifolia

cDNA


700
TIC110

Setaria viridis

cDNA


701
TIC110

Sorghum halepense

cDNA


702
TIC110

Sorghum halepense

cDNA


703
TIC110

Sorghum halepense

gDNA


704
TIC110

Sorghum halepense

gDNA


705
TIC110

Sorghum halepense

gDNA


706
TIC110

Spirodela polyrrhiza

gDNA


707
TIC110

Taraxacum officinale

gDNA


708
TIC110

Taraxacum officinale

gDNA


709
TIC110

Taraxacum officinale

gDNA


710
TIC110

Taraxacum officinale

gDNA


711
TIC110

Taraxacum officinale

gDNA


712
TIC110

Taraxacum officinale

gDNA


713
TIC110

Trifolium repens

gDNA


714
TIC110

Trifolium repens

gDNA


715
TIC110

Trifolium repens

gDNA


716
TIC110

Trifolium repens

gDNA


717
TIC110

Trifolium repens

gDNA


718
TIC110

Trifolium repens

gDNA


719
TIC110

Trifolium repens

gDNA


720
TIC110

Trifolium repens

gDNA


721
TIC110

Trifolium repens

gDNA


722
TIC110

Xanthium strumarium

cDNA


723
TIC20

Abutilon theophrasti

cDNA


724
TIC20

Abutilon theophrasti

gDNA


725
TIC20

Alopecurus myosuroides

cDNA


726
TIC20

Amaranthus albus

cDNA


727
TIC20

Amaranthus chlorostachys

cDNA


728
TIC20

Amaranthus graecizans

cDNA


729
TIC20

Amaranthus hybridus

cDNA


730
TIC20

Amaranthus lividus

cDNA


731
TIC20

Amaranthus palmeri

cDNA


732
TIC20

Amaranthus palmeri

cDNA


733
TIC20

Amaranthus palmeri

gDNA


734
TIC20

Amaranthus palmeri

gDNA


735
TIC20

Amaranthus rudis

cDNA


736
TIC20

Amaranthus rudis

gDNA


737
TIC20

Amaranthus spinosus

cDNA


738
TIC20

Amaranthus thunbergii

cDNA


739
TIC20

Amaranthus viridis

cDNA


740
TIC20

Ambrosia artemisiifolia

gDNA


741
TIC20

Ambrosia trifida

cDNA


742
TIC20

Ambrosia trifida

gDNA


743
TIC20

Ambrosia trifida

gDNA


744
TIC20

Ambrosia trifida

gDNA


745
TIC20

Chenopodium album

cDNA


746
TIC20

Commelina diffusa

cDNA


747
TIC20

Conyza canadensis

cDNA


748
TIC20

Conyza canadensis

gDNA


749
TIC20

Cyperus esculentus

gDNA


750
TIC20

Digitaria sanguinalis

cDNA


751
TIC20

Echinochloa colona

cDNA


752
TIC20

Echinochloa crus-galli

cDNA


753
TIC20

Euphorbia heterophylla

cDNA


754
TIC20

Euphorbia heterophylla

gDNA


755
TIC20

Festuca arundinacea

gDNA


756
TIC20

Festuca arundinacea

gDNA


757
TIC20

Ipomoea hederacea

cDNA


758
TIC20

Kochia scoparia

gDNA


759
TIC20

Lolium arundinaceum

gDNA


760
TIC20

Lolium multiflorum

cDNA


761
TIC20

Lolium multiflorum

gDNA


762
TIC20

Lolium multiflorum

gDNA


763
TIC20

Lolium rigidium

gDNA


764
TIC20

Portulaca oleracea

gDNA


765
TIC20

Senna obtusifolia

cDNA


766
TIC20

Sorghum halepense

gDNA


767
TIC20

Spirodela polyrrhiza

gDNA


768
TIC20

Taraxacum officinale

gDNA


769
TIC20

Trifolium repens

gDNA


770
TIC20

Xanthium strumarium

cDNA


771
TIC20

Xanthium strumarium

cDNA


772
TIC21

Abutilon theophrasti

cDNA


773
TIC21

Abutilon theophrasti

gDNA


774
TIC21

Abutilon theophrasti

gDNA


775
TIC21

Amaranthus albus

cDNA


776
TIC21

Amaranthus chlorostachys

cDNA


111
TIC21

Amaranthus graecizans

cDNA


778
TIC21

Amaranthus hybridus

cDNA


779
TIC21

Amaranthus lividus

cDNA


780
TIC21

Amaranthus palmeri

cDNA


781
TIC21

Amaranthus palmeri

gDNA


782
TIC21

Amaranthus palmeri

gDNA


783
TIC21

Amaranthus rudis

cDNA


784
TIC21

Amaranthus rudis

gDNA


785
TIC21

Amaranthus rudis

gDNA


786
TIC21

Amaranthus rudis

gDNA


787
TIC21

Amaranthus spinosus

cDNA


788
TIC21

Amaranthus thunbergii

cDNA


789
TIC21

Amaranthus viridis

cDNA


790
TIC21

Ambrosia artemisiifolia

gDNA


791
TIC21

Ambrosia artemisiifolia

gDNA


792
TIC21

Ambrosia artemisiifolia

gDNA


793
TIC21

Ambrosia trifida

cDNA


794
TIC21

Ambrosia trifida

gDNA


795
TIC21

Ambrosia trifida

gDNA


796
TIC21

Ambrosia trifida

gDNA


797
TIC21

Ambrosia trifida

gDNA


798
TIC21

Ambrosia trifida

gDNA


799
TIC21

Ambrosia trifida

gDNA


800
TIC21

Ambrosia trifida

gDNA


801
TIC21

Chenopodium album

cDNA


802
TIC21

Commelina diffusa

cDNA


803
TIC21

Convolvulus arvensis

cDNA


804
TIC21

Conyza canadensis

cDNA


805
TIC21

Conyza canadensis

gDNA


806
TIC21

Cyperus esculentus

gDNA


807
TIC21

Cyperus esculentus

gDNA


808
TIC21

Digitaria sanguinalis

cDNA


809
TIC21

Digitaria sanguinalis

gDNA


810
TIC21

Digitaria sanguinalis

gDNA


811
TIC21

Echinochloa colona

cDNA


812
TIC21

Echinochloa crus-galli

cDNA


813
TIC21

Euphorbia heterophylla

cDNA


814
TIC21

Euphorbia heterophylla

gDNA


815
TIC21

Euphorbia heterophylla

gDNA


816
TIC21

Euphorbia heterophylla

gDNA


817
TIC21

Euphorbia heterophylla

gDNA


818
TIC21

Festuca arundinacea

gDNA


819
TIC21

Ipomoea hederacea

cDNA


820
TIC21

Kochia scoparia

gDNA


821
TIC21

Lolium arundinaceum

gDNA


822
TIC21

Lolium arundinaceum

gDNA


823
TIC21

Lolium rigidium

gDNA


824
TIC21

Lolium rigidium

gDNA


825
TIC21

Lolium rigidium

gDNA


826
TIC21

Portulaca oleracea

gDNA


827
TIC21

Portulaca oleracea

gDNA


828
TIC21

Portulaca oleracea

gDNA


829
TIC21

Senna obtusifolia

cDNA


830
TIC21

Setaria viridis

cDNA


831
TIC21

Sorghum halepense

cDNA


832
TIC21

Sorghum halepense

gDNA


833
TIC21

Sorghum halepense

gDNA


834
TIC21

Spirodela polyrrhiza

gDNA


835
TIC21

Taraxacum officinale

gDNA


836
TIC21

Taraxacum officinale

gDNA


837
TIC21

Trifolium repens

gDNA


838
TIC21

Trifolium repens

gDNA


839
TIC21

Xanthium strumarium

cDNA


840
TIC21

Xanthium strumarium

cDNA


841
TIC40

Abutilon theophrasti

cDNA


842
TIC40

Abutilon theophrasti

gDNA


843
TIC40

Abutilon theophrasti

gDNA


844
TIC40

Abutilon theophrasti

gDNA


845
TIC40

Abutilon theophrasti

gDNA


846
TIC40

Abutilon theophrasti

gDNA


847
TIC40

Abutilon theophrasti

gDNA


848
TIC40

Abutilon theophrasti

gDNA


849
TIC40

Abutilon theophrasti

gDNA


850
TIC40

Abutilon theophrasti

gDNA


851
TIC40

Alopecurus myosuroides

cDNA


852
TIC40

Amaranthus albus

cDNA


853
TIC40

Amaranthus albus

cDNA


854
TIC40

Amaranthus chlorostachys

cDNA


855
TIC40

Amaranthus graecizans

cDNA


856
TIC40

Amaranthus hybridus

cDNA


857
TIC40

Amaranthus lividus

cDNA


858
TIC40

Amaranthus palmeri

cDNA


859
TIC40

Amaranthus palmeri

gDNA


860
TIC40

Amaranthus palmeri

gDNA


861
TIC40

Amaranthus palmeri

gDNA


862
TIC40

Amaranthus palmeri

gDNA


863
TIC40

Amaranthus palmeri

gDNA


864
TIC40

Amaranthus rudis

cDNA


865
TIC40

Amaranthus rudis

gDNA


866
TIC40

Amaranthus rudis

gDNA


867
TIC40

Amaranthus rudis

gDNA


868
TIC40

Amaranthus rudis

gDNA


869
TIC40

Amaranthus rudis

gDNA


870
TIC40

Amaranthus spinosus

cDNA


871
TIC40

Amaranthus spinosus

cDNA


872
TIC40

Amaranthus thunbergii

cDNA


873
TIC40

Amaranthus viridis

cDNA


874
TIC40

Ambrosia artemisiifolia

gDNA


875
TIC40

Ambrosia artemisiifolia

gDNA


876
TIC40

Ambrosia trifida

cDNA


877
TIC40

Ambrosia trifida

gDNA


878
TIC40

Ambrosia trifida

gDNA


879
TIC40

Ambrosia trifida

gDNA


880
TIC40

Ambrosia trifida

gDNA


881
TIC40

Ambrosia trifida

gDNA


882
TIC40

Ambrosia trifida

gDNA


883
TIC40

Chenopodium album

cDNA


884
TIC40

Commelina diffusa

cDNA


885
TIC40

Conyza canadensis

cDNA


886
TIC40

Conyza canadensis

gDNA


887
TIC40

Cyperus esculentus

gDNA


888
TIC40

Echinochloa colona

cDNA


889
TIC40

Echinochloa crus-galli

cDNA


890
TIC40

Euphorbia heterophylla

cDNA


891
TIC40

Euphorbia heterophylla

gDNA


892
TIC40

Euphorbia heterophylla

gDNA


893
TIC40

Euphorbia heterophylla

gDNA


894
TIC40

Euphorbia heterophylla

gDNA


895
TIC40

Festuca arundinacea

gDNA


896
TIC40

Ipomoea hederacea

cDNA


897
TIC40

Kochia scoparia

gDNA


898
TIC40

Kochia scoparia

gDNA


899
TIC40

Lolium arundinaceum

gDNA


900
TIC40

Lolium arundinaceum

gDNA


901
TIC40

Lolium rigidium

gDNA


902
TIC40

Lolium rigidium

gDNA


903
TIC40

Portulaca oleracea

gDNA


904
TIC40

Portulaca oleracea

gDNA


905
TIC40

Portulaca oleracea

gDNA


906
TIC40

Senna obtusifolia

cDNA


907
TIC40

Sorghum halepense

cDNA


908
TIC40

Sorghum halepense

gDNA


909
TIC40

Spirodela polyrrhiza

gDNA


910
TIC40

Taraxacum officinale

gDNA


911
TIC40

Trifolium repens

gDNA


912
TIC40

Xanthium strumarium

cDNA


913
SPP

Abutilon theophrasti

cDNA


914
SPP

Abutilon theophrasti

cDNA


915
SPP

Abutilon theophrasti

gDNA


916
SPP

Abutilon theophrasti

gDNA


917
SPP

Abutilon theophrasti

gDNA


918
SPP

Abutilon theophrasti

gDNA


919
SPP

Abutilon theophrasti

gDNA


920
SPP

Abutilon theophrasti

gDNA


921
SPP

Abutilon theophrasti

gDNA


922
SPP

Abutilon theophrasti

gDNA


923
SPP

Abutilon theophrasti

gDNA


924
SPP

Abutilon theophrasti

gDNA


925
SPP

Abutilon theophrasti

gDNA


926
SPP

Abutilon theophrasti

gDNA


927
SPP

Abutilon theophrasti

gDNA


928
SPP

Abutilon theophrasti

gDNA


929
SPP

Abutilon theophrasti

gDNA


930
SPP

Alopecurus myosuroides

cDNA


931
SPP

Alopecurus myosuroides

cDNA


932
SPP

Alopecurus myosuroides

cDNA


933
SPP

Amaranthus albus

cDNA


934
SPP

Amaranthus albus

cDNA


935
SPP

Amaranthus albus

cDNA


936
SPP

Amaranthus chlorostachys

cDNA


937
SPP

Amaranthus chlorostachys

cDNA


938
SPP

Amaranthus chlorostachys

cDNA


939
SPP

Amaranthus graecizans

cDNA


940
SPP

Amaranthus graecizans

cDNA


941
SPP

Amaranthus hybridus

cDNA


942
SPP

Amaranthus hybridus

cDNA


943
SPP

Amaranthus hybridus

cDNA


944
SPP

Amaranthus hybridus

cDNA


945
SPP

Amaranthus lividus

cDNA


946
SPP

Amaranthus lividus

cDNA


947
SPP

Amaranthus lividus

cDNA


948
SPP

Amaranthus lividus

cDNA


949
SPP

Amaranthus lividus

cDNA


950
SPP

Amaranthus palmeri

cDNA


951
SPP

Amaranthus palmeri

gDNA


952
SPP

Amaranthus palmeri

gDNA


953
SPP

Amaranthus palmeri

gDNA


954
SPP

Amaranthus palmeri

gDNA


955
SPP

Amaranthus palmeri

gDNA


956
SPP

Amaranthus palmeri

gDNA


957
SPP

Amaranthus rudis

cDNA


958
SPP

Amaranthus rudis

cDNA


959
SPP

Amaranthus rudis

gDNA


960
SPP

Amaranthus rudis

gDNA


961
SPP

Amaranthus rudis

gDNA


962
SPP

Amaranthus rudis

gDNA


963
SPP

Amaranthus rudis

gDNA


964
SPP

Amaranthus rudis

gDNA


965
SPP

Amaranthus rudis

gDNA


966
SPP

Amaranthus rudis

gDNA


967
SPP

Amaranthus spinosus

cDNA


968
SPP

Amaranthus spinosus

cDNA


969
SPP

Amaranthus spinosus

cDNA


970
SPP

Amaranthus thunbergii

cDNA


971
SPP

Amaranthus thunbergii

cDNA


972
SPP

Amaranthus thunbergii

cDNA


973
SPP

Amaranthus thunbergii

cDNA


974
SPP

Amaranthus viridis

cDNA


975
SPP

Amaranthus viridis

cDNA


976
SPP

Amaranthus viridis

cDNA


977
SPP

Ambrosia artemisiifolia

gDNA


978
SPP

Ambrosia artemisiifolia

gDNA


979
SPP

Ambrosia artemisiifolia

gDNA


980
SPP

Ambrosia artemisiifolia

gDNA


981
SPP

Ambrosia artemisiifolia

gDNA


982
SPP

Ambrosia artemisiifolia

gDNA


983
SPP

Ambrosia artemisiifolia

gDNA


984
SPP

Ambrosia artemisiifolia

gDNA


985
SPP

Ambrosia artemisiifolia

gDNA


986
SPP

Ambrosia artemisiifolia

gDNA


987
SPP

Ambrosia artemisiifolia

gDNA


988
SPP

Ambrosia artemisiifolia

gDNA


989
SPP

Ambrosia artemisiifolia

gDNA


990
SPP

Ambrosia artemisiifolia

gDNA


991
SPP

Ambrosia artemisiifolia

gDNA


992
SPP

Ambrosia trifida

cDNA


993
SPP

Ambrosia trifida

cDNA


994
SPP

Ambrosia trifida

cDNA


995
SPP

Ambrosia trifida

cDNA


996
SPP

Ambrosia trifida

cDNA


997
SPP

Ambrosia trifida

gDNA


998
SPP

Ambrosia trifida

gDNA


999
SPP

Ambrosia trifida

gDNA


1000
SPP

Ambrosia trifida

gDNA


1001
SPP

Ambrosia trifida

gDNA


1002
SPP

Ambrosia trifida

gDNA


1003
SPP

Ambrosia trifida

gDNA


1004
SPP

Ambrosia trifida

gDNA


1005
SPP

Ambrosia trifida

gDNA


1006
SPP

Ambrosia trifida

gDNA


1007
SPP

Ambrosia trifida

gDNA


1008
SPP

Ambrosia trifida

gDNA


1009
SPP

Ambrosia trifida

gDNA


1010
SPP

Ambrosia trifida

gDNA


1011
SPP

Ambrosia trifida

gDNA


1012
SPP

Ambrosia trifida

gDNA


1013
SPP

Ambrosia trifida

gDNA


1014
SPP

Ambrosia trifida

gDNA


1015
SPP

Ambrosia trifida

gDNA


1016
SPP

Ambrosia trifida

gDNA


1017
SPP

Ambrosia trifida

gDNA


1018
SPP

Ambrosia trifida

gDNA


1019
SPP

Avena fatua

cDNA


1020
SPP

Chenopodium album

cDNA


1021
SPP

Chenopodium album

cDNA


1022
SPP

Convolvulus arvensis

cDNA


1023
SPP

Conyza canadensis

cDNA


1024
SPP

Conyza canadensis

gDNA


1025
SPP

Cyperus esculentus

gDNA


1026
SPP

Cyperus esculentus

gDNA


1027
SPP

Digitaria sanguinalis

cDNA


1028
SPP

Digitaria sanguinalis

cDNA


1029
SPP

Digitaria sanguinalis

gDNA


1030
SPP

Digitaria sanguinalis

gDNA


1031
SPP

Digitaria sanguinalis

gDNA


1032
SPP

Digitaria sanguinalis

gDNA


1033
SPP

Echinochloa colona

cDNA


1034
SPP

Echinochloa colona

cDNA


1035
SPP

Echinochloa crus-galli

cDNA


1036
SPP

Euphorbia heterophylla

cDNA


1037
SPP

Euphorbia heterophylla

cDNA


1038
SPP

Euphorbia heterophylla

cDNA


1039
SPP

Euphorbia heterophylla

gDNA


1040
SPP

Euphorbia heterophylla

gDNA


1041
SPP

Euphorbia heterophylla

gDNA


1042
SPP

Euphorbia heterophylla

gDNA


1043
SPP

Euphorbia heterophylla

gDNA


1044
SPP

Euphorbia heterophylla

gDNA


1045
SPP

Festuca arundinacea

gDNA


1046
SPP

Festuca arundinacea

gDNA


1047
SPP

Festuca arundinacea

gDNA


1048
SPP

Festuca arundinacea

gDNA


1049
SPP

Festuca arundinacea

gDNA


1050
SPP

Festuca arundinacea

gDNA


1051
SPP

Festuca arundinacea

gDNA


1052
SPP

Festuca arundinacea

gDNA


1053
SPP

Festuca arundinacea

gDNA


1054
SPP

Festuca arundinacea

gDNA


1055
SPP

Festuca arundinacea

gDNA


1056
SPP

Ipomoea hederacea

cDNA


1057
SPP

Ipomoea hederacea

cDNA


1058
SPP

Kochia scoparia

gDNA


1059
SPP

Kochia scoparia

gDNA


1060
SPP

Kochia scoparia

gDNA


1061
SPP

Kochia scoparia

gDNA


1062
SPP

Kochia scoparia

gDNA


1063
SPP

Kochia scoparia

gDNA


1064
SPP

Kochia scoparia

gDNA


1065
SPP

Kochia scoparia

gDNA


1066
SPP

Kochia scoparia

gDNA


1067
SPP

Lolium arundinaceum

gDNA


1068
SPP

Lolium arundinaceum

gDNA


1069
SPP

Lolium arundinaceum

gDNA


1070
SPP

Lolium arundinaceum

gDNA


1071
SPP

Lolium arundinaceum

gDNA


1072
SPP

Lolium arundinaceum

gDNA


1073
SPP

Lolium arundinaceum

gDNA


1074
SPP

Lolium arundinaceum

gDNA


1075
SPP

Lolium arundinaceum

gDNA


1076
SPP

Lolium arundinaceum

gDNA


1077
SPP

Lolium arundinaceum

gDNA


1078
SPP

Lolium arundinaceum

gDNA


1079
SPP

Lolium arundinaceum

gDNA


1080
SPP

Lolium arundinaceum

gDNA


1081
SPP

Lolium arundinaceum

gDNA


1082
SPP

Lolium multiflorum

cDNA


1083
SPP

Lolium multiflorum

cDNA


1084
SPP

Lolium multiflorum

gDNA


1085
SPP

Lolium multiflorum

gDNA


1086
SPP

Lolium multiflorum

gDNA


1087
SPP

Lolium multiflorum

gDNA


1088
SPP

Lolium multiflorum

gDNA


1089
SPP

Lolium multiflorum

gDNA


1090
SPP

Lolium multiflorum

gDNA


1091
SPP

Lolium multiflorum

gDNA


1092
SPP

Lolium rigidium

gDNA


1093
SPP

Lolium rigidium

gDNA


1094
SPP

Lolium rigidium

gDNA


1095
SPP

Lolium rigidium

gDNA


1096
SPP

Lolium rigidium

gDNA


1097
SPP

Portulaca oleracea

gDNA


1098
SPP

Portulaca oleracea

gDNA


1099
SPP

Portulaca oleracea

gDNA


1100
SPP

Portulaca oleracea

gDNA


1101
SPP

Portulaca oleracea

gDNA


1102
SPP

Portulaca oleracea

gDNA


1103
SPP

Portulaca oleracea

gDNA


1104
SPP

Portulaca oleracea

gDNA


1105
SPP

Portulaca oleracea

gDNA


1106
SPP

Senna obtusifolia

cDNA


1107
SPP

Sorghum halepense

cDNA


1108
SPP

Sorghum halepense

gDNA


1109
SPP

Sorghum halepense

gDNA


1110
SPP

Sorghum halepense

gDNA


1111
SPP

Sorghum halepense

gDNA


1112
SPP

Sorghum halepense

gDNA


1113
SPP

Spirodela polyrrhiza

gDNA


1114
SPP

Taraxacum officinale

gDNA


1115
SPP

Taraxacum officinale

gDNA


1116
SPP

Taraxacum officinale

gDNA


1117
SPP

Taraxacum officinale

gDNA


1118
SPP

Taraxacum officinale

gDNA


1119
SPP

Trifolium repens

gDNA


1120
SPP

Trifolium repens

gDNA


1121
SPP

Trifolium repens

gDNA


1122
SPP

Trifolium repens

gDNA


1123
SPP

Trifolium repens

gDNA


1124
SPP

Trifolium repens

gDNA


1125
SPP

Trifolium repens

gDNA


1126
SPP

Trifolium repens

gDNA


1127
SPP

Trifolium repens

gDNA


1128
SPP

Xanthium strumarium

cDNA


1129
SPP

Xanthium strumarium

cDNA


1130
SPP

Xanthium strumarium

cDNA


1131
TIC100

Abutilon theophrasti

cDNA


1132
TIC100

Abutilon theophrasti

gDNA


1133
TIC100

Abutilon theophrasti

gDNA


1134
TIC100

Abutilon theophrasti

gDNA


1135
TIC100

Abutilon theophrasti

gDNA


1136
TIC100

Amaranthus chlorostachys

cDNA


1137
TIC100

Amaranthus graecizans

cDNA


1138
TIC100

Amaranthus hybridus

cDNA


1139
TIC100

Amaranthus hybridus

cDNA


1140
TIC100

Amaranthus lividus

cDNA


1141
TIC100

Amaranthus lividus

cDNA


1142
TIC100

Amaranthus palmeri

cDNA


1143
TIC100

Amaranthus palmeri

gDNA


1144
TIC100

Amaranthus palmeri

gDNA


1145
TIC100

Amaranthus rudis

cDNA


1146
TIC100

Amaranthus rudis

cDNA


1147
TIC100

Amaranthus rudis

gDNA


1148
TIC100

Amaranthus rudis

gDNA


1149
TIC100

Amaranthus rudis

gDNA


1150
TIC100

Amaranthus rudis

gDNA


1151
TIC100

Amaranthus rudis

gDNA


1152
TIC100

Amaranthus rudis

gDNA


1153
TIC100

Amaranthus rudis

gDNA


1154
TIC100

Amaranthus rudis

gDNA


1155
TIC100

Amaranthus rudis

gDNA


1156
TIC100

Amaranthus rudis

gDNA


1157
TIC100

Amaranthus spinosus

cDNA


1158
TIC100

Amaranthus thunbergii

cDNA


1159
TIC100

Amaranthus thunbergii

cDNA


1160
TIC100

Amaranthus viridis

cDNA


1161
TIC100

Amaranthus viridis

cDNA


1162
TIC100

Ambrosia artemisiifolia

gDNA


1163
TIC100

Ambrosia artemisiifolia

gDNA


1164
TIC100

Ambrosia artemisiifolia

gDNA


1165
TIC100

Ambrosia artemisiifolia

gDNA


1166
TIC100

Ambrosia artemisiifolia

gDNA


1167
TIC100

Ambrosia trifida

cDNA


1168
TIC100

Ambrosia trifida

gDNA


1169
TIC100

Ambrosia trifida

gDNA


1170
TIC100

Ambrosia trifida

gDNA


1171
TIC100

Ambrosia trifida

gDNA


1172
TIC100

Ambrosia trifida

gDNA


1173
TIC100

Ambrosia trifida

gDNA


1174
TIC100

Ambrosia trifida

gDNA


1175
TIC100

Chenopodium album

cDNA


1176
TIC100

Chenopodium album

cDNA


1177
TIC100

Chenopodium album

cDNA


1178
TIC100

Conyza canadensis

cDNA


1179
TIC100

Conyza canadensis

gDNA


1180
TIC100

Digitaria sanguinalis

cDNA


1181
TIC100

Digitaria sanguinalis

gDNA


1182
TIC100

Digitaria sanguinalis

gDNA


1183
TIC100

Digitaria sanguinalis

gDNA


1184
TIC100

Digitaria sanguinalis

gDNA


1185
TIC100

Digitaria sanguinalis

gDNA


1186
TIC100

Euphorbia heterophylla

cDNA


1187
TIC100

Euphorbia heterophylla

gDNA


1188
TIC100

Ipomoea hederacea

cDNA


1189
TIC100

Kochia scoparia

gDNA


1190
TIC100

Kochia scoparia

gDNA


1191
TIC100

Kochia scoparia

gDNA


1192
TIC100

Kochia scoparia

gDNA


1193
TIC100

Portulaca oleracea

gDNA


1194
TIC100

Portulaca oleracea

gDNA


1195
TIC100

Portulaca oleracea

gDNA


1196
TIC100

Senna obtusifolia

cDNA


1197
TIC100

Spirodela polyrrhiza

gDNA


1198
TIC100

Taraxacum officinale

gDNA


1199
TIC100

Taraxacum officinale

gDNA


1200
TIC100

Taraxacum officinale

gDNA


1201
TIC100

Taraxacum officinale

gDNA


1202
TIC100

Trifolium repens

gDNA


1203
TIC100

Trifolium repens

gDNA


1204
TIC100

Trifolium repens

gDNA


1205
TIC100

Trifolium repens

gDNA


1206
TIC100

Trifolium repens

gDNA


1207
TIC100

Xanthium strumarium

cDNA


1208
TIC56

Abutilon theophrasti

cDNA


1209
TIC56

Abutilon theophrasti

gDNA


1210
TIC56

Abutilon theophrasti

gDNA


1211
TIC56

Abutilon theophrasti

gDNA


1212
TIC56

Abutilon theophrasti

gDNA


1213
TIC56

Amaranthus graecizans

cDNA


1214
TIC56

Amaranthus graecizans

cDNA


1215
TIC56

Amaranthus hybridus

cDNA


1216
TIC56

Amaranthus lividus

cDNA


1217
TIC56

Amaranthus palmeri

cDNA


1218
TIC56

Amaranthus palmeri

gDNA


1219
TIC56

Amaranthus palmeri

gDNA


1220
TIC56

Amaranthus rudis

cDNA


1221
TIC56

Amaranthus rudis

gDNA


1222
TIC56

Amaranthus rudis

gDNA


1223
TIC56

Amaranthus rudis

gDNA


1224
TIC56

Amaranthus rudis

gDNA


1225
TIC56

Amaranthus rudis

gDNA


1226
TIC56

Amaranthus rudis

gDNA


1227
TIC56

Amaranthus rudis

gDNA


1228
TIC56

Amaranthus spinosus

cDNA


1229
TIC56

Amaranthus spinosus

cDNA


1230
TIC56

Amaranthus thunbergii

cDNA


1231
TIC56

Amaranthus viridis

cDNA


1232
TIC56

Amaranthus viridis

cDNA


1233
TIC56

Ambrosia artemisiifolia

gDNA


1234
TIC56

Ambrosia artemisiifolia

gDNA


1235
TIC56

Ambrosia artemisiifolia

gDNA


1236
TIC56

Ambrosia artemisiifolia

gDNA


1237
TIC56

Ambrosia trifida

cDNA


1238
TIC56

Ambrosia trifida

gDNA


1239
TIC56

Ambrosia trifida

gDNA


1240
TIC56

Ambrosia trifida

gDNA


1241
TIC56

Ambrosia trifida

gDNA


1242
TIC56

Chenopodium album

cDNA


1243
TIC56

Conyza canadensis

cDNA


1244
TIC56

Conyza canadensis

cDNA


1245
TIC56

Conyza canadensis

gDNA


1246
TIC56

Digitaria sanguinalis

cDNA


1247
TIC56

Digitaria sanguinalis

gDNA


1248
TIC56

Digitaria sanguinalis

gDNA


1249
TIC56

Euphorbia heterophylla

cDNA


1250
TIC56

Euphorbia heterophylla

gDNA


1251
TIC56

Euphorbia heterophylla

gDNA


1252
TIC56

Euphorbia heterophylla

gDNA


1253
TIC56

Ipomoea hederacea

cDNA


1254
TIC56

Kochia scoparia

gDNA


1255
TIC56

Portulaca oleracea

gDNA


1256
TIC56

Portulaca oleracea

gDNA


1257
TIC56

Senna obtusifolia

cDNA


1258
TIC56

Spirodela polyrrhiza

gDNA


1259
TIC56

Taraxacum officinale

gDNA


1260
TIC56

Trifolium repens

gDNA


1261
TIC56

Trifolium repens

gDNA


1262
TIC56

Xanthium strumarium

cDNA


1263
TIC56

Xanthium strumarium

cDNA


1584
HSP70

Amaranthus palmeri

cDNA


1585
HSP70

Amaranthus palmeri

gDNA


1586
HSP70-1

Amaranthus palmeri

cDNA


1587
HSP70-1

Amaranthus palmeri

cDNA


1588
HSP70-1

Amaranthus palmeri

gDNA


1589
HSP70-1

Amaranthus palmeri

gDNA


1590
HSP70T-1

Amaranthus palmeri

cDNA


1591
HSP70T-1

Amaranthus palmeri

gDNA


1592
HSP70T-1

Amaranthus palmeri

gDNA


1593
HSP70T-2

Amaranthus palmeri

cDNA


1594
HSP70T-2

Amaranthus palmeri

cDNA


1595
HSP70T-2

Amaranthus palmeri

gDNA


1596
HSP93III

Amaranthus palmeri

gDNA


1597
HSP93IIIb

Amaranthus palmeri

cDNA


1598
HSP93IIIb

Amaranthus palmeri

gDNA


1599
HSP93IIIb

Amaranthus palmeri

gDNA


1600
HSP93IIIb

Amaranthus palmeri

gDNA


1601
HSP93IIIb

Amaranthus palmeri

cDNA


1602
HSP93IIIb

Amaranthus palmeri

cDNA


1603
HSP93V

Amaranthus palmeri

cDNA


1604
HSP93V

Amaranthus palmeri

cDNA


1605
HSP93V

Amaranthus palmeri

cDNA


1606
HSP93V

Amaranthus palmeri

gDNA


1607
HSP93V

Amaranthus palmeri

gDNA


1608
HSP93V

Amaranthus palmeri

gDNA


1609
TIC22-like

Amaranthus palmeri

cDNA


1610
TIC22-like

Amaranthus palmeri

gDNA


1611
TIC22-like1

Amaranthus palmeri

cDNA


1612
TIC22-like1

Amaranthus palmeri

gDNA


1613
TIC22-like2

Amaranthus palmeri

cDNA


1614
TIC22-like2

Amaranthus palmeri

gDNA


1615
TIC22-like2

Amaranthus palmeri

gDNA


1616
TIC55II

Amaranthus palmeri

cDNA


1617
TIC55II

Amaranthus palmeri

cDNA


1618
TIC55II

Amaranthus palmeri

gDNA


1619
TIC55II

Amaranthus palmeri

gDNA


1620
TIC55IV

Amaranthus palmeri

cDNA


1621
TIC55IV

Amaranthus palmeri

gDNA


1622
TIC55IV

Amaranthus palmeri

gDNA


1623
TIC55IV

Amaranthus palmeri

gDNA


1624
TIC62

Amaranthus palmeri

cDNA


1625
TIC62

Amaranthus palmeri

gDNA


1626
TIC62

Amaranthus palmeri

gDNA


1627
TIC62

Amaranthus palmeri

gDNA


1628
TOC64I

Amaranthus palmeri

cDNA


1629
TOC64I

Amaranthus palmeri

gDNA


1630
TOC64III

Amaranthus palmeri

cDNA


1631
TOC64III

Amaranthus palmeri

gDNA


1632
TOC64III

Amaranthus palmeri

gDNA


1633
TOC64V

Amaranthus palmeri

cDNA


1634
TOC64V

Amaranthus palmeri

cDNA


1635
TOC64V

Amaranthus palmeri

cDNA


1636
TOC64V

Amaranthus palmeri

gDNA


1637
TOC64V

Amaranthus palmeri

gDNA


1638
TOC64V

Amaranthus palmeri

gDNA









Example 2. Polynucleotide Molecules Homologous in Weed Species

The gene sequences and fragments of SEQ ID NO: 1-1263 were compared and 25-mers of contiguous polynucleotides were identified that have homology across the various gene sequences for each set of chloroplast protein import system genes and across the various target weed species. The purpose is to identify trigger polynucleotide molecules that are useful alone or in combination with a herbicide to provide enhanced weed control across a range of weed species, including glyphosate and other herbicide resistant weed biotypes. The method can be applied to any set of target gene sequences to identify trigger polynucleotides common to more than one weed species. The sequences shown in Table 2 represent the 25-mers of the respective gene sequences in SEQ ID NO: 1-1263 that have homology to eight or more weed species. It is contemplated that additional 25-mers can be selected from the gene sequences that are specific for a single weed species or a few weeds species within a genus or trigger polynucleotide molecules that are at least 19 contiguous nucleotides and at least 85 percent identical to a gene sequence of SEQ ID NO: 1-1263. The 25-mer oligonucleotides are combined into a 5-10 polynucleotide pooled set and tested for efficacy against the broadest range of weed species in which the polynucleotide is essentially identical or essentially complementary to a gene sequence in the genome of the treated weed species. Efficacious sets are divided into smaller sets of 2-3 polynucleotides or tested individually for efficacy. Each polynucleotide set is prepared with the transfer agent and applied to a plant or a field of plants in combination with a herbicide, or followed by a herbicide treatment one to three days after the oligonucleotide application, to determine the effect in the plant's susceptibility to the herbicide. The effect is measured as stunting the growth and/or killing of the plant and is measured 8-14 days or 21 days after treatment with the polynucleotide set and the herbicide.









TABLE 2







Plant chloroplast import system gene trigger polynucleotides.











SEQ ID


#



NO
Seq
Gene
Species
Species














1264
TTTGGTAATGAAT
OEP80
8

Amaranthus graecizans, Amaranthus




GTGGTTGAGCGT



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus viridis, Chenopodium








album






1265
TTGGTAATGAATG
OEP80
8

Amaranthus graecizans, Amaranthus




TGGTTGAGCGTG



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus viridis, Chenopodium








album






1266
TTGATTTGGTAAT
OEP80
8

Amaranthus graecizans, Amaranthus




GAATGTGGTTGA



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus viridis, Chenopodium








album






1267
TGGTAATGAATGT
OEP80
8

Amaranthus graecizans, Amaranthus




GGTTGAGCGTGT



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus viridis, Chenopodium








album






1268
TGGATTGAAGGT
OEP80
8

Amaranthus graecizans, Amaranthus




GATGATAAGCGTA



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus viridis, Chenopodium








album






1269
TGATTTGGTAATG
OEP80
8

Amaranthus graecizans, Amaranthus




AATGTGGTTGAG



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus viridis, Chenopodium








album






1270
TCACACGCTCAAC
OEP80
8

Amaranthus graecizans, Amaranthus




CACATTCATTAC



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus viridis, Chenopodium








album






1271
TCAACCACATTCA
OEP80
8

Amaranthus graecizans, Amaranthus




TTACCAAATCAA



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus viridis, Chenopodium








album






1272
TACGCTTATCATC
OEP80
8

Amaranthus graecizans, Amaranthus




ACCTTCAATCCA



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus viridis, Chenopodium








album






1273
TAATGAATGTGGT
OEP80
8

Amaranthus graecizans, Amaranthus




TGAGCGTGTGAG



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus viridis, Chenopodium








album






1274
GTTGATTTGGTAA
OEP80
8

Amaranthus graecizans, Amaranthus




TGAATGTGGTTG



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus viridis, Chenopodium








album






1275
GTACGCTTATCAT
OEP80
8

Amaranthus graecizans, Amaranthus




CACCTTCAATCC



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus viridis, Chenopodium








album






1276
GTAATGAATGTGG
OEP80
8

Amaranthus graecizans, Amaranthus




TTGAGCGTGTGA



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus viridis, Chenopodium








album






1277
GGTAATGAATGTG
OEP80
8

Amaranthus graecizans, Amaranthus




GTTGAGCGTGTG



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus viridis, Chenopodium








album






1278
GGTAAAGTTGATT
OEP80
8

Abutilon theophrasti, Amaranthus




TGGTAATGAATG



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus viridis






1279
GGATTGAAGGTG
OEP80
8

Amaranthus graecizans, Amaranthus




ATGATAAGCGTAC



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus viridis, Chenopodium








album






1280
GCTCAACCACATT
OEP80
8

Amaranthus graecizans, Amaranthus




CATTACCAAATC



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus viridis, Chenopodium








album






1281
GATTTGGTAATGA
OEP80
8

Amaranthus graecizans, Amaranthus




ATGTGGTTGAGC



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus viridis, Chenopodium








album






1282
CTCACACGCTCAA
OEP80
8

Amaranthus graecizans, Amaranthus




CCACATTCATTA



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus viridis, Chenopodium








album






1283
CTCAACCACATTC
OEP80
8

Amaranthus graecizans, Amaranthus




ATTACCAAATCA



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus viridis, Chenopodium








album






1284
TTTCCACCCTCATC
TIC100
9

Amaranthus chlorostachys, Amaranthus




TTTGATCTCCT



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1285
TTTAGCTTCATCG
TIC100
9

Amaranthus chlorostachys, Amaranthus




AGTTTCGGGTCT



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1286
TTCTGGTACGGCT
TIC100
9

Amaranthus chlorostachys, Amaranthus




ACATGATTCATG



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1287
TTCCACCCTCATCT
TIC100
9

Amaranthus chlorostachys, Amaranthus




TTGATCTCCTC



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1288
TTCCACATGAATC
TIC100
9

Amaranthus chlorostachys, Amaranthus




ATGTAGCCGTAC



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1289
TTCATCGAGTTTC
TIC100
9

Amaranthus chlorostachys, Amaranthus




GGGTCTGTTTCA



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1290
TTAGCTTCATCGA
TIC100
9

Amaranthus chlorostachys, Amaranthus




GTTTCGGGTCTG



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1291
TTACTTCTGGTAC
TIC100
9

Amaranthus chlorostachys, Amaranthus




GGCTACATGATT



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1292
TGGTACGGCTACA
TIC100
9

Amaranthus chlorostachys, Amaranthus




TGATTCATGTGG



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1293
TGGAAGCATGGC
TIC100
9

Amaranthus graecizans, Amaranthus




AGAATGCATGGTT



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis, Conyza








canadensis






1294
TGATTTAGCTTCA
TIC100
9

Amaranthus chlorostachys, Amaranthus




TCGAGTTTCGGG



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1295
TGATGATTTAGCT
TIC100
9

Amaranthus chlorostachys, Amaranthus




TCATCGAGTTTC



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1296
TGATGATGATTTA
TIC100
9

Amaranthus chlorostachys, Amaranthus




GCTTCATCGAGT



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1297
TGATGATGATGAT
TIC100
9

Amaranthus chlorostachys, Amaranthus




TTAGCTTCATCG



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1298
TGATGATGATGAT
TIC100
9

Amaranthus chlorostachys, Amaranthus




GATTTAGCTTCA



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1299
TGAATCATGTAGC
TIC100
9

Amaranthus chlorostachys, Amaranthus




CGTACCAGAAGT



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1300
TGAAGCTAAATCA
TIC100
9

Amaranthus chlorostachys, Amaranthus




TCATCATCATCA



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1301
TGAAACAGACCCG
TIC100
9

Amaranthus chlorostachys, Amaranthus




AAACTCGATGAA



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1302
TCTGGTACGGCTA
TIC100
9

Amaranthus chlorostachys, Amaranthus




CATGATTCATGT



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1303
TCTGAAACAGACC
TIC100
9

Amaranthus chlorostachys, Amaranthus




CGAAACTCGATG



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1304
AGCTTCTGAAATG
TIC110
12

Amaranthus graecizans, Amaranthus




CCCGACGCTGTT



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis, Ambrosia








trifida, Conyza canadensis, Digitaria








sanguinalis, Xanthium strumarium






1305
AACAGCGTCGGG
TIC110
12

Amaranthus graecizans, Amaranthus




CATTTCAGAAGCT



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis, Ambrosia








trifida, Conyza canadensis, Digitaria








sanguinalis, Xanthium strumarium






1306
TGTGCTGCTTTCC
TIC110
10

Amaranthus albus, Amaranthus




TTACAGATGCTT



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1307
GTGCTGCTTTCCT
TIC110
10

Amaranthus albus, Amaranthus




TACAGATGCTTT



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1308
GCTTCTGAAATGC
TIC110
10

Amaranthus graecizans, Amaranthus




CCGACGCTGTTC



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis, Ambrosia








trifida, Conyza canadensis






1309
GAACAGCGTCGG
TIC110
10

Amaranthus graecizans, Amaranthus




GCATTTCAGAAGC



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis, Ambrosia








trifida, Conyza canadensis






1310
AAGCATCTGTAAG
TIC110
10

Amaranthus albus, Amaranthus




GAAAGCAGCACA



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1311
AAAGCATCTGTAA
TIC110
10

Amaranthus albus, Amaranthus




GGAAAGCAGCAC



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1312
TTTGAGCATATTC
TIC110
9

Amaranthus albus, Amaranthus




TGCAGGCAGCCC



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1313
TTTCTCTGCCTCAA
TIC110
9

Amaranthus albus, Amaranthus




TAAAGCCACGG



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1314
TTTCAATGGCAGC
TIC110
9

Amaranthus albus, Amaranthus




AGCCATCTTTGA



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1315
TTTAGACAGCAGG
TIC110
9

Amaranthus albus, Amaranthus




CCGAGGTCATTT



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1316
TTGGTTCAAGCCG
TIC110
9

Amaranthus albus, Amaranthus




TGGCTTTATTGA



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1317
TTGCTGAAGCTTC
TIC110
9

Amaranthus chlorostachys, Amaranthus




TGTCGATATATT



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1318
TTGCCAGCAATTG
TIC110
9

Amaranthus albus, Amaranthus




ACATAGCAGCTT



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amoranthus








palmeri, Amaranthus rudis, Amaranthus








thunbergii, Amaranthus viridis






1319
TTCTGTCGATATA
TIC110
9

Amaranthus chlorostachys, Amaranthus




TTTCTTCATGGA



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amoranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1320
TTCTCTGCCTCAAT
TIC110
9

Amaranthus albus, Amaranthus




AAAGCCACGGC



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amoranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1321
TTCAATGGCAGCA
TIC110
9

Amaranthus albus, Amaranthus




GCCATCTTTGAA



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amoranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1322
TTCAAGCCGTGGC
TIC110
9

Amaranthus albus, Amaranthus




TTTATTGAGGCA



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amoranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1323
TTCAAAGATGGCT
TIC110
9

Amaranthus albus, Amaranthus




GCTGCCATTGAA



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amoranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1324
TGCTGCATATATC
TIC20
11

Abutilon theophrasti, Amaranthus




CAAATTCCATAT



albus, Amaranthus








chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amoranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1325
TCATATGGAATTT
TIC20
11

Abutilon theophrasti, Amaranthus




GGATATATGCAG



albus, Amaranthus








chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amoranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1326
TATGGAATTTGGA
TIC20
11

Abutilon theophrasti, Amaranthus




TATATGCAGCAT



albus, Amaranthus








chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amoranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1327
GCTGCATATATCC
TIC20
11

Abutilon theophrasti, Amaranthus




AAATTCCATATG



albus, Amaranthus








chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amoranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1328
GATGCTGCATATA
TIC20
11

Abutilon theophrasti, Amaranthus




TCCAAATTCCAT



albus, Amaranthus








chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amoranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1329
CTGCATATATCCA
TIC20
11

Abutilon theophrasti, Amaranthus




AATTCCATATGA



albus, Amaranthus








chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amoranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1330
CATATGGAATTTG
TIC20
11

Abutilon theophrasti, Amaranthus




GATATATGCAGC



albus, Amaranthus








chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amoranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1331
ATGGAATTTGGAT
TIC20
11

Abutilon theophrasti, Amaranthus




ATATGCAGCATC



albus, Amaranthus








chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amoranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1332
ATGCTGCATATAT
TIC20
11

Abutilon theophrasti, Amaranthus




CCAAATTCCATA



albus, Amaranthus








chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amoranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1333
ATATGGAATTTGG
TIC20
11

Abutilon theophrasti, Amaranthus




ATATATGCAGCA



albus, Amaranthus








chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amoranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1334
TTTGTGCTTACCTT
TIC20
10

Amaranthus albus, Amaranthus




GGGATCGTGAG



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amoranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1335
TTTGTATGCGATG
TIC20
10

Amaranthus albus, Amaranthus




CTGCATATATCC



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1336
TTTGGATATATGC
TIC20
10

Amaranthus albus, Amaranthus




AGCATCGCATAC



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1337
TTTGCAGGTTGTT
TIC20
10

Amaranthus albus, Amaranthus




GGTACTGTCAGT



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1338
TTTCTCCTCACGAT
TIC20
10

Amaranthus albus, Amaranthus




CCCAAGGTAAG



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1339
TTGTTGGTACTGT
TIC20
10

Amaranthus albus, Amaranthus




CAGTCGTTGGCT



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1340
TTGTGCTTACCTT
TIC20
10

Amaranthus albus, Amaranthus




GGGATCGTGAGG



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1341
TTGTATGCGATGC
TIC20
10

Amaranthus albus, Amaranthus




TGCATATATCCA



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1342
TTGGTACTGTCAG
TIC20
10

Amaranthus albus, Amaranthus




TCGTTGGCTGCC



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1343
TTGGGATCGTGA
TIC20
10

Amaranthus albus, Amaranthus




GGAGAAAGGAGT



chlorostachys, Amaranthus




G



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1344
TTTGGAATTGTTG
TIC21
10

Amaranthus albus, Amaranthus




CGATCAGTGACA



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1345
TTTGAATCTTCTTG
TIC21
10

Amaranthus albus, Amaranthus




GTATGGGCTCT



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1346
TTTCCTCTTTGGA
TIC21
10

Amaranthus albus, Amaranthus




ATTGTTGCGATC



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1347
TTTATTGCTGTTG
TIC21
10

Amaranthus albus, Amaranthus




ATAATTGTGCAG



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1348
TTGTTGCGATCAG
TIC21
10

Amaranthus albus, Amaranthus




TGACATCACCTA



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1349
TTGGTATGGGCTC
TIC21
10

Amaranthus albus, Amaranthus




TGCGGTCTTGGG



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1350
TTGGAATTGTTGC
TIC21
10

Amaranthus albus, Amaranthus




GATCAGTGACAT



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1351
TTGCGATCAGTGA
TIC21
10

Amaranthus albus, Amaranthus




CATCACCTAGCG



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1352
TTGCAATCCCAAG
TIC21
10

Amaranthus albus, Amaranthus




ACCGCAGAGCCC



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1353
TTGACCGCTAGGT
TIC21
10

Amaranthus albus, Amaranthus




GATGTCACTGAT



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1354
TTGAATCTTCTTG
TIC21
10

Amaranthus albus, Amaranthus




GTATGGGCTCTG



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1355
TTCTTGGTATGGG
TIC21
10

Amaranthus albus, Amaranthus




CTCTGCGGTCTT



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1356
TTCGGACTTGTTT
TIC21
10

Amaranthus albus, Amaranthus




CCTCTTTGGAAT



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1357
TTCCTCTTTGGAA
TIC21
10

Amaranthus albus, Amaranthus




TTGTTGCGATCA



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1358
TTCCAAAGAGGAA
TIC21
10

Amaranthus albus, Amaranthus




ACAAGTCCGAAG



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1359
TTATTGCTGTTGA
TIC21
10

Amaranthus albus, Amaranthus




TAATTGTGCAGT



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1360
TGTTTCCTCTTTGG
TIC21
10

Amaranthus albus, Amaranthus




AATTGTTGCGA



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1361
TGTTGCGATCAGT
TIC21
10

Amaranthus albus, Amaranthus




GACATCACCTAG



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1362
TGTCACTGATCGC
TIC21
10

Amaranthus albus, Amaranthus




AACAATTCCAAA



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1363
TGGTATGGGCTCT
TIC21
10

Amaranthus albus, Amaranthus




GCGGTCTTGGGA



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1364
TTTGCTATGCAAC
TIC40
10

Amaranthus albus, Amaranthus




AAACTTTCAAGA



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1365
TTTCAAGACTATG
TIC40
10

Amaranthus albus, Amaranthus




ATGAGCCAGATG



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1366
TTGTTGCATAGCA
TIC40
10

Amaranthus albus, Amaranthus




AATTTCTTCAAC



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1367
TTGCTATGCAACA
TIC40
10

Amaranthus albus, Amaranthus




AACTTTCAAGAC



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1368
TTGCATAGCAAAT
TIC40
10

Amaranthus albus, Amaranthus




TTCTTCAACCAT



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1369
TTCAAGACTATGA
TIC40
10

Amaranthus albus, Amaranthus




TGAGCCAGATGG



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1370
TGTTGCATAGCAA
TIC40
10

Amaranthus albus, Amaranthus




ATTTCTTCAACC



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1371
TGGTTGAAGAAAT
TIC40
10

Amaranthus albus, Amaranthus




TTGCTATGCAAC



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1372
TGGCTCATCATAG
TIC40
10

Amaranthus albus, Amaranthus




TCTTGAAAGTTT



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1373
TGCTATGCAACAA
TIC40
10

Amaranthus albus, Amaranthus




ACTTTCAAGACT



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1374
TGCATAGCAAATT
TIC40
10

Amaranthus albus, Amaranthus




TCTTCAACCATG



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1375
TGCAACAAACTTT
TIC40
10

Amaranthus albus, Amaranthus




CAAGACTATGAT



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1376
TGAAGAAATTTGC
TIC40
10

Amaranthus albus, Amaranthus




TATGCAACAAAC



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1377
TCTTGAAAGTTTG
TIC40
10

Amaranthus albus, Amaranthus




TTGCATAGCAAA



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1378
TCTGGCTCATCAT
TIC40
10

Amaranthus albus, Amaranthus




AGTCTTGAAAGT



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1379
TCCCATCTGGCTC
TIC40
10

Amaranthus albus, Amaranthus




ATCATAGTCTTG



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1380
TCATCATAGTCTT
TIC40
10

Amaranthus albus, Amaranthus




GAAAGTTTGTTG



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1381
TCATAGTCTTGAA
TIC40
10

Amaranthus albus, Amaranthus




AGTTTGTTGCAT



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1382
TCAAGACTATGAT
TIC40
10

Amaranthus albus, Amaranthus




GAGCCAGATGGG



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1383
TATGCAACAAACT
TIC40
10

Amaranthus albus, Amaranthus




TTCAAGACTATG



chlorostachys, Amaranthus








graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1384
TTAAGTTGAATCA
TIC56
8

Amaranthus graecizans, Amaranthus




GCTCACATGGTC



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus spinosus, Amaranthus








thunbergii, Amaranthus viridis, Chenopodium








album






1385
TCTTCTCGGAACA
TIC56
8

Amaranthus graecizans, Amaranthus




TATTCATGGCTT



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1386
TCTTAAGTTGAAT
TIC56
8

Amaranthus graecizans, Amaranthus




CAGCTCACATGG



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus spinosus, Amaranthus








thunbergii, Amaranthus viridis, Chenopodium








album






1387
TCATGTCCTTGAT
TIC56
8

Amaranthus graecizans, Amaranthus




TACAGCTTTACT



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1388
TAAGTTGAATCAG
TIC56
8

Amaranthus graecizans, Amaranthus




CTCACATGGTCC



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus spinosus, Amaranthus








thunbergii, Amaranthus viridis, Chenopodium








album






1389
TAAAGCTGTAATC
TIC56
8

Amaranthus graecizans, Amaranthus




AAGGACATGAGG



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1390
GTCTTAAGTTGAA
TIC56
8

Amaranthus graecizans, Amaranthus




TCAGCTCACATG



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus spinosus, Amaranthus








thunbergii, Amaranthus viridis, Chenopodium








album






1391
GTAAAGCTGTAAT
TIC56
8

Amaranthus graecizans, Amaranthus




CAAGGACATGAG



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1392
GGACCATGTGAG
TIC56
8

Amaranthus graecizans, Amaranthus




CTGATTCAACTTA



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus spinosus, Amaranthus








thunbergii, Amaranthus viridis, Chenopodium








album






1393
GCCTCATGTCCTT
TIC56
8

Amaranthus graecizans, Amaranthus




GATTACAGCTTT



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1394
GCCATGAATATGT
TIC56
8

Amaranthus graecizans, Amaranthus




TCCGAGAAGATG



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1395
GCATCTTCTCGGA
TIC56
8

Amaranthus graecizans, Amaranthus




ACATATTCATGG



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1396
GAGGACCATGTG
TIC56
8

Amaranthus graecizans, Amaranthus




AGCTGATTCAACT



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus spinosus, Amaranthus








thunbergii, Amaranthus viridis, Chenopodium








album






1397
GACCATGTGAGCT
TIC56
8

Amaranthus graecizans, Amaranthus




GATTCAACTTAA



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus spinosus, Amaranthus








thunbergii, Amaranthus viridis, Chenopodium








album






1398
CTTAAGTTGAATC
TIC56
8

Amaranthus graecizans, Amaranthus




AGCTCACATGGT



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus spinosus, Amaranthus








thunbergii, Amaranthus viridis, Chenopodium








album






1399
CTCATGTCCTTGA
TIC56
8

Amaranthus graecizans, Amaranthus




TTACAGCTTTAC



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1400
CGCCTCATGTCCT
TIC56
8

Amaranthus graecizans, Amaranthus




TGATTACAGCTT



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1401
CCTCATGTCCTTG
TIC56
8

Amaranthus graecizans, Amaranthus




ATTACAGCTTTA



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1402
CCATGTGAGCTGA
TIC56
8

Amaranthus graecizans, Amaranthus




TTCAACTTAAGA



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus spinosus, Amaranthus








thunbergii, Amaranthus viridis, Chenopodium








album






1403
CCATGAATATGTT
TIC56
8

Amaranthus graecizans, Amaranthus




CCGAGAAGATGC



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1404
TTGGTACTGGTAA
TOC132
9

Amaranthus albus, Amaranthus




TGATGCAGCACC



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1405
TGGTGGTGCTGCA
TOC132
9

Amaranthus albus, Amaranthus




TCATTACCAGTA



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1406
TGGTGCTGCATCA
TOC132
9

Amaranthus albus, Amaranthus




TTACCAGTACCA



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1407
TGGTACTGGTAAT
TOC132
9

Amaranthus albus, Amaranthus




GATGCAGCACCA



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1408
TGGTAATGATGCA
TOC132
9

Amaranthus albus, Amaranthus




GCACCACCAGAT



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1409
TGCTGCATCATTA
TOC132
9

Amaranthus albus, Amaranthus




CCAGTACCAATG



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1410
TGCAGCACCACCA
TOC132
9

Amaranthus albus, Amaranthus




GATTCTTCATCA



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1411
TGATGCAGCACCA
TOC132
9

Amaranthus albus, Amaranthus




CCAGATTCTTCA



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1412
TGATGAAGAATCT
TOC132
9

Amaranthus albus, Amaranthus




GGTGGTGCTGCA



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1413
TGAAGAATCTGGT
TOC132
9

Amaranthus albus, Amaranthus




GGTGCTGCATCA



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1414
TCTGGTGGTGCTG
TOC132
9

Amaranthus albus, Amaranthus




CATCATTACCAG



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1415
TACTGGTAATGAT
TOC132
9

Amaranthus albus, Amaranthus




GCAGCACCACCA



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1416
TAATGATGCAGCA
TOC132
9

Amaranthus albus, Amaranthus




CCACCAGATTCT



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1417
GTGGTGCTGCATC
TOC132
9

Amaranthus albus, Amaranthus




ATTACCAGTACC



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1418
GTGCTGCATCATT
TOC132
9

Amaranthus albus, Amaranthus




ACCAGTACCAAT



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1419
GTACTGGTAATGA
TOC132
9

Amaranthus albus, Amaranthus




TGCAGCACCACC



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1420
GTAATGATGCAGC
TOC132
9

Amaranthus albus, Amaranthus




ACCACCAGATTC



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1421
GGTGGTGCTGCAT
TOC132
9

Amaranthus albus, Amaranthus




CATTACCAGTAC



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1422
GGTGCTGCATCAT
TOC132
9

Amaranthus albus, Amaranthus




TACCAGTACCAA



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1423
GGTACTGGTAATG
TOC132
9

Amaranthus albus, Amaranthus




ATGCAGCACCAC



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1424
TGGACACCCATGG
TOC159
10

Abutilon theophrasti, Amaranthus




TTGGGACCATGA



albus, Amaranthus graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus spinosus, Amaranthus








thunbergii, Amaranthus viridis, Chenopodium








album






1425
TCATGGTCCCAAC
TOC159
10

Abutilon theophrasti, Amaranthus




CATGGGTGTCCA



albus, Amaranthus graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus spinosus, Amaranthus








thunbergii, Amaranthus viridis, Chenopodium








album






1426
GGCTGGATTCACA
TOC159
10

Amaranthus albus, Amaranthus




GACAAGAGATCT



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis, Chenopodium








album






1427
GACACCCATGGTT
TOC159
10

Abutilon theophrasti, Amaranthus




GGGACCATGATT



albus, Amaranthus graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus spinosus, Amaranthus








thunbergii, Amaranthus viridis, Senna








obtusifolia






1428
CAATCATGGTCCC
TOC159
10

Abutilon theophrasti, Amaranthus




AACCATGGGTGT



albus, Amaranthus graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus spinosus, Amaranthus








thunbergii, Amaranthus viridis, Senna








obtusifolia






1429
AGATCTCTTGTCT
TOC159
10

Amaranthus albus, Amaranthus




GTGAATCCAGCC



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis, Chenopodium








album






1430
ACACCCATGGTTG
TOC159
10

Abutilon theophrasti, Amaranthus




GGACCATGATTG



albus, Amaranthus graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus spinosus, Amaranthus








thunbergii, Amaranthus viridis, Senna








obtusifolia






1431
AATCATGGTCCCA
TOC159
10

Abutilon theophrasti, Amaranthus




ACCATGGGTGTC



albus, Amaranthus graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus spinosus, Amaranthus








thunbergii, Amaranthus viridis, Senna








obtusifolia






1432
TTTGTGGGACAGC
TOC159
9

Amaranthus albus, Amaranthus




GTAGTCATATTA



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1433
TTTGGTTACCTGC
TOC159
9

Amaranthus albus, Amaranthus




ACAGTTACTGCT



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1434
TTTGAGCGAGTAG
TOC159
9

Amaranthus albus, Amaranthus




CATAGCAACAAT



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1435
TTTCCTTGAACAT
TOC159
9

Amaranthus albus, Amaranthus




CCTGGTTCTTGG



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1436
TTTCCTCCGATTG
TOC159
9

Amaranthus albus, Amaranthus




CCAAGTCTCCTC



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1437
TTTCCCAAGAACC
TOC159
9

Amaranthus albus, Amaranthus




AGGATGTTCAAG



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1438
TTTATGTGGATAG
TOC159
9

Amaranthus albus, Amaranthus




GCTGGATTCACA



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1439
TTTACCTTCTCTTC
TOC159
9

Amaranthus albus, Amaranthus




ACCAAATATTG



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1440
TTGTGGGACAGC
TOC159
9

Amaranthus albus, Amaranthus




GTAGTCATATTAT



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1441
TTGTCTGTGAATC
TOC159
9

Amaranthus albus, Amaranthus




CAGCCTATCCAC



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1442
TTGTCCTCAAGAT
TOC159
9

Amaranthus albus, Amaranthus




GGGTAGATCATT



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1443
TTGGTTACCTGCA
TOC159
9

Amaranthus albus, Amaranthus




CAGTTACTGCTG



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1444
TTTGGTCAAGACT
TOC34
9

Amaranthus albus, Amaranthus




ATCATTGATGTT



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1445
TTTCTTCTGGATA
TOC34
9

Amaranthus albus, Amaranthus




AGACAATCGATG



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1446
TTTCATGGATACC
TOC34
9

Amaranthus albus, Amaranthus




AAATTTGGTCAA



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1447
TTGTCTTATCCAG
TOC34
9

Amaranthus albus, Amaranthus




AAGAAAGCCTTT



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1448
TTGTCAACCAAGA
TOC34
9

Amaranthus albus, Amaranthus




TACCCTTACTTC



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1449
TTGGTCAAGACTA
TOC34
9

Amaranthus albus, Amaranthus




TCATTGATGTTG



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1450
TTGACCAAATTTG
TOC34
9

Amaranthus albus, Amaranthus




GTATCCATGAAA



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1451
TTCTTCTGGATAA
TOC34
9

Amaranthus albus, Amaranthus




GACAATCGATGT



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1452
TTCTGGATAAGAC
TOC34
9

Amaranthus albus, Amaranthus




AATCGATGTATT



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1453
TTCATGGATACCA
TOC34
9

Amaranthus albus, Amaranthus




AATTTGGTCAAG



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1454
TGTCAACCAAGAT
TOC34
9

Amaranthus albus, Amaranthus




ACCCTTACTTCC



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1455
TGGTCAAGACTAT
TOC34
9

Amaranthus albus, Amaranthus




CATTGATGTTGT



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1456
TGGATACCAAATT
TOC34
9

Amaranthus albus, Amaranthus




TGGTCAAGACTA



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1457
TGGATAAGACAAT
TOC34
9

Amaranthus albus, Amaranthus




CGATGTATTGCT



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1458
TGGAAGTAAGGG
TOC34
9

Amaranthus albus, Amaranthus




TATCTTGGTTGAC



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1459
TGATGGATTGAGT
TOC34
9

Amaranthus albus, Amaranthus




TACGAAGACTTC



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1460
TGATAGTCTTGAC
TOC34
9

Amaranthus albus, Amaranthus




CAAATTTGGTAT



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1461
TGACCAAATTTGG
TOC34
9

Amaranthus albus, Amaranthus




TATCCATGAAAC



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1462
TCTTGACCAAATT
TOC34
9

Amaranthus albus, Amaranthus




TGGTATCCATGA



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1463
TCTTCTGGATAAG
TOC34
9

Amaranthus albus, Amaranthus




ACAATCGATGTA



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1464
TACAGGAGAATG
TOC75
10

Amaranthus chlorostachys, Amaranthus




GGCAAGGGTTCG



graecizans, Amaranthus




T



hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis, Euphorbia








heterophylla






1465
GACGAACCCTTGC
TOC75
10

Amaranthus chlorostachys, Amaranthus




CCATTCTCCTGT



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis, Euphorbia








heterophylla






1466
ACGAACCCTTGCC
TOC75
10

Amaranthus chlorostachys, Amaranthus




CATTCTCCTGTA



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis, Euphorbia








heterophylla






1467
ACAGGAGAATGG
TOC75
10

Amaranthus chlorostachys, Amaranthus




GCAAGGGTTCGTC



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis, Euphorbia








heterophylla






1468
TTTGCTGAACATG
TOC75
9

Amaranthus chlorostachys, Amaranthus




GAAACGATCTTG



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1469
TTTGAAATGGTTT
TOC75
9

Amaranthus albus, Amaranthus




CTTTGAGACCTG



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1470
TTTCTTCAATGGT
TOC75
9

Amaranthus albus, Amaranthus




GGAAACGGAGGT



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1471
TTTCTCAAAGCTT
TOC75
9

Amaranthus albus, Amaranthus




GCTTGCCTGCTT



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1472
TTTCAGTCATATC
TOC75
9

Amaranthus albus, Amaranthus




AGGATCCATCTC



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1473
TTTCAAAGAATGA
TOC75
9

Amaranthus albus, Amaranthus




ATCTTCAGTACC



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1474
TTTATATTTCTCAA
TOC75
9

Amaranthus albus, Amaranthus




AGCTTGCTTGC



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1475
TTTAGTTACTTGT
TOC75
9

Amaranthus albus, Amaranthus




GGAATGTTTGAG



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1476
TTTACAGGAGAAT
TOC75
9

Amaranthus chlorostachys, Amaranthus




GGGCAAGGGTTC



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1477
TTTAATATAGAAG
TOC75
9

Amaranthus albus, Amaranthus




CAGGCAAGCAAG



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1478
TTGTGTGGGAGA
TOC75
9

Amaranthus chlorostachys, Amaranthus




CCTTCCAAGTTAT



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1479
TTGGTGCAGCTAG
TOC75
9

Amaranthus chlorostachys, Amaranthus




AAACATTCTTGA



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1480
TTGGTACTGAAGA
TOC75
9

Amaranthus albus, Amaranthus




TTCATTCTTTGA



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1481
TTGCTTGCCTGCT
TOC75
9

Amaranthus albus, Amaranthus




TCTATATTAAAG



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1482
TTGCTGAACATGG
TOC75
9

Amaranthus chlorostachys, Amaranthus




AAACGATCTTGG



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis






1483
TTGCCCATTCTCCT
TOC75
9

Amaranthus chlorostachys, Amaranthus




GTAAACTTCAG



graecizans, Amaranthus








hybridus, Amaranthus lividus, Amaranthus








palmeri, Amaranthus rudis, Amaranthus








spinosus, Amaranthus








thunbergii, Amaranthus viridis










Example 3. Enhanced Plant Sensitivity to Glyphosate

In this example, growing Amaranthus palmeri are treated with a topically applied composition for inducing modulation of a target gene in a plant including (a) an agent for conditioning of a plant to permeation by polynucleotides and (b) polynucleotides including at least one polynucleotide strand including at least one segment of 19-25 contiguous nucleotides or more of the target gene of SEQ ID NO: 1-1263 or SEQ ID NO: 1584-1638. Target genes associated with the chloroplast protein import system include but are not limited to the structural genes that encode for translocon outer membrane (Toc) complex proteins, translocon inner membrance complex proteins (Tic), stroma processing peptidase, and chaperone like proteins.


The following procedure is used for all assays described in this example. Approximately four-week old Amaranthus palmeri plants (glyphosate-resistant Palmer amaranth, “R-22”) are used in this assay. Plants are treated with 0.5-1.0 percent Silwet L-77 solution freshly made with ddH2O. Two fully expanded leaves per plant (one cotyledon, one true leaf) are treated with the polynucleotide/Silwet L-77 solution. Final concentration for each dsRNA polynucleotide was 25 microM) unless otherwise stated. Twenty microliters of the solution are applied to the top surface of each of the two pre-treated leaves to provide a total of 40 microliters (1-4 nmol polynucleotide) for each plant.


Spray solutions are prepared the same day as spraying. Single oligonucleotide molecules are applied at rates between 0.04 and 0.18 mg/ml in 20 mM potassium phosphate buffer (pH 6.8) are added to spray solutions 15 to 50 minutes before spraying. One-to-two-ml spray solutions were applied using a custom low-dead-volume sprayer (“milli applicator”) at 8-30 gpa (gallons per acre) to one-to-four inch tall plants. Treated plants are place in a greenhouse set for either a 26.7/21.1° C. or 29.4/21.1° C. 14/10 hour temperature and supplemental light schedule. The amount of response relative to unsprayed treatments is collected at various time intervals up to 21 days after treatment.


A common spray nozzle used for all applications made with the track sprayer is the Turbo Teejet air induction nozzle (015) nozzle with air pressure set at a minimum of 20 psi (pounds per square inch or 160 kpa). This style nozzle is currently being utilized to lessen shear forces that can damage or otherwise change large macromolecules that can seen with other nozzle styles. The height of the spray nozzle is to be 16-18 inches above top of plant material. Treatments are to be made when plants reach the desired size, height or leaf stage.


Application rates are chosen so as to achieve percent control ratings in the range of 50 percent at the lowest rate to 90 percent control at the highest rate. The rates in this control range provide the best possible efficacy comparisons among formulations, allowing separation of relative performance of test samples. The rate of herbicide used in these studies is typically at the manufacturer's recommended use rate. On occasion lower or higher rates may be necessary depending on test objectives. The rate structure used for a given test will be dependent on the environmental conditions at the time of spray application (time of year), the plant species being treated (highly susceptible or tough to kill) and age (or size) of plants to be treated.


When various Toc75 trigger dsRNA polynucleotides (Table 3, SEQ ID NO: 1484-1534) were applied to a glyphosate resistant A. palmeri biotype (R22) followed by (fb) treatment with glyphosate herbicide (WeatherMax®, Monsanto Co., St Louis, herein referred to as WMAX), the results shown in Table 4 show the percent of treated plants demonstrating a reduction in growth. The controls are: untreated (no formulation, no polynucleotide), untreated fb 2×WMAX, formulation (polynucleotide/Silwet L-77 solution) fb 2×WMAX, the EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) target oligo positive control were four polynucleotides (1, 3, 4, 5 at 4 nm/plant) that target the A. palmeri EPSPS coding sequence. The treatments are pools of Toc75 fb 2×WMAX polynucleotides with the formulation. The plants were scored 7, 14, and 21 days after treatment (DAT). The experimental results shown in Table 4, demonstated that the treated glyphosate resistant plants become more sensitive to the herbicidal effect of glyphosate when the treatment included polynucleotides homologous or complementary to a chloroplast protein import system gene of the plant.









TABLE 3







Toc75 polynucleotides









Oligo
SEQ ID NO:
Polynucleotide sequence












52
1484
CTTTCTTGCCTGCTTCAATGTTATA





53
1485
CCCAGAGAGGTTATATTTCTCAAAG





54
1486
ATGGACTTCAATGTTTGAAAATAAT





55
1487
CTTCATTCTGTTCATCATGCCGAGT





55
1488
CTTCATTCTGTTCATCATGCCGAGT





56
1489
AGCTTAATCTCAACAATAATTCCTC





56
1490
AGCTTAATCTCAACAATAATTCCTC





57
1491
CAATATTCCACTCTGTAGTTAGTTC





58
1492
CAATATTCCACTCTGTAGTTAGTTC





59
1493
TTTGGACGACCATGAGGCCCAGGAA





60
1494
CCCACCTGGCTGTAAAGAAGCCAGT





61
1495
TGTTTCGGTGTTGAAAAGAGACGGT





62
1496
TGTAATGATCTATTAAGACCTTTGA





63
1497
GTAGTTATCAGTGGTTACTGAACCA





64
1498
ATGCAAGATCGTCCTTTGGATTAAG





65
1499
TACGGATGCACATATTCAAACTTGA





66
1500
GCTAGGATTATATACACCATCAATA





67
1501
AGCAGCTTGCTTTGAAAGTTCGGTT





68
1502
ACAGGACTCAGCTTTCTGCTATTGA





69
1503
ATCCAGTCCTGGGCCACCGGTAAAC





70
1504
TATCAACCCAAATAGGAGGAACTTC





71
1505
GTAATATTTGCTTTCAGACCAGATC





72
1506
CTTACTCTGCCTTGTGTAATTCTCG





73
1507
CTTCACATACAAGCCCATAAGTAAA





74
1508
CTGCTTTCATCCCGTGTTGTAATCT





75
1509
CCTCTGGCCAGTAGTGGCAATATGG





76
1510
CACTAATTCCACCATTTGGCAAAAT





77
1511
CTTAAAGTTGTTGGAGGCCCATCAG





78
1512
CACCATACGATCAACACCAGTACCA





79
1513
CTCTTGTAATATTTGCCTGTGCGAA





80
1514
GCACCATTTACAAACTTTGTATTAT





81
1515
AAACACATTTCTGTCACCAACTATA





82
1516
CTATCCCAAGGCCTTGGTCTACCTG





83
1517
CGGTTGAAAATTGGGAATTTAGTGC





84
1518
GAACTTGGTTAGTGTCAGTTGATGA





85
1519
CTTCTTCAACTTCCGTCAGTTGGAG





86
1520
ACTGGTGGTGGTGATTTTCCAGCAC





87
1521
AGCATAGTGACCATGTAGGACAAGA





88
1522
AACTTGGAAGGTCTCCCACACAACC





89
1523
GGTCCCCCAAGGGTGAAAGCCTCAT





90
1524
CATGTTGTAACCCCTAACTGAATAG





91
1525
TGTTTCTAGCTGCACCAAGTTCCCC





92
1526
CGTAACTCAGCAGCAAGCTCAAGAA





93
1527
CACATGTGTGGTCTTGACAGGTATC





94
1528
CGTTTCCATGTTCAGCAAACGCATA





95
1529
TTCACGTCTTTAGAGGTTCCAAGAT





96
1530
CCTGTAAACTTCAGTGGGATTACCC





97
1531
CATAAGACGAACCCTTGCCCATTCT





98
1532
ACAAGACCAAGCTTGACACCAACTC





99
1533
ATGATCGACAGCATACTCGGCTCGA





100
1534
AAAATAATGAGCCGGTACCAGAATT









Table 4. A. palmeri plants treated with TOC75 trigger polynucleotides and glyphosate show enhanced sensitivity to glyphosate, percent growth reduction 7, 14, and 21 DAT









TABLE 4








A. palmeri plants treated with TOC75 trigger polynucleotides and glyphosate show enhanced sensitivity



to glyphosate, percent growth reduction 7, 14, and 21 DAT









Days after













treatment












Plant
Polynucleotide treatment
herbicide
7
14
21















R22
Untreated control
no
0
0
0


R22
Untreated control
no
0
0
0


R22
Untreated control fb 2X WMAX
2X WeatherMAX
0
30
25


R22
Untreated control fb 2X WMAX
2X WeatherMAX
0
30
25


R22
Untreated control fb 2X WMAX
2X WeatherMAX
0
20
0


R22
Untreated control fb 2X WMAX
2X WeatherMAX
0
20
0


R22
Formulation control fb 2X WMAX
2X WeatherMAX
25
50
40


R22
Formulation control fb 2X WMAX
2X WeatherMAX
25
50
30


R22
Formulation control fb 2X WMAX
2X WeatherMAX
25
50
40


R22
Formulation control fb 2X WMAX
2X WeatherMAX
25
40
30


R22
EPSPS target (oligo 1, 3, 4, 5 @ 4 nm/plant)
2X WeatherMAX
75
80
80


R22
EPSPS target (oligo 1, 3, 4, 5 @ 4 nm/plant)
2X WeatherMAX
85
90
90


R22
EPSPS target (oligo 1, 3, 4, 5 @ 4 nm/plant)
2X WeatherMAX
75
90
90


R22
EPSPS target (oligo 1, 3, 4, 5 @ 4 nm/plant)
2X WeatherMAX
85
90
90


R22
TOC75 Set 1 (oligo 52, 53, 54, 55, 56 @ 4 nm/plant)
2X WeatherMAX
50
60
45


R22
TOC75 Set 1 (oligo 52, 53, 54, 55, 56 @ 4 nm/plant)
2X WeatherMAX
85
85
70


R22
TOC75 Set 1 (oligo 52, 53, 54, 55, 56 @ 4 nm/plant)
2X WeatherMAX
85
85
70


R22
TOC75 Set 1 (oligo 52, 53, 54, 55, 56 @ 4 nm/plant)
2X WeatherMAX
75
80
60


R22
TOC75 Set 2 (oligo 57, 58, 59, 60, 61 @ 4 nm/plant)
2X WeatherMAX
65
80
70


R22
TOC75 Set 2 (oligo 57, 58, 59, 60, 61 @ 4 nm/plant)
2X WeatherMAX
75
80
60


R22
TOC75 Set 2 (oligo 57, 58, 59, 60, 61 @ 4 nm/plant)
2X WeatherMAX
75
80
75


R22
TOC75 Set 2 (oligo 57, 58, 59, 60, 61 @ 4 nm/plant)
2X WeatherMAX
75
70
60


R22
TOC75 Set 3 (oligo 62, 63, 64, 65, 66 @ 4 nm/plant)
2X WeatherMAX
50
50
60


R22
TOC75 Set 3 (oligo 62, 63, 64, 65, 66 @ 4 nm/plant)
2X WeatherMAX
25
50
60


R22
TOC75 Set 3 (oligo 62, 63, 64, 65, 66 @ 4 nm/plant)
2X WeatherMAX
25
50
40


R22
TOC75 Set 3 (oligo 62, 63, 64, 65, 66 @ 4 nm/plant)
2X WeatherMAX
25
40
40


R22
TOC75 Set 4 (oligo 67, 68, 69, 70, 71 @ 4 nm/plant)
2X WeatherMAX
10
30
30


R22
TOC75 Set 4 (oligo 67, 68, 69, 70, 71 @ 4 nm/plant)
2X WeatherMAX
25
40
30


R22
TOC75 Set 4 (oligo 67, 68, 69, 70, 71 @ 4 nm/plant)
2X WeatherMAX
40
60
50


R22
TOC75 Set 4 (oligo 67, 68, 69, 70, 71 @ 4 nm/plant)
2X WeatherMAX
25
40
25


R22
TOC75 Set 5 (oligo 72, 73, 74, 75, 76 @ 4 nm/plant)
2X WeatherMAX
25
50
40


R22
TOC75 Set 5 (oligo 72, 73, 74, 75, 76 @ 4 nm/plant)
2X WeatherMAX
25
50
50


R22
TOC75 Set 5 (oligo 72, 73, 74, 75, 76 @ 4 nm/plant)
2X WeatherMAX
25
50
50


R22
TOC75 Set 5 (oligo 72, 73, 74, 75, 76 @ 4 nm/plant)
2X WeatherMAX
25
30
25


R22
TOC75 Set 6 (oligo 77, 78, 79, 80, 81 @ 4 nm/plant)
2X WeatherMAX
35
50
25


R22
TOC75 Set 6 (oligo 77, 78, 79, 80, 81 @ 4 nm/plant)
2X WeatherMAX
25
50
30


R22
TOC75 Set 6 (oligo 77, 78, 79, 80, 81 @ 4 nm/plant)
2X WeatherMAX
35
50
30


R22
TOC75 Set 6 (oligo 77, 78, 79, 80, 81 @ 4 nm/plant)
2X WeatherMAX
50
60
50


R22
TOC75 Set 7 (oligo 82, 83, 84, 85, 86 @ 4 nm/plant)
2X WeatherMAX
25
30
30


R22
TOC75 Set 7 (oligo 82, 83, 84, 85, 86 @ 4 nm/plant)
2X WeatherMAX
0
10
30


R22
TOC75 Set 7 (oligo 82, 83, 84, 85, 86 @ 4 nm/plant)
2X WeatherMAX
35
40
30


R22
TOC75 Set 7 (oligo 82, 83, 84, 85, 86 @ 4 nm/plant)
2X WeatherMAX
10
30
20


R22
TOC75 Set 8 (oligo 87, 88, 89, 90, 91 @ 4 nm/plant)
2X WeatherMAX
25
30
25


R22
TOC75 Set 8 (oligo 87, 88, 89, 90, 91 @ 4 nm/plant)
2X WeatherMAX
25
20
25


R22
TOC75 Set 8 (oligo 87, 88, 89, 90, 91 @ 4 nm/plant)
2X WeatherMAX
25
50
40


R22
TOC75 Set 8 (oligo 87, 88, 89, 90, 91 @ 4 nm/plant)
2X WeatherMAX
35
50
40


R22
TOC75 Set 9 (oligo 92, 93, 94, 95, 96 @ 4 nm/plant)
2X WeatherMAX
50
60
40


R22
TOC75 Set 9 (oligo 92, 93, 94, 95, 96 @ 4 nm/plant)
2X WeatherMAX
50
60
50


R22
TOC75 Set 9 (oligo 92, 93, 94, 95, 96 @ 4 nm/plant)
2X WeatherMAX
75
80
60


R22
TOC75 Set 9 (oligo 92, 93, 94, 95, 96 @ 4 nm/plant)
2X WeatherMAX
75
65
50


R22
TOC75 Set 10 (oligo 97, 98, 99, 100 @ 4 nm/plant)
2X WeatherMAX
60
65
65


R22
TOC75 Set 10 (oligo 97, 98, 99, 100 @ 4 nm/plant)
2X WeatherMAX
60
70
70


R22
TOC75 Set 10 (oligo 97, 98, 99, 100 @ 4 nm/plant)
2X WeatherMAX
60
75
70


R22
TOC75 Set 10 (oligo 97, 98, 99, 100 @ 4 nm/plant)
2X WeatherMAX
65
80
70









Example 4. OEP80 Gene and Stroma Processing Peptidase Gene Target Results


Amaranthus palmeri plants (R22 glyphosate resistant biotype) were treated following the protocol described in Example 3. Trigger dsRNA polynucleotides shown in Table 5 (SEQ ID NO: 1535-1573, plus strand sequence illustrated) are targeting the A. palmeri OEP80 gene coding region (SEQ ID NO: 365). The polynucleotides were topically applied at 8 nmol/plant in a composition comprising 0.5-1.0 percent Silwet L-77 and buffer followed one day later by treatment with 2× WeatherMAX (WMAX). Injury rating of the treated plants was conducted 14 days after the WMAX treatment. The control treatments were buffer alone and 2 rates (4 nmol and 8 nmol) of a trigger polynucleotide (oligo 5.3) targeting the A. palmeri EPSPS coding gene sequence. The average baseline level of injury effect of buffer plus WMAX was set at 40 percent for this experiment. The results illustrated in FIG. 1 demonstrated that at least 18 polynucleotides (T25452, T25454, T25455, T25456, T25457, T29847, T29848, T25464, T25465, T25466, T25471, T25472, T25473, T25474, T25475, T25477, T25478 and T29213) were able to enhance the effect of WMAX on this glyphosate resistant biotype. Additionally, 4 regions of the target gene sequence were identified in which the polynucleotides in those regions were particularly effective, these regions are between nucleotide positions 369-701, 1016-1168, 1364-1622 and 1683-1792 of SEQ ID NO: 365.









TABLE 5







Polynucleotide trigger molecules for 



A. palmeri OEP80










SEQ ID
Oligo



NO
test ID
Polynucleotide sequence












1535
T25445
GTTATCCCTGAGTCGACCCACTAACTCAACTCAGTCCAAAAACCCTTCAATTTC





1536
T25446
GTCCAAAAACCCTTCAATTTCCTTCTGTCAATCCCTAAATTCTACTCTC





1537
T25447
GTCAATCCCTAAATTCTACTCTCTTACAAGCCAAATTCTCAATTACCCAGTTCATTAAT




GGC





1538
T25448
GCATCAAACTCCACGGAAACCCCGTTAAGTTTCAATCTTCTCCATCACCATTGC





1539
T25449
GCTATGCTCTTCAACATTGTCTTTGAACGACTCAACTCAGCCTCCAGC





1540
T25450
GCCGGAAGTGGTAGTGTGGTTGAGGTTAGTCAATCGAAATCGGCTTCAGTGAGTCGTAC





1541
T25451
GTACTCGAAGGGAGGATGAAGAGAGAGTGTTGATTAGTGAGGTGTTAGTGAGGAGTAAA




GATGGAGAAGAATTAGAGAGGAAAGATTTGGAATC





1542
T25452
GGAGGCATTAATGGCATTGAAAGCTTGCCGGGCGAATTCAGCTTTGACTGTGC





1543
T25453
GAGAGGTTCAGGAGGATGTTCACAGAATTATTGATAGTGGGTATTTTTCTTCATGTATG




CCAGTTGCAGTGGATAC





1544
T25454
GATACTAGGGATGGTATTAGATTGGTCTTTCAGGTAGAACCAAACCAGGAGTTTAGAGG




ACTGGTGTGC





1545
T25455
GCGAAGGAGCTAATGTTCTCCCTTCCAAGTTTGTAGAGGATTCATTTC





1546
T25456
GTGATGGATATGGGAAAGTGGTCAATATCAGGCGTTTGGATGAAGTGATTGATTC





1547
T25457
GATTCTATAAATGGATGGTACATGGAGCGTGGTCTTTTTGGCATGGTTTC





1548
T25458
GTTTCTGGTGTTGAGATACTTTCAGGGGGTATACTAAGGTTACAAATTTCTGAAGC





1549
T25459
GCTGAGGTCAATGATGTTTCAATCCGCTTCCTTGATCGTAAGACACGTGAGCCAAC





1550
T25460
GCCAACTGTTGGGAAGACAAAGCCAGAAACAATACTTCGACAACTTACAACAAAAAAAG




GAC





1551
T25461
GACAGGTATACAGTTTGAATCAAGGGAAAAGGGATGTTGAGACTGTTTTGAC





1552
T25462
GACGATGGGAATCATGGAAGATGTAAGCATTTTTCCCCAGCCTGCTGGAGATAC





1553
T25463
GATACAGGTAAAGTTGATTTGGTAATGAATGTGGTTGAGCGTGTGAGTGGTGGTTTC





1554
T25464
GTTTCTCGGCTGGTGGTGGTATTTCGAGCGGGATAACGAGCGGACCGC





1555
T25465
GCTATCAGGTTTAATTGGAAGCTTTGCATATTCTCACAGGAATCTGTTTGGAAAAAATC





1556
T25466
GAAAAAATCAAAAAGTAAATGTCTCTCTTGAAAGAGGCCAAATCGACTCTATCTTCC





1557
T25467
GGATAAATTATACAGTCCCATGGATTGAAGGTGATGATAAGCGTACTCAAAGGTC





1558
T25468
GTCAATCATTATTCAGAACTCAAGGACTCCGGGTACTTTGGTCCATGGTAATC





1559
T25469
GTAATCAACCTGAAAATAGTAACTTAACTATTGGCCGTGTAACAGCTGGC





1560
T25470
GCATCGAATTCAGCCGGCCCCTAAGACCCAAATGGAGCGGAACAGCTGGAC





1561
T25471
GACTTACGTTTCAGCATGCTGGTGTCCGTGATGAAAAAGGGAACCCCGTC





1562
T25472
GTCATAAAAGATTTCTACAACAGCGCTCTTACGGCAAGTGGGAATACTCATGATAATA




TGC





1563
T25473
GCTGCTTGCCAAAGGCGAGTGTGCCTACACGGGTGACTTAGGATCCTCAATGTTAGTC





1564
T25474
GTCTTAAGCATGGAACAAGGTCTTCCTATCTATCCTGAGTGGCTGTGTTTTAATC





1565
T25475
GTTTTAATCGAGTCAACGCTCGTGCTAGGTCAGGGGTGGACATTGGTCCAGC





1566
T25476
GCTAATCTTTTTCTCAGTTTGTCTGGTGGTCATGTGGTCGGTAAATTTCCTCCTCATGA




AGC





1567
T25477
GTTTGCGATCGGTGGTACAAATAGTGTGAGAGGATATGAAGAAGGTGCCGTTGGC





1568
T25478
GCTCAGGCCTTTCATACGTAGTGGGCTGTGGAGAAGTTTCCTTCCCTCTGTATGGTC





1569
T25479
GTCCAGTAGATGGCGCTCTTTTTGCTGATTATGGAACGGATCTCGGATCAGGTTC





1570
T25480
GTTCATTGGTTCCTGGTGATCCTGCTGGTGCGAGATTAAAACCCGGGAGTGGATAC





1571
T25481
GGCTATGGATTTGGTATCCGTGTCGAGTCTCCATTAGGTCCTCTACGGTTAGAGTATGC





1572
T25482
GCATTTAACGACAGACAAGCGAGGCGGTTTCATTTTGGCGTAGGTCATCGGAAC





1573
T29213
GGATATGAAGAAGGTGCCGTTGGC









Stroma processing peptidase is a key enzyme in the chloroplast protein import system of plants. Amaranthus palmeri plants (R22 glyphosate resistant biotype) were treated following the protocol described in Example 3. Trigger dsRNA polynucleotides shown in Table 6 (SEQ ID NO: 1574-1583, plus strand sequence illustrated) are targeting the A. palmeri stroma processing peptidase (SPP, SEQ ID NO: 936) or Toc75 gene coding region (SEQ ID NO: 260). The SPP polynucleotides were topically applied in 2 pools of polynucleotides, oligos 1, 4, 5, and 6, and oligos 2, 7, 8, and 9, at 3 nmol each/plant in a composition comprising 0.1 percent Silwet L-77 and buffer followed one day later by treatment with 2× WeatherMAX (WMAX). Injury rating of the treated plants was conducted 21 days after the WMAX treatment. The control treatments were buffer alone and a pool of 4 nmol each of 4 trigger polynucleotides (oligo 1, 2, 3, and 5) targeting the A. palmeri EPSPS coding gene sequence. The average baseline level of injury effect of WMAX treatment was 41 percent for this experiment. The results shown in Table 7 demonstrate that targeting the stroma processing peptidase gene with trigger polynucleotides homologous or complementary to the gene coding sequence enhanced the sensitivity of the plants to the herbicidal effects of glyphosate.









TABLE 6







Sequence of trigger molecules for Toc75 and


stroma processing peptidase gene targets










Oligo
SEQ ID

Gene


no.
NO
Sequence
target













1
1574
TCAAGAAGTGGGATGTTGATAAAATAAAAA
SPP




AATTTCATGA






2
1575
TGAAAGGTGTTCTAGAGGATGACATTCAAA
SPP




AAGTCGAAGA






3
1576
GCAaGAAAGCTTTGAGAAaTATAACCTCTc
TOC75




TGGGATtATT






4
1577
CGGAGAAGAGGGTCATTAATAAAAAATGTT
SPP




CGTTCAAGAT






5
1578
ATTTAGTCAGACTGGCTTGGAGAATGAGAC
SPP




AGAGGCTTCCC






6
1579
ATTAAAGACACTGATGAAAGAGCCTGTGCC
SPP




TATATTGCTGG






7
1580
AGAAATATCCCGCTGGTGATGGCGGTGATT
SPP




TAAAGAAAAAG






8
1581
TGACATGAGTTTCTTGAAGCAAGAGCTACT
SPP




TTCATTAGTA






9
1582
CTGTGGCATCTCCAGAAGACGTCGAAGCTG
SPP




TAAAGAAAAT






10
1583
TCTTGAGCTTGCTGCTGAGTTACGGATACC
TOC75




TGTCAAGACCA
















TABLE 7







Stroma processing peptidase and Toc75 results














Percent






control 14




Treatment
replications
DAT
Stdev
















Buffer alone
4
0
0



EPSPS target (oligo 1,
4
97
4



3, 4, 5 @ 4 nm/plant)






Stroma Processing
4
64
6



Peptidase 1 (oligo 1, 4,






5, 6 @ 3 nm/plant)






Stroma Processing
4
65
17



Peptidase 2 (oligo 2, 7,






8, 9 @ 3 nm/plant)






TOC75 (oligo 3, 10 @
4
83
12



3 nm/plant)






Buffer + glyphosate
4
41
15










Example 5. A Method to Control Weeds in a Field

A method to control weeds in a field comprises the use of one or more chloroplast protein import system trigger polynucleotides that can modulate the expression of an endogenous weed gene in one or more target weed plant species. A weed control composition comprising multiple herbicides and multiple polynucleotides can be used in a field environment to control A. palmeri plant growth. An analysis of chloroplast protein import system gene sequences from 20 plant species provided a collection of 25-mer polynucleotides (SEQ ID NO: 1264-1483) that can be used in compositions to affect the growth or develop or sensitivity to glyphosate herbicide to control multiple weed species in a field. A composition containing 1 or 2 or 3 or 4 or more of the polynucleotides of SEQ ID NO: 1264-1483 or at least one polynucleotide of at least 19 contiguous polynucleotides and at least 85 percent identical to SEQ ID NO: 1264-1483 that would enable broad activity of the composition against the multiple weed species or variant populations that occur in a field environment.


The method additionally includes creating an agricultural chemical composition that comprises components that include at least one polynucleotide of of at least 19 contiguous polynucleotides and at least 85 percent identical to SEQ ID NO: 1-1263 or SEQ ID NO: 1584-1638 any other effective gene expression modulating polynucleotide essentially identical or essentially complementary to SEQ ID NO:1-1263 or SEQ ID NO: 1584-1638 fragment thereof and a transfer agent that mobilizes the polynucleotide into a plant cell and a glyphosate containing herbicide and optionally a polynucleotide that modulates the expression of an essential gene and optionally a herbicide that has a different mode of action relative to glyphosate. The polynucleotide of the composition includes a dsRNA, ssDNA or dsDNA or a combination thereof. A composition containing a polynucleotide can have a use rate of about 1 to 30 grams or more per acre depending on the size of the polynucleotide and the number of polynucleotides in the composition. The composition may include one or more additional herbicides as needed to provide effective multi-species weed control. For example, a composition comprising an chloroplast protein import system gene trigger polynucleotide, the composition further including a co-herbicide that includes, but not limited to acetochlor, acifluorfen, acifluorfen-sodium, aclonifen, acrolein, alachlor, alloxydim, allyl alcohol, ametryn, amicarbazone, amidosulfuron, aminopyralid, amitrole, ammonium sulfamate, anilofos, asulam, atraton, atrazine, azimsulfuron, BCPC, beflubutamid, benazolin, benfluralin, benfuresate, bensulfuron, bensulfuron-methyl, bensulide, bentazone, benzfendizone, benzobicyclon, benzofenap, bifenox, bilanafos, bispyribac, bispyribac-sodium, borax, bromacil, bromobutide, bromoxynil, butachlor, butafenacil, butamifos, butralin, butroxydim, butylate, cacodylic acid, calcium chlorate, cafenstrole, carbetamide, carfentrazone, carfentrazone-ethyl, CDEA, CEPC, chlorflurenol, chlorflurenol-methyl, chloridazon, chlorimuron, chlorimuron-ethyl, chloroacetic acid, chlorotoluron, chlorpropham, chlorsulfuron, chlorthal, chlorthal-dimethyl, cinidon-ethyl, cinmethylin, cinosulfuron, cisanilide, clethodim, clodinafop, clodinafop-propargyl, clomazone, clomeprop, clopyralid, cloransulam, cloransulam-methyl, CMA, 4-CPB, CPMF, 4-CPP, CPPC, cresol, cumyluron, cyanamide, cyanazine, cycloate, cyclosulfamuron, cycloxydim, cyhalofop, cyhalofop-butyl, 2,4-D, 3,4-DA, daimuron, dalapon, dazomet, 2,4-DB, 3,4-DB, 2,4-DEB, desmedipham, dicamba, dichlobenil, ortho-dichlorobenzene, para-dichlorobenzene, dichlorprop, dichlorprop-P, diclofop, diclofop-methyl, diclosulam, difenzoquat, difenzoquat metilsulfate, diflufenican, diflufenzopyr, dimefuron, dimepiperate, dimethachlor, dimethametryn, dimethenamid, dimethenamid-P, dimethipin, dimethylarsinic acid, dinitramine, dinoterb, diphenamid, diquat, diquat dibromide, dithiopyr, diuron, DNOC, 3,4-DP, DSMA, EBEP, endothal, EPTC, esprocarb, ethalfluralin, ethametsulfuron, ethametsulfuron-methyl, ethofumesate, ethoxyfen, ethoxysulfuron, etobenzanid, fenoxaprop-P, fenoxaprop-P-ethyl, fentrazamide, ferrous sulfate, flamprop-M, flazasulfuron, florasulam, fluazifop, fluazifop-butyl, fluazifop-P, fluazifop-P-butyl, flucarbazone, flucarbazone-sodium, flucetosulfuron, fluchloralin, flufenacet, flufenpyr, flufenpyr-ethyl, flumetsulam, flumiclorac, flumiclorac-pentyl, flumioxazin, fluometuron, fluoroglycofen, fluoroglycofen-ethyl, flupropanate, flupyrsulfuron, flupyrsulfuron-methyl-sodium, flurenol, fluridone, fluorochloridone, fluoroxypyr, flurtamone, fluthiacet, fluthiacet-methyl, fomesafen, foramsulfuron, fosamine, glufosinate, glufosinate-ammonium, halosulfuron, halosulfuron-methyl, haloxyfop, haloxyfop-P, HC-252, hexazinone, imazamethabenz, imazamethabenz-methyl, imazamox, imazapic, imazapyr, imazaquin, imazethapyr, imazosulfuron, indanofan, iodomethane, iodosulfuron, iodosulfuron-methyl-sodium, ioxynil, isoproturon, isouron, isoxaben, isoxachlortole, isoxaflutole, karbutilate, lactofen, lenacil, linuron, MAA, MAMA, MCPA, MCPA-thioethyl, MCPB, mecoprop, mecoprop-P, mefenacet, mefluidide, mesosulfuron, mesosulfuron-methyl, mesotrione, metam, metamifop, metamitron, metazachlor, methabenzthiazuron, methylarsonic acid, methyldymron, methyl isothiocyanate, metobenzuron, metolachlor, S-metolachlor, metosulam, metoxuron, metribuzin, metsulfuron, metsulfuron-methyl, MK-66, molinate, monolinuron, MSMA, naproanilide, napropamide, naptalam, neburon, nicosulfuron, nonanoic acid, norflurazon, oleic acid (fatty acids), orbencarb, orthosulfamuron, oryzalin, oxadiargyl, oxadiazon, oxasulfuron, oxaziclomefone, oxyfluorfen, paraquat, paraquat dichloride, pebulate, pendimethalin, penoxsulam, pentachlorophenol, pentanochlor, pentoxazone, pethoxamid, petrolium oils, phenmedipham, phenmedipham-ethyl, picloram, picolinafen, pinoxaden, piperophos, potassium arsenite, potassium azide, pretilachlor, primisulfuron, primisulfuron-methyl, prodiamine, profluazol, profoxydim, prometon, prometryn, propachlor, propanil, propaquizafop, propazine, propham, propisochlor, propoxycarbazone, propoxycarbazone-sodium, propyzamide, prosulfocarb, prosulfuron, pyraclonil, pyraflufen, pyraflufen-ethyl, pyrazolynate, pyrazosulfuron, pyrazosulfuron-ethyl, pyrazoxyfen, pyribenzoxim, pyributicarb, pyridafol, pyridate, pyriftalid, pyriminobac, pyriminobac-methyl, pyrimisulfan, pyrithiobac, pyrithiobac-sodium, quinclorac, quinmerac, quinoclamine, quizalofop, quizalofop-P, rimsulfuron, sethoxydim, siduron, simazine, simetryn, SMA, sodium arsenite, sodium azide, sodium chlorate, sulcotrione, sulfentrazone, sulfometuron, sulfometuron-methyl, sulfosate, sulfosulfuron, sulfuric acid, tar oils, 2,3,6-TBA, TCA, TCA-sodium, tebuthiuron, tepraloxydim, terbacil, terbumeton, terbuthylazine, terbutryn, thenylchlor, thiazopyr, thifensulfuron, thifensulfuron-methyl, thiobencarb, tiocarbazil, topramezone, tralkoxydim, tri-allate, triasulfuron, triaziflam, tribenuron, tribenuron-methyl, tricamba, triclopyr, trietazine, trifloxysulfuron, trifloxysulfuron-sodium, trifluralin, triflusulfuron, triflusulfuron-methyl, trihydroxytriazine, tritosulfuron, [3-[2-chloro-4-fluoro-5-(-methyl-6-trifluoromethyl-2,4-dioxo-,2,3,4-t-etrahydropyrimidin-3-yl)phenoxy]-2-pyridyloxy]acetic acid ethyl ester (CAS RN 353292-3-6), 4-[(4,5-dihydro-3-methoxy-4-methyl-5-oxo)-H-,2,4-triazol-ylcarbonyl-sulfamoyl]-5-methylthiophene-3-carboxylic acid (BAY636), BAY747 (CAS RN 33504-84-2), topramezone (CAS RN 2063-68-8), 4-hydroxy-3-[[2-[(2-methoxyethoxy)methyl]-6-(trifluoro-methyl)-3-pyridi-nyl]carbonyl]-bicyclo[3.2.]oct-3-en-2-one (CAS RN 35200-68-5), and 4-hydroxy-3-[[2-(3-methoxypropyl)-6-(difluoromethyl)-3-pyridinyl]carbon-yl]-bicyclo[3.2.]oct-3-en-2-one.


A field of crop plants in need of weed plant control is treated by spray application of the composition. The composition can be provided as a tank mix, a sequential treatment of components (generally the polynucleotide followed by the herbicide), a simultaneous treatment or mixing of one or more of the components of the composition from separate containers. Treatment of the field can occur as often as needed to provide weed control and the components of the composition can be adjusted to target specific weed species or weed families.


Example 6. Herbicidal Compositions Comprising Pesticidal Agents

A method of controlling weeds and plant pest and pathogens in a field of glyphosate tolerant crop plants is provided, by applying a herbicidal composition having a polynucleotide, an organosilicone surfactant (about 0.1 percent or greater), and a nonpolynucleotide herbicide and a pest control agent. The polynucleotide is essentially identical or essentially complementary to a segment of a gene sequence that is a component of a chloroplast protein import system of one or more of the target weed species. The trigger oligonucleotide is at least 19 nucleotides in length and at least 85 percent identical to a segment of a gene sequence of SEQ ID NO: 1-1263 and 1584-1638 isolated from a weed species. The nonpolynucleotide herbicide is preferably a glyphosate composition and the pest control agent is preferably an insecticide, fungicide, nematocide, bactericide, acaricide, growth regulator, chemosterilant, semiochemical, repellent, attractant, pheromone, feeding stimulant or other biologically active compounds or biological agents, such as, microorganisms.


For example, the admixture comprises a fungicide compound for use on a glyphosate tolerant crop plant to prevent or control plant disease caused by a plant fungal pathogen, The fungicide compound of the admixture may be a systemic or contact fungicide or mixtures of each. More particularly the fungicide compound includes, but is not limited to members of the chemical groups strobilurins, triazoles, chloronitriles, carboxamides and mixtures thereof. The composition may additional have an admixture comprises an insecticidal compound or agent.


The chloroplast protein import system trigger polynucleotides and WeatherMAX® (WMAX) tank mixes with fungicides, insecticides or both are tested for use in soybean. Soybean rust is a significant problem disease in South America and serious concern in the U.S. Testing is conducted to develop a method for use of mixtures of the WMAX formulation and various commercially available fungicides for weed control and soy rust control. The field plots are planted with Roundup Ready® soybeans. All plots receive a post plant application of the EPSPS trigger+WMAX about 3 weeks after planting. The mixtures of trigger+WMAX or trigger+WMAX+fungicide+insecticides are used to treat the plots at the R1 stage of soybean development (first flowering) of treatment. Data is taken for percent weed control at 7 and 21 days after R1 treatment, soybean safety (percent necrosis, chlorosis, growth rate): 5 days after treatment, disease rating, and soybean yield (bushels/Acre). These mixtures and treatments are designed to provide simultaneous weed and pest control of soybean, such as fungal pest control, for example, soybean rust disease; and insect pest control, for example, aphids, armyworms, loopers, beetles, stinkbugs, and leaf hoppers.


Agricultural chemicals are provided in containers suitable for safe storage, transportation and distribution, stability of the chemical compositions, mixing with solvents and instructions for use. A container of a mixture of a trigger oligonucleotide+glyphosate+fungicide compound, or a mixture of a trigger oligonucleotide+glyphosate compound and an insecticide compound, or a trigger oligonucleotide+a glyphosate compound and a fungicide compound and an insecticide compound (for example, lambda-cyhalothrin, Warrier®). The container may further provide instructions on the effective use of the mixture. Containers can be of any material that is suitable for the storage of the chemical mixture. Containers can be of any material that is suitable for the shipment of the chemical mixture. The material can be of cardboard, plastic, metal, or a composite of these materials. The container can have a volume of 0.5 liter, 1 liter, 2 liter, 3-5 liter, 5-10 liter, 10-20 liter, 20-50 liter or more depending upon the need. A tank mix of a trigger oligonucleotide+glyphosate compound and a fungicide compound is provided, methods of application to the crop to achieve an effective dose of each compound are known to those skilled in the art and can be refined and further developed depending on the crop, weather conditions, and application equipment used.


Insecticides, fungicides, nematocides, bactericides, acaricides, growth regulators, chemosterilants, semiochemicals, repellents, attractants, pheromones, feeding stimulants or other biologically active compounds can be added to the trigger oligonucleotide to form a multi-component pesticide giving an even broader spectrum of agricultural protection. Examples of such agricultural protectants with which compounds as described herein can be formulated are: insecticides such as abamectin, acephate, azinphos-methyl, bifenthrin, buprofezin, carbofuran, chlorfenapyr, chlorpyrifos, chlorpyrifos-methyl, cyfluthrin, beta-cyfluthrin, cyhalothrin, lambda-cyhalothrin, deltamethrin, diafenthiuron, diazinon, diflubenzuron, dimethoate, esfenvalerate, fenoxycarb, fenpropathrin, fenvalerate, fipronil, flucythrinate, tau-fluvalinate, fonophos, imidacloprid, isofenphos, malathion, metaldehyde, methamidophos, methidathion, methomyl, methoprene, methoxychlor, methyl 7-chloro-2,5-dihydro-2-[[N-(methoxycarbonyl)-N-[4-(trifluoromethoxy)phenyl]amino]carbonyl]indeno[1,2-e][1,3,4]oxadiazine-4a(3H)-carboxylate (DPX-JW062), monocrotophos, oxamyl, parathion, parathion-methyl, permethrin, phorate, phosalone, phosmet, phosphamidon, pirimicarb, profenofos, rotenone, sulprofos, tebufenozide, tefluthrin, terbufos, tetrachlorvinphos, thiodicarb, tralomethrin, trichlorfon and triflumuron; most preferably a glyphosate compound is formulated with a fungicide compound or combinations of fungicides, such as azoxystrobin, benomyl, blasticidin-S, Bordeaux mixture (tribasic copper sulfate), bromuconazole, captafol, captan, carbendazim, chloroneb, chlorothalonil, copper oxychloride, copper salts, cymoxanil, cyproconazole, cyprodinil (CGA 219417), diclomezine, dicloran, difenoconazole, dimethomorph, diniconazole, diniconazole-M, dodine, edifenphos, epoxiconazole (BAS 480F), famoxadone, fenarimol, fenbuconazole, fenpiclonil, fenpropidin, fenpropimorph, fluazinam, fluquinconazole, flusilazole, flutolanil, flutriafol, folpet, fosetyl-aluminum, furalaxyl, hexaconazole, ipconazole, iprobenfos, iprodione, isoprothiolane, kasugamycin, kresoxim-methyl, mancozeb, maneb, mepronil, metalaxyl, metconazole, S-methyl 7-benzothiazolecarbothioate (CGA 245704), myclobutanil, neo-asozin (ferric methanearsonate), oxadixyl, penconazole, pencycuron, probenazole, prochloraz, propiconazole, pyrifenox, pyroquilon, quinoxyfen, spiroxamine (KWG4168), sulfur, tebuconazole, tetraconazole, thiabendazole, thiophanate-methyl, thiram, triadimefon, triadimenol, tricyclazole, trifloxystrobin, triticonazole, validamycin and vinclozolin; combinations of fungicides are common for example, cyproconazole and azoxystrobin, difenoconazole, and metalaxyl-M, fludioxonil and metalaxyl-M, mancozeb and metalaxyl-M, copper hydroxide and metalaxyl-M, cyprodinil and fludioxonil, cyproconazole and propiconazole; commercially available fungicide formulations for control of Asian soybean rust disease include, but are not limited to Quadris® (Syngenta Corp), Bravo® (Syngenta Corp), Echo 720® (Sipcam Agro Inc), Headline® 2.09EC (BASF Corp), Tilt® 3.6EC (Syngenta Corp), PropiMax™ 3.6 EC (Dow AgroSciences), Bumper® 41.8EC (MakhteshimAgan), Folicur® 3.6F (Bayer CropScience), Laredo® 25EC (Dow AgroSciences), Laredo™ 25EW (Dow AgroSciences), Stratego® 2.08F (Bayer Corp), Domark™ 125SL (Sipcam Agro USA), and Pristine®38% WDG (BASF Corp) these can be combined with glyphosate compositions as described herein to provide enhanced protection from soybean rust disease; nematocides such as aldoxycarb and fenamiphos; bactericides such as streptomycin; acaricides such as amitraz, chinomethionat, chlorobenzilate, cyhexatin, dicofol, dienochlor, etoxazole, fenazaquin, fenbutatin oxide, fenpropathrin, fenpyroximate, hexythiazox, propargite, pyridaben and tebufenpyrad; and biological agents such as Bacillus thuringiensis, Bacillus thuringiensis delta endotoxin, baculovirus, and entomopathogenic bacteria, virus and fungi.

Claims
  • 1. A method of plant control comprising: topically applying to a surface of a herbicide resistant plant a herbicidal composition comprising a polynucleotide, an organosilicone surfactant, and a nonpolynucleotide herbicide that is an inhibitor of a protein imported into a chloroplast, wherein said polynucleotide is identical or complementary to at least 21 contiguous nucleotides of a sequence of a gene encoding for a component of a chloroplast protein import system selected from the group consisting of a translocon at the outer envelope membrane of a chloroplast (TOC), a translocon at the inner envelope membrane of a chloroplast (TIC), a stroma processing peptidase (SPP), and a chaperone like protein associated with the chloroplast protein import system, and wherein said herbicide resistant plant is more sensitive to said nonpolynucleotide herbicide, relative to an untreated herbicide resistant plant.
  • 2. The method of claim 1, wherein said gene is a TOC selected from the group consisting of TOC159, TOC33, TOC34, TOC75, OEP80, TOC132 and TOC64.
  • 3. The method of claim 2, wherein said TOC159 gene comprises a polynucleotide sequence selected from the group consisting of SEQ ID NOs: 1-117.
  • 4. The method of claim 2, wherein said TOC33 gene comprises a polynucleotide sequence selected from the group consisting of SEQ ID NOs: 118-155.
  • 5. The method of claim 2, wherein said TOC34 gene comprises a polynucleotide sequence selected from the group consisting of SEQ ID NOs: 156-247.
  • 6. The method of claim 2, wherein said TOC75 gene comprises a polynucleotide sequence selected from the group consisting of SEQ ID NOs: 248-348.
  • 7. The method of claim 2, wherein said OEP80 gene comprises a polynucleotide sequence selected from the group consisting of SEQ ID NOs: 349-485.
  • 8. The method of claim 2, wherein said TOC132 gene comprises a polynucleotide sequence selected from the group consisting of SEQ ID NOs: 486-569.
  • 9. The method of claim 2, wherein said TOC64 gene comprises a polynucleotide sequence selected from the group consisting of SEQ ID NOs: 1628-1638.
  • 10. The method of claim 1, wherein said gene is a TIC selected from the group consisting of TIC110, TIC20, TIC21, TIC40, TIC100, TIC56, TIC22, TIC55, and TIC62.
  • 11. The method of claim 10, wherein said TIC110 gene comprises a polynucleotide sequence selected from the group consisting of SEQ ID NOs: 570-722.
  • 12. The method of claim 10, wherein said TIC20 gene comprises a polynucleotide sequence selected from the group consisting of SEQ ID NOs: 723-771.
  • 13. The method of claim 10, wherein said TIC21 gene comprises a polynucleotide sequence selected from the group consisting of SEQ ID NOs: 772-840.
  • 14. The method of claim 10, wherein said TIC40 gene comprises a polynucleotide sequence selected from the group consisting of SEQ ID NOs: 841-912.
  • 15. The method of claim 10, wherein said TIC100 gene comprises a polynucleotide sequence selected from the group consisting of SEQ ID NOs: 1131-1207.
  • 16. The method of claim 10, wherein said TIC56 gene comprises a polynucleotide sequence selected from the group consisting of SEQ ID NOs: 1208-1263.
  • 17. The method of claim 10, wherein said TIC22 gene comprises a polynucleotide sequence selected from the group consisting of SEQ ID NOs: 1609-1615.
  • 18. The method of claim 10, wherein said TIC55 gene comprises a polynucleotide sequence selected from the group consisting of SEQ ID NOs: 1616-1623.
  • 19. The method of claim 10, wherein said TIC62 gene comprises a polynucleotide sequence selected from the group consisting of SEQ ID NOs: 1624-1627.
  • 20. The method of claim 1, wherein said gene is an SPP comprising a polynucleotide sequence selected from the group consisting of SEQ ID NOs: 913-1130.
  • 21. The method of claim 20, wherein said polynucleotide sequence is selected from the group consisting of SEQ ID NOs: 1574-1582.
  • 22. The method of claim 1, wherein said herbicidal composition comprises any combination of two or more of said polynucleotides.
  • 23. The method of claim 1, wherein said herbicidal composition further comprises a second polynucleotide, wherein said second polynucleotide is identical or complementary to a segment of a gene sequence encoding for a protein selected from the group consisting of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), an acetohydroxyacid synthase or an acetolactate synthase (ALS), an acetyl-coenzyme A carboxylase (ACCase), a phytoene desaturase (PDS), a protoporphyrin IX oxygenase (PPO), a hydroxyphenylpyruvate dioxygenase (HPPD), a para-aminobenzoate synthase, a glutamine synthase (GS), a glufosinate-tolerant glutamine synthase, a 1-deoxy-D-xylulose 5-phosphate (DOXP) synthase, a dihydropteroate (DHP) synthase, a phenylalanine ammonia lyase (PAL), a glutathione S-transferase (GST), a D1 protein of photosystem II, a mono-oxygenase, a cytochrome P450, a cellulose synthase, a beta-tubulin, and a serine hydroxymethyltransferase.
  • 24. The method of claim 1, wherein said herbicidal composition further comprises a second nonpolynucleotide herbicide selected from the group consisting of: 5-diarylpyrazole herbicides, 2-thiopyrimidine herbicides, 3-CF3-benzene herbicides, acetamide herbicides, amide herbicides, aminoacrylate herbicides, aminotriazine herbicides, aromatic acid herbicides, arsenical herbicides, arylaminopropionic acid herbicides, arylcarboxamide herbicides, arylcyclodione herbicides, aryloxyphenoxy-propionate herbicides, azolecarboxamide herbicides, azoloazinone herbicides, azolotriazine herbicides, benzamide herbicides, benzenesulfonamide herbicides, benzhydryl herbicides, benzimidazole herbicides, benzofuran herbicides, benzofuranyl alkylsulfonate herbicides, benzohydrazide herbicides, benzoic acid herbicides, benzophenylmethanone herbicides, benzothiadiazinone herbicides, benzothiazole herbicides, benzothiazoleacetate herbicides, benzoxazole herbicides, benzoyl cyclohexanedione herbicides, benzyloxymethylisoxazole herbicides, benzylpyrazole herbicides, benzylpyridine herbicides, benzylpyrimidone herbicides, bipyridylium herbicides, carbamate herbicides, chloroacetamide herbicides, chloroacetamide herbicides, chlorocarbonic acid herbicides, cyclohexanedione herbicides, cyclohexene oxime herbicides, cyclopropylisoxazole herbicides, diarylether herbicides, dicarboximide herbicides, dihydropyrancarboxamide herbicides, diketo-epoxide herbicides, diketopiperazine herbicides, dinitroaniline herbicides, dinitrophenol herbicides, diphenylether herbicides, diphenylfuranone herbicides, dithiocarbamate herbicides, fluoroalkene herbicides, glyphosate herbicides, halogenated aliphatic herbicides, hydantocidin herbicides, hydroxypyrazole herbicides, imidazolinone herbicides, indazole herbicides, indenedione herbicides, inorganic herbicides, isoxazole herbicides, isoxazolesulfone herbicides, isoxazolidinone herbicides, nicotinohydrazide herbicides, nitrile herbicides, nitrile-amide herbicides, nitropyrazole herbicides, N-phenylphthalimide herbicides, organoarsenical herbicides, organophosphates herbicides, organophosphorus herbicides, oxabicycloheptane herbicides, oxadiazole herbicides, oxadiazolebenzamide herbicides, oxadiazolone herbicides, oxazole herbicides, oxazolidinedione herbicides, oxyacetamide herbicides, phenoxy herbicides, phenoxyalkyne herbicides, phenoxycarboxylic acid herbicides, phenoxypyridazinol herbicides, phenylalkanoate herbicides, phenylcarbamate herbicides, phenylenediamine herbicides, phenylethylurea herbicides, phenylimidazole herbicides, phenylisoxazole herbicides, phenylpyrazole herbicides, phenylpyrazoline herbicides, phenylpyridazine herbicides, phenylpyridine herbicides, phenylpyrrolidone herbicides, phosphinic acid herbicides, phosphonate herbicides, phosphoroamidate herbicides, phosphorodithioate herbicides, phthalamate herbicides, propionamide herbicides, pyrazole herbicides, pyrazole-arylether herbicides, pyrazolium herbicides, pyridazine herbicides, pyridazinone herbicides, pyridine herbicides, pyridinecarboxamide herbicides, pyridinecarboxylic acid herbicides, pyridinone herbicides, pyridyl-benzylamide herbicides, pyridyl-ether-carboxamide herbicides, pyrimidinecarboxylic acid herbicides, pyrimidinediamine herbicides, pyrimidinedione herbicides, pyrimidinetrione herbicides, pyrimidinone herbicides, pyrimidinyl(thio)benzoate herbicides, pyrimidinyloxybenzylamine herbicides, pyrimidylmethanol herbicides, pyrrolidone herbicides, quaternary ammonium herbicides, quinoline-carboxylic acid herbicides, quinoxaline herbicides, semicarbazone herbicides, sulfonamide herbicides, sulfonylamino-carbonyl-triazolinone herbicides, sulfonylurea herbicides, sulfonylurea herbicides, tetrazolinone herbicides, thiadiazole herbicides, thiatriazine herbicides, thienopyrimidine herbicides, thiocarbamate herbicides, thiocarbonate herbicides, thiourea herbicides, tolyltriazole herbicides, triazine herbicides, triazinedione herbicides, triazine-sulfonanilide herbicides, triazinone herbicides, triazole herbicides, triazolecarboxamide herbicides, triazoleimine herbicides, triazolinone herbicides, triazolone herbicides, triazolopyrimidine herbicides, triketone herbicides, uracil herbicides, and urea herbicides.
  • 25. The method of claim 24, wherein said composition further comprises more than one of said second nonpolynucleotide herbicide from different chemical families.
  • 26. The method of claim 1, wherein said organosilicone surfactant is at a concentration between about 0.1 percent and about 2 percent.
  • 27. The method of claim 26, wherein said organosilicone surfactant is at a concentration between about 0.5 percent and about 1 percent.
  • 28. The method of claim 1, wherein said herbicide resistant plant is a weedy plant selected from the group consisting of Abutilon theophrasti, Alopecurus myosuroides, Amaranthus albus, Amaranthus chlorostachys, Amaranthus graecizans, Amaranthus hybridus, Amaranthus lividus, Amaranthus palmeri, Amaranthus rudis, Amaranthus spinosus, Amaranthus thunbergii, Amaranthus viridis, Ambrosia artemisifolia, Ambrosia trifida, Avena fatua, Chenopodium album, Commelina diffusa, Convolvulus arvensis, Conyza canadensis, Cyperus esculentus, Digitaria sanguinalis, Echinochloa colona, Echinochloa crus-galli, Euphorbia heterophylla, Festuca arundinacea, Ipomoea hederacea, Kochia scoparia, Lolium arundinaceum, Lolium multiflorum, Lolium rigidium, Portulaca oleracea, Senna obtusifolia, Setaria viridis, Sorghum halepense, Spirodela polyrrhiza, Taraxacum officinale, Trifolium repens, and Xanthium strumarium.
  • 29. A herbicidal composition comprising an admixture of a polynucleotide and a nonpolynucleotide herbicide that is an inhibitor of a protein imported into a chloroplast, wherein said polynucleotide is identical or complementary to at least 21 contiguous nucleotides of a sequence of a gene encoding for a component of a chloroplast protein import system selected from the group consisting of a translocon at the outer envelope membrane of a chloroplast (TOC), a translocon at the inner envelope membrane of a chloroplast (TIC), a stroma processing peptidase (SPP), and a chaperone like protein associated with the chloroplast protein import system, and upon a topical application of said herbicidal composition to a surface of a herbicide resistant plant, said herbicide resistant plant is more sensitive to said nonpolynucleotide herbicide, relative to an untreated herbicide resistant plant.
  • 30. The herbicidal composition of claim 29, wherein said sequence of said gene is selected from the group consisting of SEQ ID NOs: 1-1534 and 1584-1638.
  • 31. The herbicidal composition of claim 29, wherein said polynucleotide is selected from the group consisting of polynucleotide positions 369-701, 1016-1168, 1364-1622, and 1683-1792 of SEQ ID NO: 365.
  • 32. The herbicidal composition of claim 29, further comprising a pesticide, wherein said pesticide is selected from the group consisting of insecticides, fungicides, nematicides, bactericides, acaricides, growth regulators, chemosterilants, semiochemicals, repellents, attractants, pheromones, feeding stimulants, and biopesticides.
  • 33. The method of claim 1, wherein said nonpolynucleotide herbicide is glyphosate.
  • 34. The method of claim 1, wherein said nonpolynucleotide herbicide is an HPPD inhibitor herbicide.
  • 35. The herbicidal composition of claim 29, wherein said nonpolynucleotide herbicide is glyphosate.
  • 36. The herbicidal composition of claim 29, wherein said nonpolynucleotide herbicide is an HPPD inhibitor herbicide.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Patent Application No. 61/787,620, filed Mar. 15, 2013, which is incorporated herein by reference in its entirety.

US Referenced Citations (388)
Number Name Date Kind
3687808 Merigan et al. Aug 1972 A
3791932 Schuurs et al. Feb 1974 A
3839153 Schuurs et al. Oct 1974 A
3850578 McConnell Nov 1974 A
3850752 Schuurs et al. Nov 1974 A
3853987 Dreyer Dec 1974 A
3867517 Ling Feb 1975 A
3879262 Schuurs et al. Apr 1975 A
3901654 Gross Aug 1975 A
3935074 Rubenstein et al. Jan 1976 A
3984533 Uzgiris Oct 1976 A
3996345 Ullman et al. Dec 1976 A
4034074 Miles Jul 1977 A
4098876 Piasio et al. Jul 1978 A
4469863 Ts'o et al. Sep 1984 A
4476301 Imbach et al. Oct 1984 A
4535060 Comai Aug 1985 A
4581847 Hibberd et al. Apr 1986 A
4666828 Gusella May 1987 A
4683202 Mullis Jul 1987 A
4761373 Anderson et al. Aug 1988 A
4769061 Comai Sep 1988 A
4801531 Frossard Jan 1989 A
4810648 Stalker Mar 1989 A
4879219 Wands et al. Nov 1989 A
4940835 Shah et al. Jul 1990 A
4971908 Kishore et al. Nov 1990 A
5004863 Umbeck Apr 1991 A
5011771 Bellet et al. Apr 1991 A
5013659 Bedbrook et al. May 1991 A
5015580 Christou et al. May 1991 A
5023243 Tullis Jun 1991 A
5034506 Summerton et al. Jul 1991 A
5094945 Comai Mar 1992 A
5141870 Bedbrook et al. Aug 1992 A
5145783 Kishore et al. Sep 1992 A
5159135 Umbeck Oct 1992 A
5166315 Summerton et al. Nov 1992 A
5177196 Meyer, Jr. et al. Jan 1993 A
5185444 Summerton et al. Feb 1993 A
5188642 Shah et al. Feb 1993 A
5188897 Suhadolnik et al. Feb 1993 A
5192659 Simons Mar 1993 A
5214134 Weis et al. May 1993 A
5216141 Benner Jun 1993 A
5235033 Summerton et al. Aug 1993 A
5264423 Cohen et al. Nov 1993 A
5264562 Matteucci Nov 1993 A
5264564 Matteucci Nov 1993 A
5272057 Smulson et al. Dec 1993 A
5276019 Cohen et al. Jan 1994 A
5281521 Trojanowski et al. Jan 1994 A
5286634 Stadler et al. Feb 1994 A
5286717 Cohen et al. Feb 1994 A
5304732 Anderson et al. Apr 1994 A
5310667 Eichholtz et al. May 1994 A
5312910 Kishore et al. May 1994 A
5321131 Agrawal et al. Jun 1994 A
5331107 Anderson et al. Jul 1994 A
5339107 Henry et al. Aug 1994 A
5346107 Bouix et al. Sep 1994 A
5378824 Bedbrook et al. Jan 1995 A
5384253 Krzyzek et al. Jan 1995 A
5390667 Kumakura et al. Feb 1995 A
5392910 Bell et al. Feb 1995 A
5393175 Courville Feb 1995 A
5399676 Froehler Mar 1995 A
5405938 Summerton et al. Apr 1995 A
5405939 Suhadolnik et al. Apr 1995 A
5416011 Hinchee et al. May 1995 A
5453496 Caruthers et al. Sep 1995 A
5455233 Spielvogel et al. Oct 1995 A
5459127 Felgner et al. Oct 1995 A
5460667 Moriyuki et al. Oct 1995 A
5462910 Ito et al. Oct 1995 A
5463174 Moloney et al. Oct 1995 A
5463175 Barry et al. Oct 1995 A
5466677 Baxter et al. Nov 1995 A
5470967 Huie et al. Nov 1995 A
5476925 Letsinger et al. Dec 1995 A
5489520 Adams et al. Feb 1996 A
5489677 Sanghvi et al. Feb 1996 A
5491288 Chaubet et al. Feb 1996 A
5510471 Lebrun et al. Apr 1996 A
5518908 Corbin et al. May 1996 A
5519126 Hecht May 1996 A
5536821 Agrawal et al. Jul 1996 A
5538880 Lundquist et al. Jul 1996 A
5541306 Agrawal et al. Jul 1996 A
5541307 Cook et al. Jul 1996 A
5550111 Suhadolnik et al. Aug 1996 A
5550318 Adams et al. Aug 1996 A
5550398 Kocian et al. Aug 1996 A
5550468 Häberlein et al. Aug 1996 A
5558071 Ward et al. Sep 1996 A
5561225 Maddry et al. Oct 1996 A
5561236 Leemans et al. Oct 1996 A
5563253 Agrawal et al. Oct 1996 A
5569834 Hinchee et al. Oct 1996 A
5571799 Tkachuk et al. Nov 1996 A
5587361 Cook et al. Dec 1996 A
5591616 Hiei et al. Jan 1997 A
5593874 Brown et al. Jan 1997 A
5596086 Matteucci et al. Jan 1997 A
5597717 Guerineau et al. Jan 1997 A
5602240 De Mesmaeker et al. Feb 1997 A
5605011 Bedbrook et al. Feb 1997 A
5608046 Cook et al. Mar 1997 A
5610289 Cook et al. Mar 1997 A
5618704 Sanghvi et al. Apr 1997 A
5623070 Cook et al. Apr 1997 A
5625050 Beaton et al. Apr 1997 A
5627061 Barry et al. May 1997 A
5633360 Bischofberger et al. May 1997 A
5633435 Barry et al. May 1997 A
5633448 Lebrun et al. May 1997 A
5639024 Mueller et al. Jun 1997 A
5646024 Leemans et al. Jul 1997 A
5648477 Leemans et al. Jul 1997 A
5663312 Chaturvedula Sep 1997 A
5677437 Teng et al. Oct 1997 A
5677439 Weis et al. Oct 1997 A
5719046 Guerineau et al. Feb 1998 A
5721138 Lawn Feb 1998 A
5731180 Dietrich Mar 1998 A
5739180 Taylor-Smith Apr 1998 A
5746180 Jefferson et al. May 1998 A
5767361 Dietrich Jun 1998 A
5767373 Ward et al. Jun 1998 A
5780708 Lundquist et al. Jul 1998 A
5804425 Barry et al. Sep 1998 A
5824877 Hinchee et al. Oct 1998 A
5837848 Ely et al. Nov 1998 A
5859347 Brown et al. Jan 1999 A
5866775 Eichholtz et al. Feb 1999 A
5874265 Adams et al. Feb 1999 A
5879903 Strauch et al. Mar 1999 A
5914451 Martinell et al. Jun 1999 A
5919675 Adams et al. Jul 1999 A
5928937 Kakefuda et al. Jul 1999 A
5939602 Volrath et al. Aug 1999 A
5969213 Adams et al. Oct 1999 A
5981840 Zhao et al. Nov 1999 A
5985793 Sandbrink Nov 1999 A
RE36449 Lebrun et al. Dec 1999 E
6040497 Spencer et al. Mar 2000 A
6056938 Unger et al. May 2000 A
6069115 Pallett et al. May 2000 A
6084089 Mine et al. Jul 2000 A
6084155 Volrath et al. Jul 2000 A
6118047 Anderson et al. Sep 2000 A
6121513 Zhang et al. Sep 2000 A
6130366 Herrera-Estrella et al. Oct 2000 A
6140078 Sanders et al. Oct 2000 A
6153812 Fry et al. Nov 2000 A
6160208 Lundquist et al. Dec 2000 A
6177616 Bartsch et al. Jan 2001 B1
6194636 McElroy et al. Feb 2001 B1
6225105 Sathasivan et al. May 2001 B1
6225114 Eichholtz et al. May 2001 B1
6232526 McElroy et al. May 2001 B1
6245968 Boudec et al. Jun 2001 B1
6248876 Barry et al. Jun 2001 B1
6252138 Karimi et al. Jun 2001 B1
RE37287 Lebrun et al. Jul 2001 E
6268549 Sailland et al. Jul 2001 B1
6271359 Norris et al. Aug 2001 B1
6282837 Ward et al. Sep 2001 B1
6288306 Ward et al. Sep 2001 B1
6288312 Christou et al. Sep 2001 B1
6294714 Matsunaga et al. Sep 2001 B1
6326193 Liu et al. Dec 2001 B1
6329571 Hiei Dec 2001 B1
6348185 Piwnica-Worms Feb 2002 B1
6365807 Christou et al. Apr 2002 B1
6384301 Martinell et al. May 2002 B1
6385902 Schipper et al. May 2002 B1
6399861 Anderson et al. Jun 2002 B1
6403865 Koziel et al. Jun 2002 B1
6414222 Gengenbach et al. Jul 2002 B1
6421956 Boukens et al. Jul 2002 B1
6426446 McElroy et al. Jul 2002 B1
6433252 Kriz et al. Aug 2002 B1
6437217 McElroy et al. Aug 2002 B1
6453609 Soll et al. Sep 2002 B1
6479291 Kumagai et al. Nov 2002 B2
6506559 Fire et al. Jan 2003 B1
6642435 Rafalski et al. Nov 2003 B1
6644341 Chemo et al. Nov 2003 B1
6645914 Woznica et al. Nov 2003 B1
6768044 Boudec et al. Jul 2004 B1
6992237 Habben et al. Jan 2006 B1
7022896 Weeks et al. Apr 2006 B1
7026528 Cheng et al. Apr 2006 B2
RE39247 Barry et al. Aug 2006 E
7105724 Weeks et al. Sep 2006 B2
7119256 Shimizu et al. Oct 2006 B2
7138564 Tian et al. Nov 2006 B2
7297541 Moshiri et al. Nov 2007 B2
7304209 Zink et al. Dec 2007 B2
7312379 Andrews et al. Dec 2007 B2
7323310 Peters et al. Jan 2008 B2
7371927 Yao et al. May 2008 B2
7392379 Le Pennec et al. Jun 2008 B2
7405347 Hammer et al. Jul 2008 B2
7406981 Hemo et al. Aug 2008 B2
7462379 Fukuda et al. Dec 2008 B2
7485777 Nakajima et al. Feb 2009 B2
7525013 Hildebrand et al. Apr 2009 B2
7550578 Budworth et al. Jun 2009 B2
7622301 Ren et al. Nov 2009 B2
7657299 Huizenga et al. Feb 2010 B2
7671254 Tranel et al. Mar 2010 B2
7714188 Castle et al. May 2010 B2
7738626 Weese et al. Jun 2010 B2
7807791 Sekar et al. Oct 2010 B2
7838263 Dam et al. Nov 2010 B2
7838733 Wright et al. Nov 2010 B2
7842856 Tranel et al. Nov 2010 B2
7884262 Clemente et al. Feb 2011 B2
7910805 Duck et al. Mar 2011 B2
7935869 Pallett et al. May 2011 B2
7943819 Baum et al. May 2011 B2
7973218 McCutchen et al. Jul 2011 B2
8090164 Bullitt et al. Jan 2012 B2
8143480 Axtell et al. Mar 2012 B2
8226938 Meikle et al. Jul 2012 B1
8548778 Hart et al. Oct 2013 B1
8554490 Tang et al. Oct 2013 B2
9121022 Sammons et al. Sep 2015 B2
9422557 Ader Aug 2016 B2
9445603 Baum et al. Sep 2016 B2
20010006797 Kumagai et al. Jul 2001 A1
20010042257 Connor-Ward et al. Nov 2001 A1
20020069430 Kaiska et al. Jun 2002 A1
20020114784 Li et al. Aug 2002 A1
20030150017 Mesa et al. Aug 2003 A1
20030154508 Stevens et al. Aug 2003 A1
20030167537 Jiang Sep 2003 A1
20030221211 Rottmann et al. Nov 2003 A1
20040029275 Brown et al. Feb 2004 A1
20040053289 Allen et al. Mar 2004 A1
20040055041 Labate et al. Mar 2004 A1
20040072692 Hoffman et al. Apr 2004 A1
20040082475 Hoffman et al. Apr 2004 A1
20040123347 Hinchey et al. Jun 2004 A1
20040126845 Eenennaam et al. Jul 2004 A1
20040133944 Hake et al. Jul 2004 A1
20040147475 Li et al. Jul 2004 A1
20040177399 Hammer et al. Sep 2004 A1
20040216189 Houmard et al. Oct 2004 A1
20040244075 Cal et al. Dec 2004 A1
20040250310 Shukla et al. Dec 2004 A1
20050005319 della-Cioppa et al. Jan 2005 A1
20050215435 Menges et al. Sep 2005 A1
20050223425 Clinton et al. Oct 2005 A1
20050246784 Plesch et al. Nov 2005 A1
20050250647 Hills et al. Nov 2005 A1
20060009358 Kibler et al. Jan 2006 A1
20060021087 Baum et al. Jan 2006 A1
20060040826 Eaton Feb 2006 A1
20060111241 Gerwick, III et al. May 2006 A1
20060130172 Whaley et al. Jun 2006 A1
20060135758 Wu Jun 2006 A1
20060200878 Lutfiyya et al. Sep 2006 A1
20060223708 Hoffman et al. Oct 2006 A1
20060223709 Helmke et al. Oct 2006 A1
20060247197 Van De Craen et al. Nov 2006 A1
20060272049 Waterhouse et al. Nov 2006 A1
20060276339 Windsor et al. Dec 2006 A1
20070011775 Allen et al. Jan 2007 A1
20070021360 Nyce et al. Jan 2007 A1
20070050863 Tranel et al. Mar 2007 A1
20070124836 Baum et al. May 2007 A1
20070199095 Allen et al. Aug 2007 A1
20070250947 Boukharov et al. Oct 2007 A1
20070259785 Heck et al. Nov 2007 A1
20070269815 Rivory et al. Nov 2007 A1
20070281900 Cui et al. Dec 2007 A1
20070300329 Allen et al. Dec 2007 A1
20080022423 Roberts et al. Jan 2008 A1
20080050342 Fire et al. Feb 2008 A1
20080092256 Kohn Apr 2008 A1
20080113351 Naito et al. May 2008 A1
20080155716 Sonnewald et al. Jun 2008 A1
20080214443 Baum et al. Sep 2008 A1
20090011934 Zawierucha et al. Jan 2009 A1
20090018016 Duck et al. Jan 2009 A1
20090036311 Witschel et al. Feb 2009 A1
20090054240 Witschel et al. Feb 2009 A1
20090075921 Ikegawa et al. Mar 2009 A1
20090098614 Zamore et al. Apr 2009 A1
20090118214 Paldi et al. May 2009 A1
20090137395 Chicoine et al. May 2009 A1
20090165153 Wang et al. Jun 2009 A1
20090165166 Feng et al. Jun 2009 A1
20090205079 Kumar et al. Aug 2009 A1
20090215628 Witschel et al. Aug 2009 A1
20090285784 Raemaekers et al. Nov 2009 A1
20090293148 Ren et al. Nov 2009 A1
20090298787 Raemaekers et al. Dec 2009 A1
20090306189 Raemaekers et al. Dec 2009 A1
20090307803 Baum et al. Dec 2009 A1
20100005551 Roberts et al. Jan 2010 A1
20100048670 Biard et al. Feb 2010 A1
20100068172 Van De Craen Mar 2010 A1
20100071088 Sela et al. Mar 2010 A1
20100099561 Selby et al. Apr 2010 A1
20100100988 Tranel et al. Apr 2010 A1
20100152443 Hirai et al. Jun 2010 A1
20100154083 Ross et al. Jun 2010 A1
20100192237 Ren et al. Jul 2010 A1
20100247578 Salama Sep 2010 A1
20100248373 Baba et al. Sep 2010 A1
20110015084 Christian et al. Jan 2011 A1
20110015284 Dees et al. Jan 2011 A1
20110028412 Cappello et al. Feb 2011 A1
20110035836 Eudes et al. Feb 2011 A1
20110041400 Trias Vila et al. Feb 2011 A1
20110053226 Rohayem Mar 2011 A1
20110098180 Michel et al. Apr 2011 A1
20110105327 Nelson May 2011 A1
20110105329 Song et al. May 2011 A1
20110112570 Mannava et al. May 2011 A1
20110126310 Feng et al. May 2011 A1
20110126311 Velcheva et al. May 2011 A1
20110152339 Brown et al. Jun 2011 A1
20110152346 Karleson et al. Jun 2011 A1
20110152353 Koizumi Jun 2011 A1
20110160082 Woo et al. Jun 2011 A1
20110166022 Israels et al. Jul 2011 A1
20110166023 Nettleton-Hammond et al. Jul 2011 A1
20110171176 Baas et al. Jul 2011 A1
20110171287 Saarma et al. Jul 2011 A1
20110177949 Krapp et al. Jul 2011 A1
20110185444 Li et al. Jul 2011 A1
20110185445 Bogner et al. Jul 2011 A1
20110191897 Poree et al. Aug 2011 A1
20110201501 Song et al. Aug 2011 A1
20110203013 Peterson et al. Aug 2011 A1
20110296555 Ivashuta et al. Dec 2011 A1
20110296556 Sammons Dec 2011 A1
20120036594 Cardoza et al. Feb 2012 A1
20120107355 Harris et al. May 2012 A1
20120108497 Paldi et al. May 2012 A1
20120137387 Baum et al. May 2012 A1
20120150048 Kang et al. Jun 2012 A1
20120156784 Adams, Jr. et al. Jun 2012 A1
20120157512 Ben-Chanoch et al. Jun 2012 A1
20120164205 Baum et al. Jun 2012 A1
20120174262 Azhakanandam et al. Jul 2012 A1
20120185967 Sela et al. Jul 2012 A1
20120198586 Narva et al. Aug 2012 A1
20120230565 Steinberg et al. Sep 2012 A1
20120258646 Sela et al. Oct 2012 A1
20130003213 Kabelac et al. Jan 2013 A1
20130041004 Drager et al. Feb 2013 A1
20130047297 Sammons et al. Feb 2013 A1
20130047298 Tang Feb 2013 A1
20130060133 Kassab et al. Mar 2013 A1
20130067618 Ader et al. Mar 2013 A1
20130084243 Goetsch et al. Apr 2013 A1
20130096073 Sidelman Apr 2013 A1
20130097726 Ader et al. Apr 2013 A1
20130212739 Giritch et al. Aug 2013 A1
20130226003 Edic et al. Aug 2013 A1
20130247247 Ader et al. Sep 2013 A1
20130254940 Ader et al. Sep 2013 A1
20130254941 Ader et al. Sep 2013 A1
20130288895 Ader et al. Oct 2013 A1
20130318657 Avniel et al. Nov 2013 A1
20130318658 Ader et al. Nov 2013 A1
20130324842 Mittal et al. Dec 2013 A1
20130326731 Ader et al. Dec 2013 A1
20140018241 Sammons et al. Jan 2014 A1
20140057789 Sammons et al. Feb 2014 A1
20140109258 Van De Craen et al. Apr 2014 A1
20140230090 Avniel et al. Aug 2014 A1
20140274712 Finnessy et al. Sep 2014 A1
20140275208 Hu et al. Sep 2014 A1
20140296503 Avniel et al. Oct 2014 A1
20150096079 Avniel et al. Apr 2015 A1
20150143580 Beattie et al. May 2015 A1
20150159156 Inberg et al. Jun 2015 A1
20150203867 Beattie et al. Jul 2015 A1
20150240258 Beattie et al. Aug 2015 A1
20160015035 Tao Jan 2016 A1
20160029644 Tao Feb 2016 A1
Foreign Referenced Citations (264)
Number Date Country
2008258254 Jul 2014 AU
2008258254 Jul 2014 AU
101279950 Oct 2008 CN
101279951 Oct 2008 CN
101892247 Nov 2010 CN
101914540 Dec 2010 CN
102154364 Aug 2011 CN
102481311 May 2012 CN
102822350 Dec 2012 CN
102906263 Jan 2013 CN
288618 Apr 1991 DE
10000600 Jul 2001 DE
10116399 Oct 2002 DE
10256353 Jun 2003 DE
10256354 Jun 2003 DE
10256367 Jun 2003 DE
10204951 Aug 2003 DE
10234875 Feb 2004 DE
10234876 Feb 2004 DE
102004054666 May 2006 DE
102005014638 Oct 2006 DE
102005014906 Oct 2006 DE
102007012168 Sep 2008 DE
102010042866 May 2011 DE
0 804 600 Nov 1997 EP
1 155 615 Nov 2001 EP
1 157 991 Nov 2001 EP
1 238 586 Sep 2002 EP
1 416 049 May 2004 EP
1 496 123 Jan 2005 EP
1 889 902 Feb 2008 EP
1 964 919 Sep 2008 EP
2 147 919 Jan 2010 EP
2 160 098 Nov 2010 EP
2 530 159 Mar 2011 EP
2 305 813 Apr 2011 EP
2 545 182 Jan 2013 EP
2001253874 Sep 2001 JP
2002080454 Mar 2002 JP
2002138075 May 2002 JP
2002145707 May 2002 JP
2002220389 Aug 2002 JP
2003064059 Mar 2003 JP
2003096059 Apr 2003 JP
2004051628 Feb 2004 JP
2004107228 Apr 2004 JP
2005008583 Jan 2005 JP
2005239675 Sep 2005 JP
2005314407 Nov 2005 JP
2006232824 Sep 2006 JP
2006282552 Oct 2006 JP
2007153847 Jun 2007 JP
2007161701 Jun 2007 JP
2007182404 Jul 2007 JP
2008074840 Apr 2008 JP
2008074841 Apr 2008 JP
2008133207 Jun 2008 JP
2008133218 Jun 2008 JP
2008169121 Jul 2008 JP
2009-508481 Mar 2009 JP
2009067739 Apr 2009 JP
2009114128 May 2009 JP
2009126792 Jun 2009 JP
2009137851 Jun 2009 JP
WO 8911789 Dec 1989 WO
WO 9534659 Dec 1995 WO
WO 9534668 Dec 1995 WO
WO 96005721 Feb 1996 WO
WO 96033270 Oct 1996 WO
WO 96038567 Dec 1996 WO
WO 96040964 Dec 1996 WO
WO 9749816 Dec 1997 WO
WO 99024585 May 1999 WO
WO 9926467 Jun 1999 WO
WO 9927116 Jun 1999 WO
WO 9932619 Jul 1999 WO
WO 9961631 Dec 1999 WO
WO 9967367 Dec 1999 WO
WO 0032757 Jun 2000 WO
WO 00044914 Aug 2000 WO
WO 2001007601 Feb 2001 WO
WO 2001085970 Nov 2001 WO
WO 0214472 Feb 2002 WO
WO 02066660 Aug 2002 WO
WO 03000679 Jan 2003 WO
WO 03006422 Jan 2003 WO
WO 03012052 Feb 2003 WO
WO 03013247 Feb 2003 WO
WO 03016308 Feb 2003 WO
WO 2003014357 Feb 2003 WO
WO 03020704 Mar 2003 WO
WO 03022051 Mar 2003 WO
WO 03022831 Mar 2003 WO
WO 03022843 Mar 2003 WO
WO 03029243 Apr 2003 WO
WO 03037085 May 2003 WO
WO 03037878 May 2003 WO
WO 03045878 Jun 2003 WO
WO 03050087 Jun 2003 WO
WO 03051823 Jun 2003 WO
WO 03051824 Jun 2003 WO
WO 03051846 Jun 2003 WO
WO 03064625 Aug 2003 WO
WO 03076409 Sep 2003 WO
WO 03077648 Sep 2003 WO
WO 03087067 Oct 2003 WO
WO 03090539 Nov 2003 WO
WO 03091217 Nov 2003 WO
WO 03093269 Nov 2003 WO
WO 03104206 Dec 2003 WO
WO 2004002947 Jan 2004 WO
WO 2004002981 Jan 2004 WO
WO 2004005485 Jan 2004 WO
WO 2004009761 Jan 2004 WO
WO 2004011429 Feb 2004 WO
WO 2004022771 Mar 2004 WO
WO 2004029060 Apr 2004 WO
WO 2004035545 Apr 2004 WO
WO 2004035563 Apr 2004 WO
WO 2004035564 Apr 2004 WO
WO 2004037787 May 2004 WO
WO 2004049806 Jun 2004 WO
WO 2004062351 Jul 2004 WO
WO 2004067518 Aug 2004 WO
WO 2004067527 Aug 2004 WO
WO 2004074443 Sep 2004 WO
WO 2004077950 Sep 2004 WO
WO 2005000824 Jan 2005 WO
WO 2005003362 Jan 2005 WO
WO 2005007627 Jan 2005 WO
WO 2005007860 Jan 2005 WO
WO 2005040152 May 2005 WO
WO 2005047233 May 2005 WO
WO 2005047281 May 2005 WO
WO 2005061443 Jul 2005 WO
WO 2005061464 Jul 2005 WO
WO 2005068434 Jul 2005 WO
WO 2005070889 Aug 2005 WO
WO 2005089551 Sep 2005 WO
WO 2005095335 Oct 2005 WO
WO 2005107437 Nov 2005 WO
WO 2005110068 Nov 2005 WO
WO 2006006569 Jan 2006 WO
WO 2006024820 Mar 2006 WO
WO 2006029828 Mar 2006 WO
WO 2006029829 Mar 2006 WO
WO 2006037945 Apr 2006 WO
WO 2006050803 May 2006 WO
WO 2006074400 Jul 2006 WO
WO 2006090792 Aug 2006 WO
WO 2006123088 Nov 2006 WO
WO 2006125687 Nov 2006 WO
WO 2006125688 Nov 2006 WO
WO 2006132270 Dec 2006 WO
WO 2006132270 Dec 2006 WO
WO 2006138638 Dec 2006 WO
WO 2007003294 Jan 2007 WO
WO 2007007316 Jan 2007 WO
WO 2007024783 Mar 2007 WO
WO 2007026834 Mar 2007 WO
WO 2007035650 Mar 2007 WO
WO 2007038788 Apr 2007 WO
WO 2007039454 Apr 2007 WO
WO 2007050715 May 2007 WO
WO 2007070389 Jun 2007 WO
WO 2007071900 Jun 2007 WO
WO 2007074405 Jul 2007 WO
WO 2007074405 Jul 2007 WO
WO 2007077201 Jul 2007 WO
WO 2007077247 Jul 2007 WO
WO 2007080126 Jul 2007 WO
WO 2007080127 Jul 2007 WO
WO 2007083193 Jul 2007 WO
WO 2007096576 Aug 2007 WO
WO 2007051462 Oct 2007 WO
WO 2007051462 Oct 2007 WO
WO 2007119434 Oct 2007 WO
WO 2007134984 Nov 2007 WO
WO 2008007100 Jan 2008 WO
WO 2008009908 Jan 2008 WO
WO 2008029084 Mar 2008 WO
WO 2008042231 Apr 2008 WO
WO 2008059948 May 2008 WO
WO 2008063203 May 2008 WO
WO 2008071918 Jun 2008 WO
WO 2008074991 Jun 2008 WO
WO 2008084073 Jul 2008 WO
WO 2008100426 Aug 2008 WO
WO 2008102908 Aug 2008 WO
WO 2008148223 Dec 2008 WO
WO 2008152072 Dec 2008 WO
WO 2008152073 Dec 2008 WO
WO 2009000757 Dec 2008 WO
WO 2009005297 Jan 2009 WO
WO 2009029690 Mar 2009 WO
WO 2009035150 Mar 2009 WO
WO 2009037329 Mar 2009 WO
WO 2009046384 Apr 2009 WO
WO 2009063180 May 2009 WO
WO 2009068170 Jun 2009 WO
WO 2009068171 Jun 2009 WO
WO 2009086041 Jul 2009 WO
WO 2009090401 Jul 2009 WO
WO 2009090402 Jul 2009 WO
WO 2009115788 Sep 2009 WO
WO 2009116558 Sep 2009 WO
WO 2009125401 Oct 2009 WO
WO 2009144079 Dec 2009 WO
WO 2009144079 Dec 2009 WO
WO 2009152995 Dec 2009 WO
WO 2009158258 Dec 2009 WO
WO 2010012649 Feb 2010 WO
WO 2010026989 Mar 2010 WO
WO 2010034153 Apr 2010 WO
WO 2010049270 May 2010 WO
WO 2010049369 May 2010 WO
WO 2010049405 May 2010 WO
WO 2010049414 May 2010 WO
WO 2010056519 May 2010 WO
WO 2010063422 Jun 2010 WO
WO 2010069802 Jun 2010 WO
WO 2010078906 Jul 2010 WO
WO 2010078912 Jul 2010 WO
WO 2010093788 Aug 2010 WO
WO 2010104217 Sep 2010 WO
WO 2010108611 Sep 2010 WO
WO 2010112826 Oct 2010 WO
WO 2010116122 Oct 2010 WO
WO 2010119906 Oct 2010 WO
WO 2010130970 Nov 2010 WO
WO 2011001434 Jan 2011 WO
WO 2011003776 Jan 2011 WO
WO 2011035874 Mar 2011 WO
WO 2011045796 Apr 2011 WO
WO 2011065451 Jun 2011 WO
WO 2011067745 Jun 2011 WO
WO 2011075188 Jun 2011 WO
WO 2011080674 Jul 2011 WO
WO 2011112570 Sep 2011 WO
WO 2011132127 Oct 2011 WO
WO 2012001626 Jan 2012 WO
WO 2012056401 May 2012 WO
WO 2012092580 Jul 2012 WO
WO 2012164100 Dec 2012 WO
WO 2013010691 Jan 2013 WO
WO 2013025670 Feb 2013 WO
WO 2013039990 Mar 2013 WO
WO 2013040005 Mar 2013 WO
WO 2013040021 Mar 2013 WO
WO 2013040033 Mar 2013 WO
WO 2013040049 Mar 2013 WO
WO 2013040057 Mar 2013 WO
WO 2013040116 Mar 2013 WO
WO 2013040117 Mar 2013 WO
WO 2013153553 Oct 2013 WO
WO 2013175480 Nov 2013 WO
WO 2014022739 Feb 2014 WO
WO 2014106837 Jul 2014 WO
WO 2014106838 Jul 2014 WO
WO 2014151255 Sep 2014 WO
WO 2014164761 Oct 2014 WO
WO 2014164797 Oct 2014 WO
WO 2014164797 Oct 2014 WO
WO 2015010026 Jan 2015 WO
Non-Patent Literature Citations (701)
Entry
Della-Cioppa, Guy, and Ganesh M. Kishore. “Import of a precursor protein into chloroplasts is inhibited by the herbicide glyphosate.” The EMBO journal 7.5 (1988): 1299.
W. Huang, Q. Ling, J. Bedard, K. Lilley, P. Jarvis, In vivo analyses of the roles of essential Omp85-related proteins in the chloroplast outer envelope membrane, Plant Physiol. 157 (2011) 147-159.
Zhong, Rong, et al. “A forward genetic screen to explore chloroplast protein import in vivo identifies Moco sulfurase, pivotal for ABA and IAA biosynthesis and purine turnover.” The Plant Journal 63.1 (2010): 44-59.
Riggins, Chance W., et al. “Characterization of de novo transcriptome for waterhemp (Amaranthus tuberculatus) using GS-FLX 454 pyrosequencing and its application for studies of herbicide target-site genes.” Pest management science 66.10 (2010): 1042-1052.
Small, Ian. “RNAi for revealing and engineering plant gene functions.” Current Opinion in Biotechnology 18.2 (2007): 148-153.
Zhong, Rong, et al. “A forward genetic screen to explore chloroplast protein import in vivo identifies Moco sulfurase, pivotal for ABA and IAA biosynthesis and purine turnover.” The Plant Journal 63.1 (2010): 44-59. (Year: 2010).
Riggins, Chance W., et al. “Characterization of de novo transcriptome for waterhemp (Amaranthus tuberculatus) using GS-FLX 454 pyrosequencing and its application for studies of herbicide target-site genes.” Pest management science 66.10 (2010): 1042-1052. (Year: 2010).
W. Huang, Q. Ling, J. Bedard, K. Lilley, P. Jarvis, in vivo analyses of the roles of essential Onnp85-related proteins in the chloroplast outer envelope membrane, Plant Physiol. 157 (2011) 147-159 (Year: 2011).
Della-Cioppa, Guy, and Ganesh M. Kishore. “Import of a precursor protein into chloroplasts is inhibited by the herbicide glyphosate.” The EMBO journal 7.5 (1988): 1299. (Year: 1988).
Communication pursuant to Article 94(3) EPC dated Mar. 18, 2016, in European Patent Application No. 12 832 160.1.
Communication pursuant to Article 94(3) EPC dated Mar. 24, 2016, in European Patent Application No. 12 831 684.1.
Communication pursuant to Article 94(3) EPC dated Mar. 4, 2016, in European Patent Application No. 12 830 932.5.
Communication pursuant to Article 94(3) EPC dated Mar. 9, 2016, in European Patent Application No. 12 831 166.9.
Database Accession No. HD315444, “Sequence 192160 from Patent EP2213738,” (2010).
Fukunaga et al., “dsRNA with 5′ overhangs contributes to endogenous and antiviral RNA silencing pathways in plants,” The EMBO Journal, 28(5):545-555 (2009).
Knudsen, “Promoter2.0: for the recognition of Poll promoter sequences,” Bioniformatics, 15(5):356-361 (1999).
Migge et al., “Greenhouse-grown conditionally lethal tobacco plants obtained by expression of plastidic glutamine synthetase antisense RNA may contribute to biological safety,” Plant Science 153:107-112 (2000).
Office Action dated Apr. 13, 2016, in Chinese Patent Application No. 201280053985.3.
Patent Examination Report No. 1 dated Feb. 8, 2016, in Australian Patent Application No. 2014262189.
Promoter Prediction for SEQ ID No. 1702 from 13/612929/MK/, Promoter 2.0 Prediction Results, pp. 1-4 (2016).
Second Office Action dated Feb. 25, 2016, in Chinese Patent Application No. 201280054179.8.
Second Office Action dated Mar. 4, 2016, in Chinese Patent Application No. 201280054820.8.
Shintani et al., “Antisense Expression and Overexpression of Biotin Carboxylase in Tobacco Leaves,” Plant Physiol., 114:881-886 (1997).
Written Opinion dated Apr. 7, 2016, in Singapore Patent Application No. 201206152-9.
Agricultural Chemical Usage 2006 Vegetables Summary, Agricultural Statistics Board, NASS, USDA, pp. 1-372 (2007).
Al-Kaff et al., “Plants rendered herbicide-susceptible by cauliflower mosaic virus-elicited suppression of a 35S promoter-regulated transgene,” Nature Biotechnology, 18:995-999 (2000).
Andersen et al., “Delivery of siRNA from lyophilized polymeric surfaces,”Biomaterials, 29:506-512 (2008).
Anonymous, “A handbook for high-level expression and purification of 6xHis-tagged proteins,” The QiaExpressionist, (2003).
Artymovich, “Using RNA interference to increase crop yield and decrease pest damage,” MMG 445 Basic Biotech., 5(1):7-12 (2009).
Balibrea et al., “Extracellular Invertase is an Essential Component of Cytokinin-Mediated Delay of Senescence,” The Plant Cell, 16(5):1276-1287 (2004).
Bart et al., “A novel system for gene silencing using siRNAs in rice leaf and stem-derived protoplasts,” Plant Methods, 2(13):1-9 (2006).
Basu et al., “Weed genomics: new tools to understand weed biology,” TRENDS in Plant Science, 9(8):391-398 (2004).
Busch et al., “RNAi for discovery of novel crop protection products,” Pflanzenschutz-Nachrichten Bayer, 58(1):34-50 (2005).
Chabannes et al., “In situ analysis of lignins in transgenic tobacco reveals a differential impact of individual transformations on the spatial patterns of lignin deposition at the cellular and subcellular levels,” The Plant Journal, 28(3):271-282 (2001).
Chen et al., “Transfection and Expression of Plasmid DNA in Plant Cells by an Arginine-Rich Intracellular Delivery Peptide without Protoplast Preparation,” FEBS Letters 581, pp. 1891-1897 (2007).
Colliver et al., “Differential modification of flavonoid and isoflavonoid biosynthesis with an antisense chalcone synthase construct in transgenic Lotus corniculatus,” Plant Molecular Biology, 35:509-522 (1997).
Communication pursuant to Article 94(3) EPC dated Jun. 26, 2015, in European Patent Application No. 11 753 916.3.
Communication pursuant to Article 94(3) EPC dated Oct. 23, 2015, in European Patent Application No. 12 831 945.6.
Concise Descriptions of Relevance filed by a third party dated Nov. 29, 2012, in U.S. Appl. No. 13/042,856.
Dalakouras et al., “Induction of Silencing in Plants by High-Pressure Spraying of in vitro-Synthesized Small RNAs,” Frontiers in Plant Science, 7(1327):1-5 (2016).
Dawson et al., “cDNA cloning of the complete genome of tobacco mosaic virus and production of infectious transcripts,” Proc. Natl. Acad. Sci. USA, 83:1832- 1836 (1986).
Extended European Search Report dated Oct. 8, 2013, in European Patent Application No. 11753916.3.
Extended European Search Report dated Sep. 29, 2016, in European Patent Application No. 14778840.0.
Feuillet et al., “Crop genome sequencing: lessons and rationales,” Trends Plant Sci., 16:77-88 (2011).
Final Office Action dated Apr. 7, 2016, in U.S. Appl. No. 13/619,980.
Final Office Action dated Dec. 17, 2015, in U.S. Appl. No. 14/335,135.
Final Office Action dated Feb. 17, 2016, in U.S. Appl. No. 13/612,929.
Final Office Action dated Feb. 4, 2016, in U.S. Appl. No. 13/612,936.
Final Office Action dated Jun. 30, 2016, in U.S. Appl. No. 13/901,326.
Final Office Action dated Mar. 2, 2016, in U.S. Appl. No. 13/612,995.
Final Office Action dated Mar. 21, 2016, in U.S. Appl. No. 13/612,925.
Final Office Action dated May 26, 2016, in U.S. Appl. No. 14/532,596.
Final Office Action dated Sep. 9, 2016, in U.S. Appl. No. 13/612,954.
Final Office Action dated Nov. 19, 2015, in U.S. Appl. No. 13/612,941.
Final Office Action dated Nov. 10, 2016, in U.S. Appl. No. 13/583,302.
Final Office Action dated Sep. 9, 2016, in U.S. Appl. No. 14/608,951.
Final Office Action dated Sep. 9, 2016, in U.S. Appl. No. 14/603,347.
Final Office Action dated Oct. 20, 2016, in U.S. Appl. No. 14/480,199.
Final Office Action dated Oct. 22, 2015, in U.S. Appl. No. 14/608,951.
First Examination Report dated Apr. 23, 2013, in New Zealand Patent Application No. 601784.
First Examination Report dated Jul. 28, 2014, in New Zealand Patent Application No. 627060.
First Office Action dated Aug. 31, 2015, in Chinese Patent Application No. 201280053985.3.
First Office Action dated Jul. 7, 2015, in Chinese Patent Application No. 201280054820.8.
First Office Action dated Mar. 12, 2015, in Chinese Patent Application No. 201280053984.9.
First Office Action dated Mar. 2, 2015, in Chinese Patent Application No. 201280054819.5.
First Office Action dated May 27, 2015, in Chinese Patent Application No. 201280054179.8.
First Office Action dated Sep. 9, 2015, in Chinese Patent Application No. 201280055409.2.
Fraley et al., “Liposome-mediated delivery of tobacco mosaic virus RNA into tobacco protoplasts: A sensitive assay for monitoring liposome-protoplast interactions,” Proc Natl Acad Sci U S A., 79(6):1859-1863 (1982).
Fukunaga et al., “dsRNA with 5′ overhangs v contributes to endogenous and antiviral RNA silencing pathways in plants,” The EMBO Journal, 28(5):545-555 (2009).
Further Examination Report dated May 16, 2014, in New Zealand Patent Application No. 601784.
Gan et al., “Inhibition of Leaf Senescence by Autoregulated Production of Cytokinin,” Science, 270:1986-1988 (1995).
Gao et al., “Nonviral Methods for siRNA Delivery,” Molecular Pharmaceutics, 6(3):651-658 (2008).
GenBank Accession No. AY545657.1 (2004).
GenBank Accession No. CB377464, “CmaE1_37 J02_T3 Cowpea weevil larvae Lambda Zap Express Library Callosobruchus maculatus cDNA, mRNA sequence,” (2007).
GenBank Accession No. DY640489, “PU2_plate27_F03 PU2 Prunus persica cDNA similar to expressed mRNA inferred from Prunus persica hypothetical domain/motif cont aining IPR011005:Dihydropteroate synthase-like, MRNA sequence” (2006).
GenBank Accession No. EU024568, “Amaranthus hypochondriacus acetolactate synthase (ALS) gene” (2007).
GenBank Accession No. EW765249, “ST020010B10C12 Normalized and subtracted western corn rootworm female head cDNA library Diabrotica virgifera virgifera cDNA clone STO20010B10C12 5-, mRNA sequence,” (2007).
GenBank Accession No. EW771198, “ST020010B10C12 Normalized and subtracted western corn rootworm female head cDNA library Diabrotica virgifera virgifera cDNA clone STO20010B10C12 5-, mRNA sequence,” (2007).
GenBank Accession No. FE348695, “CBIB7954.fwd CBIB_Daphnia_pulex_ChosenOneLibrary_2 Daphnia pulex cDNA clone CBIB7954 5′, mRNA sequence” (2011).
GenBank Accession No. FJ972198, “Solanum lycopersicum cultivar Ailsa Craig dihydropterin pyrophosphokinase-dihydropteroate synthase (HPPK-DHPS) gene, complete cds” (2010).
GenBank Accession No. GI:186478573 (2014).
GenBank Accession No. GU120406, “Chiysomela tremulae ribosomal protein L7 (RpL7) mRNA, complete cds” (2009).
GenBank Accession No. HD315444, “Sequence 192160 from Patent EP2213738” (2010).
GenBank Accession No. Q4GXM3_BIPLU, “Ribosomal protein L7e” (2006).
GenBank Accession No. U87257.1, “Daucus carota 4-hydroxyphenylpyruvate dioxygenase mRNA, complete cds” (1997).
GenBank Accession No. XM_ 014456745.1, Predicted: Myotis lucifugus ribonucleoprotein, PTB-binding 2 (RAVER2), transcript variant X3, mRNA,: (2015).
GenBank Accession No. Y08611.1, “P.sativum mRNA for dihydropterin pyrophosphokinase/dihydropteroate synthase ” (2006).
GenEmbl Accession No. FJ861243 (2010).
Gossamer Threads, Compendium of Herbicide Adjuvants: Organo-Silicone Surfactant, p. 1-4 (1998).
Gudkov, “Minireview: The L7/L12 ribosomal domain of the ribosome: structural and functional studies,” FEBS Letters, 407:253-256 (1997).
Hajirezaei et al., “Impact of elevated cytosolic and apoplastic invertase activity on carbon metabolism during potato tuber development,” Journal of Experimental Botany, 51:439-445 (2000).
Heffer et al., “Rapid isolation of gene homologs across taxa: Efficient identification and isolation of gene orthologs from non-model organism genomes, a technical report,” EvoDevo Journal, 2(7):1-5 (2011).
Holtra et al., “Assessment of the Physiological Condition of Salvinia Natans L. Exposed to Copper(II) Ions,” Environ. Protect. Eng., 41:147-158 (2015).
International Preliminary Report on Patentability dated Sep. 11, 2012, in International Application No. PCT/US2011/027528.
International Preliminary Report on Patentability dated Sep. 11, 2014, in International Application No. PCT/IL2013/050447.
International Rice Genome Sequencing Project, The map-based sequence of the rice genome, Nature, 436(11):793-800 (2005).
International Search Report and the Written Opinion dated Feb. 25, 2013, in International Application No. PCT/US2012/054883.
International Search Report and the Written Opinion dated Feb. 27, 2013, in International Application No. PCT/US2012/054814.
International Search Report and the Written Opinion dated Feb. 27, 2013, in International Application No. PCT/US2012/054842.
International Search Report and the Written Opinion dated Feb. 27, 2013, in International Application No. PCT/US2012/054862.
International Search Report and the Written Opinion dated Feb. 27, 2013, in International Application No. PCT/US2012/054894.
International Search Report and the Written Opinion dated Feb. 27, 2013, in International Application No. PCT/US2012/054974.
International Search Report and the Written Opinion dated Feb. 27, 2013, in International Application No. PCT/US2012/054980.
International Search Report and the Written Opinion dated Jul. 22 2014, in International Application No. PCT/IL2013/051083.
International Search Report and the Written Opinion dated Jul. 22 2014, in International Application No. PCT/IL2013/051085.
International Search Report and the Written Opinion dated Jul. 24 2014, in International Application No. PCT/US2014/026036.
International Search Report and the Written Opinion dated May 10, 2011, in International Application No. PCT/US2011/027528.
International Search Report and the Written Opinion dated Oct. 1, 2013, in International Application No. PCT/IL2013/050447.
International Search Report and Written Opinion dated Aug. 25, 2014, in International Application No. PCT/US2014/023503.
International Search Report and Written Opinion dated Aug. 27, 2014, in International Application No. PCT/US2014/023409.
International Search Report and Written Opinion dated Feb. 23, 2015, in International Application No. PCT/US2014/063832.
International Search Report dated Mar. 12, 2013, in International Application No. PCT/US2012/054789.
Jin et al., “Posttranslational Elevation of Cell Wall Invertase Activity by Silencing its Inhibitor in Tomato Delays Leaf Senescence and Increases Seed Weight and Fruit Hexose Level,” The Plant Cell, 21:2072-2089 (2009).
Kaloumenos et al., “Identification of a Johnsongrass (Sorghum halepense) Biotype Resistant to ACCase-Inhibiting Herbicides in Northern Greece,” Weed Technol, 23:470-476 (2009).
Kambiranda et al., “Relationship Between Acid Invertase Activity and Sugar Content in Grape Species,” Journal of Food Biochemistry, 35:1646-1652 (2011).
Kim et al., “Optimization of Conditions for Transient Agrobacterium-Mediated Gene Expression Assays in Arabidopsis,” Plant Cell Reports, 28:1159-1167 (2009).
Kirkwood, “Herbicides and Plants,” Botanical Journal of Scotland, 46(3):447-462 (1993).
Liu et al., “Identification and Application of a Rice Senescence-Associated Promoter,” Plant Physiology, 153:1239-1249 (2010).
Liu, “Influence of Sugars on the Foliar Uptake of Bentazone and Glyphosate,” New Zealand Plant Protection, 55:159-162 (2002).
Luque et al., “Water Permeability of Isolated Cuticular Membranes: A Structural Analysis,” Archives of Biochemistry and Biophysics, 317(2):417-422 (1995).
Mora et al., “How Many Species Are There on Earth and in the Ocean?,” PLOS Biol., 9(8):e100127, p. 1-8 (2011).
Mount et al., “Gene and Metabolite Regulatory Network Analysis of Early Developing Fruit Tissues Highlights New Candidate Genes for the Control of Tomato Fruit Composition and Development,” Plant Physiology, 149:1505-1528 (2009).
Non-Final Office Action dated Aug. 19, 2016, in U.S. Appl. No. 13/612,925.
Non-Final Office Action dated Aug. 19, 2016, in U.S. Appl. No. 13/612,929.
Non-Final Office Action dated Apr. 29, 2016, in U.S. Appl. No. 13/583,302.
Non-Final Office Action dated Aug. 10, 2016, in U.S. Appl. No. 13/612,995.
Non-Final Office Action dated Nov. 9, 2016, in U.S. Appl. No. 14/901,003.
Non-Final Office Action dated Aug. 3, 2016, in U.S. Appl. No. 14/015,715.
Non-Final Office Action dated Aug. 5, 2016, in U.S. Appl. No. 14/015,785.
Non-Final Office Action dated Aug. 8, 2016, in U.S. Appl. No. 13/612,936.
Non-Final Office Action dated Dec. 17, 2015, in U.S. Appl. No. 14/532,596.
Non-Final Office Action dated Feb. 10, 2016, in U.S. Appl. No. 13/901,326.
Non-Final Office Action dated Feb. 23, 2016, in U.S. Appl. No. 14/608,951.
Non-Final Office Action dated Sep. 6, 2016, in U.S. Appl. No. 14/335,135.
Non-Final Office Action dated Mar. 1, 2016, in U.S. Appl. No. 13/612,954.
Non-Final Office Action dated Oct. 3, 2016, in U.S. Appl. No. 14/403,491.
Non-Final Office Action dated Sep. 1, 2015, in U.S. Appl. No. 13/612,954.
Non-Final Office Action dated Sep. 11, 2015, in U.S. Appl. No. 13/612,925.
Non-Final Office Action dated Sep. 4, 2015, in U.S. Appl. No. 13/612,995.
Nookaraju et al., “Molecular approaches for enhancing sweetness in fruits and vegetables,” Scientia Horticulture, 127:1-15 (2010).
Notice of Allowance dated Apr. 11, 2016, in U.S. Appl. No. 13/612,985.
Notice of Allowance dated Apr. 19, 2016, in U.S. Appl. No. 13/612,941.
Notice of Allowance dated Apr. 20, 2016, in U.S. Appl. No. 13/612,948.
Notice of Allowance dated Feb. 23, 2015, in U.S. Appl. No. 13/042,856.
Notice of Allowance dated Jun. 2, 2015, in U.S. Appl. No. 13/042,856.
Office Action dated Aug. 28, 2013, in Chinese Patent Application No. 201180012795.2.
Office Action dated Jul. 18, 2016, in Indonesian Patent Application No. W00201203610.
Office Action dated Sep. 5, 2016, in Ukrainian Patent Application No. a 2014 03846.
Office Action dated Feb. 24, 2014, in Eurasian Patent Application No. 201201264.
Office Action dated Jun. 20, 2016, in Chinese Patent Application No. 201280054819.5.
Office Action dated Jun. 24, 2016, in Chinese Patent Application No. 201280053984.9.
Office Action dated Nov. 3, 2014, in Chinese Patent Application No. 201180012795.2.
Patent Examination Report No. 1 dated Jun. 17, 2016, in Australian Patent Application No. 2012308659.
Patent Examination Report No. 1 dated Jun. 17, 2016, in Australian Patent Application No. 2012308660.
Patent Examination Report No. 1 dated Nov. 11, 2013, in Australian Patent Application No. 2011224570.
Promoter Prediction for SEQ ID No. 4 from 13/612995/MK/, Promoter 2.0 Prediction Results, pp. 1-3 (2016).
Promoter Prediction for SEQ ID No. 7 from 13/612936/MK/, Promoter 2.0 Prediction Results, pp. 1-2 (2016).
Promoter Prediction for SEQ ID No. 8 from 13/612,925/MK/, Promoter 2.0 Prediction Results, pp. 1-6 (2016).
Restriction Requirement dated Jul. 15, 2016, in U.S. Appl. No. 14/143,748.
Restriction Requirement dated Jul. 18, 2016, in U.S. Appl. No. 14/143,836.
Restriction Requirement dated Oct. 13, 2016, in U.S. Appl. No. 14/206,707.
Restriction Requirement dated Oct. 28, 2015, in U.S. Appl. No. 14/603,347.
Restriction Requirement dated Sep. 2, 2015, in U.S. Appl. No. 14/532,596.
Roberts, “Fast-track applications: The potential for direct delivery of proteins and nucleic acids to plant cells for the discovery of gene function,” Plant Methods, 1(12):1-3 (2005).
Robson et al., “Leaf senescence is delayed in maize expressing the Agrobacterium IPT gene under the control of a novel maize senescence-enhanced promoter,” Plant Biotechnology Journal, 2:101-112 (2004).
Roitsch et al., “Extracellular invertase: key metabolic enzyme and PR protein,” Journal of Experimental Botany, 54(382):513-524 (2003).
Roitsch et al., “Function and regulation of plant invertases: sweet sensations,” Trades in Plant Science, 9(12):606-613 (2004).
Ruan et al., “Suppression of Sucrose Synthase Gene Expression Represses Cotton Fiber Cell Initiation, Elongation, and Seed Development,” The Plant Cell, 15:952-964 (2003).
Schönherr, “Water Permeability of Isolated Cuticular Membranes: The Effect of pH and Cations on Diffusion, Hydrodynamic Permeability and Size of Polar Pores in the Cutin Matrix,” Planta, 128:113-126 (1976).
Scott et al., Botanical Insecticides for Controlling Agricultural Pests: Piperamides and the Colorado Potato Beetle Leptinotarsa decemlineata Say (Coleoptera: Chiysomelidae), Archives of Insect Biochemistry and Physiology, 54:212-225 (2003).
Second Chinese Office Action dated Jun. 10, 2014, in Chinese Patent Application No. 201180012795.2.
Showalter, “Structure and Function of Plant Cell Wall Proteins,” The Plant Cell, 5:9-23 (1993).
Song et al., “Herbicide,” New Heterocyclic Pesticide, Chemical Industry Press, 354-356 (2011).
Tang et al., “Efficient delivery of small interfering RNA to plant cells by a nanosecond pulsed laser-induced stress wave for posttranscriptional gene silencing,” Plant Science, 171:375-381 (2006).
Temple et al., “Can glutamine synthetase activity levels be modulated in transgenic plants by the use of recombinant DNA technology?” Transgenic Plants and Plant Biochemistry, 22(4):915-920 (1994).
Tenllado et al., “Double-Stranded RNA-Mediated Interference with Plant Virus Infection,” Journal of Virology, 75(24):12288-12297 (2001).
Thomas et al., “Size constraints for targeting post-transcriptional gene silencing and for RNA-directed methylation in Nicotiana benthamiana using a potato virus X vector,” The Plant Journal, 25(4):417-425 (2001).
Tomlinson et al., “Evidence that the hexose-to-sucrose ratio does not control the switch to storage product accumulation in oilseeds: analysis of tobacco seed development and effects of overexpressing apoplastic invertase,” Journal of Experimental Botany.
Unniraman et al., “Conserved Economics of Transcription Termination in Eubacteria,” Nucleic Acids Research, 30(3):675-684 (2002).
Voinnet et al., “Systemic Spread of Sequence-Specific Transgene RNA Degradation in Plants Is Initiated by Localized Introduction of Ectopic Promoterless DNA,” Cell, 95:177-187 (1998).
Widholm et al., “Glyphosate selection of gene amplification in suspension cultures of 3 plant species,” Phyisologia Plantarum, 112:540-545 (2001).
Wiesman et al., “Novel cationic vesicle platform derived from vernonia oil for efficient delivery of DNA through plant cuticle membranes,” Journal of Biotechnology, 130:85-94 (2007).
Wild Carrot, Noxious Weed Control Board (NWCB) of Washington State (2010).
Zhang et al., “Chapter 10: New Characteristics of Pesticide Research & Development,” New Progress of the world agriculture chemicals, p. 209 (2010).
Alarcón-Reverte et al., “Resistance to ACCase-inhibiting herbicides in the weed Lolium multiflorum,” Comm. Appl. Biol. Sci., 73(4):899-902 (2008).
Amarzguioui et al., “An algorithm for selection of functional siRNA sequences,” Biochemical and Biophysical Research Communications, 316:1050-1058 (2004).
Ambrus et al., “The Diverse Roles of RNA Helicases in RNAi,” Cell Cycle, 8(21):3500-3505 (2009).
An et al., “Transient RNAi Induction against Endogenous Genes in Arabidopsis Protoplasts Using in Vitro-Prepared Double-Stranded RNA,” Biosci Biotechnol Biochem, 69(2):415-418 (2005).
Andersson et al., “A novel selection system for potato transformation using a mutated AHAS gene,” Plant Cell Reports, 22(4):261-267 (2003).
Anonymous, “A handbook for high-level expression and purification of 6xHis-tagged proteins,” The QUIexpressionist, (2003).
Anonymous, “Agronomy Facts 37: Adjuvants for enhancing herbicide performance,” n.p., 1-8, (Jan. 26, 2000), Web, (Jan. 21, 2014).
Anonymous, “Devgen, The mini-Monsanto,” KBC Securities (2006).
Anonymous, “Do Monsanto have the next big thing?,” Austalian Herbicide Resistance Initiative (AHRI), (Apr. 23, 2013) Web. (Jan. 19, 2015).
Aoki et al., “In Vivo Transfer Efficiency of Antisense Oligonucleotides into the Myocardium Using HVJ-Liposome Method,” Biochem Biophys Res Commun, 231:540-545 (1997).
Arpaia et al., “Production of transgenic eggplant (Solanum melongena L.) resistant to Colorado Potato Beetle (Leptinotarsa decemlineata Say),” (1997) Theor. Appl. Genet., 95:329-334 (1997).
Artmymovich, “Using RNA interference to increase crop yield and decrease pest damage,” MMG 445 Basic Biotech., 5(1):7-12 (2009).
Australian Patent Examination report No. 1 dated Nov. 11, 2013, in Australian Application No. 2011224570.
Axtell et al., “A Two-Hit Trigger for siRNA Biogenesis in Plants,” Cell, 127:565-577 (2006).
Baerson et al., “Glyphosate-Resistant Goosegrass. Identification of a Mutation in the Target Enzyme 5-Enolpyruvylshikimate-3-Phosphate Synthase,” Plant Physiol., 129(3):1265-1275 (2002).
Bannerjee et al., “Efficient production of transgenic potato (S. tuberosum L. ssp. andigena) plants via Agrobacterium tumefaciens-mediated transformation,” Plant Sci., 170:732 738 (2006).
Baulcombe, “RNA silencing and heritable epigenetic effects in tomato and Arabidopsis,” Abstract 13th Annual Fall Symposium, Plant Genomes to Phenomes, Donald Danforth Plant Science Center, 28-30 (2011).
Bayer et al., “Programmable ligand-controlled riboregulators of eukaryotic gene expression,” Nature Biotechnol., 23(3):337-343 (2005).
Beal, et al., “Second Structural Motif for Recognition of DNA by Oligonucleotide-Directed Triple-Helix Formation,” Science, 251:1360-1363 (1992).
Becker et al., “Fertile transgenic wheat from microprojectile bombardment of scutellar tissue,” The Plant Journal, 5(2):299-307 (1994).
Bhargava et al., “Long double-stranded RNA-mediated RNA interference as a tool to achieve site-specific silencing of hypothalamic neuropeptides,” Brain Research Protocols, 13:115-125 (2004).
Boletta et al., “High Efficient Non-Viral Gene Delivery to the Rat Kidney by Novel Polycationic Vectors,” J. Am Soc. Nephrol., 7:1728 (1996).
Bolognesi et al., “Characterizing the Mechanism of Action of Double-Stranded Rna Activity against Western Corn Rootworm (Diabrotica virgifera virgifera LeConte),” PLoS ONE 7(10):e47534 (2012).
Bolter et al., “A chloroplastic inner envelope membrane protease is essential for plant development,” FEBS Letters, 580:789-794 (2006).
Breaker et al., “A DNA enzyme with Mg2+-dependent RNA phosphoesterase activity,” Chemistry and Biology, 2:655-660 (1995).
Brodersen et al., “The diversity of RNA silencing pathways in plants,” Trends in Genetics, 22(5):268-280 (2006).
Busi et al., “Gene flow increases the initial frequency of herbicide resistance alleles in unselectedpopulations,” Agriculture, Ecosystems and Environments, Elsevier, Amsterdam, NL, 142(3):403-409 (2011).
Butler et al., “Priming and re-drying improve the survival of mature seeds of Digitalis purpurea during storage,” Annals of Botany, 103:1261-1270 (2009).
Bytebier et al., “T-DNA organization in tumor cultures and transgenic plants of the monocotyledon Asparagus officinalis,” Proc. Natl. Acad. Sci. U.S.A., 84:5345-5349 (1987).
Chabbouh et al., “Cucumber mosaic virus in artichoke,” FAO Plant Protection Bulletin, 38:52-53 (1990).
Chakravarty et al., “Genetic Transformation in Potato: Approaches and Strategies,” Amer J Potato Res, 84:301 311 (2007).
Chee et al., “Transformation of Soybean (Glycine max) by Infecting Germinating Seeds with Agrobacterium tumefaciens,” Plant Physiol., 91:1212-1218 (1989).
Chen et al., “In Vivo Analysis of the Role of atTic20 in Protein Import into Chloroplasts,” The Plant Cell, 14:641-654 (2002).
Cheng et al., “Production of fertile transgenic peanut (Arachis hypogaea L.) plants using Agrobacterium tumefaciens,” Plant Cell Reports, 15:653-657 (1996).
Chi et al., “The Function of RH22, a DEAD RNA Helicase, in the Biogenesis of the 50S Ribosomal Subunits of Arabidopsis Chloroplasts,” Plant Physiology, 158:693-707 (2012).
Chinese Office Action dated Aug. 28, 2013 in Chinese Application No. 201180012795.2.
Clough et al., “Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana,” The Plant Journal, 16(6):735-743 (1998).
CN101914540 Patent Diclosure, “Introduction of RNA into plant by interference,” (2010).
Colbourne et al., “The Ecoresponsive Genome of Daphnia pulex,” Science, 331(6017):555-561 (2011).
Colombian Office Action dated Aug. 2, 2013 in Application No. 12 152898.
Colombian Office Action dated Feb. 21, 2014 in Application No. 12 152898.
Cooney et al., “Site-Specific Oligonucleotide Binding Represses Transcription of the Human c-myc Gene in Vitro,” Science ,241:456-459 (1988).
Cost Action FA0806 progress report “Plant virus control employing RNA-based vaccines: A novel non-transgenic strategy” (2010).
Coticchia et al., “Calmodulin modulates Akt activity in human breast cancer cell lines,” Breast Cancer Res. Treat, 115:545-560 (2009).
Dalmay et al., “An RNA-Depenedent RNA Polymerase Gene in Arabidopsis Is Required for Posttranscriptional Gene Silencing Mediated by a Transgene but Not by a Virus,” Cell, 101:543-553 (2000).
Database EMBL CBIB Daphnia—XP-002732239 (2011).
Davidson et al., “Engineering regulatory RNAs,” TRENDS in Biotechnology, 23(3):109-112 (2005).
De Block, et al. “Engineering herbicide resistance in plants by expression of a detoxifying enzyme,” EMBO J. 6(9):2513-2519 (1987).
De Framond, “MINI-Ti: A New Vector Strategy for Plant Genetic Engineering,” Nature Biotechnology, 1:262-269 (1983).
Della-Cioppa et al., “Import of a precursor protein into chloroplasts is inhibited by the herbicide glyphosate,” The EMBO Journal, 7(5):1299-1305 (1988).
Diallo et al., “Long Endogenous dsRNAs Can Induce Complete Gene Silencing in Mammalian Cells and Primary Cultures,” Oligonucleotides, 13:381-392 (2003).
Dietemann et al.,“Varroa destructor: research avenues towards sustainable control,” Journal of Apicultural Research, 51(1):125-132 (2012).
Du et al., “A systematic analysis of the silencing effects of an active siRNA at all single-nucleotide mismatched target sites,” Nucleic Acids Research, 33(5):1671-1677 (2005).
Dunoyer et al., “Small RNA Duplexes Function as Mobile Silencing Signals Between Plant Cells,” Science, 328:912-916 (2010).
Ellington et al., “In vitro selection of RNA molecules that bind specific ligands,” Nature, 346:818-822 (1990).
Eurasian Office Action dated Feb. 24, 2014, in Application No. 201201264.
European Cooperation in the field of Scientific and Technical Research—Memorandum of Understanding for COST Action FA0806 (2008).
European Supplemental Search Report dated Oct. 8, 2013 in Application No. 11753916.3.
Extended European Search Report dated Jan. 21, 2015, in European Patent Application No. 12 832 415.9.
Extended European Search Report dated Jan. 29, 2015, in European Patent Application No. 12 831 567.8.
Extended European Search Report dated Feb. 2, 2015, in European Patent Application No. 12 830 932.5.
Extended European Search Report dated Feb. 3, 2015, in European Patent Application No. 12 831 945.6.
Extended European Search Report dated Feb. 27, 2015, in European Patent Application No. 12 832 160.1.
Extended European Search Report dated Mar. 3, 2015, in European Patent Application No. 12 831 166.9.
Extended European Search Report dated Mar. 17, 2015, in European Patent Application No. 12 831 684.1.
Farooq et al., “Rice seed priming,” IPRN, 30(2):45-48 (2005).
Fire et al., “Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans,” Nature, 391:806-811 (1998).
Fukuhara et al., “Enigmatic Double-Stranded RNA in Japonica Rice,” Plant Molecular Biology, 21:1121-1130 (1993).
Fukuhara et al., “The Unusual Structure of a Novel RNA Replicon in Rice,” The Journal of Biological Chemistry, 270(30):18147-18149 (1995).
Fukuhara et al., “The wide distribution of endornaviruses, large double-stranded RNA replicons with plasmid-like properties,” Archives of Virology, 151:995-1002 (2006).
Further Examination Report issued in New Zealand Patent Application No. 601784 dated May 16, 2014.
Gaines et al., “Gene amplification confers glyphosate resistance in Amaranthus Palmeri,” Proc. Natl. Acad. Sci. USA, 107(3):1029-1034 (2010).
Gan et al., “Bacterially expressed dsRNA protects maize against SCMV infection,” Plant Cell Rep, 11:1261-1268 (2010).
Gao et al., “Down-regulation of acetolactate synthase compromises 01-1-mediated resistance to powdery mildew in tomato,” BMC Plant Biology, 14 (2014).
Garbian et al., “Bidirectional Transfer of RNAi between Honey Bee and Varroa destructor: Varroa Gene Silencing Reduces Varroa Population,” 8(12):1-9:e1003035 (2012).
Ge et al., “Rapid vacuolar sequestration: the horseweed glyphosate resistance mechanism,” Pest Management Sci., 66:345-348 (2010).
GenBank Accession No. DY640489, PU2_plate27J03 PU2 Prunus persica cDNA similar to expressed mRNA inferred from Prunus persica hypothetical domain/motif containing IPR011005:Dihydropteroate synthase-like, MRNA sequence (2006) [Retrieved on Feb. 4, 2013]. Retrieved from the internet <URL: http://www.ncbi.nlm.nih.gov/nucest/DY640489>.
GenBank Accession No. EU24568—“Amaranthus hypochondriacus acetolactate synthase (ALS) gene,” (2007).
GenBank Accession No. FJ972198, Solanum lycopersicum cultivar Ailsa Craig dihydropterin pyrophosphokinase-dihydropteroate synthase (HPPK-DHPS) gene, complete cds (2010) [Retrieved on Nov. 26, 2012]. Retrieved from the internet ,URL: http://www.ncbi.nlm.nih.gov/nuccore/FJ972198>.
GenBank accession No. AY545657.1, published 2004.
GenBank accession No. GI:186478573, published Jan. 22, 2014.
GenEmbl FJ861243, published Feb. 3, 2010.
Gong et al., “Silencing of Rieske iron-sulfur protein using chemically synthesised siRNA as a potential biopesticide against Plutella xylostella,” Pest Manag Sci, 67:514-520 (2011).
Gressel et al., “A strategy to provide long-term control of weedy rice while mitigating herbicide resistance transgene flow, and its potential use for other crops with related weeds,” Pest Manag Sci, 65(7):723-731 (2009).
Gutensohn et al., “Functional analysis of the two Arabidopsis homologues of Toc34, a component of the chloroplast protein import apparatus,” The Plant Journal, 23(6):771-783 (2000).
Haigh, “The Priming of Seeds: Investigation into a method of priming large quantities of seeds using salt solutions,” Thesis submitted to Macquarie University (1983).
Hamilton et al., “Guidelines for the Identification and Characterization of Plant Viruses,” J. gen. Virol., 54:223-241 (1981).
Hamilton et al., “Two classes of short interfering RNA in RNA silencing,” EMBO J., 21(17):4671-4679 (2002).
Han et al., “Molecular Basis for the Recognition of Primary microRNAs by the Drosha-DGCR8 Complex,” Cell, 125(5):887-901 (2006).
Hannon, “RNA interference,” Nature,481:244-251 (2002).
Hardegree, “Drying and storage effects on germination of primed grass seeds,” Journal of Range Management, 47(3):196-199 (1994).
Harrison et al., “Does Lowering Glutamine Synthetase Activity in Nodules Modigy Nitrogen Metabolism and Growth of Lotus japonicus?,” Plant Physiology, 133:253-262 (2003).
Herman et al., “A three-component dicamba O-demethylase from Pseudomonas maltophilia, strain DI-6: gene isolation, characterization, and heterologous expression,” J. Biol. Chem., 280: 24759-24767 (2005).
Hewezi et al., “Local infiltration of high- and low-molecular-weight RNA from silenced sunflower (Helianthus annuus L.) plants triggers post-transcriptional gene silencing in non-silenced plants,” Plant Biotechnology Journal, 3:81-89 (2005).
Hidayat et al., “Enhanced Metabolism of Fluazifop Acid in a Biotype of Digitaria sanguinalis Resistant to the Herbicide Fluazifop-P-Butyl,” Pesticide Biochem. Physiol., 57:137-146 (1997).
Himber et al., “Transitivity-dependant and -independent cell-to-cell movement of RNA silencing,” The EMBO Journal, 22(17):4523-4533 (2003).
Hirschberg et al., “Molecular Basis of Herbicide Resistance in Amaranthus hybridus,” Science, 222:1346-1349 (1983).
Hoekema et al., “A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid,” Nature, 303:179-180 (1983).
Hofgen et al., “Repression of Acetolactate Synthase Activity through Antisense Inhibition: Molecular and Biochemical Analysis of Transgenic Potato (Solanum tuberosum L. cv Desiree) Plants,” Plant Physiol., 107(2):469-477 (1995).
Hsieh et al., “A library of siRNA duplexes targeting the phosphoinositide 3-kinase pathway: determinants of gene silencing for use in cell-based screens,” Nucleic Acids Res., 32(3):893-901 (2004).
Huesken et al., “Design of a genome-wide siRNA library using an artificial neural network,” . Herewith.
Hunter et al., “RNA Interference Strategy to suppress Psyllids & Leafhoppers,” International Plant and Animal Genome XIX, 15-19 (2011).
Ichihara et al., “Thermodynamic instability of siRNA duplex is a prerequisite for dependable prediction of siRNA activities,” Nucleic Acids Res., 35(18):e123 (2007).
International Preliminary Report on Patentability dated Sep. 11, 2014, in International Application No. PCT/IL13/50447.
International Search Report and the Written Opinion dated May 10, 2011.
International Search Report and the Written Opinion dated Feb. 25, 2013, in International Application No. PCT/US 12/54883.
International Search Report and the Written Opinion dated Feb. 27, 2013, in International Application No. PCT/US 12/54814.
International Search Report and the Written Opinion dated Feb. 27, 2013, in International Application No. PCT/US 12/54842.
International Search Report and the Written Opinion dated Feb. 27, 2013, in International Application No. PCT/US 12/54862.
International Search Report and the Written Opinion dated Feb. 27, 2013, in International Application No. PCT/US 12/54894.
International Search Report and the Written Opinion dated Feb. 27, 2013, in International Application No. PCT/US 12/54974.
International Search Report and the Written Opinion dated Feb. 27, 2013, in International Application No. PCT/US 12/54980.
International Search Report dated Mar. 12, 2013, in International Application No. PCT/US 12/54789.
Invitation to Pay Additional Fees dated May 6, 2014, in International Application No. PCT/IL2013/051083.
Invitation to Pay Additional Fees dated May 6, 2014, in International Application No. PCT/IL2013/051085.
Invitation to Pay Additional Fees dated Nov. 25, 2014, in International Application No. PCT/US2014/047204.
Isaacs et al., “Engineered riboregulators enable post-transcriptional control of gene expression,” Nature Biotechnology, 22(7):841-847 (2004).
Ji et al., “Regulation of small RNA stability: methylation and beyond,” Cell Research, 22:624-636 (2012).
Jones-Rhoades et al., “MicroRNAs and Their Regulatory Roles in Plants,” Annu. Rev. Plant Biol., 57:19-53 (2006).
Josse et al., “A DELLA in Disguise: SPATULA Restrains the Growth of the Developing Arabidopsis Seedling,” Plant Cell, 23:1337-1351 (2011).
Kam et al., “Nanotube Molecular Transporters: Internalization of Carbon Nanotube-Protein Conjugates into Mammalian Cells,” J. Am. Chem. Soc., 126(22):6850-6851 (2004).
Katoh et al., “Specific residues at every third position of siRNA shape its efficient RNAi activity,” Nucleic Acids Res., 35(4): e27 (2007).
Kertbundit et al., “In vivo random β-glucuronidase gene fusions in Arabidopsis thaliana,” Proc. Natl. Acad. Sci. U S A., 88:5212-5216 (1991).
Khachigian, “DNAzymes: Cutting a path to a new class of therapeutics,” Curr Opin Mol Ther 4(2):119-121 (2002).
Khodakovskaya et al., “Carbon Nanotubes Are Able to Penetrate Plant Seed Coat and Dramatically Affect Seed Germination and Plant Growth,” ACS Nano, 3(10):3221-3227 (2009).
Kirkwood, “Use and Mode of Action of Adjuvants for Herbicides: A Review of some Current Work,” Pestic Sci., 38:93-102 (1993).
Klahre et al., “High molecular weight RNAs and small interfering RNAs induce systemic posttranscriptional gene silencing in plants,” Proc. Natl. Acad. Sci. USA, PNAS, 99(18):11981-11986 (2002).
Kronenwett et al., “Oligodeoxyribonucleotide Uptake in Primary Human Hematopoietic Cells Is Enhanced by Cationic Lipids and Depends on the Hematopoietic Cell Subset,” Blood, 91(3):852-862 (1998).
Kusaba et al., “Low glutelin content1: A Dominant Mutation That Suppresses the Glutelin Multigene Family via RNA Silencing ni Rice,” The Plant Cell, 15(6):1455-1467 (2003).
Kusaba, “RNA interference in crop plants,” Curr Opin Biotechnol, 15(2):139-143 (2004).
Lavigne et al., “Enhanced antisense inhibition of human immunodeficiency virus type 1 in cell cultures by DLS delivery system,” Biochem Biophys Res Commun, 237:566-571 (1997).
Lee et al., “Aptamer Database,” Nucleic Acids Research, 32:D95-D100 (2004).
Lermontova et al., “Reduced activity of plastid protoporphyrinogen oxidase causes attenuated photodynamic damage during high-light compared to low-light exposure,” The Plant Journal, 48(4):499-510 (2006).
Lesnik et al., “Prediction of rho-independent transcriptional terminators in Escherichia coli,” Nucleic Acids Research, 29(17):3583-3594 (2001).
Li et al., “Establishment of a highly efficient transformation system for pepper (Capsicum annuum L.),” Plant Cell Reports, 21: 785-788 (2003).
Li et al., “The FAST technique: a simplified Agrobacterium-based transformation method for transient gene expression analysis in seedlings of Arabidopsis and other plant species,” Plant Methods, 5(6):1-15 (2009).
Liu et al., “Carbon Nanotubes as Molecular Transporters for Walled Plant Cells,” Nano Letters, 9(3):1007-1010 (2009).
Liu et al., “Comparative study on the interaction of DNA with three different kinds of surfactants and the formation of multilayer films,” Bioelectrochemistry, 70:301-307 (2007).
Liu et al., “DNAzyme-mediated recovery of small recombinant RNAs from a 5S rRNA-derived chimera expressed in Escherichia coli,” BMC Biotechnology, 10:85 (2010).
Llave et al., “Endogenous and Silencing-Associated Small RNAs in Plants,” The Plant Cell, 14:1605-1619 (2002).
Lu et al., “RNA silencing in plants by the expression of siRNA duplexes,” Nucleic Acids Res., 32(21):e171 (2004).
Lu et al., “OligoWalk: an online siRNA design tool utilizing hybridization thermodynamics,” Nucleic Acids Research, 36:W104-W108 (2008).
Luft, “Making sense out of antisense oligodeoxynucleotide delivery: getting there is half the fun,” J Mol Med, 76:75-76 (1998).
Maas et al., “Mechanism and optimized conditions for PEG mediated DNA transfection into plant protoplasts,” Plant Cell Reports, 8:148-149 (1989).
Maher III et al., “Inhibition of DNA binding proteins by oligonucleotide-directed triple helix formation,” Science, 245(4919):725-730 (1989).
Makkouk et al., “Virus Diseases of Peas, Beans, and Faba Bean in the Mediterranean region,” Adv Virus Res, 84:367-402 (2012).
Mandal et al., “Adenine riboswitches and gene activation by disruption of a transcription terminator,” Nature Struct. Mol. Biol., 11(1):29-35 (2004).
Mandal et al., “Gene Regulation by Riboswitches,” Nature Reviews | Molecular Cell Biology, 5:451-463 (2004).
Manoharan, “Oligonucleotide Conjugates as Potential Antisense Drugs with Improved Uptake, Biodistribution, Targeted Delivery, and Mechanism of Action,” Antisense & Nucleic Acid Drug Development, 12:103-128 (2002).
Masoud et al., “Constitutive expression of an inducible β-1,3-glucanase in alfalfa reduces disease severity caused by the oomycete pathogen Phytophthora megasperma f. sp medicaginis, but does not reduce disease severity of chitincontaining fungi,” Transgenic Research, 5:313-323 (1996).
Matveeva et al., “Prediction of antisense oligonucleotide efficacy by in vitro methods,” Nature Biotechnology, 16:1374-1375 (1998).
Meinke, et al., “Identifying essential genes in Arabidopsis thaliana,” Trends Plant Sci., 13(9):483-491 (2008).
Meins et al., “RNA Silencing Systems and Their Relevance to Plant Development,” Annu. Rev. Cell Dev. Biol., 21:297-318 (2005).
Melnyk et al., “Intercellular and systemic movement of RNA silencing signals,” The EMBO Journal, 30:3553-3563 (2011).
Misawa et al., “Functional expression of the Erwinia uredovora carotenoid biosynthesis gene crtl in transgenic plants showing an increase of β-carotene biosynthesis activity and resistance to the bleaching herbicide norflurazon,” The Plant Journal, 4(5):833-840 (1993).
Misawa et al., “Expression of an Erwinia phytoene desaturase gene not only confers multiple resistance to herbicides interfering with carotenoid biosynthesis but also alters xanthophyll metabolism in transgenic plants,” The Plant Journal, 6(4):481-489 (1994).
Miura et al., “The Balance between Protein Synthesis and Degradation in Chloroplasts Determines Leaf Variegation in Arabidopsis yellow variegated Mutants,” The Plant Cell, 19:1313-1328 (2007).
Molnar et al., “Plant Virus-Derived Small Interfering RNAs Originate redominantly from Highly Structured Single-Stranded Viral RNAs,” Journal of Virology, 79(12):7812-7818 (2005).
Molnar et al., “Small Silencing RNAs in Plants Are Mobile and Direct Epigenetic Modification in Recipient Cells,” Science, 328:872-875 (2010).
Moriyama et al., “Double-stranded RNA in rice: a novel RNA replicon in plants,” Molecular & General Genetics, 248(3):364-369 (1995).
Moriyama et al., “Stringently and developmentally regulated levels of a cytoplasmic double-stranded RNA and its high-efficiency transmission via egg and pollen in rice,” Plant Molecular Biology, 31:713-719 (1996).
Morrissey et al., “Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs,” Nat Biotechnol. 23(8):1002-1007 (2005).
Moser et al., “Sequence-Specific Cleavage of Double Helical DNA by Triple Helix Formation,” Science, 238:645-646 (1987).
Nowak et al., “A new and efficient method for inhibition of RNA viruses by DNA interference,” The FEBS Journal, 276:4372-4380 (2009).
Office Action dated Feb. 17, 2014, in Mexican Patent Application No. MX/a/2012/010479.
Office Action dated Jan. 6, 2015, in Japanese Patent Application No. 2012-557165.
Office Action dated Nov. 19, 2014, in Eurasian Patent Application No. 201201264/28.
Ongvarrasopone et al., “A Simple and Cost Effective Method to Generate dsRNA for RNAi Studies in Invertebrates,” Science Asia, 33:35-39 (2007).
Ouellet et al., “Members of the Acetohydroxyacid Synthase Muligene Family of Brassica Napus Have Divergent Patterns of Expression,” The Plant Journal, Blackwell Scientific Publications, Oxford, GB, 2(3):321-330 (1992).
Paddison et al., “Stable suppression of gene expression by RNAi in mammalian cells,” Proc. Natl Acad. Sci. USA, 99(3):1443-1448 (2002).
Palauqui et al., “Activation of systemic acquired silencing by localised introduction of DNA,” Current Biology, 9:59-66 (1999).
Parera et al., “Dehydration Rate after Solid Matrix Priming Alters Seed Performance of Shrunken-2 Corn,” J. Amer. Soc. Hort. Sci., 119(3):629-635 (1994).
Paungfoo-Lonhienne et al., “DNA is Taken up by Root Hairs and Pollen, and Stimulates Root and Pollen Tube Growth,” Plant Physiology, 153:799-805 (2010).
Paungfoo-Lonhienne et al., “DNA uptake by Arabidopsis induces changes in the expression of Cle peptides which control root morphology,” Plant Signaling & Behavior, 5(9):1112-1114 (2010).
Pei et al., “On the art of identifying effective and specific siRNAs,” Nature Methods, 3(9):670-676 (2006).
Peretz et al., “A Universal Expression/Silencing Vector in Plants,” Plant Physiology, 145:1251-1263 (2007).
Pornprom et al., “Glutamine synthetase mutation conferring target-site-based resistance to glufosinate in soybean cell selections,” Pest Manag Sci, 2009; 65(2):216-222 (2009).
Preston et al., “Multiple effects of a naturally occurring proline to threonine substitution within acetolactate synthase in two herbicide-resistant populations of Lactuca serriola,” Pesticide Biochem. Physiol., 84(3):227-235 (2006).
Qiwei,“Advance in DNA interference,” Progress in Veterinary Medicine, 30(1):71-75 (2009).
Rajur et al., “Covalent Protein-Oligonucleotide Conjugates for Efficient Delivery of Antisense Molecules,” Bioconjug Chem., 8:935-940 (1997).
Reddy et al “Organosilicone Adjuvants Increased the Efficacy of Glyphosate for Control of Weeds in Citrus (Citrus spp.)” HortScience 27(9):1003-1005 (1992).
Reddy et al., “Aminomethylphosphonic Acid Accumulation in Plant Species Treated with Glyphosate,” J. Agric. Food Chem., 56(6):2125-2130 (2008).
Reither et al., “Specificity of DNA triple helix formation analyzed by a FRET assay,” BMC Biochemistry, 3:27 (2002).
Rey et al., “Diversity of Dicotyledenous-Infecting Geminiviruses and Their Associated DNA Molecules in Southern Africa, Including the South-West Indian Ocean Islands,” Viruses, 4:1753-1791 (2012).
Reynolds et al., “Rational siRNA design for RNA interference,” Nature Biotechnology, 22:326-330 (2004).
Ryabov et al., “Cell-to-Cell, but Not Long-Distance, Spread of RNA Silencing That Is Induced in Individual Epidermal Cells,” Journal of Virology, 78(6):3149-3154 (2004).
Ryan, “Human endogenous retroviruses in health and disease: a symbiotic perspective,” Journal of the Royal Society of Medicine, 97:560-565 (2004).
Santoro et al., “A general purpose RNA-cleaving DNA enzyme,” Proc. Natl. Acad. Sci. USA, 94:4262-4266 (1997).
Sathasivan et al., “Nucleotide sequence of a mutant acetolactate synthase gene from an imidazolinone-resistant Arabidopsis thaliana var. Columbia,” Nucleic Acids Research, 18(8):2188-2193 (1990).
Schwab et al., “RNA silencing amplification in plants: Size matters,” PNAS, 107(34):14945-14946 (2010).
Schwember et al., “Drying Rates following Priming Affect Temperature Sensitivity of Germination and Longevity of Lettuce Seeds,” HortScience, 40(3):778-781 (2005).
Second Chinese Office Action issued in Chinese Patent Application No. 201180012795.2, dated Jun. 10, 2014.
Seidman et al., “The potential for gene repair via triple helix formation,” J Clin Invest., 112(4):487-494 (2003).
Selvarani et al., “Evaluation of seed priming methods to improve seed vigour of onion (Allium cepa cv. Aggregatum) and carrot (Daucus carota),” Journal of Agricultural Technology, 7(3):857-867 (2011).
Sharma et al., “A simple and efficient Agrobacterium-mediated procedure for transformation of tomato,” J. Biosci., 34(3):423 433 (2009).
Sijen et al., “On the Role of RNA Amplification in dsRNA-Triggered Gene Silencing,” Cell, 107:465-476 (2001).
Silwet L-77 Spray Adjuvant for agricultural applications, product description from Momentive Performance Materials, Inc. (2003).
Singh et al., “Absorption and translocation of glyphosate with conventional and organosilicone adjuvants,” Weed Biology and Management, 8:104-111 (2008).
Steeves et al., “Transgenic soybeans expressing siRNAs specific to a major sperm protein gene suppress Heterodera glycines reproduction,” Funct. Plant Biol., 33:991-999 (2006).
Stock et al., “Possible Mechanisms for Surfactant-Induced Foliar Uptake of Agrochemicals,” Pestic. Sci., 38:165-177 (1993).
Strat et al., “Specific and nontoxic silencing in mammalian cells with expressed long dsRNAs,” Nucleic Acids Research, 34(13):3803-3810 (2006).
Sudarsan et al., “Metabolite-binding RNA domains are present in the genes of eukaryotes,” RNA, 9:644-647 (2003).
Sun et al., “Antisense oligodeoxynucleotide inhibition as a potent strategy in plant biology: identification of SUSIBA2 as a transcriptional activator in plant sugar signalling,” The Plant Journal, 44:128-138 (2005).
Sun et al., “A Highly efficient Transformation Protocol for Micro-Tom, a Model Cultivar for Tomato Functional Genomics,” Plant Cell Physiol., 47(3):426-431 (2006).
Sun et al., “Sweet delivery—sugar translocators as ports of entry for antisense oligodeoxynucleotides in plant cells,” The Plant Journal, 52:1192-1198 (2007).
Takasaki et al., “An Effective Method for Selecting siRNA Target Sequences in Mammalian Cells,” Cell Cycle, 3:790-795 (2004).
Temple et al., “Can glutamine synthetase activity levels be modulated in transgenic plants by the use of recombinant DNA technology?” Transgenic Plants and Plant Biochemistry, 22:915-920 (1994).
Temple et al., “Down-regulation of specific members of the glutamine synthetase gene family in Alfalfa by antisense RNA technology,” Plant Molecular Biology, 37:535-547 (1998).
Templeton et al., “Improved DNA: liposome complexes for increased systemic delivery and gene expression,” Nature Biotechnology, 15:647-652 (1997).
Tenllado et al., “Crude extracts of bacterially expressed dsRNA can be used to protect plants against virus infection,” BMC Biotechnology, 3(3):1-11 (2003).
Tenllado et al., “RNA interference as a new biotechnological tool for the control of virus diseases in plants,” Virus Research, 102:85-96 (2004).
Tepfer, “Risk assessment of virus resistant transgenic plants,” Annual Review of Phytopathology, 40:467-491 (2002).
The Seed Biology Place, Website Gerhard Leubner Lab Royal Holloway, University of London, <http://www.seedbiology.de/seedtechnology.asp.
Third Party Submission filed on Nov. 29, 2012 in U.S. Appl. No. 13/042,856.
Thompson, et al., “CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice,” Nucl. Acids Res., 22(22):4673-4680 (1994).
Timmons et al., “Specific interference by ingested dsRNA,” Nature, 395:854 (1998).
Tomari et al., “Perspective: machines for RNAi,” Genes & Dev., 19:517-529 (2005).
Töpfer et al., “Uptake and Transient Expression of Chimeric Genes in Seed-Derived Embryos,” Plant Cell, 1:133-139 (1989).
Toriyama et al., “Transgenic Rice Plants After Direct Gene Transfer Into Protoplasts,” Bio/Technology, 6:1072-1074 (1988).
Tran et al., “Control of specific gene expression in mammalian cells by co-expression of long complementary RNAs,” FEBS Lett.;573(1-3):127-134 (2004).
Turina et al., “Tospoviruses in the Mediterranean Area,” Advances in Virus Research, 84:403-437 (2012).
Tuschl, “RNA Interference and Small Interfering RNAs,” ChemBiochem. 2(4):239-245 (2001).
Tuschl, “Expanding small RNA interference,” Nature Biotechnol., 20: 446-448 (2002).
Ui-Tei et al., “Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference,” Nucleic Acids Res., 32(3): 936-948 (2004).
Unnamalai et al., “Cationic oligopeptide-mediated delivery of dsRNA for post-transcriptional gene silencing in plant cells,” FEBS Letters, 566:307-310 (2004).
Unniraman et al., “Alternate Paradigm for Intrinsic Transcription Termination in Eubacteria,” The Journal of Biological Chemistry, 276(45)(9):41850-41855 (2001).
Urayama et al., “Knock-down of OsDCL2 in Rice Negatively Affects Maintenance of the Endogenous dsRNA Virus, Oryza sativa Endornavirus,” Plant and Cell Physiology, 51(1):58-67 (2010).
Van de Wetering et al., “Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector,” EMBO Rep., 4(6):609-615 (2003).
Vasil et al., “Herbicide Resistant Fertile Transgenic Wheat Plants Obtained by Microprojectile Bombardment of Regenerable Embryogenic Callus,” Bio/Technology,10:667-674 (1992).
Vaucheret, “Post-transcriptional small RNA pathways in plants: mechanisms and regulations,” Genes Dev., 20:759-771 (2006).
Vencill et al., “Resistance of Weeds to Herbicides,” Herbicides and Environment, 29:585-594 (2011).
Verma et al., “Modified oligonucleotides: synthesis and strategy for users,” Annu. Rev. Biochem., 67:99-134 (1998).
Vert et al., “An accurate and interpretable model for siRNA efficacy prediction,” BMC Bioinformatics, 7:520 (2006).
Vionnet et al., “Systemic Spread of Sequence-Specific Transgene RNA Degradation in Plants Is Initiated by Localized Introduction of Ectopic Promoterless DNA,” Cell, 95:177-187 (1998).
Wakelin et al., “A target-site mutation is present in a glyphosate-resistant Lolium rigidum population,” Weed Res. (Oxford), 46(5):432-440 (2006).
Walton et al., “Prediction of antisense oligonucleotide binding affinity to a structured RNA target,” Biotechnol Bioeng 65(1):1-9 (1999).
Wan et al., “Generation of Large Nos. Of Independently Transformed Fertile Barley Plants,” Plant Physiol., 104:37-48 (1994).
Wardell, “Floral Induction of Vegetative Plants Supplied a Purified Fraction of Deoxyribonucleic Acid from Stems of Flowering Plants,” Plant Physiol, 60:885-891 (1977).
Wardell,“Floral Activity in Solutions of Deoxyribonucleic Acid Extracted from Tobacco Stems,” Plant Physiol, 57:855-861 (1976).
Waterhouse et al., “Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA,” Proc Natl Acad Sci USA, 95 13959-13964 (1998).
Welch et al., “Expression of ribozymes in gene transfer systems to modulate target RNA levels,” Curr Opin Biotechnol. 9(5):486-496 (1998).
Wilson, et al., “Transcription termination at intrinsic terminators: The role of the RNA hairpin,” Proc. Natl. Acad. Sci. USA, 92:8793-8797 (1995).
Winkler et al., “Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression,” Nature, 419:952-956 (2002).
Written Opinion dated May 8, 2014, in International Application No. PCT/IL2013/050447.
Written Opinion dated Sep. 1, 2014, in Singapore Patent Application No. 201206152-9.
Xu et al., Characterization and Functional Analysis of the Calmodulin-Binding Domain of Rac1 GTPase, Plos One, 7(8)1-12:e42975 (2012).
Yin et al., “Production of double-stranded RNA for interference with TMV infection utilizing a bacterial prokaryotic expression system,” Appl. Microbiol. Biotechnol., 84(2):323-333 (2009).
YouTube video by General Electric Company “Silwet Surfactants,” screen shot taken on Jan. 11, 2012 of video of www.youtube.com/watch?v=WBw7nXMqHk8 (uploaded Jul. 13, 2009).
Zagnitko, “Lolium regidum clone LS1 acetyl-CoA carboxylase mRNA, partial cds; nuclear gene for plastid product,” GenBank: AF359516.1, 2 pages (2001).
Zagnitko, et al., “An isoleucine/leucine residue in the carboxyltransferase domain of acetyl-CoA carboxylase is critical for interaction with aryloxyphenoxypropionate and cyclohexanedione inhibitors,” PNAS, 98(12):6617-6622 (2001).
Zhang et al., “A novel rice gene, NRR responds to macronutrient deficiency and regulates root growth,” Mol Plant, 5(1):63-72 (2012).
Zhang et al., “Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method,” Nature Protocols, 1(2):1-6 (2006).
Zhang et al., “Cationic lipids and polymers mediated vectors for delivery of siRNA,” Journal of Controlled Release, 123:1-10 (2007).
Zhang et al., “DEG: a database of essential genes,” Nucleic Acids Res., 32:D271-D272 (2004).
Zhang et al., “Transgenic rice plants produced by electroporation-mediated plasmid uptake into protoplasts,” The Plant Cell Rep., 7:379-384 (1988).
Zhao et al.,“Phyllotreta striolata (Coleoptera: Chrysomelidae):Arginine kinase cloning and RNAi-based pest control,” European Journal of Entomology, 105(5):815-822 (2008).
Zhu et al., “Ingested RNA interference for managing the populations of the Colorado potato beetle, Leptinotarsa decemlineata,” Pest Manag Sci, 67:175-182 (2010).
Agrios, Plant Pathology (Second Edition), 2:466-470 (1978).
Bai et al., “Naturally Occurring Broad-Spectrum Powdery Mildew Resistance in a Central American Tomato Accession Is Caused by Loss of Mlo Function,” MPMI, 21(1):30-39 (2008).
Bourgeois et al., “Field and producer survey of ACCase resistant wild oat in Manitoba,” Canadian Journal of Plant Science, 709-715 (1997).
Brugière et al., “Glutamine Synthetase in the Phloem Plays a Major Role in Controlling Proline Production,” The Plant Cell, 11:1995-2011 (1999).
Campbell et al., “Gene-knockdown in the honey bee mite Varroa destructor by a non-invasive approach: studies on a glutathione S-transferase,” Parasites & Vectors, 3(1):73, pp. 1-10 (2010).
Chang et al., “Cellular Internalization of Fluorescent Proteins via Arginine-rich Intracellular Delivery Peptide in Plant Cells,” Plant Cell Physiol., 46(3):482-488 (2005).
Chupp et al., “Chapter 8: White Rust,” Vegetable Diseases and Their Control, The Ronald Press Company, New York, pp. 267-269 (1960).
Communication pursuant to Article 94(3) EPC dated Jun. 26, 2015, as received in European Patent Application No. 11 753 916.3.
Communication pursuant to Article 94(3) EPC dated Oct. 23, 2015, as received in European Patent Application No. 12 831 945.6.
Desai et al., “Reduction in deformed wing virus infection in larval and adult honey bees (Apis mellifera L.) by double-stranded RNA ingestion,” Insect Molecular Biology, 21(4):446-455 (2012).
Emery et al., “Radial Patterning of Arabidopsis Shoots by Class III HD-ZIP and KANADI Genes,” Current Biology, 13:1768-1774 (2003).
Extended European Search Report dated Jun. 29, 2015, in European Patent Application No. 12 831 494.5.
Final Office Action dated Nov. 10, 2015, in U.S. Appl. No. 13/612,985.
Final Office Action dated Nov. 7, 2013, in U.S. Appl. No. 13/042,856.
Final Office Action dated Nov. 30, 2015, in U.S. Appl. No. 13/612,948.
First Office Action daed Mar. 12, 2015, in Chinese Patent Application No. 201280053984.9.
International Preliminary Report on Patentability (Chapter II) dated Jul. 24, 2015, in International Application No. PCT/US2014/047204.
International Search Report and the Written Opinion dated May 10, 2011, in International Application No. PCT/US11/027528.
International Search Report and Written Opinion dated Jul. 8, 2015, in International Application No. PCT/US2015/011408.
International Search Report and Written Opinion dated Mar. 26, 2015, in International Application No. PCT/US2014/069353.
International Search Report and Written Opinion dated Nov. 24, 2015, in International Application No. PCT/US2015/037522.
Invitation to Pay Additional Fees dated Sep. 8, 2015, in International Application No. PCT/US2015/037015.
Invitation to Pay Additional Fees dated Sep. 9, 2015, in International Application No. PCT/US2015/037522.
Jofre-Garfias et al., “Agrobacterium-mediated transformation of Amaranthus hypochondriacus: light- and tissue-specific expression of a pea chlorophyll a/b-binding protein promoter,” Plant Cell Reports, 16:847-852 (1997).
Khan et al., “Matriconditioning of Vegetable Seeds to Improve Stand Establishment in Early Field Plantings,” J. Amer. Soc. Hort. Sci., 117(1):41-47 (1992).
Kim et al., “Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy,” Nature Biotechnology, 23(2):222-226 (2005).
Lein et al., “Target- based discovery of novel herbicides,” Current Opinion in Plant Biology, 7:219-225 (2004).
Leopold et al., “Chapter 4: Moisture as a Regulator of Physiological Reaction in Seeds,” Seed Moisture, CSSA Special Publication No. 14, pp. 51-69 (1989).
MacKenzie et al., “Transgenic Nicotiana debneyii expressing viral coat protein are resistant to potato virus S infection,” Journal of General Virology, 71:2167-2170 (1990).
Maori et al., “IAPV, a bee-affecting virus associated with Colony Collapse Disorder can be silenced by dsRNA ingestion,” Insect Molecular Biology, 18(1):55-60 (2009).
Molina et al., “Inhibition of protoporphyrinogen oxidase expression in Arabidopsis causes a lesion-mimic phenotype that induces systemic acquired resistance,” The Plant Journal, 17(6):667-678 (1999).
Non-Final Office Action dated Apr. 11, 2013, in U.S. Appl. No. 13/042,856.
Non-Final Office Action dated Aug. 12, 2015, in U.S. Appl. No. 13/612,936.
Non-Final Office Action dated Aug. 13, 2015, in U.S. Appl. No. 13/612,929.
Non-Final Office Action dated Jul. 23, 2015, in U.S. Appl. No. 14/335,135.
Non-Final Office Action dated Jul. 30, 2014, in U.S. Appl. No. 13/042,856.
Non-Final Office Action dated Jun. 5, 2015, in U.S. Appl. No. 13/612,948.
Non-Final Office Action dated Jun. 8, 2015, in U.S. Appl. No. 13/612,941.
Non-Final Office Action dated Mar. 30, 2015, in U.S. Appl. No. 13/583,302.
Non-Final Office Action dated May 15, 2015, in U.S. Appl. No. 14/608,951.
Non-Final Office Action dated May 22, 2015, in U.S. Appl. No. 13/612,985.
Nord-Larsen et al., “Cloning, characterization and expression analysis of tonoplast intrinsic proteins and glutamine synthetase in ryegrass (Lolium perenne L.),” Plant Cell Reports, 28(10):1549-1562 (2009).
Notice of Allowance dated Oct. 5, 2015, in U.S. Appl. No. 13/583,302.
Office Action dated Jul. 23, 2015, in Ukrainian Patent Application No. 201211548.
Office Action dated Oct. 5, 2015, in Eurasian Patent Application No. 201201264/28.
Office Action dated Sep. 9, 2015, in Chinese Patent Application No. 201280055409.2.
Orbovie et al., “Foliar-Applied Surfactants and Urea Temporarily Reduce Carbon Assimilation of Grapefruit Leaves,” J. Amer. Soc. Hort. Sci., 126(4):486-490 (2001).
Pratt et al., “Amaranthus rudis and A. tuberculatus, One Species or Two?,” Journal of the Torrey Botanical Society, 128(3):282-296 (2001).
Restriction Requirement dated Apr. 21, 2015, in U.S. Appl. No. 13/612,954.
Restriction Requirement dated Feb. 12, 2015, in U.S. Appl. No. 13/612,985.
Restriction Requirement dated Mar. 12, 2015, in U.S. Appl. No. 13/612,948.
Restriction Requirement dated Mar. 4, 2015, in U.S. Appl. No. 13/612,941.
Restriction Requirement dated May 4, 2015, in U.S. Appl. No. 13/612,929.
Restriction Requirement dated May 5, 2015, in U.S. Appl. No. 13/612,936.
Restriction Requirement dated May 7, 2015, in U.S. Appl. No. 13/612,925.
Restriction Requirement dated May 7, 2015, in U.S. Appl. No. 13/612,995.
Restriction Requirement dated Oct. 2, 2012, in U.S. Appl. No. 13/042,856.
Restriction Requirement dated Oct. 21, 2014, in U.S. Appl. No. 13/583,302.
Riggins et al., “Characterization of de novo transcriptome for waterhemp (Amaranthus tuberculatus) using GS-FLX 454 pyrosequencing and its application for studies of herbicide target-site genes,” Pest Manag. Sci., 66:1042-1052 (2010).
Rose et al., “Functional polarity is introduced by Dicer processing of short substrate RNAs,” Nucleic Acids Research, 33(13):4140-4156 (2005).
Rothnie et al., Pararetroviruses and Retroviruses: A Comparative Review of Viral Structure and Gene Expression Straiegies, Advances in Virus Research, 44:1-67 (1994).
Schweizer et al., “Double-stranded RNA interferes with gene function at the single-cell level in cereals,” The Plant Journal, 24(6):895-903 (2000).
Senthil-Kumar et al., “A systematic study to determine the extent of gene silencing in Nicotiana benthamiana and other Solanaceae species when heterologous gene sequences are used for virus-induced gene silencing,” New Phytologist, 176:782-791 (2007).
Snead et al., “Molecular basis for improved gene silencing by Dicer substrate interfering RNA compared with other siRNA variants,” Nucleic Acids Research, 41(12):6209-6221 (2013).
Stevens et al., “New Formulation Technology—SILWET® Organosilicone Surfactants Have Physical and Physiological Properties Which Enhance the Performance of Sprays,” Proceedings of the 9th Australian Weeds Conference, pp. 327-331 (1990).
Street, “Why is DNA (and not RNA) a stable storage form for genetic information?,” Biochemistry Revisited, pp. 1-4 (2008).
Sutton et al., “Activity of mesotrione on resistant weeds in maize,” Pest Manag. Sci., 58:981-984 (2002).
Tank Mixing Chemicals Applied to Peanut Crops: Are the Chemicals Compatible?, College of Agriculture & Life Sciences, NC State University, AGW-653, pp. 1-11 (2004).
Taylor, “Seed Storage, Germination and Quality,” The Physiology of Vegetable Crops, pp. 1-36 (1997).
Tranel et al., “Resistance of weeds to ALS-inhibiting herbicides: what have we learned?,” Weed Science, 50:700-712 (2002).
Tsugawa et al., “Efficient transformation of rice protoplasts mediated by a synthetic polycationic amino polymer,” Theor Appl Genet, 97:1019-1026 (1998).
Vermeulen et al. “The contributions of dsRNA structure to Dicer specificity and efficiency,” RNA, 11(5):674-682 (2005).
Wang et al., “Foliar uptake of pesticides-Present status and future challenge,” ScienceDirect, 87:1-8 (2007).
Communication pursuant to Article 94(3) EPC dated Jan. 14, 2016, in European Patent Application No. 12 832 415.9.
Concise Descriptions of Relevance filed by a third party on Nov. 29, 2012, in U.S. Appl. No. 13/042,856.
Extended European Search Report dated Jan. 20, 2016, in European Patent Application No. 13 794 339.5.
First Office Action dated Feb. 2, 2016, in Chinese Patent Application No. 201380039346.6.
International Search Report and Written Opinion dated Nov. 27, 2015, in International Application No. PCT/US2015/037015.
International Search Report and Written Opinion dated May 26, 2016, in International Application No. PCT/US2016/014344.
Ivanova et al. “Members of the Toc159 Import Receptor Family Represent Distinct Pathways for Protein Targeting to Plastids,” Molecular Biology of the Cell, 15:3379-391 (2004).
Non-Final Office Action dated Feb. 23, 2016, in U.S. Appl. No. 14/603,347.
Partial Supplementary European Search Report dated Mar. 2, 2015, in European Patent Application No. 12 831 494.5.
Richardson et al. “Targeting and Assembly of Components of the TOC protein Import Complex at the Chloroplast Outer Envelope Membrane,” Frontiers in Plant Science 5(269) 1-14 (2014).
Salanenka et al.,“Seedcoat Permeability: Uptake and Post-germination Transport of Applied Model Tracer Compounds,” HortScience, 46(4):622-626 (2011).
Tomlinson et al., “Evidence that the hexose-to-sucrose ratio does not control the switch to storage product accumulation in oilseeds: analysis of tobacco seed development and effects of overexpressing apoplastic invertase,” Journal of Experimental Botany, 55(406):2291-2303 (2004).
Ascencio-Ibanez et al., “DNA abrasion onto plants is an effective method for geminivirus infection and virus-induced gene silencing,” Journal of Virological Methods, 142:198-203 (2007).
Bachman et al., “Characterization of the spectrum of insecticidal activity of a double-stranded RNA with targeted activity against Western Corn Rootworm (Diabrotica virgifera virgifera LeConte),” Transgenic Res., pp. 1-16 (2013).
Bauer et al., “The Major Protein Import Receptor of Plastids is Essential for Chloroplast Biogenesis,” Nature, 403:203-207 (2000).
Bedell et al., “Sorghum Genome Sequencing by Methylation Filtration,” PLOS Biology, 3(1):E13/104-115 (2005).
Burgos et al., “Review: Confirmation of Resistance to Herbicides and Evaluation of Resistance Levels,” Weed Science, 61 (1):4-20 (2013).
Chen et al., “Exploring MicroRNA-Like Small RNAs in the Filamentous Fungus Fusarium oxysporum,” PLOS One, 9(8):e104956:1-10 (2014).
Di Stilio et al., “Virus-Induced Gene Silencing as a Tool for Comparative Functional Studies in Thalictrum,” PLoS One, 5(8):e12064 (2010).
Eamens et al., “RNA Silencing in Plants: Yesterday, Today, and Tomorrow,” Plant Physiology, 147(2):456-468 (2008).
Fassler, BLAST Glossary, National Center for Biotechnology Information (2011).
Fernandez et al., “Uptake of Hydrophilic Solutes Through Plant Leaves: Current State of Knowledge and Perspectives of Foliar Fertilization,” Critical Reviews in Plant Sciences, 28:36-38 (2009).
Friedberg, “Automated protein function prediction—the genomic challenge,” Briefings in Bioinformatics, 7(3):225-242 (2006).
Funke et al., “Molecular basis for herbicide resistance in Roundup Ready crops,” PNAS, 103:13010-13015 (2006).
Gaskin et al., “Novel organosillicone adjuvants to reduce agrochemical spray volumes on row crops,” New Zealand Plant Protection, 53:350-354 (2000).
GenBank Accession No. EF143582 (2007).
Hagio, “Chapter 25: Direct Gene Transfer into Plant Mature Seeds via Electroporation After Vacuum Treatment,” Electroporation and Sonoporation in Developmental Biology, p. 285-293 (2009).
Hess, “Surfactants and Additives,” 1999 Proceedings of the California Weed Science Society, 51:156-172 (1999).
Hörmann et al., “Tic32, an Essential Component in Chloroplast Biogenesis,” The Journal of Biological Chemistry, 279:34756-34762 (2004).
Inaba et al., “Arabidopsis Tic110 is Essential for the Assembly and Function of the Protein Import Machinery of Plastids,” The Plant Cell, 17:1482-1496 (2005).
Jacque et al., “Modulation of HIV-1 replication by RNA interference,” Nature, 418, 435-438 (2002).
Jang et al., “Resistance to herbicides caused by single amino acid mutations in acetyl-CoA carboxylase in resistant populations of grassy weeds,” New Phytologist, 197(4):1110-1116 (2013).
Jarvis et al., “An Arabidopsis Mutant Defective in the Plastid General Protein Import Apparatus,” Science, 282:100-102 (1998).
Kikkert et al., “Stable Transformation of Plant Cells by Particle Bombardment/Biolistics,” Methods in Molecular Biology, 286:61-78 (2005).
Kovacheva et al., “In vivo Studies on the Roles of Tic110, Tic40 and Hsp93 During Chloroplast Protein Import” The Plant Journal, 41:412-428 (2005.
Kovacheva et al., “Further in vivo Studies on the Role of the Molecular Chaperone Hspt 93, in plastid Protein Import” The Plant Journal, 50:364-379 (2007).
Li et al., “A Simplified Seed Transformation Method for Obtaining Transgenic Brassica napus Plants,” Agricultural Sciences in China, 8(6):658-663 (2009).
Liu et al, “The Helicase and RNaseIIIa Domains of Arabidopsis Dicer-Like1 Modulate Catalytic Parameters during MicroRNA Biogenesis,” Plant Physiology, 159:748-758 (2012).
McGinnis, “RNAi for functional genomics in plants,” Brief Funct Genomics, 9(2):111-7 (2010).
Office Action dated Aug. 1, 2017, in European Patent Application No. 12 830 932.5.
Office Action dated Aug. 14, 2017, in Israeli Patent Application No. 235878.
Office Action dated Aug. 22, 2017, in Korean Patent Application No. 10-2012-7023415.
Office Action dated Aug. 25, 2016, in Eurasian Patent Application No. 201201264.
Office Action dated Aug. 3, 2017, in Chinese Patent Application No. 201480014392.5.
Office Action dated Aug. 3, 2017, in European Patent Application No. 12 831 684.1.
Office Action dated Aug. 8, 2017, in Chilean Patent Application No. 201501874.
Office Action dated Dec. 13, 2016, in Ukrainian Patent Application No. a 2014 03843.
Office Action dated Dec. 14, 2016, in Ukrainian Patent Application No. a 2014 03850.
Office Action dated Dec. 15, 2016, in Ukrainian Patent Application No. a 2014 03845.
Office Action dated Dec. 15, 2016, in Ukrainian Patent Application No. a 2014 03849.
Office Action dated Dec. 15, 2016, in Ukrainian Patent Application No. a 2014 03852.
Office Action dated Dec. 27, 2016, in Ukrainian Patent Application No. a 2012 11548.
Office Action dated Jul. 11, 2017, in Mexican Patent Application No. MX/a/2015/013118 (with English translation).
Office Action dated Jul. 3, 2017, in Mexican Patent Application No. MX/a/2015/012632 (with English translation).
Office Action dated Jul. 6, 2017, in Mexican Patent Application No. MX/a/2015/013103 (with English translation).
Office Action dated Mar. 16, 2017, in Chinese Patent Application No. 201280054819.5.
Office Action dated May 3, 2016, in Chilean Patent Application No. 201601057.
Office Action dated Nov. 15, 2016, in Mexican Patent Application No. MX/a/2014/003068 (with English translation).
Office Action dated Sep. 6, 2017, in Chinese Patent Application No. 2014800154012 (with English translation).
Patent Examination Report No. 1 dated Jun. 8, 2017, in Australian Patent Application No. 2012308686.
Powles et al., “Evolution in Action: Plants Resistant to Herbicides,” Annual Review of Plant Biology, 61(1):317-347 (2010).
Rakoczy-Trojanowska, “Alternative Methods of Plant Transformation—a short review,” Cellular & Molecular Biology Letters, 7:849-858 (2002).
Regalado, “The Next Great GMO Debate,” MIT Technology Review,pp. 1-19 (2015).
Search Report dated Jul. 24, 2017, in Chinese Patent Application No. 201480014392.5 (with English translation).
Statement of Grounds and Particulars dated Sep. 1, 2017, in Australian Patent No. 2014262189.
Stevens, “Formulation of Sprays to Improve the Efficacy of Foliar Fertilisers,” New Zealand Journal of Forestry Science, 24(1):27-34 (1994).
Stevens, “Organosilicone Surfactants as Adjuvants for Agrochemicals,” New Zealand Journal of Forestry Science, 24:27-34 (1994).
Summons to Attend Oral Proceedings Pursuant to Rule 115(1) EPC, dated Aug. 7, 2017, in European Patent Application No. 12832160.1.
Teng et al., “Tic21 Is an Essential Translocon Component for Protein Translocation across the Chloroplast Inner Envelope Membrane,” The Plant Cell, 18:2247-2257 (2006).
Trucco et al., “Amaranthus hybridus can be pollinated frequently by A. tuberculatus under filed conditions,” Heredity, 94:64-70 (2005).
Voinnet, “Origin, Biogenesis, and Activity of Plant MicroRNAs,” Cell, 136:669-687 (2009).
Wool et al., “Structure and evolution of mammalian ribosomal proteins,” Biochem. Cell Biol., 73:933-947 (1995).
Written Opinion dated Mar. 6, 2017, in Singaporean Patent Application No. 2012061529.
Zhong et al., A Pea Antisense Gene for the Chloroplast Stromal Processing Peptidase Yields Seedling Lethals in Arabidopsis: Survivors Show Defective GFP Import in vivo, The Plant Journal.34:802-812 (2003).
Zhang, “Artificial trans-acting small interfering RNA: a tool for plant biology study and crop improvements,” Planta, 239:1139-1146 (2014).
Anonymous, “Resistant Weeds Spur Research Into New Technologies,” Grains Research & Development Corporation, 2013.
Chang et al., “Dual-target gene silencing by using long, sythetic siRNA duplexes without triggering antiviral responses,” Molecules and Cells, 27(6) 689-695 (2009).
Cheng et al., “Transient Expression of Minimum Linear Gene Cassettes in Onion Epidermal Cells via Direct Transformation,” Appl Biochem Biotechnol, 159:739-749 (2009).
Christiaens et al., “The challenge of RNAi-mediated control of hemipterans,” Current Opinion in Insect Science, 6:15-21 (2014).
Constan et al., “An outer envelope membrane component of the plastid protein import apparatus plays an essential role in Arabidopsis,” The Plant Journal, 38:93- 106 (2004).
Database EMBL XP-002781749(BG442539) dated Mar. 20, 2001.
Eamens et al., “RNA Silencing in Plants: Yesterday, Today, and Tomorrow,” mPlant Physiology, 147(2):456-468 (2008).
Eudes et al., “Cell-penetrating peptides,” Plant Signaling & Behavior, 3(8):549-5550 (2008).
Egli et al., “A Maize Acetyl-Coenzyme A Carboxylase cDNA Sequence,” Plant Physiol., 108: 1299-1300 (1995).
European Search Report dated Jun. 29, 2018, in European Patent Application No. 18157745.3.
European Search Report dated Sep. 7, 2017, in European Patent Application No. 17152830.0.
Examination Report dated Mar. 1, 2018, in Australian Patent Application No. 2013264742.
Extended European Search Report dated Nov. 7, 2017, in European Patent Application No. 15811092.4.
Extended European Search Report dated Nov. 8, 2017, in European Patent Application No. 15737282.2.
Extended European Search Report dated Apr. 13, 2018, in European Patent Application No. 15812530.0.
Extended European Search Report dated Mar. 15, 2018, in European Patent Application No. 17181861.0.
Gallie et al., “Identification of the motifs within the tobacco mosaic virus 5′-leader responsible for enhancing translation,” Nucleic Acids Res., 20(17):4631-4638 (1992).
Gasser et al., “Structure, Expression, and Evolution of the 5-Enolpyruvylshikimate-3-phosphate Synthase Genes of Petunia and Tomato,” J. Biol. Chem., 263: 4280-4287 (1988).
Gomez-Zurita et al., “Recalibrated Tree of Leaf Beetles (Chrysomelidae) Indicates Independent Diversification of Angiosperms and Their Insect Herbivores,” PLoS One, 4(e360):1-8 (2007).
Hoermann et al., “Tic32, as Essential Component in Chloroplast Biogenesis,” The Journal of Biological Chemistry, 279(33):34756-34762 (2004).
Hu et al., “High efficiency transport of quantum dots into plant roots with the aid of silwet L-77,” Plant Physiology and Biochemistry, 48:703-709 (2010).
International Search Report and the Written Opinion dated Jul. 15 2014, in International Application No. PCT/US2014/025305.
Ivanova et al., “Members of the Toc159 Import Receptor Family Represent Distinct Pathways for Protein Targeting to Plastids,” Molecular Biology of the Cell, 15:3379-3392 (2004).
Jarvis et al, “An Arabidopsis mutant defective in the plastid general protein import apparatus,” Science, 282:100-103 (1998).
Kovacheva et al., “Further in vivo studies on the role of the molecular chaperone, Hsp93, in plastid protein import,” The Plant Journal, 50:364-379 (2007).
Kovacheva et al., “In vivo studies on the roles of Tic100, Tic40 and Hsp93 during chloroplast protein import,” The Plant Journal, 41:412-428 (2005).
Li et at., “Long dsRNA but not siRNA initiates RNAi in western corn rootworm larvae and adults,” Journal of Applied Entomology, 139(6):432-445 (2015).
Non-Final Office Action dated Mar. 21, 2018, in U.S. Appl. No. 13/619,980.
Office Action dated Aug. 9, 2018, in Canadian Patent Application No. 2,848,371.
Office Action dated Dec. 5, 2017, in Japanese Patent Application No. 2016502033.
Office Action dated Feb. 21, 2018, in Mexican Patent Application No. MX/a/2015/012632 (with English translation).
Office Action dated Jul. 30, 2018, in Canadian Patent Application No. 2,848,576.
Office Action dated Mar. 8, 2018 (with English translation), in Chilean Patent Application No. 201403192.
Partial European Search Report dated Dec. 6, 2017, in European Patent Application No. 17181861.0.
Partial Supplementary European Search Report dated Jan. 11, 2018, in European Patent Application No. 15812530.0.
Powles et al., “Evolution in Action: Plants Resistant to Herbicides,” Annual Review of Plant Biology, 61(1):317-347.
Qichuan et al., Seed Science, China Agriculture Press, pp. 101-103, Tables 2-37 (2001).
Regalado, “The Next Great GMO Debate,” MIT Technology Review,pp. 1-19 (2015) <https://www.technologyreview.com/s/540136/the-next-great-gmo-debate/>.
Reverdatto et al., “A Multisubunit Acetyl Coenzyme A Carboxylase from Soybean,” Plant Physiol., 119: 961-978 (1999).
Richardson et al., “Targeting and assembly of components of the TOC protein import complex at the chloroplast outer envelope membrane,” Frontiers in Plant Science, 5:1-14 (2014).
Search Report dated Oct. 20, 2017, in Chinese Patent Application No. 201380039346.6.
Small, “RNAi for revealing and engineering plant gene functions,” Current Opinion in Biotechnology, 18:148-153 (2007).
Stevens, “Formulation of Sprays to Improve the Efficacy of Foliar Fertilisers,” New Zealand Forest Research Institute, pp. 27-34 (1994).
Stevens, “Organosilicone Surfactants as Adjuvants for Agrochemicals,” Journal of Pesticide Science, 38:103-122 (1993).
Sun, “Characterization of Organosilicone Surfactants and Their Effects on Sulfonylurea Herbicide Activity,” Thesis Submitted to the Faculty of the Virginia Polytechnic Institute and State University dated Apr. 5, 1996.
Ulrich et al., “Large scale RNAi screen in Tribolium reveals novel target genes for pest control and the proteasome as prime target,” BMC genomics, 16(1):671 (2015).
Wang et al., “Principle and technology of genetic engineering in plants,” in Plant genetic engineering principles and techniques, Beijing: Science Press, pp. 313-315 (1998).
Zaimin et al., Chapter III Seeds and Seedlings, Botany, Northwest A&F University Press, pp. 87-92 (2009).
Zhang, Chapter 10: New Characteristics of Pesticide Research & Development, p. 209 (2010).
Zhang et al., “Development and Validation of Endogenous Reference Genes for Expression Profiling of Medaka (Oryzias latipes) Exposed to Endocrine Disrupting Chemicals by Quantitative Real-Time RT-PCR,” Toxicological Sciences, 95(2):356-368 (2007).
Zhang et al., “Progress in research of honey bee mite Varro destructor,” Journal of Environmental Entomology, 34(3):345-353 (2012).
Zotti et al., “RNAi technology for insect management and protection of beneficial insects from diseases: lessons, challenges and risk assessments,” Neotropical Entomology, 44(3):197-213 (2015).
Asad et al., “Silicon Carbide Whisker-mediated Plant Transformation,” Properties and Applicants of Silicon Carbide, pp. 345-358 (2011).
Baker, “Chlorophyll Fluorescence: A Probe of Photosynthesis In Vivo,” Annu. Rev. Plant Biol., 59:89-113 (2008).
Baum et al., “Progress Towards RNAi-Mediated Insect Pest Management,” Advances in Insect Physiology, 47:249-295 (2014).
Belhadj et al., “Methyl Jasmonate Induces Defense Responses in Grapevine and Triggers Protection against Erysiphe necator,” J. Agric Food Chem., 54:9119-9125 (2006).
Boij et al., In vivo Studies on the Roles of Tic55-Related Proteins in Chlorplast Protein Import in Arabidopsis thaliana, Molecular Plant, 2(6):1397-1409 (2009).
Burleigh, “Relative quantitative RT-PCR to study the expression of plant nutrient transporters in arbuscular mycorrhizas,” Plant Science, 160: 899- 904 (2001).
Communication Pursuant to Article 94(3) EPC dated Sep. 5, 2018, in European Patent Application No. 17152830.0.
Declaration of Jerzy Zabkiewicz executed Nov. 28, 2017, as filed by Opponent in Australian Patent Application No. 2014262189, pp. 1-4.
Declaration of Jerzy Zabkiewicz executed Nov. 28, 2017, as filed by Opponent in Australian Patent Application No. 2014262189, pp. 1-73.
Declaration of Neena Miller executed Nov. 30, 2017, as filed by Opponent in Australian Patent Application No. 2014262189, pp. 1-114.
Declaration of Neena Miller executed Nov. 30, 2017, as filed by Opponent in Australian Patent Application No. 2014262189, pp. 1-25.
Delye et al., “PCR-based detection of resistance to acetyl-CoA carboxylase-inhibiting herbicides in black-grass (Alopecurus myosuroides Huds) and ryegrass (Lolium rigidum Gaud),” Pest Management Science, 58:474-478 (2002).
Delye et al., “Variation in the gene encoding acetolactate-synthase in Lolium species and proactive detection of mutant, herbicide-resistant alleles,” Weed Research, 49:326-336 (2009).
Desveaux et al., “PBF-2 Is a Novel Single-Stranded DNA Binding Factor Implicated in PR-10a Gene Activation in Potato,” The Plant Cell, 12:1477-1489 (2000).
Dietzgen et al., “Transgenic gene silencing strategies for virus control,” Australasian Plant Pathology, 35:605-618 (2006).
Dilpreet et al., “Glyphosate Resistance in a Johnsongrass (Sorghum halepense) Biotype from Arkansas,” Weed Science, 59(3):299-304 (2011).
Drobyazko R.V., “Reliable and environmentally friendly insecticide,” Protection and quarantine of plants, 2012 (pp. 52, 53) (in Russian).
Duhoux et al., “Reference Genes to Study Herbicide Stress Response in Lolium sp.: Up-Regulation of P3450 Genes in Plants Resistant to Acetolactate-Synthase Inhibitors,” PLOS One, 8(5):e63576 (2013).
Extended European Search Report dated Dec. 19, 2018, in European Patent Application No. 16804395.8.
Extended European Search Report dated Nov. 16, 2018, in European Patent Application No. 18182238.8.
Extended European Search Report dated Nov. 21, 2018, in European Patent Application No. 18175809.5.
Extended European Search Report dated Sep. 28, 2018, in European Patent Application No. 16740770.9.
Gan et al., “Bacterially expressed dsRNA protects maize against SCMV infection,” Plant Cell Rep, 29(11): 1261-1268 (2010).
Gilmer et al., “Latent Viruses of Apple I. Detection with Woody Indicators,” Plant Pathology, 1(10): 1-9 (1971).
Guttieri et al., “DNA Sequence Variation in Domain A of the Acetolactate Synthase Genes of Herbicide-Resistant and -Susceptible Weed Biotypes,” Weed Science, 40:670-679 (1992).
Huggett et al., “Real-time RT-PCR normalisation; strategies and considerations,” Genes and Immunity, 6:279-284 (2005).
Jiang et al., Chapter III Seeds and Seedlings, Botany, Northwest A&F University Press, pp. 87-92 (2009).
Kasmati et al. Molecular and Genetic Analysis of Tic20 Homologues in Arabidopsis thaliana Chloroplasts, The Plant Journal, 66:877-889 (2011).
Kim et al. “Rice chloroplast-localized heat shock protein 70, OsHsp70CP1, is essential for chloroplast development under high-temperature conditions,” Journal of Plant Physiology, 170:854-86 (2013).
Kim et al., “Synthesis and characterization of mannosylated pegylated polyethylenimine as a carrier for siRNA,” International Journal of Pharmaceutics, 427:123-133 (2012).
Kirkwood, “Recent developments in our understanding of the plant cuticle as a barrier to the foliar uptake of pesticides,” Pestic Sci, 55:69-77 (1999).
Koehler et al. “Characterization of Chloroplast Protein Import without Tic56, a Component of the 1-Megadalton Transcolon at the Inner Envelope Membrane of Chloroplasts,” Plant Physiology, 167:972-990 (2015).
Kubis et al. Functional Specialization amongst the Arabidopsis Toc159 Family of Chloroplasts Protein Import Receptors, The Plant Cell, 16:2059-2077 (2004).
Kumar et al., “Sequencing, De Novo Assembly and Annotation of the Colorado Potato Beetle, Leptinotarsa decemlineata,Transcriptome,” PLoS One, 9(1):e86012 (2014).
Lintala et al., “Arabidopsis TiC62 Trol Mutant Lacking Thylakoid-Bound Ferredoxin-NADP+ Oxidoreductase Shows Distinct Metabolic Phenotype,” Molecular Plant 7(1):45-57 (2014).
Liu, “The Transformation of Nucleic Acid Degradants in Plants,” China Organic Fertilizers, Agriculture Press, ISBN: 7-1091634 (1991) (with English translation).
Liu, “Calmodulin and Cell Cycle,” Foreign Medical Sciences Section of Pathophysiology and Clinical Medicine, 18(4):322-324 (1998).
Liu, “Confocal laser scanning microscopy—an attractive tool for studying the uptake of xenobiotics into plant foliage,” Journal of Microscopy, 213(pt 2):87-93 (2004).
Lloyd et al. “A Comprehensive Dataset of Genes with a Loss of Function Mutant Phenotype in Arabidopsis,” Plant Physiology 158:1115-1129 (2012).
Lodish et al., Molecular Cell Biology, Fourth Edition, p. 210 (2000).
Lucas et al., “Plasmodesmata—bridging the gap between neighboring plant cells,” Trends in Cell Biology, 19:495-503 (2009).
Morozov et al., “Evaluation of Preemergence Herbicides for Control of Diclofop-resistant Italian Ryegrass (Lolium multiflorum) in Virginia,” Virginia Polytechnic Institute and State University, pp. 43-71 (2004).
Nemeth, “Virus, mycoplasma and rickettsia diseases of fruit trees,” Martinus Nijhoff Publishers, 197 -204 (1986).
N-TER Nanoparticle siRNA, Sigma Aldrich TM website, Web. Nov. 20, 2018 <https://www.sigmaaldrich.com/life-science/custom-oligos/sirna-oligos/n-ter-nanoparticle.html>.
Office Action dated Sep. 20, 2018, in Chilean Patent Application No. 201601440 (with English translation).
Partial European Search Report dated Jun. 29, 2018, in European Patent Application No. 18157745.3.
Pratt et al., “Sorghum Expressed Sequence Tags Identify Signature Genes for Drought, Pathogenesis, and Skotomorphogenesis from a Milestone Set of 16,801 Unique Transcripts,” Plant Physiology, 139:869-884 (2005).
Rudolf et al., “In Vivo Function of Tic22, a Protein Import Component of the Intermembrane Space of Chloroplasts,” 6(3):817-829 (2013).
Schönherr et al., “Size selectivity of aqueous pores in astomatous cuticular membranes isolated from Populus canescens (Aiton) Sm. Leaves,” Planta, 219:405-411 (2004).
Simeoni et al., “Insight into the mechanism of the peptide-based gene delivery system MPG: implications for delivery of siRNA into mammalian cells,” Nucleic Acids Research, 31(10:2717-2724 (2003).
Sommer et al., “Toc33 and Toc64-III cooperate in precursor protein import into the chloroplasts of Arabidopsis thaliana,” Plant, Cell and Environment, 970-983 (2013).
Tice, “Selecting the right compounds for screening: does Lipinski's Rule of 5 for pharmaceuticals apply to agrochemicals?” Pest Management Science, 57(1):3-16 (2001).
Troesch et al., “The Stromal Processing Peptidase of Chloroplasts is Essential in Arabidopsis, with Knockout Mutations Causing Embryo Arrest After the 16-Cell Stage,” PLos One, 6(8) 1-9 (2011).
Watson et al., “RNA silencing platforms in plants,” FEBS Letters, 579:5982-5987 (2005).
Yan et al., Seed Science, China Agriculture Press, pp. 101-103, Tables 2-37 (2001).
Yu et al., “Diversity of Acetyl-Coenzyme A Carboxylase Mutations in Resistant Lolium Populations: Evaluation Using Clethodim,” Plant Physiology, 145:547-558 (2007).
Yu et al., “Glyphosate, paraquat and ACCase multiple herbicide resistance evolved in a Lolium rigidum biotype,” Planta, 225:499-513 (2007).
Zabkiewicz, “Adjuvants and herbicidal efficacy—present status and future prospects,” Weed Research, 40:139-149 (2000).
Zhao et al., “Ps0r1, a potential target for RNA interference-based pest management,” Insect Molecular Biology, 20(1):97-104 (2011).
Zhao et al., “Vegetable Standardized Production Technology,” Hangzhou: Zhejiang Science and Technology Press, p. 19 (2008).
Related Publications (1)
Number Date Country
20140274712 A1 Sep 2014 US
Provisional Applications (1)
Number Date Country
61787620 Mar 2013 US