Methods and compositions for weed control

Information

  • Patent Grant
  • 10808249
  • Patent Number
    10,808,249
  • Date Filed
    Thursday, September 13, 2012
    12 years ago
  • Date Issued
    Tuesday, October 20, 2020
    4 years ago
Abstract
Provided are novel compositions for use to enhance weed control. Specifically, the present invention provides for methods and compositions that modulate Phytoene desaturase in weed species. The present invention also provides for combinations of compositions and methods that enhance weed control.
Description
FIELD

The methods and compositions generally relate to the field of weed management. More specifically, related to phytoene desaturase (PDS) genes in plants and compositions containing polynucleotide molecules for modulating their expression. Further provided are methods and compositions useful for weed control.


BACKGROUND

Weeds are plants that compete with cultivated plants in an agronomic environment and cost farmers billions of dollars annually in crop losses and the expense of efforts to keep weeds under control. Weeds also serve as hosts for crop diseases and insect pests. The losses caused by weeds in agricultural production environments include decreases in crop yield, reduced crop quality, increased irrigation costs, increased harvesting costs, reduced land value, injury to livestock, and crop damage from insects and diseases harbored by the weeds. The principal means by which weeds cause these effects are: 1) competing with crop plants for water, nutrients, sunlight and other essentials for growth and development, 2) production of toxic or irritant chemicals that cause human or animal health problem, 3) production of immense quantities of seed or vegetative reproductive parts or both that contaminate agricultural products and perpetuate the species in agricultural lands, and 4) production on agricultural and nonagricultural lands of vast amounts of vegetation that must be disposed of. Herbicide tolerant weeds are a problem with nearly all herbicides in use, there is a need to effectively manage these weeds. There are over 365 weed biotypes currently identified as being herbicide resistant to one or more herbicides by the Herbicide Resistance Action Committee (HRAC), the North American Herbicide Resistance Action Committee (NAHRAC), and the Weed Science Society of America (WSSA).


The phytoene desaturase (PDS) enzyme is an essential enzyme in the carotenoid biosysnthesis pathway. This enzyme is the target of herbicides that include Pyridazinones, Pyridinecarboxamides, beflubutamid, fluridone, fluorochloridone and flurtamone.





BRIEF DESCRIPTION OF THE FIGURES

The following drawings form part of the present specification and are included to further demonstrate certain aspects of the present invention. The invention may be better understood by reference to one or more of these drawings in combination with the detailed description of specific embodiments presented herein. The invention can be more fully understood from the following description of the figures:



FIG. 1. Treatment of Amaranthus palmeri with ssDNA trigger polynucleotides and PDS inhibitor herbicide, norflurazon.



FIG. 2. Dandelion and Prickly lettuce treated with PDS ssDNA oligonucleotides





SUMMARY

In one aspect, the invention provides a method of plant control comprising an external application to a plant of a composition comprising a polynucleotide and a transfer agent, wherein the polynucleotide is essentially identical or essentially complementary to a PDS gene sequence or fragment thereof, or to the RNA transcript of said PDS gene sequence or fragment thereof, wherein said PDS gene sequence is selected from the group consisting of SEQ ID NO:1-78 and 2138 or a polynucleotide fragment thereof, whereby the plant growth or development or reproductive ability is reduced or the plant is made more sensitive to a PDS inhibitor herbicide relative to a plant not treated with said composition. In this manner, plants that have become resistant to the application of PDS containing herbicides may be made more susceptible to the herbicidal effects of a PDS inhibitor containing herbicide, thus potentiating the effect of the herbicide. The polynucleotide fragment is at least 18 contiguous nucleotides, at least 19 contiguous nucleotides, at least 20 contiguous nucleotides or at least 21 contiguous nucleotides in length and at least 85 percent identical to a PDS gene sequence selected from the group consisting of SEQ ID NO:1-78 and 2138 and the transfer agent is an organosilicone composition or compound. The polynucleotide fragment can also be sense or anti-sense ssDNA or ssRNA, dsRNA, or dsDNA, or dsDNA/RNA hybrids. The composition can include more than one polynucleotide fragments, and the composition can include a PDS inhibitor herbicide and/or other herbicides (co-herbicides) that enhance the plant control activity of the composition.


In another aspect, polynucleotide molecules and methods for modulating PDS gene expression in plant species are provided. The method reduces, represses or otherwise delays expression of a PDS gene in a plant comprising an external application to such plant of a composition comprising a polynucleotide and a transfer agent, wherein the polynucleotide is essentially identical or essentially complementary to a PDS gene sequence or fragment thereof, or to the RNA transcript of the PDS gene sequence or fragment thereof, wherein the PDS gene sequence is selected from the group consisting of SEQ ID NO:1-78 and 2138 or a polynucleotide fragment thereof. The polynucleotide fragment is at least 18 contiguous nucleotides, at least 19 contiguous nucleotides, at least 20 contiguous nucleotides at least 21 contiguous nucleotides in length and at least 85 percent identical to a PDS gene sequence selected from the group consisting of SEQ ID NO:1-78 and 2138 and the transfer agent is an organosilicone compound. The polynucleotide fragment can also be sense or anti-sense ssDNA or ssRNA, dsRNA, or dsDNA, or dsDNA/RNA hybrids. Polynucleotide molecules comprising SEQ ID NOs 79-2010 are fragments of the PDS gene.


In a further aspect, the polynucleotide molecule containing composition may be combined with other herbicidal (co-herbicides) compounds to provide additional control of unwanted plants in a field of cultivated plants.


In a further aspect, the polynucleotide molecule composition may be combined with any one or more additional agricultural chemicals, such as, insecticides, fungicides, nematocides, bactericides, acaricides, growth regulators, chemosterilants, semiochemicals, repellents, attractants, pheromones, feeding stimulants, biopesticides, microbial pesticides or other biologically active compounds to form a multi-component pesticide giving an even broader spectrum of agricultural protection.


DETAILED DESCRIPTION

Provided are methods and compositions containing a polynucleotide that provide for regulation, repression or delay of PDS (phytoene desaturase) gene expression and enhanced control of weedy plant species and importantly PDS inhibitor resistant weed biotypes. Aspects of the method can be applied to manage various weedy plants in agronomic and other cultivated environments.


The following definitions and methods are provided to better define the present invention and to guide those of ordinary skill in the art in the practice of the present invention. Unless otherwise noted, terms are to be understood according to conventional usage by those of ordinary skill in the relevant art. Where a term is provided in the singular, the inventors also contemplate aspects of the invention described by the plural of that term.


By “non-transcribable” polynucleotides is meant that the polynucleotides do not comprise a complete polymerase II transcription unit. As used herein “solution” refers to homogeneous mixtures and non-homogeneous mixtures such as suspensions, colloids, micelles, and emulsions.


Weedy plants are plants that compete with cultivated plants, those of particular importance include, but are not limited to important invasive and noxious weeds and herbicide resistant biotypes in crop production, such as, Amaranthus species—A. albus, A. blitoides, A. hybridus, A. palmeri, A. powellii, A. retroflexus, A. spinosus, A. tuberculatus, and A. viridis; Ambrosia species—A. trifida, A. artemisifolia; Lolium species—L. multiflorum, L. rigidium, L perenne; Digitaria species—D. insularis; Euphorbia species—E. heterophylla; Kochia species—K. scoparia; Sorghum species—S. halepense; Conyza species—C. bonariensis, C. canadensis, C. sumatrensis; Chloris species—C. truncate; Echinochola species—E. colona, E. crus-galli; Eleusine species—E. indica; Poa species—P. annua; Plantago species—P. lanceolata; Avena species—A. fatua; Chenopodium species—C. album; Setaria species—S. viridis, Abutilon theophrasti, Ipomoea species, Sesbania, species, Cassia species, Sida species, Brachiaria, species and Solanum species.


Additional weedy plant species found in cultivated areas include Alopecurus myosuroides, Avena sterilis, Avena sterilis ludoviciana, Brachiaria plantaginea, Bromus diandrus, Bromus rigidus, Cynosurus echinatus, Digitaria ciliaris, Digitaria ischaemum, Digitaria sanguinalis, Echinochloa oryzicola, Echinochloa phyllopogon, Eriochloa punctata, Hordeum glaucum, Hordeum leporinum, Ischaemum rugosum, Leptochloa chinensis, Lolium persicum, Phalaris minor, Phalaris paradoxa, Rottboellia exalta, Setaria faberi, Setaria viridis var, robusta-alba schreiber, Setaria viridis var, robusta-purpurea, Snowdenia polystachea, Sorghum sudanese, Alisma plantago-aquatica, Amaranthus lividus, Amaranthus quitensis, Ammania auriculata, Ammania coccinea, Anthemis cotula, Apera spica-venti, Bacopa rotundifolia, Bidens pilosa, Bidens subalternans, Brassica tournefortii, Bromus tectorum, Camelina microcarpa, Chrysanthemum coronarium, Cuscuta campestris, Cyperus difformis, Damasonium minus, Descurainia sophia, Diplotaxis tenuifolia, Echium plantagineum, Elatine triandra var, pedicellate, Euphorbia heterophylla, Fallopia convolvulus, Fimbristylis miliacea, Galeopsis tetrahit, Galium spurium, Helianthus annuus, Iva xanthifolia, Ixophorus unisetus, Ipomoea indica, Ipomoea purpurea, Ipomoea sepiaria, Ipomoea aquatic, Ipomoea triloba, Lactuca serriola, Limnocharis flava, Limnophila erecta, Limnophila sessiliflora, Lindernia dubia, Lindernia dubia var, major, Lindernia micrantha, Lindernia procumbens, Mesembryanthemum crystallinum, Monochoria korsakowii, Monochoria vaginalis, Neslia paniculata, Papaver rhoeas, Parthenium hysterophorus, Pentzia suffruticosa, Phalaris minor, Raphanus raphanistrum, Raphanus sativus, Rapistrum rugosum, Rotala indica var, uliginosa, Sagittaria guyanensis, Sagittaria montevidensis, Sagittaria pygmaea, Salsola iberica, Scirpus juncoides var, ohwianus, Scirpus mucronatus, Setaria lutescens, Sida spinosa, Sinapis arvensis, Sisymbrium orientale, Sisymbrium thellungii, Solanum ptycanthum, Sonchus aspen, Sonchus oleraceus, Sorghum bicolor, Stellaria media, Thlaspi arvense, Xanthium strumarium, Arctotheca calendula, Conyza sumatrensis, Crassocephalum crepidiodes, Cuphea carthagenenis, Epilobium adenocaulon, Erigeron philadelphicus, Landoltia punctata, Lepidium virginicum, Monochoria korsakowii, Solanum americanum, Solanum nigrum, Vulpia bromoides, Youngia japonica, Hydrilla verticillata, Carduus nutans, Carduus pycnocephalus, Centaurea solstitialis, Cirsium arvense, Commelina diffusa, Convolvulus arvensis, Daucus carota, Digitaria ischaemum, Echinochloa crus-pavonis, Fimbristylis miliacea, Galeopsis tetrahit, Galium spurium, Limnophila erecta, Matricaria perforate, Papaver rhoeas, Ranunculus acris, Soliva sessilis, Sphenoclea zeylanica, Stellaria media, Nassella trichotoma, Stipa neesiana, Agrostis stolonifera, Polygonum aviculare, Alopecurus japonicus, Beckmannia syzigachne, Bromus tectorum, Chloris inflate, Echinochloa erecta, Portulaca oleracea, and Senecio vulgaris. It is believed that all plants contain a phytoene desaturase gene in their genome, the sequence of which can be isolated and polynucleotides made according to the methods of the present invention that are useful for regulation, suppressing or delaying the expression of the target PDS gene in the plants and the growth or development of the treated plants.


Some cultivated plants may also be weedy plants when they occur in unwanted environments. For example, corn plants growing in a soybean field. Transgenic crops with one or more herbicide tolerances will need specialized methods of management to control weeds and volunteer crop plants.


A “trigger” or “trigger polynucleotide” is a polynucleotide molecule that is homologous or complementary to a target gene polynucleotide. The trigger polynucleotide molecules modulate expression of the target gene when topically applied to a plant surface with a transfer agent, whereby a plant treated with said composition has its growth or development or reproductive ability regulated, suppressed or delayed or said plant is more sensitive to a PDS inhibitor herbicide as a result of said polynucleotide containing composition relative to a plant not treated with a composition containing the trigger molecule. Trigger polynucleotides disclosed herein are generally described in relation to the target gene sequence and maybe used in the sense (homologous) or antisense (complementary) orientation as single stranded molecules or comprise both strands as double stranded molecules or nucleotide variants and modified nucleotides thereof depending on the various regions of a gene being targeted.


It is contemplated that the composition will contain multiple polynucleotides and herbicides that include but not limited to PDS gene trigger polynucleotides and a PDS inhibitor herbicide and anyone or more additional herbicide target gene trigger polynucleotides and the related herbicides and anyone or more additional essential gene trigger polynucleotides. Essential genes are genes in a plant that provide key enzymes or other proteins, for example, a biosynthetic enzyme, metabolizing enzyme, receptor, signal transduction protein, structural gene product, transcription factor, or transport protein; or regulating RNAs, such as, microRNAs, that are essential to the growth or survival of the organism or cell or involved in the normal growth and development of the plant (Meinke, et al., Trends Plant Sci. 2008 September; 13(9):483-91). The suppression of an essential gene enhances the effect of a herbicide that affects the function of a gene product different than the suppressed essential gene. The compositions of the present invention can include various trigger polynucleotides that modulate the expression of an essential gene other than a PDS gene.


Herbicides for which transgenes for plant tolerance have been demonstrated and the method of the present invention can be applied, include but are not limited to: auxin-like herbicides, glyphosate, glufosinate, sulfonylureas, imidazolinones, bromoxynil, delapon, dicamba, cyclohezanedione, protoporphyrionogen oxidase inhibitors, 4-hydroxyphenyl-pyruvate-dioxygenase inhibitors herbicides. For example, transgenes and their polynucleotide molecules that encode proteins involved in herbicide tolerance are known in the art, and include, but are not limited to an 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), for example, as more fully described in U.S. Pat. No. 7,807,791 (SEQ ID NO:5); U.S. Pat. Nos. 6,248,876 B1; 5,627,061; 5,804,425; 5,633,435; 5,145,783; 4,971,908; 5,1062,910; 5,188,642; 4,940,835; 5,866,775; 6,225,114 B1; 6,130,366; 5,1060,667; 4,535,060; 4,769,061; 5,633,448; 5,510,471; U.S. Pat. No. Re. 36,449; U.S. Pat. Nos. RE 37,287 E; and 5,491,288; tolerance to sulfonylurea and/or imidazolinone, for example, as described more fully in U.S. Pat. Nos. 5,605,011; 5,013,659; 5,141,870; 5,767,361; 5,7106,180; 5,304,732; 4,761,373; 5,3106,107; 5,928,937; and 5,378,824; and international publication WO 96/33270; tolerance to hydroxyphenylpyruvatedioxygenases inhibiting herbicides in plants are described in U.S. Pat. Nos. 6,245,968 B1; 6,268,549; and 6,069,115; US Pat. Pub. 20110191897 and U.S. Pat. No. 7,1062,379 SEQ ID NO:3; U.S. Pat. Nos. 7,935,869; 7,304,209, SEQ ID NO:1, 3, 5 and 15; aryloxyalkanoate dioxygenase polynucleotides, which confer tolerance to 2,4-D and other phenoxy auxin herbicides as well as to aryloxyphenoxypropionate herbicides as described, for example, in WO2005/107437; U.S. Pat. No. 7,838,733 SEQ ID NO:5) and dicamba-tolerance polynucleotides as described, for example, in Herman et al. (2005) J. Biol. Chem. 280: 24759-24767. Other examples of herbicide-tolerance traits include those conferred by polynucleotides encoding an exogenous phosphinothricin acetyltransferase, as described in U.S. Pat. Nos. 5,969,213; 5,489,520; 5,550,1068; 5,874,265; 5,919,675; 5,561,236; 5,648,477; 5,646,024; 6,177,616; and 5,879,903. Plants containing an exogenous phosphinothricin acetyltransferase can exhibit improved tolerance to glufosinate herbicides, which inhibit the enzyme glutamine synthase. Additionally, herbicide-tolerance polynucleotides include those conferred by polynucleotides conferring altered protoporphyrinogen oxidase (protox) activity, as described in U.S. Pat. Nos. 6,288,306 B1; 6,282,837 B1; and 5,767,373; and WO 01/12825. Plants containing such polynucleotides can exhibit improved tolerance to any of a variety of herbicides which target the protox enzyme (also referred to as protox inhibitors). Polynucleotides encoding a glyphosate oxidoreductase and a glyphosate-N-acetyl transferase (GOX described in U.S. Pat. No. 5,463,175 and GAT described in U.S. Patent publication 20030083480, dicamba monooxygenase U.S. Patent publication 20030135879, all of which are incorporated herein by reference); a polynucleotide molecule encoding bromoxynil nitrilase (Bxn described in U.S. Pat. No. 4,810,648 for Bromoxynil tolerance, which is incorporated herein by reference); a polynucleotide molecule encoding phytoene desaturase (crtI) described in Misawa et al, (1993) Plant J. 4:833-840 and Misawa et al, (1994) Plant J. 6:481-489 for norflurazon tolerance; a polynucleotide molecule encoding acetohydroxyacid synthase (AHAS, aka ALS) described in Sathasiivan et al. (1990) Nucl. Acids Res. 18:1068-2193 for tolerance to sulfonylurea herbicides; and the bar gene described in DeBlock, et al. (1987) EMBO J. 6:2513-2519 for glufosinate and bialaphos tolerance. The transgenic coding regions and regulatory elements of the herbicide tolerance genes are targets in which polynucleotide triggers and herbicides can be included in the composition of the present invention.


PDS inhibitor herbicides include but are not limited to norflurazon, diflufenican, picolinafen, beflubutamid, fluridone, fluorochloridone and flurtamone.


Numerous herbicides with similar or different modes of action (herein referred to as co-herbicides) are available that can be added to the composition of the present invention, for example, members of the herbicide families that include but are not limited to amide herbicides, aromatic acid herbicides, arsenical herbicides, benzothiazole herbicides, benzoylcyclohexanedione herbicides, benzofuranyl alkylsulfonate herbicides, carbamate herbicides, cyclohexene oxime herbicides, cyclopropylisoxazole herbicides, dicarboximide herbicides, dinitroaniline herbicides, dinitrophenol herbicides, diphenyl ether herbicides, dithiocarbamate herbicides, halogenated aliphatic herbicides, imidazolinone herbicides, inorganic herbicides, nitrile herbicides, organophosphorus herbicides, oxadiazolone herbicides, oxazole herbicides, phenoxy herbicides, phenylenediamine herbicides, pyrazole herbicides, pyridazine herbicides, pyridazinone herbicides, pyridine herbicides, pyrimidinediamine herbicides, pyrimidinyloxybenzylamine herbicides, quaternary ammonium herbicides, thiocarbamate herbicides, thiocarbonate herbicides, thiourea herbicides, triazine herbicides, triazinone herbicides, triazole herbicides, triazolone herbicides, triazolopyrimidine herbicides, uracil herbicides, and urea herbicides. In particular, the rates of use of the added herbicides can be reduced in compositions comprising the polynucleotides of the invention. Use rate reductions of the additional added herbicides can be 10-25 percent, 26-50 percent, 51-75 percent or more can be achieved that enhance the activity of the polynucleotides and herbicide composition and is contemplated as an aspect of the invention. Representative co-herbicides of the families include but are not limited to acetochlor, acifluorfen, acifluorfen-sodium, aclonifen, acrolein, alachlor, alloxydim, allyl alcohol, ametryn, amicarbazone, amidosulfuron, aminopyralid, amitrole, ammonium sulfamate, anilofos, asulam, atraton, atrazine, azimsulfuron, BCPC, beflubutamid, benazolin, benfluralin, benfuresate, bensulfuron, bensulfuron-methyl, bensulide, bentazone, benzfendizone, benzobicyclon, benzofenap, bifenox, bilanafos, bispyribac, bispyribac-sodium, borax, bromacil, bromobutide, bromoxynil, butachlor, butafenacil, butamifos, butralin, butroxydim, butylate, cacodylic acid, calcium chlorate, cafenstrole, carbetamide, carfentrazone, carfentrazone-ethyl, CDEA, CEPC, chlorflurenol, chlorflurenol-methyl, chloridazon, chlorimuron, chlorimuron-ethyl, chloroacetic acid, chlorotoluron, chlorpropham, chlorsulfuron, chlorthal, chlorthal-dimethyl, cinidon-ethyl, cinmethylin, cinosulfuron, cisanilide, clethodim, clodinafop, clodinafop-propargyl, clomazone, clomeprop, clopyralid, cloransulam, cloransulam-methyl, CMA, 4-CPB, CPMF, 4-CPP, CPPC, cresol, cumyluron, cyanamide, cyanazine, cycloate, cyclosulfamuron, cycloxydim, cyhalofop, cyhalofop-butyl, 2,4-D, 3,4-DA, daimuron, dalapon, dazomet, 2,4-DB, 3,4-DB, 2,4-DEB, desmedipham, dicamba, dichlobenil, ortho-dichlorobenzene, para-dichlorobenzene, dichlorprop, dichlorprop-P, diclofop, diclofop-methyl, diclosulam, difenzoquat, difenzoquat metilsulfate, diflufenican, diflufenzopyr, dimefuron, dimepiperate, dimethachlor, dimethametryn, dimethenamid, dimethenamid-P, dimethipin, dimethylarsinic acid, dinitramine, dinoterb, diphenamid, diquat, diquat dibromide, dithiopyr, diuron, DNOC, 3,4-DP, DSMA, EBEP, endothal, EPTC, esprocarb, ethalfluralin, ethametsulfuron, ethametsulfuron-methyl, ethofumesate, ethoxyfen, ethoxysulfuron, etobenzanid, fenoxaprop-P, fenoxaprop-P-ethyl, fentrazamide, ferrous sulfate, flamprop-M, flazasulfuron, florasulam, fluazifop, fluazifop-butyl, fluazifop-P, fluazifop-P-butyl, flucarbazone, flucarbazone-sodium, flucetosulfuron, fluchloralin, flufenacet, flufenpyr, flufenpyr-ethyl, flumetsulam, flumiclorac, flumiclorac-pentyl, flumioxazin, fluometuron, fluoroglycofen, fluoroglycofen-ethyl, flupropanate, flupyrsulfuron, flupyrsulfuron-methyl-sodium, flurenol, fluridone, fluorochloridone, fluoroxypyr, flurtamone, fluthiacet, fluthiacet-methyl, fomesafen, foramsulfuron, fosamine, glufosinate, glufosinate-ammonium, glyphosate, halosulfuron, halosulfuron-methyl, haloxyfop, haloxyfop-P, HC-252, hexazinone, imazamethabenz, imazamethabenz-methyl, imazamox, imazapic, imazapyr, imazaquin, imazethapyr, imazosulfuron, indanofan, iodomethane, iodosulfuron, iodosulfuron-methyl-sodium, ioxynil, isoproturon, isouron, isoxaben, isoxachlortole, isoxaflutole, karbutilate, lactofen, lenacil, linuron, MAA, MAMA, MCPA, MCPA-thioethyl, MCPB, mecoprop, mecoprop-P, mefenacet, mefluidide, mesosulfuron, mesosulfuron-methyl, mesotrione, metam, metamifop, metamitron, metazachlor, methabenzthiazuron, methylarsonic acid, methyldymron, methyl isothiocyanate, metobenzuron, metolachlor, S-metolachlor, metosulam, metoxuron, metribuzin, metsulfuron, metsulfuron-methyl, MK-66, molinate, monolinuron, MSMA, naproanilide, napropamide, naptalam, neburon, nicosulfuron, nonanoic acid, norflurazon, oleic acid (fatty acids), orbencarb, orthosulfamuron, oryzalin, oxadiargyl, oxadiazon, oxasulfuron, oxaziclomefone, oxyfluorfen, paraquat, paraquat dichloride, pebulate, pendimethalin, penoxsulam, pentachlorophenol, pentanochlor, pentoxazone, pethoxamid, petrolium oils, phenmedipham, phenmedipham-ethyl, picloram, picolinafen, pinoxaden, piperophos, potassium arsenite, potassium azide, pretilachlor, primisulfuron, primisulfuron-methyl, prodiamine, profluazol, profoxydim, prometon, prometryn, propachlor, propanil, propaquizafop, propazine, propham, propisochlor, propoxycarbazone, propoxycarbazone-sodium, propyzamide, prosulfocarb, prosulfuron, pyraclonil, pyraflufen, pyraflufen-ethyl, pyrazolynate, pyrazosulfuron, pyrazosulfuron-ethyl, pyrazoxyfen, pyribenzoxim, pyributicarb, pyridafol, pyridate, pyriftalid, pyriminobac, pyriminobac-methyl, pyrimisulfan, pyrithiobac, pyrithiobac-sodium, quinclorac, quinmerac, quinoclamine, quizalofop, quizalofop-P, rimsulfuron, sethoxydim, siduron, simazine, simetryn, SMA, sodium arsenite, sodium azide, sodium chlorate, sulcotrione, sulfentrazone, sulfometuron, sulfometuron-methyl, sulfosate, sulfosulfuron, sulfuric acid, tar oils, 2,3,6-TBA, TCA, TCA-sodium, tebuthiuron, tepraloxydim, terbacil, terbumeton, terbuthylazine, terbutryn, thenylchlor, thiazopyr, thifensulfuron, thifensulfuron-methyl, thiobencarb, tiocarbazil, topramezone, tralkoxydim, tri-allate, triasulfuron, triaziflam, tribenuron, tribenuron-methyl, tricamba, triclopyr, trietazine, trifloxysulfuron, trifloxysulfuron-sodium, trifluralin, triflusulfuron, triflusulfuron-methyl, trihydroxytriazine, tritosulfuron, [3-[2-chloro-4-fluoro-5-(-methyl-6-trifluoromethyl-2,4-dioxo-,2,3,4-t-etrahydropyrimidin-3-yl)phenoxy]-2-pyridyloxy]acetic acid ethyl ester (CAS RN 353292-3-6), 4-[(4,5-dihydro-3-methoxy-4-methyl-5-oxo)-H-,2,4-triazol-ylcarbonyl-sulfamoyl]-5-methylthiophene-3-carboxylic acid (BAY636), BAY747 (CAS RN 33504-84-2), topramezone (CAS RN 2063-68-8), 4-hydroxy-3-[[2-[(2-methoxyethoxy)methyl]-6-(trifluoro-methyl)-3-pyridi-nyl]carbonyl]-bicyclo[3.2.]oct-3-en-2-one (CAS RN 35200-68-5), and 4-hydroxy-3-[[2-(3-methoxypropyl)-6-(difluoromethyl)-3-pyridinyl]carbon-yl]-bicyclo[3.2.]oct-3-en-2-one. Additionally, including herbicidal compounds of unspecified modes of action as described in CN101279950A, CN101279951A, DE10000600A1, DE10116399A1, DE102004054666A1, DE102005014638A1, DE102005014906A1, DE102007012168A1, DE102010042866A1, DE10204951A1, DE10234875A1, DE10234876A1, DE10256353A1, DE10256354A1, DE10256367A1, EP1157991A2, EP1238586A1, EP2147919A1, EP2160098A2, JP03968012B2, JP2001253874A, JP2002080454A, JP2002138075A, JP2002145707A, JP2002220389A, JP2003064059A, JP2003096059A, JP2004051628A, JP2004107228A, JP2005008583A, JP2005239675A, JP2005314407A, JP2006232824A, JP2006282552A, JP2007153847A, JP2007161701A, JP2007182404A, JP2008074840A, JP2008074841A, JP2008133207A, JP2008133218A, JP2008169121A, JP2009067739A, JP2009114128A, JP2009126792A, JP2009137851A, US20060111241A1, US20090036311A1, US20090054240A1, US20090215628A1, US20100099561A1, US20100152443A1, US20110105329A1, US20110201501A1, WO2001055066A2, WO2001056975A1, WO2001056979A1, WO2001090071A2, WO2001090080A1, WO2002002540A1, WO2002028182A1, WO2002040473A1, WO2002044173A2, WO2003000679A2, WO2003006422A1, WO2003013247A1, WO2003016308A1, WO2003020704A1, WO2003022051A1, WO2003022831A1, WO2003022843A1, WO2003029243A2, WO2003037085A1, WO2003037878A1, WO2003045878A2, WO2003050087A2, WO2003051823A1, WO2003051824A1, WO2003051846A2, WO2003076409A1, WO2003087067A1, WO2003090539A1, WO2003091217A1, WO2003093269A2, WO2003104206A2, WO2004002947A1, WO2004002981A2, WO2004011429A1, WO2004029060A1, WO2004035545A2, WO2004035563A1, WO2004035564A1, WO2004037787A1, WO2004067518A1, WO2004067527A1, WO2004077950A1, WO2005000824A1, WO2005007627A1, WO2005040152A1, WO2005047233A1, WO2005047281A1, WO2005061443A2, WO2005061464A1, WO2005068434A1, WO2005070889A1, WO2005089551A1, WO2005095335A1, WO2006006569A1, WO2006024820A1, WO2006029828A1, WO2006029829A1, WO2006037945A1, WO2006050803A1, WO2006090792A1, WO2006123088A2, WO2006125687A1, WO2006125688A1, WO2007003294A1, WO2007026834A1, WO2007071900A1, WO2007077201A1, WO2007077247A1, WO2007096576A1, WO2007119434A1, WO2007134984A1, WO2008009908A1, WO2008029084A1, WO2008059948A1, WO2008071918A1, WO2008074991A1, WO2008084073A1, WO2008100426A2, WO2008102908A1, WO2008152072A2, WO2008152073A2, WO2009000757A1, WO2009005297A2, WO2009035150A2, WO2009063180A1, WO2009068170A2, WO2009068171A2, WO2009086041A1, WO2009090401A2, WO2009090402A2, WO2009115788A1, WO2009116558A1, WO2009152995A1, WO2009158258A1, WO2010012649A1, WO2010012649A1, WO2010026989A1, WO2010034153A1, WO2010049270A1, WO2010049369A1, WO2010049405A1, WO2010049414A1, WO2010063422A1, WO2010069802A1, WO2010078906A2, WO2010078912A1, WO2010104217A1, WO2010108611A1, WO2010112826A3, WO2010116122A3, WO2010119906A1, WO2010130970A1, WO2011003776A2, WO2011035874A1, WO2011065451A1, all of which are incorporated herein by reference.


An agronomic field in need of plant control is treated by application of the composition directly to the surface of the growing plants, such as by a spray. For example, the method is applied to control weeds in a field of crop plants by spraying the field with the composition. The composition can be provided as a tank mix, a sequential treatment of components (generally the polynucleotide containing composition followed by the herbicide), or a simultaneous treatment or mixing of one or more of the components of the composition from separate containers. Treatment of the field can occur as often as needed to provide weed control and the components of the composition can be adjusted to target specific weed species or weed families through utilization of specific polynucleotides or polynucleotide compositions capable of selectively targeting the specific species or plant family to be controlled. The composition can be applied at effective use rates according to the time of application to the field, for example, preplant, at planting, post planting, post harvest. PDS inhibitor herbicides can be applied to a field at rates of 0.5 lb/ac to 5 lb/ac (pounds per acre) or more. The polynucleotides of the composition can be applied at rates of 1 to 30 grams per acre depending on the number of trigger molecules needed for the scope of weeds in the field.


Crop plants in which weed control is needed include but are not limited to, i) corn, soybean, cotton, canola, sugar beet, alfalfa, sugarcane, rice, and wheat; ii) vegetable plants including, but not limited to, tomato, sweet pepper, hot pepper, melon, watermelon, cucumber, eggplant, cauliflower, broccoli, lettuce, spinach, onion, peas, carrots, sweet corn, Chinese cabbage, leek, fennel, pumpkin, squash or gourd, radish, Brussels sprouts, tomatillo, garden beans, dry beans, or okra; iii) culinary plants including, but not limited to, basil, parsley, coffee, or tea; or, iv) fruit plants including but not limited to apple, pear, cherry, peach, plum, apricot, banana, plantain, table grape, wine grape, citrus, avocado, mango, or berry; v) a tree grown for ornamental or commercial use, including, but not limited to, a fruit or nut tree; or, yl) an ornamental plant (e.g., an ornamental flowering plant or shrub or turf grass). The methods and compositions provided herein can also be applied to plants produced by a cutting, cloning, or grafting process (i.e., a plant not grown from a seed) include fruit trees and plants that include, but are not limited to, citrus, apples, avocados, tomatoes, eggplant, cucumber, melons, watermelons, and grapes as well as various ornamental plants.


Pesticidal Mixtures


The polynucleotide compositions may also be used as mixtures with various agricultural chemicals and/or insecticides, miticides and fungicides, pesticidal and biopesticidal agents. Examples include but are not limited to azinphos-methyl, acephate, isoxathion, isofenphos, ethion, etrimfos, oxydemeton-methyl, oxydeprofos, quinalphos, chlorpyrifos, chlorpyrifos-methyl, chlorfenvinphos, cyanophos, dioxabenzofos, dichlorvos, disulfoton, dimethylvinphos, dimethoate, sulprofos, diazinon, thiometon, tetrachlorvinphos, temephos, tebupirimfos, terbufos, naled, vamidothion, pyraclofos, pyridafenthion, pirimiphos-methyl, fenitrothion, fenthion, phenthoate, flupyrazophos, prothiofos, propaphos, profenofos, phoxime, phosalone, phosmet, formothion, phorate, malathion, mecarbam, mesulfenfos, methamidophos, methidathion, parathion, methyl parathion, monocrotophos, trichlorphon, EPN, isazophos, isamidofos, cadusafos, diamidaphos, dichlofenthion, thionazin, fenamiphos, fosthiazate, fosthietan, phosphocarb, DSP, ethoprophos, alanycarb, aldicarb, isoprocarb, ethiofencarb, carbaryl, carbosulfan, xylylcarb, thiodicarb, pirimicarb, fenobucarb, furathiocarb, propoxur, bendiocarb, benfuracarb, methomyl, metolcarb, XMC, carbofuran, aldoxycarb, oxamyl, acrinathrin, allethrin, esfenvalerate, empenthrin, cycloprothrin, cyhalothrin, gamma-cyhalothrin, lambda-cyhalothrin, cyfluthrin, beta-cyfluthrin, cypermethrin, alpha-cypermethrin, zeta-cypermethrin, silafluofen, tetramethrin, tefluthrin, deltamethrin, tralomethrin, bifenthrin, phenothrin, fenvalerate, fenpropathrin, furamethrin, prallethrin, flucythrinate, fluvalinate, flubrocythrinate, permethrin, resmethrin, ethofenprox, cartap, thiocyclam, bensultap, acetamiprid, imidacloprid, clothianidin, dinotefuran, thiacloprid, thiamethoxam, nitenpyram, chlorfluazuron, diflubenzuron, teflubenzuron, triflumuron, novaluron, noviflumuron, bistrifluoron, fluazuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, chromafenozide, tebufenozide, halofenozide, methoxyfenozide, diofenolan, cyromazine, pyriproxyfen, buprofezin, methoprene, hydroprene, kinoprene, triazamate, endosulfan, chlorfenson, chlorobenzilate, dicofol, bromopropylate, acetoprole, fipronil, ethiprole, pyrethrin, rotenone, nicotine sulphate, BT (Bacillus Thuringiensis) agent, spinosad, abamectin, acequinocyl, amidoflumet, amitraz, etoxazole, chinomethionat, clofentezine, fenbutatin oxide, dienochlor, cyhexatin, spirodiclofen, spiromesifen, tetradifon, tebufenpyrad, binapacryl, bifenazate, pyridaben, pyrimidifen, fenazaquin, fenothiocarb, fenpyroximate, fluacrypyrim, fluazinam, flufenzin, hexythiazox, propargite, benzomate, polynactin complex, milbemectin, lufenuron, mecarbam, methiocarb, mevinphos, halfenprox, azadirachtin, diafenthiuron, indoxacarb, emamectin benzoate, potassium oleate, sodium oleate, chlorfenapyr, tolfenpyrad, pymetrozine, fenoxycarb, hydramethylnon, hydroxy propyl starch, pyridalyl, flufenerim, flubendiamide, flonicamid, metaflumizole, lepimectin, TPIC, albendazole, oxibendazole, oxfendazole, trichlamide, fensulfothion, fenbendazole, levamisole hydrochloride, morantel tartrate, dazomet, metam-sodium, triadimefon, hexaconazole, propiconazole, ipconazole, prochloraz, triflumizole, tebuconazole, epoxiconazole, difenoconazole, flusilazole, triadimenol, cyproconazole, metconazole, fluquinconazole, bitertanol, tetraconazole, triticonazole, flutriafol, penconazole, diniconazole, fenbuconazole, bromuconazole, imibenconazole, simeconazole, myclobutanil, hymexazole, imazalil, furametpyr, thifluzamide, etridiazole, oxpoconazole, oxpoconazole fumarate, pefurazoate, prothioconazole, pyrifenox, fenarimol, nuarimol, bupirimate, mepanipyrim, cyprodinil, pyrimethanil, metalaxyl, mefenoxam, oxadixyl, benalaxyl, thiophanate, thiophanate-methyl, benomyl, carbendazim, fuberidazole, thiabendazole, manzeb, propineb, zineb, metiram, maneb, ziram, thiuram, chlorothalonil, ethaboxam, oxycarboxin, carboxin, flutolanil, silthiofam, mepronil, dimethomorph, fenpropidin, fenpropimorph, spiroxamine, tridemorph, dodemorph, flumorph, azoxystrobin, kresoxim-methyl, metominostrobin, orysastrobin, fluoxastrobin, trifloxystrobin, dimoxystrobin, pyraclostrobin, picoxystrobin, iprodione, procymidone, vinclozolin, chlozolinate, flusulfamide, dazomet, methyl isothiocyanate, chloropicrin, methasulfocarb, hydroxyisoxazole, potassium hydroxyisoxazole, echlomezol, D-D, carbam, basic copper chloride, basic copper sulfate, copper nonylphenolsulfonate, oxine copper, DBEDC, anhydrous copper sulfate, copper sulfate pentahydrate, cupric hydroxide, inorganic sulfur, wettable sulfur, lime sulfur, zinc sulfate, fentin, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium hypochlorite, silver, edifenphos, tolclofos-methyl, fosetyl, iprobenfos, dinocap, pyrazophos, carpropamid, fthalide, tricyclazole, pyroquilon, diclocymet, fenoxanil, kasugamycin, validamycin, polyoxins, blasticiden S, oxytetracycline, mildiomycin, streptomycin, rape seed oil, machine oil, benthiavalicarbisopropyl, iprovalicarb, propamocarb, diethofencarb, fluoroimide, fludioxanil, fenpiclonil, quinoxyfen, oxolinic acid, chlorothalonil, captan, folpet, probenazole, acibenzolar-S-methyl, tiadinil, cyflufenamid, fenhexamid, diflumetorim, metrafenone, picobenzamide, proquinazid, famoxadone, cyazofamid, fenamidone, zoxamide, boscalid, cymoxanil, dithianon, fluazinam, dichlofluanide, triforine, isoprothiolane, ferimzone, diclomezine, tecloftalam, pencycuron, chinomethionat, iminoctadine acetate, iminoctadine albesilate, ambam, polycarbamate, thiadiazine, chloroneb, nickel dimethyldithiocarbamate, guazatine, dodecylguanidine-acetate, quintozene, tolylfluanid, anilazine, nitrothalisopropyl, fenitropan, dimethirimol, benthiazole, harpin protein, flumetover, mandipropamide and penthiopyrad.


Polynucleotides


As used herein, the term “DNA”, “DNA molecule”, “DNA polynucleotide molecule” refers to a single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA) molecule of genomic or synthetic origin, such as, a polymer of deoxyribonucleotide bases or a DNA polynucleotide molecule. As used herein, the term “DNA sequence”, “DNA nucleotide sequence” or “DNA polynucleotide sequence” refers to the nucleotide sequence of a DNA molecule. As used herein, the term “RNA”, “RNA molecule”, “RNA polynucleotide molecule” refers to a single-stranded RNA (ssRNA) or double-stranded RNA (dsRNA) molecule of genomic or synthetic origin, such as, a polymer of ribonucleotide bases that comprise single or double stranded regions. Unless otherwise stated, nucleotide sequences in the text of this specification are given, when read from left to right, in the 5′ to 3′ direction. The nomenclature used herein is that required by Title 37 of the United States Code of Federal Regulations § 1.822 and set forth in the tables in WIPO Standard ST.25 (1998), Appendix 2, Tables 1 and 3.


As used herein, “polynucleotide” refers to a DNA or RNA molecule containing multiple nucleotides and generally refers both to “oligonucleotides” (a polynucleotide molecule of typically 50 or fewer nucleotides in length) and polynucleotides of 51 or more nucleotides. Embodiments include compositions including oligonucleotides having a length of 18-25 nucleotides (18-mers, 19-mers, 20-mers, 21-mers, 22-mers, 23-mers, 24-mers, or 25-mers), for example, oligonucleotides SEQ ID NO:2011-2136 or fragments thereof or medium-length polynucleotides having a length of 26 or more nucleotides (polynucleotides of 26, 27, 28, 29, 30, 106, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, about 65, about 70, about 75, about 80, about 85, about 90, about 95, about 100, about 110, about 120, about 130, about 140, about 150, about 160, about 170, about 180, about 190, about 200, about 210, about 220, about 230, about 240, about 250, about 260, about 270, about 280, about 290, or about 300 nucleotides), for example, oligonucleotides of SEQ ID NO:79-2010 or fragments thereof or long polynucleotides having a length greater than about 300 nucleotides (for example, polynucleotides of between about 300 to about 400 nucleotides, between about 400 to about 500 nucleotides, between about 500 to about 600 nucleotides, between about 600 to about 700 nucleotides, between about 700 to about 800 nucleotides, between about 800 to about 900 nucleotides, between about 900 to about 1000 nucleotides, between about 300 to about 500 nucleotides, between about 300 to about 600 nucleotides, between about 300 to about 700 nucleotides, between about 300 to about 800 nucleotides, between about 300 to about 900 nucleotides, or about 1000 nucleotides in length, or even greater than about 1000 nucleotides in length, for example up to the entire length of a target gene including coding or non-coding or both coding and non-coding portions of the target gene), for example, polynucleotides of Table 1 (SEQ ID NO:1-78) and SEQ ID NO: 2138, wherein the selected polynucleotides or fragments thereof are homologous or complementary to SEQ ID NO:1-78 and 2138 suppresses, represses or otherwise delay the expression of the target PDS gene. A target gene comprises any polynucleotide molecule in a plant cell or fragment thereof for which the modulation of the expression of the target gene is provided by the methods and compositions. Where a polynucleotide is double-stranded, its length can be similarly described in terms of base pairs. Oligonucleotides and polynucleotides can be made that are essentially identical or essentially complementary to adjacent genetic elements of a gene, for example, spanning the junction region of an intron and exon, the junction region of a promoter and a transcribed region, the junction region of a 5′ leader and a coding sequence, the junction of a 3′ untranslated region and a coding sequence.


Polynucleotide compositions used in the various embodiments include compositions including oligonucleotides or polynucleotides or a mixture of both, including RNA or DNA or RNA/DNA hybrids or chemically modified oligonucleotides or polynucleotides or a mixture thereof. In some embodiments, the polynucleotide may be a combination of ribonucleotides and deoxyribonucleotides, for example, synthetic polynucleotides consisting mainly of ribonucleotides but with one or more terminal deoxyribonucleotides or synthetic polynucleotides consisting mainly of deoxyribonucleotides but with one or more terminal dideoxyribonucleotides. In some embodiments, the polynucleotide includes non-canonical nucleotides such as inosine, thiouridine, or pseudouridine. In some embodiments, the polynucleotide includes chemically modified nucleotides. Examples of chemically modified oligonucleotides or polynucleotides are well known in the art; see, for example, US Patent Publication 20110171287, US Patent Publication 20110171176, and US Patent Publication 20110152353, US Patent Publication, 20110152346, US Patent Publication 20110160082, herein incorporated by reference. For example, including but not limited to the naturally occurring phosphodiester backbone of an oligonucleotide or polynucleotide can be partially or completely modified with phosphorothioate, phosphorodithioate, or methylphosphonate internucleotide linkage modifications, modified nucleoside bases or modified sugars can be used in oligonucleotide or polynucleotide synthesis, and oligonucleotides or polynucleotides can be labeled with a fluorescent moiety (for example, fluorescein or rhodamine) or other label (for example, biotin).


The polynucleotides can be single- or double-stranded RNA or single- or double-stranded DNA or double-stranded DNA/RNA hybrids or modified analogues thereof, and can be of oligonucleotide lengths or longer. In more specific embodiments the polynucleotides that provide single-stranded RNA in the plant cell are selected from the group consisting of (a) a single-stranded RNA molecule (ssRNA), (b) a single-stranded RNA molecule that self-hybridizes to form a double-stranded RNA molecule, (c) a double-stranded RNA molecule (dsRNA), (d) a single-stranded DNA molecule (ssDNA), (e) a single-stranded DNA molecule that self-hybridizes to form a double-stranded DNA molecule, and (f) a single-stranded DNA molecule including a modified Pol III gene that is transcribed to an RNA molecule, (g) a double-stranded DNA molecule (dsDNA), (h) a double-stranded DNA molecule including a modified Pol III gene that is transcribed to an RNA molecule, (i) a double-stranded, hybridized RNA/DNA molecule, or combinations thereof. In some embodiments these polynucleotides include chemically modified nucleotides or non-canonical nucleotides. In some embodiments, the oligonucleotides may be blunt-ended or may comprise a 3′ overhang of from 1-5 nucleotides of at least one or both of the strands. Other configurations of the oligonucleotide are known in the field and are contemplated herein. In embodiments of the method the polynucleotides include double-stranded DNA formed by intramolecular hybridization, double-stranded DNA formed by intermolecular hybridization, double-stranded RNA formed by intramolecular hybridization, or double-stranded RNA formed by intermolecular hybridization. In one embodiment the polynucleotides include single-stranded DNA or single-stranded RNA that self-hybridizes to form a hairpin structure having an at least partially double-stranded structure including at least one segment that will hybridize to RNA transcribed from the gene targeted for suppression. Not intending to be bound by any mechanism, it is believed that such polynucleotides are or will produce single-stranded RNA with at least one segment that will hybridize to RNA transcribed from the gene targeted for suppression. In certain other embodiments the polynucleotides further includes a promoter, generally a promoter functional in a plant, for example, a pol II promoter, a pol III promoter, a pol IV promoter, or a pol V promoter.


The term “gene” refers to chromosomal DNA, plasmid DNA, cDNA, intron and exon DNA, artificial DNA polynucleotide, or other DNA that encodes a peptide, polypeptide, protein, or RNA transcript molecule, and the genetic elements flanking the coding sequence that are involved in the regulation of expression, such as, promoter regions, 5′ leader regions, 3′ untranslated regions. The gene or a fragment thereof is isolated and subjected to polynucleotide sequencing methods that determines the order of the nucleotides that comprise the gene. Any of the components of the gene are potential targets for the oligonucleotides and polynucleotides.


The polynucleotide molecules are designed to modulate expression by inducing regulation or suppression of an endogenous PDS gene in a plant and are designed to have a nucleotide sequence essentially identical or essentially complementary to the nucleotide sequence of an endogenous PDS gene of a plant or to the sequence of RNA transcribed from an endogenous PDS gene of a plant, including a transgene in a plant that provides for a herbicide resistant PDS enzyme, which can be coding sequence or non-coding sequence. Effective molecules that modulate expression are referred to as “a trigger molecule, or trigger polynucleotide”. By “essentially identical” or “essentially complementary” is meant that the trigger polynucleotides (or at least one strand of a double-stranded polynucleotide or portion thereof, or a portion of a single strand polynucleotide) are designed to hybridize to the endogenous gene noncoding sequence or to RNA transcribed (known as messenger RNA or an RNA transcript) from the endogenous gene to effect regulation or suppression of expression of the endogenous gene. Trigger molecules are identified by “tiling” the gene targets with partially overlapping probes or non-overlapping probes of antisense or sense polynucleotides that are essentially identical or essentially complementary to the nucleotide sequence of an endogenous gene. Multiple target sequences can be aligned and sequence regions with homology in common are identified as potential trigger molecules for the multiple targets. Multiple trigger molecules of various lengths, for example 18-25 nucleotides, 26-50 nucleotides, 51-100 nucleotides, 101-200 nucleotides, 201-300 nucleotides or more can be pooled into a few treatments in order to investigate polynucleotide molecules that cover a portion of a gene sequence (for example, a portion of a coding versus a portion of a noncoding region, or a 5′ versus a 3′ portion of a gene) or an entire gene sequence including coding and noncoding regions of a target gene. Polynucleotide molecules of the pooled trigger molecules can be divided into smaller pools or single molecules inorder to identify trigger molecules that provide the desired effect.


The target gene RNA and DNA polynucleotide molecules (Table 1, SEQ ID NO: 1-78, and SEQ ID NO: 2138) are sequenced by any number of available methods and equipment. Some of the sequencing technologies are available commercially, such as the sequencing-by-hybridization platform from Affymetrix Inc. (Sunnyvale, Calif.) and the sequencing-by-synthesis platforms from 454 Life Sciences (Bradford, Conn.), Illumina/Solexa (Hayward, Calif.) and Helicos Biosciences (Cambridge, Mass.), and the sequencing-by-ligation platform from Applied Biosystems (Foster City, Calif.), as described below. In addition to the single molecule sequencing performed using sequencing-by-synthesis of Helicos Biosciences, other single molecule sequencing technologies are encompassed by the method of the invention and include the SMRT.™ technology of Pacific Biosciences, the Ion Torrent.™. technology, and nanopore sequencing being developed for example, by Oxford Nanopore Technologies. A PDS target gene comprising DNA or RNA can be isolated using primers or probes essentially complementary or essentially homologous to SEQ ID NO:1-78 and 2138 or a fragment thereof. A polymerase chain reaction (PCR) gene fragment can be produced using primers essentially complementary or essentially homologous to SEQ ID NO:1-78 and 2138 or a fragment thereof that is useful to isolate a PDS gene from a plant genome. SEQ ID NO: 1-78 and 2138 or fragments thereof can be used in various sequence capture technologies to isolate additional target gene sequences, for example, including but not limited to Roche NimbleGen® (Madison, Wis.) and Streptavdin-coupled Dynabeads® (Life Technologies, Grand Island, N.Y.) and US20110015084, herein incorporated by reference in its entirety.


Embodiments of functional single-stranded polynucleotides have sequence complementarity that need not be 100 percent, but is at least sufficient to permit hybridization to RNA transcribed from the target gene or DNA of the target gene to form a duplex to permit a gene silencing mechanism. Thus, in embodiments, a polynucleotide fragment is designed to be essentially identical to, or essentially complementary to, a sequence of 18 or more contiguous nucleotides in either the target PDS gene sequence or messenger RNA transcribed from the target gene. By “essentially identical” is meant having 100 percent sequence identity or at least about 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 percent sequence identity when compared to the sequence of 18 or more contiguous nucleotides in either the target gene or RNA transcribed from the target gene; by “essentially complementary” is meant having 100 percent sequence complementarity or at least about 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 percent sequence complementarity when compared to the sequence of 18 or more contiguous nucleotides in either the target gene or RNA transcribed from the target gene. In some embodiments polynucleotide molecules are designed to have 100 percent sequence identity with or complementarity to one allele or one family member of a given target gene (coding or non-coding sequence of a gene); in other embodiments the polynucleotide molecules are designed to have 100 percent sequence identity with or complementarity to multiple alleles or family members of a given target gene.


In certain embodiments, the polynucleotides used in the compositions that are essentially identical or essentially complementary to the target gene or transcript will comprise the predominant nucleic acid in the composition. Thus in certain embodiments, the polynucleotides that are essentially identical or essentially complementary to the target gene or transcript will comprise at least about 50%, 75%, 95%, 98% or 100% of the nucleic acids provided in the composition by either mass or molar concentration. However, in certain embodiments, the polynucleotides that are essentially identical or essentially complementary to the target gene or transcript can comprise at least about 1% to about 50%, about 10% to about 50%, about 20% to about 50%, or about 30% to about 50% of the nucleic acids provided in the composition by either mass or molar concentration. Also provided are compositions where the polynucleotides that are essentially identical or essentially complementary to the target gene or transcript can comprise at least about 1% to 100%, about 10% to 100%, about 20% to about 100%, about 30% to about 50%, or about 50% to a 100% of the nucleic acids provided in the composition by either mass or molar concentration.


“Identity” refers to the degree of similarity between two polynucleic acid or protein sequences. An alignment of the two sequences is performed by a suitable computer program. A widely used and accepted computer program for performing sequence alignments is CLUSTALW v1.6 (Thompson, et al. Nucl. Acids Res., 22: 4673-4680, 1994). The number of matching bases or amino acids is divided by the total number of bases or amino acids, and multiplied by 100 to obtain a percent identity. For example, if two 580 base pair sequences had 145 matched bases, they would be 25 percent identical. If the two compared sequences are of different lengths, the number of matches is divided by the shorter of the two lengths. For example, if there are 100 matched amino acids between a 200 and a 400 amino acid protein, they are 50 percent identical with respect to the shorter sequence. If the shorter sequence is less than 150 bases or 50 amino acids in length, the number of matches are divided by 150 (for nucleic acid bases) or 50 (for amino acids), and multiplied by 100 to obtain a percent identity.


Trigger molecules for specific gene family members can be identified from coding and/or non-coding sequences of gene families of a plant or multiple plants, by aligning and selecting 200-300 polynucleotide fragments from the least homologous regions amongst the aligned sequences and evaluated using topically applied polynucleotides (as sense or anti-sense ssDNA or ssRNA, dsRNA, or dsDNA) to determine their relative effectiveness in inducing the herbicidal phenotype. The effective segments are further subdivided into 50-60 polynucleotide fragments, prioritized by least homology, and reevaluated using topically applied polynucleotides. The effective 50-60 polynucleotide fragments are subdivided into 19-30 polynucleotide fragments, prioritized by least homology, and again evaluated for induction of the yield/quality phenotype. Once relative effectiveness is determined, the fragments are utilized singly, or again evaluated in combination with one or more other fragments to determine the trigger composition or mixture of trigger polynucleotides for providing the yield/quality phenotype.


Trigger molecules for broad activity can be identified from coding and/or non-coding sequences of gene families of a plant or multiple plants, by aligning and selecting 200-300 polynucleotide fragments from the most homologous regions amongst the aligned sequences and evaluated using topically applied polynucleotides (as sense or anti-sense ssDNA or ssRNA, dsRNA, or dsDNA) to determine their relative effectiveness in inducing the yield/quality phenotype. The effective segments are subdivided into 50-60 polynucleotide fragments, prioritized by most homology, and reevaluated using topically applied polynucleotides. The effective 50-60 polynucleotide fragments are subdivided into 19-30 polynucleotide fragments, prioritized by most homology, and again evaluated for induction of the yield/quality phenotype. Once relative effectiveness is determined, the fragments may be utilized singly, or in combination with one or more other fragments to determine the trigger composition or mixture of trigger polynucleotides for providing the yield/quality phenotype.


Methods of making polynucleotides are well known in the art. Chemical synthesis, in vivo synthesis and in vitro synthesis methods and compositions are known in the art and include various viral elements, microbial cells, modified polymerases, and modified nucleotides. Commercial preparation of oligonucleotides often provides two deoxyribonucleotides on the 3′ end of the sense strand. Long polynucleotide molecules can be synthesized from commercially available kits, for example, kits from Applied Biosystems/Ambion (Austin, Tex.) have DNA ligated on the 5′ end in a microbial expression cassette that includes a bacterial T7 polymerase promoter that makes RNA strands that can be assembled into a dsRNA and kits provided by various manufacturers that include T7 RiboMax Express (Promega, Madison, Wis.), AmpliScribe T7-Flash (Epicentre, Madison, Wis.), and TranscriptAid T7 High Yield (Fermentas, Glen Burnie, Md.). dsRNA molecules can be produced from microbial expression cassettes in bacterial cells (Ongvarrasopone et al. ScienceAsia 33:35-39; Yin, Appl. Microbiol. Biotechnol 84:323-333, 2009; Liu et al., BMC Biotechnology 10:85, 2010) that have regulated or deficient RNase III enzyme activity or the use of various viral vectors to produce sufficient quantities of dsRNA. PDS gene fragments are inserted into the microbial expression cassettes in a position in which the fragments are express to produce ssRNA or dsRNA useful in the methods described herein to regulate expression on a target PDS gene. Long polynucleotide molecules can also be assembled from multiple RNA or DNA fragments. In some embodiments design parameters such as Reynolds score (Reynolds et al. Nature Biotechnology 22, 326-330 (2004), Tuschl rules (Pei and Tuschl, Nature Methods 3(9): 670-676, 2006), i-score (Nucleic Acids Res 35: e123, 2007), i-Score Designer tool and associated algorithms (Nucleic Acids Res 32: 936-948, 2004. Biochem Biophys Res Commun 316: 1050-1058, 2004, Nucleic Acids Res 32: 893-901, 2004, Cell Cycle 3: 790-5, 2004, Nat Biotechnol 23: 995-1001, 2005, Nucleic Acids Res 35: e27, 2007, BMC Bioinformatics 7: 520, 2006, Nucleic Acids Res 35: e123, 2007, Nat Biotechnol 22: 326-330, 2004) are known in the art and may be used in selecting polynucleotide sequences effective in gene silencing. In some embodiments the sequence of a polynucleotide is screened against the genomic DNA of the intended plant to minimize unintentional silencing of other genes.


The trigger polynucleotide and oligonucleotide molecule compositions are useful in compositions, such as liquids that comprise the polynucleotide molecules at low concentrations, alone or in combination with other components, for example one or more herbicide molecules, either in the same solution or in separately applied liquids that also provide a transfer agent. While there is no upper limit on the concentrations and dosages of polynucleotide molecules that can useful, lower effective concentrations and dosages will generally be sought for efficiency. The concentrations can be adjusted in consideration of the volume of spray or treatment applied to plant leaves or other plant part surfaces, such as flower petals, stems, tubers, fruit, anthers, pollen, or seed. In one embodiment, a useful treatment for herbaceous plants using 25-mer oligonucleotide molecules is about 1 nanomole (nmol) of oligonucleotide molecules per plant, for example, from about 0.05 to 1 nmol per plant. Other embodiments for herbaceous plants include useful ranges of about 0.05 to about 100 nmol, or about 0.1 to about 20 nmol, or about 1 nmol to about 10 nmol of polynucleotides per plant. Very large plants, trees, or vines may require correspondingly larger amounts of polynucleotides. When using long dsRNA molecules that can be processed into multiple oligonucleotides, lower concentrations can be used. To illustrate embodiments, the factor 1×, when applied to oligonucleotide molecules is arbitrarily used to denote a treatment of 0.8 nmol of polynucleotide molecule per plant; 10×, 8 nmol of polynucleotide molecule per plant; and 100×, 80 nmol of polynucleotide molecule per plant.


The polynucleotide compositions are useful in compositions, such as liquids that comprise polynucleotide molecules, alone or in combination with other components either in the same liquid or in separately applied liquids that provide a transfer agent. As used herein, a transfer agent is an agent that, when combined with a polynucleotide in a composition that is topically applied to a target plant surface, enables the polynucleotide to enter a plant cell. In certain embodiments, a transfer agent is an agent that conditions the surface of plant tissue, e.g., leaves, stems, roots, flowers, or fruits, to permeation by the polynucleotide molecules into plant cells. The transfer of polynucleotides into plant cells can be facilitated by the prior or contemporaneous application of a polynucleotide-transferring agent to the plant tissue. In some embodiments the transferring agent is applied subsequent to the application of the polynucleotide composition. The polynucleotide transfer agent enables a pathway for polynucleotides through cuticle wax barriers, stomata and/or cell wall or membrane barriers into plant cells. Suitable transfer agents to facilitate transfer of the polynucleotide into a plant cell include agents that increase permeability of the exterior of the plant or that increase permeability of plant cells to oligonucleotides or polynucleotides. Such agents to facilitate transfer of the composition into a plant cell include a chemical agent, or a physical agent, or combinations thereof. Chemical agents for conditioning or transfer include (a) surfactants, (b) an organic solvent or an aqueous solution or aqueous mixtures of organic solvents, (c) oxidizing agents, (d) acids, (e) bases, (f) oils, (g) enzymes, or combinations thereof. Embodiments of the method can optionally include an incubation step, a neutralization step (e.g., to neutralize an acid, base, or oxidizing agent, or to inactivate an enzyme), a rinsing step, or combinations thereof. Embodiments of agents or treatments for conditioning of a plant to permeation by polynucleotides include emulsions, reverse emulsions, liposomes, and other micellar-like compositions. Embodiments of agents or treatments for conditioning of a plant to permeation by polynucleotides include counter-ions or other molecules that are known to associate with nucleic acid molecules, e.g., inorganic ammonium ions, alkyl ammonium ions, lithium ions, polyamines such as spermine, spermidine, or putrescine, and other cations. Organic solvents useful in conditioning a plant to permeation by polynucleotides include DMSO, DMF, pyridine, N-pyrrolidine, hexamethylphosphoramide, acetonitrile, dioxane, polypropylene glycol, other solvents miscible with water or that will dissolve phosphonucleotides in non-aqueous systems (such as is used in synthetic reactions). Naturally derived or synthetic oils with or without surfactants or emulsifiers can be used, e.g., plant-sourced oils, crop oils (such as those listed in the 9th Compendium of Herbicide Adjuvants, publicly available on the worldwide web (internet) at herbicide.adjuvants.com can be used, e.g., paraffinic oils, polyol fatty acid esters, or oils with short-chain molecules modified with amides or polyamines such as polyethyleneimine or N-pyrrolidine. Transfer agents include, but are not limited to, organosilicone preparations.


In certain embodiments, an organosilicone preparation that is commercially available as Silwet® L-77 surfactant having CAS Number 27306-78-1 and EPA Number: CAL.REG.NO. 5905-50073-AA, and currently available from Momentive Performance Materials, Albany, N.Y. can be used to prepare a polynucleotide composition. In certain embodiments where a Silwet L-77 organosilicone preparation is used as a pre-spray treatment of plant leaves or other plant surfaces, freshly made concentrations in the range of about 0.015 to about 2 percent by weight (wt percent) (e.g., about 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06, 0.065, 0.07, 0.075, 0.08, 0.085, 0.09, 0.095, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.5 wt percent) are efficacious in preparing a leaf or other plant surface for transfer of polynucleotide molecules into plant cells from a topical application on the surface. In certain embodiments of the methods and compositions provided herein, a composition that comprises a polynucleotide molecule and an organosilicone preparation comprising Silwet L-77 in the range of about 0.015 to about 2 percent by weight (wt percent) (e.g., about 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06, 0.065, 0.07, 0.075, 0.08, 0.085, 0.09, 0.095, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.5 wt percent) is used or provided.


In certain embodiments, any of the commercially available organosilicone preparations provided such as the following Breakthru S 321, Breakthru S 200 Cat #67674-67-3, Breakthru OE 441 Cat #68937-55-3, Breakthru S 278 Cat #27306-78-1, Breakthru S 243, Breakthru S 233 Cat #134180-76-0, available from manufacturer Evonik Goldschmidt (Germany), Silwet® HS 429, Silwet® HS 312, Silwet® HS 508, Silwet® HS 604 (Momentive Performance Materials, Albany, N.Y.) can be used as transfer agents in a polynucleotide composition. In certain embodiments where an organosilicone preparation is used as a pre-spray treatment of plant leaves or other surfaces, freshly made concentrations in the range of about 0.015 to about 2 percent by weight (wt percent) (e.g., about 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06, 0.065, 0.07, 0.075, 0.08, 0.085, 0.09, 0.095, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.5 wt percent) are efficacious in preparing a leaf or other plant surface for transfer of polynucleotide molecules into plant cells from a topical application on the surface. In certain embodiments of the methods and compositions provided herein, a composition that comprises a polynucleotide molecule and an organosilicone preparation in the range of about 0.015 to about 2 percent by weight (wt percent) (e.g., about 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06, 0.065, 0.07, 0.075, 0.08, 0.085, 0.09, 0.095, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.5 wt percent) is used or provided.


Organosilicone preparations used in the methods and compositions provided herein can comprise one or more effective organosilicone compounds. As used herein, the phrase “effective organosilicone compound” is used to describe any organosilicone compound that is found in an organosilicone preparation that enables a polynucleotide to enter a plant cell. In certain embodiments, an effective organosilicone compound can enable a polynucleotide to enter a plant cell in a manner permitting a polynucleotide mediated suppression of a target gene expression in the plant cell. In general, effective organosilicone compounds include, but are not limited to, compounds that can comprise: i) a trisiloxane head group that is covalently linked to, ii) an alkyl linker including, but not limited to, an n-propyl linker, that is covalently linked to, iii) a poly glycol chain, that is covalently linked to, iv) a terminal group. Trisiloxane head groups of such effective organosilicone compounds include, but are not limited to, heptamethyltrisiloxane. Alkyl linkers can include, but are not limited to, an n-propyl linker Poly glycol chains include, but are not limited to, polyethylene glycol or polypropylene glycol. Poly glycol chains can comprise a mixture that provides an average chain length “n” of about “7.5”. In certain embodiments, the average chain length “n” can vary from about 5 to about 14. Terminal groups can include, but are not limited to, alkyl groups such as a methyl group. Effective organosilicone compounds are believed to include, but are not limited to, trisiloxane ethoxylate surfactants or polyalkylene oxide modified heptamethyl trisiloxane.




embedded image


In certain embodiments, an organosilicone preparation that comprises an organosilicone compound comprising a trisiloxane head group is used in the methods and compositions provided herein. In certain embodiments, an organosilicone preparation that comprises an organosilicone compound comprising a heptamethyltrisiloxane head group is used in the methods and compositions provided herein. In certain embodiments, an organosilicone composition that comprises Compound I is used in the methods and compositions provided herein. In certain embodiments, an organosilicone composition that comprises Compound I is used in the methods and compositions provided herein. In certain embodiments of the methods and compositions provided herein, a composition that comprises a polynucleotide molecule and one or more effective organosilicone compound in the range of about 0.015 to about 2 percent by weight (wt percent) (e.g., about 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06, 0.065, 0.07, 0.075, 0.08, 0.085, 0.09, 0.095, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.5 wt percent) is used or provided.


Compositions include but are not limited components that are one or more polynucleotides essentially identical to, or essentially complementary to a PDS gene sequence (promoter, intron, exon, 5′ untranslated region, 3′ untranslated region), a transfer agent that provides for the polynucleotide to enter a plant cell, a herbicide that complements the action of the polynucleotide, one or more additional herbicides that further enhance the herbicide activity of the composition or provide an additional mode of action different from the complementing herbicide, various salts and stabilizing agents that enhance the utility of the composition as an admixture of the components of the composition.


Methods include one or more applications of a polynucleotide composition and one or more applications of a permeability-enhancing agent for conditioning of a plant to permeation by polynucleotides. When the agent for conditioning to permeation is an organosilicone composition or compound contained therein, embodiments of the polynucleotide molecules are double-stranded RNA oligonucleotides, single-stranded RNA oligonucleotides, double-stranded RNA polynucleotides, single-stranded RNA polynucleotides, double-stranded DNA oligonucleotides, single-stranded DNA oligonucleotides, double-stranded DNA polynucleotides, single-stranded DNA polynucleotides, chemically modified RNA or DNA oligonucleotides or polynucleotides or mixtures thereof.


Compositions and methods are useful for modulating the expression of an endogenous PDS gene or transgenic PDS gene (for example, US Patent Publ. No. 20110098180) in a plant cell. In various embodiments, a PDS gene includes coding (protein-coding or translatable) sequence, non-coding (non-translatable) sequence, or both coding and non-coding sequence. Compositions can include polynucleotides and oligonucleotides designed to target multiple genes, or multiple segments of one or more genes. The target gene can include multiple consecutive segments of a target gene, multiple non-consecutive segments of a target gene, multiple alleles of a target gene, or multiple target genes from one or more species.


One aspect is a method for modulating expression of a PDS gene in a plant including (a) conditioning of a plant to permeation by polynucleotides and (b) treatment of the plant with the polynucleotide molecules, wherein the polynucleotide molecules include at least one segment of 18 or more contiguous nucleotides cloned from or otherwise identified from the target PDS gene in either anti-sense or sense orientation, whereby the polynucleotide molecules permeate the interior of the plant and induce modulation of the target gene. The conditioning and polynucleotide application can be performed separately or in a single step. When the conditioning and polynucleotide application are performed in separate steps, the conditioning can precede or can follow the polynucleotide application within minutes, hours, or days. In some embodiments more than one conditioning step or more than one polynucleotide molecule application can be performed on the same plant. In embodiments of the method, the segment can be cloned or identified from (a) coding (protein-encoding), (b) non-coding (promoter and other gene related molecules), or (c) both coding and non-coding parts of the target gene. Non-coding parts include DNA, such as promoter regions or the RNA transcribed by the DNA that provide RNA regulatory molecules, including but not limited to: introns, 5′ or 3′ untranslated regions, and microRNAs (miRNA), trans-acting siRNAs, natural anti-sense siRNAs, and other small RNAs with regulatory function or RNAs having structural or enzymatic function including but not limited to: ribozymes, ribosomal RNAs, t-RNAs, aptamers, and riboswitches.


All publications, patents and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.


The following examples are included to demonstrate examples of certain preferred embodiments. It should be appreciated by those of skill in the art that the techniques disclosed in the examples that follow represent approaches the inventors have found function well in the practice, and thus can be considered to constitute examples of preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments that are disclosed and still obtain a like or similar result without departing from the spirit and scope.


EXAMPLES
Example 1. Polynucleotides Related to the PDS Gene Sequences

The target PDS polynucleotide molecule was isolated from the genome of Abutilon theophrasti, Amaranthus chlorostachys, Amaranthus graecizans, Amaranthus palmeri, Amaranthus rudis, Amaranthus hybridus, Amaranthus lividus, Amaranthus spinosus, Amaranthus viridis, Ambrosia artemisiifolia, Ambrosia trifida, Commelina diffusa, Conyza candensis, Digitaria sanguinalis, Euphorbia heterophylla, Kochia scoparia, Lolium multiflorum. and include molecules related to the expression of a polypeptide identified as a PDS, that include regulatory molecules, cDNAs comprising coding and noncoding regions of a PDS gene and fragments thereof as shown in Table 1.


Polynucleotide molecules were extracted from these plant species by methods standard in the field, for example, total RNA is extracted using Trizol Reagent (Invitrogen Corp, Carlsbad, Calif. Cat. No. 15596-018), following the manufacturer's protocol or modifications thereof by those skilled in the art of polynucleotide extraction that may enhance recover or purity of the extracted RNA. Briefly, start with 1 gram of ground plant tissue for extraction. Prealiquot 10 milliliters (mL) Trizol reagent to 15 mL conical tubes. Add ground powder to tubes and shake to homogenize. Incubate the homogenized samples for 5 minutes (min) at room temperature (RT) and then add 3 mL of chloroform. Shakes tubes vigorously by hand for 15-30 seconds (sec) and incubate at RT for 3 min. Centrifuge the tubes at 7,000 revolutions per minute (rpm) for 10 min at 4 degrees C. Transfer the aqueous phase to a new 1.5 mL tube and add 1 volume of cold isopropanol. Incubate the samples for 20-30 min at RT and centrifuge at 10,000 rpm for 10 min at 4 degrees C. Wash pellet with Sigma-grade 80 percent ethanol. Remove the supernatant and briefly air-dry the pellet. Dissolve the RNA pellet in approximately 200 microliters of DEPC treated water. Heat briefly at 65 degrees C. to dissolve pellet and vortex or pipet to resuspend RNA pellet. Adjust RNA concentraiton to 1-2 microgram/microliter.


DNA was extracted using EZNA SP Plant DNA Mini kit (Omega Biotek, Norcross Ga., Cat # D5511) and Lysing Matrix E tubes (Q-Biogen, Cat #6914), following the manufacturer's protocol or modifications thereof by those skilled in the art of polynucleotide extraction that may enhance recover or purity of the extracted DNA. Briefly, aliquot ground tissue to a Lysing Matrix E tube on dry ice, add 800 μl Buffer SP1 to each sample, homogenize in a bead beater for 35-45 sec, incubate on ice for 45-60 sec, centrifuge at ≥14000 rpm for 1 min at RT, add 10 microliter RNase A to the lysate, incubate at 65° C. for 10 min, centrifuge for 1 min at RT, add 280 μl Buffer SP2 and vortex to mix, incubate the samples on ice for 5 min, centrifuge at ≥10,000 g for 10 min at RT, transfer the supernatant to a homogenizer column in a 2 ml collection tube, centrifuge at 10,000 g for 2 min at RT, transfer the cleared lysate into a 1.5 ml microfuge tube, add 1.5 volumes Buffer SP3 to the cleared lysate, vortex immediately to obtain a homogeneous mixture, transfer up to 650 μl supernatant to the Hi-Bind column, centrifuge at 10,000 g for 1 min, repeat, apply 100 μl 65° C. Elution Buffer to the column, centrifuge at 10,000 g for 5 min at RT.


Next-generation DNA sequencers, such as the 454-FLX (Roche, Branford, Conn.), the SOLiD (Applied Biosystems,), and the Genome Analyzer (HiSeq2000, Illumina, San Diego, Calif.) were used to provide polynucleotide sequence from the DNA and RNA extracted from the plant tissues. Raw sequence data is assembled into contigs. The contig sequence is used to identify trigger molecules that can be applied to the plant to enable regulation of the gene expression.


The target DNA sequence isolated from genomic (gDNA) and coding DNA (cDNA) from the various weedy plant species for the PDS gene and the assembled contigs as set forth in SEQ ID NOs 1-78 and Table 1. The EPSPS gene was isolated from dandelion (Taraxacum officinale) and a PDS3 gene promoter fragment (SEQ ID NO: 2138) was used as a target for testing trigger molecules.


Example 2. Polynucleotides Related to the Trigger Molecules

The gene sequences and fragments of Table 1 were divided into 200 polynucleotide (200-mer) lengths with 25 polynucleotide overlapping regions (SEQ ID NO:79-2010). These polynucleotides are tested to select the most efficacious trigger regions across the length of any target sequence. The trigger polynucleotides are constructed as sense or anti-sense ssDNA or ssRNA, dsRNA, or dsDNA, or dsDNA/RNA hybrids and combined with an organosilicone based transfer agent to provide a polynucleotide preparation. The polynucleotides are combined into sets of two to three polynucleotides per set, using 4-8 nmol of each polynucleotide. Each polynucleotide set is prepared with the transfer agent and applied to a plant or a field of plants in combination with a PDS inhibitor containing herbicide, or followed by a PDS inhibitor treatment one to three days after the polynucleotide application, to determine the effect on the plant's susceptibility to a PDS inhibitor. The effect is measured as stunting the growth and/or killing of the plant and is measured 8-14 days after treatment with the polynucleotide set and PDS inhibitor. The most efficacious sets are identified and the individual polynucleotides are tested in the same methods as the sets are and the most efficacious single 200-mer identified. The 200-mer sequence is divided into smaller sequences of 50-70-mer regions with 10-15 polynucleotide overlapping regions and the polynucleotides tested individually. The most efficacious 50-70-mer is further divided into smaller sequences of 25-mer regions with a 12 to 13 polynucleotide overlapping region and tested for efficacy in combination with PDS inhibitor treatment. By this method it is possible to identify an oligonucleotide or several oligonucleotides that are the most efficacious trigger molecule to effect plant sensitivity to a PDS inhibitor or modulation of a PDS gene expression. The modulation of PDS gene expression is determined by the detection of PDS siRNA molecules specific to a PDS gene or by an observation of a reduction in the amount of PDS RNA transcript produced relative to an untreated plant or by merely observing the anticipated phenotype of the application of the trigger with the PDS inhibitor containing herbicide. Detection of siRNA can be accomplished, for example, using kits such as mirVana (Ambion, Austin Tex.) and mirPremier (Sigma-Aldrich, St Louis, Mo.).


The target DNA sequence isolated from genomic (gDNA) and coding DNA (cDNA) from the various weedy plant species for the PDS gene and the assembled contigs as set forth in SEQ ID NOs 1-78 were divided into polynucleotide fragments as set forth in SEQ ID NOs 79-2010.


The gene sequences and fragments of Table 1 were compared and 21-mers of contiguous polynucleotides were identified that had homology across the various PDS gene sequences. The purpose is to identify trigger molecules that are useful as herbicidal molecules or in combination with a PDS inhibitor herbicide across a broad range of weed species. The sequences SEQ ID NOs 2011-2136 represent the 21-mers that were present in the PDS gene of at least eight of the weed species of Table 1. It is contemplated that additional 21-mers can be selected from the sequences of Table 1 that are specific for a single weed species or a few weeds species within a genus or trigger molecules that are at least 18 contiguous nucleotides, at least 19 contiguous nucleotides, at least 20 contiguous nucleotides or at least 21 contiguous nucleotides in length and at least 85 percent identical to a PDS gene sequence selected from the group consisting of SEQ ID NO:1-78 or fragment thereof.


By this method it is possible to identify an oligonucleotide or several oligonucleotides that are the most efficacious trigger molecule to effect plant sensitivity to PDS inhibitor or modulation of PDS gene expression. The modulation of PDS gene expression is determined by the detection of PDS siRNA molecules specific to PDS gene or by an observation of a reduction in the amount of PDS RNA transcript produced relative to an untreated plant or by merely observing the anticipated phenotype of the application of the trigger with the PDS inhibitor containing herbicide. Detection of siRNA can be accomplished, for example, using kits such as mirVana (Ambion, Austin Tex.) and mirPremier (Sigma-Aldrich, St Louis, Mo.).


The target DNA sequence isolated from genomic (gDNA) and coding DNA (cDNA) from the various weedy plant species for the PDS gene and the assembled contigs as set forth in SEQ ID NOs 1-78 were divided into fragments as set forth in SEQ ID NOs 2011-2136.


Example 3. Methods Related to Treating Plants or Plant Parts with a Topical Mixture of the Trigger Molecules

Glyphosate-sensitive Palmer amaranth (A. palmeri R-22) plants were grown in the greenhouse (30/20 C day/night T; 14 hour photoperiod) in 4 inch square pots containing Sun Gro® Redi-Earth and 3.5 kg/cubic meter Osmocote® 14-14-14 fertilizer. Palmer amaranth plants at 5 to 10 cm in height were pre-treated with a mixture of oligonucleotides one of which was a SEQ ID NO: 2137 at 0.8 nmol comprising at least one oligonucleotide targeting PDS coding or noncoding regions, formulated in 10 millimolar sodium phosphate buffer (pH 6.8) containing 2% ammonium sulfate and 0.5% Silwet L-77. Plants were treated manually by pipetting 10 μL of polynucleotide solution on four fully expanded mature leaves, for a total of 40 microliters of solution per plant. Twenty-four and forty-eight hours later, the plants were treated with norflurazon (Solicam®, Syngenta, Greensboro, N.C.) at 675 g ai/ha, crop oil concentrate (COC) at 1% is added to the herbicide treatments. Four replications of each treatment was conducted. Plant height is determined just before ssDNA treatment and at intervals upto twelve days after herbicide treatments to determine effect of the oligonucleotide and herbicide treatments. The norflurazon and oligonucleotide treatment resulted in more injury to the plants than the norflurazon alone, see FIG. 1.


Treatment of dandelion (Taraxacum officinale) and prickly lettuce (Lactuca serriola) with a pool of antisense ssDNA trigger polynucleotides resulted in a strong response by the treated plant to the trigger polynucleotides without the addition of a herbicide. The treatment was conducted in sequential steps, the first step was the plants were treated with 0.1 percent Silwet L-77 and then treatment with the ssDNA trigger oligonucleotide pools (pool 1 and pool 2) in 0.01 percent Silwet L-77 and 5 mM sodium phosphate buffer (pH6.8). Pool 1 (SEQ ID NO: 2139-2144) and Pool 2 (SEQ ID NO: 2145-2150) both provide a strong growth inhibition in the plants to treatment with the polynucleotide relative to the plant not treated (control) with the polynucleotide. The result is illustrated in FIG. 2, the image was taken 38 days after treatment.


In another treatment of dandelion, 5 pools of 4 or 5 dsDNA oligonucleotides (homologous and complementary to the dandelion PDS3 gene promoter, PDS3P) each were mixed in a liquid solution (formulation) of 1 percent Silwet L-77 plus 2 percent ammonium sulfate plus 20 mM sodium phosphate buffer at 10 nm per oligonucleotide in 10 microliters droplets applied to four leaves of a treated plant with four replications per pool. Trigger pool PDS3P 1-5 contains SEQ ID NO: 2153-2157, PDS3P 6-10 contains SEQ ID NO: 2158-2162, PDS3P 11-15 contains SEQ ID NO: 2163-2167, PDS3P 16-20 contains SEQ ID NO: 2168-2172, PDS3P 21-24 contains SEQ ID NO: 2173-2176. The growth of the treated and control (formulation treated) were rated 14 days after the treatment relative to the untreated control. The growth of the treated plants were substantially reduced (47-66 percent, visual rating) relative to the control (10 percent) treated with the formulation without the oligonucleotides as shown in Table 2. In another treatment of dandelion, two long polynucleotide trigger molecules, SEQ ID NO: 2151 and SEQ ID NO: 2152 demonstrated an average in 4 replications of 15-40 percent growth reduction by visual rating 14 days after treatment, however, there was more variability in the replications of this test compared to tests where the shorter oligonucleotide triggers were used.









TABLE 2







Dandelion treated with dsDNA oligonucleotides to PDS3 promoter target














trigger







Trigger pools
type
REP 1
REP 2
REP 3
REP 4
AVG
















PDS3P 1-5
dsDNA
50
50
50
50
50


PDS3P 6-10
dsDNA
55
65
60
50
57.5


PDS3P 11-15
dsDNA
50
50
50
40
47.5


PDS3P 16-20
dsDNA
75
60
60
50
61.25


PDS3P 21-24
dsDNA
70
70
60
65
66.25


Control
none
10
10
10
10
10









Example 4. A Method to Control Weeds in a Field

A method to control weeds in a field comprises the use of trigger polynucleotides that can modulate the expression of a PDS gene in one or more target weed plant species. An analysis of PDS gene sequences from seventeen plant species provided a collection of 2′-mer polynucleotides that can be used in compositions to affect the growth or develop or sensitivity to PDS inhibitor herbicide to control multiple weed species in a field. A composition containing 1 or 2 or 3 or 4 or more of the polynucleotides of (SEQ ID NOs 2011-2136) would enable broad activity of the composition against the multiple weed species that occur in a field environment.


The method includes creating a composition that comprises components that include at least one polynucleotide of SEQ ID NOs 2011-2136 or any other effective gene expression modulating polynucleotide essentially identical or essentially complementary to SEQ ID NO:1-78 or fragment thereof, a transfer agent that mobilizes the polynucleotide into a plant cell and a PDS inhibiting herbicide and optionally a polynucleotide that modulates the expression of an essential gene and optionally a herbicide that has a different mode of action relative to a PDS inhibitor. The polynucleotide of the composition includes a dsRNA, ssDNA or dsDNA or a combination thereof. A composition containing a polynucleotide can have a use rate of about 1 to 30 grams or more per acre depending on the size of the polynucleotide and the number of polynucleotides in the composition. The composition may include one or more additional herbicides as needed to provide effective multi-species weed control. A field of crop plants in need of weed plant control is treated by spray application of the composition. The composition can be provided as a tank mix, a sequential treatment of components (generally the polynucleotide followed by the herbicide), a simultaneous treatment or mixing of one or more of the components of the composition from separate containers. Treatment of the field can occur as often as needed to provide weed control and the components of the composition can be adjusted to target specific weed species or weed families.









TABLE 1







Weed species and PDS gene sequences











SEQ






ID NO
SPECIES
TYPE
LENGTH
SEQ














1

Abutilon

cDNA
1915
TTGAAGAAAATGAGTCTCTGTGGGAGTGTTTCTGC




theophrasti



TGTGCACTTAAACTTCCAAAGCAACACGATAAGCAT






GGGAAGTGTTTTAGCTTTTAGAAGCGGTGAATCCA






TGGGAAATTCCTTGAGAATTCCCTTAAAAAAGAGG






TCAAGTAAGGGTGCACGTCCTTTGCAGGTAGTTTG






CATAGATTATCCAAGGCCAGAGCTTGAGAGTACTG






CTAACTTTTTGGAGGCTGCTTCTCTATCTGCTTCTTT






TCGTTCTGCTCCCCGTCCAACTAAGCCATTGAAAGT






CATAATTGCTGGTGCAGGTTTGGGTGGTTTGTCAA






CTGCTAAGTATCTGGCGGATGCAGGTCATAAACCA






ATATTATTAGAAGCGAGAGATGTTCTAGGTGGAAA






GGTGGCTGCATGGAAAGATGATGATGGAGATTGG






TATGAGACAGGCTTACATATATTCTTTGGGGCTTAC






CCAAATGTGCAAAACTTGTTTGGTGAACTTGGCATC






AATGATCGGCTGCAATGGAAGGAGCATTCTATGAT






ATTTGCGATGCCAAATAAACCTGGAGAGTTCAGTC






GATTTGATTTTCCAGAAGTTCTACCTGCACCCTTAA






ATGGGATATGGGCCATTTTGAAGAACAATGAAATG






CTGACTTGGCCAGAGAAAGTGAAATTTGCAATAGG






ACTGCTACCCGCAATTGTTGGTGGACAAGCTTATGT






TGAGGCCCAAGATGGTTTATCTGTTAAAGAGTGGA






TGAGAAAGCAGGGGGTACCTGATCGTGTGACCGA






GGAGGTGTTTATTGCCATGTCAAAGGCTCTAAACTT






CATTAACCCAGATGAACTTTCAATGCAATGTATATT






GATTGCTTTGAATCGATTTCTTCAGGAGAAACATG






GATCAAAGATGGCATTCTTGGATGGCAACCCTCCA






GAGAGGCTTTGCATGCCAATCGTTAATCATATTGA






GTCATTAGGTGGTGAGGTCCGGCTTAACTCACGAA






TAAAGAAAATAGAGCTCAATGATGATGGAACTGTG






AGTAGTTTTCTTTTAACTAATGGCAGTACAATTGAA






GGAGATGCTTATGTAGTTGCAACTCCAGTTGATATC






TTCAAGTTACTTTTGCCTGAAGACTGGAGAGCGATT






TCTTACTTCAAGAAGTTAGAGAAATTAGTAGGAGT






TCCAGTTATCAATGTTCACATCTGGTTCGATAGGAA






ATTGAAGAACACCGCTGATAATCTTCTCTTCAGCAG






AAGTTCTCTTCTAAGTGTTTATGCCGACATGTCTGT






AACGTGTAAGGAATACTACAATCCAAACCAATCCA






TGTTGGAGTTGGTTTTTGCTCCGGCAGAAGAATGG






GTTGCACGTAGTGACTCAGAAATTATTGATGCTAC






AATGAAGGAACTTGCAAAGCTCTTTCCTGATGAAA






TATCTGCAGATCAGAGTAAAGCAAAAATCGTGAAG






TACCATGTCGTTAAAACACCAAGATCTGTATATAAA






ACTGTTCCGAATTGTGAACCCTGCCGCCCCTTGCAA






AGATCTCCGATACAAGGATTCTATCTAGCAGGTGA






TTACACAAAGCAAAAGTATTTAGCTTCAATGGAAG






GTGCTGTCCTCTCAGGGAAGCTTTGTGCACAGTCTA






TTGTACAGGATTACGAGTTGCTTAGCTACTTTGGGA






CAAAGAAGGTTGACAGTGGCAAGCATCAACTGATG






TCGTTTAAATCGAGGTAAACAGTTCACAAGTTACC






GAGGATCATCTGCTAATCCATTGTTTAAGGCCACTT






AGATTAGAGGTCTTTTTTCATTACATATGTATACTG






AATACCCCATATAAAAACCTGAAACTTGTGCAAAG






ATAGCATCACAAACTGTGTGTAAAATTCTTTTGATG






GAATCTACATGATCTTCAATATCCCGTTAAAAGAAA






AAA





2

Amaranthus

cDNA
414
GATTCAGTTGGACCAGAGTGGAAGCGTGAAGAGT




chlorostachys



TTTTTGCTAAATAACGGGAGGGAAATACGAGGAGA






TGCCTATGTTTTTGCCACCCCAGTTGACATCTTGAA






GCTGTTACTACCCGATACTTGGAAGGAAATCTCATA






CTTCAAAAAGCTTGAGAAATTAGTGGGCGTTCCTG






TGATTAATGTTCACATATGGTTTGACAGAAAATTAA






AGAATACATATGACCATCTACTCTTCAGCAGGAGTC






CTCTTTTGAGTGTCTACGCTGATATGTCGGAGACAT






GCAAGGAATATAAGGATCCTAATAGATCCATGCTG






GAGCTGGTTTTTGCACCCGCGGAGGAATGGATTTC






ACGAAGCGACACTGATATTATCGAGGCAACAATGA






AAGAGCTTGCCAAGCTTTTCCCGGG





3

Amaranthus

cDNA
2020
GAACAAACTTTGTGGGGGGGTGGTGAAAAATGAG




graecizans



TCATTTTGGATATGCTTGTGCTACTCAATCCACATC






AAGATATGTTCTTTTAGGAAATTCAAATAACCCCAC






TTCAGTTTCATCTATTGGAAGTGATTTTTTGGGTCA






TTCTGTGAGAAATTTCAGTGTTAGTAAAGTTTATGG






TGGAAAGCAAAGAAATGGGCACTGCCCTTTAAAGG






TTGTTTGTATAGATTATCCTAGGCCAGAGCTTGAAA






GTACATCCAATTTCTTGGAAGCCGCCTACTTATCTT






CTACTTTTCGGAATTCGCCTCGTCCTCAGAAGCCAT






TAGAAGTTGTAATTGCCGGAGCAGGTTTGGCTGGT






CTATCCACGGCAAAGTATTTAGCTGATGCAGGTCA






CAAACCCATATTGCTGGAAGCACGAGATGTTTTAG






GAGGAAAGGTTGCAGCATGGAAGGATGAGGATGG






TGACTGGTATGAGACTGGGCTACATATATTCTTTGG






GGCATATCCAAATATCCAAAATCTATTTGGAGAACT






TGGTATAAATGACCGATTGCAATGGAAGGAGCACT






CTATGATTTTTGCAATGCCTAGCAAACCCGGTGAAT






TCAGTCGCTTTGATTTTCTCGAAGTCCTGCCTGCAC






CATTGAATGGCATATGGGCAATCCTAAGGAATAAT






GAAATGCTAACCTGGCCAGAAAAAATCAAGTTTGC






CATTGGCTTGTTGCCTGCTATGGCTGGCGGACAGT






CATATGTTGAGGCACAAGATGGTTTGAGTGTCCAA






GAGTGGATGAGAAAGCAAGGAGTACCCGATCGTG






TAACTGATGAAGTATTTATTGCCATGTCAAAGGCAC






TGAACTTCATAAATCCCGATGAACTTTCGATGCAGT






GCATCTTGATAGCTCTTAACCGATTCCTACAGGAGA






AACATGGTTCTAAGATGGCCTTTCTAGACGGAAAC






CCTCCAGAGAGGCTTTGCATGCCTATTGTTAAGCAC






ATTGAGTCACTAGGTGGTGAAGTTCAACTTAACTCT






CGTATACAAAAGATTGAGTTGGATCAGAGTGGAAG






CGTGAAGAGTTTTTTGCTAAATAACGGGAGGGAAA






TACGAGGAGATGCCTATGTTTTTGCCACCCCAGTTG






ACATCTTGAAGCTGTTACTACCTGATACTTGGAAGG






AAATCTCATACTTCAAAAAGCTTGAGAAATTAGTG






GGCGTTCCTGTGATTAATGTTCACATATGGTTTGAC






AGAAAATTAAAGAATACGTATGACCATCTACTCTTC






AGCAGGAGTCCTCTTTTGAGTGTCTATGCTGATATG






TCAGAGACATGCAAGGAGTATAAGGATCCAAATAG






ATCCATGCTGGAACTTGTTTTTGCACCCGCGGAGG






AATGGATTTCACGAAGCGACACTGATATTATCGAG






GCAACAATGAATGAGCTTGCCAAGCTTTTCCCGGA






TGAAATCGCTGCTGACGGGAGCAAGGCCAAGATCC






TTAAATATCATGTCGTCAAAACTCCAAGGTCGGTTT






ATAAGACAGTACCGGATTGTGAGCCTTGTCGGCCG






CTGCAAAGATCACCAATAGAGGGATTCTATTTAGC






TGGTGATTACACAAAACAAAAATATTTGGCTTCTAT






GGAAGGTGCTGTCTTATCTGGGAAGCTTTGTGCAC






AGGCTATTGTACAGGATTATGATCTGCTGAGTTCTC






GAGCACAAAGAGAATTGGCGGCGAGAAGCAATGT






ATAACCCTGGATTGCTTCGACATCCGCCATTGATTT






TCATTCGAGATCAGGATTGGGAATCTGATCAGTCA






TCGAATAATGATCGGCTGTAAACAAAATTATGGGG






GTTGCATACCGGTGCTCGTCAAGTTGACGTATAAA






TTCTCCAGAATGAAGATTTATTTGTAATGATATCTA






TTAAATATTTTAATTTATTTTCTGATAGAAATATGTA






TAGCTCACTTCTAGGGAATAAACATGTATGTGGAC






CAGTTAACTTGATTGAAATGTAAGTATCAACTTTGT





4

Amaranthus

cDNA
1938
CTAAATTCCAACAATTTGGTCCATTTTTCTTGTTCTT




hybridus



TCAGTTTCACATACCCTCTTATCAATCTATATCCAAA






ACTATTTCATTTTCCAAACTCTTTTAAACCCAAAAAT






CAAAACTTTTGATTGAAGAACAAACTTTGGGGTTTT






GGAAAATGAGTCATTTTGGATATGCTTGTGCTACTC






AATCCACATCAAGATATGTTCTTTTAGGAAATTCAA






ATAACCACACTTCAATTTCATCTATTGGAAGTGATT






TTTTGGGTCATTCTGTGAGAAATTTCAGTTTTAGTA






AAGTTTATGGGGGAAAGCAAAGAAATGGGCACTG






CCCTTTAAAGGTTGTTTGTATGGATTATCCTAGGCC






TGAGCTTGAAAGTACATCCAATTTCTTGGAAGCTGC






CTACTTATCTTCTACTTTTCGGAATTCGCCTCGTCCT






CAGAAGCCATTAGAAGTTGTAATTGCTGGAGCAGG






TTTGGCTGGTCTATCCACGGCAAAGTATTTAGCTGA






TGCAGGTCACAAACCCATATTGCTGGAAGCACGAG






ATGTTTTAGGAGGAAAGGTTGCAGCGTGGAAGGA






TGAGGATGGTGACTGGTACGAGACTGGGCTACAT






ATATTCTTTGGGGCTTATCCAAATATCCAAAATCTA






TTTGGAGAACTTGGTATAAATGATCGATTGCAATG






GAAGGAGCACTCTATGATTTTTGCAATGCCTAGCA






AGCCTGGTGAATTCAGTCGCTTTGATTTTCCCGAAG






TCCTGCCTGCACCATTAAATGGCATATGGGCAATCC






TAAGGAATAATGAAATGCTAACCTGGCCAGAAAAA






ATCAAGTTTGCCATTGGCTTGTTGCCTGCTATGGCT






GGCGGACAGTCATATGTTGAAGCACAAGACGGTTT






GAGTGTCCAAGAGTGGATGAGAAAACAAGGAGTA






CCCGATCGTGTAACTGATGAAGTATTTATTGCCATG






TCAAAGGCACTGAACTTCATAAATCCCGATGAACTT






TCAATGCAGTGCATCTTGATTGCTCTGAACCGATTC






CTGCAGGAGAAACATGGTTCTAAGATGGCCTTCCT






AGACGGAAACCCTCCAGAGAGGCTGTGCATGCCTA






TTGTTAAGCACATTGAGTCACTAGGTGGTGAAGTT






AAACTTAACTCTCGTATACAAAAGATTCAGTTGGAT






CAGAGTGGAAGCGTGAAGAGTTTTTTGCTAAATAA






CGGGAGGGAAATACGAGGAGATGCCTATGTTTTTG






CCACCCCAGTTGACATCTTGAAGCTGTTACTACCCG






ATACTTGGAAGGAAATCTCATACTTCAAAAAGCTTG






AAAAATTAGTGGGCGTTCCTGTGATTAATGTTCACA






TATGGTTTGACAGAAAATTAAAGAATACATATGAC






CATTTACTCTTCAGCAGAAGTCCTCTTTTGAGTGTCT






ATGCTGATATGTCGGAGACATGCAAGGAATATAAG






GATCCTAATAGATCCATGCTGGAACTGGTTTTTGCA






CCCGCGGAGGAATGGATTTCACGTAGCGACACTGA






TATTATAGAGGCAACAATGAAAGAGCTTGCCAAGC






TTTTCCCCGATGAAATTGCTGCCGATGGGAGCAAG






GCCAAGATCCTCAAATATCATGTCGTCAAAACTCCA






AGGTCGGTTTATAAGACTGTACCGGATTGTGAACC






TTGTCGGCCGCTGCAAAGATCACCAATAGAGGGTT






TCTATTTAGCTGGTGATTACACAAAACAAAAATATT






TGGCTTCTATGGAAGGTGCTGTCTTATCTGGGAAG






CTTTGTGCTCAGGCTATTGTACAGGATTATGATCTG






CTGAGTTCTCGAGCACAAAGAGAATTGGCGGCGAC






AAGCAATGTATAAACCTGGATTGCTTTGACATCCGC






CATTGATTTTCATTCGAGATCTGGATTGGGAATCTG






ATCAGTCATCGAAAAAT





5

Amaranthus

cDNA
1947
GGGTTTTGGAAAATGAGTCATTTTGGATATGCTTGT




lividus



GCTACTCAATCCACATCAAGATATGTTCTTTTGGGA






AATTCAAATAACCCCACTTCAATTTCATCTATTGGA






AGTGATTTTTTGGGTCATTCTGTGAGAAATTTCAGT






GTTAGTAAAGTTTATGGGGCAAAGCAAAGAAATG






GGCACTGCCCTTTAAAGGTTGTTTGTATAGATTATC






CTAGGCCTGAGCTTGAAAGTACATCCAATTTCTTGG






AAGCCGCCTACTTATCTTCTACTTTTCGGAATTCGCC






TCGTCCTCAGAAGCCATTAGAAGTTGTAATTGCCG






GAGCAGGTTTGGCTGGTCTATCCACAGCAAAGTAT






TTAGCTGATGCAGGTCACAAACCCATATTGTTGGA






AGCACGAGATGTTTTAGGAGGAAAGGTTGCAGCG






TGGAAGGATGAGGATGGTGACTGGTATGAGACTG






GGCTACATATATTCTTTGGGGCATATCCAAATATCC






AAAATCTATTTGGAGAACTTGGTATAAATGACCGA






CTGCAATGGAAGGAGCACTCTATGATTTTTGCAAT






GCCTAGCAAGCCCGGTGAATTCAGTCGCTTTGATTT






TCCAGAAATCCTGCCTGCACCATTAAATGGCATATG






GGCAATCCTAAGGAATAATGAAATGCTAACCTGGC






CAGAAAAAATCAAGTTTGCCATTGGCTTGTTGCCTG






CTATGGCGGGCGGACAGTCATATGTTGAAGCACAA






GATGGTTTGAGTGTTCAAGAGTGGATGAGAAAAC






AAGGAGTACCTGATCGTGTAACTGATGAAGTGTTT






ATTGCCATGTCAAAGGCACTGAACTTCATAAATCCC






GATGAACTTTCAATGCAGTGCATCTTGATTGCTCTG






AACCGATTCCTGCAGGAGAAACATGGTTCTAAGAT






GGCCTTCCTAGACGGAAACCCTCCAGAGAGGCTGT






GCATGCCTATTGTTAAGCACATCGAGTCACTAGGT






GGTGAAGTTAAACTTAACTCTCGGATACAAAAGAT






TCAGTTGGACCAGAGTGGAAGCGTGAAGAGTTTTT






GCTAAATAACGGGAGGGAAATACGAGGAGATGCC






TATGTTTTGCCACCCCAGTTGACATCTTGAAGCTGT






TACTACCCGATACTTGGAAGGAAATCTCATACTTCA






AAAAGCTTGAGAAATTAGTGGGCGTTCCTGTGATT






AATGTTCACATATGGTTTGACAGAAAATTAAAGAA






TACATATGACCATCTACTCTTCAGCAGGAGTCCTCT






TTTGAGTGTCTACGCTGATATGTCGGAGACATGCA






AGGAATATAAGGATCCTAATAGATCCATGCTGGAA






CTGGTTTTTGCACCCGCGGAGGAATGGATTTCACG






AAGCGACACTGATATTATCGAGGCAACAATGAAAG






AGCTTGCCAAGCTTTTCCCGGATGAAATCGCTGCC






GATGGAAGCAAGGCCAAGATCCTTAAGTATCATGT






TGTGAAAACACCAAGGTCGGTTTATAAGACTGTAC






CGGATTGTGAACCTTGTCGGCCGCTGCAAAGATCA






CCAATAGAGGGTTTCTATTTAGCTGGTGATTACACA






AAACAAAATATTTGGCTTCTATGGAAGGTGCTGTCT






TATCTGGGAAGCTTTGTGCACAGGCTATCGTACAG






GATTATGATCTGCTGAGTTCTCGAGCACAAAGAGA






ATTGGCGGCGACAAGCAATGTATAACCCTAAATTG






CTTCGACATCCGCCATCGACTTTCATTCGAGATCTG






GATTGGGAATCTGATCATCGAATAATGATCAGCTG






TAAAGAAAATTGTGGGGGTTGCATACTGGTGCTGT






TCAAGTTCTTGATGTACAAATTCTCCTGAAAGAAGA






TTTATTTGTAATGATATATCAATTGATAGAAATATA






TATAGCTTACTTCTAGGGAATTATGTATATGCACCA






TTTA





6

Amaranthus

cDNA
2117
CCCTCTTATCAATCTATATCCAAAACTATTTCATTTT




palmeri



CCAAACTTTTTTAAACCCAAAAATCAAAACTTTTGA






TTGAAGAACAAACTTTGGGGGTTTTGGAAAATGAG






TCATTTTGGATATGCTTGTGCTACTCAATCCACATC






AAGATATGTTCTTTTAGGAAATTCAAATAACCCCAC






TTCAATTTCATCTATTGGAAGTGATTTTTTGGGTCAT






TCTGTGAGAAATTTCAGTGTTAGTAAAGTTTATGG






GGAAAGCAAAGAAATGGGCATTGCCCTTTAAAGGT






TGTTTGTATAGATTATCCTAGGCCAGAGCTTGAAA






GTACATCCAATTTCTTGGAAGCCGCCTACTTATCTT






CTACTTTTCGGAATTCGCCTCGTCCTCAGAAGCCAT






TAGAAGTTGTAATTGCTGGAGCAGGTTTGGCTGGT






TTATCCACGGCAAAGTATTTAGCTGATGCAGGTCA






CAAACCCATATTGTTGGAAGCACGAGATGTTTTAG






GAGGAAAGGTTGCAGCGTGGAAGGATGAGGATG






GTGACTGGTATGAGACTGGGCTACATATATTCTTTG






GGGCATATCCAAATGTCCAAAATCTATTTGGAGAA






CTTGGTATAAATGACCGACTGCAATGGAAGGAGCA






CTCTATGATTTTTGCAATGCCAGCAAGCCCGGTGAA






TTCAGTCGCTTTGATTTTCCCGAAATCCTGCCTGCA






CCATTAAATGGCATATGGGCAATCCTAAGGAATAA






TGAAATGCTAACCTGGCCAGAAAAAATCAAGTTTG






CCATTGGCTTGTTGCCTGCTATGGCGGGCGGACAG






TCATATGTTGAAGCACAAGATGGTTTGAGTGTCCA






AGAGTGGATGAGAAAACAAGGAGTACCCGATCGT






GTAACTGATGAAGTGTTTATTGCCATGTCAAAGGC






ACTGAACTTCATAAATCCCGATGAACTTTCAATGCA






GTGCATCTTGATTGCTCTGAACCGATTCCTGCAGGA






GAAACATGGTTCTAAGATGGCCTTCCTAGACGGAA






ACCCTCCAGAGAGGCTGTGCATGCCTATTGTTAAG






CACATCGAGTCACTAGGTGGTGAAGTTAAACTTAA






CTCTCGTATACAAAAGATTCAGTTGGACCAGAGTG






GAAGCGTGAAGAGTTTTTTGCTAAATAACGGGAGG






GAAATACGAGGAGATGCCTATGTTTTTGCCACCCC






AGTTGACATCTTGAAGCTGTTACTACCCGATACTTG






GAAGGAAATCTCATACTTCAAAAAGCTTGAGAAAT






TAGTGGGCGTTCCTGTGATTAATGTTCACATATGGT






TTGACAGAAAATTAAAGAATACATATGACCATCTAC






TCTTCAGCAGGAGTCCTCTTTTGAGTGTCTATGCTG






ATATGTCGGAGACATGCAAGGAATATAAGGATCCA






AATAGATCCATGCTGGAACTGGTTTTTGCACCCGC






GGAGGAATGGATTTCACGAAGCGACACTGATATTA






TGAGGCAACAATGAAAGAGCTTGCCAAGCTTTTCC






CGGATGAAATCGCTGCCGATGGAAGCAAGGCCAA






GATCCTCAAATATCATGTCGTCAAAACTCCAAGGTC






GGTTTATAAGACTGTACCGGATTGTGAACCTTGTC






GGCCGCTGCAAAGATCACCAATAGAGGGTTTCTAT






TTAGCTGGTGATTACACAAAACAAAAATATTTGGCT






TCTATGGAAGGTGCTGTCTTATCTGGGAAGCTTTGT






GCACAGGCTATCGTACAGGATTATGATCTGCTGAG






TTCTCGAGCACAAAGAGAATTGGCGGCGACAAGCA






ATGTATAACCCTAAATTGCTTCGACATCCGCCATCG






ATTTTCATTCGAGATTTGGATTGGGAATCTAATCAT






CGAATAATGATTAGATGTAAACAAAATTATGGGGG






TTGCATACTGGTGTTCTTCAAGTTCTTGATGTATAA






ATTCTCCAGAAAGAAGATTTATTTGTAATGATATAT






CAATTGATAGAAATATGTATAGCTTACTTCTAGGGA






ATTATGTATGTGCACCATTTGTAACTTGATTGAAAT






GTAAGTATCAACTTGGTCTCTTGATTGAAATGTAAG






TATCAACATCTGTCTCTTATACACATCT





7

Amaranthus

Genomic
14098
TTGTGACATTTTTCCACACAACATGTGATACCTCCA




palmeri



GATTTAGCTTGAAAAGANNTTGATAGACTACTCAT






ATCAACAAGGTGCATCTTCTTTTCATGAGAGCCCAT






TTGCTAAGAATTCCACAGTTAAGCGTGCTTCATGGA






GAGCAATCTTAGGATGAGTGACCTTCGAGGAAGTT






TTCCTGGGTGCGCACGGGTGAGGCCAAAGTGCGTT






AAAAAGACTTGTGTTGGTCTGTGGGGCTTGTCTAC






AGTCTCCATGAGTAGTCACCGGCGGTACGAGAGGC






CGGGGTGTTACATAAACAGACTCAAAGGCGCTAAG






CCAAGTAGCCAATAGCAACATGTGTGGCCTGCGGA






CAGTCACAAAAACACACAATTTCTTATTTTTACTCTC






TTTTATCTCTTTTAGGCTTTAGCCATCAACAATAAAA






CAACATGATAAAGCAATTCATTTACTGCTAAATTCC






AACAATTTGGTCCCTTTTTCCTGTTCTTTCAGTTTCA






CATACCCTCTTATCAATCTATATCCAAAACTATTTCA






TTTTCCAAACTCTTTTAAACCCAAAAATCAAAACTTT






TGATTGAAGAACAAACTTTGGGGGTTTTGGAAAAT






GAGTCATTTTGGATATGCTTGTGCTACTCAATCCAC






ATCAAGATATGTTCTTTTAGGAAATTCAAATAACCC






CACTTCAATTTCATCTATTGGAAGTGATTTTTTGGG






TCATTCTGTGAGAAATTTCAGTGTTAGTAAAGTTTA






TGGAGGAAAGCAAAGAAATGGGCATTGCCCTTTAA






AGGTTTTCTGCCTTTTTTTTTTTTTTGATGATTTGATT






TTCTGGGTAGGGATAAATGATAAAGATTGATTCAT






TTTTTTTAAATGAATAATTTGTTTTTTTGTATGATGC






AGGTTGTTTGTATAGATTATCCTAGGCCAGAGCTTG






AAAGTACATCCAATTTCTTGGAAGCCGCCTACTTAT






CTTCTACTTTTCGGAATTCGCCTCGTCCTCAGAAGC






CATTAGAAGTTGTAATTGCTGGAGCAGGTGAGTGG






AAGGGTTCTTTACCTATTCTGTTGATTAGGGTCTTG






TTGTGTTGCTTTTTGCTTTGCCAAATTGGATGCTGTT






CTTGATTTTCTGGAGCTTTGGGCAAAATAGAAGCA






AAATTGAAAGCTAATTGAGTCAATTGAGATGTTTTT






GAGAAATCATTTATTGGCCGTTACTGTTTATTAGAG






AAAAAATATGGGTCAAGAAACGAAAAGATAATGG






AAAAACTACTTATAGGTGTCTTTTTTGATCATGAAT






CATGATGGATATATATGGTGTCAACTATCAAGACT






GCCATATAACTAATGTAGTATGCTTCCTTAAGGGGT






GGTGAAGAATAGACGTGTGGATGAGAAAATTGCT






GGGAATTTCCTATGCTTATGTAGAATGAGCTTCCTC






TTGTTGACATTAGTGAAAAGTGAAAAATTGGTGTA






TGAGTTTGCTTGATCGCTTTTGTGAGTGCTTCATTG






TCCGTTCCACACCTAGGTTATGTTGTAGGGTTGCAA






TATGTTAAATTGTTAGTGACGGCTGTCGTATAACAT






TATTGTATCTTATGCCATGGGCCAAATTTACCCCTA






TTCAACGACGCCATGCAGACCTAGGTGTAGTGAAA






AGTATGCAAGGGTTAATTGGACATCAAGCATGGCG






CCATGTTGTTTGAGTGTGGCAAAAAGACTTTACGCT






ACACCTCTAGACCAGTTAAGTATGTAAAGGGTGTT






GGGTCACCGCTCTAAAGTGGTGTGTCACATTTTATC






GAATTCGAGGATAAGCTGATCGTGGTATCAAGTGA






GAAAGAACGCAATATAGTGGAATTAGAAAGTTAA






GTAATAAGAAAAAAGAAAAAAATGATATCTAGCTT






TAGGAAAATCTATCAGTGAGGAGAATATTGCAAAA






TACGTGGAAATTAAAACCAAGACAAAGCTAGCGAT






ATATGAGACAAAGTTAAAAATGTACAAAGAAATAT






ACGATAAGTTGACTCGAAAGAAGAGGATAACGATC






TTTATAGGATAGCCTAAAGGAGACAAATGATTATA






AACGATACTAGTTGAATGAACTATGAAGAGTGTCT






TAACCAAGCAAATATTGTTTAGAAATAAATTCAAAA






CTTTTTAATTCTTCAAATATGAACATGAGAACTGAC






TTCTCATTCTTTATTTTACTTCAAGGTTTGGCTGGTC






TATCCACGGCAAAGTATTTAGCTGATGCAGGTCAC






AAACCCATATTGTTGGAAGCACGAGATGTTTTAGG






AGGAAAGGTGTGTGCTATACGTTTCTCGTAGCTTAT






GAAACAAATTCATCGTGCTTATTCTCTTATTAGTTTA






TTTCAGACTATCAGATCATTTTTGAACTTTTTCCTCC






CTCTGTTCGGCTGTATTATTATATATGTGCAGCATG






ATTAAAAAATGGGTGCATTAACATATATGAAGTTTT






TTTTTTTTATCAAGGCGAGATTTTGTCATCCAAAAA






CTTTACTTCTGAACGTGCTGTATGATCCTGTTTCTGT






ATCTTCATTTGCTGGGATTTTCTCGAGGTTCCTGAC






TGCTTTCAGTTATTGTAGTTACCCATCCTGCATAAAT






TTGAGTTTACAGTTATTGTAATGAAAATAAATCGGC






TAATTATATCCTCGTCACAGTATGATGAATCTTGGG






CTAGTAAGAAAATGAGGTAGGAGGAATAATTATG






GTTAGTTTGATAATATGTGCCAAGAGAAATATTGT






AGTGTAAAGTTTCATTGTATTTCTTCCCGTGCTTATA






ATTTTTGCTCCACAGGTTGCAGCGTGGAAGGATGA






GGATGGTGACTGGTATGAGACTGGGCTACATATAT






TCTGTGAGTGATCTTCTAATTTTCTGCTTAATTGGCC






AGTTACCCATGTTCTTACAATGCGCTCTCTAGTCGT






GTTTATTGGAAAATCGATGTACTGAACATCTTCATA






TTTTCTTGAAGTTGGGGCATATCCAAATATCCAAAA






TCTATTTGGAGAACTTGGTATAAATGACCGACTGC






AATGGAAGGAGCACTCTATGATTTTTGCAATGCCT






AGCAAGCCCGGTGAATTCAGTCGCTTTGATTTTCCC






GAAATCCTGCCTGCACCATTAAATGGTTAGTATATC






GGTGATAACTGCCAAATTACTTGATGCAATGCAGT






ACCTTGTTAAGTACTTTGGATGTGACTCCACCTATA






ATACTTGCTATAATCTTCAATTTATTTCTCTTTCCTAC






ATTAGAAACTATAAGTATCCCGCTAAAGGACATGA






CCCCACTTACAAAGTTACAATACCCCATTAAAATAC






CCACTCACCCACTTTTTTTAATCGGTGTACCATCCGC






CCGAGGAGCAATCTCGAGGGGACAGCAGAGTACT






ACTTTAGTGTTATTGTGATGAAATAGGTACCTGCAT






CATATCTCATGTCCTGTGGATACCCATAAATGAACG






AAAAATTTCATTTTTATACGTATTATCCTGCTTTAGA






AGCTTGGAATATCATTGAACTTTTTTAATGTCCCAA






CATGAAAACAATCTGCATCTTGGTCTGTTTGCTACT






CCTAAATCCTAATGAGTCGGGCTGATTTATGTCTTT






GATGCTTTTGATCGTGTTTCGCAGGCATATGGGCA






ATCCTAAGGAATAATGAAATGCTAACCTGGCCAGA






AAAAATCAAGTTTGCCATTGGCTTGTTGCCTGCTAT






GGCAGGCGGACAGTCATATGTTGAAGCACAAGAT






GGTTTGAGTGTCCAAGAGTGGATGAGAAAACAAG






TAGGAGCAGACTTTCGTTTCAGATTTTCCTCATTTT






GTTAATGGTTCTAGACTTCTAGCTGTAAACTTTGAC






TTTGTTGGGACGTCAATGCTGAAATTTTGTTTGTGC






ATTAATGCAGGGAGTACCCGATCGTGTAACTGATG






ATGTGTTTATTGCCATGTCAAAGGCACTGAACTTCA






TAAATCCTGATGAACTTTCAATGCAGTGCATCTTGA






TTGCTCTGAACCGATTCCTGCAGGCATGACTGCCTT






TCATTTTCTGCTTTAAATTTTTGGTTTTGTACGATAC






TTCTTAGTGCTTGTTTTTGCGACTATTCTCGAGTAAA






TAGGGGATATAAAATGACCGTGCTGTTTTTCATAA






ACTGACCTTGGGTAATGTATATCAACAGGAGAAAC






ATGGTTCTAAGATGGCCTTCCTAGACGGAAACCCT






CCAGAGAGGCTGTGCATGCCTATTGTTAAGCACAT






CGAGTCACTAGGTGGTGAAGTTAAACTAAATTCTC






GTATACAAAAGATTCAGTTGGACCAGAGTGGAAGC






GTGAAGAGTTTTTTGCTAAATAACGGGAGGGAAAT






ACGAGGAGATGCCTATGTTTTTGCCACCCCAGGTTT






TCTTCTCTCCCTTTTTTTACCATTAGTTCTCTATCAGA






CTCCGTAAAAGCTAGAGTAAAGAAAATGAAGATTC






TATTACAGAAATGGACACACTGTAAAGCTTAATTA






GTTTTGATCTTGGGCAAAGCATTTGTGTTTCCAAAT






TTGTTAATGGTTATTATTTAAATAGAACACTTATGTT






TGTGATGGGTAACAAACTAACAATAGGTCAAGCGT






TGAGCCAAAGTGTTATAACAATGATTATATAGTGT






ATATCATAGTGTAAAATTGCGGTAAATTGTGGTAA






TGGACGCAATCACAGTGTCGGGAGTGATTCGGTAT






CATAACGCCTAAATATCGGTCGAAACCATAAGCTTT






GAAACGGCCCAAAACACGGTTTTTTTTAAAAACTTT






ACGACGCGAGAAATATCGTTTTGTTTATTTTGAAAA






CCTTTACGAAGCGACGATGCGATGCAGCCTTGTTTT






AACTCTATAGTGTACATAGGAATATACAATTAAGCA






AATAGTCGTAAGTGATATCTCAAAAGGGACAAGTG






TGAAATAGGCTAAAGAGTTGAATTAATTGTGGGAT






TGACAATTGTTTCATCACTGGTCCTCTATTGCTTTCC






TTGGTAAAATGTTGCATACTTGTTTATTGATTTACA






CTACATATAATTAGTTCTGTAGAATATGTTCTTGAG






TCAAAGCATGGGTCGATGTTTGAGGTTGATGTTGG






ATTTGCTTGGGCAAGCAATTACGAATATCTTGGTTT






AAGGAACCCATGAAAATGGAGCAGCTTGCAACGA






AAACAAAGCCCAGTTGAAAGCCTGCTCGGGTGAGC






AGCATCGCGTTGGGGCCAGCATGATGAGCTGTTCA






AACACAGAAGTTACTGGAGTGCTAGTGCTCTGGCA






AGCAAGCACAGCGCAGCTTACTTTTCTTTAATTTTT






GATTCTATCTAGAATTCTAACTAAACCCTAATGCTT






ACGATTGATTAGTATAATTAAAACCCATAAAGTGA






ATGAGTTGTTCAAATACTTGACAATTGACATTATTT






GAGTGGTCGTGGATGTAGTGTTGTAACAAAATTGT






CACTTATGAGTTAGGACCATATCCTTGCGAAGGTG






GAGATACACTTGGTAGAATACGGTGAAAAGTATCA






CCTTTCCATAGATAGTATAGCGTTATAAGTGAATTT






ATTATATTGTGCTGTCATATCAGTGTAACATAATTT






GTAGCTAATCCGCTTTTTGAATACGGAATTCGCTCG






AAATTGTTGAAAAATAACCCAAGACCGACCATATTT






TGCTTTTTTCGGTTTGCGATTCGCAGGGAGATTAGA






GAACCATGTAACATTGTATTTTGATATAATTTTTGA






ATTTCATTGTCAGTTGACATCTTGAAGCTGTTACTA






CCCGATACTTGGAAGGAAATCTCATACTTCAAAAA






GCTTGAGAAATTAGTGGGCGTTCCTGTGATTAATG






TTCACATATGGTTAGTTAATTCTTCATTCTATATTAA






ATTTACTTGTTAGGTTTTATACCTAATCAACTGCTTT






TAGTTTTGACATTTTGTCCGACAATAAGTGGACGTT






TCTGTTTTGTTGCGTTTTGTGAATTTCTTTTGATTAC






AGGGGCTAATTATATAATAATGCTTCATGCAGGTTT






GACAGAAAATTAAAGAATACATATGACCATCTACT






CTTCAGCAGGTAGTATTTCGTTTCTTTAATCATCCTA






TTTCTCTTTCGTAACTTAAATAATCTCGTTCTTCCCCT






TCCCTCCTTCACTTCAACACTTGTTTCAATTCTTCATT






TTTGGTCGTAGTAAAAACTGATGAATATTTGACAA






GAGTCGCATCATAAGTAATATGAACATTGGAGGAG






TGACAATCATCATCTATGAAGTATAAACTAAGATTC






TTTGAAGAAGGGGAAAGTTTAAGTGAAAATTTTCT






TTCCATTGGGAAATAAGTCTTTTGATTAACGTCTTG






AATAGATGAAGGATGCGAATTTTTGGATTCAAATG






AAGAGAAACGTTTTATGTGATCTAGTTGCGAGTCG






ATGGTGCCTTGAATTTCTTCAAAATTGAGCATTTTG






TTAATGTTCGCTTTATTTTTGCACTTTCATGTCCTTTT






CTTAAAGTTTTATATGGCTATACATTCTCAATTTAG






GGCGACCTCGATGCTTAAACCTTTACAAACACACAT






CATATAAGAATGAGAGTGTTAAAATTTACCTCTTAA






TCTCAGTATAAAGTGTCTCCTTTACTTTTGCACAAAT






TTTAGGAACGTGTAAGTTAGGATACAAATTGAAGT






TAGGGAATCTTGTAGGGCTCATAAAAAATGACAAT






CACAAATAACTTTCTAAATATCGAAATGGGTCACTT






GTGGTGAACTGATCCAATATGAAAATTAGACACTT






GTGCTAAGATGGAGCAAGTATTATAACTTATGAAA






ACATAATACTTGGGGTGGATGTACCTTTGGTAGGA






ACCATAGTGCCAAAATGCAATTAACGGTTGCAATT






GCGGTAACGACACGATGATGCGTTTATCATAACTC






CAAATATCGGCTAAAAGCATGAGATATTCCTTGTAC






CGGCCCAAAACACGGTTTTTTTACACCTTCACATCA






CGAGAAATATCGTTTTTTTGAAAATCTTTAGAACAC






GGCCGATGCATTGCGATGCGACCTTATTTTTGCACT






ATGGTAGGGACAACATTTGCGGATGCACACATTGG






ATACCGTTTCTGACCCCCTTTTCACTTTTACAGATCC






TATGGATATAAGTATGTTACTGATTCTAAAACTTCA






TTCCCTAGGATTAAATGTAGAAACCATATAAGGAT






GGATCTTTAAGATACTTTTATCTATATCCTTTCCTGA






ACCCTATTAAATATCTATGGCCTACAAGAGGTGGTC






ACAATTCATCATCCTCTTCGTCCACTTCATGCATTTT






AAACATATCTTCGAGTTCTCCTTTAATTGTTTATCTT






TGTTATTTCAGGAGTCCTCTTTTGAGTGTCTATGCT






GATATGTCGGAGACATGCAAGGTGAGCATATTCCC






ATTTGTCGCTCTTTTGATTTCTGACTTGTATGTTCTG






GTTCTCCATTTGTCGCTCTTTCGCGCGTATAATTTCG






AATGTTAGCCACTCCCCGTCACTCCTCCCATTCTGC






AATCACCGGGATTTTAACTATGAGGGTCCTTAGAA






TCGATTATAAAAATTCGACAAAAACAAAAAAAAAA






GACATAAAATTGACGGGCCATAACAATTTTACATA






AGATATTCAACATTTTTTTTGCGAATTTTCTTAATAA






ATTCCGTAATTCCGTACATCTATACTCCCGAGCCCC






TTCATGTGTGCGCTGCGGCTTTAAGAAACCTTTCTT






ATAAGTGTTGACTGTATGAGCTGACAGGCTGTCTTT






TCCGTCCCAATAATCATTTACAGGAATATAAGGATC






CAAATAGATCCATGCTGGAACTGGTTTTTGCACCCG






CGGAGGAATGGATTTCTCGAAGCGACACTGATATT






ATCGAGGCAACAATGAAAGAGCTTGCCAAGCTTTT






CCCGGATGAAATCGCTGCCGATGGAAGCAAGGCC






AAGATCCTCAAATATCATGTCGTCAAAACTCCAAGG






TGATTGATAAGCTTGTGAAATTAAAATTGGATAATT






TTATGCTACCGCTAGAAACAGCATTAATGTTGTGCC






CGCGGGCTCTTTTATAGGTCGGTTTATAAGACTGTA






CCGGATTGTGAACCTTGTCGGCCGCTGCAAAGATC






ACCAATAGAGGGTTTCTATTTAGCTGGTGATTACAC






AAAACAAAAATATTTGGCTTCTATGGAAGGTGCTG






TCTTATCTGGGAAGCTTTGTGCACAGGCTATCGTAC






AGGTAATCAAATTTTGATGGAACACCGCGTGCATG






CTGAGTAGACTTTTTGTGTTTTGATTTGTTCTGAAAT






TGACCCAAAACCGACCGGAAATCATGGGTTATAAC






TCGGAAAATATGACCCGTAACCTGAAAATGACTCA






AAACCCACCGTAGCCCAAATCCAACCGTTTCGACTT






GTTTACCTAATTTTGTCAACTTTTCTTGTTCCACATC






GTTAATTTTCTGTCGGAACCCACTTTCTTTCTAGTCT






ATTTTTGTATTTCTTTTTTCTTTGTTGATTCTTTTATT






CGTTTATACCTAGTTATGTTTTTTTTTTTTGAAAATTT






GGAATAGATTAATAAAAGGAGGAAAAGAAACACA






ACACTGTAACTTGGGACACCAAACCTAGTTATGTTT






ATATATTTATATGTATTTTATATATTTATATGCTTTT






GACTACTGAGGTATTATGATAGTTTCTATGAGCGT






GATATACTGGGTATGAAGATGATTTATTCTTTTTTA






ATAAAAAAGTTTAGGTCTTTTTTGAAAACATTTTAG






TGATTTTTTCTAAACTTGTAACCCGATCGAAATTCA






ATCCGAACCAAAAATAACCCGATCGAAAGTGACTC






AACCCAAAAGCTTCCCTGATCTAATTGTGATGATAG






CTTTGAAATTTTCATCGTTTTAGTCAAAAAGTTCTGT






TGAGTAGTTTAAATAACTGGTTCACATTTTGTAATT






ATATGCAGGATTATGATCTGCTGAGTTCTCGAGCA






CAAAGAGAATTGGCGGCGACAAGCAATGTATAACC






CTAAGTTGCTTCGACATCCGCCATCGATTTTCATTC






GAGATCTGGATTGGGAATCTGATCATCGAATAACG






ATCAGCTGCAAACAAAATTATGAGGGTTGCATACT






GGGGCTGTTCAAGTTCTTGATGTATAAATTCTCCAG






AAAGAAGATTTATTTGTAACGATATATAGAAATAT






GTATAGCTTACTTCTAGGGAATTATGTATGTGCACC






ATCTGTAACTTGATTGAAATGTAAGTATCAACTTGG






TCTCTTGATTGAAATGTAAGTATCAACATAATACAA






ATTTATACCAATACATTTATTTCCCTTTTTTGTTTAAT






TATGTGTTTTTTGTTGTTTTTTATTTGTAACTAGAGT






CACTCATACTCCAACGGTCTGTCTGGTTTGTGGTAT






TAAACGGTGGTGATGAGAATAAAAACTAGTGTAAT






TTTGATTAAAAATTCTCTTGCTATTTTGATGGCCATG






GTTGTGTTTGATGAGAAGGAATATGAAAACTAGTG






TAGGTGGTATTAAACAGTGCCACGGTGGTAATGAG






AATGAAAACTAGTGTAATTTGGGTTAAAAAAATCT






CTTGTCTTTAATCATCTCATTTTCTTTATAAATTTCAA






TCCAATGCATTACTATCGGGAGAGATGGTATCAGG






TGGTAATGGAAATTTGTAAATAAAAAGAAAAATTT






TGTGATCAAAGTTTCATCGCTATAAAGCATTCTCAT






TACCACCATTTAGTACCACTAATCAAACAGGCCGCA






AGAGCTTTAGCGTTGGCTTCCATTGGATGATTATG






GGGGTTAACGAGTCTGTTAAGGTGCCCATTATTAT






CTATATGTAGTTGTCTTCCATTGAAACTTGATAAGT






AACTTCTACCATTACCAAGTGTTTGTATATGAATCA






TTTTTTTTTTCTCTTTGTCTGGGTTGTTCAGACTCAC






TTTTAAAATTCTTCTTCATTAGCAAGTCCATTAGACT






TGTTTCAGTGCACTTCTGATTATAGTGTAAACAGAA






ACAAGGTTGCATCACATCAACCACGTTGTAAAGATT






TTCAAAACAGACGAATTGATATTTTTCGCGTTACCG






CATTTTTACATATCAAGTAGCTGTTTATTCAAGGAT






TAACAACTCATATAAAGTATCATAAGCTTATCAATA






TCTTTATGATTTATGAATGGAGTAATAAGAGAAGTT






AACTTATCTTGGTTTAGACTCTTGAGCGGAGCCGTA






CAATTACAAATCATTGACATACATGATACATTGCAT






AGGGACCCATCAAAAAATCAAAAAGGAAGACGAT






TGATCCTAAACGGAAACGAATGAAATTAAAAGAGA






GTAAAAAAAACACATTAATTTTAGAGGTTTTATATA






TTTTATATATTTTTTTTGTAATTTTAGAGCCTAAAAA






TAAGTTATTATACTCCGTCAAAGTTAGTATAAACTA






ACGTTAACAAATATTTGAAGCTCCCTTAATTTATGG






AGTTCTATGTGATTGGACATCTTACACATGCTCAGA






ACCACACCTGAATACAAAATATCAATATAATTCTGG






TATCCGAGCTGATAGTTCGATCAAAAATTAAAAAG






GTGGGTCCAAAAAGAATGTTGTCCCTACCCTAAGG






GCTAACAGTGTGTTTGGCAAGAGGGACTTGAGGTT






GGGGAATGAGATTTTTGGGTAAGATTATAAAAAGT






CTCTTATTTGTTTAAGGGGATTGAGAAAAGATGAG






ACTTGAGACTTAGAAAGGAAAAGTCCCCAAAAAAT






GTCTTGGTGGGAGGGCAGTATTTGGGGATGAAAC






TTAGAAAATTTATAAAAAGACAATTTTGCCATAAAT






GTAAAGAAATCTAAGAGTTATAAGGACAATTTTGT






AAATATAATCGATTTTTATTTAATTTCTTATCTATTTT






TATCATTTGACTGACAACGACATAAGACATTTATTT






TCAAAGTCTCAACTCAAGTCTCAACCTAAAGTCTCA






TTCTAAGTCTCGACTATAATCTCATAATTTCCATTCC






CACATGCCAAACACCCCCTAATTGATTACTCCCACG






TTCAAACTTGACGGGATTCACATGTAAAAGAAAAT






GTTGAGACAGTTTATCCCATATTGATAAATTAAAGA






TGTTGTGCACACTTTATAATTCATTAAAACTAGAGG






TGCTCATTCGGGTCATCGGGTTGATTTCAGGTTATG






TGTTTCAGGTCGGTTCAAAATCGGGATTTGTGTTCA






CATTGGCTTTTACATAATTATAGATCCACTTTTAAAT






CGGGTCTAATCGGGTTCGATTATAAAGTCGGATGT






CTATCGGGTCATCGGGTATGTTTTGAACACCTCTAA






TTAAAACCCATCCCTTCCGATCTAACTTAACATTCAT






GTACCTCGTTAAACCACAAAATCTGTTTCTAAGCTT






GTAATTTCAACAAAATCTAACCAACTTAAGTCTTAA






GTTAAAAACCAAGAGGAAAAGGGCGGTTTCAATCT






TCAATCTCGAGTGGACGCCATAACTAATGGCTGAT






GCAGATCATCTCACATTCTTAACATTTCAATTCACTG






AATCTTGGGATTTTGGTGTTTAAAAACAAGATCATG






GTAATCCTTTAAACCTTAAATTGTAATTAAAGTCAT






TAAATTTGTGGTTTTGATGTATTCAACGTTTAAAGT






ATTTAATTTACCCAAGATCAGGTAGTGGGGGATTG






TGCATTTGTGCATCAGATCAGTACAGGATTAATGT






GCAGCAACAGTTCATTCGAGTCTTAGAGGGTGAGC






GAGGGGATTGACTATATAATATAGGGCCGTCTTAT






TCTTCCGTATGAAAAAGTTAACAAGAAATGTATGTT






AAGTCTATTAATAAAATAAAAATATTACTACAAATA






AAGTGCAAATAAAAGTTTTACACAGGGCCCCTAAA






TTTTTCAAAACGGCTCTCAGCCACACAAGTAGACAG






TCATCAGCCGAGTACTTCCTCCGTCTAACAAATTGT






GACAGTGAGGATAAATATAGTTAATTATGTCCAAA






ATTTATAATATAAATATAAAGATTTCGTAGGTGAAC






TGTAAATAAATCAACCCAAAATAACAATACAAATTT






TTGTGAGAGATGGTCTCTTTGAGAGACCATCTCTA






GTTGGGCGGCTCATTATATATTTTTTAAAATATTGT






AAGTAGGCATTAGGAATGATCTAAGTATACATTTA






AGATATTGAAAGTAGGCATTAAGGATACGATAATA






AGTAAGCACTAAGGATAATGTTAGTAGACATTAAA






AATATGATAAATAGACATTAATCTTTAATGGGTTGG






ACTTGAGATATATTTTTCAAAGAGACGATCTCTCAA






GAGATTAGCTGAAATACCAATGAGAACAAATTTAA






CAAACGAAAAGAGTAATAAATATATGAGGAGTTAA






AACTTAAAATGCATGTGAGAACAAAAATGCAAGAA






AATGATGAAACATTTTTATAAAGGAGAATTGTAGC






AAAATAAAAAGAATGAACAAAAGTAAAAGGTATTT






CCTCTGTTTCATAATCGTTGCTAGCGTTAGTGACAT






TTTCTAACATAACATGTCACACTAATGGAGAAAGTA






TTTGACAAGTCTCTTAGTCAATTGAAAGCATATTTC






TTAGGAAAAAGATGAGCTGAGTTTGTTCAGTGATT






TGATGATGTGATCAAATCATTAGTGAATCAGTGAA






ACCATACTCATGATTATATGATTACAACTTTAACAA






ACAAGTAAATATTGCATCTTTGGAGATATCAATGA






GTCAATTGACTAATGAATGTTCTAAAAGACTAAACA






CAAAAGATTGCACCAACTCATAACACCCCATCTATC






TATCTTTTTAATTTAGTATCATTTTTTATTTTGGGTTA






TTCGTCTCATTTGTATTAATAATACATCACTTTCTTT






GAACCTTATTCATACATTTTAACCCTTTTTTTAATAT






CATCCACGCAATTCAATCTCTTTTGGCTTATTACCAA






TAAGACTCAAAAAAATGTACGACCTTAACAAAGAA






ATTTATTGTCGATTAAATCATCATCATCATCATACCC






AGTGTATCTCGCTCATTATTGTCGATTAAATCTTAAT






AGAAAATATTATGTACAACTTCACATAAATAATAAA






TTAGAAATACTCATAATTTAGTAAGTCATTTTACTAT






ACTTCATATAAATATAAAGAATTTTAATAAAATTTTC






CATCACCTCTTATTATCGGAAATTCTCTAACCTGCAC






CCGAGTCAAAAAATTAAAAAAATAATAAATTGCAA






AAGCAAAAACCTTTATCAACCACAAGACTGAAAAA






ATAGTAATTAATTTGTCACCAAAGATATATTATATG






AATAATAACTAATTAGTGTTGTTTTTTAGGATATAT






GCATTTAAAAAATGTTACCTTATGATTAGCAAAATC






AAGCAACAAAACTATATGATGATTTAAGTTTGTCTC






ATTTGAGACCATCCAACAAGAAGTCATGTGGAAAA






TCCTAAACTATAGTGATTAGAAAGACTAGTATACCA






AATCTTTGAATAAGATGACAAAAGATATTGATTAA






ACTAATCTTAATTAGCTATATCCAAAATATTTGGCG






ATTTATGGCGTTTGATAAATGACTGATAGCTGGTA






GTTGATAACTGATTATAGTGACTGATTTGATCAGTT






GATTTTATTAACTGTTTCAACCAGTTAATTCACCAA






AGACTAGCATTAGCTGGTTTGACCACCCAACCCTTA






TTTATATCAAAATAAGCTAAAATTACCCAATAAGCT






AATTTGTCAAATACCCGTGTATATTATGTAAGTTTG






AGAGTAAAAATATTTTTTTTTAGAAAAAATATTAAT






TTAACTTTTACTTATCTTGCCTTTCCTCGGCCTATCG






ATTCAGTAATAAAAAAAATTCTCTCAATATAATGTT






ATAGAAATATACTCTCTCTGTTCTTTTAAGTTTGTTC






ACATTACTCTAACGGGCAGTTTCATATGTTTGTCCT






ATTTAGAATACTTTTCTATTTTGGAAAGTTTTTATCT






TCCATGTGCTCTCTTTATCCCTCATTTAACCC





8

Amaranthus

Genomic
8797
AGGGATAAATGATAAAGATTGATTCATTTTTTTTAA




palmeri



ATGAATAATTTGTTTTTTTGTATGATGCAGGTTGTTT






GTATAGATTATCCTAGGCCAGAGCTTGAAAGTACA






TCCAATTTCTTGGAAGCCGCCTACTTATCTTCTACTT






TTCGGAATTCGCCTCGTCCTCAGAAGCCATTAGAA






GTTGTAATTGCTGGAGCAGGTGAGTGGAAGGGTT






CTTTACTCATTCTGTTCATTAGGGTCTTGTTGTGTTG






CTTTTTGCTTTGCCAAATTGGATGCTGTTCTTGATTT






TCAGGAGCTTTGGGCAAAATAGAAGCAAAATTGAA






AGCTAATTGAGTCAATTGAGATGTTTTTGAGAAATC






ATTTGTTGGCCGTTACTGTTTATTAGAGAAAAAATA






TGGGTCAAGAAACGAAAAGATAATGGAAAAACTA






CTTATAGGTGTCTTTTTTGATCATGAATCATGATGG






ATATATATGGTGTCAACTATCAAGACTGCCATATAA






CTAATGTAGTATGCTTCCTTAAGGGGTGGTGAAGA






ATAGACGTGTGGATGAGAAAATTGCTGGGAATTTC






CTATGCTTATGTAGAATGAGCTTCCTCTTGTTGACA






TTAGTGAAAAGTGAAAAATTGGTGTATGAGTTTGC






TTGATCGCTTTTGTGAGTGCTTCATTGTCCGTTCCAC






ACCTAGGTTATGTTGTAGGGTTGCAATATGTTAAAT






TGTTAGTGACGGCTGTCGTATAACATTATTGTATCT






TATGCCATGGGCCAAATTTACCCCTATTCAACGACG






CCATGCAGACCTAGGTGTAGTGAAAAGTATGCAAG






GGTTAATTGGACATCAAGCATGGCGCCATGTTGTT






TGAGTGTGGCAAAAAGACTTTACGCTACACCTCTA






GACCAGTTAAGTATGTAAAGGGTGTTGGGTCACCG






CTCTAAAGTGGTGTGTCACATTTTATCGAATTCGAG






GATAAGCTGATCGTGGTATCAAGTGAGAAAGAAC






GCAATATAGTGGAATTAGAAAGTTAAGTAATAAGA






AAAAAGAAAAAAATGATATCTAGCTTTAGGAAAAT






CTATCAGTGAGGAGAATATTGCAAAATATGTGGAA






ATTAAAACCAAGACAAAGCTAGCGATATATGAGAC






AAAGTTAAAAATGTACAAAGAAATATACGATAAGT






TGACTCGAAAGAAGAGGATAACGATCTTTATAGGA






TAGCCTAAAGGAGACAAATGATTATAAACGATACT






AGTTGAATGAACTATGAAGAGTGTCTTAACCAAGC






AAATATTGTTTAGAAATAGATTCAGAACTTTTTAAT






TCTTCAAATGTGAACGTGAGAACTGACTTCTCATTC






TTTATTTTACTTCAAGGTTTGGCTGGTTTATCCACG






GCAAAGTATTTAGCTGATGCAGGTCACAAACCCAT






ATTGTTGGAAGCACGAGATGTTTTAGGAGGAAAG






GTGTGTGCTATACGTTTCTCATAGCTTATGAAATAA






ATTCATCGTGGTTACTCTCTTATTAGCTTATTTCAGA






CTATCAAATAATTTTTGAACTTTTTCCTCCCTCTGTT






CGGCTGTATTATTATATATGTGCAGCATGATTAAAA






CTGGGTTCATTAAAATATATGAAGTTTTTTTTATCA






AGGCGAGATTTTGTCATCCAAAAACTTTACTTCTGA






ACGTGCTGTATGATCCTGTTTCTGTATCTTCATTTGC






TGGGATTTTCTTGAGGTTCCTGACTGCTTTCAGTTA






TTGTAGTTACCCATCCTGCATAAGTCTGAGTTTACA






GTTATTATAATGAAAATGAATCGGCTAATTATATCC






TCATCACAGTATGATGAATCTTGGGCTAGTATGAA






AATGAGGTAGGAAGAATAATTTGGGTTAGTTTCGT






AATATGTGCCAAGAGAAATATTGTAGTGCAAAGTT






TCTTTGTATTTCTTCTCGTGCTTATATTTTTTGCTCCA






CAGGTTGCAGCGTGGAAGGATGAGGATGGTGACT






GGTATGAGACTGGGCTACATATATTCTGTGAGTGA






TCTTCTAATTTTCTGCTTAATTGGCCAGTTACCCATG






TTCTTACAATGCGCTCTCTAGTCGTGTTTATTGGAA






AATCGATGTACTGAACATCTTCATATTTTCTTGAAG






TTGGGGCATATCCAAATATCCAAAATCTATTTGGAG






AACTTGGTATAAATGACCGACTGCAATGGAAGGAG






CACTCTATGATTTTTGCAATGCCTAGCAAGCCCGGT






GAATTCAGTCGCTTTGATTTTCCCGAAATCCTGCCT






GCACCATTAAATGGTTAGTATATCGGTGATAACTG






CCAAATTACTTGATGCAATGCAGTACCTTGTTAAGT






ACTTTGGATGTGACTCCACCTATAATACTTGCTATA






ATCTTCAATTTATTTCTCTTTCCTACATTAGAAACTA






TAAGTATCCCGCTAAAGGACATGACCCCACTTACAA






AGTTACAATACCCCATGAAAATACCCACTCACCCAC






TTTTTTTAATCGGTGTACCATCCGCCCGAGGAGCAA






TCTCGAGGGGACAGCAGAGTACTACTTTAGTGTTA






TTGTGATGAAATAGGTACCTGCATCATATCTCATGT






CCTGTGGATACCCATAAATGAACGAAAAATTTCATT






TTTATACATATTATCCTGCTTTAGAAGCTTGGAATA






TCATTGAACTTTTTTAACGTCCCACCATGAAAACAA






TCTGCATCTTGGTCTGTTTGCAACTCCTAAATCCTAA






TGAGTCGGGCTGATTTATGTCTTTGATGCTTTTGAC






CGTGTTTGGCAGGCATATGGGCAATCCTAAGGAAT






AATGAAATGCTAACCTGGCCAGAAAAAATCAAGTT






TGCCATTGGCTTGTTGCCTGCTATGGCAGGCGGAC






AGTCATATGTTGAAGCACAAGATGGTTTGAGTGTC






CAAGAGTGGATGAGAAAACAAGTAGGAGCAGACT






TTCGTTTCAGATTTTCCTCATTTTGTTAATGGTTCTA






GCTGTAAACTTTGACTTTGTTGGGACGTCAATGCTG






AAATTTTGTTTGTGCATTAATGCAGGGAGTACCCG






ATCGTGTAACTGATGATGTGTTTATTGCCATGTCAA






AGGCACTGAACTTCATAAATCCCGATGAACTTTCAA






TGCAGTGCATCTTGATTGCTCTGAACCGATTCCTGC






AGGCATGACTGCTTTTTAATTTCCGCTTTAAATTTTT






GGTTTTGTACAATACTTCTTAGTGCTTGTTTTTGTGA






CTTTTCTCGAGTAAATAGGGGATGTAAAATGACCG






TGCTGTTTTTCATGAACTGACGTTGGGTAATGTATA






TCAACAGGAGAAACATGGTTCTAAGATGGCCTTCC






TAGACGGAAACCCTCCAGAGAGGCTGTGCATGCCT






ATTGTTAAGCACATCGAGTCACTAGGTGGTGAAGT






TAAACTAAATTCTCGTATACAAAAGATTCAGTTGGA






CCAGAGTGGAAGCGTGAAGAGTTTTTTGCTAAATA






ACGGGAGGGAAATACGAGGAGATGCCTATGTTTTT






GCCACCCCAGGTTTTCTTCTCTCCCTTTTTTTACCATT






AGTTTTCTATTAGACTCAGTAAAAGCTAGAGTAAA






GAAAATGAAGATTCTATTACAGAAATGGACACACT






GTAAAGCTTAATTAGTTTTGATCTTGGGCAAAGCAT






TTGTGTTTCCAAATTTGTTAATGGTTATTATTTAAAT






AGAACACTTATGTTTGTGATGGGTAACAATAGGTC






AAGCGTTGAGCCAAAGTGTTATAACAATGATTATA






TAGTGTATATCATAGTGTAAAATTGCGGTAACGGA






CGCAATCACAGTGTCGGGAGTGATTCGGTATCATA






ACGCCTAAATATCGGTCGAAACCATAAGCTTTGAA






ACGGCCCAAAACACGGTTTTTTTTAAAAACTTTACG






ACGCGAGAAATATCGTTTTGTTTATTTTGAAAACCT






TTACGAAGCGACGATGCGATGCAGCCTTGTTTTAA






CTCTATAGTGTACATAGGAATATACAATTAAGCAAA






TAGTCGTAAGTGATATCTCAAAAGGGACAAGTGTG






AAATAGGCTAAAGAGTTGAATTAATTGTGGGATTG






ACAATTGTTTCATCACTGGTCCTCTATTGCTTTCCTT






GGTAAAATGTTGCATACTTGTTTATTGATTTACACT






ACATATAATTAGTTCTGTAGAATATGTTCTTGAGTC






AAAGCATGGGTCGATGTTTGAGGTTGATGTTGGAT






TTGCTTGGGCAAGCAATTACGAATATCTTGGTTTAA






GGAACCCATGAAAATGGAGCAGCTTGCAACGAAA






ACAAAGCCCAGTTGAAAGCCTGCTCGGGTGAGCAG






CATCGCGTTGGGGCCAGCATGATGAGCTGTTCAAA






CACAGAAGTTACTGGAGTGCTAGTGCTCTGGCAAG






CAAGCACAGCGCAGCTTACTTTTCTTTAATTTTTGAT






TCTATCTAGAATTCTAACTAAACCCTAATGCTTACG






ATTGATTAGTATAATTAAAACCCATAAAGTGAATGA






GTTGTTCAAATACTTGACAATTGACATTATTTGAGT






GGTCGTGGATGTAGTGTTGTAACAAAATTGTCACT






TATGAGTTAGGACCATATCCTTGCGAAGGTGGAGA






TACACTTGGTAGAATACGGTGAAAAGTATCACCTTT






CCATAGATAGTATAGCGTTATAAGTGAATTTATTAT






ATTGTGCTGTCATATCAGTGTAACATAATTTGTAGC






TAATCCGCTTTTTGAATACGGAATTCGCTCGAAATT






GTTGAAAAATAACCCAAGACCGACCATATTTTGCTT






TTTTCGGTTTGCGATTCGCAGGGAGATTAGAGAAC






CATGTAACATTGTATTTTGATATAATTTTTGAATTTC






ATTGTCAGTTGACATCTTGAAGCTGTTACTACCCGA






TACTTGGAAGGAAATCTCATACTTCAAAAAGCTTGA






GAAATTAGTGGGCGTTCCTGTGATTAATGTTCACAT






ATGGTTAGTTAATTCTTCATTCTATATTAAATTTACT






TGTTAGGTTTTATACCTAATCAACTGCTTTTAGTTTT






GACATTTTGTCCGACAATAAGTGGACGTTTCTGTTT






TGTTGCGTTTTGTGAATTTCTTTTGATTACAGGGGC






TAATTATATAATAATGCTTCATGCAGGTTTGACAGA






AAATTAAAGAATACATATGACCATCTACTCTTCAGC






AGGTTGTATTTCGTTTCTTTAATCATCCTATTTCTCTT






TCGTAACTCTTAAATAATCTCGTTCTTCCCCTTCCCT






CCTTCACTTCAACTTGTTTCAACTCTTCATTTTCGGT






CGTAGTCAAATTTGATGAGTATTTGACAAGAGTTG






CATCATAAGTAATATGAACATTGGAGGAGTGACAA






TCATCATTTATGAAGTATTAACTAAGATTCCTTTAA






GAAGGTGAAAGTTTTAAGTGAAAATTTTCTTTCCAT






TGGGAAATAAGTCTTTTGATTAATGTCTTGAATAGA






TGAAGGATGCGAGTTTTTGGAATGAAGAGAAACG






TTTTATGTGATCTAGTTGCGAGTCGATAGTGCCCTG






AATTTCTTCAAAATTGAGCATTTTTGTTATCGTTCGC






TTTATTTTTGCACTTTCATGTCCTTTTCTTAAAGTTGT






ATATGACTTTTCATTCTCAACTTAGGCTTACCTCGAT






GCTTAAAGTGTCTCCTTTACTTTTGCCCAAATTTTAG






GAACGTGTAAGTTACAGGATACAAATTAAAGTTAG






GGAATCGTGTAGGGCTCGTAAAAAATGACAATCAC






CAATAACTTTCTAAATATCAAAATGGGTCACTTGTG






GTGAACTGATCCATATGAAAATTAGACACTTGTGCT






GAGATGGAGCAAGTATTATAACTTATGAAAACATA






ATACTTGGGGTGGATGTACCTTTGTTAGGAACCAT






AGTGCCAAAATGCAATAACGCCATAACGGTAACGA






CACGATGATGCGTTTATCATAACTCCAAATATCGGC






TAAAAGCATGAGATATTCCTTGTACCGGCCCAAAA






CAGGGTTTTTTTACACCTTTACATTATGAGAAATAT






CGTTTTTTTTTTTTTTTGAAAATCTTTAGAACACGAC






CGATGCAGCGCGATGCGACCTTATTTTTGCACTATG






GTAGGGACAGCATTTGCGGATGCACACATTGGTTA






CCATTTCTGACCCCCTTTTCACTTTTACAGATCCTAT






GGATATAAGTATGTTACTGATTCTAAAACTTCATTC






CCTAGGATTAAATGTAGAAACCATATAAGGATGGA






TCTTTAAGATACTTTTATCTATATCCTTTCCTGAACC






CTATTAAATATCTATGGCCTACAAGAGGTGGTCAC






AATTCATCATCCTCTTCGTCCACTTCATGCATTTTAA






ACATATCTTCGAGTTCTCCTTTAATTGTTTATCTTTG






TTATTCCAGGAGTCCTCTTTTGAGTGTCTATGCTGA






TATGTCGGAGACATGCAAGGTGAGCATATTCCCAT






TTGTCGCTCTTTTGATTTCTGACTTGTATGTTCTGGT






TCTCCATTTGTCGCTCTTTCGCGCGTATAATTTCGAA






TGTTAGCCACTCCCCGTCACTCCTCCCATTCTGCAAT






CACCGGGATTTTAACTATGAGGGTCCTTAGAATCG






ATTATAAAAATTCGACAAAAACAAAAAAAAAAGAC






ATAAAATTGACGGGCCATAACAATTTTACATAAGAT






ATTCAACATTTTTTTTGCGAATTTTCTTAATAAATTC






CGTAATTCCGTACATCTATACTCCCGAGCCCCTTCA






TGTGTGCGCTGCGGCTTTAAGAAACCTTTCTTATAA






GTGTTGACTGTATGAGCTGACAGGCTGTCTTTTCCG






TCCCAATAATCATTTACAGGAATATAAGGATCCAAA






TAGATCCATGCTGGAACTGGTTTTTGCACCCGCGG






AGGAATGGATTTCTCGAAGCGACACTGATATTATT






GAGGCAACAATGAAAGAGCTTGCCAAGCTTTTCCC






GGATGAAATTGCTGCCGATGGGAGCAAGGCCAAG






ATCCTCAAATATCATGTCGTCAAAACTCCAAGGTGA






TCGATAAGCTTGTGTAATTAAAATTGGATAATTTTA






TGCTACCGCTAGAAACAGCATTAATGTTGTGCCCG






CGGGCTCTTTTATAGGTCGGTTTATAAGACTGTACC






GGATTGTGAACCTTGTCGGCCGCTGCAAAGATCAC






CAATAGAGGGTTTCTATTTAGCTGGTGATTACACAA






AACAAAAATATTTGGCTTCTATGGAAGGTGCTGTCT






TATCTGGGAAGCTTTGTGCACAGGCTATCGTACAG






GTAATCAAATTTTGATGGAACACCGCGTGCATGCT






GATTAGACTTTTCGTATTTTGATTTGATTTGAAATTG






ACCCAAAACCGACCGGAAATTAGTGGGTTACTTAT






AACTCAGAAAATATGACCCGTAACCTGAAAATGAC






TCAAACCCACCGTAGCCCAAATCCAACCGTTTTGAC






TTGTTTACCTAATTTTGTCAACTTTTCTTGTTCCAAG






TCATTAGTTTTCTGTCGGAACCCACTTTCTTTCGAGT






CTTTTTTTGTATTTCTTTTATCTTCGTTGATGCTTTTA






TTCGTTTATACCTAGTTATGTTGATATATTTATATGT






ATATATTTATTTATATGCTTTTTACTACTGAGGTATG






ATGTTCTAGAGTATGATGATGATGATTTATTCTTTTT






ATATTAAAAAAAAAGTTTAGGTCTTTTTGAAAACAT






TTTAGTGATTTTTTCTAAACTTGTGACCCGATCGAA






ATTTGATCCGAACCAAAAATAACCCGATCAAAAGT






GACTCAACCCGAAACCTACCCTGATCTAATTGTAAT






GATAGCTTTGAAATTTTTATCGTTCTAGTTAACAAG






TTCTGTTGAAGTTAATATAAATCTCGAACGTTCCTA






TAAACTTATTTTTTAGATTGTCAAGGTTAGTTAGTT






GTATAGAAGTTAAGTAGCTTAAACAACTAGTCCAT






ATTTTGTATATGTGTAGGATTATGATCTGCTGAGTT






CTCGAGCACAAAGAGAATTGGCGGCGACAAGCAA






TGTATAACCCTAAATTGCTTCGACATCCGCCATCTA






TTTTCATTCGAGATTTGGATTGGGAATCTGATCATC






GAATAACGATCAGCTGCAAACAAAATTATGAGGGT






TGCATACTGGTGCTGTTCAAGTTCTTGATGTATAAA






TTCTCCAGAAAGAAGATTTATTTGTAATGATATATC






AATTGATAGAAATATGTATAGCTTACTTCTAAGGAA






TTATGTATGTGCACCATTTGTAACTTGATTGAAATG






TAAGTATCAACTTGGTCTCTTGATTGAAATGTAAGT






ATCAACATAATACAAATTTATACCAATACATTTATTT






CCCTTTTTTGTTTAATTATGTGTTTTTTGTTGTTTTTT






ATTTGTAACTAGAGTCACTCATACTCCAACGGTCTG






TCTGGTTTGTGGTATTAAACGGTGGTGATGAGAAT






AAAAACTAGTGTAATTTTGATTAAAAATTCTCTTGC






TATTTTGATGGCCATGGTTGTGTTTGATGAGAAGG






AATATGAAAACTAGTGTAGGTGGTATTAAACAGTG






CCACGGTGGTAATGAGAATGAAAACTAGTGTAATT






TGGGTTAAAAAAATCTCTTGTCTTTAATCATCTCATT






TTCTTTATAAATTTCAATCCAATGCATTACTATCGGG






AGAGATGGTATCAGGTGGTAATGGAAATTTGTAAA






TAAAAAGAAAAATTTTGTGATCAAAGT





9

Amaranthus

Genomic
1788
TTGAAAGCCTGCTCGGGCACGACACTGTAGGGCTC




palmeri



GGGCGAGCAGCATCGCGTTGGGGCCAGCATGATG






AGATGTTCAAACACAGAAGTTACTGGAGTGCTAGT






GCGCGGCTTACTTTTCTTTAATTTTGATTCTATCTAG






AATTCTAACTAAACCCTAATGCTTACGATTGATTAG






TATAATTAAAACCCATAAAATCTTCAGATTTTTCACC






ACAAAATATTTGAGCTTAGTAATCTACAAGAAATCT






TCAAACACATCAAATCTAGTTGTCTCTCATTCTCTAT






TGTAATTCTTATTATTACGAGTTCTTGTGTTCAAGA






ACTACAAGTTTGATTATTAATCAACCCAAGAAGTTC






GCCAAGGAGGATGTAGCCCAAACTGGGTGAACCTC






GGTAAATCTTTGAATTCTTCCTTGCTTTCTACTAATT






AATTGCGAATGAGTATGTAAGATATTGCATTATATT






TTTCATATTCAACAAAAGCATTCTACTACCAATCTTC






GTCTTGTAATTCGCTTTTGCAACGTTGTCCTTCAACT






AGTGAATGAGTTGTTCAAATACTTGACAATTGATAT






TATTTGAGTGGTCGTGGATGTAGTGTTGTAACTAA






ATTGTCACTTATGAGTTAGGACCATATCCTTGCAAA






GGTGGAGAGATCACTTGGCAGAATTCGGTGAAAA






GTAGCACCTTTCCATAGATAGTATAGCGTTATGAGT






GAATTTATTATATTGTGTTGTCTTATCAGTGTAACAT






AATTTGTAGCTAATTCGCTTTATGAATTCGGAATTC






GCTCGAAATTGTTGAAAAATAGCCCAAGACCGACC






ATATTTTGCTTTTTTCGATTTGCGATCCGCAGGGAG






ATTAGAGAACCATGTAACATTGTATTTTGATATAAT






TTTTGAATTTCATTGTCAGTTGACATCTTGAAGCTG






TTACTACCTGATACTTGGAAGGAAATCTCATACTTC






AAAAAACTTGAGAAATTAGTGGGCGTTCCTGTGAT






TAATGTTCACATATGGTTAGTTAATTCTTCATTCTAT






ATTAAATTTACTTGTTAGGTTTTATACCTTATCAACT






GCTTTTAGTTTTGACATTTTGTCCGACAATAAGTGG






GCGTTTCTGTTTTGTTGCGTTTTGTGAATTTCTTTTG






ATTACAGGGGCTAATTATATAATAATGCTTCATGCA






GGTTTGACAGAAAATTAAAGAATACATATGACCAT






CTACTCTTCAGCAGGTTGTATTTTGTTTCTTTAATCA






TCCATTTCTCTTTCGTAACTTAAATAATCTCGTTCTT






CCCCTTCCCTCCTTCACTTCAACACTTGTTTCAATTCT






TTCATTTTCGGTCGTAGTAAAAATTGATGTATATTT






GACAAGAGTTGCATCATAAGTAATATGAACATTGG






AGGAGTGACAATCATCATTTATGAAGTATAAACTA






AGATTCCTTTAAGAAGGTGAAAGTTTAAGTGAAAA






TTTTCTTTCCATTGGGAAATAGTCTTTTGATTAACAT






CTTGAATAGATGAAGGATGCGAGTTTTTGGAATGA






AGAGAAATATTTTATGTGATCTAGTTGAGAGTCGA






TGGTGCCTTGAATTTCTTCAAAATTGAGCATTTTGT






GAACGTTCGCTTTATTTTTGCACTTTCATGTCCTTTT






CTTAAAAGTAGTATATGGCTTTTCATTCTCAACTTA






GGCTTACCTCAATGCCTAAACCTTTACAAACACACA






TCATATAAGAATGAGTGTTAAAATTTACCTCTTCAT






CTCAGTAAAGTGTCTCATTTACTT





10

Amaranthus

Genomic
1277
ACCCATAAGGAGAGGGCGGTCACAAGAGTCCTTCG




palmeri



GTTAAGAGGAGTCTTCAAGGATAAGACCTGCAAAT






ATCCGAAAACCTAGTACCTATGGACTATAATTGTGT






TGGATAAAATAACAATTAGTTCATATTGGACTATAA






TTTTACCCTAGTGCCTATGGAAGATTGGGGAAATA






ATTTAATCATACTCCTTTTTTATTCATCTTTTTTATTT






ATTCTCATGCTATTTCTTTCACAATGTTTCAATTACC






TCACTTGCACTTCTACTGGCCTTTATTTCAATAATTT






AACTTTTTTTCACCCTTCAATATTTACAATCAATCCA






AGCGAGCACTAAGAAAAAAAACATTTGGCTTGATA






TATACTAATTTACCATAATAAAATCCAAACCTGCCA






AAAAAACATTTAGTTATTAAAAATGCTATGAAAATA






GTCTTTTTTTTTCTCAAGTGAAGTTCTGTAAATTAAA






AAAAGAAAAGCAAAGTAAATTACCTGGACCGTTGT






TGCGGTGGAGGAAAGTTCCAACGGGACTTTTGATC






TTAGTACCAAACACCGGTTCAATGAAGTTCAAGAA






TACCGACTCATCATTGTTGGCTAAAACCACAGCCTG






AAGTGCTGAATCAGCTACACCAAGCAGATCATCCG






CACTAAACTCAGCAAACTCATGAAACCCACTTATCT






TTCTTACATACTCCCACACCGGGTTTAACTCTTCCAC






ACAACTTGCAGCATGGTCTATTCCCTTTATCCCAAA






CTCCTCTACTCTTCCAACCTCTACTCTTGCAAACTTA






GCAAGCCGCCACAAATTACCCCACTCTTTTTCATTTT






CAGATGAATGGCTCACAAATCGTAGGACTACGTCA






TTATACAGAATGACTTCCGCAAGCATCGTGTGTCCG






TCTTCAAGCAGGACAGGCGGGGCTGACGGATTAG






CTCCTGCAGCAACGCTAATCCTAAAGGCGGATTCA






GCGTTCTCCACTTCAAGGGCCACAGCGCGAACACC






AAGCCCATGAGAACACACAAAAGAGGCGTGCGCA






CTGTGGTCAAATGTAGGAATTGAAGCAGTGTTGAG






CTTAGATGAAGCAGAGTAAGGAGCCGTGAATACG






AAACAAAGGTCGCCACTACGTAAGACGTAGGAGG






CATGTACAAGGTTGCCTGTCGAGAGATCGGATTTG






GCAACCAAAGGCATGCCAAGCCCTAACGAAAATAA






AAGGCTAGTGTTGGTTGCATCACCACACCAGAACT






CAATGTGGTGGAACCTTTTCACTTTGAAATG





11

Amaranthus

Genomic
1241
GATATACTGGGTATGAAGATGATTTATTCTTTTTTA




palmeri



ATAAAAAAGTTTAGGTCTTTTTTGAAAACATTTTAG






TGATTTTTTCTAAACTTGTAACCCGATCGAAATTCA






ATCCGAACCAAAAATAACCCGATCGAAAGTGACTC






AACCCAAAAGCTTCCCTGATCTAATTGTGATGATAG






CTTTGAAATTTTCATCGTTTTAGTCAAAAAGTTCTGT






TGAGTAGTTTAAATAACTGGTTCACATTTTGTAATT






ATATGCAGGATTATGATCTGCTGAGTTCTCGAGCA






CAAAGAGAATTGGCGGCGACAAGCAATGTATAACC






CTAAGTTGCTTCGACATCCGCCATCGATTTTCATTC






GAGATCTGGATTGGGAATCTGATCATCGAATAACG






ATCAGCTGCAAACAAAATTATGAGGGTTGCATACT






GGGGCTGTTCAAGTTCTTGATGTATAAATTCTCCAG






AAAGAAGATTTATTTGTAACGATATATAGAAATAT






GTATAGCTTACTTCTAGGGAATTATGTATGTGCACC






ATCTGTAACTTGATTGAAATGTAAGTATCAACTTGG






TCTCTTGATTGAAATGTAAGTATCAACATAATACAA






ATTTATACCAATACATTTATTTCCCTTTTTTGTTTAAT






TTTGTGTTTTTTGTTGTTTTTAATTTGTAACTAGACT






CACTCATACTCCAACGGTCCGTCTGGTTGGTGGTAT






TAAATGGGGTAATGAGAATAAAAATTAGTGTAATT






TTGGTTAAAAAATCTCTTGCTATCTTGATGGCCATG






CTTGTATTTGATGAGAAGGAATATGAAAACTAGTG






TAGGTGGTATTAAACAGTGTCACGGTGGTAGTGAG






AATGAAAACTAGTGTAATTTGGGTTAAAAAATCTC






GTCTTTAGTCATCTCATTTTCTTCAGAAATTTCATCT






CAATGCATTACTATCGGGAGAGATGGTATTAGGTG






GTNNNNNAAATTTGTAAATAAAAAAAACTTTTTGT






GATCAAAGTATCATCACTATAAATCATTCTCATTAN






NNNNNNTTAGTACCACTAATCAAACAGGCCGCAA






GAGCTTTAGCGTTGGCTTCCATTGGATGATTATGG






GGGTTAACGAGTCTGTTAAGGTGCCCATTATTATCT






ATATGTAGTTGTCTTCCATTGAAACTTGATAAGTAA






CTTCTACCATTACCAAGTGTTTGTATATGAATCATTT






TTTTTTTCTCTTTGTCTGGGTTGTTC





12

Amaranthus

Genomic
714
CTAATTATATAATAATGCTTCATGCAGGTTTGACAG




palmeri



AAAATTAAAGAATACATATGACCATCTACTCTTCAG






CAGGTTGTATTTTGTTTCTTTAATCATCCTATTTCTCT






TTCGTAACTTAAATAATCTCGTTCTTCCCCTTCCCTC






CTTCACTTCAACACTTGTTTCAATTCTTCATTTTCGG






TCGTAGTAAAAATTGATGTATATTTGACAAGAGTT






GCATCATAAGTAATATGAACATTGGAGGAGTGACA






ATCATCATTTATGAAGTATAAACTAAGATTCCTTTA






AGAAGGTGAAAGTTTAAGTGAAAATTTTCTTTCCAT






TGGGAAATAGTCTTTTGATTAACATCTTGAATAGAT






GAAGGATGCGAGTTTTTGGAATGAAGAGAAATATT






TTATGTGATCTAGTTGAGAGTCGATGGTGCCTTGA






ATTTCTTCAAAATTGAGCATTTTGTGAACGTTCGCT






TTATTTTTGCACTTTCATGTCCTTTTCTTAAAAGTAG






TATATGGCTTTTCATTCTCAACTTAGGCTTACCTCAA






TGCCTAAACCTTTACAAACACACATCATATAAGAAT






GAGTGTTAAAATTTACCTCTTCATCTCAGTAAAGTG






TCTCATTTACTTTTGCACAAATTTAAGGAACGTGTA






AGTTAGAGGATACAAATTAAAGTTAGGGAATCTTG






TAGGGCTCATAAAAAATGACAATCACCAA





13

Amaranthus

Genomic
367
TGGGTTTTAATATTAATCCAGGGAGAGGGTCTGGG




palmeri



TCGTCCATTTATTGTTTTGGGACACGACATTGGACC






AGATCCGTTGAGTCTCAAAACATTGGACTCATAGC






CTAAAAATAGGTGTAGGGATAGGACATATCCAATA






AAGTCTTGGACCCATAAGCGTACATCCCTAATATGT






AGTACTAGAATATTTTATATGTTAAACATTAAATGC






ATGACTTCTGATTCCTCGGGTCTAGTAATAGAGTAT






TCTTAGGGCTCGCCTGAATTGTGTATAAATATTTAA






GAGGTAAATAAAAGTTAAAGTAGGAAGATAAAGT






TAATTAAATAGAAGATTAAAGGCATTAAATTGTCGT






CATCATCATCAT





14

Amaranthus

Genomic
221
AGCTTGGTATAAATGAGCGATTACAATGAAAGGAG




palmeri



CACTCTATGATTTTTGCTATGCCAAGCAATCCTGGT






ATTTTCAGTCTTTTTTTTATTGAAGTCCTCCCAGGCT






CCAACAACATTTAACGTTTAGTTTGGTAATAAAATT






CGCAAAATGTCTGTATTTAGCGAAAGTCAAACTACT






CCTAATGACTTTCACGAGTCTCTTCATCAAGATGTT






TGGTG





15

Amaranthus

Genomic
133
TGACTCTCCATTTGATCTAAATAGAATTTCAACTCTT




palmeri



TTGTAGTTGACGAAGTCCAAATTAGTTGGAGTGTG






TATATTGAAATGCATGAACTCTTATGCTACTATTTAT






ATACTTTTTCCGTTTCATAATACT





16

Amaranthus

cDNA
2132
GCCTTTTGAATGTACATATTCTATTCTTGTAATCATT




rudis



TGATCAGCCAACATTAAGACCGTTTTCAATGAGAAC






TTCCTTCCGCAATACACAAAAAGATCCTCAAGACTA






GGCCCTAATAAATCAATCACGAGAATATTATCTTCC






CCATCCACTCCAGACCATTTCACAGTTGGAATCCCA






CTTCCTCCTTGAAGAATGGTGTATACCTTCGCCTCA






TACAGTAATTGCGGATGCTTCGTCTTGGTATTCTCG






AGCTTTACAGCGACAATCTCGAAGGTGTCGATATG






AGTAGCAAGGAAAATTTCACCGAAGGAACCACTGC






CGATCTTGCGACCTAGCTTGTACTTGCCTCCGACGA






TCCGATCCATAACGATTTCGATAAATTAAACAACCA






AAACTACCACCGTTGAAATTGATTGATATGGTGAA






ATCAATAGCGTGAAATTGAAAACATAAGTTAGGAT






TTTGGATAGATAAAGGGGAAAGTAGGTGCCGATG






AAGGGAAGAGAGAGAAAACTCAAGCTAAAAGCGG






GTAAGCAGACATCCAGAGAGAGAAAGAGAAAGAC






GATGAGTGTATGAGGTGGAGTTTTGGGGATTTTTA






ATTAGGGAAAGGGAAGGAAGGTGGAAATGGGAG






GAATTCTTTGGGGCTTATCCAAATATCCAAAATCTA






TTTGGAGAACTTGGTATAAATGATCGATTGCAATG






GAAGGAGCACTCTATGATTTTTGCAATGCCTAGCA






AGCCTGGTGAATTCAGTCGCTTTGATTTTCCCGAAG






TCCTGCCTGCACCATTAAATGGCATATGGGCAATCC






TAAGGAATAATGAAATGCTAACCTGGCCAGAAAAA






ATCAAGTTTGCCATTGGCTTGTTGCCTGCTATGGCT






GGCGGACAGTCATATGTTGAAGCACAAGACGGTTT






GAGTGTCCAAGAGTGGATGAGAAAACAAGGAGTA






CCCGATCGTGTAACTGATGAAGTATTTATTGCCATG






TCAAAGGCACTGAACTTCATAAATCCCGATGAACTT






TCAATGCAGTGCATCTTGATTGCTCTGAACCGATTC






CTGCAGGAGAAACATGGTTCTAAGATGGCCTTCCT






AGACGGAAACCCTCCAGAGAGGCTGTGCATGCCTA






TTGTTGAGCACATTGAGTCACTAGGTGGTGAAGTT






AAACTTAACTCTCGTATACAAAAGATTCAGTTGGAT






CAGAGTGGAAGCGTAAGAGTTTTTTGCTAACTAAT






GGGAGGGAAATAAGAGGAGATGCCTATGTATTTG






CTACCCCAGTTGACATTTTGAAGCTGTTGCTACCCG






ATACTTGGAAGGAAATCTCATACTTCAAAAAGCTTG






AGAAATTAGTGGGCGTTCCTGTGATTAATGTTCAC






ATATGGTTTGACAGAAAATTAAAGAATACGTATGA






CCATCTACTCTTCAGCAGGAGTCCTCTTTTGAGTGT






CTATGCTGATATGTCAGAGACATGCAAAGAATATA






AGGATCCAAATAGATCCATGCTGGAATTGGTTTTC






GCACCCGCGGAGGAATGGATTTCACGAAGCGACA






CTGATATTATTGAGGCAACAATGCAAGAGCTCGCC






AAGCTTTTCCCAGATGAAATCGCTGCTGATGGGAG






CAAGGCCAAGATCCTTAAATATCATGTCGTCAAAAC






TCCAAGGTCGGTTTATAAGACAGTACCGGATTGTG






AGCCTTGTCGGCCGCTGCAAAGATCACCGATAGAG






GGTTTCTATTTAGCTGGTGATTACACAAAACAAAAA






TATTTGGCTTCTATGGAAGGTGCTGTCTTATCTGGG






AAGCTTTGTGCTCAGGCTATTGTACAGGATTATGAT






CTGCTGAGTTCTCGAGCACAAAGAGAATTGGCGGC






GACAAGCAATGTATAACCCTGGATTGCTTTGACATC






CGCCATTGATTTTCATTCGAGATCTGGATTGGGAAT






CTGATCAGTCATCGAAAAATGATCAGCTGTAAACA






AAATTATGGGGGTTGCACATTGGTGTTCTCAAGTTC






TTGATTTATAAATTCTTCAGAAAGAAGATTTATTTG






TAATGATATATCAATTGATTGAAATATGTATAGCTT






ACTTCTAGGGAATTATGTATGTGCACCAGTTAACTT






GATTGAAAT





17

Amaranthus

cDNA
2088
TCCATTTTTCTTGTTCTTTCAGTTTCACATACCCTCTC




rudis



ATCAATCAATATCCAAAACTATTACATTTTCCAAACT






ATTTCAAACCCAAAAATCAAAAACTTTTGATTGAAG






AACAAACTTTGGGGGTTTTGGAAAATGAGTCATTT






TGGATATGCTTGTGCTACTCAATCCACATCAAGATA






TGTTCTTTTAGGAAATTCAAATAACCCCACTTCAATT






TCATCTATTGGAAGTGATTTTTTGGGTCATTCTGTG






AGAAATTTCAGTGTTAGTAAAGTTTATGGGGGAAA






GCAAAGAAATGGGCACTGCCCTTTAAAGGTTGTTT






GTATAGATTATCCTAGGCCAGAGCTTGAAAGTACA






TCCAATTTCTTGGAAGCCGCCTACTTATCTTCTACTT






TTCGGAATTCGCCTCGTCCTCAGAAGCCATTAGAA






GTTGTAATTGCCGGAGCAGGTTTGGCTGGTCTATC






CACGGCAAAGTATTTAGCTGATGCAGGTCACAAAC






CCATATTGCTGGAAGCACGAGATGTTTTAGGAGGA






AAGGTTGCAGCGTGGAAGGATGAGGATGGTGACT






GGTACGAGACTGGGCTACATATATTCTTTGGGGCT






TATCCAAATATCCAAAATCTATTTGGAGAACTTGGT






ATAAATGATCGATTGCAATGGAAGGAGCACTCTAT






GATTTTTGCAATGCCTAGCAAGCCTGGTGAATTCA






GTCGCTTTGATTTTCCCGAAGTCCTGCCTGCACCAT






TAAATGGCATATGGGCAATCCTAAGGAATAATGAA






ATGCTAACCTGGCCAGAAAAAATCAAGTTTGCCATT






GGCTTGTTGCCTGCTATGGCTGGCGGACAGTCATA






TGTTGAAGCACAAGACGGTTTGAGTGTCCAAGAGT






GGATGAGAAAACAAGGAGTACCCGATCGTGTAACT






GATGAAGTATTTATTGCCATGTCAAAGGCACTGAA






CTTCATAAATCCCGATGAACTTTCAATGCAGTGCAT






CTTGATTGCTCTGAACCGATTCCTGCAGGAGAAAC






ATGGTTCTAAGATGGCCTTCCTAGACGGAAACCCT






CCAGAGAGGCTGTGCATGCCTATTGTTGAGCACAT






TGAGTCACTAGGTGGTGAAGTTAAACTTAACTCTC






GTATACAAAAGATTCAGTTGGATCAGAGTGGAAGC






GTAAGAGTTTTTTGCTAACTAATGGGAGGGAAATA






AGAGGAGATGCCTATGTATTTGCTACCCCAGTTGA






CATTTTGAAGCTGTTGCTACCCGATACTTGGAAGG






AAATCTCATACTTCAAAAAGCTTGAGAAATTAGTG






GGCGTTCCTGTGATTAATGTTCACATATGGTTTGAC






AGAAAATTAAAGAATACGTATGACCATCTACTCTTC






AGCAGGAGTCCTCTTTTGAGTGTCTATGCTGATATG






TCAGAGACATGCAAAGAATATAAGGATCCAAATAG






ATCCATGCTGGAATTGGTTTTCGCACCCGCGGAGG






AATGGATTTCACGAAGCGACACTGATATTATTGAG






GCAACAATGCAAGAGCTCGCCAAGCTTTTCCCAGA






TGAAATCGCTGCTGATGGGAGCAAGGCCAAGATCC






TTAAATATCATGTCGTCAAAACTCCAAGGTCGGTTT






ATAAGACAGTACCGGATTGTGAGCCTTGTCGGCCG






CTGCAAAGATCACCGATAGAGGGTTTCTATTTAGCT






GGTGATTACACAAAACAAAAATATTTGGCTTCTATG






GAAGGTGCTGTCTTATCTGGGAAGCTTTGTGCTCA






GGCTATTGTACAGGATTATGATCTGCTGAGTTCTCG






AGCACAAAGAGAATTGGCGGCGACAAGCAATGTA






TAACCCTGGATTGCTTTGACATCCGCCATTGATTTT






CATTCGAGATCTGGATTGGGAATCTGATCAGTCAT






CGAAAAATGATCAGCTGTAAACAAAATTATGGGGG






TTGCACATTGGTGTTCTCAAGTTCTTGATTTATAAAT






TCTTCAGAAAGAAGATTTATTTGTAATGATATATCA






ATTGATTGAAATATGTATAGCTTACTTCTAGGGAAT






TATGTATGTGCACCAGTTAACTTGATTGAAAT





18

Amaranthus

Genomic
4346
AAGTATGTACAAGTTGTTAGGTCATCACTCAAAAG




rudis



TGATGTGTCACATTTCATCATATGAGCAAAAAGTAT






TTGGTTTTAGGGATAAGCGACTAAACAAATAGATC






TATGTGAAGATTAACATTTTGGAATATTGAAACTCT






ATTTGGGAAGTGATTGGAGTTGGTAGATAGAATG






GAAAAACTTAAGATGGACTTTATGTAGGAGATCAC






GTGGATTAATGGAGAGACCAGGCCATTCAAAACAA






ATAAGAAATTATGCACATTATTGTATACATGCAAAT






TAAGAAGAGAAACAAACTTGGTATCATGATGGGTG






AGTAGTTTGCCTATGACGTTGTAGAGGTGTGTGGA






TAAATGATTAGAACATGAGCTATGAATGGAAGAGA






AATATTAATGGTTGGTGCATATGCGCCTCAAGTGA






AGGCAAAGGAAGCAACACCAACAATGTCAAAGTCT






TATTTTTAGGTAATATGAAAAACAAAGGAAGCAAT






CAAAAGAAATTTCTCAGGCGAGTTGATGCAAATTA






TCCCAACATTAAGAAAATTTTGTATACTAGCGAACA






TGTAGCCATCCATCACAAACACGTAGTCCTAGATCT






TCATATGTGATCAACCTCGTGCAAGAATGAACTTCA






AGGACAAAGAAAAATCAAATGATAGAACCCAAAAT






AAGAGGATACGAATTTTTCATTTGATTAGACAAAT






GAGGAAGATCCAAATCCAACTTGGACAAAGATGAA






GAATGTTATCACCCGCACAACTAGGGGAATTCAAG






GTTAAGCGGATTGTGGTATGAGGTAAGAAAGAAT






ACAATATAGGGGAATTAGGAAGTAAAGGAATAAG






AAAAAAAAGAATGATATATAGCTTTAGGAAAATCT






AGGAGTGAGGAGAATATAGCAAAATATGAGGAAG






TTAAAACCAAGACGAAGCAAGCGATATGTGAGACA






AAGTTAAAAGATAAGAGATATACAATAAGCTGACT






CAAGAGAAGAGGATAATGATCTTTGTAGGGTAGCC






TAAAGGAGACAAATGATTATAAAAGATACTAGTTG






AATGAACTATGAAGTGTGTCTTGGATAAATAACAA






AATAATATTCTCCAAGATGAATAGATATACGATAAA






TGGAAGGAGTTTTTGACGAGTTGTGCAATGGATGT






CAAGGGGCACGATAGTATACATCTAGAAGAAATTC






TGAAAAGGTGCTTTTCTTAGAATGTAAATTGTGAG






AAAAAGGAAGAAGGCGATTATCAGTAAATCAATTG






TCTTTGTTCACAGAATGTGACACCAACATGTTGGAT






GGGGGAGAGAAGTTTTCTTTGTTAACGAATCTTTC






GGTTATGTATGGAAGTATGTTATTTTATGAGACATC






TTGTTCAAGAGCTCATCATTAATATAGAGGAGTAG






AGGTGTTCAACGGGATGGGTCGGGGCAAAATTTA






AATTGGTCGGGCCGGGGCGGGTCATGTCTAAGAG






GAGCAACAACATAAATAATAAAATATACCATCGTA






TGGACATATAGTTTAGAGATAGATTCAAAAATTTTT






ATATCTTCAAATATGAATGTGAGAACCGACTTCTCA






TACTTTATTTTACTTACAGGTTTGGCTGGTCTATCCA






CAGCAAAGTATTTAGCTGATGCAGGTCACAAACCC






ATATTGCTGGAAGCACGAGATGTTTTAGGAGGAAA






GGTGTGTGCTATACTTTTCTTGTAGCTTATGAAACA






ACTCCATTGTGCTTACTCTCTAATTAGTTTACTTCAG






ACTATCAGATGATTTTTGAACTTTTTCCTCCCTCTGT






TCGGCTGTATAATTATATATGAGAAACATGTTTAAA






AATGGGTGCATTAACATATATGAAGTTTTTTTTATC






AAGGCGAGATTTTGTCATCCAAAAACTTTACTTCTG






AATCTGAACATGCTGTATGATCCTGTTTCTTTATCTT






CATTTGTTGGGATTTTCTTGAGGCTCATGACTACTT






TCAGTTATTATAGTTACCCATCCTGCATAAATCCGA






GTTTACAGTTATAGTAATGAAAATAAATAGGCTAAT






TATATTCTCGTCGGTCATCACAGTATGATGAATCTT






GGGCTAATATGAAGATGAGGTAGGAAGAAGAATT






TGTGTTAGTATGATAATATGTGCCCGCCCTAAGCAA






GTGCAAGCCTTGCCTACGCCTAGGGCCCCCCAAAA






ATTTTAGTTTTCAACTAGTGCTAACGTTCGAACTTTT






CTATATATATACAATAGTTTAGGGGCCCAAATAATC






TTTCGCCCCGGGCCCCTAAAAACCTAGGGTCGGCT






AGTGCCAAGAGAAATATTGTTGTGCAAAGTTTCTT






GGTATTTTTTCTTGTGCTTACAATTCTTGCTCCACAG






ATTGCAGCGTGGAAGGATGAGGATGGTGACTGGT






ATGAGACTGGGCTACATATATTCTGTGAGTGATCTT






TTAATTTTCTGCTTAGTTGGGTAGTTACCCGTGTAC






TTATTATGTGCACTCTAGTCATGTTTATTGGAAAAA






TTTACTGCATATTTATCAGTCCGATGTACTGAACAT






CTTCATATTTTCTTGAAGTTGGGGCATATCCAAATA






TCCAAAATCTATTTGGAGAACTTGGTATAAATGACC






GATTGCAATGGAAGGAGCACTCTATGATTTTTGCA






ATGCCTAGCAAACCCGGTGAATTCAGTCGCTTTGAT






TTTCCCGAAGTCCTGCCTGCACCATTAAATGGTTAG






TATATCGGTGATGGTTTTTGTTGGCTGCCAAATTAC






TTGATGCAATGCATTACCTTGTAAAATACTCCTTCC






GTCCCCCTGATTTTGCCCCATATACTATTTTAGTCCG






TTCAATTGAATTTGCCCATTATTATTTTTGGACGTG






GTTCCACCTATAATACTTGCTATAACCTACAATTTAT






TTCTCTTTCCTACATCAAAAACTATGATTATCCCGCT






AAAGGACATGGCCCCACTTACAACACCTCACTAAA






ATACCCACTCACCCGCTTTTCTTAATCATTGTACCAT






CCGCCCGAGGAGCAATCTCGGGGGGACAGCGGAG






TACTACTTTAGTGTTTATGTGATGAAATAGGTACCT






GCATCAATATCTCATGTCCTGTGGATACCTAGAAAT






GAATGAAAATTATCATTCCGTATTATCCTGCTTTAG






AAGCTTGTAATATCACTGAACTTTGTTATTCTAATG






TCTTAACATGAAAAGAATCTGCATCTTGGTCTGTTT






GGACTTTGGTACTCCTAAACCCTAACGAGTCGGGC






TGATTTATATCTTTGATGCTTTTTGATTGTGTTTGGC






AGGCATATGGGCAATCCTAAGGAATAATGAAATGC






TAACCTGGCCAGAAAAAATCAAGTTTGCCATTGGC






TTGTTGCCTGCTATGGCTGGTGGACAGTCATATGTT






GAAGCACAAGATGGTTTGAGTGTCCAAGAGTGGA






TGAGAAAGCAAGTAGGAGCAGACTTTCGTTTCAGA






TTTTCCTCATTTTGTTAATCTCTTCTGATTCTGTCGAT






TACGATGATTCTAGCTGTAAACTTTGACTTTGTTGG






GACTTCAATGCTGAAATTCTGTTTGCGCATAAATGC






AGGGAGTACCTGATCGTGTAACTGATGAAGTATTT






ATTGCCATGTCAAAGGCACTGAACTTCATAAATCCC






GATGAACTTTCAATGCAGTGCATCTTGATTGCTCTG






AACCGATTCCTGCAGGCATGAGTGCCTTTCAATTTC






TGCTTTAAATTTTTTGTTTTGTACGACACTTCTTATT






GCTTGTTTTTGTGACTATTCTCGAGTAAATTTGGGA






TATAAAATGACCGTGCTGTTTTCCATAAACTGACCT






TGGGTAATGTATATCAACAGGAGAAACATGGTTCT






AAGATGGCCTTCCTTGACGGAAACCCTCCAGAGAG






GCTGTGCATGCCTATTGTTGAGCACATTGAGTCACT






AGGTGGTGAAGTTAAACTTAACTCTCGTATACAAA






AGATTGAGTTGGATCAGAGTGGAAGTGTTAAGAG






TTTTTTGCTAACTAATGGGAGGGAAATAAGAGGAG






ATGCCTATGTATTTGCCACCCCAGGTTTTCTTCTCTC






CCTTTTTTGCCATAAGGTCTCTATCAAACTCCGTAA






AAGCTACATAGTAAAGAAAATGAAGATTCCATTGC






AGATATGGACACACCGTATAGCTTAACTAGTTTTGA






TCTTGTGCAAAGCACTTGTGTTTCCAAATTTGTTAA






TGGGTTATAATTTAAATAGAATACTTATGTTTGTAA






TGTCAAGCGTTGAGCCAAAGTGTTATAACAATGAT






TATATAGTGTAGATCATCGTGTAAAATTGCGGTAA






ATTTTGGT





19

Amaranthus

Genomic
3438
CTCAAAATTGTTGAAAAATAGCCCAAGACCGACCA




rudis



TAATTCTTTTTTTTTTGATTTGCGATTCGCAGGGAG






ATTAGCGAATCATGTGACACTGTGTCTGATATAATT






TTTGAATTTCATTGTCAGTTGACATCTTGAAGCTGT






TACTACCTGATACTTGGAAGGAAATCTCATACTTCA






AAAAGCTTGAGAAATTAGTGGGCGTTCCTGTGATT






AATGTTCACATATGGTTAGTTGATTCTTCATTCTATA






TTAAATATACTCGTTAGATTTTATACCCATTTTCCGT






CTCAGGAAAAATACTATTCGCTGCAATAGAGAACG






ATAAAATGTGGATTATTTAATGCGTTGCTTTACTCC






GGGGCTAATGGTATAATAACGCTTCATGCAGGTTT






GACAGAAAATTAAAGAATACATATGACCATCTACT






CTTCAGCAGGTTGTATTTCGTTTCTTTTATCATCCTA






TTTCTCTTTCGTAACTCTCAAATAATCTCGTTCCTCC






CCTTCCCTCCTTCACTTCAACACTTGTTTCAATTCTTC






ATTTTCGGCCGTAGTCAAATTTGATGAACATTTGAC






AAGAGTTGCATTATAACTAATATGAACATTGGAGA






AGGAGCAACAATCATCATCTATGAAGTATAAGCTA






AGATTCCTTTGAAGAAGGTGAAAGTTAAGTGCGAA






TTTTCTTTCCATTGGGAAATAAGTCTTTTGATTAACG






TCTTGAATAGATGAAGGATGCAAGTTTTTGGAATG






AAGAGAAACTTTTTATGTGATCTAGTTGCGAGTCG






ATGGTGCCTTGAATTTCTTCAAAATTAAACATTTTT






GTTAATGTTCGCTTTATTGTTGCGCTTTCATGTCCTT






TTCCTATAGTTGTATATGGCTTCTCATTCTCAACTTA






GGCTTACCTCAATGCCTAAACCTTTACAAAACACAT






CATATAAGAATGAGAGTGTTGAATTGTTGATATTTA






CCTCTCCATCTCAGCACAAGTTTCCTTTACTTTTGCA






CAAATCTTAGGAATGTGTAAGTTGGTGAATAGAAA






TTACTGTTAGGGAATCTTGTGGGGCTCAAACAAAT






GAGAACCGCAAATAACTTTCTAAATATAGAAATGG






GTCACTCGTGGTGAAAAGATCCAATATGAAAATTA






GACACTTGTGCTGAGATGGAGGAAGTATCATACTT






GTAAAAACATAATACTTGAGGCTGATGTGACTTTG






GTAGTAACTAGTAACCATAGTGCAAAAATGCGGTA






ACCGGTTGCAATCACGGTAACGACACGATGATGCG






GTTATCATAACGCCAAATATCGGCCAAAAGCGTGA






GATATTCCTTCTAACAACCCAAAAACGCAGTTTTTT






TACACCTTTATATCGCAAGAAATATATGTTCGTTTTT






TGAAAATCTTTAGAACGCGGCCGTTGCGATGTGAT






GCTATGCGGCCTTATTTTTTCACTATGGTAATGACA






AAACATTTGCGGATGCACACATTGGCTACCGTTTCT






GATCCCCTTTTCATTTGTACACATCAATGTAACGTA






ATTCCCCAGCTAATTCGCCTTTTGAATTCGGAATTCT






CTCAAAATTGTGGAAAAATAGCCCAACTCCTACCAT






AATTCGCTTTTTTCGATTTGCAATTCGCGGGGAGAT






TAGCGGATCACATGACAATGATACAAATCCTATGG






ATTTATGTATGTTACTGATTTAAAGACTTCAACCCCT






TAGATTAAATGTTGAAACCATATAAGAATGGAATTT






TTAAGATTTTTTTTATCTAAATTCTTTCCTGAACCCT






ATTATTAAGTAGCTATGGCCTACTAGAGGTGGTTA






CGATTCATCATCCTTTTCATCGGCTTCATGAATTTGT






ACATATCTTGGACTTCTCCAGTTCTCCTTTAATTTTG






TTTATCTTTGTTATTTCAGGAGTCCTCTTTTGAGTGT






CTATGCTGATATGTCGGAGACATGCAAGGTGAGCA






TATTCCCATTTTTTTTATTTCCGACTTATATGTTCGTG






TTCTCCGTTTGTCTCTTTTTCGCGCATATAATATCGA






ATGTTAGCCACTCCCCGTTACTCCTTCTATTCTGCTA






ACACCGGGATTTTAACTATGAGGGTCCTCAGAATT






AATTATAAAAATTCGACAAAAACAAAAAAAAGAAA






TAAAATTGATGGGTCATAACAATTTTACTTGAGATA






TTCAACATTTATTTTACAATTTTTCTTAAGAAATTCA






GTACATCTACACTCCCGAGCCACTGCATGTGAGCG






CCGCGGCTTGCTGTTTAAGAAACCTTTCTTAGAAGT






GTCGACTATATGCAGTTTCTTCCATTCTTACGATCAT






TTACAGGAATATAAGGATCCAAATAGATCCATGCT






GGAATTGGTTTTCGCACCCGCGGAGGAATGGATTT






CACGAAGCGACACCGATATTATCGAGGCAACAATG






AAAGAGCTTGCCAAGCTTTTCCCGGATGAAATCGC






TGCCGATGGGAGCAAGGCCAAGATCCTTAAATATC






ATGTCGTCAAAACTCCAAGGTGATCGATAAACTTG






TGAAATTAAAATTGGATAATATCATGCTACCGCTAG






AAACAGCATTAATGTTGTGCCCGCGGGCTCTTTTAT






AGGTCGGTTTATAAGACAGTGCCGGATTGTGAACC






TTGTCGGCCGCTGCAAAGATCACCGATAGAGGGTT






TCTATTTAGCTGGTGATTACACAAAACAAAAATATT






TGGCTTCAATGGAAGGTGCTGTTTTATCTGGGAAG






CTTTGTGCTCAGGCTATTGTACAGGTAATCAAAGTT






TGATTAAACACCGCGGGCATGCTGATTAGACTTTTC






GTATTTTGATTCGATCCGAAATTGACCCAAAACCGA






CCGGAAATCGGTGGGTTATAATTTAGAAAATATGA






CCCGTAACCAAAAAATGACTCAAACCCACCGTAGC






CCAAATCCAATCGTTTTGACTTGTTTACCTAATTTTG






TCAACTTTTCTTGTTCCACGTCGTTAGTTTTCTGTCG






GGAGTCGGGACCCACTATCTTTCTAGTCTGTTTTTG






TATTTCTTTTTTCTTTGTTGATGCTTTTATTCGTTTTT






ACCTAGTTATGTTTATATATTTATGTGTTTTATTTAT






TTATATGTTTTTGACTACCGAGGTATGATGATTGTT






TCTATGAGCGGATATACTGAGTATGATGATGATGA






TTTATTCTTTTTTATAAAAAAAAAGTTAAAGGTCTTT






TTTTGAAAATATTTTAGTGATTTTTTTGACCTGATCA






AATTTCAATTCGAACCAAAAATAACCCAAGCGAAA






GTGACTCAACCCGAAACCTACCCTGATCTAATTGTA






ATGATAGCTTTGAAATTTTTATCGTTTTAGTTAACA






AGTTCTGTTGACGAATCTTCTTTAAATTTTTACAAGT






TAATATAAATCTCGAAAGTTCCTATA





20

Amaranthus

Genomic
2037
CAGGGAGATTAGCGAATCATGTGACACTGTGTCTG




rudis



ATATAATTTTTGAATTTCATTGTCAGTTGACATCTTG






AAGCTGTTACTACCTGATACTTGGAAGGAAATCTC






ATACTTCAAAAAGCTTGAGAAATTAGTGGGCGTTC






CTGTGATTAATGTTCACATATGGTTAGTTGATTCTT






CATTCTATATTAAATATACTCGTTAGATTTTATACCC






ATTTTCCGTCTCAGGAAAAATACTATTCGCTGCAAT






AGAGAACGATAAAATGTGGATTATTTAATGCGTTG






CTTTACTCCGGGGCTAATGGTATAATAACGCTTCAT






GCAGGTTTGACAGAAAATTAAAGAATACATATGAC






CATCTACTCTTCAGCAGGTTGTATTTCGTTTCTTTTA






TCATCCTATTTCTCTTTCGTAACTCTCAAATAATCTC






GTTCCTCCCCTTCCCTCCTTCACTTCAACACTTGTTTC






AATTCTTCATTTTCGGCCGTAGTCAAATTTGATGAA






CATTTGACAAGAGTTGCATTATAACTAATATGAACA






TTGGAGAAGGAGCAACAATCATCATCTATGAAGTA






TAAGCTAAGATTCCTTTGAAGAAGGTGAAAGTTAA






GTGCGAATTTTCTTTCCATTGGGAAATAAGTCTTTT






GATTAACGTCTTGAATAGATGAAGGATGCAAGTTT






TTGGAATGAAGAGAAACTTTTTATGTGATCTAGTTG






CGAGTCGATGGTGCCTTGAATTTCTTCAAAATTAAA






CATTTTTGTTAACGTTCGCTTTATTGTTGCGCTTTCA






TGTCCTTTTCCTATAGTTGTATATGGCTTCTCATTCT






CAACTTAGGCTTACCTCAATGCCTAAACCTTTACAA






AACACATCATATAAGAATGAGAGTGTTGAATTGTT






GATATTTACCTCTCCATCTCAGCACAAGTGTCTCCTT






TACTTTTGCACTAAATTTTAGGAACATGTAAGTTAA






TGGATAGAAATTAAAGTTAGGGAATCTTGTAGGGC






TCAAACAAATGAGAACTGCAAATAACTTTCTAAATA






TAGAAATGGGTCACTTGTGGTGACTTGATCCTATAT






GAAAATCTGACACTTGTGCTGAGATGGAGCAAGTA






TTATACTTATGAAAACATAATACTTGAGGTAGATAT






ACCTTTGGTAGGAACTAGGAACCATAGTGCAAAAA






TGTGGTAACGGTTGCAATCGTGGTCACGACATGCG






ATTATCATAACGCCTAATATGAGCCAAAAGCGTGA






GATATTCCTTGTAACGGCCCAAAACACGGTTTTTTT






TACACCTTTACATCGCGAGAAATTTCGGTTTGTTTTT






TTAGAATCTTTAAAATACGGCCGATGCTATGCGAT






GCGATGCGGCCTTATTTTTGCACTATGGTAGGGAC






AAAACATTTGCGGATGATGGATGCACACATTGGTT






ACCATGTCTGGTCCCCTTTTCACTTATACAGATCCCA






AGGGCATATGTATGTTACTGATTCAAAGACTTCAAT






CTCTAGGATTAAATGTAGAAACCATATAAAAATGG






ATCTTTAAAATACTTTTATCTTTGTTATTTCAGGAGT






CCTCTTTTGAGTGTCTATGCTGATATGTCGGAGACA






TGCAAGGTGATCATATTCCCATTCTTTTATTTCCGAC






TTATATGTTCTAGTTCTCCATTTGTCTCTTTTTCGCG






CATATAATTTCGAATGTTAGCCACTCCCCATTACTCC






TTCTATTTCTGCTAACACCGGGATTTTAACTATGAG






GGTCCTCAGAATTGATTATAAAAATTCGACAAAAA






CAAAAAAAAAGAAATAAAATTGATGGGGGCCATA






ACAATTTTACTCAAGATATTCAACATTTATTTTACAA






TTTTTCTTAAGAAATTCAGTACATCTACACTCCCGA






GCCACTGCATATGTGCGCCACGGCTTGCTGTTTAA






GAAACCTTTCTTAGAAGTGTCGACTATATGCAGTTT






GTTCCATTCTTACGATCATTTACAGGAATATAAGGA






TCCCAATAGATCCATGCTGGAATTGGT





21

Amaranthus

Genomic
1502
TGAATGTGAGAACCGACTTCTCATACTTTATTTTAC




rudis



TTACAGGTTTGGCTGGTCTATCCACAGCAAAGTATT






TAGCTGATGCAGGTCACAAACCCATATTGCTGGAA






GCACGAGATGTTTTAGGAGGAAAGGTGTGTGCTAT






ACTTTTCTTGTAGCTTATGAAACAACTCCATTGTGCT






TACTCTCTAATTAGTTTACTTCAGACTATCAGATGAT






TTTTGAACTTTTTCCTCCCTCTGTTCGGCTGTATAAT






TATATATGAGAAACATGTTTAAAAATGGGTGCATT






AACATATATGAAGTTTTTTTTATCAAGGCGAGATTT






TGTCATCCAAAAACTTTACTTCTGAACATGCTGTCT






GATCCTGTTTCTTTATCTTCATTTGTTGGGATTTTCT






TGAGGTTCATGACTACTTTCAGTTATTATAGTTACC






CATCCTGCATAAATCTGAGTTTACAGTTATAGTAAT






GAAAATAAATAGGCTAATTATATTCTCGTCGGTCAT






CACAGTATGATGAATCTTGGGCTAATATGAAGATG






AGGTAGGAAGAAGAATTTGTGTTAGTATGATAATA






TGTGCCCGCCCTAAGCAAGTGCAAGCCTTGCCTAC






GCCTAGGGCCCCCCAAAAATTTTAGTTTTCAACTAG






TGCTAACGTTCGAACTTTTCTATATATATACAATAG






TTTAGGGGCCCAAATTAGTTTAGGGGCCCAAATAA






TCTTAGGGGCCCAAATAATCTTTCGGGCCCAAATA






ATCTTTCGCCCCGGGCCCCTAAAAACCTAGGGTCG






GCTAGTGCCAAGAGAAATATTGTTGTGCAAAGTTT






CTTGGTATTTTTTCTTGTGCTTACAATTCTTGCTCCA






CAGATTGCAGCGTGGAAGGATGAGGATGGTGACT






GGTATGAGACTGGGCTACATATATTCTGTGAGTGA






TCTTTTAATTTTCTGCTTAGTTGGGTAGTTACCCGTG






TACTTATTATGTGCACTCTAGTCATGTTTATTGGAA






AAATTTACTGCATATTTATCAGTCCGATGTACTGAA






CATCTTCATATTTTCTTGAAGTTGGGGCATATCCAA






ATATCCAAAATCTATTTGGAGAACTTGGTATAAATG






ACCGATTGCAATGGAAGGAGCACTCTATGATTTTT






GCAATGCCTAGCAAACCCGGTGAATTCAGTCGCTT






TGATTTTCCCGAAGTCCTGCCTGCACCATTAAATGG






TTAGTATATCGGTGATGGTTTTTGTTGGCTGCCAAA






TTACTTGATGCAATGCATTACCTTGTAAAATACTCC






TTCCGTCCCCCTGATTTTGCCCCATATACTATTTTAG






TCCGTTCAATTGAATTTGCCCATTATTATTTTTGGAC






GTGATTCCACCTATAATACTTGCTATAACCTACAAT






TTATTTCTCTTTCCTACATCAAAAACTATAATTATCC






CGCTAAAGGACATGGCCCCACTTACAACACCTCACT






AAAATACCCACTCACCCGCTTTTCTTAATCAT





22

Amaranthus

Genomic
680
GATATTATCGAGGCAACAATGAAAGAGCTTGCCAA




rudis



GCTTTTCCCGGATGAAATCGCTGCCGATGGGAGCA






AGGCCAAGATCCTTAAATATCATGTCGTCAAAACTC






CAAGGTGATCGATAAACTTGTGAAATTAAAATTGG






ATAATTTCATGCTACCGCTAGAAACAGCATTAATGT






TGTACCCGTGGGCTCTTTTATAGGTCTGTTTATAAG






ACAGTGCCGGATTGTGAACCTTGTCGGCCGCTGCA






AAGATCACCGATAGAGGGTTTCTATTTAGCTGGTG






ATTACACAAAACAAAAATATTTGGCTTCAATGGAA






GGTGCTGTTTTATCTGGGAAGCTTTGTGCTCAGGCT






ATTGTACAGGTAATCAAAGTTTGATTAAACACCGC






GGGCATGCTGATTAGACTTTTCGTATTTTGATTCGA






TCCGAAATTGACCCAAAACCGACCGGAAATCGGTG






GGTTATAATTTAGAAAATATGACCCGTAACCAAAA






AATGACTCAAACCCACCGTAGCCCAAATCCAATCGT






TTTGACTTGTTTACCTAATTTTGTCAACTTTTCTTGTT






CCACGTCGTTAGTTTTCTGTCGGGAGTCGGGACCC






ACTATCTTTCTAGTCTGTTTTTGTATTTCTTTTTTCTT






TGTTGATGCTTTTATTCGTTTTTACCTAGTTATGTTTA





23

Amaranthus

Genomic
433
AGTTCATATTTTGTATATATGCAGGATTATGATCTG




rudis



CTGAGTTCTCGAGCACAAAGAGAATTGGCGGCGAC






AAGCAATGTATAACCCTGGATTGCTTCGACATCCGC






CATCGATTTTCATTCGGGATCATCTGATCGGTCATC






GAATAATGATCAGCTGTAAACACAAAATTATGGGG






GTTGCATACTGGTGTTCTTCAAGTTCTTAATGTATA






AATTCTCCAGAAAGAAGATTTATTTGTAATGATATA






TCAATTAAATTTATGTTGTGATAGAAATATGTATAG






CTTACTTCTAGGGAAAATTATGTTTGTACACCAGTT






AACTTGATTGAAATGTGAAGAAAGTATCAACTTTG






TCACTTGATTTACTTGTAAGTATAACATAATATCAA






TTTATACCAATACATTTATTTCCCTTTTCTGTTTAATT






AT





24

Amaranthus

Genomic
210
CAATTCGAACCAAAAATAACCCAAGCGAAAGTGAC




rudis



TCAACCCGAAACCTACCCTGATCTAATTGTAATGAT






AGCTTTGAAATTTTTATCGTTTTAGTTAACAAGTTCT






GTTGACGAATCTTCTTTAAATTTTTACAAGTTAATAT






AAATCTCGAAAGTTCCTATAAACTTATTTTACAGAT






TGTCAAGATTAGTTGTATAAAAGTGAAGT





25

Amaranthus

cDNA
951
CAATCCTAAGGAATAATGAAATGCTAACCTGGCCA




spinosus



GAAAAAATCAAGTTTGCCATTGGCTTGTTGCCTGCT






ATGGCGGGCGGACAGTCATATGTTGAAGCACAAG






ATGGTTTGAGTGTCCAAGAGTGGATGAGAAAACAA






GGAGTACCCGATCGTGTAACTGATGAAGTATTTAT






TGCCATGTCAAAGGCACTGAACTTCATAAATCCCGA






TGAACTTTCAATGCAGTGCATCTTGATTGCTCTGAA






CCGATTCCTGCAGGAGAAACATGGTTCTAAGATGG






CCTTCCTAGACGGAAACCCTCCAGAGAGGCTGTGC






ATGCCTATTGTTAAGCACATTGAGTCACTAGGTGGT






GAAGTTAAACTTAATTCTCGTATACAAAAGATTCAG






TTGGATCAGAGTGGAAGCGTGAAGAGTTTTTTGCT






AAATAACGGGAGGGAAATACGAGGAGATGCCTAT






GTTTTTGCCACCCCAGTTGACATTTTGAAGCTGTTA






CTACCCGATACTTGGAAGGAAATCTCATACTTCAAA






AAGCTTGAGAAATTAGTGGGCGTTCCTGTGATTAA






TGTTCACATATGGTTTGACAGAAAATTAAAGAATAC






ATATGACCATCTACTCTTCAGCAGGAGTCCTCTTTT






GAGTGTCTATGCTGATATGTCGGAGACATGCAAGG






AATATAAGGATCCAAATAGATCCATGCTGGAACTG






GTTTTTGCACCCGCGGAGGAATGGATTTCTCGAAG






TGACACTGATATTATCGAGGCTACAATGACAGAGC






TTGCCAAGCTTTTCCCGGATGAAATCGCTGCCGATG






GAAGCAAGGCCAAGATCCTCAAATATCATGTCGTC






AAAACTCCAAGGTCGGTTTATAAGACTGTACCAGA






TTGTGAACCTTGTCGGCCGCTGCAAAGATCACCAA






TAGAGGGTTTCTATTTAGCTGGTGATTACTACA





26

Amaranthus

cDNA
568
GGATATGCTTGTGCCACTCAATCCACATCAAGATAT




spinosus



GTTCTTTTAGGAAATTCAAATAACCCCACTTCAATTT






CATCTATTGGAAGTGACTTTTTGGGTCATTCTGTAA






GAAATTTCAGTGTTAGTAAAGTTTATGGGGGAAAG






CAAAGAAATGGGCATTGCCCTTTAAAGGTTGTTTG






TATAGATTATCCTAGGCCAGAGCTTGAAAGTACAT






CAAATTTCTTGGAAGCCGCCTACTTATCTTCTACTTT






TCGGAATTCGCCTCGTCCTCAGAAGCCATTAGAAG






TTGTAATTGCTGGAGCAGGTTTGGCTGGTCTATCCA






CGGCAAAGTATTTAGCTGATGCAGGTCACAAACCC






ATATTGTTGGAAGCACGAGATGTTTTAGGAGGAAA






GGTTGCAGCGTGGAAGGATGAGGATGGTGACTGG






TATGAGACTGGGCTACATATATTCTTTGGGGCATAT






CCAAATATCCAAAATCTATTTGGAGAACTTGGTATA






AATGACCGACTGCAATGGAAGGAGCACTCTATGAT






TTTTGCAATGCCTAGCAAGCCCGGTGAATTCAGTC





27

Amaranthus

cDNA
2070
AAAACTTTTGATTGAAGAACAAACTTTGGGGTTTTG




viridis



GAAAATGAGTCATTTTGGATATGCTTGTGCTACTCA






ATCCACATCAAGATATGTTCTTTTGGGAAATTCAAA






TAACCCCACTTCAATTTCATCTATTGGAAGTGATTTT






TTGGGTCATTCTGTGAGAAATTTCAGTGTTAGTAAA






GTTTATGGGGCAAAGCAAAGAAATGGGCACTGCCC






TTTAAAGGTTGTTTGTATAGATTATCCTAGGCCTGA






GCTTGAAAGTACATCCAATTTCTTGGAAGCCGCCTA






CTTATCTTCTACTTTTCGGAATTCGCCTCGTCCTCAG






AAGCCATTAGAAGTTGTAATTGCTGGAGCAGGTTT






GGCTGGTCTATCCACGGCAAAGTATTTAGCTGATG






CAGGTCACAAACCCATATTGTTGGAAGCACGAGAT






GTTTTAGGAGGAAAGGTTGCAGCGTGGAAGGATG






AGGATGGTGACTGGTATGAGACTGGGCTACATATA






TTCTTTGGGGCATATCCAAATATCCAAAATCTATTT






GGAGAACTTGGTATAAATGACCGACTGCAATGGAA






GGAGCACTCTATGATTTTTGCAATGCCTAGCAAGCC






CGGTGAATTCAGTCGCTTTGATTTTCCAGAAATCCT






GCCTGCACCATTAAATGGCATATGGGCAATCCTAA






GGAATAATGAAATGCTAACCTGGCCAGAAAAAATC






AAGTTTGCCATTGGCTTGTTGCCTGCTATGGCGGG






CGGACAGTCATATGTTGAAGCACAAGATGGTTTGA






GTGTCCAAGAGTGGATGAGAAAACAAGGAGTACC






TGATCGTGTAACTGATGAAGTGTTTATTGCCATGTC






AAAGGCACTGAACTTCATAAATCCCGATGAACTTTC






AATGCAGTGCATCTTGATTGCTCTGAACCGATTCCT






GCAGGAGAAACATGGTTCTAAGATGGCCTTCCTAG






ACGGAAACCCTCCAGAGAGGCTGTGCATGCCTATT






GTTAAGCACATTGAGTCACTAGGTGGTGAAGTTAA






ACTTAATTCTCGTATACAAAAGATTCAGTTGGATCA






GAGTGGAAGCGTGAAGAGTTTTTTGCTAAATAACG






GGAGGGAAATACGAGGAGATGCCTATGTTTTTGCC






ACCCCAGTTGACATTTTGAAGCTGTTACTACCCGAT






ACTTGGAAGGAAATCTCATACTTCAAAAAGCTTGA






GAAATTAGTGGGCGTTCCTGTGATTAATGTTCACAT






ATGGTTTGACAGAAAATTAAAGAATACATATGACC






ATCTACTCTTCAGCAGGAGTCCTCTTTTGAGTGTCT






ACGCTGATATGTCGGAGACATGCAAGGAATATAAG






GATCCTAATAGATCCATGCTGGAACTGGTTTTTGCA






CCCGCGGAGGAATGGATTTCACGAAGCGACACTGA






TATTATCGAGGCAACAATGAAAGAGCTTGCCAAGC






TTTTCCCGGATGAAATCGCTGCCGATGGAAGCAAG






GCCAAGATCCTTAAGTATCATGTTGTGAAAACACCA






AGGTCGGTTTATAAGACTGTACCGGATTGTGAACC






TTGTCGGCCGCTGCAAAGATCACCAATAGAGGGTT






TCTATTTAGCTGGTGATTACACAAAACAAAAATATT






TGGCTTCTATGGAAGGTGCTGTCTTATCTGGGAAG






CTTTGTGCACAGGCTATCGTACAGGATTATGATCTG






CTGAGTTCTCGAGCACAAAGAGAATTGGCGGCGAC






AAGCAATGTATAACCCTAAATTGCTTCGACATCCGC






CATCGACTTTCATTCGAGATCTGGATTGGGAATCTG






ATCATCGAATAATGATCAGCTGTAAAGAAAATTGT






GGGGGTTGCATACTGGTGCTGTTCAAGTTCTTGAT






GTACAAATTCTCCTGAAAGAAGATTTATTTGTAATG






ATATATCAATTGATAGAAATATGTATAGCTTACTTC






TAGGGAATTATGTATGTGCACCATTTGTAACTTGAT






TGAAATGTAAGTATCAACTTGGTCTCTTGATTGAAA






TGTAAGTATCAACATAATACAAATTTATACCAATAC






ATTTATTTCCC





28

Ambrosia

Genomic
1388
ATCCATACGCTCAGGTAATCTATCTTCACTTAATCCT




artemisiifolia



TAGGGTTTATATTTCCTGCTTAAGAAGGTGAGTTTA






TGTTACAATGCTTTGCTTTATTTTAACTTTATGTGTT






CGATTTCATGTTAAATCTTCACATGTTAATTGATTA






GGATTATTTTTATTCTTTTTTATTTGAATTAGCGTTA






AAATCATTTATGGATTTTTTATTTGAACCATTTATTG






TGTGGACTTCCATTTCTATAATTATCATTCAAATAGT






AAGAAAAAGGAATGAAAAGTCTAGCTTTATTTTGA






TATATATATTTTTTATCATTTCTGTAGGGCATACCAG






ATCGAGTTACTACTGAGGTGTTTATTGCCATGTCAA






AGGCATTAAACTTCATCAATCCAGATGAACTTTCAA






TGCAGTGCATTCTCATTGCTCTCAACCGCTTTCTTCA






GGTAAACTCATTTATTATACCTTGACGCTTATTGATT






TAAGTATTTTGGAATAAACTAATATCACTACAATTT






AGTTTCATTTATGTTTTCTGTATATAAAAGATGAGT






CATAAATCATTATTGTTGTTGTCTAAAGACACTGCA






ACTCCTGACTGTATTTTCAGTTATTGACTGGTATAA






AATGAATCAACAGGAAAAGCATGGCTCTAAGATGG






CATTTTTAGATGGCAGCCCACCTGAAAGACTTTGCA






TGCCAATTGTTGACCATATTGAATCACTAGGTGGCC






AAGTCAGACTTAATTCGCGGATACAAAAGATCGAG






TTAAACAAAGATGGGACTGTTAAAAACTTTTTACTG






AATGATGGGACTGTCATCAAAGGTGATGCTTATGT






GTTTGCTACTCCAGGTATGTTAATTCAAACCACTAT






TTGGCTTTGAACTTTGAAGTCTCCACATATATCTCTC






TCTGGAGTGCACAAGCTTTATTGTCTGTTTTGTATC






AAGCAGTTGACATTCTGAAGCTTCTTTTGCCTGAAG






ATTGGAAACCGGTTCCATACTTCAAAAAGTTGGAA






AAATTAGTTGGTGTTCCAGTTATAAACGTTCATATA






TGGTTAGATGGACCCTTTCAATATAATGCTAATCCT






TATAACGATAGTAGTTATGCCCTTTCACTTGTTTTAT






TGTTACCCCAATTTTCTAGGTTTGTACTAGGAAGCT






CAAAAACACTTATGATCACCTACTTTTCAGCAGGTC






ACCTCTTATTTCTTGCGTAAACATTTAATTATTTTCT






CACAAAGAATGTTGGCTTTTTTACTTTCGGCATGTG






ACCTCTTATCATTGCTGCTACTGTTGATTTATATTTT






TCTTCCATCTTTTCCAGGAGCCCTCTTCTTAGTGTAT






ATGCTGACATGTCTGTTACATGTAAGGTATACTTGT






ATGGCAATTGAC





29

Ambrosia

Genomic
268
CAATTGGACTCTTGCCTGCCATGATGGGTGGACAG




artemisiifolia



GCTGTTGAGGCTCAAGATGGACTTAGTGTCCAAGA






TTGGATGAGAAAGCAAGTATGTAATCATTTAACTT






ACTTTCTACCCTGCTATAATCATTTAATTCAGGTAAA






ACAGACTGCATATATATATATTTTTTTTATCATTTCT






GTAGGGCATACCAGATCGAGTTACTACTGAGGTGT






TTATTGCCATGTCAAAGGCATTAAACTTCATCAATC






CAGATGAACTTTCAATGC





30

Ambrosia trifida

cDNA
2016
ATTCGAAACAAGGGCCGACCAAGTTCCAACAACGA






AACAAGCCAAAAACCGTTCCAACCAACTACTACTAC






TTCATCTTCTTAATCATCATCATCTTCTCCTCCTCTTT






TAAATTAATAAAAATTAGAGCAGCAGCAGCAGCAG






CAGCAGCAATTGAGTTGATCGAGTCTCTTAGGTCA






TGTCTCTGGTTGGAAATTCTGTAGTAACGAGTCATG






TATTGTCGTTTAGTCAGGCGGGTGCTCATCGACTG






AAATTCCCGGCTGTCCGATTAAGAACCAACAACACT






GTCTACTGCCCTTTCAAGGTGGTCTGCGTCGACTAT






CCAAGACCAGACCTTGACAACACTTCTAACTTCTTA






GAGGCTGCCTACTTGTCTTCTACCTTCCGAGCTTCC






CCTCGTCCAGCTAAGCCCTTAAACGTTGTTATTGCT






GGTGCAGGTTTGGCTGGTCTATCCACTGCTAAGTA






TTTGGCTGATGCCGGTCATAAGCCCCTTTTGCTTGA






AGCAAGAGACGTTCTTGGTGGAAAGGTTGCGGCTT






GGAAAGATGATGACGGAGATTGGTACGAGACAGG






CTTACACATTTTCTTTGGAGCTTACCCAAATGTACA






GAACCTCTTTGGAGAGTTAGGGATTAATGATAGAC






TACAATGGAAGGAGCATTCTATGATTTTTGCAATGC






CAAACAAGCCTGGTGAATTTAGTCGCTTCGACTTCC






CAGATGTTTTGCCTGCACCACTAAATGGAATTTGG






GCTATCTTGAGGAACAATGAAATGTTGACATGGCC






CGAGAAAGTCAAATTCGCAATCGGACTCTTGCCTG






CAATGTTGGGTGGACAAGCTTATGTTGAGGCTCAA






GATGGACTTAGTGTTCAAGATTGGATGAGAAAGCA






AGGCATACCAGATCGAGTTACTACTGAGGTTTTTAT






TGCCATGTCAAAGGCATTAAACTTCATCAATCCAGA






TGAACTTTCAATGCAATGCATTCTCATTGCTCTGAA






CCGCTTTCTTCAGGAAAAGCATGGCTCTAAGATGG






CATTTTTAGATGGCAGCCCACCTGAAAGACTTTGCA






TGCCAATTGTTGACCATATTGAATCACTAGGTGGCC






AAGTCAGACTTAATTCACGGATACAAAAGATTGAG






TTAAACAAAGATGGAACTGTTAAAAACTTTTTACTC






AATGACGGGACTATCATCAAAGGTGATGCTTATGT






GTTTGCTACTCCAGTTGACATTCTGAAGCTTCTTTTG






CCTGAAGATTGGAAACCGGTTCCATACTTCAAAAA






GTTGGAAAAATTAGTTGGTGTTCCAGTTATAAACG






TTCATATATGGTTTGACAGGAAGCTCAAAAACACTT






ATGATCACCTACTTTTCAGCAGAAGCCCTCTTCTTA






GTGTATATGCTGACATGTCTGTTACATGTAAGGAAT






ATTATGATCCAAATCGGTCAATGTTGGAATTGGTTT






TTGCACCCGCAGAAGAATGGATTGCACGCAGCGAC






TCTGACATTATTGATGCCACCATGAGTGAACTTTCA






AGACTCTTTCCTGATGAAATTGCAGCAGATGGGAG






CAAAGCAAAAATATTGAAATATCATGTAGTAAAAA






CACCAAGGTCGGTTTATAAAACTGTGCCAGACTGT






GAACCTTGCCGTCCCTTGCAAAGATCTCCAATAGAA






GGATTTTATTTAGCTGGTGATTACACGAAACAAAA






GTATTTGGCTTCAATGGAGGGTGCTGTTTTGTCAG






GAAAATTTTGTGCCCAGGCTATTGTACAGGATTAC






GAGTTGCTTGCTGCGAGGGGGGAGGTGATGGCTG






AAGCAAGCCTGGTCTAAGATGACGTGGCAAGTTGA






AAATTGATAAAACACCCATCCATCCATAGAACTTAT






CTTGTATCTGTTACTTTATACATGCATTGATTAATCA






GTATTTGAAATAGCAATTGCTTGTGAAAAAGTTTG






GGTGATGAACACAGTTTTGACTTGTTTATAGTTTTT






TTGCTAATAACTAGTAAAGATGATCG





31

Ambrosia trifida

Genomic
2399
ACTTGTATGGCAATTGACATGTTAACTACATTACCT






TTTTTACCCCACAGACGAAAGACTGTTAAACAAGTT






GCTCATATTATTCAGGAATATTATGATCCAAATCGG






TCAATGTTGGAATTGGTTTTTGCACCCGCAGAAGA






ATGGATTGCACGCAGCGACTCTGACATTATTGATG






CCACCATGAGTGAACTTTCAAGACTCTTTCCTGATG






AAATTGCAGCAGATGGGAGCAAAGCAAAAATATT






GAAATATCATGTAGTAAAAACACCAAGGCTAGTAT






TCACATGTGCAAACCGAAGACAAATTTGTTTATTCT






GATGAAGTATTAATTAATTATTGGGTTGTGGTGCTT






CAGGTCGGTTTATAAACTGTGCCAGACTGTGAACC






TTGCCGTCCCTTGCAAAGATCTCCAATAGAAGGATT






TTATTTAGCTGGTGATTACACGAACAAAAGTATTTG






GCTTCAATGGAGGGTGCTGTTTTGTCAGGAAAATT






TTGTGCCCAGGCTATTGTACAGGTAATAAATAATTG






AGTAAGCATAAAACACAAACAAGGCGAGATTTTGT






GTGATCTCATGCATCATCTTGTTATGTTACACAGGA






TTACGAGTTGCTTGCTGCGAGGGGGGAGGTGATG






GCTGAAGCAAGCCTGGTCTAAGATGACGTGGCAA






GTTGAAAAGTAAAAAAGCCAACATTTTTTATGAGA






AAATAATTAACTGTTTTGCAAGAAGTAAGAGATGA






CGACCTGCTGAAAAGTAGGTGATCATAAGTGTTTT






TGAGCTTCCTGTCAAACCTGAAAATTGGCTGAATTA






TTATTACCTTATAAGGAAGGATTAGCATTATATTGA






AAGGGTCGGTCCATCTAACCAACCATATATGAACG






TTTATAACTGGAACACCAACTAATTTTTCCAACTTTT






TGAAGTATGGAACCGGTTTCCAATCTTCAGGCAAA






AGAAGCTTCAGAATGTCAACTGCTTGATACAACAC






AGCCAGTAAAGTAAAGCTTGTGGCCCCCAGAGAGA






AATATGTGGAGACTTCAGCCAAATGGCGGTTTAAT






TAACATACCTGGAGTAGCAAACACATAAGCATCAC






CTTTGATGATAGTCCCGTCATTGAGTAAAAAGTTTT






TAACAGTTCCATCTTTGTTTAACTCAATCTTTTGTAT






CCGTGAATTAAGTCTGACTTGGCCACCTAGTGATTC






AATATGGTCAACAATTGGCATGCAAAGTCTTTCAG






GTGGGCTGCCATCTAAAAATGCCATCTTAGAGCCA






TGCTTTTCCTATTGATTCATTGTACAGCGGTCAATA






ATTGAAAGAAAATACAGTCGCGAGTTGCAGTGTCT






TTAGACAACAACAATAATGAGCCATCTTTTTCTTTT






ATATACATAAAACATAAATGAAACTAAACTCTTGTG






ACATTAATTTATTCCAAATTACTTAATCAGTAGTAA






GCTTGAAGATAATAATAATAATAATAATGAGTTTAC






CTGAAGAAAGCGGTTCAGAGCAATGAGAATGCATT






GCATTGAAAGTTCATCTGGATTGATGAAGTTTAAT






GCCTTTGACATGGCAATAAAACCTCAGTAGTAACTC






GATCTGGTATGCCCTACAGAAATGATAAAAATATA






TATATATGCAGCTGTTTTACTTAAAAATCAACTTAT






AGCAACTTAAATGACTACATACTTGCTTTCTCATCC






AATCTTGAACACTAAGTCCATCTTGAGCCTCAACAT






AAGCTTGTCCACCCAACATTGCAGGCAAGAGTCCG






ATTGCGAATTTGACTTTCTCGGGCCATGTCAACATT






TCATTGTTCCTCAAGATAGCCCAAATTCCTATAATA






GGATGCAAATTAGAAAGATAAGATTCATAGTAGTG






GTCGGTCTGAGGTAGTTGTAGTTAGTAGATAACTT






GCCATTTAGTGGTGCAGGCAAAACATCTGGGAAGT






CGAAGCGACTAAATTCACCAGGCTTGTTTGGCATT






GCAAAAATCATAGAATGCTCCTTCCATTGTAGTCTA






TCATTAATCCCTAACTCTCCAAAGAGGTTCTGTACA






TTTGGGTAAGCTCCAACTGTGAAGCAAAGGGAAGA






GTTAGTTAAAGCAGCTGATTTTCCATCCATTATTAG






TTAGTTAGTTGAGTAAAGTAAAAACTTACAGAAAA






TGTGTAAGCCTGTCTCGTACCAATCTCCGTCATCAT






CTTTCCAAGCCGCAACCTTTCCACCAAGAACGTCTC






TTGCTTCAAGCAAAAGGGGCTTATGACCGGCATCA






GCCAAATACTTAGCAGTGGATAGACCAGCCAAACC






TGCATAATAATAATAATAATAAGCAAATGAAAGTG






AGGAGAAAGAAAGAAAGAAAGAAAAGGGGTGGG






TACCTGCGCCAGCAATAACAACGTT





32

Ambrosia trifida

Genomic
2377
AAATATTAATGGTTGGTGCATATGCGCCTCGAGTG






AAGGCAAAGGAAGCAACACCAACAATGTCAAAGT






CTTATTTCCAGGTAATATGAAAAGCAAAGGAAGCA






ATCAAAAGAAATTTCTTGGACGAGCTGATGCAAAT






TATCCCAACATTAAAAAAATTTTGTATACTGCCGAA






CATGTAGCCATCCATCACAAACACGTAGTCCTAGAT






CTTCATATGTGATCAACCTCGTGCAAGAATAAACTT






CAAAGACAAAGAAAAATCAAATGATAGAACCCAAA






ATAAGAGGATACGAATTTTTCATTTGATTAGACAAA






TGAGGAAGATCCAAATCCAACTTGGACAAAGATGA






AGAATGTTATCACCCGCACAACTAGGGGAATTCAA






GGTTAAGCGGATTGTGGTATGAGGTAAGAAAGAA






TACAATATAGGGGAATTAGGAAGTAAAGGAATAA






GAAAAAAAAGAATGATATATAGCTTTAGGAAAATC






TAGGAGTGAGGAGAATATAGCAAAATATGAGGAA






GTTAAAACCAAGACGAAGCAAGCGATATGTGAGA






CAAAGTTAAAAGAGTATTAAGAGATATACAATAAG






CTGACTCAAGAGAAGAGGATAATGATCTTTGTAGG






ATAGCCTGAAGGAGACAAATGATTATAAAAGATAC






TAGTTGAATGAACTATGAAGTGTGTCTTGGATAAA






TAACAAAATAATATTCTCCAAGATGAATAGATATAC






GATAAATGGAAGGAGTTTTTTGACGAGTTGTGCAA






TGGATGTCAAGGGGCACGATAGAATACATCTTGAA






GGAATTCTGAAAAGGTGCTTTTCTAGGAATGTAAA






TTGTGAGAAAAGGAAGAAGGCGATCATCGGTAAA






TCAATTGTCTTTGCTCACAAAATGTGACACCAACAT






GTTGGATGGGGGAGAGAAGTTTTCAATGTTAACTA






CTCTTTCGGTTATGTACGTAAGTATGTTTTTTTATGA






GGCATCTTGTTCAAGAGCTCATCATTAATATAGAG






GAGCAAAAACTTACAGATACCATCTTATGGACCAA






GCATATATTGTTCACAAATAGATTCAAAACCTTTTA






TATCTTCAAATATGAATGTGAGAAATGACTTCTCTT






ACTTTTTTTACTTCCAGGTTTGGCTGGTCTATCCACG






GCAAAGTATTTAGCTGATGCAGGTCATAAGCCCCT






TTTGCTTGAAGCAAGAGACGTTCTTGGTGGAAAGG






TTGCGGCTTGGAAAGATGATGACGGAGATTGGTAC






GAGACAGGCTTACACATTTTCTGTAAGTTTTTACTT






TACTCAACTAACTAACTAATAATGGATGGAAAATCA






GCTGCTTTAACTAACTCTTTCCTTTGCTTCACAGTTG






GAGCTTACCCAAATGTACAGAACCTCTTTGGAGAG






TTAGGGATTAATGATAGACTACAATGGAAGGAGCA






TTCTATGATTTTTGCAATGCCAAACAAGCCTGGTGA






ATTTAGTCGCTTCGACTTCCCAGATGTTTTGCCTGC






ACCACTAAATGGCAAGTTATCTACTAACTACAACTA






CCTCAGACCGACCGACCACTACTATGAATCTTATCT






TTCTAATTTGCATCCTATTATAGGAATTTGGGCTAT






CTTGAGGAACAATGAAATGTTGACATGGCCCGAGA






AAGTCAAATTCGCAATCGGACTCTTGCCTGCAATGT






TGGGTGGACAAGCTTATGTTGAGGCTCAAGATGGA






CTTAGTGTTCAAGATTGGATGAGAAAGCAAGTATG






TAGTCATTTAAGTTTTTTTATCATTTCTGTAGGGCAT






ACCAGATCGAGTTACTACTGAGGTTTTTATTGCCAT






GTCAAAGGCATTAAACTTCATCAATCCAGATGAACT






TTCAATGCAATGCATTCTCATTGCTCTGAACCGCTTT






CTTCAGGTAAACATTTTCTTTCAATTATTGACCGCTG






TACAATGAATCAATAGGAAAAGCATGGCTCTAAGA






TGGCATTTTTAGATGGCAGCCCACCTGAAAGACTTT






GCATGCCAATTGTTGACCATATTGAATCACTAGGTG






GCCAAGTCAGACTTAATTCACGGATACAAAAGATT






GAGTTAAACAAAGATGGAACTGTTAAAAACTTTTT






ACTCAATGACGGGACTATCATCAAAGGTGATGCTT






ATGTGTTTGCTACTCCAGGTATGTTAATTAAACCGC






CATTTGCCTGAAGTCTCCACATATTTCTCTCTGGGG






GCCACAAGCTTTACTTTACTGGCTGTTTTGTATCAA






GCAGTTGACATTCTGAAGCTTCTTTTGCCTGAAGAT






TGGAAACCGGTTCCATACTTCAAAAAGTTGGAAAA






ATTAGTTGGTGTTCCAGTTATAAACGTTCATATATGG





33

Ambrosia trifida

Genomic
2057
GTCATCTCTTACTTCTTGCAAAACAGTTAATTATTTT






CTCATAAAAAATGTTGGCTTTTTTACTTTTCAACATG






TCACCTCTTATCATTGCATTGCTGCTACTGTCGATTT






ATATTTTTCTTCCATCTTTTCCAGAAGCCCTCTTCTTA






GTGTATATGCTGACATGTCTGTTACATGTAAGGTAA






TACTTGTATGGCAATTGACATGTTAACTACATTACC






TTTTTTAACCCACAGACGAAAGACTGTTAAACAAGT






TGCTCATATTATTCAGGAATATTATGATCCAAATCG






GTCAATGTTGGAATTGGTTTTTGCACCCGCAGAAG






AATGGATTGCACGCAGTGACTCTGAAATTATTGAT






GCCACCATGAGTGAACTTGCCAAGACTCTTTCCTGA






TGAAATTGCAGCAGATGGGAGCAAAGCAAAAATA






TTGAAATATCATGTCGTCAAAACTCCAAGGTGATC






GATAAACTTGTGAAATTAAAATCGGATAATATCAT






GCTACTGCTAGAAACAGCATTAATGTTGTGCCCGC






GGGCTCTTTTATAGGTCGGTTTATAAGACAGTGCC






GGATTGTGAACCTTGTCGGCCGCTGCAAAGATCAC






CGATAGAGGGTTTCTATTTAGCTGGTGATTACACA






AAACAAAAATATTTGGCTTCAATGGAAGGTGCTGT






TTTATCTGGGAAGCTTTGTGCTCAGGCTATTGTACA






GGTAATAAATAATTGAGTAAGCATAAAACACAAAC






AAGGCGAGATTTTGTGTGATCTCATGCATCATCTTG






TTATGTTACACAGGATTACGAGTTGCTTGCTGCGA






GGGGGGAGGTGATGGCTGAAGCAAGCCTGGTCTA






AGATGACGTGGCAAGTTGAAAATTGATAAAAACAC






CCATCCATCCATAGAACTTATCTTGTATCTGTTACTT






TATACATGCATTGATTAATCAGTATTTGAAATAGCA






ATTGCTTGTGAAAAAGTTTGGGTGATGAACACAGT






TTTGACTTGTTTATAGTTTTTTTGCTAATAACTAGTA






AAGATGATCGATTTAATGAGAGAAGATCTACTATG






GTATGACGGCTTTAATAAACAACTTCAGTCCTAACC






ATAACTAGGTATCAAATTTATGAATAAACATCACAG






CTCACAGCTAAACATTCAGCTTTGATATCTATATGA






AATCTCAGATGCTTTCTAATTAACTTCTCCAGGACC






AATTGGATTCTTTAAGTTTGTAGGAGTGTAGTTGA






GTTGGCGGTTCAAATTGATATCCCAACCATATTAGC






AGGTCCACATGTATTTATTTATATGTTTCATTTTCCA






TTCAAACAGTTGCTGTTGAAGGTACTAGTTAAGTCT






GCTGTTAAACAAGTAGATTGCAGATAACTTTGAGC






ATCATCAAGTTATATATACCGAATAGGATGCTTTTG






AAAGACATGAGCCGGAAAAAACGCTATGAGGTTG






ATCATACATTTTGTACGCACGTAAAACACAAATACA






AGGCAAAATAATAGTGTCTACAGACGACTGACTGA






TTACAGGTACACTAACCACATCTGTATTTCAAGGCT






GTGTGTTTTTATGTTTGCCCTTGTATCCGTAAATTAC






GGAGCCAATTGACCACTTCCTTAATCGTTGGCCGCT






TGGCGGGGTTAACATTTATACACATGCAGGCAACA






TCCCTTCTTGAAGCCCATTGCCCGGGTCAAATACTT






GATACTGTTTCCCTTCGGCTCTCAGTTGAAGCATCC






ACACAACCAGTTCTCATGAATGCTTGGACCTGAGC






CTAAATATCTCTATCTTGTAGGTAGCTCTAGCATCA






CAATCCCAAAACTATTCATTATCCCCTTTTAAGGTG






GCTATCAATAGACTGGCTGTACTCTGCTGGGATAT






ACCACCCATTAGTGGTGACATAGGTATTATAGTGTT






AGATCAGTCTAGACAACCCAAAATTGGCAAAACTA






CGCTTCAAACTGTGATGTATCTGATACTTAGTAGCT






ACTAACTATCTGGTCAGGAAACGGACGGTTTGCGG






TGTCAAGGAGCCAAAGGTATCAAA





34

Ambrosia trifida

Genomic
1401
TGTTTGTATCAAGCAGTTGACATTCTGAAGCTTCTT






TTGCCTGAAGATTGGAAACCGGTTCCATACTTCAAA






AAGTTGGAAAAATTAGTTGGTGTTCCAGTTATAAA






CGTTCATATATGGTTGGTTAGATGGACCGACCCTTT






CAATATAATGCTAATCCTTCCTTATAAGGTAATAAT






AATTCAGCCAATTTTCAGGTTTGACAGGAAGCTCA






AAAACACTTATGATCACCTACTTTTCAGCAGGTCGT






CATCTCTTACTTCTTGCAAAACAGTTAATTATTTTCT






CATAAAAAATGTTGGCTTTTTTACTTTTCAACATGTC






ACCTCTTATCATTGCATTGCTGCTACTGTCGATTTAT






ATTTTTCTTCCATCTTTTCCAGAAGCCCTCTTCTTAG






TGTATATGCTGACATGTCTGTTACATGTAAGGTAAT






ACTTGTATGGCAATTGACATGTTAACTACATTACCT






TTTTTACCCCACAGACGAAAGACTGTTAAACAAGTT






GCTCATATTATTCAGGAATATTATGATCCAAATCGG






TCAATGTTGGAATTGGTTTTTGCACCCGCAGAAGA






ATGGATTGCACGCAGCGACTCTGACATTATTGATG






CCACCATGAGTGAACTTTCAAGACTCTTTCCTGATG






AAATTGCAGCAGATGGGAGCAAAGCAAAAATATT






GAAATATCATGTAGTAAAAACACCAAGGCTAGTAT






TCACATGTGCAAACCGAAGACAAATTTGTTTATTCT






GATGAAGTATTAATTAATTATTGGGTTGTGGTGCTT






CAGGTCGGTTTATAAAACTGTGCCAGACTGTGAAC






CTTGCCGTCCCTTGCAAAGATCTCCAATAGAAGGAT






TTTATTTAGCTGGTGATTACACGAAACAAAAGTATT






TGGCTTCAATGGAGGGTGCTGTTTTGTCAGGAAAA






TTTTGTGCCCAGGCTATTGTACAGGTAATAAATAAT






TGAGTAAGCATAAAACACAAACAAGGCGAGATTTT






GTGTGATCTCATGCATCATCTTGTTATGTTACACAG






GATTACGAGTTGCTTGCTGCGAGGGGGGAGGTGA






TGGCTGAAGCAAGCCTGGTCTAAGATGACGTGGCA






AGTTGAAAATTGATAAAAACACCCATCCATCCATAG






AACTTATCTTGTATCTGTTACTTTATACATGCATTGA






TTAATCAGTATTTGAAATAGCAATTGCTTGTGAAAA






AGTTTGGGTGATGAACACAGTTTTGACTTGTTTATA






GTTTTTTTGCTAATAACTAGTAAAGATGATCGATTT






AATGAGAGAAGATCTACTATGGTATGACGGCTTTA






ATAAACAACTTCAGTCCTAACCATAACTAGGTATCA






AATTTATGAATAAACATCACAGCTCACAGCTAAACA






TTCAGC





35

Ambrosia trifida

Genomic
649
TGCCAATTGTTGACCATATTGAATCACTAGGTGGC






GAAGTCAGACTTAATTCACAGATACAAAAGATTGA






GTTAAACAAAGATGGGACTGTTAAAAACTTTTTACT






CAATGATGGGACTATCATCAAAGGTGATGCTTATG






TGTTTGCTACTCCAGGTATGTTAATTAAACCACCAT






TTGGCTTTGAACTTTGAAGTCTCCACATATTTCTCTC






TGGGGTCCATAAGCTTTGCTGGCTGTTTGTATCAAG






CAGTTGACATTCTGAAGCTTCTTTTGCCTGAAAATT






GGAAACCGGTTCCATACTTCAAAAAGTTGGAAAAA






TTAGTTGGTTTTTCAGTTATAAATGTTCATATATGGT






TAGATGGACCCTTTCAATATAATGCTAATCCTTATA






AGATAATAATAATTCAGCCCTTTCACATTTTTTATTG






TGAACCCAATTTTAAGATAATGAATTACTACTCTTT






CGCTTGTGTACAACCATTCCAGATGATGTTTTTGAG






GATTATGAATCACAAGCAATGTATGCATCTACTGAT






ATAATGTGGTTAATCAAGGTAATGTCAACTTTCTCC






AAATTTCATTGTGGCTAATAAGTCAAAATGGGTTC






GCGCTGGTTGAGTCAAATTAAACCAGGTTGGATTA






AGTC





36

Ambrosia trifida

Genomic
631
TTTCTTTTCTGTCTTTCTCCTCACTTTCTTTTGCTTATT






ATTATTATTATTATGCAGGTTTGGCTGGTCTATCCA






CTGCTAAGTATTTGGCTGATGCCGGTCATAAGCCCC






TTTTGCTTGAAGCAAGAGACGTTCTTGGTGGAAAG






GTTGCGGCTTGGAAAGATGATGACGGAGATTGGT






ACGAGACAGGCTTACACATTTTCTGTAAGTTTTTAC






TTTACTCAACTAACTAACTAATAATGGATGGAAAAT






CAGCTGCTTTAACTAACTCTTCCCTTTGCTTCACAGT






TGGAGCTTACCCAAATGTACAGAACCTCTTTGGAG






AGTTAGGGATTAATGATAGACTACAATGGAAGGA






GCATTCTATGATTTTTGCAATGCCAAACAAGCCTGG






TGAATTTAGTCGCTTCGACTTCCCAGATGTTTTGCC






TGCACCACTAAATGGCAAGTATGCTATTATTTACTA






ACTACCTCATGCTATTACTTACTATGAATCTTATCTT






CATTCTAATTTGCATGTTATTATAGGAATTTGGGCT






ATCTTGAGGAACAATGAAATGTTGACATGGCCCGA






GAAAGTCAAATTCGCAATCGGACTCTTGCCTGCAA






TGTTGGGTGGACAAGCTTATGT





37

Ambrosia trifida

Genomic
540
CAACGAAACAAGCCAAAAACCGTTCCAACCAACTA






CTACTACTTCATCTTCTTAATCATCATCATCTTCTCCT






CTTTTAAATTAAATAAAAATTGAGCAGCAGCAGCA






GCAGCAATTGAGTTGATCGAGTCTCTTAGGTCATG






TCTCTGGTTGGAAATTCTGTAGTAACGAGTCATGTA






TTGTCGTTTAGTCAGGCGGGTGCTCATCGACTGAA






ATTCCCGGCTGTCCGATTAAGAACCAACAACACTGT






CTACTGCCCTTTCAAGGTTATTTTCTTCTTCTTCTTCT






GTCTGTAATTCTGTATATATAATATGGTAATGGTAA






TTTCCCCCCTCCCCTCCCCTCTCTTATTGCTTATTCTA






TTCTATTTATGTGAAATTAATATATAATAATAATAAT






AGGTGGTCTGCGTCGACTATCCAAGACCAGACCTT






GACAACACTTCTAACTTCTTAGAGGCTGCCTACTTG






TCTTCTACCTTCCGAGCTTCCCCTCGTCCAGCTAAGC






CCTTAAACGTTGTTATTGCTGGTGCAGGTACCC





38

Conyza

cDNA
2432
CGGAGAGACTTGCCTAACACACGAACTCCAAGTAC




canadensis



AAATTCATCACCATATAAAAGTGTCACATATGCTTC






TTCTTCTTCTTTTGATGATCCAGCTGGAGCTCCTTCC






ACAATTATCTCATTTAATAATAATAATAATAATCCTA






CTAACCCAAACCCTAATCTCCTCAATTTCATTTTTTA






ATCTAATAGTCTGATTATTAAGAGATTATAAGGAG






ATTAGAAATGAGGTTTTTGTTATACAATAAGATATT






ATTGTATTTTTAATCTTTTTTAAGTTTTTTGGAATTAT






TTTGGGGGTTTATGATAGAAATTGTGGCAACTGAA






TTTTTGGTGGGTTTTTTGAGAATTTGATTTTAAGGG






CTGGTGTTTGTCTGATCATCTGCAGCGAGCTGATA






GTATTATTATTATGTCTCTTTTTGGAAATGTCTCTGC






CATTAACCTAACTGGAAACTGTCTGCTATCAATCAC






TAGTTCCAGAGATGTTTTGTCATTTCGGCACGGTGA






TACTATGGGTTATCGCTTGCAATCCCCCCCTTCTTTT






ATTACCAAAACTAACAAAAATGTCTCCCCTTTGAAG






GTAGTTTGTGTCGACTATCCAAGACCAGACCTCGAT






AACACCTCTAATTTCTTGGAAGCTGCTTATTTGTCTT






CTACCTTCCGAGCTTCTCCACGCCCACCTAAGCCAT






TGAAGGTTGTAATTGCTGGTGCAGGTCTCGCTGGT






TTATCAACTGCAAAGTACTTGGCTGATGCCGGTCAC






AAGCCAATTTTGCTAGAAGCAAGAGATGTTCTTGG






TGGAAAGGTAGCTGCCTGGAAAGATGATGATGGA






GATTGGTACGAGACTGGTTTACACATATTTTTTGGA






GCTTACCCGAATATACAGAATCTGTTTGGAGAGTT






AGGCATTAATGATAGATTGCAGTGGAAGGAGCATT






CAATGATATTTGCGATGCCAAACAAACCTGGAGAA






TTTAGTCGGTTTGATTTCCCAGATGTTCTGCCGGCA






CCATTGAATGGAATTTGGGCTATCTTGAGGAACAA






TGAAATGCTGACATGGCCTGAGAAAGTAAAATTTG






CTATCGGGCTCTTGCCTGCAATGTTAGGTGGACAG






GCTTATGTTGAGGCACAAGATGGTCTGAGTGTTCA






AGACTGGATGAGACAACGGGGCATACCAGATCGA






GTTACTACAGAGGTGTTTATTGCCATGTCAAAGGC






ATTAAACTTCATCAATCCAGATGAACTTTCAATGCA






ATGTATTCTGATTGCTCTGAACCGATTTCTTCAGGA






GAAGCATGGTTCTAAGATGGCATTTTTAGATGGCA






GCCCACCTGAAAGACTTTGCATGCCAATTGTTGAG






CATATTGAGTCACTAGGTGGCCAAGTCAGGCTTAA






TTCACGAATACAAAAGATCGAGTTGAACAAAGATG






GAACAGTTAGGAACTTTTTACTTTATGATGGAAATA






TTATTGAAGGTGATGCTTATGTATTTGCTACTCCAG






TTGATATTCTGAAGCTTCTGTTGCCTGAAGATTGGA






AAGCAATTCCTTACTTCAAGAAGTTGGATAAATTAG






TTGGTGTCCCAGTTATAAACGTTCATATATGGTTTG






ACAGGAAACTCAAAAACACCTATGATCACCTACTCT






TCAGCAGGAGCCCTCTTCTCAGTGTATATGCCGACA






TGTCTGTAACATGCAAGGAATACTATGATCCTAACC






GGTCCATGTTAGAGTTGGTTTTTGCACCTGCAGAA






GAATGGATTTCACGCAGTGACTCTGATATTATTGAC






GCTACGATGAGTGAACTTTCAAGACTATTTCCGGAT






GAAATTGCAGCAGATCAGAGCAAAGCAAAAATATT






GAAATACCATGTAGTTAAAACCCCAAGGTCAGTTT






ACAAAACTGTACCTGACTGTGAACCTTGCCGTCCAT






TACAAAGATCTCCATTAGAGGGATTCTATTTAGCTG






GCGACTACACGAAACAAAAGTATCTGGCTTCAATG






GAGGGTGCTGTTCTATCAGGAAAATTTTGCGCCCA






AGCGATTGTAAAGGATTATGAGTTGCTTGCTGCCA






GGAGGGAAGTGGTTGCTGAGGCAAGCCTTGTCTA






ACTGTATAGATGCAAGATAACTTGGTAAGTTAAAA






ATCAGTTGAAGACAAGAGCACGTGGTTCTTTGCAT






ATTTGACTTTTTATGGTCCTTGGCTGAAGTGGTAGG






CTTAAGGAGGTGGCAGAATTTCTGGGAGGAGCTTT






TACAAGTTCAGAAGAAGCTAAACATAAATACACCC






ATAGCAATTCATTGTTCTAACTGAAACTTATTTCATA






TTTGTCAAAGAAAAAAATACATATTCCTGTTATGTA






CATAGTTGGTTATTTTCCCTTGTTTTATACGTCATGT






GTGGCATCGAATCTATTGATTATCTATACGTATTAT






ATGTGGCA





39

Conyza

cDNA
2206
ACAACATCCCTTGTTTCCTCTTCTTCTTGTTTTCTTTT




canadensis



TCTTTCTTTTTGCTAAAAAACTCACACACGCAGAAG






AAGAAGACGAAGACAAAGTCAGAGAGTTGAGTTT






GGACTGATTGATTGATTTGTTATTAAGGGCTGGTG






TTTGTCTGATCATCTGCAGCGAGCTGATAGTATTAT






TATTATGTCTCTTTTTGGAAATGTCTCTGCCATTAAC






CTAACTGGAAACTGTCTGCTATCAATCACTAGTTCC






AGAGATGTTTTGTCATTTCGGCACGGTGATACTATG






GGTTATCGCTTGCAATCCCCCCCTTCTTTTATTACCA






AAACTAACAAAAATGTCTCCCCTTTGAAGGTAGTTT






GTGTCGACTATCCAAGACCAGACCTCGATAACACCT






CTAATTTCTTGGAAGCTGCTTATTTGTCTTCTACCTT






CCGAGCTTCTCCACGCCCACCTAAGCCATTGAAGGT






TGTAATTGCTGGTGCAGGTCTCGCTGGTTTATCAAC






TGCAAAGTACTTGGCTGATGCCGGTCACAAGCCAA






TTTTGCTAGAAGCAAGAGATGTTCTTGGTGGAAAG






GTAGCTGCCTGGAAAGATGATGATGGAGATTGGT






ACGAGACTGGTTTACACATATTTTTTGGAGCTTACC






CGAATATACAGAATCTGTTTGGAGAGTTAGGCATT






AATGATAGATTGCAGTGGAAGGAGCATTCAATGAT






ATTTGCGATGCCAAACAAACCTGGAGAATTTAGTC






GGTTTGATTTCCCAGATGTTCTGCCGGCACCATTGA






ATGGAATTTGGGCTATCTTGAGGAACAATGAAATG






CTGACATGGCCTGAGAAAGTAAAATTTGCTATCGG






GCTCTTGCCTGCAATGTTAGGTGGACAGGCTTATG






TTGAGGCACAAGATGGTCTGAGTGTTCAAGACTGG






ATGAGACAACGGGGCATACCAGATCGAGTTACTAC






AGAGGTGTTTATTGCCATGTCAAAGGCATTAAACTT






CATCAATCCAGATGAACTTTCAATGCAATGTATTCT






GATTGCTCTGAACCGATTTCTTCAGGAGAAGCATG






GTTCTAAGATGGCATTTTTAGATGGCAGCCCACCTG






AAAGACTTTGCATGCCAATTGTTGAGCATATTGAGT






CACTAGGTGGCCAAGTCAGGCTTAATTCACGAATA






CAAAAGATCGAGTTGAACAAAGATGGAACAGTTA






GGAACTTTTTACTTTATGATGGAAATATTATTGAAG






GTGATGCTTATGTATTTGCTACTCCAGTTGATATTCT






GAAGCTTCTGTTGCCTGAAGATTGGAAAGCAATTC






CTTACTTCAAGAAGTTGGATAAATTAGTTGGTGTCC






CAGTTATAAACGTTCATATATGGTTTGACAGGAAA






CTCAAAAACACCTATGATCACCTACTCTTCAGCAGG






AGCCCTCTTCTCAGTGTATATGCCGACATGTCTGTA






ACATGCAAGGAATACTATGATCCTAACCGGTCCAT






GTTAGAGTTGGTTTTTGCACCTGCAGAAGAATGGA






TTTCACGCAGTGACTCTGATATTATTGACGCTACGA






TGAGTGAACTTTCAAGACTATTTCCGGATGAAATTG






CAGCAGATCAGAGCAAAGCAAAAATATTGAAATAC






CATGTAGTTAAAACCCCAAGGTCAGTTTACAAAACT






GTACCTGACTGTGAACCTTGCCGTCCATTACAAAGA






TCTCCATTAGAGGGATTCTATTTAGCTGGCGACTAC






ACGAAACAAAAGTATCTGGCTTCAATGGAGGGTGC






TGTTCTATCAGGAAAATTTTGCGCCCAAGCGATTGT






AAAGGATTATGAGTTGCTTGCTGCCAGGAGGGAA






GTGGTTGCTGAGGCAAGCCTTGTCTAACTGTATAG






ATGCAAGATAACTTGGTAAGTTAAAAATCAGTTGA






AGACAAGAGCACGTGGTTCTTTGCATATTTGACTTT






TTATGGTCCTTGGCTGAAGTGGTAGGCTTAAGGAG






GTGGCAGAATTTCTGGGAGGAGCTTTTACAAGTTC






AGAAGAAGCTAAACATAAATACACCCATAGCAATT






CATTGTTCTAACTGAAACTTATTTCATATTTGTCAAA






GAAAAAATACATATTCCTGTTATGTACATAGTTGGT






TATTTTCCCTTGTTTTATACGTCATGTGTGGCATCGA






ATCTATTGATTATCTATACGTATTATATGTGGCA





40

Conyza

Genomic
15961
TAGTGTAATTTAATTATTAATATTAAGAGAATAGTG




canadensis



TATGTGAAAATCTTTTAAAGGTTTGTAGGCTTGTAG






CCTTGTAGGTGAAAATATTACATAGGAGGGCATTT






TAGACATTTCCCCATGTAACTTTCAACATGGAGGGT






ATTTTCTTTAATATAGAGTATAAATAATGGAGATAT






TTTAAAAAAATAAAGGACTGATAGTGTAATTTAATT






ATTAATATTAAGAGAATAGTGTATGTGAAAATGTTT






TAAAGGGTTGTAGGTTTGTAGCCTTGTAGGTGAAA






ATATTACATAGGAGGACATTTTAGACATTTACCCCA






TGTAACTTTCAACATGGGGGGTATTTTCTTTAATAT






AGAGTATAAATATAGATAAATAATATATATTTTGTA






AATTTTTTAAACTAATAAATTATTTTAAAATAATAAT






TTTTATAAAATATATTTTATTTGATAAATAATAACTC






TAAATTACACAGATGGTACCTATAATTTGTATTATA






TTACATGTTTCATACCTCACATACAAGACACGTTGG






CTACTTAATGATACAACTAACGACCGTCAGCGTGA






GGTATCTTCTAAGTGTAAAATTGTAAACATGATATA






ATTGACGTAATTTAAATCTAACAGGTATGAAATTAA






TAATTTCGACCAAACCAAAGGTACTTAATTCACTCT






TAATATACTGTATCTAATACTACTCGTGGTAGTATT






ATGTAGATTCCTAGCAATGGACGACAATATTCCAAC






AACATAAGAAGCCAAAACCCACTTCCTTCCTTTTTTT






TTTTTGTTGTTGAATAATTTAATCAGTTTTTAGGAAC






GAACAACCTCCTCCATTTCCAGATAAATTATTATTCA






GCCAAGCAAAAAACACAACATCCCTTGTTTCCTCTT






CTTCTTGTTTTCTTTTTCTTTCTTTTTGCTAAAAAACT






CACACACGCAGAAGAAGAAGACGAAGACAAAGTC






AGAGAGTTGAGTTTGGACTGATTGATTGATTTGTT






ATTAAGGTAAAAATACCACTTACTACTCCATCCATC






CATCCATAGTAGACTGGTAGTTGTATTAGTAGTAGT






TAGCTGCTGCTTTGGTTATTAGGATTAGGATGAAG






AAACTAGCAGATTGTTAAGTATTCTTCATGTGACTT






TGTTATCTTCCTTTGTAAACAATCTCCCCCAAATATA






ATAGCATATCGACTAAGTGGTAATATACTTATTTTT






TTTTTAAGTTGATGGTGAACTATTGTATATGGCAGG






GCTGGTGTTTGTCTGATCATCTGCAGCGAGCTGAT






AGTATTATTATTATGTCTCTTTTTGGAAATGTCTCTG






CCATTAACCTAACTGGAAACTGTCTGCTATCAATCA






CTAGTTCCAGAGATGTTTTGTCATTTCGGCACGGTG






ATACTATGGGTTATCGCTTGCAATCCCCCCCTTCTTT






TATTACCAAAACTAACAAAAATGTCTCCCCTTTGAA






GGTACAACCTCTGCCACATGTATTTCATTATCACTC






ACAAAATCAATTCTAATGTCTTTGTTTATCTGTGCTA






AACAGGTAGTTTGTGTCGACTATCCAAGACCAGAC






CTCGATAACACCTCTAATTTCTTGGAAGCTGCTTAT






TTGTCTTCTACCTTCCGAGCTTCTCCACGCCCACCTA






AGCCATTGAAGGTTGTAATTGCTGGTGCAGGTAAA






ACCTTCATACGTCATTATATTGTCTTTTAAGTCGCTT






TTGTTTGAGAATTTGATACTGCCACATCTGATAGAT






AACCAAATGATACTTCTAGTGTATCCCCAATGATGC






TTTTTATGCCACATACTAACATCTGCTTTAATTTGCT






ATCCCACTTACTTTTGCAAACTTCGCATATGCAGGT






CTCGCTGGTTTATCAACTGCAAAGTACTTGGCTGAT






GCCGGTCACAAGCCAATTTTGCTAGAAGCAAGAGA






TGTTCTTGGTGGAAAGGTAAACGATTTATAAGAAA






TTACAATAGGATCGGAAGTCCTAGGATCCCCCCTCC






CTCTTACCTTCTTCTATATAACAGAGCAAGCTTGGT






AATAAAACAAGGATTTTGGGTCTAATTATTCTCTTC






TTTACTTGCTTTCTGTTTTCGTCTCTTTCACTGATAAC






CAAAGGCAATATCAGTTAGGGTTCTAGGATGGGTC






GAAGCAAATTTTAGGGATACCAATGCCTAACCAAG






TTCGATCAAGACTAGGGATATAGAGGGTATTCAAT






CAGCTTCTGGTGGGATTATAGCTCGCGACTTTGAA






GCTAGAGTTAGGGTTCTTTAAAGCCTAACATAGTTC






AAATACGGCTGGGGTGTTGGGGGTTCCTTTCTGTA






CGAATTTAAAGCTGGACAAGGCAGCAAAAGAGTTC






GACTTGTGTGGATTTTTATCTAGGTTTGGCTGGGGT






TTCAAACAACCGAAGGTGTGTTTGGGGTTCTTGGG






ATAGTCGATCAACATTGGAGTGTCTTTTTCCTGTTTT






ACAAGTTAGAATACGTGAAATGCATCTTCGTTCATT






ATTTTGCTTTTGACCTTTATGTGATGGGTACAAGTT






TAACAACCTACTGCATGCGGTTTCTCTTTGTGCTCA






CATTTCACTTTCTCTCTTTTCTCTTTTGCATTGTTGGG






GTGGGATGGCTGTTTTTGCTAGTAACATTTATACAA






ACCTGGACCTAATGTTAGGTCAATCCGGGCTGGGT






TCACAACTGGATGGAGGAATAAGGGTCGGAGGGA






AATATTGAATGGCTCCTCAAACCCAAAGTAACCCA






GATCCAAACACTTCCAATCTAAACAACCCAGACCCC






GTGGCTGCTCAATCAACAGCCATAGCATCATCTATG






AAATCACTGCAGCAAAGAGGTAGCAATGATCAAGA






CACAGTAAGCCAAACAAAAACAGAAATCAAGCGG






CAATTTAAATCAATTTGAAGATGAAGGTTCATCTGG






TGGTAACCACCGTCACTACAGACCTTATAATAATAT






CGATTTCCCAACTTTTAGTATTGGAGAACTGTTTAC






AAGGCTATGAGTATTGCTATCGAGTTTGAATCCAA






GGTTCACATGAAATTTAGGAAAAGTTTTTCGTCTTC






AGCCAAAACAGAATCAGTACCTTCGAAACCAATAG






AAACTTCCAACCTGTTGCCCTCGATTGCTGCTGCCC






AGAAACCAACTGAAGCCCGTCTTTTTGATGTTAAAA






AATAGGGCAGATTCATACGAGAAGTTGTGTCTAAG






TTTCTGATCTACTCAAAATTTCTATCAATTTGCCTTG






GGGGAAAGCCGATGTGGTACTCGGTATTCAATAAT






TAGGAACACTTACAAAGTTTAGGCAAAATGGAAGG






AGATAGTCATGAAGTTCACTATGGATGTTAAGGAG






TACAAGCTACATGGACTTCCACCAGATCGTCAACCA






TCAGCAACATTTAGCGACCTCACTACTGAACCATTC






GAGTTACAGGCAAGTGGACTAGCAGCTCATTTTTT






CACAACTGGCTAGTGGACAAGTCAGATTTTGGGGC






CGGATGTATTGATACAAACCTGGACCCAATGTTGG






GTCAAACCAGGTCGGGTCAGCAGCTGGATGGAGG






GAAAAGGGGTGGAGGGAAATCAAGTAGTGAAGG






AATTCAAGTTAGGAAGTGGACCATGCGCCCACTAC






ATATAATTGCTCCACTAATTTTAGTATTATATATGTG






TGTTTTTCTGTTTTTTAAGCTGGTCAAGATACTAAGT






TTGTGATTGTTCTTGTATTCGGAGATTTGCCATCTG






AATTTTGCTAATATTGTGTTAGACTCAGTAATCTAA






ATTAGTAGATTTCCAGTTTCTATCAAATGTTCGTTTG






GCGAAAATGAATAATTGAAGTTCATATGACGACCT






TATTTGAGCAGGATCTGTTCTATAGGCTCGTACCTC






TGTATCCTTGATTCCTATCAAGACAGAAAAGTAGTT






TCATATGAAATTTCTATTTTTAAACTTTTGTATATCA






TAAGTAGTCAAGCTTAGCTTAATTTCAAATCTAGGT






TGTCTTAGTATGTTGTTACTTATCGTGAGTGTTTTTA






TCCACATTGCTCTTCTCACATAGGTAGCTGCCTGGA






AAGATGATGATGGAGATTGGTACGAGACTGGTTTA






CACATATTTTGTAAGTTTTAACTTCTTATATCCTTTC






AAGTGTCGAAAAAGAGAGCTGATGTGTGCATAAA






AAGTTATTCCCATAATATAATTCTCAACAGGGTTGT






TGTCGTCTTTTTGTGCACTATCTATCTGCTCTAAGTT






ATTGTTTCTCCACGTACCTTTCCTTTTGGACATTTGT






CACTAGACACCTAATGTGCAATAAACTTCTTCATTT






GCTTGAAGTTGGAGCTTACCCGAATATACAGAATC






TGTTTGGAGAGTTAGGCATTAATGATAGATTGCAG






TGGAAGGAGCATTCAATGATATTTGCGATGCCAAA






CAAACCTGGAGAATTTAGTCGGTTTGATTTCCCAGA






TGTTCTGCCGGCACCATTGAATGGTAAGTATGCTAT






TATTAGCCTATTTTTTTTGGTGTATATATTTTATTTA






AATGATTTGGTGGTGAGCATTTTCTGCATCACCAAC






ATGACAAAAAAGATCTAAAACAAGATCAGTCAGGG






AATGCTAGATTACTAACAAATGTGACTCTGCATACC






ATCTCAGGAATTTGGGCTATCTTGAGGAACAATGA






AATGCTGACATGGCCTGAGAAAGTAAAATTTGCTA






TCGGGCTCTTGCCTGCAATGTTAGGTGGACAGGCT






TATGTTGAGGCACAAGATGGTCTGAGTGTTCAAGA






CTGGATGAGACAACGGGTATGTAGTCGTTTATGTA






AATATTTCTTTTACCATTTTTTAGTTTAATACATAAG






AAACAATGGCCATGATACCTGGTATATTTGATAAT






GGTAACGTTTCTAAGTGGAAGATCCAGAGGTCAAA






CCTTAGCAGGGGCTTTTTTTAGGAAGATTGTTGGCT






AATTAAACCCCCTGCTTAATAATTCGAGTTCTTGTTT






CTTTTGTTATGAATTTTATTTAATAATTAATGCACAT






TTTTCATTTTTCCAGGGCATACCAGATCGAGTTACT






ACAGAGGTGTTTATTGCCATGTCAAAGGCATTAAA






CTTCATCAATCCAGATGAACTTTCAATGCAATGTAT






TCTGATTGCTCTGAACCGATTTCTTCAGGTGAAGGC






ATCATTCTCTTAGAGCTTACTGGTTAAATAATGATG






AAAAATTAATCTCATGACTTTTAATTCCATCTTCCGT






CTGTCATATATGATAAGTTGGTCACGGACTCAAGTC






ACTAATATATTATATGGATTGATTTTACGCTTGTGA






TTGGTCAAGTAGACAAAGCATGCAAAGTTATATGG






GTTTAGTGTAATTAGTGTCTGTTGCATTGCTCACTG






TATGTCTGTATTGGTTGCTATAAGCCAGCGTGCTAC






CTTGAAAGCAACTCTATTTCCTTTTCCATGATCAAGT






ATTATTACATATATATTGTGCTTCTAGAATCCAGAT






ACAGAGATTTGGGTTATTTTTGTGGTTTTGAAATAG






GAGGGCGGCCTCTATAGTTAATCTCGAAGTGCTTA






TTGTACACCATGGATTTTTGAAACAAAGAGTTGATC






GCTCTTATCTGTAGCTTCTTAACACTTCAATATTGGC






TTGGTTGCAATACTACATGGCATAGACATTGGACA






CCATAGATAATACAACTTGTAAATTGTTTGTAATAA






ATCAACAGGAGAAGCATGGTTCTAAGATGGCATTT






TTAGATGGCAGCCCACCTGAAAGACTTTGCATGCC






AATTGTTGAGCATATTGAGTCACTAGGTGGCCAAG






TCAGGCTTAATTCACGAATACAAAAGATCGAGTTG






AACAAAGATGGAACAGTTAGGAACTTTTTACTTTAT






GATGGAAATATTATTGAAGGTGATGCTTATGTATTT






GCTACTCCAGGTACATTTAGAGAACGACTATTTGA






ATCTGTAGCTTTCACATGTCTGTTGGGGTTGTAGCT






TTATTGATTATTTTGTGTCAAACAGTTGATATTCTGA






AGCTTCTGTTGCCTGAAGATTGGAAAGCAATTCCTT






ACTTCAAGAAGTTGGATAAATTAGTTGGTGTCCCA






GTTATAAACGTTCATATATGGTTAGTTGGATCCTTC






AATATAATTCTAAACATGGCACAGTAATCATTCACC






TTAATTTAATAGAGTCTGGCTTCTGTCTTGACCATT






AATCTGACTTAGTAAAACCCCTATATGTATTCTTTGT






AATTGTTAAACACCACTTTCAGGTTTGACAGGAAAC






TCAAAAACACCTATGATCACCTACTCTTCAGCAGGT






CACCTCTCAACTCTTATTCTTGCAACACTATTACTTA






ATTTTTAGTAGACAAGGCTGTTGAGCTTTTTATTTG






TATGTTATTCATGCCACTGCTACCTAAACGGATCTT






TTACTTCCATTTCAAATGTCTGGGGCGTGTCGTCCA






TAAAGGTTCTCTACAGTTCATAGAGTAACTTAGAGT






AAGCTTACACCCCACCTATTAACTAAACAAAGCAAC






ACAAGTTAGGCTATATGGTACATGCTAAAGTGATG






GTCAAGATTGCACCATTTGCTACCGCCTTGAGATAC






CAGTGTCCCAGCTTCTGCTTACACTTCATAGTTTATA






CTCAAATTTAATATTGGTACAAAAAAGAGTACTGA






ACCTATCAGTTTAGTCTTTTGTATTAATTATTTAGTT






TGCATGCAGGAGCCCTCTTCTCAGTGTATATGCCGA






CATGTCTGTAACATGCAAGGTAAAGACAAGACAAA






CATATATGAAACAAACCATTTTCTTCCAGACAAACC






TGCTTTGCTGTTTTCATATGGTTCCTTGTCATGCAAA






CAATGAGGAGATGGATGTCTATTGGCCTCTCCTCTC






ATTCCTATTTTCCCGGAAAATGGGTTAAATCTGTCT






TTGTAATTTTATCTTTGTCGCATGCATGGGACATAA






CTTCTCACAATGCACATAACTCAAATATTTACCAAA






ACCTCCCGCATTTTTAAAACCAGGCTATATATAAGT






TGTAAATTACATGATGTGAACCCATACCTCCCATCA






AGGTTGTTCTGATAATAGTGCTCCCATTTTATACAG






GAATACTATGATCCTAACCGGTCCATGTTAGAGTTG






GTTTTTGCACCTGCAGAAGAATGGATTTCACGCAG






TGACTCTGATATTATTGACGCTACGATGAGTGAACT






TTCAAGACTATTTCCGGATGAAATTGCAGCAGATC






AGAGCAAAGCAAAAATATTGAAATACCATGTAGTT






AAAACCCCAAGGTTAGAAATATCTTACCAGTAAGG






GGTTTTCAACGATTCGGTTTACGAGCTCTTCGCTTT






GGTTTCCTTGATTTGACAATCCTTGAAGCTCAAACC






AAAAACCAAATCAAACCGAATTAATCAGAAACAAG






CCAAACCAAATAAGATGGTTTGGTTTTGGTTCGAAT






GCGATTGAAACCAAACCATTTTCAAATAATGCAGAT






TTTATGCTGGCAAATGTTATCTAAACTTTTTGGCAA






ATGAAAATTTGCTGAGATTCATTTACCACCAAAAAC






TTACTATATGAAAAGAAATATATAATGTATTATAAA






CTTACATTATAAGTTATTTTAAATTAATTTGATAGG






AAATATATATATATATATATACACACACATGTATAT






ATATATAGACCAATTCGGTTTTCGAATTGGTTTTGT






TTAAAAAGCAACAACTCGTAAATCAAATTATCAAAC






CATAAACCGAATTTCAAAATCAATTTGTTGTCAAAC






CAAACTAAAAACTCAAAAAAACCAAATGAATTTCA






ATAAATTTTTATTTCAATTTGGTTTGATAATTGGTTT






CATCGACTTGGATCCGTACACTGAACACCCCTACTT






ACATGTACTAGTACTTTCTGTAGATTACTTAGCATG






TGAACACCTTCATGTTTCACCCATCTGTGAACGTTG






TAAACTTAATTTTTGTACAGTTGTATCTGCGATATAT






ACTAGTTTGTGACCCAATAGATAGATTTATTAATTA






TCATATAGTTATGTAATTATATTTCCATGTATTGTTT






ATTCTATTTCATAATTGTGTAACAGGTCAGTTTACA






AAACTGTACCTGACTGTGAACCTTGCCGTCCATTAC






AAAGATCTCCATTAGAGGGATTCTATTTAGCTGGC






GACTACACGAAACAAAAGTATCTGGCTTCAATGGA






GGGTGCTGTTCTATCAGGAAAATTTTGCGCCCAAG






CGATTGTAAAGGTAATGTTAAAGCAACTCGTAGCT






GGTAGTTTTAGAATTATTTAGCAAGTGAAAGTATTT






TTCTCTGCTGCTTTTTAGAGTAGTGCAATTTGCAGC






AGACGAATTTTGGGTATGTGTTTATAAGTGACCAT






AAAAAGACAAAGTAGCCTACATATTCTGTTGCTCAT






CTTCTGATGCATCATGTAACACAGGATTATGAGTTG






CTTGCTGCCAGGAGGGAAGTGGTTGCTGAGGCAA






GCCTTGTCTAACTGTATAGATGCAAGATAACTTGGT






AAGTTAAAAATCAGTTGAAGACAAGAGCACGTGGT






TCTTTGCATATTTGACTTTTTATGGTCCTTGGCTGAA






GTGGTAGGCTTAAGGAGGTGGCAGAATTTCTGGG






AGGAGCTTTTACAAGTTCAGAAGAAGCTAAACATA






AATACACCCATAGCAATTCATTGTTCTAACTGAAAC






TTATTTCATATTTGTCAAAGAAAAAAATACATATTC






CTGTTATGTACATAGTTGGTTATTTTCCCTTGTTTTA






TACGTCATGTGTGGCATCGAATCTATTGATTATCTA






TACGTATTATATGTGGCATGTTTTTTTTTAATTTTGC






ATCCTGATCTTTGATTACACTTTTCAAGATTTATTCA






CTTTGCTTCCATGGCATACAAGAAAACAATATCAAT






ACAGCGAGCTATCTATTATCTAACTTGGGAGATGC






AGGTGCATGAGAAGTGCTCAAAACTTCAACTACTT






GGTGGGATTAAGTTGAAGTGACACTAACCCAGGTA






CCAACCTCATCCCGAAAATCTGTGAATATTTTCTTTT






TATTCGTCTTAGTTAAAAAAAGAAAAAAAAGAAAC






AGATGATGCACCAGTTCAATACTTTTTGTTCGATAC






CTTGATTATTTACCAAATGAGACACACTGTATGTCT






GTATGTGCTTTCATCTTGTTTCATTTTGTGGGAATGT






GGAGTAACAGGTATAAGAATAGCAATAACACAAGT






CTAGTTGCTGAAGAGTGTGAGCAGAGTAAGATTTT






GGTATGATACCAAGTAAAGTAAATGCGTAGAGAGT






AAGGTTTAGGTGATTCCTTAATGAAATGGGAACCT






TGTGATTGTCAATGAGTTATTAATCCATTGAATTTG






AAATTTCACAACGTGAAATAACTTGTGCTCTTACAA






AATGTTTTGTGGTCATATATTTACCAATACATGTGT






CTTCTTGGACACTAAAAAAAATAGATAGCTGGTGA






AGATACTATATAATTTAATAATAAGATAAGATAGC






GTCTACTTTGCTGAAAAGTCAAAACTGGATTACCAA






ATCTCATTCTCACGTGTCAAAATTTGACAGGATCTT






TTGAAATTCACTTGTTGGACATTGGCACTGGATCAT






GCAAAGGGATCACATTTCTCTTCAAGCCTTATCCCA






TTCCCAGCTATAGATACCATAAATATAAACGCTGGA






AGTGCAGTATTGAATTACCTGATTTATGTTTTTGGA






TGTGGGGGGTTTTAGGAGGTGATATGTAATCAAAA






ACTTAACCCAATCCATTCAAAGATTGTGTGTTGTGA






TATGACCTAAAGAAAGTGAGAGAGAGAGAGATTA






TTCTTAATTCTAAAGTAATAAATTGTGAAGGCAAAT






AAGCCGACAGCATGTTCCTGATACACATATCCATCA






CAACATCCCCTCCCAACTTTGTCACTTCCATTTTACT






CCACACTATATATACGCACACCTCTTTCAACAATGG






CTTCTACTGTACAGAACATCCCCACTTTTTTGAGCTT






TTTCACGGTGTCTGCATGAAGTTAAGAGTTTGACAT






CTGCTCGCATTCACCCCCCCTTTGGCCTTGATTTCTT






CCCACATATAACTTCAAACTTAATTAATGAATTGAA






TGCGACCCGACTCTTTTCCATGCAAATCAGTGGTCA






CTTATCAATGTTGATTGTTGACTCGATCCCATCTATA






AATACCCCTTCTTACCATTTTCTCTCTCAGGGTCCCA






GCTCCACATCTGTGAGGCTTTTTTTCTTTTGGTCCCA






AATCTTTCAAAAAAACACAAACAGAAAATGGCAAC






AGCTTTACAAACAAAGATAGAAGGGAATCGTATTA






CAACAAAGTGTGCTTCCTTAGTAAAGAAACAGCGA






GCTCGTATATATATCCTACGTCGTTGTGCCACCATG






CTTCTCTGCTGGTACATTCAAGGAGATGAATAAATA






GTTGATGCTATGACACAAACAACAGACATGTTTTTA






TCCTCGATTCTTATAGTCTCTATATCCCTTTTTTCACA






TCAACTCATGTGGCTCCCGTTTTCGGTTCTTTTCTTT






GGCTTATACATATTCTTAAATATGCATGCCCTAAAC






TTCCATCTTTTTAACACCAACGGTCCGTTGCATTTAA






AGGCTGTTGGGTCTTGTCTCATTTTCTACTCCCTAGT






TTTTGTCATGTCTTGTTTATCTTGACCTCTCTTCATTT






GTCCTGTTTAAAACACTTTTTTTATCCAAATGGTTTT






CATTTGGGTTTTTTGGGCATCTGCATCAGAGGACA






ATTTCAACTTTAGACATGGACCAGAAACGGGGATA






TGACCAGCATGAAGGAAGCAATCTTGCATCAAGTT






GGCAGCTTGAAATGAAGGTTCTACAATAACATCTT






GCGTTGTGTCATGGTTTGTAGATAATTGTCTCCGCT






GAAAATAAATGACGGTTCCTCACTTCCTTGATATGT






AAAGCACTCATAAAATGATTAATAATTCGGTGCTGC






TACAAATATATATGTTGAAGCGCACTAAATCTGAA






GTTGTGATTTATTCATCGGGATGTTTTTTTCTTTTTA






ATAATGACTTTTTCATCATTTAAGTTGACATATACA






GCACCCACTAATGCTAATATCTTAAATCTCCACATTT






CCCTTGCAATCACCAAGACAACTTGCTGTTAGCATA






ACCAGACACTGCTACTAACTTTAACCATCAAAAGCA






CATAATCCCGCAGGTCTTCAAATCCAAATGAGGCC






GGACATCATAGAACTTGTAATTTTAACTCACATAGA






AGTTTGATAGTGTGATATATGACAAGGGCAGATGG






TAATAAGTAGAGCTAGCAAATCCTTTTCATATTGTT






AATCCTCTCTCAAAATGGACGAGGAAGCTCTAAAA






CTGCAGAAAACAAACTTTTACAAACGAATTTAAAG






CTTTAAGAGGGAATAAGGAACAGGCATGTCATTGA






AGAATGCTATCTATTTATTATGGAAGATCTGTGACC






TTAAAATCCCATAAATATGATATGTGTCGGATCGTC






CAGAATGAAAAGTAGCTCAAGTTGTTAGAAATGTT






AAGTAGACACAGATGTTGTATGGAACTATGGAAGT






TCACTTATCTACTGTAATGAGCTTCCATCTCTCCCAA






TGAATTCCAAAACCCTGACTCACCTTCAAATTAATT






CCAGCTCGTGAACCAAATTTGTGATTCTGGACACCA






ACCCTTATCAAAGAATTTAATTAAATTGGCAATTGA






CTTGAGATGTTTGAAATTCAATTTTAGAGAATAGAA






GTTTCATACAATCAACGAATGAACTTTATTACATCT






GTGTATTTTAACAGCGTACGTTTCCTGCTTAACTCG






AGTGCTGGATCCAACCCATATCAAAATACGCATGTT






ACCGGCGCATCTGGTCTAGTCTGATTCCATGGATAC






ATGTTCCGTGTTCCGTTCAGAAGGTTATGTTTCTAC






CAGAAGACAGTTACAGGTACTGGTTAACAAGTCTA






TTGTAAATCATATACTTTTACAATGGCATTGATGTA






TCTGTTAACATAGTGGAAGATGCGGTACAAAGGAA






TATGAACAGGCTTCTTTGTGAAAGATGTATCTATTC






AACAGCCAGCCATAGCTGGAAAAAGTGTCTCTATA






GTCTATATACATTAATGCACGGTCATCAGGTAAAAA






TTCCTTTGCAAAAAGGAACCACAAACAAAAAGCAA






AGGCGAGTAAAAAAAAAAAAGAACCTAAGTGAGA






GATTGCCTGCACAGACAACTAATTACAATGTACATT






GACTCGCACACTTCGCAATGACACAATACTCTGATT






TCTATATATATGTGTATGTGCATTTACATTTGCCCTT






TATTTTGGTATCCGATGGTTGGGCCCAACATTATGG






AGCCAATCAACCACTTCATTAATGGTTGGCCTCTTG






ACGGGGTTTACGTTCACACACATACAGGCGACATC






AAGAACCTGCAGCATCTCTTCTTCAAATCCCTTGTC






TCTCAGGATCTCATCAAATATTTGATCCTGTTTCCCT






TCTATTCTAAGTTGTTGCACCCACACAACCAATTCTC






TAGACGCCTTTGGCCGGAATACCTCCATGGGCCTCT






TTCCTGTAAGCAGCTCAAGCATGACAACCCCAAAA






CTGTATATGTCCCCTCTCAAGGTGGCTATCCATGAC






TGGCTGTACTCCGGTGGAATATACCCCAGGGTGCC






CACCAACTCAGTCGTGACGTGTGTATTGTATGGAT






GAATCAATCTAGACAATCCAAAATCGGCCACGTAT






GCTTCAAATTGGTCATCCAGAAGGATGTTACTTGAT






TTGATGTCACGATGCACGATATGTGGTTCGCATACT






TGGTGCATATAAGCCAGTCCACAACTTGCTCCCCG






GGCGATCTTCAATCTCGTTGGCCAATCGAGCCTGG






ATGCTCCGTCAGCCTTCTCATGTAGCCAGTAGTCCA






AGCTTCCATTTTCCATATACGAATAAATCAGCAGCT






GACATCCATCATGTACACAGTACCCTTGTAAAGAAA






CCAGATTTTTGTGATGGGCAGTTGATAATGCCTCCA






CTTCTGCTTTAAACTCCCTTGCAATGAGGCCCATAT






CTCCTGAAAGTTTCTTGACAGCCAGTTTTGTTCCGT






TCGCCAAAGTTGCTTTGTAAACCAATCCAAAGCCCC






CACATCCAATGATGTTTGCTTGACTGAAATCTTCGG






TTGCTTTCAAAATATCAGTTATGGTTAGATGTTTGA






TGTCTTTTGCATTGTGCGGGAACAATATGACTCCGC






TGGTATCCTTGGGAACCTCTACGGCCGACGTAGAA






TTGAAGGACACCGTGTCCATATGGAAGACTTCCGG






GTCACCTCTGGGGAGAATCCTTCTTTTGGACAATAT






CCACAGTGCCAGACAAGCCAGAGTGATGCCAACCC






CAAAACAGATGCCCAGGATGAGGCCGACGATGAG






TTTCTTGTTTGGGCCTTTTTCATGTGGCGAGGAAGC






GTCTGTTTTGGGTGATAGAGGATTATTTTCATCGTT






GCAAAGGTTTTGCATGGGTGGACCGCACAACCCTG






GATTGCCTTCGTAGTTCTGGTTCAAGAAGGTGTCA






AACTGTCCCCCGGTCGGTATGGAACCTTGTAGCTT






GTTGTAAGCGACGTTGAAAGAAGACAGAAAGTAC






AAGCTTTTGAGGGAGGCAGGGATCTGACCAGACA






GATTGTTATGGGAGAGGTCCAGCTTTTCCAAGTTT






GTGAGATTTGAAATGGTAGCGGGAATGGAGCCAG






AGAAATTGTTTAGGCTGAGATCAAGTGTATGAATG






GACTGCATATTACCAATCTCAACAGGTAGGCTGCC






ACCGAGTTGATTGCTTGACAGGTACAATGCTGGAG






GCAGGGTGGCCAGCTGATTGTACTGCAAGTAGGAT






GCATTTTGAGGGGCAACGAATACAGGGAGTTCCA






GGTAACTGCTGTTTACACGGTCCAAAACCTGCTGC






GATGCGAGGGCTGGGAGTCTGGTAAGCTCCACAG






GGAATCCCCCGGATAGAGAATTATTAGACAGGTCC






AGATAGAAGAGGTTCGGAAGCGTGTGTAGCCAGC






CCGGAATGACGCCGTCGATATTATTCTGGGAGAGG






TCGATGACCTCCAGATTGGTAAGGGAAGAGAGCCA






CGTGGGGATCTGACCGAACAGCTTGCAGCCACCAA






GACCCATGATCTTGAGATTGGAGAAACCAGAGATG






GGTTGAGGGGGGAGGGGTTCGTTGAAGAAGTTCT






TGGAGAGGATGAGGGTGGTGAGTTTCGGATGCCT






GCTCAGGATATTGAATGCGCTTGTGATGTTCCTGA






GGGTGTTGTTTGAAAGGGAGAGGAAGGAGAGAG






CAGGCAGGCCGAGGACATGAGCGGGGATTTCCCC






TCGCAGCCTGTTGGTGGCCAGCCGGATTGCGGTGA






GCGATTTGCAAGAGAAGACGGTGGCCGGCAGCTC






CCCTGCGAATCGGTTTTCGCCAAGGTCAAGGATGG






TGAGCCTGGTGAAACCGGAGAAATCAAAATCCGA






GAGAATGCCGGTGAAGGAGTTGACCCTGAGATTG






AGAAGCTGCAGGGATTTGCAGTTGACGAGGGAAG






GAGGAAGGGTTCCATTGAGACGGTTGATGTGAAG






TTCAAGTTTCTGCAACAAGGGGAGGTTGCCAATGG






CGTGGGGGATGGGCCCGCTAAAGTTGTTGCCAAAC






AAGGCAAGAGTGGTGAGGTTGGTGAGGGTGGTGA






TGGAATCGGGAATGGGGCCGGTGAGAGAGTTCCC






AGGGAACGATAGATGGCGGAGGGAAGGGGTGGT






GGAAACGTGGAAAGGGGCAAGGGCGCCGGTGAG






GTTGTTAAACCCCAGACTCAAAACCTGGAGGGAAG






CACAGGGGCCCGACAAAGGGGGGAAATCCCCGGT






GAAGTCGTTCAAGGAGAGATCGAGGATGGTCAGA






TTAGAGTTGCATATGGTGGAGGTGGGGACGGGGC






CTGTCAAGGTGTTGTTGCTGACATTGAGGGCAATC






AAAGAAGGGAAAGAAGGGAAGAAGGTAGGCGGA






ATCGTGCCATTCAGATAATTACTGGACAGATTCAG






GGTGGAGATGGTGGTCGTGGTGGGTTGTGGCAGG






TTCCCAGAAAGTCTGTTGTAACTTAAGTCAACGGTG






TGGAGATGGTTGAAAAATTGTGGTGGGAGGGGAC






CAGATAGGAAATTACAGGACAGGTTTAGGAAAGA






TAGGGATGTCAGATTTTCAAGAGGGGCATAATAAT






CATTGTAATTGGTCGTAGTAAGGCCTCTATTTGGTA






AGGAAATCCCGACCACACGGTGACCTTGATCATCA






CAACTGATTCCATCCCACAAACAGCAATCTTCTCCT






TCCCCATTGGCAGCAGCCCAGTTGACGACGCTGGG






AAAGTTGTTGCCAAAAAGCAACAGAGAATCCTTAT






CATCAGAGTTACAAGCTGCTGCTGCTGTCGTCCTTG






TACAAGCAGGAAACAACAAAACTAACACTAACACT






AGTATCATCAACAAACCCCTCCCCACATGATCATGC






TCACGATTATGATTGAATGATGAACAACAACACGG






GACCAACAGCATCATCAACAACCAAACCAAACCAC






ACCACACCACCCACCCACAAACAAACAAAGATATA






TATATATATATATATATTACTTTTTGTTTCTAAAAAG






AAAGAAGAAAATTATGAAGAGAAAAAGACGACGA






TAATGGTAATAATCCCATTTCAATTCAAAGAAAGAA






AGAAAAAATACAAGTGGATGTTGACGCAGACCATT






AGTAAAAAAAAAAAAAAAGAGAAGGGCATCAAAT






CAAATCAAATCAATTGAATAAATTATATAATTAGAA






AAAATTACAAATAGAGAGGGTGTTTCTATTCATTTA






TCCATTATTATTATTATTATT





41

Conyza

Genomic
9016
ACACACACATGTATATATATATAGACCAATTCGGTT




canadensis



TTCGAATTGGTTTTGTTTAAAAAGCAACAACTCGTA






AATCAAATTATCAAACCATAAACCGAATTTCAAAAT






CAATTTGTTGTCAAACCAAACTAAAAACTCAAAAAA






ACCAAATGAATTTCAATAAATTTTTATTTCAATTTGG






TTTGATAATTGGTTTCATCGACTTGGATCCGTACAC






TGAACACCCCTACTTACATGTACTAGTACTTTCTGT






AGATTACTTAGCATGTGAACACCTTCATGTTTCACC






CATCTGTGAACGTTGTAAACTTAATTTTTGTACAGT






TGTATCTGCGATATATACTAGTTTGTGACCCAATAG






ATAGATTTATTAATTATCATATAGTTATGTAATTATA






TTTCCATGTATTGTTTATTCTATTTCATAATTGTGTA






ACAGGTCAGTTTACAAAACTGTACCTGACTGTGAA






CCTTGCCGTCCATTACAAAGATCTCCATTAGAGGGA






TTCTATTTAGCTGGCGACTACACGAAACAAAAGTAT






CTGGCTTCAATGGAGGGTGCTGTTCTATCAGGAAA






ATTTTGCGCCCAAGCGATTGTAAAGGTAATGTTAA






AGCAACTCGTAGCTGGTAGTTTTAGAATTATTTAGC






AAGTGAAAGTATTTTTCTCTGCTGCTTTTTAGAGTA






GTGCAATTTGCAGCAGACGAATTTTGGGTATGTGT






TTATAAGTGACCATAAAAAGACAAAGTAGCCTACA






TATTCTGTTGCTCATCTTCTGATGCATCATGTAACAC






AGGATTATGAGTTGCTTGCTGCCAGGAGGGAAGT






GGTTGCTGAGGCAAGCCTTGTCTAACTGTATAGAT






GCAAGATAACTTGGTAAGTTAAAAATCAGTTGAAG






ACAAGAGCACGTGGTTCTTTGCATATTTGACTTTTT






ATGGTCCTTGGCTGAAGTGGTAGGCTTAAGGAGGT






GGCAGAATTTCTGGGAGGAGCTTTTACAAGTTCAG






AAGAAGCTAAACATAAATACACCCATAGCAATTCA






TTGTTCTAACTGAAACTTATTTCATATTTGTCAAAGA






AAAAAATACATATTCCTGTTATGTACATAGTTGGTT






ATTTTCCCTTGTTTTATACGTCATGTGTGGCATCGA






ATCTATTGATTATCTATACGTATTATATGTGGCATG






TTTTTTTTTAATTTTGCATCCTGATCTTTGATTACACT






TTTCAAGATTTATTCACTTTGCTTCCATGGCATACAA






GAAAACAATATCAATACAGCGAGCTATCTATTATGT






AACTTGGGAGATGCAGGTGCATGAGAAGTGCTCA






AAACTTCAACTACTTGGTGGGATTAAGTTGAAGTG






ACACTAACCCAGGTACCAACCTCATCCCGAAAATCT






GTGAATATTTTCTTTTTATTCGTCTTAGTTAAAAAAA






GAAAAAAAAGAAACAGATGATGCACCAGTTCAATA






CTTTTTGTTCGATACCTTGATTATTTACCAAATGAGA






CACACTGTATGTCTGTATGTGCTTTCATCTTGTTTCA






TTTTGTGGGAATGTGGAGTAACAGGTATAAGAATA






GCAATAACACAAGTCTAGTTGCTGAAGAGTGTGAG






CAGAGTAAGATTTTGGTATGATACCAAGTAAAGTA






AATGCGTAGAGAGTAAGGTTTAGGTGATTCCTTAA






TGAAATGGGAACCTTGTGATTGTCAATGAGTTATT






AATCCATTGAATTTGAAATTTCACAACGTGAAATAA






CTTGTGCTCTTACAAAATGTTTTGTGGTCATATATTT






ACCAATACATGTGTCTTCTTGGACACTAAAAAAAAT






AGATAGCTGGTGAAGATACTATATAATTTAATAATA






AGATAAGATAGCGTCTACTTTGCTGAAAAGTCAAA






ACTGGATTACCAAATCTCATTCTCACGTGTCAAAAT






TTGACAGGATCTTTTGAAATTCACTTGTTGGACATT






GGCACTGGATCATGCAAAGGGATCACATTTCTCTTC






AAGCCTTATCCCATTCCCAGCTATAGATACCATAAA






TATAAACGCTGGAAGTGCAGTATTGAATTACCTGA






TTTATGTTTTTGGATGTGGGGGGTTTTAGGAGGTG






ATATGTAATCAAAAACTTAACCCAATCCATTCAAAG






ATTGTGTGTTGTGATATGACCTAAAGAAAGTGAGA






GAGAGAGAGATTATTCTTAATTCTAAAGTAATAAAT






TGTGAAGGCAAATAAGCCGACAGCATGTTCCTGAT






ACACATATCCATCACAACATCCCCTCCCAACTTTGTC






ACTTCCATTTTACTCCACACTATATATACGCACACCT






CTTTCAACAATGGCTTCTACTGTACAGAACATCCCC






ACTTTTTTGAGCTTTTTCACGGTGTCTGCATGAAGT






TAAGAGTTTGACATCTGCTCGCATTCACCCCCCCTT






TGGCCTTGATTTCTTCCCACATATAACTTCAAACTTA






ATTAATGAATTGAATGCGACCCGACTCTTTTCCATG






CAAATCAGTGGTCACTTATCAATGTTGATTGTTGAC






TCGATCCCATCTATAAATACCCCTTCTTGCCATTTTC






TCTCTCAGGGTCCCAGCTCCACATCTGTGAGGCTTT






TTTTCTTTTGGTCCCAAATCTTTCAAAAAAACACAAA






CAGAAAATGGCAACAGCTTTACAAACAAAGATAGA






AGGGAATCGTATTACAACAAAGTGTGCTTCCTTAG






TAAAGAAACAGCGAGCTCGTATATATATCCTACGTC






GTTGTGCCACCATGCTTCTCTGCTGGTACATTCAAG






GAGATGAATAAATAGTTGATGCTATGACACAAACA






ACAGACATGTTTTTATCCTCGATTCTTATAGTCTCTA






TATCCCTTTTTTCACATCAACTCATGTGGCTCCCGTT






TTCGGTTCTTTTCTTTGGCTTATACATATTCTTAAAT






ATGCATGCCCTAAACTTCCATCTTTTTAACACCAAC






GGTCCGTTGCATTTAAAGGCTGTTAGGTCTTGTCTC






ATTTTCTACTCCCTAGTTTTTGTCATGTCTTGTTTATC






TTGACCTCTCTTCATTTGTCCTGTTTAAAACACTTTT






TTTATCCAAATGGTTTTCATTTGGGTTTTTTGGGCAT






CTGCATCAGAGGACAATTTCAACTTTAGACATGGA






CCAGAAACGGGGATATGACCAGCATGAAGGAAGC






AATCTTGCATCAAGTTGGCAGCTTGAAATGAAGGT






TCTACAATAACATCTTGCGTTGTGTCATGGTTTGTA






GATAATTGTCTCCGCTGAAAATAAATGACGGTTCCT






CACTTCCTTGATATGTAAAGCACTCATAAAATGATT






AATAATTCGGTGCTGCTACAAATATATATGTTGAAG






CGCACTAAATCTGAAGTTGTGATTTATTCATCGGGA






TGTTTTTTTCTTTTTAATAATGACTTTTTCATCATTTA






AGTTGACATATACAGCACCCACTAATGCTAATATCT






TAAATCTCCACATTTCCCTTGCAATCACCAAGACAA






CTTGCTGTTAGCATAACCAGACACTGCTACTAACTT






TAACCATCAAAAGCACATAATCCCGCAGGTCTTCAA






ATCCAAATGAGGCCGGACATCATAGAACTTGTAAT






TTTAACTCACATAGAAGTTTGATAGTGTGATATATG






ACAAGGGCAGATGGTAATAAGTAGAGCTAGCAAA






TCCTTTTCATATTGTTAATCCTCTCTCAAAATGGACG






AGGAAGCTCTAAAACTGCAGAAAACAAACTTTTAC






AAACGAATTTAAAGCTTTAAGAGGGAATAAGGAAC






AGGCATGTCATTGAAGAATGCTATCTATTTATTATG






GAAGATCTGTGACCTTAAAATCCCATAAATATGATA






TGTGTCGGATCGTCCAGAATGAAAAGTAGCTCAAG






TTGTTAGAAATGTTAAGTAGACACAGATGTTGTAT






GGAACTATGGAAGTTCACTTATCTACTGTAATGAG






CTTCCATCTCTCCCAATGAATTCCAAAACCCTGACTC






ACCTTCAAATTAATTCCAGCTCGTGAACCAAATTTG






TGATTCTGGACACCAACCCTTATCAAAGAATTTAAT






TAAATTGGCAATTGACTTGAGATGTTTGAAATTCAA






TTTTAGAGAATAGAAGTTTCATACAATCAACGAATG






AACTTTATTACATCTGTGTATTTTAACAGCGTACGTT






TCCTGCTTAACTCGAGTGCTGGATCCAACCCATATC






AAAATACGCATGTTACCGGCGCATCTGGTCTAGTCT






TATTCCATGGATACATGTTCCGTGTTCCGTTCAGAA






GGTTATGTTTCTACCAGAAGACAGTTACAGGTACT






GGTTAACAAGTCTATTGTAAATCATATACTTTTACA






ATGGCATTGATGTATCTGTTAACATAGTGGAAGAT






GCGGTACAAAGGAATATGAACAGGCTTCTTTGTGA






AAGATGTATCTATTCAACAGCCAGCCATAGCTGGA






AAAAGTGTCTCTATAGTCTATATACATTAATGCACG






GTCATCAGGTAAAAATTCCTTTGCAAAAAGGAACC






ACAAACAAAAAGCAAAGGCGAGTAAAAAAAAAAA






AAGAACCTAAGTGAGAGATTGCCTGCACAGACAAC






TAATTACAATGTACATTGACTCGCACACTTCGCAAT






GACACAATACTCTGATTTCTATATATATGTGTATGT






GCATTTACATTTGCCCTTTATTTTGGTATCCGATGGT






TGGGCCCAACATTATGGAGCCAATCAACCACTTCAT






TAATGGTTGGCCTCTTGACGGGGTTTACGTTCACAC






ACATACAGGCGACATCAAGAACCTGCAGCATCTCT






TCTTCAAATCCCTTGTCTCTCAGGATCTCATCAAATA






TTTGATCCTGTTTCCCTTCTATTCTAAGTTGTTGCAC






CCACACAACCAATTCTCTAGACGCCTTTGGCCGGAA






TACCTCCATGGGCCTCTTTCCTGTAAGCAGCTCAAG






CATGACAACCCCAAAACTGTATATGTCCCCTCTCAA






GGTGGCTATCCATGACTGGCTGTACTCCGGTGGAA






TATACCCCAGGGTGCCCACCAACTCAGTCGTGACG






TGTGTATTGTATGGATGAATCAATCTAGACAATCCA






AAATCGGCCACGTATGCTTCAAATTGGTCATCCAG






AAGGATGTTACTTGATTTGATGTCACGATGCACGA






TATGTGGTTCGCATACTTGGTGCATATAAGCCAGTC






CACAACTTGCTCCCCGGGCGATCTTCAATCTCGTTG






GCCAATCGAGCCTGGATGCTCCGTCAGCCTTCTCAT






GTAGCCAGTAGTCCAAGCTTCCATTTTCCATATACG






AATAAATCAGCAGCTGACATCCATCATGTACACAGT






ACCCTTGTAAAGAAACCAGATTTTTGTGATGGGCA






GTTGATAATGCCTCCACTTCTGCTTTAAACTCCCTTG






CAATGAGGCCCATATCTCCTGAAAGTTTCTTGACAG






CCAGTTTTGTTCCGTTCGCCAAAGTTGCTTTGTAAA






CCAATCCAAAGCCCCCACATCCAATGATGTTTGCTT






GACTGAAATCTTCGGTTGCTTTCAAAATATCAGTTA






TGGTTAGATGTTTGATGTCTTTTGCATTGTGCGGGA






ACAATATGACTCCGCTGGTATCCTTGGGAACCTCTA






CGGCCGACGTAGAATTGAAGGACACCGTGTCCATA






TGGAAGACTTCCGGGTCACCTCTGGGGAGAATCCT






TCTTTTGGACAATATCCACAGTGCCAGACAAGCCA






GAGTGATGCCAACCCCAAAACAGATGCCCAGGATG






AGGCCGACGATGAGTTTCTTGTTTGGGCCTTTTTCA






TGTGGCGAGGAAGCGTCTGTTTTGGGTGATAGAG






GATTATTTTCATCGTTGCAAAGGTTTTGCATGGGTG






GACCGCACAACCCTGGATTGCCTTCGTAGTTCTGGT






TCAAGAAGGTGTCAAACTGTCCCCCGGTCGGTATG






GAACCTTGTAGCTTGTTGTAAGCGACGTTGAAAGA






AGACAGAAAGTGCAAGCTTTTGAGGGAGGCAGGG






ATCTGACCAGACAGATTGTTATGGGAGAGGTCCAG






CTTTTCCAAGTTTGTGAGATTTGAAATGGTAGCGG






GAATGGAGCCAGAGAAATTGTTTAGGCTGAGATCA






AGTGTATGAATGGACTGCATATTACCAATCTCAACA






GGTAGGCTGCCACCGAGTTGATTGCTTGACAGGTA






CAATGCTGGAGGCAGGGTGGCCAGCTGATTGTACT






GCAAATAGGATGCATTTTGAGGGGCAACGAATACA






GGGAGTTCCAGGTAACTGCTGTTTACACGGTCCAA






AACCTGCTGCGATGCGAGGGCTGGGAGTCTGGTA






AGCTCCACAGGGAATCCCCCGGATAGAGAATTATT






AGACAGGTCCAGATAGAAGAGGTTCGGAAGCGTG






TGTAGCCAGCCCGGAATGACGCCGTCGATATTATT






CTGGGAGAGGTCGATGACCTCCAGATTGGTAAGG






GAAGAGAGCCACGTGGGGATCTGACCGAACAGCT






TGCAGCCACCAAGACCCATGATCTTGAGATTGGAG






AAACCAGAGATGGGTTGAGGGGGGAGGGGTTCGT






TGAAGAAGTTCTTGGAGAGGATGAGGGTGGTGAG






TTTCGGATGCCTGCTCAGGATATTGAATGCGCTTGT






GATGTTCCTGAGGGTGTTGTTTGAAAGGGAGAGG






AAGGAGAGAGCAGGCAGGCCGAGGACATGAGCG






GGGATTTCCCCTCGCAGCCTGTTGGTGGCCAGCCG






GATTGCGGTGAGCGATTTGCAAGAGAAGACGGTG






GCCGGCAGCTCCCCTGCGAATCGGTTTTCGCCAAG






GTCAAGGATGGTGAGCCTGGTGAAACCGGAGAAA






TCAAAATCCGAGAGAATGCCGGTGAAGGAGTTGA






CCCTGAGATTGAGAAGCTGCAGGGATTTGCAGTTG






ACGAGGGAAGGAGGAAGGGTTCCATTGAGACGGT






TGATGTGAAGTTCAAGTTTCTGCAACAAGGGGAGG






TTGCCAATGGCGTGGGGGATGGGCCCGCTAAAGTT






GTTGCCAAACAAGGCAAGAGTGGTGAGGTTGGTG






AGGGTGGTGATGGAATCGGGAATGGGGCCGGTGA






GAGAGTTCCCAGGGAACGATAGATGGCGGAGGGA






AGGGGTGGTGGAAACGTGGAAAGGGGCAAGGGC






GCCGGTGAGGTTGTTAAACCCCAGACTCAAAACCT






GGAGGGAAGCACAGGGGCCCGACAAAGGGGGGA






AATCCCCGGTGAAGTCGTTCAAGGAGAGATCGAG






GATGGTCAGATTAGAGTTGCATATGGTGGAGGTG






GGGACGGGGCCTGTCAAGGTGTTGTTGCTGACATT






GAGGGCAATCAAAGAAGGGAAAGAAGGGAAGAA






GGTAGGCGGAATCGTGCCATTCAGATAATTACTGG






ACAGATTCAGGGTGGAGATGGTGGTCGTGGTGGG






TTGTGGCAGGTTCCCAGAAAGTCTGTTGTAACTTAA






GTCAACGGTGTGGAGATGGTTGAAAAATTGTGGT






GGGAGGGGACCAGATAGGAAATTACAGGACAGGT






TTAGGAAAGATAGGGATGTCAGATTTTCAAGAGG






GGCATAATAATCATTGTAATTGGTCGTAGTAAGGC






CTCTATTTGGTAAGGAAATCCCGACCACACGGTGA






CCTTGATCATCACAACTGATTCCATCCCACAAACAG






CAATCTTCTCCTTCCCCATTGGCAGCAGCCCAGTTG






ACGACGCTGGGAAAGTTGTTGCCAAAAAGCAACA






GAGAATCCTTATCATCAGAGTTACAAGCTGCTGCT






GCTGTCGTCCTTGTACAAGCAGGAAACAACAAAAC






TAACACTAACACTAGTATCATCAACAAACCCCTCCC






CACATGATCATGCTCACGATTATGATTGAATGATGA






ACAACAACACGGGACCAACAGCATCATCAACAACC






AAACCAAACCACACCACACCACCCACCCACAAACA






AACAAAGATATATATATATATATATATATATATATA






TTACTTTTTGTTTCTAAAAAGAAAGAAGAAAATTAT






GAAGAGAAAAAGACGACGATAATGGTAATAATCC






CATTTCAATTCAAAGAAAGAAAGAAAAAATACAAG






TGGATGTTGACGCAGACCATTAGTAAAAAAAAAAA






AAAGAGAAGGGCATCAAATCAAATCAAATCAATTG






AATAAATTATATAATTAGAAAAAATTACAAATAGA






GAGGGTGTTTCTATTCATTTATCCATTATTATTATTA






TTATTATTATTATTATTATATTATTACTACTTGCTACT






ATTCTATTTTAATTACATTATTATTATTAATTATGTAT






GATATAATGAGAGAGTTGAAGAACAACTAGATATT






AATCAAATCCATCCATCCATCCATCATGACGACGAC






CAATAGAGAGAGAGAGAGAGCGCGCGTTTACTTT






GTTTATTTTATATGAGTAGTAAGTATTTGATGTTTTT






ATTTTAATCAAGGAAATTACTGTAATTAAATTCAAT






TGACTTGAATTGGTGGAAGGAGGGAGGGTGGGG






GCGGCTGTTCGCTCATCAGTCATCACCATCCATCTC






TCATCGTGTCATGATGTATATATATATATTATATATA






TATAGAGAGAGAGAGGGAGATTAATAAAATACAA






ATGGACAAATGCAAATGGGAATTATTATTATTATTA






TTATTTATTTAGCTTTATATGGATATGGAAATGGAT






GGTGTGGGCATCTCATCAAATCAAATAGAATCCAA






CCATTACAAGTGCGCCTTTTTCCTTTTCTTTCTAAAG






TGGAGAGACGGATTGAGTGAGGGAGGGACTATTA






CCAATACCAATTATACCATGGTTAGTGGCGGTGGT






GGTACGACTATTACCAAAACTAATTATACCATCAAT






ATATAATCACTAATATATATATATATATATATGGTA






ACACTCCGATAAGAACACTTTTAAAATAAGAACGG






TGAAAACACCTTAAAAACATCATTTTGAT





42

Conyza

Genomic
8264
TTAAAGATATTTTCCTCCCACTTTTGGGATAATTTG




canadensis



GAAGGAAGGAAACTCCACTCCTTCTCTTCTTTCCCC






TTCCTTTACATATAAACTCGAGAACACAGGCTAAGG






TTCAAGTTTCAAGTCTTACATTTGATTACTAGCCAA






AACATTAATTAGTTATTGTTATGCAAAAAAAAAAAA






AAAAAATTATAAAAATTGAATTGATTGTTAATCAAT






ATCATTTTATGTTGAGTTATTTGTTTTAGTATTATAT






TAAAAGTAAAATAATGCTACATGAATTTTTCTTTTTT






TCTTTCTTAAGCATTCAATGCGATTTTAATTAAAATA






AAATAAAATAGACTATCATTTGTAGCTAATTATGTA






ACATATCAACTATGTTTTATACAATACTAGCATTATA






TTCGTGCGATGCGGCGGTGGTCGTGACGACGAAA






GTGTGGTGGTGGAGGCGAGTGTTGGTGGTGAATG






CGACGTCGAGTGCCGTAGATAATTCATATAAAAGT






AATTGATTTAAAAGGTTAATGGAGATATTTTAGAA






AAATAAAGGATTGATAGTGTAATTTAATTATTAATA






TTAAGAGAATAGTGTATGTGAAAATCTTTTAAAGG






TTTGTAGGCTTGTAGCCTTGTAGGTGAAAATATTAC






ATAGGAGGGCATTTTAGACATTTCCCCATGTAACTT






TCAACATGGAGGGTATTTTCTTTAATATAGAGTATA






AATAATGGAGATATTTAAAAAAAATAAAGGACTGA






TAGTGTAATTTAATTATTAATATTAAGAAAATAGTG






TATGTGAAAATATTTTAAAGGGTTGTAGGCTTGTA






GCCTTGTAGGTGAAAATATTACATAGGAGGACATT






TTAGACATTTCCCCCATGTAACTTTCAACATGGGGG






GTATTTTCTTTAATATAGAGTATAAATATAGATAAA






TAATATATATTTTGTAAATTTTTTAAACTAATAAATT






ATTTTAAAATAATAATTTTTATAAAATATATTTTATT






TGATAAATAATAACTCTAAATTACACAGATGGTACC






TATAATTTGTATTATATTACATGTTTCATACCTCACA






TGCAAGACACGTTGGCTACTTAATGATACAACTAAC






GACCGTCAGCGTGAGGTATCTTCTAAGTGTAAAAT






TATAAACATGATATAATTGACGTAATTTAAATCTAA






CAGGTATGAAATTAATAATTTCGACCAAACCAAAG






GTACTTAATTCACTCTTAATATACTGTATCTAATACT






ACTCGTGGTAGTATTATGTAGATTCCTAGCAATGG






ACGACAATATTCCAACAACATAAGAAGCCAAAACC






CACTTCCTTCCTTTTTTTTTTTGTTGTTGAATAATTTA






ATCAGTTTTTAGGAACGAACAACCTCCTCCATTTCC






AGATAAATTATTATTCAGCCAAGCAAAAAACACAA






CATCCCTTGTTTCCTCTTCTTCTTGTTTTCTTTTTCTTT






CTTTTTGCTAAAAAACTCACACACGCAGAAGAAGA






AGACGAAGACAAAGTCAGAGAGTTGAGTTTGGAC






TGATTGATTGATTTGTTATTAAGGTAAAAATACCAC






TTACTACTCCATCCATCCATCCATCCATAGTAGACT






GGTAGTTGTATTAGTAGTAGTTAGCTGCTGCTTTGG






TTATTAGGATTAGGATGAAGAAACTAGCAGATTGT






TAAGTATTCTTCATGTGACTTTGTTATCTTCCTTTGT






AAACAATCTCCCCCAAATATAATAGCATATCGACTA






AGTGGTAATATACTTATTTTTTTTTTAAGTTGATGGT






GAACTATTGTATATGGCAGGGCTGGTGTTTGTCTG






ATCATCTGCAGCGAGCTGATAGTATTATTATTATGT






CTCTTTTTGGAAATGTCTCTGCCATTAACCTAACTG






GAAACTGTCTGCTATCAATCACTAGTTCCAGAGATG






TTTTGTCATTTCGGCACGGTGATACTATGGGTTATC






GCTTGCAATCCCCCCCTTCTTTTATTACCAAAACTAA






CAAAAATGTCTCCCCTTTGAAGGTACAACCTCTGCC






ACATGTATTTCATTATCACTCACAAAATCAATTCTAA






TGTCTTTGTTTATCTGTGCTAAACAGGTAGTTTGTG






TCGACTATCCAAGACCAGACCTCGATAACACCTCTA






ATTTCTTGGAAGCTGCTTATTTGTCTTCTACCTTCCG






AGCTTCTCCACGCCCACCTAAGCCATTGAAGGTTGT






AATTGCTGGTGCAGGTAAAACCTTCATACGTCATTA






TATTGTCTTTTAAGTCGCTTTTGTTTGAGAATTTGAT






ACTGCCACATCTGATAGATAACCAAATGATACTTCT






AGTGTATCCCCAATGATGCTTTTTATGCCACATACT






AACATCTGCTTTAATTTGCTATCCCACTTACTTTTGC






AAACTTCGCATATGCAGGTCTCGCTGGTTTATCAAC






TGCAAAGTACTTGGCTGATGCCGGTCACAAGCCAA






TTTTGCTAGAAGCAAGAGATGTTCTTGGTGGAAAG






GTAAACGATTTATAAGAAATTACAATAGGATCGGA






AGTCCTAGGATCCCCCCTCCCTCTTACCTTCTTCTAT






ATAACAGAGCAAGCTTGGTAATAAAACAAGGATTT






TGGGTCTAATTATTCTCTTCTTTACTTGCTTTCTGTTT






TCGTCTCTTTCACTGATAACCAAAGGCAATATCAGT






TAGGGTTCTAGGATGGGTCGAAGCAAATTTTAGGG






ATACCAATGCCTAACCAAGTTCGATCAAGACTAGG






GATATAGAGGGTATTCAATCAGCTTCTGGTGGGAT






TATAGCTCGCGACTTTGAAGCTAGAGTTAGGGTTC






TTTAAAGCCTAACATAGTTCAAATACGGCTGGGGT






GTTGGGGGTTCCTTTCTGTACGAATTTAAAGCTGG






ACAAGGCAGCAAAAGAGTTCGACTTGTGTGGATTT






TTATCTAGGTTTGGCTGGGGTTTCAAACAACCGAA






GGTGTGTTTGGGGTTCTTGGGATAGTCGATCAACA






TTGGAGTGTCTTTTTCCTGTTTTACAAGTTAGAATA






CGTGAAATGCATCTTCGTTCATTATTTTGCTTTTGAC






CTTTATGTGATGGGTACAAGTTTAACAACCTACTGC






ATGCGGTTTCTCTTTGTGCTCACATTTCACTTTCTCT






CTTTTCTCTTTTGCATTGTTGGGGTGGGATGGCTGT






TTTTGCTAGTAACATTTATACAAACCTGGACCTAAT






GTTAGGTCAATCCGGGCTGGGTTCACAACTGGATG






GAGGAATAAGGGTCGGAGGGAAATATTGAATGGC






TCCTCAAACCCAAAGTAACCCAGATCCAAACACTTC






CAATCTAAACAACCCAGACCCCGTGGCTGCTCAATC






AACAGCCATAGCATCATCTATGAAATCACTGCAGC






AAAGAGGTAGCAATGATCAAGACACAGTAAGCCA






AACAAAAACAGAAATCAAGCGGCAATTTAAATCAA






TTTGAAGATGAAGGTTCATCTGGTGGTAACCACCG






TCACTACAGACCTTATAATAATATCGATTTCCCAACT






TTTAGTATTGGAGAACTGTTTACAAGGCTATGAGT






ATTGCTATCGAGTTTGAATCCAAGGTTCACATGAAA






TTTAGGAAAAGTTTTTCGTCTTCAGCCAAAACAGAA






TCAGTACCTTCGAAACCAATAGAAACTTCCAACCTG






TTGCCCTCGATTGCTGCTGCCCAGAAACCAACTGAA






GCCCGTCTTTTTGATGTTAAAAAATAGGGCAGATTC






ATACGAGAAGTTGTGTCTAAGTTTCTGATCTACTCA






AAATTTCTATCAATTTGCCTTGGGGGAAAGCCGAT






GTGGTACTCGGTATTCAATAATTAGGAACACTTACA






AAGTTTAGGCAAAATGGAAGGAGATAGTCATGAA






GTTCACTATGGATGTTAAGGAGTACAAGCTACATG






GACTTCCACCAGATCGTCAACCATCAGCAACATTTA






GCGACCTCACTACTGAACCATTCGAGTTACAGGCA






AGTGGACTAGCAGCTCATTTTTTCACAACTGGCTAG






TGGACAAGTCAGATTTTGGGGCCGGATGTATTGAT






ACAAACCTGGACCCAATGTTGGGTCAAACCAGGTC






GGGTCAGCAGCTGGATGGAGGGAAAAGGGGTGG






AGGGAAATCAAGTAGTGAAGGAATTCAAGTTAGG






AAGTGGACCATGCGCCCACTACATATAATTGCTCCA






CTAATTTTAGTATTATATATGTGTGTTTTTCTGTTTT






TTAAGCTGGTCAAGATACTAAGTTTGTGATTGTTCT






TGTATTCGGAGATTTGCCATCTGAATTTTGCTAATA






TTGTGTTAGACTCAGTAATCTAAATTAGTAGATTTC






CAGTTTCTATCAAATGTTCGTTTGGTGAAAATGAAT






AATTGAAGTTCATATGACGACCTTATTTGAGCAGG






ATCTGTTCTATAGGCTCGTACCTCTGTATCCTTGATT






CCTATCAAGACAGAAAAGTAGTTTCATATGAAATTT






CTATTTTTAAACTTTTGTATATCATAAGTAGTCAAGC






TTAGCTTAATTTCAAATCTAGGTTGTCTTAGTATGTT






GTTACTTATCGTGAGTGTTTTTATCCACATTGCTCTT






CTCACATAGGTAGCTGCCTGGAAAGATGATGATGG






AGATTGGTACGAGACTGGTTTACACATATTTTGTAA






GTTTTAACTTCTTATATCCTTTCAAGTGTCGAAAAA






GAGAGCTGATGTGTGCATAAAAAGTTATTCCCATA






ATATAATTCTCAACAGGGTTGTTGTCGTCTTTTTGT






GCACTATCTATCTGCTCTAAGTTATTGTTTCTCCACG






TACCTTTCCTTTTGGACATTTGTCACTAGACACCTAA






TGTGCAATAAACTTCTTCATTTGCTTGAAGTTGGAG






CTTACCCGAATATACAGAATCTGTTTGGAGAGTTA






GGCATTAGTGATAGATTGCAGTGGAAGGAGCATTC






AATGATATTTGCGATGCCAAACAAACCTGGAGAAT






TTAGTCGGTTTGATTTCCCAGATGTTCTGCCGGCAC






CATTGAATGGTAAGTATGCTATTATTAGCCTATTTT






TTTTGGTGTATATATTTTATTTAAATGATTTGGTGGT






GAGCATTTTCTGCATCACCAACATGACAAAAAAGA






TCTAAAACAAGATCAGTCAGGGAATGCTAGATTAC






TAACAAATGTGACTCTGCATACCATCTCAGGAATTT






GGGCTATCTTGAGGAACAATGAAATGCTGACATGG






CCTGAGAAAGTAAAATTTGCTATCGGGCTCTTGCCT






GCAATGTTAGGTGGACAGGCTTATGTTGAGGCACA






AGATGGTCTGAGTGTTCAAGACTGGATGAGACAAC






GGGTATGTAGTCGTTTATGTAAATATTTCTTTTACC






ATTTTTTAGTTTAATACATAAGAAACAATGGCCATG






ATACCTGGTATATTTGATAATGGTAACGTTTCTAAG






TGGAAGATCCAGAGGTCAAACCTTAGCAGGGGCTT






TTTTTAGGAAGATTGTTGGCTAATTAAACCCCCTGC






TTAATAATTCGAGTTCTTGTTTCTTTTGTTATGAATT






TTATTTAATAATTAATGCACATTTTTCATTTTTCCAG






GGCATACCAGATCGAGTTACTACAGAGGTGTTTAT






TGCCATGTCAAAGGCATTAAACTTCATCAATCCAGA






TGAACTTTCAATGCAATGTATTCTGATTGCTCTGAA






CCGATTTCTTCAGGTGAAGGCATCATTCTCTTAGAG






CTTACTGGTTAAATAATGATGAAAAATTAATCTCAT






GACTTTTAATTCCATCTTCCGTCTGTCATATATGATA






AGTTGGTCACGGACTCAAGTCACTAATATATTATAT






GGATTGATTTTACGCTTGTGATTGGTCAAGTAGAC






AAAGCATGCAAAGTTATATGGGTTTAGTGTAATTA






GTGTCTGTTGCATTGCTCACTGTATGTCTGTATTGG






TTGCTATAAGCCAGCGTGCTACCTTGAAAGCAACTC






TATTTCCTTTTCCATGATCAAGTATTATTACATATAT






ATTGTGCTTCTAGAATCCAGATACAGAGATTTGGG






TTATTTTTGTGGTTTTGAAATAGGAGGGCGGCCTCT






ATAGTTAATCTCGAAGTGCTTATTGTACACCATGGA






TTTTTGAAACAAAGAGTTGATCGCTCTTATCTGTAG






CTTCTTAACACTTCAATATTGGCTTGGTTGCAATACT






ACATGGCATAGACATTGGACACCATAGATAATACA






ACTTGTAAATTGTTTGTAATAAATCAACAGGAGAA






GCATGGTTCTAAGATGGCATTTTTAGATGGCAGCC






CACCTGAAAGACTTTGCATGCCAATTGTTGAGCATA






TTGAGTCACTAGGTGGCCAAGTCAGGCTTAATTCG






CGAATACAAAAGATCGAGTTGAACAAAGATGGAA






CAGTTAGGAACTTTTTACTTTATGATGGAAATATTA






TTGAAGGTGATGCTTATGTATTTGCTACTCCAGGTA






CATTTAGAGAACGACTATTTGAATCTGTAGCTTTCA






CATGTCTGTTGGGGTTGTAGCTTTATTGATTATTTT






GTGTCAAACAGTTGATATTCTGAAGCTTCTGTTGCC






TGAAGATTGGAAAGCAATTCCTTACTTCAAGAAGT






TGGATAAATTAGTTGGTGTCCCAGTTATAAACGTTC






ATATATGGTTAGTTGGATCCTTCAATATAATTCTAA






ACATGGCACAGTAATCATTCACCTTAATTTAATAGA






GTCTGGCTTCTGTCTTGACCATTAATCTGACTTAGT






AAAACCCCTATATGTATTCTTTGTAATTGTTAAACA






CCACTTTCAGGTTTGACAGGAAACTCAAAAACACCT






ATGATCACCTACTCTTCAGCAGGTCACCTCTCAACT






CTTATTCTTGCAACACTATTACTTAATTTTTAGTAGA






CAAGGCTGTTGAGCTTTTTATTTGTATGTTATTCAT






GCCACTGCTACCTAAACGGATCTTTTACTTCCATTTC






AAATGTCTGGGGCGTGTCGTCCATAAAGGTTCTCT






ACAGTTCATAGAGTAACTTAGAGTAAGCTTACACCC






CACCTATTAACTAAACAAAGCAACACAAGTTAGGC






TATATGGTACATGCTAAAGTGATGGTCAAGATTGC






ACCATTTGCTACCGCCTTGAGATACCAGTGTCCCAG






CTTCTGCTTACACTTCATAGTTTATACTCAAATTTAA






TATTGGTACAAAAAAGAGTACTGAACCTATCAGTTT






AGTCTTTTGTATTAATTATTTAGTTTGCATGCAGGA






GCCCTCTTCTCAGTGTATATGCCGACATGTCTGTAA






CATGCAAGGTAAAGACAAGACAAACATATATGAAA






CAAACCATTTTCTTCCAGACAAACCTGCTTTGCTGTT






TTCATATGGTTCCTTGTCATGCAAACAATGAGGAG






ATGGATGTCTATTGGCCTCTCCTCTCATTCCTATTTT






CCCGGAAAATGGGTTAAATCTGTCTTTGTAATTTTA






TCTTTGTCGCATGCATGGGACATAACTTCTCACAAT






GCACATAACTCAAATATTTACCAAAACCTCCCGCAT






TTTTAAAACCAGGCTATATATAAGTTGTAAATTACA






TGATGTGAACCCATACCTCCCATCAAGGTTGTTCTG






ATAATAGTGCTCCCATTTTATACAGGAATACTATGA






TCCTAACCGGTCCATGTTAGAGTTGGTTTTTGCACC






TGCAGAAGAATGGATTTCACGCAGTGACTCTGATA






TTATTGACGCTACGATGAGTGAACTTTCAAGACTAT






TTCCGGATGAAATTGCAGCAGATCAGAGCAAAGCA






AAAATATTGAAATACCATGTAGTTAAAACCCCAAG






GTTAGAAATATCTTACCAGTAAGGGGTTTTCAACG






ATTCGGTTTACGAGCTCTTCGCTTTGGTTTCCTTGAT






TTGACAATCCTTGAAGCTCAAACCAAAAACCAAATC






AAACCGAATTAATCAGAAACAAGCCAAACCAAATA






AGATGGTTTGGTTTTGGTTCGAATGCGATTGAAAC






CAAACCATTTTCAAATAATGCAGATTTTATGCTGGC






AAATGTTATCTAAACTTTTTGGCAAATGAAAATTTG






CTGAGATTCATTTACCACCAAAAACTTACTATATGA






AAAGAAATATATAATGTATTATAAACTTACATTATA






AGTTATTTTAAATTAATTTGATAGGAAATATATATA






TATATATATACACACACATGTATATAT





43

Conyza

Genomic
667
TTATTATTATTATTATATTATTACTACTTGCTACTATT




canadensis



CTATTTTAATTACATTATTATTATTAATTATGTATGA






TATAATGAGAGAGTTGAAGAACAACTAGATATTAA






TCAAATCCATCCATCCATCCATCATGACGACGACCA






ATAGAGAGAGAGAGAGAGCGCGCGTTTACTTTGTT






TATTTTATATGAGTAGTAAGTATTTGATGTTTTTATT






TTAATCAAGGAAATTACTGTAATTAAATTCAATTGA






CTTGAATTGGTGGAAGGAGGGAGGGTGGGGGCG






GCTGTTCGCTCATCAGTCATCACCATCCATCTCTCAT






CGTGTCATGATGTATATATATATATTATATATATAT






AGAGAGAGAGAGGGAGATTAATAAAATACAAATG






GACAAATGCAAATGGGAATTATTATTATTATTATTA






TTTATTTAGCTTTATATGGATATGGAAATGGATGGT






GTGGGCATCTCATCAAATCAAATAGAATCCAACCAT






TACAAGTGCGCCTTTTTCCTTTTCTTTCTAAAGTGGA






GAGACGGATTGAGTGAGGGAGGGACTATTACCAA






TACCAATTATACCATGGTTAGTGGCGGTGGTGGTA






CGACTATTACCAAAACTAATTATACCATCAATATCA






TCACTAATATATATATATATATA





44

Conyza

Genomic
97
TGTGGTGGTGGAGGCGAGTGTTGGTGGTGGATGC




canadensis



GACGTCGAGTGCCGTAGATAATTCATATAAAAGTN






NNTGATTTAAAAGGTTAATGGAGATATT





45

Conyza

Genomic
33
TTTATTTGAGAGAAGAAGAGAAAAGAAGGGAAA




canadensis






46

Euphorbia

cDNA
484
GGCAGAAGTCCCCTTCTTAGTGTTTATGCTGACATG




heterophylla



TCTCTTACATGCAAGGAATATTATAATCCAAATCAA






TCAATGCTGGAGTTGGTATTTGCACCTGCAGAAGA






ATGGATCTCACGCACGGACACCGAGATCATAGATG






CCACTATGAAAGAACTCGCAAAACTCTTTCCCGATG






AAATAGCTGCAGACCAAAGCAAAGCCAAAATTCTC






AAGTATCATGTTGTAAAGACTCCCCGGTCGGTTTAC






AAGACTATCCCAAACTGTGAACCATGCCGCCCTTTG






CAAAGATCACCCGTGGAGGGGTTCTATTTAGCCGG






TGACTACACAAAGCAGAAGTATTTGGCTTCAATGG






AGGGTGCTGTCCTATCTGGCAAGTTTTGCGCTCAA






GCCATTGTACAGGATTATGAGTTGCTTGCTGCTCG






GGAGCAGACAAAATTGGCTGAGGCAACCGTTAGTT






AACAATGTAAATACTGTTTAAGGT





47

Euphorbia

cDNA
347
TATTGGACTTTTGCCAGCAATGCTTGGTGGACAGG




heterophylla



CATATGTTGAGGCTCAAGATGGTTTGAGTGTTCAA






GAGTGGATGAGAAAGCAGGGTGTTCCTGATCGAG






TCACTAAAGAGGTGTTCATTGCCATGTCAAAGGCA






CTAAACTTTATTAACCCTGATGAGCTTTCAATGCAA






TGTATATTGATAGCATTGAACAGATTTCTTCAGGAA






AAGCATGGTTCTAAGATGGCTTTCTTGGATGGAAA






TCCCCCAGAGAGGCTTTGCAAGCCAATTGTTGATC






ACATTCAGTCCTTGGGTGGTGAAGTACGGCTAAAT






TCACGAATAAAAAATTGATTTAAATAATGAT





48

Euphorbia

Genomic
5622
AATGTTTATGGAAGGGAAAAAATGTGAAATATTCT




heterophylla



GACAGACAACTAAAATTCAATACCAATCATAAAAA






ATTTAATGAATGATTGAGATTGACCGAAATTTACAA






ATGTATCAAAGTTCAAATTTAGAGAATCCTTTTACA






AACTCTTATACAAGTCACAAATTGTTAGGATGAAAA






ATTATGACTTCAAACATCAATCGATACATTTAAAAA






ATTATCACTCACATCATCAATCTATACATGTATGAA






ATGGAAAAATATCACTCCTTATGTTAACCGATACAA






CTTCACAGTGGTTGTTATATGAAAAGATACCTTTGA






AGCTCAATTTAAGAGTAACCGGTAATCCTTGCTGG






CAGAATATTCTCAACGGAGACCATACAAAATCCAA






CGCTCAATAATCCAAAAATCCATTTCCACTTTTCCG






ACCTACTCCTCTTCCTCTTTGTTATCTTCTTCTTCGTC






TTGCAATTTCCAATTTCTTTGTTTCCAATTTCTGAGT






TCACTGATTTCTGCCCTCTTCTTCTTCTTCTTCTTCTT






CTTCTTCAATTGATTTTGAGCTTCAATTGATATATTA






CTATGACACTTTATGGGGGCGTTTCTCCATTGAACT






TGACCTTTCATTCTGATATCTCAGAAGCTAGAAATT






TGCTATCCTCTTTCAGATGTCAAAATCATCTGCTCTC






TTTTAAAAGCAGCGAATCTTTGGGTTCTCCTCTGAG






AACTTCTATTGGAAATGCTACCAAAACACGATCAA






GGACTGCTGGTTCGTCTTTGAAGGTTCGATTTATTC






TTTTTCGTATCTTTCGCCCTCGTTTTTCCTTTGTTCTT






GTTACAGTATGTTTGCCTACTTGATTGATGATACAG






GTGGTTTGTGTGGACTACCCTAGACCTGATATTGAC






AATACTGCAAATTTTCTCGAAGCTGCTTACTTGTCTT






CAACCTTTCGTGCTTCTCCTCGTCCGGATAAACCTTT






GAAGGTTGTAATTGCCGGTGCAGGTGATCAATTTC






TTATCCTAATTGGTTTTCTTGCTTATTTCAGTTCAGT






GCTTTTTGAAGTATGCTTGCTTCAATTTTGATTTATG






GGTAGGCAGGGACTACAATTGATTGATTTTTATTTT






AGTTTTAGCGTTTAAACATTTTATTTCTGGAAGCTG






TTGTCCAAGTCAATAACTTAGCATCTTGAATAAAAT






CTGCAAACTTTTGTGGTTATTTATATACCTCTTCTGA






TTTGGTTACAATGGATTAACAACTTTTACATCATGC






TGCAGGGTTGGCTGGTTTATCAACGGCAAAATATT






TAGCAGATGCAGGGCACAAGCCTTTATTACTTGAA






GCAAGAGATGTTCTTGGAGGAAAGGTTATGCTTTA






CCTAGACTTCAAGAAAATTATGCATTGAGTTACCAA






TTATTAAACAATATGAATAACAATTGGTGCAAGCA






AATGAATTGGATTATAGACTCTGTTTGTTTGATTAT






TGATCTTATATAGTATATTTATTTCTTATTTCTTAAG






ACTAATTCATGGGAGTCTAAGAGTTCCATTTGCTAA






TGAATATCTGGCATGTGCTTTTCGAAATCAATGTCG






CAATTATTATTATGATTTAGCTATCTAGTAGGTGCC






TTTGGTGCACGTTATGCACACCATGGACATTATTTA






GTTGATAAGCTTCTGATTCTCTTGTTTCAAAGTCATT






ACCATGAATTAACTTTCTCTTATGCTTGGTTCGTATT






TTATTTTCTATTCATATACTAGTTTTAATAATTGACA






TTGCTGCTTAAATGCTGTTCTGGGTGGGCATCACTG






ACATTTAATATGACAAGTTGAAGTTCTTCATTGCCG






CATATATGGTTGAGTTCCTTCACAGTTCATGCAAAT






GGTCAAGACAATTGACTTTCTCTTAGAAGAAAGTTT






TCCTATTTTTTAACTTGAAAGGTTATAATCTATGTCC






TGTTTATATGTGCTATAGTCTCATAGTTGTTTTCATT






AAATAGGTGGCTGCATGGAAAGATAAAGATGGGG






ACTGGTATGAGACAGGCTTGCATATATTCTGTAAG






TTTCAGAACCCTTTTGGAGTCATTGTAATGCCACTT






CCATACTCGATGTGTTGTTGTTACTTTCCACCTTTTT






TGTCAAATCAATTTCATAGTTTCCTTTGACATGAAG






ATGCAGGAAATATTTTGTATATTAATTTTTTTTTAAA






ATATTTTGCTGGTTGTTGTGAATAGACATTGTTAAT






TTTATGCTGGACAGAGTTTTCTTTTTCCTTATTTGTT






TCAGATGCTTAAACTTTTGTGGTATATTGCTGTTCTT






ATTGAACCTGTCTTCTTTGGTTTACAAGTTGGAGCA






TATCCAAATGTGCAGAACCTGTTTGGAGAGCTAAA






CATCAATGATAGGCTGCAGTGGAAGGAGCATTCTA






TGATATTTGCAATGCCAAGCAAGCCAGGGGAGTTC






AGTCGATTTGACTTTCCTGATGTTCTTCCAGCACCTT






TAAACGGTATACAAGTTAAACACTTCCTGAAAATTG






ATTTCTCATGTGCAACTTTTTAGGAGCTAGCGAGAC






CTATAAAAATTGTTGGTAAGCATAGGAATTGTATAT






TTGGCTTAAATTTTATGAATGGAAACAATTGTATTT






TAGTTGAAAACCAGATTGAATCATTGAACTCTTATC






ATGTAACTCTTATATTTCATTGATTTTTTTTGTATTTT






TCATATTTCTGCTCACATTGTTGATTTTTTGACTAAG






CACCCCTTTGTTTTCTCAGCAGTCACCTCCTGATTGT






TGTCCTCTACGTGAGACAGCTCTTGTTGTAGACATA






TCCATATATTTGTATATCAGCCAAACATATACCTTAA






ATGTATGATTTTTAATTGATTCTGTCTAGGCTTCAA






GGGATAGCTAAAAAAGGACACATTTCTCTGTTTTCT






TGTGGGTTTTGTTATTGTGATCTAGGATATAACTAG






AGGAGTAGAGGTTGTCATATTATAATACAACCTTC






ACAAATTCATGATTTGTGGCAATGGAGAAGTTTAG






AATGGTGAGTTAAACCGTATTTTGGCCTTCAGAAG






TACCCAAGATTTACAATATGCGTATTAATTAATGAT






AAATGGAAATCAATTTCCCAATGTATATATCTTAAA






TAATTGCTCTATATGCTTCTATTTTTTTTGTGATCTTA






CAATTTCCTGTCATGCCTAAATTTTTTTATGGTTATT






CAACTTATTTATCTATAGAACTATCATTTTTTTTTTCA






ATTTTTGCTTATTTTATTGCATACTTTGGTATTACCT






GCAAAATATTGCTTAAAATTAATGTATATTTTCTAT






GGTTGTGCTTGACAGGGATATGGGCCATTTTAAAA






AACAATGAGATGCTGACATGGCCGGAGAAAGTGA






AATTTGCTATTGGACTTTTGCCAGCAATGCTTGGTG






GACAGGCATATGTTGAGGCTCAAGATGGTTTGAGT






GTTCAAGAGTGGATGAGAAAGCAGGTACTTTTGAT






AGATCCAAATCAATAAGAATAACACATGGCTTCTTA






TGGGCACAACTCTCCAGCCAAGGATCATGGAGTCG






CATTGATCATCGTGCAATTTAAACAGAAGAAACCA






GAATACTGAACTAAAATACTCAACATTGCTCGATTA






AAAATTGATTTATTTTCTGAAACTAGTAAAATCTAT






ATATGTATCAAGTATAACAAATAAACTCTGTTCTTG






ATATATATATTTTTTTTGTAATTTTCCGTGTTTGATT






GTCAGGGTGTTCCTGATCGAGTCACTAAAGAGGTG






TTCATTGCCATGTCAAAGGCACTAAACTTTATAAAC






CCTGATGAGCTTTCAATGCAATGTATATTGATAGCA






TTGAACAGATTTCTTCAGGTATGATACTTCTTCTTTC






TCTTTCTATTCCTCGATGAGCTTTCCATTAATATTTTT






TGAATGAATGTTTGTTGAACAACATTCATGTGTTTA






GTTGGCTGAAAAGAAGTTTTGCTTTTTCTTTTCCTTT






AAATAAATGAAATTCAAATTTTCTTTTACATTTTTCT






CAGTTACTCTTGAAGATGTTATTGTTGAAAGATTGA






GCATAAGCCTTATATAAACTCATTACAAATTTTTTTA






TACTTTTGTCATTTTTTCTCTATTTTCTAGAAGTTTCT






CAATTTTTTCTTTGCCACTTCACATTAGATCTGTGGA






AGTTTCTTATATAATGAAACTAACTGAATAAGGATC






GATGGTAATATCAACAGGAAAAGCATGGTTCTAAG






ATGGCTTTCTTGGATGGAAATCCCCCAGAGAGGCT






TTGCAAGCCAATTGTTGATCACATTCAGTCCTTGGG






TGGTGAAGTACGGCTAAATTCACGAATAAAAAAAT






TTGATTTAAATAATGATGGAACAATTAAGAGCTTTT






TACTGAGTAATGGGGATGTGATAGAAGGGGATGC






TTATGTTTTTGCCGGTCCAGGTAAACTTGAATTTTG






GATAACAAATAACTTCTATTATTTTCGTGACCCATA






TTTTCTGATACTAGTGTATTTTTCTTTTTCCTTTAGTT






GATATATTGAAGCTTCTTTTGCCTGATAACTGGAAA






GAGATTCCTTACTTCAAGAAATTGGATAAATTAGTT






GGAGTCCCTGTCATTAATGTTCATATATGGTCAGTG






ATGAATTCTTTTATCGAGTGACTGTTTATCTGAGAG






TTCATTTACTAGCACATGGTTCACTAACAGAAATAT






ATTTCTTTTCCAGGTTTGACCGGAAACTAAAGAATA






CATACGATCATCTGCTTTTCAGCAGGTCCTACTCTT






ATGCTTTTCTCTAGCTGTTCTTCGCCCATAGAGATTT






CTACAATCATTTTCATAACTTCCTGAAAAGCTGTTA






ATTTTCATCTTTTATGAAGGAATTCAGTTCATTACAA






ATCATTTTACGTATAAATATTTTGAATCTTGTATGTA






AAATGATTTCAAATGAATTGAATTCCTTCTAAAAGG






AATGTTTTCCAATGGAGGGTTGAGTTGTTGCTATAA






TAAGTTGACCTTCTGAATCTGATTTGTACCAATGAA






GTTTGAAGAAATGCCTTTTCCCGTGCTATTGTACAT






ACTGATTGTATATCTTCTTTTGACTTGCAGAAGTCC






CCTTCTTAGTGTTTATGCTGACATGTCTCTTACATGC






AAGGTAAAACTGGAACTAGTTATTTATTTTACCAAA






ACGACTTGGCTGCTGCTATGCTAATTACTTTTGTTCT






ATGAAATGAAAAGTAATAGTGGTCTGCTTTTTGTCT






CCATACACATAATTTGGGCAAATAATATGATCTTTG






TAGTCTTTGACATGTTAATTACAAACATTGAAGCAT






CTCAAGTATCATCTTGTAAAAACTCCCCGGTTAGCG






ACCTATTGTCTACGAACTTCTTGGCTCTGACCAAAC






GCCTTTTGTCTATGAACTATTGATTTGGGGAATTTG






GTTCTTGACCTATTGTACTCACTCTAGCACGTATAA






CCCACAAATTAGATTTGCAACTTTGCTCAATTTATAT






CAATACATGTAAAATAGTCAACATTATACTGCACAT






CTATTATCAATTGCTTTAGGTATGACCCTAATGTCTC






TGGTCAATAGGTCAGGGAC





49

Euphorbia

Genomic
3393
TCTTGCTTATTTCAGTTCAGCACTTTTTGAAGTATGC




heterophylla



TTGCTTCAATTTTGATTTATGGGTAGGTAGGGACTA






CAATTATTTGATTTTTATTTTAGTTTTAGCGTTTAAA






CATTTTTTCTCGGAAGCTGTTGTCCAAGTCAATAAC






TTAGCATATTGTTTTGGAATAAAATCTGCAGACTTT






TGTGGTTATTTATGTACCTTTTTTTAATTTGGTTACG






ATGGATTAACGCCTTTTACATCATGCTGCAGGGTTG






GCTGGTTTATCAACGGCAAAATATTTAGCAGATGC






AGGGCACAAGCCTTTATTACTTGAAGCAAGAGATG






TTCTTGGAGGAAAGGTTATGCTTTACCTAGACTTCA






AGAAAATTATGCATTGAGTTACCAATTATTACACAA






TATGAATAACAATTGGTGCAAACAAATGAATTGGA






TTATAGACTCTATTTGTATGATTATTTTTCATTTAGC






TAAGACTAATGCATGAGAGTATAAGAGTTTCATTT






GTTAATGAATATCTGGCATGTGTCATTTGAAATCAA






TGTCATCATCATTATTATGATTTGGCTATCTAGTAG






GTGCCTTTGGTGCACATTCTTCCGCCATTGAAATTA






TTTAGTTGACCGGCTTCTAATTCTCTTGTTTCGAATT






CATTACCAAATTTTATTTCTTCTCTATCCATCCATAA






TATAGTTTTCCTATATATTAGTTACATTCCTCCGTTT






CTATTCTATTATTAGCAAGCCCTGTTGTCTTGTATAT






GTCTATTCATATACTAGTTTTATTTATTGGCATTGCT






GCTAAAGTGCTGTTCTGTACGGGCATCACTGACATT






TAATATGACTAGTTGAAGTTCTTCAATGCCGCATCA






ATGGTTGAATTCCTTCACAGTTCAAGCAAATGGTCA






AACCAATTGACTTTCTCTAAGAAAAAAGTTTTTCTTT






TTTTTAACTTGAAAGGTTATAATCTCTTTCCTGTTAT






TATGTGCTCCAGGCTCATAGTTGTTTTCTTTAAATA






GGTGGCTGCATGGAAAGATAAAGATGGGGACTGG






TATGAGACAGGCTTGCATATATTCTGTAAGTTTCAG






AACCCTTTAGGAATGAGTCATTGTAATGCCACTTCC






ATTCTCGTTGTGTATTTGTATGTTAATTTTACTTGTC






ACCATTTTTGTGAAATCACTTTCATAATTTCCCACAG






TGAATTAATTTTTTTTTAAATATTCTTTTGGTTGTTG






TGAACAGGCATTGCTAATTTGATGCTGGATGTAGT






TTTTCCTTTTCCTTATTAGTTTCAGATGCTTAAACTTT






TGTGGTTTATTGCTTTACTTATTGAACCTGTCTTCTT






TGGTTTACAAGTTGGAGCATATCCAAATGTGCAGA






ACCTGTTTGGAGAACTAAACATCAATGATAGGCTG






CAGTGGAAGGAGCATTCTATGATATTTGCAATGCC






AAGCAAGCCAGGGGAGTTCAGTCGATTTGACTTTC






CTGATGTTCTTCCAGCACCTTTAAATGGTATACAAT






TTAAACACTTCCTGAAAATTGATTTTTCATGTGCAA






CTTTTAGGAGCTAGCGAGACCTATAAAAATTGTCT






GTAAGCATAGATATTGTATATTGGCTTAATTTTATG






AATGAAAACAATTGTCTTTTAGTTGAAAACCGGTTT






AAATTCTTATCATGTAATCTCTTATATTTCGTTGATT






TTTTTTGTAATTTTCATATTTCTGCTCACATTGTTGAT






GTTTTGCTAAGCACCCCTTTGTTTTCTCGGCACTCAC






CTCTTTCTGATTGTTGTCTTCTACTTGAGACAACTCT






TGTTGCAGACATATCCATATATTTGTATATCAGCCA






AACATATACGTTAATTGTATGATTTGTAATTGATTC






TGTTTAGGCTTCAAGGGATAGCTAATAAAGGGCAC






ATTTCTCTGTTCTCTTGTGGATTTTATTATTGTGATA






TAGGATATAACTAGAGGAGTAGAGGTTGTCATATA






ACAATACCACCTTCGCAAATACATGCTTTGTAGCAA






TGGAGAAGTTTAGAATGCTGAGTTAAACCGTATTT






TGGCCTTCAGAAGTACCCAAGATTTACAATATGCGT






ATTAACTAATGATAAATGGAAAGCAATTTCCCAATG






TATATATCTTAAATAATTGCTCTATATCTTCTATTTTT






TTTTTTTTGTAATCTTACAATTTTCTGTCATTTCTAAA






ATTTTTTATGGTCATTTAACTTATTTATCTATATAAC






TATTGTTTTTTTCAAATTTTCTTAGTTTATTGCATACT






TCGGTATTGCCTACAAAATATTGTTTAAAAGTAATG






TATATTTTCTATGGTTGTGCTTGACAGGGATATGGG






CCATTTTAAAAAACAATGAGATGCTGACTTGGCCG






GAGAAAGTGAAATTTGCTATTGGACTTTTGCCAGC






AATGCTCGGTGGACAGGCATATGTTGAGGCTCAAG






ATGGTTTGAGTGTTCAAGAGTGGATGAGAAAGCA






GGTACTTTTGATAGATCAAATCAATAAGAATAACAC






ATGGCTTCTTATAGGCATAACTCTCCAGCCAAGGGT






CCTGGAGTCGCATTGATCATCGTGCAATTTAAACA






GAAGAAACCAATACTGAACTAAAATACTCAACATT






GCTCGATTAAAAATTGATTTATTTTCTGAAACTAGT






AAAATCTATAAATGTATCAAGTATAACAAATAAACT






CTGTTTTTGGTATATTTTTTTTGTAATTTTCCCTGTTC






GATTGTCAGGGTGTTCCTGATCGAGTCACTAAAGA






GGTATTCATTGCCATGTCAAAGGCACTAAACTTTAT






AAACCCTGATGAGCTTTCAATGCAATGTATATTGAT






AGCATTGAATAGATTTCTTCAGGTATGATTCTTTTTC






TTTCTCTTTCTATTCCTCGATGAGCTTTCCATTAATA






TTTTTTGAATGAAGGTTTGTTTAACAACTTTCATGT






GTTTAGCTGGCTGAAAAGAAGTTTTGCTTTTCCTTT






TCCTTTAAATAAACGAAATTGAAATTTTCTTTTACAT






TTTCTTGGTTACTCTTGAAGATGTTATTGTTGAATG






ATTGCACATAAGCCTTGAATATACTCATTACAAATT






TTTTATACTTTTGTCATTTTTTCTCTTTTTTCTAAAAG






TTTCTCAATATTATCTTTACCACTTCACATAAGATCT






GTGGAAGTTTCTTATATAATGAAACTAACTGAATAA






CGATCAATGGCAATATCAACAGGAAAAGCATGGTT






CTAAGATGGCTTTCTTAGATGGAAATCCCCCAGAG






AGGCTTTGCATGCCAATTGTTGAACACATTCAGTCC






TTAGGTGGTGAAGTACGACTAAATTCACGAATAAA






AAAATTTGAGTTAAATAATGATGGAACAATTAA





50

Euphorbia

Genomic
2627
GTAAAACTGGAACTAGTTATTTATTTTACCAAAACG




heterophylla



ACTTGGCTGCTGCTATGCTAATTACTTTTGTTCTATG






AAATGAAAAGTAATAGTGGTCTGCTTTTTGTCTCCA






TACACATAATTTGGGCAAATAATATGATCTTTGTAG






TCTTTGACATGTTAATTACAAACATTGAAGCATCTC






AAGTATCATCTTGTAAAAACTCCCCGGTTAGCGACC






TATTGTCTACGAACTTCTTGGCTCTGACCAAACGCC






TTTTGTCTATGAACTATTGATTTGGGGAATTTGGTT






CTTGACCTATTGTACTCACTCTAGCACGTATAACCC






ACAAATTAGATTTGCAACTTTGCTCAATTTATATCA






ATACATGTAAAATAGTCAACATTATACTGCACATCT






ATTATCAATTGCTTTAGGTATGACCCTAATGTCTCT






GGTCAATAGGTCAGGGACCCAAGGGGAACATCTC






GATCAATCAGCGTCCTTAAGTCTAGTTTTTCACTTG






AATTTGTGGTCCCTTGAGCTTGCTTAATTTCTAGGT






TTGAGATGATGTACAAAAACGTCCTCACGGTTGAA






TGGCATTTGGGCTCACTACAGTCCTCAAGTGAATTA






AACTTTTTACACTGTTTATTTAACAAAAAGTACTAA






ATCACAATTTCTTGTGGCACAGGAATATTATAATCC






AAATCAATCAATGCTGGAGTTGGTATTTGCACCTGC






AGAAGAATGGATCTCACGCACGGACACCGAGATCA






TAGATGCCACTATGAAAGAACTCGCAAAACTCTTTC






CCGATGAAATAGCTGCAGACCAAAGCAAAGCCAAA






ATTCTCAAGTATCATGTTGTAAAGACTCCCCGGTTA






GTCTCCTTTGAAAAATTGCATCGTTGATTAGTATCT






CACATGGTTTTGAAAACCAGACCGGACTGGCCAGT






TGGACCAGGTTTGACCAGAACCAGCCACTGGTTCG






GTCGGTGTTTAGTCTAAATCCGGTCAAAAACCAGTT






GTCTGATTATAACTTAAATCCGGTTCGACCACCAAC






TTAATTTAATTGAACCTTAAACCTATGACCGGTCTG






AAAGGTTCAAACTAATTGTAGTTGCGTAATGTTTGT






TTTACCCATATTTGTCAAAAGTGTGCCTCACGAAGG






GCGCGACCCTTGGCGCCTCGCCATACTACAGGCGA






GGTGGTGTTCCTATGGCGTACCCCTAAGGCCTAGG






GGTGAGCATTCCAATAATACCGAACCGAATTACCA






AATTTTCATAAAATTTTTTACTGAACCGAATTTCATG






TGATACCGAAATTTCCAAATGAAATTATTTCGGTTA






TCCGAAAAATTAAATTAATTAAAAAATGCAATTGAC






TTTTCAATAAAAAGGTTTTCAAACTCAACCAGAAAA






TCTTAATTCATCGTATTGTGAACAAAACATAACATT






AGTTATCTAATAGTAATTCAACCATACATATAAAAC






AGATAAAAATATTATATGGATAAACCGAATTATGA






ATTTTCCGAGCCATACTGAACCGAAATGTGAATTAT






CCGAACCGAATTATGAAATATCCGAACCGAAATCC






GAAATATCCGAACCGAATTCGGTTCGGTAAGTTCG






GTAATTCGGATAATACCGAATTCTGCACACCGCTAC






CTAAGGCCCGCTTCAGGATTTTAACTTACTTTAATA






TGTGTTTTCCATTTATTTTTTAAGAGTTCTAATAATT






CAAATATTTATATCTAACATTTCTCTTCTCTTGGTTC






TTTTTGTGGCACTGTTATTGCATTTAAAGTCACCTAT






CAATCAAATTATTTTTTGCGCCTAGTGTACCTGGAG






TGCGCCGTGCCTGGCTCCTTTGCGCCTCTAACAACT






ATGGTTTTACCTTCAGGTCGGTTTACAAGACTATCC






CAAACTGTGAACCATGCCGCCCTTTGCAAAGATCAC






CCGTGGAGGGGTTCTATTTAGCCGGTGACTACACA






AAGCAGAAGTATTTGGCTTCAATGGAGGGTGCTGT






CCTATCTGGCAAGTTTTGCGCTCAAGCCATTGTACA






GGTACTTGTTTTTCACTTTTTCTTGAAACGATTTCCG






ATTTGTATTAGGATATTATAGTTTCTTTTTCTTAAAT






GTCAGCCATCTAGCTTTTATGCATAGTCGATGATAT






TTTATATGACGCAGGATTATGAGTTGCTTGCTGCTC






GGGAGCAGACAAAATTGGCTGAGGCAACCGTTAG






TTAACAATGTAAATACTGTTTAAGGTATAGAGAAA






ATCATCTGATTAGTGATCATAATACACAATTAAAGC






TCAAAGAAACCAATTCTTGTACTAATACCGTTTTGG






TTGTATAATCATATATTTTTTGCCAGCATTTGCTGTT






TTGTGCACATATTTGGGAACAAAATTCAGTGAAAC






CGTGCCAATATGTATAGGGTCGTATACACCTATTTC






TCATTTAACTTCCGAAAATTTCTAACGTGTTTTGCAA






GAACTATAATTTGGTTTTAAATTTCTTTAAAGTTCTA






TTAGTGGTTGAAACTGAATATTTGACTCTAGATTAT






TGCACGGTATGACAAGAGTGTTATATATTATTTTTG






AACTTTTGAGAATCCTAATCCTTTATCTATAGCTTTG






CTAATTT





51

Euphorbia

Genomic
858
GGTAAAACTGGAACTAGTTATTTTATTTTACCAAAA




heterophylla



TGACTTGGCTGCTGCTATGCTAATTACTTTTGGTCT






ATGAAACGAAAAGTAATAGTGGTCTGCTTTTTGTCT






CTATACACGTAATTTGGGCAAATAATATGATTTCGG






TCAATGAGGGTCCTAAAGTGTTTTATTTCACTTGAT






TTTGTGGTCCCTTGAGCATGCTTAATTTCTAGGTTT






GAGATGATGTACAAAAATGTCCTCACGGTTGAATG






GTATTTTTGGCTCACTACAGTCCTCAAGCGAATTAA






ATTTTTACTGTTTATTTAACAAAAAGTACTAAATCAC






AATTTCTTGGGGCACAGGAATATTATAATCCAAACC






AATCAATGCTGGAGTTGGTATTTGCACCTGCAGAA






GAATGGATCTCATGCACAGACACCGAGATCATAGA






TGCCACAATGAAAGAACTCGCTAAACTCTTTCCCGA






TGAAATAGCTGCCGACCAGAGCAAAGCCAAAATTC






TCAAGTATCATGTCGTAAAAACTCCCCGGTTAGTCT






CCTTTAAAAAATTGCATCCTTGATTAGTATCTCACAT






GTTTTGAAAACCGGACCCGACCGGCCCGGTCAGAC






CAGGTTCGACTGGAACCAGCCACTGGCCCGGTCGG






TTTTCAGTTGATTCTTAATCCAGTAAAAAACCAGCT






GTTGTCCGGTTATACCTTAAGTCCAGTTTGACCACC






GATTTGGTTTAATTGAACCTTAAACCTATGACCGGG






TCTAAAGGTTCTGTTCGAGATGTGTGGTGGCATCC






GACATCGGAAATAAACAAGTGAAAAGAGTAGAAT






ATAAGTGGAGTAGATTGGACCTTAACACAAGCCAA






TT





52

Euphorbia

Genomic
768
TCAATTTTGTAAATATTTTGGAAATATTGTATAATTA




heterophylla



TGATAAATTCCCTTTTATCTTCAGGTCGGTTTACAA






GACTGTCCCGAACTGTGAACCATGCCGCCCTTTGCA






AAGATCACCCGTGGAGGGGTTCTATTTAGCCGGTG






ACTACACAAAGCAGAAGTATTTGGCTTCCATGGAG






GGTGCTGTTCTATCTGGCAAGTTTTGTGTTCAAGCC






ATTGTACAGGTACTTGTTTTTCTTGAAACGACTTCC






GATTTGTATTAGGATATTATAATTTCTTTTTCTTAAA






TGTCAGCCATCTAGCTTTTATGCATAGTCAATGATA






TTTTATATGACGCAGGATTATGAGTTACTTGCGGCT






CGGGAGCAGACAAAATTGGCTGAGGCAACCGTTA






GTTAACAATGTAAATACTGTTTAAGGTATAGAGAA






AATCATCTGATTAGTGATCATAATACACAACTAAAG






CTCAAAGAAACCAATTCTTGTACTAATACCGTTTTT






GGTTGTATAATCATATATTTATTACCAGCATTTGCT






ATTTTGTGCACATATATGGGAACGAAATTCAGTGA






AACCGTGCCAATATGTATAGGGTCGAATACACCTA






TTTCTCATTGAACTTCCCAAAATTTCTAAAGTGTTCT






GCAAGAACTATAATTTGGTTTTAAATTTCTTTAAAG






TCCTATTAGTGGTTGAAACTGAATATTTGACTCTAG






ATTATTGCACGGTATGACAAGAGTGTTATATAGTTT






ATCTATAGCTTTGCTA





53

Euphorbia

Genomic
634
TTGCCGGTCCAGGTAAACTTGAAATTTTGGATAAC




heterophylla



AAATAATTCTATTATTTTTGTGATCCAGTGTTTCTAA






TACTAGTATATTTTCTTTTATCATTAGTTGATATATT






GAAGCTTCTTTTGCCTGATAACTGGAAAGAGATTCC






TTACTTCAAGAAATTGGATAAATTAGTTGGAGTTCC






TGTCATTAATGTTCATATTTGGTCAGTGATGAATTC






TTTTATCTAGTGACTGTTTATGTGAGAGTTCAAATA






TCAGCACATGATTCACTAAAATAAATCTATTTCTTTT






TCAGGTTTGATCGGAAACTAAAGAATACATACGAT






CATCTGCTTTTCAGCAGGTCCTGCTCTTACGCTTTTC






TCTAGCTGTTCTTCACCCATAGAGATTTCTACAATC






ATTTTTGTAACTTTTTTAAAAGCTGTTATATTCTGAA






GGGTTCTGTTAGGGGTACGAAAACCTTCTTTCATG






AAGGAAATCAATTCATTACAAATCATTTTATGTATA






AATTGATTTGAATCTTGTATGTAAAATGATTTCAAA






TGAATTTAGGTCCTTGAGAAATAATGTTTCCAAATG






GAGGTTAAGTTGTTGCTATAATAAGTTGACGACCT






GAATCTGATTTGTACCACTGA





54

Euphorbia

Genomic
399
TTGTGTTAGATGGGCTCAACCCTACTTGTATGCTCA




heterophylla



CTCGTCCTATCGAGCCCAACACTCTCCAGGCCCACG






GATTCTCTACAGGTTCAAACAATAGTAACGTCACTT






ATCAAGCAAATTAATTTTTGCGCCTAGTGTACCTCA






AGTGCACGCTGGGCCTGGCCCCTTTGCATCTCCAAC






AACTATGGTTATACCTTGCGGTTTTCATAAAAAGCC






TCAAAATATAATTTCAGCTCATACCAGAAAATATTT






ACAAGTTTACAAAAATAGGGGTAAAATATTGACAA






AAATACAGTCCGCTATTTTTCATATAGTTTTCATCTG






GTGTGCTAGTTTTCATATAGTTTCCATATAGTTTTCA






TTAGGTTTTCATCCAGTTTTTAGACCGTATTCATGTAA





55

Euphorbia

Genomic
283
TTTTTTTGTTGTGGTAAAATTTCCCAGCCCTCTTTCT




heterophylla



ATAGGGAAGTTGAACGGGATTATTTTTTTTTTTACC






GAAGAATCAACATGAAATATCTCCGATTTTTTCTTT






CAAACGATATTTATTTGTTCAATCACTTGTTTTAGCT






CAACATTTTCTCCCACTTTTGTAATATTAAGCTTATT






TTACATTTATCAATCAAAATTTTTATTCTTTTGACAT






GACATGGATTATATATTAAACACATGTCTTTTTACA






TATTTCTCTCAAAACGTGATCTATACT





56

Euphorbia

Genomic
40
AAATTATTTATGGTTGGACAGTAAATTTGTAAATAG




heterophylla



TTTA





57

Commelina

cDNA
378
GGGTGTACCAGACAGGGTCAATGACGAAGTCTTTA




diffusa



TTGCCATGTCTAAGGCACTCAATTTCATAAACCCAG






ACGAGCTTTCCATGCAGTGCATTTTAATTGCTTTAA






ACCGTTTTCTTCAGGAAAAGAATGGCTCCAAGATG






GCCTTCTTAGATGGTAACCCTCCTGAAAGATTATGC






ATGCCAATTGTTGATCATGTCCGCTCCTTAGGTGGT






GAGGTGCAGCTTAATTCACGTATTCAGAAAATTGA






ACTAAACCCTGATGGTACTGTGAAGCACTTCCTGCT






GAGCAATGGAAATATCATTACAGGAGACGTTTATG






TATTTGCAGCTCCTGTTGATATATTGAAGCTTCTTTT






GCCTCAAGAATGGAGGGAAAT





58

Commelina

Genomic
383
CGCCTGTCATCTTAGCATCCTCATAAAGTCAAGAAA




diffusa



TTGTGAGGACAAATATATTTACTAACTGATGGAAA






CTTGATGTTTTTATCGTGGTATCCAGTATCCACTTGT






GAGCTGTTCTGTAGATTGATATATAGGAAGATATA






TGACAAACAAGATTTCTATGATTTTGCTACCACTTA






TAAGCAAAGAACAAAAGAAGTACAATAGATATGTA






TATATATATCTCTCGCATGCTTTTCTTTAAAACTATA






ATGGGTGTACAATGATTATGATTTTTTTTGTGTGTG






TATGCCTACAGGGTGTACCAGACAGGGTCAATGAC






GAAGTCTTTATTGCCATGTCTAAGGCACTCAATTTC






ATAAACCCAGACGAGCTTTCCATGC





59

Commelina

Genomic
293
TAATCGCTCCATGCTAGAGTTAGTATTTGCTCCTGC




diffusa



TGAGCAGTGGATTTCACGGTCTGATAGTGAAATAA






TTGAGGCAACTATGCAAGAACTAGCCAAGTTATTT






CCCGATGAGATTGCTGCGGATCAGAGCAAAGCCAA






AATTCTGAAATATCATGTTGTGAAGACACCAAGGT






AGATCACCTTTGTCTCTTTNCCAGCACTTTTCATTTT






GGTCCTTTGGATATTTAAATCTTGCAGAGAAAGGG






GAAGGGTAGATAATAAATAATTAGCCTACTTACTG






CCATAGCACA





60

Commelina

Genomic
284
CCTATTGGGCCGTTCACTGGTCTATTGTTGAAACAG




diffusa



TTGATATATTGAAGCTTCTTTTGCCTCAAGAATGGA






GGGAAATTCCCTACTTTAAGAAGCTGGAAAAGCTA






GTGGGAGTTCCAGTGATTAATGTCCATATATGGTG






AGTCATTTTTTCTCTAGCAATTTCTGCTACTTCTTAG






TGACAGTCCCTCATATAAATGAATAGTATATGATTT






ATTTATATATTTCTTATGATGTTCTTATTTTTAAGCTT






AATTGTTTGTATACATGGGTTGAGATACTTC





61

Digitaria

cDNA
458
AAAGAAGCCAAAAACAATCTCAACCCAACAACATC




sanguinalis



TTCTTCTTCTTCTAATAATAAGTACCTGCAAGGTCAT






GTCTCTACTTGGAAATTCTATAGTAACCACCCATGT






ACTGTCCTTTAGTCACGCTGATATTATGGGTGCTCA






TCGGTTGCAATTCCCGGCTGTCCGATCAAGAACCA






CCACTACCAAGAATGTCTGCCCTTTCAAGGTGCTCT






GCCTGGATTATCCAAGACCAGACCTTGACAACACTT






CTAACTTCCTGGAAGCTGCCTACTTGTCTTCTACCTT






CCGCACTTCCCCTCCTCCAGCTAAACCCTTAAACGT






TGTAATTGCTGGTGCAGGTTTGGCTGGTCTATCCAC






TGCTAAGTATTTGGCTGATGCCGGTCACAAGCCCCT






TTTGCTTGAAGCAAGAGACGTTCTTGGTGGTAAGG






TAGCCGCTTGGAAAGATGATGATGGAG





62

Digitaria

Genomic
7350
TTTCTTTGATTTTCTATGATTTTCTAAAGTTTTGGAG




sanguinalis



AAAAAACTTTGGCCATCTATGATTTTCCATTTTCTAT






GATTTTTTTTATTTTCTATGATTTTCTAAAGTTTCTAT






GATTTTCTAAAGTTTTGGACAAAAATATTTATGGAG






GACATTTGATAAGACATCTATCTATAAAGCCCACTT






TGACCCATTTAACTAGGATAAGTAGAAATAAGACC






AATTAAAGAATATTTACTTATACATGTTCAACATTTT






TTGTTAAACAAGTTCAACATTTGATAATGAAATGTC






GACATTGATTAACCTAAATGTTGCAATTGGAGAAC






AGCAATATTGAAATCAAAGGGCCGGAATGTTGAAT






GCTCAAATCATAAATGTTGAATGCTAACATCACCAA






TGATGAACTTTATCTCGTCTTCTCCGGGCACGGCGG






AGCAGCAGCGGCGTCTAGGCCAGGCCGCGCGACA






GAGCAGTGGCGGCCTAGGCCAGGGCGCATGCATG






GATAGCGGGAGCGGCGGCGGCGCCGGTGTGGAG






CAGGCCATGGTGCGATCAGACTTGGCCCCATGAGA






GGGCTCCGACACTGTGCGGGTTTGGTCGGTGGTG






GGTGTGGCAGGATGACCCGAGGCTTCCTACATAAT






TTCTATCCATCTGTGATAAGATTTTAATTTCTACATA






TTTAATGTTTGAGATCCGTATAAATAATTACAACTC






TTAAATCTACACCTCTCAAACCCTATCTCCCTTTCTA






ATCCCCTGCTCCCTCTCTCCTACACTACACCTGCCGC






CCACCGTGTTACCAAATACGATACACTTAAATAGGT






GTATTTACAATTTATTTGAAAATATAAATAGATAGA






GTATATAAATATCTATAATTATGCAAAATTTAAAGT






TTAACAAAAATTTGTGCAAAGAGATAAAAAAAAGG






AAAACTCAACACTAAATAGTTGCAGATTGCGGGTT






TCCAATGAAAAGTAAAGCACACAACTATTTATGTGT






TGGTTTCTCTTTTTCATATCTCCTTGCACAATTTTTTG






TTCAACCAGAAACTTTGCATGACGAGAGATGTTTAT






AAGCTTTATCCATCTATACTTTTAGATGAATTTTAGA






CGCACCGATTTAGTGTGCTACCGTGTTTGGTAACAC






AGTAACATTTAAAATCCTCTGTCCCAAAATTTAAGC






ATTAATTAAATATATATGCTAAAGTTCCTCATGCCTT






GTGGCCTCATGTGGGACCTACGTACTGTTTATGTG






GGACCCACGTGTTATTTAGGTGAGCCCTATGTAGG






ACCCACGTGCTATTTATGTGGGACCCACGTGCCATT






TAGGTGGGACCCACACACTATTTAGAGTGGGACAC






ACTCTCTTTGGTGGGGCCTGCTTAGTGGGACCCAC






AACAATATTAAGTGTCTATGTTAAAAATTATCGAGG






ATTGTTTTTCCATTCTTTGCGGTATAAATATATTTAT






TTTTCTATGTATAAAAATAATATCTAACTTTGTATAC






TACATTCATTTGTGATAGTTCTAATATTTTTTCTACT






TTGCTTTAAGATCATAAATTTGGAAAATAAGATCGA






ATTATACATTCATTACTAAATTTATCTTTCCTTCTATA






AAAATTTAAAAATTAGTGTAACATAACACGTCACTT






CATTAGCTATTTCTATTACCACTTAGAAAAAAGTTA






TATAGCTCTTAAATGATCATTATAATTAAAAAATAT






GTAAACTTAATATTGCAATTGAGTATAGTAAGATG






ATAAATTTGTATTGAGTTTAACATTTTTTATATAGAT






GAGCATGGCGCGTCAACCTGACTAGTATGTTATTA






GATTTCCCAATTATAACATTTTTAATAAATTTAGACA






CTTATTCTACTTATCTAGGTTCACCGAAGATTCTATA






AATTTAGTGAAAGGCTAGAAATATTTATATATTTTG






TAAGGGAGGGAGTAGACGGAGATGGCAGGTTACA






CAATGAACGAGCTGCCACGTTGACTCAAATAGTTG






CCACGTGTTATCTAGTTTCTTTAAAAAGAAAGCACC






AAGAGAAAATAAGAGAGATGACGTGGCGGTATAT






ACCGCGGAGACGTAGAGCGCACCAGGCGCCAAAA






GGCATCCTCCTCCTCCACATCCTCCTCACCCCGCGCT






CGTCGTGCTCTTGTCCCTTTCCACCGCCCCAACCAA






GTCAAGTGCGGAGGAGGCCGCCCGCCTCCCCTTAT






CATCGCGCGACACGGCTTCCTCCCCACCTGGGCTCC






TCCGCCTCCACGCCGCTCCCCGCTGCCCCGCCTCCC






CTAGTCCCTCCCTCCTCCTCATCCGGTAAGTCCTCGT






TGCCTGCTCACGCTGCGTTTCCATTTAATCACGCGG






GAGTCAGGTCAGGCGGGATTCGGTTCCCATGGGG






ATGGGGGCGGCTCTCGTGGTACCTGCGACCGGAA






ATTATTAACGGGCTATATAGAAATGGGGGATTTCT






TAGGGTTTGTGCTTTGAAGGCATTGGAAAATTGTG






ACTGGTTTGGGGAATTGGCAGTTACAACTTACATG






GAGTAGTCTGCAGTTGTTGGGCACAGAGTTTTAGC






GGTGTTCTGGTAGTGTTTATAGAGTATGGCACACA






TTGTATAGTATAGGGAGACTTTTGGTTCAAATTTAA






TATTAGACGGTCATGCTACAAAATGGGAGGTCCAA






GTTGTGTATTCTGTTTCCTTTGCATCATTGTTAACTC






ACTGCTTGTTCTCAGCATAGAATAACTAAATCAATG






TGTACCAACCTTGATCAGTTTACTTACATACTTGGA






AGATGCGCGTAAGAAATGATCTCATGAACTGCCAG






TCTAATAGCTCCTCTTGGTTATGCAGTAGTCTGCCT






CTGCGTATTGGTTAATCAGAGCTGACAACAATCAC






CAAAAGTTGCTTCGACATGGATACTGGCTGCCTGT






CATCTATGAACATTTCTGGAGTGAACCAAACGAGA






TCTTTTGCGGGACAGCTTCCTACTCAGAGATGCTTT






TCAAGTAGTCACAACGCGAGCTTTGCTGTGAAATC






TCTAGTTGTAAGGAATAAAGGAAGAAGGTCACACC






GTAGACATTCTGCTTTGCAGGTTCAGTTTTTTGTTC






ATTTTCTTCTCCAATTTTCAGGTCATTTCTTAGTGAA






AATATGATTGATTAGCTTTTCTGCAGATTGTCTGCA






AGGATTTCCCAAGACCTCCACTAGAAAACACAATA






AACTATTTGGAAGCTGGACAACTCTCTTCATTTTTT






AGAAGCAGCCAACGCCCCAGTAAACCATTACAGGT






CGTGATTGCTGGCGCAGGTCCGACGTGATTTGTGA






TTAATGTTTTCACAAATCTTTTTGTCAGTTACTTCCA






GGGTAATAACAGTTGAGTTTTAGCTTTATTAATTTG






TGGTGTAACTTTTGCAGGATTGGCTGGTCTATCAAC






GGCGAAATATCTGGCAGACGCTGGTCATAAACCCA






TATTGCTCGAGGCAAGAGATGTTTTGGGTGGAAAG






GTCTGAAAGATACTTACATGATTGTTTACAATGCTC






TTAATTGCTCGCATCCGGTGTTTTCATCGTTTGTTCC






TTTAATGATTTTTTTTTTGTTTTTTTGTTTATGCACTG






AACAGATAGCTGCTTGGAAGGATGAAGATGGAGA






CTGGTATGAGACTGGGCTTCATATCTTTTGTAAGTT






ACAGTTTCTGGTCCTTAAGGTTGTCTTCATGATATTT






TATTTTCTAGATTATTTCTATTAGAAACATACATTTA






ATGTAGACATGTTAACAAGCTGTTAAGGCGCACCA






GCACACAAACTTCTAAAGCACAGTTGTCTATCGTGC






TTGTTTATTTCCTTTAAGGAATATCTGTTTTAGTTTG






CAAAATTATTATTGAGAAAGGAGTTTTTTTTTAAAT






TACTAATAGCGTGAAAATAGCATGGAAAGTTTGCA






GGCTACTAAAAAAGCGTACATCAGTGCATGTTTTA






ATGTTACGTAAACGTGTTGTATACTCCTTATTATCC






ATAATGGCATAGTTGAATATCTGTTATTCTGTTCAC






AAGAACATTCGATTGCTACCATTCCCTTCATAGCTT






ATATAACACTGCGTGTATGTAACCATGCATTTTTGT






TTTAAGTTGGAGCTTATCCCAACATACAGAATTTGT






TTGGCGAGCTTGGTATTGAGGACCGTTTACAATGG






AAAGAACACTCCATGATATTTGCCATGCCGAACAA






GCCAGGAGAATTCAGCCGGTTTGATTTCCCAGAAA






CTTTGCCAGCACCTGTAAATGGTACGACTATGCGAT






TTTGGAGTTGTTGCAACTGATTTCCTAGATAATCCA






GAAATACATTCTAATCTTAGTCTACTCATTTTGCTTA






TGGACAGCATTAACGCTTCCAATTGATGCTGTACTA






TGATTCACCACTGTACTTTTAACAGGAATTTGGGCC






ATACTGAGAAATAATGAAATGCTTACCTGGCCGGA






AAAGGTGAAGTTTGCTATTGGGCTTCTTCCAGCCAT






GGTCGGCGGTCAACCTTATGTTGAAGCTCAAGATG






GCTTAACAGTTTCAGAGTGGATGAAAAAGCAGGTA






CGAATTCAATTTGTCGATTAGACTAGTCTCTGTGTA






ACAGAAATACTGCCATCTCATCAGTACTAGAGAGC






TTTTAGTTTACCAATAGATTGTTTCCTTTTATTTTCTT






ATCTTCCTGAAGAAGTACAGGTAGCTCCATAAAAT






GCTTTATATGCTCAAATTCTTAACTTATATTTGGTGT






AAATCTTTTTCTGTGAAAATTAAGACAGAGCAATGC






TTATAGATGCATTAACTTGGCCAGTTAAAGGCCAG






CAATGTTCATCATGTTAAGTTCAGCAATGTACCAAA






AAAATGAAAAAAAAAAAACACACAAGAGACATAAT






GGTTTCTTGCTAACTGATACACATGCCGTTTTCTTCA






AAAATTGGTTTCACCTTTGTCGTTTGGAATACAGAT






GGTAATATATCTTTCTATTTTTCTGTGGAGATATGT






GGTGCCTGATACAATTATTTGATCAGCACAGGGTG






TTCCTGACCGAGTGAATGATGAGGTTTTTATTGCAA






TGTCCAAGGCACTCAATTTCATAAATCCTGATGAGC






TATCCATGCAGTGCATTTTGATTGCTTTGAACCGAT






TTCTTCAGGTACATCTGTTGTTGCTCTATGTTATTGT






GTAATATATTACTTGCCTGTTCTGTTTGGAGAAATA






GCTTACATATGTTGATTCTTGCTTTCTTGTCTGTACT






CTGTATTATTTTTGAACTGAGAGAGATGCCAATATG






TATTTGCATGTGGGTATTTTGTGTAAACGTGCAGG






AGAAGCATGGCTCAAAAATGGCATTCTTGGATGGT






AATCCACCTGAAAGGCTGTGCATGCCTATTGTTGAT






CACATTCGGTCTAGGGGTGGTGAAGTTCGCCTGAA






TTCTCGTATTAAAAAGATAGAGCTGAATCCTGATG






GAACTGTAAAACATTTTGCACTTACCGACGGAACTC






AAATAACTGGAGATGCTTATGTTTGTGCTACACCA






GGTGTGATTTATTACCAGTAAACCTTGTTTCCTGTG






CAGCTATACTGCTATACAACTGAAGTACTGAACTGA






CAAGTCTTTGTATTTAGTTGATATCTTCAAGCTTCTT






GTACCTCAAGAGTGGAGTGAAATATCTTATTTCAA






GAAGCTGGAGAAGTTGGTGGGAGTTCCTGTTATCA






ATGTTCATATATGGTTAGTTAATTGAAATATTTGGT






TCTGAATTGGAAATGCTCCATTTCCTTATATGGTTA






TGCTTCTTCCTTGAGGCATTTCTGAAGCTTTGCTGA






GAACTGTTGTTTTGAATGCCTCAGGTTTGACAGAA






AACTAAAAAACACATATGACCACCTTCTTTTCAGCA






GGTACATCTTCTGGCCATATTCTTAGTTCATGCATTT






TTTGTGCAATATTTCTTGATTCATGCACTGTTCAGGT






TGTGCACATTTACTGTTGATGGTATTAAATACCATA






TGGCCCTTGTTGATCTTGTCAGTAACCTGCATTTTTT






TTCAGGAGTTCACTGTTAAGTGTTTATGCAGACATG






TCAGTAACCTGCAAGGTACCGACTATCATCTTCAGG






GCAATATCAGTTTTGTTCAAACACTAGCATACTAAT






ACATTGGCCATGATTTCTTCATTAATTCTAGAGGCT






CAGTGACCTTTACATGCGTCATCTACATAAACGGTC






CTAGGGCTCAGATGATTAAGAAAGAATTCATTATA






AGTGGAAATATAAATATCTTGCACATTAAAAATTTT






GGACATCTGTGCTAGATGTATTGAAGTGTGTGACT






TTGTCATTGCTTACATGTCAGTGGTCACTGTGTTGT






ATTGATGAATCATGATATGTTAAATAGCGAAGGAC






ATGATTGCAGATTGCACACTCACCTTTTTTCTTTCCT






TTTGTTGTCTAATTCTTTACAGGAATACTATGATCCA






AACCGTTCAATGTTGGAGTTGGTCTTTGCTCCTGCA






GAGGAATGGATTGGACGAAGTGAAACTGAAATCA






TTGATGCAACTATGGAAGAGCTAGCCAAGTTATTT






CCTGATGAAATTGCTGCCGATCAGAGTAAAGCAAA






GATCCTTAAGTATCATGTTGTCAAGACACCAAGGT






GAGGATATTTGTCGGACACTTCTGATAGATAAGCA






AGTAGCTCTAGCTCTGACAGTTTTTTGTGTTGTTTCC






TTTTGTTCATATTCTGGCTTGCTTTGACAGATCGGTT






TACAAAACTGTTCCAAACTGTGAACCTTGTCGACCT






CTTCAAAGGTCACCGATCGAAGGGTTCTATTTGGCT






GGTGATTACACAAAGCAGAAATACTTGGCTTCCAT






GGAAGGTGCAGTATTATCTGGGAAGCTTTGCGCCC






AATCTATAGTGCAGGTAAATACACGCCATGTTCCTT






GCTGTACATAAAAGCATCGGATTGCTTATAAGTTTG






ATCGTTTCGATGTGATACATTTTTGCAGCTAATTATT






TAACATCTGCTGCTTTCAGGATTATGGCAGGCTCTC






CCTCAGGAGCCAGAAAAGCCTGCAATCCGAAGAA






GTTCCTGTCGCATCTTAGGCATAGTTCAGGCTCCCA






TTTGGTGTGTCATCTTATCACCTATTTCGTGGGAAC






CCACCAACTGCTCATGTTGAGGGACCTGACCTCTTG






TGCCCCTCTGACAATTCCCTAGAGCTGAAATGTGAC






AGTAGTTGATATCATATTGGGAAACAGGTGATATA






TATGTAAAACGACCTGCATAGCAATTCTTAGACCTT






TGCAAAAGGAAAAGCGAAAAAAGATATCTCAGAT






AGATATTATCTTGT





63

Digitaria

Genomic
2640
GTCTGAAAGATACTTGCGTGATTGTTTGCAATACTC




sanguinalis



TGGTCCTTTTCATCGTTTGCTCCTTTTATAATTAGTT






TTTTCGTTTATGCACTGAACAGATAGCTGCTTGGAA






GGATGAAGATGGAGATTGGTATGAGACCGGGCTT






CATATCTTTTGTAAGTTACAGTTTCTGGTCCTTGAG






GTTCTCTTAATGATATTTGATTTTCTAGATTATCTCT






ATTAGAAACATGCATTTAACGAAGACATGTTAACA






AACTGTTGAGGCATACCAGCACACAAACTTCTAAA






CCACAGTTGTGTCTATCGTGCTTGTTTATTTTTTTTT






ATGGAATATCTGTTTTATTTTGCAAAATCATGATTG






AGAGAGGAGTTTTGTTAAATTACTTAGTGTCAAAA






TAGCCTGAAAAGTTTGCAGGCTACTAAAGCATACA






TCATTTCATGTTTCAATCATGTTGTATACTCCATAGT






ATCCATAATGGCATAGCTGAATATATGTTATTCTGT






TCACAAGAGCATTCGATTGCTACCATCCCTTTATGT






AACAATGCATTTTTTGTTTTAAGTTGGAGCTTATCC






CAACATACAGAATTTGTTTGGCGAGCTTGGTATTG






AGGACCGTTTGCAATGGAAAGAACATTCTATGATA






TTTGCCATGCCGAACAAGCCAGGAGAATTCAGCCG






GTTTGATTTCCCAGAAACTTTGCCCGCACCTGTAAA






TGGTATGATTATACACGATGTTGAAGTCGTTGCAA






CAGATTTCATAGAGAATCCAGAAATGCATTGCTTCA






GGCTGGGGCTGTGTCCCTAAAACTCTAAAAGAAAA






TGCAGAAATGCATTCTAATCTTAGTCCACTCATTTTT






TTCTAATATATGACAGCATTAGAGGGTTTATTAGTG






GCAGTAGTAACACTACATGATTACCATTCAGCTTAC






ACTTCCAATTCATGTTGTACTTATGATTTACCATTGT






ACTTTTAACAGGAATTTGGGCCATACTGAGAAATA






ATGAAATGCTTACCTGGCCAGAGAAGGTGAAGTTT






GCTATTGGGCTTCTTCCAGCAATGGTTGGTGGTCA






ACCTTATGTTGAAGCTCAAGATGGCTTTACGGTTTC






AGAATGGATGAAAAAACAGGTACGAGTTCAATTTG






TTGGTTAGACTTATCTCCATGTACAAGAAATACTGC






CATCTCATCAATACTAGAGAGCCTTTAGTTTGCCAA






AAGATTGTTTCCTTGGCTTTTCTTATCTTCCTGAAGT






ACAGGTAGATGAAAATGCTTCATATGCTCAAATTCT






TATCTTACATTTGGTGTAAATCTCTTTCTGCAAAAAT






TTAGACAAGGCTGCTCATAGACTTGTTAACTTTGCC






AGTTAAAGTCCAGCAATGTTCATCTGTAAATTCAGC






ACTGTAACAAAAAATGGGGAAAAAAAGGACGAGC






ACATAAGAGTTTCTTGCTAACTGATGTACATAAGCA






GCGTTCTTCAAATTTTGGTTTCACCTTTGTAATTTGG






AATACAGATGGTAATATATCTTTCTATTTTTTTATGG






AGCCATTTGGTGCCTGATACAATTATTTGATCAGCA






CAGGGTGTTCCTGATCGAGTGAATGATGAGGTTTT






TATTGCAATGTCCAAGGCACTCAATTTCATAAATCC






TGATGAGCTATCCATGCAGTGCATTTTGATTGCTTT






GAACCGATTTCTTCAGGTACATCTGTTGTTGCTCTA






TGTGATTGTGTAATACGTATACTACTTCTGTTTGAA






GAAATAGTTTACATATGTTGATTCTTGCTTTCTTTTA






TGTATTATTTAGTTACCTGAGAAGGTTGCTAATACG






TATTTGCATGTGGGTATTTTGAAAAGTTTATTTTGT






GTATACGTGCAGGAGAAGCATGGTTCAAAAATGGC






ATTCTTGGATGGTAATCCACCTGAAAGGCTGTGCCT






GCCTATTGTTGATCACATTCGGTCTAGGGGCGGTG






AGGTCCGCCTGAATTCTCGTATTAAAAAGATAGAG






CTGAATCCTGATGGAACTGTAAAACATTTTGCACTT






ACCGATGGGACTCAAATAACTGGAGATGCTTATGT






TTGTGCTACACCAGGTGTGATTTATTACCAGTAAAC






CTTGTTTCCTGACTTCCTGTGCAGCTATGCAACTGA






ACTGACTAGTCTTCGTATTTAGTTGATATCTTCAAG






CTTCTTGTACCTCAAGAGTGGAGTGAAATTTCTTAT






TTCAAGAAGCTGGAGAAGCTGGTGGGAGTTCCTGT






TATCAATGTTCATATATGGTTAGTTGATCGAAATAT






TTGGTTCTGAATTAGAAATGCTTCATTTCCTCGTAT






GGTTATGCTTCTTCCTTGAGGCATTTCTGAAGCTTTT






CTGAGAACTTCTGTTGTTTTGAATACCTCAGGTTTG






ATAGAAAACTGAAAAATACGTATGACCACCTTCTTT






TCAGCAGGTATTCTCCTGGGCATATTTGTAGTTCAT






GCATTTTTTTGTGCACTATATCTTAATTATAATTGTA






TCAAGATATTTCATGCGTTGTTCAGGTTGCGCACAT






TCTACTGTTCATGTACGAATGCTCATTTTCGGTATTA






AATGCCATGTGTTTATTATTATTTTTTCAGGAGTTCA






CTGCTAAGTGTCTATGCAGA





64

Digitaria

Genomic
1012
CAATGACTTTCACATGTGCCCTATACATAAAAGGTC




sanguinalis



CTACGGCTCACATGATTAAGAAGGAATTCATTATTA






AGTGGAAATATAAATATCTTTCGCATTAAAAATTTT






GATATCTGTGCTAGATGTATTGAAGTGTGGGACTT






TGTCATTGCGAACATGTCAGTAGTCACTGTGTTGTA






TTGAAGAATCATGATATATTAGGTAGCGATGGAAA






TATGCACACTCACCTTTTTTCTTTCCTTTTGTTGTGTA






ACCCTCTACAGGAATACTATGATCCAAACCGTTCAA






TGCTGGAGTTGGTCTTTGCTCCTGCAGAGGAATGG






ATTGGACGAAGTGAAACTGAAATTATTGATGCAAC






TATGGAAGAGCTAGCCAAGTTATTTCCTGATGAAA






TTGCTGCCGATCAGAGTAAAGCAAAGATCATTAAG






TATCATGTTGTGAAGACACCGAGGTGAGGTTATTT






GTCAGACACTCCTGATAGATAAGCATAAGTAGCTC






TAGCTCTGATAGTTTTAGTTTAGTGTTTTTTTTTGTG






TGTGTGTGTGTGTGTGTTGTTTCCTTATGTTCATACT






CTGCCTTGCTTTGACAGATCGGTTTACAAAACTGTT






CCAAACTGTGAACCTTGCCGACCTCTCCAAAGGTCA






CCGATTGAAGGGTTCTATTTGGCTGGTGATTACAC






AAAGCAGAAATACTTGGCCTCCATGGAAGGTGCAG






TACTATCTGGGAAGCTTTGCGCCCAATCTATAGTGC






AGGTAAACACTCGCCACATGTTCTTGGTTGTACATA






AAAGCATCAGATTGCTTGTAAGTTTGATCATTTTGA






TGTGGTACATTTTGGCAGCTAATGATTTAACATCTG






CTGCTTTCAGGATTATAGCAGGCTCTCCCTCAGGAG






CCAGAAAAGCCTGCAATCCGAAGAAGTTCCTGTCG






CATCTTAGGCGTAGTTCAGGCTCCCATTCGGTGTGT






CATCTTATCACCTATTTCGTGGGAACCCACCAACTG






CTCATGTTGAG





65

Kochia scoparia

cDNAContig
1995
ATGAGTTATTTTGGATATGCTTGTGCTACCCAATCC






ACTTCAAGATGTGTTCTTTTGGGCAATTCTGGTAAC






CCCACTTCAGTTTCATCTCGTGGCAGTGATTTCATG






GGTCATTCTGTAAGAAATTTCAGTTTTAGCAAAAGA






CAGAGAATTGGGCACTGCCCATTGAAGGTTGTTTG






TGTAGATTATCCAAGACCAGAGCTTGAAGGTACAG






TCAATTACTTGGAAGCTGCTTATTTATCTTCAACTTT






TCGGAATTCACCTCGTCCTCAAAAGCCGTTAGAGG






TTGTAATTGCCGGTGCAGGAGGGAAAAGGGTAGT






GATAATTACTGGGTGTTTGGCTAAGGATGTTCAGC






ATAGCATGGTTGTCTCTTACAACCACACTCATGTAT






TACCATGGACCCCCTTTGGAGAGGGTAAGGTGGTT






TTAATTGTATCCATAGGTTTTCAAAGGGTGACAAGT






GGAGGGAAATGGTTACCTTCAGGAAATGAGGGAA






CAGGGAGTTGGGTCCTTGCCTTCATGGGAAAAGAG






AGATTGTTAGGTTTGGCTGGTCTATCCACAGCGAA






GTACTTGGCAGATGCAGGACACAAACCCATATTGC






TTGAGGCACGAGATGTTTTGGGTGGAAAGCTGTTG






AAGTTATTCATCATTCTGTACAATGTTAAGTCAGTG






TTAATGAGGTTTAGAGGGGTTGCAGCGTGGAAAG






ATGAGGATGGTGACTGGTATGAAACTGGGCTCCAT






ATATTCTTTGGGGCTTATCCAAATGTGCAGAACTTG






TTTGGAGAACTTGGTATCAATGACCGATTGCAATG






GAAGGAACATTCTATGATTTTTGCAAGGCCTGACA






AACCGGGTGAATTTAGCCGCTTTGATTTTCCTGAAG






CCCTGCCTGCACCTTTAAATGGCATATGGGCAATCT






TAAGGAATAATGAAATGCTAACATGGCCAGAGAAA






ATCAAGTTTGCTATTGGTCTCTTACCTGCTATGGCT






GGTGGACAGTCCTATGTCGAGGCACAAGATGGTTT






AAGTGTTCAAGAGTGGATGAAAAAACAAGGTGTG






CCTGATCGTGTTACAGATGAAGTATTCATTGCCATG






TCAAAGGCACTTAACTTCATAAATCCGGATGAACTT






TCGATGCAGTGTATCTTGATTGCTCTGAATCGATTT






CTTCAGGAAAAGCATGGTTCAAAAATGGCTTTCTT






GGATGGAAATCCTCCAGAAAGGTTATGCATGCCTA






TTGTTGAGCATATTGAGTCACTAGGTGGTGAAGTG






CAGCTTAACTCTCGTATTCAAAAGATAAAGTTAACT






CAAGATGGAAGTGTGGATAGCTTCTTGCTAACCAA






TGGGAAAGAAGTTAGAGGGGATGCTTACGTCTTTG






CTACTCCAGTTGACATCCTAAAGCTACTTCTTCCTG






AAGAGTGGAAAGAAATTTCATACTTCAAAAAGTTG






GAGAAACTAGTAGGAGTTCCTGTCATTAATGTTCA






CATATGGTTTGATAGGAAATTGAAGAATACATATG






ACCACCTACTCTTCAGCAGGAGTCCTCTTTTGAGTG






TCTATGCTGATATGTCAGAGACATGCAAGGAATAT






TATGATCCAAACCGGTCCATGCTGGAATTGGTTTTT






GCACCTGCAGAAGAATGGGTTTCTCGGAGTGACAC






GGACATTATTGAGGCAACAATGAACGAACTTGCCA






AGCTTTTTCCTGATGAAATCGCAGCTGATGGGAGC






AAGGCTAAGATCCTAAAATATCATGTAGTCAAAAC






TCCCAGGTCTGTTTATAAGACAGTTCCAAACTGTGA






ACCTTGTCGACCATTGCAAAGGTCACCAATAGAAG






GTTTCTATTTATCCGGTGATTACACAAAGCAAAAAT






ATTTGGCTTCAATGGAAGGTGCTGTCCTGTCTGGG






AAGTTTTGTGCACAGGCTATTGTACAGGATTATGAT






ATGCTTGTTGCTCGAGCACAAAGAGAATTGGCAGG






GGCAGGCAACGCCTGA





66

Kochia scoparia

cDNAContig
1971
ATGAGTCATTTTGGATATGCTTGTGCTACCCAATCC






ACTTCAAGATGTGTTCTTTTGGGCAATTCTGGTAAC






CCCACTTCAGTTTCATCTCGTGGCAGTGATTTCATG






GGTCATTCTGTAAGAAATTTCAGTTTTAGCAAAAGA






CAGAGAATTGGGCACTGCCCATTGAAGGTTGTTTG






TGTAGATTATCCAAGACCAGAGCTTGAAGGTACAG






TCAATTACTTGGAAGCTGCTTATTTATCTTCAACTTT






TCGGAATTCACCTCGTCCTCAAAAGCCGTTAGAGG






TTGTAATTGCCGGTGCAGGAGGGAAAAGGGTAGT






GATAATTACTGGGTGTTTGGCTAAGGATGTTCAGC






ATAGCATGGTTGTCTCTTACAACCACACTCATGTAT






TACCATGGACCCCCTTTGGAGAGGGTAAGGTGGTT






TTAATTGTATCCATAGGTTTTCAAAGGGTGACAAGT






GGAGGGAAATGGTTACCTTCAGGAAATGAGGGAA






CAGGGAGTTGGGTCCTTGCCTTCATGGGAAAAGAG






AGATTGTTAGGTTTGGCTGGTCTATCCACAGCGAA






GTACTTGGCAGATGCAGGACACAAACCCATATTGC






TTGAGGCACGAGATGTTTTGGGTGGAAAGCTGTTG






AAGTTATTCATCATTCTGTACAATGTTAAGTCAGTG






TTAATGAGGTTTAGAGGGTTGCAGCGTGGAAAGAT






GAGGATGGTGACTGGTATGAAACTGGGCTCCATAT






ATTCTAACTTGTTTGGAGAACTTGGTATCAATGACC






GATTGCAATGGAAGGAACATTCTATGATTTTTGCA






AGGCCTGACAAACCGGGTGAATTTAGCCGCTTTGA






TTTTCCTGAAGCCCTGCCTGCACCTTTAAATGGCAT






ATGGGCAATCTTAAGGAATAATGAAATGCTAACAT






GGCCAGAGAAAATCAAGTTTGCTATTGGTCTCTTAC






CTGCTATGGCTGGTGGACAGTCCTATGTCGAGGCA






CAAGATGGTTTAAGTGTTCAAGAGTGGATGAAAAA






ACAAGGTGTGCCTGATCGTGTTACAGATGAAGTAT






TCATTGCCATGTCAAAGGCACTTAACTTCATAAATC






CGGATGAACTTTCGATGCAGTGTATCTTGATTGCTC






TGAATCGATTTCTTCAGGAAAAGCATGGTTCAAAA






ATGGCTTTCTTGGATGGAAATCCTCCAGAAAGGTT






ATGCATGCCTATTGTTGAGCATATTGAGTCACTAGG






TGGTGAAGTGCAGCTTAACTCTCGTATTCAAAAGA






TAAAGTTAACTCAAGATGGAAGTGTGGATAGCTTC






TTGCTAACCAATGGGAAAGAAGTTAGAGGGGATG






CTTACGTCTTTGCTACTCCAGTTGACATCCTAAAGC






TACTTCTTCCTGAAGAGTGGAAAGAAATTTCATACT






TCAAAAAGTTGGAGAAACTAGTAGGAGTTCCTGTC






ATTAATGTTCACATATGGTTTGATAGGAAATTGAA






GAATACATATGACCACCTACTCTTCAGCAGGAGTCC






TCTTTTGAGTGTCTATGCTGATATGTCAGAGACATG






CAAGGAATATTATGATCCAAACCGGTCCATGCTGG






AATTGGTTTTTGCACCTGCAGAAGAATGGGTTTCTC






GGAGTGACACGGACATTATTGAGGCAACAATGAAC






GAACTTGCCAAGCTTTTTCCTGATGAAATCGCAGCT






GATGGGAGCAAGGCTAAGATCCTAAAATATCATGT






AGTCAAAACTCCCAGGTCTGTTTATAAGACAGTTCC






AAACTGTGAACCTTGTCGACCATTGCAAAGGTCAC






CAATAGAAGGTTTCTATTTATCCGGTGATTACACAA






AGCAAAAATATTTGGCTTCAATGGAAGGTGCTGTC






CTGTCTGGGAAGTTTTGTGCACAGGCTATTGTACA






GGATTATGATATGCTTGTTGCTCGAGCACAAAGAG






AATTGGCAGGGGCAGGCAACGCCTGA





67

Kochia scoparia

Genomic
12119
AGGAAAATCTAGATGAAATCACAAAACAAAACCCA






CTAAACTATACTTATCCTAGAAAAGTAAAAGCATTC






AATTAGTGATGAGAAGCTTAAGCATACGCTGCACA






AAAACAACCAACTAATCAACTCATAGAAAACAGCA






ACTGATGTCAGTAAGTAGTTTCTAAAATTTTACCTT






CCTTGCAAGAGATGACCAAGCCCAACTGTCCCGAA






CACGGTCAGGGAAATGAGAGGAAGGCCATATCTC






ATAAATGGGTTCCTTCTCCCCAATCTCTTTAATCCTG






AATACTGAAAGCCTGGAAAAGCAGCAGCTTTCTTT






GAATCATTAACTGGCGCTCTCGCAACGACTGTCAT






GTTTCTCCCTCTAAATATGACTCTGAAGTTCCAATTT






CACTCAGAAATTAGTTGTTCAACTTAGCAATCAAAC






AAATTTAACTAATTTGTAGCTTAAACACTTGTAAGA






ACAACATCTGGAAAACCCACATCAAGTTTTGTTCAA






CGAAAGCACCATAATTGATCCATAAACCAAGAAAA






CTGGCAAATTCATACTCCTCATCAAACATTTCGACA






TTCATAGTTTCAAAAAGTAGAATGATAATTTTAGAA






AGTCGTTTATACTTCAAAATTGCAAAGAATAAGAC






GCATAACGTACTGTATCCATAAACGATTGAAAAAA






AATAATTCATGCTTTTGATTGATATTCTGTGCCTTGT






AAAAATATCTGTAATAGCGCAATTAATTGACACTTG






CAAAAGCTCAAATCAAAACGCTAAAGTTAAATCAC






AAATAGCAACTAATCAAATTCATAATTTGTCGAAAG






TATGAATGAGGTTAAAGTTACACAAAATACCTGAA






AATGGCGAAAATAATGCGGAAAAATCTTTATTCTTC






TTTAGCTCGTTCTTCTTCTGCAAGAAGCAAACTTGA






TTTTAGGATATGCTAATTTCGCAAACCAGAATTTAG






GGTTCGTTTGGTAGGGCGTAAAACGTTTTCAAATG






AAAATAGTTTTCATTGAAAAACATTTTACAATTGAA






AACTCATTTTCATACAAGTTTTCTATTGTTTGGTTGA






ATGGAAAATGATACAAAAGGTTTATTGTTTTATTTT






TATTATCAAAAATATTTTTTTAAAAAATAAAATCAA






AATCCAGATTGATTAATAAATTAAAACGTCGAATAA






TGTAGCAAATAGTGTTATTGATATCAATCAATCATG






ATTTTGATGAAAATACAATCAAGAATTCTTAAGCAA






AATCTTGATGCGCGTCCACAACATCCGAAAAATAA






ACATTAATTTGGTTTATCAGGATGATTTCCAGAAAT






TTATGGAAAATCGAAAATTTCAAAATCATCCAAAAA






TTCGCGTCAACTTTTATCAATAATCAAACATCAAAA






TTCAATCAATTACCTATGTAGTTGAAATATCAATCT






ATCCAATAATCCAGCAATAATACAATAATCAAATAC






TGAAATTCCAGAAAAAAACATTCATCTTGTCATCTT






GATTGCTGCTACCATATCTTCATTAGATCTTCTTCCC






CAATTGATTATTAAACCAAATGAATTATTTAGGATT






TTTGAAATATTTGAATTGATTGTAAAAATTGAAAGA






AATTCGAGACCGGCAAAGAATTGAAGAAGATGGA






AATTCGAGGCAAAGAATTGAAGAATTGAAGAATTG






AAGAATTGAAGTGAAGTTGTTGAAATTGAATTGTA






CTGTGCGAATTCAAAAGAGAGTTATGATAGAGAAA






GTGTAGATGTTAGATGTCGTATGATGGCAGAAGAA






AGTACGAAACAAAGGAAAACCTTTTCCTTTGATTTT






TGAAGGAAAAGATTTTCAATTGGAATGTAAAATAA






TTTTACACTCAAGTTTTCCATTTTATTTTTTCAATCTT






ACCAAACAATGTAAAATAGGAAAATAGTTTTCAGG






GAAAATGTTTTACGCCCTACCAAACACTACCTTAAT






CTTGGCGGTTGAGAGATTTCATCTCAATAATTAAAA






GTATAAAATCCAAGAAGAAAAGATTACCAAAAAAC






TTGGAGAAAGAAATTGATTAAGAGATGATGAGATA






TGGCAGTACCGCGATTACCGAACAAAGATTGAAAT






GATGATGAGATGATGATGATGATGATGATTGATGA






TGATGATGATGAATTGATGATGAGCTAGCTCGAAA






ACGGATTTGTGCGGGTAATGGCTCAAACGATTCTG






AAGACTACGTTATTCATCCATTTTGGTCGCTAGTGG






GCATGACTTGAGTAAAATGGATTGAAGTGACGGCT






AGATTGGATTTGGGGCTAGCCAAGACATAAGAATC






GTTTGGGTTAATCGTTAACCGTTAAGAGTGGGTCG






AGACTAATATAGGAGCAACTTTTCGTTCGAAACCCA






AAAAAAAAAAAACAAAACAAAGCACATGATGAATA






CTGAATAAAAAAATAATTAATTGGATCCATCTTATA






TGCCTAAGGCGTACCCAAAAGTCATGAAGGTTGGC






TGATCCTATCTACGGAATACACAATGCTTAAACAAT






TAAAATTAACATACTTTGTAGGTGAGGCATGCTTG






GTTTGATCAAATTTAGACATGAGTGACGAATTGAA






TCTTGCCTAATAGGATCAAACTCATGAAGTTATGAT






ATGACATGCACTATGGATTATTTTTTGCATGAGATT






TTTATAAAACTTGATATAATCTACCTAACTAATGTAT






GTCCTGATTGACATTTGAGTTGTCCAATAACGTACC






ACGACATCAATTCAAGAGTTCTTCGAAGAAAATAA






GTAAATAACCCCAATCTCAAGGATAAGGAGATTTG






AAGGCTAAAAAAACTTGATCTACCCATTGAGTAGA






CTACCCACCATTAATTGACAGTGGTAAAAAGTGGT






GACAATAGAATTACACTCAAGTTATGAAACAATAG






ATATGTATATGCGATCCATTAAGTAAATGTAATCAT






GTCCGAGCCGAAGGGATCAAGCCTAGACACCAGTC






AAGCTTGGGTTGGTAAAATGGTGAAGTACTTCGTA






TGTATTGAAGTATTGTAAGTACATGAGTAACCGCA






AAGGCTCTAAAGCTACTACTACTACTACTCCTAATT






GGGTAACCGCAATATGTGTGGACAGTTCGAAAGCC






ACACAATTTGAGTGGCATTTTCCATTTTTCAATTCTC






CTCTCTCTCTCTCTCAGTGGCTCAAACAGAAATCGC






ATTACACCCACATTCCACAAATGGCCCTTTGATAAA






GCACTAAACCTACTCTACTCCTACACTCCTTCATCTA






ATCTCAATTTCCGTTACTTCTTTGGTTCTATTGCACA






CCCTTTTACACCCATTGCAGTTTATATTCCACTGAAT






TTCGTATTGCAAACCCAATTTACAAAAATTGCAGAA






GAAAATGAGTTATTTTGGATATGCTTGTGCTACCCA






ATCCACTTCAAGATGTGTTCTTTTGGGCAATTCTGG






TAACCCCACTTCAGTTTCATCTCGTGGCAGTGATTT






CATGGGTCATTCTGTAAGAAATTTCAGTTTTAGCAA






AAGACAGAGAATTGGGCACTGCCCATTGAAGGTTC






TATTGCTTGCTTTCTTGTTTATGGATCAATTTTATGG






GATTTGATGAAAAGATTAGATTTTGTTTATAGTTGA






ATTAATCGAGAATTTTAATGTATGATGCAGGTTGTT






TGTGTAGATTATCCAAGACCAGAGCTTGAAGGTAC






AGTCAATTACTTGGAAGCTGCTTATTTATCTTCAAC






TTTTCGGAATTCACCTCGTCCTCAAAAGCCGTTAGA






GGTTGTAATTGCCGGTGCAGGTAAGTGGGATGTTT






CCTGTAACTTGCTTTGTTCATTAGTTTCTTGTTCTTTT






GCTTGTTGCTTTATAAACTAGTGATGTTTGGTATGT






GTTTGGTGTAATCATTGTCTTACTGATATGGAAAGG






ATTATGTAGGAGGGAAAAGGGTAGTGATAATTACT






GGGTGTTTGGCTAAGGATGTTCAGCATAGCATGGT






TGTCTCTTACAACCACACTCATGTATTACCATGGTA






AGGGTTGTACTTAGAAAATTGTTGTATTTGGCAATT






GGCAATACAATGGAATTGAACCATATTTCATGAAG






GACCCCCTTTGGAGAGGGTAAGGTGGTTTTAATTG






TATCCATAGGTTTTCAAAGGGTGACAAGTGGAGGG






AAATGGTTACCTTCAGGAAATGAGGTTTGTTCCTAC






ACTTACACCAAATGGTGTGCAATTACACCTTAAAAT






CCATTACCAAACACCCTTAGGTTTCGGTTTATCATCT






GTTAGAGGCCTACCAATGAGAATTTCCCTTACGTTA






ATGAAGTAATGGGTTTTGACACCTTTTTTTTTTATGT






TGCATGTTCGAAATAAGCTTTGTAGTTTGAAGTAGC






TTACGGCTAATAGCTGTTATGCGGGAATATTGTGA






ATTGGAAAAAGAATAAGAGAGTACTTGCTTCAAGG






ATCATAAGGTTTATGATTGTTGGAATCATCTTTAGT






GAAATTTTGATTTTCAACTGATCTCTACGGTAACTA






TTGGTCCTTCAAAATTCTAGACGCAGAATCGTTTAG






GTGAGGGTGAACTCTGATTATGAATAGTCAATGTC






TCTCCCAACGTGAAACTTATTAGTTCTAGCTGTTAT






GTGCTCCAATTCGAGGAACATCGTGAATTGGAGAA






AGAATACTGCTTCAAGGATCATGAGTTTATGATTGT






CGTAAACTTCTCTTAGTTCTTTAGTGAAATTTCAGC






AGATTTTAATGGTAATTAGCAGTCCTTCAAAATCCT






AGATGCGGAATCATCTAGGGCATGTATATGGTAAA






CTCTCATGATAGATAACTAGTGTCTCCTCCATGTAA






ACTTTATTAGGTATTTTCTTTGTCAAAAAGAGTATTT






TTCATTGGAAAAACAATATAATGGTGACTACTGCAT






ATGTTTGGTTAGCTATTCCTGTTGCAAATCAGATTT






TGAATGGAACATGTCTTATTCCCTTCTAGAGCTCTC






CTGGTGCAATTCTAGCATTTTCCCCTCAATAAGTGG






TATTTGAGCTAATATTTCAAGTCTAGACATTATAGC






ATGCTATAATGAGGCGGAATTGTTTGAGCCATGTT






AAAGGGTTCCATGACATGTAATATGCTAGTTTATG






GCAGGGAACAGGGAGTTGGGTCCTTGCCTTCATGG






GAAAAGAGAGATTGTTAGGTATTTCTTAAGTTTGC






ATGGGAAAGAGTTCTTTTATCTTTATAGTGAAAGTT






GACTAGTATGCAAGTATGGTGGTGGATTACCCTTA






TTGCCATTTGGACTTGTATGCTATTTAGTGCATATA






CTTCAGCCTAGCTTAATCTTGACAAAAATGCCTTGA






GTTCTAGTGGTTTGCTTTATTCATTGGTTGATTTGCT






ATTTCTGCTAGTGAAATTAGAGAGAAAATTGATGC






CTGTTTCAGTGTTTCTCATCAAGGTAAATGGACAAA






ACTGTCTATGTCTTGAAATTTTCTGTGAATACTCAA






GCAGGCTTCCTTGGTTTGCTTCAGGCTGATTTTCAT






TGCCTCAGTTTCTGCTTGTTGGTATCAGAATAAAAA






TAGATACTTTTATGTATTTGTGAGAGATTTGTTGGT






AGAACCACATTTATTCTGAGAAATATTTGTACAAAT






GGGAGTTTAAGGTTATAAGTGTGTAAGCCTTTTGA






GGTATTTTGTTTTAAAAATCTTATCGTTATTTCAGAG






CAGCAAGTTACATATAGTAAACTTGGGAGCATTGG






AGATGTGATGGAATTAGATTCAATATATTTTATCAT






CAAGATATGAGTTCTAATTCAAAACTTTCCTTCTAG






GTTTGGCTGGTCTATCCACAGCGAAGTACTTGGCA






GATGCAGGACACAAACCCATATTGCTTGAGGCACG






AGATGTTTTGGGTGGAAAGGTATGTGCTTATATGC






TATTTTTTCAGAAATATATCCTTTGTGCTTCTTCTCTT






CTCAGTTTATGTTGACTATAATAAATGAAACAGCTT






AATTGTCTTGGTTGTATGCTTTCATAGTATTATCTAG






GCTACATGGTTATACGGACATATATTATTGAGTGG






AGTGATTTAGTCATCTTAAGTGGTTATTTACTTTTAT






TTTATAGCTGTTGAAGTTATTCATCATTCTGTACAAT






GTTAAGTCAGTGTTAATGAGGTTTAGAGGGTAATG






GACTAATAGACAAGCTTTGTGCTGTGAACGGTTTG






AGAACATGTGCTATTGGGACTGATGTTATGCAATG






TTTGTGGTAGTCTTCCTTCTTATGCATTTGTTTATTG






TTACTGTTTCACAGGGTTGCAGCGTGGAAAGATGA






GGATGGTGACTGGTATGAAACTGGGCTCCATATAT






TCTGTGAGTATAATATTTTGCTTTTCAGCTTAGATAT






CCTGTTTAAGCTTCTAGTCCTACAATTTATGTTTTCT






GCTGAGTGGATTTTTGTAAAAGTTTTACGGGATCT






GTGCAATTTCTGCCTTCTGATTCTGTTATTATTTGGA






AGGGCGTGATATTGTGACAATTTCAAAGTGGTTTC






ACTCCAGACAAAAGTCAAACTAACAATTCAATGTAC






TGAATACCCTTTTATTTTCTTGAAGTTGGGGCTTATC






CAAATGTGCAGAACTTGTTTGGAGAACTTGGTATC






AATGACCGATTGCAATGGAAGGAACATTCTATGAT






TTTTGCAAGGCCTGACAAACCGGGTGAATTTAGCC






GCTTTGATTTTCCTGAAGCCCTGCCTGCACCTTTAA






ATGGTGAGTATTTGACACCTTATATTCTTTAGCAAA






CTAAGTATTGTATAAGCCAAACTGCACCTGGTGAC






ATTCATTGATTTCTTTCTTGCTCACCGACTTTCCTTG






AGATTCTAGCAACATCTTATTCTCCGTCTTCTAATGA






GTAAACTAGTTTTGATTCTGTTCATTCTTAATGTGTT






TGGCAGGCATATGGGCAATCTTAAGGAATAATGAA






ATGCTAACATGGCCAGAGAAAATCAAGTTTGCTAT






TGGTCTCTTACCTGCTATGGCTGGTGGACAGTCCTA






TGTCGAGGCACAAGATGGTTTAAGTGTTCAAGAGT






GGATGAAAAAACAAGTAGGAACAAACGATCATTTT






TAAAACCTTATTTTTCAAATTCCTTGATGATTGTCTA






GATTGTTAGTTCATTACATGTCTAACTTTAAACATT






GATGTTACAGGGACATCTATTTTATTTATTTTTGAA






AATTCCTTTTGCAAATTTTGTAGGGTGTGCCTGATC






GTGTTACAGATGAAGTATTCATTGCCATGTCAAAG






GCACTTAACTTCATAAATCCGGATGAACTTTCGATG






CAGTGTATCTTGATTGCTCTGAATCGATTTCTTCAG






GTATAGCCCCATTTCACTATCTGCTTTAAGTGTGTTT






TATTTTCAATTGAATTCGACCTGCTCAACTATATGG






AACTTAAGTAATTTTGATTTGAACTTATTGATACAA






ACGTATCAAAACTTACGATAATCTTTTTCAGTTTGA






TACACTATCGTTTTGTTTCTGAGAACTTTTTGTAAAT






TGGATTATATGTGATGTTAAAATTATGGAATTCACT






CAACAGGAAAAGCATGGTTCAAAAATGGCTTTCTT






GGATGGAAATCCTCCAGAAAGGTTATGCATGCCTA






TTGTTGAGCATATTGAGTCACTAGGTGGTGAAGTG






CAGCTTAACTCTCGTATTCAAAAGATAAAGTTAACT






CAAGATGGAAGTGTGGATAGCTTCTTGCTAACCAA






TGGGAAAGAAGTTAGAGGGGATGCTTACGTCTTTG






CTACTCCAGGTTTACTTTTCTTCTTTACCGAATGGGA






TTATTATTCAACTAGGAAATTATTGCCATTTTTAGTC






AAGACAGGCTCCTGAAGAAATTATTTATTGCCATCT






GTATTGTTCTCTGATATACCTTTAAATTTTTATTACA






GTTGACATCCTAAAGCTACTTCTTCCTGAAGAGTGG






AAAGAAATTTCATACTTCAAAAAGTTGGAGAAACT






AGTAGGAGTTCCTGTCATTAATGTTCACATATGGTT






AGTGATACCTCTTGTCTACAGGAATATAGTTTCTTA






ATGCTATAACCCAATCTTATGTGTCTTCTCTTACTCT






ATGTAATTTTATTTATGTATCTATCTTTCTCTTTCCAT






GTCCATGTATTTTGTTATTTCTGTCTTTGGCTTTTTA






GAATGGTTTGTCAGTATATCTTTGCAATTAGGCTCT






GATTTAATAGCCTACTACTATACGAAGTATATCATT






TCTTTGGTAGTATATTTTCTGTAGTTTGCGTTGAGA






GTTTGAGACTCCTATACGTAGAGCTTCATCTTAATA






AAATTTTATGTCTTGTAAAATCTGTCTGTTTTGAAAT






GTCAAAAAAGCTGTCAAAAGCTATTTCTCACCCTCT






CCTTATGAAGAACTTCAATGAAATCTCCTCTAATAT






TGGGACTGACATTTAACAACTGTTGGCTTGCAGGT






TTGATAGGAAATTGAAGAATACATATGACCACCTA






CTCTTCAGCAGGTGTGTTCAATTAAAGTGCTAAATT






CAATATCATTTTCATAGCACTCAAACAATACTCAAA






GATTATCCTTCCCTTTTTGTCCTTGTTTTATACTCATT






TCGTTTTCCCTTTTTTTGTTGGAAAGCACATTTTGTT






GAGCATATGCCATGAGCTGCATACTTGCATAAAAT






TGGGCAAAGGAGCCACAGTCATTTGATATGAAGTA






TGATTTAAGAATCCTCCTATGAAGTTAGAAAAGTTA






TGGTACTAGTTTTCTTTTACTGAGTGAACGGGGTAT






CCCTGCCAGCAATGTGTACAAGGATACTGGCTTGC






TGCAGAAAGATACTTTCAGTATTGATAAGATACAA






ATTGCATTTTTCTTTTGGATGAAATACAGTGAACTG






GCAATGGTGTCAGCTTGAACGTTGAGAATCCTTGA






TATCCATTTGATTCATGTTTTCACTTGTGCGTGGATT






TCACTCCTATAAGTTTGTCATTGCAGGAGTCCTCTTT






TGAGTGTCTATGCTGATATGTCAGAGACATGCAAG






GTAATTTCTCCTCAATTTTGTTCTTCATCATGTAATA






CATGCTGTCTCATTCGCAAACGTCTACTATGTGCTA






TTCAATCGAAGGCATATGTAATGTTATTTAATCAAA






AGCATATACTGTATATAAGTGCTTTGTCACTTCCAA






AACTATGTCTGTTTTTTAATCCCCTATCGATTTTTTT






ATTTGTTATTTATTTCTTAATTGTTTTGTTAGCTTGTT






ATATGTTTGTCTTTGAGACTTTTTGGTTGTTATCATT






GAACATCTTTATGACTTACTCCTTTCGGAATCAAGT






TACACATACAATGAAAGTGTGTATGATTAAATTTGT






CAATAGGCTATTATTTGTTTGAGTGATGAGGAGAT






GATAACTTTATTCCTACTATAAAGAAAAGGTCTACT






TTAAAACCTCGTCTTGTCATTAATTATGAGGGTTGG






ATGTTGGGATTGAGATAAATCAACTGATACCAGAA






CCCAGAAGGGGAAAATGCAGAAATACTACCTCATG






AGCTGTGGCTGACCTTTCTGTTCCCATGATCTTGTC






TTATTCTATGAGTATGAACTAAAGTAGTAGAGTGTT






CCCAATCTTTTGGAGCGTACAGGAATATTATGATCC






AAACCGGTCCATGCTGGAATTGGTTTTTGCACCTGC






AGAAGAATGGGTTTCTCGGAGTGACACGGACATTA






TTGAGGCAACAATGAACGAACTTGCCAAGCTTTTTC






CTGATGAAATCGCAGCTGATGGGAGCAAGGCTAA






GATCCTAAAATATCATGTAGTCAAAACTCCCAGGTG






AGATAATATGTACTATACTGCTCTGTATTAGTTAGA






TTTGGTAATCGTTTGTGGTATTAAGCAGACCTTATC






TGCTGAAAAGCAGTATCGATATTTACTACTGTTAAG






GTCTCTAACTGTTAATTCTTCCATTCCTTCACAGGTC






TGTTTATAAGACAGTTCCAAACTGTGAACCTTGTCG






ACCATTGCAAAGGTCACCAATAGAAGGTTTCTATTT






ATCCGGTGATTACACAAAGCAAAAATATTTGGCTTC






AATGGAAGGTGCTGTCCTGTCTGGGAAGTTTTGTG






CACAGGCTATTGTACAGGTAATGAGGTTTTGCTCA






AACATCATAAGCATGATATTCATGAGTTTCACTTCC






TATATCTCCTAGAATCCTCATGATATTGTTACTCTAT






AAATTATGTTTACTGAAAATTTAGTCCTATTATTCAT






TTGCAGGATTATGATATGCTTGTTGCTCGAGCACAA






AGAGAATTGGCAGGGGCAGGCAACGCCTGATTTG






AAATTCTTTGATATTTGCCCATTTTTTTCGTCGGAGA






TTTGGATTGGTGATCTTGTTCAGATCGAGTTCAGAT






CGATATTCAACTACTGGAAACAAACTCTGGGAAGC






ATTCTCAGTTATACTCAATTTTTTTTTCTGCTGTTCA






AGATGTATATGTGTAGCTTAATTGTAGGGAAACAT






GTACAGGCATGTACTCATAAGTGGTTTCAAATGTA






AGTAGTAATTCAATACATGTACTAACATTTCTGTGG






AAATAGGAAACTGTTTTAGAAGAGTGTCCCCTTTCT






ACTTCGTAAATGACATTTAGATTGTGGCTTTGTTGC






TGGGAGCATGGTCCGGCTTGGTTAGGAAGCACGA






GGCCATTGCCCGAATGCCGCCAATGTGGATTGATG






GATCTTCTCTTAGCTTCTTAAGGGGTTAGTCTTTTTC






CATGATACTTCCTCAGTTATTGAAAGAATGTAAACC






TTTTTTTTTTTTTTCATTTTGTCGTGAAACTTCGCAAT






TTTCAATCTTATACGTGTATGAAACTTCGATATTACT






TCTCCATATTTTTAATCACAACACGTATGGATTGCC






GGATTGGCAATAAAGTTGATGATAGAGAAAATATG






TGGGGGCATATGAAATTCTTGTGAGAGTAAAGTGG






TGGTCTTGTATACCATTTTAAAAACGTCGTAAACAT






TTTGAATCAACTCAAAAATATAAAAAGTGTCCCCTT






TATACTTCATTCATTTGCATTTGGACATCCCTTTCAA






ATATTGCTAAGCTTAGCTTAGCGATTAGGGTTGAA






CCTTTTAACCTTGAGGATGCAGGTTAAATTTTTACT






AAAGCATTTCGGGGTTTTTCTATTATTACTCTTTCCC






CCCTACTTTTAAAGCGTCTAGTCATCAAACTTACAG






CGGATCGATGTTTGAATACGATAACGTTATCCTACA






AAAAAGAAGAAAGGGTACCTCAACCCCAATTCCCC






AAGACCTACTCCCAAAGTCCAAAACAACATGAGTG






GATTTGCAAGTTGCAAATAGGCATTAGGCATATAT






TATTTGGGCAAAATAGTAGTAATTGGAGTTGCGTT






GTGCATTCTTTGAAGATTAACTACTTGAGTGTGCGT






GCAGTCGGTGCCGTCAGTAACAAACTACATACACA






TCACATCTCGAGGGATGAACCCCCCATTAAGCTACT






CTACAAGAACCATGAACCTCCATGGGGACACCCAC






ACTATGCTACTAAGCAAAATCCTTAACATCCTCGAC






TAGATATATACTTCTTCCGTTTCTTTTTACTGTAAAT






GCAACAAAAGTATCTTTTTGTTTTCACAAATGTCGA






TTTGGCTTGTAAAGCTTGTGAATTGGCTCGATTTTT






ATTTTTCTTTCGCAATTTCATAAAACTCGTTACACTT






TTCATTCTAAGATGGTCTCACATTACTTGTTATACTT






TTTTTTTTTTGTAATAAACTATTTATTATATATCTCTT






CTCACATGAGTCCTCCTTGCTTTTTTATTCTCTATCTC






CTCCCTCTCCAAAAATCAGTGAATTGAGAAATGTAG






CGAGTAATATGAAACGGAAGAAGTACTTTGGAAAA






CATTTGTACTATCAATACATACATGAAAACAATGAT






CCTATCTATTACATATATGACAAGATTAAGAAATTC






ACTGTCTATTAAAACCAACAAATTGAATATTAATTG






AAGAAGAAAAGAAAAACATAAAAACTGAAGGTAA






TAATGTACTGTATAAAACTTGTTCATGAATAGTTTG






AAAAAAG





68

Kochia scoparia

Genomic
10701
AATGCTTAAACAATTAAAATTAACATAATTTGTAGG






TGAGGCATGCTAGGTTTGATCAAATTTAGACATGA






GTGACGAATTGAGTCTTGCCTAATAGGATCAAACT






CATGATATGACATGCACTATGGATTATTTTGCATGA






GATTTTTATAAAACTTGATATAATCTACCTAACTAAT






GTATGTCCTGATTGACATTTGAGTTGTCCAACAACG






TGCCACGACATCAATTCAAGAGTTCTTCGAAGAAA






ATAAGTAAATAACCCCAATCTCAAGGATAAGGAGA






TTTGAAGGGTAAAAAAACTTGATCTACCCATTGAG






TAGACTACCCACCATTAATTGACAGGGTAGAAAGT






GGAAAATTCCTAGTCAATCCAATGGATTGATAATCC






AATGGCATTTTGGTAAATAAATGGAAAAAAAGAAA






AAAATAAATGGCAATGTTGTAAATAAAATATTTCAT






TTATTTACTAAAATACCATTGAATTGACAATTTTTGT






CAATCCATTGGATGGACTAGGCATCCCTCGTAGAA






AGTGGTGACAATAGAATTTCACTCAAGTTATAAAC






AATAGATATGTGTATGCGATCCATTAGGTAAATGT






AATCATGTCCGAGCCGAAGGGATCAAGCCTAGACA






CTAGTCAAGCTTGGGTTGGTAAAATGGTAAACACT






TCGTATGTATTGAAGTATTGTAAGTACATGAATAAC






CGTAAAGGCTCTAAAGCTACTACTACTACTAATTGG






GTAACCGCAATATGTGTGGACAGTTCGAAAGCCAC






ACAATTTGAGTGGCATTTTCCATTTTTCAATTCTCTC






TCTCTCTCAGTGGCTCAAACAGAAATCGCATTACAC






CCACATTCCACAAATGGCCCTTTGATAAAGCACTAA






ACCTACTCTACTCCTACACTCCTTCATCTAATCTCAA






TTTCCGTTACTTCTTTGGTTCTATTGCACACCCTTTT






ACACCCATTGCAGTTTATATTCCACTGAATTTCGTAT






TGCAAACCCAATTTACAAAAATTGCAGAAGAAAAT






GAGTCATTTTGGATATGCTTGTGCTACCCAATCCAC






TTCAAGATGTGTTCTTTTGGGCAATTCTGGTAACCC






CACTTCAGTTTCATCTCGTGGCAGTGATTTCATGGG






TCATTCTGTAAGAAATTTCAGTTTTAGCAAAAGACA






GAGAATTGGGCACTGCCCATTGAAGGTTCTATTGC






TTGCTTTCTTGTTTATGGATCAATTTTGTGGGATTTG






ATGAAAAGATTAGATTTTGTTTATAGTTGAATTAAT






CGAGAATTTTAATGTATGATGCAGGTTGTTTGTGTA






GATTATCCAAGACCAGAGCTTGAAGGTACAGTCAA






TTACTTGGAAGCTGCTTATTTATCTTCAACTTTTCGG






AATTCACCTCGTCCTCAAAAGCCGTTAGAGGTTGTA






ATTGCCGGTGCAGGTAAGTGGGATGTTTCCTGTAA






CTTGCTTTGTTCATTAGTTTCTTGTTCTTTTGCTTGTT






GCTTTATAAACTAGTGATGTTTGGTATGTGTTTGGT






GTAATCATTGTCTTACTGATATGGAAAGGATTATGT






AGGAGGGAAAAGGGTAGTGATAATTACTGGGTGT






TTGGCTAAGGATGTTCAGCATAGCATGGTTGTCTCT






TACAACCACACTCATGTATTACCATGGTAAGGGTTG






TACTTAGAAAATTGTTGTATTTGGCAATTGGCAATA






CAATGGAATTGAACCATATTTCATGAAGGACCCCCT






TTGGAGAGGGTAAGGTGGTTTTAATTGTATCCATA






GGTTTTCAAAGGGTGACAAGTGGAGGGAAATGGT






TACCTTCAGGAAATGAGGTTTGTTCCTACACTTACA






CCAAATGGTGTGCAATTACACCTTAAAATCCATTAC






CAAACACCCTTAGGTTTCGGTTTATCATCTGTTAGA






GGCCTACCAATGAGAATTTCCCTTACGTTAATGAAG






TAATGGGTTTTGACACCTTTTTTTTTTATGTTGCATG






TTCGAAATAAGCTTTGTAGTTTGAAGTAGCTTACGG






CTAATAGCTGTTATGCGGGAATATTGTGAATTGGA






AAAAGAATAAGAGAGTACTTGCTTCAAGGATCATA






AGGTTTATGATTGTTGGAATCATCTTTAGTGAAATT






TTGATTTTCAACTGATCTCTACGGTAACTATTGGTC






CTTCAAAATTCTAGACGCAGAATCGTTTAGGTGAG






GGTGAACTCTGATTATGAATAGTCAATGTCTCTCCC






AACGTGAAACTTATTAGTTCTAGCTGTTATGTGCTC






CAATTCGAGGAACATCGTGAATTGGAGAAAGAATA






CTGCTTCAAGGATCATGAGTTTATGATTGTCGTAAA






CTTCTCTTAGTTCTTTAGTGAAATTTCAGCAGATTTT






AATGGTAATTAGCAGTCCTTCAAAATCCTAGATGC






GGAATCATCTAGGGCATGTATATGGTAAACTCTCA






TGATAGATAACTAGTGTCTCCTCCATGTAAACTTTA






TTAGGTATTTTCTTTGTCAAAAAGAGTATTTTTCATT






GGAAAAACAATATAATGGTGACTACTGCATATGTT






TGGTTAGCTATTCCTGTTGCAAATCAGATTTTGAAT






GGAACATGTCTTATTCCCTTCTAGAGCTCTCCTGGT






GCAATTCTAGCATTTTCCCCTCAATAAGTGGTATTT






GAGCTAATATTTCAAGTCTAGACATTATAGCATGCT






ATAATGAGGCGGAATTGTTTGAGCCATGTTAAAGG






GTTCCATGACATGTAATATGCTAGTTTATGGCAGG






GAACAGGGAGTTGGGTCCTTGCCTTCATGGGAAAA






GAGAGATTGTTAGGTATTTCTTAAGTTTGCATGGG






AAAGAGTTCTTTTATCTTTATAGTGAAAGTTGACTA






GTATGCAAGTATGGTGGTGGATTACCCTTATTGCC






ATTTGGACTTGTATGCTATTTAGTGCATATACTTCA






GCCTAGCTTAATCTTGACAAAAATGCCTTGAGTTCT






AGTGGTTTGCTTTATTCATTGGTTGATTTGCTATTTC






TGCTAGTGAAATTAGAGAGAAAATTGATGCCTGTT






TCAGTGTTTCTCATCAAGGTAAATGGACAAAACTGT






CTATGTCTTGAAATTTTCTGTGAATACTCAAGCAGG






CTTCCTTGGTTTGCTTCAGGCTGATTTTCATTGCCTC






AGTTTCTGCTTGTTGGTATCAGAATAAAAATAGATA






CTTTTATGTATTTGTGAGAGATTTGTTGGTAGAACC






ACATTTATTCTGAGAAATATTTGTACAAATGGGAGT






TTAAGGTTATAAGTGTGTAAGCCTTTTGAGGTATTT






TGTTTTAAAAATCTTATCGTTATTTCAGAGCAGCAA






GTTACATATAGTAAACTTGGGAGCATTGGAGATGT






GATGGAATTAGATTCAATATATTTTATCATCAAGAT






ATGAGTTCTAATTCAAAACTTTCCTTCTAGGTTTGG






CTGGTCTATCCACAGCGAAGTACTTGGCAGATGCA






GGACACAAACCCATATTGCTTGAGGCACGAGATGT






TTTGGGTGGAAAGGTATGTGCTTATATGCTATTTTT






TCAGAAATATATCCTTTGTGCTTCTTCTCTTCTCAGT






TTATGTTGACTATAATAAATGAAACAGCTTAATTGT






CTTGGTTGTATGCTTTCATAGTATTATCTAGGCTAC






ATGGTTATACGGACATATATTATTGAGTGGAGTGA






TTTAGTCATCTTAAGTGGTTATTTACTTTTATTTTAT






AGCTGTTGAAGTTATTCATCATTCTGTACAATGTTA






AGTCAGTGTTAATGAGGTTTAGAGGGTAATGGACT






AATAGACAAGCTTTGTGCTGTGAACGGTTTGAGAA






CATGTGCTATTGGGACTGATGTTATGCAATGTTTGT






GGTAGTCTTCCTTCTTATGCATTTGTTTATTGTTACT






GTTTCACAGGTTGCAGCGTGGAAAGATGAGGATG






GTGACTGGTATGAAACTGGGCTCCATATATTCTGT






GAGTATAATATTTTGCTTTTCAGCTTAGATATCCTGT






TTAAGCTTCTAGTCCTACAATTTATGTTTTCTGCTGA






GTGGATTTTTGTAAAAGTTTTACGGGATCTGTGCAA






TTTCTGCCTTCTGATTCTGTTATTATTTGGAAGGGC






GTGATATTGTGACAATTTCAAAGTGGTTTCACTCCA






GACAAAAGTCAAACTAACAATTCAATGTACTGAAT






ACCCTTTTATTTTCTTGAAGTTGGGGCTTATCCAAAT






GTGCAGAACTTGTTTGGAGAACTTGGTATCAATGA






CCGATTGCAATGGAAGGAACATTCTATGATTTTTGC






AAGGCCTGACAAACCGGGTGAATTTAGCCGCTTTG






ATTTTCCTGAAGCCCTGCCTGCACCTTTAAATGGTG






AGTATTTGACACCTTATATTCTTTAGCAAACTAAGT






ATTGTATAAGCCAAACTGCACCTGGTGACATTCATT






GATTTCTTTCTTGCTCACCGACTTTCCTTGAGATTCT






AGCAACATCTTATTCTCCGTCTTCTAATGAGTAAAC






TAGTTTTGATTCTGTTCATTCTTAATGTGTTTGGCAG






GCATATGGGCAATCTTAAGGAATAATGAAATGCTA






ACATGGCCAGAGAAAATCAAGTTTGCTATTGGTCT






CTTACCTGCTATGGCTGGTGGACAGTCCTATGTCGA






GGCACAAGATGGTTTAAGTGTTCAAGAGTGGATGA






AAAAACAAGTAGGAACAAACGATCATTTTTAAAAC






CTTATTTTTCAAATTCCTTGATGATTGTCTAGATTGT






TAGTTCATTACATGTCTAACTTTAAACATTGATGTTA






CAGGGACATCTATTTTATTTATTTTTGAAAATTCCTT






TTGCAAATTTTGTAGGGTGTGCCTGATCGTGTTACA






GATGAAGTATTCATTGCCATGTCAAAGGCACTTAA






CTTCATAAATCCGGATGAACTTTCGATGCAGTGTAT






CTTGATTGCTCTGAATCGATTTCTTCAGGTATAGCC






CCATTTCACTATCTGCTTTAAGTGTGTTTTATTTTCA






ATTGAATTCGACCTATTCAACTATATGGAACTTAAG






TAATTTTGATTTGAACTTATTGATACAAACGTATCA






AAACTTACGATAATCTTTTTCAGTTTGATACACTATC






GTTTTGTTTCTGAGAACTTTTTGTAAATTGGATTATA






TGTGATGTTAAAATTATGGAATTCACTCAACAGGA






AAAGCATGGTTCAAAAATGGCTTTCTTGGATGGAA






ATCCTCCAGAAAGGTTATGCATGCCTATTGTTGAGC






ATATTGAGTCACTAGGTGGTGAAGTGCAGCTTAAC






TCTCGTATTCAAAAGATAAAGTTAACTCAAGATGG






AAGTGTGGATAGCTTCTTGCTAACCAATGGGAAAG






AAGTTAGAGGGGATGCTTACGTCTTTGCTACTCCA






GGTTTACTTTTCTTCTTTACCGAATGGGATTATTATT






CAACTAGGAAATTATTGCCATTTTTAGTCAAGACAG






GCTCCTGAAGAAATTATTTATTGCCATCTGTATTGT






TCTCTGATATACCTTTAAATTTTTATTACAGTTGACA






TCCTAAAGCTACTTCTTCCTGAAGAGTGGAAAGAA






ATTTCATACTTCAAAAAGTTGGAGAAACTAGTAGG






AGTTCCTGTCATTAATGTTCACATATGGTTAGTGAT






ACCTCTTGTCTACAGGAATATAGTTTCTTAATGCTA






TAACCCAATCTTATGTGTCTTCTCTTACTCTATGTAA






TTTTATTTATGTATCTATCTTTCTCTTCCATGTCCATG






TATTTTGTTATTTCTGTCTTTGGCTTTTTAGAATGGT






TTGTCAGTATATCTTTGCAATTAGGCTCTGATTTAAT






AGCCTGCTACTATACGAAGTATATCATTTCTTTGGT






AGTGTATTTTCTGTAGTTTGCGTTGAGAGTTTGAGA






CTCCTATACGTAGAGCTTCATCTTAATAAAATTTTAT






GTCTTGTAAAATCTGTCTGTTTTGAAATGTCAAAAA






AGCTGTCAAAATCTATTTCTCACCCTCTCCTTATGAA






GAACTTCAATGAAATCTCCTCTAATATCGGGACTGA






CATTTAACAACTGTTGGCTTGCAGGTTTGATAGGA






AATTGAAGAATACATATGACCACCTACTCTTCAGCA






GGTGTGTTCAATTAAAGTGCTAAATTCAATATCATT






TTCATAGCACTCAAACAATACTCAAAGATTATCCTT






CCCTTTTTGTCCTTGTTTTATACTCATTTCGTTTTCCC






TTTTTTTGTTGGAAAGCACATTTTGTTGAGCATATG






CCATGAGCTGCATACTTGCATAAAATTGGGCAAAG






GAGCCACAGTCATTTGATATATATGATTTAAGAATC






CTCCTATGAAGTTAGAAAAGTTATGGTACTAGTTTT






CTTTTACTGAGTGAACGGGGTATCCCTGCCAGCAA






TGTGTACAAGGATACTGGCTTGCTGCAGAAAGATA






CTTTCAGTATTGATAAGATACAAATTGCATTTTTCTT






TTGGATGAAATACAGTGAACTGGCAATGGTGTCAG






CTTGAACGTTGAGAATCCTTGATATCCATTTGATTC






ATGTTTTCACTTGTGCGCGGATTTCACTCCTATAAG






TTTGTCATTGCAGGAGTCCTCTTTTGAGTGTCTATG






CTGATATGTCAGAGACATGCAAGGTAATTTCTCCTC






AATTTTGTTCTTCATCATGTAATACATGCTGTCTCAT






TCGCAAACGTCTACTATGTGCTATTCAATCGAAGGC






ATATGTAATGTTATTTAATCAAAAGCATATACTGTA






TATAAGTGCTTTGTCACTTCCAAAACTATGTCTGTTT






TTTAATCCCCTATCGATTTTTTTATTTGTTATTTATTT






CTTAATTGTTTTGTTAGCTTGTTATATGTTTGTCTTT






GAGACTTTTTGGTTGTTATCATTGAACATCTTTATG






ACTTACTCCTTTCGGAATCAAGTTACACATACAATG






AAAGTGTGTATGATTAAATTTGTCAATAGGCTATTA






TTTGTTTGAGTGATGAGGAGATGATAACTTTATTCC






TACTATAAAGAAAAGGTCTACTTTAAAACCTCGTCT






TGTCATTAATTATGAGGGTTGGATGTTGGGATTGA






GATAAATCAACTGATACCAGAACCCAGAAGGGGA






AAATGCAGAAATACTACCTCATGAGCTGTGGCTGA






CCTTTCTGTTCCCATGATCTTGTCTTATTCTATGAGT






ATGAACTAAAGTAGTAGAGTGTTCCCAATCTTTTGG






AGCGTACAGGAATATTATGATCCAAACCGGTCCAT






GCTGGAATTGGTTTTTGCACCTGCAGAAGAATGGG






TTTCTCGGAGTGACACGGACATTATTGAGGCAACA






ATGAACGAACTTGCCAAGCTTTTTCCTGATGAAATC






GCAGCTGATGGGAGCAAGGCTAAGATCCTAAAATA






TCATGTAGTCAAAACTCCCAGGTGAGATAATATGT






ACTATACTGCTCTGTATTAGTTAGATTTGGTAATCG






TTTGTGGTATTAAGCAGACCTTATCTGCTGAAAAGC






AGTATCGATATTTACTACTGTTAAGGTCTCTAACTG






TTAATTCTTCCATTCCTTCACAGGTCTGTTTATAAGA






CAGTTCCAAACTGTGAACCTTGTCGACCATTGCAAA






GGTCACCAATAGAAGGTTTCTATTTATCCGGTGATT






ACACAAAGCAAAAATATTTGGCTTCAATGGAAGGT






GCTGTCCTGTCTGGGAAGTTTTGTGCACAGGCTATT






GTACAGGTAATGAGGTTTTGCTCAAACATCATAAG






CATGATATTCATGAGTTTCACTTCCTATATCTCCTAG






CATACTCATGATATTGTTACTCTATAAATTATGTTTA






CTGAAAATTTAATCCTATTATTCATTTGCAGGATTAT






GATATGCTTGTTGCTCGAGCACAAAGAGAATTGGC






AGGGGCAGGCAACGCCTGATTTGAAATTCTTTGAT






ATTTGCCCATTTTTTTCGTCGGAGATTTGGATTGGT






GATCTTGTTCAGATCGAGTTCAGATCGATATTCAAC






TACTGGAAACAAACTCTGGGAAGCATTCTCAGTTA






TACTCAATTTTTTTTCTGCTGTTCAAGATGTATATGT






GTAGCTTAATTGTAGGGAAACATGTACAGGCATGT






ACTCGTAAGTGGTTTCAAATGTAAGTAGTAATTCAA






TACATGTACTAACATTTCTGTGGAAATAGGAAACT






GTTTTAGAAGAGTGTCCCCTTTATACTTCGTAAATG






ACATTTAGATTGTGGCTTTGTTGCTGGGAGCATGG






TCCGGCTTGGTTAGGAAGCACGAGGCCATTGCCCG






AATGCCGCCAATGTGGATTGATGGATCTTCTCTTAG






CTTCTTAAGGGGTTAGTCTTTTTCCATGATACTTCCT






CAGTTATTGAAAGAATGTAAACCTTTTTTTTTTTTTT






CATTTTGTCGTGAAACTTCGCAATTTTCAATCTTATA






CGTGTATGAAACTTCGATATTACTTCTCCATATTTTT






AATCACAACACGTATGGATTGCCGGATTGGCAATA






AAGTTGATGATAGAGAAAATATGTGGGGGCATAT






GAAATTCTTGTGAGAGTAAAGTGGTGGTCTTGTAT






ACCATTTTAAAAACGTCGTAAACATTTTGAATCAAC






TCAAAAATATAAAAAGTGTCCCCTTTATACTTCATTC






ATTTGCATTTGGACATCCCTTTCAAATATTGCTAAG






CTTAGCTTAGCGATTAGGGTTGAACCTTTTAACCTT






GAGGATGCAGGTTAAATTTTTACTAAAGCATTTCG






GGGTTTTTCTATTATTACTCTTTCCCCCCTACTTTTAA






AGCGTCTAGTCATCAAACTTACAGCGGATCGATGT






TTGAATACGATAACGTTATCCTACAAAAAAGAAGA






AAGGGTACCTCAACCCCAATTCCCCAAGACCTACTC






CCAAAGTCCAAAACAACATGAGTGGATTTGCAAGT






TGCAAATAGGCATTAGGCATATATTATTTGGGCAA






AATAGTAGTAATTGGAGTTGCGTTGTGCATTCTTTG






AAGATTAACTACTTGAGTGTGCGTGCAGTCGGTGC






CGTCAGTAACAAACTACATACACATCACATCTCGAG






GGATGAACCCCCCATTAAGCTACTCTACAAGAACC






ATGAACCTCCATGGGGACACCCACACTATGCTACTA






AGCAAAATCCTTAACATCCTCGACTAGATATATACT






TCTTCCGTTTCTTTTTACTGTAAATGCAACAAAAGTA






TCTTTCTGTTTTCACAAATGTCGATTTGGCTTGTAAA






GCTTGTGAATTGGCTCGATTTTTATTTTTCTTTTGCA






GTTTCATAAAATTCGTTACACTTTTCATTCTAAGATG






ATCTCACATTACTTGCTATACTTTTTTTTGTACTAAA






CTATTTATTATATATCTCTTCTCACATGAGTCCTCCT






TGCTTTTTTATTCTCTATCTCTTCCCTCTCCAAAAATC






AGTGAATTGAGAAATGTAGCGAGTAATATGAAATG






GAAGAAGTACTTTGGAAAACATTTGTACTATCAATA






CATACATGAAAACAATGATCCTATCTATTATATATA






TGACAAGATTAAGAAATTTACTGTCTATTAAAACCA






ACAAATTGAATATTAATTGAAGAAGAAAAGGAAAA






CATAAAAACTGAAGGTAACAATGTACTGTATAAAA






CTTGTTCATGAATAGTTTGAAAAAAGGTTCGAACA






ACAATTGGTCAAAACTTAAATTAACAAACTCAAAGT






CGAGATTAAGCTCGAGTAAACTTAAACAAACACTA






ACCGAGCTTATTTTTTTAGTTTTTTTAATAAAATCAC






AAAACATTAGAAAAAAAAATCTAGAATACACCAAG






TGTAACAAAGAAATGTTGTCCTTTTACTCGAATAAG






ATTCACAAGCCTTATACAAATCCTTAATTAGCATTA






CATTATTTACATGATACATTGCATTGGGGCACAATT






ATATAACCAAGGATCATGATAACCCACCATTATTTT






TTCAATTAGATAAGTTGATACCATTGCTTAAAATCT






TAACAAAAAATCTATATATCAACCTTAATAAAATTT






AAAATATAAGGTTTACAATATTATTTAATAAAATTG






ATATCAACATTCTTAGCTTTTTGGTGCATGTTGTAA






CTTAGAAAATGGTTTGATTTTATTTTCATGCACCAC






AAATGAGGCTAATCATCTCACTTCAACTCACACATA






CAAGAGCTGTTATGAACTCCTATTCTGAAGCCCAAT






TTACTGAACCTTGAGATTGAGATTAAATTTGTCCTT






TTATTTGAACCTTAAAGTGTAATTAAAGTTTAAAGT






TTTTGTTCTAATAATAATATTCCTTAAACAGATATTT






TTTTTTTATATGATTGTTCTCTTTAAGATGCATGTTT






AGAAGCAATAATTCTCACATATTTAAGAAAGTGCTA






ATTTGAGGTAATTGTGTTGGATGATTGGGTGCGAA






TGAGCCGCAATGCTGAATAACGGACTTTTATTAATA






TTAACCATTAAACCAAGACTTCATAATAACCCCCTA






TGAAATGTCCCTTATACCCTTAATGAATTAAATTAC






AATATTTAAAAAAAATTAATAATATATTTTTACTCTT






CAATTGTCAATTTGCCATAAATGTTGAATAAGTTTA






ATA





69

Lolium

cDNA
1685
GCGCTTATCGTTGATTAAACCAGGGCTGACAAGAA




multiflorum



TCTACCAGCAGCTGCTTCATTATGGATACAGGCTGC






TTATCATCTATGAACATAACTGGAGCTGCGCAAGT






GCGGTCCTTTGTGGGACAACTTCATACACAGAGGT






GCTTCACAAGCAGCAGTGTCCAGCCGCTGAAAAGT






AGTTCTCCAACGAGCGCTGGTTTGGCGTCTCTTGGC






TCAAGGAATAGAGGGAAAAAATCACGCCGTGGGC






TTGCTGCTCTGCAGGTTGTTTCCCAGGATTTACCAA






GACCTCCACTGGAAAACACAATTAACTATCTGGAA






GCTGGGCAGCTTTCTTCATCTTTTAGAAGCAGTGAA






CGACCCAGTAAACCATTACAGGTCGTGATTGCTGG






TGCAGGATTGGCTGGACTATCAACTGCAAAATATC






TAGCAGATGCTGGCCATAAACCCATATTGCTAGAG






GCAAGAGATGTTTTGGGTGGAAAGTTAGCTGCTTG






GAAGGATGAAGATGGTGATTGGTATGAGACTGGT






CTTCATATTTTCTTTGGAGCTTATCCCAACGTACAG






AATTTGTTTGGTGAGCTTGGTATTAATGATCGCTTG






CAATGGAAGGAACACTCTATGATATTTGCCATGCC






AAACAAGCCAGGAGAATACAGCCGTTTTGATTTCC






CAGAGGTTTTGCCAGCGCCTTTAAACGGAATATGG






GCCATACTGAAGAACAATGAAATGCTTACTTGGCC






GGAGAAGGTGAAGTTTGCTATTGGACTTCTTCCAG






CAATGCTTGGTGGCCAAGCTTATGTTGAAGCTCAA






GATGGCTTAACTGTTTCAGAGTGGATGGAAAAGCA






GGGTGTTCCTGATCGAGTCAACGATGAGGTTTTTA






TTGCAATGTCCAAGGCACTCAATTTCATAAACCCTG






ATGAGTTATCCATGCAGTGCATTCTTATTGCTCTAA






ACCGATTTCTCCAGGAGAAGCATGGCTCAAAAATG






GCATTCTTGGATGGTAATCCACCTGAAAGGCTATG






TATGCCTATTGTCAACCACATTCAGTCTTTGGGTGG






TGAGGTCCGCCTGAACTCTCGTATTAAGAAAATTG






AACTGAACCCTGACGGGACTGTGAAGCACTTTGCA






TTGAGTGATGGGACTCAAATAACTGGAGATGCTTA






TGTTTGTGCTGCACCAGTTGATATCTTCAAGCTTCTT






GTACCGGAACAGTGGAGAGAGATCTCTTATTTCAA






GAGGCTGGATAAGTTGGTGGGAGTTCCTGTCATCA






ATGTTCATATATGGTTTGACAGAAAACTGAAAAAC






ACATACGACCACCTTCTTTTCAGCAGGAGTCCACTT






TTAAGCGTCTATGCAGACATGTCAGTAGCGTGCAA






GGAGTATTATGATCCAGACCGTTCAATGCTGGAGT






TGGTGTTTGCTCCAGCAGAGGAATGGATTGGACGT






AGCGACGCTGAAATCATCGAAGCAACCATGCAAGA






GCTAGCCAAGTTATTTCCTGATGAAATTGCTGCTGA






TCAGAGTAAAGCAAAAATTCGTAAATACCATGTTG






TGAAGACACCGAGATCTGTTTACAAGACCATCCCA






GATTGTGAACCTTGCCGACCTCTGCAACGATCACC






GATCGAAGGGTTCTATCTGGCTGGCGATTACACGA






AGCAGAAATATTTGGCTTCCATGGAGGGT





70

Lolium

Genomic
1670
AAGGAAACAGTGCACCAGCGTCGTCGTCGCCCGAC




multiflorum



CAAAGGTCTTAGATTTTCACCCTGAAGATAGTCCCC






ACTCTCAAAACAATGCCTCCAACAAGAACATTGCCA






GGCACAACCAGTTAAGGCCNNNCCTTGGGTTTTCA






CCCTGAGAGGTAAGACTCTGAGCTTCCCCTGTGCT






GCCGCCCCCNNATGCATACCACTGCTGCAGAGCCT






GGAACGCCGAGCAGATCCCTCAGCATCACGGAGAC






TCAAACCTCCTTTAGCCAGTCCACCAATCTGGCCTT






CATGATATTCCTTCTTCTGACTTCACCATGGACCAA






AAAGTCACCTGATGTACACACAGAATAGAGCTTCG






CGCCGCTCCTTCCGGAACCAAACGGTCGGAATAAA






AACATGGGTGCGCGCGACCGAATACCACCTGATCC






AGCAAACTGCAGGCAAAAGATGCACTGTTCCATTC






ACCAGCGGAGCTTTCCGGAACTCATCTCTCCAGCTA






GATCAAAGCAAACTGATCTCCGGAAGATCTTCATCC






TCGCATGCGAGAAACCCGAGGACCGCCACCAAAAA






CAAAGAAAGATCAGCAGCCCCCACGCCGCCAATCC






CTCTTGCCGGATCACCAAAGAAGAGGACAGCGACG






CAGATCATGCGTACGGCCGCCAAACCGTTACCGGG






GGCGGAGGCCGCCACCGCTCCACCGAATCCTCCAT






GGCTACCGACGGAGAGCCTCAGGCCCCAGCCAAGT






AGCCGTGCCGCCCGGCTTCCTCCACTGGCGCTACAT






CACCTCCCATGGAACGCCGCCGCGGAAACCCTCTT






CTCCCCCTCGTCGATTCGACGAAAGGGGTGCCGCC






ACCACCGCTAGAGCCAGGCCGGGACCGGGGCCGA






GGCACGGGGGCCGGGGCCGAGGCCAGCGCCGGG






GTCGGGGCCGCGGCCGGAAGCGGCAGCGGCTGA






GGGCGACGGGCGGCGGGTGGATGTAGGCCGCGG






GGGGAGGAGGAGCCTCCGCCGCCGCCCGGGAGG






GGGGCGGGAGAGGGGGGCGGCGGGTTAGGGTTA






GGTGAGTAGCCCCAGATGAGTCAAACTTCTATTGT






TGTGTTGGTGCGTTATGGTATGGCATTATTGTGGTC






TAATCACCTCTCTGCTTGCAGGATTCTAAATTGTTG






TCCCGTAGGAGCCAGGAAAGCCTGAAGACAAAATC






CGAAGTTCCCGTCGCTTCCTAGGTGTATTTAATTAG






CACACAAATCATTCTTAGCACATTCTGTGGTATTTTC






ACACTGTTGTAGAGTTGAACAGGTGATTGAGCTGA






TATCCATATTGTGAAAAAGGAAATCTGTAAAACGA






GAAGCTGCATAAAAGCAGCTCTGATCCATATAGCA






ATTCTTACGTTAGACCTTTCCGGAAGGCAAAAGTG






ATAAAAAAAGGATCTTAGATATTATCTTCGTTTGCA






ACAATTGGAACTGGATCATTAACCGCTTACTTTTCT






GGAATTGTATAACATTAAAACCTAAGGTTCGTGTC






AGCAAAAGGGGATGAAATCATGGATAATATCCTAG






CATCTAAATCTTGTAAGCAAATGGGATTTATGATAT






TTGGCAGTTGCAACACCAAGCTGCAGTTACAAAAA






GGAGGCACAGAGACAGGCCCTGAGATAGATGATG






GGGCCTCAGTAAGTGAGATATT





71

Lolium

Genomic
1612
CAAAAGTTCAGAACAAAAAAATAGAGAGAAACAC




multiflorum



CAAAGTTGTTTCTCTGAAACCGTCATGCCATTCTTT






AAAAGGAAGAAGAGGTATTTTCAAAACATCGTGCT






TCACTGCTTCTGCTGATTATGTGCATATACAAAGTT






ATAAGTTCATTGGAAACGATACTAGTTAGCCTTTAG






ACATGCATTTGGATCCCTGCTTTGTTTCATGTTGTTA






GCAAATTCCTACACCCTTGAAATAAAAAGATTATTA






TCTTGCTGTTCTTTTAAAGGGTAACTTGATTGTGAA






CGTGATGCCGGCGGGCTGGACAGATGGGAGGCAC






AGACTTTATATAAGCTCCATGGAAGCCTCTTTCATC






GATCAACTCTACGGCTACAAAGTAAATCAGAAAGC






CCATGACTTGAAAATCATCCGCGGTGGAGTGTTGG






GGAAACTCAAATCGCAGAGGACCAATGTTCGTGCT






CCAGTAACGGGTGAATGCCTCCTGCCTGCAAACCC






GTGGATGCGTGACTGCAGCAGCAGCAGCAGCAAT






GCAAGAAGTGATGTAGCAAAAACCGCAGTGGGTG






ATCACGAGTCTGGTATATGGACTATCCATGGGAGG






AGTCCGCTGTCGCATGAAAGGGAATTGGGAGCTTG






CAATGGAGAAAAACTTCTCCATGATAATACAGGTA






GCTATCTCAGTTACCTCATTCAACTTCCGGTGTATC






ATATGTTTTCAACACTAGCTGATTTTATGGAAGATG






CATGAACAATTCAAAAATCAATTGTGTGTAAGCTCC






AAGATGCTGTCTGTCTGAACGTACCTATGTTAGCAA






TAAGCTCGTAAAAGTTAGACTGCTAACCATGCTCTG






AAGCAGTCTGCTACGAAGAACTAAATATCTGATGC






CATTTTTTTTCTCTCCCTGCAGAGGTCTCTGATGAG






AACTTTTCTGACTACGAGACGAAACTCGATGCGGA






ATCAAGTAAATTGTGCAAGAAAAGGAGGTTAAGCA






GTACTTCCACTTACTGAATGATCAAATGAGCTCGCA






TGATTAATTAGCATATAGTGTGTTGCAAGCATTGA






GATGAAAAGCAACACACCGAATTACTCAAAGAACC






TGTTTGCTGCCTCAAAATCTGTTCGGAGCCTGTTTG






TATCCTGTCAGACGCCCTCACTCACTACTTGGAGTA






GTAGATAATATTGTTTCGTTTATTGGATGCAAATGC






AATGCATTCTATAAAGTTTGACTAATTATATGGAAA






AAAATTAACAACTAAAATATCATATCACTGTTATTA






GAACCACCATGGAATATATTTTCATAGTATATGCAT






TTGGTATTGCGATGTATGCTGAAATAGAGTGGGTA






TTATCTCTAGGAGGCTTCTTCCTTTCAAGTCAAGTTT






TGTATCCCGATATATACTCACCCGAGACCGAGAGA






CACCGATACAACAATGTCCAAAGAGTAACGTCAAT






TTCATACTCTTTCAGGAACCATGCATCTAAGGCAAA






CGTTGTAATTAATCAATAAGGTACAATATGAGACC






AGAGTGTGGTGCTTGGCCGGGGCCAAATATTTTAG






TAATGTAATCCCAAGAGAGTAGTATGTCGTGTAAT






GCCTAGGATTTGTCTGA





72

Lolium

Genomic
1352
AACTGAACCCTGACGGGACCGTGAAGCACTTTGCA




multiflorum



TTGAGTGATGGGACTCAAATAACTGGAGATGCTTA






TGTTTGTGCTGCACCAGGTGTGATTTATTTTCAAGA






ATCATGTTTTCTTTACACCTGTTCAGTTTAACTGACT






AGCCTGTTATTCAGTTGATATCTTCAAGCTTCTTGTA






CCGGAGCAGTGGAGAGAGATCTCTTATTTCAAGAG






GCTGGATAAGTTGGTGGGAGTTCCTGTCATCAATG






TTCATATATGGTGAGTTGATTGAAACTATTGGTTCT






AAGTCAAGACAACTTCGTGTTTTTCGGTTCGACTTA






TATGGTCCTGCCTCATGTGTTATTTCAGGTTTGACA






GAAAACTGAAAAACACATACGACCACCTTCTTTTCA






GCAGGTATTCCTTTCTTCATACTCATCTTCCTGTTGG






CACCTAGTGCATTTTGTTGTCTTGTATTCAAATTGA






GCGTCTTCAATCCTACCCCTACATGCTTTGAATGTG






TTTTTGTTTGATACCAAGTACCAGATGTCCCTTATGT






TGATCTTGTTCACTTCTGTTTCAGGAGTCCACTTTTA






AGCGTCTATGCAGACATGTCAGTAGCTTGCAAGGT






ACTAACTCAAGGAGTTATTAATATTGCATAGATACT






AATATGAGGCATGTGATCCTGCATTCTTCTTGGAAT






CCACCATATTAAGTATTGATTGCGGGTTAACCGGA






ATTGTACTTTGAGGACTATTGACCAAAGGCCCAAA






ATGCTTTTGCTAAGAAGGAATCATTATTGAACTTAA






AATTATAGATACCTTTGGCATTGCAAATTGTAGTTA






TAAATTACTGAAGTATAGCATTTTTGTCATTGCTAA






CATGTCCGTTGGCTGTTGATTTCGTGAATCATTTTA






GTTAGAATAACTGAATAACCGTGCTAGCTTAACTG






AAAGAACGAAGGACATGGATGCATACTCGTAATTT






TATTTTTTCCTTGTTCTTTAACTCTATGCAGGAGTAC






TATGATCCAGACCGTTCAATGCTGGAGTTGGTCTTT






GCTCCAGCAGAGGAATGGATTGGACGTAGCGACG






CTGAAATCATCGAAGCAACCATGCAAGAGCTAGCC






AAGTTATTTCCTGATGAAATTGCTGCTGATCAGAGT






AAAGCAAAAATTCGTAAATACCATGTTGTCAAGAC






GCCGAGGTGAGGACATTTTGCTAACACCCATCCTG






TTGATTAATCAAAAGGACACCTGATGTGGTCTTGTT






CTCTTACACTGTTTATATTTTTCTGGCTCGCTGTTAC






AGATCTGTTTACAAGACCATCCCAGATTGTGAGCCT






TGCCGACCTCTGCAACGATCACCGATC





73

Lolium

Genomic
1210
CCTTTGTACTCTGTGTATAGGTTATATCCATTGGCA




multiflorum



GTGTACAGATAGTATTTGATGCCTCAGACAAATAT






GTACACAATAATAAGATAGAACACCTTGAGTGAAG






TACAAAGTGATTTTTGAGTAGTCACATTGAGGTTCT






GAAATTGCAAATAAGAGAAGAGTTTCATACTGTCA






AATTTTTAGCTTGTTTGCATTTTATTAATGGGCCTTA






TTCTCTTAATAATATTTTTACCGGGTTTTTTGCGTGA






CTGTATGAAAATATATAAGGGATTCACGCATACAG






TAGCTTAGATTTTAATGTTCCATACATCATTGTTGG






CCTGGTTGAATTTTTTTTTGTCTATAAATTCTCTTCT






ACCAGCCTTTTCTCCCTGCCGGTAGCTTGTGTACGG






TACTTCTCATTCTGTGCATGTATGTAACCATATGTTT






TTTTTTTGGGTTTTAAGTTGGAGCTTATCCCAACGT






ACAGAATTTGTTTGGTGAGCTTGGTATTAATGATCG






CTTGCAATGGAAGGAACACTCTATGATATTTGCCAT






GCCAAACAAGCCAGGAGAATACAGCCGTTTTGATT






TCCCAGAGGTTTTGCCAGCGCCTTTAAACGGTAAG






ATCATACATAGCCCTGGTGTTGCTTAATAGATGAAA






GAATGGCAAGAAAACTTAGGAATGCATCCTAGTGT






TAGTTCTTTCATTTTGCTAATATTTGAATGCAACTAG






TGGGGTATGTTAGTGCAAACAACATTGTCATGGCC






ATCCAGCTGTTCTCTTCCCATCAATGTCAGTTTATCA






TTGATTATGCATGTATTTAACAGGAATATGGGCCAT






ACTGAAGAACAATGAAATGCTTACTTGGCCGGAGA






AGGTGAAGTTTGCTATTGGACTTCTTCCAGCAATGC






TTGGTGGCCAAGCTTATGTTGAAGCTCAAGATGGC






TTAACTGTTTCAGAGTGGATGGAAAAGCAGGTATG






AGCCCACCAAGTCAGTTAGACTCATCTCTTTGTACT






GAACACATAGCCGTCTCAATTCACACTTGATATATG






AGGATATGTTGTAACGCGATAAATTGCTGCCTTCCT






TCTATTGTTATATTTTTATGAAGAAGTGTGGCTAGG






TCCATAAATGAAACTATATGCTCAAGTTTCCATACT






TTTTTCCACCCAGCCCTTTTGTATGCAATGTAGGCTT






AAGTAATACTTATATTTCTATTAATC





74

Lolium

Genomic
1057
TCTTGGCTCAAGGAATAGAGGGAAAAAATCACGCC




multiflorum



GTGGGCTTGCTGCTCTGCAGGTTAAGATTTCGTCCC






TGTTCGGAAAATAAAGTGGTTTCTCTATTTTATCTC






ACCACAGCCGTTTCTTGTGAAGTAATTGTTTGCATT






TTCTGCAGGTTGTTTCCCAGGATTTACCAAGACCTC






CACTGGAAAACACAATTAACTATCTGGAAGCTGGG






CAGCTTTCTTCATCTTTTAGAAGCAGTGAACGACCC






AGTAAACCATTACAGGTCGTGATTGCTGGTGCAGG






TCTGATGTAACTCCTGGATTAGAACATATATGAATT






TCACAAATTAGATACCCCCCCTGAGTGAAGCACAA






CTGCCTCTTAGCGTTACTCGTCTCTGGTGTGAATTG






TGCAGGATTGGCTGGACTATCAACCGCAAAATATC






TAGCAGATGCTGGCCATAAACCCATATTGCTAGAA






GCAAGAGATGTTTTGGGCGGAAAGGTCTGATAGTT






TCTTACATCTGTTGCTTATCTCATCTCTAAAATTGTG






CTGGTTATTTAATCTGACTTTTCAGTTGCTGTCGTCA






TTCTGAGTAGCTCACCTTCACCATTATTGTTGCTTGA






TTGCTTCTATCCTTGTATGCCTTCAACAGTTAGCTGC






TTGGAAGGATGAAGATGGTGATTGGTATGAAACT






GGTCTTCATATTTTCTGTAAGTTACGGTACTTCCTTG






TTCCTTTGTGCCCTGTGTATAGCTTGTTTCCACTGGC






AGTGTATAGATAGTATTTGATGCGTCAGACAAATA






TCTACATAATAATAAGATAGAATACCTTGAGTAAA






GTACAAAATGATCTTTGAGGAGCCACATTGAGGTT






CTGAAATTGCAAATAAGTGAAGAGTTTCATACCGT






CAAATTTTTAGGTTGCTTGCATTTTATTAATGGGCC






TTATTCTCTTAATAATATTTTTAGTGGGTTTTTTTTTT






GTGTGACCGTATGAAAACATATAGCTTAAATTTCAA






TGCTGTGCATGTATGTAACCATATTTTTTTTTGGGTT






TTAAGTTGGAGCTTATC





75

Lolium

Genomic
999
ATTACAGATACCTTTGGCATTGCAAATTGTAGTTAT




multiflorum



CAATTACTGAAGTATAGCATTTTTGTCATTGCTAAC






ATGTCAGTCGGCTGTTGATTTCGTGAATCATTTTAG






TTTGAATAACTGAATAACCGTGCTAGCTTAACTGAG






AGAACGAAGGACATGGATGCATACTCGTAATTTTG






ATTTTCCCTTGTTCTTTAACTCTATGCAGGAGTATTA






TGATCCAGACCGTTCAATGCTGGAGTTGGTGTTTG






CTCCAGCAGAGGAATGGATTGGACGTAGCGACGC






TGAAATCATCGAAGCAACCATGCAAGAGCTAGCCA






AGTTATTTCCTGATGAAATTGCTGCTGATCAGAGTA






AAGCAAAAATTCGTAAATACCATGTTGTGAAGACG






CCGAGGTGAGGACATTTTGCCAACACCCATCCTGTT






GATTAATCAAAAGGACACCTGATGTGGTCTTGTTCT






CTTACACTGTTTATATTTTTCTGGCTCGCTGTTACAG






ATCTGTTTACAAGACCATCCCAGATTGTGAGCCTTG






CCGACCTCTGCAACGATCACCGATCGAAGGGTTCT






ATCTGGCTGGTGATTACACGAAGCAGAAATATTTG






GCTTCCATGGAGGGTGCAGTTTTATCCGGGAAGCT






CTGTGCCCAGTCCATAGTTCAGGTAAATGCTTTCCA






CGGTTCTGGTTGCACATAGATGAGTCAAACTTCTAT






TGTTGTGTTGGTGCGTTATGATATGGCATTATTGTG






GTCTAATCACCTCTCTACTTGCAGGATTCTAAATTG






TTGTCCCGTAGGAGCCAGGAAAGCCTGAAGACAAA






ATCCGAAGTTCCCGTCGCTTCCTAGGTGTATTTAGT






TAGCACACAATTCATTCTTAGCACATTCTGTGGTAT






TTTCACACTGTTGTAGAGTTGAACAGGTGATTGAG






CTGATATCCATATTGTGAAAAAGGAAATCTGTAAA






ACGAGAAGCTGCATAAAAGCAGCTCTGATCCATAT






AG





76

Lolium

Genomic
677
TTCAACAGTTAGCTGCTTGGAAGGATGAAGATGGT




multiflorum



GATTGGTATGAAACTGGTCTTCATATTTTCTGTAAG






TTACGGTACTTCCTTGTTCCTTTGTGCCCTGTGTATA






GCGTGTTTCCACTGGCAGTGTATAGATAGTATTTGA






TGCGTCAGACAAATATCTACATAATAATAAGATAG






AACACCTTGAGTAAAGTACAAAATGATCTTTGAGG






AGCCACATTTAGGTTCTGAAATTGCAAATTAGTGA






AGAGTTTCATACCGTCAATTTTTTAGGTTGCTTGCA






TTTTATTAATGGGCCTTATTCTCTTAATAATATTTTT






AGTGGGTTTTTTTTTGCGTGACCGTATGAAAACATA






TAGCTTAAATTTCAATGTTCCATACATCGTTGTTGG






CATGGTGGAATATTTCTTTTGTCTATAAATTCTCTTC






TACCAGCATTTCCTCCCTGCCAGTAGCTTGTGTACG






GTATTCATTCTGTGCATGTATGTAACCATATGTTTTT






TTTTTGGGGGGGTTTAAGTTGGAGCTTATCCCAAC






GTACAGAATTTGTTTGGTGAGCTTGGTATTAATGAT






CGCTTGCAATGGAAGGAACACTCTATGATATTTGC






CATGCCAAACAAGCCAGGAGAATACAGCCGTTTTG






ATTTCCCAGAGGTTTTGCCAGCGCCTTTAAAC





77

Lolium

Genomic
653
AGTACCTCTCCGAGCTCCACATATTAGCCTTGGGTG




multiflorum



TTTCTGCCTCCTTTGGTCGATCCTTCTCTGTGTCTGA






TGATCACCGGGGAGATGAGCGAAACGTCTGTGGA






TGGACCGCTTAAGGCACAGCCACCGGCCATCCGCA






TTCCTCAGGTAACAACAACTCCTCTTGCAGGCACGT






GGTCCTTGTTTATTTTCATTTTTGTTCTTGCTGCTCA






TTACTTTCATGCTTTGCTTCCTAATGATATGCTTGCT






CCATTTACTAACAGTTACACATTCGGCAGATTCATG






GTCAATCTCTTGTTGCGGACATAAAACTCCTTTTATT






TTTTCCAAGTCCGAAATTATTTGCATACATAGATGT






TGCTATCATATTCTTGTTCCCTTGAGGCCTTGACGA






CATAATAAACCGATTACTATCTTGTTCTTTGGCAGG






GCACGTTAACCCTTTTCTTTTCAAGTCCAAAACAAA






TAAATCTTGTTCGTAACAGAAAAAACAAAGGAGCA






CCCAAGTGTGCTGTTTCTCTGAAATATATACCCTCA






TGCCATTGCTCAAAAAGAGGTATCTTCAGAATATG






CTGCTCCTGCTCCTTATGTGCATATAAATAACTATA






GGCTTATGCTTCCATACACCCCCAAATCTCAAAACC






GATTGC





78

Lolium

Genomic
189
ATCGAAGGGTTCTATCTGGCTGGTGATTACACGAA




multiflorum



GCAGAAATATTTGGCTTCCATGGAGGGTGCAGTTT






TATCCGGGAAGCTCTGTGCCCAGTCCATAGTCCAG






GTAAATGCTCTCCACGGTTCTGGTTGCACATAGATG






AGTCAAACTTCTTTTTTTAGATAAAGGGAATATATT






AATATCAAAAGA








Claims
  • 1. A method of plant control comprising: topically applying to a surface of a plant a composition comprising a non-transcribable polynucleotide and a transfer agent, wherein said non-transcribable polynucleotide is from 21 to about 700 nucleotides in length and comprises a nucleotide sequence identical or complementary to at least 21 contiguous nucleotides of a phytoene desaturase (PDS) gene sequence or an RNA sequence thereof selected from the group consisting of SEQ ID NOs: 13, 15, 24, 35, 37, 41, 43-46, 50-56, 58-60, 64, 70-72, 74-80, 89-92, 123, 124, 165-170, 173-178, 185-194, 199-202, 207-212, 223-234, 241-248, 251, 252, 255-258, 265-270, 275-280, 305-310, 313-332, 337-342, 353-364, 367-370, 377-380, 391-404, 411-424, 427, 428, 437-442, 445-518, 521-526, 533-536, 547, 548, 551-554, 561-570, 575, 576, 583-596, 601, 602, 609-614, 619-626, 643, 644, 669-674, 681, 682, 719-722, 727-730, 733-748, 753-756, 759-762, 769, 770, 775-778, 781-784, 787-792, 797, 798, 801, 802, 811-814, 823-842, 845, 846, 851, 852, 855, 856, 861-868, 871-876, 885, 886, 893-1004, 1015, 1016, 1021-1042, 1045, 1046, 1049-1070, 1073, 1074, 1081, 1082, 1085-1092, 1097-1104, 1109-1230, 1233, 1234, 1237-1258, 1261, 1262, 1269, 1270, 1273-1282, 1285-1294, 1297-1310, 1313-1328, 1331-1334, 1337-1340, 1343-1398, 1403-1408, 1413-1460, 1463-1476, 1479-1536, 1539-1560, 1565-1576, 1579-1606, 1609-1634, 1637-1640, 1643, 1644, 1647-1652, 1655-1670, 1675-1678, 1681-1684, 1689-1756, 1759-1784, 1787-1790, 1797-1800, 1803-1820, 1823-1828, 1831, 1832, 1837-1856, 1859-1862, 1867, 1868, 1871, 1872, 1881-1884, 1893, 1894, 1901-1974, 1977-1984, 1987-1990, 1993-2010, 2048, 2052, 2075, 2083, 2085, 2090, 2100, 2109, 2117, 2126, 2131, 2135, and 2138-2176,wherein said transfer agent is a surfactant and conditions said surface of said plant for permeation by said non-transcribable polynucleotide,whereby said plant's growth, development, or reproductive ability is suppressed or delayed or said plant is more sensitive to a PDS inhibitor herbicide, relative to an untreated plant.
  • 2. The method as claimed in claim 1, wherein said transfer agent comprises an organosilicone surfactant composition or an organosilicone compound contained therein.
  • 3. The method as claimed in claim 1, wherein said non-transcribable polynucleotide is selected from the group consisting of a sense single-stranded DNA (ssDNA), an anti-sense ssDNA, a sense single-stranded RNA (ssRNA), an anti-sense ssRNA, a double-stranded RNA (dsRNA), a double-stranded DNA (dsDNA), and a dsDNA/RNA hybrid.
  • 4. The method as claimed in claim 1, wherein said plant is selected from the group consisting of Abutilon theophrasti, Amaranthus chlorostachys, Amaranthus graecizans, Amaranthus palmeri, Amaranthus rudis, Amaranthus hybridus, Amaranthus lividus, Amaranthus spinosus, Amaranthus viridis, Ambrosia artemisiifolia, Ambrosia trifida, Commelina diffusa, Conyza canadensis, Digitaria sanguinalis, Euphorbia heterophylla, Kochia scoparia, Lolium multiflorum, Taraxacum officinale, and Lactuca serriola.
  • 5. The method as claimed in claim 1, wherein said composition further comprises said PDS inhibitor herbicide.
  • 6. The method as claimed in claim 5, wherein said composition further comprises one or more co-herbicides similar to or different from said PDS inhibitor herbicide.
  • 7. The method as claimed in claim 1, wherein said composition comprises any combination of two or more of said non-transcribable polynucleotides.
  • 8. A composition for topical application to a surface of a plant comprising a non-transcribable polynucleotide and a transfer agent, wherein said non-transcribable polynucleotide is from 21 to about 700 nucleotides in length and comprises a nucleotide sequence identical or complementary to at least 21 contiguous nucleotides of a phytoene desaturase (PDS) gene sequence or an RNA sequence thereof selected from the group consisting of SEQ ID NOs: 13, 15, 24, 35, 37, 41, 43-46, 50-56, 58-60, 64, 70-72, 74-80, 89-92, 123, 124, 165-170, 173-178, 185-194, 199-202, 207-212, 223-234, 241-248, 251, 252, 255-258, 265-270, 275-280, 305-310, 313-332, 337-342, 353-364, 367-370, 377-380, 391-404, 411-424, 427, 428, 437-442, 445-518, 521-526, 533-536, 547, 548, 551-554, 561-570, 575, 576, 583-596, 601, 602, 609-614, 619-626, 643, 644, 669-674, 681, 682, 719-722, 727-730, 733-748, 753-756, 759-762, 769, 770, 775-778, 781-784, 787-792, 797, 798, 801, 802, 811-814, 823-842, 845, 846, 851, 852, 855, 856, 861-868, 871-876, 885, 886, 893-1004, 1015, 1016, 1021-1042, 1045, 1046, 1049-1070, 1073, 1074, 1081, 1082, 1085-1092, 1097-1104, 1109-1230, 1233, 1234, 1237-1258, 1261, 1262, 1269, 1270, 1273-1282, 1285-1294, 1297-1310, 1313-1328, 1331-1334, 1337-1340, 1343-1398, 1403-1408, 1413-1460, 1463-1476, 1479-1536, 1539-1560, 1565-1576, 1579-1606, 1609-1634, 1637-1640, 1643, 1644, 1647-1652, 1655-1670, 1675-1678, 1681-1684, 1689-1756, 1759-1784, 1787-1790, 1797-1800, 1803-1820, 1823-1828, 1831, 1832, 1837-1856, 1859-1862, 1867, 1868, 1871, 1872, 1881-1884, 1893, 1894, 1901-1974, 1977-1984, 1987-1990, 1993-2010, 2048, 2052, 2075, 2083, 2085, 2090, 2100, 2109, 2117, 2126, 2131, 2135, and 2138-2176,wherein said transfer agent is a surfactant and conditions said surface of said plant for permeation by said non-transcribable polynucleotide, andwhereby said plant treated with said composition has its growth, development, or reproductive ability suppressed or delayed or said plant is more sensitive to a PDS inhibitor herbicide, relative to an untreated plant.
  • 9. The composition of claim 8, wherein said transfer agent is an organosilicone composition or an organosilicone compound contained therein.
  • 10. The composition of claim 8, wherein said non-transcribable polynucleotide is selected from the group consisting of SEQ ID NOs: 24, 79, 80, 89-92, 123, 124, 185-194, 199-202, 207-212, 223-234, 241-246, 265, 266, 269, 270, 275-280, 305-310, 313-318, 323-332, 337-342, 355-362, 367-370, 377-380, 391-404, 411-418, 441, 442, 445-454, 515-518, 521-526, 533-536, 547, 548, 551-554, 609-614, 619-626, 643, 644, 669-672, 681, 682, 719-722, 727-730, 733-736, 747, 748, 753-756, 759-762, 769, 770, 775-778, 781-784, 787, 788, 801, 802, 873-876, 885, 886, 893-896, 907, 908, 999-1004, 1015, 1016, 1021-1024, 1279, 1280, 1473-1476, 1483-1494, 1981-1984, 1987-1990, 1993, and 1994.
  • 11. The composition of claim 8, wherein said non-transcribable polynucleotide is selected from the group consisting of SEQ ID NOs: 2048, 2052, 2075, 2083, 2085, 2090, 2100, 2109, 2117, 2126, 2131, and 2135.
  • 12. The composition of claim 8, further comprising a PDS inhibitor herbicide.
  • 13. The composition of claim 12, wherein said PDS inhibitor herbicide is selected from the group consisting of pyridazinones, pyridinecarboxamides, beflubutamid, fluridone, flurochloridone, and flurtamone.
  • 14. The composition of claim 12, further comprising a co-herbicide.
  • 15. An agricultural chemical composition for topical application to a surface of a plant comprising a non-transcribable polynucleotide, a phytoene desaturase (PDS inhibitor herbicide, a transfer agent, and a co-herbicide, wherein said non-transcribable polynucleotide is from 21 to about 700 nucleotides in length and comprises a nucleotide sequence identical or complementary to at least 21 contiguous nucleotides of a PDS gene sequence or an RNA sequence thereof selected from the group consisting of SEQ ID NOs: 13, 15, 24, 15, 37, 41, 43-46, 50-56, 58-60, 64, 70-72, 74-80, 89-92, 123, 124, 165-170, 173-178, 185-194, 199-202, 207-212, 223-234, 241-248, 251, 252, 255-258, 265-270, 275-280, 305-310, 313-332, 337-342, 353-364, 367-370, 377-380, 391-404, 411-424, 427, 428, 437-442, 445-518, 521-526, 533-536, 547, 548, 551-554, 561-570, 575, 576, 583-596, 601, 602, 609-614, 619-626, 643, 644, 669-674, 681, 682, 719-722, 727-730, 733-748, 753-756, 759-762, 769, 770, 775-778, 781-784, 787-792, 797, 798, 801, 802, 811-814, 823-842, 845, 846, 851, 852, 855, 856, 861-868, 871-876, 885, 886, 893-1004, 1015, 1016, 1021-1042, 1045, 1046, 1049-1070, 1073, 1074, 1081, 1082, 1085-1092, 1097-1104, 1109-1230, 1233, 1234, 1237-1258, 1261, 1262, 1269, 1270, 1273-1282, 1285-1294, 1297-1310, 1313-1328, 1331-1334, 1337-1340, 1343-1398, 1403-1408, 1413-1460, 1463-1476, 1479-1536, 1539-1560, 1565-1576, 1579-1606, 1609-1634, 1637-1640, 1643, 1644, 1647-1652, 1655-1670, 1675-1678, 1681-1684, 1689-1756, 1759-1784, 1787-1790, 1797-1800, 1803-1820, 1823-1828, 1831, 1832, 1837-1856, 1859-1862, 1867, 1868, 1871, 1872, 1881-1884, 1893, 1894, 1901-1974, 1977-1984, 1987-1990, 1993-2010, 2048, 2052, 2075, 2083, 2085, 2090, 2100, 2109, 2117, 2126, 2131, 2135, and 2138-2176,wherein said transfer agent is a surfactant and conditions said surface of said plant for permeation by said non-transcribable polynucleotide, andwhereby said plant treated with said composition has its growth, development, or reproductive ability suppressed or delayed or said plant is more sensitive to said PDS inhibitor herbicide, relative to an untreated plant.
  • 16. The agricultural chemical composition of claim 15, wherein said co-herbicide is selected from the group consisting of amide herbicides, arsenical herbicides, benzothiazole herbicides, benzoylcyclohexanedione herbicides, benzofuranyl alkylsulfonate herbicides, cyclohexene oxime herbicides, cyclopropylisoxazole herbicides, dicarboximide herbicides, dinitroaniline herbicides, dinitrophenol herbicides, diphenyl ether herbicides, dithiocarbamate herbicides, glycine herbicides, halogenated aliphatic herbicides, imidazolinone herbicides, inorganic herbicides, nitrile herbicides, organophosphorus herbicides, oxadiazolone herbicides, oxazole herbicides, phenoxy herbicides, phenylenediamine herbicides, pyrazole herbicides, pyridazine herbicides, pyridazinone herbicides, pyridine herbicides, pyrimidinediamine herbicides, pyrimidinyloxybenzylamine herbicides, quaternary ammonium herbicides, thiocarbamate herbicides, thiocarbonate herbicides, thiourea herbicides, triazine herbicides, triazinone herbicides, triazole herbicides, triazolone herbicides, triazolopyrimidine herbicides, uracil herbicides, and urea herbicides.
  • 17. An agricultural chemical composition for topical application to a surface of a plant comprising a non-transcribable polynucleotide, a phytoene desaturase (PDS) inhibitor herbicide, a transfer agent, and a pesticide, wherein said non-transcribable polynucleotide is from 21 to about 700 nucleotides in length and comprises a nucleotide sequence identical or complementary to at least 21 contiguous nucleotides of a PDS gene sequence or an RNA sequence thereof selected from the group consisting of SEQ ID NOs: 13, 15, 24, 35, 37, 41, 43-46, 50-56, 58-60, 64, 70-72, 74-80, 89-92, 123, 124, 165-170, 173-178, 185-194, 199-202, 207-212, 223-234, 241-248, 251, 252, 255-258, 265-270, 275-280, 305-310, 313-332, 337-342, 353-364, 367-370, 377-380, 391-404, 411-424, 427, 428, 437-442, 445-518, 521-526, 533-536, 547, 548, 551-554, 561-570, 575, 576, 583-596, 601, 602, 609-614, 619-626, 643, 644, 669-674, 681, 682, 719-722, 727-730, 733-748, 753-756, 759-762, 769, 770, 775-778, 781-784, 787-792, 797, 798, 801, 802, 811-814, 823-842, 845, 846, 851, 852, 855, 856, 861-868, 871-876, 885, 886, 893-1004, 1015, 1016, 1021-1042, 1045, 1046, 1049-1070, 1073, 1074, 1081, 1082, 1085-1092, 1097-1104, 1109-1230, 1233, 1234, 1237-1258, 1261, 1262, 1269, 1270, 1273-1282, 1285-1294, 1297-1310, 1313-1328, 1331-1334, 1337-1340, 1343-1398, 1403-1408, 1413-1460, 1463-1476, 1479-1536, 1539-1560, 1565-1576, 1579-1606, 1609-1634, 1637-1640, 1643, 1644, 1647-1652, 1655-1670, 1675-1678, 1681-1684, 1689-1756, 1759-1784, 1787-1790, 1797-1800, 1803-1820, 1823-1828, 1831, 1832, 1837-1856, 1859-1862, 1867, 1868, 1871, 1872, 1881-1884, 1893, 1894, 1901-1974, 1977-1984, 1987-1990, 1993-2010, 2048, 2052, 2075, 2083, 2085, 2090, 2100, 2109, 2117, 2126, 2131, 2135, and 2138-2176,wherein said transfer agent is a surfactant and conditions said surface of said plant for permeation by said non-transcribable polynucleotide, andwhereby said plant treated with said composition has its growth, development, or reproductive ability suppressed or delayed or said plant is more sensitive to said PDS inhibitor herbicide, relative to an untreated plant.
  • 18. The agricultural chemical composition of claim 17, wherein said pesticide is selected from the group consisting of insecticides, fungicides, nematicides, bactericides, acaricides, growth regulators, chemosterilants, semiochemicals, repellents, attractants, pheromones, feeding stimulants, and biopesticides.
  • 19. A herbicide composition for topical application to a surface of a plant comprising a phytoene desaturase (PDS), inhibitor herbicide, a non-transcribable polynucleotide, and a transfer agent, wherein said non-transcribable polynucleotide comprises a nucleotide sequence identical or complementary to at least 21 contiguous nucleotides of a sequence selected from the group consisting of SEQ ID NOs: 2139-2176,wherein said transfer agent is a surfactant and conditions said surface of said plant for permeation by said non-transcribable polynucleotide, andwhereby said plant treated with said herbicide composition has its growth, development, or reproductive ability suppressed or delayed or said plant is more sensitive to said PDS inhibitor herbicide, relative to an untreated plant.
  • 20. The composition of claim 1, wherein said non-transcribable polynucleotide is an RNA polynucleotide.
  • 21. The method of claim 8, wherein said non-transcribable polynucleotide is an RNA polynucleotide.
Parent Case Info

This application claims benefit under 35USC § 119(e) of U.S. provisional application Ser. No. 61/534,082 filed Sep. 13, 2011, herein incorporated by reference in it's entirety. The sequence listing that is contained in the file named “40_21(58639)B seq listing.txt”, which is 1,035,201 bytes (measured in operating system MS-Windows) and was created on 5 Sep. 2012, is filed herewith and incorporated herein by reference.

US Referenced Citations (396)
Number Name Date Kind
3687808 Merigan et al. Aug 1972 A
3791932 Schuurs et al. Feb 1974 A
3839153 Schuurs et al. Oct 1974 A
3850578 McConnell Nov 1974 A
3850752 Schuurs et al. Nov 1974 A
3853987 Dreyer Dec 1974 A
3867517 Ling Feb 1975 A
3879262 Schuurs et al. Apr 1975 A
3901654 Gross Aug 1975 A
3935074 Rubenstein et al. Jan 1976 A
3984533 Uzgiris Oct 1976 A
3996345 Ullman et al. Dec 1976 A
4034074 Miles Jul 1977 A
4098876 Piasio et al. Jul 1978 A
4469863 Ts'o et al. Sep 1984 A
4476301 Imbach et al. Oct 1984 A
4535060 Comai Aug 1985 A
4581847 Hibberd et al. Apr 1986 A
4666828 Gusella May 1987 A
4683202 Mullis Jul 1987 A
4761373 Anderson et al. Aug 1988 A
4769061 Comai Sep 1988 A
4801531 Frossard Jan 1989 A
4810648 Stalker Mar 1989 A
4879219 Wands et al. Nov 1989 A
4940835 Shah et al. Jul 1990 A
4971908 Kishore et al. Nov 1990 A
5004863 Umbeck Apr 1991 A
5011771 Bellet et al. Apr 1991 A
5013659 Bedbrook et al. May 1991 A
5015580 Christou et al. May 1991 A
5023243 Tullis Jun 1991 A
5034506 Summerton et al. Jul 1991 A
5094945 Comai Mar 1992 A
5141870 Bedbrook et al. Aug 1992 A
5145783 Kishore et al. Sep 1992 A
5159135 Umbeck Oct 1992 A
5166315 Summerton et al. Nov 1992 A
5177196 Meyer, Jr. et al. Jan 1993 A
5185444 Summerton et al. Feb 1993 A
5188642 Shah et al. Feb 1993 A
5188897 Suhadolnik et al. Feb 1993 A
5192659 Simons Mar 1993 A
5214134 Weis et al. May 1993 A
5216141 Benner Jun 1993 A
5235033 Summerton et al. Aug 1993 A
5264423 Cohen et al. Nov 1993 A
5264562 Matteucci Nov 1993 A
5264564 Matteucci Nov 1993 A
5272057 Smulson et al. Dec 1993 A
5276019 Cohen et al. Jan 1994 A
5281521 Trojanowski et al. Jan 1994 A
5286634 Stadler et al. Feb 1994 A
5286717 Cohen et al. Feb 1994 A
5304732 Anderson et al. Apr 1994 A
5310667 Eichholtz et al. May 1994 A
5312910 Kishore et al. May 1994 A
5321131 Agrawal et al. Jun 1994 A
5331107 Anderson et al. Jul 1994 A
5339107 Henry et al. Aug 1994 A
5346107 Bouix et al. Sep 1994 A
5378824 Bedbrook et al. Jan 1995 A
5384253 Krzyzek et al. Jan 1995 A
5390667 Kumakura et al. Feb 1995 A
5392910 Bell et al. Feb 1995 A
5393175 Courville Feb 1995 A
5399676 Froehler Mar 1995 A
5405938 Summerton et al. Apr 1995 A
5405939 Suhadolnik et al. Apr 1995 A
5416011 Hinchee et al. May 1995 A
5453496 Caruthers et al. Sep 1995 A
5455233 Spielvogel et al. Oct 1995 A
5459127 Felgner et al. Oct 1995 A
5460667 Moriyuki et al. Oct 1995 A
5462910 Ito et al. Oct 1995 A
5463174 Moloney et al. Oct 1995 A
5463175 Barry et al. Oct 1995 A
5466677 Baxter et al. Nov 1995 A
5470967 Huie et al. Nov 1995 A
5476925 Letsinger et al. Dec 1995 A
5489520 Adams et al. Feb 1996 A
5489677 Sanghvi et al. Feb 1996 A
5491288 Chaubet et al. Feb 1996 A
5510471 Lebrun et al. Apr 1996 A
5518908 Corbin et al. May 1996 A
5519126 Hecht May 1996 A
5536821 Agrawal et al. Jul 1996 A
5538880 Lundquist et al. Jul 1996 A
5541306 Agrawal et al. Jul 1996 A
5541307 Cook et al. Jul 1996 A
5550111 Suhadolnik et al. Aug 1996 A
5550318 Adams et al. Aug 1996 A
5550398 Kocian et al. Aug 1996 A
5550468 Häberlein et al. Aug 1996 A
5558071 Ward et al. Sep 1996 A
5561225 Maddry et al. Oct 1996 A
5561236 Leemans et al. Oct 1996 A
5563253 Agrawal et al. Oct 1996 A
5569834 Hinchee et al. Oct 1996 A
5571799 Tkachuk et al. Nov 1996 A
5587361 Cook et al. Dec 1996 A
5591616 Hiei et al. Jan 1997 A
5593874 Brown et al. Jan 1997 A
5596086 Matteucci et al. Jan 1997 A
5597717 Guerineau et al. Jan 1997 A
5602240 De Mesmaeker et al. Feb 1997 A
5605011 Bedbrook et al. Feb 1997 A
5608046 Cook et al. Mar 1997 A
5610289 Cook et al. Mar 1997 A
5618704 Sanghvi et al. Apr 1997 A
5623070 Cook et al. Apr 1997 A
5625050 Beaton et al. Apr 1997 A
5627061 Barry et al. May 1997 A
5633360 Bischofberger et al. May 1997 A
5633435 Barry et al. May 1997 A
5633448 Lebrun et al. May 1997 A
5639024 Mueller et al. Jun 1997 A
5646024 Leemans et al. Jul 1997 A
5648477 Leemans et al. Jul 1997 A
5663312 Chaturvedula Sep 1997 A
5677437 Teng et al. Oct 1997 A
5677439 Weis et al. Oct 1997 A
5719046 Guerineau et al. Feb 1998 A
5721138 Lawn Feb 1998 A
5731180 Dietrich Mar 1998 A
5739180 Taylor-Smith Apr 1998 A
5746180 Jefferson et al. May 1998 A
5767361 Dietrich Jun 1998 A
5767373 Ward et al. Jun 1998 A
5780708 Lundquist et al. Jul 1998 A
5804425 Barry et al. Sep 1998 A
5824877 Hinchee et al. Oct 1998 A
5837848 Ely et al. Nov 1998 A
5859347 Brown et al. Jan 1999 A
5866775 Eichholtz et al. Feb 1999 A
5874265 Adams et al. Feb 1999 A
5879903 Strauch et al. Mar 1999 A
5914451 Martinell et al. Jun 1999 A
5919675 Adams et al. Jul 1999 A
5928937 Kakefuda et al. Jul 1999 A
5939602 Volrath et al. Aug 1999 A
5969213 Adams et al. Oct 1999 A
5981840 Zhao et al. Nov 1999 A
5985793 Sandbrink Nov 1999 A
RE36449 Lebrun et al. Dec 1999 E
6040497 Spencer et al. Mar 2000 A
6056938 Unger et al. May 2000 A
6069115 Pallett et al. May 2000 A
6084089 Mine et al. Jul 2000 A
6084155 Volrath et al. Jul 2000 A
6118047 Anderson et al. Sep 2000 A
6121513 Zhang et al. Sep 2000 A
6130366 Herrera-Estrella et al. Oct 2000 A
6140078 Sanders et al. Oct 2000 A
6153812 Fry et al. Nov 2000 A
6160208 Lundquist et al. Dec 2000 A
6177616 Bartsch et al. Jan 2001 B1
6194636 McElroy et al. Feb 2001 B1
6225105 Sathasivan et al. May 2001 B1
6225114 Eichholtz et al. May 2001 B1
6232526 McElroy et al. May 2001 B1
6245968 Boudec et al. Jun 2001 B1
6248876 Barry et al. Jun 2001 B1
6252138 Karimi et al. Jun 2001 B1
RE37287 Lebrun et al. Jul 2001 E
6268549 Sailland et al. Jul 2001 B1
6271359 Norris et al. Aug 2001 B1
6282837 Ward et al. Sep 2001 B1
6288306 Ward et al. Sep 2001 B1
6288312 Christou et al. Sep 2001 B1
6294714 Matsunaga et al. Sep 2001 B1
6326193 Liu et al. Dec 2001 B1
6329571 Hiei Dec 2001 B1
6348185 Piwnica-Worms Feb 2002 B1
6365807 Christou et al. Apr 2002 B1
6384301 Martinell et al. May 2002 B1
6385902 Schipper et al. May 2002 B1
6399861 Anderson et al. Jun 2002 B1
6403865 Koziel et al. Jun 2002 B1
6414222 Gengenbach et al. Jul 2002 B1
6421956 Boukens et al. Jul 2002 B1
6426446 McElroy et al. Jul 2002 B1
6433252 Kriz et al. Aug 2002 B1
6437217 McElroy et al. Aug 2002 B1
6453609 Soll et al. Sep 2002 B1
6479291 Kumagai Nov 2002 B2
6506559 Fire et al. Jan 2003 B1
6506599 Yoon Jan 2003 B1
6642435 Rafalski et al. Nov 2003 B1
6644341 Chemo et al. Nov 2003 B1
6645914 Woznica et al. Nov 2003 B1
6768044 Boudec et al. Jul 2004 B1
6992237 Habben et al. Jan 2006 B1
7022896 Weeks et al. Apr 2006 B1
7026528 Cheng et al. Apr 2006 B2
RE39247 Barry et al. Aug 2006 E
7105724 Weeks et al. Sep 2006 B2
7119256 Shimizu et al. Oct 2006 B2
7138564 Tian et al. Nov 2006 B2
7297541 Moshiri et al. Nov 2007 B2
7304209 Zink et al. Dec 2007 B2
7312379 Andrews et al. Dec 2007 B2
7323310 Peters et al. Jan 2008 B2
7371927 Yao et al. May 2008 B2
7392379 Le Pennec et al. Jun 2008 B2
7405347 Hammer et al. Jul 2008 B2
7406981 Hemo et al. Aug 2008 B2
7462379 Fukuda et al. Dec 2008 B2
7485777 Nakajima et al. Feb 2009 B2
7525013 Hildebrand et al. Apr 2009 B2
7550578 Budworth et al. Jun 2009 B2
7622301 Ren et al. Nov 2009 B2
7657299 Huizenga et al. Feb 2010 B2
7671254 Tranel et al. Mar 2010 B2
7714188 Castle et al. May 2010 B2
7738626 Weese et al. Jun 2010 B2
7807791 Sekar et al. Oct 2010 B2
7838263 Dam et al. Nov 2010 B2
7838733 Wright et al. Nov 2010 B2
7842856 Tranel et al. Nov 2010 B2
7884262 Clemente et al. Feb 2011 B2
7910805 Duck et al. Mar 2011 B2
7935869 Pallett et al. May 2011 B2
7943819 Baum et al. May 2011 B2
7973218 McCutchen et al. Jul 2011 B2
8090164 Bullitt et al. Jan 2012 B2
8143480 Axtell et al. Mar 2012 B2
8226938 Meikle et al. Jul 2012 B1
8548778 Hart et al. Oct 2013 B1
8554490 Tang et al. Oct 2013 B2
9121022 Sammons Sep 2015 B2
9422557 Ader Aug 2016 B2
9445603 Baum et al. Sep 2016 B2
9777288 Beattie et al. Oct 2017 B2
9850496 Beattie et al. Dec 2017 B2
9856495 Beattie et al. Oct 2018 B2
20010006797 Kumagai et al. Jul 2001 A1
20010042257 Connor-Ward et al. Nov 2001 A1
20020069430 Kiaska et al. Jun 2002 A1
20020106653 Kurane et al. Aug 2002 A1
20020114784 Li et al. Aug 2002 A1
20030150017 Mesa et al. Aug 2003 A1
20030154508 Stevens et al. Aug 2003 A1
20030167537 Jiang Sep 2003 A1
20030221211 Rottmann et al. Nov 2003 A1
20040029275 Brown et al. Feb 2004 A1
20040053289 Allen et al. Mar 2004 A1
20040055041 Labate et al. Mar 2004 A1
20040072692 Hoffman et al. Apr 2004 A1
20040082475 Hoffman et al. Apr 2004 A1
20040123347 Hinchey et al. Jun 2004 A1
20040126845 Eenennaam et al. Jul 2004 A1
20040133944 Hake et al. Jul 2004 A1
20040147475 Li et al. Jul 2004 A1
20040177399 Hammer et al. Sep 2004 A1
20040216189 Houmard et al. Oct 2004 A1
20040244075 Cal et al. Dec 2004 A1
20040250310 Shukla et al. Dec 2004 A1
20050005319 della-Cioppa et al. Jan 2005 A1
20050044591 Yao Feb 2005 A1
20050215435 Menges et al. Sep 2005 A1
20050223425 Clinton et al. Oct 2005 A1
20050246784 Plesch et al. Nov 2005 A1
20050250647 Hills Nov 2005 A1
20050289664 Moshiri et al. Dec 2005 A1
20060009358 Kibler et al. Jan 2006 A1
20060021087 Baum et al. Jan 2006 A1
20060040826 Eaton et al. Feb 2006 A1
20060111241 Gerwick, III et al. May 2006 A1
20060130172 Whaley et al. Jun 2006 A1
20060135758 Wu Jun 2006 A1
20060200878 Lutfiyya et al. Sep 2006 A1
20060223708 Hoffman et al. Oct 2006 A1
20060223709 Helmke et al. Oct 2006 A1
20060247197 Van De Craen et al. Nov 2006 A1
20060272049 Waterhouse et al. Nov 2006 A1
20060276339 Windsor et al. Dec 2006 A1
20070011775 Allen et al. Jan 2007 A1
20070021360 Nyce et al. Jan 2007 A1
20070050863 Tranel et al. Mar 2007 A1
20070124836 Baum et al. May 2007 A1
20070199095 Allen et al. Aug 2007 A1
20070250947 Boukharov et al. Oct 2007 A1
20070259785 Heck et al. Nov 2007 A1
20070269815 Rivory et al. Nov 2007 A1
20070281900 Cui et al. Dec 2007 A1
20070300329 Allen et al. Dec 2007 A1
20080022423 Roberts et al. Jan 2008 A1
20080050342 Fire et al. Feb 2008 A1
20080092256 Kohn Apr 2008 A1
20080113351 Naito et al. May 2008 A1
20080155716 Sonnewald et al. Jun 2008 A1
20080214443 Baum et al. Sep 2008 A1
20090011934 Zawierucha et al. Jan 2009 A1
20090018016 Duck et al. Jan 2009 A1
20090036311 Witschel et al. Feb 2009 A1
20090054240 Witschel et al. Feb 2009 A1
20090075921 Ikegawa et al. Mar 2009 A1
20090094717 Troukhan et al. Apr 2009 A1
20090098614 Zamore et al. Apr 2009 A1
20090118214 Paldi et al. May 2009 A1
20090137395 Chicoine et al. May 2009 A1
20090144848 Kovalic et al. Jun 2009 A1
20090165153 Wang et al. Jun 2009 A1
20090165166 Feng et al. Jun 2009 A1
20090205079 Kumar et al. Aug 2009 A1
20090215628 Witschel et al. Aug 2009 A1
20090285784 Raemaekers et al. Nov 2009 A1
20090293148 Ren et al. Nov 2009 A1
20090298787 Raemaekers et al. Dec 2009 A1
20090306189 Raemaekers et al. Dec 2009 A1
20090307803 Baum et al. Dec 2009 A1
20100005551 Roberts et al. Jan 2010 A1
20100048670 Biard et al. Feb 2010 A1
20100068172 Van De Craen Mar 2010 A1
20100071088 Sela et al. Mar 2010 A1
20100099561 Selby et al. Apr 2010 A1
20100100988 Tranel et al. Apr 2010 A1
20100152443 Hirai et al. Jun 2010 A1
20100154083 Ross et al. Jun 2010 A1
20100192237 Ren et al. Jul 2010 A1
20100247578 Salama Sep 2010 A1
20100248373 Baba et al. Sep 2010 A1
20110015084 Christian et al. Jan 2011 A1
20110015284 Dees et al. Jan 2011 A1
20110028412 Cappello et al. Feb 2011 A1
20110035836 Eudes et al. Feb 2011 A1
20110041400 Trias Vila et al. Feb 2011 A1
20110053226 Rohayem Mar 2011 A1
20110098180 Michel et al. Apr 2011 A1
20110105327 Nelson May 2011 A1
20110105329 Song et al. May 2011 A1
20110112570 Mannava et al. May 2011 A1
20110126310 Feng et al. May 2011 A1
20110126311 Velcheva et al. May 2011 A1
20110152339 Brown et al. Jun 2011 A1
20110152346 Karleson et al. Jun 2011 A1
20110152353 Koizumi Jun 2011 A1
20110160082 Woo et al. Jun 2011 A1
20110166022 Israels et al. Jul 2011 A1
20110166023 Nettleton-Hammond et al. Jul 2011 A1
20110171176 Baas et al. Jul 2011 A1
20110171287 Saarma et al. Jul 2011 A1
20110177949 Krapp et al. Jul 2011 A1
20110185444 Li et al. Jul 2011 A1
20110185445 Bogner et al. Jul 2011 A1
20110191897 Poree et al. Aug 2011 A1
20110201501 Song et al. Aug 2011 A1
20110203013 Peterson et al. Aug 2011 A1
20110296555 Ivashuta et al. Dec 2011 A1
20110296556 Sammons et al. Dec 2011 A1
20120036594 Cardoza et al. Feb 2012 A1
20120107355 Harris et al. May 2012 A1
20120108497 Paldi et al. May 2012 A1
20120137387 Baum et al. May 2012 A1
20120150048 Kang et al. Jun 2012 A1
20120156784 Adams, Jr. et al. Jun 2012 A1
20120157512 Ben-Chanoch et al. Jun 2012 A1
20120164205 Baum et al. Jun 2012 A1
20120174262 Azhakanandam et al. Jul 2012 A1
20120185967 Sela et al. Jul 2012 A1
20120198586 Narva et al. Aug 2012 A1
20120230565 Steinberg et al. Sep 2012 A1
20120258646 Sela et al. Oct 2012 A1
20130003213 Kabelac et al. Jan 2013 A1
20130041004 Drager et al. Feb 2013 A1
20130047297 Sammons et al. Feb 2013 A1
20130047298 Tang Feb 2013 A1
20130060133 Kassab et al. Mar 2013 A1
20130067618 Ader et al. Mar 2013 A1
20130084243 Goetsch et al. Apr 2013 A1
20130096073 Sidelman Apr 2013 A1
20130097726 Ader et al. Apr 2013 A1
20130212739 Giritch et al. Aug 2013 A1
20130226003 Edic et al. Aug 2013 A1
20130247247 Ader et al. Sep 2013 A1
20130254941 Ader et al. Sep 2013 A1
20130288895 Ader et al. Oct 2013 A1
20130318657 Avniel et al. Nov 2013 A1
20130318658 Ader et al. Nov 2013 A1
20130324842 Mittal et al. Dec 2013 A1
20130326731 Ader et al. Dec 2013 A1
20140018241 Sammons et al. Jan 2014 A1
20140057789 Sammons et al. Feb 2014 A1
20140109258 Van De Craen et al. Apr 2014 A1
20140230090 Avniel et al. Aug 2014 A1
20140274712 Finnessy et al. Sep 2014 A1
20140275208 Hu et al. Sep 2014 A1
20140296503 Avniel et al. Oct 2014 A1
20150096079 Avniel et al. Apr 2015 A1
20150143580 Beattie et al. May 2015 A1
20150159156 Inberg et al. Jun 2015 A1
20150203867 Beattie et al. Jul 2015 A1
20150240258 Beattie et al. Aug 2015 A1
20160015035 Tao Jan 2016 A1
20160029644 Tao Feb 2016 A1
Foreign Referenced Citations (271)
Number Date Country
2008258254 Jul 2014 AU
20 14262189 Nov 2014 AU
101279950 Oct 2008 CN
101279951 Oct 2008 CN
101892247 Nov 2010 CN
101914540 Dec 2010 CN
201010248213 Dec 2010 CN
201010248213-8 Dec 2010 CN
102154364 Aug 2011 CN
288618 Apr 1991 DE
10000600 Jul 2001 DE
10116399 Oct 2002 DE
10256353 Jun 2003 DE
10256354 Jun 2003 DE
10256367 Jun 2003 DE
10204951 Aug 2003 DE
10234875 Feb 2004 DE
10234876 Feb 2004 DE
102004054666 May 2006 DE
102005014638 Oct 2006 DE
102005014906 Oct 2006 DE
102007012168 Sep 2008 DE
102010042866 May 2011 DE
0 804 600 Nov 1997 EP
1 155 615 Nov 2001 EP
1 157 991 Nov 2001 EP
1 238 586 Sep 2002 EP
1 416 049 May 2004 EP
1 496 123 Jan 2005 EP
1 889 902 Feb 2008 EP
1 964 919 Sep 2008 EP
2 147 919 Jan 2010 EP
2 160 098 Nov 2010 EP
2 530 159 Mar 2011 EP
2 305 813 Apr 2011 EP
2 473 024 Jul 2012 EP
2 545 182 Jan 2013 EP
2001253874 Sep 2001 JP
2002080454 Mar 2002 JP
2002138075 May 2002 JP
2002145707 May 2002 JP
2002220389 Aug 2002 JP
2003064059 Mar 2003 JP
2003096059 Apr 2003 JP
2004051628 Feb 2004 JP
2004107228 Apr 2004 JP
2005008583 Jan 2005 JP
2005239675 Sep 2005 JP
2005314407 Nov 2005 JP
2006232824 Sep 2006 JP
2006282552 Oct 2006 JP
2007153847 Jun 2007 JP
2007161701 Jun 2007 JP
2007182404 Jul 2007 JP
2008074840 Apr 2008 JP
2008074841 Apr 2008 JP
2008133207 Jun 2008 JP
2008133218 Jun 2008 JP
2008169121 Jul 2008 JP
2009067739 Apr 2009 JP
2009114128 May 2009 JP
2009-508481 Jun 2009 JP
2009126792 Jun 2009 JP
2009137851 Jun 2009 JP
2016-532440 Oct 2015 JP
2 291 613 Jan 2007 RU
2 337 529 Nov 2008 RU
WO 8911789 Dec 1989 WO
WO 9534659 Dec 1995 WO
WO 9534668 Dec 1995 WO
WO 96005721 Feb 1996 WO
WO 96033270 Oct 1996 WO
WO 96038567 Dec 1996 WO
WO 96040964 Dec 1996 WO
WO 9749816 Dec 1997 WO
WO 9914348 Mar 1999 WO
WO 99024585 May 1999 WO
WO 9926467 Jun 1999 WO
WO 9927116 Jun 1999 WO
WO 9932619 Jul 1999 WO
WO 9961631 Dec 1999 WO
WO 9967367 Dec 1999 WO
WO 0032757 Jun 2000 WO
WO 00044914 Aug 2000 WO
WO 2001007601 Feb 2001 WO
WO 2001085970 Nov 2001 WO
WO 0214472 Feb 2002 WO
WO 02066660 Aug 2002 WO
WO 03000679 Jan 2003 WO
WO 03004649 Jan 2003 WO
WO 03006422 Jan 2003 WO
WO 2003004649 Jan 2003 WO
WO 03012052 Feb 2003 WO
WO 03013247 Feb 2003 WO
WO 03016308 Feb 2003 WO
WO 2003014357 Feb 2003 WO
WO 03020704 Mar 2003 WO
WO 03022051 Mar 2003 WO
WO 03022831 Mar 2003 WO
WO 03022843 Mar 2003 WO
WO 03029243 Apr 2003 WO
WO 03037085 May 2003 WO
WO 03037878 May 2003 WO
WO 03045878 Jun 2003 WO
WO 03050087 Jun 2003 WO
WO 03051823 Jun 2003 WO
WO 03051824 Jun 2003 WO
WO 03051846 Jun 2003 WO
WO 03064625 Aug 2003 WO
WO 03076409 Sep 2003 WO
WO 03077648 Sep 2003 WO
WO 03087067 Oct 2003 WO
WO 03090539 Nov 2003 WO
WO 03091217 Nov 2003 WO
WO 03093269 Nov 2003 WO
WO 03104206 Dec 2003 WO
WO 2004002947 Jan 2004 WO
WO 2004002981 Jan 2004 WO
WO 2004005485 Jan 2004 WO
WO 2004009761 Jan 2004 WO
WO 2004011429 Feb 2004 WO
WO 2004022771 Mar 2004 WO
WO 2004029060 Apr 2004 WO
WO 2004035545 Apr 2004 WO
WO 2004035563 Apr 2004 WO
WO 2004035564 Apr 2004 WO
WO 2004037787 May 2004 WO
WO 2004049806 Jun 2004 WO
WO 2004062351 Jul 2004 WO
WO 2004067518 Aug 2004 WO
WO 2004067527 Aug 2004 WO
WO 2004074443 Sep 2004 WO
WO 2004077950 Sep 2004 WO
WO 2005000824 Jan 2005 WO
WO 2005003362 Jan 2005 WO
WO 2005007627 Jan 2005 WO
WO 2005007860 Jan 2005 WO
WO 2005040152 May 2005 WO
WO 2005047233 May 2005 WO
WO 2005047281 May 2005 WO
WO 2005061443 Jul 2005 WO
WO 2005061464 Jul 2005 WO
WO 2005068434 Jul 2005 WO
WO 2005070889 Aug 2005 WO
WO 2005089551 Sep 2005 WO
WO 2005095335 Oct 2005 WO
WO 2005107437 Nov 2005 WO
WO 2005110068 Nov 2005 WO
WO 2006006569 Jan 2006 WO
WO 2006024820 Mar 2006 WO
WO 2006029828 Mar 2006 WO
WO 2006029829 Mar 2006 WO
WO 2006037945 Apr 2006 WO
WO 2006050803 May 2006 WO
WO 2006074400 Jul 2006 WO
WO 2006090792 Aug 2006 WO
WO 2006123088 Nov 2006 WO
WO 2006125687 Nov 2006 WO
WO 2006125688 Nov 2006 WO
WO 2006132270 Dec 2006 WO
WO 2006138638 Dec 2006 WO
WO 2007003294 Jan 2007 WO
WO 2007007316 Jan 2007 WO
WO 2007024783 Mar 2007 WO
WO 2007026834 Mar 2007 WO
WO 2007035650 Mar 2007 WO
WO 2007038788 Apr 2007 WO
WO 2007039454 Apr 2007 WO
WO 2007050715 May 2007 WO
WO 2007051462 May 2007 WO
WO 2007070389 Jun 2007 WO
WO 2007071900 Jun 2007 WO
WO 2007074405 Jul 2007 WO
WO 2007077201 Jul 2007 WO
WO 2007077247 Jul 2007 WO
WO 2007080126 Jul 2007 WO
WO 2007080127 Jul 2007 WO
WO 2007083193 Jul 2007 WO
WO 2007096576 Aug 2007 WO
WO 2007051462 Oct 2007 WO
WO 2007119434 Oct 2007 WO
WO 2007134984 Nov 2007 WO
WO 2008007100 Jan 2008 WO
WO 2008009908 Jan 2008 WO
WO 2008029084 Mar 2008 WO
WO 2008042231 Apr 2008 WO
WO 2008059948 May 2008 WO
WO 2008063203 May 2008 WO
WO 2008071918 Jun 2008 WO
WO 2008074991 Jun 2008 WO
WO 2008084073 Jul 2008 WO
WO 2008100426 Aug 2008 WO
WO 2008102908 Aug 2008 WO
WO 2008148223 Dec 2008 WO
WO 2008152072 Dec 2008 WO
WO 2008152073 Dec 2008 WO
WO 2009000757 Dec 2008 WO
WO 2009005297 Jan 2009 WO
WO 2009029690 Mar 2009 WO
WO 2009035150 Mar 2009 WO
WO 2009037329 Mar 2009 WO
WO 2009046384 Apr 2009 WO
WO 2009060429 May 2009 WO
WO 2009063180 May 2009 WO
WO 2009068170 Jun 2009 WO
WO 2009068171 Jun 2009 WO
WO 2009086041 Jul 2009 WO
WO 2009090401 Jul 2009 WO
WO 2009090402 Jul 2009 WO
WO 2009115788 Sep 2009 WO
WO 2009116558 Sep 2009 WO
WO 2009125401 Oct 2009 WO
WO 2009144079 Dec 2009 WO
WO 2009152995 Dec 2009 WO
WO 2009153607 Dec 2009 WO
WO 2009158258 Dec 2009 WO
WO 2010012649 Feb 2010 WO
WO 2010026989 Mar 2010 WO
WO 2010034153 Apr 2010 WO
WO 2010049270 May 2010 WO
WO 2010049369 May 2010 WO
WO 2010049405 May 2010 WO
WO 2010049414 May 2010 WO
WO 2010056519 May 2010 WO
WO 2010063422 Jun 2010 WO
WO 2010069802 Jun 2010 WO
WO 2010078906 Jul 2010 WO
WO 2010078912 Jul 2010 WO
WO 2010093788 Aug 2010 WO
WO 2010104217 Sep 2010 WO
WO 2010108611 Sep 2010 WO
WO 2010112826 Oct 2010 WO
WO 2010116122 Oct 2010 WO
WO 2010119906 Oct 2010 WO
WO 2010130970 Nov 2010 WO
WO 2011001434 Jan 2011 WO
WO 2011003776 Jan 2011 WO
WO 2011028836 Mar 2011 WO
WO 2011035874 Mar 2011 WO
WO 2011045796 Apr 2011 WO
WO 2011065451 Jun 2011 WO
WO 2011067745 Jun 2011 WO
WO 2011075188 Jun 2011 WO
WO 2011080674 Jul 2011 WO
WO 2011112570 Sep 2011 WO
WO 2011132127 Oct 2011 WO
WO 2012001626 Jan 2012 WO
WO 2012056401 May 2012 WO
WO 2012092580 Jul 2012 WO
WO 2012156342 Nov 2012 WO
WO 2012164100 Dec 2012 WO
WO 2013010691 Jan 2013 WO
WO 2013025670 Feb 2013 WO
WO 2013039990 Mar 2013 WO
WO 2013040005 Mar 2013 WO
WO 2013040021 Mar 2013 WO
WO 2013040033 Mar 2013 WO
WO 2013040049 Mar 2013 WO
WO 2013040057 Mar 2013 WO
WO 2013040116 Mar 2013 WO
WO 2013040117 Mar 2013 WO
WO 2013153553 Oct 2013 WO
WO 2013175480 Nov 2013 WO
WO 2014022739 Feb 2014 WO
WO 2014106837 Jul 2014 WO
WO 2014106838 Jul 2014 WO
WO 2014151255 Sep 2014 WO
WO 2014164761 Oct 2014 WO
WO 2014164797 Oct 2014 WO
WO 2015010026 Jan 2015 WO
WO 2015200539 Dec 2015 WO
Non-Patent Literature Citations (717)
Entry
Street, 2008, http://biochemistryrevisited.blogspot.com/2008/01/why-is-dna-and-not-rna-stable-storage.html#!/2008/01/why-is-dna-and-not-rna-stable-storage.htm.
Dawson, William O., et al. “cDNA cloning of the complete genome of tobacco mosaic virus and production of infectious transcripts.” Proceedings of the National Academy of Sciences 83.6 (1986): 1832-1836.
GenBank Accession No. U87257.1 (available online in 1997).
Wild carrot, by Noxious Weed Control Board (NWCB) of Washington State, published online in 2010, retrieved online from www.nwcb.wa.gov/detail.asp?weed=46.
Wiesman, Zeev, et al. “Novel cationic vesicle platform derived from vernonia oil for efficient delivery of DNA through plant cuticle membranes.” Journal of biotechnology 130.1 (2007): 85-94.
Riggins, Chance W., et al. “Characterization of de novo transcriptome for waterhemp (Amaranthus tuberculatus) using GS-FLX 454 pyrosequencing and its application for studies of herbicide target-site genes.” Pest management science 66.10 (2010): 1042-1052.
Tank mixing benefit, NCSU, 2004, published online at http://www.ncagr.gov/agronomi/pdffiles/Tank_Mixing.pdf.
Fernández, Victoria, and Thomas Eichert. “Uptake of hydrophilic solutes through plant leaves: current state of knowledge and perspectives of foliar fertilization.” Critical Reviews in Plant Sciences 28.1-2 (2009): 36-68.), (Year: 2009).
Riggins, Chance W., et al. “Characterization of de novo transcriptome for waterhemp (Amaranthus tuberculatus) using GS-FLX 454 pyrosequencing and its application for studies of herbicide target-site genes.” Pest management science 66.10 (2010): 1042-1052. (Year: 2010).
Tank mixing benefit, NCSU, 2004, published online at http://www.ncagr.gov/agronomi/pdffiles/Tank_Mixing.pdf (Year: 2004).
Wang, C. J., and Z. Q. Liu. “Foliar uptake of pesticides—present status and future challenge.” Pesticide Biochemistry and Physiology 87.1 (2007): 1-8. (Year: 2007).
Alarcón-Reverte et al., “Resistance to ACCase-inhibiting herbicides in the weed Lolium multiflorum,” Comm. Appl. Biol. Sci., 73(4):899-902 (2008).
Amarzguioui et al., “An algorithm for selection of functional siRNA sequences,” Biochemical and Biophysical Research Communications, 316:1050-1058 (2004).
Ambrus et al., “The Diverse Roles of RNA Helicases in RNAi,” Cell Cycle, 8(21):3500-3505 (2009).
An et al., “Transient RNAi Induction against Endogenous Genes in Arabidopsis Protoplasts Using in Vitro-Prepared Double-Stranded RNA,” Biosci Biotechnol Biochem, 69(2):415-418 (2005).
Andersson et al., “A novel selection system for potato transformation using a mutated AHAS gene,” Plant Cell Reports, 22(4):261-267 (2003).
Anonymous, “A handbook for high-level expression and purification of 6xHis-tagged proteins,” The QUIexpressionist, (2003).
Anonymous, “Agronomy Facts 37: Adjuvants for enhancing herbicide performance,” n.p., 1-8, (Jan. 26, 2000), Web, (Jan. 21, 2014).
Anonymous, “Devgen, The mini-Monsanto,” KBC Securities (2006).
Anonymous, “Do Monsanto have the next big thing?,” Austalian Herbicide Resistance Initiative (AHRI), (Apr. 23, 2013) Web. (Jan. 19, 2015).
Aoki et al., “In Vivo Transfer Efficiency of Antisense Oligonucleotides into the Myocardium Using HVJ-Liposome Method,” Biochem Biophys Res Commun, 231:540-545 (1997).
Arpaia et al., “Production of transgenic eggplant (Solanum melongena L.) resistant to Colorado Potato Beetle (Leptinotarsa decemlineata Say),” (1997) Theor. Appl. Genet., 95:329-334 (1997).
Artmymovich, “Using RNA interference to increase crop yield and decrease pest damage,” MMG 445 Basic Biotech., 5(1):7-12 (2009).
Australian Patent Examination report No. 1 dated Nov. 11, 2013, in Australian Application No. 2011224570.
Axtell et al., “A Two-Hit Trigger for siRNA Biogenesis in Plants,” Cell, 127:565-577 (2006).
Baerson et al., “Glyphosate-Resistant Goosegrass. Identification of a Mutation in the Target Enzyme 5-Enolpyruvylshikimate-3-Phosphate Synthase,” Plant Physiol., 129(3):1265-1275 (2002).
Bannerjee et al., “Efficient production of transgenic potato (S. tuberosum L. ssp. andigena) plants via Agrobacterium tumefaciens-mediated transformation,” Plant Sci., 170:732 738 (2006).
Baulcombe, “RNA silencing and heritable epigenetic effects in tomato and Arabidopsis,” Abstract 13th Annual Fall Symposium, Plant Genomes to Phenomes, Donald Danforth Plant Science Center, 28-30 (2011).
Bayer et al., “Programmable ligand-controlled riboregulators of eukaryotic gene expression,” Nature Biotechnol., 23(3):337-343 (2005).
Beal, et al., “Second Structural Motif for Recognition of DNA by Oligonucleotide-Directed Triple-Helix Formation,” Science, 251:1360-1363 (1992).
Becker et al., “Fertile transgenic wheat from microprojectile bombardment of scutellar tissue,” The Plant Journal, 5(2):299-307 (1994).
Bhargava et al., “Long double-stranded RNA-mediated RNA interference as a tool to achieve site-specific silencing of hypothalamic neuropeptides,” Brain Research Protocols, 13:115-125 (2004).
Boletta et al., “High Efficient Non-Viral Gene Delivery to the Rat Kidney by Novel Polycationic Vectors,” J Am Soc. Nephrol., 7:1728 (1996).
Bolognesi et al., “Characterizing the Mechanism of Action of Double-Stranded RNA Activity against Western Corn Rootworm(Diabrotica virgifera virgifera LeConte),” PLoS One 7(10):e47534 (2012).
Bolter et al., “A chloroplastic inner envelope membrane protease is essential for plant development,” FEBS Letters, 580:789-794 (2006).
Breaker et al., “A DNA enzyme with Mg2+-dependent RNA phosphoesterase activity,” Chemistry and Biology, 2:655-660 (1995).
Brodersen et al., “The diversity of RNA silencing pathways in plants,” Trends in Genetics, 22(5):268-280 (2006).
Busi et al., “Gene flow increases the initial frequency of herbicide resistance alleles in unselectedpopulations,” Agriculture, Ecosystems and Environments, Elsevier, Amsterdam, NL, 142(3):403-409 (2011).
Butler et al., “Priming and re-drying improve the survival of mature seeds of Digitalis purpurea during storage,” Annals of Botany, 103:1261-1270 (2009).
Bytebier et al., “T-DNA organization in tumor cultures and transgenic plants of the monocotyledon Asparagus officinalis,” Proc. Natl. Acad. Sci. U.S.A., 84:5345-5349 (1987).
Chabbouh et al., “Cucumber mosaic virus in artichoke,” FAO Plant Protection Bulletin, 38:52-53 (1990).
Chakravarty et al., “Genetic Transformation in Potato: Approaches and Strategies,” Amer J Potato Res, 84:301 311 (2007).
Chee et al., “Transformation of Soybean (Glycine max) by Infecting Germinating Seeds with Agrobacterium tumefaciens,” Plant Physiol., 91:1212-1218 (1989).
Chen et al., “In Vivo Analysis of the Role of atTic20 in Protein Import into Chloroplasts,” The Plant Cell, 14:641-654 (2002).
Cheng et al., “Production of fertile transgenic peanut (Arachis hypogaea L.) plants using Agrobacterium tumefaciens,” Plant Cell Reports, 15:653-657 (1996).
Chi et al., “The Function of RH22, a DEAD RNA Helicase, in the Biogenesis of the 50S Ribosomal Subunits of Arabidopsis Chloroplasts,” Plant Physiology, 158:693-707 (2012).
Chinese Office Action dated Aug. 28, 2013 in Chinese Application No. 201180012795.2.
Clough et al., “Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana,” The Plant Journal, 16(6):735-743 (1998).
CN101914540 Patent Diclosure, “Introduction of RNA into plant by interference,” (2010).
Colbourne et al., “The Ecoresponsive Genome of Daphnia pulex,” Science, 331(6017):555-561 (2011).
Colombian Office Action dated Aug. 2, 2013 in Application No. 12 152898.
Colombian Office Action dated Feb. 21, 2014 in Application No. 12 152898.
Cooney et al., “Site-Specific Oligonucleotide Binding Represses Transcription of the Human c-myc Gene in Vitro,” Science ,241:456-459 (1988).
Cost Action FA0806 progress report “Plant virus control employing RNA-based vaccines: A novel non-transgenic strategy” (2010).
Dalmay et al., “An RNA-Depenedent RNA Polymerase Gene in Arabidopsis is Required for Posttranscriptional Gene Silencing Mediated by a Transgene but Not by a Virus,” Cell, 101:543-553 (2000).
Database EMBL CBIB Daphnia—XP-002732239 (2011).
Davidson et al., “Engineering regulatory RNAs,” TRENDS in Biotechnology, 23(3):109-112 (2005).
De Block, et al. “Engineering herbicide resistance in plants by expression of a detoxifying enzyme,” EMBO J. 6(9):2513-2519 (1987).
De Framond, “MINI-Ti: A New Vector Strategy for Plant Genetic Engineering,” Nature Biotechnology, 1:262-269 (1983).
Della-Cioppa et al., “Import of a precursor protein into chloroplasts is inhibited by the herbicide glyphosate,” The EMBO Journal, 7(5):1299-1305 (1988).
Diallo et al., “Long Endogenous dsRNAs Can Induce Complete Gene Silencing in Mammalian Cells and Primary Cultures,” Oligonucleotides, 13:381-392 (2003).
Dietemann et al., “Varroa destructor: research avenues towards sustainable control,” Journal of Apicultural Research, 51(1):125-132 (2012).
Du et al., “A systematic analysis of the silencing effects of an active siRNA at all single-nucleotide mismatched target sites,” Nucleic Acids Research, 33(5):1671-1677 (2005).
Dunoyer et al., “Small RNA Duplexes Function as Mobile Silencing Signals Between Plant Cells,” Science, 328:912-916 (2010).
Ellington et al., “In vitro selection of RNA molecules that bind specific ligands,” Nature, 346:818-822 (1990).
Eurasian Office Action dated Feb. 24, 2014, in Application No. 201201264.
European Cooperation in the field of Scientific and Technical Research—Memorandum of Understanding for COST Action FA0806 (2008).
European Supplemental Search Report dated Oct. 8, 2013 in Application No. 11753916.3.
Extended European Search Report dated Jan. 21, 2015, in European Patent Application No. 12 832 415.9.
Extended European Search Report dated Jan. 29, 2015, in European Patent Application No. 12 831 567.8.
Extended European Search Report dated Feb. 2, 2015, in European Patent Application No. 12 830 932.5.
Extended European Search Report dated Feb. 3, 2015, in European Patent Application No. 12 831 945.6.
Extended European Search Report dated Feb. 27, 2015, in European Patent Application No. 12 832 160.1.
Extended European Search Report dated Mar. 3, 2015, in European Patent Application No. 12 831 166.9.
Extended European Search Report dated Mar. 17, 2015, in European Patent Application No. 12 831 684.1.
Partial Supplementary European Search Report dated Mar. 2, 2015, in European Patent Application No. 12 831 494.5.
Fire et al., “Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans,” Nature, 391:806-811 (1998).
First Examination Report dated Apr. 23, 2013, in New Zealand Patent Application No. 601784.
First Examination Report dated Jul. 28, 2014, in New Zealand Patent Application No. 627060.
Fukuhara et al., “Enigmatic Double-Stranded RNA in Japonica Rice,” Plant Molecular Biology, 21:1121-1130 (1993).
Fukuhara et al., “The Unusual Structure of a Novel RNA Replicon in Rice,” The Journal of Biological Chemistry, 270(30):18147-18149 (1995).
Fukuhara et al., “The wide distribution of endornaviruses, large double-stranded RNA replicons with plasmid-like properties,” Archives of Virology, 151:995-1002 (2006).
Further Examination Report issued in New Zealand Patent Application No. 601784 dated May 16, 2014.
Gaines et al., “Gene amplification confers glyphosate resistance in Amaranthus palmeri,” Proc. Natl. Acad. Sci. USA, 107(3):1029-1034 (2010).
Gallie et al., “Identification of the motifs within the tobacco mosaic virus 5′-leader responsible for enhancing translation,” Nucleic Acids Res., 20(17):4631-4638 (1992).
Gan et al., “Bacterially expressed dsRNA protects maize against SCMV infection,” Plant Cell Rep, 11:1261-1268 (2010).
Gao et al., “Down-regulation of acetolactate synthase compromises 01-1-mediated resistance to powdery mildew in tomato,” BMC Plant Biology, 14 (2014).
Garbian et al., “Bidirectional Transfer of RNAi between Honey Bee and Varroa destructor: Varroa Gene Silencing Reduces Varroa Population,” 8(12):1-9:e1003035 (2012).
Ge et al., “Rapid vacuolar sequestration: the horseweed glyphosate resistance mechanism,” Pest Management Sci., 66:345-348 (2010).
GenBank Accession No. DY640489, PU2_plate27_F03 PU2 Prunus persica cDNA similar to expressed mRNA inferred from Prunus persica hypothetical domain/motif containing IPR011005:Dihydropteroate synthase-like, MRNA sequence (2006) [Retrieved on Feb. 4, 2013]. Retrieved from the internet <URL: http://www.ncbi.nlm.nih.gov/nucest/DY640489>.
GenBank Accession No. EU24568—“Amaranthus hypochondriacus acetolactate synthase (ALS) gene,” (2007).
GenBank Accession No. FJ972198, Solanum lycopersicum cultivar Ailsa Craig dihydropterin pyrophosphokinase-dihydropteroate synthase (HPPK-DHPS) gene, complete cds (2010) [Retrieved on Nov. 26, 2012]. Retrieved from the internet ,URL: http://www.ncbi.nlm.nih.gov/nuccore/FJ972198>.
GenBank accession No. AY545657.1, published 2004.
GenBank accession No. GI:186478573, published Jan. 22, 2014.
GenEmbl FJ861243, published Feb. 3, 2010.
Gong et al., “Silencing of Rieske iron-sulfur protein using chemically synthesised siRNA as a potential biopesticide against Plutella xylostella,” Pest Manag Sci, 67:514-520 (2011).
Gressel et al., “A strategy to provide long-term control of weedy rice while mitigating herbicide resistance transgene flow, and its potential use for other crops with related weeds,” Pest Manag Sci, 65(7):723-731 (2009).
Gutensohn et al., “Functional analysis of the two Arabidopsis homologues of Toc34, a component of the chloroplast protein import apparatus,” The Plant Journal, 23(6):771-783 (2000).
Haigh, “The Priming of Seeds: Investigation into a method of priming large quantities of seeds using salt solutions,” Thesis submitted to Macquarie University (1983).
Hamilton et al., “Guidelines for the Identification and Characterization of Plant Viruses,” J. gen. Virol., 54:223-241 (1981).
Hamilton et al., “Two classes of short interfering RNA in RNA silencing,” EMBO J., 21(17):4671-4679 (2002).
Han et al., “Molecular Basis for the Recognition of Primary microRNAs by the Drosha-DGCR8 Complex,” Cell, 125(5):887-901 (2006).
Hannon, “RNA interference,” Nature,481:244-251 (2002).
Hardegree, “Drying and storage effects on germination of primed grass seeds,” Journal of Range Management, 47(3):196-199 (1994).
Harrison et al., “Does Lowering Glutamine Synthetase Activity in Nodules Modigy Nitrogen Metabolism and Growth of Lotus japonicus?,” Plant Physiology, 133:253-262 (2003).
Herman et al., “A three-component dicamba O-demethylase from Pseudomonas maltophilia, strain DI-6: gene isolation, characterization, and heterologous expression,” J. Biol. Chem., 280: 24759-24767 (2005).
Hewezi et al., “Local infiltration of high- and low-molecular-weight RNA from silenced sunflower (Helianthus annuus L.) plants triggers post-transcriptional gene silencing in non-silenced plants,” Plant Biotechnology Journal, 3:81-89 (2005).
Hidayat et al., “Enhanced Metabolism of Fluazifop Acid in a Biotype of Digitaria sanguinalis Resistant to the Herbicide Fluazifop-P-Butyl,” Pesticide Biochem. Physiol., 57:137-146 (1997).
Himber et al., “Transitivity-dependant and -independent cell-to-cell movement of RNA silencing,” The EMBO Journal, 22(17):4523-4533 (2003).
Hirschberg et al., “Molecular Basis of Herbicide Resistance in Amaranthus hybridus,” Science, 222:1346-1349 (1983).
Hoekema et al., “A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid,” Nature, 303:179-180 (1983).
Hofgen et al., “Repression of Acetolactate Synthase Activity through Antisense Inhibition: Molecular and Biochemical Analysis of Transgenic Potato (Solanum tuberosum L. cv Desiree) Plants,” Plant Physiol., 107(2):469-477 (1995).
Hsieh et al., “A library of siRNA duplexes targeting the phosphoinositide 3-kinase pathway: determinants of gene silencing for use in cell-based screens,” Nucleic Acids Res., 32(3):893-901 (2004).
Huesken et al., “Design of a genome-wide siRNA library using an artificial neural network,” Nature Biotechnology, 23(8): 995-1001 (2005).
Hunter et al., “RNA Interference Strategy to suppress Psyllids & Leafhoppers,” International Plant and Animal Genome XIX, 15-19 (2011).
Ichihara et al., “Thermodynamic instability of siRNA duplex is a prerequisite for dependable prediction of siRNA activities,” Nucleic Acids Res., 35(18):e123 (2007).
International Preliminary Report on Patentability dated Sep. 11, 2014, in International Application No. PCT/IL13/50447.
International Search Report and the Written Opinion dated May 10, 2011, in International Application No. PCT/US 11/27528.
International Search Report and the Written Opinion dated Feb. 25, 2013, in International Application No. PCT/US 12/54883.
International Search Report and the Written Opinion dated Feb. 27, 2013, in International Application No. PCT/US 12/54814.
International Search Report and the Written Opinion dated Feb. 27, 2013, in International Application No. PCT/US 12/54842.
International Search Report and the Written Opinion dated Feb. 27, 2013, in International Application No. PCT/US 12/54862.
International Search Report and the Written Opinion dated Feb. 27, 2013, in International Application No. PCT/US 12/54894.
International Search Report and the Written Opinion dated Feb. 27, 2013, in International Application No. PCT/US 12/54974.
International Search Report and the Written Opinion dated Feb. 27, 2013, in International Application No. PCT/US 12/54980.
International Search Report and the Written Opinion dated Oct. 1, 2013, in International Application No. PCT/IL2013/050447.
International Search Report and the Written Opinion dated Jul. 15, 2014, in International Application No. PCT/US2014/025305.
International Search Report and the Written Opinion dated Jul. 22, 2014, in International Application No. PCT/IL2013/051083.
International Search Report and the Written Opinion dated Jul. 22, 2014, in International Application No. PCT/IL2013/051085.
International Search Report and the Written Opinion dated Jul. 24, 2014, in International Application No. PCT/US2014/026036.
International Search Report and Written Opinion dated Aug. 25, 2014, in International Application No. PCT/US2014/023503.
International Search Report and Written Opinion dated Aug. 27, 2014, in International Application No. PCT/US2014/023409.
International Search Report and Written Opinion dated Feb. 23, 2015, in International Application No. PCT/US2014/063832.
International Search Report dated Mar. 12, 2013, in International Application No. PCT/US 12/54789.
Invitation to Pay Additional Fees dated May 6, 2014, in International Application No. PCT/IL2013/051083.
Invitation to Pay Additional Fees dated May 6, 2014, in International Application No. PCT/IL2013/051085.
Invitation to Pay Additional Fees dated Nov. 25, 2014, in International Application No. PCT/US2014/047204.
Isaacs et al., “Engineered riboregulators enable post-transcriptional control of gene expression,” Nature Biotechnology, 22(7):841-847 (2004).
Ji et al., “Regulation of small RNA stability: methylation and beyond,” Cell Research, 22:624-636 (2012).
Jones-Rhoades et al., “MicroRNAs and Their Regulatory Roles in Plants,” Annu. Rev. Plant Biol., 57:19-53 (2006).
Josse et al., “A DELLA in Disguise: SPATULA Restrains the Growth of the Developing Arabidopsis Seedling,” Plant Cell, 23:1337-1351 (2011).
Kam et al., “Nanotube Molecular Transporters: Internalization of Carbon Nanotube-Protein Conjugates into Mammalian Cells,” J. Am. Chem. Soc., 126(22):6850-6851 (2004).
Katoh et al., “Specific residues at every third position of siRNA shape its efficient RNAi activity,” Nucleic Acids Res., 35(4): e27 (2007).
Kertbundit et al., “In vivo random β-glucuronidase gene fusions in Arabidopsis thaliana,” Proc. Natl. Acad. Sci. U S A., 88:5212-5216 (1991).
Khachigian, “DNAzymes: Cutting a path to a new class of therapeutics,” Curr Opin Mol Ther 4(2):119-121 (2002).
Khodakovskaya et al., “Carbon Nanotubes are Able to Penetrate Plant Seed Coat and Dramatically Affect Seed Germination and Plant Growth,” ACS Nano, 3(10):3221-3227 (2009).
Kirkwood, “Use and Mode of Action of Adjuvants for Herbicides: A Review of some Current Work,” Pestic Sci., 38:93-102 (1993).
Klahre et al., “High molecular weight RNAs and small interfering RNAs induce systemic posttranscriptional gene silencing in plants,” Proc. Natl. Acad. Sci. USA, PNAS, 99(18):11981-11986 (2002).
Kronenwett et al., “Oligodeoxyribonucleotide Uptake in Primary Human Hematopoietic Cells is Enhanced by Cationic Lipids and Depends on the Hematopoietic Cell Subset,” Blood, 91(3):852-862 (1998).
Kumar et al., “Sequencing, De Novo Assembly and Annotation of the Colorado Potato Beetle, Leptinotarsa decemlineata,Transcriptome,” PLoS One, 9(1):e86012 (2014).
Kusaba et al., “Low glutelin content1: A Dominant Mutation That Suppresses the Glutelin Multigene Family via RNA Silencing ni Rice,” The Plant Cell, 15(6):1455-1467 (2003).
Kusaba, “RNA interference in crop plants,” Curr Opin Biotechnol, 15(2):139-143 (2004).
Lavigne et al., “Enhanced antisense inhibition of human immunodeficiency virus type 1 in cell cultures by DLS delivery system,” Biochem Biophys Res Commun, 237:566-571 (1997).
Lee et al., “Aptamer Database,” Nucleic Acids Research, 32:D95-D100 (2004).
Lermontova et al., “Reduced activity of plastid protoporphyrinogen oxidase causes attenuated photodynamic damage during high-light compared to low-light exposure,” The Plant Journal, 48(4):499-510 (2006).
Lesnik et al., “Prediction of rho-independent transcriptional terminators in Escherichia coli,” Nucleic Acids Research, 29(17):3583-3594 (2001).
Li et al., “Establishment of a highly efficient transformation system for pepper (Capsicum annuum L.),” Plant Cell Reports, 21: 785-788 (2003).
Li et al., “The FAST technique: a simplified Agrobacterium-based transformation method for transient gene expression analysis in seedlings of Arabidopsis and other plant species,” Plant Methods, 5(6):1-15 (2009).
Liu et al., “Carbon Nanotubes as Molecular Transporters for Walled Plant Cells,” Nano Letters, 9(3):1007-1010 (2009).
Liu et al., “Comparative study on the interaction of DNA with three different kinds of surfactants and the formation of multilayer films,” Bioelectrochemistry, 70:301-307 (2007).
Liu et al., “DNAzyme-mediated recovery of small recombinant RNAs from a 5S rRNA-derived chimera expressed in Escherichia coli,” BMC Biotechnology, 10:85 (2010).
Llave et al., “Endogenous and Silencing-Associated Small RNAs in Plants,” The Plant Cell, 14:1605-1619 (2002).
Lu et al., “RNA silencing in plants by the expression of siRNA duplexes,” Nucleic Acids Res., 32(21):e171 (2004).
Lu et al., “OligoWalk: an online siRNA design tool utilizing hybridization thermodynamics,” Nucleic Acids Research, 36:W104-W108 (2008).
Luft, “Making sense out of antisense oligodeoxynucleotide delivery: getting there is half the fun,” J Mol Med, 76:75-76 (1998).
Maas et al., “Mechanism and optimized conditions for PEG mediated DNA transfection into plant protoplasts,” Plant Cell Reports, 8:148-149 (1989).
Maher III et al., “Inhibition of DNA binding proteins by oligonucleotide-directed triple helix formation,” Science, 245(4919):725-730 (1989).
Makkouk et al., “Virus Diseases of Peas, Beans, and Faba Bean in the Mediterranean region,” Adv Virus Res, 84:367-402 (2012).
Mandal et al., “Adenine riboswitches and gene activation by disruption of a transcription terminator,” Nature Struct. Mol. Biol., 11(1):29-35 (2004).
Mandal et al., “Gene Regulation by Riboswitches,” Nature Reviews | Molecular Cell Biology, 5:451-463 (2004).
Manoharan, “Oligonucleotide Conjugates as Potential Antisense Drugs with Improved Uptake, Biodistribution, Targeted Delivery, and Mechanism of Action,” Antisense & Nucleic Acid Drug Development, 12:103-128 (2002).
Masoud et al., “Constitutive expression of an inducible β-1,3-glucanase in alfalfa reduces disease severity caused by the oomycete pathogen Phytophthora megasperma f. sp medicaginis, but does not reduce disease severity of chitincontaining fungi,” Transgenic Research, 5:313-323 (1996).
Matveeva et al., “Prediction of antisense oligonucleotide efficacy by in vitro methods,” Nature Biotechnology, 16:1374-1375 (1998).
Meinke, et al., “Identifying essential genes in Arabidopsis thaliana,” Trends Plant Sci., 13(9):483-491 (2008).
Meins et al., “RNA Silencing Systems and Their Relevance to Plant Development,” Annu. Rev. Cell Dev. Biol., 21:297-318 (2005).
Melnyk et al., “Intercellular and systemic movement of RNA silencing signals,” The EMBO Journal, 30:3553-3563 (2011).
Misawa et al., “Functional expression of the Erwinia uredovora carotenoid biosynthesis gene crtl in transgenic plants showing an increase of β-carotene biosynthesis activity and resistance to the bleaching herbicide norflurazon,” The Plant Journal, 4(5):833-840 (1993).
Misawa et al., “Expression of an Erwinia phytoene desaturase gene not only confers multiple resistance to herbicides interfering with carotenoid biosynthesis but also alters xanthophyll metabolism in transgenic plants,” The Plant Journal, 6(4):481-489 (1994).
Miura et al., “The Balance between Protein Synthesis and Degradation in Chloroplasts Determines Leaf Variegation in Arabidopsis yellow variegated Mutants,” The Plant Cell, 19:1313-1328 (2007).
Molnar et al., “Plant Virus-Derived Small Interfering RNAs Originate redominantly from Highly Structured Single-Stranded Viral RNAs,” Journal of Virology, 79(12):7812-7818 (2005).
Molnar et al., “Small Silencing RNAs in Plants are Mobile and Direct Epigenetic Modification in Recipient Cells,” Science, 328:872-875 (2010).
Moriyama et al., “Double-stranded RNA in rice: a novel RNA replicon in plants,” Molecular & General Genetics, 248(3):364-369 (1995).
Moriyama et al., “Stringently and developmentally regulated levels of a cytoplasmic double-stranded RNA and its high-efficiency transmission via egg and pollen in rice,” Plant Molecular Biology, 31:713-719 (1996).
Morrissey et al., “Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs,” Nat Biotechnol. 23(8):1002-1007 (2005).
Moser et al., “Sequence-Specific Cleavage of Double Helical DNA by Triple Helix Formation,” Science, 238:645-646 (1987).
Nowak et al., “A new and efficient method for inhibition of RNA viruses by DNA interference,” The FEBS Journal, 276:4372-4380 (2009).
Office Action dated Feb. 17, 2014, in Mexican Patent Application No. MX/a/2012/010479.
Office Action dated Jan. 6, 2015, in Japanese Patent Application No. 2012-557165.
Office Action dated Nov. 19, 2014, in Eurasian Patent Application No. 201201264/28.
Ongvarrasopone et al., “A Simple and Cost Effective Method to Generate dsRNA for RNAi Studies in Invertebrates,” Science Asia, 33:35-39 (2007).
Ouellet et al., “Members of the Acetohydroxyacid Synthase Muligene Family of Brassica napus Have Divergent Patterns of Expression,” The Plant Journal, Blackwell Scientific Publications, Oxford, GB, 2(3):321-330 (1992).
Paddison et al., “Stable suppression of gene expression by RNAi in mammalian cells,” Proc. Natl Acad. Sci. USA, 99(3):1443-1448 (2002).
Palauqui et al., “Activation of systemic acquired silencing by localised introduction of DNA,” Current Biology, 9:59-66 (1999).
Parera et al., “Dehydration Rate after Solid Matrix Priming Alters Seed Performance of Shrunken-2 Corn,” J. Amer. Soc. Hort. Sci., 119(3):629-635 (1994).
Paungfoo-Lonhienne et al., “DNA is Taken up by Root Hairs and Pollen, and Stimulates Root and Pollen Tube Growth,” Plant Physiology, 153:799-805 (2010).
Paungfoo-Lonhienne et al., “DNA uptake by Arabidopsis induces changes in the expression of CLE peptides which control root morphology,” Plant Signaling & Behavior, 5(9):1112-1114 (2010).
Pei et al., “On the art of identifying effective and specific siRNAs,” Nature Methods, 3(9):670-676 (2006).
Peretz et al., “A Universal Expression/Silencing Vector in Plants,” Plant Physiology, 145:1251-1263 (2007).
Pornprom et al., “Glutamine synthetase mutation conferring target-site-based resistance to glufosinate in soybean cell selections,” Pest Manag Sci, 2009; 65(2):216-222 (2009).
Preston et al., “Multiple effects of a naturally occurring proline to threonine substitution within acetolactate synthase in two herbicide-resistant populations of Lactuca serriola,” Pesticide Biochem. Physiol., 84(3):227-235 (2006).
Qiwei,“Advance in DNA interference,” Progress in Veterinary Medicine, 30(1):71-75 (2009).
Rajur et al., “Covalent Protein—Oligonucleotide Conjugates for Efficient Delivery of Antisense Molecules,” Bioconjug Chem., 8:935-940 (1997).
Reddy et al., “Organosilicone Adjuvants Increased the Efficacy of Glyphosate for Control of Weeds in Citrus (Citrus spp.)” HortScience 27(9):1003-1005 (1992).
Reddy et al., “Aminomethylphosphonic Acid Accumulation in Plant Species Treated with Glyphosate,” J. Agric. Food Chem., 56(6):2125-2130 (2008).
Reither et al., “Specificity of DNA triple helix formation analyzed by a FRET assay,” BMC Biochemistry, 3:27 (2002).
Rey et al., “Diversity of Dicotyledenous-Infecting Geminiviruses and Their Associated DNA Molecules in Southern Africa, Including the South-West Indian Ocean Islands,” Viruses, 4:1753-1791 (2012).
Reynolds et al., “Rational siRNA design for RNA interference,” Nature Biotechnology, 22:326-330 (2004).
Ryabov et al., “Cell-to-Cell, but Not Long-Distance, Spread of RNA Silencing That is Induced in Individual Epidermal Cells,” Journal of Virology, 78(6):3149-3154 (2004).
Ryan, “Human endogenous retroviruses in health and disease: a symbiotic perspective,” Journal of the Royal Society of Medicine, 97:560-565 (2004).
Santoro et al., “A general purpose RNA-cleaving DNA enzyme,” Proc. Natl. Acad. Sci. USA, 94:4262-4266 (1997).
Sathasivan et al., “Nucleotide sequence of a mutant acetolactate synthase gene from an imidazolinone-resistant Arabidopsis thaliana var. Columbia,” Nucleic Acids Research, 18(8):2188-2193 (1990).
Schwab et al., “RNA silencing amplification in plants: Size matters,” PNAS, 107(34):14945-14946 (2010).
Schwember et al., “Drying Rates following Priming Affect Temperature Sensitivity of Germination and Longevity of Lettuce Seeds,” HortScience, 40(3):778-781 (2005).
Second Chinese Office Action issued in Chinese Patent Application No. 201180012795.2, dated Jun. 10, 2014.
Seidman et al., “The potential for gene repair via triple helix formation,” J Clin Invest., 112(4):487-494 (2003).
Selvarani et al., “Evaluation of seed priming methods to improve seed vigour of onion (Allium cepa cv. Aggregatum) and carrot (Daucus carota),” Journal of Agricultural Technology, 7(3):857-867 (2011).
Sharma et al., “A simple and efficient Agrobacterium-mediated procedure for transformation of tomato,” J Biosci., 34(3):423 433 (2009).
Sijen et al., “On the Role of RNA Amplification in dsRNA-Triggered Gene Silencing,” Cell, 107:465-476 (2001).
Silwet L-77 Spray Adjuvant for agricultural applications, product description from Momentive Performance Materials, Inc. (2003).
Singh et al., “Absorption and translocation of glyphosate with conventional and organosilicone adjuvants,” Weed Biology and Management, 8:104-111 (2008).
Steeves et al., “Transgenic soybeans expressing siRNAs specific to a major sperm protein gene suppress Heterodera glycines reproduction,” Funct. Plant Biol., 33:991-999 (2006).
Stock et al., “Possible Mechanisms for Surfactant-Induced Foliar Uptake of Agrochemicals,” Pestic. Sci., 38:165-177 (1993).
Strat et al., “Specific and nontoxic silencing in mammalian cells with expressed long dsRNAs,” Nucleic Acids Research, 34(13):3803-3810 (2006).
Sudarsan et al., “Metabolite-binding RNA domains are present in the genes of eukaryotes,” RNA, 9:644-647 (2003).
Sun et al., “Antisense oligodeoxynucleotide inhibition as a potent strategy in plant biology: identification of SUSIBA2 as a transcriptional activator in plant sugar signalling,” The Plant Journal, 44:128-138 (2005).
Sun et al., “A Highly efficient Transformation Protocol for Micro-Tom, a Model Cultivar for Tomato Functional Genomics,” Plant Cell Physiol., 47(3):426-431 (2006).
Sun et al., “Sweet delivery—sugar translocators as ports of entry for antisense oligodeoxynucleotides in plant cells,” The Plant Journal, 52:1192-1198 (2007).
Takasaki et al., “An Effective Method for Selecting siRNA Target Sequences in Mammalian Cells,” Cell Cycle, 3:790-795 (2004).
Temple et al., “Can glutamine synthetase activity levels be modulated in transgenic plants by the use of recombinant DNA technology?” Transgenic Plants and Plant Biochemistry, 22:915-920 (1994).
Temple et al., “Down-regulation of specific members of the glutamine synthetase gene family in Alfalfa by antisense RNA technology,” Plant Molecular Biology, 37:535-547 (1998).
Templeton et al., “Improved DNA: liposome complexes for increased systemic delivery and gene expression,” Nature Biotechnology, 15:647-652 (1997).
Tenllado et al., “Crude extracts of bacterially expressed dsRNA can be used to protect plants against virus infection,” BMC Biotechnology, 3(3):1-11 (2003).
Tenllado et al., “RNA interference as a new biotechnological tool for the control of virus diseases in plants,” Virus Research, 102:85-96 (2004).
Tepfer, “Risk assessment of virus resistant transgenic plants,” Annual Review of Phytopathology, 40:467-491 (2002).
The Seed Biology Place, Website Gerhard Leubner Lab Royal Holloway, University of London, <http://www.seedbiology.de/seedtechnology.asp.
Third Party Submission filed on Nov. 29, 2012 in U.S. Appl. No. 13/042,856.
Thompson, et al., “CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice,” Nucl. Acids Res., 22(22):4673-4680 (1994).
Timmons et al., “Specific interference by ingested dsRNA,” Nature, 395:854 (1998).
Tomari et al., “Perspective: machines for RNAi,” Genes & Dev., 19:517-529 (2005).
Töpfer et al., “Uptake and Transient Expression of Chimeric Genes in Seed-Derived Embryos,” Plant Cell, 1:133-139 (1989).
Tran et al., “Control of specific gene expression in mammalian cells by co-expression of long complementary RNAs,” FEBS Lett.;573(1-3):127-134 (2004).
Turina et al., “Tospoviruses in the Mediterranean Area,” Advances in Virus Research, 84:403-437 (2012).
Tuschl, “RNA Interference and Small Interfering RNAs,” ChemBiochem. 2(4):239-245 (2001).
Tuschl, “Expanding small RNA interference,” Nature Biotechnol., 20: 446-448 (2002).
Ui-Tei et al., “Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference,” Nucleic Acids Res., 32(3): 936-948 (2004).
Unnamalai et al., “Cationic oligopeptide-mediated delivery of dsRNA for post-transcriptional gene silencing in plant cells,” FEBS Letters, 566:307-310 (2004).
Unniraman et al., “Alternate Paradigm for Intrinsic Transcription Termination in Eubacteria,” The Journal of Biological Chemistry, 276(45)(9):41850-41855 (2001).
Urayama et al., “Knock-down of OsDCL2 in Rice Negatively Affects Maintenance of the Endogenous dsRNA Virus, Oryza sativa Endornavirus,” Plant and Cell Physiology, 51(1):58-67 (2010).
Van de Wetering et al., “Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector,” EMBO Rep., 4(6):609-615 (2003).
Vasil et al., “Herbicide Resistant Fertile Transgenic Wheat Plants Obtained by Microprojectile Bombardment of Regenerable Embryogenic Callus,” Bio/Technology,10:667-674 (1992).
Vaucheret, “Post-transcriptional small RNA pathways in plants: mechanisms and regulations,” Genes Dev., 20:759-771 (2006).
Vencill et al., “Resistance of Weeds to Herbicides,” Herbicides and Environment, 29:585-594 (2011).
Verma et al., “Modified oligonucleotides: synthesis and strategy for users,” Annu. Rev. Biochem., 67:99-134 (1998).
Vert et al., “An accurate and interpretable model for siRNA efficacy prediction,” BMC Bioinformatics, 7:520 (2006).
Vionnet et al., “Systemic Spread of Sequence-Specific Transgene RNA Degradation in Plants is Initiated by Localized Introduction of Ectopic Promoterless DNA,” Cell, 95:177-187 (1998).
Wakelin et al., “A target-site mutation is present in a glyphosate-resistant Lolium rigidum population,” Weed Res. (Oxford), 46(5):432-440 (2006).
Walton et al., “Prediction of antisense oligonucleotide binding affinity to a structured RNA target,” Biotechnol Bioeng 65(1):1-9 (1999).
Wan et al., “Generation of Large Numbers of Independently Transformed Fertile Barley Plants,” Plant Physiol., 104:37-48 (1994).
Wardell, “Floral Induction of Vegetative Plants Supplied a Purified Fraction of Deoxyribonucleic Acid from Stems of Flowering Plants,” Plant Physiol, 60:885-891 (1977).
Wardell,“Floral Activity in Solutions of Deoxyribonucleic Acid Extracted from Tobacco Stems,” Plant Physiol, 57:855-861 (1976).
Waterhouse et al., “Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA,” Proc Natl Acad Sci USA, 95 13959-13964 (1998).
Welch et al., “Expression of ribozymes in gene transfer systems to modulate target RNA levels,” Curr Opin Biotechnol. 9(5):486-496 (1998).
Wilson, et al., “Transcription termination at intrinsic terminators: The role of the RNA hairpin,” Proc. Natl. Acad. Sci. USA, 92:8793-8797 (1995).
Winkler et al., “Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression,” Nature, 419:952-956 (2002).
Written Opinion dated May 8, 2014, in International Application No. PCT/IL2013/050447.
Written Opinion dated Sep. 1, 2014, in Singapore Patent Application No. 201206152-9.
Xu et al., Characterization and Functional Analysis of the Calmodulin-Binding Domain of Rac1 GTPase, Plos One, 7(8)1-12:e42975 (2012).
Yin et al., “Production of double-stranded RNA for interference with TMV infection utilizing a bacterial prokaryotic expression system,” Appl. Microbiol. Biotechnol., 84(2):323-333 (2009).
YouTube video by General Electric Company “Silwet Surfactants,” screen shot taken on Jan. 11, 2012 of video of www.youtube.com/watch?v=WBw7nXMqHk8 (uploaded Jul. 13, 2009).
Zagnitko, “Lolium regidum clone LS1 acetyl-CoA carboxylase mRNA, partial cds; nuclear gene for plastid product,” GenBank: AF359516.1, 2 pages (2001).
Zagnitko, et al., “An isoleucine/leucine residue in the carboxyltransferase domain of acetyl-CoA carboxylase is critical for interaction with aryloxyphenoxypropionate and cyclohexanedione inhibitors,” PNAS, 98(12):6617-6622 (2001).
Zhang et al., “A novel rice gene, NRR responds to macronutrient deficiency and regulates root growth,” Mol Plant, 5(1):63-72 (2012).
Zhang et al., “Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method,” Nature Protocols, 1(2):1-6 (2006).
Zhang et al., “Cationic lipids and polymers mediated vectors for delivery of siRNA,” Journal of Controlled Release, 123:1-10 (2007).
Zhang et al., “DEG: a database of essential genes,” Nucleic Acids Res., 32:D271-D272 (2004).
Zhang et al., “Transgenic rice plants produced by electroporation-mediated plasmid uptake into protoplasts,” The Plant Cell Rep., 7:379-384 (1988).
Zhao et al., “Phyllotreta striolata (Coleoptera: Chrysomelidae):Arginine kinase cloning and RNAi-based pest control,” European Journal of Entomology, 105(5):815-822 (2008).
Zhu et al., “Ingested RNA interference for managing the populations of the Colorado potato beetle, Leptinotarsa decemlineata,” Pest Manag Sci, 67:175-182 (2010).
Communication pursuant to Article 94(3) EPC dated Oct. 23, 2015, as received in European Patent Application No. 12 831 945.6.
Final Office Action dated Nov. 10, 2015, in U.S. Appl. No. 13/612,985.
Final Office Action dated Nov. 30, 2015, in U.S. Appl. No. 13/612,948.
First Office Action dated Mar. 12, 2015, in Chinese Patent Application No. 201280053984.9.
First Office Action dated Mar. 2, 2015, in Chinese Patent Application No. 201280054819.5.
First Office Action dated Jul. 7, 2015, in Chinese Patent Application No. 201280054820.8.
Invitation to Pay Additional Fees dated Sep. 8, 2015, in International Application No. PCT/US2015/037015.
Invitation to Pay Additional Fees dated Sep. 9, 2015, in International Application No. PCT/US2015/037522.
Lein et al., “Target-based discovery of novel herbicides,” Current Opinion in Plant Biology, 7:219-225 (2004).
Nord-Larsen et al., “Cloning, characterization and expression analysis of tonoplast intrinsic proteins and glutamine synthetase in ryegrass (Lolium perenne L.),” Plant Cell Reports, 28(10):1549-1562 (2009).
Notice of Allowance dated Oct. 5, 2015, in U.S. Appl. No. 13/583,302.
Office Action dated Oct. 5, 2015, in Eurasian Patent Application No. 201201264/28.
Office Action dated Sep. 9, 2015, in Chinese Patent Application No. 201280055409.2.
Wang et al., “Foliar uptake of pesticides—Present status and future challenge,” ScienceDirect, 87:1-8 (2007).
Agrios, Plant Pathology (Second Edition), 2:466-470 (1978).
Bai et al., “Naturally Occurring Broad-Spectrum Powdery Mildew Resistance in a Central American Tomato Accession is Caused by Loss of Mlo Function,” MPMI, 21(1):30-39 (2008).
Bourgeois et al., “Field and producer survey of ACCase resistant wild oat in Manitoba,” Canadian Journal of Plant Science, 709-715 (1997).
Brugière et al., “Glutamine Synthetase in the Phloem Plays a Major Role in Controlling Proline Production,” The Plant Cell, 11:1995-2011 (1999).
Campbell et al., “Gene-knockdown in the honey bee mite Varroa destructor by a non-invasive approach: studies on a glutathione S-transferase,” Parasites & Vectors, 3(1):73, pp. 1-10 (2010).
Chang et al., “Cellular Internalization of Fluorescent Proteins via Arginine-rich Intracellular Delivery Peptide in Plant Cells,” Plant Cell Physiol., 46(3):482-488 (2005).
Chupp et al., “Chapter 8: White Rust,” Vegetable Diseases and Their Control, The Ronald Press Company, New York, pp. 267-269 (1960).
Communication pursuant to Article 94(3) EPC dated Jun. 26, 2015, as received in European Patent Application No. 11 753 916.3.
Desai et al., “Reduction in deformed wing virus infection in larval and adult honey bees (Apis mellifera L.) by double-stranded RNA ingestion,” Insect Molecular Biology, 21(4):446-455 (2012).
Emery et al., “Radial Patterning of Arabidopsis Shoots by Class III HD-ZIP and KANADI Genes,” Current Biology, 13:1768-1774 (2003).
Extended European Search Report dated Jun. 29, 2015, in European Patent Application No. 12 831 494.5.
Final Office Action dated Nov. 7, 2013, in U.S. Appl. No. 13/042,856.
First Office Action dated May 27, 2015, in Chinese Patent Application No. 201280054179.8.
International Preliminary Report on Patentability (Chapter II) dated Jul. 24, 2015, in International Application No. PCT/US2014/047204.
International Search Report and Written Opinion dated Jul. 8, 2015, in International Application No. PCT/US2015/011408.
International Search Report and Written Opinion dated Mar. 26, 2015, in International Application No. PCT/US2014/069353.
Jofre-Garfias et al., “Agrobacterium-mediated transformation of Amaranthus hypochondriacus: light- and tissue-specific expression of a pea chlorophyll a/b-binding protein promoter,” Plant Cell Reports, 16:847-852 (1997).
Khan et al., “Matriconditioning of Vegetable Seeds to Improve Stand Establishment in Early Field Plantings,” J. Amer. Soc. Hort. Sci., 117(1):41-47 (1992).
Kim et al., “Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy,” Nature Biotechnology, 23(2):222-226 (2005).
Leopold et al., “Chapter 4: Moisture as a Regulator of Physiological Reaction in Seeds,” Seed Moisture, CSSA Special Publication No. 14, pp. 51-69 (1989).
MacKenzie et al., “Transgenic Nicotiana debneyii expressing viral coat protein are resistant to potato virus S infection,” Journal of General Virology, 71:2167-2170 (1990).
Maori et al., “IAPV, a bee-affecting virus associated with Colony Collapse Disorder can be silenced by dsRNA ingestion,” Insect Molecular Biology, 18(1):55-60 (2009).
Molina et al., “Inhibition of protoporphyrinogen oxidase expression in Arabidopsis causes a lesion-mimic phenotype that induces systemic acquired resistance,” The Plant Journal, 17(6):667-678 (1999).
Non-Final Office Action dated Apr. 11, 2013, in U.S. Appl. No. 13/042,856.
Non-Final Office Action dated Aug. 12, 2015, in U.S. Appl. No. 13/612,936.
Non-Final Office Action dated Aug. 13, 2015, in U.S. Appl. No. 13/612,929.
Non-Final Office Action dated Jul. 23, 2015, in U.S. Appl. No. 14/335,135.
Non-Final Office Action dated Jul. 30, 2014, in U.S. Appl. No. 13/042,856.
Non-Final Office Action dated Jun. 5, 2015, in U.S. Appl. No. 13/612,948.
Non-Final Office Action dated Jun. 8, 2015, in U.S. Appl. No. 13/612,941.
Non-Final Office Action dated Mar. 30, 2015, in U.S. Appl. No. 13/583,302.
Non-Final Office Action dated May 15, 2015, in U.S. Appl. No. 14/608,951.
Non-Final Office Action dated May 22, 2015, in U.S. Appl. No. 13/612,985.
Orbović et al., “Foliar-Applied Surfactants and Urea Temporarily Reduce Carbon Assimilation of Grapefruit Leaves,” J. Amer. Soc. Hort. Sci., 126(4):486-490 (2001).
Pratt et al., “Amaranthus rudis and A. tuberculatus, One Species or Two?,” Journal of the Torrey Botanical Society, 128(3):282-296 (2001).
Restriction Requirement dated Feb. 12, 2015, in U.S. Appl. No. 13/612,985.
Restriction Requirement dated Mar. 12, 2015, in U.S. Appl. No. 13/612,948.
Restriction Requirement dated Mar. 4, 2015, in U.S. Appl. No. 13/612,941.
Restriction Requirement dated May 4, 2015, in U.S. Appl. No. 13/612,929.
Restriction Requirement dated May 5, 2015, in U.S. Appl. No. 13/612,936.
Restriction Requirement dated May 7, 2015, in U.S. Appl. No. 13/612,925.
Restriction Requirement dated May 7, 2015, in U.S. Appl. No. 13/612,995.
Restriction Requirement dated Oct. 2, 2012, in U.S. Appl. No. 13/042,856.
Restriction Requirement dated Oct. 21, 2014, in U.S. Appl. No. 13/583,302.
Riggins et al., “Characterization of de novo transcriptome for waterhemp (Amaranthus tuberculatus) using GS-FLX 454 pyrosequencing and its application for studies of herbicide target-site genes,” Pest Manag. Sci., 66:1042-1052 (2010).
Rose et al., “Functional polarity is introduced by Dicer processing of short substrate RNAs,” Nucleic Acids Research, 33(13):4140-4156 (2005).
Rothnie et al., Pararetroviruses and Retroviruses: A Comparative Review of Viral Structure and Gene Expression Strategies, Advances in Virus Research, 44:1-67 (1994).
Schweizer et al., “Double-stranded RNA interferes with gene function at the single-cell level in cereals,” The Plant Journal, 24(6):895-903 (2000).
Senthil-Kumar et al., “A systematic study to determine the extent of gene silencing in Nicotiana benthamiana and other Solanaceae species when heterologous gene sequences are used for virus-induced gene silencing,” New Phytologist, 176:782-791 (2007).
Snead et al., “Molecular basis for improved gene silencing by Dicer substrate interfering RNA compared with other siRNA variants,” Nucleic Acids Research, 41(12):6209-6221 (2013).
Stevens et al., “New Formulation Technology—SILWET® Organosilicone Surfactants Have Physical and Physiological Properties Which Enhance the Performance of Sprays,” Proceedings of the 9th Australian Weeds Conference, pp. 327-331 (1990).
Street, “Why is DNA (and not RNA) a stable storage form for genetic information?,” Biochemistry Revisited, pp. 1-4 (2008).
Sutton et al., “Activity of mesotrione on resistant weeds in maize,” Pest Manag. Sci., 58:981-984 (2002).
Tank Mixing Chemicals Applied to Peanut Crops: Are the Chemicals Compatible?, College of Agriculture & Life Sciences, NC State University, AGW-653, pp. 1-11 (2004).
Taylor, “Seed Storage, Germination and Quality,” The Physiology of Vegetable Crops, pp. 1-36 (1997).
Tranel et al., “Resistance of weeds to ALS-inhibiting herbicides: what have we learned?,” Weed Science, 50:700-712 (2002).
Vermeulen et al., “The contributions of dsRNA structure to Dicer specificity and efficiency,” RNA, 11(5):674-682 (2005).
Communication pursuant to Article 94(3) EPC dated Mar. 24, 2016, in European Patent Application No. 12 831 684.1.
Communication pursuant to Article 94(3) EPC dated Mar. 4, 2016, in European Patent Application No. 12 830 932.5.
Communication pursuant to Article 94(3) EPC dated Mar. 9, 2016, in European Patent Application No. 12 831 166.9.
Communication pursuant to Article 94(3) EPC dated Mar. 18, 2016, in European Patent Application No. 12 832 160.1.
Communication pursuant to Article 94(3) EPC dated Jan. 14, 2016, in European Patent Application No. 12 832 415.9.
Extended European Search Report dated Jan. 20, 2016, in European Patent Application No. 13 794 339.5.
First Office Action dated Feb. 2, 2016, in Chinese Patent Application No. 201380039346.6.
GenBank Accession No. GU120406, “Chrysomela tremulae ribosomal protein L7 (RpL7) mRNA, complete cds,” (2009).
GenBank Accession No. Q4GXM3_BIPLU, “Ribosomal protein L7e” (2006).
GenBank Accession No. Y08611.1, “P.sativum mRNA for dihydropterin pyrophosphokinase/dihydropteroate synthase.” (2006).
Gudkov, “Minireview: The L7/L12 ribosomal domain of the ribosome: structural and functional studies,” FEBS Letters, 407:253-256 (1997).
Heffer et al., “Rapid isolation of gene homologs across taxa: Efficient identification and isolation of gene orthologs from non-model organism genomes, a technical report,” EvoDevo Journal, 2(7):1-5 (2011).
Knudsen, “Promoter2.0: for the recognition of Poll promoter sequences,” Bioniformatics, 15(5):356-361 (1999).
Migge et al., “Greenhouse-grown conditionally lethal tobacco plants obtained by expression of plastidic glutamine synthetase antisense RNA may contribute to biological safety,” Plant Science 153:107-112 (2000).
Office Action dated Apr. 13, 2016, in Chinese Patent Application No. 201280053985.3.
Patent Examination Report No. 1 dated Feb. 8, 2016, in Australian Patent Application No. 2014262189.
Promoter Prediction for SEQ ID No. 1702 from 13/612929/MK/, Promoter 2.0 Prediction Results, pp. 1-4 (2016).
Salanenka et al., “Seedcoat Permeability: Uptake and Post-germination Transport of Applied Model Tracer Compounds,” HortScience, 46(4):622-626 (2011).
Scott et al., Botanical Insecticides for Controlling Agricultural Pests: Piperamides and the Colorado Potato Beetle Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae), Archives of Insect Biochemistry and Physiology, 54:212-225 (2003).
Second Office Action dated Mar. 4, 2016, in Chinese Patent Application No. 201280054820.8.
Second Office Action dated Feb. 25, 2016, in Chinese Patent Application No. 201280054179.8.
Shintani et al., “Antisense Expression and Overexpression of Biotin Carboxylase in Tobacco Leaves,” Plant Physiol., 114:881-886 (1997).
Written Opinion dated Apr. 7, 2016, in Singapore Patent Application No. 201206152-9.
Chen et al., “Transfection and Expression of Plasmid DNA in Plant Cells by an Arginine-Rich Intracellular Delivery Peptide without Protoplast Preparation,” FEBS Letters 581, pp. 1891-1897 (2007).
Coticchia et al., “Calmodulin modulates Akt activity in human breast cancer cell lines,” Breast Cancer Res. Treat, 115:545-560 (2009).
Farooq et al., “Rice seed priming,” IPRN, 30(2):45-48 (2005).
Fukunaga et al., “dsRNA with 5′ overhangs v contributes to endogenous and antiviral RNA silencing pathways in plants,” The EMBO Journal, 28(5):545-555 (2009).
GenBank Accession No. CB377464, “CmaEl_37_J02_T3 Cowpea weevil larvae Lambda Zap Express Library Callosobruchus maculatus cDNA, mRNA sequence,” (2007).
Mora et al., “How Many Species are There on Earth and in the Ocean?,” PLOS Biol., 9(8):e100127, p. 1-8 (2011).
Zhang et al., “Chapter 10: New Characteristics of Pesticide Research & Development,” New Progress of the world agriculture chemicals, p. 209 (2010).
GenBank Accession No. FE348695, “CBIB7954.fwd CBIB_Daphnia_pulex_Chosen_One_Library_2 Daphnia pulex cDNA clone CBIB7954 5′, mRNA sequence” (2011).
Regalado, “The Next Great GMO Debate,” (2015) <www.technologyreview.com/s/540136/the-next-great-gmo-debate>.
Agricultural Chemical Usage 2006 Vegetables Summary, Agricultural Statistics Board, NASS, USDA, pp. 1-372 (2007.
Al-Kaff et al., Plants Rendered Herbicide-susceptible by Cauliflower Mosaic Virus-elicited Suppression of a 35S Promoter-regulated Transgene, Nature Biotechnology, 18:995-999 (2000).
Anonymous, Resistant Weeds Spur Research Into New Technologies, Grains Research & Development Corporation, 2013.
Artymovich, “Using RNA interference to Increase Crop Yield and Decrease Pest Damage,” MMG 445 Basic Biotech., 5(1):7-12 (2009).
Ascencio-Ibanez et al., DNA abrasion onto plants is an Effective Method for Geminivirus infection and Virus-induced Gene Silencing, Journal of Virological Methods, 142:198-203 (2007).
Bachman et al., “Characterization of the spectrum of insecticidal activity of a double-stranded RNA with targeted activity against Western Corn Rootworm (Diabrotica virgifera virgifera LeConte),” Transgenic Res., pp. 1-16 (2013).
Baker, “Chlorophyll Fluorescence: A Probe of Photosynthesis In Vivo,” Annu. Rev. Plant Biol., 59: 89-113 (2018).
Balibrea et al., “Extracellular Invertase is an Essential Component of Cytokinin-Mediated Delay of Senescence,” The Plant Cell, 16(5):1276-1287 (2004).
Bart et al., A Novel System for Gene Silencing using siRNAs in Rice Leaf and stem-Derived Protoplasts, Plant Methods, 2(13):1-9 (2006).
Basu et al., Weed Genomics: New Tools to Understand Weed biology, TRENDS in Plant Science, 9(8):391-398 (2004).
Bauer et al., The Major Protein import Receptor of Plastids is Essential for Chloroplast Biogenesis, Nature, 403:203-207 (2000).
Bedell et al., Sorghum Genome Sequencing by Methylation Filtration, PLOS Biology, 3(1):E13/104-115 (2005).
Chabannes et al., In situ Analysis of Lignins in Transgenic Tobacco Reveals a Differential Impact of individual Transformations on the Spatial Patterns of Lignin Deposition at the Cellular and Subcellular Levels, The Plant Journal, 28(3):271-282 (2001).
Chen et al., Transfection and Expression of Plasmid DNA in Plant Cells by an Arginine-Rich Intracellular Delivery Peptide without Protoplast Preparation, FEBS Letters, 581:1891-1897 (2007).
Chen et al., Exploring MicroRNA-Like Small RNAs in the Filamentous Fungus Fusarium oxysporum, PLOS One, 9(8):e104956:1-10 (2014).
Cheng et al., Transient Expression of Minimum Linear Gene Cassettes in Onion Epidermal Cells Via Direct Transformation, Appl Biochem Biotechnol, 159:739-749 (2009).
Christiaens et al., The Challenge of RNAi-mediated Control of Hemipterans, Current Opinion in Insect Science, 6:15-21 (2014).
Colliver et al., “Differential Modification of Flavonoid and Isoflavonoid Biosynthesis with an Antisense Chalcone Synthase Construct in Transgenic Lotus Corniculatus,” Plant Molecular Biology, 35:509-522 (1997).
Communication pursuant to Article 94(3) EPC dated Jun. 26, 2015, in European Patent Application No. 11 753 916.3.
Communication pursuant to Article 94(3) EPC dated Oct. 23, 2015, in European Patent Application No. 12 831 945.6.
Concise Descriptions of Relevance filed by a third party on Nov. 29, 2012, in U.S. Appl. No. 13/042,856.
Constan et al., An Outer Envelope Membrane Component of the Plastid Protein Import Apparatus Plays an Essential Role in Arabidopsis, The Plant Journal, 38:93-106 (2004).
Dalakouras et al., Induction of Silencing in Plants by High-Pressure Spraying of In vitro-Synthesized Small RNAs, Frontiers in Plant Science, 7(1327):1-5 (2016).
Dawson et al., cDNA Cloning of the Complete Genome of Tobacco Mosaic Virus and Production of Infectious Transcripts, Proc. Natl. Acad. Sci. USA, 83:1832-1836 (1986).
Di Stilio et al., Virus-Induced Gene Silencing as a Tool for Comparative Functional Studies in Thalictrum, PLoS One, 5(8):e12064 (2010).
Eamens et al., RNA Silencing in Plants: Yesterday, Today, and Tomorrow, Plant Physiology, 147(2):456-468 (2008).
Egli et al., A Maize Acetyl-Coenzyme A Carboxylase cDNA Sequence, Plant Physiol., 108:1299-1300 (1995).
Eudes et al., Cell-penetrating peptides, Plant Signaling & Behavior, 3(8):549-5550 (2008).
Examination Report dated Mar. 1, 2018, in Australian Patent Application No. 2013264742.
Extended European Search Report dated Sep. 7, 2017, in European Patent Application No. 17152830.0.
Extended European Search Report dated Nov. 7, 2017, in European Patent Application No. 15811092.4.
Extended European Search Report dated Nov. 8, 2017, in European Patent Application No. 15737282.2.
Extended European Search Report dated Oct. 8, 2013, in European Patent Application No. 11753916.3.
Extended European Search Report dated Sep. 29, 2016, in European Patent Application No. 14778840.0.
Extended European Search Report dated Mar. 15, 2018, in European Patent Application No. 17181861.0.
Fassler, BLAST Glossary, National Center for Biotechnology Information (2011).
Fernandez et al., Uptake of Hydrophilic Solutes Through Plant Leaves: Current State of Knowledge and Perspectives of Foliar Fertilization, Critical Reviews in Plant Sciences, 28:36-38 (2009).
Feuillet et al., “Crop Genome Sequencing: Lessons and Rationales,” Trends Plant Sci., 16:77-88 (2011).
Final Office Action dated Apr. 7, 2016, in U.S. Appl. No. 13/619,980.
Final Office Action dated Dec. 17, 2015, in U.S. Appl. No. 14/335,135.
Final Office Action dated Feb. 4, 2016, in U.S. Appl. No. 13/612,936.
Final Office Action dated Feb. 17, 2016, in U.S. Appl. No. 13/612,929.
Final Office Action dated Jun. 30, 2016, in U.S. Appl. No. 13/901,326.
Final Office Action dated Mar. 2, 2016, in U.S. Appl. No. 13/612,995.
Final Office Action dated Mar. 21, 2016, in U.S. Appl. No. 13/612,925.
Final Office Action dated May 26, 2016, in U.S. Appl. No. 14/532,596.
Final Office Action dated Nov. 10, 2016, in U.S. Appl. No. 13/583,302.
Final Office Action dated Nov. 19, 2015, in U.S. Appl. No. 13/612,941.
Final Office Action dated Oct. 20, 2016, in U.S. Appl. No. 14/480,199.
Final Office Action dated Oct. 22, 2015, in U.S. Appl. No. 14/608,951.
Final Office Action dated Sep. 9, 2016, in U.S. Appl. No. 13/612,954.
Final Office Action dated Sep. 9, 2016, in U.S. Appl. No. 14/608,951.
Final Office Action dated Sep. 9, 2016, in U.S. Appl. No. 14/603,347.
First Office Action dated Aug. 31, 2015, in Chinese Patent Application No. 201280053985.3.
First Office Action dated Sep. 9, 2015, in Chinese Patent Application No. 201280055409.2.
Fraley et al., “Liposome-mediated Delivery of Tobacco Mosaic Virus RNA into Tobacco Protoplasts: A Sensitive Assay for Monitoring Liposome-protoplast Interactions,” Proc Natl Acad Sci USA., 79(6):1859-1863 (1982).
Friedberg, Automated Protein Function Prediction—the Genomic Challenge, Briefings in Bioinformatics, 7(3):225-242 (2006).
Fridlund, “Distribution of Chlorotic Leaf Spot Virus in Apple Budsticks,” Plant Dis. Reptr., 57: 865-869 (1973).
Fukunaga et al., dsRNA with 5′ Overhangs Contributes to Endogenous and Antiviral RNA Silencing Pathways in Plants, The EMBO Journal, 28(5):545-555 (2009).
Funke et al., Molecular Basis for Herbicide Resistance in Roundup Ready crops, PNAS, 103:13010-13015 (2006).
Gan et al., Inhibition of Leaf Senescence by Autoregulated Production of Cytokinin, Science, 270:1986-1988 (1995).
Gan et al., Bacterially Expressed dsRNA Protects Maize Against SCMV Infection, Plant Cell Rep, 29(11):1261-1268 (2010).
Gao et al., Nonviral Methods for siRNA Delivery, Molecular Pharmaceutics, 6(3):651-658 (2008).
Gaskin et al., Novel Organosillicone Adjuvants to Reduce Agrochemical Spray Volumes on Row Crops, New Zealand Plant Protection, 53:350-354 (2000).
Gasser et al., Structure, Expression, and Evolution of the 5-Enolpyruvylshikimate-3-phosphate Synthase Genes of Petunia and Tomato, J. Biol. Chem., 263: 4280-4287 (1988).
GenBank Accession No. CB377464, CmaE1_37_J02_T3 Cowpea Weevil Larvae Lambda Zap Express Library Callosobruchus maculatus cDNA, mRNA sequence, (2007).
GenBank Accession No. EF143582 (2007).
GenBank Accession No. EW765249, ST020010B10C12 Normalized and Subtracted Western Corn Rootworm Female Head cDNA Library Diabrotica virgifera virgifera cDNA Clone STO20010B10C12 5-, mRNA Sequence, (2007).
GenBank Accession No. EW771198, “ST020010B10C12 Normalized and Subtracted Western Corn Rootworm Female Head cDNA Library Diabrotica virgifera virgifera cDNA Clone STO20010B10C12 5-, mRNA Sequence,” (2007).
Gilmer et al., “Latent Viruses of Apple: I. Detection with Woody indicators,” NY St. Agr. Exp. Sta. (Geneva), 1(10): 1-9 (1971).
Gomez-Zurita et al., Recalibrated Tree of Leaf Beetles (Chrysomelidae) Indicates Independent Diversification of Angiosperms and Their Insect Herbivores, PLoS One, 4(e360):1-8 (2007).
Gossamer Threads, Compendium of Herbicide Adjuvants: Organo-Silicone Surfactant, p. 1-4 (1998).
Hagio, Chapter 25: Direct Gene Transfer into Plant Mature Seeds via Electroporation After Vacuum Treatment, Electroporation and Sonoporation in Developmental Biology, p. 285-293 (2009).
Hajirezaei et al., Impact of Elevated Cytosolic and Apoplastic Invertase Activity on Carbon Metabolism During Potato Tuber Development, Journal of Experimental Botany, 51:439-445 (2000).
Hess, Surfactants and Additives, 1999 Proceedings of the California Weed Science Society, 51:156-172 (1999).
Hoermann et al., Tic32, as Essential Component in Chloroplast Biogenesis, The Journal of Biological Chemistry, 279(33):34756-34762 (2004).
Huang et al., In Vivo Analyses of the Roles of Essential Omp85-Related Proteins in the Chloroplast Outer Envelope Membrane, Plant Physiol., 157:147-159 (2011).
Huggett et al., “Real-time RT-PCR Normalization; Strategies and Considerations,” Genes and Immunity, 6: 279-284 (2005).
Inaba et al., Arabidopsis Tic110 Is Essential for the Assembly and Function of the Protein Import Machinery of Plastids, The Plant Cell, 17:1482-1496 (2005).
International Preliminary Report on Patentability dated Sep. 11, 2012, in International Application No. PCT/US2011/027528.
International Rice Genome Sequencing Project, The map-based Sequence of the Rice Genome, Nature, 436(11):793-800 (2005).
International Search Report and Written Opinion dated May 26, 2016, in International Application No. PCT/US2016/014344.
International Search Report and Written Opinion dated Nov. 24, 2015, in International Application No. PCT/US2015/037522.
International Search Report and Written Opinion dated Nov. 27, 2015, in International Application No. PCT/US2015/037015.
Ivanova et al., Members of the Toc159 Import Receptor Family Represent Distinct Pathways for Protein Targeting to Plastids, Molecular Biology of the Cell, 15:3379-3392 (2004).
Jacque et al., Modulation of HIV-1 replication by RNA interference, Nature, 418, 435-438 (2002).
Jang et al., Resistance to Herbicides Caused by Single Amino Acid Mutations in acetyl-CoA Carboxylase in Resistant Populations of Grassy Weeds, New Phytologist, 197(4):1110-1116 (2013).
Jarvis et al., An Arabidopsis Mutant Defective in the Plastid General Protein import Apparatus, Science, 282:100-103 (1998).
Jin et al., “Posttranslational Elevation of Cell Wall Invertase Activity by Silencing its Inhibitor in Tomato Delays Leaf Senescence and Increases Seed Weight and Fruit Hexose Level,” The Plant Cell, 21:2072-2089 (2009).
Kaloumenos et al., “Identification of a Johnsongrass (Sorghum halepense) Biotype Resistant to ACCase-Inhibiting Herbicides in Northern Greece,” Weed Technol, 23:470-476 (2009).
Kambiranda et al., “Relationship Between Acid Invertase Activity and Sugar Content in Grape Species,” Journal of Food Biochemistry, 35:1646-1652 (2011).
Kikkert et al., Stable Transformation of Plant Cells by Particle Bombardment/Biolistics, Methods in Molecular Biology, 286:61-78 (2005).
Kim et al., “Optimization of Conditions for Transient Agrobacterium-Mediated Gene Expression Assays in Arabidopsis,” Plant Cell Reports, 28:1159-1167 (2009).
Kirkwood, “Herbicides and Plants,” Botanical Journal of Scotland, 46(3):447-462 (1993).
Kovacheva et al., In vivo studies on the roles of Tic100, Tic40 and Hsp93 during chloroplast protein import, The Plant Journal, 41:412-428 (2005).
Kovacheva et al., Further in vivo studies on the role of the molecular chaperone, Hsp93, in plastid protein import, The Plant Journal, 50:364-379 (2007).
Li et al., Long dsRNA but not siRNA initiates RNAi in western corn rootworm larvae and adults, Journal of Applied Entomology, 139(6):432-445 (2015.
Liu et al., “Identification and Application of a Rice Senescence-Associated Promoter,” Plant Physiology, 153:1239-1249 (2010).
Liu, “The Transformation of Nucleic Acid Degradants in Plants,” China Organic Fertilizers, Agriculture Press, ISBN: 7-1091634 (with English translation) (1991).
Liu, “Influence of Sugars on the Foliar Uptake of Bentazone and Glyphosate,” New Zealand Plant Protection, 55:159-162 (2002).
Luque et al., “Water Permeability of Isolated Cuticular Membranes: A Structural Analysis,” Archives of Biochemistry and Biophysics, 317(2):417-422 (1995).
McGinnis, RNAi for functional genomics in plants, Brief Funct Genomics, 9(2):111-7 (2010).
Mora et al., “How Many Species Are There on Earth and in the Ocean?,” PLOS Biol., 9(8):e100127, pp. 1-8 (2011).
Mount et al., “Gene and Metabolite Regulatory Network Analysis of Early Developing Fruit Tissues Highlights New Candidate Genes for the Control of Tomato Fruit Composition and Development,” Plant Physiology, 149:1505-1528 (2009).
Németh, “The Virus, Mycoplasma and Rickettsia Diseases of Fruit Trees,” Martinus Nijhoff Publishers, The Netherlands and Akadémiai Kiadó, Hungary, 1986, ISBN 90-247-2868-1, pp. 197-204 (1986).
Non-Final Office Action dated Apr. 29, 2016, in U.S. Appl. No. 13/583,302.
Non-Final Office Action dated Aug. 3, 2016, in U.S. Appl. No. 14/015,715.
Non-Final Office Action dated Aug. 5, 2016, in U.S. Appl. No. 14/015,785.
Non-Final Office Action dated Aug. 8, 2016, in U.S. Appl. No. 13/612,936.
Non-Final Office Action dated Aug. 10, 2016, in U.S. Appl. No. 13/612,995.
Non-Final Office Action dated Aug. 19, 2016, in U.S. Appl. No. 13/612,925.
Non-Final Office Action dated Aug. 19, 2016, in U.S. Appl. No. 13/612,929.
Non-Final Office Action dated Dec. 17, 2015, in U.S. Appl. No. 14/532,596.
Non-Final Office Action dated Feb. 10, 2016, in U.S. Appl. No. 13/901,326.
Non-Final Office Action dated Feb. 23, 2016, in U.S. Appl. No. 14/603,347.
Non-Final Office Action dated Feb. 23, 2016, in U.S. Appl. No. 14/608,951.
Non-Final Office Action dated Mar. 1, 2016, in U.S. Appl. No. 13/612,954.
Non-Final Office Action dated Mar. 21, 2018, in U.S. Appl. No. 13/619,980.
Non-Final Office Action dated Nov. 9, 2016, in U.S. Appl. No. 14/901,003.
Non-Final Office Action dated Oct. 3, 2016, in U.S. Appl. No. 14/403,491.
Non-Final Office Action dated Sep. 1, 2015, in U.S. Appl. No. 13/612,954.
Non-Final Office Action dated Sep. 11, 2015, in U.S. Appl. No. 13/612,925.
Non-Final Office Action dated Sep. 4, 2015, in U.S. Appl. No. 13/612,995.
Non-Final Office Action dated Sep. 6, 2016, in U.S. Appl. No. 14/335,135.
Nookaraju et al., “Molecular approaches for enhancing sweetness in fruits and vegetables,” Scientia Horticulture, 127:1-15 (2010).
Notice of Allowance dated Apr. 11, 2016, in U.S. Appl. No. 13/612,985.
Notice of Allowance dated Apr. 19, 2016, in U.S. Appl. No. 13/612,941.
Notice of Allowance dated Apr. 20, 2016, in U.S. Appl. No. 13/612,948.
Notice of Allowance dated Feb. 23, 2015, in U.S. Appl. No. 13/042,856.
Notice of Allowance dated Jun. 2, 2015, in U.S. Appl. No. 13/042,856.
Office Action dated Aug. 1, 2017, in European Patent Application No. 12 830 932.5.
Office Action dated Aug. 3, 2017, in Chinese Patent Application No. 201480014392.5 (with English translation).
Office Action dated Aug. 3, 2017, in European Patent Application No. 12 831 684.1.
Office Action dated Aug. 8, 2017, in Chilean Patent Application No. 201501874.
Office Action dated Aug. 14, 2017, in Israeli Patent Application No. 235878.
Office Action dated Aug. 22, 2017, in Korean Patent Application No. 10-2012-7023415.
Office Action dated Aug. 25, 2016, in Eurasian Patent Application No. 201201264.
Office Action dated Aug. 28, 2013, in Chinese Patent Application No. 201180012795.2.
Office Action dated Dec. 13, 2016, in Ukrainian Patent Application No. a 2014 03843.
Office Action dated Dec. 14, 2016, in Ukrainian Patent Application No. a 2014 03850.
Office Action dated Dec. 15, 2016, in Ukrainian Patent Application No. a 2014 03845.
Office Action dated Dec. 15, 2016, in Ukrainian Patent Application No. a 2014 03852.
Office Action dated Dec. 15, 2016, in Ukrainian Patent Application No. a 2014 03849.
Office Action dated Dec. 27, 2016, in Ukrainian Patent Application No. a 2012 11548.
Office Action dated Dec. 5, 2017, in Japanese Patent Application No. 2016-502033.
Office Action dated Feb. 21, 2018, in Mexican Patent Application No. MX/a/2015/012632 (with English translation).
Office Action dated Feb. 24, 2014, in Eurasian Patent Application No. 201201264.
Office Action dated Jul. 11, 2017, in Mexican Patent Application No. MX/a/2015/013118 (with English translation).
Office Action dated Jul. 18, 2016, in Indonesian Patent Application No. W00201203610.
Office Action dated Jul. 23, 2015, in Ukrainian Patent Application No. 201211548.
Office Action dated Jul. 3, 2017, in Mexican Patent Application No. MX/a/2015/012632 (with English translation).
Office Action dated Jul. 6, 2017, in Mexican Patent Application No. MX/a/2015/013103 (with English translation).
Office Action dated Jun. 20, 2016, in Chinese Patent Application No. 201280054819.5.
Office Action dated Jun. 24, 2016, in Chinese Patent Application No. 201280053984.9.
Office Action dated Mar. 16, 2017, in Chinese Patent Application No. 201280054819.5.
Office Action dated Mar. 8, 2018 (with English translation), in Chilean Patent Application No. 201403192.
Office Action dated May 3, 2016, in Chilean Patent Application No. 201601057.
Office Action dated Nov. 15, 2016, in Mexican Patent Application No. MX/a/2014/003068 (with English translation).
Office Action dated Sep. 5, 2016, in Ukrainian Patent Application No. a 2014 03846.
Office Action dated Sep. 6, 2017, in Chinese Patent Application No. 2014800154012 (with English translation).
Office Action dated Nov. 3, 2014, in Chinese Patent Application No. 201180012795.2.
Partial European Search Report dated Dec. 6, 2017, in European Patent Application No. 17181861.0.
Partial Supplementary European Search Report dated Jan. 11, 2018, in European Patent Application No. 15812530.0.
Patent Examination Report No. 1 dated Jun. 17, 2016, in Australian Patent Application No. 2012308659.
Patent Examination Report No. 1 dated Jun. 17, 2016, in Australian Patent Application No. 2012308660.
Patent Examination Report No. 1 dated Jun. 8, 2017, in Australian Patent Application No. 2012308686.
Patent Examination Report No. 1 dated Nov. 11, 2013, in Australian Patent Application No. 2011224570.
Promoter Prediction for SEQ ID No. 4 from 13/612995/MK/, Promoter 2.0 Prediction Results, pp. 1-3 (2016).
Promoter Prediction for SEQ ID No. 7 from 13/612936/MK/, Promoter 2.0 Prediction Results, pp. 1-2 (2016).
Promoter Prediction for SEQ ID No. 8 from 13/612,925/MK/, Promoter 2.0 Prediction Results, pp. 1-6 (2016).
Qichuan et al., Seed Science, China Agriculture Press, pp. 101-103, Tables 2-37 (2001).
Rakoczy-Trojanowska, Alternative Methods of Plant Transformation—a Short Review, Cellular & Molecular Biology Letters, 7:849-858 (2002).
Restriction Requirement dated Apr. 21, 2015, in U.S. Appl. No. 13/612,954.
Restriction Requirement dated Jul. 15, 2016, in U.S. Appl. No. 14/143,748.
Restriction Requirement dated Jul. 18, 2016, in U.S. Appl. No. 14/143,836.
Restriction Requirement dated Oct. 13, 2016, in U.S. Appl. No. 14/206,707.
Restriction Requirement dated Oct. 28, 2015, in U.S. Appl. No. 14/603,347.
Restriction Requirement dated Sep. 2, 2015, in U.S. Appl. No. 14/532,596.
Reverdatto et al., A Multisubunit Acetyl Coenzyme a Carboxylase from Soybean, Plant Physiol., 119:961-978 (1999).
Richardson et al., Targeting and Assembly of Components of the TOC Protein Import Complex at the Chloroplast outer Envelope Membrane, Frontiers in Plant Science, 5:1-14 (2014).
Roberts, Fast-track applications: the potential for Direct Delivery of Proteins and Nucleic Acids to Plant Cells for the Discovery of Gene Function, Plant Methods, 1(12):1-3 (2005).
Robson et al., “Leaf senescence is delayed in maize expressing the Agrobacterium IPT gene under the control of a novel maize senescence-enhanced promoter,” Plant Biotechnology Journal, 2:101-112 (2004).
Roitsch et al., Extracellular Invertase: Key Metabolic Enzyme and PR Protein, Journal of Experimental Botany, 54(382):513-524 (2003).
Roitsch et al., Function and Regulation of Plant Invertases: Sweet Sensations, Trades in Plant Science, 9(12):606-613 (2004).
Ruan et al., Suppression of Sucrose Synthase Gene Expression Represses Cotton Fiber Cell Initiation, Elongation, and Seed Development, The Plant Cell, 15:952-964 (2003).
Schönherr, Water Permeability of Isolated Cuticular Membranes: The Effect of pH and Cations on Diffusion, Hydrodynamic Permeability and Size of Polar Pores in the Cutin Matrix, Planta, 128:113-126 (1976).
Schönherr et al., “Size Selectivity of Aqueous Pores in Astomatous Cuticular Membranes Isolated from Populus canescens (Aiton) Sm. leaves,” Planta, 219: 405-411 (2004).
Search Report dated Jul. 24, 2017, in Chinese Patent Application No. 201480014392.5 (with English translation).
Search Report dated Oct. 20, 2017, in Chinese Patent Application No. 201380039346.6.
Showalter, Structure and Function of Plant Cell Wall Proteins, The Plant Cell, 5:9-23 (1993).
Song et al., Herbicide, New Heterocyclic Pesticide, Chemical Industry Press, 354-356 (2011).
Statement of Grounds and Particulars dated Sep. 1, 2017, in Australian Patent No. 2014262189.
Stevens, Organosilicone Surfactants as Adjuvants for Agrochemicals, Journal of Pesticide Science, 38:103-122 (1993).
Stevens, Formulation of Sprays to Improve the Efficacy of Foliar Fertilisers, New Zealand Journal of Forestry Science, 24(1):27-34 (1994).
Summons to Attend Oral Proceedings Pursuant to Rule 115(1) EPC, dated Aug. 7, 2017, in European Patent Application No. 12832160.1.
Sun et al., Antisense Oligodeoxynucleotide inhibition as a Potentstrategy in Plant biology: identification of SUSIBA2 as Atranscriptional Activator in Plant Sugar Signaling, The Plant Journal, 44:128-138 (2005).
Tang et al., Efficient Delivery of Small interfering RNA to Plant Cells by a Nanosecond Pulsed Laser-induced Stress Wave for Posttranscriptional Gene Silencing, Plant Science, 171:375-381 (2006).
Temple et al., Can glutamine Synthetase Activity Levels be Modulated in Transgenic Plants by the Use of Recombinant DNA Technology? Transgenic Plants and Plant Biochemistry, 22(4):915-920 (1994).
Teng et al., Tic21 is an Essential Translocon Component for Protein Translocation across the Chloroplast Inner Envelope Membrane, The Plant Cell, 18:2247-2257 (2006).
Tenllado et al., Double-Stranded RNA-Mediated Interference with Plant Virus Infection, Journal of Virology, 75(24):12288-12297 (2001).
Thomas et al., Size constraints for targeting post-transcriptional gene silencing and for RNA-directed methylation in Nicotiana benthamiana using a potato virus X vector, The Plant Journal, 25(4):417-425 (2001).
Tice, “Selecting the Right Compounds for Screening: does Lipinski's rule of 5 for Pharmaceuticals Apply to Agrochemicals?” Pest Manag. Sci., 2001, 57: 3-16.
Tomlinson et al., Evidence that the hexose-to-sucrose Ratio does not Control the Switch to Storage Product Accumulation in Oilseeds: Analysis of Tobacco Seed Development and Effects of Overexpressing Apoplastic Invertase, Journal of Experimental Botany, 55(406):2291-2303 (2004).
Tsugawa et al., Efficient Transformation of Rice Protoplasts Mediated by a Synthetic Polycationic Amino Polymer, Theor Appl Genet, 97:1019-1026 (1998).
Ulrich et al., Large Scale RNAi Screen in Tribolium Reveals Novel Target Genes for Pest Control and the Proteasome as Prime Target, BMC Genomics, 16(1):671 (2015).
Unniraman et al., Conserved Economics of Transcription Termination in Eubacteria, Nucleic Acids Research, 30(3):675-684 (2002).
Voinnet et al., Systemic Spread of Sequence-Specific Transgene RNA Degradation in Plants is Initiated by Localized Introduction of Ectopic Promoterless DNA, Cell, 95:177-187 (1998).
Voinnet, Origin, Biogenesis, and Activity of Plant MicroRNAs, Cell, 136:669-687 (2009).
Watson et al., “RNA Silencing Platforms in plants,” FEBS Lett., 579: 5982-5987 (2005).
Widholm et al., Glyphosate Selection of Gene Amplification in Suspension Cultures of 3 Plant Species, Phyisologia Plantarum, 112:540-545 (2001).
Wool et al., Structure and Evolution of Mammalian Ribosomal Proteins, Biochem. Cell Biol, 73:933-947 (1995).
Written Opinion dated Mar. 6, 2017, in Singaporean Patent Application No. 2012061529.
Xu et al., Characterization and Functional Analysis of the Calmodulin-Binding Domain of Rac1 GTPase, PLoS One, 7(8):e42975 (2012).
Zaimin et al., Chapter III Seeds and Seedlings, Botany, Northwest A&F University Press, pp. 87-92 (2009).
Zhang, Chapter 10: New Characteristics of Pesticide Research & Development, p. 209 (2010).
Zhong et al., A forward Genetic Screen to Explore Chloroplast Protein Import in Vivo Identifies Moco Sulfurase, Pivotal for ABA and IAA Biosynthesis and Purine Turnover, The Plant Journal, 63:44-59 (2010).
Zhong et al., A Pea Antisense Gene for the Chloroplast Stromal Processing Peptidase Yields Seedling Lethals in Arabidopsis: Survivors Show Defective GFP Import In Vivo, The Plant Journal, 34:802-812 (2003).
Zotti et al., RNAi Technology for Insect Management and Protection of Beneficial Insects From Diseases: Lessons, Challenges and Risk Assessments, Neotropical Entomology, 44(3):197-213 (2015).
Anonymous, “A handbook for high-level expression and purification of 6xHis-tagged proteins,” The QiaExpressionist (2003).
Asad et al., “Silicon Carbide Whisker-mediated Plant Transformation,” Properties and Applications of Silicon Carbide, pp. 345-358 (2011).
Baulcombe, “RNA silencing in plants,” Nature, 431:356-363 (2004).
Baum et al., “Progress Towards RNAi-Mediated Insect Pest Management,” Advances in Insect Physiology, 47:249-295 (2014).
Belhadj et al., “Methyl Jasmonate Induces Defense Responses in Grapevine and Triggers Protection against Erysiphe necator,” J. Agric Food Chem., 54:9119-9125 (2006).
Burgos et al., “Review: Confirmation of Resistance to Herbicides and Evaluation of Resistance Levels,” Weed Science, 61 (1):4-20 (2013).
Busch et al., “RNAi for discovery of novel crop protection products,” Pflanzenschutz-Nachrichten Bayer, 58(1):34-50 (2005).
Communication Pursuant to Article 94(3) EPC dated Sep. 5, 2018, in European Patent Application No. 17152830.0.
Cong et al., “Multiplex Genome Engineering Using CRISPR/Cas Systems,” Science, 339:819-823 (2013).
Database EMBL XP-002781749(BG442539) dated Mar. 20, 2001.
Declaration of Jerzy Zabkiewicz executed Nov. 28, 2017, as filed by Opponent in Australian Patent Application No. 2014262189, pp. 1-73.
Declaration of Jerzy Zabkiewicz executed Nov. 28, 2017, as filed by Opponent in Australian Patent Application No. 2014262189, pp. 1-4.
Declaration of Neena Mitter executed Nov. 30, 2017, as filed by Opponent in Australian Patent Application No. 2014262189, pp. 1-114.
Declaration of Neena Mitter executed Nov. 30, 2017, as filed by Opponent in Australian Patent Application No. 2014262189, pp. 1-25.
Delye et al., “PCR-based detection of resistance to acetyl-CoA carboxylase-inhibiting herbicides in black-grass (Alopecurus myosuroides Huds) and ryegrass (Lolium rigidum Gaud),” Pest Management Science, 58:474-478 (2002).
Delye et al., “Variation in the gene encoding acetolactate-synthase in Lolium species and proactive detection of mutant, herbicide-resistant alleles,” Weed Research, 49:326-336 (2009).
Desveaux et al., “PBF-2 is a Novel Single-Stranded DNA Binding Factor Implicated in PR-10a Gene Activation in Potato,” The Plant Cell, 12:1477-1489 (2000).
Dietzgen et al., “Transgenic gene silencing strategies for virus control,” Australasian Plant Pathology, 35:605-618 (2006).
Dilpreet et al., “Glyphosate Resistance in a Johnsongrass (Sorghum halepense) Biotype from Arkansas,” Weed Science, 59(3):299-304 (2011).
Drobyazko., “Reliable and environmentally friendly insecticide,” Protection and quarantine of plants, 2012 (pp. 52, 53) (in Russian).
Duhoux et al., “Reference Genes to Study Herbicide Stress Response in Lolium sp.: Up-Regulation of P3450 Genes in Plants Resistant to Acetolactate-Synthase Inhibitors,” PLOS One, 8(5):e63576 (2013).
European Search Report dated Sep. 7, 2017, in European Patent Application No. 17152830.0.
Extended European Search Report dated Dec. 19, 2018, in European Patent Application No. 16804395.8.
Extended European Search Report dated Nov. 16, 2018, in European Patent Application No. 18182238.8.
Extended European Search Report dated Nov. 21, 2018, in European Patent Application No. 18175809.5.
Extended European Search Report dated Sep. 28, 2018, in European Patent Application No. 16740770.9.
Extended European Search Report dated Apr. 13, 2018, in European Patent Application No. 15812530.0.
Gao et al., “DNA-guided genome editing using the Natronobacterium gregoryi Argonaute,” Nature Biotechnology, 34(7):768-773 (2016).
GenBank Accession No. AY545657.1 (2004).
GenBank Accession No. GI:186478573 (2014).
GenBank Accession No. HD315444, “Sequence 192160 from Patent EP2213738” (2010).
GenBank Accession No. U87257.1, “Daucus carota 4-hydroxyphenylpyruvate dioxygenase mRNA, complete cds” (1997).
GenBank Accession No. XM_014456745.1, PREDICTED: Myotis lucifugus ribonucleoprotein, PTB-binding 2 (RAVER2), transcript variant X3, mRNA,: (2015).
GenEmbl Accession No. FJ861243 (2010).
Guttieri et al., “DNA Sequence Variation in Domain A of the Acetolactate Synthase Genes of Herbicide-Resistant and -Susceptible Weed Biotypes,” Weed Science, 40:670-679 (1992).
Holtra et al., “Assessment of the Physiological Condition of Salvinia natans L. Exposed to Copper(II) Ions,” Environ. Protect. Eng., 41:147-158 (2015).
Hörmann et al., “Tic32, as Essential Component in Chloroplast Biogenesis,” The Journal of Biological Chemistry, 279(33):34756-34762 (2004).
Horsch et al., “Inheritance of Functional Foreign Genes in Plants ,” Science, 223:496-498 (1984).
Hsu et al., “DNA targeting specificity of RNA-guided Cas9 nucleases,” Nature Biotechnology, 31:827-832 (2013).
Hu et al., “High efficiency transport of quantum dots into plant roots with the aid of silwet L-77,” Plant Physiology and Biochemistry, 48:703-709 (2010).
International Search Report dated Oct. 13, 2016, in International Patent Application No. PCT/US2016/35500.
Jiang et al., Chapter III Seeds and Seedlings, Botany, Northwest A&F University Press, pp. 87-92 (2009).
Kim et al., “Synthesis and characterization of mannosylated pegylated polyethylenimine as a carrier for siRNA,” International Journal of Pharmaceutics, 427:123-133 (2012).
Kirkwood, “Recent developments in our understanding of the plant cuticle as a barrier to the foliar uptake of pesticides,” Pestic Sci, 55:69-77 (1999).
Li et al., “A Simplified Seed Transformation Method for Obtaining Transgenic Brassica napus Plants,” Agricultural Sciences in China, 8(6):658-663 (2009).
Li et at., “Long dsRNA but not siRNA initiates RNAi in western corn rootworm larvae and adults,” Journal of Applied Entomology, 139(6):432-445 (2015).
Liu et al, “The Helicase and RNaseIIIa Domains of Arabidopsis Dicer-Like1 Modulate Catalytic Parameters during MicroRNA Biogenesis,” Plant Physiology, 159:748-758 (2012).
Liu, “Calmodulin and Cell Cycle,” Foreign Medical Sciences Section of Pathophysiology and Clinical Medicine, 18(4):322-324 (1998).
Liu, “Confocal laser scanning microscopy—an attractive tool for studying the uptake of xenobiotics into plant foliage,” Journal of Microscopy, 213(Pt 2):87-93 (2004).
Liu, “The Transformation of Nucleic Acid Degradants in Plants,” China Organic Fertilizers, Agriculture Press, ISBN: 7-1091634 (1991) (with English translation).
Lodish et al., Molecular Cell Biology, Fourth Edition, p. 210 (2000).
Lucas et al., “Plasmodesmata—bridging the gap between neighboring plant cells,” Trends in Cell Biology, 19:495-503 (2009).
Morozov et al., “Evaluation of Preemergence Herbicides for Control of Diclofop-resistant Italian Ryegrass (Lolium multiflorum) in Virginia,” Virginia Polytechnic Institute and State University, pp. 43-71 (2004).
Nemeth, “Virus, mycoplasma and rickettsia diseases of fruit trees,” Martinus Nijhoff Publishers, 197-204 (1986).
N-TER Nanoparticle siRNA, Sigma Aldrich TM website, Web. Nov. 20, 2018.
Office Action dated Aug. 9, 2018, in Canadian Patent Application No. 2,848,371.
Office Action dated Jul. 30, 2018, in Canadian Patent Application No. 2,848,576.
Office Action dated Sep. 20, 2018, in Chilean Patent Application No. 201601440 (with English translation).
Partial European Search Report dated Jun. 29, 2018, in European Patent Application No. 18157745.3.
Partial Supplementary European Search Report dated Jan. 11, 2018, in European Patent Application No. 15812530.2.
Powles et al., “Evolution in Action: Plants Resistant to Herbicides,” Annual Review of Plant Biology, 61(1):317-347 (2010).
Pratt et al., “Sorghum Expressed Sequence Tags Identify Signature Genes for Drought, Pathogenesis, and Skotomorphogenesis from a Milestone Set of 16,801 Unique Transcripts,” Plant Physiology, 139:869-884 (2005).
Qi et al., “RNA processing enables predictable programming of gene expression,” Nature Biotechnology, 30:1002-1007 (2012).
Riar et al., “Glyphosate Resistance in a Johnsongrass (Sorghum halepense) Biotype from Arkansas,” Weed Science, 59:299-304 (2011).
Simeoni et al., “Insight into the mechanism of the peptide-based gene delivery system MPG: implications for delivery of siRNA into mammalian cells,” Nucleic Acids Research, 31(11):2717-2724 (2003).
Small, “RNAi for revealing and engineering plant gene functions,” Current Opinion in Biotechnology, 18:148-153 (2007).
Swarts et al., “Argonaute of the archaeon Pyrococcus furiosus is a DNA-guided nuclease that targets cognate DNA,” Nucleic Acid Res., 43(10):5120-5129 (2015).
Swarts et al., “DNA-guided DNA interference by a prokaryotic Argonaute,” Nature, 507(7491):258-61 (2014).
Tice, “Selecting the right compounds for screening: does Lipinski's Rule of 5 for pharmaceuticals apply to agrochemicals?” Pest Management Science, 57(1):3-16 (2001).
Toriyama et al., “Transgenic Rice Plants After Direct Gene Transfer Into Protoplasts,” BioTechnology, 6:1072-1074 (1988).
Townsend et al., “High frequency modification of plant genes using engineered zinc finger nucleases,” Nature, 459:442-445 (2009).
TransIT-TKO© Transfection Reagent, Frequently Asked Questions, Web. 2019.
Trucco et al., “Amaranthus hybridus can be pollinated frequently by A. tuberculatus under filed conditions,” Heredity, 94:64-70 (2005).
Van der Meer et al., “Promoted analysis of the chalcone synthase (chs A) gene of Petunia hybrid: a 67 bp promoter region directs flower-specific expression,” Plant Mol. Biol., 15:95-109 (1990).
Vila-Aiub et al., “Glyphosate resistance in perennial Sorghum halepense (Johnsongrass), endowed by reduced glyphosate translocation and leaf uptake,” Pest Manag Sci., 68:430-436 (2012).
Watson et al., “RNA silencing platforms in plants,” FEBS Letters, 579:5982-5987 (2005).
Wiesman et al., “Novel cationic vesicle platform derived from vernonia oil for efficient delivery of DNA through plant cuticle membranes,” Journal of Biotechnology, 130:85-94 (2007).
Yan et al., Seed Science, China Agriculture Press, pp. 101-103, Tables 2-37 (2001).
Yu et al., “Diversity of Acetyl-Coenzyme A Carboxylase Mutations in Resistant Lolium Populations: Evaluation Using Clethodim,” Plant Physiology, 145:547-558 (2007).
Yu et al., “Glyphosate, paraquat and ACCase multiple herbicide resistance evolved in a Lolium rigidum biotype,” Planta, 225:499-513 (2007).
Zabkiewicz, “Adjuvants and herbicidal efficacy—present status and future prospects,” Weed Research, 40:139-149 (2000).
Zhang et al., “Development and Validation of Endogenous Reference Genes for Expression Profiling of Medaka (Oryzias latipes) Exposed to Endocrine Disrupting Chemicals by Quantitative Real-Time RT-PCR,” Toxicological Sciences, 95(2):356-368 (2007).
Zhang, “Artificial trans-acting small interfering RNA: a tool for plant biology study and crop improvements,” Planta, 239:1139-1146 (2014).
Zhao et al., “Ps0r1, a potential target for RNA interference-based pest management,” Insect Molecular Biology, 20(1):97-104 (2011).
Zhao et al., “Vegetable Standardized Production Technology,” Hangzhou: Zhejiang Science and Technology Press, p. 19 (2008).
Zidack et al., “Promotion of Bacterial Infection of Leaves by an Organosilicone Surfactant: Implications for Biological Weed Control,” Biological Control, 2:111-117 (1992).
Zipperian et al., “Silicon Carbide Abrasive Grinding,” Quality Matters Newsletter, PACE Technologies, 1(2):1-3 (2002).
Andersen et al., “Delivery of siRNA from lyophilized polymeric surfaces,” Biomaterials, 29:506-512 (2008).
Baker, “Chlorophyll Fluorescence: A Probe of Photosynthesis in Vivo,” Annu. Rev. Plant Biol., 59:89-113 (2008).
Brugiere et al., “Glutamine Synthetase in the Phloem Plays a Major Role in Controlling Proline Production,” The Plant Cell, 11:195-2011 (1999).
Burleigh, “Relative quantitative RT-PCR to study the expression of plant nutrient transporters in arbuscular mycorrhizas,” Plant Science, 160:899-904 (2001).
Chang et al., “Dual-target gene silencing by using long, synthetic siRNA duplexes without triggering antiviral responses,” Molecules and Cells, 27(6):689-695 (2009).
Communication pursuant to Article 94(3) EPC dated Mar. 16, 2020, in European Patent Application No. 17194281.6.
Communication pursuant to Article 94(3) EPC dated Mar. 27, 2020, in European Patent Application No. 15811092.4.
Danka et al., “Field Test of Resistance to Acarapis woodi (Acari: Tarsonemidae) and of Colony Production by Four Stocks of Honey Bees (Hymenoptera: Apidae)” Journal of Economic Entomology, 88(3):584-591 (1995).
Decision to Grant dated Feb. 24, 2020, in Ukrainian Patent Application No. A 2016 08743 (with English language translation).
Declaration of Professor Robert James Henry executed Mar. 1, 2018, as filed by Applicant in Australian Patent Application No. 2014262189, pp. 1-119.
Downey et al., “Single and dual parasitic mite infestations on the honey bee, Apis mellifera L.,” Insectes Sociaux, 47(2):171-176 (2000).
Extended European Search Report dated Mar. 25, 2020, in European Patent Application No. 19192942.1.
Gilmer et al., “Latent Viruses of Apple I. Detection with Woody Indicators,” Plant Pathology, 1(10):1-9 (1971).
Hwa et al., “Fixation of hybrid vigor in rice: opportunities and challenges,” Euphytica, 160:287-293 (2008).
Jasieniuk et al., “Glyphosate-Resistant Italian Ryegrass (Lolium multiflorum) in California: Distribution, Response to Glyphosate, and Molecular Evidence for an Altered Target Enzyme,” Weed Science, 56(4):496-502 (2008).
Khanbekova et al., The defeat of the honey bee apis melifera caucasica Gorb. By viruses and parasites, and condition of bee colonies in different ecogeographical conditions of Greater Caucasus, Agricultural Biology. 2013 (p. 43) (in Russian).
Office Action dated Feb. 20, 2020, in Canadian Patent Application No. 2,905,104.
Office Action dated Feb. 25, 2020, in Japanese Patent Application No. 2017-538699 (with English language translation).
Ossowski et al., “Gene silencing in plants using artificial microRNAs and other small RNAs,” The Plant Journal, 53:674-690 (2008).
Partial European Search Report dated Dec. 6, 2019, in European Patent Application No. 19185431.4.
Prado et al., “Design and optimization of degenerated universal primers for the doing of the plant acetolactate synthase conserved domains,” Weed Science, 52:487-491 (2004).
Regalado, “The Next Great GMO Debate,” MIT Technology Review, pp. 1-19 (2015) <https://www.technologyreview.com/s/540136/the-next-great-gmo-debate/>.
Sammataro et al., “Some Volatile Plant Oils as Potential Control Agents for Varroa Mites (Acari: Varroidae) in Honey Bee Colonies (Hymenoptera: Apidae),” American Bee Journal, 138(9):681-685 (1998).
Subramoni et al., “Lipases as Pathogenicity Factors of Plant Pathogens,” Handbook of Hydrocarbon and Lipid Microbiology, 3269-3277 (2010).
Sun, “Characterization of Organosilicone Surfactants and Their Effects on Sulfonylurea Herbicide Activity,” Thesis Submitted to the Faculty of the Virginia Polytechnic Institute and State University dated Apr. 5, 1996.
Tenllado et al., “Crude extracts of bacterially expressed dsRNA can be used to protect plants against virus infections,” BMC Biotechnology, 3:1-11 (2003).
TransIT-TKO® Transfection Reagent, Frequently Asked Questions, Web. 2019 <https://www.mirusbio.com/tech-resources/fags/transit-tko-faqs>.
Walton, “Deconstructing the Cell Wall,” Plant Physiol., 104:1113-1118 (1994).
Wang et al., “Principle and technology of genetic engineering in plants,” in Plant genetic engineering principles and techniques, Beijing: Science Press, pp. 313-315 (1998).
Wild Carrot, Noxious Weed Control Board (NWCB) of Washington State (2010) <www.nwcb.wa.gov/detail.asp?weed=46>.
Yibrah et al.,“ Antisense RNA inhibition of uidA gene expression in transgenic plants: Evidence for interaction between first and second transformation events,” Hereditas, 118:273-280 (1993)
Related Publications (1)
Number Date Country
20130254940 A1 Sep 2013 US
Provisional Applications (1)
Number Date Country
61534082 Sep 2011 US