Cancer, an uncontrolled proliferation of cells, is a multifactorial disease characterized by tumor formation, growth, and in some instances, metastasis. Cells carrying an activated oncogene, damaged genome, or other cancer-promoting alterations can be prevented from replicating through an elaborate tumor suppression network. A central component of this tumor suppression network is p53, one of the most potent tumor suppressors in the cell. Both the wild type and mutant conformations of p53 are implicated in the progression of cancer.
All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.
In some embodiments, described herein is a compound of formula:
In some embodiments, described herein is as pharmaceutical composition comprising a compound of the disclosure and a pharmaceutically-acceptable excipient.
In some embodiments, described herein is a method of inducing apoptosis in a cell, the method comprising contacting the cell with a therapeutically-effective amount of a compound of the disclosure that binds a p53 mutant, wherein the compound increases the ability of the p53 mutant to bind DNA, wherein the cell expresses the p53 mutant. In some embodiments, described herein is a method of treating a cancer, the method comprising administering to a subject in need thereof a therapeutically-effective amount of a compound of the disclosure.
The present invention provides compounds and methods for restoring wild-type function to mutant p53. The compounds of the present invention can bind to mutant p53 and restore the ability of the p53 mutant to bind DNA. The restoration of activity of the p53 mutant can allow for the activation of downstream effectors of p53 leading to inhibition of cancer progression. The invention further provides methods of treatment of a cancerous lesion or a tumor harboring a p53 mutation.
Cancer is a collection of related diseases characterized by uncontrolled proliferation of cells with the potential to metastasize throughout the body. Cancer can be classified into five broad categories including, for example: carcinomas, which can arise from cells that cover internal and external parts of the body such as the lung, breast, and colon; sarcomas, which can arise from cells that are located in bone, cartilage, fat, connective tissue, muscle, and other supportive tissues; lymphomas, which can arise in the lymph nodes and immune system tissues; leukemia, which can arise in the bone marrow and accumulate in the bloodstream; and adenomas, which can arise in the thyroid, the pituitary gland, the adrenal gland, and other glandular tissues.
Although different cancers can develop in virtually any of the body's tissues, and contain unique features, the basic processes that cause cancer can be similar in all forms of the disease. Cancer begins when a cell breaks free from the normal restraints on cell division and begins to grow and divide out of control. Genetic mutations in the cell can preclude the ability of the cell to repair damaged DNA or initiate apoptosis, and can result in uncontrolled growth and division of cells.
The ability of tumor cell populations to multiply is determined not only by the rate of cell proliferation but also by the rate of cell attrition. Programmed cell death, or apoptosis, represents a major mechanism of cellular attrition. Cancer cells can evade apoptosis through a variety of strategies, for example, through the suppression of p53 function, thereby suppressing expression of pro-apoptotic proteins.
Oncogenes and tumor suppressor genes can regulate the proliferation of cells. Genetic mutations can affect oncogenes and tumor suppressors, potentially activating or suppressing activity abnormally, further facilitating uncontrolled cell division. Whereas oncogenes assist in cellular growth, tumor suppressor genes slow cell division by repairing damaged DNA and activating apoptosis. Cellular oncogenes that can be mutated in cancer include, for example, Cdk1, Cdk2, Cdk3, Cdk4, Cdk6, EGFR, PDGFR, VEGF, HER2, Raf kinase, K-Ras, and myc. Tumor suppressor genes that can be mutated in cancer include, for example, BRCA1, BRCA2, cyclin-dependent kinase inhibitor 1C, Retinoblastoma protein (pRb), PTEN, p16, p27, p53, and p73.
The tumor suppressor p53 acts as a DNA sequence-specific transcription factor regulating and activating the expression of a range of target genes in response to genotoxic stress. Activation of target genes by p53 initiates a cascade of signal transduction pathways, which leads to different cellular responses including cell-cycle arrest and apoptosis that prevent cancer development. p53 binds as a tetramer to specific response elements consisting mainly of two decameric half-sites separated by a variable number of base pairs. Mutations in the p53 gene that lead to inactivation of the protein are observed in ˜50% of human cancers. The majority of tumor-related p53 mutations, particularly those defined as mutational ‘hotspots’, occur within the DNA-binding core domain of p53. The top hotspot mutations are located at or near the protein-DNA interface and can be divided into two major groups: DNA-contact mutations affecting residues involved directly in DNA contacts without altering p53 conformation; and structural mutations that cause a conformational change in the core domain.
R273, a DNA-contact amino acid, is one of the most frequently altered residues in human cancer (6.4% of all somatic mutations), with mutations to histidine (46.6%) and to cysteine (39.1%) being most common. Crystal structures of the p53 core-domain bound to DNA show that the positively charged guanidinium groups of R273 residues interact with the negatively charged DNA backbone at the center of each DNA half-site, supported by salt-bridge and hydrogen-bond interactions. R273 residues play a pivotal role in docking p53 to the DNA backbone at the central region of each half-site where no direct base-mediated contacts exist. Substitution of R273 by histidine (R273H) or cysteine (R273C) lead to dramatic reduction in the DNA binding affinity, even through the protein retains wild-type stability.
Tumor Suppressor p53.
The tumor suppressor protein p53 is a 393 amino acid transcription factor that can regulate cell growth in response to cellular stresses including, for example, UV radiation, hypoxia, oncogene activation, and DNA damage. p53 has various mechanisms for inhibiting the progression of cancer including, for example, initiation of apoptosis, maintenance of genomic stability, cell cycle arrest, induction of senescence, and inhibition of angiogenesis. Due to the critical role of p53 in tumor suppression, p53 is inactivated in almost all cancers either by direct mutation or through perturbation of associated signaling pathways involved in tumor suppression. Homozygous loss of the p53 gene occurs in almost all types of cancer, including carcinomas of the breast, colon, and lung. The presence of certain p53 mutations in several types of human cancer can correlate with less favorable patient prognosis.
In the absence of stress signals, p53 levels are maintained at low levels via the interaction of p53 with Mdm2, an E3 ubiquitin ligase. In an unstressed cell, Mdm2 can target p53 for degradation by the proteasome. Under stress conditions, the interaction between Mdm2 and p53 is disrupted, and p53 accumulates. The critical event leading to the activation of p53 is phosphorylation of the N-terminal domain of p53 by protein kinases, thereby transducing upstream stress signals. The phosphorylation of p53 leads to a conformational change, which can promote DNA binding by p53 and allow transcription of downstream effectors. The activation of p53 can induce, for example, the intrinsic apoptotic pathway, the extrinsic apoptotic pathway, cell cycle arrest, senescence, and DNA repair. p53 can activate proteins involved in the above pathways including, for example, Fas/Apo1, KILLER/DR5, Bax, Puma, Noxa, Bid, caspase-3, caspase-6, caspase-7, caspase-8, caspase-9, and p21 (WAF1). Additionally, p53 can repress the transcription of a variety of genes including, for example, c-MYC, Cyclin B, VEGF, RAD51, and hTERT.
Each chain of the p53 tetramer is composed of several functional domains including the transactivation domain (amino acids 1-100), the DNA-binding domain (amino acids 101-306), and the tetramerization domain (amino acids 307-355), which are highly mobile and largely unstructured. Most p53 cancer mutations are located in the DNA-binding core domain of the protein, which contains a central β-sandwich of anti-parallel β-sheets that serves as a basic scaffold for the DNA-binding surface. The DNA-binding surface is composed of two β-turn loops, L2 and L3, which are stabilized by a zinc ion, for example, at Arg175 and Arg248, and a loop-sheet-helix motif. Altogether, these structural elements form an extended DNA-binding surface that is rich in positively-charged amino acids, and makes specific contact with various p53 response elements.
Due to the prevalence of p53 mutations in virtually every type of cancer, the reactivation of wild type p53 function in a cancerous cell can be an effective therapy. Mutations in p53 located in the DNA-binding domain of the protein or periphery of the DNA-binding surface can result in aberrant protein folding required for DNA recognition and binding or reduction in DNA binding affinity. Mutations in p53 can occur, for example, at amino acids Val143, His168, Arg175, Tyr220, Gly245, Arg248, Arg249, Phe270, Arg273, and Arg282. p53 mutations that can abrogate the activity of p53 include, for example, R175H, Y220C, G245S, R248Q, R248W, R273C, R273H, and R282H. p53 mutations can distort the structure of the DNA-binding site, thermodynamically destabilize the folded protein at body temperature, or weaken consensus DNA binding. Wild-type function of p53 mutants can be recovered by binding of the p53 mutant to a compound that can shift the folding-unfolding equilibrium towards the folded state, thereby reducing the rate of unfolding and destabilization; or by conjugating a small molecule to the DNA binding interface to restore consensus DNA binding.
Non-limiting examples of amino acids include: alanine (A, Ala); arginine (R, Arg); asparagine (N, Asn); aspartic acid (D, Asp); cysteine (C, Cys); glutamic acid (E, Glu); glutamine (Q, Gin); glycine (G, Gly); histidine (H, His); isoleucine (I, lie); leucine (L, Leu); lysine (K, Lys); methionine (M, Met); phenylalanine (F, Phe); proline (P, Pro); serine (S, Ser); threonine (T, Thr); tryptophan (W, Trp); tyrosine (Y, Tyr); and valine (V, Val).
Mechanism of Compounds of the Disclosure.
The compounds of the present disclosure can selectively bind to a p53 mutant and can recover wild-type activity of the p53 mutant including, for example, DNA binding function and activation of downstream targets involved in tumor suppression. In some embodiments, a compound of the disclosure selectively binds to a p53 R248 mutant. In some embodiments, a compound of the disclosure selectively binds to a p53 R248Q mutant. In some embodiments, a compound of the disclosure selectively binds to a p53 R248W mutant. In some embodiments, a compound of the disclosure selectively binds to a p53 R273 mutant. In some embodiments, a compound of the disclosure selectively binds to a p53 R273C mutant. In some embodiments, a compound of the disclosure selectively binds to a p53 R273H mutant.
A compound of the disclosure can bind or conjugate to an amino acid in the DNA binding interface. In some embodiments, a compound of the disclosure can conjugate to C277. In some embodiments, a compound of the disclosure can conjugate to C182.
Assays can be employed to determine the ability of a compound of the disclosure to bind to p53 and restore DNA binding affinity. Examples of assays include differential scanning fluorimetry (DSF), isothermal titration calorimetry (ITC), nuclear magnetic resonance spectrometry (NMR), X-ray crystallography, immunoprecipitation (IP), immunofluorescence (IF), or immunoblotting.
Methods used to detect the ability of the p53 mutant to bind DNA can include, for example, DNA affinity immunoblotting, modified enzyme-linked immunosorbent assay (ELISA), electrophoretic mobility shift assay (EMSA), fluorescence resonance energy transfer (FRET), homogeneous time-resolved fluorescence (HTRF), and a chromatin immunoprecipitation (ChIP) assay.
A compound of the disclosure can increase the ability of a p53 mutant to bind DNA by at least or up to about 0.1%, at least or up to about 0.2%, at least or up to about 0.3%, at least or up to about 0.4%, at least or up to about 0.5%, at least or up to about 0.6%, at least or up to about 0.7%, at least or up to about 0.8%, at least or up to about 0.9%, at least or up to about 1%, at least or up to about 2%, at least or up to about 3%, at least or up to about 4%, at least or up to about 5%, at least or up to about 6%, at least or up to about 7%, at least or up to about 8%, at least or up to about 9%, at least or up to about 10%, at least or up to about 11%, at least or up to about 12%, at least or up to about 13%, at least or up to about 14%, at least or up to about 15%, at least or up to about 16%, at least or up to about 17%, at least or up to about 18%, at least or up to about 19%, at least or up to about 20%, at least or up to about 21%, at least or up to about 22%, at least or up to about 23%, at least or up to about 24%, at least or up to about 25%, at least or up to about 26%, at least or up to about 27%, at least or up to about 28%, at least or up to about 29%, at least or up to about 30%, at least or up to about 31%, at least or up to about 32%, at least or up to about 33%, at least or up to about 34%, at least or up to about 35%, at least or up to about 36%, at least or up to about 37%, at least or up to about 38%, at least or up to about 39%, at least or up to about 40%, at least or up to about 41%, at least or up to about 42%, at least or up to about 43%, at least or up to about 44%, at least or up to about 45%, at least or up to about 46%, at least or up to about 47%, at least or up to about 48%, at least or up to about 49%, at least or up to about 50%, at least or up to about 51%, at least or up to about 52%, at least or up to about 53%, at least or up to about 54%, at least or up to about 55%, at least or up to about 56%, at least or up to about 57%, at least or up to about 58%, at least or up to about 59%, at least or up to about 60%, at least or up to about 61%, at least or up to about 62%, at least or up to about 63%, at least or up to about 64%, at least or up to about 65%, at least or up to about 66%, at least or up to about 67%, at least or up to about 68%, at least or up to about 69%, at least or up to about 70%, at least or up to about 71%, at least or up to about 72%, at least or up to about 73%, at least or up to about 74%, at least or up to about 75%, at least or up to about 76%, at least or up to about 77%, at least or up to about 78%, at least or up to about 79%, at least or up to about 80%, at least or up to about 81%, at least or up to about 82%, at least or up to about 83%, at least or up to about 84%, at least or up to about 85%, at least or up to about 86%, at least or up to about 87%, at least or up to about 88%, at least or up to about 89%, at least or up to about 90%, at least or up to about 91%, at least or up to about 92%, at least or up to about 93%, at least or up to about 94%, at least or up to about 95%, at least or up to about 96%, at least or up to about 97%, at least or up to about 98%, at least or up to about 99%, at least or up to about 100%, at least or up to about 125%, at least or up to about 150%, at least or up to about 175%, at least or up to about 200%, at least or up to about 225%, or at least or up to about 250% as compared to the ability of the p53 mutant to bind DNA in the absence of a compound of the disclosure.
A compound described herein can increase the activity of the p53 mutant that is, for example, at least or up to about 2-fold, at least or up to about 3-fold, at least or up to about 4-fold, at least or up to about 5-fold, at least or up to about 6-fold, at least or up to about 7-fold, at least or up to about 8-fold, at least or up to about 9-fold, at least or up to about 10-fold, at least or up to about 11-fold, at least or up to about 12-fold, at least or up to about 13-fold, at least or up to about 14-fold, at least or up to about 15-fold, at least or up to about 16-fold, at least or up to about 17-fold, at least or up to about 18-fold, at least or up to about 19-fold, at least or up to about 20-fold, at least or up to about 25-fold, at least or up to about 30-fold, at least or up to about 35-fold, at least or up to about 40-fold, at least or up to about 45-fold, at least or up to about 50-fold, at least or up to about 55-fold, at least or up to about 60-fold, at least or up to about 65-fold, at least or up to about 70-fold, at least or up to about 75-fold, at least or up to about 80-fold, at least or up to about 85-fold, at least or up to about 90-fold, at least or up to about 95-fold, at least or up to about 100-fold, at least or up to about 110-fold, at least or up to about 120-fold, at least or up to about 130-fold, at least or up to about 140-fold, at least or up to about 150-fold, at least or up to about 160-fold, at least or up to about 170-fold, at least or up to about 180-fold, at least or up to about 190-fold, at least or up to about 200-fold, at least or up to about 250-fold, at least or up to about 300-fold, at least or up to about 350-fold, at least or up to about 400-fold, at least or up to about 450-fold, at least or up to about 500-fold, at least or up to about 550-fold, at least or up to about 600-fold, at least or up to about 650-fold, at least or up to about 700-fold, at least or up to about 750-fold, at least or up to about 800-fold, at least or up to about 850-fold, at least or up to about 900-fold, at least or up to about 950-fold, at least or up to about 1,000-fold, at least or up to about 1,500-fold, at least or up to about 2,000-fold, at least or up to about 3,000-fold, at least or up to about 4,000-fold, at least or up to about 5,000-fold, at least or up to about 6,000-fold, at least or up to about 7,000-fold, at least or up to about 8,000-fold, at least or up to about 9,000-fold, or at least or up to about 10,000-fold greater than the activity of the p53 mutant in the absence of the compound.
A compound of the disclosure can be used, for example, to induce apoptosis, cell cycle arrest, or senescence in a cell. In some embodiments, the cell is a cancer cell. In some embodiments, the cell carries a mutation in p53.
Compounds of the Disclosure.
In some embodiments, the present disclosure provides a compound of the formula:
In some embodiments, R5 is halogen or hydrogen, and R6 is aryl and heteroaryl. In some embodiments, R5 is aryl or heteroaryl, and R6 is halogen or hydrogen. In some embodiments, R5 is hydrogen.
In some embodiments, R6 is pyridinyl, pyrazinyl, pyrimidinyl, each of which is unsubstituted or substituted. In some embodiments, R6 is pyridinyl that is substituted or unsubstituted. In some embodiments, R6 is pyridin-2-yl, pyridin-3-yl, or pyridin-4-yl, each of which is substituted or unsubstituted. In some embodiments, R6 is pyrimidin-2-yl, pyrimidin-4-yl, or pyrimidin-5-yl, each of which is substituted or unsubstituted. In some embodiments, R6 is pyri din-2-yl, which is substituted or unsubstituted. In some embodiments, R6 is oxazolyl or imidazolyl, each of which is substituted or unsubstituted. In some embodiments, R6 is oxazolyl that is substituted or unsubstituted. In some embodiments, R6 is oxazol-2-yl that is substituted or unsubstituted.
In some embodiments, R6 is quinolinyl, isoquinolinyl, quinazolinyl, or phthalazinyl, each of which is substituted or unsubstituted. In some embodiments, R6 is quinolyl that is substituted or unsubstituted. In some embodiments, R6 is quinolin-2-yl, quinolin-3-yl, quinolin-4-yl, quinolin-5-yl, quinolin-6-yl, quinolin-7-yl, or quinolin-8-yl, each of which is substituted or unsubstituted. In some embodiments, R6 is quinolin-6-yl, or quinolin-7-yl, each of which is substituted or unsubstituted.
In some embodiments, R6 is quinazolinlyl that is substituted or unsubstituted. In some embodiments, R6 is quinazolin-2-yl, quinazolin-4-yl, quinazolin-5-yl, quinazolin-6-yl, quinazolin-7-yl, or quinazolin-8-yl, each of which is substituted or substituted. In some embodiments, R6 is quinazolin-7-yl, which is substituted or unsubstituted.
In some embodiments, R6 is isoquinolyl that is substituted or unsubstituted. In some embodiments, R6 is isoquinolin-1-yl, isoquinolin-3-yl, isoquinolin-4-yl, isoquinolin-5-yl, isoquinolin-6-yl, isoquinolin-7-yl, or isoquinolin-8-yl, each of which is substituted or unsubstituted. In some embodiments, R6 is isoquinolyl that is substituted or unsubstituted. In some embodiments, R6 is isoquinolin-3-yl, isoquinolin-5-yl, isoquinolin-6-yl, or isoquinolin-7-yl, each of which is substituted or unsubstituted.
In some embodiments, R6 is indolyl, isoindolyl, indazolyl, benzimidazolyl, benzoxazolyl, benzisoxazolyl, benzofuranyl, or benzothiophenyl, or benzthiazolyl, each of which is substituted or unsubstituted. In some embodiments, R6 is indolyl that is substituted or unsubstituted. In some embodiments, R6 is 1H-indol-1-yl, 1H-indol-2-yl, 1H-indol-3-yl, 1H-indol-4-yl, 1H-indol-5-yl, 1H-indol-6-yl, or 1H-indol-7-yl, each of which is substituted or unsubstituted. In some embodiments, R6 is indazolyl that is substituted or unsubstituted. In some embodiments, R6 is 1H-indazol-1-yl, 1H-indazol-3-yl, 1H-indazol-4-yl, 1H-indazol-5-yl, 1H-indazol-6-yl, or 1H-indazol-7-yl, each of which is substituted or unsubstituted. In some embodiments, R6 is 1H-indazol-3-yl that is substituted or unsubstituted. In some embodiments, R6 is 1H-indazol-5-yl that is substituted or unsubstituted. In some embodiments, R6 is 1H-indazol-6-yl that is substituted or unsubstituted.
In some embodiments, R6 is 1H-pyrazolo[3,4-c]pyridinyl that is substituted or unsubstituted. In some embodiments, R6 is 1H-pyrazolo[3,4-c]pyridin-5-yl that is substituted or unsubstituted. In some embodiments, R6 is 7H-pyrrolo[2,3-d]pyrimidinyl that is substituted or unsubstituted. In some embodiments, R6 is 7H-pyrrolo[2,3-d]pyrimidin-2-yl that is substituted or unsubstituted.
In some embodiments, R6 is
wherein
In some embodiments, Q is
In some embodiments, Q is
In some embodiments, when Q is
then each of R5 and R6 is independently aryl or heteroaryl, each of which is unsubstituted or substituted, or hydrogen or halogen; or R5 and R6 together with the carbon atoms to which R5 and R6 are bound form a ring, wherein the ring is unsubstituted or substituted.
In some embodiments, Q is
In some embodiments, when Q is
then R5 and R6 together with the carbon atoms to which R5 and R6 are bound form the ring, wherein the ring is unsubstituted or substituted.
In some embodiments, Q is
In some embodiments, when Q is
then R5 is hydrogen or halogen, and R6 is aryl or heteroaryl, which is unsubstituted or substituted.
In some embodiments, when Q is
then R5 and R6 together with the carbon atoms to which R5 and R6 are bound form the ring, and the compound has the structure:
In some embodiments, when Q is not
then R5 and R6 together with the carbon atoms to which R5 and R6 are bound form the ring, and compound has the structure:
In some embodiments, X1 is CR7. In some embodiments, X1 is N. In some embodiments, R7 is H.
In some embodiments, R1 is H. In some embodiments, R1 is —C(O)NR8R9, —OR10, or CN, each of which is unsubstituted or substituted.
In some embodiments, R2 is H. In some embodiments, R2 is —OR10. In some embodiments, R2 is halogen. In some embodiments, R2 is —C(O)NH2.
In some embodiments, Q is NR3R4, wherein R3 is hydrogen.
In some embodiments, Q is NR3R4, wherein one or both of R3 and R4 is
In some embodiments, the present disclosure provides a compound of the formula:
In some embodiments, the compound has the formula:
In some embodiments, the compound has the formula:
In some embodiments, the compound has the formula:
In some embodiments, the compound has the formula:
In some embodiments, the compound has the formula:
In some embodiments, the compound has the formula:
In some embodiments, the compound has the formula:
In some embodiments, the compound has the formula:
In some embodiments, at least one of R5a, R5b, R5c, and R5d is
In some embodiments, at least one of R5a, R5b, R5c, and R5d is
In some embodiments, the compound has the formula:
In some embodiments, the compound has the formula:
In some embodiments, the compound has the formula:
In some embodiments, at least one of R6a, R6b, R6c, R6d and R6e is —C(O)NR14R15, —NR14C(O)R15, or —NR14R15. In some embodiments, R6b is —C(O)NR14R15. In some embodiments, R6b is —NR14R15. In some embodiments, R6b is —NR14C(O)R15.
In some embodiments, the compound has the formula:
In some embodiments, at least one of R6a, R6b, R6c, R6d and R6e is —C(O)NR14R15, —NR14C(O)R15, or —NR14R15. In some embodiments, R6b is —C(O)NR14R15. In some embodiments, R6b is —NR14R15. In some embodiments, R6b is —NR14C(O)R15.
In some embodiments, the compound has the formula:
In some embodiments, the compound has the structure:
In some embodiments, R6f, R6g, or R6h is —C(O)NR14R15. In some embodiments, R6f, R6g, or R6h is —NR14R15. In some embodiments, R6f, R6g, or R6h is —NR14C(O)R15.
In some embodiments, the compound has the formula:
In some embodiments, the compound has the formula:
In some embodiments, at least one of R5a, R5b, R5c, and R5d is
In some embodiments, at least one of R5a, R5b, R5c, and R5d is
In some embodiments, the compound has the formula:
In some embodiments, the compound has the formula:
In some embodiments, the compound has the formula:
In some embodiments, the compound has the formula:
In some embodiments, the compound has the formula:
In some embodiments, Z1 is CR20, wherein R20 is —C(O)NR14R15, —NR14C(O)R15, or —NR14R15. In some embodiments, Z2 is CR21, wherein R21 is —C(O)NR14R15, —NR14C(O)R15, or —NR14R15. In some embodiments, Z3 is CR22, wherein R22 is —C(O)NR14R15, —NR14C(O)R15, or —NR14R15. In some embodiments, Z4 is CR23, wherein R23 is —C(O)NR14R15, —NR14C(O)R15, or —NR14R15. In some embodiments, Z5 is CR24, wherein R24 is —C(O)NR14R15, —NR14C(O)R15, or —NR14R15. In some embodiments, Z3 is N or CR22, wherein R22 is —C(O)NR14R15, —NR14C(O)R15, or —NR14R15. In some embodiments, R20 is hydrogen. In some embodiments, R26 is hydrogen.
In some embodiments, the compound has the formula:
In some embodiments, R27, R28, R29, R30, R32, or R33 is —C(O)NR14R15. In some embodiments, R27, R28, R29, R30, R32, or R33 is —NR14R15. In some embodiments, R27, R28, R29, R30, R32, or R33 is —NR14C(O)R15.
In some embodiments, the compound has the formula:
In some embodiments, the compound has the formula:
In some embodiments, the compound has the formula:
In some embodiments, Z8 is CR27, Z13 is CR32, and Z14 is CR33. In some embodiments, Z8 is CR27, Z13 is CR32, and Z14 is N. In some embodiments, Z8 is N, Z13 is CR32, and Z14 is CR33. In some embodiments, Z8 is CR27, Z13 is N, and Z14 is CR33. In some embodiments, Z8 is N, Z13 is CR32, and Z14 is NR33. In some embodiments, Z8 is CR27, Z13 is N, and Z14 is N. In some embodiments, R27, R29, R32, or R33 is —C(O)NR14R15. In some embodiments, R27, R29, R32, or R33 is —NR14R15. In some embodiments, R27, R29, R32, or R33 is —NR14C(O)R15.
In some embodiments, the compound has the formula:
In some embodiments, the compound has the formula:
In some embodiments, the compound has the formula:
In some embodiments, the compound has the formula:
In some embodiments, the compound has the formula:
In some embodiments, the compound has the formula:
In some embodiments, the compound has the formula:
In some embodiments, R21, R22, R23, R24, or R25 is —C(O)NR14R15. In some embodiments, R21, R22, R23, R24, or R25 is —NR14R15. In some embodiments, R21, R22, R23, R24, or R25 is —NR14C(O)R15. In some embodiments, R20, R21, R22, R23, R24, or R25 is —C(O)NR14R15. In some embodiments, R20, R21, R22, R23, R24, or R25 is —NR14R15. In some embodiments, R20, R21, R22, R23, R24, or R25 is —NR14C(O)R15. In some embodiments, 81-83, wherein Z3 is CR22, Z4 is CR23, Z5 is CR24, and Z6 is CR25. In some embodiments, Z3 is N, Z4 is CR23, Z5 is CR24, and Z6 is CR25. In some embodiments, Z3 is CR22, Z4 is N, Z5 is CR24, and Z6 is CR25. In some embodiments, Z3 is CR22, Z4 is CR23, Z5 is N, and Z6 is CR25. In some embodiments, Z3 is CR22, Z4 is CR23, Z5 is CR24, and Z6 is N. In some embodiments, Z3 is N, Z4 is CR23, Z5 is N, and Z6 is CR25. In some embodiments, Z3 is N, Z4 is CR23, Z5 is CR24, and Z6 is N. In some embodiments, R14 is hydrogen. In some embodiments, —NR14C(O)R15 is
In some embodiments, R15 is cycloalkyl which is unsubstituted or substituted. In some embodiments, R15 is cycloalkyl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.
In some embodiments, R15 is heteroaryl which is unsubstituted or substituted. In some embodiments, R15 is heteroaryl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.
In some embodiments, R15 is heterocyclyl which is unsubstituted or substituted. In some embodiments, R15 is heterocyclyl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.
In some embodiments, R15 is piperidinyl which is unsubstituted or substituted. In some embodiments, R15 is
In some embodiments, R6 is aryl or heteroaryl substituted by R15, wherein R15 is piperidinyl which is unsubstituted or substituted. In some embodiments, R15 is
In some embodiments, R15a, R15b, and R15c is methyl. In some embodiments, R15 is an alkyl which is unsubstituted or substituted. In some embodiments, R15 is an alkyl which is substituted with a heterocyclyl. In some embodiments, R15 is an alkyl which is substituted with a morpholinyl or piperidinyl, each of which is substituted or unsubstituted. In some embodiments, R15 is an alkyl which is substituted with an unsubstituted or substituted heteroaryl. In some embodiments, R15 is an alkyl which is substituted with an unsubstituted or substituted imidazolyl.
In some embodiments, R15 is piperidinyl that is unsubstituted or substituted. In some embodiments, R15 is
wherein R15a is independently alkyl that is unsubstituted or substituted, or hydrogen or halogen; each R15x is independently halogen or hydrogen; and n is independently 0, 1, 2, 3, 4, 5, 6, 7, or 8. In some embodiments, R15b is methyl. In some embodiments, R15 is
wherein each of R15b is independently alkyl that is unsubstituted or substituted, or hydrogen or halogen; each R15x is independently halogen or hydrogen; and n is independently 0, 1, 2, 3, 4, 5, 6, 7, or 8. In some embodiments, R15b is methyl. In some embodiments, R15 is
wherein each R15c is independently alkyl that is unsubstituted or substituted, or hydrogen or halogen; each R15x is independently halogen or hydrogen; and n is independently 0, 1, 2, 3, 4, 5, 6, 7, or 8. In some embodiments, R15c is methyl.
In some embodiments, R15 is alkyl that is unsubstituted or substituted. In some embodiments, R15 is alkyl that is substituted with a heterocyclyl group. In some embodiments, R15 is alkyl that is substituted with a morpholinyl or piperidinyl group, each of which is substituted or unsubstituted. In some embodiments, R15 is alkyl that is substituted with an unsubstituted or substituted heteroaryl group. In some embodiments, R15 is alkyl that is substituted with an unsubstituted or substituted imidazolyl group.
In some embodiments, Q is NR3R4,
wherein each of R22, R23, and R24 is independently alkyl, which is unsubstituted or substituted, or hydrogen, or halogen. In some embodiments, NR3R4 is
Several moieties described herein may be substituted or unsubstituted. Non-limiting examples of optional substituents include hydroxyl groups, sulfhydryl groups, halogens, amino groups, nitro groups, nitroso groups, cyano groups, azido groups, sulfoxide groups, sulfone groups, sulfonamide groups, carboxyl groups, carboxaldehyde groups, imine groups, alkyl groups, halo-alkyl groups, alkenyl groups, halo-alkenyl groups, alkynyl groups, halo-alkynyl groups, alkoxy groups, aryl groups, aryloxy groups, aralkyl groups, arylalkoxy groups, heterocyclyl groups, acyl groups, acyloxy groups, carbamate groups, amide groups, ureido groups, epoxy groups, and ester groups.
Non-limiting examples of alkyl and alkylene groups include straight, branched, and cyclic alkyl and alkylene groups. An alkyl or alkylene group can be, for example, a C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16, C17, C18, C19, C20, C21, C22, C23, C24, C25, C26, C27, C28, C29, C30, C31, C32, C33, C34, C35, C36, C37, C38, C39, C40, C41, C42, C43, C44, C45, C46, C47, C48, C49, or C50 group that is substituted or unsubstituted.
Non-limiting examples of straight alkyl groups include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, and decyl.
Branched alkyl groups include any straight alkyl group substituted with any number of alkyl groups. Non-limiting examples of branched alkyl groups include isopropyl, isobutyl, sec-butyl, and t-butyl.
Non-limiting examples of substituted alkyl groups includes hydroxymethyl, chloromethyl, trifluoromethyl, aminomethyl, 1-chloroethyl, 2-hydroxy ethyl, 1,2-difluoroethyl, and 3-carboxypropyl.
Non-limiting examples of cyclic alkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptlyl, and cyclooctyl groups. Cyclic alkyl groups also include fused-, bridged-, and spiro-bicycles and higher fused-, bridged-, and spiro-systems. A cyclic alkyl group can be substituted with any number of straight, branched, or cyclic alkyl groups. Non-limiting examples of cyclic alkyl groups include cyclopropyl, 2-methyl-cycloprop-1-yl, cycloprop-2-en-1-yl, cyclobutyl, 2,3-dihydroxycyclobut-1-yl, cyclobut-2-en-1-yl, cyclopentyl, cyclopent-2-en-1-yl, cyclopenta-2,4-dien-1-yl, cyclohexyl, cyclohex-2-en-1-yl, cycloheptyl, cyclooctanyl, 2,5-dimethylcyclopent-1-yl, 3,5-dichlorocyclohex-1-yl, 4-hydroxycyclohex-1-yl, 3,3,5-trimethylcyclohex-1-yl, octahydropentalenyl, octahydro-1H-indenyl, 3a,4,5,6,7,7a-hexahydro-3H-inden-4-yl, decahydroazulenyl, bicyclo-[2.1.1]hexanyl, bicyclo[2.2.1]heptanyl, bicyclo[3.1.1]heptanyl, 1,3-dimethyl[2.2.1]heptan-2-yl, bicyclo[2.2.2]octanyl, and bicyclo[3.3.3]undecanyl.
Non-limiting examples of alkenyl and alkenylene groups include straight, branched, and cyclic alkenyl groups. The olefin or olefins of an alkenyl group can be, for example, E, Z, cis, trans, terminal, or exo-methylene. An alkenyl or alkenylene group can be, for example, a C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16, C17, C18, C19, C20, C21, C22, C23, C24, C25, C26, C27, C28, C29, C30, C31, C32, C33, C34, C35, C36, C37, C38, C39, C40, C41, C42, C43, C44, C45, C46, C47, C48, C49, or C50 group that is substituted or unsubstituted. Non-limiting examples of alkenyl and alkenylene groups include ethenyl, prop-1-en-1-yl, isopropenyl, but-1-en-4-yl; 2-chloroethenyl, 4-hydroxybuten-1-yl, 7-hydroxy-7-methyloct-4-en-2-yl, and 7-hydroxy-7-methyloct-3,5-dien-2-yl.
Non-limiting examples of alkynyl or alkynylene groups include straight, branched, and cyclic alkynyl groups. The triple bond of an alkylnyl or alkynylene group can be internal or terminal. An alkylnyl or alkynylene group can be, for example, a C2, C3, C4, C5, C6, C7, C8, C9, C10, Cn, C12, C13, C14, C15, C16, C17, C18, C19, C20, C21, C22, C23, C24, C25, C26, C27, C28, C29, C30, C31, C32, C33, C34, C35, C36, C37, C38, C39, C40, C41, C42, C43, C44, C45, C46, C47, C48, C49, or C50 group that is substituted or unsubstituted. Non-limiting examples of alkynyl or alkynylene groups include ethynyl, prop-2-yn-1-yl, prop-1-yn-1-yl, and 2-methyl-hex-4-yn-1-yl; 5-hydroxy-5-methylhex-3-yn-1-yl, 6-hydroxy-6-methylhept-3-yn-2-yl, and 5-hydroxy-5-ethylhept-3-yn-1-yl.
A halo-alkyl group can be any alkyl group substituted with any number of halogen atoms, for example, fluorine, chlorine, bromine, and iodine atoms. A halo-alkenyl group can be any alkenyl group substituted with any number of halogen atoms. A halo-alkynyl group can be any alkynyl group substituted with any number of halogen atoms.
An alkoxy group can be, for example, an oxygen atom substituted with any alkyl, alkenyl, or alkynyl group. An ether or an ether group comprises an alkoxy group. Non-limiting examples of alkoxy groups include methoxy, ethoxy, propoxy, isopropoxy, and isobutoxy.
An aryl group can be heterocyclic or non-heterocyclic. An aryl group can be monocyclic or polycyclic. An aryl group can be substituted with any number of substituents described herein, for example, hydrocarbyl groups, alkyl groups, alkoxy groups, and halogen atoms. Non-limiting examples of aryl groups include phenyl, toluyl, naphthyl, pyrrolyl, pyridyl, imidazolyl, thiophenyl, and furyl. Non-limiting examples of substituted aryl groups include 3,4-dimethylphenyl, 4-tert-butylphenyl, 4-cyclopropylphenyl, 4-diethylaminophenyl, 4-(trifluoromethyl)phenyl, 4-(difluoromethoxy)-phenyl, 4-(trifluoromethoxy)phenyl, 3-chlorophenyl, 4-chlorophenyl, 3,4-dichlorophenyl, 2-fluorophenyl, 2-chlorophenyl, 2-iodophenyl, 3-iodophenyl, 4-iodophenyl, 2-methylphenyl, 3-fluorophenyl, 3-methylphenyl, 3-methoxyphenyl, 4-fluorophenyl, 4-methylphenyl, 4-methoxyphenyl, 2,3-difluorophenyl, 3,4-difluorophenyl, 3,5-difluorophenyl, 2,3-dichlorophenyl, 3,4-dichlorophenyl, 3,5-dichlorophenyl, 2-hydroxyphenyl, 3-hydroxyphenyl, 4-hydroxyphenyl, 2-methoxyphenyl, 3-methoxyphenyl, 4-methoxyphenyl, 2,3-dimethoxyphenyl, 3,4-dimethoxyphenyl, 3,5-dimethoxyphenyl, 2,4-difluorophenyl, 2,5-difluorophenyl, 2,6-difluorophenyl, 2,3,4-trifluorophenyl, 2,3,5-trifluorophenyl, 2,3,6-trifluorophenyl, 2,4,5-trifluorophenyl, 2,4,6-trifluorophenyl, 2,4-dichlorophenyl, 2,5-dichlorophenyl, 2,6-dichlorophenyl, 3,4-dichlorophenyl, 2,3,4-trichlorophenyl, 2,3,5-trichlorophenyl, 2,3,6-trichlorophenyl, 2,4,5-trichlorophenyl, 3,4,5-trichlorophenyl, 2,4,6-trichlorophenyl, 2,3-dimethylphenyl, 2,4-dimethylphenyl, 2,5-dimethylphenyl, 2,6-dimethylphenyl, 2,3,4-trimethylphenyl, 2,3,5-trimethylphenyl, 2,3,6-trimethylphenyl, 2,4,5-trimethylphenyl, 2,4,6-trimethylphenyl, 2-ethylphenyl, 3-ethylphenyl, 4-ethylphenyl, 2,3-diethylphenyl, 2,4-diethylphenyl, 2,5-diethylphenyl, 2,6-diethylphenyl, 3,4-diethylphenyl, 2,3,4-triethylphenyl, 2,3,5-triethylphenyl, 2,3,6-triethylphenyl, 2,4,5-triethylphenyl, 2,4,6-triethylphenyl, 2-isopropylphenyl, 3-isopropylphenyl, and 4-isopropylphenyl,
Non-limiting examples of substituted aryl groups include 2-aminophenyl, 2-(N-methylamino)phenyl, 2-(N,N-dimethylamino)phenyl, 2-(N-ethylamino)phenyl, 2-(N,N-diethylamino)phenyl, 3-aminophenyl, 3-(N-methylamino)phenyl, 3-(N,N-dimethylamino)phenyl, 3-(N-ethylamino)phenyl, 3-(N,N-diethylamino)phenyl, 4-aminophenyl, 4-(N-methylamino)phenyl, 4-(N,N-dimethylamino)phenyl, 4-(N-ethylamino)phenyl, and 4-(N,N-diethylamino)phenyl.
A heterocycle can be any ring containing a ring atom that is not carbon, for example, N, O, S, P, Si, B, or any other heteroatom. A heterocycle can be substituted with any number of substituents, for example, alkyl groups and halogen atoms. A heterocycle can be aromatic (heteroaryl) or non-aromatic. Non-limiting examples of heterocycles include pyrrole, pyrrolidine, pyridine, piperidine, succinamide, maleimide, morpholine, imidazole, thiophene, furan, tetrahydrofuran, pyran, and tetrahydropyran.
Non-limiting examples of heterocycles include: heterocyclic units having a single ring containing one or more heteroatoms, non-limiting examples of which include, diazirinyl, aziridinyl, azetidinyl, pyrazolidinyl, imidazolidinyl, oxazolidinyl, isoxazolinyl, thiazolidinyl, isothiazolinyl, oxathiazolidinonyl, oxazolidinonyl, hydantoinyl, tetrahydrofuranyl, pyrrolidinyl, morpholinyl, piperazinyl, piperidinyl, dihydropyranyl, tetrahydropyranyl, piperidin-2-onyl, 2,3,4,5-tetrahydro-1H-azepinyl, 2,3-dihydro-1H-indole, and 1,2,3,4-tetrahydroquinoline; and ii) heterocyclic units having 2 or more rings one of which is a heterocyclic ring, non-limiting examples of which include hexahydro-1H-pyrrolizinyl, 3a,4,5,6,7,7a-hexahydro-1H-benzo[d]imidazolyl, 3a,4,5,6,7,7a-hexahydro-1H-indolyl, 1,2,3,4-tetrahydroquinolinyl, and decahydro-1H-cycloocta[b]pyrrolyl.
Non-limiting examples of heteroaryl include: i) heteroaryl rings containing a single ring, non-limiting examples of which include, 1,2,3,4-tetrazolyl, [1,2,3]triazolyl, [1,2,4]triazolyl, triazinyl, thiazolyl, 1H-imidazolyl, oxazolyl, isoxazolyl, isothiazolyl, furanyl, thiophenyl, pyrimidinyl, 2-phenylpyrimidinyl, pyridinyl, 3-methylpyridinyl, and 4-dimethylaminopyridinyl; and ii) heteroaryl rings containing 2 or more fused rings one of which is a heteroaryl ring, non-limiting examples of which include: 7H-purinyl, 9H-purinyl, 6-amino-9H-purinyl, 5H-pyrrolo[3,2-d]pyrimidinyl, 7H-pyrrolo[2,3-d]pyrimidinyl, pyrido[2,3-d]pyrimidinyl, 4,5,6,7-tetrahydro-1H-indolyl, quinoxalinyl, quinazolinyl, quinolinyl, 8-hydroxy-quinolinyl, and isoquinolinyl.
Any compound herein can be purified. A compound herein can be least 1% pure, at least 2% pure, at least 3% pure, at least 4% pure, at least 5% pure, at least 6% pure, at least 7% pure, at least 8% pure, at least 9% pure, at least 10% pure, at least 11% pure, at least 12% pure, at least 13% pure, at least 14% pure, at least 15% pure, at least 16% pure, at least 17% pure, at least 18% pure, at least 19% pure, at least 20% pure, at least 21% pure, at least 22% pure, at least 23% pure, at least 24% pure, at least 25% pure, at least 26% pure, at least 27% pure, at least 28% pure, at least 29% pure, at least 30% pure, at least 31% pure, at least 32% pure, at least 33% pure, at least 34% pure, at least 35% pure, at least 36% pure, at least 37% pure, at least 38% pure, at least 39% pure, at least 40% pure, at least 41% pure, at least 42% pure, at least 43% pure, at least 44% pure, at least 45% pure, at least 46% pure, at least 47% pure, at least 48% pure, at least 49% pure, at least 50% pure, at least 51% pure, at least 52% pure, at least 53% pure, at least 54% pure, at least 55% pure, at least 56% pure, at least 57% pure, at least 58% pure, at least 59% pure, at least 60% pure, at least 61% pure, at least 62% pure, at least 63% pure, at least 64% pure, at least 65% pure, at least 66% pure, at least 67% pure, at least 68% pure, at least 69% pure, at least 70% pure, at least 71% pure, at least 72% pure, at least 73% pure, at least 74% pure, at least 75% pure, at least 76% pure, at least 77% pure, at least 78% pure, at least 79% pure, at least 80% pure, at least 81% pure, at least 82% pure, at least 83% pure, at least 84% pure, at least 85% pure, at least 86% pure, at least 87% pure, at least 88% pure, at least 89% pure, at least 90% pure, at least 91% pure, at least 92% pure, at least 93% pure, at least 94% pure, at least 95% pure, at least 96% pure, at least 97% pure, at least 98% pure, at least 99% pure, at least 99.1% pure, at least 99.2% pure, at least 99.3% pure, at least 99.4% pure, at least 99.5% pure, at least 99.6% pure, at least 99.7% pure, at least 99.8% pure, or at least 99.9% pure.
Pharmaceutical Compositions of the Disclosure.
A pharmaceutical composition of the disclosure can be used, for example, before, during, or after treatment of a subject with, for example, another pharmaceutical agent.
Subjects can be, for example, elderly adults, adults, adolescents, pre-adolescents, children, toddlers, infants, neonates, and non-human animals. In some embodiments, a subject is a patient.
A pharmaceutical composition of the disclosure can be a combination of any pharmaceutical compounds described herein with other chemical components, such as carriers, stabilizers, diluents, dispersing agents, suspending agents, thickening agents, and/or excipients. The pharmaceutical composition facilitates administration of the compound to an organism. Pharmaceutical compositions can be administered in therapeutically-effective amounts as pharmaceutical compositions by various forms and routes including, for example, intravenous, subcutaneous, intramuscular, oral, parenteral, ophthalmic, subcutaneous, transdermal, nasal, vaginal, and topical administration.
A pharmaceutical composition can be administered in a local manner, for example, via injection of the compound directly into an organ, optionally in a depot or sustained release formulation or implant. Pharmaceutical compositions can be provided in the form of a rapid release formulation, in the form of an extended release formulation, or in the form of an intermediate release formulation. A rapid release form can provide an immediate release. An extended release formulation can provide a controlled release or a sustained delayed release.
For oral administration, pharmaceutical compositions can be formulated by combining the active compounds with pharmaceutically-acceptable carriers or excipients. Such carriers can be used to formulate liquids, gels, syrups, elixirs, slurries, or suspensions, for oral ingestion by a subject. Non-limiting examples of solvents used in an oral dissolvable formulation can include water, ethanol, isopropanol, saline, physiological saline, DMSO, dimethylformamide, potassium phosphate buffer, phosphate buffer saline (PBS), sodium phosphate buffer, 4-2-hydroxyethyl-1-piperazineethanesulfonic acid buffer (HEPES), 3-(N-morpholino)propanesulfonic acid buffer (MOPS), piperazine-N,N′-bis(2-ethanesulfonic acid) buffer (PIPES), and saline sodium citrate buffer (SSC). Non-limiting examples of co-solvents used in an oral dissolvable formulation can include sucrose, urea, cremaphor, DMSO, and potassium phosphate buffer.
Pharmaceutical preparations can be formulated for intravenous administration. The pharmaceutical compositions can be in a form suitable for parenteral injection as a sterile suspension, solution or emulsion in oily or aqueous vehicles, and can contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Pharmaceutical formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form. Suspensions of the active compounds can be prepared as oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. The suspension can also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions. Alternatively, the active ingredient can be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.
The active compounds can be administered topically and can be formulated into a variety of topically administrable compositions, such as solutions, suspensions, lotions, gels, pastes, medicated sticks, balms, creams, and ointments. Such pharmaceutical compositions can contain solubilizers, stabilizers, tonicity enhancing agents, buffers and preservatives.
The compounds of the disclosure can be applied topically to the skin, or a body cavity, for example, oral, vaginal, bladder, cranial, spinal, thoracic, or pelvic cavity of a subject. The compounds of the disclosure can be applied to an accessible body cavity.
The compounds can also be formulated in rectal compositions such as enemas, rectal gels, rectal foams, rectal aerosols, suppositories, jelly suppositories, or retention enemas, containing conventional suppository bases such as cocoa butter or other glycerides, as well as synthetic polymers such as polyvinylpyrrolidone, and PEG. In suppository forms of the compositions, a low-melting wax such as a mixture of fatty acid glycerides, optionally in combination with cocoa butter, can be melted.
In practicing the methods of treatment or use provided herein, therapeutically-effective amounts of the compounds described herein are administered in pharmaceutical compositions to a subject having a disease or condition to be treated. In some embodiments, the subject is a mammal such as a human. A therapeutically-effective amount can vary widely depending on the severity of the disease, the age and relative health of the subject, the potency of the compounds used, and other factors. The compounds can be used singly or in combination with one or more therapeutic agents as components of mixtures.
Pharmaceutical compositions can be formulated using one or more physiologically-acceptable carriers comprising excipients and auxiliaries, which facilitate processing of the active compounds into preparations that can be used pharmaceutically. Formulations can be modified depending upon the route of administration chosen. Pharmaceutical compositions comprising a compound described herein can be manufactured, for example, by mixing, dissolving, emulsifying, encapsulating, entrapping, or compression processes.
The pharmaceutical compositions can include at least one pharmaceutically-acceptable carrier, diluent, or excipient and compounds described herein as free-base or pharmaceutically-acceptable salt form. Pharmaceutical compositions can contain solubilizers, stabilizers, tonicity enhancing agents, buffers and preservatives.
Methods for the preparation of compositions comprising the compounds described herein include formulating the compounds with one or more inert, pharmaceutically-acceptable excipients or carriers to form a solid, semi-solid, or liquid composition. Solid compositions include, for example, powders, tablets, dispersible granules, capsules, and cachets. Liquid compositions include, for example, solutions in which a compound is dissolved, emulsions comprising a compound, or a solution containing liposomes, micelles, or nanoparticles comprising a compound as disclosed herein. Semi-solid compositions include, for example, gels, suspensions and creams. The compositions can be in liquid solutions or suspensions, solid forms suitable for solution or suspension in a liquid prior to use, or as emulsions. These compositions can also contain minor amounts of nontoxic, auxiliary substances, such as wetting or emulsifying agents, pH buffering agents, and other pharmaceutically-acceptable additives.
Non-limiting examples of dosage forms suitable for use in the disclosure include liquid, powder, gel, nanosuspension, nanoparticle, microgel, aqueous or oily suspensions, emulsion, and any combination thereof.
Non-limiting examples of pharmaceutically-acceptable excipients suitable for use in the disclosure include binding agents, disintegrating agents, anti-adherents, anti-static agents, surfactants, anti-oxidants, coating agents, coloring agents, plasticizers, preservatives, suspending agents, emulsifying agents, anti-microbial agents, spheronization agents, and any combination thereof.
A composition of the disclosure can be, for example, an immediate release form or a controlled release formulation. An immediate release formulation can be formulated to allow the compounds to act rapidly. Non-limiting examples of immediate release formulations include readily dissolvable formulations. A controlled release formulation can be a pharmaceutical formulation that has been adapted such that release rates and release profiles of the active agent can be matched to physiological and chronotherapeutic requirements or, alternatively, has been formulated to effect release of an active agent at a programmed rate. Non-limiting examples of controlled release formulations include granules, delayed release granules, hydrogels (e.g., of synthetic or natural origin), other gelling agents (e.g., gel-forming dietary fibers), matrix-based formulations (e.g., formulations comprising a polymeric material having at least one active ingredient dispersed through), granules within a matrix, polymeric mixtures, and granular masses.
In some, a controlled release formulation is a delayed release form. A delayed release form can be formulated to delay a compound's action for an extended period of time. A delayed release form can be formulated to delay the release of an effective dose of one or more compounds, for example, for about 4, about 8, about 12, about 16, or about 24 h.
A controlled release formulation can be a sustained release form. A sustained release form can be formulated to sustain, for example, the compound's action over an extended period of time. A sustained release form can be formulated to provide an effective dose of any compound described herein (e.g., provide a physiologically-effective blood profile) over about 4, about 8, about 12, about 16 or about 24 h.
Non-limiting examples of pharmaceutically-acceptable excipients can be found, for example, in Remington: The Science and Practice of Pharmacy, Nineteenth Ed (Easton, Pa.: Mack Publishing Company, 1995); Hoover, John E., Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pennsylvania 1975; Liberman, H. A. and Lachman, L., Eds., Pharmaceutical Dosage Forms, Marcel Decker, New York, N.Y., 1980; and Pharmaceutical Dosage Forms and Drug Delivery Systems, Seventh Ed. (Lippincott Williams & Wilkins 1999), each which is incorporated by reference in its entirety.
Multiple therapeutic agents can be administered in any order or simultaneously. In some embodiments, a compound of the disclosure is administered in combination with, before, or after treatment with another therapeutic agent. If simultaneously, the multiple therapeutic agents can be provided in a single, unified form, or in multiple forms, for example, as multiple separate pills. The agents can be packed together or separately, in a single package or in a plurality of packages. One or all of the therapeutic agents can be given in multiple doses. If not simultaneous, the timing between the multiple doses can vary to as much as about a month.
Therapeutic agents described herein can be administered before, during, or after the occurrence of a disease or condition, and the timing of administering the composition containing a therapeutic agent can vary. For example, the compositions can be used as a prophylactic and can be administered continuously to subjects with a propensity to conditions or diseases in order to lessen a likelihood of the occurrence of the disease or condition. The compositions can be administered to a subject during or as soon as possible after the onset of the symptoms. The administration of the therapeutic agents can be initiated within the first 48 h of the onset of the symptoms, within the first 24 h of the onset of the symptoms, within the first 6 h of the onset of the symptoms, or within 3 h of the onset of the symptoms. The initial administration can be via any route practical, such as by any route described herein using any formulation described herein.
A compound can be administered as soon as is practical after the onset of a disease or condition is detected or suspected, and for a length of time necessary for the treatment of the disease, such as, for example, from about 1 month to about 3 months. In some embodiments, the length of time a compound can be administered can be about 1 day, about 2 days, about 3 days, about 4 days, about 5 days, about 6 days, about 1 week, about 2 weeks, about 3 weeks, about 4 weeks, about 1 month, about 5 weeks, about 6 weeks, about 7 weeks, about 8 weeks, about 2 months, about 9 weeks, about 10 weeks, about 11 weeks, about 12 weeks, about 3 months, about 13 weeks, about 14 weeks, about 15 weeks, about 16 weeks, about 4 months, about 17 weeks, about 18 weeks, about 19 weeks, about 20 weeks, about 5 months, about 21 weeks, about 22 weeks, about 23 weeks, about 24 weeks, about 6 months, about 7 months, about 8 months, about 9 months, about 10 months, about 11 months, about 1 year, about 13 months, about 14 months, about 15 months, about 16 months, about 17 months, about 18 months, about 19 months, about 20 months, about 21 months, about 22 months about 23 months, about 2 years, about 2.5 years, about 3 years, about 3.5 years, about 4 years, about 4.5 years, about 5 years, about 6 years, about 7 years, about 8 years, about 9 years, or about 10 years. The length of treatment can vary for each subject.
Pharmaceutical compositions described herein can be in unit dosage forms suitable for single administration of precise dosages. In unit dosage form, the formulation is divided into unit doses containing appropriate quantities of one or more compounds. The unit dosage can be in the form of a package containing discrete quantities of the formulation. Non-limiting examples are packaged injectables, vials, or ampoules. Aqueous suspension compositions can be packaged in single-dose non-reclosable containers. Multiple-dose reclosable containers can be used, for example, in combination with or without a preservative. Formulations for injection can be presented in unit dosage form, for example, in ampoules, or in multi-dose containers with a preservative.
Pharmaceutical compositions provided herein, can be administered in conjunction with other therapies, for example, chemotherapy, radiation, surgery, anti-inflammatory agents, and selected vitamins. The other agents can be administered prior to, after, or concomitantly with the pharmaceutical compositions.
Depending on the intended mode of administration, the pharmaceutical compositions can be in the form of solid, semi-solid or liquid dosage forms, such as, for example, tablets, suppositories, pills, capsules, powders, liquids, suspensions, lotions, creams, or gels, for example, in unit dosage form suitable for single administration of a precise dosage.
For solid compositions, nontoxic solid carriers include, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, talc, cellulose, glucose, sucrose, and magnesium carbonate.
Non-limiting examples of pharmaceutically active agents suitable for combination with compositions of the disclosure include anti-infectives, i.e., aminoglycosides, antiviral agents, antimicrobials, anticholinergics/antispasmotics, antidiabetic agents, antihypertensive agents, antineoplastics, cardiovascular agents, central nervous system agents, coagulation modifiers, hormones, immunologic agents, immunosuppressive agents, and ophthalmic preparations.
Compounds can be delivered via liposomal technology. The use of liposomes as drug carriers can increase the therapeutic index of the compounds. Liposomes are composed of natural phospholipids, and can contain mixed lipid chains with surfactant properties (e.g., egg phosphatidylethanolamine). A liposome design can employ surface ligands for attaching to unhealthy tissue. Non-limiting examples of liposomes include the multilamellar vesicle (MLV), the small unilamellar vesicle (SUV), and the large unilamellar vesicle (LUV). Liposomal physicochemical properties can be modulated to optimize penetration through biological barriers and retention at the site of administration, and to reduce a likelihood of developing premature degradation and toxicity to non-target tissues. Optimal liposomal properties depend on the administration route: large-sized liposomes show good retention upon local injection, small-sized liposomes are better suited to achieve passive targeting. PEGylation reduces the uptake of the liposomes by the liver and spleen, and increases the circulation time, resulting in increased localization at the inflamed site due to the enhanced permeability and retention (EPR) effect. Additionally, liposomal surfaces can be modified to achieve selective delivery of the encapsulated drug to specific target cells. Non-limiting examples of targeting ligands include monoclonal antibodies, vitamins, peptides, and polysaccharides specific for receptors concentrated on the surface of cells associated with the disease.
Non-limiting examples of dosage forms suitable for use in the disclosure include liquid, elixir, nanosuspension, aqueous or oily suspensions, drops, syrups, and any combination thereof. Non-limiting examples of pharmaceutically-acceptable excipients suitable for use in the disclosure include granulating agents, binding agents, lubricating agents, disintegrating agents, sweetening agents, glidants, anti-adherents, anti-static agents, surfactants, anti-oxidants, gums, coating agents, coloring agents, flavoring agents, coating agents, plasticizers, preservatives, suspending agents, emulsifying agents, plant cellulosic material and spheronization agents, and any combination thereof.
Compositions of the disclosure can be packaged as a kit. In some embodiments, a kit includes written instructions on the administration/use of the composition. The written material can be, for example, a label. The written material can suggest conditions methods of administration. The instructions provide the subject and the supervising physician with the best guidance for achieving the optimal clinical outcome from the administration of the therapy. The written material can be a label. In some embodiments, the label can be approved by a regulatory agency, for example the U.S. Food and Drug Administration (FDA), the European Medicines Agency (EMA), or other regulatory agencies.
Dosing.
Pharmaceutical compositions described herein can be in unit dosage forms suitable for single administration of precise dosages. In unit dosage form, the formulation is divided into unit doses containing appropriate quantities of one or more compounds. The unit dosage can be in the form of a package containing discrete quantities of the formulation. Non-limiting examples are liquids in vials or ampoules. Aqueous suspension compositions can be packaged in single-dose non-reclosable containers. Multiple-dose reclosable containers can be used, for example, in combination with a preservative. Formulations for parenteral injection can be presented in unit dosage form, for example, in ampoules, or in multi-dose containers with a preservative.
A dose can be expressed in terms of an amount of the drug divided by the mass of the subject, for example, milligrams of drug per kilograms of subject body mass. A compound described herein can be present in a composition in a range of from about 1 mg to about 2000 mg; from about 100 mg to about 2000 mg; from about 10 mg to about 2000 mg; from about 5 mg to about 1000 mg, from about 10 mg to about 500 mg, from about 50 mg to about 250 mg, from about 100 mg to about 200 mg, from about 1 mg to about 50 mg, from about 50 mg to about 100 mg, from about 100 mg to about 150 mg, from about 150 mg to about 200 mg, from about 200 mg to about 250 mg, from about 250 mg to about 300 mg, from about 300 mg to about 350 mg, from about 350 mg to about 400 mg, from about 400 mg to about 450 mg, from about 450 mg to about 500 mg, from about 500 mg to about 550 mg, from about 550 mg to about 600 mg, from about 600 mg to about 650 mg, from about 650 mg to about 700 mg, from about 700 mg to about 750 mg, from about 750 mg to about 800 mg, from about 800 mg to about 850 mg, from about 850 mg to about 900 mg, from about 900 mg to about 950 mg, or from about 950 mg to about 1000 mg.
In some embodiments, a compound is administered in an amount ranging from about 5 mg/kg to about 50 mg/kg, 250 mg/kg to about 2000 mg/kg, about 10 mg/kg to about 800 mg/kg, about 50 mg/kg to about 400 mg/kg, about 100 mg/kg to about 300 mg/kg, or about 150 mg/kg to about 200 mg/kg. In some embodiments, a compound described herein can be present in a composition in a range of from about 20 mg/kg to about 400 mg/kg. In some embodiments, a compound described herein can be present in a composition in a range of from about 20 mg/kg to about 240 mg/kg. In some embodiments, a compound described herein can be present in a composition in a range of from about 75 mg/kg to about 150 mg/kg. In some embodiments, a compound described herein can be present in a composition in a range of from about 75 mg/kg to about 150 mg/kg. In some embodiments, a compound described herein can be present in a composition in a range of from about 100 mg/kg to about 150 mg/kg.
In some embodiments, a compound described herein can be present in a composition in an amount of about 75 mg/kg. In some embodiments, a compound described herein can be present in a composition in an amount of about 100 mg/kg. In some embodiments, a compound described herein can be present in a composition in an amount of about 150 mg/kg. In some embodiments, a compound described herein can be present in a composition in an amount of about 200 mg/kg. In some embodiments, a compound described herein can be present in a composition in an amount of about 250 mg/kg. In some embodiments, a compound described herein can be present in a composition in an amount of about 400 mg/kg.
A compound described herein can be present in a composition in an amount of about 1 mg, about 2 mg, about 3 mg, about 4 mg, about 5 mg, about 10 mg, about 15 mg, about 20 mg, about 25 mg, about 30 mg, about 35 mg, about 40 mg, about 45 mg, about 50 mg, about 55 mg, about 60 mg, about 65 mg, about 70 mg, about 75 mg, about 80 mg, about 85 mg, about 90 mg, about 95 mg, about 100 mg, about 125 mg, about 150 mg, about 175 mg, about 200 mg, about 250 mg, about 300 mg, about 350 mg, about 400 mg, about 450 mg, about 500 mg, about 550 mg, about 600 mg, about 650 mg, about 700 mg, about 750 mg, about 800 mg, about 850 mg, about 900 mg, about 950 mg, about 1000 mg, about 1050 mg, about 1100 mg, about 1150 mg, about 1200 mg, about 1250 mg, about 1300 mg, about 1350 mg, about 1400 mg, about 1450 mg, about 1500 mg, about 1550 mg, about 1600 mg, about 1650 mg, about 1700 mg, about 1750 mg, about 1800 mg, about 1850 mg, about 1900 mg, about 1950 mg, or about 2000 mg.
In some embodiments, a compound described herein can be present in a composition in an amount of about 100 mg, about 120 mg, about 140 mg, about 160 mg, about 180 mg, about 200 mg, about 220 mg, about 240 mg, about 260 mg, about 280 mg, or about 300 mg. In some embodiments, a compound described herein can be present in a composition in an amount of about 150 mg. In some embodiments, a compound described herein can be present in a composition in an amount of about 170 mg. In some embodiments, a compound described herein can be present in a composition in an amount of about 280 mg. In some embodiments, a compound described herein can be present in a composition in an amount of about 300 mg.
Methods of Use
In some embodiments, compounds of the invention can be used to treat cancer in a subject. A compound of the invention can, for example, slow the proliferation of cancer cell lines, or kill cancer cells. Non-limiting examples of cancer that can be treated by a compound of the invention include: acute lymphoblastic leukemia, acute myeloid leukemia, adrenocortical carcinoma, AIDS-related cancers, AIDS-related lymphoma, anal cancer, appendix cancer, astrocytomas, basal cell carcinoma, bile duct cancer, bladder cancer, bone cancers, brain tumors, such as cerebellar astrocytoma, cerebral astrocytoma/malignant glioma, ependymoma, medulloblastoma, supratentorial primitive neuroectodermal tumors, visual pathway and hypothalamic glioma, breast cancer, bronchial adenomas, Burkitt lymphoma, carcinoma of unknown primary origin, central nervous system lymphoma, cerebellar astrocytoma, cervical cancer, childhood cancers, chronic lymphocytic leukemia, chronic myelogenous leukemia, chronic myeloproliferative disorders, colon cancer, cutaneous T-cell lymphoma, desmoplastic small round cell tumor, endometrial cancer, ependymoma, esophageal cancer, Ewing's sarcoma, germ cell tumors, gallbladder cancer, gastric cancer, gastrointestinal carcinoid tumor, gastrointestinal stromal tumor, gliomas, hairy cell leukemia, head and neck cancer, heart cancer, hepatocellular (liver) cancer, Hodgkin lymphoma, Hypopharyngeal cancer, intraocular melanoma, islet cell carcinoma, Kaposi sarcoma, kidney cancer, laryngeal cancer, lip and oral cavity cancer, liposarcoma, liver cancer, lung cancers, such as non-small cell and small cell lung cancer, lymphomas, leukemias, macroglobulinemia, malignant fibrous histiocytoma of bone/osteosarcoma, medulloblastoma, melanomas, mesothelioma, metastatic squamous neck cancer with occult primary, mouth cancer, multiple endocrine neoplasia syndrome, myelodysplastic syndromes, myeloid leukemia, nasal cavity and paranasal sinus cancer, nasopharyngeal carcinoma, neuroblastoma, non-Hodgkin lymphoma, non-small cell lung cancer, oral cancer, oropharyngeal cancer, osteosarcoma/malignant fibrous histiocytoma of bone, ovarian cancer, ovarian epithelial cancer, ovarian germ cell tumor, pancreatic cancer, pancreatic cancer islet cell, paranasal sinus and nasal cavity cancer, parathyroid cancer, penile cancer, pharyngeal cancer, pheochromocytoma, pineal astrocytoma, pineal germinoma, pituitary adenoma, pleuropulmonary blastoma, plasma cell neoplasia, primary central nervous system lymphoma, prostate cancer, rectal cancer, renal cell carcinoma, renal pelvis and ureter transitional cell cancer, retinoblastoma, rhabdomyosarcoma, salivary gland cancer, sarcomas, skin cancers, skin carcinoma merkel cell, small intestine cancer, soft tissue sarcoma, squamous cell carcinoma, stomach cancer, T-cell lymphoma, throat cancer, thymoma, thymic carcinoma, thyroid cancer, trophoblastic tumor (gestational), cancers of unknown primary site, urethral cancer, uterine sarcoma, vaginal cancer, vulvar cancer, Waldenstrom macroglobulinemia, and Wilms tumor.
In some embodiments, the cancer is ovarian cancer. In some embodiments, the cancer is breast cancer. In some embodiments, the cancer is lung cancer. In some embodiments, the compounds of the invention show non-lethal toxicity.
Disclosed herein is a method of inducing apoptosis in a cell, the method comprising contacting the cell with a therapeutically-effective amount of a compound of the disclosure that binds a p53 mutant. Further disclosed herein is a method of inducing apoptosis in a cell, the method comprising contacting the cell with a therapeutically-effective amount of a compound of the disclosure that binds a p53 mutant.
In some embodiments, the compound increases the ability of the p53 mutant to bind DNA. In some embodiments, the cell expresses the p53. In some embodiments, the p53 mutant has a mutation at amino acid R248. In some embodiments, the p53 mutant is p53 R248Q. In some embodiments, the p53 mutant is p53 R248W. In some embodiments, the p53 mutant has a mutation at amino acid R273. In some embodiments, the p53 mutant is p53 R273C. In some embodiments, the p53 mutant is p53 R273H. In some embodiments, the compound selectively binds the p53 mutant as compared to a wild type p53.
In some embodiments, the compound increases the ability of the p53 mutant to bind DNA. In some embodiments, the compound increases a stability of a biologically-active conformation of a p53 mutant relative to a stability of the biologically-active conformation of the p53 mutant in an absence of the compound. In some embodiments, the compound selectively binds a p53 mutant as compared to a wild type p53.
In some embodiments, the therapeutically-effective amount is from about 50 mg to about 3000 mg. In some embodiments, the therapeutically-effective amount is about 600 mg. In some embodiments, the therapeutically-effective amount is about 1200 mg.
In some embodiments, the cancer is ovarian cancer. In some embodiments, the cancer is breast cancer. In some embodiments, the cancer is lung cancer. In some embodiments, the cancer is pancreatic cancer.
In some embodiments, the administration is oral. In some embodiments, the administration is intravenous. In some embodiments, the administration is subcutaneous. In some embodiments, the administration is topical.
A mixture of 8-aminonaphthalen-2-ol (8 g, 25.13 mmol, 1 eq) and Boc2O (5.48 g, 25.13 mmol, 5.77 mL, 1 eq) in dioxane (60 mL) was stirred at 100° C. for 7 hrs. The reaction mixture was concentrated. The residue was purified by column chromatography (SiO2, PE:EtOAc=6:1 to 4:1) to afford the title compound (11 g, 84.4% yield) as an off-white solid.
To a solution of tert-butyl N-(7-hydroxy-1-naphthyl)carbamate (2 g, 7.71 mmol, 1 eq) in THF (40 mL) were added K2CO3 (2.13 g, 15.43 mmol, 2 eq) and 1,1,1-trifluoro-N-phenyl-N-(trifluoro methylsulfonyl)methanesulfonamide (3.31 g, 9.26 mmol, 1.2 eq). The reaction was stirred at 60° C. for 3 hours. The reaction mixture was diluted with 30 mL of water and extracted with EtOAc (2×30 mL). The combined organic layer was washed with brine (2×25 mL), dried over anhydrous Na2SO4, filtered, and concentrated. The residue was purified by column chromatography (SiO2, PE:EtOAc=8/1 to 6:1) to afford the title compound (1.8 g, 59.6% yield) as a white solid.
To a solution of [8-(tert-butoxycarbonylamino)-2-naphthyl]trifluoromethanesulfonate (300 mg, 766.55 μmol, 1 eq) in DCM (10 mL) were added KOH (129 mg, 2.3 mmol, 3 eq), TBAI (141.5 mg, 383.28 μmol, 0.5 eq) and 2-(bromomethyl)prop-2-enenitrile (134.3 mg, 919.87 μmol, 1.2 eq) at 20° C. under N2. The mixture was stirred at 20° C. for 2 hrs. The reaction was filtered, and concentrated. The residue was purified by prep-TLC (SiO2, PE:EtOAc=4:1) to afford the title compound (270 mg, 77.2% yield) as a colorless gum.
To a mixture of [8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-2-naphthyl]trifluoromethane-sulfonate (120 mg, 262.91 μmol, 1 eq) and 3-pyridylboronic acid (38.8 mg, 315.49 μmol, 1.2 eq) in dioxane (2 mL) and H2O (0.5 mL) were added Na2CO3 (83.6 mg, 788.72 μmol, 3 eq) and Pd(dppf)Cl2 (76.9 mg, 105.16 μmol, 0.4 eq) under N2. The mixture was stirred at 110° C. for 30 min. The mixture was poured into saturated EDTA solution (30 mL) and diluted with 20 mL of EtOAc. The mixture was stirred at 25° C. for 1 h. The aqueous phase was extracted with EtOAc (3×20 mL). The combined organic phase was washed with brine (3×30 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1:1) to afford the title compound (60 mg, 59.2% yield) as a yellow gum.
To a solution of tert-butyl N-(2-cyanoallyl)-N-[7-(3-pyridyl)-1-naphthyl]carbamate (50 mg, 129.72 μmol, 1 eq) in DCM (5 mL) was added TFA (1.54 g, 13.51 mmol, 1 mL, 104.12 eq). The mixture was stirred at 20° C. for 1 h. The reaction was adjusted to pH=9 with saturated Na2CO3 and extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford the title compound (16.1 mg, 43.4% yield) as a white solid. 286.1 [(M+H)+].
To a solution of [8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-2-naphthyl]trifluoromethane-sulfonate (100 mg, 219.09 μmol, 1 eq) in DMF (3 mL) were added CuI (41.7 mg, 219.09 μmol, 1 eq), tributyl(2-pyridyl)stannane (806.6 mg, 2.19 mmol, 10 eq) and Pd(PPh3)4 (50.6 mg, 43.82 μmol, 0.2 eq). The mixture was stirred at 120° C. for 90 min. The mixture was poured into saturated EDTA solution (30 mL) and diluted with 20 mL of EtOAc. The mixture was stirred for 1 h. The aqueous phase was extracted with EtOAc (3×20 mL). The combined organic phase was washed with brine (3×30 mL), dried with anhydrous Na2SO4 and concentrated in vacuo. The residue was purified by prep-TLC (PE:EtOAc=1:1) to afford the title compound (60 mg, 71.1% yield) as a yellow oil.
To a solution of tert-butyl N-(2-cyanoallyl)-N-[7-(2-pyridyl)-1-naphthyl]carbamate (50 mg, 129.72 μmol, 1 eq) in DCM (5 mL) was added TFA (1.54 g, 13.51 mmol, 1 mL, 104.12 eq). The mixture was stirred at 20° C. for 1 h. The reaction was adjusted to pH=9 with saturated Na2CO3 and extracted with EtOAc (2×20 mL). The combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:Methanol=20:1) and prep-HPLC to afford the title compound (7.4 mg, 20% yield) as a colorless oil. LC-MS (ES+, m/z) 286.1 [(M+H)+].
[8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-2-naphthyl]trifluoromethane-sulfonate (150 mg, 328.63 μmol, 1 eq), N-(2-bromopyridin-4-yl)acetamide (91.87 mg, 427.22 μmol, 1.3 eq), K2CO3 (90.84 mg, 657.27 μmol, 2 eq), Pd(dppf)Cl2 (48.09 mg, 65.73 μmol, 0.2 eq), and Pin2B2 (125.18 mg, 492.95 μmol, 1.5 eq) were added to a microwave tube in dioxane (2 mL) and H2O (0.5 mL). The sealed tube was heated at 90° C. for 30 min. LCMS showed that the reaction was complete. 20 mL of EtOAc was poured into the mixture, which was then poured into a 2 N EDTA solution (30 mL) and stirred for 1 h. The aqueous phase was extracted with EtOAc (20 mL×3). The combined organic phase was washed with brine (30 mL×3), dried with anhydrous Na2SO4 and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=20:1) to afford the title compound (40 mg, 54.24 μmol, 16.50% yield, 60% purity) as a yellow gum.
TABLE 1 shows compounds prepared using the methods of EXAMPLE 1.
To a mixture of 7-bromonaphthalen-2-ol (1 g, 44.83 mmol, 1 eq) in DMF (100 mL) was added K2CO3 (12.39 g, 89.66 mmol, 2 eq). Then MeI (7.64 g, 53.8 mmol, 3.35 mL, 1.2 eq) was added to the mixture. The mixture was stirred at 20° C. for 5 h. The reaction mixture was poured into ice-water (200 mL). The aqueous phase was extracted with EtOAc (3×100 mL). The combined organic phase was washed with brine (3×100 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The crude was used directly in the next step without further purification. 2-bromo-7-methoxy-naphthalene (10.6 g, crude) was obtained as a white solid.
To a mixture of 2-bromo-7-methoxy-naphthalene (7 g, 1 eq) in Ac2O (70 mL, 50.63 eq) was added HNO3 (3.41 g, 1.57 mL, 1.1 eq) at 0° C. The mixture was stirred at 0° C. for 4 h. The product was obtained by filtration. The title compound was obtained (7 g, crude) as a yellow solid, which was used directly without any purification. (80% yield).
To 7-bromo-2-methoxy-1-nitro-naphthalene (7 g, 1 eq) in EtOH (40 mL) and H2O (10 mL) was added NH4Cl (1.26 g, 1 eq). Then Fe (6.58 g, 5 eq) was added to the mixture at 80° C. and stirred at 80° C. for 1 h. The reaction was filtered, and the liquid was poured into ice-water (300 mL). The aqueous phase was extracted with EtOAc (3×100 mL). The combined organic phase was washed with brine (3×100 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The crude was without purification, crude used directly. The title compound was obtained (6 g, crude) as a brown solid.
To 7-bromo-2-methoxy-naphthalen-1-amine (2 g, 1 eq) in MeOH (20 mL, 62.30 eq) was added Boc2O (17.31 g, 10 eq) at 20° C. The mixture was stirred at 80° C. for 4 h. The reaction was concentrated in vacuo, and the resulting solid was the desired product. The residue was purified by silica gel chromatography (PE:EtOAc=3:1). The title compound was obtained as a brown solid. (2.3 g, 82%).
To a solution of tert-butyl (7-bromo-2-methoxynaphthalen-1-yl)carbamate (1.9 g, 5.39 mmol, 1 eq) in DCM (19 mL) were added KOH (605.3 mg, 10.79 mmol, 2 eq) and TBAI (398.5 mg, 1.08 mmol, 0.2 eq). Then, 2-(bromomethyl)prop-2-enenitrile (866.2 mg, 5.93 mmol, 1.1 eq) was added to the reaction. The reaction was stirred at 15° C. for 1 h. The reaction was poured into ice-water (30 mL). The aqueous phase was extracted with DCM (3×40 mL). The combined organic phase was washed with water (3×40 mL) and brine (3×30 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The crude was washed with PE:EtOAc=30:1 (40 mL) and filtered. The filter cake was obtained as an off-white solid (1.9 g, 4.55 mmol, 84.41% yield).
To a mixture of (BPin)2 (5.48 g, 21.57 mmol, 3 eq) and tert-butyl N-(7-bromo-2-methoxy naphthalen-1-yl)-N-(2-cyano-2-methylideneethyl)carbamate (3. g, 7.19 mmol, 1 eq) in dioxane (50 mL) were added KOAc (2.12 g, 21.57 mmol, 3 eq) and Pd(dppf)Cl2 (454.6 mg, 621.21 μmol, 8.64 eq). The mixture was heated to 120° C. and stirred for 6 hours under N2 atmosphere. The reaction was filtered, and concentrated in vacuo. The residue was purified by silica gel chromatography (PE:EtOAc=4:1). The title compound was obtained as a white solid (2.8 g, 6.03 mmol, 83.87% yield).
General Procedure for Suzuki Coupling:
To a mixture of tert-butyl N-(2-cyano-2-methylideneethyl)-N-[2-methoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-yl]carbamate (73 mg, 157 μmol), aryl bromide (1.2 eq) in dioxane (1 mL) and H2O (0.25 mL) were added Na2CO3 (50.1 mg, 472.92 μmol, 3 eq) and Pd(dppf)Cl2 (5.8 mg, 7.88 μmol, 0.05 eq) under N2. The mixture was stirred for 0.5 h at 120° C. under N2. The reaction was poured into saturated EDTA (50 mL) and stirred for 2 h. The aqueous phase was extracted with EtOAc (3×30 mL). The combined organic phase was washed with brine (3×30 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The crude was purified by prep-HPLC (basic) and purified by prep-TLC (SiO2, PE:EtOAc=1:1) to afford the title compound in yields ranging from 8-79%.
General Procedure for Boc Deprotection
The Boc derivative (30 mg, 1 eq) was dissolved in DCM (2 mL), and TFA (0.4 mL) was added at 25° C. The mixture was stirred at 25° C. for 1 h. Upon completion of the reaction as indicated by HPLC, the mixture was poured into a saturated Na2CO3 solution (20 mL, pH>8), and the aqueous phase was extracted with DCM (3×30 mL). The combined organic phase was washed with brine (3×30 mL), dried with anhydrous Na2SO4. Then concentrated in vacuo. The residue was purified by prep-HPLC and lyophilized to afford the product.
To a solution of tert-butyl N-(7-bromo-2-methoxy-1-naphthyl)-N-(2-cyanoallyl) carbamate (60 mg, 144 μmol) in dioxane (2 mL) and water (0.4 mL) were added 2-chloro-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-amine (54.9 mg, 216 μmol), Cs2CO3 (140.4 mg, 432 μmol) and PdCl2dppf (20 mg, 24.51 μmol). The reaction was heated at 100° C. for 40 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 30 minutes. The solution was washed with brine, dried over anhydrous sodium sulfate and the solvent was removed in vacuo. The residue was purified by chromatography on silica gel eluting with 0-60% EtOAc/Hexane to afford the title compound (67 mg, Yield 100%).
To a solution of tert-butyl N-[7-(5-amino-6-chloro-2-pyridyl)-2-methoxy-1-naphthyl]-N-(2-cyanoallyl) carbamate (67 mg, 144.1 μmol) in DCM (2 mL) was added TFA (0.5 mL) at 0° C. The resulting solution was stirred at 0° C. for 1 hour and at r.t. for 1 h. The reaction mixture was concentrated in vacuo and the residue was diluted with DCM, washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (12.7 mg, Yield 24%). LC-MS (ES+, m/z): 364.9 [(M+H)+]
To a mixture of 6-chloro-4-acetamido-N-methylpyridine-2-carboxamide (50.9 mg, 223.96 μmol, 1.3 eq), tert-butyl N-(2-cyano-2-methylideneethyl)-N-[2-methoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-yl]carbamate (80 mg, 172.28 μmol, 1 eq) in dioxane (3 mL), H2O (0.75 mL) was added Na2CO3 (36.5 mg, 344.56 μmol, 2 eq), Pd(dppf)Cl2 (12.6 mg, 17.23 μmol, 0.1 eq) at 25° C. The mixture was stirred at 110° C. for 3 h. Upon completion of the reaction as indicated by LCMS, 20 mL of EtOAc was poured into the mixture. The mixture was poured into saturated EDTA solution (20 mL) and stirred for 1 h. The aqueous phase was extracted with EtOAc (3×30 mL). The combined organic phase was washed with brine (3×30 mL), dried with anhydrous Na2SO4. Then concentrated in vacuo. The residue was purified by prep-TLC (EtOAc). The title compound was obtained (50 mg, 84.97 μmol, 49.32% yield, 90% purity) as a colorless oil.
Tert-butyl N-(2-cyano-2-methylideneethyl)-N-{7-[4-acetamido-6-(methylcarbamoyl)pyridin-2-yl]-2-methoxynaphthalen-1-yl}carbamate (30 mg, 50.98 μmol, 1 eq) was dissolved in DCM (2 mL). Then TFA (0.4 mL) was added at 25° C. The mixture was stirred at 25° C. for 1 h. HPLC showed that the reaction was complete. The mixture was poured into saturated Na2CO3 solution (20 mL) and adjusted to pH>8, and the aqueous phase was extracted with DCM (3×30 mL). The combined organic phase was washed with brine (3×30 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford the title compound (12.2 mg, 28 μmol, 54.93% yield, 98.584% purity) as a yellow solid.
A mixture of 3-bromo-5-(trifluoromethoxy)benzoic acid (500 mg, 1.953 mmol), HATU (1.33 g, 3.506 mmol) and DIPEA (1.13 g, 8.77 mmol) in DMF (8 mL) was stirred at r.t. for 30 min. Methylamine (2 M, 4.39 mL, 8.77 mmol) was then added, and the resulting mixture was stirred at r.t. for 18 h and partitioned between EtOAc and water. The aqueous phase was extracted with EtOAc (3×). The combined organic phase was washed with saturated NaHCO3 and brine, dried over (MgSO4), filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 0-50% EtOAc/Hexane to afford the title compound (0.331 g, Yield 63%).
To a solution of 3-bromo-N-methyl-5-(trifluoromethoxy)benzamide (100 mg, 335.51 μmol) in dioxane (2 mL) were added 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (128 mg, 503 μmol), KOAc (99 mg, 1.008 mmol) and PdCl2dppf (40 mg, 49.02 μmol). The reaction was heated at 100° C. for 30 min in a microwave. The reaction mixture was passed through a celite pad, and the solvent was removed in vacuo. The residue was purified by chromatography on silica gel eluting with 0-20% MeOH/DCM to afford the title compound (73.7 mg, Yield 100%).
To a solution of tert-butyl N-(7-bromo-2-methoxy-1-naphthyl)-N-(2-cyanoallyl) carbamate (60 mg, 144 μmol) in dioxane (2 mL) and water (0.4 mL) were added N-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-(trifluoromethoxy)benzamide (42.9 mg, 124.3 μmol), Cs2CO3 (0.14 g, 430.77 μmol), and PdCl2dppf (20 mg, 24.51 μmol). The reaction was heated at 100° C. for 40 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 40 min. The solution was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 0-60% EtOAc/Hexane to afford the title compound (36.7 mg, Yield 46%).
To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-[3-(methylcarbamoyl)-5-(trifluoromethoxy)phenyl]-1-naphthyl]carbamate (36.7 mg, 66 μmol) in DCM (2 mL) was added TFA (0.5 mL) at 0° C. The resulting solution was stirred at 0° C. for 1 hour and at r.t. for 1 h. The reaction mixture was concentrated in vacuo, and the residue was diluted with DCM, washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (23.6 mg, Yield 78%). LC-MS (ES+, m/z): 455.9 [(M+H)+].
To a solution of tert-butyl N-(7-bromo-2-methoxy-1-naphthyl)-N-(2-cyanoallyl)carbamate (50 mg, 119.82 μmol) in dioxane (2 mL) and water (0.4 mL) were added 1-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyrazole (37.4 mg, 179.75 μmol), Cs2CO3 (0.117 g, 36 μmol) and PdCl2dppf (18 mg, 119.82 μmol). The reaction was heated at 100° C. for 40 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 40 min. The solution was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 0-80% EtOAc/Hexane to afford the title compound (50.2 mg, Yield 100%).
To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-(1-methylpyrazol-4-yl)-1-naphthyl]carbamate (50.2 mg, 12 μmol) in DCM (2 mL) was added TFA (0.5 mL) at 0° C. The resulting solution was stirred at 0° C. for 1 hour and r.t. for 1 h. The reaction mixture was concentrated in vacuo, and the residue was diluted with DCM. The solution was washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by chromatography on silica gel eluting with 40-90% EtOAc/Hexane to afford the title compound (11 mg, Yield 29%). LC-MS (ES+, m/z): 319 [(M+H)+].
To a solution of tert-butyl N-(7-bromo-2-methoxy-1-naphthyl)-N-(2-cyanoallyl)carbamate (50 mg, 119.82 μmol) in dioxane (2 mL) and water (0.4 mL) were added 3-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indazole (45.9 mg, 177.82 μmol), Cs2CO3 (0.117 g, 36 μmol), and PdCl2dppf (18 mg, 119.82 μmol). The reaction was heated at 100° C. for 40 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 40 min and washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 0-70% EtOAc/Hexane to afford the title compound (35 mg, Yield 62%).
To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-(3-methyl-1H-indazol-5-yl)-1-naphthyl]carbamate (35 mg, 75 μmol) in DCM (2 mL) was added TFA (0.5 mL) at 0° C. The resulting solution was stirred at 0° C. for 1 hour and r.t. for 1 h. The reaction mixture was concentrated in vacuo, and the residue was diluted with DCM. The solution was washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by chromatography on silica gel eluting with 20-80% EtOAc/Hexane to afford the title compound (13.9 mg, Yield 50%). LC-MS (ES+, m/z): 369 [(M+H)+].
A mixture of 5-bromopyridine-3-carboxylic acid (200 mg, 990.07 μmol), HATU (0.564 g, 1.48 mmol) and DIPEA (0.51 g, 3.95 mmol) in DMF (4 mL) was stirred at r.t. for 30 min. Methylamine (2 M, 0.99 mL, 1.98 mmol) was added. The resulting mixture was stirred at r.t. for 18 h and partitioned between EtOAc and water. The aqueous phase was extracted with EtOAc (3×). The combined organic phase was washed with saturated NaHCO3 and brine, dried over (MgSO4), filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 20-100% EtOAc/Hexane to afford the title compound (0.12 g, Yield 57%).
To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate (60 mg, 129.21 μmol) in dioxane (2 mL) and water (0.4 mL) were added 5-bromo-N-methyl-pyridine-3-carboxamide (41.9 mg, 194.84 μmol), Cs2CO3 (0.125 g, 384.62 μmol), and PdCl2dppf (18 mg, 22.06 μmol). The reaction was heated at 100° C. for 30 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 40 min. The solution was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 20-100% EtOAc/Hexane to afford the title compound (60 mg, Yield 98%).
To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-[5-(methylcarbamoyl)-3-pyridyl]-1-naphthyl]carbamate (57.7 mg, 122 μmol) in DCM (2 mL) was added TFA (0.5 mL) at 0° C. The resulting solution was stirred at 0° C. for 1 hour and r.t. for 1 h. The reaction mixture was concentrated in vacuo and the residue was diluted with DCM. The solution was washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (5 mg, Yield 11%). FC-MS (ES+, m/z): 373 [(M+H)+].
A mixture of 6-bromopyridine-2-carboxylic acid (200 mg, 990.07 μmol), EDCI (228 mg, 1.19 mmol) and HOBt (160.60 mg, 1.19 mmol) in DMF (4 mL) was stirred at r.t. for 30 min. Tetrahydropyran-4-amine (150.20 mg, 1.48 mmol) was added. The resulting mixture was stirred at r.t. for 18 h and partitioned between EtOAc and water. The aqueous phase was extracted with EtOAc (3×). The combined organic phase was washed with saturated NaHCO3 and brine, dried over (MgSO4), filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 0-20% MeOH/EtOAc to afford the title compound (0.217 g, Yield 75%).
To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate (50 mg, 108 μmol) in dioxane (2 mL) and water (0.4 mL) were added 6-bromo-N-tetrahydropyran-4-yl-pyridine-2-carboxamide (46 mg, 162 μmol), Cs2CO3 (105 mg, 324 μmol) and PdCl2dppf (18 mg, 22.06 μmol). The reaction was heated at 100° C. for 30 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 40 min. The solution was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 10-100% EtOAc/Hexane to afford the title compound (55.6 mg, Yield 97%).
To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-[6-(tetrahydropyran-4-ylcarbamoyl)-2-pyridyl]-1-naphthyl]carbamate (55.6 mg, 102.47 μmol) in DCM (2 mL) was added TFA (0.5 mL) at 0° C. The resulting solution was stirred at 0° C. for 1 hour and r.t. for 1 h. The reaction mixture was concentrated in vacuo and the residue was diluted with DCM. The solution was washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by chromatography on silica gel eluting with 10-80% EtOAc/Hexane to afford the title compound (37.8 mg, Yield 83%). LC-MS (ES+, m/z): 443 [(M+H)+].
A mixture of 6-bromopyridine-2-carboxylic acid (200 mg, 990.07 μmol), EDCI (380 mg, 1.98 mmol), HOBt (268 mg, 1.98 mmol), and pyridine (235 mg, 2.97 mmol) in DMF (4 mL) was stirred at r.t. for 30 min. Cyclopentanamine (169 mg, 1.98 mmol) was added. The resulting mixture was stirred at r.t. for 18 h and partitioned between EtOAc and water. The aqueous phase was extracted with EtOAc (3×). The combined organic phase was washed with saturated NaHCO3 and brine, dried over (MgSO4), filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 0-80% EtOAc/Hexane to afford the title compound (0.242 g, Yield 91%).
To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate (50 mg, 107.68 μmol) in dioxane (2 mL) and water (0.4 mL) were added 6-bromo-N-cyclopentyl-pyridine-2-carboxamide (43.6 mg, 162 μmol), Cs2CO3 (105.3 mg, 324 μmol), and PdCl2dppf (18 mg, 22.06 μmol). The reaction was heated at 100° C. for 30 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 40 min. The solution was washed with brine, dried over anhydrous sodium sulfate and the solvent was removed in vacuo. The residue was purified by chromatography on silica gel eluting with 0-40% EtOAc/Hexane to afford the title compound (56.8 mg, Yield 100%).
To a solution of tert-butyl N-(2-cyanoallyl)-N-[7-[6-(cyclopentylcarbamoyl)-2-pyridyl]-2-methoxy-1-naphthyl]carbamate (56.8 mg, 107.86 μmol) in DCM (2 mL) was added TFA (0.5 mL) at 0° C. The resulting solution was stirred at 0° C. for 1 hour and r.t. for 1 h. The reaction mixture was concentrated in vacuo and the residue was diluted with DCM. The solution was washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by chromatography on silica gel eluting with 0-40% EtOAc/Hexane to afford the title compound (24.1 mg, Yield 52%). LC-MS (ES+, m/z): 427 [(M+H)+].
To a mixture of 1-methylpiperidine-3-carboxylic acid (222 mg, 1.55 mmol), 2-bromopyridin-4-amine (402 mg, 2.32 mmol) and Et3N (0.78 g, 7.72 mmol) in DMF (4 mL) was added propanephosphonic acid anhydride (T3P, 50 wt % in EtOAc, 2.06 mL, 2.32 mmol). The resulting mixture was stirred at r.t. for 18 h and partitioned between EtOAc and water. The aqueous phase was extracted with EtOAc (3×). The combined organic phase was washed with saturated NaHCO3 and brine, dried over (MgSO4), filtered, and concentrated in vacuo. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (0.182 g, Yield 39%).
To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate (50 mg, 107.68 μmol) in dioxane (2 mL) and water (0.4 mL) were added N-(2-bromo-4-pyridyl)-1-methyl-piperidine-3-carboxamide (48.2 mg, 161.65 μmol), Cs2CO3 (105 mg, 323.08 μmol), and PdCl2dppf (18 mg, 22.06 μmol). The reaction was heated at 100° C. for 30 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 30 min. The solution was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 0-40% MeOH/EtOAc/3% Et3N to afford the title compound (35 mg, Yield 58%).
To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-[4-[(l-methylpiperidine-3-carbonyl)amino]-2-pyridyl]-1-naphthyl]carbamate (35 mg, 63 μmol) in DCM (2 mL) was added TFA (0.5 mL) at 0° C. The resulting solution was stirred at 0° C. for 1 hour and r.t. for 1 h. The reaction mixture was concentrated in vacuo, and the residue was diluted with DCM. The solution was washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (20 mg, Yield 70%). LC-MS (ES+, m/z): 456.2 [(M+H)+].
A mixture of 6-bromopyridine-2-carboxylic acid (300 mg, 1.49 mmol), tert-butyl (3R)-3-aminopiperidine-1-carboxylate (595 mg, 2.97 mmol) and Et3N (450 mg, 4.46 mmol) in DMF (4 mL) was added T3P (50 wt % in EtOAc, 1.98 mL, 2.97 mmol). The resulting mixture was stirred at r.t. for 18 h and partitioned between EtOAc and water. The aqueous phase was extracted with EtOAc (3×). The combined organic phase was washed with saturated NaHCO3 and brine, dried over (MgSO4), filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 0-60% EtOAc/Hexane to afford the title compound (571 mg, Yield 100%).
To a solution of tert-butyl (3R)-3-[(6-bromopyridine-2-carbonyl)amino]piperidine-1-carboxylate (571 mg, 1.486 mmol) in DCM (10 mL) was added TFA (2 mL) at 0° C. The resulting solution was stirred at 0° C. for 1 hour and r.t. for 1 h. The reaction mixture was concentrated in vacuo and the residue was diluted with DCM, washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The crude residue (0.2 g, 47%) was used in the next step without further purification.
To a mixture of 6-bromo-N-[(3R)-3-piperidyl]pyridine-2-carboxamide (200 mg, 703.85 μmol) and Et3N (142 mg, 1.41 mmol) in DCM (5 mL) at 0° C. was added a solution of acetyl chloride (60.7 mg, 773.27 μmol) in DCM (1 mL). The resulting mixture was stirred at r.t. for 2 h. The reaction mixture was concentrated in vacuo and the residue was diluted with EtOAc, washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by chromatography on silica gel eluting with 0-20% MeOH/EtOAc to afford the title compound (0.147 g, Yield 64%).
To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate (40 mg, 86.14 μmol) in dioxane (2 mL) and water (0.4 mL) were added N-[(3R)-1-acetyl-3-piperidyl]-6-bromo-pyridine-2-carboxamide (42.2 mg, 129.37 μmol), Cs2CO3 (83.99 mg, 258.42 μmol) and PdCl2dppf (18 mg, 22.06 μmol). The reaction was heated at 100° C. for 30 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 30 min. The solution was then washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 0-30% MeOH/EtOAc to afford the title compound (41.6 mg, Yield 100%).
To a solution of tert-butyl N-[7-[6-[[(3R)-1-acetyl-3-piperidyl]carbamoyl]-2-pyridyl]-2-methoxy-1-naphthyl]-N-(2-cyanoallyl)carbamate (41.6 mg, 71 μmol) in DCM (2 mL) was added TFA (0.5 mL) at 0° C. The resulting solution was stirred at 0° C. for 1 hour and r.t. for 1 h. The reaction mixture was concentrated in vacuo and the residue was diluted with DCM. The solution was washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by reverse phase HPLC using a gradient of water 0.1% LA/acetonitrile 0.1% PA to afford the title compound (10 mg, Yield 29%). (ES+, m/z): 484.2.
To a mixture of 1-methylpyrrolidine-3-carboxylic acid (200 mg, 1.548 mmol), 2-bromo-pyridin-4-amine (402 mg, 2.32 mmol) and Et3N (391 mg, 7.74 mmol) in DMF (4 mL) was added T3P (50 wt %, 2.06 mL, 2.32 mmol). The resulting mixture was stirred at r.t. for 18 h and partitioned between EtOAc and water. The aqueous phase was extracted with EtOAc (3×). The combined organic phase was washed with saturated NaHCO3 and brine, dried over (MgSO4), filtered, and concentrated in vacuo. The residue was purified by chromatography on C1-8 column eluting a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (163 mg, Yield 37%).
To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate (40 mg, 86.14 μmol) in dioxane (2 mL) and water (0.4 mL) were added N-(2-bromo-4-pyridyl)-1-methyl-pyrrolidine-3-carboxamide (36.7 mg, 129.16 μmol), Cs2CO3 (84 mg, 258.46 μmol) and PdCl2dppf (18 mg, 22.06 μmol). The reaction was heated at 100° C. for 30 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 30 min. The solution was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 0-30% MeOH/EtOAc/5% Et3N to afford the title compound (34.3 mg, Yield 74%).
To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-[4-[(l-methylpyrrolidine-3-carbonyl)amino]-2-pyridyl]-1-naphthyl]carbamate (34.3 mg, 63 μmol) in DCM (2 mL) was added TFA (0.5 mL) at 0° C. The resulting solution was stirred at 0° C. for 1 hour and r.t. for 1 h. The reaction mixture was concentrated in vacuo, and the residue was diluted with DCM, washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (5 mg, Yield 17.9%). (ES+, m/z): 442.2.
To a solution of 6-bromopyridine-2-carboxylic acid (0.5 g, 2.49 mmol) in DMF (5 mL) were added HATU (1.04 g, 2.74 mmol) and triethylamine (0.7 mL, 5 mmol). The solution was stirred for 5 minutes at r.t. Then, 2-(4-aminopiperidin-1-yl)ethan-1-ol (334 mg, 2.74 mmol) in DMF (5 mL) was added, and the reaction mixture was stirred at r.t. for 4 hours. The resulting solution was diluted with water and extracted with EtOAc (2×). The combined organic phase was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The crude material was purified by column chromatography. The desired product was eluted with 30% MeOH-65% EtOAc-5% TEA to afford an oil (220 mg, 27% yield).
To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate (40 mg, 86.14 μmol) in dioxane (2 mL) and water (0.4 mL) were added 6-bromo-N-[l-(2-hydroxyethyl)-4-piperidyl]pyridine-2-carboxamide (42.4 mg, 129.19 μmol), Cs2CO3 (84 mg, 258.46 μmol) and PdCl2dppf (18 mg, 22.06 μmol). The reaction was heated at 100° C. for 30 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 40 min. The solution was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 10-50% MeOH/EtOAc/2.5% Et3N to afford the title compound (40.7 mg, Yield 81%).
To a solution of tert-butyl N-(2-cyanoallyl)-N-[7-[6-[[1-(2-hydroxyethyl)-4-piperidyl]carbamoyl]-2-pyridyl]-2-methoxy-1-naphthyl]carbamate (40.7 mg, 69.49 μmol) in DCM (2 mL) was added TFA (0.5 mL) at 0° C. The resulting solution was stirred at 0° C. for 1 hour and r.t. for 1 h. The reaction mixture was concentrated in vacuo and the residue was diluted with DCM, washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (21.2 mg, Yield 63%). LC-MS (ES+, m/z): 486 [(M+H)+]. Preparation of 6-bromo-N-[l-(2-methoxyethyl)piperidin-4-yl]pyridine-2-carboxamide
To a solution of 6-bromopyridine-2-carboxylic acid (0.5 g, 2.49 mmol) in DMF (5 mL) were added HATU (1.04 g, 2.74 mmol) and triethylamine (0.7 mL, 5 mmol). The solution was stirred for 5 minutes at r.t. Then, l-(2-methoxyethyl)piperidin-4-amine (433 mg, 2.74 mmol) in DMF (5 mL) was added, and the reaction mixture was stirred at r.t. for 4 hours. The resulting solution was diluted with water and extracted with EtOAc (2×). The combined organic phase was washed with brine, dried over anhydrous sodium sulfate, and concentrated in vacuo. The crude material was purified by column chromatography. The desired product was eluted with 30% MeOH-65% EtOAc-5% TEA to afford an oil (810 mg, 95% yield).
To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate (40 mg, 86.14 μmol) in dioxane (2 mL) and water (0.4 mL) were added 6-bromo-N-[1-(2-methoxyethyl)-4-piperidyl]pyridine-2-carboxamide (44.1 g, 128.86 mmol), Cs2CO3 (84 mg, 258.46 μmol), and PdCl2dppf (18 mg, 22.06 μmol). The reaction was heated at 100° C. for 30 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 40 min. The solution was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 0-20% MeOH/EtOAc to afford the title compound (51.5 mg, Yield 100%).
To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-[6-[[l-(2-methoxyethyl)-4-piperidyl]carbamoyl]-2-pyridyl]-1-naphthyl]carbamate (51.5 mg, 85.9 μmol) in DCM (2 mL) was added TFA (0.5 mL) at 0° C. The resulting solution was stirred at 0° C. for 1 hour and r.t. for 1 h. The reaction mixture was concentrated in vacuo, and the residue was diluted with DCM, washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (13 mg, Yield 31%). %). FC-MS (ES+, m/z): 500 [(M+H)+].
To a solution of tert-butyl N-(2-cyano-2-methylideneethyl)-N-[2-methoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-yl]carbamate (130 mg, 279.96 μmol, 1 eq), 2-bromopyridin-4-amine (65 mg, 375.7 μmol, 1.34 eq) in dioxane (4 mL) and H2O (1 mL) were added Pd(dppf)Cl2 (20.5 mg, 28 μmol, 0.1 eq) and Na2CO3 (89 mg, 839.87 μmol, 3 eq). The reaction was then stirred at 120° C. for 60 min under N2 atmosphere. The reaction was extracted with DCM:MeOH=10:1 (5×20 mL). The combined organic layer was washed with brine (2×10 mL), dried over Na2SO4, filtrated, and concentrated. The crude was purified by prep-TLC (SiO2, DCM/MeOH=10:1, Rf=0.1). The title compound was obtained as a yellow oil (80 mg, 185.83 μmol, 66.38% yield).
To a solution of tert-butyl N-[7-(4-aminopyridin-2-yl)-2-Methoxynaphthalen-1-yl]-N-(2-cyano-2-methylideneethyl)carbamate (150 mg, 348.43 μmol, 1 eq), iodobenzene (138.5 mg, 678.71 μmol, 75.66 μL, 1.95 eq) in dioxane (4.5 mL) was added Cs2CO3 (340.6 mg, 1.05 mmol, 3 eq). BINAP (43.4 mg, 69.69 μmol, 0.2 eq) and Pd2(dba)3 (31.9 mg, 34.84 μmol, 0.1 eq) were then added to the reaction. The reaction was stirred at 120° C. for 1 h under N2 atmosphere. Upon completion of the reaction as indicated by TLC, 30 mL saturated EDTA and 20 mL DCM were added to the reaction. Then the reaction was stirred at 15° C. for 1 h, and the reaction mixture was then extracted with DCM (3×20 mL). The combined organic layer was washed with brine (3×20 mL), dried over Na2SO4, filtered, and concentrated. The crude was purified by prep-TLC (SiO2, DCM:MeOH=15:1, Rf=0.5) to afford the title compound as a yellow oil (40 mg, 67.11 μmol, 19.26% yield, 85% purity).
To a solution of tert-butyl N-(2-cyano-2-methylideneethyl)-N-{2-Methoxy-7-[4-(phenylamino)pyridine-2-yl]naphthalen-1-yl}carbamate (40 mg, 78.96 μmol, 1 eq) in DCM (3 mL) was added TFA (0.6 mL). Then the reaction was stirred at 15° C. for 0.5 h. Upon completion of the reaction as indicated by LCMS and TLC. The reaction was poured into saturated NaHCO3 (30 mL) to adjust PH to 8-9, and extracted with DCM (4×10 mL). The combined organic layer was washed with brine (3×10 mL), dried over Na2SO4, filtrated, and concentrated to afford crude product. The crude was purified by prep-HPLC to obtain the title compound was obtained as a yellow solid (7.1 mg, 17.17 μmol, 21.75% yield). LC-MS (ES+, m/z): 407.1 [(M+H)+].
To a mixture of tert-butyl N-(2-cyano-2-methylideneethyl)-N-[2-methoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-yl]carbamate (1 g, 2.15 mmol, 1 eq) and methyl 2-amino-5-bromo-pyridine-3-carboxylate (547.3 mg, 2.37 mmol, 1.1 eq) in dioxane (8 mL) and H2O (2 mL) were added Na2CO3 (684.8 mg, 6.46 mmol, 3 eq) and Pd(dppf)Cl2 (78.8 mg, 107.68 μmol, 0.05 eq) under N2, and the mixture was stirred for 0.5 h at 120° C. The reaction was poured into saturated EDTA (200 mL) and stirred for 2 h. The aqueous phase was extracted with EtOAc (3×50 mL). The combined organic phase was washed with brine (3×50 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The crude was purified by silica gel chromatography to afford the title compound (560 mg, 1.15 mmol, 53.23% yield) as a white solid.
To TFA (5 mL) and DCM (5 mL) was added methyl 2-amino-5-(8-{[(tert-butoxy)carbonyl] (2-Cyano-2-methylideneethyl)amino}-7-Methoxynaphthalen-2-yl)pyridine-3-carboxylate (500 mg, 1.02 mmol, 1 eq). Then the mixture was stirred for 0.5 h at 20° C. Upon completion of the reaction as indicated by LCMS and TLC. The residue was poured into ice-water (100 mL) and saturated Na2CO3 was added to the mixture at 0° C. to adjust the pH to 8˜9. The aqueous phase was extracted with DCM (3×50 mL), and the combined organic phase was washed with brine (3×50 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The crude was purified by silica gel chromatography to afford the title compound (350 mg, 901.09 μmol, 88.04% yield) as a brown oil.
To methyl 2-amino-5-{8-[(2-cyano-2-methylideneethyl)amino]-7-methoxynaphthalen-2-yl}pyridine-3-carboxylate (300 mg, 772.36 μmol, 1 eq) in THF (20 mL) and H2O (5 mL) was added LiOH·H2O (97.2 mg, 2.32 mmol, 3 eq). Then the mixture was stirred for 18 h at 20° C. The residue was poured into ice-water (20 mL) and saturated citric acid was added to the mixture at 0° C. to adjust the pH to 6˜7. The desired product was obtained by filtration. The title compound was obtained (300 mg, crude) as a yellow solid, which was used in the next synthetic step without further purification.
To a mixture of RNH2 (30.5 mg, 267.1 μmol, 2 eq) and 2-amino-5-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]pyridine-3-carboxylic acid (50 mg, 133.55 μmol, 1 eq) in DCM (5 mL) was added DIPEA (51.8 mg, 400.65 μmol, 69.78 μL, 3 eq). Then HATU (76.2 mg, 200.32 μmol, 1.5 eq) was added to the mixture. The mixture was stirred at 20° C. for 0.5 h. Upon completion of the reaction as indicated by LCMS and TLC. The reaction was slowly quenched by ice water (50 mL) and extracted with DCM (3×20 mL). The combined organic phase was washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The crude was purified by prep-HPLC to afford the title compound (14.1 mg, 29.96 μmol, 22.44% yield) as a yellow solid. LC-MS (ES+, m/z): 471.2 [(M+H)+].
To a mixture of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate (100 mg, 215.35 μmol, 1 eq) and 4-amino-6-chloro-N-(2-hydroxyethyl)pyridine-2-carboxamide (55.7 mg, 258.4 μmol, 1.2 eq) in dioxane (2 mL) and H2O (0.5 mL) were added Na2CO3 (68.5 mg, 646.05 μmol, 3 eq), Pd(dppf)Cl2 (78.8 mg, 107.68 μmol, 0.5 eq) in one portion under N2. The mixture was stirred at 120° C. for 1.5 hours. Upon completion of the reaction as indicated by TLC, 20 mL of EtOAc was poured into the mixture. The mixture was poured into saturated EDTA solution (30 mL) and stirred for 1 h. The aqueous phase was extracted with EtOAc (3×20 mL). The combined organic phase was washed with brine (3×30 mL), dried with anhydrous Na2SO4 and active carbon to remove color, and filtered and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound (30 mg, 57.96 μmol, 26.9% yield) as a yellow gum.
To a mixture of tert-butyl N-(7-{4-amino-6-[(2-hydroxy ethyl)carbamoyl]pyridin-2-yl}-2-methoxynaphthalen-1-yl)-N-(2-cyano-2-methylideneethyl)carbamate (30 mg, 96.6 μmol, 1 eq) in DCM (3 mL) was added TFA (1.54 g, 13.51 mmol, 1 mL, 139.81 eq), and the reaction was stirred at 20° C. for 1 hour. The reaction was adjusted to pH=9 with saturated aq. Na2CO3. The mixture was extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford the title compound (5.5 mg, 12.6 μmol, 13% yield, 95.6% purity) as a yellow solid. LC-MS (ES+, m/z): 418.1 [(M+H)+].
To a mixture of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate (150 mg, 323.03 μmol, 1 eq) and 4-bromo-N-[(2S,4R)-1,2-dimethyl-4-piperidyl]thiazole-2-carboxamide (113.1 mg, 355.33 μmol, 1.1 eq) in dioxane (2 mL), H2O (0.5 mL) were added Na2CO3 (171.2 mg, 1.62 mmol, 5 eq), Pd(dppf)Cl2 (94.5 mg, 129.21 μmol, 0.4 eq) in one portion under N2. The mixture was stirred at 110° C. for 1 hour. The reaction was diluted with 30 mL water and extracted with EtOAc (2×30 mL). The combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=5:1) to afford tert-butyl N-(2-cyanoallyl)-N-[7-[2-[[(2S,4R)-1,2-dimethyl-4-piperidyl]carbamoyl]thiazol-4-yl]-2-methoxy-1-naphthyl]carbamate (60 mg, 104.22 μmol, 32.26% yield) as a yellow gum. LC-MS (ES+, m/z): 576.2 [(M+H)+].
To a mixture of tert-butyl N-(2-cyanoallyl)-N-[7-[2-[[(2S,4R)-1,2-dimethyl-4-piperidyl]carbamoyl]thiazol-4-yl]-2-methoxy-1-naphthyl]carbamate (60 mg, 104.22 μmol, 1 eq) in DCM (3 mL) was added TFA (1.54 g, 13.51 mmol, 1 mL, 129.60 eq). The reaction was stirred at 25° C. for 1 hour. The reaction was diluted with 30 mL water, and the pH was adjusted to 9 with saturated aq. Na2CO3. The mixture was extracted with DCM (2×15 mL), and the combined organic layer was washed with brine (3×15 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford 4-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]-N-[(2S,4R)-1,2-dimethyl-4-piperidyl]thiazole-2-carboxamide (11.6 mg, 24.29 μmol, 23.31% yield, 99.6% purity) as a yellow solid. LC-MS (ES+, m/z): 476.2 [(M+H)+]1H NMR (400 MHz, DMSO-d6) δ=8.83 (s, 1H), 8.51 (d, J=8.4 Hz, 1H), 8.46 (s, 1H), 8.06 (dd, J=1.6, 8.8 Hz, 1H), 7.90 (d, J=8.8 Hz, 1H), 7.55 (d, J=8.8 Hz, 1H), 7.40 (d, J=8.8 Hz, 1H), 6.04 (s, 1H), 5.99 (s, 1H), 5.31 (t, J=7.6 Hz, 1H), 4.06 (d, J=7.6 Hz, 2H), 3.91 (s, 3H), 3.87-3.79 (m, 1H), 2.87-2.79 (m, 1H), 2.17 (s, 3H), 2.10-2.02 (m, 1H), 1.94 (br dd, J=6.4, 8.8 Hz, 1H), 1.84-1.67 (m, 3H), 1.44 (q, J=12.0 Hz, 1H), 1.04 (d, J=6.0 Hz, 3H).
To a mixture of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate (300 mg, 646.05 μmol, 1 eq) and 3-amino-6-chloro-N-[4-(dimethylamino)cyclohexyl]pyridine-2-carboxamide (210.9 mg, 710.66 μmol, 1.1 eq) in dioxane (4 mL) and H2O (1 mL) were added Na2CO3 (205.4 mg, 1.94 mmol, 3 eq), Pd(dppf)Cl2 (47.27 mg, 64.61 μmol, 0.1 eq) in one portion under N2. The mixture was stirred at 110° C. for 1.5 hour. The reaction mixture was poured into 50 mL saturated EDTA and stirred at 25° C. for 1 h. Then the aqueous phase was extracted with EtOAc (3×30 mL), and the combined organic layer was washed with brine (3×30 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, DCM:MeOH=5:1) to afford tert-butyl N-[7-[5-amino-6-[[4-(dimethylamino)cyclohexyl]carbamoyl]-2-pyridyl]-2-methoxy-1-naphthyl]-N-(2-cyanoallyl)carbamate (50 mg, 83.51 μmol, 12.93% yield) as a yellow oil. LC-MS (ES+, m/z): 599.4 [(M+H)+].
To a mixture of ethyl 5-amino-2-chloro-pyrimidine-4-carboxylate (500 mg, 2.48 mmol, 1 eq) and tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate (1.27 g, 2.73 mmol, 1.1 eq) and tert-amyl alcohol (10 mL) in H2O (2.5 mL) were added Cs2CO3 (1.62 g, 4.96 mmol, 2 eq) and ditert butyl(cyclopentyl)phosphane; dichloro palladium; iron (161.6 mg, 248 μmol, 0.1 eq) in one portion under N2. The mixture was stirred at 80° C. for 15 hours. The reaction mixture was poured into 30 mL saturated EDTA and stirred at 25° C. for 1 h. Then the aqueous phase was extracted with EtOAc (3×30 mL), and the combined organic layer was washed with brine (2×30 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=1/1) to afford ethyl 5-amino-2-[8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-methoxy-2-naphthyl]pyrimidine-4-carboxylate (1. g, 1.99 mmol, 80.08% yield) as a yellow gum. LC-MS (ES+, m/z): 504.1 [(M+H)+].
To a mixture of ethyl 5-amino-2-[8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-methoxy-2-naphthyl]pyrimidine-4-carboxylate (350 mg, 695.07 μmol, 1 eq) in DCM (8 mL) was added TFA (2.31 g, 20.26 mmol, 1.5 mL, 29.15 eq) in one portion, and the reaction was stirred at 25° C. for 2 hour. The reaction was diluted with 20 mL ice water, and the pH was adjusted to 8 with saturated aq. Na2CO3. The mixture was extracted with DCM (3×20 mL), and the combined organic layer was washed with brine (3×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1:1) to afford ethyl 5-amino-2-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]pyrimidine-4-carboxylate (200 mg, 495.75 μmol, 71.32% yield) as a yellow gum. LC-MS (ES+, m/z): 404.1 [(M+H)+].
To a mixture of ethyl 5-amino-2-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]pyrimidine-4-carboxylate (200 mg, 495.75 μmol, 1 eq) in THF (4 mL), H2O (1 mL) was added LiOH·H2O (312 mg, 7.44 mmol, 15 eq) in one portion under N2. The mixture was stirred at 25° C. for 2 hours. The reaction was diluted with 30 mL water, and the pH was adjusted to 6 with saturated citric acid. The mixture was extracted with EtOAc (2×30 mL), and the combined organic layer was washed with brine (2×30 mL), dried over Na2SO4, filtered, and concentrated in vacuo. 5-amino-2-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]pyrimidine-4-carboxylic acid (160 mg, crude) was obtained as a yellow gum. LC-MS (ES+, m/z): 376.1 [(M+H)+]
To a mixture of 5-amino-2-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]pyrimidine-4-carboxylic acid (60 mg, 159.84 μmol, 1 eq) and 1-methylpiperidin-4-amine (27.4 mg, 239.76 μmol, 1.5 eq) in DMF (2 mL) were added Et3N (80.9 mg, 799.19 μmol, 111.24 μL, 5 eq) and T3P (152.6 mg, 239.76 μmol, 142.59 μL, 50% purity, 1.5 eq) in one portion under N2. The mixture was stirred at 25° C. for 60 min. The reaction was diluted with 20 mL water, and the pH was adjusted to 9 with saturated aq. Na2CO3. The mixture was extracted with EtOAc (2×20 mL), and the combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford 5-amino-2-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]-N-(1-methyl-4-piperidyl)pyrimidine-4-carboxamide (11.1 mg, 23.4 μmol, 14.64% yield, 99.4% purity) as a yellow solid.
To a mixture of tert-butyl (2-cyanoallyl)(2-methoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-yl)carbamate (2.5 g, 4.31 mmol, 1 eq) and methyl 6-bromopyridine-2-carboxylate (2.79 g, 12.92 mmol, 3 eq) in DME (20 mL), H2O (5 mL) were added CsF (3.27 g, 21.54 mmol, 794 μL, 5 eq), Pd(dppf)Cl2 (630.3 mg, 861.4 μmol, 0.2 eq) in one portion. The mixture was stirred at 100° C. for 2 hours. The reaction mixture was poured into 30 mL saturated EDTA and stirred at 25° C. for 1 h. Then the aqueous phase was extracted with EtOAc (2×30 mL), and the combined organic layer was washed with brine (2×30 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=6:1 to 3:1). Methyl 6-(8-((tert-butoxycarbonyl)(2-cyanoallyl)amino)-7-methoxynaphthalen-2-yl)picolinate (1.5 g, 3.17 mmol, 73.6% yield) was obtained as a brown solid. LC-MS (ES+, m/z): 474.2 [(M+H)+].
To a mixture of methyl 6-(8-((tert-butoxycarbonyl)(2-cyanoallyl)amino)-7-methoxynaphthalen-2-yl)picolinate (1.2 g, 2.53 mmol, 1 eq) in DCM (9 mL) was added TFA (4.62 g, 40.52 mmol, 3 mL, 15.99 eq) in one portion, and the reaction mixture was stirred at 20° C. for 1 hour. The mixture was adjusted to pH=8 with saturated Na2CO3. Then the mixture was extracted with EtOAc (2×30 mL). The combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=8/1 to 3:1). Methyl 6-(8-((2-cyanoallyl)amino)-7-methoxynaphthalen-2-yl)picolinate (1. g, 2.68 mmol) was obtained as a yellow solid. LC-MS (ES+, m/z): 374.1 [(M+H)+].
To a mixture of methyl 6-(8-((2-cyanoallyl)amino)-7-methoxynaphthalen-2-yl)picolinate (400 mg, 1.07 mmol, 1 eq) in THF (6 mL) H2O (1.5 mL) was added LiOH·H2O (449.5 mg, 10.71 mmol, 10 eq) in one portion. The mixture was stirred at 25° C. for 60 min. The reaction was diluted with 20 mL water, adjust to pH=5 with saturated citric acid. The mixture was extracted with EtOAc (2×20 mL), and the combined organic layer was washed with brine (2×30 mL), dried over Na2SO4, filtered, and concentrated in vacuo to give afford crude 6-(8-((2-cyanoallyl)amino)-7-methoxy naphthalen-2-yl)picolinic acid (400 mg, crude) as a brown gum. LC-MS (ES+, m/z): 360.1 [(M+H)+].
To a mixture of 6-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]pyridine-2-carboxylic acid (75 mg, 208.69 μmol), 4-pyrrolidin-1-ylcyclohexanamine (75 mg, 313.07 μmol) and Et3N (211.09 mg, 2.09 mmol) in DMF (2 mL) was added T3P (50 wt % in EtOAc, 0.27 mL, 313.07 μmol). The resulting mixture was stirred at r.t. for 18 h and partitioned between EtOAc and water. The aqueous phase was extracted with EtOAc (3×). The combined organic phase was washed with saturated NaHCO3 and brine, dried over (MgSO4), filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 0-60% EtOAc/Hexane to afford the title compound (20 mg, Yield 19%). LC-MS (ES+, m/z): 510.3 [(M+H)+]
To a mixture of 6-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]pyridine-2-carboxylic acid (75 mg, 208.69 μmol), (2R)-1-aminopropan-2-ol (23.5 mg, 313 μmol) and Et3N (211.09 mg, 2.09 mmol) in DMF (2 mL) was added T3P (50 wt % in EtOAc, 0.27 mL, 313 μmol). The resulting mixture was stirred at r.t. for 18 h and partitioned between EtOAc and water. The aqueous phase was extracted with EtOAc (3×). The combined organic phase was washed with saturated NaHCO3 and brine, dried over (MgSO4), filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 30-100% EtOAc/Hexane to afford the title compound (20 mg, Yield 23%). (ES+, m/z): 417.2.
To a mixture of 6-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]pyridine-2-carboxylic acid (75 mg, 208.69 μmol), 1,4-dioxaspiro[4.5]decan-8-amine (53.6 mg, 313 μmol) and Et3N (211.09 mg, 2.09 mmol) in DMF (2 mL) was added T3P (50 wt % in EtOAc, 0.27 mL, 313 μmol). The resulting mixture was stirred at r.t. for 18 h and partitioned between EtOAc and water. The aqueous phase was extracted with EtOAc (3×). The combined organic phase was washed with saturated NaHCO3 and brine, dried over (MgSO4), filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 0-60% EtOAc/Hexane to afford the title compound (54 mg, Yield 52%). LC-MS (ES+, m/z): 499.2 [(M+H)+].
To a solution of 6-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]-N-(1,4-dioxaspiro[4.5]decan-8-yl)pyridine-2-carboxamide (37 mg, 74 μmol) in MeCN (4 mL) was added 0.37 mL of IN HCl. The resulting mixture was stirred at r.t. for 18 h. The reaction mixture was concentrated in vacuo and the residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (2.5 mg, Yield 8%). LC-MS (ES+, m/z): 455.2 [(M+H)+].
A solution of compound tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate (3.5 g, 7.54 mmol, 1 eq) and 2,4-dichloropyrimidine (1.35 g, 9.04 mmol, 1.2 eq) in dioxane (30.0 mL) and H2O (7.5 mL) were added Na2CO3 (2.4 g, 22.61 mmol, 3 eq) and Pd(dppf)Cl2 (500 mg, 683.33 μmol, 0.091 eq). The resulting reaction mixture was stirred at 110° C. for 0.5 hr. TLC showed that the reaction was complete. To the reaction mixture was added (100 mL) saturated EDTA, and the solution was stirred for 1 h. The mixture was extracted with EtOAc (3×50 mL). The combined organic layer was washed with brine (2×60 mL), dried over Na2SO4, filtered, and concentrated to give the residue which was purified by column chromatography (PE:EtOAc=1:0 to 0:1) to afford the title compound (3. g, 6.65 mmol, 88.3% yield) as a yellow solid. NMR (400 MHz, DMSO-d6) δ=8.87 (d, J=5.25 Hz, 1H) 8.55-8.58 (m, 1H) 8.16-8.26 (m, 1H) 7.99-8.15 (m, 3H) 7.64-7.67 (m, 1H) 5.97-5.99 (m, 1H) 5.82-5.86 (m, 1H) 4.35-4.45 (m, 2H) 3.91-4.02 (m, 3H) 1.55 (s, 3H) 1.17 (s, 6H).
To a solution of tert-butyl N-[7-(2-chloropyrimidin-4-yl)-2-Methoxynaphthalen-1-yl]-N-(2-cyano-2-methylideneethyl)carbamate (310 mg, 687.49 μmol, 1 eq) in MeOH (5 mL) and DMF (5 mL) were added Et3N (208.7 mg, 2.06 mmol, 287 μL, 3 eq; dropwise) and Pd(dppf)Cl2 (50.3 mg, 68.75 μmol, 0.1 eq). Then to the mixture was bubbled in carbon monoxide (192.6 mg, 6.87 mmol, 10 eq). The reaction mixture was heated to 60° C. for 12 h under CO atmosphere. TLC showed that the reaction was complete. To the reaction mixture was added (30 mL) saturated EDTA. The solution was stirred for 1 h, and extracted with EtOAc (3×30 mL). The combined organic layer was washed with brine (40 mL), dried over Na2SO4, filtered, and concentrated to give the residue which was purified by prep-TLC (PE:EtOAc=1:1) to afford the title compound (60 mg, 126.45 μmol, 18.4% yield) as a yellow oil.
To a solution of compound methyl 4-[8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-methoxy-2-naphthyl]pyrimidine-2-carboxylate (60 mg, 126.45 μmol, 1 eq) in THF (2 mL) and H2O (0.5 mL) was added LiOH·H2O (53.1 mg, 1.26 mmol, 10 eq) in one portion. The reaction mixture was stirred at 25° C. for 120 min. TLC showed that the reaction was complete. The reaction mixture was diluted with H2O (30 mL) and EtOAc (30 mL), and saturated citric acid was added to adjust the pH to 6. The organic layer was extracted with EtOAc (2×20 mL), and the combined organic layer was washed with brine (30 mL), dried over Na2SO4, filtered, and concentrated to afford the title compound (50 mg, crude) as a yellow oil.
To a solution of 4-[8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-methoxy-2-naphthyl]pyrimidine-2-carboxylic acid (50 mg, 108.58 μmol, 1 eq) in DMF (2 mL) were drop-wise methanamine; hydrochloride (14.7 mg, 217.16 μmol, 2 eq; dropwise) and Et3N (32.9 mg, 325.75 μmol, 45.34 μL, 3 eq) and T3P (103.6 mg, 162.87 μmol, 96.7 μL, 50% purity, 1.5 eq). The reaction mixture was stirred at 25° C. for 1 hr. TLC showed that the reaction was complete. The reaction mixture was quenched by adding H2O (20 mL), and extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated to give the residue which was purified by prep-TLC (DCM:MeOH=10:1) to afford the title compound tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-[2-(methylcarbamoyl)pyrimidin-4-yl]-1-naphthyl]carbamate (40 mg, 84.47 μmol, 77.8% yield) as a yellow oil.
To a solution of compound tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-[2-(methylcarbamoyl)pyrimidin-4-yl]-1-naphthyl]carbamate (40 mg, 84.47 μmol, 1 eq) in DCM (3 mL) was added TFA (1.23 g, 10.8 mmol, 0.8 mL, 127.91 eq; dropwise). Then the mixture was stirred at 25° C. for 1 h. LCMS showed that the reaction was complete. The reaction mixture was quenched by adding saturated Na2CO3 (30 mL) to adjust pH>8, and extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (30 mL), dried over Na2SO4, filtered, and concentrated to give a residue which was purified by prep-HPLC to afford the title compound (17.5 mg, 46.49 μmol, 55.04% yield) as a yellow solid. LC-MS (ES+, m/z): 374 [(M+H)+]
To a mixture of 4-[8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-methoxy-2-naphthyl]pyrimidine-2-carboxylic acid (220 mg, 477.76 μmol, 1 eq) and tert-butyl (3S)-3-amino piperidine-1-carboxylate (114.8 mg, 573.31 μmol, 1.2 eq) in DMF (3 mL) was added T3P (456 mg, 716.64 μmol, 426.21 μL, 50% purity, 1.5 eq) and Et3N (241.7 mg, 2.39 mmol, 332.49 μL, 5 eq) in one portion. The reaction mixture was stirred at 25° C. for 1 hour. The reaction was diluted with 20 mL water and adjusted to pH=9 with saturated aq. Na2CO3. The mixture was extracted with EtOAc (4×20 mL), and the combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=15:1) to afford the title compound (160 mg, 248.93 μmol, 52.10% yield) as a yellow oil. (SiO2, PE:EtOAc=15:1, SM Rf=0.06, TM Rf=0.30).
To a mixture of tert-butyl (3S)-3-[[4-[8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-methoxy-2-naphthyl]pyrimidine-2-carbonyl]amino]piperidine-1-carboxylate (160 mg, 248.93 μmol, 1 eq) in DCM (3 mL) was added TFA (1.54 g, 13.51 mmol, 1 mL, 54.26 eq). The reaction mixture was stirred at 25° C. for 1 hour. The reaction was diluted with 20 mL water and adjusted to pH=9 with saturated aq. Na2CO3. The mixture was extracted with DCM (4×20 mL), and the combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=6:1) to afford the title compound 4-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]-N-[(3S)-3-piperidyl]pyrimidine-2-carboxamide (80 mg, 180.79 μmol, 72.62% yield) as a yellow oil. LC-MS (ES+, m/z): 443.2 [(M+H)+].
To a mixture of 4-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]-N-[(3S)-3-piperidyl]pyrimidine-2-carboxamide (70 mg, 158.19 μmol, 1 eq) in ACN (2 mL) were added K2CO3 (65.6 mg, 474.56 μmol, 3 eq) and 1-bromo-2-methoxy-ethane (109.9 mg, 790.94 μmol, 74.28 μL, 5 eq) in one portion. The reaction mixture was stirred at 80° C. for 4 hours. The reaction was diluted with 30 mL water and extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC (basic condition) to afford the title compound (6.5 mg, 12.85 μmol, 8.13% yield, 99.0% purity) as a yellow gum. LC-MS (ES+, m/z): 501.3 [(M+H)+], 1H NMR (400 MHz, DMSO-de) 5=9.06 (s, 1H), 9.04 (d, J=5.6 Hz, 1H), 8.72 (br d, J=8.4 Hz, 1H), 8.41 (d, J=5.2 Hz, 1H), 8.26 (br d, J=8.8 Hz, 1H), 7.98 (d, J=8.4 Hz, 1H), 7.60-7.52 (m, 1H), 7.50-7.43 (m, 1H), 6.01 (s, 1H), 5.97 (s, 1H), 5.86 (br t, J=7.0 Hz, 1H), 4.20 (br d, J=7.6 Hz, 2H), 4.02 (br s, 1H), 3.91 (s, 3H), 3.46 (br t, J=5.4 Hz, 2H), 3.24 (s, 3H), 2.79 (br d, J=8.8 Hz, 1H), 2.63-2.55 (m, 3H), 2.29 (br d, J=8.4 Hz, 2H), 1.81-1.76 (m, 1H), 1.71 (br s, 1H), 1.61-1.48 (m, 2H)
To a mixture of 4-[8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-methoxy-2-naphthyl]pyrimidine-2-carboxylic acid (110 mg, 238.88 μmol, 1 eq) and tert-butyl (3R)-3-aminopiperidine-1-carboxylate (95.7 mg, 477.76 μmol, 2 eq) in DMF (3 mL) were added Et3N (120.9 mg, 1.19 mmol, 166 μL, 5 eq) and T3P (228 mg, 358.32 μmol, 213 μL, 50% purity, 1.5 eq) in one portion. The mixture was stirred at 25° C. for 60 min. The reaction was diluted with 15 mL water and adjusted to pH=9 with saturated aq.Na2CO3. The mixture was extracted with EtOAc (3×25 mL), and the combined organic layer was washed with brine (2×25 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=15:1) to afford the title compound (110 mg, 171.14 μmol, 71.6% yield) as a yellow oil.
To a mixture of tert-butyl (3R)-3-[[4-[8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-methoxy-2-naphthyl]pyrimidine-2-carbonyl]amino]piperidine-1-carboxylate (110 mg, 171.14 μmol, 1 eq) in DCM (3 mL) was added TFA (1.54 g, 13.51 mmol, 1 mL, 78.92 eq). The reaction mixture was stirred at 25° C. for 1 hour. TLC showed that most of the starting material was consumed. The reaction was stirred at 25° C. for another 0.5 hour. The reaction mixture was diluted with 15 mL DCM, poured into 15 mL ice water, and adjust to pH=8 with saturated aq.Na2CO3. The mixture was extracted with DCM (3×15 mL), and the combined organic layer was washed with brine (3×15 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=7:1) to afford the title compound (70 mg, 158.19 μmol, 92.4% yield) as a yellow gum. LC-MS (ES+, m/z): 443.2 [(M+H)+].
To a mixture of 4-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]-N-[(3R)-3-piperidyl]pyrimidine-2-carboxamide (40 mg, 90.39 μmol, 1 eq) in DMF (1.5 mL) was added K2CO3 (37.5 mg, 271.18 μmol, 3 eq) and 1-bromo-2-methoxy-ethane (62.8 mg, 451.97 μmol, 42.45 μL, 5 eq) in one portion. The reaction mixture was stirred at 50° C. for 4 hours. LCMS showed ˜40% desired product. The reaction was diluted with 20 mL water and extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford the title compound (2.5 mg, 4.86 μmol, 5.38% yield, 97.4% purity) as a yellow solid. LC-MS (ES+, m/z): 501.3 [(M+H)+].
1H NMR (400 MHz, DMSO-d6) δ ppm 9.06 (s, 1H) 9.04 (d, J=5.38 Hz, 1H) 8.72 (br d, J=8.68 Hz, 1H) 8.41 (d, J=5.50 Hz, 1H) 8.27 (d, J=8.80 Hz, 1H) 8.20 (s, 1H) 7.98 (d, J=8.68 Hz, 1H) 7.56 (d, J=8.93 Hz, 1H) 7.47 (d, J=8.93 Hz, 1H) 6.01 (s, 1H) 5.97 (s, 1H) 5.86 (br t, J=7.15 Hz, 1H) 4.20 (br d, J=6.97 Hz, 2H) 4.02 (br d, J=7.83 Hz, 1H) 3.91 (s, 3H) 3.59 (br s, 2H) 3.44-3.53 (m, 2H) 3.24 (s, 3H) 2.74-2.87 (m, 1H) 2.57-2.64 (m, 1H) 2.55-2.64 (m, 3H) 2.28 (br d, J=10.27 Hz, 2H) 1.71 (br s, 2H) 1.49-1.65 (m, 2H)
TABLE 2 shows compounds synthesized using method B of EXAMPLE 2 described above.
To a mixture of 7-bromo-2-methoxy-1-nitronaphthalene (8 g, 28.36 mmol, 1 eq) in DCM (80 mL) was added BBr3 (35.52 g, 141.8 mmol, 13.66 mL, 5 eq) at 0° C. The mixture was stirred at 25° C. for 4 h. TLC showed that the reaction was complete. The reaction mixture was diluted with ice-water. The mixture was extracted with EtOAc (2×200 mL). The combined organic layers were washed with H2O (2×100 mL) and brine (2×100 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The crude product (7.8 g, crude) was obtained as a yellow solid, which was used without further purification.
To a solution of 7-bromo-1-nitronaphthalen-2-ol (5.8 g, 21.64 mmol, 1 eq) in DMF (60 mL) was added K2CO3 (8.97 g, 64.91 mmol, 3 eq). Then, 2,2,2-Trifluoroethyl trifluoromethanesulfonate (7.53 g, 32.46 mmol, 1.5 eq) was added to the reaction and stirred at 60° C. for 1 h. TLC showed that the reaction was complete. The reaction mixture was diluted with H2O. The mixture was extracted with EtOAc (2×200 mL). The combined organic layers were washed with H2O (2×200 mL) and brine (2×200 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The title compound was obtained as a yellow solid (7 g, crude) and used without purification.
To a mixture of 7-bromo-1-nitro-2-(2,2,2-trifluoroethoxy)naphthalene (7 g, 19.99 mmol, 1 eq) in EtOH (60 mL) was added saturated NH4Cl (1.07 g, 19.99 mmol, 15 mL, 1 eq), and the reaction mixture was heated to 70° C. Fe (3.35 g, 59.98 mmol, 3 eq) was added to the reaction and stirred for 1 hr. The reaction mixture was diluted with H2O. The mixture was extracted with EtOAc (2×200 mL). The combined organic layers were washed with H2O (2×100 mL) and brine (2×100 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 6:1) to afford the title compound (3.7 g, 11.56 mmol, 57.8% yield) as a yellow solid.
A solution of 7-bromo-2-(2,2,2-trifluoroethoxy)naphthalen-1-amine (1 g, 3.12 mmol, 1 eq) in Boc2O (20.45 g, 93.72 mmol, 21.53 mL, 30 eq) was stirred at 120° C. for 3 h. TLC showed that the reaction was complete. The reaction mixture was diluted with H2O (100 mL). The mixture was extracted with EtOAc (2×50 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 6:1) to afford the title compound (1.3 g, 2.5 mmol, 79.97% yield) as a yellow solid.
To a solution of tert-butyl N-[7-bromo-2-(2,2,2-trifluoroethoxy)-1-naphthyl]-N-tert-Butoxy carbonyl-carbamate (1.2 g, 2.31 mmol, 1 eq) in MeOH (12 mL) was added K2CO3 (1.27 g, 9.22 mmol, 4 eq). The reaction mixture was stirred at 25° C. for 15 h. LCMS showed that the reaction was complete. The reaction mixture was diluted with H2O (100 mL). The mixture was extracted with EtOAc (2×50 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The crude product (1 g, crude) was obtained as a white solid and used without purification. LC-MS (ES+, m/z): 363.0 [(M-tBu)+].
To a solution of tert-butyl N-[7-bromo-2-(2,2,2-trifluoroethoxy)naphthalen-1-yl]carbamate (1 g, 2.38 mmol, 1 eq) in DCM (10 mL) were added KOH (267.1 mg, 4.76 mmol, 2 eq) and TBAI (263.7 mg, 713.91 μmol, 0.3 eq). Then, 2-(bromomethyl)prop-2-enenitrile (521.1 mg, 3.57 mmol, 1.5 eq) was added and the mixture was stirred at 25° C. for 1 hr. LCMS showed that the reaction was complete. The reaction mixture was diluted with H2O (100 mL). The mixture was extracted with EtOAc (2×50 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc) to afford the title compound (0.9 g, 1.85 mmol) as a white solid.
To a mixture of tert-butyl N-[7-bromo-2-(2,2,2-trifluoroethoxy)naphthalen-1-yl]-N-(2-cyano-2-methylideneethyl)carbamate (0.5 g, 1.03 mmol, 1 eq) and 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (523.3 mg, 2.06 mmol, 2 eq) in dioxane (6 mL) were added KOAc (505.6 mg, 5.15 mmol, 5 eq) and Pd(dppf)Cl2 (150.8 mg, 206.06 μmol, 0.2 eq). The reaction mixture was stirred at 100° C. for 1 hr. LCMS showed that the reaction was complete. The reaction mixture was diluted with H2O (60 mL). The mixture was extracted with EtOAc (2×40 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc) to afford the title compound (0.44 g, 826.51 μmol, 80.22% yield) as a yellow oil. LC-MS (ES+, m/z): 477.2 [(M-tBu)+]
To a mixture of tert-butyl N-(2-cyanoallyl)-N-[7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(2,2,2-trifluoroethoxy)-1-naphthyl]carbamate (70 mg, 131.49 μmol, 1 eq) and 2-bromopyridine (41.6 mg, 262.98 μmol, 25.03 μL, 2 eq) in dioxane (2 mL) and H2O (0.5 mL) were added Na2CO3 (41.8 mg, 394.47 μmol, 3 eq) and Pd(dppf)Cl2 (9.6 mg, 13.15 μmol, 0.1 eq). The reaction was heated to 120° C. under N2 and stirred for 1 h. TLC showed that the reaction was complete. The reaction mixture was stirred by adding saturated EDTA (50 mL) and EtOAc (50 mL) at 25° C. The mixture was extracted with EtOAc (2×50 mL). The combined organic phase was washed with H2O (2×100 mL) and brine (2×100 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, PE:EtOAc=4:1) to afford the title compound tert-butyl N-(2-cyanoallyl)-N-[7-(2-pyridyl)-2-(2,2,2-trifluoroethoxy)-1-naphthyl]carbamate (50 mg, 103.42 μmol, 78.65% yield) as a yellow oil.
To a solution of tert-butyl N-(2-cyanoallyl)-N-[7-(2-pyridyl)-2-(2,2,2-trifluoroethoxy)-1-naphthyl]carbamate (50 mg, 103.42 μmol, 1 eq) in DCM (2 mL) was added TFA (616 mg, 5.4 mmol, 0.4 mL, 52.24 eq). The reaction mixture was stirred at 25° C. for 1 h. LCMS showed that the reaction was complete. The reaction mixture was adjusted to pH>8 with saturated NaHCO3. The mixture was extracted with EtOAc (2×50 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound 2-[[[7-(2-pyridyl)-2-(2,2,2-trifluoroethoxy)-1-naphthyl]amino]methyl]prop-2-enenitrile (5.3 mg, 13.73 μmol, 13.27% yield, 99.3% purity) as a white solid. LC-MS (ES+, m/z): 384 [(M+H)+]
To a mixture of 2-chloro-2,2-difluoro-acetic acid (973.5 mg, 7.46 mmol, 632 μL, 2 eq) and 7-bromo-1-nitro-naphthalen-2-ol (1 g, 3.73 mmol, 1 eq) in DMF (15 mL) was added Cs2CO3 (6.08 g, 18.65 mmol, 5 eq). The mixture was stirred at 80° C. for 2 hrs. The reaction was diluted with 30 mL of water and extracted with EtOAc (2×30 mL). The combined organic layer was washed with brine (2×30 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=20/1 to 10:1) to afford the title compound (700 mg, 59% yield) as a yellow solid.
To a solution of 7-bromo-2-(difluoromethoxy)-1-nitro-naphthalene (0.65 g, 2.04 mmol, 1 eq) in EtOH (6 mL) was added saturated NH4Cl (2.04 mmol, 1.5 mL, 1 eq). Then the mixture was heated to 70° C. Fe (342.4 mg, 6.13 mmol, 3 eq) was added, and the mixture was stirred at 70° C. for 1 h. The reaction mixture was diluted with H2O (100 mL) and extracted with EtOAc (3×50 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 6:1) to afford the title compound (500 mg, 84.9% yield) as a yellow solid.
A mixture of 7-bromo-2-(difluoromethoxy)naphthalen-1-amine (460 mg, 1.6 mmol, 1 eq) and Boc2O (17.42 g, 79.84 mmol, 18.34 mL, 50 eq) was stirred at 110° C. for 12 h. The mixture was partitioned between EtOAc and water. The aqueous phase was extracted with EtOAc (3×100 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 6:1) to afford the title compound (0.57 g, 92% yield) as a yellow solid.
To a solution of tert-butyl N-[7-bromo-2-(difluoromethoxy)-1-naphthyl]carbamate (0.25 g, 643.99 μmol, 1 eq) in DCM (4 mL) were added KOH (72.3 mg, 1.29 mmol, 2 eq), TBAI (71.4 mg, 193.2 μmol, 0.3 eq) and 2-(bromomethyl)prop-2-enenitrile (141 mg, 965.99 μmol, 1.5 eq). The mixture was stirred at 25° C. for 1 h. The reaction mixture was partitioned between EtOAc and water. The aqueous phase was extracted with EtOAc (3×100 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound (0.27 g, 92.5% yield) as a colorless oil.
To a mixture of tert-butyl N-[7-bromo-2-(difluoromethoxy)-1-naphthyl]-N-(2-cyanoallyl) carbamate (220 mg, 485.35 μmol, 1 eq) and B2Pin2 (246.5 mg, 970.71 μmol, 2 eq) in dioxane (4 mL) were added KOAc (142.9 mg, 1.46 mmol, 3 eq) and Pd(dppf)Cl2 (71 mg, 97.07 μmol, 0.2 eq). The mixture was stirred at 100° C. for 1 hr. The reaction mixture was concentrated in vacuo. The residue was washed with DCM (3×5 mL), filtered and dried with anhydrous Na2SO4. The title compound (0.2 g, crude) was used without further purification.
To a mixture of tert-butyl N-(2-cyanoallyl)-N-[2-(difluoromethoxy)-7-methyl-1-naphthyl]carbamate (0.2 g, 399.73 μmol, 1 eq) and 6-bromo-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (119.2 mg, 399.73 μmol, 1 eq) in dioxane (2 mL) and H2O (0.5 mL) were added Na2CO3 (127.1 mg, 1.2 mmol, 3 eq) and Pd(dppf)Cl2 (58.5 mg, 79.95 μmol, 0.2 eq). The mixture was stirred at 110° C. for 1 h. The reaction was diluted with 50 mL of saturated EDTA solution and EtOAc (50 mL). The mixture was stirred at r.t. for 1 h and extracted with EtOAc (5×50 mL). The combined organic layer was washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound (0.1 g, 42.3% yield) as a yellow oil.
To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-(difluoromethoxy)-7-[6-[(l-methyl-4-piperidyl)carbamoyl]-2-pyridyl]-1-naphthyl]carbamate (0.1 g, 169.02 μmol, 1 eq) in DCM (2 mL) was added TFA (616 mg, 5.4 mmol, 0.4 mL, 31.96 eq). The mixture was stirred at 25° C. for 1 h. The reaction mixture was adjusted to pH=8 with saturated NaHCO3 solution and extracted with EtOAc (2×50 mL). The combined organic layer were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC (basic condition) to afford the title compound (19.4 mg, 23.2% yield) as a white solid. LC-MS (ES+, m/z): 492.2 [(M+H)+].
To a solution of 7-bromo-1-nitro-naphthalen-2-ol (2.5 g, 9.33 mmol, 1 eq) in DMF (50 mL) were added K2CO3 (2.58 g, 18.65 mmol, 2 eq) and 2-iodopropane (2.06 g, 12.12 mmol, 1.21 mL, 1.3 eq). The mixture was stirred at 50° C. for 5 hrs. The mixture was filtered to remove K2CO3. Then quenched with water (200 mL), extracted with EtOAc (3×100 mL). The combined organic layer was washed with brine (200 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The title compound (2.5 g, crude) was used in the next step without further purification.
To a solution of 7-bromo-2-isopropoxy-1-nitro-naphthalene (2 g, 6.45 mmol, 1 eq) in EtOH (40 mL) and H2O (8 mL) was added NH4Cl (1.72 g, 32.24 mmol, 5 eq) and the mixture was heated to 80° C. Fe (1.8 g, 32.24 mmol, 5 eq) was added in one portion. The mixture was stirred at 80° C. for 3 hrs. The mixture was filtered, and concentrated in reduced pressure. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 5:1) to afford the title compound (1.1 g, 60.9% yield) as a brown solid.
A mixture of 7-bromo-2-isopropoxy-naphthalen-1-amine (1.1 g, 3.93 mmol, 1 eq) and Boc2O (31.35 g, 143.64 mmol, 33 mL, 36.58 eq) was stirred at 50° C. for 12 hrs. Upon completion of the reaction as indicated by TLC, to the reaction mixture was added 5 mL N1,N1-dimethylethane-1,2-diamine and stirred at 25° C. for 1 h. Then 60 mL water was added and extracted with EtOAc (3×30 mL). The combined organic layer was washed with brine (3×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=10:1) to afford the title compound (1.1 g, 73.7%) as a light yellow solid.
To a solution of tert-butyl N-(7-bromo-2-isopropoxy-1-naphthyl)carbamate (1.1 g, 2.84 mmol, 1 eq) in DCM (40 mL) were added KOH (318.7 mg, 5.68 mmol, 2 eq), TBAI (104.9 mg, 284 μmol, 0.1 eq) and 2-(bromomethyl)prop-2-enenitrile (456.1 mg, 3.12 mmol, 1.1 eq) in DCM (1 mL). The mixture was stirred at 25° C. for 2 hrs. The reaction mixture was quenched with ice water (100 mL), and extracted with DCM (3×50 mL). The combined organic layer was washed with brine (50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=20/1 to 10:1) to afford the title compound (1.1 g, 78.3%) as gray solid.
A mixture of tert-butyl N-(7-bromo-2-isopropoxy-1-naphthyl)-N-(2-cyanoallyl)carbamate (1 g, 2.25 mmol, 1 eq), 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (1.14 g, 4.49 mmol, 2 eq), KOAc (661.1 mg, 6.74 mmol, 3 eq) and Pd(dppf)Cl2 (164.3 mg, 224.54 μmol, 0.1 eq) in dioxane (50 mL) was degassed and purged with N2 3 times, and the mixture was stirred at 100° C. for 1 hr under N2 atmosphere. The reaction mixture was filtered, and concentrated in vacuo to afford the title compound (2.2 g, crude), which was used in the next step without further purification.
A mixture of tert-butyl N-(2-cyanoallyl)-N-[2-hydroxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate (100 mg, 222.06 μmol, 1 eq), 6-bromo-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (99.3 mg, 333.09 μmol, 1.5 eq), Na2CO3 (70.6 mg, 666.17 μmol, 3 eq), and Pd(dppf)Cl2 (16.3 mg, 22.21 μmol, 0.1 eq) in dioxane (4 mL) and H2O (1 mL) was degassed and purged with N2 3 times, and the mixture was stirred at 120° C. for 1 hr under N2 atmosphere. TLC showed that the reaction was complete. The reaction mixture was poured into saturated EDTA (50 mL) and stirred at 25° C. for 1 h. Then the aqueous phase was extracted with EtOAc (3×50 mL). The combined organic layer were washed with H2O (3×50 mL) and brine (3×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound (60 mg, 102.79 μmol, 46.29% yield) as a light yellow solid.
To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-isopropoxy-7-[6-[(l-methyl-4-piperidyl)carbamoyl]-2-pyridyl]-1-naphthyl]carbamate (50 mg, 85.66 μmol, 1 eq) in DCM (5 mL) was added TFA (7.7 g, 67.53 mmol, 5 mL, 788.37 eq). The mixture was stirred at 25° C. for 1 hr. The reaction mixture was quenched with ice water (10 mL) and saturated Na2CO3 was add to adjust pH=8. The mixture was extracted with DCM (3×15 mL). The combined organic layer was washed with brine (10 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford the title compound (8.6 mg, 17.78 μmol, 20.76% yield, 100% purity) as a white solid.
To a mixture of 7-bromonaphthalen-2-ol (5. g, 22.4 mmol, 1 eq), Etl (5.2 g, 33.6 mmol, 1.5 eq) and K2CO3 (9.3 g, 67.2 mmol, 3 eq) in MeCN (100 mL). Then the mixture was heated to 90° C. and stirred for 2 hours. Upon completion of the reaction as indicated by TLC, to the reaction mixture was added 30 mL H2O. Then filtered, and concentrated in vacuo to afford the title compound (5.5 g, crude) as a light yellow solid.
To a solution of 2-bromo-7-ethoxy-naphthalene (5. g, 19.9 mmol, 1 eq) in Ac2O (50 mL) was added HNO3 (3.1 g, 29.9 mmol, 60% purity, 1.5 eq). The mixture was stirred at 0° C. for 4 hours. The reaction mixture was filtered, and concentrated in vacuo to give a residue. The residue was washed with PE (3×10 mL) to afford the title compound (3.6 g, 12.2 mmol, 61.1% yield) as a light yellow solid.
A mixture of 7-bromo-2-ethoxy-1-nitro-naphthalene (3.6 g, 12.2 mmol, 1 eq), NH4Cl (455.2 mg, 8.5 mmol, 0.7 eq) in EtOH (70 mL) and H2O (10 mL) was added Le (3.4 g, 60.8 mmol, 5 eq) in portions at 80° C. The mixture was stirred at 80° C. for 1 hour. The reaction mixture was filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=50/1 to 20/1) to afford the title compound (2.8 g, 10.5 mmol, 86.5% yield) as a light yellow solid.
A solution of 7-bromo-2-ethoxy-naphthalen-1-amine (2.8 g, 10.5 mmol, 1 eq) in Boc2O (50 mL) was stirred at 50° C. for 10 hours. The reaction mixture was added to 10 mL N′,N′-dimethylethane-1,2-diamine and stirred for 1 hour. Then 50 mL H2O was added and extracted with EtOAc (3×30 mL). The organic phase was separated, washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=30:1 to 10:1) to afford the title compound (2.9 g, 7.9 mmol, 75.3% yield) as a light yellow solid.
A mixture of tert-butyl N-(7-bromo-2-ethoxy-1-naphthyl)carbamate (2. g, 5.5 mmol, 1 eq), 2-(bromomethyl)prop-2-enenitrile (956.6 mg, 6.6 mmol, 1.2 eq), KOH (612.8 mg, 10.9 mmol, 2 eq), and TBAI (806.8 mg, 2.2 mmol, 0.4 eq) in DCM (20 mL) was stirred at 25° C. for 1 hour. The reaction mixture was poured into H2O (100 mL) and extracted with DCM (3×50 mL). The organic phase was separated, washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=50:1 to 10:1) to afford the title compound (2. g, 4.6 mmol, 84.9% yield) as a light yellow solid.
A mixture of tert-butyl N-(7-bromo-2-ethoxy-1-naphthyl)-N-(2-cyanoallyl)carbamate (2. g, 4.6 mmol, 1 eq), (BPin)2 (5.9 g, 23.2 mmol, 5 eq), AcOK (2.3 g, 23.2 mmol, 5 eq), and Pd(dppf)Cl2 (339.3 mg, 463.7 μmol, 0.1 eq) in dioxane (10 mL) was stirred at 100° C. for 4 hours. LCMS/TLC showed that the reaction was complete. The reaction mixture was filtered and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=40:1 to 10:1) to afford the title compound (1.9 g, 3.9 mmol, 85.6% yield) as a light yellow solid. LC-MS (ES+, m/z): 423.2 [(M-tBu)+].
A mixture of tert-butyl N-(2-cyanoallyl)-N-[2-ethoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate (100 mg, 209.04 μmol, 1 eq), 2-chloro-N-(1-methyl-4-piperidyl)pyrimidine-4-carboxamide (85.2 mg, 334.46 μmol, 1.6 eq), Na2CO3 (66.5 mg, 627.11 μmol, 3 eq), and Pd(dppf)Cl2 (15.3 mg, 20.9 μmol, 0.1 eq) in dioxane (2 mL) and H2O (0.5 mL) was degassed and purged with N2 3 times. The mixture was stirred at 110° C. for 2 hr under N2 atmosphere. LCMS showed that the reaction was complete. To the reaction mixture was added 50 mL saturated EDTA and stirred for 1 h, and was then extracted with EtOAc (3×30 mL). The organic phase was separated, washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound tert-butyl N-(2-cyanoallyl)-N-[2-ethoxy-7-[4-[(l-methyl-4-piperidyl)carbamoyl]pyrimidin-2-yl]-1-naphthyl]carbamate (80 mg, 140.18 μmol, 67.06% yield) as a light yellow oil.
To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-ethoxy-7-[4-[(l-methyl-4-piperidyl) carbamoyl]pyrimidin-2-yl]-1-naphthyl]carbamate (70 mg, 122.66 μmol, 1 eq) in DCM (3 mL) was added TFA (1 mL) dropwise. The mixture was stirred at 25° C. for 1 hr. LCMS showed the reaction was completed. The reaction mixture was poured into ice water (30 mL). Then saturated Na2CO3 was slowly added to adjust the solution to pH=8˜9. The mixture was extracted with DCM (3×30 mL). The organic phase was separated, washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound 2-[8-(2-cyanoallylamino)-7-ethoxy-2-naphthyl]-N-(1-methyl-4-piperidyl)pyrimidine-4-carboxamide (11.4 mg, 24.23 μmol, 19.75% yield, 100% purity) as a light yellow solid.
To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-ethoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate (50 mg, 105 μmol) in dioxane (2 mL) and water (0.4 mL) were added 6-bromo-N-tetrahydropyran-4-yl-pyridine-2-carboxamide (44.8 mg, 157 μmol), Cs2CO3 (102 mg, 315 μmol) and PdCl2dppf (18 mg, 22.06 μmol). The reaction was heated at 100° C. for 30 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 40 min. The solution was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 10-80% EtOAc/Hexane to afford the title compound (56.9 mg, Yield 97%).
To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-ethoxy-7-[6-(tetrahydropyran-4-ylcarbamoyl)-2-pyridyl]-1-naphthyl]carbamate (56.9 mg, 102. μmol) in DCM (2 mL) was added TFA (0.5 mL) at 0° C. The resulting solution was stirred at 0° C. for 1 hour and r.t. for 1 h. The reaction mixture was concentrated in vacuo and the residue was diluted with DCM. The solution was washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by chromatography on silica gel eluting with 10-90% EtOAc/Hexane to afford the title compound (15 mg, Yield 32%). LC-MS (ES+, m/z): 457 [(M+H)+].
To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-ethoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate (50 mg, 105 μmol) in dioxane (2 mL) and water (0.4 mL) were added 6-bromo-N-[l-(2-methoxyethyl)-4-piperidyl]pyridine-2-carboxamide (53.7 g, 157 mmol), Cs2CO3 (102 mg, 314 μmol) and PdCl2dppf (18 mg, 22.06 μmol). The reaction was heated at 100° C. for 30 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 40 min. The solution was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 0-20% MeOH/EtOAc to afford the title compound (46.4 mg, Yield 72%).
To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-ethoxy-7-[6-[[l-(2-methoxyethyl)-4-piperidyl]carbamoyl]-2-pyridyl]-1-naphthyl]carbamate (46.4 mg, 75.7 μmol) in DCM (2 mL) was added TFA (0.5 mL) at 0° C. The resulting solution was stirred at 0° C. for 1 hour and r.t. for 1 h. The reaction mixture was concentrated in vacuo and the residue was diluted with DCM. The mixture was washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (6 mg, Yield 15%). LC-MS (ES+, m/z): 514 [(M+H)+]
To a mixture of 7-bromonaphthalen-2-ol (1 g, 4.48 mmol, 1 eq) and 1-bromo-2-meth oxyethane (934.6 mg, 6.72 mmol, 631 μL, 1.5 eq) in DMF (25 mL) were added K2CO3 (1.86 g, 13.45 mmol, 3 eq) and KI (744.2 mg, 4.48 mmol, 1 eq) in one portion at 25° C. under N2. Then, 1-bromo-2-methoxy-ethane (934.6 mg, 6.72 mmol, 631 μL, 1.5 eq) was added to the mixture. The mixture was stirred at 60° C. for 3 hours. The reaction was poured into ice water (100 mL) and extracted with EtOAc (3×100 mL). The combined organic layer was washed with brine (3×50 mL), dried over anhydrous Na2SO4 and concentrated in vacuo to afford the title compound (1 g, crude) as a yellow solid, which was used directly. LC-MS (ES+, m/z): 377.2 [(M+H)+].
To a mixture of 2-bromo-7-(2-methoxyethoxy)naphthalene (1 g, 3.56 mmol, 1 eq) in Ac2O (10 mL) was added HNO3 (410.9 mg, 3.91 mmol, 293.50 μL, 60% purity, 1.1 eq) in one portion at 0° C. under N2. The mixture was stirred at 0° C. for 1 hour. The reaction was filtered in vacuo to obtain crude product. The residue was washed with PE (3×50 mL) to afford the title compound as a yellow solid. (0.6 g, 1.84 mmol, 52% yield)
To a mixture of 7-bromo-2-(2-methoxyethoxy)-1-nitronaphthalene (0.6 g, 1.84 mmol, 1 eq) in EtOH (8 mL) was added saturated NH4Cl (2 mL). Then the mixture was heated to 70° C. Le (513.7 mg, 9.2 mmol, 5 eq) was added in one portion at 70° C. The mixture was stirred at 70° C. for 1 hour. The reaction was filtered in vacuo and the filtrate was concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=1:0 to 4:1) to afford the title compound as a yellow solid. (0.4 g, 1.35 mmol, 73% yield).
To a mixture of 7-bromo-2-(2-methoxyethoxy)naphthalen-1-amine (0.4 g, 1.35 mmol, 1 eq) was added (Boc)2O (10 mL) in one portion at 50° C. under N2. The mixture was stirred at 50° C. for 12 hours. LCMS showed that the reaction was complete. N1,N1-dimethyl ethane-1,2-diamine (4 mL) was added to the reaction mixture and stirred at 25° C. for 1 hour. Then the reaction was poured into water (100 mL) and extracted with EtOAc (3×30 mL). The combined organic layer was dried over anhydrous Na2SO4, concentrated in vacuo. The crude product was used directly without further purification to afford the title compound (0.5 g, crude) as a yellow solid. LC-MS (ES+, m/z): 296.0 [(M+H)+].
To a mixture of tert-butyl N-[7-bromo-2-(2-methoxyethoxy)naphthalen-1-yl]carbamate (0.45 g, 1.14 mmol, 1 eq) in DCM (20 mL) were added KOH (127.4 mg, 2.27 mmol, 2 eq) and TBAI (209.7 mg, 567.79 μmol, 0.5 eq) in one portion at 25° C. under N2. Then, 2-(bromomethyl)prop-2-enenitrile (248.7 mg, 1.7 mmol, 1.5 eq) was added, and the mixture was stirred at 25° C. for 1 hour. The reaction was poured into ice water (100 mL) and extracted with DCM (3×50 mL). The combined organic layer was dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=3:1) to afford the title compound (0.45 g, 975.4 μmol, 86% yield) as a colorless oil. LC-MS (ES+, m/z): 361.0.
To a mixture of tert-butyl N-[7-bromo-2-(2-methoxyethoxy)naphthalen-1-yl]-N-(2-cyano-2-methylideneethyl)carbamate (0.2 g, 433.51 μmol, 1.0 eq) and (BPin)2 (165.1 mg, 650.27 μmol, 1.5 eq) in dioxane (15 mL) were added KOAc (127.6 mg, 1.3 mmol, 3 eq) and Pd(dppf)Cl2 (31.7 mg, 43.35 μmol, 0.1 eq) in one portion at 100° C. under N2. The mixture was stirred at 100° C. for 0.5 hours. The reaction mixture was concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=2:1) to afford the title compound (0.2 g, 393.38 μmol, 91% yield) as a yellow oil.
To a mixture of tert-butyl N-(2-cyanoallyl)-N-[2-(2-methoxyethoxy)-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate (0.2 g, 393.38 μmol, 1 eq) and 2-chloro-N-[4-(dimethylamino)cyclohexyl]pyrimidine-4-carboxamide (222.5 mg, 786.76 μmol, 2 eq) in dioxane (4 mL) and H2O (1 mL). Then added Na2CO3 (125.1 mg, 1.18 mmol, 3 eq) and Pd(dppf)Cl2 (28.8 mg, 39.34 μmol, 0.1 eq). The reaction was heated to 120° C. under N2 and stirred for 1 h. LCMS showed that the reaction was complete. To the reaction mixture was added saturated EDTA (50 mL) and EtOAc (50 mL) at 25° C. Then stirred at 25° C. for 1 h. Then the mixture was extracted with EtOAc (2×50 mL), washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, DCM:MeOH=6:1) to afford tert-butyl N-(2-cyano-2-methylideneethyl)-N-[2-(2-methoxyethoxy)-7-(4-{[(1r,4r)-4-(dimethylamino)cyclohexyl]carbamoyl}pyrimidin-2-yl)naphthalen-1-yl]carbamate (80 mg, 127.23 μmol, 32.34% yield) as a yellow oil. LC-MS (ES+, m/z): 629.3 [(M+H)+]; and tert-butyl N-(2-cyano-2-methylideneethyl)-N-[2-(2-methoxyethoxy)-7-(4-{[(1s,4s)-4-(dimethylamino)cyclohexyl]carbamoyl}pyrimidin-2-yl)naphthalen-1-yl]carbamate (60 mg, 95.43 μmol, 24.26% yield) as a yellow oil. LC-MS (ES+, m/z): 629.3 [(M+H)+].
To a solution of tert-butyl N-(2-cyano-2-methylideneethyl)-N-[2-(2-methoxyethoxy)-7-(4-{[(1r,4r)-4-(dimethylamino)cyclohexyl]carbamoyl}pyrimidin-2-yl)naphthalen-1-yl]carbamate (80 mg, 127.23 μmol, 1 eq) in DCM (2 mL) was added TFA (770 mg, 6.75 mmol, 0.5 mL, 53.08 eq). The mixture was stirred at 25° C. for 1 h. LCMS showed that the reaction was complete. The reaction mixture was adjusted to pH=8 with saturated NaHCO3. The mixture was extracted with DCM (2×30 mL). The combined organic layers were washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound (7.5 mg, 13.41 μmol, 10% yield) as a white solid. LC-MS (ES+, m/z): 529.3 [(M+H)+].
TABLE 3 shows compounds synthesized using method C described in EXAMPLE 3 above.
To a mixture of 7-bromonaphthalen-2-ol (2 g, 89.66 mmol, 1 eq) in DMF (200 mL) were added K2CO3 (24.78 g, 179.32 mmol, 2 eq) and MeI (15.27 g, 107.59 mmol, 6.70 mL, 1.2 eq) at 15° C. The mixture was stirred at 15° C. for 18 h. TLC showed that the stating material was consumed. The residue was poured into saturated NH4Cl (300 mL), and the aqueous phase was extracted with EtOAc (3×200 mL). The combined organic phase was washed with brine (3×250 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound (2 g, crude) as a white solid.
To a solution of 2-bromo-7-methoxynaphthalene (2 g, 84.36 mmol, 1 eq) in Ac2O (200 mL) was added HNO3 (9.75 g, 92.79 mmol, 6.96 mL, 60% purity, 1.1 eq) at 0° C. The mixture was stirred at 0° C. for 4 h. A yellow solid formed. TLC showed that the stating material was consumed. The reaction mixture was filtered. The filter cake was washed with PE (50 mL) and concentrated to afford the title compound (17 g, crude) as a yellow solid. 1H NMR (400 MHz, DMSO-d6) δ=8.28-8.26 (d, J=9.2 Hz, 1H), 8.05-8.02 (d, J=8.8 Hz, 1H), 7.76-7.74 (d, J=9.2 Hz, 1H), 7.69 (s, 1H), 7.69-7.67 (d, J=7.2 Hz, 1H), 4.05 (s, 1H).
To a mixture of 7-bromo-2-methoxy-1-nitronaphthalene (8 g, 28.36 mmol, 1 eq) in DCM (80 mL) was added BBr3 (35.52 g, 141.8 mmol, 13.7 mL, 5 eq) at 0° C. The mixture was stirred at 0° C. for 4 h. TLC showed no starting material remained. The residue was poured into ice-water (150 mL), and the aqueous phase was extracted with DCM (3×100 mL). The combined organic phase was washed with brine (3×100 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound (8 g, crude) as a yellow solid. 1H NMR (400 MHz, DMSO-d6) δ=11.72 (s, 1H), 8.08-8.06 (d, J=9.2 Hz, 1H), 7.96-7.94 (d, 7=8.4 Hz, 1H), 7.75 (s, 1H), 7.62-7.60 (d, 7=8.8 Hz, 1H), 7.38-7.36 (d, 7=9.2 Hz, 1H).
To a mixture of 7-bromo-1-nitronaphthalen-2-ol (850 mg, 3.17 mmol, 1 eq) in THF (10 mL) were added K2CO3 (876.5 mg, 6.34 mmol, 2 eq) and PhNTf2 (1.36 g, 3.81 mmol, 1.2 eq) at 25° C. The mixture was stirred at 70° C. for 1 h. The residue was poured into water (50 mL), and the aqueous phase was extracted with EtOAc (3×20 mL). The combined organic phase was washed with brine (3×20 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by silica gel chromatography (PE:EtOAc=1/0, 10:1) to afford the title compound (1.3 g, 2.92 mmol, 92.22% yield, 90% purity) as a yellow solid. 1H NMR (400 MHz, DMSO-A) 5=8.56-8.54 (d, 7=9.2 Hz, 1H), 8.26-8.23 (d, 7=8.8 Hz, 1H), 8.20 (s, 1H), 8.02-7.9 (d, 7=8.4 Hz, 1H), 7.94-7.91 (d, 7=9.2 Hz, 1H).
To a mixture of 7-bromo-1-nitronaphthalen-2-yl trifluoromethanesulfonate (1 g, 2.37 mmol, 1 eq) in dioxane (10 mL) were added trimethyl boroxine (894.2 mg, 3.56 mmol, 995.72 μL, 1.5 eq), Cs2CO3 (1.55 g, 4.75 mmol, 2 eq), and Pd(dppf)Cl2 (173.7 mg, 237.43 μmol, 0.1 eq) at 25° C. under N2. The mixture was stirred at 50° C. for 1.5 h. The residue was poured into saturated EDTA (60 mL) and stirred for 60 min. The aqueous phase was extracted with EtOAc (3×30 mL). The combined organic phase was washed with brine (3×30 mL×3), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by silica gel chromatography (PE:EtOAc=1:0, 20:1) to afford the title compound (330 mg, 1.24 mmol, 52.23% yield) as a light yellow solid.
To a solution of 7-bromo-2-methyl-1-nitronaphthalene (370 mg, 1.39 mmol, 1 eq) in EtOH (5 mL) and saturated NH4Cl (0.5 mL) was added Fe (776.5 mg, 13.91 mmol, 10 eq) at 70° C. The mixture was stirred at 70° C. for 1 h. Upon completion of the reaction as indicated by LCMS and TLC. The residue was poured into water (40 mL). The aqueous phase was filtered with diatomite, and extracted with EtOAc (3×20 mL). The combined organic phase was washed with brine (3×20 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by silica gel chromatography (PE:EtOAc=1/0, 10:1) to afford the title compound (300 mg, 1.21 mmol, 86.8% yield, 95% purity) as a red solid. LC-MS (ES+, m/z): 236.0, 238.0 [(M+H)+].
A solution of 7-bromo-2-methylnaphthalen-1-amine (280 mg, 1.13 mmol, 1 eq) dissolved in Boc2O (10 mL) was prepared at 25° C. under N2. The mixture was stirred at 110° C. for 3 h. TLC showed no starting material remained. The mixture was concentrated in vacuo. The residue was purified by silica gel chromatography (PE:EtOAc=1/0, 10:1) to afford the title compound (360 mg, 910.11 μmol, 80.8% yield, 85% purity) and di-Boc product (360 mg, 107.26 μmol, 9.52% yield, 13% purity) as a white solid. LC-MS (ES+, m/z): 279.9, 281.9 [(M+H)+].
To a mixture of ten-butyl N-(7-bromo-2-methylnaphthalen-1-yl)carbamate (240 mg, 713.81 μmol, 1 eq) in DCM (10 mL) were added KOH (80.1 mg, 1.43 mmol, 2 eq), TBAI (131.8 mg, 356.91 μmol, 0.5 eq), and 2-(bromomethyl)prop-2-enenitrile (114.6 mg, 785.19 μmol, 1.1 eq) at 25° C. under N2. The mixture was stirred at 25° C. for 1 h. The residue was poured into H2O (30 mL). The aqueous phase was extracted with DCM (3×15 mL). The combined organic phase was washed with brine (3×15 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by silica gel chromatography (PE:EtOAc=1:0, 10:1) to afford the title compound (260 mg, 637.58 μmol, 89.32% yield, 98.407% purity) as a white solid. LC-MS (ES+, m/z): 345.0, 347.0 [(M+H)+]
To a mixture of ten-butyl (7-bromo-2-methylnaphthalen-1-yl)(2-cyanoallyl)carbamate (210 mg, 514.97 μmol, 1 eq) in dioxane (10 mL) were added Pin2B2 (392.3 mg, 1.54 mmol, 3 eq), KOAc (252.7 mg, 2.57 mmol, 5 eq), and a Pd(dppf)Cl2 (37.7 mg, 51.5 μmol, 0.1 eq) at 25° C. under N2. The mixture was stirred at 100° C. for 2 h. Upon completion of the reaction as indicated by LCMS and TLC. The residue was poured into saturated EDTA (30 mL) and stirred for 60 min. The aqueous phase was extracted with EtOAc (3×30 mL). The combined organic phase was washed with brine (3×30 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by silica gel chromatography (PE:EtOAc=1:0, 10:1). The product was purified by prep-TLC to afford the title compound (180 mg, 361.32 μmol, 70.2% yield, 90% purity) as a colourless oil. LC-MS (ES+, m/z): 393.2 [(M+H)+], 1H NMR (400 MHz, DMSO-A) 5=8.11 (s, 1H), 7.91-7.83 (m, 2H), 7.70-7.68 (d, J=8.4 Hz, 1H), 7.50-7.48 (d, J=8.4 Hz, 1H), 6.03 (s, 1H), 5.87-5.75 (m, 1H), 4.62-4.49 (d, J=14.8, 1H), 4.26-4.19 (d, J=7.6, 1H), 2.38-2.36 (d, 3H), 1.13 (d, 12H), 1.18-1.07 (d, 9H).
To a mixture of N-(2-bromopyridin-4-yl)acetamide (41.1 mg, 240.88 μmol, 2 eq) and ten-butyl N-(2-cyano-2-methylideneethyl)-N-[2-methyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) naphthalen-1-yl]carbamate (60 mg, 120.44 μmol, 1 eq) in dioxane (3 mL), H2O (0.75 mL) were added Na2CO3 (25.5 mg, 240.88 μmol, 2 eq), Pd(dppf)Cl2 (8.8 mg, 12.04 μmol, 0.1 eq) at 25° C. The mixture was stirred at 110° C. for 1.5 h. TLC showed no starting material remained. The residue was poured into saturated EDTA (30 mL) and stirred for 60 min. The aqueous phase was extracted with EtOAc (3×30 mL). The combined organic phase was washed with brine (3×30 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC to afford the title compound (50 mg, 98.57 μmol, 81.8% yield, 90% purity) as a colorless oil.
To a mixture of tert-butyl N-(2-cyano-2-methylideneethyl)-N-[7-(4-acetamidopyridin-2-yl)-2-methylnaphthalen-1-yl]carbamate (50 mg, 98.57 μmol, 1 eq) in DCM (4 mL) was added TFA (1 mL) at 25° C. under N2. The mixture was stirred at 25° C. for 1 h. The mixture was poured into saturated Na2CO3 (20 mL), and the aqueous phase was extracted with EtOAc (3×30 mL). The combined organic phase was washed with brine (3×30 mL), dried with anhydrous Na2SO4. Then concentrated in vacuo. The residue was purified by prep-HPLC to afford the title compound (4.1 mg, 11.38 μmol, 11.55% yield, 98.967% purity) as a light yellow solid. LC-MS (ES+, m/z): 356.1 [(M+H)+].
A mixture of 8-aminonaphthalen-2-ol (1 g, 62.82 mmol, 1 eq) and Boc2O (15.08 g, 69.1 mmol, 15.88 mL, 1.1 eq) in dioxane (150 mL) was stirred at 100° C. for 7 hours. The reaction was concentrated directly to give crude material. The residue was purified by column chromatography (SiO2, PE:EtOAc=6:1 to 4:1) to afford the title compound (12 g, 46.28 mmol, 73.67% yield) as an off-white solid.
To a mixture of tert-butyl N-(7-hydroxy-1-naphthyl)carbamate (1 g, 38.57 mmol, 1 eq) in THF (150 mL) were added K2CO3 (10.66 g, 77.13 mmol, 2 eq) and 1,1,1-trifluoro-N-phenyl-N-(trifluoromethylsulfonyl)methanesulfonamide (16.53 g, 46.28 mmol, 1.2 eq) in one portion, and the reaction was stirred at 60° C. for 3 hours. The reaction was diluted with 200 mL water, and extracted with EtOAc (2×100 mL). The combined organic layer was washed with brine (2×100 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 6:1) to afford the title compound (14 g, 35.77 mmol, 92.76% yield) as a pink solid
To a mixture of [8-(tert-butoxycarbonylamino)-2-naphthyl]trifluoro methane sulfonate (14 g, 35.77 mmol, 1 eq) and 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (18.17 g, 71.55 mmol, 2 eq) in dioxane (200 mL) were added KOAc (10.53 g, 107.32 mmol, 3 eq) and Pd(dppf)Cl2 (2.09 g, 2.86 mmol, 0.08 eq) in one portion. The reaction was stirred at 120° C. for 6 hours under N2. The reaction was diluted with 100 mL water, extracted with EtOAc (2×100 mL), and the combined organic layer was washed with brine (2×100 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=8/1 to 4:1) to afford the title compound (9.4 g, 25.46 mmol, 71.16% yield) as an off-white solid. LC-MS (ES+, m/z): 314.1 [(M+H)+].
To a mixture of tert-butyl N-[7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate (9.4 g, 25.46 mmol, 1 eq) and methyl 6-bromopyridine-2-carboxylate (6.05 g, 28 mmol, 1.1 eq) in DME (100 mL) and H2O (25 mL) were added CsF (11.6 g, 76.37 mmol, 2.82 mL, 3 eq), Pd(dppf)Cl2 (1.86 g, 2.55 mmol, 0.10 eq) in one portion, and the reaction mixture was stirred at 100° C. for 1.5 hours. TLC and LCMS showed that the reaction was complete. The reaction mixture was poured into saturated EDTA (200 mL) and stirred at 25° C. for 1 h. Then. The mixture was extracted with EtOAc (2×100 mL), washed with brine (2×100 mL), dried over Na2SO4 filtered, and concentrated in vacuo to give a crude residue. The crude material was purified by column chromatography (SiO2, PE:EtOAc=6:1 to 1/1) to afford the title compound (5.5 g, 14.53 mmol, 57.09% yield) as a white solid. LC-MS (ES+, m/z): 379.2 [(M+H)+].
To a mixture of methyl 6-[8-(tert-butoxycarbonylamino)-2-naphthyl]pyridine-2-carboxylate (5.5 g, 14.53 mmol, 1 eq) in DCM (80 mL) was added TFA (26.06 g, 228.56 mmol, 16 mL, 15 eq) in one portion, and the reaction mixture was stirred at 25° C. for 1 hours. The reaction mixture was adjusted to pH=8 with saturated aq. Na2CO3. The mixture was extracted with EtOAc (2×100 mL). The combined organic layer was washed with brine (2×100 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=6:1 to 4:1) to afford the title compound (3.5 g, 12.58 mmol, 86.53% yield) as a yellow solid. LC-MS (ES+, m/z): 279.1 [(M+H)+].
To a mixture of methyl 6-(8-amino-2-naphthyl)pyridine-2-carboxylate (3 g, 10.78 mmol, 1 eq) in ACN (8 mL) was added NCS (1.15 g, 8.62 mmol, 0.8 eq) in one portion under N2. The mixture was stirred at 25° C. for 12 hours. LCMS showed that the reaction was complete. The reaction was diluted with 100 mL water and extracted with EtOAc (2×50 mL). The combined organic layer was washed with brine (2×50 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=8/1 to 4:1) to afford the title compound (1.9 g, 6.08 mmol, 56.36% yield) as an off-white solid and the byproduct (1. g, 3.2 mmol, 29.66% yield) as a yellow solid. LC-MS (ES+, m/z): 313.0 [(M+H)+].
To a mixture of methyl 6-(8-amino-7-chloro-2-naphthyl)pyridine-2-carboxylate (900 mg, 2.88 mmol, 1 eq) in Boc2O (14.25 g, 65.29 mmol, 15 mL, 22.69 eq) was stirred at 125° C. for 4 hours. The reaction was concentrated directly. The crude residue was purified by column chromatography (SiO2, PE:EtOAc=8/1 to 6:1) to obtain 1.2 g of the desired product (˜80% purity). Then purified by prep-HPLC (TFA condition) to afford the title compound (900 mg, 1.75 mmol, 60.97% yield) as an off-white solid.
To a mixture of methyl 6-[8-[bis(tert-butoxycarbonyl)amino]-7-chloro-2-naphthyl]pyridine-2-carboxylate (700 mg, 1.36 mmol, 1 eq) in THF (10 mL), MeOH (5 mL) was added K2CO3 (188.6 mg, 1.36 mmol, 1 eq) in one portion under N2. The mixture was stirred at 25° C. for 3 hours. The reaction mixture was filtered to give filtrate and concentrated in vacuo to afford the title compound (550 mg, crude) as an off-white solid.
To a mixture of methyl 6-[8-[bis(tert-butoxycarbonyl)amino]-7-chloro-2-naphthyl]pyridine-2-carboxylate (350 mg, 682.29 μmol, 1 eq) in THF (5 mL) and MeOH (2.5 mL) was added K2CO3 (94.3 mg, 682.29 μmol, 1 eq) in one portion under N2. The mixture was stirred at 25° C. for 3 hours. The reaction mixture was filtered to give filtrate and concentrated in vacuo to give crude to afford the title compound (200 mg, 484.42 μmol, 71.00% yield) as an off-white solid.
To a mixture of methyl 6-[8-(tert-butoxycarbonylamino)-7-chloro-2-naphthyl]pyridine-2-carboxylate (150 mg, 363.31 μmol, 1 eq) in DCM (4 mL) were added KOH (40.8 mg, 726.63 μmol, 2 eq), TBAI (40.3 mg, 108.99 μmol, 0.3 eq) and 2-(bromomethyl)prop-2-enenitrile (68.9 mg, 472.31 μmol, 1.3 eq) in one portion under N2. The mixture was stirred at 25° C. for 60 min. TLC showed that ˜40% of the desired product was formed. The reaction was stirred for another 1 hour. TLC showed ˜60% desired product. The reaction was diluted with 30 mL water and extracted with EtOAc (2×30 mL). The combined organic layer was washed with brine (2×25 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC twice (SiO2, PE:EtOAc=4:1) to afford the title compound (90 mg, 188.31 μmol, 51.8% yield) as a yellow solid.
To a mixture of methyl 6-[8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-chloro-2-naphthyl]pyridine-2-carboxylate (90 mg, 188.7 μmol, 1 eq) in DCM (3 mL) was added TFA (1.54 g, 13.51 mmol, 1 mL, 71.57 eq) in one portion. The mixture was stirred at 25° C. for 60 min. The reaction was diluted with 20 mL water and extracted with EtOAc (2×20 mL). The combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=4:1) to afford the title compound (60 mg, 158.8 μmol, 84.16% yield) as a yellow solid.
To a mixture of methyl 6-[7-chloro-8-(2-cyanoallylamino)-2-naphthyl]pyridine-2-carboxylate (60 mg, 158.8 μmol, 1 eq) in THF (4 mL) H2O (1 mL) was added LiOH·H2O (66.6 mg, 1.59 mmol, 10 eq) in one portion. The mixture was stirred at 25° C. for 60 min. The reaction mixture was adjusted to pH=6 with saturated citric acid and extracted with EtOAc (2×20 mL). The combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo to afford the title compound (50 mg, crude) as a yellow gum.
To a mixture of 6-[7-chloro-8-(2-cyanoallylamino)-2-naphthyl]pyridine-2-carboxylic acid (50 mg, 137.44 μmol, 1 eq) and 1-methylpiperidin-4-amine (31.4 mg, 274.88 μmol, 2 eq) in DMF (5 mL) were added Et3N (41.7 mg, 412.32 μmol, 57.39 μL, 3 eq), T3P (131.2 mg, 206.16 μmol, 122.61 μL, 50% purity, 1.5 eq) in one portion, and the reaction was stirred at 25° C. for 1 hours. LCMS showed that the reaction was complete. The reaction was diluted with 30 mL water and extracted with EtOAc (2×30 mL). The combined organic layer was washed with brine (2×25 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford the title compound 6-[7-chloro-8-(2-cyanoallylamino)-2-naphthyl]-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (11.8 mg, 25.65 μmol, 18.67% yield, 100.0% purity) as an off-white solid. LC-MS (ES+, m/z): 286.1 [(M+H)+].
TABLE 4 shows compounds synthesized using methods described in EXAMPLE 4 described above.
To a solution of 7-bromo-2-methoxy-naphthalen-1-amine (1 g, 39.67 mmol, 1 eq) and 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (30.22 g, 119 mmol, 3 eq) in dioxane (150 mL) were added Pd(dppf)Cl2 (1.45 g, 1.98 mmol, 0.05 eq) and KOAc (11.68 g, 119 mmol, 3 eq). Then the reaction was stirred at 120° C. for 1 h under N2 atmosphere. The reaction mixture was filtered and the filtrated cake was washed with DCM (3×80 mL). The combined filtrate was concentrated. The residue was purified by silica gel chromatography (PE:EtOAc=5/1) and washed with 100 mL PE to afford the title compound (13.8 g, 93.03% yield) as a light yellow solid.
To a solution of 2-methoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-amine (5 g, 16.71 mmol, 1 eq) and 2-bromopyridine (3.96 g, 25.07 mmol, 2.39 mL, 1.5 eq) in dioxane (40 mL) and H2O (10 mL) were added Cs2CO3 (16.34 g, 50.14 mmol, 3 eq) and Pd(dppf)Cl2 (122.3 mg, 167.13 μmol, 0.01 eq). The reaction was stirred at 120° C. for 3 h under N2 atmosphere. The reaction mixture was poured into saturated EDTA (200 mL) and stirred at 25° C. for 1 h. Then the mixture was extracted with EtOAc (3×100 mL). The combined organic layer was washed with brine (3×100 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by silica gel chromatography (PE:EtOAc/DCM=3:1/1) to afford the title compound (3.6 g, 86.06% yield) as a yellow oil.
To a solution of 2-methoxy-7-(2-pyridyl)naphthalen-1-amine (3. g, 11.99 mmol, 1 eq) in DCM (30 mL) was added BBr3 (46.84 g, 186.98 mmol, 18.02 mL, 15.6 eq) at 0° C. Then the reaction was stirred at 20° C. for 6 h. The reaction was poured into ice-water (300 mL) and adjusted to pH=8 with solid Na2CO3. The reaction was filtered, and the filter cake was washed with water (50 mL) and concentrated to afford the title compound (2. g) as a brown solid, which was used directly in the next step. The filtrate was extracted with DCM (3×50 mL). The combined organic layer was washed with brine (3×40 mL), dried over Na2SO4, filtered, and concentrated to give 600 mg of crude product. Total yield of crude product was 92%.
To a solution of 1-amino-7-(2-pyridyl)naphthalen-2-ol (2. g, 8.46 mmol, 1 eq) in MeOH (20 mL) was added Boc2O (36.95 g, 169.3 mmol, 38.89 mL, 20 eq) at 15° C. The reaction was stirred at 85° C. for 1 h. TLC showed the desired product. 20 mL of N,N-dimethylethane-1,2-diamine was added, and the reaction was stirred at 20° C. for 18 h. LCMS showed 70% of desired compound. The reaction was quenched with water (50 mL) and extracted with DCM (3×30 mL). The combined organic layer was washed with water (3×20 mL) and brine (3×20 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by silica gel chromatography (PE:EtOAc=1/1) to afford the title compound (2.3 g, 68.66% yield) as a yellow solid.
To a solution of tert-butyl N-[2-hydroxy-7-(2-pyridyl)-1-naphthyl]carbamate (1.3 g, 3.28 mmol, 1 eq) in THF (20 mL) were added K2CO3 (1.3 g, 9.41 mmol, 2.86 eq) and PhNTf2 (1.52 g, 4.25 mmol, 1.30 eq). The reaction was stirred at 70° C. for 2 h. The reaction mixture was concentrated to remove the THF. The residue was quenched with water (100 mL) at 0° C. and extracted with EtOAc (3×30 mL). The combined organic layer was washed with water (3×30 mL) and brine (3×30 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by silica gel chromatography (PE:EtOAc=4:1) to afford the title compound (1.3 g, 71% yield) as a yellow oil.
To a sealed tube were added [1-(tert-butoxycarbonylamino)-7-(2-pyridyl)-2-naphthyl]trifluoromethane-sulfonate (570 mg, 973.43 μmol, 1 eq), Pd(dppf)Cl2 (71.2 mg, 97.34 μmol, 0.1 eq) and TEA (610.7 mg, 6.03 mmol, 840.00 μL, 6.20 eq) in DMF (4 mL) and MeOH (4 mL). The reaction was stirred at 60° C. for 20 h under CO (50 Psi) atmosphere. LCMS showed 80% desired compound. The reaction mixture was concentrated to remove MeOH. Then 50 mL Saturated EDTA and 50 mL DCM were added. The mixture was stirred at 20° C. for 1 h. The mixture was extracted with DCM (3×30 mL). The combined organic layer was washed with water (3×30 mL) and brine (3×30 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by silica gel chromatography (PE:EtOAc=4:1) to afford the title compound (300 mg, 65.15% yield) as a yellow solid.
To a solution of methyl 1-(tert-butoxycarbonylamino)-7-(2-pyridyl)naphthalene-2-carboxylate (270 mg, 713.49 μmol, 1 eq) in DMF (5 mL) were added K2CO3 (247.5 mg, 1.79 mmol, 2.51 eq) and 2-(bromomethyl)prop-2-enenitrile (192.9 mg, 1.32 mmol, 1.85 eq) in 0.5 mL of DMF. The reaction mixture was stirred at 80° C. for 2 h. A solution of 2-(bromomethyl)prop-2-enenitrile (52.1 mg, 356.75 μmol, 0.5 eq) in 0.5 L DMF was added, and the reaction was heated at 80° C. for another 1 h. TLC showed 80% desired compound. The reaction was poured into saturated NH4Cl (50 mL) at 0° C. and extracted with EtOAc (3×30 mL). The combined organic layer was washed with water (3×30 mL) and brine (3×30 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by silica gel chromatography (PE:EtOAc=4:1) to afford the title compound (250 mg, 79.01% yield) as a light yellow oil.
To a solution of methyl 1-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-(2-pyridyl)naphthalene-2-carboxylate (170 mg, 383.32 μmol, 1 eq) in THF (4 mL) and H2O (1 mL) was added LiOH·H2O (170 mg, 4.05 mmol, 10.57 eq). Then the reaction was stirred at 20° C. for 18 h and at 50° C. for 2 h. The reaction mixture was adjusted pH=5 with 1M HCl and extracted with DCM (3×30 mL). The combined organic layer was washed with brine (3×30 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by prep-TLC (SiO2, DCM/MeOH=18/1, Rf=0.4) to afford the title compound (120 mg, 72.89% yield) as a light yellow solid.
To a solution of 1-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-(2-pyridyl)naphthalene-2-carboxylic acid (100 mg, 232.85 μmol, 1 eq) in DCM (6 mL) were added TEA (203.6 mg, 2.01 mmol, 280.00 μL, 8.64 eq) and HATU (200 mg, 526 μmol, 2.26 eq). Then, NH3 (3.57 mL, 61.35 eq) (4M in THF) was added at 0° C. The reaction mixture was stirred at 20° C. for 1 h. The reaction was quenched with water (30 mL) at 0° C. and extracted with DCM (3×10 mL). The combined organic layer was washed with brine (3×10 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by prep-TLC (SiO2, DCM/MeOH=20/1) to afford the title compound (69 mg, 69.16% yield) as a light yellow solid.
To a solution of tert-butyl N-[2-carbamoyl-7-(2-pyridyl)-1-naphthyl]-N-(2-cyanoallyl)carbamate (50 mg, 116.69 μmol, 1 eq) in DCM (3 mL) was added TFA (0.6 mL). The reaction mixture was stirred at 20° C. for 1 h. The reaction was poured into Saturated NaHCO3 (30 mL) and extracted with DCM (4×10 mL). The combined organic layer was washed with brine (3×10 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by prep-TLC (SiO2, DCM/MeOH=18/1, Rf=0.6) to afford the title compound (20 mg, 52.20% yield) as a light yellow solid. LC-MS (ES+, m/z): 329.1 [(M+H)+]
To a solution of 7-bromo-2-methoxy-naphthalen-1-amine (5. g, 19.83 mmol, 1 eq) and 3-pyridylboronic acid (3.66 g, 29.75 mmol, 1.5 eq) in dioxane (60 mL) and H2O (15 mL) were added Na2CO3 (6.31 g, 59.5 mmol, 3 eq) and Pd(dppf)Cl2 (1.45 g, 1.98 mmol, 0.1 eq). The reaction mixture was stirred at 120° C. for 1 h under N2 atmosphere. TLC showed that the reaction was complete. 100 mL of EtOAc and 200 mL of saturated EDTA were added. The reaction mixture was stirred at 15° C. for 1 h and extracted with EtOAc (3×200 mL). The combined organic layer was washed with brine (3×100 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by silica gel chromatography (PE/EtOAc=1/1 to 100% EtOAc) to afford the title compound (4.5 g, 90.65% yield) as a yellow solid.
To a solution of 2-methoxy-7-(3-pyridyl)naphthalen-1-amine (2.8 g, 11.19 mmol, 1 eq) in DCM (28 mL) was added BBr3 (14.56 g, 58.12 mmol, 5.60 mL, 5.20 eq) in 1 mL DCM at 0° C. The reaction mixture was stirred at 15° C. for 3 h. The reaction mixture was poured into water (200 mL). The solution was adjusted to pH=8 with solid NaHCO3. A yellow solid formed, and the precipitate was filtered. The filter cake was washed with water (3×150 mL) and dried to afford the title compound (2.5 g, 94% yield) as a yellow solid.
To a solution of 1-amino-7-(3-pyridyl)naphthalen-2-ol (2.2 g, 8.38 mmol, 1 eq) in MeOH (146 mL) was added Boc2O (36.58 g, 167.61 mmol, 38.50 mL, 20 eq). The reaction mixture was stirred at 85° C. for 1.0 h. LCMS showed the desired product. 14.6 mL of N,N-dimethylethane-1,2-diamine was added, and the reaction was stirred at 15° C. for Id. The reaction was concentrated. The residue was diluted with 20 mL of DCM, washed with water (3×40 mL) and brine (3×40 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by silica gel chromatography (PE/EtOAc/DCM=50/50/20) to afford the title compound (2.1 g, 74.5% yield) as a light yellow solid.
To a solution of tert-butyl N-[2-hydroxy-7-(3-pyridyl)-1-naphthyl]carbamate (1.86 g, 5.53 mmol, 1 eq) and 1,1,1-trifluoro-N-phenyl-N-(trifluoromethylsulfonyl) methanesulfonamide (2.37 g, 6.64 mmol, 1.2 eq) in THF (30 mL) was added K2CO3 (1.53 g, 11.06 mmol, 2 eq). The reaction mixture was stirred at 70° C. for 2 h. The reaction was quenched with water (100 mL) at 0° C. and extracted with EtOAc (3×50 mL). The combined organic layer was washed with water (3×50 mL) and brine (3×50 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by silica gel chromatography (DCM/MeOH=20/1) to afford the title compound (2.15 g, 83% yield) as a yellow oil.
To a solution of [1-(tert-butoxycarbonylamino)-7-(3-pyridyl)-2-naphthyl]trifluoromethane-sulfonate (1. g, 2.13 mmol, 1 eq) in DMF (8.3 mL) and MeOH (8.3 mL) were added TEA (1.08 g, 10.67 mmol, 1.49 mL, 5 eq) and Pd(dppf)Cl2 (156.2 mg, 213.47 μmol, 0.1 eq). The reaction mixture was stirred at 60° C. for 24 h under CO (50 Psi) atmosphere. The reaction was concentrated. 50 mL of Saturated EDTA and 20 mL of DCM were added to the mixture. The reaction mixture was stirred at 15° C. for 1 h. Then. The mixture was extracted with DCM/MeOH=10:1 (3×30 mL). The combined organic layer was washed with water (3×30 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by silica gel chromatography (DCM/MeOH=20/1) to afford the title compound (640 mg, 79.2% yield) as a light yellow solid.
To a solution of methyl 1-(tert-butoxycarbonylamino)-7-(3-pyridyl)naphthalene-2-carboxylate (640 mg, 1.69 mmol, 1 eq) in DMF (10 mL) were added K2CO3 (640 mg, 4.63 mmol, 2.74 eq) and 2-(bromomethyl)prop-2-enenitrile (314 mg, 2.15 mmol, 1.27 eq) in 2 mL of DMF. The reaction mixture was stirred at 15° C. for 2 h. Then, a solution of 2-(bromomethyl)prop-2-enenitrile (170 mg, 1.16 mmol, 0.69 eq) in 0.5 mL of DMF was added, and the reaction was stirred at 15° C. for another 2 h. The reaction was poured into Saturated NH4Cl (50 mL) at 0° C. and the mixture was extracted with EtOAc (3×30 mL). The combined organic layer was washed with water (3×30 mL) and brine (3×10 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by prep-TLC (SiO2, PE/EtOAc=1/1) to afford the title compound (300 mg, 40% yield) as a light yellow oil. Methyl 1-(tert-butoxycarbonylamino)-7-(3-pyridyl)naphthalene-2-carboxylate (180 mg) was recovered.
To a solution of methyl 1-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-(3-pyridyl)naphthalene-2-carboxylate (260 mg, 586.25 μmol, 1 eq) in THF (11.2 mL) and H2O (2.8 mL) was added LiOH·H2O (272.8 mg, 6.5 mmol, 11.09 eq). The reaction mixture was stirred at 50° C. for 4 h. The reaction was adjusted pH=3 with Saturated citric acid (3 mL) and extracted with DCM/MeOH=10:1 (3×50 mL). The combined organic layer was washed with brine (3×30 mL), dried over Na2SO4, filtered, and concentrated. The residue was washed with DCM/MeOH=10:1 (8 mL) to give the desired compound (140 mg). The filtrate was purified by prep-TLC (SiO2, DCM/MeOH=10:1) to afford the title compound (70 mg). The total yield was 83%.
To a solution of 1-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-(3-pyridyl)naphthalene-2-carboxylic acid (210 mg, 415.63 μmol, 1 eq) in DCM (6 mL) were added TEA (762 mg, 7.53 mmol, 1.05 mL, 18.12 eq), HATU (316.1 mg, 831.26 μmol, 2 eq) and NH3 (4M NH3 in THF, 6 mL, 57.74 eq). The reaction mixture was stirred at 15° C. for 2 h. The reaction was quenched with ice-water (30 mL) and extracted with DCM (3×15 mL). The combined organic layer was washed with brine (3×15 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by prep-TLC (SiO2, DCM/MeOH=20/1, Rf=0.4) to afford the title compound (160 mg, 89.8% yield) as a light yellow oil.
To a solution of tert-butyl N-[2-carbamoyl-7-[4-[(l-methyl-4-piperidyl)carbamoyl]pyrimidin-2-yl]-1-naphthyl]-N-(2-cyanoallyl)carbamate (50 mg, 116.69 μmol, 1 eq) in DCM (3 mL) was added TFA (0.5 mL) at 20° C. The reaction mixture was stirred at 20° C. for 1 h. The reaction was poured into Saturated NaHCO3 (30 mL) and extracted with DCM (4×10 mL). The combined organic layer was washed with brine (3×10 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by HPLC to afford the title compound (15 mg, 38% yield) as a white solid. LC-MS (ES+, m/z): 329.1 [(M+H)+].
To a solution of 7-bromo-2-methoxy-1-nitro-naphthalene (23 g, 81.53 mmol, 1 eq) in DCM (230 mL) was added BBr3 (61.28 g, 244.6 mmol, 23.57 mL, 3 eq) at 0° C. The mixture was stirred at 0° C. for 4 h. The mixture was poured into ice-water (500 mL) and the aqueous phase was extracted with EtOAc (3×200 mL). The combined organic phase was washed with brine (3×200 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound (22 g, 99% yield) as a light yellow solid, which was used in the next step without further purification.
To a solution of 7-bromo-1-nitro-naphthalen-2-ol (5 g, 18.65 mmol, 1 eq) in MeOH (18 mL) and H2O (6 mL) was added sodium dithionite (25.98 g, 149.22 mmol, 32.47 mL, 8 eq). The mixture was stirred at 25° C. for 1 hr. The solid was filtered, washed with water (3×300 mL) to afford the title compound (5 g, crude) as a white solid.
To a solution of 1-amino-7-bromo-naphthalen-2-ol (4.4 g, 18.48 mmol, 1 eq) in MeOH (350 mL) was added Boc2O (32.27 g, 147.85 mmol, 33.97 mL, 8 eq). The reaction mixture was stirred at 85° C. for 14 hrs. LCMS showed di-Boc product was detected. 34 mL of N,N-dimethylethane-1,2-diamine was added and the reaction was stirred at 25° C. for 12 hrs. The reaction mixture was concentrated. The residue was diluted with 20 mL of DCM and washed with water (3×40 mL) and brine (3×40 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by silica gel chromatography (PE:EtOAc=10:1 to 4:1) to afford the title compound (4.7 g, 58.0% yield) as a light yellow solid.
To a solution of 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (5.56 g, 21.88 mmol, 2 eq) and tert-butyl N-(7-bromo-2-hydroxy-1-naphthyl) carbamate (3.7 g, 10.94 mmol, 1 eq) in dioxane (40 mL) were added KOAc (3.22 g, 32.82 mmol, 3 eq) and Pd (dppf)Cl2 (400 mg, 546.67 μmol, 0.05 eq). The mixture was stirred at 120° C. for 1 h under N2. TLC showed that the reaction as completed. The reaction was poured into 150 mL of water and extracted with EtOAc (3×150 mL), washed with brine (3×150 mL), dried over by anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by silica gel chromatography (PE:EtOAc=10:1 to 4:1) and washed with PE (3×150 mL) to afford the title compound (3.8 g, 90.2% yield) as a white solid.
To a solution of tert-butyl N-[2-hydroxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate (2.8 g, 7.27 mmol, 1 eq) and tert-butyl 6-bromopyridine-2-carboxylate (2.06 g, 7.99 mmol, 1.1 eq) in dioxane (40 mL) and H2O (10 mL) were added Na2CO3 (2.31 g, 21.8 mmol, 3 eq) and Pd(dppf)Cl2 (531.8 mg, 726.78 μmol, 0.1 eq). The mixture was stirred at 80° C. for 40 min under N2. The reaction was diluted with 30 mL of EtOAc and 60 mL of Saturated EDTA. The reaction mixture was stirred at 15° C. for 1 h and extracted with EtOAc (3×30 mL). The combined organic layer was washed with brine (3×30 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by silica gel chromatography (PE:EtOAc=10:1 to 4:1) to afford the title compound (2.5 g, 78.8% yield) as an orange solid.
To a solution of tert-butyl 6-[8-(tert-butoxycarbonylamino)-7-hydroxy-2-naphthyl]pyridine-2-carboxylate (2.5 g, 5.73 mmol, 1 eq) in THF (50 mL) were added K2CO3 (1.58 g, 11.45 mmol, 2 eq) and 1,1,1-trifluoro-N-phenyl-N-(trifluoromethylsulfonyl)methanesulfonamide (2.46 g, 6.87 mmol, 1.2 eq). The mixture was stirred at 70° C. for 2 hr. The reaction was poured into 150 mL of water and extracted with EtOAc (3×150 mL). The combined organic layer was washed with brine (3×150 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by silica gel chromatography (PE:EtOAc=10:1 to 4:1) to afford the title compound (2. g, 61.4% yield) as a yellow solid.
To a solution of tert-butyl 6-[8-(tert-butoxycarbonylamino)-7-(trifluoromethyl-sulfonyloxy)-2-naphthyl]pyridine-2-carboxylate (0.9 g, 1.58 mmol, 1 eq) in DMF (12 mL) and MeOH (12 mL) were added TEA (480.5 mg, 4.75 mmol, 660.98 μL, 3 eq) and Pd(dppf)Cl2 (115.8 mg, 158.29 μmol, 0.1 eq). The reaction mixture was stirred at 60° C. for 12 h under CO (50 Psi) atmosphere. LCMS showed that the reaction was complete. 50 mL of Saturated EDTA and 20 mL of EtOAc were added. The reaction mixture was stirred at 25° C. for 1 h. Then the mixture was extracted with EtOAc (3×30 mL). The combined organic layer was washed with brine (3×30 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by prep-TLC (SiO2, DCM/MeOH=20/1) to afford the title compound (580 mg, 76.6% yield) as a yellow solid.
To a solution of tert-butyl 6-[8-(tert-butoxycarbonylamino)-7-methoxycarbonyl-2-naphthyl]pyridine-2-carboxylate (0.48 g, 1 mmol, 1 eq) in DCM (4 mL) were added KOH (112.6 mg, 2.01 mmol, 2 eq), TBAI (185.3 mg, 501.53 μmol, 0.5 eq) and 2-(bromomethyl)prop-2-enenitrile (175.7 mg, 1.2 mmol, 1.2 eq). The reaction mixture was stirred at 25° C. for 1 h. The reaction was poured into water (30 mL) and extracted with DCM (3×20 mL). The combined organic layer was washed with brine (3×20 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by prep-TLC (SiO2, PE:EtOAc=3.5:1) to afford the title compound (290 mg, 53.2% yield) as a yellow solid.
To a solution of tert-butyl 6-[8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-methoxy carbonyl-2-naphthyl]pyridine-2-carboxylate (0.29 g, 533.47 μmol, 1 eq) in THF (13 mL) and H2O (3.2 mL) was added LiOH·H2O (22.4 mg, 533.47 μmol, 1.1 eq). The mixture was stirred at 50° C. for 1 h. Then LiOH·H2O (4.5 mg, 106.69 μmol, 0.2 eq) was added and the reaction mixture was stirred at 50° C. for another 1 h. The reaction was poured into 50 mL of ice water and washed with PE (3×20 mL). The aqueous layer was adjusted to pH=7 with Saturated citric acid. The mixture was extracted with EtOAc (3×20 mL). The combined organic phase was washed with 20 mL of brine, dried over Na2SO4, filtered, and concentrated. The residue was purified by prep-TLC (SiO2, DCM/MeOH=10:1) to afford the title compound (0.2 g, 70.8% yield) as a colorless oil.
To a solution of 1-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-(3-pyridyl) naphthalene-2-carboxylic acid (0.35 g, 660.9 μmol, 1 eq) in DMF (10 mL) were added TEA (2.1 g, 20.75 mmol, 2.89 mL, 31.40 eq) and HATU (502.6 mg, 1.32 mmol, 2 eq). The mixture was stirred at 25° C. for 10 min. After cooling to 0° C., NH3 (4 M NH3 in THF, 6 mL, 36.4 eq) was added. The reaction mixture was stirred at 0° C. for 20 min. The reaction was quenched with water (15 mL) and extracted with EtOAc (3×15 mL). The combined organic layer was washed with brine (3×15 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1/2) to afford the title compound (200 mg, 57.3% yield) as a white solid.
To a solution of tert-butyl 6-[8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-carbamoyl-2-naphthyl]pyridine-2-carboxylate (0.25 g, 472.95 μmol, 1 eq) in DCM (3 mL) was added TFA (1 mL) The reaction mixture was stirred at 25° C. for 6 h. The reaction was poured into 50 mL of ice water and adjusted to pH=6 with Saturated Na2CO3. The mixture was extracted with DCM (3×30 mL). The combined organic layer was washed with brine (3×30 mL), dried over Na2SO4, filtered, and concentrated to afford the title compound (0.16 g, 90% yield) as a yellow solid, which was used in the next step without further purification.
To a solution of 6-[7-carbamoyl-8-(2-cyanoallylamino)-2-naphthyl]pyridine-2-carboxylic acid (0.1 g, 268.55 μmol, 1 eq) in DMF (3 mL) were added TEA (135.9 mg, 1.34 mmol, 186.89 μL, 5 eq) and N4,N4-dimethylcyclohexane-1,4-diamine (76.4 mg, 537.09 μmol, 2 eq). Then, T3P (256.3 mg, 402.82 μmol, 239.57 μL, 50% purity, 1.5 eq) was added, and the reaction was stirred at 25° C. for 1 h. LCMS showed that the reaction was complete. The reaction mixture was diluted with H2O (50 mL) and extracted with EtOAc (2×30 mL). The combined organic layers were washed with H2O (2×30 mL) and brine (2×30 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford Compound 271 as a white solid (7.3 mg, 5.07% yield). LC-MS (ES+, m/z): 497.3 [(M+H)+] and Compound 273 (9.5 mg, 7.12% yield) as a white solid. LC-MS (ES+, m/z): 497.3 [(M+H)+].
To a solution of tert-butyl N-[2-hydroxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate (3 g, 7.79 mmol, 1 eq) in dioxane (78 mL) and H2O (3 mL) were added tert-butyl 2-chloropyrimidine-4-carboxylate (1.84 g, 8.57 mmol, 1.1 eq), Na2CO3 (2.48 g, 23.36 mmol, 3 eq) and Pd (dppf)Cl2 (569.8 mg, 778.69 μmol, 0.1 eq). The mixture was stirred at 80° C. for 40 min under N2. The reaction mixture was poured into saturated EDTA (100 mL) and stirred at 25° C. for 1 h. The mixture was extracted with EtOAc (3×50 mL), washed with brine (3×50 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=1:0 to 10:1) to afford the title compound (2.5 g, 73.39% yield) as a white solid.
To a solution of tert-butyl 2-[8-(tert-butoxycarbonylamino)-7-hydroxy-2-naphthyl]pyrimidine-4-carboxylate (2.5 g, 5.71 mmol, 1 eq) in THF (50 mL) were added K2CO3 (1.58 g, 11.43 mmol, 2 eq) and 1,1,1-trifluoro-N-phenyl-N-(trifluoromethylsulfonyl)methanesulfonamide (2.65 g, 7.43 mmol, 1.3 eq). The mixture was stirred at 70° C. for 2 hr. The reaction was poured into 300 mL of water and extracted with EtOAc (3×300 mL). The combined organic phase was washed with brine (3×300 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound (3 g, 92.18% yield) as a light yellow solid.
To a solution of tert-butyl 2-[8-(tert-butoxycarbonylamino)-7-(trifluoromethyl sulfonyloxy)-2-naphthyl]pyrimidine-4-carboxylate (3 g, 5.27 mmol, 1 eq) in DMF (60 mL) and MeOH (60 mL) were added TEA (1.6 g, 15.8 mmol, 2.20 mL, 3 eq) and Pd(dppf)Cl2 (385.4 mg, 526.73 μmol, 0.1 eq). The reaction was stirred at 60° C. for 12 h under CO (50 psi). TLC (PE:EtOAc=4:1) showed that the reaction was complete. 300 mL of saturated EDTA was added and diluted with 150 mL of EtOAc. The mixture was stirred at 25° C. for 1 h and extracted with EtOAc (3×150 mL), and the combined organic phase was washed with brine (3×300 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound (2.1 g, 83.14% yield) as a light yellow solid.
To a solution of tert-butyl 2-[8-(tert-butoxycarbonylamino)-7-methoxycarbonyl-2-naphthyl]pyrimidine-4-carboxylate (2.1 g, 4.38 mmol, 1 eq) in DCM (210 mL) were added KOH (491.5 mg, 8.76 mmol, 2 eq), TBAI (808.8 mg, 2.19 mmol, 0.5 eq) and 2-(bromomethyl)prop-2-enenitrile (767.2 mg, 5.26 mmol, 1.2 eq). The mixture was stirred at 25° C. for 1 hr. The reaction was poured into 150 mL of water and extracted with EtOAc (3×70 mL). The combined organic phase was washed with brine (3×70 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound (1.4 g, 58.70% yield) as a yellow oil.
To a solution of tert-butyl 2-[8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-methoxycarbonyl-2-naphthyl]pyrimidine-4-carboxylate (0.54 g, 991.56 μmol, 1 eq) in THF (24 mL) and H2O (6 mL) was added LiOH·H2O (41.6 mg, 991.56 μmol, 1 eq). The mixture was stirred at 50° C. for 1 hr. HPLC showed that the reaction was complete. The reaction was poured into 100 mL of ice water and washed with PE (3×50 mL). To the aqueous phase was added saturated citric acid until pH=7, and the mixture was filtered. The filtrate was extracted with EtOAc (3×50 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound (0.2 g, 41.29% yield) as a white solid.
To a solution of 2-[8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-methoxycarbonyl-2-naphthyl]pyrimidine-4-carboxylic acid (0.2 g, 409.42 μmol, 1 eq) and 1-methylpiperidin-4-amine (70.1 mg, 614.14 μmol, 1.5 eq) in DMF (2 mL) were added Et3N (207.2 mg, 2.05 mmol, 284.94 μL, 5 eq) and T3P (390.8 mg, 614.14 μmol, 365.24 μL, 50% purity, 1.5 eq). The mixture was stirred at 25° C. for 1 hr. The reaction was poured into 50 mL water and extracted with DCM (3×50 mL). The combined organic phase was washed with brine (3×50 mL), dried over Na2SO4, filtered, and concentrated in vacuo to afford the title compound (0.24 g, crude) as a yellow solid, which was used in the next step without further purification.
To a solution of methyl 1-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-[4-[(l-methyl-4-piperidyl)carbamoyl]pyrimidin-2-yl]naphthalene-2-carboxylate (0.19 g, 324.97 μmol, 1 eq) in THF (7.6 mL) and H2O (1.9 mL) was added LiOH·H2O (27.3 mg, 649.95 μmol, 2 eq). The mixture was stirred at 50° C. for 1 hr. HPLC showed that the reaction was complete. The reaction was poured into 100 mL of ice water and washed with PE (3×50 mL). To the aqueous phase was added saturated citric acid until pH=7. The mixture was filtered, and the filtrate was extracted with EtOAc (3×50 mL). The combined organic phase was dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford the title compound (0.04 g, 26.67% yield) as a white solid.
To a solution of 1-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-[4-[(l-methyl-4-piperidyl) carbamoyl]pyrimidin-2-yl]naphthalene-2-carboxylic acid (0.01 g, 17.52 μmol, 1 eq) in DMF (2 mL) were added TEA (55.7 mg, 550.26 μmol, 76.59 μL, 31.4 eq) and HATU (13.3 mg, 35.05 μmol, 2 eq). The mixture was stirred at 25° C. for 10 min. Then NH3 (4 M NH3 in THF, 0.5 mL, 117 eq) was added at 0° C. The mixture was stirred at 25° C. for 1 hr. The reaction was poured into 10 mL of water. The mixture was extracted with EtOAc (3×10 mL). The organic phase was washed with brine (3×10 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound (0.015 g, 75.13% yield) as a yellow solid.
To a solution of tert-butyl N-[2-carbamoyl-7-[4-[(l-methyl-4-piperidyl) carbamoyl]pyrimidin-2-yl]-1-naphthyl]-N-(2-cyanoallyl)carbamate (0.015 g, 26.33 μmol, 1 eq) in DCM (2 mL) was added TFA (1.08 g, 9.45 mmol, 0.7 mL, 359.04 eq). The mixture was stirred at 25° C. for 1 hr. The reaction was poured into 10 mL of ice water and 10 mL of DCM. Then to the mixture was added saturated Na2CO3 until pH=8, and the mixture was extracted with DCM (3×10 mL). The combined organic phase was washed with 10 mL of brine, dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford the title compound (3.2 mg, 25.88% yield) as a yellow solid. LC-MS (ES+, m/z): 470.2 [(M+H)+].
TABLE 5 shows compounds synthesized using methods described in EXAMPLE 5.
To a mixture of (7-bromo-1-nitro-2-naphthyl)trifluoromethanesulfonate (5.2 g, 12.5 mmol, 1 eq) and tributyl(vinyl)stannane (4.16 g, 13.12 mmol, 3.82 mL, 1.05 eq) in DMF (130 mL) were added LiCl (1.59 g, 37.49 mmol, 3 eq) and Pd(PPh3)2Cl2 (877.1 mg, 1.25 mmol, 0.1 eq). The reaction was stirred at 25° C. for 12 h under N2. The reaction mixture was diluted with H2O (300 mL). The mixture was extracted with EtOAc (3×200 mL). The combined organic layer was washed with H2O (2×200 mL) and brine (2×200 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc) to afford the title compound (4.4 g, 63.3% yield) as a yellow solid.
To a mixture of 7-bromo-1-nitro-2-vinyl-naphthalene (5.8 g, 20.86 mmol, 1 eq) in DCM (200 mL) and MeOH (50 mL) was added ozone (1 g, 20.86 mmol, 1 eq). The mixture was stirred at −78° C. for 0.5 h. Then NaBH4 (2.37 g, 62.57 mmol, 3 eq) was added. The mixture was stirred at 25° C. for another 0.5 h. The reaction mixture was diluted with H2O (200 mL). The mixture was extracted with EtOAc (2×100 mL). The combined organic layer was washed with H2O (2×100 mL) and brine (2×100 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound (4.4 g, 74.8% yield) as a white solid.
To a solution of (7-bromo-1-nitro-2-naphthyl)methanol (4.4 g, 15.6 mmol, 1 eq) in DCM (50 mL) were added TEA (7.89 g, 77.99 mmol, 10.86 mL, 5 eq) and methanesulfonyl chloride (2.68 g, 23.4 mmol, 1.81 mL, 1.5 eq). The mixture was stirred at 0° C. for 1 h. The reaction mixture was diluted with H2O (200 mL) and extracted with EtOAc (2×100 mL). The combined organic layer was washed with H2O (2×100 mL) and brine (2×100 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound (5.4 g, crude), which was used in the next step without further purification.
To a solution of (7-bromo-1-nitro-2-naphthyl)methyl methanesulfonate (4 g, 11.11 mmol, 1 eq) in MeOH (60 mL) was added CH3ONa (1.8 g, 33.32 mmol, 3 eq), and the mixture was stirred at 50° C. for 1 h. The reaction mixture was diluted with H2O (200 mL) and extracted with EtOAc (2×100 mL). The combined organic layer was washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 6:1) to afford the title compound (1.5 g, 45.6% yield) as a yellow solid.
To a solution of 7-bromo-2-(methoxymethyl)-1-nitro-naphthalene (1.9 g, 6.42 mmol, 1 eq) in EtOH (16 mL) were added saturated NH4Cl (6.42 mmol, 4 mL, 1 eq) and Fe (1.07 g, 19.25 mmol, 3 eq) at 70° C. The mixture was stirred at 70° C. for 1 h. The reaction mixture was diluted with H2O (100 mL) and extracted with EtOAc (3×50 mL). The combined organic layer was washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=20:1 to 8:1) to afford the title compound (1.35 g, 79.1% yield) as a yellow solid.
To a solution of 7-bromo-2-(methoxymethyl)naphthalen-1-amine (0.3 g, 1.13 mmol, 1 eq) in MeOH (5 mL) was added Boc2O (4.92 g, 22.55 mmol, 5.18 mL, 20 eq). The reaction mixture was stirred at 85° C. for 3 h. The reaction mixture was diluted with H2O (50 mL) and extracted with EtOAc (3×30 mL). The combined organic layer was washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=20/1 to 8/1) to afford the title compound (0.3 g, 819.12 μmol, 72.66% yield) as a white solid.
To a solution of tert-butyl N-[7-bromo-2-(methoxymethyl)-1-naphthyl]carbamate (0.28 g, 764.51 μmol, 1 eq) in DCM (4 mL) were added KOH (85.8 mg, 1.53 mmol, 2 eq), TBAI (84.7 mg, 229.35 μmol, 0.3 eq) and 2-(bromomethyl)prop-2-enenitrile (167.4 mg, 1.15 mmol, 1.5 eq). The mixture was stirred at 25° C. for 1 hr. The reaction mixture was diluted with H2O (50 mL) and extracted with EtOAc (2×30 mL). The combined organic layer was washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=6:1) to afford the title compound (0.3 g, 695.54 μmol, 90.98% yield) as a yellow oil.
To a mixture of tert-butyl N-[7-bromo-2-(methoxymethyl)-1-naphthyl]-N-(2-cyanoallyl) carbamate (0.26 g, 602.8 μmol, 1 eq) and 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (459.2 mg, 1.81 mmol, 3 eq in dioxane (5 mL) were added KOAc (473.3 mg, 4.82 mmol, 8 eq) and Pd(dppf)Cl2 (88.2 mg, 120.56 μmol, 0.2 eq). The reaction mixture was stirred at 85° C. for 5 hr. The mixture was concentrated in vacuo. The residue was washed with DCM (3×5 mL), filtered, and concentrated in vacuo to afford the title compound (0.5 g, crude) as a black brown oil, which was used in the next step without further purification.
To a mixture of tert-butyl N-(2-cyanoallyl)-N-[2-(methoxymethyl)-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate (130 mg, 271.75 μmol, 1 eq) and RBr (64.4 mg, 407.62 μmol, 38.80 μL, 1.5 eq) in dioxane (4 mL) and H2O (1 mL) were added Na2CO3 (86.4 mg, 815.24 μmol, 3 eq) and Pd(dppf)Cl2 (19.9 mg, 27.17 μmol, 0.1 eq). The mixture was stirred at 100° C. for 1 h. TLC showed that the reaction was complete. Saturated EDTA solution (50 mL) and EtOAc (30 mL) were added and the mixture was stirred at r.t. for 1 h. The mixture was filtered and extracted with EtOAc (2×30 mL). The combined organic layer was washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound (50 mg, 116.41 μmol, 42.84% yield) as a yellow oil.
To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-(methoxymethyl)-7-(2-pyridyl)-1-naphthyl]carbamate (50 mg, 116.41 μmol, 1 eq) in DCM (3 mL) was added TFA (1.54 g, 13.51 mmol, 1 mL, 116.02 eq) (DCM:TFA=3:1). The mixture was stirred at 25° C. for 1 h. The reaction mixture was adjusted with saturated NaHCO3 to pH=8 and extracted with EtOAc (2×30 mL). The combined organic layer was washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford the title compound (2 mg, 6.07 μmol, 5.22% yield) as a white solid. LC-MS (ES+, m/z): 330 [(M+H)+].
To a mixture of 7-bromo-2-(methoxymethyl)naphthalen-1-amine (1.1 g, 4.13 mmol, 1 eq) and 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (3.15 g, 12.4 mmol, 3 eq) in dioxane (20 mL) were added KOAc (3.25 g, 33.07 mmol, 8 eq) and Pd(dppf)Cl2 (604.87 mg, 826.65 μmol, 0.2 eq) and the mixture was stirred at 85° C. for 2 h under N2. The reaction mixture was concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound (1.2 g, 92.7% yield) as a yellow oil.
To a mixture of 2-(methoxymethyl)-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-amine (1.2 g, 3.83 mmol, 1 eq) and 2,4-dichloropyrimidine (1.71 g, 11.49 mmol, 3 eq) in DME (12 mL) and H2O (3 mL) were added NaHCO3 (965.6 mg, 11.49 mmol, 3 eq) and Pd(dppf)Cl2 (280.4 mg, 383.14 μmol, 0.1 eq) and the mixture was stirred at 80° C. for 1 h under N2. TLC showed that the reaction was complete. 50 mL of saturated EDTA solution and EtOAc (50 mL) were added and the mixture was stirred at 25° C. for 1 h. The mixture was extracted with EtOAc (3×50 mL). The combined organic layer was washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 1:1) to afford the title compound (1 g, 87.1% yield) as a yellow solid.
To a mixture of 7-(2-chloropyrimidin-4-yl)-2-(methoxymethyl)naphthalen-1-amine (0.8 g, 2.67 mmol, 1 eq) in MeOH (26 mL) and DMF (26 mL) were added TEA (810.2 mg, 8.01 mmol, 1.11 mL, 3 eq) and Pd(dppf)Cl2 (195.3 mg, 266.89 μmol, 0.1 eq). The mixture was stirred at 50° C. for 1 d under CO (50 psi). TLC showed that the reaction was complete. 50 mL of saturated EDTA solution and EtOAc (50 mL) were added and the mixture was stirred at 25° C. for 1 h. The mixture was extracted with EtOAc (2×50 mL). The combined organic layer was washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=8:1 to 4:1) to afford to the title compound (0.33 g, 38.2% yield) as a yellow oil.
To a solution of methyl 4-[8-amino-7-(methoxymethyl)-2-naphthyl]pyrimidine-2-carboxylate (0.33 g, 1.02 mmol, 1 eq) in MeOH (5 mL) was added Boc2O (4.45 g, 20.41 mmol, 4.69 mL, 20 eq). The reaction mixture was stirred at 85° C. for 6 h. The reaction mixture was concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=4:1 to 1:1) to afford the title compound (0.38 g, 87.9% yield) as a yellow oil.
To a solution of methyl 4-[8-(tert-butoxycarbonylamino)-7-(methoxymethyl)-2-naphthyl]pyrimidine-2-carboxylate (0.33 g, 779.29 μmol, 1 eq) in DCM (4 mL) were added KOH (131.2 mg, 2.34 mmol, 3 eq), TBAI (57.6 mg, 155.86 μmol, 0.2 eq) and 2-(bromomethyl)prop-2-enenitrile (136.5 mg, 935.15 μmol, 1.2 eq), and the mixture was stirred at 25° C. for 1 hr. The reaction mixture was diluted with H2O (50 mL) and extracted with EtOAc (2×30 mL). The combined organic layers were washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1:2) to afford the title compound (0.32 g, 84.1% yield) as a yellow oil.
To a mixture of methyl 4-[8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-(methoxymethyl)-2-naphthyl]pyrimidine-2-carboxylate (0.27 g, 552.67 μmol, 1 eq) in THF (4 mL) and H2O (1 mL) was added LiOH·H2O (231.9 mg, 5.53 mmol, 10 eq). The mixture was stirred at 25° C. for 1 h. The mixture was adjusted to pH=6 with saturated citric acid and extracted with EtOAc (2×30 mL). The combined organic layer was washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound (0.3 g, crude), which was used to the next step without further purification.
To a solution of 4-[8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-(methoxymethyl)-2-naphthyl]pyrimidine-2-carboxylic acid (0.25 g, 526.86 μmol, 1 eq) in DMF (4 mL) were added TEA (266.6 mg, 2.63 mmol, 366.67 μL, 5 eq), l-methylpiperidin-4-amine (90.2 mg, 790.29 μmol, 1.5 eq), and T3P (502.9 mg, 790.29 μmol, 470.01 μL, 50% purity, 1.5 eq). The reaction was stirred at 25° C. for 1 h. The reaction mixture was diluted with H2O (50 mL) and extracted with EtOAc (2×30 mL). The combined organic layer was washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound (0.22 g, 73.2% yield) as a yellow solid.
To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-(methoxymethyl)-7-[2-[(l-methyl-4-piperidyl) carbamoyl]pyrimidin-4-yl]-1-naphthyl]carbamate (0.1 g, 175.23 μmol, 1 eq) in DCM (2 mL) was added TFA (770 mg, 6.75 mmol, 0.5 mL, 38.54 eq). The mixture was stirred at 25° C. for 1 h. The reaction mixture was adjusted to pH=8 with saturated NaHCO3 and extracted with EtOAc (2×30 mL). The combined organic layer was washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford the title compound (16.6 mg, 20.1% yield) as a white solid. LC-MS (ES+, m/z): 471.2 [(M+H)+].
TABLE 6 shows compounds synthesized using the methods described in EXAMPLE 6 above.
To a solution of 8-aminonaphthalen-2-ol (5 g, 31.41 mmol, 1 eq) in THF (50 mL) were added K2CO3 (8.68 g, 62.82 mmol, 2 eq) and 1,1,1-trifluoro-N-phenyl-N-(trifluoro methylsulfonyl) methanesulfonamide (14.59 g, 40.83 mmol, 1.3 eq). The reaction mixture was stirred at 70° C. for 1 hr. TLC (PE:EtOAc=4:1, SM Rf=0.38, SM Rf=0.59) showed that the reaction mixture was completed. The reaction mixture was concentrated to remove the solvent in vacuo to give a residue which was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound (8-amino-2-naphthyl)trifluoromethanesulfonate (7 g, 24.03 mmol, 76.52% yield) as a brown solid.
To a solution of (8-amino-2-naphthyl)trifluoromethanesulfonate (5 g, 17.17 mmol, 1 eq) and 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (6.54 g, 25.75 mmol, 1.5 eq) in dioxane (60 mL) was added KOAc (5.05 g, 51.5 mmol, 3 eq) and Pd(dppf)Cl2 (1.26 g, 1.72 mmol, 0.1 eq). The resulting reaction mixture was stirred at 100° C. for 1 hr under N2. TLC showed that the reaction mixture was completed. The reaction mixture was filtered, and the filtrate was concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=20/1 to 10:1) to afford the title compound 7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-amine (1. g, 3.34 mmol, 19.48% yield, 90% purity) as a pink solid. LC-MS (ES+, m/z): 270.1 [(M+H)+], 1H NMR (400 MHz, DMSO-de) 5=8.42 (s, 1H), 7.68 (d, J=8.2 Hz, 1H), 7.61 (d, J=7.9 Hz, 1H), 7.23 (t, J=7.8 Hz, 1H), 7.05 (d, J=8.1 Hz, 1H), 6.68 (d, J=7.3 Hz, 1H), 5.81 (br s, 2H), 1.34 (s, 12H), 1.25-1.07 (m, 2H).
To a mixture of 7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-amine (300 mg, 1.11 μmol, 1 eq), bromo derivative (1.34 mmol, 1.2 eq) and Na2CO3 (354.4 mg, 3.34 μmol 3 eq) in dioxane (2 mL) H2O (0.5 mL) was added Pd(dppf)Cl2 (81.6 mg, 111.46 μmol 0.1 eq). The reaction was heated to 110° C. and stirred for 1 h. Upon completion of the reaction as indicated by LCMS, 30 mL saturated EDTA was added to the solution stirred for 1 hour. The mixture was extracted with EtOAc (3×30 mL). The organic phase was separated, washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the desired product.
A Mixture of Naphthalene Amine Derivative (100 mg, 253.46 μMol, 1 Eq), Prop-2-Enoyl Chloride (22.9 mg, 253.46 μmol, 1 eq), and TEA (76.9 mg, 760.38 μmol, 3 eq) in DCM (2 mL) at 0° C., and the mixture was stirred at 25° C. for 2 hours. The reaction mixture was poured into H2O (50 mL) and extracted with DCM (3×30 mL). The organic phase was separated, washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the desired compound.
To a solution of 3-amino-6-(8-amino-2-naphthyl)-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (0.1 g, 266.34 μmol, 1 eq) in DCM (5 mL) was added TEA (13.5 mg, 133.17 μmol, 18.54 μL, 0.5 eq), prop-2-enoyl chloride (12.1 mg, 133.17 μmol, 10.86 μL, 0.5 eq) was added to the solution at −60° C. Then stirred at −60° C. for 1 hr. HPLC and LCMS showed that the reaction was complete. The reaction was poured into ˜10 mL ice water and extracted with DCM (3×10 mL. The combined organic phase was washed with brine (3×10 mL), dried over with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1). The residue was purified by prep-HPLC (basic condition) to afford the title compound (0.0166 g, 37.99 μmol, 14.26% yield, 98.3% purity) as a light yellow solid. LC-MS (ES+, m/z): 430.2 [(M+H)+]
A mixture of 7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-amine (5 g, 18.58 mmol, 1 eq), methyl 6-bromopyridine-2-carboxylate (4.82 g, 22.29 mmol, 1.2 eq), CsF (8.47 g, 55.73 mmol, 2.05 mL, 3 eq), and Pd(dppf)Cl2 (1.36 g, 1.86 mmol, 0.1 eq) in DME (40 mL) and H2O (10 mL) was stirred at 100° C. for 1 hour. Upon completion of the reaction as indicated by LCMS, to the reaction mixture was added 30 mL saturated EDTA solution stirred for 1 hour. The mixture was extracted with EtOAc (3×30 mL). The organic phase was separated, washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give crude product. The residue was purified by column chromatography (SiO2, PE:EtOAc=5:1 to 1:1) to afford the title compound (3.2 g, 11.5 mmol, 61.89% yield) as a light yellow gum. LC-MS (ES+, m/z): 279.2 [(M+H)+].
To a solution of methyl 6-(8-amino-2-naphthyl)pyridine-2-carboxylate (3.2 g, 11.5 mmol, 1 eq) in THF (60 mL) and H2O (12 mL) was added LiOH·H2O (2.41 g, 57.49 mmol, 5 eq). The mixture was stirred at 25° C. for 2 hours. LCMS showed that the reaction was complete. Add the reaction mixture to ice water (100 mL). Then slowly saturated citric acid was added to adjust pH=5˜6. The mixture was extracted with PE (3×30 mL). The organic phase was separated, washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound (3.5 g, crude) as a light yellow solid. LC-MS (ES+, m/z): 265.2 [(M+H)+].
A mixture of-6-(8-amino-2-naphthyl)pyridine-2-carboxylic acid (3 g, 9.42 mmol, 1 eq), 4-aminocyclohexanone (1.41 g, 9.42 mmol, 1 eq, HCl), T3P (9 g, 14.14 mmol, 1.5 eq), and TEA (5.72 g, 56.55 mmol, 6 eq) in DMF (30 mL) was stirred at 25° C. for 2 hours. The reaction mixture was added to water (100 mL) and extracted with EtOAc (3×30 mL). The organic phase was separated, washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The crude residue was purified by column chromatography (SiO2, PE:EtOAc=40:1 to 10:1) to afford the title compound (700 mg, 1.69 mmol, 17.96% yield) as a light yellow oil. LC-MS (ES+, m/z): 360.1 [(M+H)+].
To a mixture of 6-(8-amino-2-naphthyl)-N-(4-oxocyclohexyl)pyridine-2-carboxamide (700 mg, 1.95 mmol, 1 eq) in DMF (10 mL) were added TMSCl (528.97 mg, 4.87 mmol, 2.5 eq) and tert-butyl N-methyl-N-[2-(methylamino)ethyl]carbamate (1.83 g, 9.74 mmol, 5 eq). The mixture was stirred at 0° C. for 1 hour. Then, BH3·THF (1 M, 5.84 mL, 3 eq) was added and the mixture was stirred at 0° C. for another 12 hours. The reaction mixture was poured into ice-water (50 mL) and extracted with EtOAc (3×30 mL). The organic phase was separated, washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give crude product. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound (360 mg, 677.09 μmol, 34.77% yield) as a light yellow oil. LC-MS (ES+, m/z): 532.3 [(M+H)+].
To a solution of tert-butyl N-[2-[[4-[[6-(8-amino-2-naphthyl)pyridine-2-carbonyl]amino]cyclohexyl]-methyl-amino]ethyl]-N-methyl-carbamate (360 mg, 677.09 μmol, 1 eq) in DCM (2 mL) was added TEA (205.5 mg, 2.03 mmol, 3 eq) and prop-2-enoyl chloride (61.3 mg, 677.09 μmol, 1 eq) at 0° C. The mixture was stirred at 25° C. for 2 hours. LCMS showed that the reaction was complete. Add the reaction mixture to ice water (50 mL) and extracted with DCM (3×30 mL). The organic phase was separated, washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give crude product. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound-(200 mg, 341.45 μmol, 50.43% yield) as a light yellow oil. LC-MS (ES+, m/z): 586.4 [(M+H)+].
To a solution of tert-butyl N-methyl-N-[2-[methyl-[4-[[6-[8-(prop-2-enoylamino)-2-naphthyl]pyridine-2-carbonyl]amino]cyclohexyl]amino]ethyl]carbamate (100 mg, 170.73 μmol, 1 eq) in DCM (1 mL) was added HCOOH (2 mL). The mixture was stirred at 25° C. for 12 hours. The reaction mixture was dried by N2 for 1 hour and concentrated in vacuo to give crude product. The residue was purified by prep-HPLC to afford the title compound (15.9 mg, 30.46 μmol, 17.84% yield, 100% purity, HCl) as a light yellow solid. LC-MS (ES+, m/z): 486.3 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) δ=10.97-10.92 (m, 1H), 10.54 (s, 1H), 9.23 (s, 2H), 9.13 (s, 1H), 8.73-8.72 (d, 7=8.60 Hz, 1H), 8.47-8.45 (d, 7=8.60 Hz, 1H), 8.42-8.40 (d, 7=7.50 Hz, 1H), 8.15 (m, 1H), 8.11-8.09 (d, 7=8.80 Hz, 1H), 8.03-8.02 (d, J=7.30 Hz, 1H), 8.01-7.96 (d, 7=7.50 Hz, 1H), 7.84-7.82 (d, 7=7.90 Hz, 1H), 7.59 (s, 1H), 6.88-6.85 (d, 7=16.70 Hz, 1H), 6.39-6.34 (dd, 7=18.8 Hz, 1H), 5.91-5.88 (d, 7=11.60 Hz, 1H), 3.91 (s, 1H), 3.60 (s, 1H) 3.38 (s, 3H), 2.81 (s, 3H), 2.62 (m, 3H) 2.54 (s, 1H), 2.10-2.08 (m, 4H), 1.71-1.68 (m, 4H).
To a solution of methyl 6-(8-amino-2-naphthyl)pyridine-2-carboxylate (0.6 g, 2.16 mmol, 1 eq) in DCM (10 mL) were added TEA (654.5 mg, 6.47 mmol, 900.22 μL, 3 eq) and prop-2-enoyl chloride (195.1 mg, 2.16 mmol, 175.79 μL, 1 eq) at 0° C. The reaction was stirred at 0° C. for 10 min. The reaction was poured into ˜50 mL ice water and extracted with DCM (3×100 mL). The organic phase was washed with brine (3×100 mL), dried over by anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound (0.32 g, 962.83 μmol, 44.66% yield) as a yellow solid. LC-MS (ES+, m/z): 333.0 [(M+H)+].
To a solution of methyl 6-[8-(prop-2-enoylamino)-2-naphthyl]pyridine-2-carboxylate (0.1 g, 300.89 μmol, 1 eq) in THF (2 mL) and H2O (0.5 mL) was added LiOH·H2O (25.3 mg, 601.77 μmol, 2 eq) and stirred at 25° C. for 1 hr. The reaction was poured into ˜15 mL ice water and washed with EtOAc (3×10 mL). The aqueous phase was adjusted to pH=8 with saturated citric acid and extracted with EtOAc (3×10 mL). The organic phase was washed with brine (3×10 mL), dried over by anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound (0.07 g, crude) as a yellow solid. LC-MS (ES+, m/z): 319.0 [(M+H)+].
General Procedure for Amide Coupling
To a solution of 6-[8-(prop-2-enoylamino)-2-naphthyl]pyridine-2-carboxylic acid (0.06 g, 188.49 μmol, 1 eq) and amine derivative (17.2 mg, 245.03 μmol, 18.08 μL, 1.3 eq) in DMF (2 mL) were added Et3N (95.4 mg, 942.43 μmol, 131.17 μL, 5 eq) and T3P (179.9 mg, 282.73 μmol, 168.15 μL, 50% purity, 1.5 eq). The reaction was stirred at 25° C. for 1 hr. The reaction was poured into water (30 mL) and extracted with EtOAc (3×15 mL). The combined organic phase was washed with brine (3×15 mL), dried over by anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC (basic condition) to afford the desired compound as a white solid
To a solution of tert-butyl N-[2-[[6-[8-(prop-2-enoylamino)-2-naphthyl]pyridine-2-carbonyl]amino]ethyl]carbamate (0.047 g, 102.06 μmol, 1 eq) in DCM (1 mL) was added formic acid (1.83 g, 39.76 mmol, 1.5 mL, 389.59 eq) and stirred at 25° C. for 1 hr. LCMS showed that the reaction was complete. The reaction was concentrated under N2. The residue was purified by prep-HPLC (FA condition) to afford the title compound (0.0188 g, 50.39 μmol, 49.37% yield, 96.6% purity) as a light yellow solid. LC-MS (ES+, m/z): 361.2 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) Shift=10.91 (br s, 1H), 9.38 (br t, J=5.6 Hz, 1H), 9.18 (s, 1H), 8.49 (d, J=8.6 Hz, 1H), 8.39 (s, 1H), 8.37 (s, 1H), 8.15 (t, J=7.7 Hz, 1H), 8.09 (d, J=8.6 Hz, 1H), 8.03 (br d, J=7.5 Hz, 2H), 7.81 (d, J=8.2 Hz, 1H), 7.57 (t, J=7.9 Hz, 1H), 6.85 (br dd, J=10.1, 17.0 Hz, 1H), 6.36 (dd, J=1.8, 17.0 Hz, 1H), 5.88-5.80 (m, 1H), 3.61 (q, J=5.7 Hz, 2H), 3.03 (br t, J=5.8 Hz, 2H).
To a solution of 6-[8-(prop-2-enoylamino)-2-naphthyl]pyridine-2-carboxylic acid (0.6 g, 1.88 mmol, 1 eq) in DMF (10 mL) were added tert-butyl 2-aminoacetate (494.5 mg, 3.77 mmol, 2 eq), TEA (572.2 mg, 5.65 mmol, 787.05 μL, 3 eq) and T3P (2.4 g, 3.77 mmol, 2.24 mL, 50% purity, 2 eq). The reaction mixture was stirred for 1 hr at 15° C. under N2. TLC (PE:EtOAc=1:1 SM=0.0, Rf=0.33) showed that the reaction was complete. The reaction mixture was poured into H2O (30 mL) and extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1:1) to afford the title compound (0.5 g, 1.16 mmol, 61.48% yield) as a yellow solid. LC-MS (ES+, m/z): 432.2 [(M+H)+].
To a solution of tert-butyl 2-[[6-[8-(prop-2-enoylamino)-2-naphthyl]pyridine-2-carbonyl]amino]acetate (0.4 g, 927.04 μmol, 1 eq) in DCM (10 mL) was added TFA (15.4 g, 135.06 mmol, 10 mL, 145.69 eq). The reaction mixture was stirred for 6 hr at 15° C. under N2. TLC (PE:EtOAc=1:1 SM=0.41, Rf=0.0) showed that the reaction was complete. The reaction mixture was poured into H2O (100 mL), and the aqueous phase was extracted with DCM:THF=1:2 (3×100 mL). The combined organic layer was washed with brine (2×200 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound (0.45 g, crude) as a yellow solid. LC-MS (ES+, m/z): 376.2 [(M+H)+].
General Procedure for Amide Coupling
To a solution of 2-[[6-[8-(prop-2-enoylamino)-2-naphthyl]pyridine-2-carbonyl]amino]acetic acid (0.06 g, 159.84 μmol, 1 eq) in DMF (2 mL) were added amine (RNH2) (319.68 μmol, 29.19 μL, 2 eq), TEA (48.5 mg, 479.52 μmol, 66.74 μL, 3 eq) and T3P (203.4 mg, 319.68 μmol, 190.12 μL, 50% purity, 2 eq). The reaction mixture was stirred for 1 hr at 15° C. under N2. The reaction mixture was poured into H2O (20 mL) and extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by prep-HPLC to afford the desired compound.
To a solution of 7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-amine (1.2 g, 4.46 mmol, 1.5 eq) in 2-methylbutan-2-ol (12 mL) and H2O (3 mL) were added ethyl 5-amino-2-chloro-pyrimidine-4-carboxylate (0.6 g, 2.98 mmol, 1 eq), Cs2CO3 (2.91 g, 8.93 mmol, 3 eq) and ditert-butyl(cyclopentyl)phosphane; dichloro palladium; iron (194.0 mg, 297.6 μmol, 0.1 eq). The reaction mixture was stirred for 3 hr at 80° C. under N2. TLC (PE:EtOAc=1:1; SM=0.63, Rf=0.28) showed that the reaction was complete. The reaction mixture was poured into 50 mL saturated EDTA, and 50 mL EtOAc was added. The solution was stirred at 20° C. for 1 hr. Then the aqueous phase was separated and extracted with EtOAc (3×50 mL). The combined organic layer was washed with 100 mL brine, dried over Na2SO4 and concentrated in vacuo to give a crude product which was washed with DCM (10 mL) to afford the title compound (0.9 g, 2.92 mmol, 98.08% yield) as a yellow solid. LC-MS (ES+, m/z): 309.2 [(M+H)+].
To a solution of ethyl 5-amino-2-(8-amino-2-naphthyl)pyrimidine-4-carboxylate (0.8 g, 2.59 mmol, 1 eq) in DCM (20 mL) were added TEA (787.6 mg, 7.78 mmol, 1.08 mL, 3 eq) and prop-2-enoyl chloride (352.3 mg, 3.89 mmol, 317.34 μL, 1.5 eq). The reaction mixture was stirred for 0.5 hr at 0° C. under N2. LCMS showed that the reaction was complete. The reaction mixture was poured into H2O (50 mL), and the aqueous phase was extracted with DCM (3×50 mL). The combined organic layer was washed with brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was washed with EtOAc (10 mL) to afford the title compound (0.75 g, 2.07 mmol, 79.77% yield) as a yellow solid. LC-MS (ES+, m/z): 363.1 [(M+H)+].
To a solution of ethyl 5-amino-2-[8-(prop-2-enoylamino)-2-naphthyl]pyrimidine-4-carboxylate (0.65 g, 1.79 mmol, 1 eq) in THE (12 mL) and H2O (3 mL) was added LiOH·H2O (150.5 mg, 3.59 mmol, 2 eq), and the reaction was stirred for 1 hr at 25° C. TLC (PE:EtOAc=1:1; SM=0.45, Rf=0.0) showed that the reaction was complete. The reaction mixture was poured into H2O (30 mL) and adjusted to pH=6 with 1M HCl. The aqueous phase was extracted with EtOAc (3×50 mL). The combined organic layer was washed with brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound (0.6 g, crude) as a yellow solid. LC-MS (ES+, m/z): 335.1 [(M+H)+].
To a solution of 5-amino-2-[8-(prop-2-enoylamino)-2-naphthyl]pyrimidine-4-carboxylic acid (0.5 g, 1.5 mmol, 1 eq) in DMF (2 mL) were added tert-butyl 2-aminoacetate (392.4 mg, 2.99 mmol, 2 eq), TEA (454 mg, 4.49 mmol, 624.48 μL, 3 eq) and T3P (1.9 g, 2.99 mmol, 1.78 mL, 50% purity, 2 eq), and the reaction mixture was stirred for 1 hr at 15° C. under N2. TLC (DCM:MeOH=30:1; SM=0.0, Rf=0.32) showed that the reaction was complete. The reaction mixture was poured into H2O (50 mL), and the aqueous phase was extracted with EtOAc (3×50 mL). The combined organic layer was washed with brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound tert-butyl 2-[[5-amino-2-[8-(prop-2-enoylamino)-2-naphthyl]pyrimidine-4-carbonyl]amino]acetate (0.7 g, crude) as a yellow solid. LC-MS (ES+, m/z): 448.1 [(M+H)+].
To a solution of tert-butyl 2-[[5-amino-2-[8-(prop-2-enoylamino)-2-naphthyl]pyrimidine-4-carbonyl]amino]acetate (0.6 g, 1.34 mmol, 1 eq) in DCM (6 mL) was added TFA (9.24 g, 81.04 mmol, 6 mL, 60.44 eq), and the reaction was stirred for 1.5 hr at 35° C. under N2. TLC (DCM:MeOH=30:1; SM=0.35, Rf=0.0) showed that the reaction was complete. The reaction mixture was poured into H2O (50 mL). The precipitate was collected by filtration, and the filter cake was washed with DCM (5 mL) to afford the title compound 2-[[5-amino-2-[8-(prop-2-enoylamino)-2-naphthyl]pyrimidine-4-carbonyl]amino]acetic acid (0.45 g, 1.15 mmol, 85.75% yield) as a yellow solid. LC-MS (ES+, m/z): 392.1 [(M+H)+].
To a solution of 2-[[5-amino-2-[8-(prop-2-enoylamino)-2-naphthyl]pyrimidine-4-carbonyl]amino]acetic acid (0.06 g, 153.3 μmol, 1 eq) in DMF (2 mL) were added 2-methoxyethanamine (23 mg, 306.61 μmol, 26.65 μL, 2 eq), TEA (46.5 mg, 459.91 μmol, 64.01 μL, 3 eq) and T3P (195.1 mg, 306.61 μmol, 182.35 μL, 50% purity, 2 eq), and the reaction was stirred for 1 hr at 15° C. under N2. The reaction mixture was poured into H2O (20 mL). The aqueous phase was extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by prep-HPLC to afford the title compound 5-amino-N-[2-(2-methoxyethylamino)-2-oxo-ethyl]-2-[8-(prop-2-enoylamino)-2-naphthyl]pyrimidine-4-carboxamide (0.0123 g, 25.86 μmol, 16.87% yield, 94.3% purity) as a yellow solid. LC-MS (ES+, m/z): 449.2 [(M+H)+]
To a solution of 6-bromopyridine-2-carboxylic acid (2 g, 9.9 mmol, 1 eq) in DCM (10 mL) were added tert-butyl N-(2-aminoethyl)carbamate (3.17 g, 19.8 mmol, 3.11 mL, 2 eq), TEA (3.01 g, 29.7 mmol, 4.13 mL, 3 eq) and T3P (9.45 g, 14.85 mmol, 8.83 mL, 50% purity, 1.5 eq), and the reaction was stirred for 1 hr at 15° C. under N2. TLC (PE:EtOAc=1:1; SM=0.0, Rf=0.2) showed that the reaction was complete. The reaction mixture was poured into H2O (30 mL). The aqueous phase was extracted with DCM (3×30 mL). The combined organic layer was washed with brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound tert-butyl N-[2-[(6-bromopyridine-2-carbonyl)amino]ethyl]carbamate (4 g, crude) as a yellow oil.
A solution of tert-butyl N-[2-[(6-bromopyridine-2-carbonyl)amino]ethyl]carbamate (0.5 g, 1.45 mmol, 1 eq) in HCl/EtOAc (4 M, 10 mL, 27.54 eq) was stirred for 2 hr at 15° C. under N2. The solvent was removed in vacuo to afford the title compound N-(2-aminoethyl)-6-bromo-pyridine-2-carboxamide (0.35 g, crude) as a white solid. LC-MS (ES+, m/z): 244.0&246.0 [(M+H)+].
To a solution of N-(2-aminoethyl)-6-bromo-pyridine-2-carboxamide (0.35 g, 1.43 mmol, 1 eq) in THF (10 mL) were added phenyl carbamate (196.6 mg, 1.43 mmol, 1 eq) and TEA (725.5 mg, 7.17 mmol, 997.91 μL, 5 eq). The reaction mixture was stirred for 1 hr at 80° C. under N2. TLC (DCM:MeOH=10:1; SM=0.0, RF=0.19) showed that the reaction was complete. The reaction mixture was poured into saturated Na2CO3 (30 mL). The aqueous phase was extracted with EtOAc (3×30 mL). The combined organic phase was washed with brine (2×30 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue which was washed with 5 mL PE:EtOAc=3:1 to afford the title compound 6-bromo-N-(2-ureidoethyl)pyridine-2-carboxamide (0.2 g, 696.59 μmol, 48.58% yield) as a yellow solid. LC-MS (ES+, m/z): 287.0&289.0 [(M+H)+].
To a solution of 6-bromo-N-(2-ureidoethyl)pyridine-2-carboxamide (0.1 g, 348.29 μmol, 1 eq) in dioxane (2 mL) and H2O (0.5 mL) were added 7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-amine (112.5 mg, 417.95 μmol, 1.2 eq), Cs2CO3 (340.4 mg, 1.04 mmol, 3 eq), dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (16.3 mg, 34.83 μmol, 0.1 eq) and [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium; dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (14.6 mg, 17.41 μmol, 0.05 eq). The reaction mixture was stirred for 1 hr at 100° C. under N2. The reaction mixture was poured into 20 mL saturated EDTA and diluted with 20 mL EtOAc. The solution was stirred at 20° C. for 1 hr, and aqueous phase was separated and extracted with EtOAc (3×20 mL). The combined organic layer was washed with 30 mL brine, dried over Na2SO4 and concentrated in vacuo to give a crude product. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1). 6-(8-amino-2-naphthyl)-N-(2-ureidoethyl)pyridine-2-carboxamide (0.08 g, 228.97 μmol, 65.74% yield) was obtained as a yellow solid
To a solution of 6-(8-amino-2-naphthyl)-N-(2-ureidoethyl)pyridine-2-carboxamide (0.06 g, 171.73 μmol, 1 eq) in DCM (2 mL) were added TEA (52.1 mg, 515.19 μmol, 71.71 μL, 3 eq) and prop-2-enoyl chloride (18.7 mg, 206.08 μmol, 16.80 μL, 1.2 eq) at 0° C., and the reaction mixture was stirred for 0.5 hr at 0° C. under N2. The reaction mixture was poured into H2O (20 mL). The aqueous phase was extracted with DCM (3×20 mL). The combined organic layer was washed with brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by prep-HPLC to afford the title compound 6-[8-(prop-2-enoylamino)-2-naphthyl]-N-(2-ureidoethyl)pyridine-2-carboxamide (5.10 mg, 12.64 μmol, 7.36% yield, 100.0% purity) as a white solid. LC-MS (ES+, m/z): 404.2 [(M+H)+]
To a mixture of 2,4-dichloropyrimidine (0.5 g, 3.36 mmol, 1 eq) and 7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-amine (903.3 mg, 3.36 mmol, 1 eq) in DME (20 mL) H2O (5 mL) were added NaHCO3 (845.8 mg, 10.07 mmol, 391.59 μL, 3 eq) and Pd(dppf)Cl2 (1.23 g, 1.68 mmol, 0.5 eq) in one portion at 25° C. under N2. The mixture was stirred at 60° C. for 30 min. The reaction was poured into 20 mL saturated EDTA and diluted with 20 mL EtOAc. The mixture was stirred at 25° C. for 1 hr and extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine 20 mL, dried with sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=2:1) to afford the title compound (0.25 g, 977.7 μmol, 29.13% yield) as a yellow solid.
To a mixture of 7-(2-chloropyrimidin-4-yl)naphthalen-1-amine (0.2 g, 782.16 μmol, 1 eq) in MeOH (8 mL) DMF (8 mL) were added Pd(dppf)Cl2 (57.2 mg, 78.22 μmol, 0.1 eq) and TEA (237.4 mg, 2.35 mmol, 327 μL, 3 eq) in one portion at 25° C. under CO (50 psi, 195.54 μmol). The mixture was stirred at 60° C. for 12 hours. The reaction was poured into water (100 mL) and extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine 20 mL, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1:2) to afford the title compound (0.18 g, 580.04 μmol, 74.2% yield, 90% purity) as a yellow oil.
To a mixture of methyl 4-(8-aminonaphthalen-2-yl)pyrimidine-2-carboxylate (0.08 g, 286.44 μmol, 1 eq) in THF (3 mL) was added 1-Methylpiperidin-4-amine (3 mL) in one portion at 100° C. under N2. The mixture was stirred at 100° C. for 6 hours. The reaction was poured into water (100 mL) and extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine 20 mL, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=8:1) to afford the title compound (0.09 g, 249 μmol, 86.93% yield) as a yellow oil.
To a mixture of 4-(8-amino-2-naphthyl)-N-(1-methyl-4-piperidyl)pyrimidine-2-carboxamide (0.07 g, 193.67 μmol, 1 eq) in DCM (6 mL) was added TEA (58.8 mg, 581.01 μmol, 81 μL, 3 eq) in one portion at 0° C. under N2. Then, prop-2-enoyl chloride (35.1 mg, 387.34 μmol, 32 μL, 2 eq) was added to the reaction, and the mixture was stirred at 0° C. for 1 hour. LCMS and showed that the reaction was complete. The reaction was poured into water (100 mL) and extracted with DCM (3×20 mL). The combined organic layer was washed with brine 20 mL, dried over sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=8:1) to afford the title compound (0.01 g, 23.01 μmol, 11.88% yield, 95.6% purity) as a white solid. LC-MS (ES+, m/z): 416.2 [(M+H)+].
A mixture of 2-(8-amino-2-naphthyl)-N-(1-methyl-4-piperidyl)pyrimidine-4-carboxamide (100 mg, 276.67 μmol, 1 eq), 2-chloroacetyl chloride (62.5 mg, 553.34 μmol, 2 eq), and TEA (84 mg, 830.02 μmol, 3 eq) in DCM (2 mL) was stirred at −60° C. for 1 hour. LCMS showed that the reaction was complete. The reaction mixture was added to ice water (50 mL) and extracted with DCM (3×30 mL). The organic phase was separated, washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give crude product. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound (18.9 mg, 41.86 μmol, 15.13% yield, 97% purity) as a light yellow solid. LC-MS (ES+, m/z): 438.2 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) δ=10.59 (s, 1H), 9.39 (s, 1H), 9.21-9.20 (d, J=5.00 Hz, 1H), 8.91-8.90 (d, J=8.00 Hz, 1H), 8.76-8.74 (d, J=8.60 Hz, 1H), 8.14-8.12 (d, J=8.60 Hz, 1H), 7.96-7.95 (d, J=4.40 Hz, 1H), 7.90-7.88 (d, J=8.40 Hz, 1H), 7.84-7.82 (d, J=6.80 Hz, 1H), 7.65-7.63 (m, 1H), 4.53 (s, 2H), 3.86-3.84 (d, J=8.00 Hz, 1H), 2.87-2.84 (d, J=10.80 Hz, 2H), 2.23 (s, 3H), 2.05 (s, 2H). 1.86 (s, 2H), 1.20-1.81 (m, 2H).
To a mixture of 2-(8-amino-2-naphthyl)-N-(1-methyl-4-piperidyl)pyrimidine-4-carboxamide (100 mg, 276.67 μmol, 1 eq), and TEA (84 mg, 830.01 μmol, 3 eq) in DCM (2 mL) was added (E)-but-2-enoyl chloride (28.9 mg, 276.67 μmol, 1 eq) at 0° C. The mixture was stirred at 25° C. for 1 hour. The reaction mixture was poured into water (50 mL) and extracted with DCM (3×30 mL). The organic phase was separated, washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound (6.7 mg, 15.6 μmol, 5.64% yield, 100% purity) as a light yellow solid.
A mixture of 2-(8-amino-2-naphthyl)-N-(1-methyl-4-piperidyl)pyrimidine-4-carboxamide (100 mg, 276.67 μmol, 1 eq), 2-fluoroprop-2-enoic acid (37.4 mg, 415.01 μmol, 1.5 eq), 1-methylimidazole (295.3 mg, 3.6 mmol, 13 eq), [chloro(dimethylamino)methylene]-dimethyl-ammonium; hexafluorophosphate (776.3 mg, 2.77 mmol, 10 eq) in MeCN (2 mL) was stirred at 25° C. for 2 hours. The reaction mixture was poured into H2O (50 mL) and extracted with EtOAc (3×30 mL). The organic phase was separated, washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give crude product. The residue was purified by prep-HPLC to afford the title compound (21.3 mg, 49.14 μmol, 17.76% yield, 100% purity) as a light yellow solid. LC-MS (ES+, m/z): 434.2 [(M+H)+].
To a solution of 2-(8-amino-2-naphthyl)-N-(1-methyl-4-piperidyl)pyrimidine-4-carboxamide (0.1 g, 276.67 μmol, 1 eq) and (E)-4-bromobut-2-enoic acid (50.2 mg, 304.34 μmol, 1.1 eq) in DMF (1 mL) were added Et3N (84 mg, 830.01 μmol, 115.53 μL, 3 eq) and T3P (264.1 mg, 415.01 μmol, 246.82 μL, 50% purity, 1.5 eq), and the reaction was stirred at 25° C. for 10 min. The reaction was poured into 10 mL water and extracted with EtOAc (3×10 mL). The combined organic phase was washed with brine (3×10 mL), dried over by anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound 2-[8-[[(E)-4-bromobut-2-enoyl]amino]-2-naphthyl]-N-(1-methyl-4-piperidyl)pyrimidine-4-carboxamide (0.02 g, 39.34 μmol, 14.22% yield) as a white solid. LC-MS (ES+, m/z): 510.2 [(M+H)+]
To a solution of 2-[8-[[(E)-4-bromobut-2-enoyl]amino]-2-naphthyl]-N-(1-methyl-4-piperidyl)pyrimidine-4-carboxamide (0.015 g, 29.5 μmol, 1 eq) and N-methylmethanamine (3.6 mg, 44.26 μmol, 4.05 μL, 1.5 eq, HCl) in DMF (2 mL) was added Et3N (9 mg, 88.51 μmol, 12.32 μL, 3 eq), and the reaction was stirred at 25° C. for 1 hr. The reaction was poured into 10 mL water and extracted with EtOAc (3×10 mL). The combined organic phase was washed with brine (3×10 mL), dried over by anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC (basic condition) to afford the title compound 2-[8-[[(E)-4-(dimethylamino)but-2-enoyl]amino]-2-naphthyl]-N-(1-methyl-4-piperidyl)pyrimidine-4-carboxamide (0.004 g, 7.81 μmol, 26.48% yield, 92.3% purity) as a white solid. LC-MS (ES+, m/z): 473.2 [(M+H)+] 1H NMR (400 MHz, DMSO-d6) Shift=10.34 (s, 1H), 9.45 (s, 1H), 9.20 (d, J=4.9 Hz, 1H), 8.87 (br d, J=8.3 Hz, 1H), 8.71 (d, J=8.8 Hz, 1H), 8.12 (d, J=8.7 Hz, 1H), 8.00 (br d, J=7.8 Hz, 1H), 7.95 (d, J=4.9 Hz, 1H), 7.84 (d, J=8.3 Hz, 1H), 7.62 (t, J=7.9 Hz, 1H), 6.88-6.80 (m, 1H), 6.63 (br d, J=15.2 Hz, 1H), 3.85 (br s, 1H), 3.28-3.21 (m, 2H), 3.13 (br d, J=6.1 Hz, 2H), 2.89-2.79 (m, 2H), 2.22 (s, 9H), 2.03 (brt, J=10.3 Hz, 2H), 1.91-1.75 (m, 4H).
To a solution of 2-(8-amino-2-naphthyl)-N-(1-methyl-4-piperidyl)pyrimidine-4-carboxamide (0.05 g, 138.34 μmol, 1 eq) and 2-chloroacetaldehyde (54.3 mg, 276.67 μmol, 44.50 μL, 2 eq) in MeOH (3 mL) were added AcOH (83.1 ug, 1.38 μmol, 7.91e−2 μL, 0.01 eq) and NaBH3CN (26.1 mg, 415.01 μmol, 3 eq) after 30 min. The reaction was stirred at 25° C. for 1 hr. The reaction was poured into 10 mL water and extracted with DCM (3×10 mL). The combined organic phase was washed with brine (3×10 mL), dried over by anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=8:1). The residue was purified by prep-HPLC (FA condition) to afford the title compound 2-[8-(2-chloroethylamino)-2-naphthyl]-N-(1-methyl-4-piperidyl)pyrimidine-4-carboxamide (0.017 g, 39.3 μmol, 28.41% yield, 98.0% purity) as a yellow solid. LC-MS (ES+, m/z): 424.2 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) Shift=9.40 (s, 1H), 9.16 (d, J=4.9 Hz, 1H), 8.94-8.87 (m, J=8.2 Hz, 1H), 8.64 (dd, J=1.3, 8.6 Hz, 1H), 8.18 (s, 1H), 7.95-7.89 (m, 2H), 7.40 (t, J=7.9 Hz, 1H), 7.25-7.20 (m, J=8.1 Hz, 1H), 6.77 (br t, J=5.5 Hz, 1H), 6.65 (d, J=7.6 Hz, 1H), 3.93 (t, J=6.4 Hz, 2H), 3.86 (br dd, J=7.2, 15.7 Hz, 1H), 3.66 (q, J=6.1 Hz, 2H), 3.34 (br s, 2H), 2.86 (br d, J=11.6 Hz, 2H), 2.24 (s, 3H), 2.18-2.00 (m, 2H), 1.91-1.79 (m, 4H).
To a solution of 2-(8-amino-2-naphthyl)-N-(1-methyl-4-piperidyl)pyrimidine-4-carboxamide (0.1 g, 276.67 μmol, 1 eq) in DCM (2 mL) were added TEA (84 mg, 830.02 μmol, 115.53 μL, 3 eq) and 4-chlorobutanoyl chloride (39 mg, 276.67 μmol, 30.96 μL, 1 eq) at −60° C. dropwise. The reaction was stirred at −60° C. for 1 hr. LCMS and HPLC showed that the reaction was complete. The reaction was poured into ˜10 mL ice water and extracted with DCM (3×10 mL). The combined organic phase was washed with brine (3×10 mL), dried over by anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC (FA condition) to afford the title compound 2-[8-(4-chlorobutanoylamino)-2-naphthyl]-N-(1-methyl-4-piperidyl)pyrimidine-4-carboxamide (0.015 g, 31.39 μmol, 48.75% yield, 97.5% purity) as a white solid. LC-MS (ES+, m/z): 466.2 [(M+H)+].
To a mixture of 2-(8-amino-2-naphthyl)-N-(1-methyl-4-piperidyl)pyrimidine-4-carboxamide (50 mg, 138.34 μmol, 1 eq) in DCM (1 mL) were added Et3N (70 mg, 691.68 μmol, 96.27 μL, 5 eq) and 2-methylprop-2-enoyl chloride (28.9 mg, 276.67 μmol, 27.03 μL, 2 eq) at 0° C. The mixture was stirred a 25° C. for 1 h. The residue was poured into water (20 mL). The aqueous phase was extracted with DCM (2×20 mL). The combined organic phase was washed with brine (2×20 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford the title compound N-(1-methyl-4-piperidyl)-2-[8-(2-methylprop-2-enoylamino)-2-naphthyl]pyrimidine-4-carboxamide (18.7 mg, 43.54 μmol, 15.74% yield, 100% purity) as a white solid. LC-MS (ES+, m/z): 430.2 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) 5=ppm 10.12 (s, 1H), 9.22 (s, 1H), 9.19 (d, J=5.2 Hz, 1H), 8.80 (br d, J=8.0 Hz, 1H), 8.74 (dd, J=8.8, 1.32 Hz, 1H), 8.13 (d, J=8.8 Hz, 1H), 7.89-7.96 (m, 2H), 7.60-7.69 (m, 2H), 6.09 (s, 1H), 5.62 (s, 1H), 3.83 (ddd, J=10.4, 4.35, 1.65 Hz, 1H), 2.78-2.85 (m, 2H), 2.20 (s, 3H), 2.07 (s, 3H), 1.95-2.04 (m, 2H), 1.73-1.86 (m, 4H).
TABLE 7 shows compounds synthesized using the methods described in EXAMPLE 7 above.
To a solution of 7-bromo-2-methoxy-naphthalene-1-carbaldehyde (1. g, 3.77 mmol, 1 eq) in acetone (15 mL) was added a solution of Na2CO3 (2 M, 1.89 mL, 1 eq) in H2O (1.9 mL). Then KMnO4 (640 mg, 4.05 mmol, 1.07 eq) was added to the reaction. The reaction was stirred at 25° C. for 6 h. LCMS showed that the reaction was complete. 300 mL of Saturated Na2SO3 was added, and the reaction was stirred at 25° C. for 15 h. The reaction was washed with EtOAc (100 mL) to remove the impurity. The aqueous layer was adjusted pH=4 with 12 M HCl. The reaction mixture was extracted with EtOAc (3×100 mL). The combined organic layer were washed with brine (3×50 mL), dried over Na2SO4, filtered, and dried to afford the title compound (500 mg, 47.2% yield) as a light yellow solid.
To a solution of 7-bromo-2-methoxy-naphthalene-1-carboxylic acid (430 mg, 1.53 mmol, 1 eq) in THF (10 mL) were added DPPA (442 mg, 1.61 mmol, 348.05 μL, 1.05 eq) and TEA (309.6 mg, 3.06 mmol, 425.83 μL, 2 eq). The reaction was stirred at 25° C. for 16 h. Water (1 mL) was added, and the reaction was stirred at 80° C. for 2 h. The reaction was quenched with ice-water (10 mL) and EtOAc (10 mL) at 0° C. The reaction was filtered and the filter cake was extracted with EtOAc (3×10 mL). The combined organic layer was washed with brine (3×10 mL), dried over Na2SO4, filtered, and dried to afford the title compound (340 mg, 88.2% yield) as a yellow solid.
To a solution of 7-bromo-2-methoxy-naphthalen-1-amine (340 mg, 1.35 mmol, 1 eq) in DCM (10 mL) were added TEA (887 mg, 8.77 mmol, 1.22 mL, 6.5 eq) and prop-2-enoyl chloride (264.9 mg, 2.93 mmol, 238.63 μL, 2.17 eq) at 25° C. The reaction was stirred at 25° C. for 15 min. The reaction was quenched with water (5 mL) and extracted with EtOAc (3×20 mL). The combined organic layer were washed with brine (3×20 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by prep-TLC (SiO2, DCM/MeOH=50/1, Rf=0.4) to afford the title compound (160 mg, 38.8% yield) as a light yellow solid.
To a solution of N-(7-bromanyl-2-methoxy-1-naphthyl)prop-2-enamide (78 mg, 254.77 μmol, 1 eq) and 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (327.6 mg, 1.29 mmol, 5.06 eq) in dioxane (5 mL) were added Pd(dppf)Cl2·CH2Cl2 (20.8 mg, 25.48 μmol, 0.1 eq) and KOAc (125 mg, 1.27 mmol, 5 eq). The reaction was stirred at 120° C. for 40 min under N2 atmosphere. The reaction was filtered, and concentrated. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1/1) to afford the title compound (160 mg, 43% purity, 76.4% yield) as black solid.
To a solution of N-[2-methoxy-7-[4,4,5,5-tetra(methyl)-1,3,2-dioxaborolan-2-yl]-1-naphthyl]prop-2-enamide (140 mg, 396.35 μmol, 1 eq) and 2-bromopyridin-4-amine (60 mg, 346.8 μmol, 0.88 eq) in dioxane (4 mL) and H2O (1 mL) were added Pd(dppf)Cl2 (29 mg, 39.64 μmol, 0.1 eq) and Na2CO3 (126 mg, 1.19 mmol, 3 eq). The reaction was stirred at 120° C. for 0.5 h under N2 atmosphere. LCMS showed that the reaction was complete. 20 mL of Saturated EDTA was added, and the reaction was stirred at 25° C. for 1 h. The reaction was filtered and the filtrate was extracted with EtOAc (3×10 mL). The combined organic layer was washed with brine (3×10 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by prep-TLC (SiO2, DCM/MeOH=8/1, Rf=0.3) and prep-HPLC to afford the title compound (5.6 mg, 4.4% yield) as a white solid. LC-MS (ES+, m/z): 320.1 [(M+H)+]
To a solution of 7-bromo-2-methoxy-naphthalen-1-amine (800 mg, 3.17 mmol, 1 eq) and 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (960 mg, 3.78 mmol, 1.19 eq) in dioxane (20 mL) were added Pd(dppf)Cl2 (232.2 mg, 317.33 μmol, 0.1 eq) and KOAc (934.3 mg, 9.52 mmol, 3 eq). The reaction was stirred at 120° C. for 0.5 h under N2 atmosphere. The reaction was filtered. The filtrate was concentrated, and the residue was purified by silica gel chromatography (PE:EtOAc=3:1) to afford the title compound (800 mg, 84.3% yield) as a yellow solid.
To a solution of 2-methoxy-7-[4,4,5,5-tetra(methyl)-1,3,2-dioxaborolan-2-yl]naphthalen-1-amine (284 mg, 949.39 μmol, 1 eq) and 2-bromopyridine (150 mg, 949.39 μmol, 90.36 μL, 1 eq) in dioxane (2 mL) and H2O (0.5 mL) were added Pd(dppf)Cl2·CH2Cl2 (77.5 mg, 94.94 μmol, 0.1 eq) and Na2CO3 (301.9 mg, 2.85 mmol, 3 eq). The reaction was stirred at 120° C. for 1 h under N2 atmosphere. LCMS showed that the reaction was complete. 20 mL Saturated EDTA was added, and the reaction was stirred at 25° C. for 1 h. The reaction was extracted with EtOAc (2×10 mL). The combined organic layer was washed with brine (3×10 mL), dried over Na2SO4 and concentrated. The residue was purified by prep-TLC (SiO2, PE/EtOAc=2/1, Rf=0.4) to afford the title compound (100 mg, 42.1% yield) as a yellow oil.
To a solution of 2-methoxy-7-(2-pyridyl)naphthalen-1-amine (40 mg, 159.81 μmol, 1 eq) in DCM (2.0 mL) were added TEA (48.5 mg, 479.44 μmol, 66.73 μL, 3 eq) and prop-2-enoyl chloride (14.5 mg, 159.81 μmol, 13.03 μL, 1 eq) in 0.3 mL DCM. The reaction was stirred at 25° C. for 1 h. The reaction was poured into ice-water (5 mL) and extracted with EtOAc (3×10 mL). The combined organic layer were washed with brine (3×10 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by pre-HPLC to afford the title compound (9 mg, 18.4% yield) as a white solid. LC-MS (ES+, m/z): 305.1 [(M+H)+].
To a mixture of 6-(8-amino-7-methoxy-2-naphthyl)-N-[(3R,4S)-3-fluoro-1-methyl-4-piperidyl]pyridine-2-carboxamide (110 mg, 269.3 μmol, 1 eq) in DCM (3 mL) were added Et3N (136.3 mg, 1.35 mmol, 187.4 μL, 5 eq) and prop-2-enoyl chloride (24.4 mg, 269.3 μmol, 21.95 μL, 1 eq) in one portion. The reaction mixture was stirred at 25° C. for 2 hours. TLC showed ˜50% of the starting material remained. An additional portion of prop-2-enoyl chloride (24.4 mg, 269.3 μmol, 21.95 μL, 1 eq) was added to the reaction mixture and stirred at 25° C. for another 1 hour. TLC showed that the reaction was complete. The reaction was diluted with 30 mL water and extracted with EtOAc (2×30 mL). The combined organic layer was washed with brine (2×25 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1). then purified by chiral SEC to afford example 358 (28.5 mg, 60.82 μmol, 22.6% yield, 98.7% purity) as a white solid. LC-MS (ES+, m/z): 463.2 [(M+H)+], The other enantiomer (Compound 359) was also obtained (30.1 mg, 63.97 μmol, 23.76% yield, 98.3% purity) as a white solid. LC-MS (ES+, m/z): 463.2 [(M+H)+].
General Procedure for Suzuki Coupling
To a solution of 2-methoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-amine (0.5 g, 1.67 mmol, 1 eq) and RBr 2-chloro-N-(1-methyl-4-piperidyl)pyrimidine-4-carboxamide (510.8 mg, 2.01 mmol, 1.2 eq) in dioxane (6 mL) and H2O (1.5 mL) were added Na2CO3 (531.4 mg, 5.01 mmol, 3 eq) and Pd(dppf)Cl2 (122.3 mg, 167.13 μmol, 0.1 eq), and the reaction was stirred at 100° C. for 1 hr under N2. The reaction was poured into ˜20 mL saturated EDTA and stirred at 25° C. for 0.5 h. The mixture was extracted with EtOAc (3×20 mL). The combined organic phase was washed with brine (3×20 mL), dried over by anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound (0.3 g, 766.35 μmol, 45.8% yield) as a yellow solid. LC-MS (ES+, m/z): 392.1 [(M+H)+]
General Procedure for Acylation
To a mixture of 2-(8-amino-7-methoxy-2-naphthyl)-N-(1-methyl-4-piperidyl)pyrimidine-4-carboxamide (0.03 g, 76.64 μmol, 1 eq) in DCM (2 mL) were added Et3N (23.3 mg, 229.91 μmol, 32 μL, 3 eq) and prop-2-enoyl chloride (6.9 mg, 76.64 μmol, 6.25 μL, 1 eq), and the reaction was stirred at 25° C. for 1 hr. The reaction was poured into ˜10 mL water and extracted with DCM (3×10 mL. The combined organic phase was washed with brine (3×10 mL), dried over by anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPVC (neutral condition) to afford the title compound (0.0065 g, 14.59 μmol, 19.04% yield, 100% purity) as a white solid. LC-MS (ES+, m/z): 446.2 [(M+H)+].
To a solution of 2-methoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) naphthalen-1-amine (200 mg, 668.51 μmol, 1 eq) in dioxane (2 mL) and H2O (0.5 mL) was successively added 4-bromo-1-methyl-pyrazole (215.3 mg, 1.34 mmol, 2 eq), Na2CO3 (212.6 mg, 2.01 mmol, 3 eq) and Pd(dppf)Cl2 (48.9 mg, 66.85 μmol, 0.1 eq) at 25° C. The resulting reaction mixture was stirred at 100° C. for 1 hour. LCMS showed that the reaction was complete. The reaction mixture was poured into 80 mL saturated EDTA and followed by 30 mL EtOAc. The solution was stirred at 20° C. for 2 hours. The aqueous phase was extracted with EtOAc (2×20 mL). The combined organic layer was washed successively with water (2×20 mL) and brine (1×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated to give a residue. The residue was purified by prep-TLC (SiO2, DCM:MeOH=30:1) to afford the title compound (100 mg, 394.79 μmol, 59.06% yield) as a yellow solid. LC-MS (ES+, m/z): 254.1 [(M+H)+].
To a solution of 2-methoxy-7-(1-methylpyrazol-4-yl)naphthalen-1-amine (80 mg, 315.83 μmol, 1 eq) in DCM (4 mL) were added TEA (95.9 mg, 947.5 μmol, 3 eq) and prop-2-enoyl chloride (28.6 mg, 315.83 μmol, 1 eq) at 25° C. The mixture was stirred at 25° C. for 1 hour. The reaction mixture was poured into water (80 mL) and extracted with DCM (3×30 mL). The combined organic layer was washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound (20.4 mg, 66.37 μmol, 21.02% yield, 100% purity) as a light yellow solid. LC-MS (ES+, m/z): 309.1 [(M+H)+], 1H NMR (400 MHz, DMSO-d6)=9.67 (s, 1H), 8.18 (s, 1H), 7.89-7.94 (m, 1H), 7.86 (s, 2H), 7.76 (s, 1H), 7.72-7.79 (m, 1H), 7.43 (d, J=9.04 Hz, 1H), 6.64 (dd, J=16.90, 1H), 6.25 (d, 0.7=17.20 Hz, 1H), 5.78 (d, J=10.10 Hz, 1H).
To a solution of 6-[7-methoxy-8-(prop-2-enoylamino)-2-naphthyl]pyridine-2-carboxylic acid (200 mg, 574.13 μmol, 1 eq) in DMF (2 mL) were added (3R)-1-methylpiperidin-3-amine (78.7 mg, 688.96 μmol, 1.2 eq), T3P (548 mg, 861.2 μmol, 1.5 eq) and TEA (174.3 mg, 1.72 mmol, 3 eq). The mixture was stirred at 20° C. for 2 hours. The reaction mixture was poured into H2O (50 mL) and extracted with EtOAc (3×30 mL). The organic phase was separated, washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give crude product. The residue was purified by prep-HPLC to afford the title compound 6-[7-methoxy-8-(prop-2-enoylamino)-2-naphthyl]-N-[(3R)-1-methyl-3-piperidyl]pyridine-2-carboxamide (10.2 mg, 22.95 μmol, 4.00% yield) as a light yellow solid.
To a solution of tert-butyl N-(7-bromo-2-ethoxy-1-naphthyl)carbamate (1 g, 2.73 mmol, 1 eq) in DCM (10 mL) was added TFA (2 mL). The mixture was stirred at 25° C. for 1 hour. LCMS showed that the reaction was complete. The reaction mixture was added to ice water (100 mL). Then saturated Na2CO3 was slowly added to the mixture to adjust the mixture to pH=8˜9. The mixture was extracted with DCM (3×30 mL). The organic phase was separated, washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound (700 mg, crude) as a light yellow solid. LC-MS (ES+, m/z): 365.9 [(M+H)+].
A mixture of 7-bromo-2-ethoxy-naphthalen-1-amine (700 mg, 2.63 mmol, 1 eq), 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (1.34 g, 5.26 mmol, 2 eq), KOAc (1.29 g, 13.15 mmol, 5 eq), and Pd(dppf)Cl2 (192.5 mg, 263.03 μmol, 0.1 eq) in dioxane (20 mL) was prepared. The mixture was stirred at 100° C. for 2 hours. The reaction mixture was filtered, and concentrated in vacuo to give crude product. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:0 to 8:1) to afford the title compound (800 mg, 2.55 mmol, 97.11% yield) as a light yellow solid. LC-MS (ES+, m/z): 314.1 [(M+H)+].
A mixture of 6-bromo-N-[(l-methyl-4-piperidyl)methyl]pyridine-2-carboxamide (150 mg, 480.45 μmol, 1 eq), 2-ethoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-amine (180.6 mg, 576.54 μmol, 1.2 eq), Na2CO3 (152.8 mg, 1.44 mmol, 3 eq), and Pd(dppf)Cl2 (35.2 mg, 48.05 μmol, 0.1 eq) in dioxane (2 mL) and H2O (0.5 mL) was heated to 110° C. and stirred for 1 hour. The reaction mixture was added to 30 mL saturated EDTA solution and stirred for 1 hour. The mixture was extracted with EtOAc (3×30 mL). The organic phase was separated, washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound (180 mg, 430.08 μmol, 89.51% yield) as a light yellow solid. LC-MS (ES+, m/z): 419.2 [(M+H)+]
A mixture of 6-(8-amino-7-ethoxy-2-naphthyl)-N-[(l-methyl-4-piperidyl)methyl]pyridine-2-carboxamide (140 mg, 334.5 μmol, 1 eq), TEA (101.5 mg, 1 μmol, 3 eq) in DCM (2 mL), add prop-2-enoyl chloride (30.3 mg, 334.5 μmol, 1 eq) at 0° C., and the mixture was stirred at 25° C. for 2 hours. The reaction mixture was poured into H2O (50 mL) and the mixture was extracted with DCM (3×30 mL). The organic phase was separated, washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound (27.6 mg, 58.4 μmol, 17.46% yield, 100% purity) as a light yellow solid. LC-MS (ES+, m/z): 459.3 [(M+H)+]
To a solution of (7-bromo-1-nitro-2-naphthyl)trifluoromethanesulfonate (6. g, 15 mmol, 1 eq) and tributyl(vinyl)stannane (4.99 g, 15.75 mmol, 1.05 eq) in DMF (100 mL) was added LiCl (1.91 g, 44.99 mmol, 3 eq) and Pd(PPh3)2Cl2 (877.10 mg, 1.25 mmol, 0.1 eq). The reaction mixture was stirred at 25° C. for 12 hours under N2. TLC (PE:EtOAc=10:1, SM/Rf=0.2, TM/Rf=0.4) showed that the reaction was complete. The reaction mixture was poured into H2O (450 mL) and extracted with EtOAc (3×200 mL). The combined organic layers were washed with H2O (2×200 mL) and brine (2×200 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=1:0 to 10:1) to afford the title compound 7-bromo-1-nitro-2-vinyl-naphthalene (4. g, 11.51 mmol, 76.73% yield) as a yellow solid.
A solution of 7-bromo-1-nitro-2-vinyl-naphthalene (6. g, 17.26 mmol, 1 eq) in DCM (240 mL) and MeOH (60 mL) was cooled to −78° C. The reaction was bubbled with ozone (828.4 g, 17.26 mmol, 1 eq) at −78° C. for 0.5 h. After that, NaBH4 (1.96 g, 51.78 mmol, 3 eq) was added. The resulting reaction mixture was warmed to 25° C. and stirred at 25° C. for 0.5 h. TLC (PE:EtOAc=4:1, SM/Rf=0.7, TM/Rf=0.3) showed that the reaction was complete. The reaction mixture was poured into H2O (300 mL) and extracted with EtOAc (2×100 mL). The combined organic layers were washed with H2O (2×100 mL) and brine (2×100 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound (7-bromo-1-nitro-2-naphthyl)methanol (3.2 g, 11.34 mmol, 65.72% yield) as a white solid.
To a solution of (7-bromo-1-nitro-2-naphthyl)methanol (1.7 g, 6.03 mmol, 1 eq) in DCM (20 mL) was added TEA (3.05 g, 30.13 mmol, 5 eq) and methanesulfonyl chloride (1.04 g, 9.04 mmol, 1.5 eq) at 0° C. The resulting reaction mixture was stirred at 0° C. for 1 h. TLC (PE:EtOAc=3:1, SM/Rf=0.5, TM/Rf=0.4) showed that the reaction was complete. The reaction mixture was poured into H2O (400 mL) and extracted with EtOAc (2×200 mL). The combined organic layers were washed with H2O (2×100 mL) and brine (2×100 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound (7-bromo-1-nitro-2-naphthyl)methyl methanesulfonate (2. g, crude) as a white solid, which was used for the next step directly without further purification.
To a solution of (7-bromo-1-nitro-2-naphthyl)methyl methanesulfonate (1.7 g, 4.72 mmol, 1 eq) in MeOH (34 mL) was added CH3ONa (0.76 g, 14.16 mmol, 3 eq) at 25° C. The mixture was stirred at 50° C. for 1 h. TLC (PE:EtOAc=4:1, SM/Rf=0.3, TM/Rf=0.7) showed that the reaction was complete. The reaction mixture was poured into H2O (300 mL) and extracted with EtOAc (2×100 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 6:1) to afford the title compound 7-bromo-2-(methoxymethyl)-1-nitro-naphthalene (0.77 g, 2.6 mmol, 55.09% yield) as a yellow solid.
To a solution of 7-bromo-2-(methoxymethyl)-1-nitro-naphthalene (1.5 g, 5.07 mmol, 1 eq) in EtOH (30 mL) was added saturated NH4Cl (4 mL) at 25° C. Then, Fe (1.41 g, 25.33 mmol, 3 eq) was added at 70° C., and the reaction mixture was stirred at 70° C. for 1 h. TLC (PE:EtOAc=4:1, SM/Rf=0.5, TM/Rf=0.3) showed that the reaction was complete. The reaction mixture was poured into H2O (200 mL) and extracted with EtOAc (3×50 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=20:1 to 8:1) to afford the title compound 7-bromo-2-(methoxymethyl)naphthalen-1-amine (1.3 g, 4.88 mmol, 96.43% yield) as a yellow solid. LC-MS (ES+, m/z): 266.0 [(M+H)+]
To a solution of 7-bromo-2-(methoxymethyl)naphthalen-1-amine (0.2 g, 0.75 mmol, 1 eq) and 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (0.57 g, 2.25 mmol, 3 eq) in dioxane (15 mL) were added KOAc (0.59 g, 6.01 mmol, 8 eq) and Pd(dppf)Cl2 (110 mg, 150.3 μmol, 0.2 eq) at 25° C. The resulting reaction mixture was stirred at 85° C. for 2 hours under N2. LCMS showed that the reaction was complete. The reaction mixture was concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound 2-(methoxymethyl)-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) naphthalen-1-amine (1.2 g, 3.83 mmol, 92.70% yield) as a yellow oil. LC-MS (ES+, m/z): 314.1 [(M+H)+]
To a solution of 2-(methoxymethyl)-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) naphthalen-1-amine (180 mg, 574.7 μmol, 1.2 eq) in dioxane (4 mL) and H2O (1 mL) were successively added 6-bromo-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (142.8 mg, 478.93 μmol, 1 eq), Na2CO3 (152.3 mg, 1.44 mmol, 3 eq) and Pd(dppf)Cl2 (35 mg, 47.9 μmol, 0.1 eq) at 25° C. The resulting reaction mixture was stirred at 110° C. for 1 hour. LCMS showed that the reaction was complete. The reaction mixture was poured into 80 mL saturated EDTA and followed by 30 mL EtOAc. The solution was stirred at 20° C. for 2 h. The organic phase was separated, and the aqueous phase was extracted with EtOAc (2×20 mL). The combined organic layer was washed successively with water (2×20 mL) and brine (1×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated to give a residue. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound (160 mg, 395.55 μmol, 82.59% yield) as a light yellow solid. LC-MS (ES+, m/z): 405.3 [(M+H)+].
To a solution of 6-[8-amino-7-(methoxymethyl)-2-naphthyl]-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (140 mg, 346.1 μmol, 1 eq) in DCM (4 mL) were added TEA (105.1 mg, 1.04 mmol, 144.52 μL, 3 eq) and prop-2-enoyl chloride (62.7 mg, 692.21 μmol, 2 eq) at 25° C. The mixture was stirred at 25° C. for 1 h. Upon completion of the reaction as indicated by LCMS, the reaction mixture was poured into water and extracted with EtOAc (3×30 mL). The combined organic layer was washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound (22.5 mg, 49.07 μmol, 14.18% yield, 100% purity) as a white solid. LC-MS (ES+, m/z): 459.3 [(M+H)+]. 1H NMR (400 MHz, DMSO-d6)=10.30 (s, 1H), 8.83 (s, 1H), 8.42 (d, J=8.50, 2H), 8.30 (d, J=7.30 Hz, 1H), 8.12-8.18 (m, 1H), 8.11 (d, J=4.20 Hz, 1H), 8.02 (d, J=6.970 Hz, 1H), 7.98 (d, J=8.60 Hz, 1H), 7.69 (d, J=8.40 Hz, 1H), 6.73 (d, J=17.00, 10.27 Hz, 1H), 6.34 (d, J=17.00, 1.71 Hz, 1H), 5.85 (d, J=10.20, 1.65 Hz, 1H), 4.49 (s, 2H), 3.72-3.91 (m, 1H), 3.29-3.32 (m, 2H), 2.81 (d, J=11.50 Hz, 2H), 2.21 (s, 3H), 1.94-2.09 (m, 2H), 1.80-1.90 (m, 2H), 1.67-1.80 (m, 2H).
To a solution of tert-butyl 6-bromopyridine-2-carboxylate (725.2 mg, 2.81 mmol, 1.1 eq) and 2-(methoxymethyl)-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-amine (0.8 g, 2.55 mmol, 1 eq) in DME (16 mL) and H2O (4 mL) were added Na2CO3 (812.2 mg, 7.66 mmol, 3 eq) and Pd (dppf)Cl2 (1.87 g, 2.55 mmol, 1 eq). The reaction mixture was stirred at 80° C. for 1 hr under N2. TLC (PE:EtOAc=1:1, SM Rf=0.62, TM Rf=0.23) showed that the reaction was complete. The reaction was poured into ˜10 mL saturated EDTA and stirred at 25° C. for 1 h. The mixture was extracted with EtOAc (3×10 mL), and the combined organic layer was washed with brine (3×10 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=20/1 to 1/1) to afford the title compound tert-butyl 6-[8-amino-7-(methoxymethyl)-2-naphthyl]pyridine-2-carboxylate (0.61 g, 1.67 mmol, 65.53% yield) as a yellow oil.
To a solution of tert-butyl 6-[8-amino-7-(methoxymethyl)-2-naphthyl]pyridine-2-carboxylate (0.55 g, 1.51 mmol, 1 eq) in DCM (2 mL) were added TEA (763.6 mg, 7.55 mmol, 1.05 mL, 5 eq) and prop-2-enoyl chloride (163.9 mg, 1.81 mmol, 147.67 μL, 1.2 eq). The reaction mixture was stirred at 0° C. for 1 h under N2. TLC (PE:EtOAc=1:1, SM Rf=0.40, TM Rf=0.15) showed that the reaction was complete. The reaction mixture was poured into 50 mL H2O and extracted with DCM (3×50 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1:1) to afford the title compound tert-butyl 6-[7-(methoxymethyl)-8-(prop-2-enoylamino)-2-naphthyl]pyridine-2-carboxylate (0.43 g, 1.03 mmol, 68.08% yield) as a yellow solid.
To a solution of tert-butyl 6-[7-(methoxymethyl)-8-(prop-2-enoylamino)-2-naphthyl]pyridine-2-carboxylate (0.38 g, 908.04 μmol, 1 eq) in DCM (6 mL) was added TFA (4.62 g, 40.52 mmol, 3 mL, 44.62 eq). The reaction mixture was stirred at 15° C. for 12 h. LCMS showed that the reaction was complete. The reaction mixture was concentrated in vacuo to afford the title compound 6-[7-(methoxy methyl)-8-(prop-2-enoylamino)-2-naphthyl]pyridine-2-carboxylic acid (0.5 g, crude, TFA) as a yellow oil, which was used for the next step directly without further purification. LC-MS (ES+, m/z): 363.2 [(M+H)+]
To a solution of 6-[7-(methoxymethyl)-8-(prop-2-enoylamino)-2-naphthyl]pyridine-2-carboxylic acid (0.5 g, 1.05 mmol, 1 eq, TFA) in DMF (8 mL) were added methyl 2-aminoacetate;hydrochloride (263.6 mg, 2.1 mmol, 2 eq) and TEA (531 mg, 5.25 mmol, 730.41 μL, 5 eq). Then, T3P (1 g, 1.57 mmol, 936.29 μL, 50% purity, 1.5 eq) was added, and the resulting reaction mixture was stirred at 15° C. for 1 h. TLC (DCM:MeOH=10:1, SM Rf=0.00, TM Rf=0.28) showed that the reaction was complete. The reaction mixture was poured into 100 mL H2O, extracted with EtOAc (3×100 mL). The combined organic layer was washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound methyl 2-[[6-[7-(methoxymethyl)-8-(prop-2-enoylamino)-2-naphthyl]pyridine-2-carbonyl]amino]acetate (0.35 g, 807.46 μmol, 76.94% yield) as a white solid.
To a solution of methyl 2-[[6-[7-(methoxymethyl)-8-(prop-2-enoylamino)-2-naphthyl]pyridine-2-carbonyl]amino]acetate (0.3 g, 692.11 μmol, 1 eq) in THF (8 mL) andH2O (2 mL) was added LiOH·H2O (87.1 mg, 2.08 mmol, 3 eq). The reaction mixture was stirred at 15° C. for 1 h. TLC (DCM:MeOH=10:1, SM Rf=0.30, TM Rf=0.00) showed that the reaction was complete. The reaction mixture was poured into ˜50 mL water, adjusted to pH=6 with saturated citric acid, and extracted with EtOAc (3×50 mL). The combined organic layer was dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound 2-[[6-[7-(methoxymethyl)-8-(prop-2-enoylamino)-2-naphthyl]pyridine-2-carbonyl]amino]acetic acid (0.32 g, crude) as a yellow solid which was used for the next step directly without further purification.
To a solution of 2-[[6-[7-(methoxymethyl)-8-(prop-2-enoylamino)-2-naphthyl]pyridine-2-carbonyl]amino]acetic acid (60 mg, 143.05 μmol, 1 eq) in DMF (3 mL) were added TEA (72.4 mg, 715.26 μmol, 99.56 μL, 5 eq) and 4-fluoro-3-methoxy-aniline (30.3 mg, 214.58 μmol, 1.5 eq). Then, T3P (136.6 mg, 214.58 μmol, 127.62 μL, 50% purity, 1.5 eq) was added, and the reaction was stirred at 15° C. for 1 h. LCMS showed that the reaction was complete. The reaction mixture was poured into 50 mL H2O and extracted with EtOAc (3×50 mL). The combined organic layer was washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound N-[2-(4-fluoro-3-methoxy-anilino)-2-oxo-ethyl]-6-[7-(methoxymethyl)-8-(prop-2-enoylamino)-2-naphthyl]pyridine-2-carboxamide (16.6 mg, 28.97 μmol, 20.25% yield, 94.7% purity) as a white solid. LC-MS (ES+, m/z): 543.2 [(M+H)+]
To a mixture of 7-bromo-1-nitro-naphthalen-2-ol (5 g, 18.65 mmol, 1 eq) in DMF (50 mL) was added NaH (2.24 g, 55.96 mmol, 60% purity, 3 eq) at 0° C. The mixture was stirred at 0° C. for 0.5 h, and KOtBu (2.3 g, 20.52 mmol, 1.1 eq) and dibromodifluoromethane (11.74 g, 55.96 mmol, 5.17 mL, 3 eq) in DMF (50 mL) were added at 0° C. The mixture was stirred at 25° C. for 12 h. HPLC showed ˜30% reactant and ˜60% product was detected. The residue was poured into saturated NH4Cl (100 mL) and the aqueous phase was extracted with EtOAc (4×100 mL). The combined organic phase was washed with brine (4×100 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by silica gel chromatography (SiO2, PE:EtOAc=1:0) to afford the title compound (1 g, 2.28 mmol, 12.22% yield, 90.455% purity) as a yellow solid. Some impure product (3 g, 4.53 mmol, 24.31% yield, 60% purity) was obtained as a yellow solid. 1H NMR (400 MHz, DMSO-d6) δ=8.52 (d, 7=8.8 Hz, 1H), 8.27 (d, 7=8.8 Hz, 1H), 8.10 (s, 1H), 8.01 (dd, J=1.6, 8.8 Hz, 1H), 7.93 (d, 7=9.2 Hz, 1H)
To a mixture of 7-bromo-2-[bromo(difluoro)methoxy]-1-nitro-naphthalene (500 mg, 1.26 mmol, 1 eq) in hexane (40 mL) was added AgBF4 (1.47 g, 7.56 mmol, 6 eq) at 25° C. The mixture was stirred at 25° C. for 16 h. HPLC showed the starting material was consumed. The combined organic phase was concentrated in vacuo. The residue was purified by silica gel chromatography (SiO2, PE:EtOAc=1:0 to 10:1) to afford the title compound (150 mg, 446.35 μmol, 35.44% yield) as a white solid. TLC (PE:EtOAc=1:0, SM=0.10, TM=0.14)1H NMR (400 MHz, CDCl3) 5=8.04 (d, 7=9.2 Hz, 1H), 8.00 (s, 1H), 7.83 (d, 7=8.8 Hz, 1H), 7.74 (dd, J=1.2, 8.8 Hz, 1H), 7.61-7.49 (d, 7=9.2 Hz, 1H); F NMR (400 MHz, CDCl3) δ=−56.96.
To a mixture of 7-bromo-1-nitro-2-(trifluoromethoxy)naphthalene (130 mg, 386.83 μmol, 1 eq) in EtOH (5 mL) and saturated NH4Cl (1 mL) was added Fe (108 mg, 1.93 mmol, 5 eq) at 70° C. The mixture was stirred at 70° C. for 1 h. TLC showed no reactant was remained and product was detected. The residue was poured into H2O (10 mL) and the aqueous phase was filtered with diatomite, and extracted with EtOAc (3×15 mL). The combined organic phase was washed with brine (3×15 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC to afford the title compound (100 mg, 326.71 μmol, 84.46% yield) as a white solid. TLC (PE:EtOAc=1:0, SM=0.14, TM=0.09)
To a mixture of 7-bromo-2-(trifluoromethoxy)naphthalen-1-amine (80 mg, 261.37 μmol, 1 eq) and Pin2B2 (132.7 mg, 522.74 μmol, 2 eq) in dioxane (3 mL) were added KOAc (77 mg, 784.11 μmol, 3 eq), Pd(dppf)Cl2 (38.3 mg, 52.27 μmol, 0.2 eq) under N2. The mixture was stirred at 100° C. for 1 h. Upon completion of the reaction as indicated by TLC, the residue was poured into H2O (20 mL) and the aqueous phase was extracted with EtOAc (3×20 mL). The combined organic phase was washed with brine (3×20 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC to afford the title compound (90 mg, 254.85 μmol, 97.51% yield) as a yellow oil.
To a mixture of 7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(trifluoromethoxy) naphthalen-1-amine (80 mg, 226.54 μmol, 1 eq) and 6-bromo-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (101.3 mg, 339.81 μmol, 1.5 eq) in dioxane (3 mL) and H2O (0.75 mL) were added Na2CO3 (48 mg, 453.07 μmol, 2 eq), Pd(dppf)Cl2 (16.6 mg, 22.65 μmol, 0.1 eq) under N2. The mixture was stirred at 100° C. for 1 h. The residue was poured into saturated EDTA (30 mL) and stirred for 60 min. The aqueous phase was extracted with EtOAc (3×30 mL). The combined organic phase was washed with brine (3×30 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC to afford the title compound (80 mg, 18 μmol, 79.46% yield) as a yellow oil. LCMS (ES+, m/z): 445.2 [(M+H)+].
To a mixture of 6-[8-amino-7-(trifluoromethoxy)-2-naphthyl]-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (60 mg, 135 μmol, 1 eq) in DCM (3 mL) were added TEA (68.3 mg, 674.99 μmol, 93.95 μL, 5 eq) and prop-2-enoyl chloride (24.4 mg, 27 μmol, 22.02 μL, 2 eq) at 0° C. The mixture was stirred at 25° C. for 1 h. LCMS showed ˜60% of the starting material remained. Then, prop-2-enoyl chloride (36.7 mg, 405 μmol, 33.02 μL, 3 eq) was added and the mixture was stirred at 25° C. for 1 h. Upon completion of the reaction as indicated by LCMS, the residue was poured into H2O (15 mL) and the aqueous phase was extracted with EtOAc (3×10 mL). The combined organic phase was washed with brine (3×10 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford the title compound (24.8 mg, 49.4 μmol, 36.59% yield, 99.292% purity) as a white solid. LC-MS (ES+, m/z): 499.2 [(M+H)+]1H NMR (400 MHz, DMSO-d6) δ=10.38 (s, 1H), 8.82 (s, 1H), 8.54 (d, J=8.4 Hz, 1H), 8.43 (br d, J=8.4 Hz, 1H), 8.33 (d, J=8.4 Hz, 1H), 8.22 (d, J=8.6 Hz, 1H), 8.18-8.10 (m, 2H), 8.04 (d, J=7.6 Hz, 1H), 7.67 (br d, J=9.2 Hz, 1H), 6.68 (br dd, J=10.8, 17.2 Hz, 1H), 6.34 (br d, J=16.4 Hz, 1H), 5.86 (br d, J=10.0 Hz, 1H), 3.87-3.77 (m, 1H), 2.86-2.73 (m, 2H), 2.21 (s, 3H), 2.09-1.96 (m, 2H), 1.88-1.80 (m, 2H), 1.79-1.66 (m, 2H).
To a mixture of methyl 6-(8-amino-2-naphthyl)pyridine-2-carboxylate (400 mg, 1.44 mmol, 1 eq) in ACN (3 mL) was added NCS (153.5 mg, 1.15 mmol, 0.8 eq). The mixture was stirred at 25° C. for 12 hours. The reaction was diluted with H2O (30 mL). The reaction was extracted with (3×10 mL) EtOAc. The combined organic phase was washed with brine (30 mL), dried over Na2SO4, dried over sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=2:1) to afford the title compound (200 mg, 639.49 μmol, 44.5% yield) as a yellow solid. LC-MS (ES+, m/z): 313.0 [(M+H)+].
To a solution of methyl 6-(8-amino-7-chloro-2-naphthyl)pyridine-2-carboxylate (200 mg, 639.49 μmol, 1 eq) in THF (2 mL) and H2O (0.5 mL) was added LiOH·H2O (107.3 mg, 2.56 mmol, 4 eq). The mixture was stirred at 20° C. for 2 h. The reaction mixture was diluted with H2O (30 mL) and EtOAc (30 mL), and saturated citric acid was added to adjust the mixture to pH˜ 6. The mixture was extracted with EtOAc (2×20 mL), washed with brine (30 mL), dried over Na2SO4, dried over sodium sulfate, filtered, and concentrated in vacuo to afford the title compound (160 mg, crude) as a yellow solid. LC-MS (ES+, m/z): 296.9 [(M−H)+].
To a mixture of 6-(8-amino-7-chloro-2-naphthyl)pyridine-2-carboxylic acid (80 mg, 267.81 μmol, 1 eq) and 2-(1-methyl-4-piperidyl)ethanamine (76.2 mg, 535.61 μmol, 2 eq) in DMF (2 mL) were added Et3N (81.3 mg, 803.42 μmol, 111.83 μL, 3 eq; drop-wise) and T3P (255.6 mg, 401.71 μmol, 238.91 μL, 50% purity, 1.5 eq). The mixture was stirred at 20° C. for 2 h. The reaction was diluted with H2O (30 mL) and extracted with EtOAc (3×20 mL). The combined organic phase was washed with brine (30 mL), dried over Na2SO4, filtered, and concentrated in vacuo to afford the title compound (60 mg, crude) as a yellow oil.
To a solution of 6-(8-amino-7-chloro-2-naphthyl)-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (60 mg, 151.94 μmol, 1 eq) in DCM (2 mL) was added drop-wise Et3N (46.1 mg, 455.82 μmol, 63.44 μL, 3 eq) at 0° C. After about 5 min, prop-2-enoyl chloride (20.6 mg, 227.91 μmol, 18.58 μL, 1.5 eq) was added drop-wise at 0° C. The mixture was stirred at 20° C. for 115 min. Upon completion of the reaction as indicated by LCMS, the reaction was diluted with H2O (20 mL). Then the reaction was extracted with (3×20 mL) DCM. The combined organic phase was washed with brine (30 mL), dried over Na2SO4 and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound 6-[7-chloro-8-(prop-2-enoylamino)-2-naphthyl]-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (5.1 mg, 11.36 μmol, 7.48% yield, 100% purity) as a white
To a solution of methyl 6-(8-amino-5-chloro-2-naphthyl)pyridine-2-carboxylate (200 mg, 639.49 μmol, 1 eq) in THF (4 mL) and H2O (1 mL) was added LiOH·H2O (161 mg, 3.84 mmol, 6 eq). The mixture was stirred at 20° C. for 2 h. The reaction mixture was diluted with H2O (30 mL) and EtOAc (30 mL). Then the mixture was adjusted to pH˜6 using saturated citric acid. The organic layer was extracted with EtOAc (2×20 mL) and washed with brine (30 mL), dried over Na2SO4 and concentrated in vacuo to afford the title compound (160 mg, crude) as a yellow solid. LC-MS (ES+, m/z): 297.0 [(M−H)+].
To a mixture of 6-(8-amino-5-chloro-2-naphthyl)pyridine-2-carboxylic acid (80 mg, 267.81 μmol, 1 eq) and 1-methylpiperidin-4-amine (91.7 mg, 803.42 μmol, 3 eq) in DMF (2 mL) were added Et3N (81.3 mg, 803.42 μmol, 111.83 μL, 3 eq; drop-wise) and T3P (255.6 mg, 401.71 μmol, 238.91 μL, 50% purity, 1.5 eq). The mixture was stirred at 20° C. for 2 h. Upon completion of the reaction as indicated by LCMS, the reaction was diluted with H2O (30 mL) and extracted with EtOAc (3×20 mL). The combined organic phase was washed with brine (30 mL), dried over Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified prep-TLC (SiO2, DCM/MeOH=8:1 or 5:1) to afford the title compound 6-(8-amino-5-chloro-2-naphthyl)-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (60 mg, 151.94 μmol, 56.73% yield) as a yellow oil.
To a solution of 6-(8-amino-5-chloro-2-naphthyl)-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (60 mg, 151.94 μmol, 1 eq) in DCM (2 mL) was added Et3N (46.1 mg, 455.82 μmol, 63.44 μL, 3 eq; drop-wise) at 0° C. After about 5 min, prop-2-enoyl chloride (13.8 mg, 151.94 μmol, 12.39 μL, 1 eq) was added drop-wise at 0° C. The mixture was stirred at 20° C. for 115 min. The reaction was diluted with H2O (20 mL) and extracted with DCM (3×20 mL). The combined organic phase was washed with brine (30 mL), dried over Na2SO4 and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound 6-[5-chloro-8-(prop-2-enoylamino)-2-naphthyl]-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (13.1 mg, 29.09 μmol, 19.15% yield, 99.7% purity) as a white solid. LC-MS (ES+, m/z): 449.1 [(M+H)+]
TABLE 8 shows compounds synthesized using the methods described in EXAMPLE 8 above.
To a solution of (4-amino-6-quinolyl)boronic acid (150 mg, 797.91 μmol, 1 eq) and ethyl 5-amino-2-chloro-pyrimidine-4-carboxylate (193 mg, 957.49 μmol, 1.2 eq) in H2O (1 mL) and THF (4 mL) were successively added K3PO4 (338.8 mg, 1.6 mmol, 2 eq) and [2-(2-aminophenyl)phenyl]-chloro-palladium;bis(1-adamantyl)-butyl-phosphane (53.4 mg, 79.79 μmol, 0.1 eq). The reaction mixture was heated to 80° C. under N2 and stirred at 80° C. for 15 h. LCMS showed that the reaction was complete. The reaction mixture was poured into saturated EDTA (50 mL) and diluted with EtOAc (50 mL). The solution was stirred at 25° C. for another 1 h. The mixture was filtered, and the filtrate was washed with EtOAc (3×50 mL). The aqueous phase was concentrated in vacuo to give a residue. The residue was re-dissolved in DCM:MeOH=10:1 then filtered. The filtrate was concentrated to afford the title compound as a mixture of ethyl 5-amino-2-(4-amino-6-quinolyl)pyrimidine-4-carboxylate and 5-amino-2-(4-amino-6-quinolyl)pyrimidine-4-carboxylic acid (140 mg, crude) as a yellow solid. LC-MS (ES+, m/z): 310.1 [(M+H)+]
To a solution of ethyl 5-amino-2-(4-amino-6-quinolyl)pyrimidine-4-carboxylate (0.12 g, 387.95 μmol, 1 eq) in THF (4 mL) and H2O (1 mL) was added LiOH·H2O (48.8 mg, 1.16 mmol, 3 eq). The reaction mixture was stirred at 15° C. for 1 h. TLC (DCM:MeOH:TEA=10:1:0.1, SM Rf=0.35, TM Rf=0.06) showed that the reaction was complete. The reaction mixture was concentrated in vacuo to afford the title compound 5-amino-2-(4-amino-6-quinolyl)pyrimidine-4-carboxylic acid (0.2 g, crude) as a yellow solid, which was used for the next step directly without further purification.
To a solution of 5-amino-2-(4-amino-6-quinolyl)pyrimidine-4-carboxylic acid (0.15 g, 533.3 μmol, 1 eq) in DMF (4 mL) were added TEA (269.8 mg, 2.67 mmol, 371.14 μL, 5 eq) and 1-methylpiperidin-4-amine (182.7 mg, 1.6 mmol, 3 eq). Then, T3P (509.1 mg, 799.95 μmol, 475.75 μL, 50% purity, 1.5 eq) was added. The reaction mixture was stirred at 15° C. for 3 h. TLC showed that the reaction was complete. The reaction mixture was poured into 50 mL H2O and extracted with EtOAc (2×50 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, DCM:MeOH:TEA=6:1:0.1) to afford the title compound 5-amino-2-(4-amino-6-quinolyl)-N-(1-methyl-4-piperidyl)pyrimidine-4-carboxamide (50 mg, 132.47 μmol, 24.84% yield) as a yellow solid. LC-MS (ES+, m/z): 378.3 [(M+H)+]
To a solution of 5-amino-2-(4-amino-6-quinolyl)-N-(1-methyl-4-piperidyl)pyrimidine-4-carboxamide (40 mg, 105.98 μmol, 1 eq) in DCM (2 mL) were added TEA (53.6 mg, 529.88 μmol, 73.75 μL, 5 eq) and prop-2-enoyl chloride (28.8 mg, 317.93 μmol, 25.92 μL, 3 eq). The reaction mixture was stirred at 0° C. for 1 h under N2. LCMS showed that the reaction was complete. The reaction mixture was poured into 50 mL H2O and extracted with EtOAc (50 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound 5-amino-N-(1-methyl-4-piperidyl)-2-[4-(prop-2-enoylamino)-6-quinolyl]pyrimidine-4-carboxamide (5.1 mg, 11.37 μmol, 10.73% yield, 96.2% purity) as a white solid. LC-MS (ES+, m/z): 432.2 [(M+H)+]1H NMR (400 MHz, DMSO-d6) δ=10.70 (s, 1H), 9.30 (d, J=1.76 Hz, 1H), 8.76-8.85 (m, 2H), 8.70 (d, 7=7.90 Hz, 1H), 8.64 (s, 1H), 8.16 (d, 7=5.26 Hz, 1H), 8.07 (d, 7=8.78 Hz, 1H), 7.08 (s, 2H), 6.84-6.92 (m, 1H), 6.40-6.44 (m, 1H), 5.88-5.92 (m, 1H), 3.79-3.81 (m, 1H), 2.80 (br d, J=11.84 Hz, 2H), 2.20 (s, 3H), 1.93-2.06 (m, 2H), 1.75-1.89 (m, 4H).
To a solution of 3-amino-6-chloro-pyridine-2-carboxylic acid (1 g, 5.79 mmol, 1 eq) and 3-fluoro-1-methyl-piperidin-4-amine (918.4 mg, 6.95 mmol, 1.2 eq, 2HCl) in DCM (15 mL) were added TEA (1.76 g, 17.37 mmol, 2.42 mL, 3 eq) and T3P (5.53 g, 8.68 mmol, 5.17 mL, 50% purity, 1.5 eq) under N2. The reaction mixture was stirred at 20° C. for 2 hours under N2. The reaction mixture was concentrated directly to give a residue. The residue was purified by column chromatography (SiO2, EtOAc:MeOH=30:1 to 20:1) to afford the title compound 3-amino-6-chloro-N-(3-fluoro-1-methyl-4-piperidyl)pyridine-2-carboxamide (1.25 g, 4.36 mmol, 75.29% yield) as a yellow solid.
To a solution of 6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinolin-4-amine (471.06 mg, 1.74 mmol, 2.5 eq) and 3-amino-6-chloro-N-(3-fluoro-1-methyl-4-piperidyl)pyridine-2-carboxamide (200 mg, 697.51 μmol, 1 eq) in dioxane (2 mL) and H2O (0.5 mL) were added Na2CO3 (221.8 mg, 2.09 mmol, 3 eq) Pd(dppf)Cl2 (51 mg, 69.75 μmol, 0.1 eq) under N2. The reaction mixture was stirred at 110° C. for 5 hours under N2. The reaction mixture was poured into saturated EDTA (50 mL) and 20 mL EtOAc. The mixture was stirred for 1 h, and the aqueous phase was separated and extracted with EtOAc (3×20 mL). The combined organic phase was washed with brine (3×30 mL), dried over anhydrous Na2SO4, filtered, concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, DCM:MeOH:Et3N=10:1:0.1) to afford the title compound 3-amino-6-(4-amino-6-quinolyl)-N-(3-fluoro-1-methyl-4-piperidyl)pyridine-2-carboxamide (70 mg, 177.46 μmol, 25.44% yield) as a yellow gum. LC-MS (ES+, m/z): 395.1 [(M+H)+]
To a mixture of 3-amino-6-(4-amino-6-quinolyl)-N-(3-fluoro-1-methyl-4-piperidyl)pyridine-2-carboxamide (50 mg, 126.76 μmol, 1 eq) and TEA (15.4 mg, 152.11 μmol, 21.17 μL, 3 eq) in DCM (1 mL) and DMF (1 mL) was added prop-2-enoyl chloride (11.5 mg, 126.76 μmol, 10.34 μL, 1 eq) in one portion at 0° C. The reaction mixture was stirred at 0° C. for 1 hour. LCMS showed that the conversion was ˜50%. Additional prop-2-enoyl chloride (11.5 mg, 126.76 μmol, 10.34 μL, 1 eq) was added at 0° C. The resulting reaction mixture was stirred at 0° C. for another 1 hour. The reaction was poured into 20 mL water and extracted with DCM (3×20 mL). The combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC (basic condition) to afford the title compound 3-amino-N-(3-fluoro-1-methyl-4-piperidyl)-6-[4-(prop-2-enoylamino)-6-quinolyl]pyridine-2-carboxamide (11.4 mg, 24.17 μmol, 19.07% yield, 95.1% purity) as a white solid. LC-MS (ES+, m/z): 449.2 [(M+H)+]1H NMR (400 MHz, DMSO-de) 5=10.59 (br s, 1H), 8.97 (d, J=1.6 Hz, 1H), 8.79 (d, J=5.2 Hz, 1H), 8.55 (br d, J=8.0 Hz, 1H), 8.44 (dd, J=2.0, 8.8 Hz, 1H), 8.21 (d, J=5.2 Hz, 1H), 8.17 (d, J=8.8 Hz, 1H), 8.06 (d, J=8.8 Hz, 1H), 7.38 (d, J=8.8 Hz, 1H), 7.09 (br s, 2H), 6.86 (dd, J=10.4, 17.2 Hz, 1H), 6.41 (dd, J=1.6, 17.2 Hz, 1H), 5.93-5.84 (m, 1H), 4.96-4.76 (m, 1H), 4.09-3.89 (m, 1H), 3.11-3.00 (m, 1H), 2.82 (br d, J=9.6 Hz, 1H), 2.22 (s, 4H), 2.16-2.01 (m, 2H), 1.77 (br d, J=12.4 Hz, 1H).
To a solution of 6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinolin-4-amine (906 mg, 3.35 mmol, 2.5 eq) and 6-bromo-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (400 mg, 1.34 mmol, 1 eq) in dioxane (8 mL) and H2O (2 mL) were added Na2CO3 (426.6 mg, 4.02 mmol, 3 eq) and Pd(dppf)Cl2 (98.2 mg, 134.15 μmol, 0.1 eq) in one portion under N2. The reaction mixture was heated to 110° C. and stirred at 110° C. for 30 min under N2. The reaction mixture was poured into saturated EDTA aqueous solution (50 mL) and 20 mL EtOAc. The mixture was stirred for 1 h, and the aqueous phase was separated and extracted with EtOAc (3×20 mL). The combined organic phase was washed with brine (3×20 mL), dried over anhydrous Na2SO4 and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, DCM:MeOH:Et3N=10:1:0 to 10:1:0.1) to afford the title compound 6-(4-amino-6-quinolyl)-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (300 mg, 830.01 μmol, 61.87% yield) as a yellow solid. LC-MS (ES+, m/z): 362.1 [(M+H)+].
To a mixture of 6-(4-amino-6-quinolyl)-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (80 mg, 221.34 μmol, 1 eq) and 2-fluoroprop-2-enoic acid (39.9 mg, 442.0.67 μmol, 2 eq) in DMF (2 mL) were added Et3N (112 mg, 1.11 mmol, 154.04 μL, 5 eq) and T3P (281.7 mg, 442.67 μmol, 263.27 μL, 50% purity, 2 eq) in one portion under N2. The reaction mixture was stirred at 20° C. for 2 hours. The reaction was poured into 20 mL water, extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by prep-HPLC to afford the title compound 6-[4-(2-fluoroprop-2-enoylamino)-6-quinolyl]-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (19.1 mg, 43.05 μmol, 19.45% yield, 97.7% purity) as a white solid. LC-MS (ES+, m/z): 434.2 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) δ=10.83 (br s, 1H), 9.01 (d, J=1.6 Hz, 1H), 8.93 (d, J=4.8 Hz, 1H), 8.72 (dd, J=2.0, 8.8 Hz, 1H), 8.63 (br d, J=8.4 Hz, 1H), 8.42 (d, J=7.6 Hz, 1H), 8.20-8.13 (m, 2H), 8.05 (d, J=7.6 Hz, 1H), 7.89 (d, J=4.8 Hz, 1H), 5.85 (d, J=4.0 Hz, 1H), 5.97 (d, J=4.0 Hz, 1H), 5.57 (dd, J=4.0, 15.6 Hz, 1H), 3.92-3.78 (m, 1H), 2.82 (br d, J=11.2 Hz, 2H), 2.21 (s, 3H), 2.03 (br t, J=10.8 Hz, 2H), 1.88-1.72 (m, 4H).
To a mixture of 6-bromoquinolin-4-amine (2 g, 8.97 mmol, 1 eq) and 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (3.42 g, 13.45 mmol, 1.5 eq) in dioxane (20 mL) were added KOAc (2.64 g, 26.9 mmol, 3 eq) and Pd(dppf)Cl2 (656 mg, 896.58 μmol, 0.1 eq). The reaction was stirred at 110° C. for 4 hr under N2. LCMS showed that the reaction was complete. The reaction mixture was concentrated in vacuo to give a residue. The residue was washed with DCM and PE to afford the title compound 6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinolin-4-amine (3.8 g, crude) as a black brown solid. LC-MS (ES+, m/z): 189.0, 271.1 [(M+H)+]
To a mixture of tert-butyl 2-chloropyrimidine-4-carboxylate (1 g, 4.66 mmol, 1 eq) and 6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinolin-4-amine (2.52 g, 9.32 mmol, 2 eq) in dioxane (8 mL) and H2O (2 mL) were added Na2CO3 (1.48 g, 13.98 mmol, 3 eq) and Pd(dppf)Cl2 (340.9 mg, 465.88 μmol, 0.1 eq). The reaction heated to 80° C. under N2 and stirred for 1 h. TLC showed that the reaction was complete. The reaction mixture was stirred by adding saturated EDTA (50 mL) and EtOAc (50 mL) at 25° C. for 1 h. The combined organic phase was washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=1/1 to I/O) to afford the title compound tert-butyl 2-(4-amino-6-quinolyl)pyrimidine-4-carboxylate (1 g, 3.1 mmol, 66.59% yield) as a yellow solid. LC-MS (ES+, m/z): 323.1 [(M+H)+]
To a mixture of tert-butyl 2-(4-amino-6-quinolyl)pyrimidine-4-carboxylate (0.9 g, 2.79 mmol, 1 eq) in DCM (18 mL) and DMF (18 mL) were added TEA (565 mg, 5.58 mmol, 777.19 μL, 2 eq) and prop-2-enoyl chloride (379 mg, 4.19 mmol, 341.47 μL, 1.5 eq). The reaction mixture was stirred at 0° C. for 1 h under N2. TLC showed that the reaction was complete. The reaction mixture was diluted with H2O and extracted with EtOAc (3×50 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=3:1 to 1/3) to afford the title compound tert-butyl 2-[4-(prop-2-enoylamino)-6-quinolyl]pyrimidine-4-carboxylate (0.9 g, 2.39 mmol, 85.64% yield) as a yellow solid.
To a mixture of tert-butyl 2-[4-(prop-2-enoylamino)-6-quinolyl]pyrimidine-4-carboxylate (0.4 g, 1.06 mmol, 1 eq) in THF (8 mL) and H2O (2 mL) was added LiOH·H2O (223 mg, 5.31 mmol, 5 eq). The reaction was stirred at 15° C. for 1 h. TLC showed that the reaction was complete. The reaction was poured into ˜100 mL ice water and adjusted to pH=7 with saturated citric acid. The mixture was extracted with EtOAc (3×50 mL), and the aqueous layer was lyophilized. The residue was washed with DCM:MeOH=10:1, filtered, and concentrated in vacuo to give a residue. The title compound 2-[4-(prop-2-enoylamino)-6-quinolyl]pyrimidine-4-carboxylic acid (550 mg, crude) was obtained as a yellow solid. LC-MS (ES+, m/z): 321.0 [(M+H)+]
To a solution of 2-[4-(prop-2-enoylamino)-6-quinolyl]pyrimidine-4-carboxylic acid (0.1 g, 312.21 μmol, 1 eq) in DMF (2 mL) were added TEA (58.01 mg, 1.56 mmol, 217.27 μL, 5 eq) and 8-methyl-8-azabicyclo[3.2.1]octan-3-amine (87.6 mg, 624.42 μmol, 2 eq). Then, T3P (298 mg, 468.32 μmol, 278.52 μL, 50% purity, 1.5 eq) was added to the reaction, and the reaction was stirred at 15° C. for 1 h. LCMS showed that the reaction was complete. The reaction mixture was diluted with H2O (50 mL) and extracted with EtOAc (2×50 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound N-(8-methyl-8-azabicyclo[3.2.1]octan-3-yl)-2-[4-(prop-2-enoylamino)-6-quinolyl]pyrimidine-4-carboxamide (12.2 mg, 27.13 μmol, 8.69% yield, 98.4% purity) as a white solid.
To a mixture of 6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinolin-4-amine (2.3 g, 8.52 mmol, 2.2 eq) and tert-butyl 6-bromopyridine-2-carboxylate (1 g, 3.87 mmol, 1 eq) in dioxane (20 mL) and H2O (5 mL) were added Na2CO3 (1.23 g, 11.62 mmol, 3 eq), Pd(dppf)Cl2 (283.5 mg, 387.43 μmol, 0.1 eq) in one portion under N2. The mixture was stirred at 80° C. for 1.5 hours. The reaction was diluted with 20 mL water and extracted with EtOAc (2×20 mL). The combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, DCM:MeOH=15:1 to 8:1) to afford the title compound tert-butyl 6-(4-amino-6-quinolyl)pyridine-2-carboxylate (0.9 g, 2.8 mmol, 72.28% yield) as a yellow solid. LC-MS (ES+, m/z): 322.2 [(M+H)+]
To a mixture of tert-butyl 6-(4-amino-6-quinolyl)pyridine-2-carboxylate (800 mg, 2.49 mmol, 1 eq) in DCM (8 mL) and DMF (8 mL) were added Et3N (755.7 mg, 7.47 mmol, 1.04 mL, 3 eq) and prop-2-enamide (265.4 mg, 3.73 mmol, 257.67 μL, 1.5 eq) in one portion at 0° C. under N2. The mixture was stirred at 0° C. for 60 min. The reaction was diluted with 30 mL water and extracted with EtOAc (3×30 mL). The combined organic layer was washed with brine (2×30 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, DCM:MeOH=1:0) and purified by prep-TLC (SiO2, DCM:MeOH=15:1) to afford the title compound tert-butyl 6-[4-(prop-2-enoylamino)-6-quinolyl]pyridine-2-carboxylate (600 mg, 1.6 mmol, 64.20% yield) as a yellow gum. LC-MS (ES+, m/z): 376.1 [(M+H)+]
To a mixture of tert-butyl 6-[4-(prop-2-enoylamino)-6-quinolyl]pyridine-2-carboxylate (200 mg, 532.74 μmol, 1 eq) in DCM (3 mL) was added TFA (4.62 g, 40.52 mmol, 3 mL, 76.06 eq) in one portion. The mixture was stirred at 20° C. for 7 hours. The reaction was concentrated directly, and the crude material was lyophilized to afford the title compound 6-[4-(prop-2-enoylamino)-6-quinolyl]pyridine-2-carboxylic acid (160 mg, crude) as an off-white solid. LC-MS (ES+, m/z): 320.2 [(M+H)+].
To a mixture of 6-[4-(prop-2-enoylamino)-6-quinolyl]pyridine-2-carboxylic acid (40 mg, 125.27 μmol, 1 eq) and 2-methoxyethanamine (14.1 mg, 187.9 μmol, 16.33 μL, 1.5 eq) in DCM (1.5 mL) and DMF (0.5 mL) were added Et3N (63.4 mg, 626.34 μmol, 87.18 μL, 5 eq) and T3P (119.6 mg, 187.9 μmol, 111.75 μL, 50% purity, 1.5 eq) in one portion. The mixture was stirred at 20° C. for 60 min. The reaction mixture was adjusted to pH=9 with saturated aq. Na2CO3 and extracted with EtOAc (4×15 mL). The combined organic layer was washed with brine (2×15 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) and by prep-HPLC (neutral condition) to afford the title compound N-(2-methoxyethyl)-6-[4-(prop-2-enoylamino)-6-quinolyl]pyridine-2-carboxamide (5.7 mg, 15.14 μmol, 12.09% yield, 100.0% purity) as a white solid.
To a mixture of 6-[4-(prop-2-enoylamino)-6-quinolyl]pyridine-2-carboxylic acid (50 mg, 156.59 μmol, 1 eq) and 3-aminopropanenitrile (13.2 mg, 187.9 μmol, 13.86 μL, 1.2 eq) in DCM (1.5 mL) and DMF (0.5 mL) were added Et3N (79.2 mg, 782.93 μmol, 108.97 μL, 5 eq) and T3P (149.5 mg, 234.88 μmol, 139.69 μL, 50% purity, 1.5 eq) in one portion. The mixture was stirred at 20° C. for 60 min. The reaction was adjusted to pH=9 with saturated aq. Na2CO3 and extracted with EtOAc (4×15 mL). The combined organic layer was washed with brine (2×15 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC (basic condition) to afford the title compound N-(2-cyanoethyl)-6-[4-(prop-2-enoylamino)-6-quinolyl]pyridine-2-carboxamide (6 mg, 15.67 μmol, 10.01% yield, 97.0% purity) as a white solid. LC-MS (ES+, m/z): 372.1 [(M+H)+]1H NMR (400 MHz, DMSO-d6) δ=10.55 (s, 1H), 9.33 (br t, J=6.0 Hz, 1H), 9.16 (s, 1H), 8.90-8.82 (m, 2H), 8.50 (d, J=8.0 Hz, 1H), 8.31 (d, J=5.2 Hz, 1H), 8.21 (t, J=7.8 Hz, 1H), 8.15 (d, J=9.2 Hz, 1H), 8.08 (d, J=7.6 Hz, 1H), 6.89 (dd, J=10.4, 16.8 Hz, 1H), 6.43 (br d, J=16.8 Hz, 1H), 5.94 (br d, J=9.6 Hz, 1H), 3.67 (q, J=6.2 Hz, 2H), 2.90 (t, J=6.5 Hz, 2H).
To a mixture of tert-butyl 2-[4-(prop-2-enoylamino)-6-quinolyl]pyrimidine-4-carboxylate (0.5 g, 1.33 mmol, 1 eq) in THF (6 mL) and H2O (1.5 mL) was added LiOH·H2O (278.7 mg, 6.64 mmol, 5 eq). The reaction was stirred at 15° C. for 1 h. TLC showed that the reaction was complete. The reaction was poured into ˜50 mL ice water and washed with EtOAc (3×50 mL). The aqueous layers were concentrated by lyophilization to afford the title compound 2-[4-(prop-2-enoylamino)-6-quinolyl]pyrimidine-4-carboxylic acid (0.7 g, crude) as a yellow solid.
To a mixture of 2-[4-(prop-2-enoylamino)-6-quinolyl]pyrimidine-4-carboxylic acid (200 mg, 624.41 μmol, 1 eq) and 1-(2-methoxyethyl)piperidin-4-amine (182.4 mg, 936.62 μmol, 1.5 eq, HCl) in DCM (2 mL) were added Et3N (315.9 mg, 3.12 mmol, 434.55 μL, 5 eq) and T3P (596 mg, 936.62 μmol, 557.03 μL, 50% purity, 1.5 eq) in one portion under N2. The mixture was stirred at 20° C. for 60 min. The reaction was diluted with 20 mL water and extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (3×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC (basic condition) to afford the title compound N-[l-(2-methoxyethyl)-4-piperidyl]-2-[4-(prop-2-enoylamino)-6-quinolyl]pyrimidine-4-carboxamide (20 mg, 43.43 μmol, 6.96% yield, 100.0% purity) as a white solid. LC-MS (ES+, m/z): 461.3 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) Shift=10.78 (s, 1H), 9.59 (d, J=1.3 Hz, 1H), 9.23 (d, J=5.1 Hz, 1H), 8.99 (dd, J=1.7, 8.9 Hz, 1H), 8.94-8.89 (m, 2H), 8.22 (d, J=5.1 Hz, 1H), 8.16 (d, J=8.8 Hz, 1H), 7.98 (d, J=5.1 Hz, 1H), 6.90 (dd, J=10.3, 17.1 Hz, 1H), 6.43 (dd, J=1.7, 17.1 Hz, 1H), 6.01-5.84 (m, 1H), 3.99-3.79 (m, 1H), 3.45 (t, J=5.8 Hz, 2H), 3.25 (s, 3H), 2.93 (br d, J=11.9 Hz, 2H), 2.52 (br s, 2H), 2.18-2.07 (m, 2H), 1.89-1.77 (m, 4H).
To a mixture of 6-bromoquinolin-4-amine (300 mg, 1.345 mmol) and Et3N (679 mg, 6.725 mmol) in DCM (10 mL) at 0° C. was added a solution of prop-2-enoyl chloride (154 mg, 1.614 mmol) in DCM (1 mL). The resulting mixture was stirred at r.t. for 18 h. The reaction mixture was concentrated in vacuo and the residue was diluted with DCM. The mixture were washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by chromatography on silica gel eluting with 30-100% EtOAc/Hexane to afford the title compound (0.25 g, Yield 66%).
To a solution of N-(6-bromo-4-quinolyl)prop-2-enamide (74.9 mg, 27 μmol) in dioxane (3 mL) were added 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (205 mg, 81 μmol), KOAc (133 mg, 1.35 mmol) and PdCl2dppf (40 mg, 49 μmol). The reaction was heated at 100° C. for 1 h in a microwave. The reaction mixture was passed through a celite pad, and the solvent was removed in vacuo. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (16.9 mg, Yield 26%).
To a solution of [4-(prop-2-enoylamino)-6-quinolyl]boronic acid (16.9 mg, 7 μmol) in dioxane (1 mL) and water (0.2 mL) were added 6-bromo-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (31.3 mg, 105 μmol), Cs2CO3 (68.3 mg, 21 μmol) and PdCl2dppf (15 mg, 18.5 μmol). The reaction was heated at 100° C. for 30 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 30 min. The solution was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (6 mg, Yield 21%). LC-MS: [M+H]+ 416.
To a solution of N-(6-bromo-4-quinolyl)prop-2-enamide (40 mg, 144 μmol) in dioxane (1 mL) and water (0.2 mL) were added 2-amino-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzonitrile (52.9 mg, 271 μmol), Cs2CO3 (140 mg, 432 μmol) and PdCl2dppf (18 mg, 22.4 μmol). The reaction was heated at 100° C. for 30 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 30 min. The solution was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (15 mg, Yield 30%). LC-MS: [M+H]+ 315.
To a solution of N-(6-bromo-4-quinolyl)prop-2-enamide (40 mg, 144 μmol) in dioxane (1 mL) and water (0.2 mL) were added N-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolanyl)pyridine-3-carboxamide (71 mg, 271 μmol), Cs2CO3 (140 mg, 432 μmol) and PdCl2dppf (18 mg, 22.4 μmol). The reaction was heated at 100° C. for 30 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 30 min. The solution was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (8 mg, Yield 16%). LC-MS: [M+H]+ 333.
To a solution of N-(6-bromo-4-quinolyl)prop-2-enamide (40 mg, 144 μmol) in dioxane (1 mL) and water (0.2 mL) were added 2-chloro-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-amine (69 mg, 271 μmol), Cs2CO3 (140 mg, 432 μmol) and PdCl2dppf (18 mg, 22.4 μmol). The reaction was heated at 100° C. for 30 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 30 min. The solution was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (5 mg, Yield 11%). FC-MS: [M+H]+ 325.
To a solution of N-(6-bromo-4-quinolyl)prop-2-enamide (40 mg, 144 μmol) in dioxane (1 mF) and water (0.2 mF) were added 3-chloro-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-2-amine (69 mg, 271 μmol), Cs2CO3 (140 mg, 432 μmol) and PdCl2dppf (18 mg, 22.4 μmol). The reaction was heated at 100° C. for 30 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mF of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 30 min. The solution was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (46.8 mg, Yield 100%). FC-MS: [M+H]+ 325.
To a solution of N-(6-bromo-4-quinolyl)prop-2-enamide (50 mg, 18 μmol) in dioxane (1.5 mF) and water (0.3 mF) were added (3-chlorophenyl)boronic acid (42.3 mg, 271 μmol), Cs2CO3 (176 mg, 54 μmol) and PdCl2dppf (20 mg, 24.3 μmol). The reaction was heated at 100° C. for 30 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mF of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 30 min. The solution was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (4 mg, Yield 7%). LC-MS: [M+H]+ 309.
To a solution (4-amino-6-quinolyl)boronic acid (124 mg, 459 μmol) in dioxane (2 mL) and water (0.4 mL) were added 6-bromo-N-[3-(dimethylamino)cyclohexyl]pyridine-2-carboxamide (100 mg, 306 μmol), Cs2CO3 (298 mg, 0.918 mmol) and PdCl2dppf (40 mg, 50.5 μmol). The reaction was heated at 100° C. for 35 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 30 min. The solution was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 0-60% MeOH/EtOAc/5% Et3N to afford the title compound (81.9 mg, Yield 69%).
To a mixture of 6-(4-amino-6-quinolyl)-N-[3-(dimethylamino)cyclohexyl]pyridine-2-carboxamide (81.9 mg, 21 μmol) and Et3N (106 mg, 1.05 mmol) in DCM (5 mL) at 0° C. was added a solution of prop-2-enoyl chloride (26.1 mg, 273 μmol) in DCM (0.5 mL). The resulting mixture was stirred at r.t. for 18 h. The reaction mixture was concentrated in vacuo, and the residue was diluted with DCM. The mixture was washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (4 mg, Yield 4%). LC-MS: [M+H]+ 444.
To a mixture of 6-bromopyridine-2-carboxylic acid (500 mg, 2.475 mmol), 8-methyl-8-azabicyclo[3.2.1]octan-3-amine (521 mg, 3.713 mmol) and Et3N (1.25 g, 3.713 mmol) in DMF (6 mL) was added T3P (50 wt % in EtOAc, 3.2 mL, 3.713 mmol). The resulting mixture was stirred at r.t. for 18 h and partitioned between EtOAc and water. The aqueous phase was extracted with EtOAc (3×). The combined organic phase was washed with saturated NaHCO3 and brine, dried over (MgSO4), filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 0-20% MeOH/EtOAc/5% Et3N to afford the title compound (442 mg, Yield 55%).
To a solution (4-amino-6-quinolyl)boronic acid (125 mg, 463 μmol) in dioxane (2 mL) and water (0.4 mL) were added 6-bromo-N-(8-methyl-8-azabicyclo[3.2.1]octan-3-yl)pyridine-2-carboxamide (100 mg, 308 μmol), Cs2CO3 (298 mg, 0.918 mmol) and PdCl2dppf (40 mg, 50.5 μmol). The reaction was heated at 100° C. for 35 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 30 min. The solution was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 0-60% MeOH/EtOAc/5% Et3N to afford the title compound (52.1 mg, Yield 44%).
To a mixture of 6-(4-amino-6-quinolyl)-N-(8-methyl-8-azabicyclo[3.2.1]octan-3-yl)pyridine-2-carboxamide (52.1 mg, 134 μmol) and Et3N (67 mg, 67 mmol) in DCM (5 mL) at 0° C. was added a solution of prop-2-enoyl chloride (16.7 mg, 175 μmol) in DCM (0.5 mL). The resulting mixture was stirred at r.t. for 18 h. The reaction mixture was concentrated in vacuo, and the residue was diluted with DCM. The mixture was washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (11 mg, Yield 19%). LC-MS: [M+H]+ 442.
To a mixture of 6-bromopyridine-2-carboxylic acid (500 mg, 3.713 mmol), 2-(1-methyl-4-piperidyl) ethanamine (528 mg, 3.713 mmol) and Et3N (1.279 g, 12.375 mmol) in DMF (5 mL) was added T3P (50 wt % in EtOAc, 3.2 mL, 3.713 mmol). The resulting mixture was stirred at r.t. for 18 h and partitioned between EtOAc and water. The aqueous phase was extracted with EtOAc (3×). The combined organic phase was washed with saturated NaHCO3 and brine, dried over (MgSO4), filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 0-60% MeOH/EtOAc/5% Et3N to afford the title compound (531 mg, Yield 66%).
To a solution (4-amino-6-quinolyl)boronic acid (124 mg, 46 μmol) in dioxane (2 mL) and water (0.4 mL) were added 6-bromo-N-[2-(1-methyl-4-piperidyl)ethyl]pyridine-2-carboxamide (100 mg, 306 μmol), Cs2CO3 (298 mg, 0.918 mmol) and PdCl2dppf (20 mg, 25 μmol). The reaction was heated at 100° C. for 35 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 30 min. The solution was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 0-60% MeOH/EtOAc/5% Et3N to afford the title compound (53.4 mg, Yield 45%).
To a mixture of 6-(4-amino-6-quinolyl)-N-[2-(1-methyl-4-piperidyl)ethyl]pyridine-2-carboxamide (53 mg, 136 μmol) and Et3N (68.7 mg, 68 mmol) in DCM (5 mL) at 0° C. was added a solution of prop-2-enoyl chloride (16.9 mg, 177 μmol) in DCM (0.5 mL). The resulting mixture was stirred at r.t. for 18 h. The reaction mixture was concentrated in vacuo and the residue was diluted with DCM, washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (4 mg, Yield 6%). LC-MS: [M+H]+ 444.
To a mixture of 6-bromopyridine-2-carboxylic acid (500 mg, 2.475 mmol), 1-methylazepan-4-amine (476 mg, 3.713 mmol) and Et3N (1.279 g, 12.375 mmol) in DMF (5 mL) was added T3P (50 wt % in EtOAc, 3.2 mL, 3.713 mmol). The resulting mixture was stirred at r.t. for 18 h and partitioned between EtOAc and water. The aqueous phase was extracted with EtOAc (3×). The combined organic phase was washed with saturated NaHCO3 and brine, dried over (MgSO4), filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 0-60% MeOH/EtOAc/5% Et3N to afford the title compound (350 mg, Yield 45%).
To a solution (4-amino-6-quinolyl)boronic acid (130 mg, 48 μmol) in dioxane (2 mL) and water (0.4 mL) were added 6-bromo-N-(1-methylazepan-3-yl)pyridine-2-carboxamide (100 mg, 32 μmol), Cs2CO3 (312 mg, 0.96 mmol) and PdCl2dppf (40 mg, 5 μmol). The reaction was heated at 100° C. for 35 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 30 min. The solution was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 0-60% MeOH/EtOAc/5% Et3N to afford the title compound (65.1 mg, Yield 54%).
To a mixture of 6-(4-amino-6-quinolyl)-N-(1-methylazepan-3-yl)pyridine-2-carboxamide (65.1 mg, 173 μmol) and Et3N (87.4 mg, 865 μmol) in DCM (5 mL) at 0° C. was added a solution of prop-2-enoyl chloride (21.5 mg, 225 μmol) in DCM (0.5 mL). The resulting mixture was stirred at r.t. for 18 h. The reaction mixture was concentrated in vacuo and the residue was diluted with DCM, washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (4 mg, Yield 5%). LC-MS: [M+H]+ 430.
To a solution 6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinolin-4-amine (129 mg, 479 μmol) in dioxane (2 mL) and water (0.4 mL) were added 3-amino-6-bromo-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (100 mg, 319 μmol), Cs2CO3 (311 mg, 0.957 mmol) and PdCl2dppf (26 mg, 31.9 μmol). The reaction was heated at 100° C. for 35 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 30 min. The solution was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 0-60% MeOH/EtOAc/5% Et3N to afford the title compound (82.9 mg, Yield 69%).
To a mixture of tert-butyl 3-amino-6-(4-amino-6-quinolyl)-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (82.9 mg, 22 μmol) and Et3N (111 mg, 1.1 mmol) in DCM (5 mL) at 0° C. was added a solution of prop-2-enoyl chloride (27.3 mg, 286 μmol) in DCM (0.5 mL). The resulting mixture was stirred at r.t. for 18 h. The reaction mixture was concentrated in vacuo and the residue was diluted with DCM, washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (4 mg, Yield 4%). LC-MS: [M+H]+ 431.
TABLE 9 shows compounds synthesized using the methods described in EXAMPLE 9 above.
To a mixture of 3-bromoquinolin-5-amine (300 mg, 1.345 mmol) and Et3N (679 mg, 6.725 mmol) in DCM (10 mL) at 0° C. was added a solution of prop-2-enoyl chloride (154 mg, 1.614 mmol) in DCM (1 mL). The resulting mixture was stirred at r.t. for 18 h. The reaction mixture was concentrated in vacuo and the residue was diluted with DCM, washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by chromatography on silica gel eluting with 30-100% EtOAc/Hexane to afford the title compound (0.25 g, Yield 66%).
To a solution of N-(3-bromo-5-quinolyl)prop-2-enamide (108 mg, 39 μmol) in dioxane (3 mL) were added 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (297 mg, 1.169 mmol), KOAc (191 mg, 1.95 mmol) and PdCl2dppf (40 mg, 49 μmol). The reaction was heated at 100° C. for 1 h in a microwave. The reaction mixture was passed through a celite pad, and the solvent was removed in vacuo. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (46.1 mg, Yield 49%).
To a solution of [5-(prop-2-enoylamino)-3-quinolyl]boronic acid (40 mg, 165 μmol) in dioxane (2 mL) and water (0.4 mL) were added 6-bromo-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (73.9 mg, 248 μmol), Cs2CO3 (161 mg, 495 μmol) and PdCl2dppf (18 mg, 22.1 μmol). The reaction was heated at 100° C. for 30 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 30 min. The solution was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (10 mg, Yield 15%). LC-MS: [M+H]+ 416.
TABLE 10 shows compounds synthesized using methods described in EXAMPLE 10 above.
To a solution of 2-bromopyridine (915.8 mg, 5.8 mmol, 551.66 μL, 1.3 eq) and 7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-amine (1.2 g, 4.46 mmol, 1 eq) in dioxane (20 mL) and H2O (5 mL) were added Na2CO3 (1.42 g, 13.38 mmol, 3 eq) and Pd(dppf)Cl2 (3.26 g, 4.46 mmol, 1 eq). The reaction mixture was stirred at 100° C. for 1 hr under N2. TLC (PE:EtOAc=1:1, SM Rf=0.47, TM Rf=0.34) showed that the reaction was complete. The reaction mixture was poured into ˜20 mL water and extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give the residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound 7-(2-pyridyl)naphthalen-1-amine (0.52 g, 2.36 mmol, 52.95% yield) as a brown solid.
To a solution of 7-(2-pyridyl)naphthalen-1-amine (0.02 g, 90.8 μmol, 1 eq) and 2-(bromomethyl)oxirane (10 mg, 72.64 μmol, 5.99 μL, 0.8 eq) in CH3CN (3 mL) was added K2CO3 (37.7 mg, 272.39 μmol, 3 eq). The reaction mixture was stirred at 50° C. for 1 hr. Then, KI (1.5 mg, 9.08 μmol, 0.1 eq) and additional solution of 2-(bromomethyl)oxirane (49.8 mg, 363.19 μmol, 29.97 μL, 4 eq) in DMF (0.3 mL) were successively added. The resulting reaction mixture was stirred at 80° C. for 12 hr, LCMS showed that the reaction was complete. The reaction mixture was poured into 10 mL water and extracted with EtOAc (3×10 mL). The combined organic layer was washed with brine (3×10 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give the residue. The residue was purified by prep-HPLC (neutral condition) to afford the title compound N-(oxiran-2-ylmethyl)-7-(2-pyridyl) naphthalen-1-amine (4.20 mg, 15.08 μmol, 16.61% yield, 99.2% purity) as ayellow solid. LC-MS (ES+, m/z): 277.1 [(M+H)+] 1H NMR (400 MHz, DMSO-d6) Shift=8.85 (s, 1H), 8.71 (dd, J=0.9, 4.9 Hz, 1H), 8.23 (s, 1H), 8.21 (s, 1H), 7.94 (dt, J=1.9, 7.8 Hz, 1H), 7.86 (d, J=8.6 Hz, 1H), 7.38-7.34 (m, 1H), 7.33-7.28 (m, 1H), 7.15 (d, J=7.9 Hz, 1H), 6.73 (t, J=5.5 Hz, 1H), 6.65 (d, J=7.7 Hz, 1H), 3.60 (dd, J=3.4, 5.6 Hz, 1H), 3.56 (dd, J=3.4, 5.4 Hz, 1H), 3.39-3.34 (m, 1H), 3.28-3.22 (m, 1H), 2.82 (s, 1H), 2.80 (d, J=4.2 Hz, 1H), 2.67 (d, J=2.4 Hz, 1H), 2.65 (br d, J=2.6 Hz, 1H)
To a solution of 7-(2-pyridyl)naphthalen-1-amine (0.03 g, 136.2 μmol, 1 eq) in EtOH (2.0 mL) was added 2-(chloromethyl)oxirane (12.6 mg, 136.2 μmol, 10.68 μL, 1 eq). The reaction mixture was stirred at 80° C. for 15 hr. The reaction mixture was concentrated in vacuo to give the residue. The residue was purified by prep-HPLC (FA condition) to afford the title compound 1-chloro-3-[[7-(2-pyridyl)-1-naphthyl]amino]propan-2-ol (0.0058 g, 18.54 μmol, 13.61% yield, 100.0% purity) as a brown solid. LC-MS (ES+, m/z): 313.1 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) Shift=8.83 (s, 1H), 8.72 (td, J=0.9, 4.9 Hz, 1H), 8.25-8.22 (m, 1H), 8.20 (s, 1H), 7.95 (dt, J=1.8, 7.7 Hz, 1H), 7.86 (d, J=8.6 Hz, 1H), 7.41-7.35 (m, 1H), 7.35-7.30 (m, 1H), 7.16 (d, J=7.9 Hz, 1H), 6.62 (d, J=7.5 Hz, 1H), 6.48 (t, J=5.7 Hz, 1H), 5.47 (d, J=5.3 Hz, 1H), 4.14-4.05 (m, 1H), 3.85-3.78 (m, 1H), 3.74-3.66 (m, 1H), 3.51 (s, 1H), 3.47-3.40 (m, 1H), 3.30-3.25 (m, 1H).
TABLE 11 shows compounds synthesized methods described in EXAMPLE 11 above.
To a solution of 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (2 g, 91.29 mmol, 1 eq) in DCM (200 mL) was added TEA (27.71 g, 273.86 mmol, 38.12 mL, 3 eq), prop-2-enoyl chloride (12.39 g, 136.93 mmol, 11.17 mL, 1.5 eq) was added to the solution at 0° C. The reaction was stirred at 0° C. for 1 hr under N2. The reaction was poured into 300 mL water and extracted with DCM (3×150 mL). The combined organic phase was dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (14.7 g, 53.82 mmol, 58.96% yield) as a white solid. LC-MS (ES+, m/z): 274.1 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) Shift=10.14 (s, 1H), 7.98 (s, 1H), 7.85 (br d, J=7.5 Hz, 1H), 7.40-7.28 (m, 2H), 6.48-6.34 (m, 1H), 6.31-6.17 (m, 1H), 5.75 (dd, J=1.9, 10.0 Hz, 1H), 1.30 (s, 12H).
To the solution of 7-bromo-N-(2-methoxyethyl)quinazolin-2-amine (100 mg, 354.4 μmol, 1 eq) in dioxane (4 mL) and H2O (1 mL) were successively added N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (145.2 mg, 531.6 μmol, 1.5 eq), Cs2CO3 (231 mg, 708.88 μmol, 2 eq), RuPhos (16.5 mg, 35.44 μmol, 0.1 eq) and [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (14.8 mg, 17.72 μmol, 0.05 eq) at 25° C. The resulting reaction mixture was stirred at 80° C. for 1 hour. LCMS showed that the reaction was complete. The reaction mixture was poured into 80 mL saturated EDTA and followed by 30 mL EtOAc. The solution was stirred at 20° C. for 2 hours. The aqueous phase was separated and extracted with EtOAc (2×20 mL). The combined organic layer was washed successively with water (2×20 mL) and brine (1×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated to give a residue. The residue was purified by prep-HPLC to afford the title compound (11.5 mg, 33.01 μmol, 9.31% yield, 100% purity) as a light yellow solid. 349.2 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) 5=10.28 (s, 1H), 9.13 (s, 1H), 8.45-8.01 (m, 1H), 7.89 (d, J=8.30 Hz, 1H), 7.71 (d, J=7.70 Hz, 1H), 7.66 (s, 1H), 7.52 (d, J=8.00 Hz, 2H), 7.56-7.50 (m, 1H), 7.40 (s, 1H), 6.56-6.39 (m, 1H), 6.36-6.22 (m, 1H), 5.91-5.56 (m, 1H), 3.70-3.45 (m, 4H), 3.29 (s, 3H).
To a solution of tert-butyl N-[7-[3-(prop-2-enoylamino)phenyl]-1-naphthyl]carbamate (100 mg, 257.43 μmol, 1 eq) in DCM (4 mL) was added TFA (2 mL). The mixture was stirred at 25° C. for 2 hours. LCMS showed that the reaction was complete. The reaction mixture was poured into 50 mL ice water and adjusted to pH=8˜9 with saturated Na2CO3. The solution was extracted with DCM (3×30 mL). The combined organic layer was washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound (9.4 mg, 32.6 μmol, 12.66% yield, 100% purity) as a light yellow solid. LC-MS (ES+, m/z): 289.1 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) δ=10.26 (s, 1H), 8.33 (s, 1H), 8.05 (s, 1H), 7.82 (d, J=8.60 Hz, 1H), 7.71 (d, J=8.20 Hz, 1H), 7.66 (d, J=8.50 Hz, 1H), 7.56 (d, J=8.00 Hz, 1H), 7.50-7.41 (m, 1H), 7.26-7.17 (m, 1H), 7.10 (d, J=8.00 Hz, 1H), 6.70 (d, J=7.30 Hz, 1H), 6.58-6.43 (m, 1H), 6.33-6.24 (m, 1H), 5.84 (s, 2H), 5.78 (d, J=10.00 Hz, 1H).
To the solution of 7-bromo-3H-quinazolin-4-one (100 mg, 444.36 μmol, 1 eq) in EtOH (4 mL) and H2O (1 mL) were successively added N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (133.5 mg, 488.8 μmol, 1.1 eq), K3PO4 (188.7 mg, 888.72 μmol, 2 eq) and ditert-butyl(cyclopentyl)phosphane;dichloropalladium;iron (29 mg, 44.44 μmol, 0.1 eq) at 25° C. The reaction mixture was stirred at 80° C. for 3 hours. The reaction mixture was poured into 80 mL saturated EDTA and followed by 30 mL EtOAc. The solution was stirred at 20° C. for 2 hours. The aqueous phase was separated and extracted with EtOAc (2×20 mL). The combined organic layer was washed successively with water (2×20 mL) and brine (1×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated to give a residue. The residue was purified by prep-HPLC to afford the title compound (9.4 mg, 32.27 μmol, 7.26% yield, 100% purity) as a light yellow solid. LC-MS (ES+, m/z): 486.3 [(M+H)+]. 1H NMR (400 MHz, DMSO-d6) δ=12.29 (s, 1H), 10.33 (s, 1H), 8.21 (d, J=8.40 Hz, 1H), 8.14 (s, 2H), 7.86 (s, 1H), 7.79 (d, J=8.00 Hz, 1H), 7.73 (d, J=6.60 Hz, 1H), 7.43-7.56 (m, 2H), 6.38-6.62 (m, 1H), 6.21-6.36 (m, 1H), 5.80 (d, J=9.70 Hz, 1H).
To a solution of 7-bromo-4-chloro-quinoline (0.3 g, 1.24 mmol, 1 eq) in i-PrOH (3 mL) was added DIPEA (479.7 mg, 3.71 mmol, 646.45 μL, 3 eq) and 1-(2,4-dimethoxyphenyl)-N-[(2,4-dimethoxyphenyl)methyl]methanamine (1.96 g, 6.19 mmol, 5 eq). Then, the mixture was stirred at 100° C. for 12 hr. LCMS showed half of the starting material remained. The reaction was concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE; EtOAc=1:1) to afford the title compound 7-bromo-N,N-bis[(2,4-dimethoxyphenyl)methyl]quinolin-4-amine (0.1 g, 191.05 μmol, 15.44% yield) as a yellow oil. LC-MS (ES+, m/z): 523.2/525.2 [(M+H)+].
To a solution of 7-bromo-N,N-bis[(2,4-dimethoxyphenyl)methyl]quinolin-4-amine (0.1 g, 191.05 μmol, 1 eq) and N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (52.2 mg, 191.05 μmol, 1 eq) in dioxane (2 mL) and H2O (0.5 mL) were added Cs2CO3 (186.8 mg, 573.16 μmol, 3 eq), RuPhos (8.9 mg, 19.11 μmol, 0.1 eq) and RuPhos Pd G3 (8 mg, 9.55 μmol, 0.05 eq). The mixture was heated to 100° C. for 1 h under N2. LCMS showed that the reaction was complete. The reaction mixture was poured into ˜15 mL saturated EDTA and stirred at 25° C. for 1 h. The mixture was extracted with EtOAc (3×10 mL), washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound N-[3-[4-[bis[(2,4-dimethoxyphenyl)methyl]amino]-7-quinolyl]phenyl]prop-2-enamide (0.1 g, 169.58 μmol, 88.76% yield) as a brown oil. LC-MS (ES+, m/z): 590.4 [(M+H)+].
To a solution of N-[3-[4-[bis[(2,4-dimethoxyphenyl)methyl]amino]-7-quinolyl]phenyl]prop-2-enamide (0.12 g, 203.5 μmol, 1 eq) in DCM (4 mL) was added TFA (2.31 g, 20.26 mmol, 1.5 mL, 99.55 eq), and the mixture was stirred at 25° C. for 1 hr. HPLC showed that the reaction was complete. The reaction mixture was poured into ˜10 mL ice water and adjusted to pH=7 using saturated NaHCO3. The mixture was extracted with EtOAc (3×10 mL), washed with brine (3×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC (basic condition) to afford the title compound N-[3-(4-amino-7-quinolyl)phenyl]prop-2-enamide (10.20 mg, 32.57 μmol, 16.01% yield, 92.4% purity) as a white solid. LC-MS (ES+, m/z): 290.0 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) Shift=10.29 (s, 1H), 8.33 (d, J=5.3 Hz, 1H), 8.24 (d, J=8.8 Hz, 1H), 8.14 (s, 1H), 7.96 (d, J=1.6 Hz, 1H), 7.69-7.68 (m, 1H), 7.71 (br d, J=7.6 Hz, 1H), 7.66 (dd, J=1.9, 8.4 Hz, 1H), 7.56-7.50 (m, 1H), 7.49-7.41 (m, 1H), 6.82 (s, 2H), 6.54 (d, J=5.0 Hz, 1H), 6.52-6.41 (m, 1H), 6.35-6.22 (m, 1H), 5.83-5.75 (m, 1H).
A solution of 7-bromo-4-chloro-quinoline (0.3 g, 1.24 mmol, 1 eq) in MeNH2 (1 M in EtOH, 5 mL, 4.04 eq) was stirred at 80° C. for 12 hr. The reaction was concentrated in vacuo. The crude product was washed with PE (3×10 mL) to afford the title compound 7-bromo-N-methyl-quinolin-4-amine (0.25 g, crude) as a light yellow solid. LC-MS (ES+, m/z): 237.2/239.1 [(M+H)+].
To a solution of 7-bromo-N-methyl-quinolin-4-amine (0.1 g, 421.77 μmol, 1 eq) and N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (115.2 mg, 421.77 μmol, 1 eq) in dioxane (2 mL) and H2O (0.5 mL) were added Cs2CO3 (412.3 mg, 1.27 mmol, 3 eq), RuPhos (19.7 mg, 42.18 μmol, 0.1 eq) and RuPhos Pd G3 (17.6 mg, 21.09 μmol, 0.05 eq). Then the mixture was heated to 100° C. for 1 h under N2. The reaction was poured into ˜15 mL saturated EDTA and stirred at 25° C. for 1 h. The mixture was extracted with EtOAc (3×15 mL). The organic phase was washed with brine (3×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC (neutral condition) to afford the title compound N-[3-[4-(methylamino)-7-quinolyl]phenyl]prop-2-enamide (0.0161 g, 49.09 μmol, 11.64% yield, 92.5% purity) as a white solid. LC-MS (ES+, m/z): 304.1 [(M+H)+]. 1H NMR (400 MHz, DMSO-d6) Shift=10.29 (s, 1H), 8.44 (d, J=5.3 Hz, 1H), 8.24 (d, J=8.6 Hz, 1H), 8.15 (s, 1H), 7.99 (d, J=1.5 Hz, 1H), 7.70 (br d, J=7.3 Hz, 2H), 7.57-7.50 (m, 1H), 7.50-7.42 (m, 1H), 7.37 (br d, J=4.4 Hz, 1H), 6.57-6.43 (m, 1H), 6.39 (d, J=5.3 Hz, 1H), 6.34-6.19 (m, 1H), 5.86-5.72 (m, 1H), 2.91 (d, J=4.6 Hz, 3H).
The solution of 1-methyl-N-[5-[3-(prop-2-enoylamino)phenyl]-2-(2-trimethylsilylethoxymethyl) indazol-3-yl]-N-(2-trimethylsilylethoxymethyl)piperidine-4-carboxamide (80 mg, 120.48 μmol, 1 eq) in EtOH (4 mL) was added concentrated HCl (37%, 2 mL). The reaction mixture was stirred at 50° C. for 3 h. The reaction mixture was poured into H2O (10 mL) then adjusted to pH=7 with saturated NaHCO3. The aqueous phase was extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1, Rf=0.1) then further purified by prep-HPLC to afford the title compound 1-methyl-N-[5-[3-(prop-2-enoylamino)phenyl]-2H-indazol-3-yl]piperidine-4-carboxamide (3.6 mg, 8.7 μmol, 7.22% yield, 97.5% purity) as a white solid. 404.2 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) δ=12.71 (s, 1H), 10.31 (br s, 1H), 10.25 (s, 1H), 7.96 (s, 1H), 7.92 (br s, 1H), 7.68 (br d, J=8.4 Hz, 1H), 7.62 (d, J=8.8 Hz, 1H), 7.55 (d, J=8.8 Hz, 1H), 7.42 (t, J=7.6 Hz, 1H), 7.32 (br d, J=7.6 Hz, 1H), 6.47 (dd, J=10.0, 17.2 Hz, 1H), 6.28 (dd, J=1.6, 17.2 Hz, 1H), 5.80 (dd, J=1.6, 10.0 Hz, 1H), 2.83 (br d, J=11.2 Hz, 2H), 2.45-2.39 (m, 1H), 2.16 (s, 3H), 1.93-1.78 (m, 4H), 1.78-1.65 (m, 2H).
To a solution of N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (0.25 g, 915.3 μmol, 1 eq) and 6-bromoquinolin-4-ol (164.1 mg, 732.24 μmol, 0.8 eq) in dioxane (4 mL) and H2O (1 mL) were added Cs2CO3 (596.4 mg, 1.83 mmol, 2 eq), dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (42.7 mg, 91.53 μmol, 0.1 eq), and [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (38.3 mg, 45.77 μmol, 0.05 eq). The reaction mixture was stirred at 80° C. for 1 hr under N2. LCMS showed that the reaction was complete. The reaction mixture was poured into ˜15 mL water and extracted with EtOAc (3×15 mL). The combined organic layer was washed with brine (3×15 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give the residue. The residue was purified by prep-TLC (SiO2, DCM:MeOH=8:1) then further purified by prep-HPLC (FA condition) to to afford the title compound N-[3-(4-hydroxy-6-quinolyl)phenyl]prop-2-enamide (0.005 g, 17.22 μmol, 1.88% yield, 100% purity) as a white solid. LC-MS (ES+, m/z): 291.1 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) Shift=11.86 (br s, 1H), 10.28 (s, 1H), 8.34 (d, J=2.1 Hz, 1H), 8.22 (s, 1H), 8.09 (s, 1H), 7.96 (dd, J=2.2, 8.7 Hz, 1H), 7.93 (br s, 1H), 7.71 (dt, J=2.0, 4.6 Hz, 1H), 7.65 (d, J=8.7 Hz, 1H), 7.44 (d, J=5.1 Hz, 2H), 6.52-6.38 (m, 1H), 6.34-6.24 (m, 1H), 6.07 (d, J=7.3 Hz, 1H), 5.83-5.74 (m, 1H)
To a solution of N-[3-(5-amino-3-isoquinolyl)phenyl]prop-2-enamide (0.08 g, 276.5 μmol, 1 eq) and 1-methylpiperidine-4-carbaldehyde (1.76 g, 1.38 mmol, 10% purity, 5 eq) in EtOH (5 mL) was added Ti(OEt)4 (315.4 mg, 1.38 mmol, 286.69 μL, 5 eq). The reaction mixture was stirred at 70° C. for 1 hr, and NaBH3CN (86.9 mg, 1.38 mmol, 5 eq) was added. The resulting reaction mixture was stirred at 70° C. for further 2 hr. The reaction was poured into ˜50 mL water then 50 mL EtOAc was added. The solution was filtered and the filtrate was extracted with EtOAc (3×50 mL). The combined organic layer was washed with brine (3×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give the residue. The residue was purified by prep-HPLC (FA condition) to afford the title compound N-[3-[5-[(l-methyl-4-piperidyl)methylamino]-3-isoquinolyl]phenyl]prop-2-enamide (0.0162 g, 40.45 μmol, 14.63% yield, 100% purity) as a pink solid. LC-MS (ES+, m/z): 401.2 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) Shift=10.36 (s, 1H), 9.19 (s, 1H), 8.63 (s, 1H), 8.48 (s, 1H), 8.24 (s, 1H), 7.94 (d, J=7.9 Hz, 1H), 7.86 (br d, J=7.9 Hz, 1H), 7.48 (t, J=7.8 Hz, 1H), 7.45-7.45 (m, 1H), 7.44-7.39 (m, 1H), 7.25 (d, J=7.9 Hz, 1H), 6.76 (br t, J=5.5 Hz, 1H), 6.71 (d, J=7.9 Hz, 1H), 6.50 (dd, J=10.0, 16.9 Hz, 1H), 6.29 (dd, J=2.0, 17.0 Hz, 1H), 5.80-5.75 (m, 1H), 3.24-3.08 (m, 2H), 2.93 (brd, J=11.5 Hz, 2H), 2.28 (s, 3H), 2.10 (br t, J=11.6 Hz, 2H), 1.88-1.82 (m, 2H), 1.81-1.73 (m, 1H), 1.38-1.26 (m, 2H).
To a solution of N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-en amide (60 mg, 219.67 μmol, 1 eq) in dioxane (2 mL) and H2O (0.5 mL) were successively added 7-bromoquinoline-2-carboxamide (44.1 mg, 175.74 μmol, 0.8 eq), Cs2CO3 (143.2 mg, 439.34 μmol, 2 eq), RuPhos (10.3 mg, 21.97 μmol, 0.1 eq) and [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium; dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (9.2 mg, 10.98 μmol, 0.05 eq). The reaction mixture was stirred at 80° C. for 1 hr under N2. LCMS showed that the reaction was complete. The reaction mixture was poured into saturated EDTA (50 mL) and EtOAc (50 mL) was added. The solution was stirred at 25° C. for 1 h. The mixture was extracted with EtOAc (3×100 mL). The combined organic layer was washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC (PA condition) to afford the title compound 7-[3-(prop-2-enoylamino)phenyl]quinoline-2-carboxamide (11.6 mg, 36.55 μmol, 16.64% yield, 100.0% purity) as a white solid. LC-MS (ES+, m/z): 318.1 [(M+H)+]1H NMR (400 MHz, DMSO-d6) δ=10.37 (s, 1H), 8.59 (d, J=8.50 Hz, 1H), 8.39 (br s, 1H), 8.34 (s, 2H), 8.19 (d, J=8.64 Hz, 1H), 8.16 (d, J=8.50 Hz, 1H), 8.03 (dd, J=8.50, 1.76 Hz, 1H), 7.81 (br s, 1H), 7.49-7.68 (m, 3H), 6.49 (dd, J=16.96, 10.08 Hz, 1H), 6.30 (dd, J=16.96, 1.94 Hz, 1H), 5.78-5.84 (m, 1H).
To a solution of N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (60 mg, 219.67 μmol, 1 eq) and 7-bromoquinolin-2-amine (44.1 mg, 197.7 μmol, 0.9 eq) in dioxane (2 mL) and H2O (0.5 mL) was added Cs2CO3 (143.2 mg, 439.34 μmol, 2 eq) dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (15.4 mg, 32.95 μmol, 0.15 eq) [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium; dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (18.4 mg, 21.97 μmol, 0.1 eq) under N2. The reaction mixture was stirred at 100° C. for 1 h. LCMS showed that the reaction was complete. The reaction mixture was poured into saturated EDTA (40 mL) and 20 mL EtOAc was added. The solution was stirred for 1 h. After that the aqueous phase was extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (3×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by prep-HPLC (neutral condition) to afford the title compound N-[3-(2-amino-7-quinolyl)phenyl]prop-2-enamide (23.6 mg, 81.57 μmol, 37.13% yield, 100.0% purity) as a white solid. LC-MS (ES+, m/z): 290.1 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) 5=10.27 (s, 1H), 8.09 (s, 1H), 7.91 (d, J=9.2 Hz, 1H), 7.71 (d, J=8.4 Hz, 1H), 7.68 (td, J=2.8, 5.6 Hz, 1H), 7.65 (d, J=1.6 Hz, 1H), 7.46-7.43 (m, 2H), 7.43-7.39 (m, 1H), 6.76 (d, J=8.8 Hz, 1H), 6.52-6.42 (m, 3H), 6.33-6.26 (m, 1H), 5.82-5.77 (m, 1H).
To a solution of 6-bromo-4-chloro-quinoline (0.5 g, 2.06 mmol, 1 eq) and N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (563.2 mg, 2.06 mmol, 1 eq) in dioxane (2 mL) and H2O (0.5 mL) were added Cs2CO3 (2.02 g, 6.19 mmol, 3 eq), RuPhos (96.2 mg, 206.19 μmol, 0.1 eq) and RuPhos Pd Gb (86.2 mg, 103.09 μmol, 0.05 eq) at 25° C. The reaction was stirred at 80° C. for 1 hr under N2. Upon completion of the reaction as indicated by LCMS, to the reaction was added ˜15 mL EtOAc and the mixture was poured into ˜30 mL saturated EDTA and stirred at 25° C. for 1 h. The mixture was extracted with EtOAc (3×15 mL). The combined organic phase was washed with brine (3×10 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC (PA condition) to afford the title compound N-[3-(4-chloro-6-quinolyl)phenyl]prop-2-enamide (0.0235 g, 75.27 μmol, 3.65% yield, 98.9% purity) as a white solid. LC-MS (ES+, m/z): 309.0 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) Shift=10.36 (s, 1H), 8.87 (d, J=4.6 Hz, 1H), 8.36 (d, J=1.2 Hz, 1H), 8.24-8.19 (m, 1H), 8.18-8.15 (m, 2H), 7.83 (d, J=4.6 Hz, 1H), 7.79 (d, J=8.0 Hz, 1H), 7.59-7.55 (m, 1H), 7.54-7.48 (m, 1H), 6.54-6.41 (m, 1H), 6.36-6.25 (m, 1H), 5.80 (dd, J=1.6, 10.0 Hz, 1H).
To a solution of N-[3-(4-chloro-6-quinolyl)phenyl]prop-2-enamide (0.14 g, 453.42 μmol, 1 eq) and 3-pyridylboronic acid (55.7 mg, 453.42 μmol, 1 eq) in dioxane (4 mL) and H2O (1 mL) were added Cs2CO3 (443.2 mg, 1.36 mmol, 3 eq), RuPhos (21.2 mg, 45.34 μmol, 0.1 eq) and RuPhos Pd G3 (19 mg, 22.67 μmol, 0.05 eq) at 25° C. Then stirred at 100° C. for 1 hr under N2. The reaction was diluted with 10 mL EtOAc and poured into 20 mL saturated EDTA and stirred at 25° C. for 1 h. The mixture was extracted with EtOAc (3×10 mL), washed with brine (3×10 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC (FA condition) to afford the title compound N-[3-[4-(3-pyridyl)-6-quinolyl]phenyl]prop-2-enamide (0.0253 g, 72 μmol, 15.88% yield, 100.0% purity) as a white solid. LC-MS (ES+, m/z): 352.1 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) Shift=10.26 (s, 1H), 9.01 (d, J=4.4 Hz, 1H), 8.84 (d, J=1.8 Hz, 1H), 8.79-8.75 (m, 1H), 8.25 (d, J=8.4 Hz, 1H), 8.15-8.06 (m, 2H), 7.98-7.90 (m, 2H), 7.75 (d, J=8.0 Hz, 1H), 7.65 (dd, J=5.0, 7.6 Hz, 1H), 7.59 (d, J=4.4 Hz, 1H), 7.48-7.43 (m, 1H), 7.41-7.35 (m, 1H), 6.52-6.39 (m, 1H), 6.36-6.21 (m, 1H), 5.77 (dd, J=1.8, 10.0 Hz, 1H)
To a solution of [8-(tert-butoxycarbonylamino)-2-naphthyl]trifluoromethanesulfonate (0.8 g, 2.04 mmol, 1 eq) in acetone (8 mL) were added Cs2CO3 (2 g, 6.13 mmol, 3 eq) and MeI (435.2 mg, 3.07 mmol, 190.88 μL, 1.5 eq) at 25° C. The reaction was stirred at 50° C. for 1 hr. The reaction was filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound [8-[tert-butoxycarbonyl(methyl)amino]-2-naphthyl]trifluoromethanesulfonate (0.8 g, 1.97 mmol, 96.54% yield) as a white solid. LC-MS (ES+, m/z): 350.1[(M-tBu)+].
To a solution of [8-[tert-butoxycarbonyl(methyl)amino]-2-naphthyl]trifluoromethanesulfonate (0.3 g, 740.03 μmol, 1 eq) and N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (202.1 mg, 740.03 μmol, 1 eq) in dioxane (2 mL) and H2O (0.5 mL) were added Cs2CO3 (723.4 mg, 2.22 mmol, 3 eq), RuPhos (34.5 mg, 74 μmol, 0.1 eq) and RuPhos Pd G3 (31 mg, 37 μmol, 0.05 eq) at 25° C. The reaction was stirred at 100° C. for 1 hr under N2. TLC (PE:EtOAc=1:1, SM Rf=0.74, TM Rf=0.33) showed that the reaction was complete. The reaction was diluted with 5 mL EtOAc and poured into ˜30 mL saturated EDTA and stirred at 25° C. for 1 h. The aqueous phase was extracted with EtOAc (3×15 mL). The combined organic phase was washed with brine (3×15 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE;EtOAc=1:1) to afford the title compound Tert-butyl N-methyl-N-[7-[3-(prop-2-enoylamino)phenyl]-1-naphthyl]carbamate (0.28 g, 695.68 μmol, 94.01% yield) as a yellow oil.
To a solution of tert-butyl N-methyl-N-[7-[3-(prop-2-enoylamino)phenyl]-1-naphthyl]carbamate (0.1 g, 248.46 μmol, 1 eq) in DCM (3 mL) was added TFA (1.08 g, 9.45 mmol, 0.7 mL, 38.05 eq). The reaction was stirred at 25° C. for 1 hr. The reaction was diluted with 10 mL DCM and the mixture was poured into 20 mL ice water. Then the mixture was adjusted to pH=7 with saturated Na2CO3, extracted with DCM (3×10 mL), washed with brine (3×20 mL), dried over by anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford the title compound N-[3-[8-(methylamino)-2-naphthyl]phenyl]prop-2-enamide (0.0394 g, 130.3 μmol, 52.45% yield, 100.0% purity) as a white solid. LC-MS (ES+, m/z): 303.1 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) Shift=10.26 (s, 1H), 8.37 (s, 1H), 8.05 (s, 1H), 7.85 (d, J=8.6 Hz, 1H), 7.75-7.64 (m, 2H), 7.59-7.52 (m, 1H), 7.50-7.41 (m, 1H), 7.35-7.27 (m, 1H), 7.12 (d, J=8.2 Hz, 1H), 6.54 (br d, J=4.6 Hz, 1H), 6.51-6.46 (m, 1H), 6.45 (s, 1H), 6.29 (dd, J=2.0, 17.0 Hz, 1H), 5.83-5.74 (m, 1H), 2.88 (d, J=4.6 Hz, 3H).
To a solution of N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (200 mg, 732.24 μmol, 1 eq) and tert-butyl 2-chloropyrrolo[2,3-d]pyrimidine-7-carboxylate (185.8 mg, 732.24 μmol, 1 eq) in dioxane (4 mL) and H2O (1 mL) were added Cs2CO3 (477.2 mg, 1.46 mmol, 2 eq) dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (34.2 mg, 73.22 μmol, 0.1 eq) and [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (49 mg, 58.58 μmol, 0.08 eq) under N2. The reaction mixture was stirred at 100° C. for 1 h under N2. LCMS and TLC showed that the starting material was consumed. The reaction mixture was poured into saturated EDTA (30 mL) and 20 mL of EtOAc was added. The solution was stirred for 1 h. After that the aqueous phase was extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (3×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by Prep-TLC (SiO2, PE:EtOAc=1:1) and prep-HPLC to afford the title compound tert-butyl 2-[3-(prop-2-enoylamino)phenyl]pyrrolo[2,3-d]pyrimidine-7-carboxylate (60 mg, 164.66 μmol, 22.49% yield) as a yellow solid. N-[3-(7H-pyrrolo[2,3-d]pyrimidin-2-yl)phenyl]prop-2-enamide (5.2 mg, 100.0% purity) was obtained as a yellow solid. LC-MS (ES+, m/z): 265.1 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) δ=12.15 (br s, 1H), 10.31 (s, 1H), 9.10 (s, 1H), 8.76 (t, J=1.7 Hz, 1H), 8.15 (td, 7=1.2, 8.0 Hz, 1H), 7.82 (dd, J=1.1, 8.1 Hz, 1H), 7.59 (dd, J=2.1, 3.4 Hz, 1H), 7.45 (t, J=7.9 Hz, 1H), 6.62 (dd, J=1.2, 3.4 Hz, 1H), 6.53-6.44 (m, 1H), 6.34-6.24 (m, 1H), 5.81-5.75 (m, 1H).
To a solution of N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (50 mg, 183.06 μmol, 1 eq) and 3-chloroisoquinolin-5-amine (32.7 mg, 183.06 μmol, 1 eq) in dioxane (2 mL) and H2O (0.5 mL) were added Cs2CO3 (119.3 mg, 366.12 μmol, 2 eq) dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (12.8 mg, 27.46 μmol, 0.15 eq) and [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium; dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (15.3 mg, 18.31 μmol, 0.1 eq) under N2. The reaction mixture was stirred at 100° C. for 1 h. The reaction mixture was poured into saturated EDTA (40 mL) and 20 mL EtOAc was added. The solution was stirred for 1 h. After that the aqueous phase was extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (3×30 mL), dried over anhydrous Na2SO4 and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound N-[3-(5-amino-3-isoquinolyl)phenyl]prop-2-enamide (12.3 mg, 42.51 μmol, 23.22% yield) as a white solid. LC-MS (ES+, m/z): 290.1 [(M+H)+] 1H NMR (400 MHz, DMSO-d6) Shift=10.31 (s, 1H), 9.19 (s, 1H), 8.53 (s, 1H), 8.49 (t, J=2.0 Hz, 1H), 7.93 (d, J=8.4 Hz, 1H), 7.87-7.81 (m, 1H), 7.46 (t, J=8.0 Hz, 1H), 7.40-7.32 (m, 1H), 7.25 (d, J=8.0 Hz, 1H), 6.87 (dd, J=0.8, 7.6 Hz, 1H), 6.55-6.44 (m, 1H), 6.29 (dd, J=2.0, 17.2 Hz, 1H), 6.15 (s, 2H), 5.81-5.74 (m, 1H).
To a solution of N-[3-(5-amino-3-isoquinolyl)phenyl]prop-2-enamide (50 mg, 172.81 μmol, 1 eq) and 1-methylpiperidine-4-carboxylic acid (29.7 mg, 207.37 μmol, 1.2 eq) in DMF (1.5 mL) were added T3P (82.5 mg, 259.22 μmol, 77.08 μL, 1.5 eq) and Et3N (87.4 mg, 864.06 μmol, 120.27 μL, 5 eq) under N2. The reaction mixture was stirred at 20° C. for 1 h. The reaction mixture was poured into 40 mL water and extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by prep-HPLC to afford the title compound 1-methyl-N-[3-[3-(prop-2-enoylamino)phenyl]-5-isoquinolyl]piperidine-4-carboxamide (19.8 mg, 47.77 μmol, 27.64% yield, 100.0% purity) as a white solid. LC-MS (ES+, m/z): 415.3 [(M+H)+] 1H NMR (400 MHz, DMSO-d6) 5=10.35 (s, 1H), 10.08 (s, 1H), 9.41 (s, 1H), 8.58 (s, 1H), 8.42 (s, 1H), 8.03 (d, J=7.5 Hz, 1H), 7.96 (d, J=8.2 Hz, 1H), 7.91 (d, J=8.2 Hz, 1H), 7.81 (br d, J=9.3 Hz, 1H), 7.65 (t, J=7.8 Hz, 1H), 7.51 (t, J=7.8 Hz, 1H), 6.54-6.44 (m, 1H), 6.30 (dd, J=2.0, 17.0 Hz, 1H), 5.82-5.77 (m, 1H), 2.87 (br d, J=11.0 Hz, 2H), 2.69-2.56 (m, 1H), 2.19 (s, 3H), 1.99-1.87 (m, 4H), 1.81-1.71 (m, 1H), 1.72-1.69 (m, 1H)
To a solution of N-[3-(5-amino-3-isoquinolyl)phenyl]prop-2-enamide (60 mg, 207.38 μmol, 1 eq) and 1-methylpiperidin-4-one (70.4 mg, 622.14 μmol, 72.35 μL, 3 eq) in EtOH (2 mL) was added Ti(OEt)4 (236.5 mg, 1.04 mmol, 215.02 μL, 5 eq) under N2. The reaction mixture was stirred at 70° C. for 1 hour. Then NaBH3CN (65.2 mg, 1.04 mmol, 5 eq) was added at 70° C. The resulting reaction mixture was stirred at 70° C. for further 3 hours. The reaction mixture was poured into 40 mL saturated Na2CO3 and 20 mL EtOAc was added. The solution was stirred at 20° C. for 30 mins. The insoluble substance was removed by filtration. The filtrate was extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (2×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by prep-HPLC to afford the title compound N-[3-[5-[(l-methyl-4-piperidyl)amino]-3-isoquinolyl]phenyl]prop-2-enamide (5.1 mg, 12.68 μmol, 6.11% yield, 96.1% purity) as a white solid. LC-MS (ES+, m/z): 387.2 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) δ=10.31 (br s, 1H), 9.19 (s, 1H), 8.61 (s, 1H), 8.45 (br s, 1H), 7.97 (br s, 1H), 7.88 (br d, 7=6.8 Hz, 1H), 7.52-7.36 (m, 2H), 7.25 (br d, 7=7.6 Hz, 1H), 6.78 (br d, 7=7.2 Hz, 1H), 6.57-6.42 (m, 1H), 6.29 (br d, 7=11.6 Hz, 2H), 5.78 (br d, 7=9.2 Hz, 1H), 3.42 (br s, 1H), 2.83 (br s, 2H), 2.21 (br s, 3H), 2.03 (br s, 4H), 1.64 (br d, 7=10.0 Hz, 2H)
To a cold (0° C.) suspension of NaH (4.52 g, 113.08 mmol, 60% purity, 1.2 eq) in DMF (225 mL) was added 8-aminonaphthalen-2-ol (15 g, 94.23 mmol, 1 eq) in portions. The reaction was warmed to 25° C. and stirred for 15 min. Then the mixture was cooled to 0° C. MeI (13.37 g, 94.23 mmol, 5.87 mL, 1 eq) was added and the solution was warmed to 25° C. and stirred for 1 hr. TLC (PE:EtOAc=1:1, SM Rf=0.21, TM Rf=0.54) showed that the reaction was complete. The reaction was poured into ˜500 mL saturated NH4Cl slowly. Then, the mixture was extracted with EtOAc (3×300 mL), washed with brine (3×500 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound 7-Methoxynaphthalen-1-amine (1 g, 57.73 mmol, 61.27% yield) as a brown solid. 1H NMR (400 MHz, DMSO-d6)=7.65 (d, J=8.9 Hz, 1H), 7.42 (s, 1H), 7.13-6.82 (m, 3H), 6.72-6.60 (m, 1H), 5.57 (br s, 2H), 3.88 (s, 3H).
To a solution of 7-methoxynaphthalen-1-amine (5 g, 28.87 mmol, 1 eq) in dioxane (50 mL) was added pyridine (49 g, 619.47 mmol, 50 mL, 21.46 eq), I2 (8.79 g, 34.64 mmol, 6.98 mL, 1.2 eq) at 0° C. Then the mixture was stirred at 25° C. for 2 hr. The reaction was poured into ˜150 mL water and extracted with EtOAc (3×100 mL). The combined organic phase was washed with water (3×200 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound 4-iodo-7-methoxy-naphthalen-1-amine (5 g, 16.72 mmol, 57.91% yield) as a brown solid. LC-MS (ES+, m/z): 300.0 [(M+H)+], 1H NMR (400 MHz, DMSO-d6)=7.76 (d, J=9.2 Hz, 1H), 7.58 (d, J=8.0 Hz, 1H), 7.43 (d, J=2.4 Hz, 1H), 7.20 (dd, J=2.5, 9.2 Hz, 1H), 6.48 (d, J=8.0 Hz, 1H), 5.85 (br s, 2H), 3.94-3.83 (m, 3H)
To a solution of 4-iodo-7-methoxy-naphthalen-1-amine (5 g, 16.72 mmol, 1 eq) in dioxane (50 mL) was added Boc2O (18.24 g, 83.58 mmol, 19.20 mL, 5 eq) and the mixture was stirred at 80° C. for 2 hr. LCMS showed that the reaction was complete. The reaction was poured into ˜200 mL water and extracted with EtOAc (3×200 mL). The combined organic phase was washed with brine (3×300 mL), dried over by anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound Tert-butyl N-(4-iodo-7-methoxy-1-naphthyl) carbamate (5.6 g, 14.03 mmol, 83.91% yield) as a brown solid. LC-MS (ES+, m/z): 344.2 [(M-tBu)+]. 1H NMR (400 MHz, DMSO-d6)=9.33 (s, 1H), 7.99-7.84 (m, 2H), 7.41 (d, J=2.4 Hz, 1H), 7.38 (d, J=8.2 Hz, 1H), 7.29 (dd, J=2.5, 9.2 Hz, 1H), 3.92 (s, 3H), 1.51 (s, 9H).
To a solution of tert-butyl N-(4-iodo-7-methoxy-1-naphthyl) carbamate (4.5 g, 11.27 mmol, 1 eq) in DMF (40 mL) was added NaH (676.3 mg, 16.91 mmol, 60% purity, 1.5 eq) at 0° C. Then the mixture was stirred at 0° C. for 30 min. CH3I (3.2 g, 22.54 mmol, 1.40 mL, 2 eq) was added to the solution at 0° C. Then the mixture was stirred at 25° C. for 1 hr. LCMS showed that the reaction was complete. The reaction was poured into ˜100 mL saturated NH4Cl and extracted with EtOAc (3×100 mL). The combined organic phase was washed with brine (3×200 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound Tert-butyl N-(4-iodo-7-methoxy-1-naphthyl)-N-methyl-carbamate (4.5 g, 10.89 mmol, 96.61% yield) as a brown solid. LC-MS (ES+, m/z): 358.0 [(M-tBu)+]
To a solution of tert-butyl N-(4-iodo-7-methoxy-1-naphthyl)-N-methyl-carbamate (3.5 g, 8.47 mmol, 1 eq) and Mo(CO)6 (447.2 mg, 1.69 mmol, 228.16 μL, 0.2 eq) in DMSO (35 mL) and MeOH (35 mL) was added TEA (2.57 g, 25.41 mmol, 3.54 mL, 3 eq) and Pd (dppf) Cl2 (619.7 mg, 846.95 μmol, 0.1 eq). Then the mixture was stirred at 50° C. for 3 hr under N2. TLC (PE:EtOAc=4:1, SM Rf=0.36, TM Rf=0.41) showed that the reaction was complete. The reaction was poured into ˜200 mL water and extracted with EtOAc (3×200 mL). The combined organic phase was washed with brine (3×300 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound Methyl 4-[tert-butoxycarbonyl(methyl)amino]-6-methoxy-naphthalene-1-carboxylate (3. g, 6.95 mmol, 82.04% yield, 80% purity) as a yellow solid.
To a solution of methyl 4-[tert-butoxycarbonyl(methyl)amino]-6-methoxy-naphthalene-1-carboxylate (1.3 g, 3.76 mmol, 1 eq) in H2O (16 mL) and MeOH (32 mL) was added LiOH·H2O (1.58 g, 37.64 mmol, 10 eq), and the mixture was stirred at 50° C. for 1 hr. The reaction was poured into ˜30 mL ice-water, adjusted to pH=8 with saturated citric acid. The mixture was extracted with EtOAc (3×100 mL), washed with brine (3×200 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound 4-[Tert-butoxycarbonyl(methyl)amino]-6-methoxy-naphthalene-1-carboxylic acid (1 g, crude) as a yellow solid, which was used directly without further purification. LC-MS (ES+, m/z): 276.2 [(M-tBu)+].
To a solution of 4-[tert-butoxycarbonyl(methyl)amino]-6-methoxy-naphthalene-1-carboxylic acid (0.4 g, 1.21 mmol, 1 eq) and methanamine; hydrochloride (163 mg, 2.41 mmol, 2 eq) in DMF (6 mL) were added TEA (610.8 mg, 6.04 mmol, 840.09 μL, 5 eq) and T3P (1.15 g, 1.81 mmol, 1.08 mL, 50% purity, 1.5 eq). The mixture was stirred at 25° C. for 1 hr. The reaction mixture was quenched by adding 10 mL water and extracted with EtOAc (3×10 mL). The combined organic layers were washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, DCM/MeOH=1/0 to 10:1) to afford the title compound Tert-butyl N-[7-methoxy-4-(methylcarbamoyl)-1-naphthyl]-N-methyl-carbamate (0.8 g, 2.32 mmol, 96.21% yield) as a yellow oil. LC-MS (ES+, m/z): 288.9 [(M-tBu)+].
To a solution of tert-butyl N-[7-methoxy-4-(methylcarbamoyl)-1-naphthyl]-N-methyl-carbamate (0.5 g, 1.45 mmol, 1 eq) in DCM (5 mL) was added BBr3 (1.49 g, 5.95 mmol, 573.08 μL, 4.10 eq) at 0° C. The mixture was stirred at 0° C. for 1 hr. LCMS showed that the reaction was complete. To the reaction was added ˜3 mL MeOH at 0° C. Then concentrated under N2. The residue was purified by column chromatography (SiO2, DCM/MeOH=20/1 to 10:1) to afford the title compound Tert-butyl N-[7-hydroxy-4-(methylcarbamoyl)-1-naphthyl]-N-methyl-carbamate (0.35 g, 741.58 μmol, 51.08% yield, 70% purity) as a yellow solid. LC-MS (ES+, m/z): 231.3[(M-tBu)+].
To a solution of 6-hydroxy-N-methyl-4-(methylamino) naphthalene-1-carboxamide (0.13 g, 564.57 μmol, 1 eq) in THF (3 mL) were added 1,1,1-trifluoro-N-phenyl-N-(trifluoromethylsulfonyl) methanesulfonamide (403.4 mg, 1.13 mmol, 2 eq) and K2CO3 (390 mg, 2.82 mmol, 5 eq) and the mixture was stirred at 70° C. for 12 hr. LCMS showed that the reaction was complete. The reaction was filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound [8-(Methylamino)-5-(methylcarbamoyl)-2-naphthyl]trifluoromethanesulfonate (0.1 g, 276 μmol, 48.89% yield) as a brown solid. LC-MS (ES+, m/z): 363.2 [(M+H)+]
To a solution of [8-(methylamino)-5-(methylcarbamoyl)-2-naphthyl]trifluoro methane sulfonate (0.09 g, 248.4 μmol, 1 eq) and N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (101.8 mg, 372.6 μmol, 1.5 eq) in dioxane (2 mL) and H2O (0.5 mL) were added Cs2CO3 (242.8 mg, 745.19 μmol, 3 eq), RuPhos (11.6 mg, 24.84 μmol, 0.1 eq) and RuPhos Pd G3 (2.1 mg, 2.48 μmol, 0.01 eq). Then the mixture was stirred at 100° C. for 1 h under N2. LCMS showed that the reaction was complete. The reaction was diluted with 10 mL EtOAc and the mixture was poured into ˜20 mL saturated EDTA. The mixture was stirred at 25° C. for 1 hand extracted with EtOAc (3×20 mL). The combined organic phase was washed with brine (3×40 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC (FA condition) to afford the title compound N-methyl-4-(methylamino)-6-[3-(prop-2-enoylamino)phenyl]naphthalene-1-carboxamide (0.0115 g, 32 μmol, 12.88% yield, 100.0% purity) as a white solid. LC-MS (ES+, m/z): 360.1 [(M+H)+], 1H NMR (400 MHz, DMSO-d6)=10.28 (s, 1H), 8.56-8.51 (m, 1H), 8.40 (d, J=1.3 Hz, 1H), 8.12 (br d, J=4.6 Hz, 1H), 8.03 (s, 1H), 7.74 (br d, J=8.8 Hz, 2H), 7.57 (d, J=7.9 Hz, 1H), 7.54 (d, J=8.2 Hz, 1H), 7.50-7.43 (m, 1H), 6.93 (br d, J=4.6 Hz, 1H), 6.53-6.45 (m, 1H), 6.42 (d, J=8.2 Hz, 1H), 6.29 (dd, J=2.0, 17.0 Hz, 1H), 5.83-5.74 (m, 1H), 2.91 (d, J=4.6 Hz, 3H), 2.81 (d, J=4.4 Hz, 3H)
To a solution of methyl 5-chloro-1-(2-trimethylsilylethoxymethyl)pyrazolo[3,4-c]pyridine-3-carboxylate (0.8 g, 2.34 mmol, 1 eq) and 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (564 mg, 2.57 mmol, 1.1 eq) in dioxane (8 mL) and H2O (2 mL) were added Cs2CO3 (2.29 g, 7.02 mmol, 3 eq), RuPhos (109.2 mg, 234.01 μmol, 0.1 eq) and RuPhos Pd-Gb (97.9 mg, 117.01 μmol, 0.05 eq) at 25° C. then stirred at 100° C. for 1 h under N2. TLC (PE:EtOAc=1:1, SM Rf=0.54, TM Rf=0.28) showed that the reaction was complete. The reaction was diluted with 10 mL EtOAc. Then the mixture was poured into 50 mL saturated EDTA. The mixture was stirred at 25° C. for 1 h. The mixture was extracted with EtOAc (3×30 mL), washed with brine (3×30 mL), dried over by anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound Methyl 5-(3-aminophenyl)-1-(2-trimethylsilylethoxymethyl)pyrazolo[3,4-c]pyridine-3-carboxylate (0.84 g, 2.11 mmol, 90.07% yield) as a yellow solid.
To a solution of prop-2-enoyl chloride (122.6 mg, 1.35 mmol, 110.48 μL, 2 eq) in DCM (3 mL) were added TEA (205.7 mg, 2.03 mmol, 282.89 μL, 3 eq) and methyl 5-(3-aminophenyl)-1-(2-trimethylsilylethoxymethyl)pyrazolo[3,4-c]pyridine-3-carboxylate (0.27 g, 677.49 μmol, 1 eq) at 0° C. Then the mixture was stirred at 25° C. for 1 hr. The reaction was diluted with 10 mL DCM and the mixture was poured into ˜10 mL water. Then the mixture was extracted with DCM (3×10 mL), washed with brine (3×10 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1:1) to afford the title compound Methyl 5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxy methyl)pyrazolo[3,4-c]pyridine-3-carboxylate (0.21 g, 464.01 μmol, 68.49% yield) as a yellow oil. LC-MS (ES+, m/z): 453.2 [(M+H)+].
To a solution of methyl 5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxymethyl) pyrazolo[3,4-c]pyridine-3-carboxylate (0.15 g, 331.44 μmol, 1 eq) in THF (4 mL) and H2O (1 mL) was added LiOH·H2O (139.1 mg, 3.31 mmol, 10 eq) and stirred at 30° C. for 3 hr. The reaction was poured into ˜20 mL ice water then the aqueous phase was adjusted to pH=6 with saturated citric acid. The reaction mixture was extracted with EtOAc (3×30 mL). The combined organic phase was washed with brine (3×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound 5-[3-(prop-2-enoyl amino)phenyl]-1-(2-trimethylsilylethoxymethyl)pyrazolo[3,4-c]pyridine-3-carboxylic acid (0.2 g, crude) as a yellow solid. LC-MS (ES+, m/z): 439.2 [(M+H)+].
To a solution of 5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxymethyl)pyrazolo[3,4-c]pyridine-3-carboxylic acid (0.18 g, 410.44 μmol, 1 eq) in DMF (12 mL) were added TEA (207.7 mg, 2.05 mmol, 285.64 μL, 5 eq) and HATU (234.1 mg, 615.66 μmol, 1.5 eq). Then, the mixture was stirred at 25° C. for 10 min. NH3 (3 M in THF, 136.81 μL, 1 eq) was added to the solution at 0° C., then stirred at 0° C. for 10 min. The reaction was poured into ˜10 mL water and extracted with EtOAc (3×10 mL), washed with brine (3×10 mL), dried over by anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=15:1) to afford the title compound 5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxymethyl)pyrazolo[3,4-c]pyridine-3-carboxamide (0.17 g, 388.51 μmol, 94.66% yield) as a yellow solid. LC-MS (ES+, m/z): 438.1 [(M+H)+].
To a solution of 5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxymethyl)pyrazolo[3,4-c]pyridine-3-carboxamide (0.18 g, 411.37 μmol, 1 eq) in EtOH (3.6 mL) was added concentrated HCl (1.84 g, 18.63 mmol, 1.8 mL, 37% purity, 45.29 eq) and the mixture was stirred at 50° C. for 3 hr. The reaction was concentrated under N2. The residue was purified by prep-HPLC (FA condition) to afford the title compound 5-[3-(prop-2-enoylamino)phenyl]-1H-pyrazolo[3,4-c]pyridine-3-carboxamide (0.0185 g, 60.2 μmol, 14.63% yield, 100.0% purity) as a white solid. LC-MS (ES+, m/z): 308.0 [(M+H)+], 1H NMR (400 MHz, DMSO-d6): 14.14 (br s, 1H), 10.32 (s, 1H), 9.21 (d, J=1.1 Hz, 1H), 8.51 (d, J=1.1 Hz, 1H), 8.39 (s, 1H), 7.95 (s, 1H), 7.82 (br d, J=6.0 Hz, 2H), 7.56 (br s, 1H), 7.45 (t, J=7.9 Hz, 1H), 6.57-6.41 (m, 1H), 6.36-6.18 (m, 1H), 5.86-5.69 (m, 1H).
To a solution of 6-chloro-3H-imidazo[4,5-c]pyridine (0.13 g, 846.53 μmol, 1 eq) in DMF (2 mL) was added NaH (50.8 mg, 1.27 mmol, 60% purity, 1.5 eq) at 0° C. Then the mixture was stirred at 0° C. for 30 min. Then SEMCl (282.3 mg, 1.69 mmol, 299.65 μL, 2 eq) was added to the solution at 0° C., and stirred at 25° C. for 1 hr. TLC (DCM:MeOH=10:1, SM Rf=0.21, TM Rf=0.40) showed that the reaction was complete. The reaction was poured into ˜20 mL water and extracted with EtOAc (3×10 mL). The combined organic phase was washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound 2-[(6-chloroimidazo[4,5-c]pyridin-3-yl) methoxy]ethyl-trimethyl-silane (0.18 g, 634.19 μmol, 74.92% yield) as a yellow oil.
To a solution of 2-[(6-chloroimidazo[4,5-c]pyridin-3-yl) methoxy]ethyl-trimethyl-silane (0.18 g, 634.19 μmol, 1 eq) and 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (166.7 mg, 761.02 μmol, 1.2 eq) in dioxane (4 mL) H2O (1 mL) were added Cs2CO3 (619.9 mg, 1.9 mmol, 3 eq) and dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (29.6 mg, 63.42 μmol, 0.1 eq), [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium; dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (26.5 mg, 31.71 μmol, 0.05 eq) at 25° C. The mixture was stirred at 100° C. for 1 hr under N2. The reaction was diluted with ˜10 mL EtOAc and poured into ˜15 mL saturated EDTA. Then the mixture was stirred at 25° C. for 1 h and extracted with EtOAc (3×15 mL). The combined organic phase was washed with brine (3×15 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=15:1 to afford the title compound 3-[3-(2-trimethylsilylethoxymethyl)imidazo[4,5-c]pyridin-6-yl]aniline (0.2 g, 587.38 μmol, 92.62% yield) as a yellow oil. LC-MS (ES+, m/z): 341.1 [(M+H)+].
To a solution of 3-[3-(2-trimethylsilylethoxymethyl)imidazo[4,5-c]pyridin-6-yl]aniline (0.15 g, 440.54 μmol, 1 eq) in DCM (3 mL) was added TEA (133.7 mg, 1.32 mmol, 183.95 μL, 3 eq). Then, prop-2-enoyl chloride (79.7 mg, 881.07 μmol, 71.84 μL, 2 eq) in 0.5 mL DCM was added to the solution at 0° C. The mixture was stirred at 25° C. for 1 hr. The reaction was poured into ˜10 mL water and extracted with DCM (3×10 mL). The combined organic phase was washed with brine (3×10 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=15:1) to afford the title compound N-[3-[3-(2-trimethylsilylethoxymethyl) imidazo[4,5-c]pyridin-6-yl]phenyl]prop-2-enamide (0.13 g, 329.5 μmol, 74.79% yield) as a yellow oil. LC-MS (ES+, m/z): 395.2 [(M+H)+].
To a solution of N-[3-[3-(2-trimethylsilylethoxymethyl)imidazo[4,5-c]pyridin-6-yl]phenyl]prop-2-enamide (0.09 g, 228.11 μmol, 1 eq) in EtOH (1.2 mL) was added concentrated HCl (612 mg, 6.21 mmol, 0.6 mL, 37% purity, 27.23 eq) and the mixture was stirred at 50° C. for 1 hr. The reaction was concentrated under N2. The residue was purified by prep-HPLC (LA condition) to afford the title compound N-[3-(3H-imidazo[4,5-c]pyridin-6-yl)phenyl]prop-2-enamide (0.0209 g, 77.03 μmol, 33.77% yield, 97.4% purity) as a white solid. LC-MS (ES+, m/z): 265.0 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) Shift=12.91 (br s, 1H), 10.27 (s, 1H), 9.01 (s, 1H), 8.51-8.33 (m, 2H), 8.13 (s, 1H), 8.04 (br s, 1H), 7.85-7.71 (m, 2H), 7.43 (t, J=7.8 Hz, 1H), 6.55-6.41 (m, 1H), 6.29 (dd, J=2.0, 17.1 Hz, 1H), 5.84-5.72 (m, 1H).
To a solution of 5-chloro-1H-pyrazolo[4,3-b]pyridine (1.5 g, 9.77 mmol, 1 eq) in DMF (15 mL) was added NIS (4.4 g, 19.54 mmol, 2 eq) and the mixture was stirred at 25° C. for 12 hr. TLC (PE:EtOAc=1:1, SM Rf=0.40, TM Rf=0.52) showed that the reaction was complete. The reaction was poured into ˜50 mL water and extracted with EtOAc (3×50 mL). The combined organic phase was washed with brine (3×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound 5-chloro-3-iodo-1H-pyrazolo[4,3-b]pyridine (2.4 g, 8.59 mmol, 87.92% yield) as a white solid. 1H NMR (400 MHz, DMSO-d6) Shift=13.98 (s, 1H), 8.13 (d, J=8.8 Hz, 1H), 7.50 (d, J=8.8 Hz, 1H).
To a solution of 5-chloro-3-iodo-1H-pyrazolo[4,3-b]pyridine (2.1 g, 7.51 mmol, 1 eq) in THF (20 mL) was added NaH (450.9 mg, 11.27 mmol, 60% purity, 1.5 eq) at 0° C. The mixture was stirred at 0° C. for 0.5 h, SEMCl (1.5 g, 9.02 mmol, 1.60 mL, 1.2 eq) was added to the solution at 0° C. and stirred at 25° C. for 0.5 hr. The reaction was poured into ˜25 mL water and extracted with EtOAc (3×20 mL). The combined organic phase was washed with brine (3×20 mL), dried over by anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound 2-[(5-chloro-3-iodo-pyrazolo[4,3-b]pyridin-1-yl)methoxy]ethyl-trimethyl-silane (2.5 g, 6.1 mmol, 81.20% yield) as a white solid. LC-MS (ES+, m/z): 409.9 [(M+H)+].
To a solution of 2-[(5-chloro-3-iodo-pyrazolo[4,3-b]pyridin-1-yl)methoxy]ethyl-trimethyl-silane (0.5 g, 1.22 mmol, 1 eq) in DMF (4 mL) and MeOH (1 mL) was added TEA (370.5 mg, 3.66 mmol, 509.56 μL, 3 eq) and Pd(dppf)Cl2 (89.3 mg, 122.03 μmol, 0.1 eq). The mixture was stirred at 60° C. under 15 psi CO for 8 h. The reaction was diluted with 10 mL EtOAc and poured into 20 mL water and extracted with EtOAc (3×10 mL). The combined organic phase was washed with brine (3×20 mL), dried over by anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound Methyl 5-chloro-1-(2-trimethyl silyl ethoxy methyl) pyrazolo[4,3-b]pyridine-3-carboxylate (0.28 g, 819.04 μmol, 67.12% yield) as a white solid. LC-MS (ES+, m/z): 342.1 [(M+H)+].
To a solution of methyl 5-chloro-1-(2-trimethylsilylethoxy methyl)pyrazolo[4,3-b]pyridine-3-carboxylate (0.25 g, 731.28 μmol, 1 eq) and N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (199.7 mg, 731.28 μmol, 1 eq) in H2O (1 mL) and dioxane (4 mL) was added Na2CO3 (232.5 mg, 2.19 mmol, 3 eq) and RuPhos (34.1 mg, 73.13 μmol, 0.1 eq) and RuPhos Pd G3 (30.6 mg, 36.56 μmol, 0.05 eq) at 25° C. The reaction was stirred at 100° C. for 1 hr under N2. TLC (PE:EtOAc=1:1, SM Rf=0.44, TM Rf=0.17) showed that the reaction was complete. The reaction was diluted with 10 mL EtOAc and poured into ˜15 mL saturated EDTA and stirred at 25° C. for 1 hr. Then the mixture was extracted with EtOAc (3×15 mL), washed with brine (3×15 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 1/1) to afford the title compound Methyl 5-[3-(prop-2-enoyl amino)phenyl]-1-(2-trimethylsilylethoxymethyl)pyrazolo[4,3-b]pyridine-3-carboxylate (0.52 g, 1.15 mmol, 78.56% yield) as a yellow oil. LC-MS (ES+, m/z): 453.2 [(M+H)+].
To a solution of methyl 5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilyl ethoxymethyl) pyrazolo[4,3-b]pyridine-3-carboxylate (0.27 g, 596.58 μmol, 1 eq) in THF (4 mL) and H2O (1 mL) was added LiOH·H2O (250.4 mg, 5.97 mmol, 10 eq) and the mixture was stirred at 25° C. for 3 hr. The reaction was poured into ˜20 mL ice water then adjusted to pH=6 with saturated citric acid. Then the mixture was extracted with EtOAc (3×30 mL). The combined organic phase was washed with brine (3×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound 5-[3-(prop-2-enoyl amino)phenyl]-1-(2-trimethylsilylethoxymethyl)pyrazolo[4,3-b]pyridine-3-carboxylic acid (0.22 g, crude) as a yellow solid. LC-MS (ES+, m/z): 439.1 [(M+H)+].
To a solution of 5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxymethyl)pyrazolo[4,3-b]pyridine-3-carboxylic acid (0.16 g, 364.84 μmol, 1 eq) in DMF (8 mL) was added HATU (208.1 mg, 547.26 μmol, 1.5 eq) and TEA (184.6 mg, 1.82 mmol, 253.90 μL, 5 eq). Then stirred at 25° C. for 10 min. NH3 (3 M in THF, 10 mL, 82.23 eq) was added to the solution at 0° C., then stirred at 0° C. for 10 min. LCMS showed that the reaction completed. The reaction was diluted with 10 mL EtOAc and poured into ˜15 mL water. Then the mixture was extracted with EtOAc (3×15 mL), washed with brine (3×15 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound 5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxymethyl)pyrazolo[4,3-b]pyridine-3-carboxamide (0.12 g, 274.24 μmol, 75.17% yield) as a yellow oil. LC-MS (ES+, m/z): 438.2 [(M+H)+].
To a solution of 5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxymethyl) pyrazolo[4,3-b]pyridine-3-carboxamide (0.1 g, 228.54 μmol, 1 eq) in EtOH (4 mL) was added concentrated HCl (1.02 g, 10.35 mmol, 1 mL, 37% purity, 45.29 eq) and stirred at 50° C. for 3 hr. The reaction was poured into ˜10 mL saturated NaHCO3 to adjust the pH to 7. Then the mixture was extracted with EtOAc (3×15 mL), washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford the title compound 5-[3-(prop-2-enoylamino)phenyl]-1H-pyrazolo[4,3-b]pyridine-3-carboxamide (20.40 mg, 66.38 μmol, 29.05% yield, 100.0% purity) as a white solid. LC-MS (ES+, m/z): 308.0 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) Shift=12.83 (br s, 1H), 10.36 (s, 1H), 8.44 (s, 1H), 8.26 (d, J=8.8 Hz, 2H), 7.99 (d, J=8.9 Hz, 1H), 7.95 (br s, 1H), 7.84 (dd, J=1.4, 8.0 Hz, 2H), 7.50 (t, J=7.8 Hz, 1H), 6.59-6.43 (m, 1H), 6.36-6.21 (m, 1H), 5.88-5.72 (m, 1H)
To a solution of 2-[(5-chloro-3-iodo-pyrazolo[3,4-c]pyridin-1-yl)methoxy]ethyl-trimethyl-silane (0.5 g, 1.22 mmol, 1 eq) and tributyl(vinyl)stannane (425.7 mg, 1.34 mmol, 390.51 μL, 1.1 eq) in toluene (5 mL) was added LiCl (134.5 mg, 3.17 mmol, 64.98 μL, 2.6 eq) and dichloropalladium; triphenylphosphane (85.7 mg, 122.03 μmol, 0.1 eq) at 25° C. under N2. Then the mixture was stirred at 100° C. for 1 hr. The reaction was diluted with 10 mL EtOAc and poured into ˜20 mL saturated EDTA. The mixture was stirred at 25° C. for 1 h. The aqueous layer was extracted with EtOAc (3×10 mL), and the combined organic layer was dried over by anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound 2-[(5-chloro-3-vinyl-pyrazolo[3,4-c]pyridin-1-yl) methoxy]ethyl-trimethyl-silane (0.368 g, 1.19 mmol, 97.32% yield) as a yellow oil. LC-MS (ES+, m/z): 310.1 [(M+H)+].
To a solution of 2-[(5-chloro-3-vinyl-pyrazolo[3,4-c]pyridin-1-yl)methoxy]ethyl-trimethyl-silane (0.2 g, 645.44 μmol, 1 eq) in MeOH (2 mL) and CHCl3 (2 mL) was added Pd/C (200 mg, 187.93 μmol, 10% purity, 2.91e−1 eq) at 25° C. Then the mixture was stirred at 25° C. for 3 hr under H2 15 psi. The reaction was filtered and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=4:1) to afford the title compound 2-[(5-chloro-3-ethyl-pyrazolo[3,4-c]pyridin-1-yl)methoxy]ethyl-trimethyl-silane (0.18 g, 577.14 μmol, 89.42% yield) as a yellow oil. LC-MS (ES+, m/z): 312.0 [(M+H)+].
To the solution of 2-[(5-chloro-3-ethyl-pyrazolo[3,4-c]pyridin-1-yl) methoxy]ethyl-trimethyl-silane (0.21 g, 673.33 μmol, 1 eq) in the mixed solvent of dioxane (4 mL) and H2O (1 mL) were successively added 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (177 mg, 808 μmol, 1.2 eq), Cs2CO3 (658.2 mg, 2.02 mmol, 3 eq), RuPhos (31.4 mg, 67.33 μmol, 0.1 eq) and RuPhos Pd G3 (28.2 mg, 33.67 μmol, 0.05 eq) then degassed with N2 3 times. The resulting reaction mixture was heated to 100° C. and stirred at 100° C. for 1 h under N2. TLC (PE:EtOAc=1:1, SM Rf=0.46, TM Rf=0.31) showed that the reaction was complete. The reaction was poured into ˜15 mL saturated EDTA and stirred at 25° C. for 1 h. The mixture was extracted with EtOAc (3×10 mL), washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1:1) to afford the title compound 3-[3-ethyl-1-(2-trimethylsilyl ethoxymethyl) pyrazolo[3,4-c]pyridin-5-yl]aniline (0.2 g, 542.67 μmol, 80.59% yield) as a brown oil.
To a solution of 3-[3-ethyl-1-(2-trimethylsilyl ethoxymethyl)pyrazolo[3,4-c]pyridin-5-yl]aniline (0.2 g, 542.67 μmol, 1 eq) in DCM (4 mL) was added TEA (164.7 mg, 1.63 mmol, 226.60 μL, 3 eq), prop-2-enoyl chloride (98.2 mg, 1.09 mmol, 88.50 μL, 2 eq) was added to the solution at 0° C. Then stirred at 0° C. for 20 min. The reaction was poured into ˜20 mL water then extracted with DCM (3×10 mL), washed with brine (3×10 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1:1) to afford the title compound N-[3-[3-ethyl-1-(2-trimethylsilylethoxymethyl)pyrazolo[3,4-c]pyridin-5-yl]phenyl]prop-2-enamide (0.2 g, 473.27 μmol, 87.21% yield) as a yellow oil. LC-MS (ES+, m/z): 423.2 [(M+H)+].
To a solution of N-[3-[3-ethyl-1-(2-trimethylsilylethoxymethyl)pyrazolo[3,4-c]pyridin-5-yl]phenyl]prop-2-enamide (0.16 g, 378.61 μmol, 1 eq) in EtOH (4 mL) was added concentrated HCl (2.04 g, 20.7 mmol, 2 mL, 37% purity, 54.68 eq) and the mixture was stirred at 50° C. for 3 hr. The reaction was poured into ˜20 mL saturated NaHCO3 to adjust the pH to 7. The mixture was extracted with EtOAc (3×10 mL), washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford the title compound N-[3-(3-ethyl-1H-pyrazolo[3,4-c]pyridin-5-yl)phenyl]prop-2-enamide (0.0316 g, 108.1 μmol, 28.55% yield, 100.0% purity) as a white solid. LC-MS (ES+, m/z): 293.1 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) Shift=10.25 (s, 1H), 9.04 (d, J=1.6 Hz, 1H), 8.40 (t, J=1.8 Hz, 1H), 8.23 (d, J=1.2 Hz, 1H), 7.87-7.80 (m, 1H), 7.77 (dd, J=1.2, 8.0 Hz, 1H), 7.42 (t, J=8.0 Hz, 1H), 6.57-6.40 (m, 1H), 6.29 (dd, J=2.0, 17.0 Hz, 1H), 5.88-5.64 (m, 1H), 3.32 (s, 11H), 3.03 (q, J=7.6 Hz, 2H), 1.36 (t, J=7.6 Hz, 3H).
To a solution of 5-bromo-1H-indazol-3-amine (1 g, 4.72 mmol, 1 eq) in (Boc)2O (9.5 g, 43.53 mmol, 10 mL, 9.23 eq) and the mixture was stirred at 100° C. for 12 hr. TLC (PE:EtOAc=1:1, SM Rf=0.27, TM Rf=0.76) showed that the reaction was complete. The reaction was concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound tert-butyl 5-bromo-3-(tert-butoxycarbonylamino) indazole-1-carboxylate (0.6 g, 1.46 mmol, 30.86% yield) as a colorless solid.
To a solution of tert-butyl 5-bromo-3-(tert-butoxycarbonylamino) indazole-1-carboxylate (0.4 g, 970.22 μmol, 1 eq) in DMF (4 mL) was added Cs2CO3 (632.2 mg, 1.94 mmol, 2 eq). Then, MeI (206.6 mg, 1.46 mmol, 90.60 μL, 1.5 eq) was added to the solution and stirred at 25° C. for 1 hr. TLC (PE:EtOAc=4:1, SM Rf=0.21, TM Rf=0.41) showed that the reaction was complete. The reaction was poured into 10 mL water and extracted with EtOAc (3×15 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound Tert-butyl 5-bromo-3-[tert-butoxycarbonyl(methyl)amino]indazole-1-carboxylate (0.338 g, 792.86 μmol, 81.72% yield) as a colorless solid.
To a solution of tert-butyl 5-bromo-3-[tert-butoxycarbonyl(methyl)amino]indazole-1-carboxylate (0.2 g, 469.15 μmol, 1 eq) and N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (384.4 mg, 1.41 mmol, 3 eq) in dioxane (6 mL) and H2O (1.5 mL) were added Cs2CO3 (458.6 mg, 1.41 mmol, 3 eq), RuPhos (21.9 mg, 46.91 μmol, 0.1 eq) and RuPhos Pd G3 (19.6 mg, 23.46 μmol, 0.05 eq). Then stirred at 100° C. for 1 hr under N2. LCMS showed that the reaction was complete. The reaction was poured into ˜15 mL saturated EDTA and stirred at 25° C. for 1 h. The mixture was extracted with EtOAc (3×15 mL), washed with brine (3×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1:1) to afford the title compound Tert-butyl 3-[tert-butoxycarbonyl(methyl)amino]-5-[3-(prop-2-enoylamino)phenyl]indazole-1-carboxylate (0.35 g, 355.28 μmol, 75.73% yield, 50% purity) as a yellow oil. LC-MS (ES+, m/z): 493.3 [(M+H)+].
To a solution of tert-butyl 3-[tert-butoxycarbonyl(methyl)amino]-5-[3-(prop-2-enoylamino)phenyl]indazole-1-carboxylate (0.3 g, 609.06 μmol, 1 eq) in DCM (3 mL) was added TFA (1.54 g, 13.51 mmol, 1 mL, 22.18 eq) and stirred at 25° C. for 1 hr. The reaction was poured into ˜10 mL ice water and the mixture was adjusted to pH=8 with saturated Na2CO3. The mixture was extracted with DCM (3×10 mL), washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by prep-HPLC (FA condition) to afford the title compound N-[3-[3-(methylamino)-1H-indazol-5-yl]phenyl]prop-2-enamide (0.0096 g, 32.84 μmol, 5.39% yield, 100.0% purity) as a white solid. LC-MS (ES+, m/z): 293.0 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) δ=11.47 (br s, 1H), 10.22 (s, 1H), 8.03 (s, 1H), 7.95 (s, 1H), 7.56 (br d, J=7.6 Hz, 1H), 7.52 (br d, J=8.3 Hz, 1H), 7.45-7.37 (m, 1H), 7.36-7.27 (m, 2H), 6.52-6.43 (m, 1H), 6.33-6.25 (m, 1H), 6.06 (br d, J=4.8 Hz, 1H), 5.78 (br d, J=10.4 Hz, 1H), 2.88 (br d, J=4.8 Hz, 3H).
The solution of 5-bromo-1H-indazol-3-amine (0.3 g, 1.41 mmol, 1 eq) in Boc2O (1.9 g, 8.71 mmol, 2 mL, 6.15 eq) was heated to 110° C. and stirred at 110° C. for 1 hr. LCMS showed that the reaction was complete. The reaction mixture was concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=8/1 to 2/1) to afford the title compound tert-butyl 5-bromo-3-(tert-butoxy carbonylamino)indazole-1-carboxylate (0.21 g, 509.37 μmol, 36.00% yield) as a yellow oil. LC-MS (ES+, m/z): 412.1 [(M+H)+].
To a solution of N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-en amide (0.15 g, 549.18 μmol, 1 eq) in dioxane (4 mL) and H2O (1 mL) were added tert-butyl 5-bromo-3-(tert-butoxycarbonylamino)indazole-1-carboxylate (181.1 mg, 439.34 μmol, 0.8 eq), Na2CO3 (116.4 mg, 1.1 mmol, 2 eq), RuPhos (25.6 mg, 54.92 μmol, 0.1 eq) and [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (23 mg, 27.46 μmol, 0.05 eq). The reaction mixture was stirred at 80° C. for 1 hr under N2. TLC (PE:EtOAc=1:1, SM Rf=0.56, Rf=0.32) showed that the reaction was complete. The reaction mixture was poured into saturated EDTA (50 mL) and EtOAc (50 mL) was added. The solution was stirred at 25° C. for 1 h and extracted with EtOAc (3×50 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1:1) to afford the title compound tert-butyl 3-(tert-butoxycarbonylamino)-5-[3-(prop-2-enoylamino)phenyl]indazole-1-carboxylate (0.15 g, 313.45 μmol, 57.08% yield) as a yellow oil.
To a solution of tert-butyl 3-(tert-butoxycarbonylamino)-5-[3-(prop-2-enoylamino)phenyl]indazole-1-carboxylate (0.12 g, 250.76 μmol, 1 eq) in DCM (2 mL) was added TFA (770 mg, 6.75 mmol, 0.5 mL, 26.93 eq). The reaction mixture was stirred at 15° C. for 1 h. LCMS showed that the reaction was complete. The reaction mixture was poured into 50 mL H2O and the pH was adjusted to 7 with saturated NaHCO3. The mixture was extracted with EtOAc (3×50 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC (PA condition) to afford the title compound N-[3-(3-amino-1H-indazol-5-yl)phenyl]prop-2-enamide (16.3 mg, 58.57 μmol, 23.36% yield, 100.0% purity) as a white solid. LC-MS (ES+, m/z): 279.1 [(M+H)+]1H NMR (400 MHz, DMSO-d6) δ=11.49 (s, 1H), 10.21 (s, 1H), 7.96-8.04 (m, 2H), 7.58 (br d, 7=7.70 Hz, 1H), 7.47-7.54 (m, 1H), 7.29-7.44 (m, 3H), 6.47 (dd, J=16.98, 10.00 Hz, 1H), 6.24-6.34 (m, 1H), 5.77 (dd, J=10.04, 1.96 Hz, 1H), 5.42 (br s, 2H).
To a solution of 2-amino-4-bromo-benzaldehyde (2 g, 1 mmol, 1 eq) in DCM (20 mL) was added pyridine (2.37 g, 3 mmol, 2.42 mL, 3 eq) and ethyl 2-chloro-2-oxo-acetate (1.77 g, 13 mmol, 1.45 mL, 1.3 eq) at 0° C. The reaction mixture was stirred at 15° C. for 1 h. TLC (PE:EtOAc=4:1, SM Rf=0.41, TM Rf=0.11) showed that the reaction was complete. The reaction mixture was poured into 100 mL H2O, extracted with DCM (3×100 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound ethyl 2-(5-bromo-2-formyl-anilino)-2-oxo-acetate (3 g, crude) as a white solid, which was used for the next step directly without further purification.
To a solution of ethyl 2-(5-bromo-2-formyl-anilino)-2-oxo-acetate (3 g, 1 mmol, 1 eq) in AcOH (90 mL) was added CH3COONH4 (7.71 g, 99.97 mmol, 10 eq). The reaction mixture was stirred at 115° C. for 1 h. TLC (PE:EtOAc=1:1, SM Rf=0.50, TM Rf=0.22) showed that the reaction was complete. The reaction mixture was poured into 100 mL H2O. The mixture was adjusted to pH=7 with solid NaOH and extracted with DCM (3×100 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound ethyl 7-bromoquinazoline-2-carboxylate (2.7 g, crude) as a white solid, which was used for the next step directly without further purification.
To a solution of N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-en amide (0.68 g, 2.49 mmol, 1 eq) in dioxane (8 mL) and H2O (2 mL) were added ethyl 7-bromoquinazoline-2-carboxylate (699.8 mg, 2.49 mmol, 1 eq), Cs2CO3 (1.62 g, 4.98 mmol, 2 eq), RuPhos (116.2 mg, 248.96 μmol, 0.1 eq) and [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (104.1 mg, 124.48 μmol, 0.05 eq). The reaction mixture was stirred at 80° C. for 1 hr under N2. LCMS showed that the reaction was complete. The reaction mixture was poured into saturated EDTA (50 mL) and EtOAc (50 mL) was added. The solution was stirred at 25° C. for 1 h, extracted with EtOAc (3×100 mL). The combined organic layer was washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue washed with EtOAc (5 mL) to afford the title compound ethyl 7-[3-(prop-2-enoylamino)phenyl]quinazoline-2-carboxylate (0.7 g, 2.02 mmol, 80.94% yield) as a white solid. LC-MS (ES+, m/z): 348.1 [(M+H)+].
To a solution of ethyl 7-[3-(prop-2-enoylamino)phenyl]quinazoline-2-carboxylate (0.3 g, 863.64 μmol, 1 eq) in MeOH (8 mL) and H2O (2 mL) was added LiOH·H2O (108.7 mg, 2.59 mmol, 3 eq). The reaction mixture was stirred at 15° C. for 1 h. TLC (DCM:MeOH=10:1) showed that the reaction was complete. The reaction mixture was concentrated in vacuo to afford the title compound 7-[3-(prop-2-enoylamino)phenyl]quinazoline-2-carboxylic acid (0.35 g, crude) as a white solid which was used for the next step directly without purification.
To a solution of 7-[3-(prop-2-enoylamino)phenyl]quinazoline-2-carboxylic acid (0.12 g, 375.81 μmol, 1 eq) in DMF (4 mL) were added acetic acid;ammonia (57.9 mg, 751.61 μmol, 2 eq) and TEA (190.1 mg, 1.88 mmol, 261.54 μL, 5 eq). Then, T3P (358.7 mg, 563.71 μmol, 335.26 μL, 50% purity, 1.5 eq) was added. The reaction mixture was stirred at 15° C. for 1 h. LCMS showed that the reaction was complete. The reaction mixture was poured into 50 mL H2O, extracted with EtOAc (3×50 mL). The combined organic layer was washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC (FA condition) to afford the title compound 7-[3-(prop-2-enoylamino)phenyl]quinazoline-2-carboxamide (10 mg, 30.75 μmol, 8.18% yield, 97.9% purity) as a white solid. 319.1 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) δ=10.38 (s, 1H), 9.76 (s, 1H), 8.30-8.41 (m, 4H), 8.17 (dd, J=8.58, 1.68 Hz, 1H), 7.90 (br s, 1H), 7.71 (d, J=8.00 Hz, 1H), 7.64 (d, J=8.14 Hz, 1H), 7.54 (t, J=7.88 Hz, 1H), 6.49 (dd, J=16.96, 10.08 Hz, 1H), 6.31 (dd, J=17.00, 1.88 Hz, 1H), 5.79-5.83 (m, 1H).
To a solution of 5-chloro-3-methyl-1H-pyrazolo[4,3-b]pyridine (0.3 g, 1.79 mmol, 1 eq) in THF (3 mL), NaH (107.4 mg, 2.69 mmol, 60% purity, 1.5 eq) was added to the solution at 0° C. Then the mixture was stirred at 0° C. for 0.5 h. SEMCl (447.7 mg, 2.69 mmol, 475.21 μL, 1.5 eq) was added to the solution at 0° C. Then stirred at 25° C. for 1 h. TLC (PE:EtOAc=4:1, SM Rf=0.43, TM Rf=0.65) showed that the reaction was complete. The reaction mixture was poured into ˜10 mL saturated NH4Cl. The mixture was extracted with EtOAc (3×10 mL), washed with brine (3×15 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound 2-[(5-chloro-3-methyl-pyrazolo[4,3-b]pyridin-1-yl) methoxy]ethyl-trimethyl-silane (0.5 g, 1.68 mmol, 93.78% yield) as a colorless oil.
To a solution of 2-[(5-chloro-3-methyl-pyrazolo[4,3-b]pyridin-1-yl) methoxy]ethyl-trimethyl-silane (0.2 g, 671.47 μmol, 1 eq) and N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (183.4 mg, 671.47 μmol, 1 eq) in dioxane (2 mL) and H2O (0.5 mL) were added Cs2CO3 (656.3 mg, 2.01 mmol, 3 eq), RuPhos (31.3 mg, 67.15 μmol, 0.1 eq) and RuPhos Pd G3 (28.1 mg, 33.57 μmol, 0.05 eq). The mixture was stirred at 100° C. for 1 hr under N2. The reaction was poured into ˜15 mL saturated EDTA and stirred at 25° C. for 1 h. The mixture was extracted with EtOAc (3×10 mL), washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1:1) to afford the title compound N-[3-[3-methyl-1-(2-trimethyl silylethoxy methyl) pyrazolo[4,3-b]pyridin-5-yl]phenyl]prop-2-enamide (0.25 g, 611.89 μmol, 91.13% yield) as a yellow oil. LC-MS (ES+, m/z): 409.2 [(M+H)+].
To a solution of N-[3-[3-methyl-1-(2-trimethylsilylethoxymethyl) pyrazolo[4,3-b]pyridin-5-yl]phenyl]prop-2-enamide (0.15 g, 367.14 μmol, 1 eq) in EtOH (2 mL) was added concentrated HCl (1.02 g, 10.35 mmol, 1 mL, 37% purity, 28.19 eq), and the mixture was stirred at 50° C. for 4 hr. The reaction was poured into ˜10 mL ice water and saturated NaHCO3 was added to adjust the pH to 7. The mixture was extracted with EtOAc (3×10 mL), washed with brine (3×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford the title compound N-[3-(3-methyl-1H-pyrazolo[4,3-b]pyridin-5-yl)phenyl]prop-2-enamide (0.0156 g, 56.05 μmol, 15.27% yield, 100% purity) as a white solid. LC-MS (ES+, m/z): 279.0 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) Shift=12.94 (br s, 1H), 10.32 (s, 1H), 8.41-8.35 (m, 1H), 8.02 (d, J=8.8 Hz, 1H), 7.87 (d, J=8.9 Hz, 1H), 7.86-7.77 (m, 2H), 7.45 (t, J=7.9 Hz, 1H), 6.56-6.43 (m, 1H), 6.29 (dd, J=2.0, 17.0 Hz, 1H), 5.84-5.71 (m, 1H), 2.59 (s, 3H).
To a solution of 5-bromo-3-methyl-1H-pyrazolo[3,4-b]pyridine (0.3 g, 1.41 mmol, 1 eq) in THF (3 mL) was added NaH (84.9 mg, 2.12 mmol, 60% purity, 1.5 eq) at 0° C. under N2. Then the mixture was stirred at 0° C. for 0.5 h. SEMCl (283.1 mg, 1.7 mmol, 300.48 μL, 1.2 eq) was added to the solution at 0° C. then stirred at 25° C. for 1 hr. LCMS showed that the reaction was complete. The reaction was poured into ˜15 mL saturated NH4Cl and extracted with EtOAc (3×10 mL), washed with brine (3×10 mL), dried over by anhydrous Na2SO4, filtered and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=4:1) to afford the title compound 2-[(5-bromo-3-methyl-pyrazolo[3,4-b]pyridin-1-yl) methoxy]ethyl-trimethyl-silane (0.15 g, 438.2 μmol, 30.97% yield) as a white solid. LC-MS (ES+, m/z): 342.1/344.1 [(M+H)+].
To a solution of 2-[(5-bromo-3-methyl-pyrazolo[3,4-b]pyridin-1-yl) methoxy]ethyl-trimethyl-silane (0.08 g, 233.71 μmol, 1 eq) and N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (76.6 mg, 280.45 μmol, 1.2 eq) in dioxane (2 mL) and H2O (0.5 mL) were added Cs2CO3 (228.4 mg, 701.13 μmol, 3 eq), RuPhos (10.9 mg, 23.37 μmol, 0.1 eq) and RuPhos Pd G3 (19.6 mg, 23.37 μmol, 0.1 eq) at 25° C. The mixture was stirred at 100° C. for 1 h under N2. TLC (PE:EtOAc=1:1, SM Rf=0.49, TM Rf=0.01) showed that the reaction was complete. The reaction was poured into ˜15 mL saturated EDTA and stirred at 25° C. for 1 h. The mixture was extracted with EtOAc (3×10 mL), washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1:1) to afford the title compound N-[3-[3-methyl-1-(2-trimethylsilylethoxymethyl) pyrazolo[3,4-b]pyridin-5-yl]phenyl]prop-2-enamide (0.08 g, 195.81 μmol, 83.78% yield) as a brown oil.
To a solution of N-[3-[3-methyl-1-(2-trimethylsilylethoxymethyl) pyrazolo[3,4-b]pyridin-5-yl]phenyl]prop-2-enamide (0.1 g, 244.76 μmol, 1 eq) in EtOH (4 mL) was added concentrated HCl (2.04 g, 20.7 mmol, 2 mL, 37% purity, 84.58 eq) and the mixture was stirred at 50° C. for 2 hr. The reaction was poured into 10 mL saturated NaHCO3 to adjust the pH to 8. The mixture was extracted with EtOAc (3×15 mL), washed with brine (3×30 mL), dried over by anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC (neutral condition) to afford the title compound N-[3-(3-methyl-1H-pyrazolo[3,4-b]pyridin-5-yl)phenyl]prop-2-enamide (0.025 g, 88.12 μmol, 36.00% yield, 98.1% purity) as a white solid. LC-MS (ES+, m/z): 279.0 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) Shift=13.29 (s, 1H), 10.28 (s, 1H), 8.75 (d, J=2.2 Hz, 1H), 8.40 (d, J=2.2 Hz, 1H), 8.03 (s, 1H), 7.69 (dd, J=2.6, 5.9 Hz, 1H), 7.49-7.42 (m, 2H), 6.57-6.36 (m, 1H), 6.35-6.19 (m, 1H), 5.93-5.65 (m, 1H), 2.55 (s, 3H).
To a solution of methyl 5-chloro-1-(2-trimethylsilylethoxymethyl) pyrazolo[3,4-c]pyridine-3-carboxylate (0.9 g, 2.63 mmol, 1 eq) and 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (634.5 mg, 2.9 mmol, 1.1 eq) in dioxane (8 mL) and H2O (2 mL) were added RuPhos (122.9 mg, 263.26 μmol, 0.1 eq), Cs2CO3 (2.57 g, 7.9 mmol, 3 eq) and [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (110.1 mg, 131.63 μmol, 0.05 eq) at 25° C. under N2. The reaction mixture was stirred at 100° C. for 1 h. The reaction mixture was poured into saturated EDTA (20 mL) and stirred for 20 min. The mixture was extracted with EtOAc (2×20 mL). The combined organic layer was washed with brine (2×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 1/1) to afford the title compound methyl 5-(3-aminophenyl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrazolo[3,4-c]pyridine-3-carboxylate (760 mg, 1.91 mmol, 72.44% yield) as a yellow oil.
To a solution of methyl 5-(3-aminophenyl)-1-(2-trimethylsilyl ethoxymethyl)pyrazolo[3,4-c]pyridine-3-carboxylate (660 mg, 1.66 mmol, 1 eq) in DCM (7 mL) was added TEA (502.7 mg, 4.97 mmol, 691.52 μL, 3 eq) at 0° C. Then, prop-2-enoyl chloride (299.8 mg, 3.31 mmol, 270.07 μL, 2 eq) was added. The reaction mixture was stirred at 25° C. for 0.5 h. Upon completion of the reaction as indicated by LCMS and TLC. The reaction mixture was poured into water (20 mL) and extracted with DCM (2×30 mL). The combined organic layer was washed with brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 1/1) to afford the title compound methyl 5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxy methyl)pyrazolo[3,4-c]pyridine-3-carboxylate (760 mg, crude) as a yellow oil. TLC (PE:EtOAc=1:1, SM=0.45, TM=0.49), LC-MS (ES+, m/z): 453.1 [(M+H)+].
To a solution of methyl 5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilyl ethoxymethyl) pyrazolo[3,4-c]pyridine-3-carboxylate (610 mg, 1.35 mmol, 1 eq) in THF (12 mL) and H2O (3 mL) was added LiOH·H2O (565.6 mg, 13.48 mmol, 10 eq). The resulting reaction mixture was stirred at 30° C. for 2 h. The reaction mixture was poured into water (20 mL), extracted with EtOAc (2×20 mL). The combined organic layer was washed with brine (2×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound 5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxymethyl)pyrazolo[3,4-c]pyridine-3-carboxylic acid (830 mg, crude) as a yellow solid.
To a solution of 5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilyl ethoxymethyl) pyrazolo[3,4-c]pyridine-3-carboxylic acid (70 mg, 159.62 μmol, 1 eq) in DMF (2 mL) were added methanamine;hydrochloride (32.3 mg, 478.85 μmol, 3 eq) and TEA (80.8 mg, 798.08 μmol, 111.08 μL, 5 eq). Then, T3P (152.4 mg, 239.42 μmol, 142.39 μL, 50% purity, 1.5 eq) was added. The reaction mixture was stirred at 15° C. for 1 h. TLC (DCM:MeOH=10:1, SM Rf=0.04, TM Rf=0.36) showed that the reaction was complete. The reaction mixture was poured into 10 mL H2O, extracted with EtOAc (3×50 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound N-methyl-5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilyl ethoxymethyl) pyrazolo[3,4-c]pyridine-3-carboxamide (60 mg, 132.86 μmol, 83.24% yield) as a yellow oil.
To a solution of 5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilyl ethoxymethyl) pyrazolo[3,4-c]pyridine-3-carboxamide (50 mg, 114.27 μmol, 1 eq) in EtOH (1 mL) was added concentrated HCl (0.5 mL, 37% purity). The reaction mixture was heated to 50° C. and stirred at 50° C. for 2.5 h. LCMS showed that the reaction was complete. The reaction was concentrated under N2 to give the residue. The residue was purified by prep-HPLC to afford the title compound 5-[3-(prop-2-enoylamino)phenyl]-1H-pyrazolo[3,4-c]pyridine-3-carboxamide (8.6 mg, 26.56 μmol, 23.24% yield, 94.9% purity) as a white solid. 308.0 [(M+H)+], 1H NMR (400 MHz, DMSO-d6), 5 ppm 5.58 (1H, s), 5.68-5.84 (1H, m), 6.30 (1H, dd, J=16.8, 1.87 Hz), 6.47 (1H, dd, J=16.8, 10.14 Hz), 7.25 (1H, s), 7.45 (1H, t, J=8.0 Hz), 7.56 (1H, br s), 7.76-7.87 (2H, m), 7.94 (1H, br s), 8.05-8.26 (1H, m), 8.39 (1H, s), 8.45-8.58 (1H, m), 9.20 (1H, s), 10.31 (1H, s), 14.17 (1H, br s).
To a solution of 6-chloro-1H-pyrrolo[3,2-c]pyridine (0.2 g, 1.31 mmol, 1 eq) in ACN (6 mL) was added Boc2O (343.3 mg, 1.57 mmol, 361.36 μL, 1.2 eq) and DMAP (192.2 mg, 1.57 mmol, 1.2 eq). The reaction mixture was stirred at 25° C. for 2 hr. TLC (PE:EtOAc=4:1, SM Rf=0.12, TM Rf=0.35) showed that the reaction was complete. The reaction mixture was concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, PE:EtOAc=4:1) to afford the title compound tert-butyl 6-chloropyrrolo[3,2-c]pyridine-1-carboxylate (0.24 g, 949.76 μmol, 72.46% yield) as a white solid.
To a solution of N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-en amide (0.15 g, 549.18 μmol, 1 eq) in dioxane (4 mL) and H2O (1 mL) were successively added tert-butyl 6-chloropyrrolo[3,2-c]pyridine-1-carboxylate (111 mg, 439.34 μmol, 0.8 eq), Cs2CO3 (357.9 mg, 1.1 mmol, 2 eq), RuPhos (25.6 mg, 54.92 μmol, 0.1 eq) and [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (23 mg, 27.46 μmol, 0.05 eq). The reaction mixture was stirred at 80° C. for 1 hr under N2. TLC (PE:EtOAc=1:1, SM Rf=0.56, TM Rf=0.26) showed that the reaction was complete. The reaction mixture poured into saturated EDTA (50 mL) and EtOAc (50 mL) was added. The solution was stirred at 25° C. for 1 h. The mixture was extracted with EtOAc (3×100 mL). The combined organic layer was washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1:1) to afford the title compound tert-butyl 6-[3-(prop-2-enoylamino)phenyl]pyrrolo[3,2-c]pyridine-1-carboxylate (0.15 g, 412.76 μmol, 75.16% yield) as a yellow oil.
To a solution of tert-butyl 6-[3-(prop-2-enoylamino)phenyl]pyrrolo[3,2-c]pyridine-1-carboxylate (0.12 g, 330.21 μmol, 1 eq) in DCM (2 mL) was added TFA (3.08 g, 27.01 mmol, 2 mL, 81.80 eq). The mixture was stirred at 15° C. for 2 h. LCMS showed that the reaction was complete. The reaction mixture was poured into 50 mL H2O and adjusted to pH=7 with saturated NaHCO3, extracted with EtOAc (2×50 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC (FA condition) to afford the title compound N-[3-(1H-pyrrolo[3,2-c]pyridin-6-yl)phenyl]prop-2-enamide (9.6 mg, 36.46 μmol, 11.04% yield, 100% purity) as a white solid. LC-MS (ES+, m/z): 264.1 [(M+H)+]1H NMR (400 MHz, DMSO-d6) δ=12.22 (br s, 1H), 10.37 (s, 1H), 9.10 (s, 1H), 8.39 (s, 1H), 8.00 (s, 1H), 7.67-7.78 (m, 3H), 7.48-7.55 (m, 1H), 6.84 (br s, 1H), 6.49 (dd, 7=16.98, 10.00 Hz, 1H), 6.30 (dd, J=16.98, 1.96 Hz, 1H), 5.78-5.83 (m, 1H).
To a solution of methyl 5-bromo-1H-indazole-3-carboxylate (2 g, 7.84 mmol, 1 eq) and 2-(chloromethoxy)ethyl-trimethyl-silane (1.57 g, 9.41 mmol, 1.67 mL, 1.2 eq) in THF (30 mL) was added NaH (470.4 mg, 11.76 mmol, 60% purity, 1.5 eq) at 0° C. under N2. The reaction mixture was stirred at 0° C. for 2 hours. The reaction was quenched by 20 mL saturated NH4Cl, extracted with EtOAc (3×30 mL), and the combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=4:1 to 2:1) to afford the title compound methyl 5-bromo-1-(2-trimethylsilyl ethoxymethyl) indazole-3-carboxylate (2.1 g, 5.45 mmol, 69.50% yield) as a white solid. LC-MS (ES+, m/z): 385.0/386.9 [(M+H)+].
To a solution of N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (354.4 mg, 1.3 mmol, 1 eq) and methyl 5-bromo-1-(2-trimethylsilylethoxymethyl)indazole-3-carboxylate (500 mg, 1.3 mmol, 1 eq) in dioxane (8 mL) and H2O (2 mL) was added Na2CO3 (412.6 mg, 3.89 mmol, 3 eq) and Pd(dppf)Cl2 (95 mg, 129.76 μmol, 0.1 eq) under N2. The reaction mixture was stirred at 100° C. for 1 h. TLC showed that the reaction was complete. The reaction mixture was poured into saturated EDTA (40 mL) and 20 mL EtOAc was added. The solution was stirred for 1 h. After that the aqueous phase was extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (3×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. After column chromatography (SiO2, PE:EtOAc=3:1 to 1:1) to afford the title compound methyl 5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxymethyl)indazole-3-carboxylate (900 mg, 1.99 mmol) as a yellow solid. LC-MS (ES+, m/z): 452.0 [(M+H)+].
To a solution of methyl 5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxymethyl) indazole-3-carboxylate (450 mg, 996.48 μmol, 1 eq) in THF (8 mL) and H2O (2 mL) was added LiOH·H2O (418.2 mg, 9.96 mmol, 10 eq). The reaction mixture was stirred at 20° C. for 20 hours. LCMS showed that the reaction was complete. The reaction was poured into 40 mL water, adjusting the pH=6 with saturated critic acid. Then the aqueous phase was extracted with EtOAc (3×30 mL), and the combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo to afford the title compound 5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxymethyl)indazole-3-carboxylic acid (320 mg, crude) as a yellow gum. LC-MS (ES+, m/z): 438.0 [(M+H)+].
To a solution of 5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxymethyl)indazole-3-carboxylic acid (100 mg, 228.54 μmol, 1 eq) and 3-aminopropanenitrile (24 mg, 342.81 μmol, 25.29 μL, 1.5 eq) in DCM (2 mL) was added Et3N (115.6 mg, 1.14 mmol, 159.05 μL, 5 eq) T3P (218.2 mg, 342.81 μmol, 203.88 μL, 50% purity, 1.5 eq) under N2. The reaction mixture was stirred at 20° C. for 1 h. The reaction mixture was poured into 40 mL water, extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (3×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound N-(2-cyanoethyl)-5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxymethyl)indazole-3-carboxamide (70 mg, 142.96 μmol, 62.55% yield) as a yellow gum. LC-MS (ES+, m/z): 507.1 [(M+H)+].
To a solution of N-[1-(2-hydroxyethyl)-4-piperidyl]-5-[3-(prop-2-enoyl amino)phenyl]-1-(2-trimethylsilylethoxymethyl)indazole-3-carboxamide (60 mg, 106.43 μmol, 1 eq) in EtOH (2 mL) was added concentrated HCl (1.02 g, 10.35 mmol, 1 mL, 37% purity, 97.26 eq) under N2. The reaction mixture was stirred at 50° C. for 3 hours. The solvent was removed by blowing with N2 to give the residue. The residue was purified by prep-HPLC (PA condition) to afford the title compound N-[l-(2-hydroxyethyl)-4-piperidyl]-5-[3-(prop-2-enoylamino)phenyl]-1H-indazole-3-carboxamide (6.8 mg, 15.14 μmol, 14.22% yield, 96.5% purity) as a white solid. 434.2. 1H NMR (400 MHz, DMSO-d6) δ=13.63 (br s. 1H), 10.27 (s, 1H), 8.41 (s, 1H), 8.22 (br d, J=8.0 Hz, 1H), 8.17 (s, 1H), 8.06 (s, 1H), 7.74-7.65 (m, 3H), 7.48-7.38 (m, 2H), 6.53-6.42 (m, 1H), 6.34-6.24 (m, 1H), 5.78 (br d, J=12.0 Hz, 1H), 3.84 (br s, 1H), 3.51 (br t, J=6.4 Hz, 2H), 2.92 (br d, J=11.6 Hz, 2H), 2.11 (br t, J=11.6 Hz, 2H), 1.77 (br s, 2H), 1.74-1.63 (m, 2H)
To a solution of N-[4-[2-methoxyethyl(methyl)amino]cyclohexyl]-5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxymethyl)indazole-3-carboxamide (0.08 g, 132.05 μmol, 1 eq) in EtOH (0.3 mL) was added concentrated HCl (102 mg, 1.04 mmol, 0.1 mL, 37% purity, 7.84 eq). The reaction mixture was stirred at 50° C. for 1 hr. The reaction was concentrated under N2 to give a residue. The residue was purified by prep-HPLC (FA condition) to afford the title compound N-[4-[2-methoxyethyl(methyl)amino]cyclohexyl]-5-[3-(prop-2-enoylamino)phenyl]-1H-indazole-3-carboxamide (0.0062 g, 13.04 μmol, 9.87% yield, 100% purity) as a pink solid. LC-MS (ES+, m/z): 476.3 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) Shift=13.63 (br s, 1H), 10.27 (s, 1H), 8.40 (d, J=8.7 Hz, 1H), 8.18 (s, 1H), 8.12 (d, J=8.3 Hz, 1H), 8.05 (s, 1H), 7.88 (br d, J=7.6 Hz, 1H), 7.74-7.66 (m, 3H), 7.47-7.42 (m, 1H), 7.41-7.37 (m, 1H), 6.55-6.39 (m, 1H), 6.33-6.23 (m, 1H), 5.81-5.72 (m, 1H), 4.08 (br s, 1H), 3.87-3.73 (m, 1H), 3.42 (br d, J=2.4 Hz, 2H), 3.25 (s, 3H), 2.69-2.59 (m, 2H), 2.42 (br s, 1H), 2.27 (d, J=5.0 Hz, 3H), 1.91 (br d, J=12.0 Hz, 2H), 1.79 (br d, J=11.2 Hz, 1H), 1.72-1.64 (m, 1H), 1.62-1.50 (m, 2H), 1.50-1.41 (m, 1H), 1.40-1.28 (m, 1H).
To a solution of methyl 2-bromoacetate (1.71 g, 11.17 mmol, 1.05 mL, 1.1 eq), 6-bromo-1H-indazole (2 g, 10.15 mmol, 1 eq) in DMF (20 mL) was added K2CO3 (2.81 g, 20.3 mmol, 2 eq) at 25° C. The reaction mixture was stirred at 25° C. for 3 h. The reaction mixture was poured into ice-water (60 mL) and the aqueous phase was extracted with EtOAc (3×30 mL). The combined organic phase was washed with brine (3×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by silica gel chromatography (SiO2, PE:EtOAc=10:1, 3:1) to afford the title compound methyl 2-(6-bromoindazol-1-yl)acetate (2 g, 7.43 mmol, 73.22% yield) to afford the title compound methyl 2-(6-bromoindazol-2-yl)acetate (0.7 g, 2.6 mmol, 25.63% yield) as a light yellow solid. LCMS (ES+, m/z): 269.1, 271.0 [(M+H)+].
To a solution of 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (800 mg, 3.65 mmol, 1 eq), methyl 2-(6-bromoindazol-1-yl)acetate (1.08 g, 4.02 mmol, 1.1 eq) in dioxane (8 mL) and H2O (2 mL) was added Na2CO3 (774.1 mg, 7.3 mmol, 2 eq), Pd(dppf)Cl2 (267.2 mg, 365.15 μmol, 0.1 eq) under N2. The reaction mixture was stirred at 100° C. for 1 h. The reaction mixture was poured into saturated EDTA (50 mL) and stirred for 60 min. The aqueous phase was extracted with EtOAc (3×50 mL). The combined organic layer was washed with brine (3×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by silica gel chromatography (SiO2, PE:EtOAc=10:1, 3:1) to afford the title compound (0.7 g, 2.49 mmol, 68.15% yield) as a yellow oil. LCMS (ES+, m/z): 282.2 [(M+H)+].
To a solution of methyl 2-[6-(3-aminophenyl)indazol-1-yl]acetate (200 mg, 710.96 μmol, 1 eq) in DCM (2 mL) were added TEA (143.9 mg, 1.42 mmol, 197.92 μL, 2 eq) and prop-2-enoyl chloride (77.2 mg, 853.15 μmol, 69.57 μL, 1.2 eq) at 0° C. The reaction mixture was stirred at 0° C. for 1 h. LCMS showed ˜20% of the starting material remaining. Then, additional prop-2-enoyl chloride (32.2 mg, 355.48 μmol, 28.99 μL, 0.5 eq) was added and the mixture was stirred at 0° C. for further 1 h. LCMS showed that the reaction was complete. The reaction mixture was poured into H2O (20 mL) and the aqueous phase was extracted with DCM (3×20 mL). The combined organic layer was washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound (220 mg, crude) as a brown solid. LCMS (ES+, m/z): 336.1 [(M+H)+].
To a solution of methyl 2-[6-[3-(prop-2-enoylamino)phenyl]indazol-1-yl]acetate (150 mg, 447.29 μmol, 1 eq) in THF (5 mL) and H2O (1.25 mL) was added LiOH·H2O (37.5 mg, 894.57 μmol, 2 eq) at 25° C. The mixture was stirred at 25° C. for 1 h. TLC showed that the reaction was complete. The reaction mixture was poured into H2O (20 mL) and the pH was adjusted to ˜5 with IN HCl. The aqueous phase was extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound (150 mg, crude) as a white solid.
To a solution of 2-[6-[3-(prop-2-enoylamino)phenyl]indazol-1-yl]acetic acid (50 mg, 155.6 μmol, 1 eq), l-methylpiperidin-4-amine (26.7 mg, 233.41 μmol, 1.5 eq) in DMF (2 mL) was added TEA (78.7 mg, 778.02 μmol, 108.29 μL, 5 eq) and T3P (148.5 mg, 233.41 μmol, 138.81 μL, 50% purity, 1.5 eq) at 25° C. The reaction mixture was stirred at 25° C. for 1 h. The reaction mixture was poured into H2O (20 mL) and the aqueous phase was extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (3×20 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by prep-HPLC to afford the title compound (17.2 mg, 39.47 μmol, 25.37% yield, 95.810% purity) as a white solid. 418.3. 1H NMR (400 MHz, DMSO-d6) 5=10.28 (s, 1H), 8.25 (d, J=8.0 Hz, 1H), 8.09 (s, 1H), 8.04 (s, 1H), 7.83 (s, 1H), 7.84 (d, J=8.4 Hz, 1H), 7.69 (d, J=6.4 Hz, 1H), 7.48-7.38 (m, 3H), 6.48 (dd, J=10.4 Hz, 17.2 Hz, 1H), 6.31 (dd, J=2.0 Hz, 16.8 Hz, 1H), 5.80 (dd, J=2.0 Hz, 10.0 Hz, 1H), 5.12 (s, 2H), 3.53-3.50 (m, 1H), 2.73 (br d, J=12.0 Hz, 2H), 2.18 (s, 3H), 2.01 (br s, 2H), 1.78-1.71 (m, 2H), 1.52-1.42 (m, 2H)
To a solution of 3-chloroisoquinolin-5-amine (0.3 g, 1.68 mmol, 1 eq) in MeOH (5 mL) was added formaldehyde (151.3 mg, 5.04 mmol, 138.80 μL, 3 eq), AcOH (100.9 mg, 1.68 mmol, 96.06 μL, 1 eq) and NaBH3CN (527.7 mg, 8.4 mmol, 5 eq). The reaction mixture was stirred at 50° C. for 1 hr under N2. TLC (PE:EtOAc=3:1; SM=0.34, Rf=0.44) showed 25% of the starting material remained. The reaction mixture was poured into H2O (20 mL), extracted with DCM (3×10 mL). The combined organic layer was washed with brine (2×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, PE:EtOAc=3:1) to afford the title compound 3-chloro-N-methyl-isoquinolin-5-amine (0.13 g, 674.82 μmol, 40.18% yield) as a yellow solid. LC-MS (ES+, m/z): 193.0 [(M+H)+]
To a solution of N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (119.1 mg, 436.04 μmol, 1.2 eq) in dioxane (2 mL) and H2O (0.5 mL) were added 3-chloro-N-methyl-isoquinolin-5-amine (0.07 g, 363.36 μmol, 1 eq), Cs2CO3 (355.2 mg, 1.09 mmol, 3 eq) dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (17 mg, 36.34 μmol, 0.1 eq) and [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (30.4 mg, 36.34 μmol, 0.1 eq). The reaction mixture was stirred at 120° C. for 3 hr under N2. LCMS showed ˜40% of the starting material remained. The reaction mixture was poured into 20 mL saturated EDTA. Then 20 mL EtOAc was added. The solution was stirred at 20° C. for 1 hr. The aqueous phase was separated and extracted with EtOAc (2×20 mL). The combined organic layer was washed with 30 mL brine, dried over Na2SO4 and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC (FA condition) to afford the title compound N-[3-[5-(methylamino)-3-isoquinolyl]phenyl]prop-2-enamide (0.0106 g, 34.94 μmol, 9.62% yield, 100.0% purity) as a yellow solid. 304.1. 1H NMR (400 MHz, DMSO-d6) 5 ppm 10.297 (s, 1H) 9.208 (s, 1H) 8.560 (s, 1H) 8.498 (s, 1H) 7.922 (d, 7=8.0 Hz, 1H) 7.834 (br d, J=8.0 Hz, 1H) 7.465 (td, J=8.0, 6.11 Hz, 2H) 7.273 (d, J=8.0 Hz, 1H) 6.762-6.813 (m, 1H) 6.645 (d, J=7.6 Hz, 1H) 6.451-6.529 (m, 1H) 6.315 (d, J=2.0 Hz, 1H) 5.751-5.801 (m, 1H) 2.906 (d, J=4.8 Hz, 3H)
To a solution of methyl 2-(6-bromoindazol-2-yl)acetate (500.5 mg, 1.86 mmol, 1 eq) and 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (489 mg, 2.23 mmol, 1.2 eq) in dioxane (4 mL) and H2O (1 mL) was added Na2CO3 (591.4 mg, 5.58 mmol, 3 eq) and Pd(dppf)Cl2. CH2Cl2 (30.4 mg, 37.2 μmol, 0.02 eq). The reaction mixture was stirred at 100° C. for 0.5 hr under N2. TLC showed 10% of the starting material remained. The reaction mixture was poured into 40 mL saturated EDTA then 20 mL EtOAc was added. The solution was stirred at 20° C. for 1 hr. The aqueous phase was separated and washed with EtOAc (3×20 mL). After that the aqueous phase was concentrated in vacuo to give a residue. The residue re-dissolved with (DCM:MeOH=10:1, 3×30 mL). Then removing the precipitate by filtration. The filtrate was concentrated in vacuo to afford the title compound 2-[6-(3-aminophenyl)indazol-2-yl]acetic acid (0.24 g, crude) as a yellow oil. LC-MS (ES+, m/z): 268.4 [(M+H)+].
To a solution of 2-[6-(3-aminophenyl)indazol-2-yl]acetic acid (0.18 g, 673.45 μmol, 1 eq) in DMF (2 mL) were added 1-methylpiperidin-4-amine (153.8 mg, 1.35 mmol, 2 eq), TEA (204.4 mg, 2.02 mmol, 281.21 μL, 3 eq) and T3P (857.1 mg, 1.35 mmol, 801.04 μL, 50% purity, 2 eq). The reaction mixture was stirred at 15° C. for 1 hr under N2. TLC (DCM:MeOH=10:1; SM=0.0, Rf=0.12) showed that the reaction was complete. The reaction mixture was poured into H2O (30 mL) and extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (2×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, 5% TEA, DCM:MeOH=10:1) to afford the title compound 2-[6-(3-aminophenyl)indazol-2-yl]-N-(l-methyl-4-piperidyl)acetamide (0.03 g, 82.54 μmol, 12.26% yield) as a light yellow solid. LC-MS (ES+, m/z): 364.4 [(M+H)+].
To a solution of 2-[6-(3-aminophenyl)indazol-2-yl]-N-(1-methyl-4-piperidyl) acetamide (0.025 g, 68.78 μmol, 1 eq) in DCM (2 mL) were added TEA (20.9 mg, 206.35 μmol, 28.72 μL, 3 eq) and prop-2-enoyl chloride (7.5 mg, 82.54 μmol, 6.73 μL, 1.2 eq) at 0° C. The reaction mixture was stirred at 15° C. for 0.5 hr under N2. LCMS showed that the reaction was complete. The reaction mixture was poured into H2O (10 mL), extracted with DCM (3×10 mL). The combined organic layer was washed with brine (2×10 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC (FA condition) to afford the title compound N-[3-[2-[2-[(l-methyl-4-piperidyl)amino]-2-oxo-ethyl]indazol-6-yl]phenyl]prop-2-enamide (0.0077 g, 17.65 μmol, 25.66% yield, 95.7% purity) as a yellow solid. 1H NMR (400 MHz, DMSO-d6) δ ppm 10.26 (s, 1H) 8.37 (s, 1H) 8.32 (br d, J=7.6 Hz, 1H) 8.20 (s, 1H) 8.04 (s, 1H) 7.83 (d, J=8.8 Hz, 1H) 7.76 (s, 1H) 7.63-7.71 (m, 1H) 7.43 (d, J=5.2 Hz, 1H) 7.32 (dd, J=8.8, 1.32 Hz, 1H) 6.41-6.52 (m, 1H) 6.24-6.33 (m, 1H) 5.74-5.81 (m, 1H) 5.11 (s, 2H) 2.77 (br d, J=12.0 Hz, 2H) 2.21 (s, 3H) 2.07 (br t, J=10.8 Hz, 2H) 1.77 (br d, J=10.4 Hz, 2H) 1.40-1.54 (m, 2H).
To a solution of 7-bromo-2,4-dichloro-quinazoline (0.3 g, 1.08 mmol, 1 eq) in i-PrOH (2 mL) was added 2-methoxyethanamine (81.1 mg, 1.08 mmol, 93.83 μL, 1 eq) and DIEA (279 mg, 2.16 mmol, 376.02 μL, 2 eq). The reaction mixture was stirred at 15° C. for 1 h. TLC (PE:EtOAc=1:1, SM Rf=0.53, TM Rf=0.05) showed that the reaction was complete. The reaction mixture was poured into 50 mL H2O, extracted with EtOAc (3×50 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL)). Then dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound 7-bromo-2-chloro-N-(2-methoxyethyl)quinazolin-4-amine (0.37 g, crude) as a white solid which was used for the next step directly without further purification.
To a solution of 7-bromo-2-chloro-N-(2-methoxyethyl)quinazolin-4-amine (0.32 g, 1.01 mmol, 1 eq) in i-PrOH (3 mL) was added methanamine; hydrochloride (1.36 g, 20.22 mmol, 20 eq) and DIEA (2.61 g, 20.22 mmol, 3.52 mL, 20 eq). The reaction mixture was stirred at 100° C. for 24 h. LCMS showed 7% of the starting material remaining. The reaction mixture was poured into 50 mL H2O, extracted with PE:EtOAc (3×50 mL), and the combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL). Then dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound 7-bromo-N4-(2-methoxyethyl)-N2-methyl-quinazoline-2,4-diamine (0.35 g, crude) as a yellow oil which was used for the next step directly without further purification.
To a solution of N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (80 mg, 292.9 μmol, 1 eq) in dioxane (2 mL) and H2O (0.5 mL) was added 7-bromo-N4-(2-ethoxyethyl)-N2-methyl-quinazoline-2,4-diamine (72.9 mg, 234.32 μmol, 0.8 eq), Cs2CO3 (190.9 mg, 585.79 μmol, 2 eq), RuPhos (13.7 mg, 29.29 μmol, 0.1 eq) and [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (12.3 mg, 14.64 μmol, 0.05 eq). The reaction mixture was stirred at 80° C. for 1 hr under N2. LCMS showed that the reaction was complete. The reaction mixture was poured into saturated EDTA (50 mL) and EtOAc (50 mL) was added. The solution was stirred at 25° C. for 1 h. The mixture was extracted with EtOAc (3×100 mL), and the combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL). Then dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound N-[3-[4-(2-methoxyethylamino)-2-(methylamino)quinazolin-7-yl]phenyl]prop-2-enamide (11 mg, 28.42 μmol, 9.70% yield, 97.5% purity) as a white solid. 378.1. 1H NMR (400 MHz, DMSO-d6) δ=10.28 (s, 1H), 8.05-8.19 (m, 4H), 7.67 (br d, J=7.08 Hz, 1H), 7.34-7.54 (m, 4H), 6.69 (s, 1H), 6.47 (dd, J=16.96, 10.08 Hz, 1H), 6.29 (dd, J=17.06, 1.90 Hz, 1H), 5.76-5.82 (m, 1H), 3.67 (br s, 2H), 3.53-3.63 (m, 2H), 3.28 (s, 3H), 2.86 (br d, 1=4.40 Hz, 3H).
To a solution of 7-bromo-2,4-dichloro-quinazoline (0.3 g, 1.08 mmol, 1 eq) in i-PrOH (3 mL) was added DIEA (1.4 g, 10.79 mmol, 1.88 mL, 10 eq). Then methanamine;hydrochloride (1.46 g, 21.59 mmol, 20 eq) was added and the reaction mixture was stirred at 100° C. for 15 h. LCMS showed that the reaction was complete. The reaction mixture was poured into 50 mL H2O, extracted with EtOAc (3×50 mL), and the combined organic layer was washed with H2O (2×50 mL) and brine (2×50 mL). Then dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound 7-bromo-N2,N4-dimethyl-quinazoline-2,4-diamine (0.3 g, crude) as a yellow solid which was used for the next step without further purification. LC-MS (ES+, m/z): 267.0 [(M+H)+]
To a solution of N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (80 mg, 292.9 μmol, 1 eq) in dioxane (2 mL) and H2O (0.5 mL) was added 7-bromo-N2,N4-dimethyl-quinazoline-2,4-diamine (62.6 mg, 234.32 μmol, 0.8 eq), Cs2CO3 (190.9 mg, 585.79 μmol, 2 eq), RuPhos (13.7 mg, 29.29 μmol, 0.1 eq) and [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (12.3 mg, 14.64 μmol, 0.05 eq). The reaction mixture was stirred at 80° C. for 1 hr under N2. LCMS showed that the reaction was complete. The reaction mixture was poured into saturated EDTA aqueous solution (50 mL) and EtOAc (50 mL) was added. The solution was stirred at 25° C. for 1 h, extracted with EtOAc (3×100 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL). Then dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC (PA condition) to afford the title compound N-[3-[2,4-bis(methylamino)quinazolin-7-yl]phenyl]prop-2-enamide (12.5 mg, 37.16 μmol, 12.69% yield, 99.1% purity) as a white solid. LC-MS (ES+, m/z): 334.1 [(M+H)+]1H NMR (400 MHz, DMSO-d6) δ=10.26 (s, 1H), 8.19 (s, 1H), 8.13 (br s, 1H), 8.02 (br d, J=8.44 Hz, 2H), 7.66 (br d, J=7.20 Hz, 1H), 7.40-7.53 (m, 3H), 7.33 (dd, J=8.44, 1.60 Hz, 1H), 6.46 (m, 2H), 6.29 (dd, J=16.94, 2.02 Hz, 1H), 5.77-5.81 (m, 1H), 2.97 (br s, 3H), 2.86 (br d, J=4.16 Hz, 3H).
To a solution of 6-bromo-2,4-dichloro-quinazoline (0.3 g, 1.08 mmol, 1 eq) in i-PrOH (5 mL) was added DIEA (2.79 g, 21.6 mmol, 3.76 mL, 20 eq) and (2,4-dimethoxyphenyl) methanamine (3.61 g, 21.6 mmol, 3.25 mL, 20 eq). The reaction mixture was stirred at 100° C. for 4 h. LCMS showed that the reaction was complete. The reaction mixture was poured into 50 mL H2O, extracted with EtOAc (3×50 mL), and the combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL). Then dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=4:1 to 2/1) to afford the title compound 6-bromo-N2,N4-bis[(2,4-dimethoxyphenyl)methyl]quinazoline-2,4-diamine (0.55 g, 1.02 mmol, 94.41% yield) as a yellow solid. LC-MS (ES+, m/z): 539.2 [(M+H)+]
To a solution of N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (0.15 g, 549.18 μmol, 1 eq) in dioxane (4 mL) and H2O (1 mL) was added 6-bromo-N2,N4-bis[(2,4-dimethoxyphenyl)methyl]quinazoline-2,4-diamine (237 mg, 439.34 μmol, 0.8 eq), Cs2CO3 (357.9 mg, 1.1 mmol, 2 eq), RuPhos (25.6 mg, 54.92 μmol, 0.1 eq) and [2-(2-aminophenyl)phenyl]-methyl sulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (23 mg, 27.46 μmol, 0.05 eq). The reaction mixture was stirred at 80° C. for 1 hr under N2. LCMS showed that the reaction was complete. The reaction mixture was poured into saturated EDTA (50 mL) and EtOAc (50 mL) was added. The solution was stirred at 25° C. for 1 h, extracted with EtOAc (3×100 mL), and the combined organic layer was washed with H2O (2×50 mL) and brine (2×50 mL). Then dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound N-[3-[2,4-bis[(2,4-dimethoxyphenyl)methylamino]quinazolin-6-yl]phenyl]prop-2-enamide (0.2 g, 330.21 μmol, 60.13% yield) as a yellow solid. LC-MS (ES+, m/z): 606.3 (M+H)+]
To a solution of N-[3-[2,4-bis[(2,4-dimethoxyphenyl)methylamino]quinazolin-6-yl]phenyl]prop-2-enamide (0.1 g, 165.1 μmol, 1 eq) in DCM (3 mL) was added TFA (1.54 g, 13.51 mmol, 1 mL, 81.80 eq). The reaction mixture was stirred at 15° C. for 1 h. LCMS showed that the reaction was complete. The reaction mixture was poured into 50 mL H2O and adjusted to pH=7 with saturated NaHCO3. The mixture was extracted with EtOAc (3×50 mL), and the combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL). Then dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC (basic condition) to afford the title compound N-[3-(2,4-diaminoquinazolin-6-yl)phenyl]prop-2-enamide (10 mg, 31.8 μmol, 19.26% yield, 97.1% purity) as a white solid. LC-MS (ES+, m/z): 306.0 [(M+H)+]1H NMR (400 MHz, DMSO-d6) δ=10.22 (s, 1H), 8.28 (d, J=1.76 Hz, 1H), 7.96 (s, 1H), 7.74 (dd, J=8.70, 1.88 Hz, 1H), 7.64 (br d, J=7.28 Hz, 1H), 7.32-7.49 (m, 4H), 7.27 (d, J=8.60 Hz, 1H), 6.47 (dd, J=16.88, 10.00 Hz, 1H), 6.28 (dd, J=16.98, 1.98 Hz, 1H), 6.02 (s, 2H), 5.74-5.81 (m, 1H).
To a solution of 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (0.5 g, 2.28 mmol, 1 eq) in DMF (2 mL) was added 2-fluoroprop-2-enoic acid (308.3 mg, 3.42 mmol, 1.5 eq), TEA (692.8 mg, 6.85 mmol, 952.96 μL, 3 eq) and T3P (1.09 g, 3.42 mmol, 1.02 mL, 1.5 eq). The reaction mixture was stirred at 15° C. for 1 hr under N2. TLC (PE:EtOAc=3:1; SM=0.41, Rf=0.51) showed that the reaction was complete. The reaction mixture was poured into H2O (30 mL), extracted with EtOAc (3×30 mL). The combined organic layer was washed with brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was triturated with PE (20 mL) to afford the title compound 2-fluoro-N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (0.5 g, 1.72 mmol, 75.26% yield) as a white solid. LC-MS (ES+, m/z): 292.1 [(M+H)+].
To a solution of 2-fluoro-N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (0.06 g, 206.1 μmol, 1 eq) in dioxane (2 mL) and H2O (0.5 mL) was added 7-bromoquinazolin-2-amine (46.2 mg, 206.1 μmol, 1 eq), Cs2CO3 (201.5 mg, 618.3 μmol, 3 eq) dicyclohexyl-[2-(2,6-diisopropoxy phenyl)phenyl]phosphane (9.6 mg, 20.61 μmol, 0.1 eq) and [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (8.6 mg, 10.31 μmol, 0.05 eq). The reaction mixture was stirred at 100° C. for 1 hr under N2. LCMS showed that the reaction was complete. The reaction was poured into 20 mL saturated EDTA and 20 mL EtOAc was added. The solution was stirred at 20° C. for 1 hr. Then the aqueous phase was separated, extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine 30 mL, dried over Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC (neutral condition) to afford the title compound N-[3-(2-aminoquinazolin-7-yl)phenyl]-2-fluoro-prop-2-enamide (0.0177 g, 57.41 μmol, 27.86% yield, 100.0% purity) as a white solid. The residue was purified by prep-HPLC to afford the title compound 2-fluoro-N-[3-[2-(methylamino)quinazolin-7-yl]phenyl]prop-2-enamide (0.0155 g, 48.09 μmol, 23.33% yield, 100.0% purity) as a yellow solid. 323.1. 1H NMR (400 MHz, DMSO-d6) δ ppm 10.402 (br s, 1H) 9.119 (br s, 1H) 8.217 (s, 1H) 7.804-7.929 (m, 2H) 7.710 (br s, 1H) 7.602 (br d, 7=7.70 Hz, 1H) 7.509 (q, 7=7.8 Hz, 2H) 7.393 (br s, 1H) 5.822 (d, 7=3.6 Hz, 1H) 5.477 (dd, 7=15.6, 3.61 Hz, 1H) 2.925 (d, 7=4.8 Hz, 3H).
TABLE 12 shows compounds synthesized using methods described in EXAMPLE 12 above.
To a solution of 5-chloro-1H-pyrazolo[3,4-c]pyridine (1 g, 6.51 mmol, 1 eq) in DMF (10 mL) was added NIS (2.2 g, 9.77 mmol, 1.5 eq). The reaction mixture was stirred at 25° C. for 1 hr. The reaction mixture was poured into water (20 mL) and extracted with EtOAc (3×10 mL). The combined organic layer were washed with brine (3×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 1/1) to afford the title compound (1.2 g, 65.9% yield) as a yellow solid.
To a solution of 5-chloro-3-iodo-1H-pyrazolo[3,4-c]pyridine (1 g, 3.58 mmol, 1 eq) in THF (2 mL) was added NaH (214.7 mg, 5.37 mmol, 60% purity, 1.5 eq) at 0° C. The reaction mixture was stirred at 0° C. for 0.5 h. Then SEMCl (715.9 mg, 4.29 mmol, 759.96 μL, 1.2 eq) was added. The resulting reaction mixture was stirred at 0° C. for further 1 hr. The reaction mixture was poured into saturated NH4Cl (100 mL) and extracted with EtOAc (3×50 mL). The combined organic layer were washed with brine (3×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound (1.3 g, 88.7% yield) as a yellow solid.
To a solution of 2-[(5-chloro-3-iodo-pyrazolo[3,4-c]pyridin-1-yl)methoxy]ethyl-trimethyl-silane (0.5 g, 1.22 mmol, 1 eq) in DMF (4 mL) and MeOH (1 mL) were added TEA (370.5 mg, 3.66 mmol, 509.56 μL, 3 eq) and Pd(dppf)Cl2 (89.3 mg, 122.03 μmol, 0.1 eq). The reaction mixture was stirred at 50° C. for 8 hrs under CO at 15 psi. LCMS showed that the reaction was complete. The reaction mixture was poured into water (150 mL) and extracted with EtOAc (3×150 mL). The combined organic layer were washed with brine (3×150 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=1/0 to 10:1) to afford the title compound (0.35 g, 83.9% yield) as a yellow solid.
To a solution of methyl 5-chloro-1-(2-trimethylsilylethoxymethyl) pyrazolo[3,4-c]pyridine-3-carboxylate (0.2 g, 585.03 μmol, 1 eq) and 3-chloro-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (178 mg, 702.03 μmol, 1.2 eq) in dioxane (4 mL) and H2O (1 mL) were added dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (27.3 mg, 58.5 μmol, 0.1 eq), Cs2CO3 (571.8 mg, 1.76 mmol, 3 eq) and [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (24.5 mg, 29.25 μmol, 0.05 eq). The reaction mixture was stirred at 100° C. for 1 hr under N2. The reaction mixture were poured into water (15 mL) and extracted with EtOAc (3×15 mL). The combined organic layer were washed with brine (3×15 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1:1) to afford the title compound (0.11 g, 43.4% yield) as a yellow oil.
To a solution of methyl 5-(3-amino-5-chloro-phenyl)-1-(2-trimethylsilylethoxymethyl)pyrazolo[3,4-c]pyridine-3-carboxylate (0.9 g, 2.08 mmol, 1 eq) in DCM (18 mL) were added TEA (631 mg, 6.24 mmol, 867.96 μL, 3 eq) and prop-2-enoyl chloride (376.3 mg, 4.16 mmol, 338.98 μL, 2 eq) in DCM (0.5 mL) at 0° C. The resulting reaction mixture was stirred at 0° C. for 0.5 hr under N2. The reaction mixture were poured into ice water (100 mL) and extracted with DCM (3×50 mL). The combined organic layer was washed with brine (3×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 1/1) to afford the title compound (0.7 g, 69.2% yield) as a yellow solid.
To a solution of methyl 5-[3-chloro-5-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilyl ethoxymethyl)pyrazolo[3,4-c]pyridine-3-carboxylate (0.5 g, 1.03 mmol, 1 eq) in THF (12.5 mL) and H2O (3.1 mL) was added LiOH·H2O (430.8 mg, 10.27 mmol, 10 eq). The reaction mixture was stirred at 30° C. for 3 hrs. The reaction mixture were poured into ice water (20 mL), adjusted to pH=6 with saturated citric acid and extracted with EtOAc (3×30 mL). The combined organic layer were washed with brine (3×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the crude product (0.5 g) as a yellow solid.
To a solution of 5-[3-chloro-5-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxymethyl) pyrazolo[3,4-c]pyridine-3-carboxylic acid (0.13 g, 274.84 μmol, 1 eq) and 1-methylpiperidin-4-amine (47.1 mg, 412.27 μmol, 1.5 eq) in DMF (2 mL) were added TEA (83.4 mg, 824.53 μmol, 114.76 μL, 3 eq) and T3P (262.4 mg, 412.27 μmol, 245.19 μL, 50% purity, 1.5 eq). The reaction mixture was stirred at 25° C. for 1 hr under N2. The reaction mixture were poured into water (15 mL) and extracted with EtOAc (3×15 mL). The combined organic layer were washed with brine (3×15 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=8:1) to afford the title compound (0.11 g, 70.3% yield) as a white solid.
To a solution of 5-[3-chloro-5-(prop-2-enoylamino)phenyl]-N-(1-methyl-4-piperidyl)-1-(2-trimethylsilylethoxymethyl)pyrazolo[3,4-c]pyridine-3-carboxamide (0.05 g, 87.85 μmol, 1 eq) in EtOH (0.3 mL) was added concentrated HCl (8.7 mg, 87.85 μmol, 8.49 μL, 37% purity, 1 eq). The reaction mixture was stirred at 50° C. for 1 hr. The reaction mixture was concentrated in vacuo. The residue was purified by prep-HPLC to afford the title compound (23.8 mg, 29.7% yield) as a white solid. LC-MS (ES+, m/z): 439.1.
To a solution of 3-chloro-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (300 mg, 1.18 mmol) and Et3N (358.5 mg, 3.55 mmol) in DCM (10 mL) at 0° C. was added a solution of prop-2-enoyl chloride (128.5 mg, 1.42 mmol) in DCM (0.5 mL). The resulting solution was stirred at 0° C. for 2 h. The reaction mixture was diluted with water (30 mL) and extracted with DCM (3×20 mL). The combined organic phase was washed with brine (3×20 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by chromatography on silica gel eluting with 0-80% EtOAc/PE to afford the title compound (0.145 g, Yield 39%) as a white solid.
To a solution of 7-bromoquinolin-4-amine (33 mg, 147.94 μmol) in dioxane (2 mL) and water (0.4 mL) were added N-[3-chloro-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (50.1 mg, 162.73 μmol), Cs2CO3 (144.2 mg, 443.81 μmol) and PdCl2dppf (12.1 mg, 14.79 μmol). The reaction was heated at 100° C. for 40 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of EDTA was added. The resulting solution was stirred at r.t. for 30 minutes. The solution was washed with brine. The organic phases was dried over anhydrous sodium sulfate. The solvent was removed in vacuo. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (9 mg, Yield 18%). FC-MS: [M+H]+323.9
To a mixture of 3-bromo-5-methyl-aniline (2 g, 10.75 mmol, 1 eq) in dioxane (10 mL) was added KOAc (5.27 g, 53.75 mmol, 5 eq), Pin2B2 (4.09 g, 16.12 mmol, 1.5 eq) and Pd(dppf)Cl2 (786.6 mg, 1.07 mmol, 0.1 eq) under N2. Then the mixture was stirred at 100° C. for 1 h. LCMS showed ˜60% of the starting material remaining. Then additional Pin2B2 (5.46 g, 21.5 mmol, 2 eq) was added and the mixture was stirred at 100° C. for further 2 h. The reaction mixture was poured into saturated EDTA (50 mL) and stirred for 60 min. The aqueous phase was extracted with EtOAc (3×30 mL). The combined organic layer was washed with brine (3×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by silica gel chromatography (SiO2, PE:EtOAc=10:1, 3:1) to afford the title compound (3 g, 7.72 mmol, 71.83% yield, 60% purity) as a white solid. LCMS (ES+, m/z): 234.1 [(M+H)+]1H NMR (400 MHz, DMSO-d6) δ=6.74 (s, 1H), 6.66 (s, 1H), 6.48 (s, 1H), 4.93 (s, 2H), 2.15 (s, 3H), 1.26 (s, 12H).
To a solution of 3-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (2.3 g, 5.92 mmol, 6.20 μL, 1 eq) in DCM (20 mL) was added TEA (1.2 g, 11.84 mmol, 1.65 mL, 2 eq) and prop-2-enoyl chloride (803.7 mg, 8.88 mmol, 724.05 μL, 1.5 eq) at 0° C. The reaction mixture was stirred at 0° C. for 1 h. TLC showed that the reaction was complete. The reaction mixture was poured into H2O (60 mL) and the aqueous phase was extracted with DCM (3×50 mL). The combined organic layer was washed with brine (3×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by silica gel chromatography (SiO2, PE:EtOAc=10:1, 5:1) to afford the title compound (1.3 g, 4.53 mmol, 76.47% yield) as a white solid. 1H NMR (400 MHz, DMSO-d6) 5=10.05 (s, 1H), 7.77 (s, 1H), 7.67 (s, 1H), 7.20 (s, 1H), 6.41 (dd, J=10.0, 17.2 Hz, 1H), 6.24 (dd, J=2.0, 17.2 Hz, 1H), 5.77-5.71 (dd, J=2.0, 10.0 Hz, 1H), 2.29 (s, 3H), 1.28 (s, 12H).
To a solution of N-[3-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (100 mg, 348.24 μmol, 1.2 eq), 6-bromoquinolin-4-amine (64.7 mg, 290.2 μmol, 1 eq) in dioxane (3 mL), H2O (0.75 mL) were added Cs2CO3 (283.7 mg, 870.59 μmol, 3 eq), [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium; dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (12.1 mg, 14.51 μmol, 0.05 eq), dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (13.5 mg, 29.02 μmol, 0.1 eq) under N2. The reaction mixture was stirred at 80° C. for 1 h. The reaction mixture was poured into saturated EDTA (20 mL) and stirred for 60 min. The aqueous phase was extracted with EtOAc (3×15 mL). The combined organic layer was washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by prep-HPLC to afford the title compound (10.1 mg, 33.29 μmol, 11.47% yield, 100% purity) as a white solid. 304.1. 1H NMR (400 MHz, DMSO-d6) δ=10.24 (s, 1H), 8.46 (s, 1H), 8.32 (d, J=5.6 Hz, 1H), 7.95-7.79 (m, 3H), 7.55 (s, 1H), 7.38 (s, 1H), 7.28 (s, 2H), 6.60 (d, J=5.6 Hz, 1H), 6.48 (dd, J=10.0, 16.8 Hz, 1H), 6.28 (dd, J=2.0, 17.2 Hz, 1H), 5.78 (dd, J=1.6, 10.0 Hz, 1H), 2.40 (s, 3H)
To a solution of N-[3-methyl-5-[3-methyl-1-(2-trimethylsilylethoxymethyl) pyrazolo[3,4-c]pyridin-5-yl]phenyl]prop-2-enamide (80 mg, 189.31 μmol, 1 eq) in EtOH (2 mL) was added concentrated HCl (1 mL). The reaction mixture was stirred at 50° C. for 1 h. The reaction mixture was poured into H2O (10 mL) and adjusted to pH=7 with saturated Na2CO3. The aqueous phase was extracted with EtOAc (3×15 mL). The combined organic layer was washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by prep-HPLC to afford the title compound (6.3 mg, 21.55 μmol, 11.38% yield, 100% purity) as a white solid. 293.1. 1H NMR (400 MHz, DMSO-d6) 5=13.20 (brs, 1H), 10.17 (s, 1H), 9.01 (s, 1H), 8.21 (d, J=4.4 Hz, 2H), 7.67 (s, 1H), 7.60 (s, 1H), 6.47 (dd, J=10.0, 17.2 Hz, 1H), 6.27 (dd, J=2.0, 16.8 Hz, 1H), 5.76 (dd, J=2.0, 10.10 Hz, 1H), 2.59 (s, 3H), 2.39 (s, 3H) PGP-1139 €3
To a solution of N-[3-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (126.2 mg, 439.47 μmol, 1 eq) and 2-[(5-bromo-3-methyl-indazol-1-yl)methoxy]ethyl-trimethyl-silane (0.15 g, 439.47 μmol, 1 eq) in dioxane (4 mL) and H2O (1 mL) was added Na2CO3 (139.7 mg, 1.32 mmol, 3 eq) and Pd(dppf)Cl2 (16.1 mg, 21.97 μmol, 0.05 eq). The reaction mixture was stirred at 80° C. for 1 h under N2. The reaction mixture was poured into 15 mL saturated EDTA and stirred at 25° C. for 1 hr. The mixture was extracted with EtOAc (2×20 mL). The combined organic layer was washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give the residue. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1:1) to afford the title compound N-[3-methyl-5-[3-methyl-1-(2-trimethylsilylethoxymethyl)indazol-5-yl]phenyl]prop-2-enamide (0.12 g, 170.78 μmol, 38.86% yield, 60% purity) as a colorless oil. LC-MS (ES+, m/z): 422.3 [(M+H)+].
To a solution of N-[3-methyl-5-[3-methyl-1-(2-trimethylsilylethoxymethyl)indazol-5-yl]phenyl]prop-2-enamide (0.04 g, 94.88 μmol, 1 eq) in EtOH (0.2 mL) was added aq.HCl (1 M aqueous solution, 800.00 μL, 8.43 eq). The reaction mixture was stirred at 50° C. for 4 hr. TLC showed that the reaction was complete. The reaction was concentrated under N2 to give the residue. The residue was purified by prep-HPLC (FA condition) to afford the title compound N-[3-methyl-5-(3-methyl-1H-indazol-5-yl)phenyl]prop-2-enamide (0.0037 g, 12.26 μmol, 12.92% yield, 96.5% purity) as a white solid. LC-MS (ES+, m/z): 292.1 [(M+H)+]. 1H NMR (400 MHz, DMSO-d6) δ=12.68 (br s, 1H), 10.15 (s, 1H), 7.90 (s, 1H), 7.80 (s, 1H), 7.62-7.57 (m, 1H), 7.55-7.51 (m, 1H), 7.49 (s, 1H), 7.25 (s, 1H), 6.46 (dd, 0.7=10.1, 17.0 Hz, 1H), 6.27 (dd, J=2.0, 17.0 Hz, 1H), 5.79-5.74 (m, 1H), 2.55-2.52 (m, 3H), 2.37 (s, 3H)
To a solution of 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (3.77 g, 14.85 mmol, 1.5 eq) in dioxane (40 mL) were added KOAc (2.91 g, 29.7 mmol, 3 eq), Pd(dppf)Cl2 (724.3 mg, 989.86 μmol, 0.1 eq) and 3-bromo-5-methoxy-aniline (2 g, 9.9 mmol, 1 eq). The mixture was stirred at 100° C. for 2 hrs. LC-MS showed that the reaction completed. The reaction mixture was filtered through celite. The filter cake was washed with EtOAc (2×20 mL) and the filtrate was concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=1/0 to 4:1) to afford the title compound (1.8 g, 70.1% yield) as a white solid.
To a solution of 3-methoxy-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (600 mg, 2.41 mmol, 1 eq) in DCM (5 mL) were added TEA (731.2 mg, 7.23 mmol, 1 mL, 3 eq) and prop-2-enoyl chloride (436 mg, 4.82 mmol, 392.78 μL, 2 eq) at 0° C. The mixture was stirred at 0° C. for 1 hr. LC-MS showed that the reaction was complete. The reaction mixture was poured into water (50 mL). The mixture was extracted with DCM (3×30 mL). The combined organic layer was washed with brine (30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=1/0 to 4:1) to afford the title compound (380 mg, 52.0% yield) as a yellow solid.
To a solution of N-[3-methoxy-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (76.7 mg, 253.07 μmol, 1.2 ef) in dioxane (4 mL) and H2O (1 mL) were added Cs2CO3 (206.1 mg, 632.67 μmol, 3 eq), RuPhos (19.7 mg, 42.18 μmol, 0.2 eq), [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (17.6 mg, 21.09 μmol, 0.1 eq) and 6-bromo-N-methyl-quinolin-4-amine (50 mg, 210.89 μmol, 1 eq). The mixture was stirred at 100° C. for 1 hr under N2. LC-MS showed that the reaction was complete. The reaction mixture was poured into saturated EDTA (50 mL) and stirred at 25° C. for 1 hr. The mixture was extracted with EtOAc (3×30 mL). The combined organic layer was washed with brine (30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford the title compound (22.7 mg, 32.3% yield) as a white solid. LC-MS (ES+, m/z): 334.1.
To a solution of 3-bromo-5-fluoro-aniline (1 g, 5.3 mmol, 1 eq) and 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (2.67 g, 10.5 mmol, 2 eq) in dioxane (10 mL) was added KOAc (1.55 g, 15.8 mmol, 3 eq) and Pd(dppf)Cl2 (385 mg, 526 μmol, 0.1 eq) at 25° C. The reaction mixture was stirred at 90° C. for 1 h. TLC showed that the reaction was complete. The reaction mixture was poured into 100 mL water, extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (3×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by prep-TLC (SiO2, PE:EtOAc=3:1) to afford the title compound (2.3 g, crude) as a brown oil. LC-MS (ES+, m/z): 238.1 [(M+H)+].
To a solution of 3-fluoro-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (0.6 g, 1.2 mmol, 46% purity, 1 eq) in DCM (5 mL) was added TEA (589 mg, 5.8 mmol, 810 μL, 5 eq) and prop-2-enoyl chloride (116 mg, 1.3 mmol, 105 μL, 1.1 eq) at 0° C. The reaction mixture was stirred at 0° C. for 0.5 hour. The reaction mixture was concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1:1) to afford the title compound (0.34 g, 893 μmol, 76.7% yield, 76.5% purity) as a brown oil. LC-MS (ES+, m/z): 291.1 [(M+H)+].
To a solution of N-[3-fluoro-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (132 mg, 348 μmol, 76.5% purity, 1 eq), 7-bromoquinazolin-2-amine (86 mg, 382 μmol, 1.1 eq) in dioxane (4 mL) H2O (1 mL) was added Cs2CO3 (340 mg, 1. mmol, 3 eq), [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (29.1 mg, 34.75 μmol, 0.1 eq) 2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium; dicyclohexyl-[2-(2,6-isopropoxyphenyl)phenyl]phosphane (16 mg, 35 μmol, 0.1 eq) at 25° C. The reaction mixture was stirred at 90° C. for 1 hour. The reaction mixture was poured into saturated EDTA (60 mL) and stirred for 60 min. The aqueous phase was extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (3×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound (0.08 g, crude) as a light yellow solid. LC-MS (ES+, m/z): 309.1 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) 5=10.51 (s, 1H), 9.15 (s, 1H), 8.18 (s, 1H), 7.90 (d, J=8.4 Hz, 1H), 7.80 (s, 1H), 7.67-7.75 (m, 1H), 7.62 (s, 1H), 7.49 (dd, J=8.4, 1.6 Hz, 1H), 7.36 (d, J=10.0 Hz, 1H), 6.93 (s, 2H), 6.41-6.49 (m, 1H), 6.34 (d, J=2.0 Hz, 1H), 6.30 (d, J=2.0 Hz, 1H), 6.23-6.37 (m, 1H), 5.81-5.86 (m, 1H), 2.52-2.58 (m, 1H).
A solution of 3-bromo-5-fluoro-aniline (1.5 g, 7.89 mmol, 1 eq) in dioxane (40 mL) was added 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (4.01 g, 15.8 mmol, 2 eq), KOAc (2.32 g, 23.7 mmol, 3 eq), and Pd(dppf)Cl2 (577 mg, 789 μmol, 0.1 eq). Then degassed and purged with N2 3 times. The resulting reaction mixture was stirred at 100° C. for 2 hours under N2 atmosphere. The reaction mixture was filtered to remove the insoluble substance and the filtrate was concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=5/1 to 0/1) to afford the title compound (1.5 g, 6.33 mmol, 80.15% yield) as a light yellow solid. LC-MS (ES+, m/z): 238.2 [(M+H)+].
To a solution of 3-fluoro-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (400 mg, 1.69 mmol, 1 eq) in DCM (10 mL) was added TEA (512 mg, 5.06 mmol, 704 μL, 3 eq) and prop-2-enoyl chloride (167 mg, 1.86 mmol, 151 μL, 1.1 eq). The reaction mixture was stirred at 0° C. for 1 hour. The reaction mixture was concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=20/1 to 10/1) to afford the title compound (400 mg, 1.37 mmol, 81.44% yield) as a white solid.
To a solution of N-[3-fluoro-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (58.6 mg, 201 μmol, 1.2 eq) in dioxane (4 mL) and H2O (1 mL) was 7-bromo-N-methyl-quinazolin-2-amine (40 mg, 168 μmol, 1 eq), Cs2CO3 (164.2 mg, 504.02 μmol, 3 eq), RuPhos (15.6 mg, 33.6 μmol, 0.2 eq) and [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (14 mg, 16.8 μmol, 0.1 eq). The reaction mixture was degassed and purged with N2 3 times. Then stirred at 100° C. for 1 hour under N2 atmosphere. The reaction mixture was poured into saturated EDTA (30 mL) and stirred for 1 hour, extracted with EtOAc (3×20 mL). The combined organic layers were washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound (14.6 mg, 44.89 μmol, 26.72% yield, 99.1% purity) as a white solid. 323.1. 1H NMR (400 MHz, DMSO-d6) δ=10.46 (s, 1H), 9.12 (br s, 1H), 7.83-7.94 (m, 2H), 7.65-7.77 (m, 2H), 7.47-7.56 (m, 1H), 7.40 (br d, J=9.6 Hz, 2H), 6.39-6.52 (m, 1H), 6.25-6.37 (m, 1H), 5.77-5.91 (m, 1H), 2.92 (d, J=4.8 Hz, 3H).
To a solution of 3-amino-5-bromo-benzoic acid (2 g, 9.26 mmol, 1 eq) in DCM (40 mL) was added TEA (7.49 g, 74. mmol, 10.3 mL, 8 eq) and MeNH2 (3.13 g, 46.2 mmol, 5 eq, HCl). Then T3P (8.84 g, 13.8 mmol, 8.26 mL, 50% purity, 1.5 eq) was added at 0° C. The resulting reaction mixture was stirred at 20° C. for 2 hours. The reaction mixture poured into water 100 mL at 0° C. Then adjusting pH=8 with solid Na2CO3, extracted with DCM (3×150 mL). The combined organic layers were washed with brine (100 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound (2. g, crude) as a light yellow solid. LC-MS (ES+, m/z): 229.1 [(M+H)+].
A solution of 3-amino-5-bromo-N-methyl-benzamide (1 g, 3.49 mmol, 80% purity, 1 eq) in dioxane (40 mL) was added 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (1.77 g, 6.98 mmol, 2 eq), KOAc (1.03 g, 10.5 mmol, 3 eq) and Pd(dppf)Cl2 (255 mg, 349 μmol, 0.1 eq). The reaction mixture was degassed and purged with N2 3 times, and the reaction mixture was stirred at 100° C. for 2 hours under N2 atmosphere. The reaction mixture was filtered through Celite and the filter cake was washed with 50 mL EtOAc. The combined filtrates were concentrated to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=5/1 to 0/1) to afford the title product (900 mg, 2.93 mmol, 83.9% yield, 90% purity) as a light yellow solid. LC-MS (ES+, m/z): 277.2 [(M+H)+].
A solution of 3-amino-N-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzamide (148 mg, 535 μmol, 1.2 eq) in dioxane (4 mL) and H2O (1 mL) was added 7-bromoquinazolin-2-amine (100 mg, 446 μmol, 1 eq), RuPhos (41 mg, 89 μmol, 0.2 eq), Cs2CO3 (436 mg, 1.34 mmol, 3 eq) and [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (37 mg, 44 μmol, 0.1 eq). The reaction mixture was degassed and purged with N2 3 times. The reaction mixture was stirred at 100° C. for 1 hour under N2 atmosphere. The reaction mixture was poured into saturated EDTA (30 mL) and stirred for 1 hour, extracted with EtOAc (3×20 mL). The combined organic layers were washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was washed with EtOAc (2 mL) to afford the title compound (50 mg, crude) as a light yellow solid. LC-MS (ES+, m/z): 294.2 [(M+H)+]
Procedure for R=03: To a solution of 3-amino-5-(2-aminoquinazolin-7-yl)-N-methyl-benzamide (40 mg, 136 μmol, 1 eq) in DCM (4 mL) and DMF (1 mL) was added TEA (41 mg, 409 μmol, 56 μL, 3 eq) and prop-2-enoyl chloride (14 mg, 163 μmol, 13 μL, 1.2 eq) at 0° C. The reaction mixture was stirred at 0° C. for 1 hour. The reaction mixture was poured into 50 mL water then adjusting the pH=8 with saturated Na2CO3. The mixture was extracted with DCM (3×15 mL). The combined organic layers were washed with brine (10 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound (3 mg, 8.35 μmol, 6.12% yield, 96.7% purity) as a white solid. 6.12% yield, LC-MS (ES+, m/z): 348.2 [(M+H)+]1H NMR (400 MHz, DMSO-d6) δ=10.45 (s, 1H), 9.15 (s, 1H), 8.66 (br d, J=4.4 Hz, 1H), 8.32 (s, 1H), 8.15 (s, 1H), 7.88-7.99 (m, 2H), 7.72 (s, 1H), 7.55 (br d, J=8.4 Hz, 1H), 6.91 (s, 2H), 6.40-6.53 (m, 1H), 6.26-6.37 (m, 1H), 5.81 (br d, J=10.8 Hz, 1H), 2.82 (br d, J=4.0 Hz, 3H). 23.2% yield, LC-MS (ES+, m/z): 335.1 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) 5=10.43 (s, 1H), 8.59 (br d, J=4.4 Hz, 1H), 8.24 (s, 1H), 8.12 (s, 1H), 8.09 (s, 1H), 7.91 (d, J=4.4 Hz, 2H), 7.88 (d, J=8.4 Hz, 1H), 7.47 (dd, J=8.4, 1.2 Hz, 1H), 6.42-6.54 (m, 1H), 6.26-6.35 (m, 1H), 5.77-5.86 (m, 1H), 4.12 (s, 3H), 2.83 (d, J=4.4 Hz, 3H).
To a solution of 3-amino-5-bromo-benzonitrile (2 g, 10.1 mmol, 1 eq) in dioxane (40 mL) was added 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (5.16 g, 20.3 mmol, 2 eq), KOAc (2.99 g, 30.4 mmol, 3 eq) and Pd(dppf)Cl2 (742 mg, 1.02 mmol, 0.1 eq). The reaction mixture was degassed and purged with N2 3 times. The resulting reaction mixture was stirred at 100° C. for 2 hours under N2 atmosphere. The reaction mixture was filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=5/1 to 0/1) to afford the title compound (1.3 g, 5.33 mmol, 52.47% yield) as a light yellow solid.
Procedure for R=10: To a solution of 3-amino-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzonitrile (168 mg, 688 μmol, 1.2 eq) in dioxane (4 mL) and H2O (1 mL) was added 7-bromoquinazoline (120 mg, 574 μmol, 1 eq), Cs2CO3 (561 mg, 1.72 mmol, 3 eq), [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (48 mg, 57 μmol, 0.1 eq) and RuPhos (53 mg, 114 μmol, 0.2 eq). The reaction mixture was degassed and purged with N2 3 times. Then stirred at 100° C. for 1 hour under N2 atmosphere. The reaction mixture poured into saturated EDTA (30 mL) and EtOAc (20 mL) was added. The solution was stirred for 1 hour. The insoluble substance was removed by filtration. The filtrate was concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound (40 mg, 154 μmol, 26.8% yield, 95% purity) as a white solid. LC-MS (ES+, m/z): 247.1 [(M+H)+].
To a solution of 3-amino-5-quinazolin-7-yl-benzonitrile (30 mg, 121 μmol, 1 eq) in DCM (5 mL) was added TEA (61 mg, 609 μmol, 84 μL, 5 eq) and the solution of prop-2-enoyl chloride (22 mg, 243 μmol, 19 μL, 2 eq) in DCM (1 mL) was added dropwise at 0° C. The resulting reaction mixture was stirred at 0° C. for 0.5 hour. The reaction mixture was poured into ice water (10 mL) at 0° C. The mixture was extracted with DCM (3×15 mL). The combined organic layers were washed with brine (10 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound ((6.3 mg, 18.9 μmol, 15.52% yield, 90.1% purity) as a white solid. LC-MS (ES+, m/z): 301.1 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) δ=10.42 (br s, 1H), 9.65 (s, 1H), 9.35 (s, 1H), 8.39 (s, 1H), 8.30 (s, 1H), 8.31 (d, J=7.6 Hz, 1H), 8.21 (s, 1H), 8.10 (d, J=8.4 Hz, 1H), 8.06 (s, 1H), 6.41-6.51 (m, 1H), 6.31-6.40 (m, 1H), 5.85 (dd, J=10.0, 1.6 Hz, 1H).
TABLE 13 shows compounds synthesized using methods described in EXAMPLE 13 above.
A mixture of 5-bromo-2-methyl-aniline (2 g, 10.75 mmol, 1 eq), 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (4.09 g, 16.12 mmol, 1.5 eq), KOAc (3.16 g, 32.25 mmol, 3 eq), Pd(dppf)Cl2 (786.6 mg, 1.07 mmol, 0.1 eq) in dioxane (30 mL), was degassed and purged with N2 3 times, and the mixture was stirred at 100° C. for 2 hours under N2 atmosphere. The reaction mixture was filtered through Celite and the filter cake was washed with EtOAc (2×20 mL). The combined organic layer was concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=0/1 to 8/1) to afford the title compound (1 g, 4.29 mmol, 50.00% yield) as a white solid. LC-MS (ES+, m/z): 234.2 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) δ ppm 6.98 (s, 1H), 6.91 (d, J=12 Hz, 1H), 6.79 (d, J=7.06 Hz, 1H), 6.77-6.79 (m, 1H), 4.80 (s, 2H), 2.05 (s, 3H), 1.26 (s, 12H).
To a solution of 2-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (500 mg, 2.14 mmol 1 eq) in DCM (5 mL) was added TEA (651.1 mg, 6.43 mmol, 895 μL, 3 eq). Then prop-2-enoyl chloride (213.5 mg, 2.36 mmol, 192 uL 1.1 eq) at was added dropwise 0° C. The mixture was stirred at 0° C. for 1 h. The reaction mixture was poured into water (50 mL). The mixture was extracted with EtOAc (3×30 mL). The combined organic layers were washed with brine (1×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=1/0 to 8/1) to afford the title compound (380 mg, 1.32 mmol, 61.70% yield) as a light yellow solid. LC-MS (ES+, m/z): 288.2 [(M+H)+]
To a solution of N-[2-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (66.3 mg, 231.01 μmol, 1.1 eq) in dioxane (4 mL) and H2O (1 mL) was successively added Cs2CO3 (205.3 mg, 630. μmol, 3 eq), 7-bromo-N-methyl-quinazolin-2-amine (50 mg, 210. μmol, 1 eq), [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (17.6 mg, 21 μmol, 0.1 eq), RuPhos (19.6 mg, 42 μmol, 0.2 eq). The resulting reaction mixture was stirred at 100° C. for 1 hr under N2. LC-MS showed that the reaction was complete. The reaction mixture was poured into saturated EDTA (50 mL). The mixture was stirred at 25° C. for 1 h. The mixture was extracted with EtOAc (3×30 mL). The combined organic layers were washed with brine (1×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound (12.7 mg, 39.89 μmol, 18.99% yield, 100% purity) as a yellow solid. 319.1. 1H NMR (400 MHz, DMSO-d6) 5=9.59 (brs, 1H), 9.00-9.22 (m, 1H), 8.01 (br s, 1H), 7.86 (br d, J=7.6 Hz, 1H), 7.62-7.70 (m, 1H), 7.53 (br dd, J=20.0, 7.6 Hz, 2H), 7.27-7.40 (m, 2H), 6.49-6.73 (m, 1H), 6.29 (br d, J=17.2 Hz, 1H), 6.21-6.25 (m, 1H), 2.91 (br d, J=2.8 Hz, 3H), 2.22-2.32 (m, 3H).
A mixture of 5-bromo-2-methoxy-aniline (2 g, 9.9 mmol, 1 eq), 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (3.77 g, 14.85 mmol, 1.5 eq), KOAc (2.91 g, 29.7 mmol, 3 eq), Pd(dppf)Cl2 (724.3 mg, 989.86 μmol, 0.1 eq) in dioxane (30 mL), was degassed and purged with N2 3 times, and the mixture was stirred at 100° C. for 2 hr under N2 atmosphere. The reaction mixture was filtered through Celite and the filter cake was washed with EtOAc (2×20 mL). The combined filtrates were concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=0/1 to 8/1) to afford the title compound (2 g, 7.23 mmol, 90.00% yield, 90% purity) as a white solid. 1H NMR (400 MHz, DMSO-d6) δ=7.00 (d, J=1.6 Hz, 1H), 6.88-6.93 (m, 1H), 6.77 (d, 7=8.0 Hz, 1H), 4.66 (s, 2H), 3.77 (s, 3H), 1.25 (s, 12H).
To a solution of 2-methoxy-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (500 mg, 2.01 mmol, 1 eq) in DCM (3 mL) was added TEA (609.3 mg, 6.02 mmol, 838 μL, 3 eq) and prop-2-enoyl chloride (199.8 mg, 2.21 mmol, 180 μL, 1.1 eq) at 0° C. The mixture was stirred at 0° C. for 1 hr. TLC indicated the reaction was complete. The reaction mixture was poured into cold water (50 mL). The mixture was extracted with DCM (3×30 mL). The combined organic layers were washed with brine (1×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=1/0 to 8/1) to afford the title compound (350 mg, 1.15 mmol, 57.52% yield) as a white solid.
To a solution of N-[2-methoxy-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (81.5 mg, 268.98 μmol, 1.2 eq) in dioxane (4 mL) and H2O (1 mL) was successively added Cs2CO3 (219.1 mg, 672.44 μmol, 3 eq), RuPhos (20.9 mg, 44.83 μmol, 0.2 eq), [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (18.8 mg, 22.41 μmol, 0.1 eq) and 7-bromoquinolin-2-amine (50 mg, 224.15 μmol, 1 eq). The mixture was stirred at 100° C. for 1 hr under N2 atmosphere. LC-MS showed that the reaction was complete. The reaction mixture was poured into saturated EDTA (50 mL). The mixture was stirred at 25° C. for 1 hr. The mixture was extracted with EtOAc (3×30 mL). The combined organic layers were washed with brine (1×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound (7.7 mg, 23.27 μmol, 10.38% yield, 96.5% purity) as a white solid. 1H NMR (400 MHz, DMSO-d6) 5=9.50 (s, 1H), 8.51 (br d, J=1.2 Hz, 1H), 7.89 (d, J=8.8 Hz, 1H), 7.68 (d, J=8.4 Hz, 1H), 7.61 (d, J=1.2 Hz, 1H), 7.49 (dd, J=8.4, 2.4 Hz, 1H), 7.39 (dd, J=8.0, 1.6 Hz, 1H), 7.17 (d, J=8.8 Hz, 1H), 6.70-6.80 (m, 2H), 6.43 (s, 2H), 6.27 (dd, J=16.0 Hz, 1H), 5.59-5.86 (m, 1H), 3.91 (s, 3H).
TABLE 14 shows compounds prepared using the methods described in EXAMPLE 14 above.
To a solution of 2-bromopyridin-4-amine (0.9 g, 5.2 mmol, 1 eq) in DCM (10 mL) was added TEA (2.63 g, 26.01 mmol, 3.62 mL, 5 eq) and prop-2-enoyl chloride (565 mg, 6.24 mmol, 509.00 μL, 1.2 eq). The reaction mixture was stirred at 0° C. for 1 h under N2. LCMS showed that the reaction was complete. The reaction mixture was poured into 100 mL H2O. The mixture was extracted with DCM (3×50 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound N-(2-bromo-4-pyridyl)prop-2-enamide (0.88 g, 2.33 mmol, 44.70% yield, 60% purity) as a white solid. LC-MS (ES+, m/z): 227.2 [(M+H)+]
To a solution of N-(2-bromo-4-pyridyl)prop-2-enamide (0.2 g, 880.83 μmol, 1 eq) and 6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinolin-4-amine (594.9 mg, 2.2 mmol, 2.5 eq) in dioxane (4 mL) and H2O (1 mL) was added Na2CO3 (280.1 mg, 2.64 mmol, 3 eq) and Pd(dppf)Cl2 (64.5 mg, 88.08 μmol, 0.1 eq). The reaction was heated to 100° C. under N2 and stirred for 1 h. LCMS showed that the reaction was complete. The reaction mixture was poured into saturated EDTA (50 mL) and stirred for 60 min. The mixture was extracted with EtOAc (3×30 mL), and the combined organic layers were washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC (PA condition) to afford the title compound N-[2-(4-amino-6-quinolyl)-4-pyridyl]prop-2-enamide (14.4 mg, 48.36 μmol, 5.49% yield, 97.5% purity) as a white solid. 291.1. 1H NMR (400 MHz, DMSO-d6) 5===10.75 fs, 1H), 8.82 (d, j 1.63 Hz, 1H), 8.60 (d, J=5.50 Hz, 1H), 8.33 (d, J=5.45 Hz, 1H), 8.31 (s, 1H), 8.21-8.28 (m, 2H), 7.87 (d, J=8.88 Hz, 1H), 7.66 (dd, J=5.50, 1.75 Hz, 1H), 7.35 (s, 2H), 6.61 (d, J=5.38 Hz, 1H), 6.52 (dd, J=16.95, 10.07 Hz, 1H), 6.36 (dd, J=17.01, 1.88 Hz, 1H), 5.84-5.92 (m, 1H).
To a solution of N-(2-bromo-4-pyridyl)prop-2-enamide (50 mg, 220.21 μmol, 1 eq), 7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinazolin-2-amine (119.4 mg, 440.42 μmol, 2 eq) in dioxane (3 mL), H2O (0.75 mL) was added Cs2CO3 (215.2 mg, 660.63 μmol, 3 eq), [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium; dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (9.2 mg, 11.01 μmol, 0.05 eq) and dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (10.3 mg, 22.02 μmol, 0.1 eq) at 25° C. The reaction mixture was stirred at 100° C. for 1 h. The reaction mixture was poured into saturated EDTA (20 mL) and stirred for 60 min. The aqueous phase was extracted with EtOAc (3×20 mL). The combined organic phase was washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by prep-TLC. Then further purified by prep-HPLC to afford the title compound N-[2-(2-aminoquinazolin-7-yl)-4-pyridyl]prop-2-enamide (6.3 mg, 21.63 μmol, 9.82% yield, 100% purity) as a white solid. 292.1. 1H NMR (400 MHz, DMSO-d6) 5=10.65 (s, 1H), 9.15 (s, 1H), 8.61 (d, J=5.6 Hz, 1H), 8.30 (d, J=1.2 Hz, 1H), 7.96 (s, 1H), 7.92 (d, J=4.8 Hz, 1H), 7.82 (dd, J=1.6, 8.4 Hz, 1H), 7.67 (dd, J=1.6, 5.2 Hz, 1H), 6.91 (s, 2H), 6.48 (dd, J=10.0, 16.8 Hz, 1H), 6.36 (dd, J=2.0, 17.2 Hz, 1H), 5.91 (dd, J=1.6, 9.6 Hz, 1H)
To a solution of methyl 6-bromopyridine-2-carboxylate (1 g, 4.63 mmol, 1 eq) in dioxane (20 mL) was added 4-ditert-butylphosphanyl-N,N-dimethyl-aniline;dichloropalladium (262.2 mg, 370.32 μmol, 262.21 μL, 0.08 eq) and tributyl(tributylstannyl)stannane (5.37 g, 9.26 mmol, 4.63 mL, 2 eq). The reaction mixture was stirred at 100° C. for 4 h under N2. LCMS showed that the reaction was complete. The reaction mixture was poured into H2O (50 mL). The mixture was extracted with EtOAc (2×30 mL), and the combined organic layers were washed with H2O (2×30 mL) and brine (2×30 mL). Then dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound methyl 6-tributylstannylpyridine-2-carboxylate (6 g, crude) as an black brown oil which was used for the next step directly without further purification. LC-MS (ES+, m/z): 428.1 [(M+H)+]
To a solution of 2-bromopyridin-4-amine (0.5 g, 2.89 mmol, 1 eq) and methyl 6-tributyl stannylpyridine-2-carboxylate (4.93 g, 11.56 mmol, 4 eq) in DMF (5 mL) was added Pd(PPh3)4 (334 mg, 289 μmol, 0.1 eq) and CuI (55 mg, 289 μmol, 0.1 eq). The reaction mixture was heated to 100° C. under N2 and stirred at 100° C. for 5 h. LCMS showed that the reaction was complete. The reaction mixture was poured into saturated EDTA (60 mL) and stirred for 60 min, extracted with EtOAc (3×40 mL), and the combined organic layer was washed with H2O (2×40 mL) and brine (2×50 mL). Then dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound 6-(4-amino-2-pyridyl)pyridine-2-carboxylic acid (100 mg, 464.67 μmol, 16.08% yield) as a white solid. LC-MS (ES+, m/z): 216.0 [(M+H)+]
To a solution of 6-(4-amino-2-pyridyl)pyridine-2-carboxylic acid (80 mg, 371.73 μmol, 1 eq) in DMF (3 mL) was added DIPEA (240.2 mg, 1.86 mmol, 323.75 μL, 5 eq) and 1-methylpiperidin-4-amine (50.9 mg, 446.08 μmol, 1.2 eq). Then HATU (212 mg, 557.6 μmol, 1.5 eq) was added. The resulting reaction mixture was stirred at 15° C. for 1 h. LCMS showed that the reaction was complete. The reaction mixture was poured into H2O (20 mL). The mixture was extracted with EtOAc (3×20 mL), and the combined organic layers were washed with H2O (2×20 mL) and brine (2×50 mL). Then dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound 6-(4-amino-2-pyridyl)-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (60 mg, crude) as a yellow oil which was used for the next step directly without further purification. LC-MS (ES+, m/z): 312.1 [(M+H)+]
To a solution of 6-(4-amino-2-pyridyl)-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (50 mg, 160.58 μmol, 1 eq) in DCM (2 mL) was added TEA (81.2 mg, 802.88 μmol, 111.75 μL, 5 eq) and prop-2-enoyl chloride (72.7 mg, 802.88 μmol, 65.47 μL, 5 eq) at 0° C. The reaction mixture was stirred at 15° C. for 8 h under N2. LCMS showed that the reaction was complete. The reaction mixture was poured into H2O (20 mL). The mixture was extracted with DCM (3×15 mL), and the combined organic layers were washed with H2O (2×15 mL) and brine (2×15 mL). Then dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC (basic condition) to afford the title compound N-(1-methyl-4-piperidyl)-6-[4-(prop-2-enoylamino)-2-pyridyl]pyridine-2-carboxamide (7.1 mg, 19.43 μmol, 12.10% yield, 100.0% purity) as a white solid. LC-MS (ES+, m/z): 366.1 [(M+H)+]1H NMR (400 MHz, DMSO-d6) 5=10.69 (br s, 1H), 8.69 (s, 1H), 8.60 (d, J=5.38 Hz, 1H), 8.52 (dd, J=7.76, 1.00 Hz, 1H), 8.36 (br d, J=8.38 Hz, 1H), 8.01-8.18 (m, 2H), 7.83 (br d, J=3.88 Hz, 1H), 6.52 (dd, J=17.00, 10.14 Hz, 1H), 6.36 (dd, J=17.00, 1.76 Hz, 1H), 5.85-5.91 (m, 1H), 3.78-3.89 (m, 1H), 2.68-2.81 (m, 2H), 2.20 (s, 3H), 1.96-2.14 (m, 2H), 1.83-1.92 (m, 2H), 1.61-1.76 (m, 2H).
To a solution of 2-[(5-bromo-3-methyl-indazol-1-yl)methoxy]ethyl-trimethyl-silane (0.25 g, 732.45 μmol, 1 eq) and 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (241.8 mg, 952.19 μmol, 1.3 eq) in dioxane (2 mL) was added KOAc (215.7 mg, 2.2 mmol, 3 eq) and Pd(dppf)Cl2 (53.6 mg, 73.25 μmol, 0.1 eq). The reaction mixture was stirred at 100° C. for 1 hr under N2. TLC (PE:EtOAc=4:1, SM Rf=0.38, TM Rf=0.49) showed that the reaction was complete. The reaction mixture was filtered and the filtrate was concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, PE:EtOAc=4:1) to afford the title compound Trimethyl-[2-[[3-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)indazol-1-yl]methoxy]ethyl]silane (0.25 g, 643.69 μmol, 87.88% yield) as a colorless oil.
To a solution of trimethyl-[2-[[3-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)indazol-1-yl]methoxy]ethyl]silane (0.27 g, 695.19 μmol, 1 eq) and N-(2-bromo-4-pyridyl)prop-2-enamide (157.9 mg, 695.19 μmol, 1 eq) in dioxane (4 mL) and H2O (1 mL) was added Na2CO3 (221.1 mg, 2.09 mmol, 3 eq) and Pd(dppf)Cl2 (50.9 mg, 69.52 μmol, 0.1 eq). The reaction mixture was stirred at 80° C. for 1 hr under N2. LCMS showed that the starting material was converted to the desired product. The reaction mixture was poured into ˜15 mL saturated EDTA and stirred at 25° C. for 1 hr. The mixture was extracted with EtOAc (3×15 mL). The combined organic layer was washed with brine (3×15 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1:1) to afford the title compound N-[2-[3-methyl-1-(2-trimethylsilylethoxymethyl)indazol-5-yl]-4-pyridyl]prop-2-enamide (0.11 g, 269.23 μmol, 38.73% yield) as a brown oil. LC-MS (ES+, m/z) 409.1 [(M+H)+]
To a solution of N-[2-[3-methyl-1-(2-trimethylsilylethoxymethyl)indazol-5-yl]-4-pyridyl]prop-2-enamide (0.09 g, 220.28 μmol, 1 eq) in EtOH (3 mL) was added concentrated HCl (1.02 g, 10.35 mmol, 1 mL, 37% purity, 46.99 eq). The reaction mixture was stirred at 50° C. for 1 hr. The reaction mixture was concentrated under N2 to give a residue. The residue was purified by prep-HPLC to afford the title compound N-[2-(3-methyl-1H-indazol-5-yl)-4-pyridyl]prop-2-enamide (0.0057 g, 20.48 μmol, 9.30% yield, 100% purity) as a white solid. LC-MS (ES+, m/z) 249.1 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) J=12.79 (br s, 1H), 10.66 (br s, 1H), 8.54 (d, J=5.6 Hz, 1H), 8.30 (s, 1H), 8.22 (d, J=1.5 Hz, 1H), 8.13 (s, 1H), 7.99 (dd, J=1.3, 8.8 Hz, 1H), 7.62 (br d, J=3.9 Hz, 1H), 7.57 (d, J=8.7 Hz, 1H), 6.53-6.44 (m, 1H), 6.34 (d, J=1.8 Hz, 1H), 6.38 (d, J=1.8 Hz, 1H), 5.91-5.86 (m, 1H), 2.57-2.54 (m, 3H).
To a solution of methyl 5-bromo-1H-indazole-3-carboxylate (1 g, 3.92 mmol, 1 eq) in THF (10 mL) was added NaH (235.2 mg, 5.88 mmol, 60% purity, 1.5 eq) at 0° C. The reaction mixture was stirred at 0° C. for 0.5 h. Then SEMCl (784.4 mg, 4.7 mmol, 832.65 μL, 1.2 eq) was added and the resulting reaction mixture was stirred at 0° C. for further 1 h. The reaction mixture was poured into saturated NH4Cl (30 mL) and stirred for 15 min. The aqueous phase was extracted with EtOAc (3×30 mL). The combined organic layer was washed with brine (3×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by silica gel chromatography (SiO2, PE:EtOAc=10:1, 3:1) to afford the title compound methyl 5-bromo-1-(2-trimethylsilylethoxymethyl)indazole-3-carboxylate (1. g, 2.6 mmol, 66.20% yield) as a colorless oil. LC-MS (ES+, m/z) 385.1, 387.0 [(M+H)+]
To a solution of methyl 5-bromo-1-(2-trimethylsilylethoxymethyl)indazole-3-carboxylate (900 mg, 2.34 mmol, 1 eq) in dioxane (10 mL) was added Pin2B2 (889.7 mg, 3.5 mmol, 1.5 eq), KOAc (1.15 g, 11.68 mmol, 5 eq) and Pd(dppf)Cl2 (85.5 mg, 116.78 μmol, 0.05 eq) under N2. The reaction mixture was stirred at 100° C. for 1 h. The reaction mixture was poured into saturated EDTA (50 mL) and stirred for 60 min. The mixture was extracted with EtOAc (3×50 mL). The combined organic layer was washed with brine (3×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by silica gel chromatography (SiO2, PE:EtOAc=10:1, 3:1) to afford the title compound methyl 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-(2-trimethylsilyl ethoxy methyl)indazole-3-carboxylate (1 g, 2.31 mmol, 99.02% yield) as a white solid, LC-MS (ES+, m/z) 433.1 [(M+H)+]
To a solution of N-(2-bromo-4-pyridyl)prop-2-enamide (250 mg, 1.1 mmol, 1 eq), methyl, 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-(2-trimethylsilylethoxymethyl)indazole-3-carboxylate (476.1 mg, 1.1 mmol, 1 eq) in dioxane (10 mL), H2O (2.5 mL) was added Cs2CO3 (1.08 g, 3.3 mmol, 3 eq), [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (46 mg, 55 μmol, 0.05 eq) and dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (51.4 mg, 11 μmol, 0.1 eq). The reaction mixture was stirred at 100° C. for 1 h. The reaction mixture was poured into saturated EDTA (60 mL) and stirred for 60 min. The aqueous phase was extracted with EtOAc (3×20 mL). The combined organic phase was washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by silica gel chromatography (SiO2, PE:EtOAc=10:1, 1/1) to afford the title compound methyl 5-[4-(prop-2-enoylamino)-2-pyridyl]-1-(2-trimethylsilylethoxy methyl)indazole-3-carboxylate (300 mg, 464.01 μmol, 42.18% yield, 70% purity) as a white solid. LC-MS (ES+, m/z) 453.1 [(M+H)+]
To a solution of methyl 5-[4-(prop-2-enoylamino)-2-pyridyl]-1-(2-trimethylsilylethoxymethyl) indazole-3-carboxylate (260 mg, 574.49 μmol, 1 eq) in THF (10 mL) and H2O (2.5 mL) was added LiOH·H2O (241.1 mg, 5.74 mmol, 10 eq) at 25° C. The reaction mixture was stirred at 25° C. for 12 h. The reaction mixture was poured into ice-water (10 mL) and adjusting the pH to 5 with concentrated HCl. The aqueous phase was extracted with EtOAc (3×15 mL). The combined organic layer was washed with brine (3×15 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound 5-[4-(prop-2-enoylamino)-2-pyridyl]-1-(2-trimethylsilylethoxy methyl)indazole-3-carboxylic acid (240 mg, crude) as a white solid. LC-MS (ES+, m/z) 439.2 [(M+H)+]
To a solution of 5-[4-(prop-2-enoylamino)-2-pyridyl]-1-(2-trimethylsilylethoxymethyl) indazole-3-carboxylic acid (120 mg, 273.63 μmol, 1 eq), N4,N4-dimethyl cyclohexane-1,4-diamine (77.8 mg, 547.26 μmol, 2 eq) in DMF (3 mL) was added Et3N (55.4 mg, 547.26 μmol, 76.17 μL, 2 eq) and T3P (261.2 mg, 410.44 μmol, 244.10 μL, 50% purity, 1.5 eq) at 25° C. The reaction mixture was stirred at 25° C. for 1 h. The reaction mixture was poured into H2O (15 mL) and the aqueous phase was extracted with EtOAc (3×15 mL). The combined organic layer was washed with brine (3×15 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound N-[4-(dimethylamino)cyclohexyl]-5-[4-(prop-2-enoylamino)-2-pyridyl]-1-(2-trimethylsilylethoxymethyl)indazole-3-carboxamide (120 mg, crude) as a yellow solid. LC-MS (ES+, m/z) 563.3 [(M+H)+]
To a solution of N-[4-(dimethylamino)cyclohexyl]-5-[4-(prop-2-enoylamino)-2-pyri dyl]-1-(2-trimethylsilylethoxymethyl)indazole-3-carboxamide (40 mg, 71.08 μmol, 1 eq) in EtOH (1 mL) was added concentrated HCl (0.5 mL) and the reaction mixture was stirred at 50° C. for 1 h. The solvent was removed by blowing with N2 to give a residue. The residue was purified by prep-HPLC to afford the title compound N-[4-(dimethylamino)cyclohexyl]-5-[4-(prop-2-enoylamino)-2-pyridyl]-1H-indazole-3-carboxamide (3.5 mg, 7.46 μmol, 10.50% yield, 100% purity, HCl salt) as a white solid. 433.2. 1H NMR (400 MHz, DMSO-d6) 5=14.08 (s, 1H), 11.95 (s, 1H), 10.55 (s, 1H), 10.41 (s, 1H), 8.79-8.73 (m, 1H), 8.68 (d, J=6.8 Hz, 1H), 8.52 (s, 1H), 8.49-8.42 (m, 0.5H), 8.22 (br d, J=6.8 Hz, 0.7H), 8.12 (br s, 1H), 8.04-7.95 (m, 1H), 7.94-7.83 (m, 1H), 6.68 (dd, J=4.8 Hz, 10.0 Hz, 1H), 6.50 (d, J=16.4 Hz 1H), 5.99 (br d, J=10.8 Hz, 1H), 4.22 (m, 1H), 3.96-3.84 (m, 1H), 3.21-3.21 (m, 1H), 2.75-2.70 (m, 6H), 2.16-1.94 (m, 3H), 1.92-1.80 (m, 3H), 1.70 (br d, J=12.2 Hz, 1H), 1.63-1.55 (m, 1H); 1H NMR (400 MHz, DMSO-d6) δ=8.72 (s, 1H), 8.63 (d, J=6.4 Hz, 1H), 8.42 (s, 1H), 7.99 (dd, J=1.6, 6.4 Hz, 1H), 7.97-7.92 (m, 1H), 7.90-7.83 (m, 1H), 6.58 (dd, J=5.6 Hz, 16.8 Hz, 1H), 6.48 (dd, J=1.6 Hz, 16.8 Hz, 1H), 6.00 (dd, J=1.6 Hz, 16.8 Hz, 1H), 4.19 (br t, J=3.2 Hz, 1H), 3.93-3.82 (m, 1H), 3.23-3.09 (m, 1H), 2.75-2.70 (m, 6H), 2.09-1.90 (m, 3H), 1.89-1.77 (m, 3H), 1.71-1.70 (m, 1H), 1.60-1.50 (m, 1H)
To a solution of 2-fluoroprop-2-enoic acid (500 mg, 5.55 mmol, 1 eq) in DCM (10 mL) was added DMF (40.6 mg, 555 μmol, 42.72 μL, 0.1 eq) and (COCl)2 (704.7 mg, 5.55 mmol, 486.02 μL, 1 eq) at 0° C. The reaction mixture was stirred at 25° C. for 3 h. Then 2-bromopyridin-4-amine (960.2 mg, 5.55 mmol, 1 eq), Et3N (1.68 g, 16.65 mmol, 2.32 mL, 3 eq) was added at 0° C. and the reaction mixture was stirred at 25° C. for further 3 h. LCMS showed ˜45% of the starting material remained. The reaction mixture was poured into ice-water (25 mL) and the aqueous phase was extracted with EtOAc (3×20 mL). The combined organic phase was washed with brine (3×25 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by silica gel chromatography (SiO2, PE:EtOAc=4:1, 4:1) to afford the title compound N-(2-bromo-4-pyridyl)-2-fluoro-prop-2-enamide (0.22 g, 897.78 μmol, 16.18% yield) as a white solid. LC-MS (ES+, m/z) 245.0, 246.9 [(M+H)+]
To a solution of N-(2-bromo-4-pyridyl)-2-fluoro-prop-2-enamide (40 mg, 163.23 μmol, 1 eq), 7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinazoline (50.2 mg, 195.88 μmol, 1.2 eq) in dioxane (2 mL) and H2O (0.25) was added Cs2CO3 (159.6 mg, 489.7 μmol, 3 eq), [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (6.9 mg, 8.16 μmol, 0.05 eq) and dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (7.6 mg, 16.32 μmol, 0.1 eq) under N2. The reaction mixture was stirred at 95° C. for 1 h. The reaction mixture was poured into saturated EDTA (20 mL) and stirred for 60 min. The aqueous phase was extracted with EtOAc (3×20 mL). The combined organic phase was washed with brine (3×20 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by prep-HPLC to afford the title compound 2-fluoro-N-(2-quinazolin-7-yl-4-pyridyl)prop-2-enamide (18.6 mg, 63.07 μmol, 38.64% yield, 99.795% purity) as a white solid. 295.1. 1H NMR (400 MHz, DMSO-d6) δ=9.67 (s, 1H), 9.36 (s, 1H), 8.71 (d, J=5.6 Hz, 1H), 8.54 (s, 2H), 8.43 (dd, J=1.6, 8.4 Hz, 1H), 8.31 (d, J=8.4 Hz, 1H), 7.89 (dd, J=2.0, 5.6 Hz, 1H), 5.93-5.74 (m, 1H), 5.57 (dd, J=4.0, 15.6 Hz, 1H)
To a solution of 2-bromopyridin-4-amine (1 g, 5.78 mmol, 1 eq) in DCM (10 mL) was added Py (914.4 mg, 11.56 mmol, 933.06 μL, 2 eq), (E)-but-2-enoyl chloride (1.21 g, 11.56 mmol, 1.11 mL, 2 eq) at 0° C. and the reaction mixture was stirred at 0° C. for 2 h. HPLC showed that the reaction was complete. The reaction mixture was poured into H2O (60 mL) and the aqueous phase was extracted with DCM (3×30 mL). The combined organic phase was washed with brine (3×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by silica gel chromatography (SiO2, PE:EtOAc=5/1, 4:1 to afford the title compound (E)-N-(2-bromo-4-pyridyl)but-2-enamide (0.8 g, 3.32 mmol, 57.41% yield) as a white solid. 1H NMR (400 MHz, DMSO-d6) δ=10.51 (br s, 1H), 8.22 (d, J=5.6 Hz, 1H), 7.96 (d, J=2.0 Hz, 1H), 7.51 (dd, J=1.6, 5.6 Hz, 1H), 6.92-6.87 (m, 1H), 6.10 (br dd, J=1.6, 15.2 Hz, 1H), 1.89 (dd, J=1.6, 6.8 Hz, 3H)
To a solution of (E)-N-(2-bromo-4-pyridyl)but-2-enamide (40 mg, 165.92 μmol, 1 eq), 7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinazoline (63.7 mg, 248.88 μmol, 1.5 eq), in dioxane (2 mL) and H2O (0.5 mL) was added Cs2CO3 (162.2 mg, 497.75 μmol, 3 eq), [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium; dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (7 mg, 8.3 μmol, 0.05 eq) and dicyclohexyl-[2-(2,6-diisopropoxy phenyl)phenyl]phosphane (7.7 mg, 16.59 μmol, 0.1 eq) under N2. The mixture was stirred at 95° C. for 1 h. The reaction mixture was poured into saturated EDTA (30 mL) and stirred for 60 min. The aqueous phase was extracted with EtOAc (3×15 mL). The combined organic layer was washed with brine (3×15 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound (E)-N-(2-quinazolin-7-yl-4-pyridyl) but-2-enamide (10.9 mg, 37.5 μmol, 22.60% yield, 99.876% purity) as a white solid. 291.1. 1H NMR (400 MHz, DMSO-d6) 5=10.51 (s, 1H), 9.67 (s, 1H), 9.36 (s, 1H), 8.64 (d, J=5.6 Hz, 1H), 8.51 (s, 1H), 8.44-8.38 (m, 2H), 8.29 (d, J=8.4 Hz, 1H), 7.69 (dd, J=2.0, 5.6 Hz, 1H), 6.96-6.90 (m, 1H).
To a solution of 2-bromopyridin-4-amine (2 g, 11.56 mmol, 1 eq) in DCM (20 mL) was added TEA (3.51 g, 34.68 mmol, 4.83 mL, 3 eq), 2-methylprop-2-enoyl chloride (2.42 g, 23.12 mmol, 2.26 mL, 2 eq) at 0° C. and the reaction mixture was stirred at 0° C. for 1 h. The reaction mixture was poured into ice-water (60 mL) and the aqueous phase was extracted with DCM (3×20 mL). The combined organic layer was washed with brine (3×25 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by silica gel chromatography (SiO2, PE/EtOAc=4:1, 4:1) to afford the title compound N-(2-bromo-4-pyridyl)-2-methyl-prop-2-enamide (2. g, 8.3 mmol, 71.76% yield) as a white solid. LC-MS (ES+, m/z) 240.9, 242.9 [(M+H)+] 1H NMR (400 MHz, DMSO-d6) δ=10.31 (s, 1H), 8.24 (d, J=6.0 Hz, 1H), 7.99 (d, J=1.6 Hz, 1H), 7.69 (dd, J=2.0, 5.6 Hz, 1H), 5.88 (s, 1H), 5.66 (d, J=1.2 Hz, 1H), 1.94 (s, 3H)
To a solution of N-(2-bromo-4-pyridyl)-2-methyl-prop-2-enamide (50 mg, 207.4 μmol, 1 eq), 7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinazoline (53.1 mg, 207.4 μmol, 1 eq) in dioxane (2 mL), H2O (0.25) was added Cs2CO3 (202.7 mg, 622.19 μmol, 3 eq), [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium; dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (8.7 mg, 10.37 μmol, 0.05 eq) and dicyclohexyl-[2-(2,6-diisopropoxy phenyl)phenyl]phosphane (9.7 mg, 20.74 μmol, 0.1 eq). The reaction mixture was stirred at 95° C. for 1 h. The reaction mixture was poured into saturated EDTA (20 mL) and stirred for 60 min. The aqueous phase was extracted with EtOAc (3×15 mL). The combined organic layer was washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound 2-methyl-N-(2-quinazolin-7-yl-4-pyridyl)prop-2-enamide (12.6 mg, 43.4 μmol, 20.93% yield, 100.0% purity) as a white solid. 291.1. 1H NMR (400 MHz, DMSO-d6) 5=10.40 (br, s, 1H), 9.67 (s, 1H), 9.36 (s, 1H), 8.66 (d, J=5.6 Hz, 1H), 8.53 (s, 1H), 8.50 (d, J=1.6 Hz, 1H), 8.42 (dd, J=1.6, 8.8 Hz, 1H), 8.30 (d, J=8.8 Hz, 1H), 7.85 (dd, J=2.0, 5.6 Hz, 1H), 5.95 (s, 1H), 5.68 (d, J=1.2 Hz, 1H), 2.00 (s, 3H)
To a solution of 2-bromopyridin-4-amine (100 mg, 578 μmol, 1 eq), 7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinazoline (162.8 mg, 635.8 μmol, 1.1 eq) in dioxane (4 mL), H2O (1 mL) was added Cs2CO3 (565 mg, 1.73 mmol, 3.0 eq), [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium; dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (24.2 mg, 28.9 μmol, 0.05 eq) and dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (27 mg, 57.8 μmol, 0.1 eq) under N2. The reaction mixture was stirred at 95° C. for 1 h. LCMS showed ˜10% of the starting material remained. The reaction mixture was poured into saturated EDTA (20 mL) and stirred for 1 h. The aqueous phase was extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was washed with DCM (3×5 mL) to afford the title compound 2-quinazolin-7-ylpyridin-4-amine (80 mg, crude) as a light yellow solid. LC-MS (ES+, m/z) 223.2 [(M+H)+]
To a solution of (E)-4,4,4-trifluorobut-2-enoic acid (50 mg, 356.99 μmol, 1 eq) in DCM (1 mL) was added DMF (2.6 mg, 35.7 μmol, 2.75 μL, 0.1 eq) and (COCl)2 (49.8 mg, 392.69 μmol, 34.37 μL, 1.1 eq) at 0° C. and the reaction mixture was stirred at 0° C. for 1 h. Then 2-quinazolin-7-ylpyridin-4-amine (20 mg, 89.99 μmol, 2.52e−1 eq), TEA (108.4 mg, 1.07 mmol, 149.07 μL, 3 eq) was added at 0° C. and the reaction mixture was stirred at 0° C. for further 1 h. LCMS and HPLC showed that the reaction was complete. The reaction mixture was poured into ice-water (25 mL) and the aqueous phase was extracted with DCM (3×20 mL). The combined organic layer was washed with brine (3×25 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound (E)-4,4,4-trifluoro-N-(2-quinazolin-7-yl-4-pyridyl)but-2-enamide (2.7 mg, 7.6 μmol, 2.13% yield, 96.967% purity) as a pink solid. 345.1. 1H NMR (400 MHz, DMSO-d6) δ=9.68 (s, 1H), 9.37 (s, 1H), 8.72 (br d, J=5.2 Hz, 1H), 8.53 (s, 1H), 8.48-8.37 (m, 2H), 8.31 (br d, J=8.0 Hz, 1H), 7.71 (br d, J=4.8 Hz, 1H), 7.12-6.97 (m, 2H)
To a mixture of 2-bromopyridin-4-amine (650 mg, 3.76 mmol, 1 eq), [2-(tert-butoxy carbonylamino)quinazolin-7-yl]boronic acid (2.72 g, 9.39 mmol, 2.5 eq) in dioxane (10 mL), H2O (2.5 mL) was added Cs2CO3 (3.67 g, 11.27 mmol, 3 eq), [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (157.1 mg, 187.85 μmol, 0.05 eq), dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (175.3 mg, 375.7 μmol, 0.1 eq) under N2. The mixture was stirred at 95° C. for 1 h. TLC showed no starting material remained. The residue was poured into saturated EDTA (100 mL) and stirred for 60 min. The aqueous phase was extracted with EtOAc (3×60 mL). The combined organic phase was washed with brine (3×80 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by silica gel chromatography (SiO2, DCM/MeOH=50:1, 20:1) to afford the title compound tert-butyl N-[7-(4-amino-2-pyridyl) quinazolin-2-yl]carbamate (0.7 g, 2.07 mmol, 55.23% yield) as black brown solid. LC-MS (ES+, m/z): 338.2 [(M+H)+]
To a mixture of (E)-4,4,4-trifluorobut-2-enoyl chloride (469.8 mg, 2.96 mmol, 5 eq) in DCM (5 mL), DMF (1 mL) was added tert-butyl N-[7-(4-amino-2-pyridyl) quinazolin-2-yl]carbamate (200 mg, 592.81 μmol, 1 eq), Et3N (180 mg, 1.78 mmol, 247.54 μL, 3 eq) at 0° C. and the mixture was stirred at 0° C. for 1 h. TLC showed no starting material remained. The residue was poured into ice-water (20 mL) and the aqueous phase was extracted with DCM (3×15 mL). The combined organic phase was washed with brine (3×15 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC to afford the title compound tert-butyl N-[7-[4-[[(E)-4,4,4-trifluorobut-2-enoyl]amino]-2-pyridyl]quinazolin-2-yl]carbamate (90 mg, 195.9 μmol, 33.05% yield) as a yellow solid. LC-MS (ES+, m/z): 460.2 [(M+H)+]
To a mixture of tert-butyl N-[7-[4-[[(E)-4,4,4-trifluorobut-2-enoyl]amino]-2-pyridyl]quinazolin-2-yl]carbamate (80 mg, 174.13 μmol, 1 eq) in DCM (4 mL) was added TFA (1 mL) at 25° C. and the mixture was stirred at 25° C. for 1 h. HPLC showed no starting material remained. The reaction mixture was poured into saturated Na2CO3 (20 mL) and the aqueous phase was extracted with DCM (3×15 mL). The combined organic phase was washed with brine (3×15 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford the title compound (E)-N-[2-(2-aminoquinazolin-7-yl)-4-pyridyl]-4,4,4-trifluoro-but-2-enamide (10 mg, 27.53 μmol, 15.81% yield, 98.923% purity) as a white solid. LC-MS (ES+, m/z): 360.1 [(M+H)+] 1H NMR (400 MHz, DMSO-d6) δ=11.03 (s, 1H), 9.16 (s, 1H), 8.66 (d, J=5.6 Hz, 1H), 8.28 (d, J=1.6 Hz, 1H), 7.96 (s, 1H), 7.93 (d, J=8.4 Hz, 1H), 7.83 (dd, J=1.6, 8.4 Hz, 1H), 7.64 (dd, J=2.0, 5.6 Hz, 1H), 7.08-6.96 (m, 2H), 6.91 (s, 2H)
To a mixture of 2-bromopyridin-4-amine (350 mg, 2.02 mmol, 1 eq), (2-ethoxycarbonyl quinazolin-7-yl)boronic acid (1.49 g, 6.07 mmol, 3 eq) in DME (10 mL), H2O (2.5 mL) was added CsF (1.32 g, 4.05 mmol, 2 eq), Pd(dppf)Cl2 (148 mg, 202.3 μmol, 0.1 eq) under N2. The mixture was stirred at 95° C. for 0.5 h. LCMS showed ˜50% starting material remained. Then the mixture was stirred at 95° C. for 0.5 h. The residue was poured into saturated EDTA (100 mL) and stirred for 60 min. The aqueous phase was extracted with EtOAc (3×60 mL). The combined organic phase was washed with brine (3×80 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by silica gel chromatography (SiO2, DCM/MeOH=30:1, 20/1) to afford the title compound ethyl 7-(4-amino-2-pyridyl)quinazoline-2-carboxylate (300 mg, 1.02 mmol, 50.39% yield) as a brown solid. LC-MS (ES+, m/z) 295.2 [(M+H)+]
Step 2—7-(4-amino-2-pyridyl)-N-methyl-quinazoline-2-carboxamide
To a mixture of ethyl 7-(4-amino-2-pyridyl)quinazoline-2-carboxylate (100 mg, 339.78 μmol, 1 eq) in MeOH (3 mL) was added MeNH2 (2 M in THF, 33.98 mL, 200 eq) in THF (3 mL). The mixture was stirred at 50° C. for 3 h. LCMS showed no starting material remained. The reaction mixture was concentrated in vacuo to afford the title compound 7-(4-amino-2-pyridyl)-N-methyl-quinazoline-2-carboxamide (100 mg, crude) as black brown solid. LC-MS (ES+, m/z) 280.2 [(M+H)+].
To a mixture of prop-2-enoyl chloride (51.9 mg, 572.87 μmol, 46.71 μL, 2 eq) in DCM (3 mL), DMF (0.6 mL) was added 7-(4-amino-2-pyridyl)-N-methyl-quinazoline-2-carboxamide (80 mg, 286.43 μmol, 1 eq), Et3N (87 mg, 859.3 μmol, 119.61 μL, 3 eq) at 0° C. and the mixture was stirred at 0° C. for 1 h. LCMS and showed no starting material remained. The residue was poured into ice-water (20 mL) and the aqueous phase was extracted with DCM (3×20 mL). The combined organic phase was washed with brine (3×15 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford the title compound N-methyl-7-[4-(prop-2-enoylamino)-2-pyridyl]quinazoline-2-carboxamide (8.6 mg, 24.44 μmol, 8.53% yield, 94.722% purity) as a white solid. 334.0. 1H NMR (400 MHz, DMSO-d6) 5=10.75 (s, 1H), 9.79 (s, 1H), 9.09 (br d, J=4.8 Hz, 1H), 8.68 (d, J=5.6 Hz, 1H), 8.64 (s, 1H), 8.56 (d, J=1.6 Hz, 1H), 8.51 (dd, J=1.6, 8.8 Hz, 1H), 8.38 (d, J=8.8 Hz, 1H), 7.64 (dd, J=2.0, 5.2 Hz, 1H), 6.50 (dd, J=10.4, 17.2 Hz, 1H), 6.38 (dd, J=1.6, 16.8 Hz, 1H), 5.91 (dd, J=1.6, 10.0 Hz, 1H), 2.90 (d, J=4.8 Hz, 3H)
To a mixture of N-(2-bromo-4-pyridyl)prop-2-enamide (80 mg, 352.33 μmol, 1 eq), [4-(methylamino)-6-quinolyl]boronic acid (474.5 mg, 704.67 μmol, 30% purity, 2 eq) in dioxane (3 mL), H2O (0.75 mL) was added Cs2CO3 (344.4 mg, 1.06 mmol, 3 eq), [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (14.7 mg, 17.62 μmol, 0.05 eq), dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (16.4 mg, 35.23 μmol, 0.1 eq) under N2. The mixture was stirred at 95° C. for 1 h. The residue was poured into saturated EDTA (20 mL) and stirred for 60 min. The aqueous phase was extracted with EtOAc (3×15 mL). The combined organic phase was washed with brine (3×20 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford the title compound N-[2-[4-(methylamino)-6-quinolyl]-4-pyridyl]prop-2-enamide (20.8 mg, 53.9 μmol, 15.30% yield, 90.791% purity, FA) as a white solid. 305.0. 1H NMR (400 MHz, DMSO-d6) 5=10.67 (s, 1H), 8.79 (d, J=1.6 Hz, 1H), 8.60 (d, J=5.6 Hz, 1H), 8.44 (d, J=5.6 Hz, 1H), 8.28 (d, J=1.6 Hz, 1H), 8.19 (dd, J=2.0, 9.2 Hz, 1H), 7.88 (d, J=8.8 Hz, 1H), 7.73 (br d, J=4.4 Hz, 1H), 7.63 (dd, J=1.6, 5.6 Hz, 1H), 6.50 (dd, J=10.0, 16.8 Hz, 1H), 6.45 (d, J=5.6 Hz, 1H), 6.41 (dd, J=2.0, 17.2 Hz, 1H, 1H), 5.91 (dd, J=1.6, 9.6 Hz, 1H), 2.93 (d, J=4.4 Hz, 3H)
A mixture of N-(2-bromo-4-pyridyl)prop-2-enamide (100 mg, 440.42 μmol, 1 eq), N-methyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinolin-2-amine (187.7 mg, 660.63 μmol, 1.5 eq), Cs2CO3 (287 mg, 880.83 μmol, 2 eq), RuPhos (20.6 mg, 44.04 μmol, 0.1 eq) and [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (18.4 mg, 22.02 μmol, 0.05 eq) in dioxane (21 mL) and H2O (0.5 mL). The mixture was stirred at 100° C. for 1 hr under N2. LCMS (ET21787-677-P1A) showed that the reaction was complete. The reaction mixture was added to saturated EDTA and the mixture was stirred at 25° C. for 1 h. Then the mixture was extracted with EtOAc (3×30 mL). The organic phase was separated, washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound N-[2-[2-(methylamino)-7-quinolyl]-4-pyridyl]prop-2-enamide (17.5 mg, 57.5 μmol, 13.06% yield, 100% purity) as a light yellow solid. 305.1. 1H NMR (400 MHz, DMSO-d6) δ=10.59 (s, 1H), 8.57 (d, J=5.4 Hz, 1H), 8.36 (d, J=1.5 Hz, 1H), 8.10 (d, J=0.9 Hz, 1H), 7.87 (d, J=8.9 Hz, 1H), 7.82 (d, J=8.3 Hz, 1H), 7.72 (d, J=8.4 Hz, 1H), 7.59 (d, J=5.5 Hz, 1H), 6.78 (d, J=8.9 Hz, 1H), 6.55-6.41 (m, 1H), 6.40-6.30 (m, 1H), 5.90-5.89 (m, 1H), 5.87 (m, 1H), 2.93 (d, J=4.60 Hz, 3H).
To a mixture of 2-bromopyridin-4-amine (350 mg, 2.02 mmol, 1 eq), (2-methoxycarbonyl quinazolin-7-yl)boronic acid (1.41 g, 6.07 mmol, 3 eq) in DME (10 mL), H2O (2.5 mL) was added CsF (1.32 g, 4.05 mmol, 2 eq), Pd(dppf)Cl2 (148 mg, 202.3 μmol, 0.1 eq). The mixture was stirred at 95° C. for 1 h. The reaction mixture was poured into saturated EDTA (20 mL) and stirred for 60 min. The aqueous phase was extracted with EtOAc (3×15 mL). The combined organic phase was washed with brine (3×20 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by silica gel chromatography (SiO2, DCM/MeOH=50/1, 10:1) to afford the title compound methyl 7-(4-amino-2-pyridyl)quinazoline-2-carboxylate (300 mg, 1.07 mmol, 52.91% yield) as a white solid. LC-MS (ES+, m/z) 281.1 [(M+H)+].
To a mixture of methyl 7-(4-amino-2-pyridyl)quinazoline-2-carboxylate (0.1 g, 356.78 μmol, 1 eq) in DCM (6 mL), DMF (3 mL) was added TEA (108.3 mg, 1.07 mmol, 148.98 μL, 3 eq), prop-2-enoyl chloride (96.9 mg, 1.07 mmol, 87.28 μL, 3 eq) at 0° C. The mixture was stirred at 0° C. for 1 h. The residue was poured into H2O (20 mL) and the aqueous phase was extracted with DCM (3×20 mL). The combined organic phase was washed with brine (3×20 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. methyl 7-[4-(prop-2-enoylamino)-2-pyridyl]quinazoline-2-carboxylate (60 mg, crude) was obtained, 40 mg of the residue was purified by prep-HPLC to afford the title compound methyl 7-[4-(prop-2-enoylamino)-2-pyridyl]quinazoline-2-carboxylate (5.2 mg, 15.13 μmol, 12.65% yield, 97.304% purity) as a white solid. 335.1. 1H NMR (400 MHz, DMSO-d6) 5=10.72 (s, 1H), 9.82 (s, 1H), 8.68 (d, J=5.6 Hz, 1H), 8.64 (s, 1H), 8.53 (dd, J=1.6, 8.6 Hz, 1H), 8.49 (s, 1H), 8.41 (d, J=8.6 Hz, 1H), 7.70 (dd, J=1.6, 5.6 Hz, 1H), 6.50 (dd, J=10.0, 17.2 Hz, 1H), 6.40 (dd, J=2.0, 16.8 Hz, 1H), 5.93-5.87 (dd, J=2.0, 10.0 Hz, 1H), 3.99 (s, 3H).
To a mixture of methyl 7-[4-(prop-2-enoylamino)-2-pyridyl]quinazoline-2-carboxy late (100 mg, 299.11 μmol, 1 eq) in THF (10 mL), H2O (2.5 mL) was added LiOH·H2O (25.1 mg, 598.21 μmol, 2 eq). The mixture was stirred at 25° C. for 1 h. The reaction mixture was poured into H2O (20 mL) and the aqueous phase was adjusted to pH=2 with saturated citric acid (2 mL), but the product can not be extracted. Then the solution was adjusted to pH=7 with saturated Na2CO3 (2 mL), and the solution was lyophilized. 7-[4-(prop-2-enoylamino)-2-pyridyl]quinazoline-2-carboxylic acid (1.4 g, crude) was obtained as a white solid. The residue was purified by prep-HPLC to afford the title compound 7-[4-(prop-2-enoylamino)-2-pyridyl]quinazoline-2-carboxylic acid (4.4 mg, 13.58 μmol, 3.11e−1% yield, 98.893% purity) as a white solid. 321.1. 1H NMR (400 MHz, DMSO-d6) δ=11.06 (s, 1H), 9.72 (br s, 1H), 8.67 (br d, J=5.6 Hz, 2H), 8.57 (s, 2H), 8.50-8.46 (m, 1H), 8.40-8.30 (m, 1H), 7.82 (br d, J=5.2 Hz, 1H), 6.57 (dd, J=10.0, 16.8 Hz, 1H), 6.39 (dd, J=1.6, 17.2 Hz, 1H), 5.90 (dd, J=1.6, 10.0 Hz, 1H).
TABLE 15 shows compounds synthesized using methods described in EXAMPLE 15.
To a mixture of 2-amino-5-bromo-phenol (1 g, 5.32 mmol, 1 eq) in acetone (10 mL) was added K2CO3 (1.1 g, 7.98 mmol, 1.5 eq). Then 2-chloroacetonitrile (481.8 mg, 6.38 mmol, 404.91 μL, 1.2 eq) was added to the mixture. The mixture was heated to 60° C. and stirred at 60° C. for 4 h. The reaction mixture was poured into ice-water (100 mL). The aqueous phase was extracted with EtOAc (3×50 mL). The combined organic phase was washed with brine (3×50 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by silica gel chromatography (PE:EtOAc=1/0, 1/1) to afford the title compound (1 g, 4.4 mmol, 82.81% yield) as a brown solid.
To a mixture of (BPin)2 (503.3 mg, 1.98 mmol, 1.5 eq) and 2-(2-amino-5-bromo-phenoxy) acetonitrile (300 mg, 1.32 mmol, 1 eq) in dioxane (5 mL) was added POTASSIUM ACETATE (389 mg, 3.96 mmol, 3 eq) and Pd(dppf)Cl2 (48.3 mg, 66.06 μmol, 0.05 eq) under N2. The mixture was heated to 120° C. and stirred for 2 hours. TLC and LCMS (ET16123-1094-P1A) showed that the reaction was complete. The reaction was filtered, and concentrated in vacuo. The crude was the desired product. The crude was purified by prep-TLC (SiO2, PE:EtOAc=3:1) to afford the title compound 2-[2-amino-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenoxy]acetonitrile (200 mg, 729.6 μmol, 55.22% yield) as a white solid
To a mixture of 2-chloro-6-methyl-4-nitro-pyridine (4 g, 23.18 mmol, 1 eq) in H2SO4 (40 mL) was added CrO3 (9.27 g, 92.72 mmol, 3.43 mL, 4 eq) at 25° C. Then the mixture was stirred at 25° C. for 1 h. Then heated to 60° C. for 1 h. TLC showed no starting material remained. The reaction mixture was poured into ice-water (50 mL) and a lot of solid came out, filtered. Then the aqueous phase was extracted with EtOAc (3×50 mL). The combined organic phase was washed with brine (3×50 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound 6-chloro-4-nitro-pyridine-2-carboxylic acid (4 g, crude) as a white solid.
To a mixture of 6-chloro-4-nitro-pyridine-2-carboxylic acid (1 g, 4.94 mmol, 1 eq) in DMF (10 mL) was added MeNH2·HCl (1 g, 14.81 mmol, 3 eq, HCl), TEA (2.5 g, 24.69 mmol, 3.44 mL, 5 eq) at 25° C. Then T3P (2.36 g, 7.41 mmol, 2.20 mL, 1.5 eq) was added and the mixture was stirred at 25° C. for 1 h. The reaction mixture was poured into ice-water (30 mL) and the aqueous phase was extracted with EtOAc (3×30 mL). The combined organic phase was washed with brine (3×20 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound (650 mg, crude) as a yellow solid.
To a mixture of 6-chloro-N-methyl-4-nitro-pyridine-2-carboxamide (550 mg, 2.55 mmol, 1 eq) in EtOH (10 mL) was added saturated NH4Cl (2 mL) at 25° C. Then the mixture was heated to 70° C. Le (1.42 g, 25.51 mmol, 10 eq) was added and the mixture was stirred at 70° C. for 1 h. The residue was poured into H2O (15 mL) and EtOAc (15 mL) was added. The mixture was filtered with diamate. The aqueous phase was extracted with EtOAc (3×15 mL). The combined organic phase was washed with brine (3×15 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound 4-amino-6-chloro-N-methyl-pyridine-2-carboxamide (450 mg, crude) as a yellow solid.
To a mixture of 4-amino-6-chloro-N-methyl-pyridine-2-carboxamide (250 mg, 1.35 mmol, 1 eq) in DCM (6 mL) was added TEA (408.9 mg, 4.04 mmol, 562.42 μL, 3 eq), AcCl (422.9 mg, 5.39 mmol, 384.47 μL, 4 eq) at 0° C. The mixture was stirred at 25° C. for 2 h. TLC showed two spot was detected. Then the mixture was stirred at 40° C. for 0.5 h. The reaction mixture was poured into H2O (15 mL) and the aqueous phase was extracted with EtOAc (3×20 mL). Some solid come out and filtered. The combined organic phase was washed with brine (3×15 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound 4-acetamido-6-chloro-N-methyl-pyridine-2-carboxamide (200 mg, crude) as a white solid.
To a mixture of 4-amino-6-chloro-N-methyl-pyridine-2-carboxamide (500 mg, 2.69 mmol, 1 eq) in DCM (6 mL) was added TEA (817.8 mg, 8.08 mmol, 1.12 mL, 3 eq), Boc2O (1.76 g, 8.08 mmol, 1.86 mL, 3 eq), DMAP (32.9 mg, 269.38 μmol, 0.1 eq) at 25° C. The mixture was stirred at 25° C. for 2 h. The reaction mixture was poured into H2O (15 mL) and the aqueous phase was extracted with DCM (3×15 mL). The combined organic phase was washed with brine (3×15 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by silica gel chromatography (PE:EtOAc=1/0, 4:1) to afford the title compound (600 mg, 1.48 mmol, 54.84% yield, 95% purity) as a white solid.
To a mixture of tert-butyl N-tert-butoxycarbonyl-N-[2-chloro-6-(methylcarbamoyl)-4-pyridyl]carbamate (550 mg, 1.43 mmol, 1 eq) in MeOH (10 mL) was added K2CO3 (788 mg, 5.7 mmol, 4 eq) at 25° C. The mixture was stirred at 25° C. for 1 h. The residue was filtered, and concentrated in vacuo to afford the title compound tert-butyl N-[2-chloro-6-(methylcarbamoyl)-4-pyridyl]carbamate (350 mg, crude) as a white solid.
To a mixture of tert-butyl N-[2-chloro-6-(methylcarbamoyl)-4-pyridyl]carbamate (180 mg, 629.97 μmol, 1 eq) in DMF (2 mL) was added NaH (30.2 mg, 755.97 μmol, 60% purity, 1.2 eq) at 0° C. The mixture was stirred at 0° C. for 0.5 h. MeI (89.4 mg, 629.97 μmol, 39.22 μL, 1 eq) was added and the mixture was stirred at 0° C. for 0.5 h. The reaction mixture was poured into saturated NH4Cl (10 mL) and the aqueous phase was extracted with EtOAc (3×10 mL). The combined organic phase was washed with brine (3×10 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC to afford the title compound tert-butyl N-[2-chloro-6-(methylcarbamoyl)-4-pyridyl]-N-methyl-carbamate (120 mg, 240.2 μmol, 38.13% yield, 60% purity) as a white solid.
To a solution of 1-methylpyrazol-4-amine (365 mg, 3.76 mmol, 3 eq), 2-chloro-4-iodo-pyridine (300 mg, 1.25 mmol, 1 eq) in dioxane (10 mL) was added Cs2CO3 (816.5 mg, 2.51 mmol, 2 eq). Then Pd2(dba)3 (57.4 mg, 62.65 μmol, 0.05 eq) and (5-diphenyl phosphanyl-9,9-dimethyl-xanthen-4-yl)-diphenyl-phosphane (72.5 mg, 125.29 μmol, 0.1 eq) was added to the reaction. The reaction was stirred at 95-100° C. for 1.5 h under N2 atmosphere. The reaction was poured into ice-water (10 mL) and extracted with EtOAc (3×10 mL). The combined organic layer was washed with water (3×10 mL) and brine (3×10 mL), dried over Na2SO4, filtered, and concentrated. The crude was purified by silica gel chromatography (EtOAc) and purified by prep-TLC (SiO2, DCM/MeOH=18/1, Rf=0.5) to afford the title compound (150 mg, 575.13 μmol, 85.71% yield, 80% purity) as black oil.
To a mixture of 2-chloro-4-iodo-pyridine (300 mg, 1.25 mmol, 1 eq), 3-methoxyaniline (185.2 mg, 1.5 mmol, 168.33 μL, 1.2 eq) in Tol. (7 mL) was added Cs2CO3 (816.5 mg, 2.51 mmol, 2 eq), BINAP (156 mg, 250.58 μmol, 0.2 eq), Pd(OAc)2 (28.1 mg, 125.29 μmol, 0.1 eq) at 25° C. The mixture was stirred at 90° C. for 10 h. LCMS showed no starting material remained. The reaction mixture was poured into H2O (15 mL) and the aqueous phase was extracted with EtOAc (3×20 mL). The combined organic phase was washed with brine (3×15 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by silica gel chromatography (PE:EtOAc=1:0, 4:1) to afford the title compound 2-chloro-N-(3-methoxyphenyl)pyridin-4-amine (260 mg, 997.1 μmol, 79.58% yield, 90% purity) as a yellow oil.
To a solution of 1-methylpyrazole-4-carboxylic acid (300 mg, 2.38 mmol, 1 eq) in DCM (6 mL) was added (COCl)2 (603.9 mg, 4.76 mmol, 416.46 μL, 2 eq). Then DMF (17.4 mg, 237.88 μmol, 18.30 μL, 0.1 eq) was added to the reaction and the reaction was stirred at 15° C. for 3 h. The reaction mixture was concentrated to afford the title compound 1-methylpyrazole-4-carbonyl chloride (340 mg, crude) as a yellow oil, which was used directly.
To a solution of 2-bromopyridin-4-amine (300 mg, 1.73 mmol, 1 eq) in DMF (2.5 mL) was added NaH (180 mg, 4.5 mmol, 60% purity, 2.60 eq) at 0° C. Then the reaction mixture was stirred at 0° C. for 30 min. Then 1-methylpyrazole-4-carbonyl chloride (340 mg, 2.35 mmol, 1.36 eq) in 1.5 mL DMF was added to the reaction and the reaction was stirred at 15° C. for 30 min. The reaction was poured into ice-water (10 mL) and extracted with EtOAc (3×10 mL). The combined organic layer was washed with water (3×10 mL) and brine (3×10 mL), dried over Na2SO4, filtered, and concentrated to afford the title compound (500 mg, crude) as a light yellow solid used directly.
A solution of 6-bromopyrimidin-4-amine (200 mg, 1.15 mmol, 1 eq) in Ac2O (1 mL) was stirred at 140° C. for 3 h. TLC showed that the reaction was complete. After cooled to 20° C. The reaction mixture was treated with Saturated NaHCO3 (50 mL, keep PH to 8-9) and stirred at 20° C. for 20 min. The reaction mixture was extracted with DCM (3×30 mL). The combined organic layer was washed with brine (3×20 mL), dried over Na2SO4, filtered, and concentrated to afford the title compound N-(6-bromopyrimidin-4-yl)acetamide (210 mg, crude) as a light yellow solid without further purification.
To a mixture of 3-amino-6-chloro-pyridine-2-carboxylic acid (200 mg, 1.16 mmol, 1 eq) in DMF (6 mL) was added 1-methylpiperidin-4-amine RNH2 (264.7 mg, 2.32 mmol, 265.41 μL, 2 eq), Et3N (586.4 mg, 5.79 mmol, 806.57 μL, 5 eq), T3P (1.11 g, 1.74 mmol, 1.03 mL, 50% purity, 1.5 eq) at 25° C. The mixture was stirred at 25° C. for 1 h. The reaction mixture was poured into H2O (20 mL) and the aqueous phase was extracted with EtOAc (3×15 mL). The combined organic phase was washed with brine (3×15 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound (260 mg, crude) as a brown oil. ET8911-1347
To a solution of 2-chloro-6-methyl-4-nitro-pyridine (3 g, 17.38 mmol, 1 eq) in H2SO4 (30 mL) was added CrO3 (6.95 g, 69.54 mmol, 2.58 mL, 4 eq). The mixture was stirred at 25° C. for 1 h, stirred at 60° C. for 1 h. LCMS showed that the reaction was complete. The residue was poured into ice-water (200 mL) and a lot of solid came out, filtered. Then the aqueous phase was extracted with EtOAc (3×100 mL). The combined organic phase was washed with brine (3×100 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The crude was used directly to afford the title compound 6-chloro-4-nitro-pyridine-2-carboxylic acid (4 g, crude) as a gray solid.
To a solution of 6-chloro-4-nitro-pyridine-2-carboxylic acid (1 g, 4.94 mmol, 1 eq) in DMF (10 mL) was added TEA (2.5 g, 24.69 mmol, 3.44 mL, 5 eq) and 1-methylpiperidin-4-amine (845.6 mg, 7.41 mmol, 1.5 eq). Then T3P (4.71 g, 7.41 mmol, 4.40 mL, 50% purity, 1.5 eq) was added to the reaction and the reaction was stirred at 25° C. for 1 h. LCMS showed that the reaction was complete. The reaction mixture was diluted with H2O (200 mL). The mixture was extracted with EtOAc (3×100 mL), and the combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue to afford the title compound 6-chloro-N-(1-methyl-4-piperidyl)-4-nitro-pyridine-2-carboxamide (1.5 g, crude) as a yellow solid, which was used directly.
To a mixture of 6-chloro-N-(1-methyl-4-piperidyl)-4-nitro-pyridine-2-carboxamide (1.3 g, 4.35 mmol, 1 eq) in EtOH (10 mL) was added saturated NH4Cl (4.35 mmol, 2.5 mL, 1 eq) and the reaction mixture was heated to 70° C. Then Fe (729.1 mg, 13.06 mmol, 3 eq) was added and the mixture was stirred for 1 hr. TLC showed that the reaction was complete. The reaction mixture was diluted with H2O (100 mL). The mixture was extracted with EtOAc (2×100 mL), and the combined organic layers were washed with H2O (2×100 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue to afford the title compound 4-amino-6-chloro-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (1.1 g, crude) as a yellow solid which was used directly without further purification.
To a mixture of 4-amino-6-chloro-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (0.2 g, 744.21 μmol, 1 eq) in DCM (4 mL) was added TEA (225.9 mg, 2.23 mmol, 310.76 μL, 3 eq) and acetyl chloride (584.2 mg, 7.44 mmol, 531.08 μL, 10 eq) at 0° C. The reaction was stirred at 50° C. for 24 hr. LCMS showed that the reaction was complete. The reaction mixture was adjusted with saturated Na2CO3 to pH=8. The mixture was extracted with EtOAc (2×100 mL), and the combined organic layers were washed with H2O (2×100 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound 4-acetamido-6-chloro-N-(1-methylpiperidin-4-yl)picolinamide (0.16 g, 514.84 μmol, 69.18% yield) as a yellow solid.
To a mixture of 1-methylpiperidine-4-carboxylic acid (1 g, 5.57 mmol, 825.32 μL, 1 eq, HCl) in SOCl2 (4.41 g, 37.08 mmol, 2.69 mL, 6.66 eq) and the mixture was stirred until the solid was dissolved and stirred for another 60 min at 20° C. The reaction was concentrated directly to give crude product to afford the title compound (1 g, crude, HCl) as an off-white solid.
To a mixture of 2-bromopyridin-4-amine (300 mg, 1.73 mmol, 1 eq) in DCM (10 mL) was added Et3N (875.3 mg, 8.65 mmol, 1.20 mL, 5 eq), l-methylpiperidine-4-carbonyl chloride (685.4 mg, 3.46 mmol, 2 eq, HCl) in one portion at 0° C. under N2. The mixture was stirred at 20° C. for 60 min. TLC showed ˜30% starting material remained. The reaction mixture was diluted with 30 mL water, extracted with EtOAc (3×30 mL), and the combined organic layer was washed with brine (2×25 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound N-(2-bromo-4-pyridyl)-1-methyl-piperidine-4-carboxamide (320 mg, 1.07 mmol, 62.03% yield) as a colorless gum.
To a mixture of 2-bromopyridin-4-amine (300 mg, 1.73 mmol, 1 eq) in DCM (10 mL) was added Et3N (526.4 mg, 5.2 mmol, 724.06 μL, 3 eq), 3-methoxybenzoyl chloride (443.7 mg, 2.6 mmol, 354.97 μL, 1.5 eq) in one portion at 0° C. under N2. The mixture was stirred at 20° C. for 30 min. TLC showed the starting material was consumed. The reaction was diluted with 30 mL water, extracted with EtOAc (3×30 mL), and the combined organic layer was washed with brine (2×30 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=20:1) to afford the title N-(2-bromo-4-pyridyl)-3-methoxy-benzamide compound (350 mg, 1.14 mmol, 65.72% yield) as a colorless gum.
To a mixture of 1-methylpiperidine-4-carboxylic acid (1 g, 5.57 mmol, 1 eq, HCl) in SOCl2 (3.27 g, 27.48 mmol, 1.99 mL, 4.94 eq) and the mixture was stirred until the solid was dissolved and stirred for another 60 min at 20° C. The reaction was concentrated directly to give crude to afford the title compound 1-methylpiperidine-4-carbonyl chloride (1 g, crude, HCl) as an off-white solid
To a mixture of 4-amino-6-bromo-N-methyl-pyridine-2-carboxamide (200 mg, 869.33 μmol, 1 eq) in DCM (5 mL) was added Et3N (263.9 mg, 2.61 mmol, 363.00 μL, 3 eq), 1-methylpiperidine-4-carbonyl chloride (281 mg, 1.74 mmol, 2 eq). The mixture was stirred at 20° C. for 1 hour. TLC showed that the reaction was complete. The reaction was diluted with 20 mL water, extracted with EtOAc (3×20 mL), and the combined organic layer was washed with water (2×20 mL) and brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=5:1) to afford the title compound 6-bromo-N-methyl-4-[(l-methylpiperidine-4-carbonyl)amino]pyridine-2-carboxamide (150 mg, 422.26 μmol, 48.57% yield) as a yellow solid.
To a mixture of 2-chloropyrimidin-4-amine (200 mg, 1.54 mmol, 1 eq) in DCM (4 mL) was added Et3N (468.7 mg, 4.63 mmol, 644.65 μL, 3 eq), acetyl chloride (1.21 g, 15.44 mmol, 1.10 mL, 10 eq) in one portion at 0° C. under N2. The mixture was stirred at 20° C. for 2 hours. The reaction was diluted with 20 mL water, extracted with EtOAc (3×30 mL), and the combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1:1) to afford the title compound N-(2-chloropyrimidin-4-yl)acetamide (130 mg, 757.65 μmol, 49.08% yield) as an off-white solid.
To a mixture of 3-methoxypropanoic acid (601.7 mg, 5.78 mmol, 542.09 μL, 5 eq) in DCM (5 mL) was added DMAP (42.4 mg, 346.8 μmol, 0.3 eq), DCC (477 mg, 2.31 mmol, 467.67 μL, 2 eq) and 2-bromopyridin-4-amine (200 mg, 1.16 mmol, 1 eq) was added to the reaction and stirred for 14 hours at 20° C. The reaction was diluted with 20 mL water, extracted with EtOAc (2×20 mL), and the combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo to afford the title compound N-(2-bromo-4-pyridyl)-3-methoxy-propanamide (220 mg, crude) as an off-white solid.
To a mixture of 1-bromopyrrolidine-2,5-dione (134.2 mg, 754.09 μmol, 1.2 eq) in DMF (1 mL) was added 2-(difluoromethoxy)aniline (100 mg, 628.4 μmol, 1 eq) at 0° C. The mixture was stirred at 0° C. for 2 h. Then the mixture was stirred for 3 h at 20° C. TLC and LCMS (ET16123-1101-P1A) showed that the reaction was complete. The residue was poured into ice-water (50 mL). The aqueous phase was extracted with EtOAc (3×20 mL). The combined organic phase was washed with brine (3×20 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=3:1) to afford the title compound 4-bromo-2-(difluoromethoxy)aniline (80 mg, 336.09 μmol, 53.48% yield) as a brown oil.
To a mixture of 2-bromopyridin-4-amine (100 mg, 578 μmol, 1 eq) in acetone (2 mL) was added K2CO3 (239.7 mg, 1.73 mmol, 3 eq). Then propanoyl chloride (80.2 mg, 867 μmol, 80.22 μL, 1.5 eq) was added to the mixture. The mixture was stirred at 20° C. for 4 h. LCMS (ET16123-1129-P1A) and HPLC (ET16123-1129-P1A) showed that the reaction was not completed. The residue was poured into ice-water (100 mL). The aqueous phase was extracted with EtOAc (3×50 mL). The combined organic phase was washed with brine (3×50 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound N-(2-bromo-4-pyridyl)propanamide (150 mg, crude) as white oil, which was used directly without further purification.
To a stirred solution of 2-bromopyridin-4-amine (100 mg, 578 μmol, 1 eq) in acetone (1 mL) was added K2CO3 (239.7 mg, 1.73 mmol, 3 eq). Benzoyl chloride (121.9 mg, 867 μmol, 100.72 μL, 1.5 eq) in acetone (1 mL) was added into the solution. Then the reaction was stirred at 20° C. for 16 hr. TLC (PE:EtOAc=1:1, Rf=0.55) and LCMS showed that the reaction was not completed. The mixture was diluted with DCM (5 mL) and filtrated. The filtrate was concentrate in vacuo. The crude product was purified by prep-TLC (PE:EtOAc=1:1) to afford the title compound N-(2-bromo-4-pyridyl)benzamide (62 mg, 223.73 μmol, 38.71% yield) as a yellow solid
To a mixture of 2-bromopyridin-4-amine (200 mg, 1.16 mmol, 1 eq) in DCM (3 mL) was added TEA (584.9 mg, 5.78 mmol, 804.51 μL, 5 eq). Then methanesulfonyl chloride (132.4 mg, 1.16 mmol, 89.47 μL, 1 eq) was added to the mixture. The mixture was stirred at 20° C. for 4 h. LCMS (ET16123-1141-P1W) showed that the reaction was complete. The residue was poured into ice-water (100 mL). The aqueous phase was extracted with EtOAc (3×50 mL). The combined organic phase was washed with brine (3×50 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound N-(2-bromo-4-pyridyl)methanesulfonamide (300 mg, crude) as white oil, which was used directly without further purification.
To a solution of 2-methylsulfonylaniline (100 mg, 584.06 μmol, 1 eq) in DMF (2 mL) was added NBS (114.3 mg, 642.11 μmol, 1.10 eq) (in 1 mL DMF) at 0° C. under N2 atmosphere. Then the reaction was stirred at 15° C. for 3 h. The reaction was quenched with Saturated NH4Cl (10 mL) at 0° C. and the reaction mixture was extracted with EtOAc (3×10 mL). The combined organic layer was washed with water (3×10 mL) and brine (3×10 mL), dried over Na2SO4, filtered, and concentrated. The crude was purified by prep-TLC (SiO2, PE:EtOAc=3:1) to afford the title compound 4-bromo-2-methylsulfonylaniline (120 mg, 479.78 μmol, 82.15% yield) as a light yellow solid.
To a mixture of 3-amino-6-chloropicolinic acid (200 mg, 1.16 mmol, 1 eq) in DMF (5 mL) was added T3P (1.11 g, 1.74 mmol, 1.03 mL, 50% purity, 1.5 eq), Et3N (351.8 mg, 3.48 mmol, 483.9 μL, 3 eq), (1-methyl-4-piperidyl)methanamine (297.2 mg, 2.32 mmol, 2 eq) in one portion. The mixture was stirred at 25° C. for 1 hour. The reaction was diluted with 20 mL water, extracted with EtOAc (2×20 mL), and the combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo to afford the title compound 3-amino-6-chloro-N-((l-methylpiperidin-4-yl)methyl)picolinamide (240 mg, crude) as a yellow gum. LC-MS (ES+, m/z): 283.1 [(M+H)+]
To a mixture of 6-bromopyridine-2-carboxylic acid (1 g, 4.95 mmol, 1 eq) in DMF (15 mL) was added T3P (4.73 g, 7.43 mmol, 4.42 mL, 50% purity, 1.5 eq), Et3N (1.5 g, 14.85 mmol, 2.1 mL, 3 eq) and tert-butyl 4-aminopiperidine-1-carboxylate (1.49 g, 7.43 mmol, 1.5 eq). The reaction mixture was stirred at 25° C. for 1 hour. The reaction was diluted with 30 mL water, extracted with EtOAc (2×30 mL), and the combined organic layer was washed with brine (2×30 mL), dried over Na2SO4, filtered, and concentrated in vacuo to afford the title compound tert-butyl 4-[(6-bromopyridine-2-carbonyl)amino]piperidine-1-carboxylate (1.8 g, crude) as a yellow oil.
To a solution of compound tert-butyl 4-[(6-bromopyridine-2-carbonyl)amino]piperidine-1-carboxylate (1.8 g, 4.68 mmol, 1 eq) was added HCl/EtOAc (4 M, 30 mL, 25.62 eq) in one portion. The mixture was stirred at 25° C. for 2 hours. The reaction mixture was concentrated directly in vacuo to give crude to afford the title compound 6-bromo-N-(4-piperidyl)pyridine-2-carboxamide (1.2 g, crude) as an off-white solid.
To a mixture of 6-bromo-N-(4-piperidyl)pyridine-2-carboxamide (200 mg, 703.85 μmol, 1 eq) in ACN (6 mL) was added K2CO3 (291.8 mg, 2.11 mmol, 3 eq), 2-(methoxy methyl)oxirane (310.1 mg, 3.52 mmol, 313.2 μL, 5 eq) in one portion. The mixture was stirred at 50° C. for 12 hours. The reaction was diluted with 20 mL water, extracted with EtOAc (2×20 mL), and the combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=20:1) to afford the title compound 6-bromo-N-[l-(2-hydroxy-3-methoxy-propyl)-4-piperidyl]pyridine-2-carboxamide (180 mg, 483.54 μmol, 68.7% yield) as a colorless oil. LC-MS (ES+, m/z): 372.1 [(M+H)+]
To a solution of compound 6-bromopyridine-2-carboxylic acid (1 g, 4.95 mmol, 1 eq) in DMF (15 mL), Et3N (1.5 g, 14.85 mmol, 2.1 mL, 3 eq) and T3P (4.72 g, 7.43 mmol, 4.42 mL, 50% purity, 1.5 eq) and tert-butyl 4-(2-aminoethyl)piperidine-1-carboxylate (1.36 g, 5.94 mmol, 1.2 eq) was added dropwise. Then the mixture was stirred at 25° C. for 1 h. TLC (DCM:MeOH=10:1) indicated starting material was consumed completely and one new spot formed. The reaction was clean according to TLC. The reaction mixture was quenched by adding H2O (100 mL), and extracted with EtOAc 120 mL (3×40 mL). The combined organic layers were washed with brine 60 mL, dried over Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 0/1) to afford the title compound tert-butyl 4-[2-[(6-bromopyridine-2-carbonyl)amino]ethyl]piperidine-1-carboxylate (1.7 g, 4.12 mmol, 83.3% yield) as a colorless oil.
To a solution of compound tert-butyl 4-[2-[(6-bromopyridine-2-carbonyl)amino]ethyl]piperidine-1-carboxylate (1.7 g, 4.12 mmol, 1 eq) in HCl/EtOAc (4 M, 30 mL, 29.10 eq). The mixture was stirred at 25° C. for 1 h. LC-MS showed starting material was consumed completely and one main peak with desired mass was detected. The reaction mixture was concentrated in vacuo to give a residue to afford the title compound 6-bromo-N-[2-(4-piperidyl)ethyl]pyridine-2-carboxamide (1.3 g, crude, HCl) as a white solid. LC-MS (ES+, m/z): 12.1 [(M+H)+].
To a mixture of 6-bromo-N-[2-(4-piperidyl)ethyl]pyridine-2-carboxamide (250 mg, 800.76 μmol, 1 eq) in DCM (5 mL) was added TEA (243.1 mg, 2.4 mmol, 334.4 μL, 3 eq) acetyl chloride (125.7 mg, 1.6 mmol, 114.3 μL, 2 eq) at 0° C. under N2. The reaction was stirred at 25° C. for 1 hour. The reaction was diluted with 30 mL water, extracted with EtOAc (2×30 mL), and the combined organic layer was washed with brine (2×30 mL), dried over Na2SO4, filtered, and concentrated in vacuo to afford the title compound N-[2-(1-acetyl-4-piperidyl)ethyl]-6-bromo-pyridine-2-carboxamide (260 mg, crude) as a brown oil.
To a mixture of 6-bromopyridine-2-carboxylic acid (250 mg, 1.24 mmol, 1 eq) in DMF (5 mL) was added T3P (1.18 g, 1.86 mmol, 1.11 mL, 50% purity, 1.5 eq), Et3N (376.4 mg, 3.72 mmol, 517.8 μL, 3 eq), tert-butyl (3R,4R)-4-amino-3-fluoro-piperidine-1-carboxylate (297.7 mg, 1.36 mmol, 1.1 eq) in one portion. The reaction was stirred at 25° C. for 1 hour. The reaction was diluted with water (20 mL), extracted with EtOAc (2×200 mL), and the combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo to afford the title compound tert-butyl (3R,4R)-4-[(6-bromopyridine-2-carbonyl)amino]-3-fluoro-piperidine-1-carboxylate (500 mg, crude) as an off-white solid.
The solution of compound tert-butyl (3R,4R)-4-[(6-bromopyridine-2-carbonyl)amino]-3-fluoro-piperidine-1-carboxylate (250 mg, 621.49 μmol, 1 eq) was added HCl/EtOAc (4 M, 10 mL, 64.36 eq) in one portion. The reaction mixture was stirred at 25° C. for 1 hour. The reaction was concentrated to give crude to afford the title compound 6-bromo-N-(3-fluoropiperidin-4-yl)picolinamide (150 mg, crude) as an off-white solid. LC-MS (ES+, m/z): 302.0 [(M+H)+].
To a mixture of 6-bromo-N-[(3R,4R)-3-fluoro-4-piperidyl]pyridine-2-carboxamide (150 mg, 496.46 μmol, 1 eq) and HCHO (80.6 mg, 992.91 μmol, 73.9 μL, 2 eq) in DCM (3 mL) was added NaBH(OAc)3 (210.4 mg, 992.91 μmol, 2 eq) in one portion. The mixture was stirred at 25° C. for 2 hours. The reaction was diluted with water (20 mL), extracted with EtOAc (2×20 mL), and the combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo to afford the title compound (130 mg, crude) as a yellow oil. LC-MS (ES+, m/z): 316.0 [(M+H)+]
To a solution of 6-bromopyridine-2-carboxylic acid (0.35 g, 1.73 mmol, 1 eq) in DMF (4 mL) was added TEA (876.6 mg, 8.66 mmol, 1.21 mL, 5 eq) and tert-butyl 4-amino-3-methoxy-piperidine-1-carboxylate (518.7 mg, 2.25 mmol, 1.3 eq). Then T3P (1.65 g, 2.6 mmol, 1.55 mL, 50% purity, 1.5 eq) was added to the reaction and the reaction was stirred at 25° C. for 1 h. TLC showed that the reaction was complete. The reaction mixture was diluted with H2O (50 mL). The mixture was extracted with EtOAc (2×50 mL), and the combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 6:1) to afford the title compound tert-butyl 4-[(6-bromopyridine-2-carbonyl)amino]-3-methoxy-piperidine-1-carboxylate (0.65 g, 1.57 mmol, 90.6% yield) as a yellow oil.
To a solution of tert-butyl 4-[(6-bromopyridine-2-carbonyl)amino]-3-methoxy-piperidine-1-carboxylate (0.3 g, 724.12 μmol, 1 eq) in HCl/EtOAc (4 M, 3 mL, 16.57 eq). The mixture was stirred at 25° C. for 1 h. LCMS showed that the reaction was complete. The reaction mixture was filtered, and concentrated in vacuo to give a residue. The crude product used was directly without further purification to afford the title compound 6-bromo-N-(3-methoxy-4-piperidyl)pyridine-2-carboxamide (0.22 g, crude, HCl) as a white solid. LC-MS (ES+, m/z): 314.0 [(M+H)+]
To a solution of 6-bromo-N-(3-methoxy-4-piperidyl)pyridine-2-carboxamide (0.15 g, 477.44 μmol, 1 eq) in DCM (3 mL) was added formaldehyde (77.5 mg, 954.87 μmol, 71.1 μL, 2 eq) and NaBH(OAc)3 (202.4 mg, 954.87 μmol, 2 eq). The mixture was stirred at 25° C. for 1 hr. LCMS showed that the reaction was complete. The reaction mixture was quenched with saturated Na2CO3 (100 mL), extracted with EtOAc (2×50 mL). Then washed with brine (2×50 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, DCM:MeOH=8:1) to afford the title compound 6-bromo-N-(3-methoxy-1-methyl-4-piperidyl)pyridine-2-carboxamide (0.11 g, 335.16 μmol, 70.2% yield) as a yellow oil. LC-MS (ES+, m/z): 328.0 [(M+H)+]
To a solution of 6-bromopyridine-2-carboxylic acid (0.85 g, 4.21 mmol, 1 eq) in DMF (10 mL) was added TEA (2.13 g, 21.04 mmol, 2.93 mL, 5 eq) and 1-methylpiperidin-4-amine (720.7 mg, 6.31 mmol, 1.5 eq). Then T3P (4.02 g, 6.31 mmol, 3.75 mL, 50% purity, 1.5 eq) was added to the reaction and the reaction was stirred at 25° C. for 1 h. TLC showed that the reaction was complete. The reaction mixture was diluted with H2O (100 mL). The mixture was extracted with EtOAc (3×100 mL), and the combined organic layers were washed with H2O (2×100 mL) and brine (2×100 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue which was used directly without further purification to afford the title compound 6-bromo-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (1.5 g, crude) as a yellow oil.
To a solution of compound 6-bromopyridine-2-carboxylic acid (800 mg, 3.96 mmol, 1 eq) in DMF (10 mL) was added drop-wise tert-Butyl 4-amino-3,3-difluoropiperidine-1-carboxylate (1.12 g, 4.75 mmol, 1.2 eq) and Et3N (1.2 g, 11.88 mmol, 1.65 mL, 3 eq) and T3P (3.78 g, 5.94 mmol, 3.53 mL, 50% purity, 1.5 eq). The reaction mixture was stirred at 25° C. for 1 hr. TLC showed that the reaction was complete. The reaction mixture was quenched by adding H2O (60 mL), and extracted with EtOAc (3×40 mL). The combined organic layer was washed with brine (2×30 mL×2), dried over Na2SO4, filtered, and concentrated to afford the title compound tert-butyl 4-[(6-bromopyridine-2-carbonyl)amino]-3,3-difluoro-piperidine-1-carboxylate (1.5 g, crude) as a yellow oil.
A mixture of tert-butyl 4-[(6-bromopyridine-2-carbonyl)amino]-3,3-difluoro-piperidine-1-carboxylate (1.2 g, 2.86 mmol, 1 eq) in DCM (12 mL) and TFA (4.62 g, 40.52 mmol, 3 mL, 14.19 eq) was added drop-wise. The mixture was stirred at 25° C. for 1 hr. TLC (PE:ethyl aectate=1:1) indicated Reactant 1 was consumed completely and one new spot formed. The reaction mixture was quenched by adding H2O 50 mL at 0° C., and extracted with DCM (3×40 mL). The combined organic layers were washed with brine 60 mL, dried over Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=1/0 to 0/1) to afford the title compound 6-bromo-N-(3,3-difluoro-4-piperidyl)pyridine-2-carboxamide (800 mg, 2.5 mmol, 87.52% yield) as a yellow solid
To a solution of compound 6-bromo-N-(3,3-difluoro-4-piperidyl)pyridine-2-carboxamide (100 mg, 312.37 μmol, 1 eq) in DCM (3 mL) was added drop-wise formaldehyde (50.7 mg, 624.74 μmol, 46.51 μL, 2 eq) and NaBH(OAc)3 (99.3 mg, 468.56 μmol, 1.5 eq). Then the mixture was stirred at 25° C. for 2 h. LCMS showed that the reaction was complete. The reaction mixture was quenched by adding H2O (30 mL), and extracted with DCM (5×20 mL). The combined organic layer was washed with brine (60 mL), dried over Na2SO4, filtered, and concentrated to give a residue which was purified by prep-TLC (PE:EtOAc=1:2) to afford the title compound 6-bromo-N-(3,3-difluoro-1-methyl-4-piperidyl)pyridine-2-carboxamide (80 mg, 239.41 μmol, 76.6% yield) as a colorless oil. LC-MS (ES+, m/z): 334.0 [(M+H)+]
To a solution of compound 2-chloropyrimidine-4-carboxylic acid (150 mg, 946.12 μmol, 1 eq) in DMF (3 mL) was added dropwise (3R,4S)-3-fluoro-1-methyl-piperidin-4-amine (239.3 mg, 1.42 mmol, 1.5 eq, HCl) and Et3N (287.2 mg, 2.84 mmol, 395.07 μL, 3 eq) and T3P (903.1 mg, 1.42 mmol, 844.03 μL, 50% purity, 1.5 eq). The reaction mixture was stirred at 25° C. for 1 hr. LCMS showed that the reaction was complete. The reaction mixture was quenched by adding H2O (40 mL), and extracted with EtOAc (6×15 mL). The combined organic layer was washed with brine (3×20 mL), dried over Na2SO4, filtered, and concentrated to afford the title compound 2-chloro-N-((3R,4S)-3-fluoro-1-methylpiperidin-4-yl)pyrimidine-4-carboxamide (130 mg, crude) as a yellow solid. LC-MS (ES+, m/z): 273.1 [(M+H)+]
To a solution of compound 2-chloropyrimidine-4-carboxylic acid (250 mg, 1.58 mmol, 1 eq) in DMF (4 mL) was added dropwise tert-butyl 4-amino-2-methyl-piperidine-1-carboxylate (506.9 mg, 2.37 mmol, 1.5 eq) and Et3N (478.7 mg, 4.73 mmol, 658.44 μL, 3 eq) and T3P (1.51 g, 2.37 mmol, 1.41 mL, 50% purity, 1.5 eq). The reaction mixture was stirred at 25° C. for 1 hr. TLC showed that the reaction was complete. The reaction mixture was quenched by adding H2O (40 mL), and extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated to give a residue. The residue was purified by prep-TLC (SiO2, PE:EtOAc=2:1) to afford the title compound tert-butyl (2S,4R)-4-[(2-chloropyrimidine-4-carbonyl)amino]-2-methyl-piperidine-1-carboxylate (500 mg, 1.41 mmol, 89.4% yield) as a colourless oil.
To a solution of compound tert-butyl (2S,4R)-4-[(2-chloropyrimidine-4-carbonyl)amino]-2-methyl-piperidine-1-carboxylate (450 mg, 1.27 mmol, 1 eq) in HCl/EtOAc (4 M, 20 mL, 63.08 eq). Then the mixture was stirred at 25° C. for 1 h. LCMS showed that the reaction was complete. The reaction mixture was concentrated to afford the title compound 2-chloro-N-[(2S,4R)-2-methyl-4-piperidyl]pyrimidine-4-carboxamide (350 mg, crude, HCl) as a white solid. LC-MS (ES+, m/z): 255.1 [(M+H)+]
To a solution of compound 2-chloro-N-[(2S,4R)-2-methyl-4-piperidyl]pyrimidine-4-carboxamide (200 mg, 686.87 μmol, 1 eq, HCl) and formaldehyde (111.5 mg, 1.37 mmol, 102.28 μL, 2 eq) in DCM (3 mL) was added NaBH(OAc)3 (218.4 mg, 1.03 mmol, 1.5 eq) in one portion under N2. Then the mixture was stirred at 25° C. for 1 h. TLC showed that the reaction was complete. The reaction mixture was quenched by adding saturated Na2CO3 (30 mL) at 0° C., and extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated to give a residue which was purified by prep-TLC (DCM:MeOH=10:1) to afford the title compound 2-chloro-N-[(2S,4R)-1,2-dimethyl-4-piperidyl]pyrimidine-4-carboxamide (160 mg, 595.37 μmol, 86.7% yield) as a yellow oil. LC-MS (ES+, m/z): 269.1 [(M+H)+]
To a solution of tert-butyl N-(4-oxocyclohexyl)carbamate (0.4 g, 1.88 mmol, 400 μL, 1 eq) and 2-oxa-6-azaspiro[3.3]heptane;oxalic acid (1.06 g, 5.63 mmol, 3 eq) in THF (5 mL) was added i-Pr2NH (1.9 g, 18.76 mmol, 2.65 mL, 10 eq). Then the mixture was stirred at 50° C. for 0.5 h. Then NaBH(OAc)3 (1.19 g, 5.63 mmol, 3 eq) was added and the reaction was heated to 50° C. under N2 and stirred for 1 h. TLC showed that the reaction was complete. The reaction mixture was diluted with saturated Na2CO3 to adjust to pH=8. The mixture was extracted with EtOAc (2×50 mL), and the combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. N/A (used the crude product directly) to afford the title compound tert-butyl N-[4-(2-oxa-6-azaspiro[3.3]heptan-6-yl)cyclohexyl]carbamate (0.6 g, crude) as a white oil.
To a solution of tert-butyl N-[4-(2-oxa-6-azaspiro[3.3]heptan-6-yl)cyclohexyl]carbamate (0.5 g, 1.69 mmol, 1 eq) in DCM (2 mL) was added TFA (770 mg, 6.75 mmol, 0.5 mL, 4 eq). The mixture was stirred at 25° C. for 1 hr. TLC showed that the reaction was complete. The reaction mixture was diluted with saturated Na2CO3 to adjust to pH=8. The mixture was extracted with EtOAc (2×50 mL), and the combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. N/A (used the crude product directly) to afford the title compound 4-(2-oxa-6-azaspiro[3.3]heptan-6-yl)cyclohexanamine (0.7 g, crude) as a white oil.
To a mixture of tert-butyl (2S,4R)-4-amino-2-methyl-piperidine-1-carboxylate (400 mg, 1.87 mmol, 1 eq) and K2CO3 (386.9 mg, 2.8 mmol, 1.5 eq) in THF (7 mL) H2O (2 mL) was added benzyl carbonochloridate (350.3 mg, 2.05 mmol, 291.88 μL, 1.1 eq) in one portion at 0° C. under N2. The mixture was stirred at 25° C. for 1 hour. The reaction was diluted with 20 mL water, extracted with EtOAc (2×20 mL), and the combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1:1) to afford the title compound tert-butyl (2S,4R)-4-(benzyloxycarbonylamino)-2-methyl-piperidine-1-carboxylate (440 mg, 1.26 mmol, 67.66% yield) as a colourless oil. no spectra data for this compound, just by TLC.
The solution of tert-butyl (2S,4R)-4-(benzyloxycarbonylamino)-2-methyl-piperidine-1-carboxylate (200 mg, 573.99 μmol, 1 eq) in HCl/EtOAc (4 M, 4 mL, 27.87 eq) was stirred at 25° C. for 2 hour. TLC showed that the reaction was complete. The reaction was diluted with 20 mL EtOAc, concentrated directly to give crude to afford the title compound benzyl N-[(2S,4R)-2-methyl-4-piperidyl]carbamate (200 mg, crude, HCl) as an off-white solid, no spectra data for this compound, just by TLC (SiO2, I2, PE:EtOAc=1:1, Rf SM=0.63, Rf TM=0.00)
To a mixture of benzyl N-[(2S,4R)-2-methyl-4-piperidyl]carbamate (200 mg, 805.41 μmol, 1 eq) in DCM (4 mL) was added HCHO (196.1 mg, 2.42 mmol, 179.89 μL, 3 eq) NaBH(OAc)3 (512.1 mg, 2.42 mmol, 3 eq). The mixture was stirred at 25° C. for 2 hour. The reaction was diluted with 20 mL water, adjust to pH=9 with saturated aq. Na2CO3, extracted with EtOAc (2×20 mL), and the combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo to afford the title compound benzyl N-[(2S,4R)-1,2-dimethyl-4-piperidyl]carbamate (100 mg, 381.18 μmol, 47.33% yield) as a colourless oil. LC-MS (ES+, m/z): 263.2 [(M+H)+]
To a solution of [[(2S,4R)-1,2-dimethyl-4-piperidyl]amino]methyl benzoate (100 mg, 381.17 μmol, 1 eq) in MeOH (3 mL) was added 10% Pd—C (138.9 mg, 114.35 μmol, 10% purity, 0.3 eq). The suspension was degassed in vacuo and purged with H2 several times. The mixture was stirred under H2 (768.40 ug, 381.17 μmol, 1 eq) (15 psi) at 25° C. for 3 hours. The reaction mixture was diluted with 10 mL MeOH, heated to 50° C. and filtered to give filtrate. The filtrate was concentrated to give crude to afford the title compound (2S,4R)-1,2-dimethylpiperidin-4-amine (30 mg, crude) as a colourless gum. no spectra data for this compound, just by TLC (SiO2, I2, DCM:MeOH=10:1, Rf SM=0.58, Rf TM
The solution of 2-methylprop-2-enenitrile (2 g, 29.81 mmol, 2.50 mL, 1 eq) in NH3·H2O (9.1 g, 72.71 mmol, 10 mL, 28% purity, 2.44 eq) was stirred for 3 hr at 135° C. (no monitor). The reaction mixture was cooled to 15° C. Then distilled at 130° C. to give the crude product. The crude product was concentrated in vacuo for 0.5 hr at 0° C. to remove the remaining NH3·H2O to afford the title compound 3-amino-2-methyl-propanenitrile (0.2 g, crude) as a colorless liquid which was used for the next step directly without further purification.
To a solution of tert-butyl N-(4-piperidyl)carbamate (5 g, 24.97 mmol, 1 eq) in ACN (100 mL) was added K2CO3 (27.6 g, 199.72 mmol, 8 eq) and 2-bromoethanol (9.36 g, 74.9 mmol, 5.32 mL, 3 eq) at 25° C. under N2. The reaction mixture was stirred at 80° C. for 5 h. TLC showed that the reaction was complete. The reaction mixture was filtered, and the filtrated cake was washed with DCM (3×30 mL). The combined filtrate was concentrated to afford the title compound tert-butyl N-[1-(2-hydroxyethyl)-4-piperidyl]carbamate (9 g, crude) as a yellow oil. LC-MS (ES+, m/z): 245.3 [(M+H)+].
The solution of tert-butyl N-[l-(2-hydroxyethyl)-4-piperidyl]carbamate (4.5 g, 18.42 mmol, 1 eq) in 4N HCl/EtOAc (18.42 mmol, 45 mL, 4% purity, 1 eq) and the mixture was stirred at 25° C. for 1 h. LCMS showed that the reaction was complete. The reaction mixture was concentrated in vacuo to afford the title compound 2-(4-amino-1-piperidyl)ethanol (5 g, crude, 2HCl) as a yellow solid. LC-MS (ES+, m/z): 217.2 [(M+H)+].
To a solution of 3-amino-6-chloro-pyridine-2-carboxylic acid (1 g, 5.79 mmol, 1 eq) and 2-(4-amino-1-piperidyl)ethanol (3.15 g, 14.49 mmol, 2.5 eq, 2HCl) in DMF (10 mL) was added T3P (5.53 g, 8.69 mmol, 5.17 mL, 50% purity, 1.5 eq) and Et3N (2.93 g, 28.97 mmol, 4.03 mL, 5 eq). The resulting reaction mixture was stirred at 25° C. for 1 h. TLC showed that the reaction was complete. The reaction mixture was poured into water (30 mL), extracted with EtOAc (2×30 mL). The combined organic layer was washed with brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound 3-amino-6-chloro-N-[l-(2-hydroxyethyl)-4-piperidyl]pyridine-2-carboxamide (4 g, crude) as a white solid.
LC-MS (ES+, m/z): 299.2 [(M+H)+].
To a solution of 7-bromoquinoline-2-carboxylic acid (200 mg, 793.45 μmol, 1 eq), MeNH2 (80.4 mg, 1.19 mmol, 1.5 eq, HCl) in DMF (2 mL) was added TEA (401.5 mg, 3.97 mmol, 552.19 μL, 5 eq) and T3P (757.38 mg, 1.19 mmol, 707.83 μL, 50% purity, 1.5 eq) at 25° C. The reaction mixture was stirred at 25° C. for 1 h. The reaction mixture was poured into H2O (15 mL) and the aqueous phase was extracted with EtOAc (3×15 mL). The combined organic layer was washed with brine (3×15 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound 7-bromo-N-methyl-quinoline-2-carboxamide (200 mg, crude) as a yellow solid. LCMS (ES+, m/z): 265.0, 267.0 [(M+H)+]
To a solution of 6-bromoquinolin-4-ol (200 mg, 892.64 μmol, 384.62 μL, 1 eq) in acetone (5 mL) was added K2CO3 (370.1 mg, 2.68 mmol, 3 eq) and MeI (253.4 mg, 1.79 mmol, 111.14 μL, 2 eq) at 25° C. The reaction mixture was stirred at 70° C. for 1 h. The reaction mixture was concentrated in vacuo to give the residue. The residue was purified by prep-TLC to afford the title compound 6-bromo-1-methyl-quinolin-4-one (150 mg, 630.04 μmol, 70.58% yield) as a white solid and confirmed by 1H NMR, C NMR, HSQC. 1H NMR (400 MHz, DMSO-d6) 5=8.24 (d, J=2.4 Hz, 1H), 8.00 (d, J=7.6 Hz, 1H), 7.90 (dd, J=2.4, 9.2 Hz, 1H), 7.66 (d, J=9.2 Hz, 1H), 6.09 (d, J=7.6 Hz, 1H), 3.81 (s, 3H),
To a solution of 6-bromo-4-chloro-quinoline (200 mg, 824.74 μmol, 384.62 μL, 1 eq) in MeOH (6 mL) was added NaOMe (445.6 mg, 8.25 mmol, 10 eq) at 25° C. The reaction mixture was stirred at 70° C. for 2 h. The reaction mixture was concentrated in vacuo to give the residue. The residue was poured into H2O (6 mL) and the aqueous phase was extracted with EtOAc (3×10 mL). The combined organic layer was washed with brine (3×10 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound 6-bromo-4-methoxy-quinoline (180 mg, crude) as a white solid, confirmed by 1H NMR. TLC (PE:EtOAc=0:1, SM=0.86, TM=0.20) 1H NMR (400 MHz, DMSO-d6) 5=8.78 (d, J=5.6 Hz, 1H), 8.25 (d, J=2.0 Hz, 1H), 7.93-7.83 (m, 2H), 7.09 (d, J=5.6 Hz, 1H), 4.05 (s, 3H)
To a solution of 7-bromo-2-chloro-quinoline (1 g, 4.12 mmol, 1 eq) in MeOH (10 mL) was added NaOMe (2.23 g, 41.24 mmol, 10 eq). The reaction mixture was heated to 65° C. and stirred at 65° C. for 2 h. The reaction mixture was concentrated in vacuo to give the residue. The residue was poured into H2O (20 mL) and the aqueous phase was extracted with EtOAc (3×10 mL). The combined organic layer was washed with brine (3×10 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound 7-bromo-2-methoxy-quinoline (0.9 g, crude) as a white solid, confirmed by 1H NMR. TLC (PE:EtOAc=1:0, SM=0.20, TM=0.30) 1H NMR (400 MHz, DMSO-d6) δ=8.27 (d, J=8.8 Hz, 1H), 7.96 (d, J=2.0 Hz, 1H), 7.86 (d, J=8.8 Hz, 1H), 7.59 (dd, J=2.0, 8.4 Hz, 1H), 7.07 (d, J=8.8 Hz, 1H), 3.98 (s, 3H)
6-bromo-4-chloro-quinoline (0.3 g, 1.24 mmol, 1 eq) was dissolved in aniline (3.06 g, 32.86 mmol, 3 mL, 26.56 eq) in a 10 mL single-necked round bottom flask at 25° C. The mixture was stirred reflux at 100° C. for 1 h. The reaction was diluted with 10 mL EtOAc and poured into 20 mL water and extracted with EtOAc (3×15 mL), washed with brine (3×15 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 1/1) to afford the title compound 6-bromo-N-phenyl-quinolin-4-amine (0.3 g, 1 mmol, 81.06% yield) as a brown solid. LC-MS (ES+, m/z): 298.9/300.8 [(M+H)+].
To a solution of 7-bromo-2-chloro-quinazoline (0.3 g, 1.23 mmol, 1 eq) in aniline (3.06 g, 32.86 mmol, 3 mL, 26.67 eq) was stirred at 100° C. for 1 hr. TLC (PE:EtOAc=1:1, SM Rf=0.58, TM Rf=0.51) showed that the reaction was complete. The reaction was diluted with ˜10 mL EtOAc and poured into 20 mL water and extracted with EtOAc (3×20 mL), washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was washed with PE (3×15 mL) to afford the title compound 7-bromo-N-phenyl-quinazolin-2-amine (0.25 g, crude) as a yellow solid. LC-MS (ES+, m/z): 300.1/302.1 [(M+H)+]
To a solution of 7-bromo-1-chloro-isoquinoline (0.3 g, 1.24 mmol, 1 eq) in MeNH2 (116.4 mg, 1.24 mmol, 2 mL, 33% purity in EtOH, 1 eq) and the mixture was stirred at 85° C. for 8 hr. TLC (PE:EtOAc=4:1, SM Rf=0.53, TM Rf=0.25) showed that the reaction was complete. The reaction was concentrate in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound 7-bromo-N-methyl-isoquinolin-1-amine (0.24 g, 1.01 mmol, 81.82% yield) as a yellow solid.
To a solution of 7-bromo-2-chloro-quinazoline (0.3 g, 1.23 mmol, 1 eq) in MeOH (3 mL) was added NaOMe (0.15 g, 2.78 mmol, 2.25 eq) at 25° C. Then stirred at 70° C. for 1 hr. TLC (PE:EtOAc=3:1, SM Rf=0.51, TM Rf=0.45) showed that the reaction was complete. The reaction was poured into ˜20 mL water. The mixture was extracted with EtOAc (3×10 mL), washed with brine (3×10 mL), dried over by anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound 7-Bromo-2-methoxy-quinazoline (0.23 g, crude) as a yellow solid.
To a solution of 7-bromo-1-chloro-isoquinoline (0.3 g, 1.24 mmol, 1 eq) in N-methyl methan amine (2 M in THF, 6 mL, 9.70 eq) and the mixture was stirred at 70° C. for 8 hr. LCMS showed some starting material remained. Then stirred at 70° C. for further 8 h, LCMS showed that the reaction was complete. The reaction was concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=4:1) to afford the title compound 7-bromo-N,N-dimethyl-isoquinolin-1-amine (0.27 g, 1.08 mmol, 86.91% yield) as a yellow oil. LC-MS (ES+, m/z): 251.1/253.1 [(M+H)+].
A solution of 6-bromo-4-chloro-quinoline (1 g, 4.12 mmol, 1 eq) in i-PrOH (10 mL) was added DIPEA (2.66 g, 20.62 mmol, 3.59 mL, 5 eq) and 1-methylpiperazine (2.48 g, 24.74 mmol, 2.74 mL, 6 eq). Then the mixture was stirred at 100° C. for 1 h. The reaction was poured into ˜50 mL water and extracted with EtOAc (3×50 mL), washed with brine (3×100 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=30:1 to 10:1) to afford the title compound 6-bromo-4-(4-methylpiperazin-1-yl)quinoline (1 g, 3.27 mmol, 79.20% yield) as a yellow solid. LC-MS (ES+, m/z): 305.9/307.8 [(M+H)+].
To a solution of 6-bromo-4-chloro-quinoline (1 g, 4.12 mmol, 1 eq) in i-PrOH (10 mL) was added DIPEA (1.6 g, 12.37 mmol, 2.15 mL, 3 eq) and morpholine (1.8 g, 20.62 mmol, 1.81 mL, 5 eq) and the mixture was stirred at 100° C. for 12 h in a 100 mL of sealed tube. LCMS showed some starting material remained. Then stirred at 100° C. for further 12 hr. The reaction was poured into ˜50 mL water and extracted with EtOAc (3×50 mL), washed with brine (3×100 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=30:1 to 10:1) to afford the title compound 4-(6-bromo-4-quinolyl)morpholine (1 g, 3.41 mmol, 82.72% yield) as a yellow solid. LC-MS (ES+, m/z): 292.8/294.8 [(M+H)+].
To a solution of 7-bromo-2-chloro-quinoline (0.3 g, 1.24 mmol, 1 eq) in i-PrOH (6 mL) was added 1-methylpiperazine (619.6 mg, 6.19 mmol, 686.11 μL, 5 eq) and DIPEA (799.4 mg, 6.19 mmol, 1.08 mL, 5 eq) and the mixture was stirred at 100° C. for 12 hr. The reaction was poured into ˜20 mL water and extracted with EtOAc (3×15 mL), washed with brine (3×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, DCM/MeOH=20/1 to 10:1) to afford the title compound 7-bromo-2-(4-methylpiperazin-1-yl)quinoline (0.27 g, 881.78 μmol, 71.28% yield) as a yellow solid. LC-MS (ES+, m/z): 306.2/308.2 [(M+H)+].
To a solution of 7-bromo-2,4-dichloro-quinazoline (0.4 g, 1.44 mmol, 1 eq) in i-PrOH (4 mL) was added DIEA (372 mg, 2.88 mmol, 501.36 μL, 2 eq) and methanamine; hydrochloride (97.2 mg, 1.44 mmol, 1 eq). Then the mixture was stirred at 25° C. for 1 h. LCMS showed that the reaction was complete. The reaction mixture was poured into water (100 mL) and extracted with EtOAc (3×30 mL), washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 1:1) to afford the title compound 7-bromo-2-chloro-N-methyl-quinazolin-4-amine (0.33 g, 1.21 mmol, 84.14 yield) as a light yellow solid.
To a solution of 7-bromo-2-chloro-N-methyl-quinazolin-4-amine (0.15 g, 550.4 μmol, 1 eq) in i-PrOH (3 mL) was added DIEA (355.7 mg, 2.75 mmol, 479.35 μL, 5 eq) and (2,4-dimethoxyphenyl)methanamine (460.2 mg, 2.75 mmol, 414.55 μL, 5 eq). Then the mixture was stirred at 100° C. for 8 hr. The reaction was poured into 10 mL water and extracted with EtOAc (3×10 mL), washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1:1) to afford the title compound 7-bromo-N2-[(2,4-dimethoxyphenyl)methyl]-N4-methyl-quinazoline-2,4-diamine (0.2 g, 495.94 μmol, 90.11% yield) as a yellow solid. LC-MS (ES+, m/z): 403.2/405.2 [(M+H)+].
To a solution of 7-bromo-2,4-dichloro-quinazoline (0.4 g, 1.44 mmol, 1 eq) in i-PrOH (4 mL) was added DIEA (372 mg, 2.88 mmol, 501.36 μL, 2 eq) and 2-methoxyethanamine (108.1 mg, 1.44 mmol, 125.11 μL, 1 eq). Then the mixture was stirred at 25° C. for 1 h. The reaction mixture was poured into water (100 mL) and extracted with EtOAc (3×30 mL), washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 1:1) to afford the title compound 7-Bromo-2-chloro-N-(2-methoxyethyl) quinazolin-4-amine (0.38 g, 1.2 mmol, 83.40% yield) as alight yellow solid. LC-MS (ES+, m/z): 316.0/318.0 [(M+H)+].
To a solution of 7-bromo-2-chloro-N-(2-methoxyethyl) quinazolin-4-amine (0.18 g, 568.57 μmol, 1 eq) in i-PrOH (3 mL) was added DIEA (367.4 mg, 2.84 mmol, 495.18 μL, 5 eq) and (2,4-dimethoxyphenyl)methanamine (475.3 mg, 2.84 mmol, 428.24 μL, 5 eq). Then stirred at 100° C. for 8 hr. The reaction was poured into 10 mL water and extracted with EtOAc (3×10 mL), washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1:1) to afford the title compound 7-bromo-N2-[(2,4-dimethoxyphenyl)methyl]-N4-(2-methoxyethyl) quinazoline-2,4-diamine (0.2 g, 447.1 μmol, 78.64% yield) as a yellow solid. LC-MS (ES+, m/z): 447.2/449.2 [(M+H)+].
To the solution of 7-bromo-2-chloro-quinazoline (260 mg, 1.07 mmol, 1 eq) in i-PrOH (5 mL) was added 2-aminoethanol (326.1 mg, 5.34 mmol, 5 eq), DIPEA (690 mg, 5.34 mmol, 5 eq). The reaction mixture was stirred at 90° C. for 2 hours. The reaction mixture was poured into water (80 mL) and extracted with EtOAc (3×30 mL). The combined organic layer was washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound (200 mg, crude) which was used for the next step directly without further purification.
To a solution of 2-chloro-7H-pyrrolo[2,3-d]pyrimidine (220 mg, 1.43 mmol, 1 eq) in DMF (5 mL) was added NaH (114.6 mg, 2.87 mmol, 60% purity, 2 eq). The reaction mixture was stirred at 0° C. for 30 min. Then 2-bromo-N-methyl-acetamide (653.2 mg, 4.3 mmol, 3 eq) was added at 0° C. The resulting reaction mixture was stirred at 0° C. for 1 hour. The reaction mixture was poured into saturated NH4Cl (80 mL) and extracted with EtOAc (3×30 mL). The combined organic layers were washed with brine (3×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, DCM:MeOH=30:1) to afford the title compound 2-(2-chloropyrrolo[2,3-d]pyrimidin-7-yl)-N-methyl-acetamide (250 mg, 1.11 mmol, 77.68% yield) as a white solid.
To a solution of 2-chloro-7H-pyrrolo[2,3-d]pyrimidine (800 mg, 5.21 mmol, 1 eq) in ACN (6 mL) was added DBU (396.5 mg, 2.6 mmol, 0.5 eq) and methyl prop-2-enoate (538.2 mg, 6.25 mmol, 1.2 eq) at 25° C. The reaction mixture was stirred at 80° C. for 16 hours. The reaction mixture was poured into water (80 mL) and extracted with EtOAc (3×30 mL). The combined organic layer was washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=20:1 to 1/1) to afford the title compound methyl 3-(2-chloropyrrolo[2,3-d]pyrimidin-7-yl)propanoate (1 g, 4.17 mmol, 80.10% yield) as a white solid. LC-MS (ES+, m/z): 240.1 [(M+H)+]
To a solution of methyl 3-(2-chloropyrrolo[2,3-d]pyrimidin-7-yl)propanoate (500 mg, 2.09 mmol, 1 eq) in THF (8 mL) and H2O (2 mL) was added LiOH·H2O (262.7 mg, 6.26 mmol, 3 eq). The mixture was stirred at 25° C. for 2 hours. TLC (MeOH:DCM=10:1, SM/Rf=0.7, TM/Rf=0.2) showed that the reaction was complete. The reaction mixture was poured into ice water (80 mL). Then adjusting the pH=5˜6 with saturated citric acid. The solution was extracted with EtOAc (3×30 mL), washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound (400 mg, crude) as a white solid, which was used directly.
To the solution of 3-(2-chloropyrrolo[2,3-d]pyrimidin-7-yl)propanoic acid (350 mg, 1.55 mmol, 1 eq) in DMF (5 mL) was successively added methanamine (523.7 mg, 7.76 mmol, 5 eq, HCl), T3P (1.48 g, 2.33 mmol, 50% purity, 1.5 eq) and TEA (470.9 mg, 4.65 mmol, 3 eq). The resulting reaction mixture was stirred at 25° C. for 1 hour. The reaction mixture was poured into water (80 mL) and extracted with EtOAc (3×30 mL), washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound (300 mg, crude) as a light yellow solid. LC-MS (ES+, m/z): 239.1 [(M+H)+]
To the solution of 7-bromo-2-chloro-quinoxaline (500 mg, 2.05 mmol, 1 eq) in i-PrOH (10 mL) was added NH3·H2O (2.4 g, 20.53 mmol, 2.64 mL, 30% purity, 10 eq) and DIPEA (2.65 g, 20.53 mmol, 10 eq). The reaction mixture was stirred at 90° C. for 2 hours. The reaction mixture was poured into water (80 mL) and extracted with EtOAc (3×30 mL). The combined organic layer was washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=5:1 to 1:1) to afford the title compound (110 mg, 490.95 μmol, 23.91% yield) as a white solid. LC-MS (ES+, m/z): 223.9 [(M+H)+]
To a solution of 7-bromo-2,4-dichloro-quinazoline (0.3 g, 1.08 mmol, 1 eq) in i-PrOH (3 mL) was added DIEA (1.4 g, 10.79 mmol, 1.88 mL, 10 eq). Then methanamine;hydrochloride (1.46 g, 21.59 mmol, 20 eq) was added and the reaction mixture was stirred at 100° C. for 15 h. LCMS showed that the reaction was complete. The reaction mixture was poured into 50 mL H2O, extracted with EtOAc (3×50 mL), and the combined organic layer was washed with H2O (2×50 mL) and brine (2×50 mL). Then dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound 7-bromo-N2,N4-dimethyl-quinazoline-2,4-diamine (0.3 g, crude) as a yellow solid which was used for the next step without further purification. LC-MS (ES+, m/z): 267.0 [(M+H)+]
To a solution of 2-amino-4-bromo-benzaldehyde (8 g, 39.99 mmol, 1 eq) in DCM (120 mL) was added pyridine (9.49 g, 119.98 mmol, 9.68 mL, 3 eq) and methyl 2-chloro-2-oxo-acetate (6.37 g, 51.99 mmol, 4.79 mL, 1.3 eq) at 0° C. Then the mixture was stirred at 0° C. for 1 hr. The reaction was poured into water (300 mL) and extracted with DCM (3×150 mL), washed with brine (3×150 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound Methyl 2-(5-bromo-2-formyl-anilino)-2-oxo-acetate (12.8 g, crude) as a yellow solid. LC-MS (ES+, m/z): 285.9/288.0 [(M+H)+]. 1H NMR (400 MHz, DMSO-de) 5=12.27 (s, 1H), 10.00 (s, 1H), 8.68 (d, J=1.6 Hz, 1H), 7.95 (d, J=8.2 Hz, 1H), 7.67 (dd, J=1.8, 8.3 Hz, 1H), 3.90 (s, 3H).
To a mixture of methyl 2-(5-bromo-2-formyl-anilino)-2-oxo-acetate (10.6 g, 37.05 mmol, 1 eq) in AcOH (106 mL) was added CH3COONH4 (28.56 g, 370.53 mmol, 10 eq) at 25° C. and the reaction mixture was stirred at 115° C. for 1 h. The reaction was poured into 20 mL water and added NaOH solid until pH=8. The mixture was extracted with EtOAc (3×200 mL), washed with brine (3×200 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound Methyl 7-bromoquinazoline-2-carboxylate (6.9 g, crude) as a yellow solid. LC-MS (ES+, m/z): 267.0/269.0 [(M+H)+]. 1H NMR (400 MHz, DMSO-d6) δ=9.80 (s, 1H), 8.46 (s, 1H), 8.25 (d, J=8.8 Hz, 1H), 8.10-8.04 (m, 1H), 3.97 (s, 3H)
To a solution of methyl 7-bromoquinazoline-2-carboxylate (3 g, 11.23 mmol, 1 eq) in MeOH (30 mL) was added NH3·H2O (6.83 g, 54.53 mmol, 7.5 mL, 28% purity, 4.85 eq) at 25° C. Then stirred at 50° C. for 1 hr. The reaction was concentrated in vacuo. Then the residue was washed with EtOAc (3×20 mL) to afford the title compound 7-bromoquinazoline-2-carboxamide (3.1 g, crude) as a yellow solid. LC-MS (ES+, m/z): 251.9/253.9 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) Shift=9.76 (s, 1H), 8.37 (s, 1H), 8.35-8.31 (m, 1H), 8.34 (br s, 1H), 8.23 (d, J=8.6 Hz, 1H), 8.03 (dd, J=1.8, 8.6 Hz, 1H), 7.93 (br s, 1H)
To a solution of methyl 7-bromoquinazoline-2-carboxylate (3.1 g, 11.61 mmol, 1 eq) in MeOH (36 mL) was added methanamine (6.6 g, 70.13 mmol, 9 mL, 33% purity in EtOH, 6.04 eq) at 25° C. Then stirred at 50° C. for 1 hr. The reaction was concentrated in vacuo, and washed with PE (3×50 mL) to afford the title compound 7-bromo-N-methyl-quinazoline-2-carboxamide (2.5 g, crude) as a yellow solid. LC-MS (ES+, m/z): 266.0/268.0 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) Shift=9.77 (s, 1H), 9.04 (br d, J=3.9 Hz, 1H), 8.38 (s, 1H), 8.23 (d, J=8.6 Hz, 1H), 8.04 (dd, J=1.8, 8.7 Hz, 1H), 2.87 (d, J=4.8 Hz, 3H).
To a solution of 6-methyl-1H-indazole (0.5 g, 3.78 mmol, 1 eq) in DMF (5 mL) was added NIS (1.28 g, 5.67 mmol, 1.5 ef) and the mixture was stirred at 25° C. for 1 hr. TLC (PE:EtOAc=4:1, SM Rf=0.40, TM Rf=0.58) showed that the reaction was complete. The reaction was poured into ˜10 mL water and extracted with EtOAc (3×10 mL), washed with brine (3×10 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 1/1) to afford the title compound 3-iodo-6-methyl-1H-indazole (0.9 g, 3.49 mmol, 92.19% yield) as a white solid.
To a mixture of 7-bromoquinazolin-2-amine (500 mg, 2.23 mmol, 1 eq) in dioxane (5 mL) was added Pin2B2 (736.7 mg, 2.9 mmol, 1.3 eq), KOAc (1.1 g, 11.16 mmol, 5 eq), Pd(dppf)Cl2 (81.6 mg, 111.58 μmol, 0.05 eq) under N2. The mixture was stirred at 100° C. for 1 h. The reaction mixture was concentrated in vacuo. The residue was dissolved in DCM (20 mL), filtered and the liquid was desired. The liquid was washed with PE (3×10 mL) to afford the title compound (2-aminoquinazolin-7-yl)boronic acid (500 mg, crude) as black brown solid. LC-MS (ES+, m/z) 190.0 [(M+H)+]
To a mixture of 7-bromo-2-chloro-quinoline (1 g, 4.12 mmol, 1 eq) in DMSO (5 mL) was added MeNH2 (6.4 g, 61.86 mmol, 30% purity in EtOH, 15 eq). The mixture was stirred at 100° C. for 2 h. The reaction mixture was poured into H2O (20 mL) and the aqueous phase was filtered. The solid was collected. Then the solid was dissolved in PE:EtOAc=10:1 (20 mL) and stirred at 25° C. for 0.5 h. Then filtered. The solid was collected to afford the title compound 7-bromo-N-methyl-quinolin-2-amine (800 mg, crude) as a white solid. LC-MS (ES+, m/z) 236.9, 238.9 [(M+H)+]
A mixture of 7-bromo-N-methyl-quinolin-2-amine (400 mg, 1.69 mmol, 1 eq), 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (514.1 mg, 2.02 mmol, 1.2 eq), KOAc (331.2 mg, 3.37 mmol, 2 eq), Pd(dppf)Cl2 (123.4 mg, 168.71 μmol, 0.1 eq) in dioxane (8 mL). The mixture was stirred at 100° C. for 2 hours. The reaction mixture was filtered, and concentrated in vacuo to give a residue and washed with DCM (3×10 mL) to afford the title compound (2-(methylamino)quinolin-7-yl)boronic acid (600 mg, crude) as black brown oil. LC-MS (ES+, m/z) 202.9 [(M+H)+]
Compounds that bind to mutant p53 and restore DNA binding activity of the mutant p53 include compounds of TABLE 16.
The following non-limiting embodiments provide illustrative examples of the invention, but do not limit the scope of the disclosure.
Embodiment 1. A compound of the formula:
then each of R5 and R6 is independently aryl or heteroaryl, each of which is unsubstituted or substituted, or hydrogen or halogen; or R5 and R6 together with the carbon atoms to which R5 and R6 are bound form a ring, wherein the ring is unsubstituted or substituted.
Embodiment 3. The compound of embodiment 1 or embodiment 2, wherein
then R5 and R6 together with the carbon atoms to which R5 and R6 are bound form the ring, wherein the ring is unsubstituted or substituted.
Embodiment 4. The compound of any one of embodiments 1-3, wherein
then R5 is hydrogen or halogen, and R6 is aryl or heteroaryl, which is unsubstituted or substituted.
Embodiment 5. The compound of any one of embodiments 1-4, wherein
Embodiment 6. The compound of any one of embodiments 1-5, provided that:
Embodiment 7. The compound of any one of embodiments 1-6, wherein X1 is CR7.
Embodiment 8. The compound of any one of embodiments 1-6, wherein X1 is N.
Embodiment 9. The compound of any one of embodiments 1-8, wherein R1 is H.
Embodiment 10. The compound of any one of embodiments 1-8, wherein R1 is —C(O)NR8R9, —OR10, or CN, each of which is unsubstituted or substituted.
Embodiment 11. The compound of any one of embodiments 1-10, wherein X2 is CR2 and R2 is H.
Embodiment 12. The compound of any one of embodiments 1-10, wherein X2 is CR2 and R2 is —OR10.
Embodiment 13. The compound of any one of embodiments 1-10, wherein X2 is CR2 and R2 is halogen.
Embodiment 14. The compound of any one of embodiments 1-10, wherein X2 is CR2 and R2 is —C(O)NH2.
Embodiment 15. The compound of embodiment 1, wherein Q is NR3R4, and wherein R3 is hydrogen.
Embodiment 16, The compound of embodiment 1, wherein Q is NR3R4, and wherein one or both of R3 and R4 is
Embodiment 17. The compound of embodiment 1, wherein the compound has the formula:
Embodiment 18. The compound of embodiment 1 or 17, wherein the compound has the formula:
Embodiment 19. The compound of embodiment 1, wherein the compound has the formula:
Embodiment 20. The compound of embodiment 1, wherein the compound has the formula:
Embodiment 21. The compound of embodiment 1, wherein the compound has the formula:
Embodiment 22. The compound of embodiment 1 or 19, wherein the compound has the formula:
Embodiment 23. The compound of embodiment 1 or 20, wherein the compound has the formula:
Embodiment 24. The compound of any one of embodiments 1, 3, or 5-23, wherein the compound has the formula:
Embodiment 25. The compound of embodiment 24, wherein at least one of R5a, R5b, R5c, and R5d is
Embodiment 26. The compound of embodiment 24, wherein at least one of R5a, R5b, R5c, and R5d is
Embodiment 27. The compound of embodiment 25, wherein the compound has the formula:
Embodiment 28. The compound of embodiment 25, wherein the compound has the formula:
Embodiment 29. The compound of embodiment 25, wherein the compound has the formula:
Embodiment 30. The compound of any one of embodiments 24-29, wherein at least one of R6a, R6b, R6c, R6d, and R6e is —C(O)NR14R15, —NR14C(O)R15, or —NR14R15.
Embodiment 31. The compound of embodiment 30, wherein R6b is —C(O)NR14R15.
Embodiment 32. The compound of embodiment 30, wherein R6b is —NR14R15.
Embodiment 33. The compound of embodiment 30, wherein R6b is —NR14C(O)R15.
Embodiment 34. The compound of any one of embodiments 30-33, wherein R14 is hydrogen.
Embodiment 35. The compound of embodiment 25 or 26, wherein —NR14C(O)R15 is
Embodiment 36. The compound of embodiment 25 or 26, wherein R15 is cycloalkyl that is unsubstituted or substituted.
Embodiment 37. The compound of embodiment 36, wherein R15 is cycloalkyl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.
Embodiment 38. The compound of embodiment 25 or 26, wherein R15 is heteroaryl that is unsubstituted or substituted.
Embodiment 39. The compound of embodiment 38, wherein R15 is heteroaryl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.
Embodiment 40. The compound of embodiment 25 or 26, wherein R15 is heterocyclyl that is unsubstituted or substituted.
Embodiment 41. The compound of embodiment 40, wherein R15 is heterocyclyl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.
Embodiment 42. The compound of embodiment 41, wherein R15 is piperidinyl that is unsubstituted or substituted.
Embodiment 43. The compound of embodiment 41, wherein R15 is
Embodiment 44. The compound of embodiment 43, wherein R15a is methyl.
Embodiment 45. The compound of embodiment 41, wherein R15 is
Embodiment 46. The compound of embodiment 45, wherein R15b is methyl.
Embodiment 47. The compound of embodiment 41, wherein R15 is
Embodiment 48. The compound of embodiment 47, wherein R15c is methyl.
Embodiment 49. The compound of embodiment 25 or 26, wherein R15 is alkyl that is unsubstituted or substituted.
Embodiment 50. The compound of embodiment 49, wherein R15 is alkyl that is substituted with a heterocyclyl group.
Embodiment 51. The compound of embodiment 50, wherein R15 is alkyl that is substituted with a morpholinyl or piperidinyl group, each of which is substituted or unsubstituted.
Embodiment 52. The compound of embodiment 25 or 26, wherein R15 is alkyl that is substituted with an unsubstituted or substituted heteroaryl group.
Embodiment 53. The compound of embodiment 52, wherein R15 is alkyl that is substituted with an unsubstituted or substituted imidazolyl group.
Embodiment 54. The compound of embodiment 25, wherein the compound has the formula:
Embodiment 55. The compound of embodiment 54, wherein at least one of R6b, R6c, R6d, and R6e is —C(O)NR14R15, —NR14C(O)R15, or —NR14R15.
Embodiment 56. The compound of embodiment 55, wherein R6b is —C(O)NR14R15.
Embodiment 57. The compound of embodiment 55, wherein R6b is —NR14R15.
Embodiment 58. The compound of embodiment 55, wherein R6b is —NR14C(O)R15.
Embodiment 59. The compound of embodiment 55, wherein R14 is hydrogen.
Embodiment 60. The compound of embodiment 55 or 58, wherein —NR14C(O)R15 is
Embodiment 60a. The compound of embodiment 55, wherein R15 is cycloalkyl that is unsubstituted or substituted.
Embodiment 61. The compound of embodiment 60a, wherein R15 is cycloalkyl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.
Embodiment 62. The compound of embodiment 55, wherein R15 is heteroaryl that is unsubstituted or substituted.
Embodiment 63. The compound of embodiment 55, wherein R15 is heteroaryl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.
Embodiment 64. The compound of embodiment 55, wherein R15 is heterocyclyl that is unsubstituted or substituted.
Embodiment 65. The compound of embodiment 64, wherein R15 is heterocyclyl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.
Embodiment 66. The compound of embodiment 65, wherein R15 is piperidinyl that is unsubstituted or substituted.
Embodiment 67. The compound of embodiment 66, wherein R15 is
Embodiment 68. The compound of embodiment 67, wherein R15a is methyl.
Embodiment 69. The compound of embodiment 66, wherein R15 is
Embodiment 70. The compound of embodiment 69, wherein R15b is methyl.
Embodiment 71. The compound of embodiment 66, wherein R15 is
Embodiment 72. The compound of embodiment 71, wherein R15c is methyl.
Embodiment 73. The compound of embodiment 55, wherein R15 is alkyl that is unsubstituted or substituted.
Embodiment 74. The compound of embodiment 73, wherein R15 is alkyl that is substituted with a heterocyclyl group.
Embodiment 75. The compound of embodiment 55, wherein R15 is alkyl that is substituted with a morpholinyl or piperidinyl group, each of which is substituted or unsubstituted.
Embodiment 76. The compound of embodiment 55, wherein R15 is alkyl that is substituted with an unsubstituted or substituted heteroaryl group.
Embodiment 77. The compound of embodiment 55, wherein R15 is alkyl that is substituted with an unsubstituted or substituted imidazolyl group.
Embodiment 78. The compound of embodiment 25, wherein the compound has the formula:
Embodiment 79. The compound of embodiment 78, wherein at least one of R6a, R6c, R6d, and R6e is —C(O)NR14R15, —NR14C(O)R15, or —NR14R15.
Embodiment 80. The compound of embodiment 79, wherein R6b is —C(O)NR14R15.
Embodiment 81. The compound of embodiment 79, wherein R6b is —NR14R15.
Embodiment 82. The compound of embodiment 79, wherein R6b is —NR14C(O)R15.
Embodiment 83. The compound of embodiment 79, wherein R14 is hydrogen.
Embodiment 84. The compound of embodiment 79, wherein —NR14C(O)R15 is
Embodiment 85. The compound of embodiment 79, wherein R15 is cycloalkyl that is unsubstituted or substituted.
Embodiment 86. The compound of embodiment 85, wherein R15 is cycloalkyl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.
Embodiment 87. The compound of embodiment 79, wherein R15 is heteroaryl that is unsubstituted or substituted.
Embodiment 88. The compound of embodiment 87, wherein R15 is heteroaryl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.
Embodiment 89. The compound of embodiment 79, wherein R15 is heterocyclyl that is unsubstituted or substituted.
Embodiment 90. The compound of embodiment 89, wherein R15 is heterocyclyl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.
Embodiment 91. The compound of embodiment 90, wherein R15 is piperidinyl that is unsubstituted or substituted.
Embodiment 92. The compound of embodiment 91, wherein R15 is
Embodiment 93. The compound of embodiment 92, wherein R15a is methyl.
Embodiment 94. The compound of embodiment 91, wherein R15 is
Embodiment 95. The compound of embodiment 94, wherein R15b is methyl.
Embodiment 96. The compound of embodiment 91, wherein R15 is
Embodiment 97. The compound of embodiment 96, wherein R15c is methyl.
Embodiment 98. The compound of embodiment 79, wherein R15 is alkyl that is unsubstituted or substituted.
Embodiment 99. The compound of embodiment 98, wherein R15 is alkyl that is substituted with a heterocyclyl group.
Embodiment 100. The compound of embodiment 99, wherein R15 is alkyl that is substituted with a morpholinyl or piperidinyl group, each of which is substituted or unsubstituted.
Embodiment 101. The compound of embodiment 79, wherein R15 is alkyl that is substituted with an unsubstituted or substituted heteroaryl group.
Embodiment 102. The compound of embodiment 101, wherein R15 is alkyl that is substituted with an unsubstituted or substituted imidazolyl group.
Embodiment 103. The compound of embodiment 25, wherein the compound has the formula:
Embodiment 104. The compound of embodiment 103, wherein at least one of R6a, R6b, R6d, and R6e is —C(O)NR14R15, —NR14C(O)R15, or —NR14R15.
Embodiment 105. The compound of embodiment 104, wherein R6b is —C(O)NR14R15.
Embodiment 106. The compound of embodiment 104, wherein R6b is —NR14R15.
Embodiment 107. The compound of embodiment 104, wherein R6b is —NR14C(O)R15.
Embodiment 108. The compound of embodiment 104, wherein R14 is hydrogen.
Embodiment 109. The compound of embodiment 104, wherein —NR14C(O)R15 is
Embodiment 110. The compound of embodiment 104, wherein R15 is cycloalkyl that is unsubstituted or substituted.
Embodiment 111. The compound of embodiment 104, wherein R15 is cycloalkyl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.
Embodiment 112. The compound of embodiment 104, wherein R15 is heteroaryl that is unsubstituted or substituted.
Embodiment 113. The compound of embodiment 112, wherein R15 is heteroaryl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.
Embodiment 114. The compound of embodiment 104, wherein R15 is heterocyclyl that is unsubstituted or substituted.
Embodiment 115. The compound of embodiment 114, wherein R15 is heterocyclyl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.
Embodiment 116. The compound of embodiment 115, wherein R15 is piperidinyl that is unsubstituted or substituted.
Embodiment 117. The compound of embodiment 116, wherein R15 is
Embodiment 118. The compound of embodiment 117, wherein R15a is methyl.
Embodiment 119. The compound of embodiment 116, wherein R15 is
Embodiment 120. The compound of embodiment 119, wherein R15b is methyl.
Embodiment 121. The compound of embodiment 116, wherein R15 is
Embodiment 122. The compound of embodiment 121, wherein R15c is methyl.
Embodiment 123. The compound of embodiment 104, wherein R15 is alkyl that is unsubstituted or substituted.
Embodiment 124. The compound of embodiment 123, wherein R15 is alkyl that is substituted with a heterocyclyl group.
Embodiment 125. The compound of embodiment 124, wherein R15 is alkyl that is substituted with a morpholinyl or piperidinyl group, each of which is substituted or unsubstituted.
Embodiment 126. The compound of embodiment 104, wherein R15 is alkyl that is substituted with an unsubstituted or substituted heteroaryl group.
Embodiment 127. The compound of embodiment 126, wherein R15 is alkyl that is substituted with an unsubstituted or substituted imidazolyl group.
Embodiment 128. The compound of embodiment 25, wherein the compound has the formula:
Embodiment 129. The compound of embodiment 128, wherein at least one of R6b, R6c, and R6d is —C(O)NR14R15, —NR14C(O)R15, or —NR14R15.
Embodiment 130. The compound of embodiment 129, wherein R6b is —C(O)NR14R15.
Embodiment 131. The compound of embodiment 129, wherein R6b is —NR14R15.
Embodiment 132. The compound of embodiment 129, wherein R6b is —NR14C(O)R15.
Embodiment 133. The compound of embodiment 129, wherein R14 is hydrogen.
Embodiment 134. The compound of embodiment 129, wherein —NR14C(O)R15 is
Embodiment 135. The compound of embodiment 129, wherein R15 is cycloalkyl that is unsubstituted or substituted.
Embodiment 136. The compound of embodiment 135, wherein R15 is cycloalkyl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.
Embodiment 137. The compound of embodiment 129, wherein R15 is heteroaryl that is unsubstituted or substituted.
Embodiment 138. The compound of embodiment 137, wherein R15 is heteroaryl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.
Embodiment 139. The compound of embodiment 129, wherein R15 is heterocyclyl that is unsubstituted or substituted.
Embodiment 140. The compound of embodiment 139, wherein R15 is heterocyclyl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.
Embodiment 141. The compound of embodiment 140, wherein R15 is piperidinyl that is unsubstituted or substituted.
Embodiment 142. The compound of embodiment 141, wherein R15 is
Embodiment 143. The compound of embodiment 142, wherein R15a is methyl.
Embodiment 144. The compound of embodiment 141, wherein R15 is
Embodiment 145. The compound of embodiment 144, wherein R15b is methyl.
Embodiment 146. The compound of embodiment 141, wherein R15 is
Embodiment 147. The compound of embodiment 146, wherein R15c is methyl.
Embodiment 148. The compound of embodiment 129, wherein R15 is alkyl that is unsubstituted or substituted.
Embodiment 149. The compound of embodiment 148, wherein R15 is alkyl that is substituted with a heterocyclyl.
Embodiment 150. The compound of embodiment 149, wherein R15 is alkyl that is substituted with a morpholinyl or piperidinyl, each of which is substituted or unsubstituted.
Embodiment 151. The compound of embodiment 129, wherein R15 is alkyl that is substituted with an unsubstituted or substituted heteroaryl group.
Embodiment 152. The compound of embodiment 141, wherein R15 is alkyl that is substituted with an unsubstituted or substituted imidazolyl group.
Embodiment 153. The compound of embodiment 25, wherein the compound has the formula:
Embodiment 154. The compound of embodiment 153, wherein at least one of R6b, R6d, and R6e is —C(O)NR14R15, —NR14C(O)R15, or —NR14R15.
Embodiment 155. The compound of embodiment 154, wherein R6b is —C(O)NR14R15.
Embodiment 156. The compound of embodiment 154, wherein R6b is —NR14R15.
Embodiment 157. The compound of embodiment 154, wherein R6b is —NR14C(O)R15.
Embodiment 158. The compound of embodiment 154, wherein R14 is hydrogen.
Embodiment 159. The compound of embodiment 154, wherein —NR14C(O)R15 is
Embodiment 160. The compound of embodiment 154, wherein R15 is cycloalkyl that is unsubstituted or substituted.
Embodiment 161. The compound of embodiment 160, wherein R15 is cycloalkyl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.
Embodiment 162. The compound of embodiment 154, wherein R15 is heteroaryl that is unsubstituted or substituted.
Embodiment 163. The compound of embodiment 162, wherein R15 is heteroaryl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.
Embodiment 164. The compound of embodiment 154, wherein R15 is heterocyclyl that is unsubstituted or substituted.
Embodiment 165. The compound of embodiment 164, wherein R15 is heterocyclyl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.
Embodiment 166. The compound of embodiment 165, wherein R15 is piperidinyl that is unsubstituted or substituted.
Embodiment 167. The compound of embodiment 166, wherein R15 is
Embodiment 168. The compound of embodiment 167, wherein R15a is methyl.
Embodiment 169. The compound of embodiment 166, wherein R15 is
Embodiment 170. The compound of embodiment 169, wherein R15b is methyl.
Embodiment 171. The compound of embodiment 166, wherein R15 is
Embodiment 172. The compound of embodiment 171, wherein R15c is methyl.
Embodiment 173. The compound of embodiment 154, wherein R15 is alkyl that is unsubstituted or substituted.
Embodiment 174. The compound of embodiment 173, wherein R15 is alkyl that is substituted with a heterocyclyl.
Embodiment 175. The compound of embodiment 173, wherein R15 is alkyl that is substituted with a morpholinyl or piperidinyl, each of which is substituted or unsubstituted.
Embodiment 176. The compound of embodiment 173, wherein R15 is alkyl that is substituted with an unsubstituted or substituted heteroaryl group.
Embodiment 177. The compound of embodiment 176, wherein R15 is alkyl that is substituted with an unsubstituted or substituted imidazolyl group.
Embodiment 178. The compound of embodiment 25, wherein the compound has the formula:
Embodiment 179. The compound of embodiment 178, wherein at least one of R6b, R6c, and R6e is —C(O)NR14R15, —NR14C(O)R15, or —NR14R15.
Embodiment 180. The compound of embodiment 179, wherein R6b is —C(O)NR14R15.
Embodiment 181. The compound of embodiment 179, wherein R6b is —NR14R15.
Embodiment 182. The compound of embodiment 179, wherein R6b is —NR14C(O)R15.
Embodiment 183. The compound of embodiment 179, wherein R14 is hydrogen.
Embodiment 184. The compound of embodiment 179, wherein —NR14C(O)R15 is
Embodiment 185. The compound of embodiment 179, wherein R15 is cycloalkyl that is unsubstituted or substituted.
Embodiment 186. The compound of embodiment 185, wherein R15 is cycloalkyl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.
Embodiment 187. The compound of embodiment 179, wherein R15 is heteroaryl that is unsubstituted or substituted.
Embodiment 188. The compound of embodiment 187, wherein R15 is heteroaryl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.
Embodiment 189. The compound of embodiment 179, wherein R15 is heterocyclyl that is unsubstituted or substituted.
Embodiment 190. The compound of embodiment 189, wherein R15 is heterocyclyl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.
Embodiment 191. The compound of embodiment 190, wherein R15 is piperidinyl that is unsubstituted or substituted.
Embodiment 192. The compound of embodiment 191, wherein R15 is
Embodiment 193. The compound of embodiment 192, wherein R15a is methyl.
Embodiment 194. The compound of embodiment 191, wherein R15 is
Embodiment 195. The compound of embodiment 194, wherein R15b is methyl.
Embodiment 196. The compound of embodiment 191, wherein R15 is
Embodiment 197. The compound of embodiment 196, wherein R15c is methyl.
Embodiment 198. The compound of embodiment 179, wherein R15 is alkyl that is unsubstituted or substituted.
Embodiment 199. The compound of embodiment 198, wherein R15 is alkyl that is substituted with a heterocyclyl.
Embodiment 200. The compound of embodiment 198, wherein R15 is alkyl that is substituted with a morpholinyl or piperidinyl, each of which is substituted or unsubstituted.
Embodiment 201. The compound of embodiment 198, wherein R15 is alkyl that is substituted with an unsubstituted or substituted heteroaryl group.
Embodiment 202. The compound of embodiment 201, wherein R15 is alkyl that is substituted with an unsubstituted or substituted imidazolyl group.
Embodiment 203. The compound of embodiment 25, wherein the compound has the formula:
Embodiment 204. The compound of embodiment 203, wherein at least one of R6a, R6b, R6c, R6d, and R6e is —C(O)NR14R15, —NR14C(O)R15, or —NR14R15.
Embodiment 205. The compound of embodiment 204, wherein R6b is —C(O)NR14R15.
Embodiment 206. The compound of embodiment 204, wherein R6b is —NR14R15.
Embodiment 207. The compound of embodiment 204, wherein R6b is —NR14C(O)R15.
Embodiment 208. The compound of embodiment 204, wherein R14 is hydrogen.
Embodiment 209. The compound of embodiment 204, wherein —NR14C(O)R15 is
Embodiment 210. The compound of embodiment 204, wherein R15 is cycloalkyl that is unsubstituted or substituted.
Embodiment 211. The compound of embodiment 210, wherein R15 is cycloalkyl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.
Embodiment 212. The compound of embodiment 204, wherein R15 is heteroaryl that is unsubstituted or substituted.
Embodiment 213. The compound of embodiment 212, wherein R15 is heteroaryl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.
Embodiment 214. The compound of embodiment 204, wherein R15 is heterocyclyl that is unsubstituted or substituted.
Embodiment 215. The compound of embodiment 214, wherein R15 is heterocyclyl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.
Embodiment 216. The compound of embodiment 215, wherein R15 is piperidinyl that is unsubstituted or substituted.
Embodiment 217. The compound of embodiment 216, wherein R15 is
Embodiment 218. The compound of embodiment 217, wherein R15a is methyl.
Embodiment 219. The compound of embodiment 216, wherein R is
Embodiment 220. The compound of embodiment 219, wherein R15b is methyl.
Embodiment 221. The compound of embodiment 216, wherein R15 is
Embodiment 222. The compound of embodiment 221, wherein R15c is methyl.
Embodiment 223. The compound of embodiment 204, wherein R15 is alkyl that is unsubstituted or substituted.
Embodiment 224. The compound of embodiment 223, wherein R15 is alkyl that is substituted with a heterocyclyl.
Embodiment 225. The compound of embodiment 224, wherein R15 is alkyl that is substituted with a morpholinyl or piperidinyl, each of which is substituted or unsubstituted.
Embodiment 226. The compound of embodiment 223, wherein R15 is alkyl that is substituted with an unsubstituted or substituted heteroaryl group.
Embodiment 227. The compound of embodiment 226, wherein R15 is alkyl that is substituted with an unsubstituted or substituted imidazolyl group.
Embodiment 228. The compound of embodiment 25, wherein the compound has the formula:
Embodiment 229. The compound of embodiment 228, wherein R5x or R5y is —C(O)NR14R15.
Embodiment 230. The compound of embodiment 228, wherein R5x or R5y is —NR14R15.
Embodiment 231. The compound of embodiment 228, wherein R5x or R5y is —NR14C(O)R15.
Embodiment 232. The compound of embodiment 228, wherein R14 is hydrogen.
Embodiment 233. The compound of embodiment 228, wherein —NR14C(O)R15 is
Embodiment 234. The compound of embodiment 228, wherein R15 is cycloalkyl that is unsubstituted or substituted.
Embodiment 235. The compound of embodiment 234, wherein R15 is cycloalkyl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.
Embodiment 236. The compound of embodiment 234, wherein R15 is heteroaryl that is unsubstituted or substituted.
Embodiment 237. The compound of embodiment 236, wherein R15 is heteroaryl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.
Embodiment 238. The compound of embodiment 234, wherein R15 is heterocyclyl that is unsubstituted or substituted.
Embodiment 239. The compound of embodiment 238, wherein R15 is heterocyclyl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.
Embodiment 240. The compound of embodiment 239, wherein R15 is piperidinyl that is unsubstituted or substituted.
Embodiment 241. The compound of embodiment 240, wherein R15 is
Embodiment 242. The compound of embodiment 241, wherein R15c is methyl.
Embodiment 243. The compound of embodiment 240, wherein R15 is
Embodiment 244. The compound of embodiment 243, wherein R15a is methyl.
Embodiment 245. The compound of embodiment 240, wherein R15 is
Embodiment 246. The compound of embodiment 245, wherein R15b is methyl.
Embodiment 247. The compound of embodiment 228, wherein R15 is alkyl that is unsubstituted or substituted.
Embodiment 248. The compound of embodiment 247, wherein R15 is alkyl that is substituted with a heterocyclyl group.
Embodiment 249. The compound of embodiment 248, wherein R15 is alkyl that is substituted with a morpholinyl or piperidinyl group, each of which is substituted or unsubstituted.
Embodiment 250. The compound of embodiment 247, wherein R15 is alkyl that is substituted with an unsubstituted or substituted heteroaryl group.
Embodiment 251. The compound of embodiment 250, wherein R15 is alkyl that is substituted with an unsubstituted or substituted imidazolyl group.
Embodiment 252. The compound of embodiment 26, which has the structure:
Embodiment 253. The compound of embodiment 26 which has the structure:
Embodiment 254. The compound of embodiment 1, which has the formula:
Embodiment 255. The compound of embodiment 1, wherein the compound has the formula:
Embodiment 256. The compound of embodiment 255, wherein Z6 is CR25, wherein R25 is —C(O)NR14R15, —NR14C(O)R15, or —NR14R15.
Embodiment 257. The compound of embodiment 255, wherein Z2 is CR21, wherein R21 is —C(O)NR14R15, —NR14C(O)R15, or —NR14R15.
Embodiment 258. The compound of embodiment 255, wherein Z3 is CR22, wherein R22 is —C(O)NR14R15, —NR14C(O)R15, or —NR14R15.
Embodiment 259. The compound of embodiment 255, wherein Z4 is CR23, wherein R23 is —C(O)NR14R15, —NR14C(O)R15, or —NR14R15.
Embodiment 260. The compound of embodiment 255, wherein Z5 is CR24, wherein R24 is —C(O)NR14R15, —NR14C(O)R15, or —NR14R15.
Embodiment 261. The compound of embodiment 255 wherein Z6 is CH.
Embodiment 262. The compound of embodiment 1, wherein the compound has the formula:
Embodiment 263. The compound of embodiment 262, wherein R27, R29, R30, R32, or R33 is —C(O)NR14R15.
Embodiment 264. The compound of embodiment 262, wherein R27, R29, R30, R32, or R33 is —NR14R15.
Embodiment 265. The compound of embodiment 262, wherein R27, R29, R30, R32, or R33 is —NR14C(O)R15.
Embodiment 266. The compound of embodiment 262, wherein Z8 is CR27; Z13 is CR32; and Z14 is CR33.
Embodiment 267. The compound of embodiment 262, wherein Z8 is N; Z13 is CR32; and Z14 is CR33.
Embodiment 268. The compound of embodiment 262, wherein Z8 is CR27; Z13 is N; and Z14 is CR33.
Embodiment 269. The compound of embodiment 262, wherein Z8 is CR27; Z13 is CR32; and Z14 is N.
Embodiment 270. The compound of embodiment 262, wherein X1 is CH.
Embodiment 271. The compound of embodiment 261, wherein X1 is N.
Embodiment 272. The compound of embodiment 1, wherein the compound has the formula:
Embodiment 273. The compound of embodiment 272, wherein R27, R28, R29, R30, R32, or R33 is —C(O)NR14R15.
Embodiment 274. The compound of embodiment 272, wherein R27, R28, R29, R30, R32, or R33 is —NR14R15.
Embodiment 275. The compound of embodiment 272, wherein R27, R28, R29, R30, R32, or R33 is —NR14C(O)R15.
Embodiment 276. The compound of embodiment 272, wherein Z8 is N; Z13 is CR32; and Z14 is CR33.
Embodiment 277. The compound of embodiment 272, wherein Z8 is CR27; Z13 is N; and Z14 is CR33.
Embodiment 278. The compound of embodiment 272, wherein Z8 is CR27; Z13 is CR32; and Z14 is N.
Embodiment 279. The compound of embodiment 272, wherein X1 is CH.
Embodiment 280. The compound of embodiment 272, wherein X1 is N.
Embodiment 281. The compound of embodiment 1, wherein the compound has the formula:
Embodiment 282. The compound of embodiment 281, wherein R27, R32, or R33 is —C(O)NR14R15.
Embodiment 283. The compound of embodiment 281, wherein R27, R32, or R33 is —NR14R15.
Embodiment 284. The compound of embodiment 281, wherein R27, R32, or R33 is —NR14C(O)R15.
Embodiment 285. The compound of embodiment 281, wherein Z8 is N; Z13 is CR32; and Z14 is CR33.
Embodiment 286. The compound of embodiment 281, wherein Z8 is CR27; Z13 is N; and Z14 is CR33.
Embodiment 287. The compound of embodiment 281, wherein Z8 is CR27; Z13 is CR32; and Z14 is N.
Embodiment 288. The compound of embodiment 281, wherein X1 is CH.
Embodiment 289. The compound of embodiment 281, wherein X1 is N.
Embodiment 290. The compound of embodiment 1, wherein the compound has the formula:
Embodiment 291. The compound of embodiment 290, wherein R27, R32, or R33 is —C(O)NR14R15.
Embodiment 292. The compound of embodiment 290, wherein R27, R32, or R33 is —NR14R15.
Embodiment 293. The compound of embodiment 290, wherein R27, R32, or R33 is —NR14C(O)R15.
Embodiment 294. The compound of embodiment 290, wherein Z8 is N; Z13 is CR32; and Z14 is CR33.
Embodiment 295. The compound of embodiment 290, wherein Z8 is CR27; Z13 is N; and Z14 is CR33.
Embodiment 296. The compound of embodiment 290, wherein Z8 is CR27; Z13 is CR32; and Z14 is N.
Embodiment 297. The compound of embodiment 290, wherein X1 is CH.
Embodiment 298. The compound of embodiment 290, wherein X1 is N.
Embodiment 299. The compound of embodiment 1, wherein the compound has the formula:
Embodiment 300. The compound of embodiment 299, wherein R27, R32, or R33 is —C(O)NR14R15.
Embodiment 301. The compound of embodiment 299, wherein R27, R32, or R33 is —NR14R15.
Embodiment 302. The compound of embodiment 299, wherein R27, R32, or R33 is —NR14C(O)R15.
Embodiment 303. The compound of embodiment 299, wherein Z8 is N; Z13 is CR32; and Z14 is CR33.
Embodiment 304. The compound of embodiment 299, wherein Z8 is CR27; Z13 is N; and Z14 is CR33.
Embodiment 305. The compound of embodiment 299, wherein Z8 is CR27; Z13 is CR32; and Z14 is N.
Embodiment 306. The compound of embodiment 299, wherein X1 is CH.
Embodiment 307. The compound of embodiment 299, wherein X1 is N.
Embodiment 308. The compound of embodiment 1, wherein the compound has the formula:
Embodiment 309. The compound of embodiment 308, wherein R29 is —C(O)NR14R15.
Embodiment 310. The compound of embodiment 308, wherein R29 is —NR14R15.
Embodiment 311. The compound of embodiment 308, wherein R29 is —NR14C(O)R15.
Embodiment 312. The compound of embodiment 308, wherein X1 is CH.
Embodiment 313. The compound of embodiment 308, wherein X1 is N.
Embodiment 314. The compound of embodiment 1, wherein the compound has the formula:
Embodiment 315. The compound of embodiment 314, wherein R29 is —C(O)NR14R15.
Embodiment 316. The compound of embodiment 314, wherein R29 is —NR14R15.
Embodiment 317. The compound of embodiment 314, wherein R29 is —NR14C(O)R15.
Embodiment 318. The compound of embodiment 314, wherein X1 is CH.
Embodiment 319. The compound of embodiment 314, wherein X1 is N.
Embodiment 320. The compound of embodiment 1, wherein the compound has the formula:
Embodiment 321. The compound of embodiment 320, wherein R29 is —C(O)NR14R15.
Embodiment 322. The compound of embodiment 320, wherein R29 is —NR14R15.
Embodiment 323. The compound of embodiment 320, wherein R29 is —NR14C(O)R15.
Embodiment 324. The compound of embodiment 320, wherein X1 is CH.
Embodiment 325. The compound of embodiment 320, wherein X1 is N.
Embodiment 326. The compound of embodiment 1, which has the formula:
Embodiment 327. The compound of embodiment 326, wherein Rx or Ry is —C(O)NR14R15.
Embodiment 328. The compound of embodiment 326, wherein Rx or Ry is —NR14R15.
Embodiment 329. The compound of embodiment 326, wherein Rx or Ry is —NR14C(O)R15.
Embodiment 330. The compound of embodiment 326, wherein X1 is CH.
Embodiment 331. The compound of embodiment 326, wherein X1 is N.
Embodiment 332. The compound of embodiment 1, which has the formula:
Embodiment 333. The compound of embodiment 332, wherein R16x, R16y, or R16z is —C(O)NR14R15.
Embodiment 334. The compound of embodiment 332, wherein R16x, R16y, or R16z is —NR14R15.
Embodiment 335. The compound of embodiment 332, wherein R16x, R16y, or R16z is —NR14C(O)R15.
Embodiment 336. The compound of embodiment 332, wherein X1 is CH.
Embodiment 337. The compound of embodiment 332, wherein X1 is N.
Embodiment 338. The compound of embodiment 1, which has the formula:
Embodiment 339. The compound of embodiment 338, wherein R16x, R16y, or R16z is —C(O)NR14R15.
Embodiment 340. The compound of embodiment 338, wherein R16x, R16y, or R16z is —NR14R15.
The compound of embodiment 334, wherein R16x, R16y, or R16z is —NR14C(O)R15.
Embodiment 341. The compound of embodiment 338, wherein X1 is CH.
Embodiment 342. The compound of embodiment 338, wherein X1 is N.
Embodiment 343. The compound of embodiment 1, which has the formula:
Embodiment 344. The compound of embodiment 343, wherein Rx or Ry is —C(O)NR14R15.
Embodiment 345. The compound of embodiment 343, wherein Rx or Ry is —NR14R15.
Embodiment 346. The compound of embodiment 343, wherein Rx or Ry is —NR14C(O)R15.
Embodiment 347. The compound of embodiment 343, wherein X1 is CH.
Embodiment 348. The compound of embodiment 343, wherein X1 is N.
Embodiment 349. The compound of embodiment 1, which has the formula:
Embodiment 350. The compound of embodiment 349, wherein Rx or Ry is —C(O)NR14R15.
Embodiment 351. The compound of embodiment 349, wherein Rx or Ry is —NR14R15.
Embodiment 352. The compound of embodiment 349, wherein Rx or Ry is —NR14C(O)R15.
Embodiment 353. The compound of embodiment 349, wherein X1 is CH.
Embodiment 354. The compound of embodiment 349, wherein X1 is N.
Embodiment 355. A pharmaceutical composition comprising a compound of any one of embodiments 1-355 and a pharmaceutically-acceptable excipient.
Embodiment 356. A method of inducing apoptosis in a cell, the method comprising contacting the cell with a therapeutically-effective amount of a compound of any one of embodiments 1-355.
Embodiment 357. The method of embodiment 356, wherein the compound increases an ability of a mutant p53 protein to bind DNA.
Embodiment 358. The method of embodiment 356 or 357, wherein the cell expresses a mutant p53 protein.
Embodiment 359. The method of any one of embodiments 356-358, wherein the mutant p53 protein has a mutation at amino acid R248.
Embodiment 360. The method of embodiment 359, wherein the mutant p53 protein is p53 R248Q.
Embodiment 361. The method of embodiment 359, wherein the mutant p53 protein is p53 R248W.
Embodiment 362. The method of any one of embodiments 356-361, wherein the mutant p53 protein has a mutation at amino acid R273.
Embodiment 363. The method of embodiment 362, wherein the mutant p53 protein is p53 R273C.
Embodiment 364. The method of embodiment 362, wherein the mutant p53 protein is p53 R273H.
Embodiment 365. The method of any one of embodiments 356-364, wherein the compound selectively binds the mutant p53 protein as compared to a wild type p53 protein.
Embodiment 366. The method of any one of embodiments 356-365, wherein the therapeutically-effective amount is from about 50 mg to about 3,000 mg.
Embodiment 367. The method of any one of embodiments 356-366, wherein the therapeutically-effective amount is about 600 mg.
Embodiment 368. The method of any one of embodiments 356-366, wherein the therapeutically-effective amount is about 1,200 mg.
Embodiment 369. A method of treating a condition, the method comprising administering to a subject in need thereof a therapeutically-effective amount of a compound of any one of embodiments 1-355.
Embodiment 370. The method of embodiment 369, wherein the condition is a cancer.
Embodiment 371. The method of embodiment 370, wherein the cancer is ovarian cancer.
Embodiment 372. The method of embodiment 370, wherein the cancer is breast cancer.
Embodiment 373. The method of embodiment 370, wherein the cancer is lung cancer.
Embodiment 374. The method of embodiment 370, wherein the cancer is pancreatic cancer.
Embodiment 375. The method of any one of embodiments 369-374, wherein the administering is oral.
Embodiment 376. The method of any one of embodiments 369-374, wherein the administering is intravenous.
Embodiment 377. The method of any one of embodiments 369-374, wherein the administering is subcutaneous.
Embodiment 378. The method of any one of embodiments 369-374, wherein the administering is topical.
Embodiment 379. The method of any one of embodiments 369-378, wherein the subject is human.
Embodiment 380. The method of any one of embodiments 369-379, wherein the therapeutically-effective amount is from about 50 mg to about 3,000 mg.
Embodiment 381. The method of any one of embodiments 369-380, wherein the therapeutically-effective amount is about 600 mg.
Embodiment 382. The method of any one of embodiments 369-380, wherein the therapeutically-effective amount is about 1,200 mg.
Embodiment 383. The method of any one of embodiments 369-382, wherein the compound increases a stability of a biologically-active conformation of a p53 mutant relative to a stability of the biologically-active conformation of the p53 mutant in an absence of the compound.
Embodiment 384. The method of any one of embodiments 369-383, wherein the compound selectively binds a mutant p53 protein as compared to a wild type p53 protein.
Embodiment 385. The method of any one of embodiments 369-384, wherein the compound increases an ability of a mutant p53 protein to bind DNA.
Embodiment 386. The method of any one of embodiments 369-385, wherein the mutant p53 protein has a mutation at amino acid R248.
Embodiment 387. The method of embodiment 386, wherein the mutant p53 protein is p53 R248Q.
Embodiment 388. The method of embodiment 385, wherein the mutant p53 protein is p53 R248W.
Embodiment 389. The method of any one of embodiments 369-385, wherein the mutant p53 protein has a mutation at amino acid R273.
Embodiment 390. The method of embodiment 389, wherein the mutant p53 protein is p53 R273C.
Embodiment 391. The method of embodiment 389, wherein the mutant p53 protein is p53 R273H.
This application claims the benefit of U.S. Provisional Application No. 63/042,252, filed Jun. 22, 2020, which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
6159677 | Haraguchi | Dec 2000 | A |
9120749 | Matsuo | Sep 2015 | B2 |
20130165458 | Huang et al. | Jun 2013 | A1 |
20140256717 | Fernández et al. | Sep 2014 | A1 |
20230056253 | Vu et al. | Feb 2023 | A1 |
Number | Date | Country |
---|---|---|
103044446 | Apr 2013 | CN |
108373462 | Aug 2018 | CN |
WO-2005120509 | Dec 2005 | WO |
WO-2007022241 | Feb 2007 | WO |
WO-2009155121 | Dec 2009 | WO |
WO-2012016082 | Feb 2012 | WO |
WO-2012156756 | Nov 2012 | WO |
WO-2016077656 | May 2016 | WO |
WO-2017023905 | Feb 2017 | WO |
WO-2017097182 | Jun 2017 | WO |
WO-2019018584 | Jan 2019 | WO |
WO-2019192954 | Oct 2019 | WO |
WO-2019229765 | Dec 2019 | WO |
WO-2020051235 | Mar 2020 | WO |
WO-2020215037 | Oct 2020 | WO |
WO-2021165346 | Aug 2021 | WO |
Entry |
---|
Shao et al., European Journal of Medicinal Chemistry, 2014, 75, pp. 96-105. (Year: 2014). |
Chemical Abstracts Registry No. 2127059-67-8, indexed in the Registry file on STN CAS Online Sep. 13, 2017. (Year: 2017). |
Chemical Abstracts Registry No. 2127239-78-3, indexed in the Registry file on STN CAS Online Sep. 14, 2017. (Year: 2017). |
A machine generated English translation of CN 103044446 A, 2013 (Year: 2013). |
Eldar et al., Structural studies of p53 inactivation by DNA-contact mutations and its rescue by suppressor mutations via alternative protein-DNA interactions. Nucleic Acids Res. Oct. 2013;41(18):8748-59. |
International Search Report and Written Opinion Issued in PCT/US2021/038249 dated Nov. 10, 2021. |
PubChem SID: 128196206 Deposit Date: Dec. 4, 2011 pp. 1-7. |
PubChem CID: 10376659 Deposit Date: Dec. 18, 2015 pp. 1-6. |
PubChem SID: 374412121 Deposit Date: Jun. 23, 2018 pp. 1-8. |
Hei, Y. et al., “Alkylsulfonamide-containing quinazoline derivatives as potent and orally bioavailable PI3Ks inhibitors,” Bioorganic & Medicinal Chemistry, 2019, vol. 27, pp. 1-11. |
Kundu, B. et al., “Development of a metabolically stable topoisomerase I poison as anticancer agent,” European Journal of Medicinal Chemistry, 2020, vol. 202, 112551. |
Nishimura, N. et al., “Phospshoinositide 3-Kinase (PI3K)/Mammalian Target of Rapamycin (mTOR) Dual Inhibitors: Discovery and Structure-Activity Relationships of a Series of Quinoline and Quinoxaline Derivatives,” Journal of Medicinal Chemistry, 2011, vol. 54, No. 13, pp. 4735-4751. |
Xiao, H. et al., “Biologic-like In Vivo Efficacy with Small Molecule Inhibitors of TNFα Identified Using Scaffold Hopping and Structure-Based Drug Design Approaches,” Journal of Medicinal Chemistry, 2020, vol. 63, No. 23, pp. 15050-15071. |
Yang, W. et al., “3D-QSAR and docking studies of 3-Pyridine heterocyclic derivatives as potent PI3K/mTOR inhibitors,” Journal of Molecular Structure, 2013, vol. 1054-1055, pp. 107-116. |
Degorce et al.: Discovery of Novel 3-Quinoline Carboxamides as Potent, Selective, and Orally Bioavailable Inhibitors of Ataxia Telangiectasia Mutated (ATM) Kinase. J. Med. Chem. 59(13):6281-6292 (2016). |
Hoffer et al.: Antifertility, spermicidal and ultrastructural effects of gossypol and derivatives administered orally and by intratesticular injections. Contraception. 37(3):301-331 (1988). |
Venkateswarlu et al.: 4-(N-Phenyl-N′-substituted benzenesulfonyl)-6-(4-hydroxyphenyl)quinolines as inhibitors of mammalian target of rapamycin. Bioorganic & Medicinal Chemistry. 23(15):4237-4247 (2015). |
Zhang et al.: Rhodium-Catalyzed Oxidative Benzannulation of N-Pivaloylanilines with Internal Alkynes through Dual C—H Bond Activation: Synthesis of Highly Substituted Naphthalenes. Chemistry. 11(22):3241-3250 (2016). |
Number | Date | Country | |
---|---|---|---|
20230046427 A1 | Feb 2023 | US |
Number | Date | Country | |
---|---|---|---|
63042252 | Jun 2020 | US |