Methods and compositions incorporating alkyl polyglycoside surfactant for use in oil and/or gas wells

Information

  • Patent Grant
  • 11560351
  • Patent Number
    11,560,351
  • Date Filed
    Monday, March 8, 2021
    3 years ago
  • Date Issued
    Tuesday, January 24, 2023
    a year ago
Abstract
Methods and compositions comprising an emulsion or a microemulsion for use treating an oil and/or gas well are provided. In some embodiments, the emulsion or the microemulsion comprises an aqueous phase, a solvent, a surfactant comprising alkyl polyglycoside, an alcohol, and, optionally, one or more additives.
Description
FIELD OF INVENTION

Methods and compositions comprising an emulsion or a microemulsion for use in treating an oil and/or gas well are provided.


BACKGROUND OF INVENTION

Emulsions and/or microemulsions are commonly employed in a variety of operations related to the extraction of hydrocarbons, such as well stimulation. Subterranean formations are often stimulated to improve recovery of hydrocarbons. Common stimulation techniques include hydraulic fracturing. Hydraulic fracturing consists of the high pressure injection of a fluid containing suspended proppant into the wellbore in order to create fractures in the rock formation and facilitate production from low permeability zones. All chemicals pumped downhole in an oil and/or gas well can filter through the reservoir rock and block pore throats with the possibility of creating formation damage. It is well known that fluid invasion can significantly reduce hydrocarbon production from a well. In order to reduce fluid invasion, emulsions or microemulsions are generally added to the well-treatment fluids to help unload the residual aqueous treatment from the formation.


Accordingly, although a number of emulsions or microemulsions are known in the art, there is a continued need for more effective emulsions or microemulsions for use in treatment of an oil and/or gas well.


SUMMARY OF INVENTION

Methods and compositions comprising an emulsion or a microemulsion for use in treating an oil and/or gas well having a wellbore are provided.


In some embodiments, a method of treating an oil and/or gas well having a wellbore is provided comprising: injecting a fluid comprising an emulsion or a microemulsion into the wellbore, wherein the emulsion or the microemulsion comprises an aqueous phase; a surfactant comprising alkyl polyglycoside; a solvent selected from the group consisting of terpene, alkyl aliphatic carboxylic acid ester, and combinations thereof; and an alcohol selected from the group consisting of butanol, amyl alcohol, and combinations thereof.


In some embodiments, a composition for use in an oil and/or gas well having a wellbore is provided comprising a fluid and an emulsion or a microemulsion, wherein the emulsion or the microemulsion comprises an aqueous phase; a surfactant comprising alkyl polyglycoside; a solvent selected from the group consisting of terpene, alkyl aliphatic carboxylic acid ester, and combinations thereof; and an alcohol selected from the group consisting of butanol, amyl alcohol, and combinations thereof.


Other aspects, embodiments, and features of the methods and compositions will become apparent from the following detailed description. All patent applications and patents incorporated herein by reference are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control.







DETAILED DESCRIPTION

Methods and compositions comprising an emulsion or a microemulsion for use in treating an oil and/or gas well are provided. In some embodiments, a microemulsion may comprise an aqueous phase, a solvent (e.g., terpene and/or methyl aliphatic carboxylic acid ester), a surfactant comprising alkyl polyglycoside (“APG”), an alcohol (e.g., an alcohol functioning as a co-solvent, such as butanol or amyl alcohol), and optionally other additives (e.g., a freezing point depression agent, a demulsifier, etc.). In some embodiments, the methods and compositions relate to various aspects of the life cycle of an oil and/or gas well (e.g., fracturing fluids, drilling, mud displacement, casing, cementing, perforating, stimulation, remediation, kill fluids, enhanced oil recovery/improved oil recovery, etc.). In some embodiments, an emulsion or a microemulsion is added to a fluid utilized in the life cycle of a well thereby increasing hydrocarbon (e.g., liquid or gaseous) production of the well, improving recovery of the fluid and/or other fluids, and/or preventing or minimizing damage to the well caused by exposure to the fluid (e.g., from imbibition). In some embodiments, a method of treating an oil and/or gas well having a wellbore comprises injecting a fluid comprising an emulsion or a microemulsion into the wellbore.


Embodiments of the disclosed microemulsions overcome shortcomings of generally known microemulsions, which have been shown to be generally incompatible with a wide range of conditions. For example, many commonly used surfactants for microemulsions are useful only within a certain temperature range even though, in reality, oil field reservoirs vary widely in actual bottom hole or formation temperatures. Likewise, known compositions that form transparent microemulsions at surface temperatures may be well above their cloud point at bottom hole temperatures. Previous combinations of surfactants have been found to broaden the temperature range, but at the cost of compatibility with other components in the fluid system. Some common surfactants become insoluble in the high salinity brines often found in oil-bearing and gas-bearing formations.


Embodiments of the presently disclosed microemulsions may provide several advantages over previous microemulsions. For example, embodiments of the disclosed microemulsions are compatible with a wide range of water salinities (e.g., fresh, flowback and produced waters or mixtures thereof) and temperatures. This range of compatibility may prevent the microemulsion from undergoing phase separation during use which, in some circumstances, could decrease the microemulsion's efficacy.


According to some embodiments, the disclosed emulsions or microemulsions are able to lower capillary pressure and promote unloading at higher temperatures when used in applications where a wide range of temperatures and/or salinities may be encountered, such as multi-stage hydraulic fracturing in horizontal, lateral, or deviated wells, which may require millions of gallons of water per well. According to certain embodiments, the disclosed emulsions and microemulsions facilitate unloading of the aqueous treatment fluid from deep in the formation. According to certain embodiments, emulsions and microemulsions disclosed herein, provide for high performance in these and other difficult conditions, using renewable plant-based materials in a simple composition with a minimum number of components.


Additional details regarding the emulsions or microemulsions, as well as the applications of the emulsions or microemulsions, are described herein.


I. Emulsions and Microemulsions

It should be understood, that while much of the description herein focuses on microemulsions, this is by no means limiting, and emulsions may be employed where appropriate.


In some embodiments, an emulsion or a microemulsion comprises an aqueous phase, a solvent, a surfactant, and an alcohol (which may function as a co-solvent). In some embodiments, the emulsion or the microemulsion further comprises additional additives. Details of each of the components of the emulsions or the microemulsions are described in detail herein. In disclosed embodiments, the components of the emulsions or the microemulsions are selected so as to provide a desired performance over a wide range of temperatures and salinities.


In some embodiments, the emulsion or the microemulsion comprises an aqueous phase; a solvent comprising terpene (e.g., d-limonene) and/or alkyl aliphatic carboxylic acid ester (e.g., methyl aliphatic carboxylic acid ester, also referred to as methyl ester); a surfactant comprising alkyl polyglycoside; and an alcohol (e.g., butanol and/or amyl alcohol). The alcohol may function as a co-solvent.


In some embodiments the terpene comprises d-limonene. In some embodiments the alkyl aliphatic carboxylic acid ester comprises methyl ester. In some embodiments the alcohol comprises butanol and/or amyl alcohol.


In some embodiments, the emulsion or the microemulsion comprises an aqueous phase; a solvent comprising d-limonene and/or methyl ester; a surfactant comprising alkyl polyglycoside; and an alcohol comprising butanol and/or amyl alcohol.


In some embodiments additives may be added to the emulsion or microemulsion. For example, the emulsion or the microemulsion may comprise a freezing point depression agent (e.g., propylene glycol) and/or a demulsifier, without disturbing the stability of the emulsion or the microemulsion over a range of salinities or temperatures. Other potential additives are discussed below. In some embodiments, the emulsion or the microemulsion consists essentially of an aqueous phase; a solvent comprising d-limonene and/or methyl ester; a surfactant comprising alkyl polyglycoside; an alcohol comprising butanol and/or amyl alcohol; and, optionally, one or more additives.


In some embodiments, the aqueous phase is present in the emulsion or the microemulsion in an amount of between about 10 wt % and about 70 wt %, or between about 35 wt % and about 60 wt %. In some embodiments, the alkyl polyglycoside surfactant is present in the emulsion or the microemulsion in an amount of between about 10 wt % and about 25 wt % or between about 16 wt % and about 24 wt %. In some embodiments, the solvent is present in the emulsion or the microemulsion in an amount between about 1 wt % and about 20 wt % or between about 9 wt % and about 17 wt %. In some embodiments, the alcohol (e.g., alcohol co-solvent) is present in the emulsion or the microemulsion in an amount between about 2 wt % and about 15 wt % or between about 4 wt % and about 9 wt %.


In some embodiments, the emulsion or the microemulsion comprises an aqueous phase; a solvent comprising an oleaginous hydrocarbon solvent; a surfactant comprising an alkyl polyglycoside; and a co-surfactant comprising an oxygenated co-surfactant. In some embodiments, the emulsion or the microemulsion comprises between about 10 wt % and about 60 wt % aqueous phase (e.g., water). In some embodiments, the emulsion or the microemulsion consists essentially of an aqueous phase; a solvent comprising an oleaginous hydrocarbon solvent; a surfactant comprising an alkyl polyglycoside; a co-surfactant comprising an oxygenated co-surfactant; and, optionally, one or more additives. In some embodiments, the emulsion or the microemulsion comprises between about 10 wt % and about 60 wt % aqueous phase (e.g., water). In some embodiments, the emulsion or the microemulsion comprises between about 1 wt % and about 17 wt % solvent. In some embodiments, the emulsion or the microemulsion comprises between about 10 wt % and about 25 wt % surfactant. In some embodiments, the emulsion or the microemulsion comprises between about 2 wt % and about 15 wt % oxygenated co-surfactant. In some embodiments, the emulsion or microemulsion comprises between about 10 wt % and about 60 wt % aqueous phase (e.g., water), between about 1 wt % and about 17 wt % solvent, between about 10 wt % and about 25 wt % surfactant, and between about 2 wt % and about 15 wt % oxygenated co-surfactant.


In some embodiments, for the formulations above, other additives are present in an amount between about 1 wt % and about 30 wt %, between about 1 wt % and about 25 wt %, or between about 1 wt % and about 20 wt %. In some embodiments, the other additives comprise one or more salts and/or one or more acids.


It was unexpectedly found that in some embodiments, fluids comprising the disclosed microemulsions remain stable and exhibit low turbidity over a wide range of salinities and/or temperatures. As used herein, turbidity refers to the measure of cloudiness or haziness of a fluid caused by the presence of suspended particles in the fluid. In the case of a fluid comprising a microemulsion, turbidity serves as an indication of the stability of the microemulsion. A higher turbidity may be caused by phase separation of a less stable microemulsion upon dilution into high salinity and/or high temperature well conditions. Conversely, a low turbidity may be an indication that the microemulsion is more stable. Phase separation may decrease the efficacy of the microemulsion. Commonly-used units for measuring turbidity are Nephelometric Turbidity Units (NTU). A clear fluid corresponds to the fluid having a turbidity from 0 NTU to 15 NTU. A slightly hazy fluid corresponds to the fluid having a turbidity from 15 NTU to 100 NTU. A hazy fluid corresponds to the fluid having a turbidity from 100 NTU to 200 NTU. An opaque fluid corresponds to the fluid having a turbidity of 200 NTU or greater. Fluids comprising a microemulsion should have a turbidity in the range of slightly hazy or preferably clear to maximize the efficacy of the microemulsion.


Microemulsions disclosed herein demonstrate unexpectedly low turbidities even over a wide range of salinities. For example, in some embodiments, the microemulsions disclosed herein, upon dilution, have a turbidity of less than 100 NTU, of less than 50 NTU, or of less than 15 NTU, upon dilution at 2 gallons per thousand (gpt) in a brine having a TDS (total dissolved solids) value of from about 20,000 ppm up to about 310,000 ppm, when measured at room temperature one minute after dilution.


Likewise, the microemulsions disclosed herein may demonstrate unexpectedly low turbidities over a wide range of temperatures. For example, in some embodiments, the microemulsions, upon dilution at 2 gallons per thousand with a brine having a TDS value of about 240,000 ppm, have a turbidity value of less than 15 NTU, when measured at 75° F. using a turbidimeter, and a turbidity value of less than 15 NTU, when measured at 200° F. using a turbidimeter.


I-A. Aqueous Phase


Generally, the emulsion or the microemulsion comprises an aqueous phase. Generally, the aqueous phase comprises water. The water may be provided from any suitable source (e.g., sea water, fresh water, deionized water, reverse osmosis water, water from field production). The water may be present in any suitable amount. In some embodiments, the total amount of water present in the emulsion or the microemulsion is between about 10 wt % and about 70 wt %, between about 35 wt % and about 60 wt %, between about 10 wt % about 60 wt %, between about 35 wt % and about 55 wt %, between about 5 wt % and about 60 wt %, between about 10 wt % and about 55 wt %, or between about 15 wt % and about 45 wt %, versus the total emulsion or microemulsion composition.


I-B. Solvents


Generally, the emulsion or the microemulsion comprises a solvent. The solvent may be a single type of solvent or a combination of two or more types of solvent. The solvent may comprise an oleaginous hydrocarbon solvent; for example, the solvent may be a substance with a significant hydrophobic character with linear, branched, cyclic, bicyclic, saturated, or unsaturated structure, including terpenes and/or alkyl aliphatic carboxylic acid esters. The term “oleaginous” denotes an oily, non-polar liquid phase. In some embodiments, the solvent comprises terpene and/or methyl aliphatic carboxylic acid ester. In some embodiments, the terpene is a non-oxygenated terpene. In some embodiments, the terpene is d-limonene. In some embodiments, the terpene is dipentene. In some embodiments, the terpene is selected from the group consisting of d-limonene, nopol, alpha-terpineol, eucalyptol, dipentene, linalool, alpha-pinene, beta-pinene, and combinations thereof. As used herein, “terpene” refers to a single terpene compound or a blend of terpene compounds.


In some embodiments, the solvent is present in the emulsion or the microemulsion in an amount between about 1 wt % and about 25 wt %, between about 1 wt % and about 20 wt % or between about 9 wt % and about 17 wt %.


In some embodiments, d-limonene is present in the emulsion or the microemulsion in an amount between about 1 wt % and about 25 wt %, between about 1 wt % and about 20 wt % or between about 9 wt % and about 17 wt %. In some embodiments, methyl aliphatic carboxylic acid ester is present in the emulsion or the microemulsion in an amount between about 1 wt % and about 25 wt %, between about 1 wt % and about 20 wt % or between about 9 wt % and about 17 wt %. In some embodiments, a combination of d-limonene and methyl aliphatic carboxylic acid ester is present in the emulsion or the microemulsion in an amount between about 1 wt % and about 25 wt %, between about 1 wt % and about 20 wt % or between about 9 wt % and about 17 wt %. In some embodiments, the ratio of the d-limonene to the methyl aliphatic carboxylic acid ester is from about 1:0.01 to about 0.5:1 by weight, or from about 0.8:1 to about 1:0.8 by weight.


In some embodiments, the terpene is an oxygenated terpene, for example, a terpene comprising an alcohol, an aldehyde, an ether, and/or a ketone group. In some embodiments, the terpene comprises an alcohol group, otherwise referred to as a terpene alcohol. Non-limiting examples of terpene alcohols are linalool, geraniol, nopol, α-terpineol, and menthol. In some embodiments, the terpene comprises an ether-oxygen, for example, eucalyptol. In some embodiments, the terpene is a non-oxygenated terpene, for example, d-limonene or dipentene.


Terpenes are derived biosynthetically from units of isoprene. Terpenes may be generally classified as monoterpenes (e.g., having two isoprene units), sesquiterpenes (e.g., having 3 isoprene units), diterpenes, or the like. The term “terpenoid” also includes natural degradation products, such as ionones, and natural and synthetic derivatives, e.g., terpene alcohols, ethers, aldehydes, ketones, acids, esters, epoxides, and hydrogenation products (e.g., see Ullmann's Encyclopedia of Industrial Chemistry, 2012, pages 29-45, herein incorporated by reference). In some cases, the terpene is a naturally occurring terpene. In some cases, the terpene is a non-naturally occurring terpene and/or a chemically modified terpene (e.g., saturated terpene, terpene amine, fluorinated terpene, or silylated terpene). When terpenes are modified chemically, such as by oxidation or rearrangement of the carbon skeleton, the resulting compounds are generally referred to as terpenoids.


As used herein “alkyl aliphatic carboxylic acid ester” refers to a compound or a blend of compounds having the general formula:




embedded image



wherein R1 is a C4 to C22 aliphatic group, including those bearing heteroatom-containing substituent groups, and R2 is a C1 to C6 alkyl group. For example, where R2 is —CH3, the compound or blend of compounds is referred to as methyl aliphatic carboxylic acid ester, or methyl ester. Such alkyl aliphatic carboxylic acid esters may be derived from a fully synthetic process or from natural products, and thus comprise a blend of more than one ester.


I-C. Surfactants


Generally, the emulsion or microemulsion comprises a surfactant. In some embodiments, the emulsion or the microemulsion comprises a first surfactant and a second surfactant or co-surfactant. The term “surfactant” as used herein, is given its ordinary meaning in the art and refers to compounds having an amphiphilic structure which gives them a specific affinity for oil/water-type and water/oil-type interfaces which helps the compounds to reduce the free energy of these interfaces and to stabilize the dispersed phase of an emulsion or a microemulsion.


Generally, the surfactant comprises alkyl polyglycoside (APG). The surfactant may comprise one APG surfactant or a mixture of APG surfactants with different alkyl chains and/or degrees of polymerization (DP).


APGs are non-ionic surfactants having the following formula:




embedded image



wherein R3 is an aliphatic hydrocarbon group which can be straight chained or branched, saturated or unsaturated, and having from 6 to 16 carbon atoms; R4 is H, —CH3, or —CH2CH3; G is the residue of a reducing saccharide, for example, a glucose residue; Y is an average number of from about 0 to about 5; and X is an average degree of polymerization (DP) of from about 1 to about 4. The DP is an average of the number of glycose groups attached to the molecule. As used herein, reference to the surfactant comprising APG refers both to where a single APG species is present and to where a mixture of APG species with different alkyl chains and/or degrees of polymerization (DP) are present. The number of carbon atoms in the aliphatic hydrocarbon group R3 is referred to as the carbon chain length of the APG surfactant. In some embodiments, the APG surfactant comprises one or more species having a carbon chain length between 6 and 16 carbon atoms. In some embodiments, the number average carbon chain length of the APG surfactant is between 6 and 16 carbon atoms.


In some embodiments, alkyl polyglycoside surfactant is present in the emulsion or the microemulsion in an amount between about 10 wt % and about 25 wt % or between about 16 wt % and about 24 wt %. Other values are also possible. In some embodiments, specific surfactant components are excluded from the emulsion or the microemulsion. For example, the surfactant of the emulsion or the microemulsion may exclude an ethoxylated castor oil. In some embodiments the surfactant component of the emulsion or the microemulsion consists of or consists essentially of APG surfactant. That is, no other surfactants are present in the emulsion or the microemulsion, or they are present in only a negligible amount.


It was unexpectedly found that use of APG surfactant, in some embodiments, increased the stability of the emulsion or the microemulsion over a wide range of temperatures and/or salinities, when incorporated into the emulsion or the microemulsion formulations disclosed herein. Such emulsions or microemulsions may maintain stability even when subjected to a wide range of temperatures due to the environmental conditions present at the subterranean formation and/or reservoir.


I-D. Alcohol


Generally, the emulsion or microemulsion comprises an alcohol. The alcohol may function as a co-solvent. The alcohol may be selected from alcohols having from 1 to 8 carbon atoms, and combinations thereof. The alcohol may be selected from the group consisting of butanol, pentanol, amyl alcohol, and combinations thereof. In some embodiments the alcohol is selected from the group consisting of butanol, amyl alcohol, and combinations thereof. In some embodiments, the alcohol comprises butanol. In some embodiments, the alcohol comprises amyl alcohol. In some embodiments, the alcohol comprises a combination of butanol and amyl alcohol.


It was unexpectedly found that the presence of certain alcohols in particular, for example, butanol or amyl alcohol, resulted in markedly improved stability of the emulsion or the microemulsion over a range of temperatures and salinities. However, it is understood that alternative alcohols or oxygenated co-solvents may still yield emulsions or microemulsions exhibiting sufficient stability.


In some embodiments, the alcohol is present in the emulsion or the microemulsion in an amount between about 2 wt % and about 15 wt % or between about 4 wt % and about 9 wt %. In some embodiments, butanol is present in the emulsion or the microemulsion in an amount between about 2 wt % and about 15 wt % or between about 4 wt % and about 9 wt %. In some embodiments, amyl alcohol is present in the emulsion or the microemulsion in an amount between about 2 wt % and about 15 wt % or between about 4 wt % and about 9 wt %. In some embodiments, a combination of butanol and amyl alcohol is present in the emulsion or the microemulsion in an amount between about 2 wt % and about 15 wt % or between about 4 wt % and about 9 wt %.


I-E. Additives


In some embodiments, the emulsion or microemulsion may comprise one or more additives in addition to the components discussed above. In some embodiments, the additive is a freezing point depression agent (e.g., propylene glycol). In some embodiments, the additive is a demulsifier. The demulsifier aids in preventing the formulation of an emulsion between a treatment fluid and crude oil. Some non-limiting examples of demulsifiers include polyoxyethylene (50) sorbitol hexaoleate. Other potential additives include a proppant, a scale inhibitor, a friction reducer, a biocide, a corrosion inhibitor, a buffer, a viscosifier, an oxygen scavenger, a clay control additive, a paraffin control additive, an asphaltene control additive, an acid, an acid precursor, or a salt.


Additional additive may be present in the emulsion or the microemulsion in any suitable amount. In some embodiments, the one or more additional additives are present in an amount between about 0.5 wt % and about 30 wt %, between about 1 wt % and about 40 wt %, between about 0 wt % and about 25 wt %, between about 1 wt % and about 25 wt %, between about 1 wt % and about 20 wt %, between about 3 wt % and about 20 wt %, or between about 8 wt % and about 16 wt %, versus the total emulsion or microemulsion composition. In some embodiments a freezing point depression agent is present in the emulsion or microemulsion in an amount between about 10 wt % and about 15 wt %. In some embodiments, a demulsifier is present in the emulsion or microemulsion in an amount between about 4 wt % and about 8 wt %.


In some embodiments, the emulsion or the microemulsion comprises a freezing point depression agent. The emulsion or the microemulsion may comprise a single freezing point depression agent or a combination of two or more freezing point depression agents. The term “freezing point depression agent” is given its ordinary meaning in the art and refers to a compound which is added to a solution to reduce the freezing point of the solution. That is, a solution comprising the freezing point depression agent has a lower freezing point as compared to an essentially identical solution not comprising the freezing point depression agent. Those of ordinary skill in the art will be aware of suitable freezing point depression agents for use in the emulsions or the microemulsions described herein. Non-limiting examples of freezing point depression agents include primary, secondary, and tertiary alcohols with between 1 and 20 carbon atoms. In addition to the freezing point depression agent, the emulsion or the microemulsion may comprise other additives. Further non-limiting examples of other additives include proppants, scale inhibitors, friction reducers, biocides, corrosion inhibitors, buffers, viscosifiers, oxygen scavengers, clay control additives, paraffin control additives, asphaltene control additives acids, acid precursors, and salts.


Non-limiting examples of proppants (e.g., propping agents) include grains of sand, glass beads, crystalline silica (e.g., quartz), hexamethylenetetramine, ceramic proppants (e.g., calcined clays), resin coated sands, and resin coated ceramic proppants. Other proppants are also possible and will be known to those skilled in the art.


Non-limiting examples of scale inhibitors include one or more of methyl alcohol, organic phosphonic acid salts (e.g., phosphonate salt, aminopolycarboxlic acid salts), polyacrylate, ethane-1,2-diol, calcium chloride, and sodium hydroxide. Other scale inhibitors are also possible and will be known to those skilled in the art.


Non-limiting examples of friction reducers include oil-external emulsions of polymers with oil-based solvents and an emulsion-stabilizing surfactant. The emulsions may include Natural-based polymers like guar, cellulose, xanthan, proteins, polypeptides or derivatives of same or synthetic polymers like polyacrylamide-co-acrylic acid (PAM-AA), polyethylene oxide, polyacrylic acid, and other copolymers of acrylamide and other vinyl monomers. For a list of non-limiting examples, see U.S. Pat. No. 8,865,632, which is incorporated herein by reference. Other common drag-reducing additives include dispersions of natural- or synthetic polymers and copolymers in saline solution and dry natural- or synthetic polymers and copolymers. These polymers or copolymers may be nonionic, zwitterionic, anionic, or cationic depending on the composition of polymer and pH of solution. Other friction reducers are also possible and will be known to those skilled in the art.


Non-limiting examples of biocides include didecyl dimethyl ammonium chloride, gluteral, Dazomet, bronopol, tributyl tetradecyl phosphonium chloride, tetrakis (hydroxymethyl) phosphonium sulfate, AQUCAR®, UCARCIDE®, glutaraldehyde, sodium hypochlorite, and sodium hydroxide. Other biocides are also possible and will be known to those skilled in the art.


Non-limiting examples of corrosion inhibitors include quaternary ammonium compounds, thiourea/formaldehyde copolymers, and propargyl alcohol. Other corrosion inhibitors are also possible and will be known to those skilled in the art.


Non-limiting examples of buffers include acetic acid, acetic anhydride, potassium hydroxide, sodium hydroxide, and sodium acetate. Other buffers are also possible and will be known to those skilled in the art.


Non-limiting examples of viscosifiers include polymers like guar, cellulose, xanthan, proteins, polypeptides or derivatives of same or synthetic polymers like polyacrylamide-co-acrylic acid (PAM-AA), polyethylene oxide, polyacrylic acid, and other copolymers of acrylamide and other vinyl monomers. Other viscosifiers are also possible and will be known to those skilled in the art.


Non-limiting examples of oxygen scavengers include sulfites and bisulfites. Other oxygen scavengers are also possible and will be known to those skilled in the art.


Non-limiting examples of clay control additives include quaternary ammonium chloride and tetramethylammonium chloride. Other clay control additives are also possible and will be known to those skilled in the art.


Non-limiting examples of paraffin control additives and asphaltene control additives include active acidic copolymers, active alkylated polyester, active alkylated polyester amides, active alkylated polyester imides, aromatic naphthas, and active amine sulfonates. Other paraffin control additives and asphaltene control additives are also possible and will be known to those skilled in the art.


In some embodiments, the emulsion or the microemulsion comprises an acid or an acid precursor. For example, the emulsion or the microemulsion may comprise an acid when used during acidizing operations. In some embodiments, the APG surfactant used is alkaline and an acid (e.g., HCl) used to adjust the pH of the emulsion or the microemulsion to neutral. The emulsion or the microemulsion may comprise a single acid or a combination of two or more acids. For example, in some embodiments, the acid comprises a first type of acid and a second type of acid. Non-limiting examples of acids or di-acids include hydrochloric acid, acetic acid, formic acid, succinic acid, maleic acid, malic acid, lactic acid, and hydrochloric-hydrofluoric acids. In some embodiments, the emulsion or the microemulsion comprises an organic acid or organic di-acid in the ester (or di-ester) form, whereby the ester (or diester) is hydrolyzed in the wellbore and/or reservoir to form the parent organic acid and an alcohol in the wellbore and/or reservoir. Non-limiting examples of esters or di-esters include isomers of methyl formate, ethyl formate, ethylene glycol diformate, α,α-4-trimethyl-3-cyclohexene-1-methylformate, methyl lactate, ethyl lactate, α,α-4-trimethyl 3-cyclohexene-1-methyllactate, ethylene glycol dilactate, ethylene glycol diacetate, methyl acetate, ethyl acetate, α,α,-4-trimethyl-3-cyclohexene-1-methylacetate, dimethyl succinate, dimethyl maleate, di(α,α-4-trimethyl-3-cyclohexene-1-methyl)succinate, 1-methyl-4-(1-methylethenyl)-cyclohexylformate, 1-methyl-4-(1-ethylethenyl)-cyclohexylactate, 1-methyl-4-(1-methylethenyl)-cyclohexylacetate, and di(1-methy-4-(1-methylethenyl)-cyclohexyl)-succinate.


In some embodiments, the emulsion or the microemulsion comprises a salt. The presence of the salt may reduce the amount of water needed as a carrier fluid, and in addition, may lower the freezing point, of the emulsion or the microemulsion. The emulsion or the microemulsion may comprise a single salt or a combination of two or more salts. For example, in some embodiments, the salt comprises a first type of salt and a second type of salt. Non-limiting examples of salts include salts comprising K, Na, Br, Cr, Cs, or Li, for example, halides of these metals, including NaCl, KCl, CaCl2, and MgCl2.


In some embodiments, the emulsion or the microemulsion comprises a clay control additive. The emulsion or the microemulsion may comprise a single clay stabilizer or a combination of two or more clay stabilizers. For example, in some embodiments, the clay control additive comprises a first type of clay control additive and a second type of clay control additive. Non-limiting examples of clay control additives include the salts above, polymers (PAC, PHPA, etc), glycols, sulfonated asphalt, lignite, sodium silicate, and choline chloride.


I-F. Formation and Use of Emulsions or Microemulsions


In some embodiments, the components of the microemulsion and/or the amounts of the components are selected such that the microemulsion is stable over a wide-range of temperatures, as demonstrated, for example, by a turbidity below a certain threshold (e.g., 100 NTU, 50 NTU, or 15 NTU).


In some embodiments, the components of the microemulsion and/or the amounts of the components are selected such that the microemulsion is stable over a wide-range of salinities. For example, the microemulsion may exhibit stability between about 20,000 ppm TDS and about 310,000 ppm TDS.


The emulsions and the microemulsions described herein may be formed using methods known to those of ordinary skill in the art. In some embodiments, the aqueous and non-aqueous phases may be combined (e.g., the water and the solvent(s)), followed by addition of a surfactant and co-surfactant and optional additives (e.g., a freezing point depression agent or a demulsifier) and agitation. The strength, type, and length of the agitation may be varied as known in the art depending on various factors including the components of the emulsions or the microemulsion, the quantity of the emulsions or the microemulsion, and the resulting type of emulsion or microemulsion formed. For example, for small samples, a few seconds of gentle mixing can yield an emulsion or a microemulsion, whereas for larger samples, longer agitation times and/or stronger agitation may be required. Agitation may be provided by any suitable source, for example, a vortex mixer, a stirrer (e.g., magnetic stirrer), etc.


Any suitable method for injecting the emulsion or the microemulsion (e.g., a diluted microemulsion) into a wellbore may be employed. For example, in some embodiments, the emulsion or the microemulsion, optionally diluted, may be injected into a subterranean formation by injecting it into a well or wellbore in the zone of interest of the formation and thereafter pressurizing it into the formation for the selected distance. Methods for achieving the placement of a selected quantity of a mixture in a subterranean formation are known in the art. The well may be treated with the emulsion or the microemulsion for a suitable period of time. The emulsion or the microemulsion and/or other fluids may be removed from the well using known techniques, including producing the well.


It should be understood, that in embodiments where an emulsion or a microemulsion is said to be injected into a wellbore, that the emulsion or the microemulsion may be diluted and/or combined with other liquid component(s) prior to and/or during injection (e.g., via straight tubing, via coiled tubing, etc.). For example, in some embodiments, the emulsion or the microemulsion is diluted with an aqueous carrier fluid (e.g., water, brine, sea water, fresh water, or a well-treatment fluid (e.g., an acid, a fracturing fluid comprising polymers, produced water, sand, slickwater, etc.)) prior to and/or during injection into the wellbore. In some embodiments, a composition for injecting into a wellbore is provided comprising an emulsion or a microemulsion as described herein and an aqueous carrier fluid, wherein the emulsion or the microemulsion is present in an amount between about 0.1 and about 50 gallons per thousand gallons (gpt) per dilution fluid, between about 0.1 and about 100 gpt, between about 0.5 and about 10 gpt, between about 0.5 and about 2 gpt, or between about 1 gpt and about 4 gpt.


II. Applications of the Emulsions and/or Microemulsions Relating to the Life Cycle of an Oil/Gas Well

The emulsions and microemulsions described herein may be used in various aspects of the life cycle of an oil and/or gas well, including, but not limited to, drilling, mud displacement, casing, cementing, perforating, stimulation, remediation, and enhanced oil recovery/improved oil recovery, etc. Inclusion of an emulsion or a microemulsion into the fluids typically employed in these processes, for example, fracturing fluids, drilling fluids, mud displacement fluids, casing fluids, cementing fluids, perforating fluid, stimulation fluids, kill fluids, etc., results in many advantages as compared to use of the fluid alone.


As will be known to those skilled in the art, generally the completion of the formation of wellbore includes stimulation and/or re-fracturing processes. The term “stimulation” generally refers to the treatment of geological formations to improve the recovery of liquid hydrocarbons (e.g., formation crude oil and/or formation gas). The porosity and permeability of the formation determine its ability to store hydrocarbons, and the facility with which the hydrocarbons can be extracted from the formation. Common stimulation techniques include well fracturing (e.g., fracturing, hydraulic fracturing), high rate water pack, and acidizing (e.g., fracture acidizing, matrix acidizing) operations.


Non-limiting examples of fracturing operations include hydraulic fracturing, which is commonly used to stimulate low permeability geological formations to improve the recovery of hydrocarbons. The process can involve suspending chemical agents in a stimulation fluid (e.g., fracturing fluid) and injecting the fluid down a wellbore. The fracturing fluid may be injected at high pressures and/or at high rates into a wellbore. However, the assortment of chemicals pumped down the well can cause damage to the surrounding formation by entering the reservoir material and blocking pores. For example, one or more of the following may occur: wettability reversal, emulsion blockage, aqueous-filtrate blockage, mutual precipitation of soluble salts in wellbore-fluid filtrate and formation water, deposition of paraffins or asphaltenes, condensate banking, bacterial plugging, and/or gas breakout. In addition, fluids may become trapped in the formation due to capillary end effects in and around the vicinity of the formation fractures. The addition of an emulsion or a microemulsion in the fracturing fluid may have many advantages as compared to the use of a fracturing fluid alone, including, for example, maximizing the transfer and/or recovery of injected fluids, increasing oil and/or gas recovery, and/or other benefits described herein.


Non-limiting examples of acidizing operations include the use of water-based fluids to remove drilling fluids and particles remaining in the wellbore to permit optimal flow feeding into the wellbore (e.g., matrix acidizing). Matrix acidizing generally refers to the formation of wormholes (e.g., pores or channels through which oil, gas, and/or other fluids can flow) through the use of a fluid (e.g., acidic stimulation fluid) comprising, for example, an acid, wherein the wormholes are continuous channels and holes formed in the reservoir of a controlled size and depth. The addition of an emulsion or a microemulsion to the stimulation fluid may have many advantages as compared to the use of a stimulation fluid alone.


Fracture acidizing generally refers to the use of an acid to extend fractures formed by the injection of treatment fluid at high-pressure (e.g., fracturing). The addition of an emulsion or a microemulsion to the stimulation fluid may have advantages as compared to the use of a stimulation fluid alone, including, for example, increasing the removal of fracturing fluid skin (e.g., fluid and solids from the reservoir which may block optimal flow of the wellbore) from the fractures allowing for more effective acid treatment.


As will be known to those skilled in the art, stimulation fluids (e.g., acidizing fluids, fracturing fluids, etc.) may be injected into the wellbore to assist in the removal of leftover drilling fluids or reservoir materials. Non-limiting examples of stimulation fluids (e.g., as an acidizing fluid) include water and hydrochloric acid (e.g., 15% HCl in water). In some embodiments, the acid is partially or completely consumed after reacting with carbonates in the reservoir. Further non-limiting examples of stimulation fluids include conventional fluids (e.g., gelling agents, gelling agents comprising crosslinking agents such as borate, zirconate, and/or titanate), water fracture fluids (e.g., friction reducers, gelling agents, viscoelastic surfactants), hybrid fluids (e.g., friction reducers, gelling agents, viscoelastic surfactants, and combinations thereof), energized fluids (e.g., foam generating energizers comprising nitrogen or carbon dioxide), acid fracture fluids (e.g., gelled acid base fluids), gas fracture fluids (e.g., propane), and matrix acidizing fluids (e.g., an acid).


In some embodiments, the stimulation fluid comprises a viscosifier (e.g., guar gum) and/or a bridging agent (e.g., calcium carbonate, size salt, oil-soluble resins, mica, ground cellulose, nutshells, and other fibers). In some embodiments, removal of leftover drilling fluids or reservoir fluids refers to the breakdown and removal of a near-wellbore skin (e.g., fluid and solids from the reservoir which may block optimal flow into the wellbore). Non-limiting examples of skin materials include paraffin, asphaltene, drilling mud components (e.g., barite, clays), non-mobile oil in place, and fines (e.g., which may block pores in the reservoir material). The addition of an emulsion or a microemulsion to the acidizing fluid may have many advantages as compared to the use of an acidizing fluid alone, including, for example, increasing the breakdown of the skin into smaller components to be more easily removed by flow from the wellbore, increasing oil and/or gas recovery, and/or other benefits described herein.


In addition to some of the benefits described above, in some embodiments, incorporation of an emulsion or a microemulsion into a stimulation fluid can aid in reducing fluid trapping, for example, by reducing capillary pressure and/or minimizing capillary end effects, as compared to the use of a stimulation fluid alone. Capillary pressure is defined by

Pc=2*γ*COS(θ)/r


Where γ is the interfacial tension, θ is the contact angle, and r is the radius of the capillary. The capillary pressure is the pressure across an interface in a capillary or pore. It may refer to a liquid/gas (or water/air) interface, or to a liquid/liquid (water/crude oil) interface. If the solid surface is water-wet (θ<90°), and the interfacial tension is moderate (for example, 5 mN/m), the capillary pressure will resist flow of the oil phase. Lowering the capillary pressure, by either modifying wettability to a value close to θ=90°, or decreasing the interfacial tension, reduces the resistance to flow and increases hydrocarbon production. Some of the wetting phase (which may be either water or oil) may be trapped in dead end pores or a narrow pore throat and is difficult to mobilize. This is called the capillary end effect.


Reducing capillary pressure and/or minimizing capillary end effects is beneficial, because it decreases resistance to flow of oil (sometimes called water blocks) and increases production of hydrocarbon. In addition, incorporation of an emulsion or a microemulsion into stimulation fluids can promote increased flow back of aqueous phases following well treatment, increasing production of liquid and/or gaseous hydrocarbons, and/or increasing the displacement of residual fluids (e.g., drilling fluids, etc.) by formation crude oil and/or formation gas. Other non-limiting advantages as compared to the use of a stimulation fluid alone, include increasing the amount of water extracted from the reservoir, increasing the amount or oil and/or gas extracted from the reservoir, more uniformly distributing the acid along the surface of the wellbore and/or reservoir, improving the formation of wormholes (e.g., by slowing down the reaction rate to create deeper and more extensive wormholes during fracture acidizing). In certain embodiments, the addition of an emulsion or a microemulsion increases the amount of hydrocarbons transferred from the reservoir to fluids injected into the reservoir during hydraulic fracturing.


In some embodiments, the stimulation fluid comprises an emulsion or a microemulsion as described herein wherein the emulsion or the microemulsion is present in an amount between about 0.5 gpt and about 200 gpt of stimulation fluid, or between about 0.5 gpt and about 100 gpt, between about 0.5 gpt and about 50 gpt, between about 1 gpt and about 50 gpt, between about 1 gpt and about 20 gpt, between about 2 gpt and about 20 gpt, between about 2 gpt and about 10 gpt, between about 2 gpt and about 5 gpt, or between about 5 gpt and about 10 gpt. In some embodiments, the emulsion or the microemulsion is present in an amount between about 2 gpt and about 5 gpt of stimulation fluid. In some embodiments, the stimulation fluid contains at least about 0.5 gpt, at least about 1 gpt, at least about 2 gpt, at least about 4 gpt, at least about 10 gpt, at least about 20 gpt, at least about 50 gpt, at least about 100 gpt, or at least about 200 gpt of an emulsion or a microemulsion. In some embodiments, the stimulation fluid contains less than or equal to about 200 gpt, less than or equal to about 100 gpt, less than or equal to about 50 gpt, less than or equal to about 20 gpt, less than or equal to about 10 gpt, less than or equal to about 4 gpt, less than or equal to about 2 gpt, less than or equal to about 1 gpt, or less than or equal to about 0.5 gpt of an emulsion or a microemulsion.


In some embodiments, refracturing, or the process of repeating the above stimulation processes, is further improved by the addition of an emulsion or a microemulsion to the stimulation fluid.


IV. Definitions

For convenience, certain terms employed in the specification, examples, and appended claims are listed here.


The terms “emulsion” and “microemulsion” should be understood to include emulsions or microemulsions that have a water continuous phase, or that have an oil continuous phase, or microemulsions that are bicontinuous or multiple continuous phases of water and oil.


As used herein, the term “emulsion” is given its ordinary meaning in the art and refers to dispersions of one immiscible liquid in another, in the form of droplets, with diameters approximately in the range of about 100 to about 10,000 nanometers (nm). Emulsions may be thermodynamically unstable and/or require high shear forces to induce their formation.


As used herein, the term “microemulsion” is given its ordinary meaning in the art and refers to dispersions of one immiscible liquid in another, in the form of droplets, with diameters approximately in the range of about between about 10 to about 300 nanometers. Microemulsions are clear or transparent because they contain domains smaller than the wavelength of visible light. In addition, microemulsions are homogeneous, thermodynamically stable, single phases, and form spontaneously, and thus, differ markedly from thermodynamically unstable emulsions, which generally depend upon intense mixing energy for their formation. Microemulsions may be characterized by a variety of advantageous properties including, by not limited to, (i) clarity, (ii) very small particle size, (iii) ultra-low interfacial tensions, (iv) the ability to combine properties of water and oil in a single homogeneous fluid, (v) shelf life stability, (vi) ease of preparation; (vii) compatibility; and (viii) solvency.


In some embodiments, the microemulsions described herein are stabilized microemulsions that are formed by the combination of a solvent-surfactant blend with an appropriate oil-based or water-based carrier fluid. Generally, the microemulsion forms upon simple mixing of the components without the need for high shearing generally required in the formation of emulsions. In some embodiments, the microemulsion is a thermodynamically stable system, and the droplets remain finely dispersed over time. In some cases, the average droplet size ranges from about 10 nm to about 300 nm.


As used herein, the term “co-solvent” refers to a glycol or an alcohol having 1 to 8 carbon atoms, that when incorporated in an emulsion or microemulsion composition, increases the temperature, salinity, and composition stability of the microemulsion to form the microemulsion.


As used herein, the term “co-surfactant” refers to a low-molecular-weight surfactant, e.g., a lower fatty alcohol, which acts in conjunction with a surfactant to form an emulsion or microemulsion.


Definitions of specific functional groups and chemical terms are described in more detail below. For purposes of this invention, the chemical elements are identified in accordance with the Periodic Table of the Elements, CAS version, Handbook of Chemistry and Physics, 75th Ed., inside cover, and specific functional groups are generally defined as described therein. Additionally, general principles of organic chemistry, as well as specific functional moieties and reactivity, are described in Organic Chemistry, Thomas Sorrell, University Science Books, Sausalito: 1999, the entire contents of which are incorporated herein by reference.


Certain compounds of the present invention may exist in particular geometric or stereoisomeric forms. The present invention contemplates all such compounds, including cis- and trans-isomers, R- and S-enantiomers, diastereomers, (D)-isomers, (L)-isomers, the racemic mixtures thereof, and other mixtures thereof, as falling within the scope of the invention. Additional asymmetric carbon atoms may be present in a substituent such as an alkyl group. All such isomers, as well as mixtures thereof, are intended to be included in this invention.


Isomeric mixtures containing any of a variety of isomer ratios may be utilized in accordance with the present invention. For example, where only two isomers are combined, mixtures containing 50:50, 60:40, 70:30, 80:20, 90:10, 95:5, 96:4, 97:3, 98:2, 99:1, or 100:0 isomer ratios are all contemplated by the present invention. Those of ordinary skill in the art will readily appreciate that analogous ratios are contemplated for more complex isomer mixtures.


The term “aliphatic,” as used herein, includes both saturated and unsaturated, nonaromatic, straight chain (i.e. unbranched), branched, acyclic, and cyclic (i.e. carbocyclic) hydrocarbons, which are optionally substituted with one or more functional groups. As will be appreciated by one of ordinary skill in the art, “aliphatic” is intended herein to include, but is not limited to, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, and cycloalkynyl moieties. Thus, as used herein, the term “alkyl” includes straight, branched and cyclic alkyl groups. An analogous convention applies to other generic terms such as “alkenyl”, “alkynyl”, and the like. Furthermore, as used herein, the terms “alkyl”, “alkenyl”, “alkynyl”, and the like encompass both substituted and unsubstituted groups. In certain embodiments, as used herein, “aliphatic” is used to indicate those aliphatic groups (cyclic, acyclic, substituted, unsubstituted, branched or unbranched) having 1-20 carbon atoms. Aliphatic group substituents include, but are not limited to, any of the substituents described herein, that result in the formation of a stable moiety (e.g., aliphatic, alkyl, alkenyl, alkynyl, heteroaliphatic, heterocyclic, aryl, heteroaryl, acyl, oxo, imino, thiooxo, cyano, isocyano, amino, azido, nitro, hydroxyl, thiol, halo, aliphaticamino, heteroaliphaticamino, alkylamino, heteroalkylamino, arylamino, heteroarylamino, alkylaryl, arylalkyl, aliphaticoxy, heteroaliphaticoxy, alkyloxy, heteroalkyloxy, aryloxy, heteroaryloxy, aliphaticthioxy, heteroaliphaticthioxy, alkylthioxy, heteroalkylthioxy, arylthioxy, heteroarylthioxy, acyloxy, and the like, each of which may or may not be further substituted).


The term “alkane” is given its ordinary meaning in the art and refers to a saturated hydrocarbon molecule. The term “branched alkane” refers to an alkane that includes one or more branches, while the term “unbranched alkane” refers to an alkane that is straight-chained. The term “cyclic alkane” refers to an alkane that includes one or more ring structures, and may be optionally branched. The term “acyclic alkane” refers to an alkane that does not include any ring structures, and may be optionally branched.


These and other aspects of the present invention will be further appreciated upon consideration of the following Examples, which are intended to illustrate certain particular embodiments of the invention but are not intended to limit its scope, as defined by the claims.


EXAMPLES
Example 1
Experimental Procedure

For the following Examples 2-5, the procedure for determining displacement of residual aqueous treatment fluid by a crude oil was as follows. Two 25 cm long, 2.5 cm diameter capped glass chromatography columns were packed with 40 grams of 100 mesh sand. The columns were left open on one end and a PTFE insert containing a recessed bottom, 3.2 mm diameter outlet, and a nipple was placed into the other end. Prior to placing the inserts into the columns, 3 cm diameter filter paper discs (Whatman, #40) were pressed firmly into the recessed bottom of the insert to prevent leakage of sand. Two inch long pieces of vinyl tubing were placed onto the nipples of the inserts and clamps were fixed in place on the tubing prior to packing. The sand was added to the columns in a stepwise fashion with the brine to be studied. The sand was packed using a hand-held vibrating column packer in between each stepwise addition until all of the material (40-45 grams) had been added. The amount of fluid used in the process was tracked and the pore volume of the sand pack was calculated for both columns. Five pore volumes of the treatment were passed through the first column, collected from the first column, then passed through the second column. After the last pore volume was passed through the first and second columns, the level of the aqueous phase was adjusted exactly to the top of sand bed and crude oil was added on top of the sand bed to a height of 5 cm oil column above the bed. Once the setup was assembled, the clamps were released from the tubing, and a timer was started. Throughout the experiment the level of crude oil was monitored and kept constant at the 5 cm height above the bed. Crude oil was added as necessary, to ensure a constant hydrostatic head in the columns. Portions of effluent coming from the columns were collected into plastic beakers over measured time intervals. The amount of fluid was monitored. The experiment was conducted for two hours after which time steady-state conditions were typically reached.


Example 2

This example describes an experiment for determining the displacement of residual aqueous treatment fluid by crude oil to test the performance of a microemulsion comprising APG surfactant [Microemulsion A], in which the microemulsion is diluted in different brines (2% KCl, 12% API brine, and 24% API brine and produced water from the Bakken formation (310,000 ppm TDS)). Microemulsion A used in this example was prepared using 51.4 wt % water; 16.8 wt % d-limonene as a solvent; 23.4 wt % APG surfactant; and 8.4 wt % butanol as an alcohol functioning as a co-solvent. The APG surfactant used in this example had a C8-16 alkyl chain and a degree of polymerization (DP) equal to 1.5.


Two gallons per thousand (gpt) dilutions were prepared in the different brines and tested. Table 1 shows the results of displacement of residual aqueous treatment fluid by crude oil using the experimental procedure outlined in Example 1. Microemulsion A performs very well at all salinities for both columns. Table 1 presents the percentages of residual aqueous fluid displaced from the column as measured after 120 minutes. The residual aqueous fluid was displaced by crude oil (30.9° API gravity; 3.2% asphaltenes; 4.32% paraffin) for Microemulsion A diluted at 2 gpt in 2% KCl (20,000 ppm TDS), 12% API brine (120,000 ppm TDS) and 24% API brine (240,000 ppm TDS).


As shown in Table 1, the results indicate that Microemulsion A exhibited a robust performance with regard to displacement of residual aqueous treatment fluid by crude oil over a surprisingly wide range of salinity conditions.













TABLE 1







Brine
1st column
2nd column









2% KCl
83%
77%



12% API brine
92%
92%



24% API brine
92.5%  
92.5%  










Example 3

Experiments to determine the displacement of residual aqueous treatment fluid by crude oil were conducted to test the performance of two microemulsions, one made with APG surfactant (C8-16 alkyl chain and DP equal to 1.5) [Microemulsion B] and the other one with an alkyl ethoxylate non-ionic surfactant (C12-15E7) [Microemulsion C]. All other components of Microemulsions B and C were the same. Microemulsion B used in this example was prepared using 36.0 wt % water; 8.16 wt % d-limonene and 8.16 wt % methyl ester as a solvent; 22.7 wt % APG surfactant; 6.7 wt % amyl alcohol functioning as a co-solvent; 13 wt % propylene glycol as a freezing point depression agent, and 5.25 wt % demulsifier. Microemulsion C was prepared using 36.0 wt % water; 8.16 wt % d-limonene, and 8.16 wt % methyl ester as a solvent; 22.7 wt % non-ionic surfactant (C12-15 E7) as a surfactant; 6.7 wt % amyl alcohol functioning as a co-solvent; and 13 wt % propylene glycol as a freezing point depression agent, and 5.25 wt % demulsifier. Two gpt dilutions of Microemulsions B and C were prepared in the Bakken C water (310,000 ppm TDS) and tested. The methyl ester used in this example was a C10 to a C16 aliphatic carboxylic acid ester with one degree of unsaturation in the aliphatic group. The demulsifier was polyoxyethylene (50) sorbitol hexaoleate.


Table 2 shows the results of displacement of residual aqueous treatment fluid by crude oil (32.4° API gravity; 3.4% asphaltenes; 4.63% paraffin) for Microemulsions B and C diluted at 2 gpt in Bakken C water. Microemulsion C shows a much lower performance in the second column compared to Microemulsion B, possibly due to the salting out of the C12-15 E7 surfactant, demonstrating the superiority of Microemulsion B comprising APG surfactant.













TABLE 2








Microemulsion B
Microemulsion C









Column 1
92.5%
92.5%



Column 2
96.8%
47.8%










Example 4

Experiments to determine the displacement of residual aqueous treatment fluid by crude oil were conducted to test the performance of a microemulsion comprising an APG surfactant (C8-16 alkyl chain and DP equal to 1.5) [Microemulsion A] compared to a standard, non-ionic terpene microemulsion without an APG surfactant [Microemulsion D], that embodies the prior art. Two gpt of Microemulsion A and Microemulsion D were diluted in Bakken C water.


Table 3 shows the results of displacement of residual aqueous treatment fluid by crude oil. As shown in Table 3, Microemulsion D loses all performance in the second column, demonstrating the unexpected benefit of using a microemulsion comprising an APG surfactant [Microemulsion A] for enhanced displacement of residual aqueous treatment fluid. Table 3 shows the results of displacement of residual aqueous treatment fluid by a crude oil (30.9° API gravity; 3.2% asphaltenes; 4.32% paraffin) for Microemulsion A and Microemulsion D diluted at 2 gpt in Bakken C water.













TABLE 3








Microemulsion A
Microemulsion D









Column 1
95.4%
 76%



Column 2
  93%
7.7%










Example 5

Experiments to determine the displacement of residual aqueous treatment fluid by crude oil were conducted to test the performance of two APG surfactant microemulsions formulated using different amounts of APG surfactant and d-limonene (Microemulsions F and G). Microemulsion F used in this example was prepared using 62.6 wt % water; 17.33 wt % d-limonene as a first solvent; 16.24 wt % APG surfactant; and 3.47 wt % isopropyl alcohol and 0.36 wt % octanol as a co-solvent.


Microemulsion G used in this example was prepared using 69.3 wt % water; 9.23 wt % d-limonene as a first solvent; 16.2 wt % APG surfactant; and 5.27 wt % isopropyl alcohol as a co-solvent.


Both Microemulsions F and G gave a displacement of residual aqueous treatment fluid of 90% using a medium crude oil (30.9° API gravity; 3.2% asphaltenes; 4.32% paraffin) and 15% API brine in the first column. The APG surfactant used in Microemulsions F and and G had a C10-16 alkyl chain and a DP equal to 1.4. This example shows that microemulsions comprising a different APG surfactant and amounts of terpene solvent from 9.23 wt % to 17.33 wt % surprisingly provide superior displacement of residual aqueous treatment fluid in 15% API brine compared with Microemulsions C and D, which do not contain APG surfactant.


Example 6

Different microemulsions comprising APG surfactant were diluted into aqueous brines and their turbidity was measured at room temperature one minute after the dilution using a turbidimeter. The turbidity is expressed in Nephelometric Turbidity Units (NTUs). Photographs were taken of solutions at various turbidities, and a scale was established that relates the clarity metrics “Clear”, “Slightly Hazy”, “Hazy”, and “Opaque” to certain ranges of NTUs. “Clear” corresponds to a turbidity from 0 NTU to 15 NTU. “Slightly Hazy” corresponds to a turbidity from 15 NTU to 100 NTU. “Hazy” corresponds to a turbidity from 100 NTU to 200 NTU. “Opaque” corresponds to a turbidity of 200 NTU or greater.


The turbidity of 2 gpt of Microemulsions B, C and H in different brines was measured. Microemulsion B was made with amyl alcohol and Microemulsion H was made with alpha-terpineol. The choice of the co-solvent is very important to obtain a water clear dilution. Microemulsion H used in this example was prepared using 36.0 wt % water; 8.16 wt % d-limonene and 8.16 wt % methyl ester as a solvent; 22.7 wt % APG surfactant; 6.7 wt % alpha-terpineol as an alcohol functioning as a co-solvent; 13.05 wt % propylene glycol as a freezing point depression agent; and 5.25 wt % demulsifier. The APG surfactant used in Microemulsion H had a C8-16 alkyl chain and a DP equal to 1.5.


Table 4 shows the turbidity measurements of 2 gpt dilutions of Microemulsions B, C, and H in different brines (2% KCl, 12% API brine, 24% API brine and Bakken C water). Microemulsion B which incorporates APG surfactant and amyl alcohol demonstrated robust performance throughout salinities ranging from about 20,000 ppm TDS to about 310,000 ppm TDS, maintaining a turbidity of less than 15 NTU for all salinities in this range.


Microemulsion H, which incorporated alpha-terpinol rather than amyl alcohol as the co-solvent, had a turbidity in the slightly hazy range demonstrating instability of the microemulsion at different salinities, and showing a less robust performance than Microemulsion B. The difference in performance between Microemulsion B and Microemulsion H demonstrates the criticality of using certain alcohols as co-solvents as compared to other alcohols. Butanol also shows strong performance as a co-solvent as demonstrated through Microemulsion A referenced in Examples 2 and 4. Microemulsion C which did not include APG surfactant, also showed poor dilution in brines compared to Microemulsion B, demonstrating the criticality of using APG surfactant.













TABLE 4







12%
24%
Bakken



2% KC1
API brine
API brine
C water







Microemulsion B
 5.33 NTU
 2.50 NTU
10.40 NTU
 1.72 NTU


Microemulsion C
  175 NTU
  158 NTU
 98.7 NTU
  171 NTU


Microemulsion H
30.40 NTU
36.80 NTU
59.80 NTU
97.70 NTU









Example 7

The turbidity of Microemulsions I and Microemulsion J were measured through a procedure like that described in Example 6. Microemulsion I and Microemulsion J differed only in the alcohol used. Amyl alcohol was used for Microemulsion I and octanol was used for Microemulsion J.


Microemulsion I used in this example was prepared using 35.35 wt % water; 8.085 wt % d-limonene and 8.085 wt % methyl ester as a solvent; 22.26 wt % APG surfactant (C8-16 alkyl chain and DP equal to 1.5); 8.18 wt % amyl alcohol as an alcohol functioning as a co-solvent; 12.86 wt % propylene glycol as a freezing point depression agent; and 5.18 wt % demulsifier. The demulsifier was polyoxyethylene (50) sorbitol hexaoleate.


Microemulsion J used in this example was prepared using 35.35 wt % water; 8.085 wt % d-limonene and 8.085 wt % methyl ester as solvent; 22.26 wt % APG surfactant (C8-16 alkyl chain and DP equal to 1.5); 8.18 wt % octanol as an alcohol functioning as a co-solvent; 12.86 wt % propylene glycol as a freezing point depression agent; and 5.18 wt % demulsifier. The demulsifier was polyoxyethylene (50) sorbitol hexaoleate.


Table 5 shows the turbidity measurements of 2 gpt dilutions of Microemulsions I and J in different brines (2% KCl, 12% API brine, 24% API brine and Bakken C water). Microemulsion I, which incorporates APG surfactant and amyl alcohol, demonstrated robust dilution throughout salinities ranging from about 20,000 ppm TDS to about 310,000 ppm TDS, maintaining a turbidity of less than 15 NTU at all salinities in this range. Meanwhile, Microemulsion J, which incorporated octanol rather than amyl alcohol as the co-solvent, exhibited turbidity in the opaque range demonstrating the instability of Microemulsion J at different salinities, and showing a less robust dilution than Microemulsion I. The difference in dilution between Microemulsion I and Microemulsion J demonstrates the criticality of using certain alcohols as co-solvents as compared to other alcohols. Microemulsions using butanol also show desirable dilution as a co-solvent as demonstrated by Microemulsion A, referenced in Examples 2 and 4.













TABLE 5







12%
24%
Bakken



2% KCl
API brine
API brine
C water







Microemulsion I
4.61 NTU
2.62 NTU
11.80 NTU
 1.81 NTU


Microemulsion J
29.8 NTU
<200 NTU 
 <200 NTU
<200 NTU









Example 8

The turbidity of 2 gpt of Microemulsions K and L were measured through a procedure similar to that described in Example 6.


Microemulsion K used in this example was prepared using 36.0 wt % water; 16.32 wt % methyl ester as solvent; 22.7 wt % APG surfactant (C8-16 alkyl chain and DP equal to 1.5); 6.7 wt % amyl alcohol functioning as a co-solvent; 13 wt. % propylene glycol as a freezing point depression agent and 5.25 wt % demulsifier. The demulsifier was polyoxyethylene (50) sorbitol hexaoleate.


Microemulsion L used in this example was prepared using 36.0 wt % water; 16.32 wt % butyl 3-hydroxybutanoate as solvent; 22.7 wt % APG surfactant (C8-16 alkyl chain and DP equal to 1.5); 6.7 wt % amyl alcohol functioning as a co-solvent; 13 wt. % propylene glycol as a freezing point depression agent and 5.25 wt % demulsifier. The demulsifier was polyoxyethylene (50) sorbitol hexaoleate.


Table 6 shows the turbidity measurements of 2 gpt dilutions of Microemulsions K and L in different brines (2% KCl, 12% API brine, 24% API brine and Bakken C water). The turbidity results show that Microemlulsions K and L dilute clear in an unexpectedly wide range of salinities. This example also shows that solvents such as butyl 3-hydroxybutanoate and demulsifiers such as polyoxyethylene (50) sorbitol hexaoleate may be used in combination with the APG surfactant microemulsions of the present invention.













TABLE 6







12%
24%
Bakken



2% KCl
API brine
API brine
C water







Microemulsion K
3.50 NTU
 1.94 NTU
 2.44 NTU
 2.83 NTU


Microemulsion L
4.98 NTU
0.593 NTU
0.734 NTU
0.948 NTU









Example 9

Two samples of Microemulsion A, (Microemulsion A formulation is described in Example 2 above, and incorporated herein by reference) were prepared at 2 gpt in 24% API brine. One sample was kept at 75° F. and the other one was placed for few hours in an oven at 200° F. Each of the samples remained clear (had a turbidity of 15 NTU or less) and did not exhibit phase separation showing the higher tolerance of Microemulsion A comprising APG surfactant within this range of temperatures.


Example 10

Experiments were performed to determine the critical point: the maximum amount of solvent that can be included in the microemulsion while maintaining a clear dilution in brine. Where solvent is present in an amount greater than the critical point, dilution into aqueous brine ceases to be clear. The examples were conducted using 2% KCl as the aqueous brine.


The critical point was determined for microemulsions containing relatively low amounts of APG surfactant and amyl alcohol. Microemulsion M was prepared using 11.605 wt % APG surfactant (C8-16 alkyl chain and DP equal to 1.5), 3.94 wt % amyl alcohol, 5.5 wt % demulsifier, 14.10 wt % propylene glycol, the balance being aqueous phase and solvent. The critical point for a 50:50 blend of d-limonene:methyl ester solvent was determined to be 11.33 wt %. Greater amounts of the solvent blend gave dilutions in 2% KCl that were slightly hazy or worse.


The critical point was determined for a microemulsion formulation in which higher amounts of APG surfactant and amyl alcohol were present. Microemulsion N was prepared using 22.27 wt % APG surfactant, 8.2 wt % amyl alcohol, 5.37 wt % demulsifier, 12.78 wt % propylene glycol, the balance being aqueous phase and solvent. The critical point for a 50:50 blend of d-limonene:methyl ester solvent was determined to be 20.34 wt %. Greater amounts of the solvent blend gave dilutions in 2% KCl that were slightly hazy or worse.


The methyl ester used in Example 10 was a C10 to a C16 aliphatic carboxylic acid ester with one degree of unsaturation in the aliphatic group and the demulsifier was polyoxyethylene (50) sorbitol hexaoleate.


While several embodiments of the present invention have been described and illustrated herein, those of ordinary skill in the art will readily envision a variety of other means and/or structures for performing the functions and/or obtaining the results and/or one or more of the advantages described herein, and each of such variations and/or modifications is deemed to be within the scope of the present invention. More generally, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be exemplary and that the actual parameters, dimensions, materials, and/or configurations will depend upon the specific application or applications for which the teachings of the present invention is/are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, the invention may be practiced otherwise than as specifically described and claimed. The present invention is directed to each individual feature, system, article, material, kit, and/or method described herein. In addition, any combination of two or more such features, systems, articles, materials, kits, and/or methods, if such features, systems, articles, materials, kits, and/or methods are not mutually inconsistent, is included within the scope of the present invention.


The indefinite articles “a” and “an,” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.”


The phrase “and/or,” as used herein in the specification and in the claims, should be understood to mean “either or both” of the elements so conjoined, i.e. elements that are conjunctively present in some cases and disjunctively present in other cases. Other elements may optionally be present other than the elements specifically identified by the “and/or” clause, whether related or unrelated to those elements specifically identified unless clearly indicated to the contrary. Thus, as a non-limiting example, a reference to “A and/or B,” when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A without B (optionally including elements other than B); in another embodiment, to B without A (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.


As used herein in the specification and in the claims, “or” should be understood to have the same meaning as “and/or” as defined above. For example, when separating items in a list, “or” or “and/or” shall be interpreted as being inclusive, i.e. the inclusion of at least one, but also including more than one, of a number or list of elements, and, optionally, additional unlisted items. Only terms clearly indicated to the contrary, such as “only one of” or “exactly one of,” or, when used in the claims, “consisting of,” will refer to the inclusion of exactly one element or a list of elements. In general, the term “or” as used herein shall only be interpreted as indicating exclusive alternatives (i.e. “one or the other but not both”) when preceded by terms of exclusivity, such as “either,” “one of,” “only one of,” or “exactly one of.” “Consisting essentially of,” when used in the claims, shall have its ordinary meaning as used in the field of patent law.


As used herein in the specification and in the claims, the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, “at least one of A and B” (or, equivalently, “at least one of A or B,” or, equivalently “at least one of A and/or B”) can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc.


In the claims, as well as in the specification above, all transitional phrases such as “comprising,” “including,” “carrying,” “having,” “containing,” “involving,” “holding,” and the like are to be understood to be open-ended, i.e. to mean including but not limited to. Only the transitional phrases “consisting of” and “consisting essentially of” shall be closed or semi-closed transitional phrases, respectively, as set forth in the United States Patent Office Manual of Patent Examining Procedures, Section 2111.03.

Claims
  • 1. A composition for use in an oil and/or gas well having a wellbore, comprising a microemulsion, wherein the microemulsion comprises: an aqueous phase;a surfactant comprising alkyl polyglycoside;a solvent comprising a terpene and a linear oleaginous hydrocarbon solvent; andan alcohol having from 1 to 8 carbon atoms, wherein the alcohol comprises butyl 3-hydroxybutanoate.
  • 2. The composition of claim 1, wherein the alcohol further comprises butanol, pentanol, amyl alcohol, or combinations thereof.
  • 3. The composition of claim 1, wherein the alcohol further comprises amyl alcohol.
  • 4. The composition of claim 1, wherein the terpene comprises dipentene or d-limonene.
  • 5. The composition of claim 1, wherein the terpene comprises dipentene and d-limonene.
  • 6. The composition of claim 1, wherein the terpene comprises dipentene.
  • 7. The composition of claim 1, wherein the terpene comprises d-limonene.
  • 8. The composition of claim 1, wherein the alcohol is present in an amount between about 2 wt % and about 15 wt % versus the microemulsion.
  • 9. The composition of claim 8, wherein the terpene comprises dipentene and d-limonene.
  • 10. The composition of claim 1, wherein the microemulsion further comprises an additional alcohol having 1 to 8 carbon atoms.
  • 11. The composition of claim 1, wherein the solvent further comprises a terpene alcohol.
  • 12. The composition of claim 11, wherein the terpene alcohol comprises alpha-terpineol.
  • 13. The composition of claim 1, wherein the microemulsion further comprises a glycol.
  • 14. The composition of claim 1, wherein the solvent further comprises linalool, geraniol, nopol, alpha-terpineol, menthol, eucalyptol, or combinations thereof.
  • 15. The composition of claim 1, wherein the solvent further comprises an alcohol, an aldehyde, an ether, or a ketone group.
RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/454,511, filed Jun. 27, 2019, which is a continuation of U.S. patent application Ser. No. 15/457,792 (now U.S. Pat. No. 10,421,707), filed Mar. 13, 2017, which is a continuation-in-part of U.S. patent application Ser. No. 14/212,763 (now U.S. Pat. No. 9,884,988), filed Mar. 14, 2014, which claims priority to U.S. Provisional Application No. 61/946,176, filed Feb. 28, 2014, and is also a continuation-in-part of U.S. patent application Ser. No. 13/829,495 (now U.S. Pat. No. 9,428,683), filed Mar. 14, 2013, a continuation-in-part of U.S. patent application Ser. No. 13/829,434 (now U.S. Pat. No. 9,068,108), filed Mar. 14, 2013; a continuation-in-part of U.S. patent application Ser. No. 13/918,155 (now U.S. Pat. No. 9,321,955), filed Jun. 14, 2013; and a continuation-in-part of U.S. patent application Ser. No. 13/918,166 (now abandoned) filed Jun. 14, 2013, each of these U.S. patents and the U.S. published application are incorporated herein by reference in their entirety for all purposes.

US Referenced Citations (318)
Number Name Date Kind
3060210 De Groote et al. Apr 1961 A
3047062 Meadors Jul 1962 A
3347789 Dickson et al. Oct 1967 A
3368624 Heuer et al. Feb 1968 A
3483923 Darley Dec 1969 A
3710865 Kiel Jan 1973 A
3756319 Holm et al. Sep 1973 A
3760881 Kiel Sep 1973 A
3850248 Carney Nov 1974 A
3919411 Glass et al. Nov 1975 A
4005020 McCormick Jan 1977 A
4101425 Young Jul 1978 A
4206809 Jones Jun 1980 A
4233165 Salathiel et al. Nov 1980 A
4276935 Hessert et al. Jul 1981 A
4360061 Canter et al. Nov 1982 A
4414128 Goffinet Nov 1983 A
4472291 Rosano Sep 1984 A
4511488 Matta Apr 1985 A
4614236 Watkins Sep 1986 A
4650000 Andreasson et al. Mar 1987 A
4844756 Forsberg Jul 1989 A
5008026 Gardner et al. Apr 1991 A
5034140 Gardner et al. Jul 1991 A
5076954 Loth Dec 1991 A
5083613 Gregoli et al. Jan 1992 A
5095989 Prukop Mar 1992 A
5217531 Cheung Jun 1993 A
5247995 Tjon-Joe-Pin et al. Sep 1993 A
5310002 Blauch et al. May 1994 A
5356482 Mehta et al. Oct 1994 A
5567675 Romocki Oct 1996 A
5587354 Duncan, Jr. Dec 1996 A
5587357 Rhinesmith Dec 1996 A
5604195 Misselyn et al. Feb 1997 A
5652200 Davies et al. Jul 1997 A
5665689 Durbut Sep 1997 A
5676763 Salisbury et al. Oct 1997 A
5697458 Carney Dec 1997 A
5707940 Bush et al. Jan 1998 A
5762138 Ford et al. Jun 1998 A
5784386 Norris Jul 1998 A
5811383 Klier et al. Sep 1998 A
5830831 Chan et al. Nov 1998 A
5874386 Chan et al. Feb 1999 A
5925233 Miller et al. Jul 1999 A
5975206 Woo et al. Nov 1999 A
5977032 Chan Nov 1999 A
5990072 Gross et al. Nov 1999 A
5996692 Chan et al. Dec 1999 A
6046140 Woo et al. Apr 2000 A
6090754 Chan et al. Jul 2000 A
6110885 Chan Aug 2000 A
6112814 Chan et al. Sep 2000 A
6165946 Mueller et al. Dec 2000 A
6173776 Furman et al. Jan 2001 B1
6191090 Mondin et al. Feb 2001 B1
6228830 Vlasblom May 2001 B1
6260621 Furman et al. Jul 2001 B1
6302209 Thompson, Sr. et al. Oct 2001 B1
6364020 Crawshaw et al. Apr 2002 B1
6486115 Weaver et al. Nov 2002 B1
6581687 Collins et al. Jun 2003 B2
6593279 Von Krosigk et al. Jul 2003 B2
6613720 Feraud et al. Sep 2003 B1
6729402 Chang et al. May 2004 B2
6770603 Sawdon et al. Aug 2004 B1
6793025 Patel et al. Sep 2004 B2
6800593 Dobson, Jr. et al. Oct 2004 B2
6818595 Benton et al. Nov 2004 B2
6911417 Chan et al. Jun 2005 B2
6914040 Deak et al. Jul 2005 B2
6939832 Collins Sep 2005 B2
6984610 VonKrosigk et al. Jan 2006 B2
7021378 Prukop Apr 2006 B2
7134496 Jones et al. Nov 2006 B2
7205262 Schwartz et al. Apr 2007 B2
7205264 Boles Apr 2007 B2
7231976 Berry et al. Jun 2007 B2
7380606 Pursley et al. Jun 2008 B2
7392844 Berry et al. Jul 2008 B2
7407915 Jones et al. Aug 2008 B2
7468402 Yang et al. Dec 2008 B2
7481273 Javora et al. Jan 2009 B2
7514390 Chan Apr 2009 B2
7514391 Chan Apr 2009 B2
7533723 Hughes et al. May 2009 B2
7543644 Huang et al. Jun 2009 B2
7543646 Huang et al. Jun 2009 B2
7544639 Pursley et al. Jun 2009 B2
7547665 Welton et al. Jun 2009 B2
7552771 Eoff et al. Jun 2009 B2
7559369 Roddy et al. Jul 2009 B2
7581594 Tang Sep 2009 B2
7615516 Yang et al. Nov 2009 B2
7621334 Welton et al. Nov 2009 B2
7622436 Tuzi et al. Nov 2009 B2
7655603 Crews Feb 2010 B2
7677311 Abad et al. Mar 2010 B2
7687439 Jones et al. Mar 2010 B2
7709421 Jones et al. May 2010 B2
7712534 Bryant et al. May 2010 B2
7727936 Pauls et al. Jun 2010 B2
7727937 Pauls et al. Jun 2010 B2
7730958 Smith Jun 2010 B2
7825073 Welton et al. Nov 2010 B2
7833943 Van Zanten et al. Nov 2010 B2
7838467 Jones et al. Nov 2010 B2
7846877 Robb Dec 2010 B1
7851414 Yang et al. Dec 2010 B2
7855168 Fuller et al. Dec 2010 B2
7857051 Abad et al. Dec 2010 B2
7886824 Kakadjian et al. Feb 2011 B2
7893010 Ali et al. Feb 2011 B2
7902123 Harrison et al. Mar 2011 B2
7906464 Davidson Mar 2011 B2
7910524 Welton et al. Mar 2011 B2
7931088 Stegemoeller et al. Apr 2011 B2
7960314 Van Zanten et al. Jun 2011 B2
7960315 Welton et al. Jun 2011 B2
7963720 Hoag et al. Jun 2011 B2
7971659 Gatlin et al. Jul 2011 B2
7976241 Hoag et al. Jul 2011 B2
7989404 Kakadjian et al. Aug 2011 B2
7992656 Dusterhoft et al. Aug 2011 B2
7998911 Berger et al. Aug 2011 B1
8043996 Harris Oct 2011 B2
8053396 Huff et al. Nov 2011 B2
8053397 Huang et al. Nov 2011 B2
8057682 Hoag et al. Nov 2011 B2
8091644 Clark et al. Jan 2012 B2
8091645 Quintero et al. Jan 2012 B2
8091646 Quintero et al. Jan 2012 B2
8100190 Weaver et al. Jan 2012 B2
8148303 Van Zanten et al. Apr 2012 B2
8183182 Oliveira et al. May 2012 B2
8206062 Hoag et al. Jun 2012 B2
8207096 van Zanten et al. Jun 2012 B2
8210263 Quintero et al. Jul 2012 B2
8220546 Kakadjian et al. Jul 2012 B2
8227382 Dakin et al. Jul 2012 B2
8231947 Vaidya et al. Jul 2012 B2
8235120 Quintero et al. Aug 2012 B2
8242059 Sawdon Aug 2012 B2
8293687 Giffin Oct 2012 B2
8342241 Hartshorne et al. Jan 2013 B2
8349771 Seth et al. Jan 2013 B2
8356667 Quintero et al. Jan 2013 B2
8357639 Quintero et al. Jan 2013 B2
8372789 Harris et al. Feb 2013 B2
8383560 Pich et al. Feb 2013 B2
8403051 Huang et al. Mar 2013 B2
8404623 Robb et al. Mar 2013 B2
8413721 Welton et al. Apr 2013 B2
8415279 Quintero et al. Apr 2013 B2
8431620 Del Gaudio et al. Apr 2013 B2
8453741 van Zanten Jun 2013 B2
8492445 Renault et al. Jul 2013 B2
8499832 Crews et al. Aug 2013 B2
8517100 Ali et al. Aug 2013 B2
8517104 Kieffer Aug 2013 B2
8524643 Huff et al. Sep 2013 B2
8551926 Huang et al. Oct 2013 B2
8592350 van Zanten et al. Nov 2013 B2
8684079 Wattenbarger et al. Apr 2014 B2
8778850 Andrecola Jul 2014 B2
8865632 Parnell et al. Oct 2014 B1
9238786 Ojima et al. Jan 2016 B2
9850418 Champagne et al. Dec 2017 B2
9868893 Saboowala et al. Jan 2018 B2
9884988 Dismuke et al. Feb 2018 B2
10000693 Hill et al. Jun 2018 B2
10005948 Champagne et al. Jun 2018 B2
10081760 Ngantung et al. Sep 2018 B2
10144862 Zelenev et al. Dec 2018 B2
10196557 Hill et al. Feb 2019 B2
10280360 Champagne et al. May 2019 B2
10287483 Saboowala et al. May 2019 B2
10294757 Fursdon-Welsh et al. May 2019 B2
10294764 Champagne et al. May 2019 B2
10308859 Champagne et al. Jun 2019 B2
10421707 Trabelsi et al. Sep 2019 B2
10544355 Hill et al. Jan 2020 B2
10577531 Pursley et al. Mar 2020 B2
10590332 Penny et al. Mar 2020 B2
10696887 Dismuke et al. Jun 2020 B2
10703960 Hill et al. Jul 2020 B2
10717919 Germack et al. Jul 2020 B2
10731071 Saboowala et al. Aug 2020 B2
10738235 Hill et al. Aug 2020 B2
10934472 Smith, Jr. Mar 2021 B2
10941106 Trabelsi et al. Mar 2021 B2
20010007663 Von Corswant Jul 2001 A1
20030022944 Gumkowski et al. Jan 2003 A1
20030069143 Collins Apr 2003 A1
20030162689 Schymitzek et al. Aug 2003 A1
20030166472 Pursley et al. Sep 2003 A1
20030232095 Garti et al. Dec 2003 A1
20050209107 Pursley et al. Sep 2005 A1
20060014648 Milson et al. Jan 2006 A1
20060096757 Berry et al. May 2006 A1
20060204468 Allef et al. Sep 2006 A1
20060211593 Smith et al. Sep 2006 A1
20060258541 Crews Nov 2006 A1
20070123445 Tuzi et al. May 2007 A1
20070128232 Rahse Jun 2007 A1
20070135310 Qu et al. Jun 2007 A1
20070293404 Hutchins et al. Dec 2007 A1
20070295368 Harrison et al. Dec 2007 A1
20080274918 Quintero et al. Nov 2008 A1
20080287324 Pursley et al. Nov 2008 A1
20090078415 Fan et al. Mar 2009 A1
20090137432 Sullivan et al. May 2009 A1
20090159288 Horvath Szabo et al. Jun 2009 A1
20090221456 Harrison et al. Sep 2009 A1
20090260819 Kurian et al. Oct 2009 A1
20090275488 Zamora et al. Nov 2009 A1
20090281004 Ali et al. Nov 2009 A1
20100006286 Oliveira et al. Jan 2010 A1
20100022421 Gutierrez et al. Jan 2010 A1
20100152069 Harris Jun 2010 A1
20100173805 Pomerleau Jul 2010 A1
20100216670 Del Gaudio et al. Aug 2010 A1
20100243248 Golomb et al. Sep 2010 A1
20100252267 Harris et al. Oct 2010 A1
20100263863 Quintero et al. Oct 2010 A1
20100272765 Ho et al. Oct 2010 A1
20100307757 Blow et al. Dec 2010 A1
20100314118 Quintero et al. Dec 2010 A1
20110021386 Ali et al. Jan 2011 A1
20110105369 Reddy May 2011 A1
20110136706 Carroll et al. Jun 2011 A1
20110146983 Sawdon Jun 2011 A1
20110190174 Weerasooriya et al. Aug 2011 A1
20110220353 Bittner et al. Sep 2011 A1
20110237467 Cornette et al. Sep 2011 A1
20110253365 Crews et al. Oct 2011 A1
20110290491 Gupta et al. Dec 2011 A1
20120004146 Van Zanten et al. Jan 2012 A1
20120015852 Quintero et al. Jan 2012 A1
20120035085 Parnell et al. Feb 2012 A1
20120071366 Falana et al. Mar 2012 A1
20120080232 Muller et al. Apr 2012 A1
20120129738 Gupta et al. May 2012 A1
20120149626 Fluck et al. Jun 2012 A1
20120168165 Holcomb et al. Jul 2012 A1
20120181019 Saini et al. Jul 2012 A1
20120193095 Varadaraj et al. Aug 2012 A1
20120208726 Smith et al. Aug 2012 A1
20120234548 Dyer Sep 2012 A1
20120241155 Ali et al. Sep 2012 A1
20120241220 Quintero et al. Sep 2012 A1
20120255887 Holms et al. Oct 2012 A1
20120261120 Del Gaudio et al. Oct 2012 A1
20120285690 Weaver et al. Nov 2012 A1
20120285694 Morvan et al. Nov 2012 A1
20120318504 Fan et al. Dec 2012 A1
20120318515 Cawiezel et al. Dec 2012 A1
20120322697 Zhang Dec 2012 A1
20120325492 Fefer et al. Dec 2012 A1
20130029883 Dismuke et al. Jan 2013 A1
20130048281 Van Zanten et al. Feb 2013 A1
20130079255 Del Gaudio et al. Mar 2013 A1
20130109597 Sarkar et al. May 2013 A1
20130133886 Quintero May 2013 A1
20130137611 Pierce et al. May 2013 A1
20130146288 Smith et al. Jun 2013 A1
20130146545 Pabalan et al. Jun 2013 A1
20130153232 Bobier et al. Jun 2013 A1
20130153234 Bobier et al. Jun 2013 A1
20130192826 Kurian et al. Aug 2013 A1
20130233559 van Zanten et al. Sep 2013 A1
20130244913 Maberry et al. Sep 2013 A1
20130261033 Nguyen Oct 2013 A1
20130292121 Penny et al. Nov 2013 A1
20140005079 Dahanayake et al. Jan 2014 A1
20140110344 Hoag et al. Apr 2014 A1
20140202700 Blair Jul 2014 A1
20140262261 Hill et al. Sep 2014 A1
20140262274 Dismuke et al. Sep 2014 A1
20140262288 Penny et al. Sep 2014 A1
20140274817 Hill et al. Sep 2014 A1
20140274822 Dismuke et al. Sep 2014 A1
20140284053 Germack et al. Sep 2014 A1
20140284057 Champagne et al. Sep 2014 A1
20140299325 Zelenev et al. Oct 2014 A1
20140332212 Ayers et al. Nov 2014 A1
20140367107 Hill et al. Dec 2014 A1
20140371115 Hill et al. Dec 2014 A1
20150053404 Penny et al. Feb 2015 A1
20150068755 Hill et al. Mar 2015 A1
20150184061 Saboowala et al. Jul 2015 A1
20150197683 Hategan et al. Jul 2015 A1
20160096989 Ngantung et al. Apr 2016 A1
20170096594 Champagne et al. Apr 2017 A1
20170275518 Trabelsi et al. Sep 2017 A1
20170335179 Ngantung et al. Nov 2017 A1
20180134941 Saboowala et al. May 2018 A1
20180171213 Hill et al. Jun 2018 A1
20190031948 Hill et al. Jan 2019 A1
20190055457 Smith, Jr. et al. Feb 2019 A1
20190055458 Smith, Jr. et al. Feb 2019 A1
20190055459 Zelenev et al. Feb 2019 A1
20190085236 Saboowala et al. Mar 2019 A1
20190090476 Smith, Jr. et al. Mar 2019 A1
20190100689 Zelenev et al. Apr 2019 A1
20190169488 Hill et al. Jun 2019 A1
20190169492 Hill et al. Jun 2019 A1
20190241796 Mast et al. Aug 2019 A1
20190264094 Hill et al. Aug 2019 A1
20190284467 Forbes et al. Sep 2019 A1
20190315674 Trabelsi et al. Oct 2019 A1
20190316021 Champagne et al. Oct 2019 A1
20200157412 Hill et al. May 2020 A1
20200216749 Penny et al. Jul 2020 A1
20200332177 Hill et al. Oct 2020 A1
20200369950 Hill et al. Nov 2020 A1
20210108132 Trabelsi Apr 2021 A1
Foreign Referenced Citations (16)
Number Date Country
102127414 Jul 2011 CN
102277143 Dec 2011 CN
103614128 Mar 2014 CN
103642477 Mar 2014 CN
1 051 237 Nov 2003 EP
1 378 554 Jan 2004 EP
1 786 879 Feb 2012 EP
2 195 400 Aug 2012 EP
1 880 081 Mar 2013 EP
WO 99049182 Sep 1999 WO
WO 03000834 Jan 2003 WO
WO 2005048706 Jun 2005 WO
WO 2007011475 Jan 2007 WO
WO 2012158645 Nov 2012 WO
WO 2017099709 Jun 2017 WO
WO 2018111229 Jun 2018 WO
Non-Patent Literature Citations (18)
Entry
U.S. Appl. No. 16/430,138, filed Jun. 3, 2019, Champagne et al.
U.S. Appl. No. 16/916,199, filed Jun. 30, 2020, Hill et al.
PCT/US2014/029079, Jul. 31, 2014, International Search Report and Written Opinion.
PCT/US2018/021983, May 23, 2018, International Search Report and Written Opinion.
International Search Report and Written Opinion dated Jul. 31, 2014 for Application No. PCT/US2014/029079.
International Search Report and Written Opinion for PCT/US2018/021983 dated May 23, 2018.
[No Author Listed], The HLB system: a time-saving guide to emulsifier selection. ICI Americas Inc. 1976. 22 pages.
ADM, Evolution Chemicals E5789-117 Description. Jun. 2014. 1 page.
Brost et al., Surfactants assist water-in-oil monitoring by fluroescence. World Oil. Oct. 2008;229(10):12 pages.
Champagne et al., Critical assessment of microemulsion technology for enhancing fluid recovery from tight gas formations and propped fractures. SPE European Formation Damage Conference. Noordwijk, The Netherlands. Jun. 7-10, 2011. SPE-144095. 10 pages.
Crafton et al., Micro-emulsion effectiveness for twenty four wells, Eastern Green River, Wyoming. 2009 SPE Rocky Mountain Petroleum Technology Conference. Denver, Colorado, USA, Apr. 14-16, 2009. SPE-123280. 13 pages.
HAW, The HLB system: a time saving guide to surfactant selection. Presentation to the Midwest chapter of the society of cosmetic chemists. Uniqema. Mar. 9, 2004. 39 slides.
Howard et al., Comparison of flowback aids: understanding their capillary pressure and wetting properties. SPE Production & Operations. Aug. 2010:376-87.
Kunieda et al. Evaluation of hydrophile-lipophile balance (HLB) of nonionic surfactants. J Colloid and Interface Sci. Sep. 1985;107(1):107-21.
Yang et al., Optimizing nanoemulsions as fluid flowback additives in enhancing tight gas production. J Petroleum Sci Eng. 2014;121:122-5.
Zelenev et al., Microemulsion technology for improved fluid recovery and enhanced core permeability to gas. 2009 SPE European Formation Damage Conference. Scheveningen, The Netherlands. May 27-29, 2009. SPE 122109. 13 pages.
Zelenev et al., Microemulsion-assisted fluid recovery and improved permeability to gas in shale formations. 2010 SPE International Symposium and Exhibition on Formation Damage Control. Lafayette, Louisiana, USA. Feb. 10-12, 2010. SPE 127922. 7 pages.
Zelenev, Surface energy of north American shales and its role in interaction of shale with surfactants and microemulsions. SPE International Symposium on Oilfield Chemistry. The Woodlands, Texas, USA. Apr. 11-13, 2011. SPE-141459. 7 pages.
Related Publications (1)
Number Date Country
20210198177 A1 Jul 2021 US
Provisional Applications (1)
Number Date Country
61946176 Feb 2014 US
Continuations (2)
Number Date Country
Parent 16454511 Jun 2019 US
Child 17194952 US
Parent 15457792 Mar 2017 US
Child 16454511 US
Continuation in Parts (5)
Number Date Country
Parent 14212763 Mar 2014 US
Child 15457792 US
Parent 13918155 Jun 2013 US
Child 14212763 US
Parent 13918166 Jun 2013 US
Child 13918155 US
Parent 13829495 Mar 2013 US
Child 13918166 US
Parent 13829434 Mar 2013 US
Child 13829495 US