Methods and compounds for restoring mutant p53 function

Information

  • Patent Grant
  • 11926632
  • Patent Number
    11,926,632
  • Date Filed
    Monday, June 21, 2021
    3 years ago
  • Date Issued
    Tuesday, March 12, 2024
    9 months ago
Abstract
Mutations in oncogenes and tumor suppressors contribute to the development and progression of cancer. The present disclosure describes compounds and methods that restore DNA binding affinity of p53 mutants. The compounds of the present disclosure can bind to mutant p53 and restore the ability of the p53 mutant to bind DNA and activate downstream effectors involved in tumor suppression. The disclosed compounds can be used to reduce the progression of cancers that contain a p53 mutation.
Description
BACKGROUND

Cancer, an uncontrolled proliferation of cells, is a multifactorial disease characterized by tumor formation, growth, and in some instances, metastasis. Cells carrying an activated oncogene, damaged genome, or other cancer-promoting alterations can be prevented from replicating through an elaborate tumor suppression network. A central component of this tumor suppression network is p53, one of the most potent tumor suppressors in the cell. Both the wild type and mutant conformations of p53 are implicated in the progression of cancer.


INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.


SUMMARY OF THE INVENTION

In some embodiments, described herein is a compound of formula:




embedded image




    • wherein:
      • X1 is CR7 or N;
      • X2 is CR2 or N;
      • each of R1 and R2 is independently alkyl, —NR8R9, —C(O)NR8R9, —NR8C(O)R9, —OR10, —SR11, —C(O)R12, —C(O)OR12, —S(O)2R13, CN, each of which is unsubstituted or substituted, or hydrogen or halogen;
      • Q is







embedded image






      •  or NR3R4, wherein each of R3 and R4 is independently alkyl, cycloalkyl, alkenyl, —C(O)R13, —C(O)OR13, —S(O)2R13, —S(O)2R13, each of which is unsubstituted or substituted; or hydrogen, or R3 and R4 together with the nitrogen atom to which R3 and R4 are bound form a ring, wherein the ring is unsubstituted or substituted;

      • R7 is alkyl, alkenyl, cycloalkyl, aryl, heteroaryl or heterocyclyl, each of which is unsubstituted or substituted, or hydrogen or halogen;

      • each of R8 and R9 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R8 and R9 together with the nitrogen atom to which R8 and R9 are bound form a ring, wherein the ring is unsubstituted or substituted; and

      • each of R10, R11, R12, and R13 is independently is alkyl, alkenyl, cycloalkyl, aryl, heteroaryl or heterocyclyl, each of which is unsubstituted or substituted, or hydrogen or halogen;


        provided that:



    • (i) when Q is







embedded image




    •  then each of R5 and R6 is independently aryl or heteroaryl, each of which is unsubstituted or substituted, or hydrogen or halogen; or R5 and R6 together with the carbon atoms to which R5 and R6 are bound form a ring, wherein the ring is unsubstituted or substituted;

    • (ii) when Q is







embedded image




    •  then R5 and R6 together with the carbon atoms to which R5 and R6 are bound form a ring, wherein the ring is unsubstituted or substituted;

    • (iii) when Q is







embedded image




    •  then:
      • (a) R5 is hydrogen or halogen, and R6 is







embedded image






      •  wherein
        • Z2 is N or CH;
        • Z3 is N or CR22;
        • Z4 is N or CR23;
        • Z5 is N or CR24;
        • Z6 is N or CR25;
        • Z8 is N or CR27;
        • Z13 is N or CR32; and
        • Z14 is N or CR33,

      • wherein each of R22, R23, R24, R25, R27, R28, R29, R30, R32, and R33 is independently, alkyl, heteroaryl, —NR14R15, —C(O)NR14R15, —NR14C(O)R15, —OR16, —SR17, —C(O)R18, —C(O)OR18, —S(O)2R19, or —CN, each of which is unsubstituted or substituted, or hydrogen or halogen; or

      • (b) R5 and R6 together with the carbon atoms to which R5 and R6 are bound form a ring, and the compound has the structure:









embedded image






      •  wherein
        • R5a, R5b, and R5d are each independently aryl or heteroaryl, each of which is substituted or unsubstituted, or hydrogen or halogen, and
        • R5c is









embedded image








        • wherein
          • each custom character is independently a single bond or a double bond;
          • Y1 is CR6a, N, NR6a, O or S;
          • Y2 is CR6b, N, NR6b, O or S;
          • Y3 is CR6c, N, NR6c, O or S;
          • Y4 is CR6d, N, NR6d, O or S;
          • Y5 is CR6e, N, NR6e, O or S;
          • Y6 is CR6f, N, NR6f, O or S;
          • Y7 is CR6g, N, NR6g, O or S;
          • Y8 is CR6h, N, NR6h, O or S; and
          • Y9 is CR6i, N, NR6i, O or S,
          • wherein
          •  each of R6a, R6b, R6c, R6d, R6e, R6f, R6g, R6h, and R6i is independently alkyl, cycloalkyl, —NR14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
          •  R6a and R6b together with the carbon atoms to which R6a and R6b are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6c, R6d, R6e, R6f, R6g, R6h, and R6i is independently alkyl, cycloalkyl, —NR14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
          •  R6b and R6c together with the carbon atoms to which R6b and R6c are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6a, R6d, R6e, R6f, R6g, R6h, and R6i is independently alkyl, cycloalkyl, —NR14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
          •  R6c and R6d together with the carbon atoms to which R6c and R6d are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6a, R6b, R6e, R6f, R6g, R6h, and R6i is independently alkyl, cycloalkyl, —NR14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
          •  R6d and R6e together with the carbon atoms to which R6d and R6e are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6a, R6b, R6c, R6f, R6g, R6h, and R6i is independently alkyl, cycloalkyl, —NR14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
          •  R6f and R6g together with the carbon atoms to which R6f and R6g are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6a, R6b, R6c, R6d, R6e, R6h and R6i is independently alkyl, cycloalkyl, —NR14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
          •  R6g and R6h together with the carbon atoms to which R6g and R6h are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6a, R6b, R6c, R6d, R6e, R6f, and R6i is independently alkyl, cycloalkyl, —NR14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
          •  R6h and R6i together with the carbon atoms to which R6h and R6i are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6a, R6b, R6c, R6d, R6e, R6f, and R6g is independently alkyl, cycloalkyl, —NR14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen, and





    • (iv) when Q is not







embedded image




    •  then R5 and R6 together with the carbon atoms to which R5 and R6 are bound form a ring, and compound has the structure:







embedded image




    •  wherein:
      • R5a, R5b, and R5d are each independently aryl or heteroaryl, each of which is substituted or unsubstituted, or hydrogen or halogen; and
      • each of R6a, R6b, R6c, R6d, and R6e is independently alkyl, cycloalkyl, —NR14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; wherein at least one of R6a, R6b, R6c, R6d, and R6e is —C(O)NR14R15, NR14R15, or NR14C(O)R15, and

    • each of R14 and R15 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, or heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R14 and R15 together with the nitrogen atom to which R14 and R15 are bound form a ring, wherein the ring is unsubstituted or substituted; and

    • each of R16, R17, R18, and R19 is independently is alkyl, alkenyl, cycloalkyl, aryl, heteroaryl or heterocyclyl, each of which is unsubstituted or substituted, or hydrogen or halogen;


      or a pharmaceutically-acceptable salt thereof.





In some embodiments, described herein is as pharmaceutical composition comprising a compound of the disclosure and a pharmaceutically-acceptable excipient.


In some embodiments, described herein is a method of inducing apoptosis in a cell, the method comprising contacting the cell with a therapeutically-effective amount of a compound of the disclosure that binds a p53 mutant, wherein the compound increases the ability of the p53 mutant to bind DNA, wherein the cell expresses the p53 mutant. In some embodiments, described herein is a method of treating a cancer, the method comprising administering to a subject in need thereof a therapeutically-effective amount of a compound of the disclosure.







DETAILED DESCRIPTION

The present invention provides compounds and methods for restoring wild-type function to mutant p53. The compounds of the present invention can bind to mutant p53 and restore the ability of the p53 mutant to bind DNA. The restoration of activity of the p53 mutant can allow for the activation of downstream effectors of p53 leading to inhibition of cancer progression. The invention further provides methods of treatment of a cancerous lesion or a tumor harboring a p53 mutation.


Cancer is a collection of related diseases characterized by uncontrolled proliferation of cells with the potential to metastasize throughout the body. Cancer can be classified into five broad categories including, for example: carcinomas, which can arise from cells that cover internal and external parts of the body such as the lung, breast, and colon; sarcomas, which can arise from cells that are located in bone, cartilage, fat, connective tissue, muscle, and other supportive tissues; lymphomas, which can arise in the lymph nodes and immune system tissues; leukemia, which can arise in the bone marrow and accumulate in the bloodstream; and adenomas, which can arise in the thyroid, the pituitary gland, the adrenal gland, and other glandular tissues.


Although different cancers can develop in virtually any of the body's tissues, and contain unique features, the basic processes that cause cancer can be similar in all forms of the disease. Cancer begins when a cell breaks free from the normal restraints on cell division and begins to grow and divide out of control. Genetic mutations in the cell can preclude the ability of the cell to repair damaged DNA or initiate apoptosis, and can result in uncontrolled growth and division of cells.


The ability of tumor cell populations to multiply is determined not only by the rate of cell proliferation but also by the rate of cell attrition. Programmed cell death, or apoptosis, represents a major mechanism of cellular attrition. Cancer cells can evade apoptosis through a variety of strategies, for example, through the suppression of p53 function, thereby suppressing expression of pro-apoptotic proteins.


Oncogenes and tumor suppressor genes can regulate the proliferation of cells. Genetic mutations can affect oncogenes and tumor suppressors, potentially activating or suppressing activity abnormally, further facilitating uncontrolled cell division. Whereas oncogenes assist in cellular growth, tumor suppressor genes slow cell division by repairing damaged DNA and activating apoptosis. Cellular oncogenes that can be mutated in cancer include, for example, Cdk1, Cdk2, Cdk3, Cdk4, Cdk6, EGFR, PDGFR, VEGF, HER2, Raf kinase, K-Ras, and myc. Tumor suppressor genes that can be mutated in cancer include, for example, BRCA1, BRCA2, cyclin-dependent kinase inhibitor 1C, Retinoblastoma protein (pRb), PTEN, p16, p27, p53, and p73.


The tumor suppressor p53 acts as a DNA sequence-specific transcription factor regulating and activating the expression of a range of target genes in response to genotoxic stress. Activation of target genes by p53 initiates a cascade of signal transduction pathways, which leads to different cellular responses including cell-cycle arrest and apoptosis that prevent cancer development. p53 binds as a tetramer to specific response elements consisting mainly of two decameric half-sites separated by a variable number of base pairs. Mutations in the p53 gene that lead to inactivation of the protein are observed in ˜50% of human cancers. The majority of tumor-related p53 mutations, particularly those defined as mutational ‘hotspots’, occur within the DNA-binding core domain of p53. The top hotspot mutations are located at or near the protein-DNA interface and can be divided into two major groups: DNA-contact mutations affecting residues involved directly in DNA contacts without altering p53 conformation; and structural mutations that cause a conformational change in the core domain.


R273, a DNA-contact amino acid, is one of the most frequently altered residues in human cancer (6.4% of all somatic mutations), with mutations to histidine (46.6%) and to cysteine (39.1%) being most common. Crystal structures of the p53 core-domain bound to DNA show that the positively charged guanidinium groups of R273 residues interact with the negatively charged DNA backbone at the center of each DNA half-site, supported by salt-bridge and hydrogen-bond interactions. R273 residues play a pivotal role in docking p53 to the DNA backbone at the central region of each half-site where no direct base-mediated contacts exist. Substitution of R273 by histidine (R273H) or cysteine (R273C) lead to dramatic reduction in the DNA binding affinity, even through the protein retains wild-type stability.


Tumor Suppressor p53.


The tumor suppressor protein p53 is a 393 amino acid transcription factor that can regulate cell growth in response to cellular stresses including, for example, UV radiation, hypoxia, oncogene activation, and DNA damage. p53 has various mechanisms for inhibiting the progression of cancer including, for example, initiation of apoptosis, maintenance of genomic stability, cell cycle arrest, induction of senescence, and inhibition of angiogenesis. Due to the critical role of p53 in tumor suppression, p53 is inactivated in almost all cancers either by direct mutation or through perturbation of associated signaling pathways involved in tumor suppression. Homozygous loss of the p53 gene occurs in almost all types of cancer, including carcinomas of the breast, colon, and lung. The presence of certain p53 mutations in several types of human cancer can correlate with less favorable patient prognosis.


In the absence of stress signals, p53 levels are maintained at low levels via the interaction of p53 with Mdm2, an E3 ubiquitin ligase. In an unstressed cell, Mdm2 can target p53 for degradation by the proteasome. Under stress conditions, the interaction between Mdm2 and p53 is disrupted, and p53 accumulates. The critical event leading to the activation of p53 is phosphorylation of the N-terminal domain of p53 by protein kinases, thereby transducing upstream stress signals. The phosphorylation of p53 leads to a conformational change, which can promote DNA binding by p53 and allow transcription of downstream effectors. The activation of p53 can induce, for example, the intrinsic apoptotic pathway, the extrinsic apoptotic pathway, cell cycle arrest, senescence, and DNA repair. p53 can activate proteins involved in the above pathways including, for example, Fas/Apo1, KILLER/DR5, Bax, Puma, Noxa, Bid, caspase-3, caspase-6, caspase-7, caspase-8, caspase-9, and p21 (WAF1). Additionally, p53 can repress the transcription of a variety of genes including, for example, c-MYC, Cyclin B, VEGF, RAD51, and hTERT.


Each chain of the p53 tetramer is composed of several functional domains including the transactivation domain (amino acids 1-100), the DNA-binding domain (amino acids 101-306), and the tetramerization domain (amino acids 307-355), which are highly mobile and largely unstructured. Most p53 cancer mutations are located in the DNA-binding core domain of the protein, which contains a central β-sandwich of anti-parallel β-sheets that serves as a basic scaffold for the DNA-binding surface. The DNA-binding surface is composed of two β-turn loops, L2 and L3, which are stabilized by a zinc ion, for example, at Arg175 and Arg248, and a loop-sheet-helix motif. Altogether, these structural elements form an extended DNA-binding surface that is rich in positively-charged amino acids, and makes specific contact with various p53 response elements.


Due to the prevalence of p53 mutations in virtually every type of cancer, the reactivation of wild type p53 function in a cancerous cell can be an effective therapy. Mutations in p53 located in the DNA-binding domain of the protein or periphery of the DNA-binding surface can result in aberrant protein folding required for DNA recognition and binding or reduction in DNA binding affinity. Mutations in p53 can occur, for example, at amino acids Val143, His168, Arg175, Tyr220, Gly245, Arg248, Arg249, Phe270, Arg273, and Arg282. p53 mutations that can abrogate the activity of p53 include, for example, R175H, Y220C, G245S, R248Q, R248W, R273C, R273H, and R282H. p53 mutations can distort the structure of the DNA-binding site, thermodynamically destabilize the folded protein at body temperature, or weaken consensus DNA binding. Wild-type function of p53 mutants can be recovered by binding of the p53 mutant to a compound that can shift the folding-unfolding equilibrium towards the folded state, thereby reducing the rate of unfolding and destabilization; or by conjugating a small molecule to the DNA binding interface to restore consensus DNA binding.


Non-limiting examples of amino acids include: alanine (A, Ala); arginine (R, Arg); asparagine (N, Asn); aspartic acid (D, Asp); cysteine (C, Cys); glutamic acid (E, Glu); glutamine (Q, Gin); glycine (G, Gly); histidine (H, His); isoleucine (I, lie); leucine (L, Leu); lysine (K, Lys); methionine (M, Met); phenylalanine (F, Phe); proline (P, Pro); serine (S, Ser); threonine (T, Thr); tryptophan (W, Trp); tyrosine (Y, Tyr); and valine (V, Val).


Mechanism of Compounds of the Disclosure.


The compounds of the present disclosure can selectively bind to a p53 mutant and can recover wild-type activity of the p53 mutant including, for example, DNA binding function and activation of downstream targets involved in tumor suppression. In some embodiments, a compound of the disclosure selectively binds to a p53 R248 mutant. In some embodiments, a compound of the disclosure selectively binds to a p53 R248Q mutant. In some embodiments, a compound of the disclosure selectively binds to a p53 R248W mutant. In some embodiments, a compound of the disclosure selectively binds to a p53 R273 mutant. In some embodiments, a compound of the disclosure selectively binds to a p53 R273C mutant. In some embodiments, a compound of the disclosure selectively binds to a p53 R273H mutant.


A compound of the disclosure can bind or conjugate to an amino acid in the DNA binding interface. In some embodiments, a compound of the disclosure can conjugate to C277. In some embodiments, a compound of the disclosure can conjugate to C182.


Assays can be employed to determine the ability of a compound of the disclosure to bind to p53 and restore DNA binding affinity. Examples of assays include differential scanning fluorimetry (DSF), isothermal titration calorimetry (ITC), nuclear magnetic resonance spectrometry (NMR), X-ray crystallography, immunoprecipitation (IP), immunofluorescence (IF), or immunoblotting.


Methods used to detect the ability of the p53 mutant to bind DNA can include, for example, DNA affinity immunoblotting, modified enzyme-linked immunosorbent assay (ELISA), electrophoretic mobility shift assay (EMSA), fluorescence resonance energy transfer (FRET), homogeneous time-resolved fluorescence (HTRF), and a chromatin immunoprecipitation (ChIP) assay.


A compound of the disclosure can increase the ability of a p53 mutant to bind DNA by at least or up to about 0.1%, at least or up to about 0.2%, at least or up to about 0.3%, at least or up to about 0.4%, at least or up to about 0.5%, at least or up to about 0.6%, at least or up to about 0.7%, at least or up to about 0.8%, at least or up to about 0.9%, at least or up to about 1%, at least or up to about 2%, at least or up to about 3%, at least or up to about 4%, at least or up to about 5%, at least or up to about 6%, at least or up to about 7%, at least or up to about 8%, at least or up to about 9%, at least or up to about 10%, at least or up to about 11%, at least or up to about 12%, at least or up to about 13%, at least or up to about 14%, at least or up to about 15%, at least or up to about 16%, at least or up to about 17%, at least or up to about 18%, at least or up to about 19%, at least or up to about 20%, at least or up to about 21%, at least or up to about 22%, at least or up to about 23%, at least or up to about 24%, at least or up to about 25%, at least or up to about 26%, at least or up to about 27%, at least or up to about 28%, at least or up to about 29%, at least or up to about 30%, at least or up to about 31%, at least or up to about 32%, at least or up to about 33%, at least or up to about 34%, at least or up to about 35%, at least or up to about 36%, at least or up to about 37%, at least or up to about 38%, at least or up to about 39%, at least or up to about 40%, at least or up to about 41%, at least or up to about 42%, at least or up to about 43%, at least or up to about 44%, at least or up to about 45%, at least or up to about 46%, at least or up to about 47%, at least or up to about 48%, at least or up to about 49%, at least or up to about 50%, at least or up to about 51%, at least or up to about 52%, at least or up to about 53%, at least or up to about 54%, at least or up to about 55%, at least or up to about 56%, at least or up to about 57%, at least or up to about 58%, at least or up to about 59%, at least or up to about 60%, at least or up to about 61%, at least or up to about 62%, at least or up to about 63%, at least or up to about 64%, at least or up to about 65%, at least or up to about 66%, at least or up to about 67%, at least or up to about 68%, at least or up to about 69%, at least or up to about 70%, at least or up to about 71%, at least or up to about 72%, at least or up to about 73%, at least or up to about 74%, at least or up to about 75%, at least or up to about 76%, at least or up to about 77%, at least or up to about 78%, at least or up to about 79%, at least or up to about 80%, at least or up to about 81%, at least or up to about 82%, at least or up to about 83%, at least or up to about 84%, at least or up to about 85%, at least or up to about 86%, at least or up to about 87%, at least or up to about 88%, at least or up to about 89%, at least or up to about 90%, at least or up to about 91%, at least or up to about 92%, at least or up to about 93%, at least or up to about 94%, at least or up to about 95%, at least or up to about 96%, at least or up to about 97%, at least or up to about 98%, at least or up to about 99%, at least or up to about 100%, at least or up to about 125%, at least or up to about 150%, at least or up to about 175%, at least or up to about 200%, at least or up to about 225%, or at least or up to about 250% as compared to the ability of the p53 mutant to bind DNA in the absence of a compound of the disclosure.


A compound described herein can increase the activity of the p53 mutant that is, for example, at least or up to about 2-fold, at least or up to about 3-fold, at least or up to about 4-fold, at least or up to about 5-fold, at least or up to about 6-fold, at least or up to about 7-fold, at least or up to about 8-fold, at least or up to about 9-fold, at least or up to about 10-fold, at least or up to about 11-fold, at least or up to about 12-fold, at least or up to about 13-fold, at least or up to about 14-fold, at least or up to about 15-fold, at least or up to about 16-fold, at least or up to about 17-fold, at least or up to about 18-fold, at least or up to about 19-fold, at least or up to about 20-fold, at least or up to about 25-fold, at least or up to about 30-fold, at least or up to about 35-fold, at least or up to about 40-fold, at least or up to about 45-fold, at least or up to about 50-fold, at least or up to about 55-fold, at least or up to about 60-fold, at least or up to about 65-fold, at least or up to about 70-fold, at least or up to about 75-fold, at least or up to about 80-fold, at least or up to about 85-fold, at least or up to about 90-fold, at least or up to about 95-fold, at least or up to about 100-fold, at least or up to about 110-fold, at least or up to about 120-fold, at least or up to about 130-fold, at least or up to about 140-fold, at least or up to about 150-fold, at least or up to about 160-fold, at least or up to about 170-fold, at least or up to about 180-fold, at least or up to about 190-fold, at least or up to about 200-fold, at least or up to about 250-fold, at least or up to about 300-fold, at least or up to about 350-fold, at least or up to about 400-fold, at least or up to about 450-fold, at least or up to about 500-fold, at least or up to about 550-fold, at least or up to about 600-fold, at least or up to about 650-fold, at least or up to about 700-fold, at least or up to about 750-fold, at least or up to about 800-fold, at least or up to about 850-fold, at least or up to about 900-fold, at least or up to about 950-fold, at least or up to about 1,000-fold, at least or up to about 1,500-fold, at least or up to about 2,000-fold, at least or up to about 3,000-fold, at least or up to about 4,000-fold, at least or up to about 5,000-fold, at least or up to about 6,000-fold, at least or up to about 7,000-fold, at least or up to about 8,000-fold, at least or up to about 9,000-fold, or at least or up to about 10,000-fold greater than the activity of the p53 mutant in the absence of the compound.


A compound of the disclosure can be used, for example, to induce apoptosis, cell cycle arrest, or senescence in a cell. In some embodiments, the cell is a cancer cell. In some embodiments, the cell carries a mutation in p53.


Compounds of the Disclosure.


In some embodiments, the present disclosure provides a compound of the formula:




embedded image




    • wherein:
      • X1 is CR7 or N;
      • X2 is CR2 or N;
      • each of R1 and R2 is independently alkyl, —NR8R9, —C(O)NR8R9, —NR8C(O)R9, —OR10, —SR11, —C(O)R12, —C(O)OR12, —S(O)2R13, CN, each of which is unsubstituted or substituted, or hydrogen or halogen;
      • Q is







embedded image






      •  or NR3R4, wherein each of R3 and R4 is independently alkyl, cycloalkyl, alkenyl, —C(O)R13, —C(O)OR13, —S(O)2R13, —S(O)2R13, each of which is unsubstituted or substituted; or hydrogen, or R3 and R4 together with the nitrogen atom to which R3 and R4 are bound form a ring, wherein the ring is unsubstituted or substituted;

      • each of R5 and R6 is independently aryl or heteroaryl, each of which is unsubstituted or substituted, or hydrogen or halogen; or R5 and R6 together with the carbon atoms to which R5 and R6 are bound form a ring, wherein the ring is unsubstituted or substituted;

      • R7 is alkyl, alkenyl, cycloalkyl, aryl, heteroaryl or heterocyclyl, each of which is unsubstituted or substituted, or hydrogen or halogen;

      • each of R8 and R9 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R8 and R9 together with the nitrogen atom to which R8 and R9 are bound form a ring, wherein the ring is unsubstituted or substituted; and

      • each of R10, R11, R12 and R13 is independently is alkyl, alkenyl, cycloalkyl, aryl, heteroaryl or heterocyclyl, each of which is unsubstituted or substituted, or hydrogen or halogen.







In some embodiments, R5 is halogen or hydrogen, and R6 is aryl and heteroaryl. In some embodiments, R5 is aryl or heteroaryl, and R6 is halogen or hydrogen. In some embodiments, R5 is hydrogen.


In some embodiments, R6 is pyridinyl, pyrazinyl, pyrimidinyl, each of which is unsubstituted or substituted. In some embodiments, R6 is pyridinyl that is substituted or unsubstituted. In some embodiments, R6 is pyridin-2-yl, pyridin-3-yl, or pyridin-4-yl, each of which is substituted or unsubstituted. In some embodiments, R6 is pyrimidin-2-yl, pyrimidin-4-yl, or pyrimidin-5-yl, each of which is substituted or unsubstituted. In some embodiments, R6 is pyri din-2-yl, which is substituted or unsubstituted. In some embodiments, R6 is oxazolyl or imidazolyl, each of which is substituted or unsubstituted. In some embodiments, R6 is oxazolyl that is substituted or unsubstituted. In some embodiments, R6 is oxazol-2-yl that is substituted or unsubstituted.


In some embodiments, R6 is quinolinyl, isoquinolinyl, quinazolinyl, or phthalazinyl, each of which is substituted or unsubstituted. In some embodiments, R6 is quinolyl that is substituted or unsubstituted. In some embodiments, R6 is quinolin-2-yl, quinolin-3-yl, quinolin-4-yl, quinolin-5-yl, quinolin-6-yl, quinolin-7-yl, or quinolin-8-yl, each of which is substituted or unsubstituted. In some embodiments, R6 is quinolin-6-yl, or quinolin-7-yl, each of which is substituted or unsubstituted.


In some embodiments, R6 is quinazolinlyl that is substituted or unsubstituted. In some embodiments, R6 is quinazolin-2-yl, quinazolin-4-yl, quinazolin-5-yl, quinazolin-6-yl, quinazolin-7-yl, or quinazolin-8-yl, each of which is substituted or substituted. In some embodiments, R6 is quinazolin-7-yl, which is substituted or unsubstituted.


In some embodiments, R6 is isoquinolyl that is substituted or unsubstituted. In some embodiments, R6 is isoquinolin-1-yl, isoquinolin-3-yl, isoquinolin-4-yl, isoquinolin-5-yl, isoquinolin-6-yl, isoquinolin-7-yl, or isoquinolin-8-yl, each of which is substituted or unsubstituted. In some embodiments, R6 is isoquinolyl that is substituted or unsubstituted. In some embodiments, R6 is isoquinolin-3-yl, isoquinolin-5-yl, isoquinolin-6-yl, or isoquinolin-7-yl, each of which is substituted or unsubstituted.


In some embodiments, R6 is indolyl, isoindolyl, indazolyl, benzimidazolyl, benzoxazolyl, benzisoxazolyl, benzofuranyl, or benzothiophenyl, or benzthiazolyl, each of which is substituted or unsubstituted. In some embodiments, R6 is indolyl that is substituted or unsubstituted. In some embodiments, R6 is 1H-indol-1-yl, 1H-indol-2-yl, 1H-indol-3-yl, 1H-indol-4-yl, 1H-indol-5-yl, 1H-indol-6-yl, or 1H-indol-7-yl, each of which is substituted or unsubstituted. In some embodiments, R6 is indazolyl that is substituted or unsubstituted. In some embodiments, R6 is 1H-indazol-1-yl, 1H-indazol-3-yl, 1H-indazol-4-yl, 1H-indazol-5-yl, 1H-indazol-6-yl, or 1H-indazol-7-yl, each of which is substituted or unsubstituted. In some embodiments, R6 is 1H-indazol-3-yl that is substituted or unsubstituted. In some embodiments, R6 is 1H-indazol-5-yl that is substituted or unsubstituted. In some embodiments, R6 is 1H-indazol-6-yl that is substituted or unsubstituted.


In some embodiments, R6 is 1H-pyrazolo[3,4-c]pyridinyl that is substituted or unsubstituted. In some embodiments, R6 is 1H-pyrazolo[3,4-c]pyridin-5-yl that is substituted or unsubstituted. In some embodiments, R6 is 7H-pyrrolo[2,3-d]pyrimidinyl that is substituted or unsubstituted. In some embodiments, R6 is 7H-pyrrolo[2,3-d]pyrimidin-2-yl that is substituted or unsubstituted.


In some embodiments, R6 is




embedded image



wherein

    • Z2 is N or CH;
    • Z3 is N or CR22;
    • Z4 is N or CR23;
    • Z5 is N or CR24;
    • Z6 is N or CR25;
    • Z8 is N or CR27;
    • Z13 is N or CR32; and
    • Z14 is N or CR33,
    • wherein each of R22, R23, R24, R25, R27, R28, R29, R30, R32, and R33 is independently, alkyl, heteroaryl, —NR14R15, —C(O)NR14R15, —NR14C(O)R15, —OR16, —SR17, —C(O)R18, —C(O)OR18, —S(O)2R19, or —CN, each of which is unsubstituted or substituted, or hydrogen or halogen.


In some embodiments, Q is




embedded image


In some embodiments, Q is




embedded image



In some embodiments, when Q is




embedded image



then each of R5 and R6 is independently aryl or heteroaryl, each of which is unsubstituted or substituted, or hydrogen or halogen; or R5 and R6 together with the carbon atoms to which R5 and R6 are bound form a ring, wherein the ring is unsubstituted or substituted.


In some embodiments, Q is




embedded image



In some embodiments, when Q is




embedded image



then R5 and R6 together with the carbon atoms to which R5 and R6 are bound form the ring, wherein the ring is unsubstituted or substituted.


In some embodiments, Q is




embedded image



In some embodiments, when Q is




embedded image



then R5 is hydrogen or halogen, and R6 is aryl or heteroaryl, which is unsubstituted or substituted.


In some embodiments, when Q is




embedded image



then R5 and R6 together with the carbon atoms to which R5 and R6 are bound form the ring, and the compound has the structure:




embedded image




    • wherein
      • R5a, R5b and R5d are each independently aryl or heteroaryl, each of which is substituted or unsubstituted, or hydrogen or halogen, and
      • R5c is







embedded image






      • wherein
        • each of custom character is independently a single bond or a double bond;
        • Y1 is CR6a, N, NR6a, O or S;
        • Y2 is CR6b, N, NR6b, O or S;
        • Y3 is CR6c, N, NR6c, O or S;
        • Y4 is CR6d, N, NR6d, O or S;
        • Y5 is CR6e, N, NR6e, O or S;
        • Y6 is CR6f, N, NR6f, O or S;
        • Y7 is CR6g, N, NR68, O or S;
        • Y8 is CR6h, N, NR6h, O or S; and
        • Y9 is CR6i, N, NR6i, O or S,
        • wherein
          • each of R6a, R6b, R6c, R6d, R6e, R6f, R6g, R6h and R6i is independently alkyl, cycloalkyl, —N14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
          • R6a and R6b together with the carbon atoms to which R6a and R6b are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6c, R6d, R6e, R6f, R6g, R6h and R6i is independently alkyl, cycloalkyl, —N14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
          • R6b and R6c together with the carbon atoms to which R6b and R6c are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6a, R6d, R6e, R6f, R6g, R6h and R6i is independently alkyl, cycloalkyl, —N14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
          • R6c and R6d together with the carbon atoms to which R6c and R6d are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6a, R6b, R6e, R6f, R6g, R6h and R6i is independently alkyl, cycloalkyl, —N14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
          • R6d and R6e together with the carbon atoms to which R6d and R6e are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6a, R6b, R6c, R6f, R6g, R6h and R6i is independently alkyl, cycloalkyl, —N14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
          • R6f and R6g together with the carbon atoms to which R6f and R6g are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6a, R6b, R6c, R6d, R6e, R6h and R6i is independently alkyl, cycloalkyl, —N14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
          • R6g and R6h together with the carbon atoms to which R6g and R6h are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6a, R6b, R6c, R6d, R6e, R6f, and R6i is independently alkyl, cycloalkyl, —N14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
          • R6h and R6i together with the carbon atoms to which R6h and R6i are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6a, R6b, R6c, R6d, R6e, R6f, and R6g is independently alkyl, cycloalkyl, —N14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen.







In some embodiments, when Q is not




embedded image



then R5 and R6 together with the carbon atoms to which R5 and R6 are bound form the ring, and compound has the structure:




embedded image




    • wherein:
      • R5a, R5b and R5d are each independently aryl or heteroaryl, each of which is substituted or unsubstituted, or hydrogen or halogen; and
      • each of R6a, R6b, R6c, R6d, and R6e is independently alkyl, cycloalkyl, —N14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; wherein at least one of R6a, R6b, R6c, R6d, and R6e is —C(O)NR14R15, NR14R15, or NR14C(O)R15, and

    • each of R14 and R15 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, or heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R14 and R15 together with the nitrogen atom to which R14 and R15 are bound form a ring, wherein the ring is unsubstituted or substituted; and

    • each of R16, R17, R18 and R19 is independently is alkyl, alkenyl, cycloalkyl, aryl, heteroaryl or heterocyclyl, each of which is unsubstituted or substituted, or hydrogen or halogen;


      or a pharmaceutically-acceptable salt thereof.





In some embodiments, X1 is CR7. In some embodiments, X1 is N. In some embodiments, R7 is H.


In some embodiments, R1 is H. In some embodiments, R1 is —C(O)NR8R9, —OR10, or CN, each of which is unsubstituted or substituted.


In some embodiments, R2 is H. In some embodiments, R2 is —OR10. In some embodiments, R2 is halogen. In some embodiments, R2 is —C(O)NH2.


In some embodiments, Q is NR3R4, wherein R3 is hydrogen.


In some embodiments, Q is NR3R4, wherein one or both of R3 and R4 is




embedded image


In some embodiments, the present disclosure provides a compound of the formula:




embedded image




    • wherein:
      • X1 is CR7 or N;
      • X2 is CR2 or N;
      • each of R1 and R2 is independently alkyl, —NR8R9, —C(O)NR8R9, —NR8C(O)R9, —OR10, —SR11, —C(O)R12, —C(O)OR12, —S(O)2R13, CN, each of which is unsubstituted or substituted, or hydrogen or halogen;
      • Q is







embedded image






      •  or NR3R4, wherein each of R3 and R4 is independently alkyl, cycloalkyl, alkenyl, —C(O)R13, —C(O)OR13, —S(O)2R13, —S(O)2R13, each of which is unsubstituted or substituted; or hydrogen, or R3 and R4 together with the nitrogen atom to which R3 and R4 are bound form a ring, wherein the ring is unsubstituted or substituted;

      • R7 is alkyl, alkenyl, cycloalkyl, aryl, heteroaryl or heterocyclyl, each of which is unsubstituted or substituted, or hydrogen or halogen;

      • each of R8 and R9 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R8 and R9 together with the nitrogen atom to which R8 and R9 are bound form a ring, wherein the ring is unsubstituted or substituted;

      • each of R10, R11, R12 and R13 is independently is alkyl, alkenyl, cycloalkyl, aryl, heteroaryl or heterocyclyl, each of which is unsubstituted or substituted, or hydrogen or halogen;


        provided that:



    • (i) when Q is







embedded image




    •  then each of R5 and R6 is independently aryl or heteroaryl, each of which is unsubstituted or substituted, or hydrogen or halogen; or R5 and R6 together with the carbon atoms to which R5 and R6 are bound form a ring, wherein the ring is unsubstituted or substituted;

    • (ii) when Q is







embedded image




    •  then R5 and R6 together with the carbon atoms to which R5 and R6 are bound form the ring, wherein the ring is unsubstituted or substituted;

    • (iii) when Q is







embedded image




    •  then:
      • (a) R5 is hydrogen or halogen, and R6 is







embedded image






      •  wherein
        • Z2 is N or CH;
        • Z3 is N or CR22;
        • Z4 is N or CR23;
        • Z5 is N or CR24;
        • Z6 is N or CR25;
        • Z8 is N or CR27;
        • Z13 is N or CR32; and
        • Z14 is N or CR33,
        • wherein each of R22, R23, R24, R25, R27, R28, R29, R30, R32, and R33 is independently, alkyl, heteroaryl, —NR14R15, —C(O)NR14R15, —NR14C(O)R15, —OR16, —SR17, —C(O)R18, —C(O)OR18, —S(O)2R19, or —CN, each of which is unsubstituted or substituted, or hydrogen or halogen; or

      • (b) R5 and R6 together with the carbon atoms to which R5 and R6 are bound form the ring, and the compound has the structure:









embedded image






      •  wherein
        • R5a, R5b and R5d are each independently aryl or heteroaryl, each of which is substituted or unsubstituted, or hydrogen or halogen, and
        • R5c is









embedded image








        • wherein
          • each of custom character is independently a single bond or a double bond;
          • Y1 is CR6a, N, NR6a, O or S;
          • Y2 is CR6b, N, NR6b, O or S;
          • Y3 is CR6c, N, NR6c, O or S;
          • Y4 is CR6d, N, NR6d, O or S;
          • Y5 is CR6e, N, NR6e, O or S;
          • Y6 is CR6f, N, NR6f, O or S;
          • Y7 is CR6g, N, NR68, O or S;
          • Y8 is CR6h, N, NR6h, O or S; and
          • Y9 is CR6i, N, NR6i, O or S,
          • wherein
          •  each of R6a, R6b, R6c, R6d, R6e, R6f, R6g, R6h and R6i is independently alkyl, cycloalkyl, —N14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
          •  R6a and R6b together with the carbon atoms to which R6a and R6b are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6c, R6d, R6e, R6f, R6g, R6h and R6i is independently alkyl, cycloalkyl, —N14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
          •  R6b and R6c together with the carbon atoms to which R6b and R6c are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6a, R6d, R6e, R6f, R6g, R6h and R6i is independently alkyl, cycloalkyl, —N14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
          •  R6c and R6d together with the carbon atoms to which R6c and R6d are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6a, R6b, R6e, R6f, R6g, R6h and R6i is independently alkyl, cycloalkyl, —N14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
          •  R6d and R6e together with the carbon atoms to which R6d and R6e are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6a, R6b, R6c, R6f, R6g, R6h and R6i is independently alkyl, cycloalkyl, —N14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
          •  R6f and R6g together with the carbon atoms to which R6f and R6g are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6a, R6b, R6c, R6d, R6e, R6h and R6i is independently alkyl, cycloalkyl, —N14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
          •  R6g and R6h together with the carbon atoms to which R6g and R6h are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6a, R6b, R6c, R6d, R6e, R6f, and R6i is independently alkyl, cycloalkyl, —N14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
          •  R6h and R6i together with the carbon atoms to which R6h and R6i are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6a, R6b, R6c, R6d, R6e, R6f, and R6g is independently alkyl, cycloalkyl, —N14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen, and





    • (iv) when Q is not







embedded image




    •  then R5 and R6 together with the carbon atoms to which R5 and R6 are bound form the ring, and compound has the structure:







embedded image






      • wherein:
        • R5a, R5b and R5d are each independently aryl or heteroaryl, each of which is substituted or unsubstituted, or hydrogen or halogen; and
        • each of R6a, R6b, R6c, R6d, and R6e is independently alkyl, cycloalkyl, —N14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; wherein at least one of R6a, R6b, R6c, R6d, and R6e is —C(O)NR14R15, NR14R15, or NR14C(O)R15, and



    • each of R14 and R15 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, or heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R14 and R15 together with the nitrogen atom to which R14 and R15 are bound form a ring, wherein the ring is unsubstituted or substituted; and

    • each of R16, R17, R18 and R19 is independently is alkyl, alkenyl, cycloalkyl, aryl, heteroaryl or heterocyclyl, each of which is unsubstituted or substituted, or hydrogen or halogen;


      or a pharmaceutically-acceptable salt thereof.





In some embodiments, the compound has the formula:




embedded image




    • wherein each of R22, R23, and R24 is independently alkyl, which is unsubstituted or substituted, or hydrogen, or halogen.





In some embodiments, the compound has the formula:




embedded image


In some embodiments, the compound has the formula:




embedded image


In some embodiments, the compound has the formula:




embedded image


In some embodiments, the compound has the formula:




embedded image


In some embodiments, the compound has the formula:




embedded image


In some embodiments, the compound has the formula:




embedded image


In some embodiments, the compound has the formula:




embedded image




    • wherein
      • R5a, R5b, R5c, and R5d are each independently aryl or heteroaryl, each of which is substituted or unsubstituted, or hydrogen or halogen.





In some embodiments, at least one of R5a, R5b, R5c, and R5d is




embedded image




    • wherein
      • each of custom character is independently a single bond or a double bond;
      • Y1 is CR6a, N, NR6a, O or S;
      • Y2 is CR6b, N, NR6b, O or S;
      • Y3 is CR6c, N, NR6c, O or S;
      • Y4 is CR6d, N, NR6d, O or S;
      • Y5 is CR6e, N, NR6e, O or S;
      • wherein
        • each of R6a, R6b, R6c, R6d, and R6e is independently alkyl, cycloalkyl, —NR14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
        • R6a and R6b together with the carbon atoms to which R6a and R6b are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6c, R6d, and R6e is independently alkyl, cycloalkyl, —NR14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
        • R6b and R6c together with the carbon atoms to which R6b and R6c are bound form a ring, wherein the ring is unsubstituted or substituted; and each of R6a, R6d, and R6e is independently alkyl, cycloalkyl, —NR14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
        • R6c and R6d together with the carbon atoms to which R6c and R6d are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6a, R6b, R6d, and R6e is independently alkyl, cycloalkyl, —NR14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
      • R6d and R6e together with the carbon atoms to which R6d and R6e are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6a, R6b, R6c, and R6d is independently alkyl, cycloalkyl, —NR14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen.





In some embodiments, at least one of R5a, R5b, R5c, and R5d is




embedded image




    • wherein
      • each of custom character is independently a single bond or a double bond;
      • Y6 is CR6f, N, NR6f, O or S;
      • Y7 is CR6g, N, NR6ga, O or S;
      • Y8 is CR6h, N, NR6h, O or S; and
      • Y9 is CR6i, N, NR6i, O or S;
      • wherein
        • each of R6f, R6g, R6h, and R6i is independently alkyl, cycloalkyl, —NR14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
        • R6f and R6g together with the carbon atoms to which R6f and R6g are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6h and R6i is independently alkyl, cycloalkyl, —NR14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
        • R6g and R6h together with the carbon atoms to which R6g and R6h are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6f and R6i is independently alkyl, cycloalkyl, —NR14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
        • R6h and R6i together with the carbon atoms to which R6h and R6i are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6f, and R6g is independently alkyl, cycloalkyl, —NR14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen.





In some embodiments, the compound has the formula:




embedded image


In some embodiments, the compound has the formula:




embedded image


In some embodiments, the compound has the formula:




embedded image


In some embodiments, at least one of R6a, R6b, R6c, R6d and R6e is —C(O)NR14R15, —NR14C(O)R15, or —NR14R15. In some embodiments, R6b is —C(O)NR14R15. In some embodiments, R6b is —NR14R15. In some embodiments, R6b is —NR14C(O)R15.


In some embodiments, the compound has the formula:




embedded image


In some embodiments, at least one of R6a, R6b, R6c, R6d and R6e is —C(O)NR14R15, —NR14C(O)R15, or —NR14R15. In some embodiments, R6b is —C(O)NR14R15. In some embodiments, R6b is —NR14R15. In some embodiments, R6b is —NR14C(O)R15.


In some embodiments, the compound has the formula:




embedded image




    • wherein each of R5x and R5y is each independently alkyl, alkyl, cycloalkyl, —N14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen. In some embodiments, R5x or R5y is —C(O)NR14R15. In some embodiments, R5x or R5y is —NR14R15. In some embodiments, R5x or R5y is —NR14C(O)R15.





In some embodiments, the compound has the structure:




embedded image


In some embodiments, R6f, R6g, or R6h is —C(O)NR14R15. In some embodiments, R6f, R6g, or R6h is —NR14R15. In some embodiments, R6f, R6g, or R6h is —NR14C(O)R15.


In some embodiments, the compound has the formula:




embedded image




    • wherein R5b, R5c, and R5d are each independently aryl, heteroaryl, each of which is substituted or unsubstituted, or hydrogen or halogen.





In some embodiments, the compound has the formula:




embedded image


In some embodiments, at least one of R5a, R5b, R5c, and R5d is




embedded image




    • wherein
      • each of custom character is independently a single bond or a double bond;
      • Y1 is CR6a, N, NR6a, O or S;
      • Y2 is CR6b, N, NR6b, O or S;
      • Y3 is CR6c, N, NR6c, O or S;
      • Y4 is CR6d, N, NR6d, O or S;
      • Y5 is CR6e, N, NR6e, O or S;
      • wherein
        • each of R6a, R6b, R6c, R6d, and R6e is independently alkyl, cycloalkyl, —NR14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
        • R6a and R6b together with the carbon atoms to which R6a and R6b are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6c, R6d, and R6e is independently alkyl, cycloalkyl, —NR14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
        • R6b and R6c together with the carbon atoms to which R6b and R6c are bound form a ring, wherein the ring is unsubstituted or substituted; and each of R6a, R6d, and R6e is independently alkyl, cycloalkyl, —NR14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
        • R6c and R6d together with the carbon atoms to which R6c and R6d are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6a, R6b, and R6e is independently alkyl, cycloalkyl, —NR14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
        • R6d and R6e together with the carbon atoms to which R6d and R6e are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6a, R6b, and R6c is independently alkyl, cycloalkyl, —NR14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen.





In some embodiments, at least one of R5a, R5b, R5c, and R5d is




embedded image




    • wherein
      • each of custom character is independently a single bond or a double bond;
      • Y6 is CR6f, N, NR6f, O or S;
      • Y7 is CR6g, N, NR6ga, O or S;
      • Y8 is CR6h, N, NR6h, O or S; and
      • Y9 is CR6i, N, NR6i, O or S;
      • wherein
        • each of R6f, R6g, R6h, and R6i is independently alkyl, cycloalkyl, —NR14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
        • R6f and R6g together with the carbon atoms to which R6f and R6g are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6h and R6i is independently alkyl, cycloalkyl, —NR14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
        • R6g and R6h together with the carbon atoms to which R6g and R6h are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6f and R6i is independently alkyl, cycloalkyl, —NR14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
        • R6h and R6i together with the carbon atoms to which R6h and R6i are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6f, and R6g is independently alkyl, cycloalkyl, —NR14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen.





In some embodiments, the compound has the formula:




embedded image


In some embodiments, the compound has the formula:




embedded image


In some embodiments, the compound has the formula:




embedded image




    • wherein
      • each of custom character is independently a single bond or a double bond;
      • Z1 is N, NR20, O, S or CR20;
      • Z2 is N, NR21, O, S or CR21;
      • Z3 is N, NR22, O, S or CR22;
      • Z4 is N, NR23, O, S or CR23;
      • Z5 is N, NR24, O, S or CR24;
      • Z6 is N, NR25, O, S or CR25;
      • Z7 is N, NR26, O, S or CR26;
      • Z8 is N, NR27, O, S or CR27;
      • Z9 is N, NR28, O, S or CR28;
      • Z10 is N, NR29, O, S or CR29;
      • Z11 is N, NR30, O, S or CR30;
      • Z12 is N, NR31, O, S or CR31;
      • Z13 is N, NR32, O, S or CR32; and
      • Z14 is N, NR33, O, S or CR33;
      • wherein each of R20, R21, R22, R23, R24, R25, R26, R27, R28, R29, R30, R31, R32, and R33, is independently, alkyl, heteroaryl, —NR14R15, —C(O)NR14R15, —NR14C(O)R15, —OR16, —SR17, —C(O)R18, —C(O)OR18, —S(O)2R19, or —CN, each of which is unsubstituted or substituted, or hydrogen or halogen.





In some embodiments, the compound has the formula:




embedded image




    • wherein
      • Z1 is N or CR20;
      • Z2 is N or CR21;
      • Z3 is N or CR22;
      • Z4 is N or CR23;
      • Z5 is N or CR24;
      • Z6 is N or CR25; and
      • Z7 is N or CR26.





In some embodiments, the compound has the formula:




embedded image


In some embodiments, Z1 is CR20, wherein R20 is —C(O)NR14R15, —NR14C(O)R15, or —NR14R15. In some embodiments, Z2 is CR21, wherein R21 is —C(O)NR14R15, —NR14C(O)R15, or —NR14R15. In some embodiments, Z3 is CR22, wherein R22 is —C(O)NR14R15, —NR14C(O)R15, or —NR14R15. In some embodiments, Z4 is CR23, wherein R23 is —C(O)NR14R15, —NR14C(O)R15, or —NR14R15. In some embodiments, Z5 is CR24, wherein R24 is —C(O)NR14R15, —NR14C(O)R15, or —NR14R15. In some embodiments, Z3 is N or CR22, wherein R22 is —C(O)NR14R15, —NR14C(O)R15, or —NR14R15. In some embodiments, R20 is hydrogen. In some embodiments, R26 is hydrogen.


In some embodiments, the compound has the formula:




embedded image


In some embodiments, R27, R28, R29, R30, R32, or R33 is —C(O)NR14R15. In some embodiments, R27, R28, R29, R30, R32, or R33 is —NR14R15. In some embodiments, R27, R28, R29, R30, R32, or R33 is —NR14C(O)R15.


In some embodiments, the compound has the formula:




embedded image


In some embodiments, the compound has the formula:




embedded image


In some embodiments, the compound has the formula:




embedded image


In some embodiments, Z8 is CR27, Z13 is CR32, and Z14 is CR33. In some embodiments, Z8 is CR27, Z13 is CR32, and Z14 is N. In some embodiments, Z8 is N, Z13 is CR32, and Z14 is CR33. In some embodiments, Z8 is CR27, Z13 is N, and Z14 is CR33. In some embodiments, Z8 is N, Z13 is CR32, and Z14 is NR33. In some embodiments, Z8 is CR27, Z13 is N, and Z14 is N. In some embodiments, R27, R29, R32, or R33 is —C(O)NR14R15. In some embodiments, R27, R29, R32, or R33 is —NR14R15. In some embodiments, R27, R29, R32, or R33 is —NR14C(O)R15.


In some embodiments, the compound has the formula:




embedded image




    • wherein
      • each R16b is independently alkyl, which is unsubstituted or substituted, or hydrogen or halogen;
      • each of R16x and R16y is independently alkyl, —NR14R15, —C(O)NR14R15, —NR14C(O)R15, or —R16, each of which is unsubstituted or substituted, or hydrogen or halogen; and
      • m is independently 0, 1, or 2.





In some embodiments, the compound has the formula:




embedded image




    • wherein
      • each R16b is independently alkyl, which is unsubstituted or substituted, or hydrogen or halogen;
      • each of R16x, R16y, and R16z is independently alkyl, —NR14R15, —C(O)NR14R15, —NR14C(O)R15, —OR16, each of which is unsubstituted or substituted, or hydrogen or halogen; and
      • m is independently 0, 1, or 2.





In some embodiments, the compound has the formula:




embedded image




    • wherein
      • R16b is alkyl, which is unsubstituted or substituted, or hydrogen or halogen; and
      • each of R16x R16y, and R16z is independently alkyl, —NR14R15, —C(O)NR14R15, —NR14C(O)R15, or —OR16, each of which is unsubstituted or substituted, or hydrogen or halogen.





In some embodiments, the compound has the formula:




embedded image




    • wherein
      • each of R16a and R16b is independently alkyl, which is unsubstituted or substituted, or hydrogen or halogen;
      • each of R16x and R16y is each independently alkyl, —NR14R15, —C(O)NR14R15, —NR14C(O)R15, —OR16, each of which is unsubstituted or substituted, or hydrogen or halogen; and
      • m is independently 0, 1, 2, or 3; and
      • n is independently 0, 1, 2, or 3.





In some embodiments, the compound has the formula:




embedded image




    • wherein
      • Z1 is N or CR20;
      • Z2 is N, NR21, O, S or CR21;
      • Z3 is N or CR22;
      • Z4 is N or CR23;
      • Z5 is N or CR24; and
      • Z6 is N or CR25;
      • wherein each of R20, R21, R22, R23, R24, and R25 is independently, alkyl, heteroaryl, —NR14R15, —C(O)NR14R15, —NR14C(O)R15, —OR16, —SR17, —C(O)R18, —C(O)OR18, —S(O)2R19, or —CN, each of which is unsubstituted or substituted, or hydrogen or halogen.





In some embodiments, the compound has the formula:




embedded image


In some embodiments, the compound has the formula:




embedded image


In some embodiments, R21, R22, R23, R24, or R25 is —C(O)NR14R15. In some embodiments, R21, R22, R23, R24, or R25 is —NR14R15. In some embodiments, R21, R22, R23, R24, or R25 is —NR14C(O)R15. In some embodiments, R20, R21, R22, R23, R24, or R25 is —C(O)NR14R15. In some embodiments, R20, R21, R22, R23, R24, or R25 is —NR14R15. In some embodiments, R20, R21, R22, R23, R24, or R25 is —NR14C(O)R15. In some embodiments, 81-83, wherein Z3 is CR22, Z4 is CR23, Z5 is CR24, and Z6 is CR25. In some embodiments, Z3 is N, Z4 is CR23, Z5 is CR24, and Z6 is CR25. In some embodiments, Z3 is CR22, Z4 is N, Z5 is CR24, and Z6 is CR25. In some embodiments, Z3 is CR22, Z4 is CR23, Z5 is N, and Z6 is CR25. In some embodiments, Z3 is CR22, Z4 is CR23, Z5 is CR24, and Z6 is N. In some embodiments, Z3 is N, Z4 is CR23, Z5 is N, and Z6 is CR25. In some embodiments, Z3 is N, Z4 is CR23, Z5 is CR24, and Z6 is N. In some embodiments, R14 is hydrogen. In some embodiments, —NR14C(O)R15 is




embedded image


In some embodiments, R15 is cycloalkyl which is unsubstituted or substituted. In some embodiments, R15 is cycloalkyl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.


In some embodiments, R15 is heteroaryl which is unsubstituted or substituted. In some embodiments, R15 is heteroaryl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.


In some embodiments, R15 is heterocyclyl which is unsubstituted or substituted. In some embodiments, R15 is heterocyclyl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.


In some embodiments, R15 is piperidinyl which is unsubstituted or substituted. In some embodiments, R15 is




embedded image




    • wherein
      • each of R15a R15b, or R15c is independently alkyl which is unsubstituted or substituted, or hydrogen or halogen;
      • each of R15x is independently halogen or hydrogen; and
      • n is independently 0, 1, 2, 3, 4, 5, 6, 7, or 8.





In some embodiments, R6 is aryl or heteroaryl substituted by R15, wherein R15 is piperidinyl which is unsubstituted or substituted. In some embodiments, R15 is




embedded image




embedded image




    • wherein
      • each of R15a R15b, or R15c is independently alkyl which is unsubstituted or substituted, or hydrogen or halogen;
      • each of R15x is independently halogen or hydrogen; and
      • n is independently 0, 1, 2, 3, 4, 5, 6, 7, or 8.





In some embodiments, R15a, R15b, and R15c is methyl. In some embodiments, R15 is an alkyl which is unsubstituted or substituted. In some embodiments, R15 is an alkyl which is substituted with a heterocyclyl. In some embodiments, R15 is an alkyl which is substituted with a morpholinyl or piperidinyl, each of which is substituted or unsubstituted. In some embodiments, R15 is an alkyl which is substituted with an unsubstituted or substituted heteroaryl. In some embodiments, R15 is an alkyl which is substituted with an unsubstituted or substituted imidazolyl.


In some embodiments, R15 is piperidinyl that is unsubstituted or substituted. In some embodiments, R15 is




embedded image



wherein R15a is independently alkyl that is unsubstituted or substituted, or hydrogen or halogen; each R15x is independently halogen or hydrogen; and n is independently 0, 1, 2, 3, 4, 5, 6, 7, or 8. In some embodiments, R15b is methyl. In some embodiments, R15 is




embedded image



wherein each of R15b is independently alkyl that is unsubstituted or substituted, or hydrogen or halogen; each R15x is independently halogen or hydrogen; and n is independently 0, 1, 2, 3, 4, 5, 6, 7, or 8. In some embodiments, R15b is methyl. In some embodiments, R15 is




embedded image



wherein each R15c is independently alkyl that is unsubstituted or substituted, or hydrogen or halogen; each R15x is independently halogen or hydrogen; and n is independently 0, 1, 2, 3, 4, 5, 6, 7, or 8. In some embodiments, R15c is methyl.


In some embodiments, R15 is alkyl that is unsubstituted or substituted. In some embodiments, R15 is alkyl that is substituted with a heterocyclyl group. In some embodiments, R15 is alkyl that is substituted with a morpholinyl or piperidinyl group, each of which is substituted or unsubstituted. In some embodiments, R15 is alkyl that is substituted with an unsubstituted or substituted heteroaryl group. In some embodiments, R15 is alkyl that is substituted with an unsubstituted or substituted imidazolyl group.


In some embodiments, Q is NR3R4,

    • wherein NR3R4 is




embedded image



wherein each of R22, R23, and R24 is independently alkyl, which is unsubstituted or substituted, or hydrogen, or halogen. In some embodiments, NR3R4 is




embedded image


Several moieties described herein may be substituted or unsubstituted. Non-limiting examples of optional substituents include hydroxyl groups, sulfhydryl groups, halogens, amino groups, nitro groups, nitroso groups, cyano groups, azido groups, sulfoxide groups, sulfone groups, sulfonamide groups, carboxyl groups, carboxaldehyde groups, imine groups, alkyl groups, halo-alkyl groups, alkenyl groups, halo-alkenyl groups, alkynyl groups, halo-alkynyl groups, alkoxy groups, aryl groups, aryloxy groups, aralkyl groups, arylalkoxy groups, heterocyclyl groups, acyl groups, acyloxy groups, carbamate groups, amide groups, ureido groups, epoxy groups, and ester groups.


Non-limiting examples of alkyl and alkylene groups include straight, branched, and cyclic alkyl and alkylene groups. An alkyl or alkylene group can be, for example, a C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16, C17, C18, C19, C20, C21, C22, C23, C24, C25, C26, C27, C28, C29, C30, C31, C32, C33, C34, C35, C36, C37, C38, C39, C40, C41, C42, C43, C44, C45, C46, C47, C48, C49, or C50 group that is substituted or unsubstituted.


Non-limiting examples of straight alkyl groups include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, and decyl.


Branched alkyl groups include any straight alkyl group substituted with any number of alkyl groups. Non-limiting examples of branched alkyl groups include isopropyl, isobutyl, sec-butyl, and t-butyl.


Non-limiting examples of substituted alkyl groups includes hydroxymethyl, chloromethyl, trifluoromethyl, aminomethyl, 1-chloroethyl, 2-hydroxy ethyl, 1,2-difluoroethyl, and 3-carboxypropyl.


Non-limiting examples of cyclic alkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptlyl, and cyclooctyl groups. Cyclic alkyl groups also include fused-, bridged-, and spiro-bicycles and higher fused-, bridged-, and spiro-systems. A cyclic alkyl group can be substituted with any number of straight, branched, or cyclic alkyl groups. Non-limiting examples of cyclic alkyl groups include cyclopropyl, 2-methyl-cycloprop-1-yl, cycloprop-2-en-1-yl, cyclobutyl, 2,3-dihydroxycyclobut-1-yl, cyclobut-2-en-1-yl, cyclopentyl, cyclopent-2-en-1-yl, cyclopenta-2,4-dien-1-yl, cyclohexyl, cyclohex-2-en-1-yl, cycloheptyl, cyclooctanyl, 2,5-dimethylcyclopent-1-yl, 3,5-dichlorocyclohex-1-yl, 4-hydroxycyclohex-1-yl, 3,3,5-trimethylcyclohex-1-yl, octahydropentalenyl, octahydro-1H-indenyl, 3a,4,5,6,7,7a-hexahydro-3H-inden-4-yl, decahydroazulenyl, bicyclo-[2.1.1]hexanyl, bicyclo[2.2.1]heptanyl, bicyclo[3.1.1]heptanyl, 1,3-dimethyl[2.2.1]heptan-2-yl, bicyclo[2.2.2]octanyl, and bicyclo[3.3.3]undecanyl.


Non-limiting examples of alkenyl and alkenylene groups include straight, branched, and cyclic alkenyl groups. The olefin or olefins of an alkenyl group can be, for example, E, Z, cis, trans, terminal, or exo-methylene. An alkenyl or alkenylene group can be, for example, a C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16, C17, C18, C19, C20, C21, C22, C23, C24, C25, C26, C27, C28, C29, C30, C31, C32, C33, C34, C35, C36, C37, C38, C39, C40, C41, C42, C43, C44, C45, C46, C47, C48, C49, or C50 group that is substituted or unsubstituted. Non-limiting examples of alkenyl and alkenylene groups include ethenyl, prop-1-en-1-yl, isopropenyl, but-1-en-4-yl; 2-chloroethenyl, 4-hydroxybuten-1-yl, 7-hydroxy-7-methyloct-4-en-2-yl, and 7-hydroxy-7-methyloct-3,5-dien-2-yl.


Non-limiting examples of alkynyl or alkynylene groups include straight, branched, and cyclic alkynyl groups. The triple bond of an alkylnyl or alkynylene group can be internal or terminal. An alkylnyl or alkynylene group can be, for example, a C2, C3, C4, C5, C6, C7, C8, C9, C10, Cn, C12, C13, C14, C15, C16, C17, C18, C19, C20, C21, C22, C23, C24, C25, C26, C27, C28, C29, C30, C31, C32, C33, C34, C35, C36, C37, C38, C39, C40, C41, C42, C43, C44, C45, C46, C47, C48, C49, or C50 group that is substituted or unsubstituted. Non-limiting examples of alkynyl or alkynylene groups include ethynyl, prop-2-yn-1-yl, prop-1-yn-1-yl, and 2-methyl-hex-4-yn-1-yl; 5-hydroxy-5-methylhex-3-yn-1-yl, 6-hydroxy-6-methylhept-3-yn-2-yl, and 5-hydroxy-5-ethylhept-3-yn-1-yl.


A halo-alkyl group can be any alkyl group substituted with any number of halogen atoms, for example, fluorine, chlorine, bromine, and iodine atoms. A halo-alkenyl group can be any alkenyl group substituted with any number of halogen atoms. A halo-alkynyl group can be any alkynyl group substituted with any number of halogen atoms.


An alkoxy group can be, for example, an oxygen atom substituted with any alkyl, alkenyl, or alkynyl group. An ether or an ether group comprises an alkoxy group. Non-limiting examples of alkoxy groups include methoxy, ethoxy, propoxy, isopropoxy, and isobutoxy.


An aryl group can be heterocyclic or non-heterocyclic. An aryl group can be monocyclic or polycyclic. An aryl group can be substituted with any number of substituents described herein, for example, hydrocarbyl groups, alkyl groups, alkoxy groups, and halogen atoms. Non-limiting examples of aryl groups include phenyl, toluyl, naphthyl, pyrrolyl, pyridyl, imidazolyl, thiophenyl, and furyl. Non-limiting examples of substituted aryl groups include 3,4-dimethylphenyl, 4-tert-butylphenyl, 4-cyclopropylphenyl, 4-diethylaminophenyl, 4-(trifluoromethyl)phenyl, 4-(difluoromethoxy)-phenyl, 4-(trifluoromethoxy)phenyl, 3-chlorophenyl, 4-chlorophenyl, 3,4-dichlorophenyl, 2-fluorophenyl, 2-chlorophenyl, 2-iodophenyl, 3-iodophenyl, 4-iodophenyl, 2-methylphenyl, 3-fluorophenyl, 3-methylphenyl, 3-methoxyphenyl, 4-fluorophenyl, 4-methylphenyl, 4-methoxyphenyl, 2,3-difluorophenyl, 3,4-difluorophenyl, 3,5-difluorophenyl, 2,3-dichlorophenyl, 3,4-dichlorophenyl, 3,5-dichlorophenyl, 2-hydroxyphenyl, 3-hydroxyphenyl, 4-hydroxyphenyl, 2-methoxyphenyl, 3-methoxyphenyl, 4-methoxyphenyl, 2,3-dimethoxyphenyl, 3,4-dimethoxyphenyl, 3,5-dimethoxyphenyl, 2,4-difluorophenyl, 2,5-difluorophenyl, 2,6-difluorophenyl, 2,3,4-trifluorophenyl, 2,3,5-trifluorophenyl, 2,3,6-trifluorophenyl, 2,4,5-trifluorophenyl, 2,4,6-trifluorophenyl, 2,4-dichlorophenyl, 2,5-dichlorophenyl, 2,6-dichlorophenyl, 3,4-dichlorophenyl, 2,3,4-trichlorophenyl, 2,3,5-trichlorophenyl, 2,3,6-trichlorophenyl, 2,4,5-trichlorophenyl, 3,4,5-trichlorophenyl, 2,4,6-trichlorophenyl, 2,3-dimethylphenyl, 2,4-dimethylphenyl, 2,5-dimethylphenyl, 2,6-dimethylphenyl, 2,3,4-trimethylphenyl, 2,3,5-trimethylphenyl, 2,3,6-trimethylphenyl, 2,4,5-trimethylphenyl, 2,4,6-trimethylphenyl, 2-ethylphenyl, 3-ethylphenyl, 4-ethylphenyl, 2,3-diethylphenyl, 2,4-diethylphenyl, 2,5-diethylphenyl, 2,6-diethylphenyl, 3,4-diethylphenyl, 2,3,4-triethylphenyl, 2,3,5-triethylphenyl, 2,3,6-triethylphenyl, 2,4,5-triethylphenyl, 2,4,6-triethylphenyl, 2-isopropylphenyl, 3-isopropylphenyl, and 4-isopropylphenyl,


Non-limiting examples of substituted aryl groups include 2-aminophenyl, 2-(N-methylamino)phenyl, 2-(N,N-dimethylamino)phenyl, 2-(N-ethylamino)phenyl, 2-(N,N-diethylamino)phenyl, 3-aminophenyl, 3-(N-methylamino)phenyl, 3-(N,N-dimethylamino)phenyl, 3-(N-ethylamino)phenyl, 3-(N,N-diethylamino)phenyl, 4-aminophenyl, 4-(N-methylamino)phenyl, 4-(N,N-dimethylamino)phenyl, 4-(N-ethylamino)phenyl, and 4-(N,N-diethylamino)phenyl.


A heterocycle can be any ring containing a ring atom that is not carbon, for example, N, O, S, P, Si, B, or any other heteroatom. A heterocycle can be substituted with any number of substituents, for example, alkyl groups and halogen atoms. A heterocycle can be aromatic (heteroaryl) or non-aromatic. Non-limiting examples of heterocycles include pyrrole, pyrrolidine, pyridine, piperidine, succinamide, maleimide, morpholine, imidazole, thiophene, furan, tetrahydrofuran, pyran, and tetrahydropyran.


Non-limiting examples of heterocycles include: heterocyclic units having a single ring containing one or more heteroatoms, non-limiting examples of which include, diazirinyl, aziridinyl, azetidinyl, pyrazolidinyl, imidazolidinyl, oxazolidinyl, isoxazolinyl, thiazolidinyl, isothiazolinyl, oxathiazolidinonyl, oxazolidinonyl, hydantoinyl, tetrahydrofuranyl, pyrrolidinyl, morpholinyl, piperazinyl, piperidinyl, dihydropyranyl, tetrahydropyranyl, piperidin-2-onyl, 2,3,4,5-tetrahydro-1H-azepinyl, 2,3-dihydro-1H-indole, and 1,2,3,4-tetrahydroquinoline; and ii) heterocyclic units having 2 or more rings one of which is a heterocyclic ring, non-limiting examples of which include hexahydro-1H-pyrrolizinyl, 3a,4,5,6,7,7a-hexahydro-1H-benzo[d]imidazolyl, 3a,4,5,6,7,7a-hexahydro-1H-indolyl, 1,2,3,4-tetrahydroquinolinyl, and decahydro-1H-cycloocta[b]pyrrolyl.


Non-limiting examples of heteroaryl include: i) heteroaryl rings containing a single ring, non-limiting examples of which include, 1,2,3,4-tetrazolyl, [1,2,3]triazolyl, [1,2,4]triazolyl, triazinyl, thiazolyl, 1H-imidazolyl, oxazolyl, isoxazolyl, isothiazolyl, furanyl, thiophenyl, pyrimidinyl, 2-phenylpyrimidinyl, pyridinyl, 3-methylpyridinyl, and 4-dimethylaminopyridinyl; and ii) heteroaryl rings containing 2 or more fused rings one of which is a heteroaryl ring, non-limiting examples of which include: 7H-purinyl, 9H-purinyl, 6-amino-9H-purinyl, 5H-pyrrolo[3,2-d]pyrimidinyl, 7H-pyrrolo[2,3-d]pyrimidinyl, pyrido[2,3-d]pyrimidinyl, 4,5,6,7-tetrahydro-1H-indolyl, quinoxalinyl, quinazolinyl, quinolinyl, 8-hydroxy-quinolinyl, and isoquinolinyl.


Any compound herein can be purified. A compound herein can be least 1% pure, at least 2% pure, at least 3% pure, at least 4% pure, at least 5% pure, at least 6% pure, at least 7% pure, at least 8% pure, at least 9% pure, at least 10% pure, at least 11% pure, at least 12% pure, at least 13% pure, at least 14% pure, at least 15% pure, at least 16% pure, at least 17% pure, at least 18% pure, at least 19% pure, at least 20% pure, at least 21% pure, at least 22% pure, at least 23% pure, at least 24% pure, at least 25% pure, at least 26% pure, at least 27% pure, at least 28% pure, at least 29% pure, at least 30% pure, at least 31% pure, at least 32% pure, at least 33% pure, at least 34% pure, at least 35% pure, at least 36% pure, at least 37% pure, at least 38% pure, at least 39% pure, at least 40% pure, at least 41% pure, at least 42% pure, at least 43% pure, at least 44% pure, at least 45% pure, at least 46% pure, at least 47% pure, at least 48% pure, at least 49% pure, at least 50% pure, at least 51% pure, at least 52% pure, at least 53% pure, at least 54% pure, at least 55% pure, at least 56% pure, at least 57% pure, at least 58% pure, at least 59% pure, at least 60% pure, at least 61% pure, at least 62% pure, at least 63% pure, at least 64% pure, at least 65% pure, at least 66% pure, at least 67% pure, at least 68% pure, at least 69% pure, at least 70% pure, at least 71% pure, at least 72% pure, at least 73% pure, at least 74% pure, at least 75% pure, at least 76% pure, at least 77% pure, at least 78% pure, at least 79% pure, at least 80% pure, at least 81% pure, at least 82% pure, at least 83% pure, at least 84% pure, at least 85% pure, at least 86% pure, at least 87% pure, at least 88% pure, at least 89% pure, at least 90% pure, at least 91% pure, at least 92% pure, at least 93% pure, at least 94% pure, at least 95% pure, at least 96% pure, at least 97% pure, at least 98% pure, at least 99% pure, at least 99.1% pure, at least 99.2% pure, at least 99.3% pure, at least 99.4% pure, at least 99.5% pure, at least 99.6% pure, at least 99.7% pure, at least 99.8% pure, or at least 99.9% pure.


Pharmaceutical Compositions of the Disclosure.


A pharmaceutical composition of the disclosure can be used, for example, before, during, or after treatment of a subject with, for example, another pharmaceutical agent.


Subjects can be, for example, elderly adults, adults, adolescents, pre-adolescents, children, toddlers, infants, neonates, and non-human animals. In some embodiments, a subject is a patient.


A pharmaceutical composition of the disclosure can be a combination of any pharmaceutical compounds described herein with other chemical components, such as carriers, stabilizers, diluents, dispersing agents, suspending agents, thickening agents, and/or excipients. The pharmaceutical composition facilitates administration of the compound to an organism. Pharmaceutical compositions can be administered in therapeutically-effective amounts as pharmaceutical compositions by various forms and routes including, for example, intravenous, subcutaneous, intramuscular, oral, parenteral, ophthalmic, subcutaneous, transdermal, nasal, vaginal, and topical administration.


A pharmaceutical composition can be administered in a local manner, for example, via injection of the compound directly into an organ, optionally in a depot or sustained release formulation or implant. Pharmaceutical compositions can be provided in the form of a rapid release formulation, in the form of an extended release formulation, or in the form of an intermediate release formulation. A rapid release form can provide an immediate release. An extended release formulation can provide a controlled release or a sustained delayed release.


For oral administration, pharmaceutical compositions can be formulated by combining the active compounds with pharmaceutically-acceptable carriers or excipients. Such carriers can be used to formulate liquids, gels, syrups, elixirs, slurries, or suspensions, for oral ingestion by a subject. Non-limiting examples of solvents used in an oral dissolvable formulation can include water, ethanol, isopropanol, saline, physiological saline, DMSO, dimethylformamide, potassium phosphate buffer, phosphate buffer saline (PBS), sodium phosphate buffer, 4-2-hydroxyethyl-1-piperazineethanesulfonic acid buffer (HEPES), 3-(N-morpholino)propanesulfonic acid buffer (MOPS), piperazine-N,N′-bis(2-ethanesulfonic acid) buffer (PIPES), and saline sodium citrate buffer (SSC). Non-limiting examples of co-solvents used in an oral dissolvable formulation can include sucrose, urea, cremaphor, DMSO, and potassium phosphate buffer.


Pharmaceutical preparations can be formulated for intravenous administration. The pharmaceutical compositions can be in a form suitable for parenteral injection as a sterile suspension, solution or emulsion in oily or aqueous vehicles, and can contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Pharmaceutical formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form. Suspensions of the active compounds can be prepared as oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. The suspension can also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions. Alternatively, the active ingredient can be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.


The active compounds can be administered topically and can be formulated into a variety of topically administrable compositions, such as solutions, suspensions, lotions, gels, pastes, medicated sticks, balms, creams, and ointments. Such pharmaceutical compositions can contain solubilizers, stabilizers, tonicity enhancing agents, buffers and preservatives.


The compounds of the disclosure can be applied topically to the skin, or a body cavity, for example, oral, vaginal, bladder, cranial, spinal, thoracic, or pelvic cavity of a subject. The compounds of the disclosure can be applied to an accessible body cavity.


The compounds can also be formulated in rectal compositions such as enemas, rectal gels, rectal foams, rectal aerosols, suppositories, jelly suppositories, or retention enemas, containing conventional suppository bases such as cocoa butter or other glycerides, as well as synthetic polymers such as polyvinylpyrrolidone, and PEG. In suppository forms of the compositions, a low-melting wax such as a mixture of fatty acid glycerides, optionally in combination with cocoa butter, can be melted.


In practicing the methods of treatment or use provided herein, therapeutically-effective amounts of the compounds described herein are administered in pharmaceutical compositions to a subject having a disease or condition to be treated. In some embodiments, the subject is a mammal such as a human. A therapeutically-effective amount can vary widely depending on the severity of the disease, the age and relative health of the subject, the potency of the compounds used, and other factors. The compounds can be used singly or in combination with one or more therapeutic agents as components of mixtures.


Pharmaceutical compositions can be formulated using one or more physiologically-acceptable carriers comprising excipients and auxiliaries, which facilitate processing of the active compounds into preparations that can be used pharmaceutically. Formulations can be modified depending upon the route of administration chosen. Pharmaceutical compositions comprising a compound described herein can be manufactured, for example, by mixing, dissolving, emulsifying, encapsulating, entrapping, or compression processes.


The pharmaceutical compositions can include at least one pharmaceutically-acceptable carrier, diluent, or excipient and compounds described herein as free-base or pharmaceutically-acceptable salt form. Pharmaceutical compositions can contain solubilizers, stabilizers, tonicity enhancing agents, buffers and preservatives.


Methods for the preparation of compositions comprising the compounds described herein include formulating the compounds with one or more inert, pharmaceutically-acceptable excipients or carriers to form a solid, semi-solid, or liquid composition. Solid compositions include, for example, powders, tablets, dispersible granules, capsules, and cachets. Liquid compositions include, for example, solutions in which a compound is dissolved, emulsions comprising a compound, or a solution containing liposomes, micelles, or nanoparticles comprising a compound as disclosed herein. Semi-solid compositions include, for example, gels, suspensions and creams. The compositions can be in liquid solutions or suspensions, solid forms suitable for solution or suspension in a liquid prior to use, or as emulsions. These compositions can also contain minor amounts of nontoxic, auxiliary substances, such as wetting or emulsifying agents, pH buffering agents, and other pharmaceutically-acceptable additives.


Non-limiting examples of dosage forms suitable for use in the disclosure include liquid, powder, gel, nanosuspension, nanoparticle, microgel, aqueous or oily suspensions, emulsion, and any combination thereof.


Non-limiting examples of pharmaceutically-acceptable excipients suitable for use in the disclosure include binding agents, disintegrating agents, anti-adherents, anti-static agents, surfactants, anti-oxidants, coating agents, coloring agents, plasticizers, preservatives, suspending agents, emulsifying agents, anti-microbial agents, spheronization agents, and any combination thereof.


A composition of the disclosure can be, for example, an immediate release form or a controlled release formulation. An immediate release formulation can be formulated to allow the compounds to act rapidly. Non-limiting examples of immediate release formulations include readily dissolvable formulations. A controlled release formulation can be a pharmaceutical formulation that has been adapted such that release rates and release profiles of the active agent can be matched to physiological and chronotherapeutic requirements or, alternatively, has been formulated to effect release of an active agent at a programmed rate. Non-limiting examples of controlled release formulations include granules, delayed release granules, hydrogels (e.g., of synthetic or natural origin), other gelling agents (e.g., gel-forming dietary fibers), matrix-based formulations (e.g., formulations comprising a polymeric material having at least one active ingredient dispersed through), granules within a matrix, polymeric mixtures, and granular masses.


In some, a controlled release formulation is a delayed release form. A delayed release form can be formulated to delay a compound's action for an extended period of time. A delayed release form can be formulated to delay the release of an effective dose of one or more compounds, for example, for about 4, about 8, about 12, about 16, or about 24 h.


A controlled release formulation can be a sustained release form. A sustained release form can be formulated to sustain, for example, the compound's action over an extended period of time. A sustained release form can be formulated to provide an effective dose of any compound described herein (e.g., provide a physiologically-effective blood profile) over about 4, about 8, about 12, about 16 or about 24 h.


Non-limiting examples of pharmaceutically-acceptable excipients can be found, for example, in Remington: The Science and Practice of Pharmacy, Nineteenth Ed (Easton, Pa.: Mack Publishing Company, 1995); Hoover, John E., Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pennsylvania 1975; Liberman, H. A. and Lachman, L., Eds., Pharmaceutical Dosage Forms, Marcel Decker, New York, N.Y., 1980; and Pharmaceutical Dosage Forms and Drug Delivery Systems, Seventh Ed. (Lippincott Williams & Wilkins 1999), each which is incorporated by reference in its entirety.


Multiple therapeutic agents can be administered in any order or simultaneously. In some embodiments, a compound of the disclosure is administered in combination with, before, or after treatment with another therapeutic agent. If simultaneously, the multiple therapeutic agents can be provided in a single, unified form, or in multiple forms, for example, as multiple separate pills. The agents can be packed together or separately, in a single package or in a plurality of packages. One or all of the therapeutic agents can be given in multiple doses. If not simultaneous, the timing between the multiple doses can vary to as much as about a month.


Therapeutic agents described herein can be administered before, during, or after the occurrence of a disease or condition, and the timing of administering the composition containing a therapeutic agent can vary. For example, the compositions can be used as a prophylactic and can be administered continuously to subjects with a propensity to conditions or diseases in order to lessen a likelihood of the occurrence of the disease or condition. The compositions can be administered to a subject during or as soon as possible after the onset of the symptoms. The administration of the therapeutic agents can be initiated within the first 48 h of the onset of the symptoms, within the first 24 h of the onset of the symptoms, within the first 6 h of the onset of the symptoms, or within 3 h of the onset of the symptoms. The initial administration can be via any route practical, such as by any route described herein using any formulation described herein.


A compound can be administered as soon as is practical after the onset of a disease or condition is detected or suspected, and for a length of time necessary for the treatment of the disease, such as, for example, from about 1 month to about 3 months. In some embodiments, the length of time a compound can be administered can be about 1 day, about 2 days, about 3 days, about 4 days, about 5 days, about 6 days, about 1 week, about 2 weeks, about 3 weeks, about 4 weeks, about 1 month, about 5 weeks, about 6 weeks, about 7 weeks, about 8 weeks, about 2 months, about 9 weeks, about 10 weeks, about 11 weeks, about 12 weeks, about 3 months, about 13 weeks, about 14 weeks, about 15 weeks, about 16 weeks, about 4 months, about 17 weeks, about 18 weeks, about 19 weeks, about 20 weeks, about 5 months, about 21 weeks, about 22 weeks, about 23 weeks, about 24 weeks, about 6 months, about 7 months, about 8 months, about 9 months, about 10 months, about 11 months, about 1 year, about 13 months, about 14 months, about 15 months, about 16 months, about 17 months, about 18 months, about 19 months, about 20 months, about 21 months, about 22 months about 23 months, about 2 years, about 2.5 years, about 3 years, about 3.5 years, about 4 years, about 4.5 years, about 5 years, about 6 years, about 7 years, about 8 years, about 9 years, or about 10 years. The length of treatment can vary for each subject.


Pharmaceutical compositions described herein can be in unit dosage forms suitable for single administration of precise dosages. In unit dosage form, the formulation is divided into unit doses containing appropriate quantities of one or more compounds. The unit dosage can be in the form of a package containing discrete quantities of the formulation. Non-limiting examples are packaged injectables, vials, or ampoules. Aqueous suspension compositions can be packaged in single-dose non-reclosable containers. Multiple-dose reclosable containers can be used, for example, in combination with or without a preservative. Formulations for injection can be presented in unit dosage form, for example, in ampoules, or in multi-dose containers with a preservative.


Pharmaceutical compositions provided herein, can be administered in conjunction with other therapies, for example, chemotherapy, radiation, surgery, anti-inflammatory agents, and selected vitamins. The other agents can be administered prior to, after, or concomitantly with the pharmaceutical compositions.


Depending on the intended mode of administration, the pharmaceutical compositions can be in the form of solid, semi-solid or liquid dosage forms, such as, for example, tablets, suppositories, pills, capsules, powders, liquids, suspensions, lotions, creams, or gels, for example, in unit dosage form suitable for single administration of a precise dosage.


For solid compositions, nontoxic solid carriers include, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, talc, cellulose, glucose, sucrose, and magnesium carbonate.


Non-limiting examples of pharmaceutically active agents suitable for combination with compositions of the disclosure include anti-infectives, i.e., aminoglycosides, antiviral agents, antimicrobials, anticholinergics/antispasmotics, antidiabetic agents, antihypertensive agents, antineoplastics, cardiovascular agents, central nervous system agents, coagulation modifiers, hormones, immunologic agents, immunosuppressive agents, and ophthalmic preparations.


Compounds can be delivered via liposomal technology. The use of liposomes as drug carriers can increase the therapeutic index of the compounds. Liposomes are composed of natural phospholipids, and can contain mixed lipid chains with surfactant properties (e.g., egg phosphatidylethanolamine). A liposome design can employ surface ligands for attaching to unhealthy tissue. Non-limiting examples of liposomes include the multilamellar vesicle (MLV), the small unilamellar vesicle (SUV), and the large unilamellar vesicle (LUV). Liposomal physicochemical properties can be modulated to optimize penetration through biological barriers and retention at the site of administration, and to reduce a likelihood of developing premature degradation and toxicity to non-target tissues. Optimal liposomal properties depend on the administration route: large-sized liposomes show good retention upon local injection, small-sized liposomes are better suited to achieve passive targeting. PEGylation reduces the uptake of the liposomes by the liver and spleen, and increases the circulation time, resulting in increased localization at the inflamed site due to the enhanced permeability and retention (EPR) effect. Additionally, liposomal surfaces can be modified to achieve selective delivery of the encapsulated drug to specific target cells. Non-limiting examples of targeting ligands include monoclonal antibodies, vitamins, peptides, and polysaccharides specific for receptors concentrated on the surface of cells associated with the disease.


Non-limiting examples of dosage forms suitable for use in the disclosure include liquid, elixir, nanosuspension, aqueous or oily suspensions, drops, syrups, and any combination thereof. Non-limiting examples of pharmaceutically-acceptable excipients suitable for use in the disclosure include granulating agents, binding agents, lubricating agents, disintegrating agents, sweetening agents, glidants, anti-adherents, anti-static agents, surfactants, anti-oxidants, gums, coating agents, coloring agents, flavoring agents, coating agents, plasticizers, preservatives, suspending agents, emulsifying agents, plant cellulosic material and spheronization agents, and any combination thereof.


Compositions of the disclosure can be packaged as a kit. In some embodiments, a kit includes written instructions on the administration/use of the composition. The written material can be, for example, a label. The written material can suggest conditions methods of administration. The instructions provide the subject and the supervising physician with the best guidance for achieving the optimal clinical outcome from the administration of the therapy. The written material can be a label. In some embodiments, the label can be approved by a regulatory agency, for example the U.S. Food and Drug Administration (FDA), the European Medicines Agency (EMA), or other regulatory agencies.


Dosing.


Pharmaceutical compositions described herein can be in unit dosage forms suitable for single administration of precise dosages. In unit dosage form, the formulation is divided into unit doses containing appropriate quantities of one or more compounds. The unit dosage can be in the form of a package containing discrete quantities of the formulation. Non-limiting examples are liquids in vials or ampoules. Aqueous suspension compositions can be packaged in single-dose non-reclosable containers. Multiple-dose reclosable containers can be used, for example, in combination with a preservative. Formulations for parenteral injection can be presented in unit dosage form, for example, in ampoules, or in multi-dose containers with a preservative.


A dose can be expressed in terms of an amount of the drug divided by the mass of the subject, for example, milligrams of drug per kilograms of subject body mass. A compound described herein can be present in a composition in a range of from about 1 mg to about 2000 mg; from about 100 mg to about 2000 mg; from about 10 mg to about 2000 mg; from about 5 mg to about 1000 mg, from about 10 mg to about 500 mg, from about 50 mg to about 250 mg, from about 100 mg to about 200 mg, from about 1 mg to about 50 mg, from about 50 mg to about 100 mg, from about 100 mg to about 150 mg, from about 150 mg to about 200 mg, from about 200 mg to about 250 mg, from about 250 mg to about 300 mg, from about 300 mg to about 350 mg, from about 350 mg to about 400 mg, from about 400 mg to about 450 mg, from about 450 mg to about 500 mg, from about 500 mg to about 550 mg, from about 550 mg to about 600 mg, from about 600 mg to about 650 mg, from about 650 mg to about 700 mg, from about 700 mg to about 750 mg, from about 750 mg to about 800 mg, from about 800 mg to about 850 mg, from about 850 mg to about 900 mg, from about 900 mg to about 950 mg, or from about 950 mg to about 1000 mg.


In some embodiments, a compound is administered in an amount ranging from about 5 mg/kg to about 50 mg/kg, 250 mg/kg to about 2000 mg/kg, about 10 mg/kg to about 800 mg/kg, about 50 mg/kg to about 400 mg/kg, about 100 mg/kg to about 300 mg/kg, or about 150 mg/kg to about 200 mg/kg. In some embodiments, a compound described herein can be present in a composition in a range of from about 20 mg/kg to about 400 mg/kg. In some embodiments, a compound described herein can be present in a composition in a range of from about 20 mg/kg to about 240 mg/kg. In some embodiments, a compound described herein can be present in a composition in a range of from about 75 mg/kg to about 150 mg/kg. In some embodiments, a compound described herein can be present in a composition in a range of from about 75 mg/kg to about 150 mg/kg. In some embodiments, a compound described herein can be present in a composition in a range of from about 100 mg/kg to about 150 mg/kg.


In some embodiments, a compound described herein can be present in a composition in an amount of about 75 mg/kg. In some embodiments, a compound described herein can be present in a composition in an amount of about 100 mg/kg. In some embodiments, a compound described herein can be present in a composition in an amount of about 150 mg/kg. In some embodiments, a compound described herein can be present in a composition in an amount of about 200 mg/kg. In some embodiments, a compound described herein can be present in a composition in an amount of about 250 mg/kg. In some embodiments, a compound described herein can be present in a composition in an amount of about 400 mg/kg.


A compound described herein can be present in a composition in an amount of about 1 mg, about 2 mg, about 3 mg, about 4 mg, about 5 mg, about 10 mg, about 15 mg, about 20 mg, about 25 mg, about 30 mg, about 35 mg, about 40 mg, about 45 mg, about 50 mg, about 55 mg, about 60 mg, about 65 mg, about 70 mg, about 75 mg, about 80 mg, about 85 mg, about 90 mg, about 95 mg, about 100 mg, about 125 mg, about 150 mg, about 175 mg, about 200 mg, about 250 mg, about 300 mg, about 350 mg, about 400 mg, about 450 mg, about 500 mg, about 550 mg, about 600 mg, about 650 mg, about 700 mg, about 750 mg, about 800 mg, about 850 mg, about 900 mg, about 950 mg, about 1000 mg, about 1050 mg, about 1100 mg, about 1150 mg, about 1200 mg, about 1250 mg, about 1300 mg, about 1350 mg, about 1400 mg, about 1450 mg, about 1500 mg, about 1550 mg, about 1600 mg, about 1650 mg, about 1700 mg, about 1750 mg, about 1800 mg, about 1850 mg, about 1900 mg, about 1950 mg, or about 2000 mg.


In some embodiments, a compound described herein can be present in a composition in an amount of about 100 mg, about 120 mg, about 140 mg, about 160 mg, about 180 mg, about 200 mg, about 220 mg, about 240 mg, about 260 mg, about 280 mg, or about 300 mg. In some embodiments, a compound described herein can be present in a composition in an amount of about 150 mg. In some embodiments, a compound described herein can be present in a composition in an amount of about 170 mg. In some embodiments, a compound described herein can be present in a composition in an amount of about 280 mg. In some embodiments, a compound described herein can be present in a composition in an amount of about 300 mg.


Methods of Use


In some embodiments, compounds of the invention can be used to treat cancer in a subject. A compound of the invention can, for example, slow the proliferation of cancer cell lines, or kill cancer cells. Non-limiting examples of cancer that can be treated by a compound of the invention include: acute lymphoblastic leukemia, acute myeloid leukemia, adrenocortical carcinoma, AIDS-related cancers, AIDS-related lymphoma, anal cancer, appendix cancer, astrocytomas, basal cell carcinoma, bile duct cancer, bladder cancer, bone cancers, brain tumors, such as cerebellar astrocytoma, cerebral astrocytoma/malignant glioma, ependymoma, medulloblastoma, supratentorial primitive neuroectodermal tumors, visual pathway and hypothalamic glioma, breast cancer, bronchial adenomas, Burkitt lymphoma, carcinoma of unknown primary origin, central nervous system lymphoma, cerebellar astrocytoma, cervical cancer, childhood cancers, chronic lymphocytic leukemia, chronic myelogenous leukemia, chronic myeloproliferative disorders, colon cancer, cutaneous T-cell lymphoma, desmoplastic small round cell tumor, endometrial cancer, ependymoma, esophageal cancer, Ewing's sarcoma, germ cell tumors, gallbladder cancer, gastric cancer, gastrointestinal carcinoid tumor, gastrointestinal stromal tumor, gliomas, hairy cell leukemia, head and neck cancer, heart cancer, hepatocellular (liver) cancer, Hodgkin lymphoma, Hypopharyngeal cancer, intraocular melanoma, islet cell carcinoma, Kaposi sarcoma, kidney cancer, laryngeal cancer, lip and oral cavity cancer, liposarcoma, liver cancer, lung cancers, such as non-small cell and small cell lung cancer, lymphomas, leukemias, macroglobulinemia, malignant fibrous histiocytoma of bone/osteosarcoma, medulloblastoma, melanomas, mesothelioma, metastatic squamous neck cancer with occult primary, mouth cancer, multiple endocrine neoplasia syndrome, myelodysplastic syndromes, myeloid leukemia, nasal cavity and paranasal sinus cancer, nasopharyngeal carcinoma, neuroblastoma, non-Hodgkin lymphoma, non-small cell lung cancer, oral cancer, oropharyngeal cancer, osteosarcoma/malignant fibrous histiocytoma of bone, ovarian cancer, ovarian epithelial cancer, ovarian germ cell tumor, pancreatic cancer, pancreatic cancer islet cell, paranasal sinus and nasal cavity cancer, parathyroid cancer, penile cancer, pharyngeal cancer, pheochromocytoma, pineal astrocytoma, pineal germinoma, pituitary adenoma, pleuropulmonary blastoma, plasma cell neoplasia, primary central nervous system lymphoma, prostate cancer, rectal cancer, renal cell carcinoma, renal pelvis and ureter transitional cell cancer, retinoblastoma, rhabdomyosarcoma, salivary gland cancer, sarcomas, skin cancers, skin carcinoma merkel cell, small intestine cancer, soft tissue sarcoma, squamous cell carcinoma, stomach cancer, T-cell lymphoma, throat cancer, thymoma, thymic carcinoma, thyroid cancer, trophoblastic tumor (gestational), cancers of unknown primary site, urethral cancer, uterine sarcoma, vaginal cancer, vulvar cancer, Waldenstrom macroglobulinemia, and Wilms tumor.


In some embodiments, the cancer is ovarian cancer. In some embodiments, the cancer is breast cancer. In some embodiments, the cancer is lung cancer. In some embodiments, the compounds of the invention show non-lethal toxicity.


Disclosed herein is a method of inducing apoptosis in a cell, the method comprising contacting the cell with a therapeutically-effective amount of a compound of the disclosure that binds a p53 mutant. Further disclosed herein is a method of inducing apoptosis in a cell, the method comprising contacting the cell with a therapeutically-effective amount of a compound of the disclosure that binds a p53 mutant.


In some embodiments, the compound increases the ability of the p53 mutant to bind DNA. In some embodiments, the cell expresses the p53. In some embodiments, the p53 mutant has a mutation at amino acid R248. In some embodiments, the p53 mutant is p53 R248Q. In some embodiments, the p53 mutant is p53 R248W. In some embodiments, the p53 mutant has a mutation at amino acid R273. In some embodiments, the p53 mutant is p53 R273C. In some embodiments, the p53 mutant is p53 R273H. In some embodiments, the compound selectively binds the p53 mutant as compared to a wild type p53.


In some embodiments, the compound increases the ability of the p53 mutant to bind DNA. In some embodiments, the compound increases a stability of a biologically-active conformation of a p53 mutant relative to a stability of the biologically-active conformation of the p53 mutant in an absence of the compound. In some embodiments, the compound selectively binds a p53 mutant as compared to a wild type p53.


In some embodiments, the therapeutically-effective amount is from about 50 mg to about 3000 mg. In some embodiments, the therapeutically-effective amount is about 600 mg. In some embodiments, the therapeutically-effective amount is about 1200 mg.


In some embodiments, the cancer is ovarian cancer. In some embodiments, the cancer is breast cancer. In some embodiments, the cancer is lung cancer. In some embodiments, the cancer is pancreatic cancer.


In some embodiments, the administration is oral. In some embodiments, the administration is intravenous. In some embodiments, the administration is subcutaneous. In some embodiments, the administration is topical.


EXAMPLES
Example 1: Method A
Route 1: General Scheme



embedded image


Preparation of tert-butyl N-(7-hydroxy-1-naphthyl)carbamate



embedded image


A mixture of 8-aminonaphthalen-2-ol (8 g, 25.13 mmol, 1 eq) and Boc2O (5.48 g, 25.13 mmol, 5.77 mL, 1 eq) in dioxane (60 mL) was stirred at 100° C. for 7 hrs. The reaction mixture was concentrated. The residue was purified by column chromatography (SiO2, PE:EtOAc=6:1 to 4:1) to afford the title compound (11 g, 84.4% yield) as an off-white solid.


Preparation of [8-(tert-butoxycarbonylamino)-2-naphthyl]trifluoromethanesulfonate



embedded image


To a solution of tert-butyl N-(7-hydroxy-1-naphthyl)carbamate (2 g, 7.71 mmol, 1 eq) in THF (40 mL) were added K2CO3 (2.13 g, 15.43 mmol, 2 eq) and 1,1,1-trifluoro-N-phenyl-N-(trifluoro methylsulfonyl)methanesulfonamide (3.31 g, 9.26 mmol, 1.2 eq). The reaction was stirred at 60° C. for 3 hours. The reaction mixture was diluted with 30 mL of water and extracted with EtOAc (2×30 mL). The combined organic layer was washed with brine (2×25 mL), dried over anhydrous Na2SO4, filtered, and concentrated. The residue was purified by column chromatography (SiO2, PE:EtOAc=8/1 to 6:1) to afford the title compound (1.8 g, 59.6% yield) as a white solid.


Preparation of [8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-2-naphthyl]trifluoro methane sulfonate



embedded image


To a solution of [8-(tert-butoxycarbonylamino)-2-naphthyl]trifluoromethanesulfonate (300 mg, 766.55 μmol, 1 eq) in DCM (10 mL) were added KOH (129 mg, 2.3 mmol, 3 eq), TBAI (141.5 mg, 383.28 μmol, 0.5 eq) and 2-(bromomethyl)prop-2-enenitrile (134.3 mg, 919.87 μmol, 1.2 eq) at 20° C. under N2. The mixture was stirred at 20° C. for 2 hrs. The reaction was filtered, and concentrated. The residue was purified by prep-TLC (SiO2, PE:EtOAc=4:1) to afford the title compound (270 mg, 77.2% yield) as a colorless gum.


Preparation of tert-butyl N-(2-cyanoallyl)-N-[7-(3-pyridyl)-1-naphthyl]carbamate



embedded image


To a mixture of [8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-2-naphthyl]trifluoromethane-sulfonate (120 mg, 262.91 μmol, 1 eq) and 3-pyridylboronic acid (38.8 mg, 315.49 μmol, 1.2 eq) in dioxane (2 mL) and H2O (0.5 mL) were added Na2CO3 (83.6 mg, 788.72 μmol, 3 eq) and Pd(dppf)Cl2 (76.9 mg, 105.16 μmol, 0.4 eq) under N2. The mixture was stirred at 110° C. for 30 min. The mixture was poured into saturated EDTA solution (30 mL) and diluted with 20 mL of EtOAc. The mixture was stirred at 25° C. for 1 h. The aqueous phase was extracted with EtOAc (3×20 mL). The combined organic phase was washed with brine (3×30 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1:1) to afford the title compound (60 mg, 59.2% yield) as a yellow gum.


Compound 1: Preparation of 2-({[7-(pyridin-3-yl)naphthalen-1-yl]amino}methyl)prop-2-enenitrile



embedded image


To a solution of tert-butyl N-(2-cyanoallyl)-N-[7-(3-pyridyl)-1-naphthyl]carbamate (50 mg, 129.72 μmol, 1 eq) in DCM (5 mL) was added TFA (1.54 g, 13.51 mmol, 1 mL, 104.12 eq). The mixture was stirred at 20° C. for 1 h. The reaction was adjusted to pH=9 with saturated Na2CO3 and extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford the title compound (16.1 mg, 43.4% yield) as a white solid. 286.1 [(M+H)+].


Route 2: General Scheme



embedded image


Preparation of tert-butyl N-(2-cyanoallyl)-N-[7-(2-pyridyl)-1-naphthyl]carbamate



embedded image


To a solution of [8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-2-naphthyl]trifluoromethane-sulfonate (100 mg, 219.09 μmol, 1 eq) in DMF (3 mL) were added CuI (41.7 mg, 219.09 μmol, 1 eq), tributyl(2-pyridyl)stannane (806.6 mg, 2.19 mmol, 10 eq) and Pd(PPh3)4 (50.6 mg, 43.82 μmol, 0.2 eq). The mixture was stirred at 120° C. for 90 min. The mixture was poured into saturated EDTA solution (30 mL) and diluted with 20 mL of EtOAc. The mixture was stirred for 1 h. The aqueous phase was extracted with EtOAc (3×20 mL). The combined organic phase was washed with brine (3×30 mL), dried with anhydrous Na2SO4 and concentrated in vacuo. The residue was purified by prep-TLC (PE:EtOAc=1:1) to afford the title compound (60 mg, 71.1% yield) as a yellow oil.


Compound 2: Preparation of 2-({[7-(pyridin-2-yl)naphthalen-1-yl]amino}methyl)prop-2-enenitrile



embedded image


To a solution of tert-butyl N-(2-cyanoallyl)-N-[7-(2-pyridyl)-1-naphthyl]carbamate (50 mg, 129.72 μmol, 1 eq) in DCM (5 mL) was added TFA (1.54 g, 13.51 mmol, 1 mL, 104.12 eq). The mixture was stirred at 20° C. for 1 h. The reaction was adjusted to pH=9 with saturated Na2CO3 and extracted with EtOAc (2×20 mL). The combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:Methanol=20:1) and prep-HPLC to afford the title compound (7.4 mg, 20% yield) as a colorless oil. LC-MS (ES+, m/z) 286.1 [(M+H)+].


Preparation of tert-butyl N-(2-cyano-2-methylideneethyl)-N-[7-(4-acetamidopyridin-2-yl)naphthalen-1-yl]carbamate



embedded image


[8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-2-naphthyl]trifluoromethane-sulfonate (150 mg, 328.63 μmol, 1 eq), N-(2-bromopyridin-4-yl)acetamide (91.87 mg, 427.22 μmol, 1.3 eq), K2CO3 (90.84 mg, 657.27 μmol, 2 eq), Pd(dppf)Cl2 (48.09 mg, 65.73 μmol, 0.2 eq), and Pin2B2 (125.18 mg, 492.95 μmol, 1.5 eq) were added to a microwave tube in dioxane (2 mL) and H2O (0.5 mL). The sealed tube was heated at 90° C. for 30 min. LCMS showed that the reaction was complete. 20 mL of EtOAc was poured into the mixture, which was then poured into a 2 N EDTA solution (30 mL) and stirred for 1 h. The aqueous phase was extracted with EtOAc (20 mL×3). The combined organic phase was washed with brine (30 mL×3), dried with anhydrous Na2SO4 and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=20:1) to afford the title compound (40 mg, 54.24 μmol, 16.50% yield, 60% purity) as a yellow gum.


TABLE 1 shows compounds prepared using the methods of EXAMPLE 1.









TABLE 1









embedded image


















LC-MS


Cpd. No.
Structure
IUPAC
(ES+, m/z)













1


embedded image


2-({[7-(pyridin-3-yl)naphthalen-1- yl]amino}methyl)prop-2-enenitrile
286.1





2


embedded image


2-({[7-(pyridin-2-yl)naphthalen-1- yl]amino}methyl)prop-2-enenitrile
286.1





3


embedded image


N-(2-{8-[(2-cyano-2- methylideneethyl) amino]naphthalen-2-yl}pyridin-4- yl) acetamide
343.1





4


embedded image


3-amino-6-{8-[(2-cyano-2- methylideneethyl) amino]naphthalen-2-yl}-N-(1- methylpiperidin-4-yl)pyridine-2- carboxamide
441.2





5


embedded image


6-{8-[(2-cyano-2- methylideneethyl) amino]naphthalen-2-yl}-N- [(3S,4R)-3-fluoro-1- methylpiperidin-4-yl]pyridine-2- carboxamide
444.2





6


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino] naphthalen-2-yl}-3-fluoro-N-(1- methylpiperidin-4-yl)pyridine-2- carboxamide
444.2





7


embedded image


2-{8-[(2-cyano-2- methylideneethyl)amino] naphthalen-2-yl}-N-(1- methylpiperidin-4-yl)pyrimidine-4- carboxamide
427.2









Example 2: Method B
Route 1: General Scheme



embedded image


embedded image


Preparation of 2-bromo-7-methoxy-naphthalene



embedded image


To a mixture of 7-bromonaphthalen-2-ol (1 g, 44.83 mmol, 1 eq) in DMF (100 mL) was added K2CO3 (12.39 g, 89.66 mmol, 2 eq). Then MeI (7.64 g, 53.8 mmol, 3.35 mL, 1.2 eq) was added to the mixture. The mixture was stirred at 20° C. for 5 h. The reaction mixture was poured into ice-water (200 mL). The aqueous phase was extracted with EtOAc (3×100 mL). The combined organic phase was washed with brine (3×100 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The crude was used directly in the next step without further purification. 2-bromo-7-methoxy-naphthalene (10.6 g, crude) was obtained as a white solid.


Preparation of 7-bromo-2-methoxy-1-nitronaphthalene



embedded image


To a mixture of 2-bromo-7-methoxy-naphthalene (7 g, 1 eq) in Ac2O (70 mL, 50.63 eq) was added HNO3 (3.41 g, 1.57 mL, 1.1 eq) at 0° C. The mixture was stirred at 0° C. for 4 h. The product was obtained by filtration. The title compound was obtained (7 g, crude) as a yellow solid, which was used directly without any purification. (80% yield).


Preparation of 7-bromo-2-methoxy-naphthalen-1-amine



embedded image


To 7-bromo-2-methoxy-1-nitro-naphthalene (7 g, 1 eq) in EtOH (40 mL) and H2O (10 mL) was added NH4Cl (1.26 g, 1 eq). Then Fe (6.58 g, 5 eq) was added to the mixture at 80° C. and stirred at 80° C. for 1 h. The reaction was filtered, and the liquid was poured into ice-water (300 mL). The aqueous phase was extracted with EtOAc (3×100 mL). The combined organic phase was washed with brine (3×100 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The crude was without purification, crude used directly. The title compound was obtained (6 g, crude) as a brown solid.


Preparation of tert-butyl N-(7-bromo-2-methoxynaphthalen-1-yl)carbamate



embedded image


To 7-bromo-2-methoxy-naphthalen-1-amine (2 g, 1 eq) in MeOH (20 mL, 62.30 eq) was added Boc2O (17.31 g, 10 eq) at 20° C. The mixture was stirred at 80° C. for 4 h. The reaction was concentrated in vacuo, and the resulting solid was the desired product. The residue was purified by silica gel chromatography (PE:EtOAc=3:1). The title compound was obtained as a brown solid. (2.3 g, 82%).


Preparation of tert-butyl N-(7-bromo-2-methoxynaphthalen-1-yl)-N-(2-cyano-2-methyl deneethyl)carbamate



embedded image


To a solution of tert-butyl (7-bromo-2-methoxynaphthalen-1-yl)carbamate (1.9 g, 5.39 mmol, 1 eq) in DCM (19 mL) were added KOH (605.3 mg, 10.79 mmol, 2 eq) and TBAI (398.5 mg, 1.08 mmol, 0.2 eq). Then, 2-(bromomethyl)prop-2-enenitrile (866.2 mg, 5.93 mmol, 1.1 eq) was added to the reaction. The reaction was stirred at 15° C. for 1 h. The reaction was poured into ice-water (30 mL). The aqueous phase was extracted with DCM (3×40 mL). The combined organic phase was washed with water (3×40 mL) and brine (3×30 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The crude was washed with PE:EtOAc=30:1 (40 mL) and filtered. The filter cake was obtained as an off-white solid (1.9 g, 4.55 mmol, 84.41% yield).


Preparation of tert-butyl N-(2-cyano-2-methylideneethyl)-N-[2-methoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-yl]carbamate



embedded image


To a mixture of (BPin)2 (5.48 g, 21.57 mmol, 3 eq) and tert-butyl N-(7-bromo-2-methoxy naphthalen-1-yl)-N-(2-cyano-2-methylideneethyl)carbamate (3. g, 7.19 mmol, 1 eq) in dioxane (50 mL) were added KOAc (2.12 g, 21.57 mmol, 3 eq) and Pd(dppf)Cl2 (454.6 mg, 621.21 μmol, 8.64 eq). The mixture was heated to 120° C. and stirred for 6 hours under N2 atmosphere. The reaction was filtered, and concentrated in vacuo. The residue was purified by silica gel chromatography (PE:EtOAc=4:1). The title compound was obtained as a white solid (2.8 g, 6.03 mmol, 83.87% yield).


General Procedure for Suzuki Coupling:




embedded image


To a mixture of tert-butyl N-(2-cyano-2-methylideneethyl)-N-[2-methoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-yl]carbamate (73 mg, 157 μmol), aryl bromide (1.2 eq) in dioxane (1 mL) and H2O (0.25 mL) were added Na2CO3 (50.1 mg, 472.92 μmol, 3 eq) and Pd(dppf)Cl2 (5.8 mg, 7.88 μmol, 0.05 eq) under N2. The mixture was stirred for 0.5 h at 120° C. under N2. The reaction was poured into saturated EDTA (50 mL) and stirred for 2 h. The aqueous phase was extracted with EtOAc (3×30 mL). The combined organic phase was washed with brine (3×30 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The crude was purified by prep-HPLC (basic) and purified by prep-TLC (SiO2, PE:EtOAc=1:1) to afford the title compound in yields ranging from 8-79%.


General Procedure for Boc Deprotection




embedded image


The Boc derivative (30 mg, 1 eq) was dissolved in DCM (2 mL), and TFA (0.4 mL) was added at 25° C. The mixture was stirred at 25° C. for 1 h. Upon completion of the reaction as indicated by HPLC, the mixture was poured into a saturated Na2CO3 solution (20 mL, pH>8), and the aqueous phase was extracted with DCM (3×30 mL). The combined organic phase was washed with brine (3×30 mL), dried with anhydrous Na2SO4. Then concentrated in vacuo. The residue was purified by prep-HPLC and lyophilized to afford the product.


Route 2: General Scheme



embedded image


Preparation of tert-butyl N-[7-(5-amino-6-chloro-2-pyridyl)-2-methoxy-1-naphthyl]-N-(2-cyanoallyl) carbamate



embedded image


To a solution of tert-butyl N-(7-bromo-2-methoxy-1-naphthyl)-N-(2-cyanoallyl) carbamate (60 mg, 144 μmol) in dioxane (2 mL) and water (0.4 mL) were added 2-chloro-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-amine (54.9 mg, 216 μmol), Cs2CO3 (140.4 mg, 432 μmol) and PdCl2dppf (20 mg, 24.51 μmol). The reaction was heated at 100° C. for 40 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 30 minutes. The solution was washed with brine, dried over anhydrous sodium sulfate and the solvent was removed in vacuo. The residue was purified by chromatography on silica gel eluting with 0-60% EtOAc/Hexane to afford the title compound (67 mg, Yield 100%).


Compound 12: Preparation of 2-[[[7-(5-amino-6-chloro-2-pyridyl)-2-methoxy-1-naphthyl]amino]methyl]prop-2-enenitrile



embedded image


To a solution of tert-butyl N-[7-(5-amino-6-chloro-2-pyridyl)-2-methoxy-1-naphthyl]-N-(2-cyanoallyl) carbamate (67 mg, 144.1 μmol) in DCM (2 mL) was added TFA (0.5 mL) at 0° C. The resulting solution was stirred at 0° C. for 1 hour and at r.t. for 1 h. The reaction mixture was concentrated in vacuo and the residue was diluted with DCM, washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (12.7 mg, Yield 24%). LC-MS (ES+, m/z): 364.9 [(M+H)+]


Preparation of 6-{8-[(2-cyano-2-methylideneethyl)amino]-7-methoxynaphthalen-2-yl}-4-acetamido-N-methylpyridine-2-carboxamide



embedded image


To a mixture of 6-chloro-4-acetamido-N-methylpyridine-2-carboxamide (50.9 mg, 223.96 μmol, 1.3 eq), tert-butyl N-(2-cyano-2-methylideneethyl)-N-[2-methoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-yl]carbamate (80 mg, 172.28 μmol, 1 eq) in dioxane (3 mL), H2O (0.75 mL) was added Na2CO3 (36.5 mg, 344.56 μmol, 2 eq), Pd(dppf)Cl2 (12.6 mg, 17.23 μmol, 0.1 eq) at 25° C. The mixture was stirred at 110° C. for 3 h. Upon completion of the reaction as indicated by LCMS, 20 mL of EtOAc was poured into the mixture. The mixture was poured into saturated EDTA solution (20 mL) and stirred for 1 h. The aqueous phase was extracted with EtOAc (3×30 mL). The combined organic phase was washed with brine (3×30 mL), dried with anhydrous Na2SO4. Then concentrated in vacuo. The residue was purified by prep-TLC (EtOAc). The title compound was obtained (50 mg, 84.97 μmol, 49.32% yield, 90% purity) as a colorless oil.


Compound 51: Preparation of 6-{8-[(2-cyano-2-methylideneethyl)amino]-7-Methoxynaphthalen-2-yl}-4-acetamido-N-Methylpyridine-2-carboxamide



embedded image


Tert-butyl N-(2-cyano-2-methylideneethyl)-N-{7-[4-acetamido-6-(methylcarbamoyl)pyridin-2-yl]-2-methoxynaphthalen-1-yl}carbamate (30 mg, 50.98 μmol, 1 eq) was dissolved in DCM (2 mL). Then TFA (0.4 mL) was added at 25° C. The mixture was stirred at 25° C. for 1 h. HPLC showed that the reaction was complete. The mixture was poured into saturated Na2CO3 solution (20 mL) and adjusted to pH>8, and the aqueous phase was extracted with DCM (3×30 mL). The combined organic phase was washed with brine (3×30 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford the title compound (12.2 mg, 28 μmol, 54.93% yield, 98.584% purity) as a yellow solid.


Preparation of 3-bromo-N-methyl-5-(trifluoromethoxy)benzamide



embedded image


A mixture of 3-bromo-5-(trifluoromethoxy)benzoic acid (500 mg, 1.953 mmol), HATU (1.33 g, 3.506 mmol) and DIPEA (1.13 g, 8.77 mmol) in DMF (8 mL) was stirred at r.t. for 30 min. Methylamine (2 M, 4.39 mL, 8.77 mmol) was then added, and the resulting mixture was stirred at r.t. for 18 h and partitioned between EtOAc and water. The aqueous phase was extracted with EtOAc (3×). The combined organic phase was washed with saturated NaHCO3 and brine, dried over (MgSO4), filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 0-50% EtOAc/Hexane to afford the title compound (0.331 g, Yield 63%).


Preparation of N-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-(trifluoromethoxy)benzamide



embedded image


To a solution of 3-bromo-N-methyl-5-(trifluoromethoxy)benzamide (100 mg, 335.51 μmol) in dioxane (2 mL) were added 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (128 mg, 503 μmol), KOAc (99 mg, 1.008 mmol) and PdCl2dppf (40 mg, 49.02 μmol). The reaction was heated at 100° C. for 30 min in a microwave. The reaction mixture was passed through a celite pad, and the solvent was removed in vacuo. The residue was purified by chromatography on silica gel eluting with 0-20% MeOH/DCM to afford the title compound (73.7 mg, Yield 100%).


Preparation of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-[3-(methyl-carbamoyl)-5-(trifluoromethoxy)phenyl]-1-naphthyl]carbamate



embedded image


To a solution of tert-butyl N-(7-bromo-2-methoxy-1-naphthyl)-N-(2-cyanoallyl) carbamate (60 mg, 144 μmol) in dioxane (2 mL) and water (0.4 mL) were added N-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-(trifluoromethoxy)benzamide (42.9 mg, 124.3 μmol), Cs2CO3 (0.14 g, 430.77 μmol), and PdCl2dppf (20 mg, 24.51 μmol). The reaction was heated at 100° C. for 40 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 40 min. The solution was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 0-60% EtOAc/Hexane to afford the title compound (36.7 mg, Yield 46%).


Compound 13: Preparation of 3-{8-[(2-cyano-2-methylideneethyl)amino]-7-methoxynaphthalen-2-yl}-N-methyl-5-(trifluoromethoxy)benzamide



embedded image


To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-[3-(methylcarbamoyl)-5-(trifluoromethoxy)phenyl]-1-naphthyl]carbamate (36.7 mg, 66 μmol) in DCM (2 mL) was added TFA (0.5 mL) at 0° C. The resulting solution was stirred at 0° C. for 1 hour and at r.t. for 1 h. The reaction mixture was concentrated in vacuo, and the residue was diluted with DCM, washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (23.6 mg, Yield 78%). LC-MS (ES+, m/z): 455.9 [(M+H)+].


Preparation of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-(1-methyl-pyrazol-4-yl)-1-naphthyl]carbamate



embedded image


To a solution of tert-butyl N-(7-bromo-2-methoxy-1-naphthyl)-N-(2-cyanoallyl)carbamate (50 mg, 119.82 μmol) in dioxane (2 mL) and water (0.4 mL) were added 1-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyrazole (37.4 mg, 179.75 μmol), Cs2CO3 (0.117 g, 36 μmol) and PdCl2dppf (18 mg, 119.82 μmol). The reaction was heated at 100° C. for 40 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 40 min. The solution was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 0-80% EtOAc/Hexane to afford the title compound (50.2 mg, Yield 100%).


Compound 21: Preparation of 2-[[[2-methoxy-7-(1-methylpyrazol-4-yl)-1-naphthyl]amino]methyl]prop-2-enenitrile



embedded image


To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-(1-methylpyrazol-4-yl)-1-naphthyl]carbamate (50.2 mg, 12 μmol) in DCM (2 mL) was added TFA (0.5 mL) at 0° C. The resulting solution was stirred at 0° C. for 1 hour and r.t. for 1 h. The reaction mixture was concentrated in vacuo, and the residue was diluted with DCM. The solution was washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by chromatography on silica gel eluting with 40-90% EtOAc/Hexane to afford the title compound (11 mg, Yield 29%). LC-MS (ES+, m/z): 319 [(M+H)+].


Preparation of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-(3-methyl-1H-indazol-5-yl)-1-naphthyl]carbamate



embedded image


To a solution of tert-butyl N-(7-bromo-2-methoxy-1-naphthyl)-N-(2-cyanoallyl)carbamate (50 mg, 119.82 μmol) in dioxane (2 mL) and water (0.4 mL) were added 3-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indazole (45.9 mg, 177.82 μmol), Cs2CO3 (0.117 g, 36 μmol), and PdCl2dppf (18 mg, 119.82 μmol). The reaction was heated at 100° C. for 40 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 40 min and washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 0-70% EtOAc/Hexane to afford the title compound (35 mg, Yield 62%).


Compound 22: Preparation of 2-[[[2-methoxy-7-(3-methyl-1H-indazol-5-yl)-1-naphthyl]amino]methyl]prop-2-enenitrile



embedded image


To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-(3-methyl-1H-indazol-5-yl)-1-naphthyl]carbamate (35 mg, 75 μmol) in DCM (2 mL) was added TFA (0.5 mL) at 0° C. The resulting solution was stirred at 0° C. for 1 hour and r.t. for 1 h. The reaction mixture was concentrated in vacuo, and the residue was diluted with DCM. The solution was washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by chromatography on silica gel eluting with 20-80% EtOAc/Hexane to afford the title compound (13.9 mg, Yield 50%). LC-MS (ES+, m/z): 369 [(M+H)+].


Preparation of 5-bromo-N-methyl-pyridine-3-carboxamide



embedded image


A mixture of 5-bromopyridine-3-carboxylic acid (200 mg, 990.07 μmol), HATU (0.564 g, 1.48 mmol) and DIPEA (0.51 g, 3.95 mmol) in DMF (4 mL) was stirred at r.t. for 30 min. Methylamine (2 M, 0.99 mL, 1.98 mmol) was added. The resulting mixture was stirred at r.t. for 18 h and partitioned between EtOAc and water. The aqueous phase was extracted with EtOAc (3×). The combined organic phase was washed with saturated NaHCO3 and brine, dried over (MgSO4), filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 20-100% EtOAc/Hexane to afford the title compound (0.12 g, Yield 57%).


Preparation of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-[5-(methylcarbamoyl)-3-pyridyl]-1-naphthyl]carbamate



embedded image


To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate (60 mg, 129.21 μmol) in dioxane (2 mL) and water (0.4 mL) were added 5-bromo-N-methyl-pyridine-3-carboxamide (41.9 mg, 194.84 μmol), Cs2CO3 (0.125 g, 384.62 μmol), and PdCl2dppf (18 mg, 22.06 μmol). The reaction was heated at 100° C. for 30 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 40 min. The solution was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 20-100% EtOAc/Hexane to afford the title compound (60 mg, Yield 98%).


Compound 45: Preparation of 5-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]-N-methyl-pyridine-3-carboxamide



embedded image


To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-[5-(methylcarbamoyl)-3-pyridyl]-1-naphthyl]carbamate (57.7 mg, 122 μmol) in DCM (2 mL) was added TFA (0.5 mL) at 0° C. The resulting solution was stirred at 0° C. for 1 hour and r.t. for 1 h. The reaction mixture was concentrated in vacuo and the residue was diluted with DCM. The solution was washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (5 mg, Yield 11%). FC-MS (ES+, m/z): 373 [(M+H)+].


Preparation of 6-bromo-N-tetrahydropyran-4-yl-pyridine-2-carboxamide



embedded image


A mixture of 6-bromopyridine-2-carboxylic acid (200 mg, 990.07 μmol), EDCI (228 mg, 1.19 mmol) and HOBt (160.60 mg, 1.19 mmol) in DMF (4 mL) was stirred at r.t. for 30 min. Tetrahydropyran-4-amine (150.20 mg, 1.48 mmol) was added. The resulting mixture was stirred at r.t. for 18 h and partitioned between EtOAc and water. The aqueous phase was extracted with EtOAc (3×). The combined organic phase was washed with saturated NaHCO3 and brine, dried over (MgSO4), filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 0-20% MeOH/EtOAc to afford the title compound (0.217 g, Yield 75%).


Preparation of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-[6-(tetrahydropyran-4-ylcarbamoyl)-2-pyridyl]-1-naphthyl]carbamate



embedded image


To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate (50 mg, 108 μmol) in dioxane (2 mL) and water (0.4 mL) were added 6-bromo-N-tetrahydropyran-4-yl-pyridine-2-carboxamide (46 mg, 162 μmol), Cs2CO3 (105 mg, 324 μmol) and PdCl2dppf (18 mg, 22.06 μmol). The reaction was heated at 100° C. for 30 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 40 min. The solution was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 10-100% EtOAc/Hexane to afford the title compound (55.6 mg, Yield 97%).


Compound 69: Preparation of 6-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]-N-tetrahydropyran-4-yl-pyridine-2-carboxamide



embedded image


To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-[6-(tetrahydropyran-4-ylcarbamoyl)-2-pyridyl]-1-naphthyl]carbamate (55.6 mg, 102.47 μmol) in DCM (2 mL) was added TFA (0.5 mL) at 0° C. The resulting solution was stirred at 0° C. for 1 hour and r.t. for 1 h. The reaction mixture was concentrated in vacuo and the residue was diluted with DCM. The solution was washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by chromatography on silica gel eluting with 10-80% EtOAc/Hexane to afford the title compound (37.8 mg, Yield 83%). LC-MS (ES+, m/z): 443 [(M+H)+].


Preparation of 6-bromo-N-cyclopentyl-pyridine-2-carboxamide



embedded image


A mixture of 6-bromopyridine-2-carboxylic acid (200 mg, 990.07 μmol), EDCI (380 mg, 1.98 mmol), HOBt (268 mg, 1.98 mmol), and pyridine (235 mg, 2.97 mmol) in DMF (4 mL) was stirred at r.t. for 30 min. Cyclopentanamine (169 mg, 1.98 mmol) was added. The resulting mixture was stirred at r.t. for 18 h and partitioned between EtOAc and water. The aqueous phase was extracted with EtOAc (3×). The combined organic phase was washed with saturated NaHCO3 and brine, dried over (MgSO4), filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 0-80% EtOAc/Hexane to afford the title compound (0.242 g, Yield 91%).


Preparation of tert-butyl N-(2-cyanoallyl)-N-[7-[6-(cyclopentyl-carbamoyl)-2-pyridyl]-2-methoxy-1-naphthyl]carbamate



embedded image


To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate (50 mg, 107.68 μmol) in dioxane (2 mL) and water (0.4 mL) were added 6-bromo-N-cyclopentyl-pyridine-2-carboxamide (43.6 mg, 162 μmol), Cs2CO3 (105.3 mg, 324 μmol), and PdCl2dppf (18 mg, 22.06 μmol). The reaction was heated at 100° C. for 30 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 40 min. The solution was washed with brine, dried over anhydrous sodium sulfate and the solvent was removed in vacuo. The residue was purified by chromatography on silica gel eluting with 0-40% EtOAc/Hexane to afford the title compound (56.8 mg, Yield 100%).


Compound 70: Preparation of 6-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]-N-cyclopentyl-pyridine-2-carboxamide



embedded image


To a solution of tert-butyl N-(2-cyanoallyl)-N-[7-[6-(cyclopentylcarbamoyl)-2-pyridyl]-2-methoxy-1-naphthyl]carbamate (56.8 mg, 107.86 μmol) in DCM (2 mL) was added TFA (0.5 mL) at 0° C. The resulting solution was stirred at 0° C. for 1 hour and r.t. for 1 h. The reaction mixture was concentrated in vacuo and the residue was diluted with DCM. The solution was washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by chromatography on silica gel eluting with 0-40% EtOAc/Hexane to afford the title compound (24.1 mg, Yield 52%). LC-MS (ES+, m/z): 427 [(M+H)+].


Preparation of N-(2-bromo-4-pyridyl)-1-methyl-piperidine-3-carboxamide



embedded image


To a mixture of 1-methylpiperidine-3-carboxylic acid (222 mg, 1.55 mmol), 2-bromopyridin-4-amine (402 mg, 2.32 mmol) and Et3N (0.78 g, 7.72 mmol) in DMF (4 mL) was added propanephosphonic acid anhydride (T3P, 50 wt % in EtOAc, 2.06 mL, 2.32 mmol). The resulting mixture was stirred at r.t. for 18 h and partitioned between EtOAc and water. The aqueous phase was extracted with EtOAc (3×). The combined organic phase was washed with saturated NaHCO3 and brine, dried over (MgSO4), filtered, and concentrated in vacuo. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (0.182 g, Yield 39%).


Preparation of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-[4-[(l-methylpiperidine-3-carbonyl)amino]-2-pyridyl]-1-naphthyl]carbamate



embedded image


To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate (50 mg, 107.68 μmol) in dioxane (2 mL) and water (0.4 mL) were added N-(2-bromo-4-pyridyl)-1-methyl-piperidine-3-carboxamide (48.2 mg, 161.65 μmol), Cs2CO3 (105 mg, 323.08 μmol), and PdCl2dppf (18 mg, 22.06 μmol). The reaction was heated at 100° C. for 30 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 30 min. The solution was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 0-40% MeOH/EtOAc/3% Et3N to afford the title compound (35 mg, Yield 58%).


Compound 112: Preparation of N-[2-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]-4-pyridyl]-1-methyl-piperidine-3-carboxamide



embedded image


To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-[4-[(l-methylpiperidine-3-carbonyl)amino]-2-pyridyl]-1-naphthyl]carbamate (35 mg, 63 μmol) in DCM (2 mL) was added TFA (0.5 mL) at 0° C. The resulting solution was stirred at 0° C. for 1 hour and r.t. for 1 h. The reaction mixture was concentrated in vacuo, and the residue was diluted with DCM. The solution was washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (20 mg, Yield 70%). LC-MS (ES+, m/z): 456.2 [(M+H)+].


Preparation of tert-butyl (3R)-3-[(6-bromopyridine-2-carbonyl)amino]piperidine-1-carboxylate



embedded image


A mixture of 6-bromopyridine-2-carboxylic acid (300 mg, 1.49 mmol), tert-butyl (3R)-3-aminopiperidine-1-carboxylate (595 mg, 2.97 mmol) and Et3N (450 mg, 4.46 mmol) in DMF (4 mL) was added T3P (50 wt % in EtOAc, 1.98 mL, 2.97 mmol). The resulting mixture was stirred at r.t. for 18 h and partitioned between EtOAc and water. The aqueous phase was extracted with EtOAc (3×). The combined organic phase was washed with saturated NaHCO3 and brine, dried over (MgSO4), filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 0-60% EtOAc/Hexane to afford the title compound (571 mg, Yield 100%).


Preparation of 6-bromo-N-[(3R)-3-piperidyl]pyridine-2-carboxamide



embedded image


To a solution of tert-butyl (3R)-3-[(6-bromopyridine-2-carbonyl)amino]piperidine-1-carboxylate (571 mg, 1.486 mmol) in DCM (10 mL) was added TFA (2 mL) at 0° C. The resulting solution was stirred at 0° C. for 1 hour and r.t. for 1 h. The reaction mixture was concentrated in vacuo and the residue was diluted with DCM, washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The crude residue (0.2 g, 47%) was used in the next step without further purification.


Preparation of N-[(3R)-1-acetyl-3-piperidyl]-6-bromo-pyridine-2-carboxamide



embedded image


To a mixture of 6-bromo-N-[(3R)-3-piperidyl]pyridine-2-carboxamide (200 mg, 703.85 μmol) and Et3N (142 mg, 1.41 mmol) in DCM (5 mL) at 0° C. was added a solution of acetyl chloride (60.7 mg, 773.27 μmol) in DCM (1 mL). The resulting mixture was stirred at r.t. for 2 h. The reaction mixture was concentrated in vacuo and the residue was diluted with EtOAc, washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by chromatography on silica gel eluting with 0-20% MeOH/EtOAc to afford the title compound (0.147 g, Yield 64%).


Preparation of tert-butyl N-[7-[6-[[(3R)-1-acetyl-3-piperidyl]carbamoyl]-2-pyridyl]-2-methoxy-1-naphthyl]-N-(2-cyanoallyl) carbamate



embedded image


To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate (40 mg, 86.14 μmol) in dioxane (2 mL) and water (0.4 mL) were added N-[(3R)-1-acetyl-3-piperidyl]-6-bromo-pyridine-2-carboxamide (42.2 mg, 129.37 μmol), Cs2CO3 (83.99 mg, 258.42 μmol) and PdCl2dppf (18 mg, 22.06 μmol). The reaction was heated at 100° C. for 30 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 30 min. The solution was then washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 0-30% MeOH/EtOAc to afford the title compound (41.6 mg, Yield 100%).


Compound 113: Preparation of N-[(3R)-1-acetyl-3-piperidyl]-6-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]pyridine-2-carboxamide



embedded image


To a solution of tert-butyl N-[7-[6-[[(3R)-1-acetyl-3-piperidyl]carbamoyl]-2-pyridyl]-2-methoxy-1-naphthyl]-N-(2-cyanoallyl)carbamate (41.6 mg, 71 μmol) in DCM (2 mL) was added TFA (0.5 mL) at 0° C. The resulting solution was stirred at 0° C. for 1 hour and r.t. for 1 h. The reaction mixture was concentrated in vacuo and the residue was diluted with DCM. The solution was washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by reverse phase HPLC using a gradient of water 0.1% LA/acetonitrile 0.1% PA to afford the title compound (10 mg, Yield 29%). (ES+, m/z): 484.2.


Preparation of N-(2-bromo-4-pyridyl)-1-methyl-pyrrolidine-3-carboxamide



embedded image


To a mixture of 1-methylpyrrolidine-3-carboxylic acid (200 mg, 1.548 mmol), 2-bromo-pyridin-4-amine (402 mg, 2.32 mmol) and Et3N (391 mg, 7.74 mmol) in DMF (4 mL) was added T3P (50 wt %, 2.06 mL, 2.32 mmol). The resulting mixture was stirred at r.t. for 18 h and partitioned between EtOAc and water. The aqueous phase was extracted with EtOAc (3×). The combined organic phase was washed with saturated NaHCO3 and brine, dried over (MgSO4), filtered, and concentrated in vacuo. The residue was purified by chromatography on C1-8 column eluting a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (163 mg, Yield 37%).


Preparation of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-[4-[(1-methylpyrrolidine-3-carbonyl)amino]-2-pyridyl]-1-naphthyl]carbamate



embedded image


To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate (40 mg, 86.14 μmol) in dioxane (2 mL) and water (0.4 mL) were added N-(2-bromo-4-pyridyl)-1-methyl-pyrrolidine-3-carboxamide (36.7 mg, 129.16 μmol), Cs2CO3 (84 mg, 258.46 μmol) and PdCl2dppf (18 mg, 22.06 μmol). The reaction was heated at 100° C. for 30 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 30 min. The solution was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 0-30% MeOH/EtOAc/5% Et3N to afford the title compound (34.3 mg, Yield 74%).


Compound 114: Preparation of N-[2-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]-4-pyridyl]-1-methyl-pyrrolidine-3-carboxamide



embedded image


To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-[4-[(l-methylpyrrolidine-3-carbonyl)amino]-2-pyridyl]-1-naphthyl]carbamate (34.3 mg, 63 μmol) in DCM (2 mL) was added TFA (0.5 mL) at 0° C. The resulting solution was stirred at 0° C. for 1 hour and r.t. for 1 h. The reaction mixture was concentrated in vacuo, and the residue was diluted with DCM, washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (5 mg, Yield 17.9%). (ES+, m/z): 442.2.


Preparation of 6-bromo-N-[l-(2-hydroxyethyl)piperidin-4-yl]pyridine-2-carboxamide



embedded image


To a solution of 6-bromopyridine-2-carboxylic acid (0.5 g, 2.49 mmol) in DMF (5 mL) were added HATU (1.04 g, 2.74 mmol) and triethylamine (0.7 mL, 5 mmol). The solution was stirred for 5 minutes at r.t. Then, 2-(4-aminopiperidin-1-yl)ethan-1-ol (334 mg, 2.74 mmol) in DMF (5 mL) was added, and the reaction mixture was stirred at r.t. for 4 hours. The resulting solution was diluted with water and extracted with EtOAc (2×). The combined organic phase was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The crude material was purified by column chromatography. The desired product was eluted with 30% MeOH-65% EtOAc-5% TEA to afford an oil (220 mg, 27% yield).


Preparation of tert-butyl N-(2-cyanoallyl)-N-[7-[6-[[l-(2-hydroxyethyl)-4-piperidyl]carbamoyl]-2-pyridyl]-2-methoxy-1-naphthyl]carbamate



embedded image


To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate (40 mg, 86.14 μmol) in dioxane (2 mL) and water (0.4 mL) were added 6-bromo-N-[l-(2-hydroxyethyl)-4-piperidyl]pyridine-2-carboxamide (42.4 mg, 129.19 μmol), Cs2CO3 (84 mg, 258.46 μmol) and PdCl2dppf (18 mg, 22.06 μmol). The reaction was heated at 100° C. for 30 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 40 min. The solution was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 10-50% MeOH/EtOAc/2.5% Et3N to afford the title compound (40.7 mg, Yield 81%).


Compound 75: Preparation of 6-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]-N-[1-(2-hydroxyethyl)-4-piperidyl]pyridine-2-carboxamide



embedded image


To a solution of tert-butyl N-(2-cyanoallyl)-N-[7-[6-[[1-(2-hydroxyethyl)-4-piperidyl]carbamoyl]-2-pyridyl]-2-methoxy-1-naphthyl]carbamate (40.7 mg, 69.49 μmol) in DCM (2 mL) was added TFA (0.5 mL) at 0° C. The resulting solution was stirred at 0° C. for 1 hour and r.t. for 1 h. The reaction mixture was concentrated in vacuo and the residue was diluted with DCM, washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (21.2 mg, Yield 63%). LC-MS (ES+, m/z): 486 [(M+H)+]. Preparation of 6-bromo-N-[l-(2-methoxyethyl)piperidin-4-yl]pyridine-2-carboxamide




embedded image


To a solution of 6-bromopyridine-2-carboxylic acid (0.5 g, 2.49 mmol) in DMF (5 mL) were added HATU (1.04 g, 2.74 mmol) and triethylamine (0.7 mL, 5 mmol). The solution was stirred for 5 minutes at r.t. Then, l-(2-methoxyethyl)piperidin-4-amine (433 mg, 2.74 mmol) in DMF (5 mL) was added, and the reaction mixture was stirred at r.t. for 4 hours. The resulting solution was diluted with water and extracted with EtOAc (2×). The combined organic phase was washed with brine, dried over anhydrous sodium sulfate, and concentrated in vacuo. The crude material was purified by column chromatography. The desired product was eluted with 30% MeOH-65% EtOAc-5% TEA to afford an oil (810 mg, 95% yield).


Preparation of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-[6-[[1-(2-methoxyethyl)-4-piperidyl]carbamoyl]-2-pyridyl]-1-naphthyl]carbamate



embedded image


To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate (40 mg, 86.14 μmol) in dioxane (2 mL) and water (0.4 mL) were added 6-bromo-N-[1-(2-methoxyethyl)-4-piperidyl]pyridine-2-carboxamide (44.1 g, 128.86 mmol), Cs2CO3 (84 mg, 258.46 μmol), and PdCl2dppf (18 mg, 22.06 μmol). The reaction was heated at 100° C. for 30 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 40 min. The solution was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 0-20% MeOH/EtOAc to afford the title compound (51.5 mg, Yield 100%).


Compound 82: Preparation of 6-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]-N-[1-(2-methoxyethyl)-4-piperidyl]pyridine-2-carboxamide



embedded image


To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-[6-[[l-(2-methoxyethyl)-4-piperidyl]carbamoyl]-2-pyridyl]-1-naphthyl]carbamate (51.5 mg, 85.9 μmol) in DCM (2 mL) was added TFA (0.5 mL) at 0° C. The resulting solution was stirred at 0° C. for 1 hour and r.t. for 1 h. The reaction mixture was concentrated in vacuo, and the residue was diluted with DCM, washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (13 mg, Yield 31%). %). FC-MS (ES+, m/z): 500 [(M+H)+].


Route 3: General Scheme



embedded image


Preparation of tert-butyl N-[7-(4-aminopyridin-2-yl)-2-Methoxynaphthalen-1-yl]-N-(2-cyano-2-methylideneethyl)carbamate



embedded image


To a solution of tert-butyl N-(2-cyano-2-methylideneethyl)-N-[2-methoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-yl]carbamate (130 mg, 279.96 μmol, 1 eq), 2-bromopyridin-4-amine (65 mg, 375.7 μmol, 1.34 eq) in dioxane (4 mL) and H2O (1 mL) were added Pd(dppf)Cl2 (20.5 mg, 28 μmol, 0.1 eq) and Na2CO3 (89 mg, 839.87 μmol, 3 eq). The reaction was then stirred at 120° C. for 60 min under N2 atmosphere. The reaction was extracted with DCM:MeOH=10:1 (5×20 mL). The combined organic layer was washed with brine (2×10 mL), dried over Na2SO4, filtrated, and concentrated. The crude was purified by prep-TLC (SiO2, DCM/MeOH=10:1, Rf=0.1). The title compound was obtained as a yellow oil (80 mg, 185.83 μmol, 66.38% yield).


Preparation of tert-butyl N-(2-cyano-2-methylideneethyl)-N-{2-Methoxy-7-[4-(phenylamino)pyridine-2-yl]naphthalen-1-yl}carbamate



embedded image


To a solution of tert-butyl N-[7-(4-aminopyridin-2-yl)-2-Methoxynaphthalen-1-yl]-N-(2-cyano-2-methylideneethyl)carbamate (150 mg, 348.43 μmol, 1 eq), iodobenzene (138.5 mg, 678.71 μmol, 75.66 μL, 1.95 eq) in dioxane (4.5 mL) was added Cs2CO3 (340.6 mg, 1.05 mmol, 3 eq). BINAP (43.4 mg, 69.69 μmol, 0.2 eq) and Pd2(dba)3 (31.9 mg, 34.84 μmol, 0.1 eq) were then added to the reaction. The reaction was stirred at 120° C. for 1 h under N2 atmosphere. Upon completion of the reaction as indicated by TLC, 30 mL saturated EDTA and 20 mL DCM were added to the reaction. Then the reaction was stirred at 15° C. for 1 h, and the reaction mixture was then extracted with DCM (3×20 mL). The combined organic layer was washed with brine (3×20 mL), dried over Na2SO4, filtered, and concentrated. The crude was purified by prep-TLC (SiO2, DCM:MeOH=15:1, Rf=0.5) to afford the title compound as a yellow oil (40 mg, 67.11 μmol, 19.26% yield, 85% purity).


Compound 155: Preparation of 2-[({2-methoxy-7-[4-(phenylamino)pyridin-2-yl]naphthalen-1-yl}amino)methyl]prop-2-enenitrile



embedded image


To a solution of tert-butyl N-(2-cyano-2-methylideneethyl)-N-{2-Methoxy-7-[4-(phenylamino)pyridine-2-yl]naphthalen-1-yl}carbamate (40 mg, 78.96 μmol, 1 eq) in DCM (3 mL) was added TFA (0.6 mL). Then the reaction was stirred at 15° C. for 0.5 h. Upon completion of the reaction as indicated by LCMS and TLC. The reaction was poured into saturated NaHCO3 (30 mL) to adjust PH to 8-9, and extracted with DCM (4×10 mL). The combined organic layer was washed with brine (3×10 mL), dried over Na2SO4, filtrated, and concentrated to afford crude product. The crude was purified by prep-HPLC to obtain the title compound was obtained as a yellow solid (7.1 mg, 17.17 μmol, 21.75% yield). LC-MS (ES+, m/z): 407.1 [(M+H)+].


Route 4: General Scheme



embedded image


Preparation of methyl 2-amino-5-(8-{[(tert-butoxy)carbonyl](2-Cyano-2-methylideneethyl)amino}-7-Methoxynaphthalen-2-yl)pyridine-3-carboxylate



embedded image


To a mixture of tert-butyl N-(2-cyano-2-methylideneethyl)-N-[2-methoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-yl]carbamate (1 g, 2.15 mmol, 1 eq) and methyl 2-amino-5-bromo-pyridine-3-carboxylate (547.3 mg, 2.37 mmol, 1.1 eq) in dioxane (8 mL) and H2O (2 mL) were added Na2CO3 (684.8 mg, 6.46 mmol, 3 eq) and Pd(dppf)Cl2 (78.8 mg, 107.68 μmol, 0.05 eq) under N2, and the mixture was stirred for 0.5 h at 120° C. The reaction was poured into saturated EDTA (200 mL) and stirred for 2 h. The aqueous phase was extracted with EtOAc (3×50 mL). The combined organic phase was washed with brine (3×50 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The crude was purified by silica gel chromatography to afford the title compound (560 mg, 1.15 mmol, 53.23% yield) as a white solid.


Preparation of methyl 2-amino-5-{8-[(2-cyano-2-methylideneethyl)amino]-7-methoxy naphthalen-2-yl}pyridine-3-carboxylate



embedded image


To TFA (5 mL) and DCM (5 mL) was added methyl 2-amino-5-(8-{[(tert-butoxy)carbonyl] (2-Cyano-2-methylideneethyl)amino}-7-Methoxynaphthalen-2-yl)pyridine-3-carboxylate (500 mg, 1.02 mmol, 1 eq). Then the mixture was stirred for 0.5 h at 20° C. Upon completion of the reaction as indicated by LCMS and TLC. The residue was poured into ice-water (100 mL) and saturated Na2CO3 was added to the mixture at 0° C. to adjust the pH to 8˜9. The aqueous phase was extracted with DCM (3×50 mL), and the combined organic phase was washed with brine (3×50 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The crude was purified by silica gel chromatography to afford the title compound (350 mg, 901.09 μmol, 88.04% yield) as a brown oil.


Preparation of 2-amino-5-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]pyridine-3-carboxylic acid



embedded image


To methyl 2-amino-5-{8-[(2-cyano-2-methylideneethyl)amino]-7-methoxynaphthalen-2-yl}pyridine-3-carboxylate (300 mg, 772.36 μmol, 1 eq) in THF (20 mL) and H2O (5 mL) was added LiOH·H2O (97.2 mg, 2.32 mmol, 3 eq). Then the mixture was stirred for 18 h at 20° C. The residue was poured into ice-water (20 mL) and saturated citric acid was added to the mixture at 0° C. to adjust the pH to 6˜7. The desired product was obtained by filtration. The title compound was obtained (300 mg, crude) as a yellow solid, which was used in the next synthetic step without further purification.


Compound 153: Preparation of 2-amino-5-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]-N-(1-methyl-4-piperidyl)pyridine-3-carboxamide



embedded image


To a mixture of RNH2 (30.5 mg, 267.1 μmol, 2 eq) and 2-amino-5-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]pyridine-3-carboxylic acid (50 mg, 133.55 μmol, 1 eq) in DCM (5 mL) was added DIPEA (51.8 mg, 400.65 μmol, 69.78 μL, 3 eq). Then HATU (76.2 mg, 200.32 μmol, 1.5 eq) was added to the mixture. The mixture was stirred at 20° C. for 0.5 h. Upon completion of the reaction as indicated by LCMS and TLC. The reaction was slowly quenched by ice water (50 mL) and extracted with DCM (3×20 mL). The combined organic phase was washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The crude was purified by prep-HPLC to afford the title compound (14.1 mg, 29.96 μmol, 22.44% yield) as a yellow solid. LC-MS (ES+, m/z): 471.2 [(M+H)+].


Preparation of tert-butyl N-(7-{4-amino-6-[(2-hydroxyethyl)carbamoyl]pyridin-2-yl}-2-methoxynaphthalen-1-yl)-N-(2-cyano-2-methylideneethyl)carbamate



embedded image


To a mixture of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate (100 mg, 215.35 μmol, 1 eq) and 4-amino-6-chloro-N-(2-hydroxyethyl)pyridine-2-carboxamide (55.7 mg, 258.4 μmol, 1.2 eq) in dioxane (2 mL) and H2O (0.5 mL) were added Na2CO3 (68.5 mg, 646.05 μmol, 3 eq), Pd(dppf)Cl2 (78.8 mg, 107.68 μmol, 0.5 eq) in one portion under N2. The mixture was stirred at 120° C. for 1.5 hours. Upon completion of the reaction as indicated by TLC, 20 mL of EtOAc was poured into the mixture. The mixture was poured into saturated EDTA solution (30 mL) and stirred for 1 h. The aqueous phase was extracted with EtOAc (3×20 mL). The combined organic phase was washed with brine (3×30 mL), dried with anhydrous Na2SO4 and active carbon to remove color, and filtered and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound (30 mg, 57.96 μmol, 26.9% yield) as a yellow gum.


Compound 81: Preparation of 4-amino-6-(8-((2-cyanoallyl)amino)-7-methoxynaphthalen-2-yl)-N-(2-hydroxy ethyl)picolinamide



embedded image


To a mixture of tert-butyl N-(7-{4-amino-6-[(2-hydroxy ethyl)carbamoyl]pyridin-2-yl}-2-methoxynaphthalen-1-yl)-N-(2-cyano-2-methylideneethyl)carbamate (30 mg, 96.6 μmol, 1 eq) in DCM (3 mL) was added TFA (1.54 g, 13.51 mmol, 1 mL, 139.81 eq), and the reaction was stirred at 20° C. for 1 hour. The reaction was adjusted to pH=9 with saturated aq. Na2CO3. The mixture was extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford the title compound (5.5 mg, 12.6 μmol, 13% yield, 95.6% purity) as a yellow solid. LC-MS (ES+, m/z): 418.1 [(M+H)+].


Preparation of tert-butyl N-(2-cyanoallyl)-N-[7-[2-[[(2S,4R)-1,2-dimethyl-4-piperidyl]carbamoyl]thiazol-4-yl]-2-methoxy-1-naphthyl]carbamate



embedded image


To a mixture of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate (150 mg, 323.03 μmol, 1 eq) and 4-bromo-N-[(2S,4R)-1,2-dimethyl-4-piperidyl]thiazole-2-carboxamide (113.1 mg, 355.33 μmol, 1.1 eq) in dioxane (2 mL), H2O (0.5 mL) were added Na2CO3 (171.2 mg, 1.62 mmol, 5 eq), Pd(dppf)Cl2 (94.5 mg, 129.21 μmol, 0.4 eq) in one portion under N2. The mixture was stirred at 110° C. for 1 hour. The reaction was diluted with 30 mL water and extracted with EtOAc (2×30 mL). The combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=5:1) to afford tert-butyl N-(2-cyanoallyl)-N-[7-[2-[[(2S,4R)-1,2-dimethyl-4-piperidyl]carbamoyl]thiazol-4-yl]-2-methoxy-1-naphthyl]carbamate (60 mg, 104.22 μmol, 32.26% yield) as a yellow gum. LC-MS (ES+, m/z): 576.2 [(M+H)+].


Compound 143: Preparation of 4-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]-N-[(2S,4R)-1,2-dimethyl-4-piperidyl]thiazole-2-carboxamide



embedded image


To a mixture of tert-butyl N-(2-cyanoallyl)-N-[7-[2-[[(2S,4R)-1,2-dimethyl-4-piperidyl]carbamoyl]thiazol-4-yl]-2-methoxy-1-naphthyl]carbamate (60 mg, 104.22 μmol, 1 eq) in DCM (3 mL) was added TFA (1.54 g, 13.51 mmol, 1 mL, 129.60 eq). The reaction was stirred at 25° C. for 1 hour. The reaction was diluted with 30 mL water, and the pH was adjusted to 9 with saturated aq. Na2CO3. The mixture was extracted with DCM (2×15 mL), and the combined organic layer was washed with brine (3×15 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford 4-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]-N-[(2S,4R)-1,2-dimethyl-4-piperidyl]thiazole-2-carboxamide (11.6 mg, 24.29 μmol, 23.31% yield, 99.6% purity) as a yellow solid. LC-MS (ES+, m/z): 476.2 [(M+H)+]1H NMR (400 MHz, DMSO-d6) δ=8.83 (s, 1H), 8.51 (d, J=8.4 Hz, 1H), 8.46 (s, 1H), 8.06 (dd, J=1.6, 8.8 Hz, 1H), 7.90 (d, J=8.8 Hz, 1H), 7.55 (d, J=8.8 Hz, 1H), 7.40 (d, J=8.8 Hz, 1H), 6.04 (s, 1H), 5.99 (s, 1H), 5.31 (t, J=7.6 Hz, 1H), 4.06 (d, J=7.6 Hz, 2H), 3.91 (s, 3H), 3.87-3.79 (m, 1H), 2.87-2.79 (m, 1H), 2.17 (s, 3H), 2.10-2.02 (m, 1H), 1.94 (br dd, J=6.4, 8.8 Hz, 1H), 1.84-1.67 (m, 3H), 1.44 (q, J=12.0 Hz, 1H), 1.04 (d, J=6.0 Hz, 3H).


Preparation of tert-butyl N-[7-[5-amino-6-[[4-(dimethylamino)cyclohexyl]carbamoyl]-2-pyridyl]-2-methoxy-1-naphthyl]-N-(2-cyanoallyl)carbamate



embedded image


To a mixture of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate (300 mg, 646.05 μmol, 1 eq) and 3-amino-6-chloro-N-[4-(dimethylamino)cyclohexyl]pyridine-2-carboxamide (210.9 mg, 710.66 μmol, 1.1 eq) in dioxane (4 mL) and H2O (1 mL) were added Na2CO3 (205.4 mg, 1.94 mmol, 3 eq), Pd(dppf)Cl2 (47.27 mg, 64.61 μmol, 0.1 eq) in one portion under N2. The mixture was stirred at 110° C. for 1.5 hour. The reaction mixture was poured into 50 mL saturated EDTA and stirred at 25° C. for 1 h. Then the aqueous phase was extracted with EtOAc (3×30 mL), and the combined organic layer was washed with brine (3×30 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, DCM:MeOH=5:1) to afford tert-butyl N-[7-[5-amino-6-[[4-(dimethylamino)cyclohexyl]carbamoyl]-2-pyridyl]-2-methoxy-1-naphthyl]-N-(2-cyanoallyl)carbamate (50 mg, 83.51 μmol, 12.93% yield) as a yellow oil. LC-MS (ES+, m/z): 599.4 [(M+H)+].


Route 5: General Scheme



embedded image


embedded image


Preparation of ethyl 5-amino-2-[8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-methoxy-2-naphthyl]pyrimidine-4-carboxylate



embedded image


To a mixture of ethyl 5-amino-2-chloro-pyrimidine-4-carboxylate (500 mg, 2.48 mmol, 1 eq) and tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate (1.27 g, 2.73 mmol, 1.1 eq) and tert-amyl alcohol (10 mL) in H2O (2.5 mL) were added Cs2CO3 (1.62 g, 4.96 mmol, 2 eq) and ditert butyl(cyclopentyl)phosphane; dichloro palladium; iron (161.6 mg, 248 μmol, 0.1 eq) in one portion under N2. The mixture was stirred at 80° C. for 15 hours. The reaction mixture was poured into 30 mL saturated EDTA and stirred at 25° C. for 1 h. Then the aqueous phase was extracted with EtOAc (3×30 mL), and the combined organic layer was washed with brine (2×30 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=1/1) to afford ethyl 5-amino-2-[8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-methoxy-2-naphthyl]pyrimidine-4-carboxylate (1. g, 1.99 mmol, 80.08% yield) as a yellow gum. LC-MS (ES+, m/z): 504.1 [(M+H)+].


Preparation of ethyl 5-amino-2-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]pyrimidine-4-carboxylate



embedded image


To a mixture of ethyl 5-amino-2-[8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-methoxy-2-naphthyl]pyrimidine-4-carboxylate (350 mg, 695.07 μmol, 1 eq) in DCM (8 mL) was added TFA (2.31 g, 20.26 mmol, 1.5 mL, 29.15 eq) in one portion, and the reaction was stirred at 25° C. for 2 hour. The reaction was diluted with 20 mL ice water, and the pH was adjusted to 8 with saturated aq. Na2CO3. The mixture was extracted with DCM (3×20 mL), and the combined organic layer was washed with brine (3×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1:1) to afford ethyl 5-amino-2-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]pyrimidine-4-carboxylate (200 mg, 495.75 μmol, 71.32% yield) as a yellow gum. LC-MS (ES+, m/z): 404.1 [(M+H)+].


Preparation of 5-amino-2-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]pyrimidine-4-carboxylic acid



embedded image


To a mixture of ethyl 5-amino-2-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]pyrimidine-4-carboxylate (200 mg, 495.75 μmol, 1 eq) in THF (4 mL), H2O (1 mL) was added LiOH·H2O (312 mg, 7.44 mmol, 15 eq) in one portion under N2. The mixture was stirred at 25° C. for 2 hours. The reaction was diluted with 30 mL water, and the pH was adjusted to 6 with saturated citric acid. The mixture was extracted with EtOAc (2×30 mL), and the combined organic layer was washed with brine (2×30 mL), dried over Na2SO4, filtered, and concentrated in vacuo. 5-amino-2-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]pyrimidine-4-carboxylic acid (160 mg, crude) was obtained as a yellow gum. LC-MS (ES+, m/z): 376.1 [(M+H)+]


Preparation of 5-amino-2-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]-N-(1-methyl-4-piperidyl)pyrimidine-4-carboxamide



embedded image


To a mixture of 5-amino-2-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]pyrimidine-4-carboxylic acid (60 mg, 159.84 μmol, 1 eq) and 1-methylpiperidin-4-amine (27.4 mg, 239.76 μmol, 1.5 eq) in DMF (2 mL) were added Et3N (80.9 mg, 799.19 μmol, 111.24 μL, 5 eq) and T3P (152.6 mg, 239.76 μmol, 142.59 μL, 50% purity, 1.5 eq) in one portion under N2. The mixture was stirred at 25° C. for 60 min. The reaction was diluted with 20 mL water, and the pH was adjusted to 9 with saturated aq. Na2CO3. The mixture was extracted with EtOAc (2×20 mL), and the combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford 5-amino-2-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]-N-(1-methyl-4-piperidyl)pyrimidine-4-carboxamide (11.1 mg, 23.4 μmol, 14.64% yield, 99.4% purity) as a yellow solid.


Route 6: General Scheme



embedded image


Preparation of methyl 6-(8-((tert-butoxycarbonyl)(2-cyanoallyl)amino)-7-methoxynaphthalen-2-yl)picolinate



embedded image


To a mixture of tert-butyl (2-cyanoallyl)(2-methoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-yl)carbamate (2.5 g, 4.31 mmol, 1 eq) and methyl 6-bromopyridine-2-carboxylate (2.79 g, 12.92 mmol, 3 eq) in DME (20 mL), H2O (5 mL) were added CsF (3.27 g, 21.54 mmol, 794 μL, 5 eq), Pd(dppf)Cl2 (630.3 mg, 861.4 μmol, 0.2 eq) in one portion. The mixture was stirred at 100° C. for 2 hours. The reaction mixture was poured into 30 mL saturated EDTA and stirred at 25° C. for 1 h. Then the aqueous phase was extracted with EtOAc (2×30 mL), and the combined organic layer was washed with brine (2×30 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=6:1 to 3:1). Methyl 6-(8-((tert-butoxycarbonyl)(2-cyanoallyl)amino)-7-methoxynaphthalen-2-yl)picolinate (1.5 g, 3.17 mmol, 73.6% yield) was obtained as a brown solid. LC-MS (ES+, m/z): 474.2 [(M+H)+].


Preparation of methyl 6-(8-((2-cyanoallyl)amino)-7-methoxynaphthalen-2-yl)picolinate



embedded image


To a mixture of methyl 6-(8-((tert-butoxycarbonyl)(2-cyanoallyl)amino)-7-methoxynaphthalen-2-yl)picolinate (1.2 g, 2.53 mmol, 1 eq) in DCM (9 mL) was added TFA (4.62 g, 40.52 mmol, 3 mL, 15.99 eq) in one portion, and the reaction mixture was stirred at 20° C. for 1 hour. The mixture was adjusted to pH=8 with saturated Na2CO3. Then the mixture was extracted with EtOAc (2×30 mL). The combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=8/1 to 3:1). Methyl 6-(8-((2-cyanoallyl)amino)-7-methoxynaphthalen-2-yl)picolinate (1. g, 2.68 mmol) was obtained as a yellow solid. LC-MS (ES+, m/z): 374.1 [(M+H)+].


Preparation of compound 6-(8-((2-cyanoallyl)amino)-7-methoxynaphthalen-2-yl)picolinic acid



embedded image


To a mixture of methyl 6-(8-((2-cyanoallyl)amino)-7-methoxynaphthalen-2-yl)picolinate (400 mg, 1.07 mmol, 1 eq) in THF (6 mL) H2O (1.5 mL) was added LiOH·H2O (449.5 mg, 10.71 mmol, 10 eq) in one portion. The mixture was stirred at 25° C. for 60 min. The reaction was diluted with 20 mL water, adjust to pH=5 with saturated citric acid. The mixture was extracted with EtOAc (2×20 mL), and the combined organic layer was washed with brine (2×30 mL), dried over Na2SO4, filtered, and concentrated in vacuo to give afford crude 6-(8-((2-cyanoallyl)amino)-7-methoxy naphthalen-2-yl)picolinic acid (400 mg, crude) as a brown gum. LC-MS (ES+, m/z): 360.1 [(M+H)+].


Compound 193: Preparation of 6-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]-N-(4-pyrrolidin-1-ylcyclohexyl)pyridine-2-carboxamide



embedded image


To a mixture of 6-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]pyridine-2-carboxylic acid (75 mg, 208.69 μmol), 4-pyrrolidin-1-ylcyclohexanamine (75 mg, 313.07 μmol) and Et3N (211.09 mg, 2.09 mmol) in DMF (2 mL) was added T3P (50 wt % in EtOAc, 0.27 mL, 313.07 μmol). The resulting mixture was stirred at r.t. for 18 h and partitioned between EtOAc and water. The aqueous phase was extracted with EtOAc (3×). The combined organic phase was washed with saturated NaHCO3 and brine, dried over (MgSO4), filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 0-60% EtOAc/Hexane to afford the title compound (20 mg, Yield 19%). LC-MS (ES+, m/z): 510.3 [(M+H)+]


Compound 194: Preparation of 6-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]-N-[(2R)-2-hydroxypropyl]pyridine-2-carboxamide



embedded image


To a mixture of 6-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]pyridine-2-carboxylic acid (75 mg, 208.69 μmol), (2R)-1-aminopropan-2-ol (23.5 mg, 313 μmol) and Et3N (211.09 mg, 2.09 mmol) in DMF (2 mL) was added T3P (50 wt % in EtOAc, 0.27 mL, 313 μmol). The resulting mixture was stirred at r.t. for 18 h and partitioned between EtOAc and water. The aqueous phase was extracted with EtOAc (3×). The combined organic phase was washed with saturated NaHCO3 and brine, dried over (MgSO4), filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 30-100% EtOAc/Hexane to afford the title compound (20 mg, Yield 23%). (ES+, m/z): 417.2.


Compound 195: Preparation of 6-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]-N-(1,4-dioxaspiro[4.5]decan-8-yl)pyridine-2-carboxamide



embedded image


To a mixture of 6-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]pyridine-2-carboxylic acid (75 mg, 208.69 μmol), 1,4-dioxaspiro[4.5]decan-8-amine (53.6 mg, 313 μmol) and Et3N (211.09 mg, 2.09 mmol) in DMF (2 mL) was added T3P (50 wt % in EtOAc, 0.27 mL, 313 μmol). The resulting mixture was stirred at r.t. for 18 h and partitioned between EtOAc and water. The aqueous phase was extracted with EtOAc (3×). The combined organic phase was washed with saturated NaHCO3 and brine, dried over (MgSO4), filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 0-60% EtOAc/Hexane to afford the title compound (54 mg, Yield 52%). LC-MS (ES+, m/z): 499.2 [(M+H)+].


Compound 197: Preparation of 6-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]-N-(4-oxocyclohexyl)pyridine-2-carboxamide



embedded image


To a solution of 6-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]-N-(1,4-dioxaspiro[4.5]decan-8-yl)pyridine-2-carboxamide (37 mg, 74 μmol) in MeCN (4 mL) was added 0.37 mL of IN HCl. The resulting mixture was stirred at r.t. for 18 h. The reaction mixture was concentrated in vacuo and the residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (2.5 mg, Yield 8%). LC-MS (ES+, m/z): 455.2 [(M+H)+].


Route 7: General Scheme



embedded image


embedded image


Preparation of tert-butyl N-[7-(2-chloropyrimidin-4-yl)-2-Methoxynaphthalen-1-yl]-N-(2-cyano-2-methylideneethyl)carbamate



embedded image


A solution of compound tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate (3.5 g, 7.54 mmol, 1 eq) and 2,4-dichloropyrimidine (1.35 g, 9.04 mmol, 1.2 eq) in dioxane (30.0 mL) and H2O (7.5 mL) were added Na2CO3 (2.4 g, 22.61 mmol, 3 eq) and Pd(dppf)Cl2 (500 mg, 683.33 μmol, 0.091 eq). The resulting reaction mixture was stirred at 110° C. for 0.5 hr. TLC showed that the reaction was complete. To the reaction mixture was added (100 mL) saturated EDTA, and the solution was stirred for 1 h. The mixture was extracted with EtOAc (3×50 mL). The combined organic layer was washed with brine (2×60 mL), dried over Na2SO4, filtered, and concentrated to give the residue which was purified by column chromatography (PE:EtOAc=1:0 to 0:1) to afford the title compound (3. g, 6.65 mmol, 88.3% yield) as a yellow solid. NMR (400 MHz, DMSO-d6) δ=8.87 (d, J=5.25 Hz, 1H) 8.55-8.58 (m, 1H) 8.16-8.26 (m, 1H) 7.99-8.15 (m, 3H) 7.64-7.67 (m, 1H) 5.97-5.99 (m, 1H) 5.82-5.86 (m, 1H) 4.35-4.45 (m, 2H) 3.91-4.02 (m, 3H) 1.55 (s, 3H) 1.17 (s, 6H).


Preparation of methyl 4-[8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-methoxy-2-naphthyl]pyrimidine-2-carboxylate



embedded image


To a solution of tert-butyl N-[7-(2-chloropyrimidin-4-yl)-2-Methoxynaphthalen-1-yl]-N-(2-cyano-2-methylideneethyl)carbamate (310 mg, 687.49 μmol, 1 eq) in MeOH (5 mL) and DMF (5 mL) were added Et3N (208.7 mg, 2.06 mmol, 287 μL, 3 eq; dropwise) and Pd(dppf)Cl2 (50.3 mg, 68.75 μmol, 0.1 eq). Then to the mixture was bubbled in carbon monoxide (192.6 mg, 6.87 mmol, 10 eq). The reaction mixture was heated to 60° C. for 12 h under CO atmosphere. TLC showed that the reaction was complete. To the reaction mixture was added (30 mL) saturated EDTA. The solution was stirred for 1 h, and extracted with EtOAc (3×30 mL). The combined organic layer was washed with brine (40 mL), dried over Na2SO4, filtered, and concentrated to give the residue which was purified by prep-TLC (PE:EtOAc=1:1) to afford the title compound (60 mg, 126.45 μmol, 18.4% yield) as a yellow oil.


Preparation of 4-[8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-methoxy-2-naphthyl]pyrimidine-2-carboxylic acid



embedded image


To a solution of compound methyl 4-[8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-methoxy-2-naphthyl]pyrimidine-2-carboxylate (60 mg, 126.45 μmol, 1 eq) in THF (2 mL) and H2O (0.5 mL) was added LiOH·H2O (53.1 mg, 1.26 mmol, 10 eq) in one portion. The reaction mixture was stirred at 25° C. for 120 min. TLC showed that the reaction was complete. The reaction mixture was diluted with H2O (30 mL) and EtOAc (30 mL), and saturated citric acid was added to adjust the pH to 6. The organic layer was extracted with EtOAc (2×20 mL), and the combined organic layer was washed with brine (30 mL), dried over Na2SO4, filtered, and concentrated to afford the title compound (50 mg, crude) as a yellow oil.


Preparation of tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-[2-(methylcarbamoyl)pyrimidin-4-yl]-1-naphthyl]carbamate



embedded image


To a solution of 4-[8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-methoxy-2-naphthyl]pyrimidine-2-carboxylic acid (50 mg, 108.58 μmol, 1 eq) in DMF (2 mL) were drop-wise methanamine; hydrochloride (14.7 mg, 217.16 μmol, 2 eq; dropwise) and Et3N (32.9 mg, 325.75 μmol, 45.34 μL, 3 eq) and T3P (103.6 mg, 162.87 μmol, 96.7 μL, 50% purity, 1.5 eq). The reaction mixture was stirred at 25° C. for 1 hr. TLC showed that the reaction was complete. The reaction mixture was quenched by adding H2O (20 mL), and extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated to give the residue which was purified by prep-TLC (DCM:MeOH=10:1) to afford the title compound tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-[2-(methylcarbamoyl)pyrimidin-4-yl]-1-naphthyl]carbamate (40 mg, 84.47 μmol, 77.8% yield) as a yellow oil.


Compound 218: Preparation of 4-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]-N-methyl-pyrimidine-2-carboxamide



embedded image


To a solution of compound tert-butyl N-(2-cyanoallyl)-N-[2-methoxy-7-[2-(methylcarbamoyl)pyrimidin-4-yl]-1-naphthyl]carbamate (40 mg, 84.47 μmol, 1 eq) in DCM (3 mL) was added TFA (1.23 g, 10.8 mmol, 0.8 mL, 127.91 eq; dropwise). Then the mixture was stirred at 25° C. for 1 h. LCMS showed that the reaction was complete. The reaction mixture was quenched by adding saturated Na2CO3 (30 mL) to adjust pH>8, and extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (30 mL), dried over Na2SO4, filtered, and concentrated to give a residue which was purified by prep-HPLC to afford the title compound (17.5 mg, 46.49 μmol, 55.04% yield) as a yellow solid. LC-MS (ES+, m/z): 374 [(M+H)+]


Route 8A: General Scheme



embedded image


embedded image


Preparation of tert-butyl (3S)-3-[[4-[8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-methoxy-2-naphthyl]pyrimidine-2-carbonyl]amino]piperidine-1-carboxylate



embedded image


To a mixture of 4-[8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-methoxy-2-naphthyl]pyrimidine-2-carboxylic acid (220 mg, 477.76 μmol, 1 eq) and tert-butyl (3S)-3-amino piperidine-1-carboxylate (114.8 mg, 573.31 μmol, 1.2 eq) in DMF (3 mL) was added T3P (456 mg, 716.64 μmol, 426.21 μL, 50% purity, 1.5 eq) and Et3N (241.7 mg, 2.39 mmol, 332.49 μL, 5 eq) in one portion. The reaction mixture was stirred at 25° C. for 1 hour. The reaction was diluted with 20 mL water and adjusted to pH=9 with saturated aq. Na2CO3. The mixture was extracted with EtOAc (4×20 mL), and the combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=15:1) to afford the title compound (160 mg, 248.93 μmol, 52.10% yield) as a yellow oil. (SiO2, PE:EtOAc=15:1, SM Rf=0.06, TM Rf=0.30).


Preparation of 4-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]-N-[(3S)-3-piperidyl]pyrimidine-2-carboxamide



embedded image


To a mixture of tert-butyl (3S)-3-[[4-[8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-methoxy-2-naphthyl]pyrimidine-2-carbonyl]amino]piperidine-1-carboxylate (160 mg, 248.93 μmol, 1 eq) in DCM (3 mL) was added TFA (1.54 g, 13.51 mmol, 1 mL, 54.26 eq). The reaction mixture was stirred at 25° C. for 1 hour. The reaction was diluted with 20 mL water and adjusted to pH=9 with saturated aq. Na2CO3. The mixture was extracted with DCM (4×20 mL), and the combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=6:1) to afford the title compound 4-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]-N-[(3S)-3-piperidyl]pyrimidine-2-carboxamide (80 mg, 180.79 μmol, 72.62% yield) as a yellow oil. LC-MS (ES+, m/z): 443.2 [(M+H)+].


Compound 206: Preparation of 4-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]-N-[(3S)-1-(2-methoxyethyl)-3-piperidyl]pyrimidine-2-carboxamide



embedded image


To a mixture of 4-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]-N-[(3S)-3-piperidyl]pyrimidine-2-carboxamide (70 mg, 158.19 μmol, 1 eq) in ACN (2 mL) were added K2CO3 (65.6 mg, 474.56 μmol, 3 eq) and 1-bromo-2-methoxy-ethane (109.9 mg, 790.94 μmol, 74.28 μL, 5 eq) in one portion. The reaction mixture was stirred at 80° C. for 4 hours. The reaction was diluted with 30 mL water and extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC (basic condition) to afford the title compound (6.5 mg, 12.85 μmol, 8.13% yield, 99.0% purity) as a yellow gum. LC-MS (ES+, m/z): 501.3 [(M+H)+], 1H NMR (400 MHz, DMSO-de) 5=9.06 (s, 1H), 9.04 (d, J=5.6 Hz, 1H), 8.72 (br d, J=8.4 Hz, 1H), 8.41 (d, J=5.2 Hz, 1H), 8.26 (br d, J=8.8 Hz, 1H), 7.98 (d, J=8.4 Hz, 1H), 7.60-7.52 (m, 1H), 7.50-7.43 (m, 1H), 6.01 (s, 1H), 5.97 (s, 1H), 5.86 (br t, J=7.0 Hz, 1H), 4.20 (br d, J=7.6 Hz, 2H), 4.02 (br s, 1H), 3.91 (s, 3H), 3.46 (br t, J=5.4 Hz, 2H), 3.24 (s, 3H), 2.79 (br d, J=8.8 Hz, 1H), 2.63-2.55 (m, 3H), 2.29 (br d, J=8.4 Hz, 2H), 1.81-1.76 (m, 1H), 1.71 (br s, 1H), 1.61-1.48 (m, 2H)


Route 8B: General Scheme



embedded image


embedded image


Preparation of tert-butyl (3R)-3-[[4-[8-[tert-butoxycarbonyl (2-cyanoallyl)amino]-7-methoxy-2-naphthyl]pyrimidine-2-carbonyl]amino]piperidine-1-carboxylate



embedded image


To a mixture of 4-[8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-methoxy-2-naphthyl]pyrimidine-2-carboxylic acid (110 mg, 238.88 μmol, 1 eq) and tert-butyl (3R)-3-aminopiperidine-1-carboxylate (95.7 mg, 477.76 μmol, 2 eq) in DMF (3 mL) were added Et3N (120.9 mg, 1.19 mmol, 166 μL, 5 eq) and T3P (228 mg, 358.32 μmol, 213 μL, 50% purity, 1.5 eq) in one portion. The mixture was stirred at 25° C. for 60 min. The reaction was diluted with 15 mL water and adjusted to pH=9 with saturated aq.Na2CO3. The mixture was extracted with EtOAc (3×25 mL), and the combined organic layer was washed with brine (2×25 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=15:1) to afford the title compound (110 mg, 171.14 μmol, 71.6% yield) as a yellow oil.


Preparation of 4-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]-N-[(3R)-3-piperidyl]pyrimidine-2-carboxamide



embedded image


To a mixture of tert-butyl (3R)-3-[[4-[8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-methoxy-2-naphthyl]pyrimidine-2-carbonyl]amino]piperidine-1-carboxylate (110 mg, 171.14 μmol, 1 eq) in DCM (3 mL) was added TFA (1.54 g, 13.51 mmol, 1 mL, 78.92 eq). The reaction mixture was stirred at 25° C. for 1 hour. TLC showed that most of the starting material was consumed. The reaction was stirred at 25° C. for another 0.5 hour. The reaction mixture was diluted with 15 mL DCM, poured into 15 mL ice water, and adjust to pH=8 with saturated aq.Na2CO3. The mixture was extracted with DCM (3×15 mL), and the combined organic layer was washed with brine (3×15 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=7:1) to afford the title compound (70 mg, 158.19 μmol, 92.4% yield) as a yellow gum. LC-MS (ES+, m/z): 443.2 [(M+H)+].


Compound 205: Preparation of 4-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]-N-[(3R)-1-(2-methoxyethyl)-3-piperidyl]pyrimidine-2-carboxamide



embedded image


To a mixture of 4-[8-(2-cyanoallylamino)-7-methoxy-2-naphthyl]-N-[(3R)-3-piperidyl]pyrimidine-2-carboxamide (40 mg, 90.39 μmol, 1 eq) in DMF (1.5 mL) was added K2CO3 (37.5 mg, 271.18 μmol, 3 eq) and 1-bromo-2-methoxy-ethane (62.8 mg, 451.97 μmol, 42.45 μL, 5 eq) in one portion. The reaction mixture was stirred at 50° C. for 4 hours. LCMS showed ˜40% desired product. The reaction was diluted with 20 mL water and extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford the title compound (2.5 mg, 4.86 μmol, 5.38% yield, 97.4% purity) as a yellow solid. LC-MS (ES+, m/z): 501.3 [(M+H)+].



1H NMR (400 MHz, DMSO-d6) δ ppm 9.06 (s, 1H) 9.04 (d, J=5.38 Hz, 1H) 8.72 (br d, J=8.68 Hz, 1H) 8.41 (d, J=5.50 Hz, 1H) 8.27 (d, J=8.80 Hz, 1H) 8.20 (s, 1H) 7.98 (d, J=8.68 Hz, 1H) 7.56 (d, J=8.93 Hz, 1H) 7.47 (d, J=8.93 Hz, 1H) 6.01 (s, 1H) 5.97 (s, 1H) 5.86 (br t, J=7.15 Hz, 1H) 4.20 (br d, J=6.97 Hz, 2H) 4.02 (br d, J=7.83 Hz, 1H) 3.91 (s, 3H) 3.59 (br s, 2H) 3.44-3.53 (m, 2H) 3.24 (s, 3H) 2.74-2.87 (m, 1H) 2.57-2.64 (m, 1H) 2.55-2.64 (m, 3H) 2.28 (br d, J=10.27 Hz, 2H) 1.71 (br s, 2H) 1.49-1.65 (m, 2H)


TABLE 2 shows compounds synthesized using method B of EXAMPLE 2 described above.









TABLE 2









embedded image


















LC-





MS


Cmp.


(ES+,


No.
Structure
IUPAC
m/z)













8


embedded image


2-({[2-methoxy-7-(pyridin-2-yl)naphthalen-1- yl]amino}methyl)prop-2-enenitrile
316.1





9


embedded image


2-({[7-(6-aminopyridin-3-yl)-2- methoxynaphthalen-1-yl]amino}methyl)prop- 2-enenitrile
331.1





10


embedded image


2-({[7-(6-amino-5-chloropyridin-3-yl)-2- methoxynaphthalen-1-yl]amino}methyl)prop- 2-enenitrile
365.1





11


embedded image


2-({[2-methoxy-7-(1-methyl-1H-indazol-6- yl)naphthalen-1-yl]amino}methyl)prop-2- enenitrile
369.2





12


embedded image


2-({[7-(5-amino-6-chloropyridin-2-yl)-2- methoxynaphthalen-1-yl]amino}methyl)prop- 2-enenitrile
364.9





13


embedded image


3-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-methyl-5- (trifluoromethoxy)benzamide
455.9





14


embedded image


3-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-5- methoxybenzonitrile
370





15


embedded image


2-amino-5-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}pyridine-3- carboxamide
374.2





16


embedded image


2-amino-5-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-methylpyridine-3- carboxamide
388.2





17


embedded image


2-({[2-methoxy-7-(5-methoxypyridin-2- yl)naphthalen-1-yl]amino}methyl)prop-2- enenitrile
346.2





18


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}pyridine-3- carbonitrile
341.1





19


embedded image


2-({[7-(5-aminopyridin-2-yl)-2- methoxynaphthalen-1-yl]amino}methyl)prop- 2-enenitrile
331.1





20


embedded image


2-[({2-methoxy-7-[4-(methylamino)pyridin-2- yl]naphthalen-1-yl}amino)methyl]prop-2- enenitrile
345.1





21


embedded image


2-({[2-methoxy-7-(1-methyl-1H-pyrazol-4- yl)naphthalen-1-yl]amino}methyl)prop-2- enenitrile
319





22


embedded image


2-({[2-methoxy-7-(3-methyl-1H-indazol-5- yl)naphthalen-1-yl]amino}methyl)prop-2- enenitrile
369





23


embedded image


2-({[7-(5-fluoropyridin-2-yl)-2- methoxynaphthalen-1-yl]amino}methyl)prop- 2-enenitrile
334.1





24


embedded image


N-(2-{8-[(2-cyano-2-methylideneethyl)amino]- 7-methoxynaphthalen-2-yl}pyridin-4- yl)acetamide
373.1





25


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-methylpyridine-2- carboxamide
373.2





26


embedded image


2-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-methylpyridine-4- carboxamide
373.1





27


embedded image


5-amino-2-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-methylpyridine-4- carboxamide
388.2





28


embedded image


3-amino-6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-methylpyridine-2- carboxamide
388.2





29


embedded image


2-[({7-[4-amino-3-(cyanomethoxy)phenyl]-2- methoxynaphthalen-1-yl}amino)methyl]prop- 2-enenitrile
385.1





30


embedded image


2-amino-5-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-phenylpyridine-3- carboxamide
450.2





31


embedded image


2-amino-5-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-(1-methyl-1H- pyrazol-4-yl)pyridine-3-carboxamide
454.2





32


embedded image


2-amino-5-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-(1- methylpiperidin-3-yl)pyridine-3-carboxamide
471.3





33


embedded image


N-(2-{8-[(2-cyano-2-methylideneethyl)amino]- 7-methoxynaphthalen-2-yl}pyridin-4- yl)propanamide
387.2





34


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}pyridine-2- carboxamide
359.1





35


embedded image


N-(2-{8-[(2-cyano-2-methylideneethyl)amino]- 7-methoxynaphthalen-2-yl}pyridin-4- yl)benzamide
435.2





36


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-phenylpyridine-2- carboxamide
435.1





37


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-ethylpyridine-2- carboxamide
387.2





38


embedded image


N-(2-{8-[(2-cyano-2-methylideneethyl)amino]- 7-methoxynaphthalen-2-yl}pyridin-4- yl)methanesulfonamide
409.1





39


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-(1-methyl-1H- pyrazol-4-yl)pyridine-2-carboxamide
439.2





40


embedded image


N-(6-{8-[(2-cyano-2-methylideneethyl)amino]- 7-methoxynaphthalen-2-yl}pyridin-2- yl)acetamide
373.2





41


embedded image


2-({[7-(4-aminopyridin-2-yl)-2- methoxynaphthalen-1-yl]amino}methyl)prop- 2-enenitrile
331





42


embedded image


2-[({2-methoxy-7-[5-(methylamino)pyridin-3- yl]naphthalen-1-yl}amino)methyl]prop-2- enenitrile
345.1





43


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-(1- methylpiperidin-4-yl)pyridine-2-carboxamide
456.2





44


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-(2- hydroxyethyl)pyridine-2-carboxamide
403.1





45


embedded image


5-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-methylpyridine-3- carboxamide
373





46


embedded image


2-[({2-methoxy-7-[2-(methylamino)pyridin-4- yl]naphthalen-1-yl}amino)methyl]prop-2- enenitrile
345.1





47


embedded image


2-({[7-(2-aminopyridin-4-yl)-2- methoxynaphthalen-1-yl]amino}methyl)prop- 2-enenitrile
331.2





48


embedded image


4-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-methylpyridine-2- carboxamide
373.1





49


embedded image


N-(5-{8-[(2-cyano-2-methylideneethyl)amino]- 7-methoxynaphthalen-2-yl}pyridin-3- yl)acetamide
373.1





50


embedded image


4-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}pyridine-2-carboxylic acid
360.1





51


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-4-acetamido-N- methylpyridine-2-carboxamide
430.1





52


embedded image


2-[({7-[5-(dimethylamino)pyridin-3-yl]-2- methoxynaphthalen-1-yl}amino)methyl]prop- 2-enenitrile
359.2





53


embedded image


N-(2-{8-[(2-cyano-2-methylideneethyl)amino]- 7-methoxynaphthalen-2-yl}pyridin-4-yl)-1- methylpiperidine-4-carboxamide
456.3





54


embedded image


2-({[7-(5-methanesulfonylpyridin-2-yl)-2- methoxynaphthalen-1-yl]amino}methyl)prop- 2-enenitrile
393.9





55


embedded image


2-{[(2-methoxy-7-{4-[(pyridin-3- yl)amino]pyridin-2-yl}naphthalen-1- yl)amino]methyl}prop-2-enenitrile
408.2





56


embedded image


N-(2-{8-[(2-cyano-2-methylideneethyl)amino]- 7-methoxynaphthalen-2-yl}pyridin-4-yl)-3- methoxybenzamide
465.2





57


embedded image


methyl 4-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}pyridine-2- carboxylate
374.1





58


embedded image


2-[({7-[4-(benzylamino)pyridin-2-yl]-2- methoxynaphthalen-1-yl}amino)methyl]prop- 2-enenitrile
421





59


embedded image


2-{[(2-methoxy-7-{4-[(propan-2- yl)amino]pyridin-2-yl}naphthalen-1- yl)amino]methyl}prop-2-enenitrile
373





60


embedded image


4-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}pyridine-2- carboxamide
359.1





61


embedded image


2-{[(2-methoxy-7-{4-[(3- methoxyphenyl)amino]pyridin-2- yl}naphthalen-1-yl)amino]methyl}prop-2- enenitrile
437.1





62


embedded image


2-{[(7-{4-[(4-chlorophenyl)amino]pyridin-2- yl}-2-methoxynaphthalen-1- yl)amino]methyl}prop-2-enenitrile
441.1





63


embedded image


N-(2-{8-[(2-cyano-2-methylideneethyl)amino]- 7-methoxynaphthalen-2-yl}pyridin-4-yl)-1- methyl-1H-pyrazole-4-carboxamide
439.2





64


embedded image


2-({[7-(4-hydroxypyridin-2-yl)-2- methoxynaphthalen-1-yl]amino}methyl)prop- 2-enenitrile
332.2





65


embedded image


2-({[7-(6-aminopyrimidin-4-yl)-2- methoxynaphthalen-1-yl]amino}methyl)prop- 2-enenitrile
332.2





66


embedded image


2-({[7-(6-aminopyridin-2-yl)-2- methoxynaphthalen-1-yl]amino}methyl)prop- 2-enenitrile
331.1





67


embedded image


4-amino-6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-(1- methylpiperidin-4-yl)pyridine-2-carboxamide
471.2





68


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-methyl-4-(1- methylpiperidine-4-amido)pyridine-2- carboxamide
513.1





69


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-(oxan-4- yl)pyridine-2-carboxamide
443





70


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- cyclopentylpyridine-2-carboxamide
427





71


embedded image


2-{[(2-methoxy-7-{4-[(1-methyl-1H-pyrazol- 4-yl)amino]pyridin-2-yl}naphthalen-1- yl)amino]methyl}prop-2-enenitrile
411.2





72


embedded image


N-(6-{8-[(2-cyano-2-methylideneethyl)amino]- 7-methoxynaphthalen-2-yl}pyrimidin-4- yl)acetamide
374.1





73


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-4-acetamido-N-(1- methylpiperidin-4-yl)pyridine-2-carboxamide
513.3





74


embedded image


N-(2-{8-[(2-cyano-2-methylideneethyl)amino]- 7-methoxynaphthalen-2-yl}pyrimidin-4- yl)acetamide
374.2





75


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[1-(2- hydroxyethyl)piperidin-4-yl]pyridine-2- carboxamide
486





76


embedded image


2-({[7-(2-aminopyrimidin-4-yl)-2- methoxynaphthalen-1-yl]amino}methyl)prop- 2-enenitrile
332





77


embedded image


N-(1-acetylpiperidin-4-yl)-6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}pyridine-2- carboxamide
484.2





78


embedded image


N-(2-{8-[(2-cyano-2-methylideneethyl)amino]- 7-methoxynaphthalen-2-yl}pyridin-4-yl)-3- methoxypropanamide
417





79


embedded image


3-amino-6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-(1- methylpiperidin-4-yl)pyridine-2-carboxamide
471.3





80


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(3S,4R)-3- fluoro-1-methylpiperidin-4-yl]pyridine-2- carboxamide
474.1





81


embedded image


4-amino-6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-(2- hydroxyethyl)pyridine-2-carboxamide
418.1





82


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[1-(2- methoxyethyl)piperidin-4-yl]pyridine-2- carboxamide
500





83


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-(1-ethylpiperidin- 4-yl)pyridine-2-carboxamide
470





84


embedded image


2-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- methylpyrimidine-4-carboxamide
374.2





85


embedded image


2-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-(1- methylpiperidin-4-yl)pyrimidine-4- carboxamide
457.2





86


embedded image


3-amino-6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(1- methylpiperidin-4-yl)methyl]pyridine-2- carboxamide
485.1





87


embedded image


2-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}pyrimidine-4- carboxamide
360





88


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-{1- [(methylcarbamoyl)methyl]piperidin-4- yl}pyridine-2-carboxamide
492.2





89


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-(3,3-difluoro-1- methylpiperidin-4-yl)pyridine-2-carboxamide
492.1





90


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(3R,4R)-3- methoxy-1-methylpiperidin-4-yl]pyridine-2- carboxamide
486.1





91


embedded image


2-[(6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}pyridin-2- yl)formamido]-N-(1-methylpiperidin-4- yl)acetamide
513.1





92


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[1-(2-hydroxy-3- methoxypropyl)piperidin-4-yl]pyridine-2- carboxamide
530.1





93


embedded image


N-(1-acetyl-3-fluoropiperidin-4-yl)-6-{8-[(2- cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}pyridine-2- carboxamide
502





94


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[3-fluoro-1-(oxan- 4-yl)piperidin-4-yl]pyridine-2-carboxamide
544





95


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(2S,4R)-1,2- dimethylpiperidin-4-yl]pyridine-2- carboxamide
470.1





96


embedded image


N-{2-[1-(carbamoylmethyl)piperidin-4- yl]ethyl}-6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}pyridine-2- carboxamide
527





97


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(3R,4R)-3- fluoro-1-methylpiperidin-4-yl]pyridine-2- carboxamide
474.2





98


embedded image


N-[2-(1-acetylpiperidin-4-yl)ethyl]-6-{8-[(2- cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}pyridine-2- carboxamide
512.3





99


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[1-(2- methoxyethyl)piperidin-3-yl]pyridine-2- carboxamide
500.1





100


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[1-(2- hydroxyethyl)piperidin-3-yl]pyridine-2- carboxamide
486.1





101


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-(1- methanesulfonylpiperidin-4-yl)pyridine-2- carboxamide
520.1





102


embedded image


2-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(3R,4S)-3- fluoro-1-methylpiperidin-4-yl]pyrimidine-4- carboxamide
475.1





103


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[1-(3- methoxypropanoyl)piperidin-4-yl]pyridine-2- carboxamide
528.3





104


embedded image


N-(2-{8-[(2-cyano-2-methylideneethyl)amino]- 7-methoxynaphthalen-2-yl}pyridin-4-yl)-3- hydroxypropanamide
403





105


embedded image


2-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-(1- methylpiperidin-3-yl)pyrimidine-4- carboxamide
457.3





106


embedded image


2-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-(2- hydroxypropyl)pyrimidine-4-carboxamide
418.2





107


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-(2-oxopiperidin- 4-yl)pyridine-2-carboxamide
456





108


embedded image


2-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(2S,4R)-1,2- dimethylpiperidin-4-yl]pyrimidine-4- carboxamide
471.1





109


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-(2-{1- [(dimethylcarbamoyl)methyl]piperidin-4- yl}ethyl)pyridine-2-carboxamide
555.1





110


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(1r,4r)-4-[(2- methoxyethyl)(methyl)amino]cyclohexyl]pyri- dine-2-carboxamide
528.3





111


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(1s,4s)-4-[(2- methoxyethyl)(methyl)amino]cyclohexyl]pyri- dine-2-carboxamide
528.3





112


embedded image


N-(2-{8-[(2-cyano-2-methylideneethyl)amino]- 7-methoxynaphthalen-2-yl}pyridin-4-yl)-1- methylpiperidine-3-carboxamide
456.2





113


embedded image


N-[(3R)-1-acetylpiperidin-3-yl]-6-{8-[(2- cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}pyridine-2- carboxamide
484.2





114


embedded image


N-(2-{8-[(2-cyano-2-methylideneethyl)amino]- 7-methoxynaphthalen-2-yl}pyridin-4-yl)-1- methylpyrrolidine-3-carboxamide
442.2





115


embedded image


N-[(2R)-1-[(6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}pyridin-2- yl)formamido]propan-2-yl]acetamide
458.2





116


embedded image


N-[(3S)-1-acetylpiperidin-3-yl]-6-{8-[(2- cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}pyridine-2- carboxamide
484.2





117


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-3-fluoro-N-[(3R)-1- methylpiperidin-3-yl]pyridine-2-carboxamide
474.2





118


embedded image


4-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-(1- methylpiperidin-4-yl)-1,3-thiazole-2- carboxamide
462.1





119


embedded image


N-(2-cyano-2-methylethyl)-6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}pyridine-2- carboxamide
426.2





120


embedded image


N-[(2S)-1-[(6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}pyridin-2- yl)formamido]propan-2-yl]acetamide
458.2





121


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-3-fluoro-N-[(3S)-1- methylpiperidin-3-yl]pyridine-2-carboxamide
474.2





122


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-3-fluoro-N-[(1r,4r)- 4-(dimethylamino)cyclohexyl]pyridine-2- carboxamide
502.3





123


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-3-fluoro-N-(1- methylpiperidin-4-yl)pyridine-2-carboxamide
474.2





124


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-3-fluoro-N-[(1- methylpiperidin-4-yl)methyl]pyridine-2- carboxamide
488.3





125


embedded image


2-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(1r,4r)-4- (dimethylamino)cyclohexyl]pyrimidine-4- carboxamide
485.3





126


embedded image


2-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(1r,4r)-4-[(2- methoxyethyl)(methyl)amino]cyclohexyl]pyrim- idine-4-carboxamide
529.3





127


embedded image


4-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(2S)-2- hydroxypropyl]-1,3-thiazole-2-carboxamide
423.1





128


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(1R,3S)-3- acetamidocyclohexyl]pyridine-2-carboxamide
498.2





129


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(1R,3R)-3- acetamidocyclohexyl]pyridine-2-carboxamide
498.2





130


embedded image


2-({[7-(4-aminopyrimidin-2-yl)-2- methoxynaphthalen-1-yl]amino}methyl)prop- 2-enenitrile
332.1





131


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-(1- methylpiperidin-4-yl)pyrimidine-4- carboxamide
457.2





132


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-3-fluoro-N-[2-(1- methylpiperidin-4-yl)ethyl]pyridine-2- carboxamide
502.3





133


embedded image


2-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(1s,4s)-4-[(2- methoxyethyl)(methyl)amino]cyclohexyl]pyrim- idine-4-carboxamide
529.3





134


embedded image


2-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(1s,4s)-4- (diethylamino)cyclohexyl]pyrimidine-4- carboxamide
513.3





135


embedded image


2-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(1r,4r)-4- (diethylamino)cyclohexyl]pyrimidine-4- carboxamide
513.3





136


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-3-fluoro-N-[2-(1- methylpiperidin-3-yl)ethyl]pyridine-2- carboxamide
502.3





137


embedded image


2-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-(1-ethylpiperidin- 4-yl)-1,3-oxazole-4-carboxamide
460.2





138


embedded image


6-amino-2-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-(1- methylpiperidin-4-yl)pyrimidine-4- carboxamide
472.3





139


embedded image


4-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(1r,4r)-4- (dimethylamino)cyclohexyl]-1,3-thiazole-2- carboxamide
490.3





140


embedded image


4-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(1s,4s)-4- (dimethylamino)cyclohexyl]-1,3-thiazole-2- carboxamide
490.2





141


embedded image


4-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(1s,4s)-4-[(2- methoxyethyl)(methyl)amino]cyclohexyl]-1,3- thiazole-2-carboxamide
534.3





142


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(1r,4r)-4- (dimethylamino)cyclohexyl]pyrimidine-4- carboxamide
485.3





143


embedded image


4-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(2S,4R)-1,2- dimethylpiperidin-4-yl]-1,3-thiazole-2- carboxamide
476.2





144


embedded image


3-amino-6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(1s,4s)-4- (dimethylamino)cyclohexyl]pyridine-2- carboxamide
499.3





145


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(1r,4r)-4-{6- methyl-2,6-diazaspiro[3.3]heptan-2- yl}cyclohexyl]pyridine-2-carboxamide
551.3





146


embedded image


3-amino-6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(1r,4r)-4- (dimethylamino)cyclohexyl]pyridine-2- carboxamide
499.3





147


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(1s,4s)-4-{6- methyl-2,6-diazaspiro[3.3]heptan-2- yl}cyclohexyl]pyridine-2-carboxamide
551.3





148


embedded image


3-amino-6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthal-en-2-yl}-N-[(2S,4R)-1,2- dimethylpiperidin-4-yl]pyridine-2- carboxamide
485.3





149


embedded image


6-amino-2-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(1r,4r)-4- (dimethylamino)cyclohexyl]pyrimidine-4- carboxamide
500.3





150


embedded image


6-amino-2-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(1s,4s)-4- (dimethylamino)cyclohexyl]pyrimidine-4- carboxamide
500.3





151


embedded image


2-[({7-[4-amino-3-(difluoromethoxy)phenyl]- 2-methoxynaphthalen-1- yl}amino)methyl]prop-2-enenitrile
396.2





152


embedded image


3-amino-6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-ethylpyridine-2- carboxamide
402.2





153


embedded image


2-amino-5-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-(1- methylpiperidin-4-yl)pyridine-3-carboxamide
471.2





154


embedded image


2-({[7-(4-amino-3-methanesulfonylphenyl)-2- methoxynaphthalen-1-yl]amino}methyl)prop- 2-enenitrile
408.1





155


embedded image


2-[({2-methoxy-7-[4-(phenylamino)pyridin-2- yl]naphthalen-1-yl}amino)methyl]prop-2- enenitrile
407.1





156


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(1- methylpiperidin-4-yl)methyl]pyridine-2- carboxamide
470.2





157


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-(2- cyanoethyl)pyridine-2-carboxamide
412.1





158


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-(2- methoxyethyl)pyridine-2-carboxamide
417.1





159


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-(2- methanesulfonylethyl)pyridine-2-carboxamide
465.1





160


embedded image


2-[(6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}pyridin-2- yl)formamido]acetamide
416.2





161


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}pyridine-2-carboxylic acid
360





162


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[2-(morpholin-4- yl)ethyl]pyridine-2-carboxamide
472.1





163


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(1r,4r)-4- hydroxycyclohexyl]pyridine-2-carboxamide
457.1





164


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[2-(oxan-4- yl)ethyl]pyridine-2-carboxamide
471.1





165


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[2-(4- methylpiperazin-1-yl)ethyl]pyridine-2- carboxamide
485.1





166


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(1s,4s)-4- (dimethylamino)cyclohexyl]pyridine-2- carboxamide
484.2





167


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(1r,4r)-4- (dimethylamino)cyclohexyl]pyridine-2- carboxamide
484.1





168


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-(1- methylpiperidin-3-yl)pyridine-2-carboxamide
456.1





169


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-(2- hydroxypropyl)pyridine-2-carboxamide
417.1





170


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[2- (dimethylamino)ethyl]pyridine-2-carboxamide
430.1





171


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-(2-hydroxy-3- 172methoxypropyl)pyridine-2-carboxamide
447.1





172


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-(2,2,2- trifluoro ethyl)pyridine-2-carboxamide
441





173


embedded image


3-[(6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}pyridin-2- yl)formamido]propanamide
430.1





174


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-(1,5- dihydroxypentan-3-yl)pyridine-2-carboxamide
461.1





175


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[2-(1- methylpiperidin-4-yl)ethyl]pyridine-2- carboxamide
484.1





176


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[2-(morpholin-4- yl)-2-oxoethyl]pyridine-2-carboxamide
486.1





177


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N,N- dimethylpyridine-2-carboxamide
387.1





178


embedded image


2-[(6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}pyridin-2- yl)formamido]-N-methylacetamide
430.1





179


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(pyridin-3- yl)methyl]pyridine-2-carboxamide
450





180


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(3R)-1- methylpiperidin-3-yl]pyridine-2-carboxamide
456.1





181


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(3S)-1- methylpiperidin-3-yl]pyridine-2-carboxamide
456.1





182


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(3R,4S)-3- fluoro-1-methylpiperidin-4-yl]pyridine-2- carboxamide
474.1





183


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(3S,4R)-1,3- dimethylpiperidin-4-yl]pyridine-2- carboxamide
470.1





184


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(3R,4R)-1,3- dimethylpiperidin-4-yl]pyridine-2- carboxamide
470.1





185


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-methyl-N-(1- methylpiperidin-4-yl)pyridine-2-carboxamide
470.1





186


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-(3- methanesulfonylpropyl)pyridine-2- carboxamide
479





187


embedded image


N-{2-[(6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}pyridin-2- yl)formamido]ethyl}acetamide
444.2





188


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-{8-methyl-8- azabicyclo[3.2.1]octan-3-yl}pyridine-2- carboxamide
482.3





189


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(1s,4s)-4-{2-oxa- 6-azaspiro[3.3]heptan-6- yl}cyclohexyl]pyridine-2-carboxamide
538.3





190


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(1r,4r)-4-{2-oxa- 6-azaspiro[3.3]heptan-6- yl}cyclohexyl]pyridine-2-carboxamide
538.3





191


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[2-(1H-imidazol- 2-yl)ethyl]pyridine-2-carboxamide
453.2





192


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-(1-methyl-2- oxopiperidin-4-yl)pyridine-2-carboxamide
470.2





193


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[4-(pyrrolidin-1- yl)cyclohexyl]pyridine-2-carboxamide
510.3





194


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(2R)-2- hydroxypropyl]pyridine-2-carboxamide
417.2





195


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(2S)-2- hydroxypropyl]pyridine-2-carboxamide
417.1





196


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-{1,4- dioxaspiro[4.5]decan-8-yl}pyridine-2- carboxamide
499.2





197


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-(4- oxocyclohexyl)pyridine-2-carboxamide
455.2





198


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-{9-methyl-9- azabicyclo[3.3.1]nonan-3-yl}pyridine-2- carboxamide
496.3





199


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[3- (dimethylamino)cyclohexyl]pyridine-2- carboxamide
484.2





200


embedded image


4-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-(2- hydroxypropyl)pyrimidine-2-carboxamide
418.1





201


embedded image


4-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(3R)-1- methylpiperidin-3-yl]pyrimidine-2- carboxamide
457.1





202


embedded image


4-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(3S,4R)-3- fluoro-1-methylpiperidin-4-yl]pyrimidine-2- carboxamide
475.1





203


embedded image


4-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[2-(1- methylpiperidin-4-yl)ethyl]pyrimidine-2- carboxamide
485.1





204


embedded image


4-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(3S)-1- methylpiperidin-3-yl]pyrimidine-2- carboxamide
457.2





205


embedded image


4-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(3R)-1-(2- methoxyethyl)piperidin-3-yl]pyrimidine- 2-carboxamide
501.3





206


embedded image


4-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(3S)-1-(2- methoxyethyl)piperidin-3-yl]pyrimidine-2- carboxamide
501.3





207


embedded image


4-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(3R,4S)-3- fluoro-1-methylpiperidin-4-yl]pyrimidine-2- carboxamide
475.2





208


embedded image


4-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(1r,4r)-4-[(2- methoxyethyl)(methyl)amino]cyclohexyl]pyrim- idine-2-carboxamide
529.3





209


embedded image


4-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(1s,4s)-4-[(2- methoxyethyl)(methyl)amino]cyclohexyl]pyrim- idine-2-carboxamide
529.3





210


embedded image


4-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(2S,4R)-1,2- dimethylpiperidin-4-yl]pyrimidine-2- carboxamide
471.2





211


embedded image


2-({[2-methoxy-7-(4-methoxypyridin-2- yl)naphthalen-1-yl]amino}methyl)prop-2- enenitrile
346.1





212


embedded image


2-({[7-(4-amino-3-chlorophenyl)-2- methoxynaphthalen-1-yl]amino}methyl)prop- 2-enenitrile
364.1





213


embedded image


2-amino-5-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-methylbenzamide
387.1





214


embedded image


N-(6-{8-[(2-cyano-2-methylideneethyl)amino]- 7-methoxynaphthalen-2-yl}pyridin-3- yl)methanesulfonamide
408.9





215


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-methyl-4- (methylamino)pyridine-2-carboxamide
402.1





216


embedded image


2-({[2-methoxy-7-(pyridin-3-yl)naphthalen-1- yl](methyl)amino}methyl)prop-2-enenitrile
330





217


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(1- methylpyrrolidin-3-yl)methyl]pyridine-2- carboxamide
456.1





218


embedded image


4-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- methylpyrimidine-2-carboxamide
374





219


embedded image


5-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-(1- methylpiperidin-4-yl)-1,3,4-thiadiazole-2- carboxamide
463.2





220


embedded image


4-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(1r,4r)-4-[(2- methoxyethyl)(methyl)amino]cyclohexyl]-1,3- thiazole-2-carboxamide
534.3





221


embedded image


3-amino-6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-{8-methyl-8- azabicyclo[3.2.1]octan-3-yl}pyridine-2- carboxamide
497.3





222


embedded image


2-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-(1- methylpiperidin-4-yl)-1,3-thiazole-5- carboxamide
462.2





223


embedded image


2-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-(1- methylpiperidin-4-yl)-1,3-thiazole-4- carboxamide
462.2





224


embedded image


5-amino-2-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(1s,4s)-4- (dimethylamino)cyclohexyl]pyrimidine-4- carboxamide
500.3





225


embedded image


5-amino-2-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-(1- methylpiperidin-4-yl)pyrimidine-4- carboxamide
472.2





226


embedded image


5-amino-2-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N-[(1r,4r)-4- (dimethylamino)cyclohexyl]pyrimidine-4- carboxamide
500.3





227


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-3-fluoropyridine-2- carboxamide
376.9





228


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-3-fluoro-N- methylpyridine-2-carboxamide
391.1





229


embedded image


6-{8-[(2-cyano-2-methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-3-fluoro-N-[(1s,4s)- 4-(dimethylamino)cyclohexyl]pyridine-2- carboxamide
502.3





230


embedded image


3-chloro-6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}pyridine-2- carboxamide
393.1









Example 3: Method C
Route 1: General Scheme



embedded image


embedded image


Preparation of 7-bromo-1-nitronaphthalen-2-ol



embedded image


To a mixture of 7-bromo-2-methoxy-1-nitronaphthalene (8 g, 28.36 mmol, 1 eq) in DCM (80 mL) was added BBr3 (35.52 g, 141.8 mmol, 13.66 mL, 5 eq) at 0° C. The mixture was stirred at 25° C. for 4 h. TLC showed that the reaction was complete. The reaction mixture was diluted with ice-water. The mixture was extracted with EtOAc (2×200 mL). The combined organic layers were washed with H2O (2×100 mL) and brine (2×100 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The crude product (7.8 g, crude) was obtained as a yellow solid, which was used without further purification.


Preparation of 7-bromo-1-nitro-2-(2,2,2-trifluoroethoxy)naphthalene



embedded image


To a solution of 7-bromo-1-nitronaphthalen-2-ol (5.8 g, 21.64 mmol, 1 eq) in DMF (60 mL) was added K2CO3 (8.97 g, 64.91 mmol, 3 eq). Then, 2,2,2-Trifluoroethyl trifluoromethanesulfonate (7.53 g, 32.46 mmol, 1.5 eq) was added to the reaction and stirred at 60° C. for 1 h. TLC showed that the reaction was complete. The reaction mixture was diluted with H2O. The mixture was extracted with EtOAc (2×200 mL). The combined organic layers were washed with H2O (2×200 mL) and brine (2×200 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The title compound was obtained as a yellow solid (7 g, crude) and used without purification.


Preparation of 7-bromo-2-(2,2,2-trifluoroethoxy)naphthalen-1-amine



embedded image


To a mixture of 7-bromo-1-nitro-2-(2,2,2-trifluoroethoxy)naphthalene (7 g, 19.99 mmol, 1 eq) in EtOH (60 mL) was added saturated NH4Cl (1.07 g, 19.99 mmol, 15 mL, 1 eq), and the reaction mixture was heated to 70° C. Fe (3.35 g, 59.98 mmol, 3 eq) was added to the reaction and stirred for 1 hr. The reaction mixture was diluted with H2O. The mixture was extracted with EtOAc (2×200 mL). The combined organic layers were washed with H2O (2×100 mL) and brine (2×100 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 6:1) to afford the title compound (3.7 g, 11.56 mmol, 57.8% yield) as a yellow solid.


Preparation of tert-butyl N-[7-bromo-2-(2,2,2-trifluoroethoxy)naphthalen-1-yl]carbamate



embedded image


A solution of 7-bromo-2-(2,2,2-trifluoroethoxy)naphthalen-1-amine (1 g, 3.12 mmol, 1 eq) in Boc2O (20.45 g, 93.72 mmol, 21.53 mL, 30 eq) was stirred at 120° C. for 3 h. TLC showed that the reaction was complete. The reaction mixture was diluted with H2O (100 mL). The mixture was extracted with EtOAc (2×50 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 6:1) to afford the title compound (1.3 g, 2.5 mmol, 79.97% yield) as a yellow solid.


To a solution of tert-butyl N-[7-bromo-2-(2,2,2-trifluoroethoxy)-1-naphthyl]-N-tert-Butoxy carbonyl-carbamate (1.2 g, 2.31 mmol, 1 eq) in MeOH (12 mL) was added K2CO3 (1.27 g, 9.22 mmol, 4 eq). The reaction mixture was stirred at 25° C. for 15 h. LCMS showed that the reaction was complete. The reaction mixture was diluted with H2O (100 mL). The mixture was extracted with EtOAc (2×50 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The crude product (1 g, crude) was obtained as a white solid and used without purification. LC-MS (ES+, m/z): 363.0 [(M-tBu)+].


Preparation of tert-butyl N-[7-bromo-2-(2,2,2-trifluoroethoxy)naphthalen-1-yl]-N-(2-cyano-2-methylideneethyl)carbamate



embedded image


To a solution of tert-butyl N-[7-bromo-2-(2,2,2-trifluoroethoxy)naphthalen-1-yl]carbamate (1 g, 2.38 mmol, 1 eq) in DCM (10 mL) were added KOH (267.1 mg, 4.76 mmol, 2 eq) and TBAI (263.7 mg, 713.91 μmol, 0.3 eq). Then, 2-(bromomethyl)prop-2-enenitrile (521.1 mg, 3.57 mmol, 1.5 eq) was added and the mixture was stirred at 25° C. for 1 hr. LCMS showed that the reaction was complete. The reaction mixture was diluted with H2O (100 mL). The mixture was extracted with EtOAc (2×50 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc) to afford the title compound (0.9 g, 1.85 mmol) as a white solid.


Preparation of tert-butyl N-(2-cyano-2-methylideneethyl)-N-[7-(4,4,5,5-tetramethyl-1,3-dioxolan-2-yl)-2-(2,2,2-trifluoroethoxy)naphthalen-1-yl]carbamate



embedded image


To a mixture of tert-butyl N-[7-bromo-2-(2,2,2-trifluoroethoxy)naphthalen-1-yl]-N-(2-cyano-2-methylideneethyl)carbamate (0.5 g, 1.03 mmol, 1 eq) and 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (523.3 mg, 2.06 mmol, 2 eq) in dioxane (6 mL) were added KOAc (505.6 mg, 5.15 mmol, 5 eq) and Pd(dppf)Cl2 (150.8 mg, 206.06 μmol, 0.2 eq). The reaction mixture was stirred at 100° C. for 1 hr. LCMS showed that the reaction was complete. The reaction mixture was diluted with H2O (60 mL). The mixture was extracted with EtOAc (2×40 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc) to afford the title compound (0.44 g, 826.51 μmol, 80.22% yield) as a yellow oil. LC-MS (ES+, m/z): 477.2 [(M-tBu)+]


Preparation of tert-butyl N-(2-cyanoallyl)-N-[7-(2-pyridyl)-2-(2,2,2-trifluoroethoxy)-1-naphthyl]carbamate



embedded image


To a mixture of tert-butyl N-(2-cyanoallyl)-N-[7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(2,2,2-trifluoroethoxy)-1-naphthyl]carbamate (70 mg, 131.49 μmol, 1 eq) and 2-bromopyridine (41.6 mg, 262.98 μmol, 25.03 μL, 2 eq) in dioxane (2 mL) and H2O (0.5 mL) were added Na2CO3 (41.8 mg, 394.47 μmol, 3 eq) and Pd(dppf)Cl2 (9.6 mg, 13.15 μmol, 0.1 eq). The reaction was heated to 120° C. under N2 and stirred for 1 h. TLC showed that the reaction was complete. The reaction mixture was stirred by adding saturated EDTA (50 mL) and EtOAc (50 mL) at 25° C. The mixture was extracted with EtOAc (2×50 mL). The combined organic phase was washed with H2O (2×100 mL) and brine (2×100 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, PE:EtOAc=4:1) to afford the title compound tert-butyl N-(2-cyanoallyl)-N-[7-(2-pyridyl)-2-(2,2,2-trifluoroethoxy)-1-naphthyl]carbamate (50 mg, 103.42 μmol, 78.65% yield) as a yellow oil.


Preparation of 2-[[[7-(2-pyridyl)-2-(2,2,2-trifluoroethoxy)-1-naphthyl]amino]methyl]prop-2-enenitrile



embedded image


To a solution of tert-butyl N-(2-cyanoallyl)-N-[7-(2-pyridyl)-2-(2,2,2-trifluoroethoxy)-1-naphthyl]carbamate (50 mg, 103.42 μmol, 1 eq) in DCM (2 mL) was added TFA (616 mg, 5.4 mmol, 0.4 mL, 52.24 eq). The reaction mixture was stirred at 25° C. for 1 h. LCMS showed that the reaction was complete. The reaction mixture was adjusted to pH>8 with saturated NaHCO3. The mixture was extracted with EtOAc (2×50 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound 2-[[[7-(2-pyridyl)-2-(2,2,2-trifluoroethoxy)-1-naphthyl]amino]methyl]prop-2-enenitrile (5.3 mg, 13.73 μmol, 13.27% yield, 99.3% purity) as a white solid. LC-MS (ES+, m/z): 384 [(M+H)+]


Route 2: General Scheme (Compounds 237-240)



embedded image


embedded image


Preparation of 7-bromo-2-(difluoromethoxy)-1-nitro-naphthalene



embedded image


To a mixture of 2-chloro-2,2-difluoro-acetic acid (973.5 mg, 7.46 mmol, 632 μL, 2 eq) and 7-bromo-1-nitro-naphthalen-2-ol (1 g, 3.73 mmol, 1 eq) in DMF (15 mL) was added Cs2CO3 (6.08 g, 18.65 mmol, 5 eq). The mixture was stirred at 80° C. for 2 hrs. The reaction was diluted with 30 mL of water and extracted with EtOAc (2×30 mL). The combined organic layer was washed with brine (2×30 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=20/1 to 10:1) to afford the title compound (700 mg, 59% yield) as a yellow solid.


Preparation of 7-bromo-2-(difluoromethoxy)naphthalen-1-amine



embedded image


To a solution of 7-bromo-2-(difluoromethoxy)-1-nitro-naphthalene (0.65 g, 2.04 mmol, 1 eq) in EtOH (6 mL) was added saturated NH4Cl (2.04 mmol, 1.5 mL, 1 eq). Then the mixture was heated to 70° C. Fe (342.4 mg, 6.13 mmol, 3 eq) was added, and the mixture was stirred at 70° C. for 1 h. The reaction mixture was diluted with H2O (100 mL) and extracted with EtOAc (3×50 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 6:1) to afford the title compound (500 mg, 84.9% yield) as a yellow solid.


Preparation of tert-butyl N-[7-bromo-2-(difluoromethoxy)-1-naphthyl]carbamate



embedded image


A mixture of 7-bromo-2-(difluoromethoxy)naphthalen-1-amine (460 mg, 1.6 mmol, 1 eq) and Boc2O (17.42 g, 79.84 mmol, 18.34 mL, 50 eq) was stirred at 110° C. for 12 h. The mixture was partitioned between EtOAc and water. The aqueous phase was extracted with EtOAc (3×100 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 6:1) to afford the title compound (0.57 g, 92% yield) as a yellow solid.


Preparation of tert-butyl N-[7-bromo-2-(difluoromethoxy)-1-naphthyl]-N-(2-cyanoallyl) carbamate



embedded image


To a solution of tert-butyl N-[7-bromo-2-(difluoromethoxy)-1-naphthyl]carbamate (0.25 g, 643.99 μmol, 1 eq) in DCM (4 mL) were added KOH (72.3 mg, 1.29 mmol, 2 eq), TBAI (71.4 mg, 193.2 μmol, 0.3 eq) and 2-(bromomethyl)prop-2-enenitrile (141 mg, 965.99 μmol, 1.5 eq). The mixture was stirred at 25° C. for 1 h. The reaction mixture was partitioned between EtOAc and water. The aqueous phase was extracted with EtOAc (3×100 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound (0.27 g, 92.5% yield) as a colorless oil.


Preparation of tert-butyl N-(2-cyanoallyl)-N-[2-(difluoromethoxy)-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate



embedded image


To a mixture of tert-butyl N-[7-bromo-2-(difluoromethoxy)-1-naphthyl]-N-(2-cyanoallyl) carbamate (220 mg, 485.35 μmol, 1 eq) and B2Pin2 (246.5 mg, 970.71 μmol, 2 eq) in dioxane (4 mL) were added KOAc (142.9 mg, 1.46 mmol, 3 eq) and Pd(dppf)Cl2 (71 mg, 97.07 μmol, 0.2 eq). The mixture was stirred at 100° C. for 1 hr. The reaction mixture was concentrated in vacuo. The residue was washed with DCM (3×5 mL), filtered and dried with anhydrous Na2SO4. The title compound (0.2 g, crude) was used without further purification.


Preparation of tert-butyl N-(2-cyanoallyl)-N-[2-(difluoromethoxy)-7-[6-[(l-methyl-4-piperidyl)carbamoyl]-2-pyridyl]-1-naphthyl]carbamate



embedded image


To a mixture of tert-butyl N-(2-cyanoallyl)-N-[2-(difluoromethoxy)-7-methyl-1-naphthyl]carbamate (0.2 g, 399.73 μmol, 1 eq) and 6-bromo-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (119.2 mg, 399.73 μmol, 1 eq) in dioxane (2 mL) and H2O (0.5 mL) were added Na2CO3 (127.1 mg, 1.2 mmol, 3 eq) and Pd(dppf)Cl2 (58.5 mg, 79.95 μmol, 0.2 eq). The mixture was stirred at 110° C. for 1 h. The reaction was diluted with 50 mL of saturated EDTA solution and EtOAc (50 mL). The mixture was stirred at r.t. for 1 h and extracted with EtOAc (5×50 mL). The combined organic layer was washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound (0.1 g, 42.3% yield) as a yellow oil.


Compound 240: Preparation of 6-{8-[(2-cyano-2-methylideneethyl)amino]-7-(difluoromethoxy)naphthalen-2-yl}-N-(1-methylpiperidin-4-yl)pyridine-2-carboxamide



embedded image


To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-(difluoromethoxy)-7-[6-[(l-methyl-4-piperidyl)carbamoyl]-2-pyridyl]-1-naphthyl]carbamate (0.1 g, 169.02 μmol, 1 eq) in DCM (2 mL) was added TFA (616 mg, 5.4 mmol, 0.4 mL, 31.96 eq). The mixture was stirred at 25° C. for 1 h. The reaction mixture was adjusted to pH=8 with saturated NaHCO3 solution and extracted with EtOAc (2×50 mL). The combined organic layer were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC (basic condition) to afford the title compound (19.4 mg, 23.2% yield) as a white solid. LC-MS (ES+, m/z): 492.2 [(M+H)+].


Route 3: General Scheme (Compounds 241-244)



embedded image


embedded image


Preparation of 7-bromo-2-isopropoxy-1-nitro-naphthalene



embedded image


To a solution of 7-bromo-1-nitro-naphthalen-2-ol (2.5 g, 9.33 mmol, 1 eq) in DMF (50 mL) were added K2CO3 (2.58 g, 18.65 mmol, 2 eq) and 2-iodopropane (2.06 g, 12.12 mmol, 1.21 mL, 1.3 eq). The mixture was stirred at 50° C. for 5 hrs. The mixture was filtered to remove K2CO3. Then quenched with water (200 mL), extracted with EtOAc (3×100 mL). The combined organic layer was washed with brine (200 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The title compound (2.5 g, crude) was used in the next step without further purification.


Preparation of 7-bromo-2-isopropoxy-naphthalen-1-amine



embedded image


To a solution of 7-bromo-2-isopropoxy-1-nitro-naphthalene (2 g, 6.45 mmol, 1 eq) in EtOH (40 mL) and H2O (8 mL) was added NH4Cl (1.72 g, 32.24 mmol, 5 eq) and the mixture was heated to 80° C. Fe (1.8 g, 32.24 mmol, 5 eq) was added in one portion. The mixture was stirred at 80° C. for 3 hrs. The mixture was filtered, and concentrated in reduced pressure. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 5:1) to afford the title compound (1.1 g, 60.9% yield) as a brown solid.


Preparation of tert-butyl N-(7-bromo-2-isopropoxy-1-naphthyl)carbamate



embedded image


A mixture of 7-bromo-2-isopropoxy-naphthalen-1-amine (1.1 g, 3.93 mmol, 1 eq) and Boc2O (31.35 g, 143.64 mmol, 33 mL, 36.58 eq) was stirred at 50° C. for 12 hrs. Upon completion of the reaction as indicated by TLC, to the reaction mixture was added 5 mL N1,N1-dimethylethane-1,2-diamine and stirred at 25° C. for 1 h. Then 60 mL water was added and extracted with EtOAc (3×30 mL). The combined organic layer was washed with brine (3×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=10:1) to afford the title compound (1.1 g, 73.7%) as a light yellow solid.


Preparation of tert-butyl N-(7-bromo-2-isopropoxy-1-naphthyl)-N-(2-cyanoallyl)carbamate



embedded image


To a solution of tert-butyl N-(7-bromo-2-isopropoxy-1-naphthyl)carbamate (1.1 g, 2.84 mmol, 1 eq) in DCM (40 mL) were added KOH (318.7 mg, 5.68 mmol, 2 eq), TBAI (104.9 mg, 284 μmol, 0.1 eq) and 2-(bromomethyl)prop-2-enenitrile (456.1 mg, 3.12 mmol, 1.1 eq) in DCM (1 mL). The mixture was stirred at 25° C. for 2 hrs. The reaction mixture was quenched with ice water (100 mL), and extracted with DCM (3×50 mL). The combined organic layer was washed with brine (50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=20/1 to 10:1) to afford the title compound (1.1 g, 78.3%) as gray solid.


Preparation of tert-butyl N-(2-cyanoallyl)-N-[2-isopropoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate



embedded image


A mixture of tert-butyl N-(7-bromo-2-isopropoxy-1-naphthyl)-N-(2-cyanoallyl)carbamate (1 g, 2.25 mmol, 1 eq), 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (1.14 g, 4.49 mmol, 2 eq), KOAc (661.1 mg, 6.74 mmol, 3 eq) and Pd(dppf)Cl2 (164.3 mg, 224.54 μmol, 0.1 eq) in dioxane (50 mL) was degassed and purged with N2 3 times, and the mixture was stirred at 100° C. for 1 hr under N2 atmosphere. The reaction mixture was filtered, and concentrated in vacuo to afford the title compound (2.2 g, crude), which was used in the next step without further purification.


Preparation of tert-butyl N-(2-cyanoallyl)-N-[2-isopropoxy-7-[6-[(l-methyl-4-piperidyl)carbamoyl]-2-pyridyl]-1-naphthyl]carbamate



embedded image


A mixture of tert-butyl N-(2-cyanoallyl)-N-[2-hydroxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate (100 mg, 222.06 μmol, 1 eq), 6-bromo-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (99.3 mg, 333.09 μmol, 1.5 eq), Na2CO3 (70.6 mg, 666.17 μmol, 3 eq), and Pd(dppf)Cl2 (16.3 mg, 22.21 μmol, 0.1 eq) in dioxane (4 mL) and H2O (1 mL) was degassed and purged with N2 3 times, and the mixture was stirred at 120° C. for 1 hr under N2 atmosphere. TLC showed that the reaction was complete. The reaction mixture was poured into saturated EDTA (50 mL) and stirred at 25° C. for 1 h. Then the aqueous phase was extracted with EtOAc (3×50 mL). The combined organic layer were washed with H2O (3×50 mL) and brine (3×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound (60 mg, 102.79 μmol, 46.29% yield) as a light yellow solid.


Compound 244: Preparation of 6-[8-(2-cyanoallylamino)-7-isopropoxy-2-naphthyl]-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide



embedded image


To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-isopropoxy-7-[6-[(l-methyl-4-piperidyl)carbamoyl]-2-pyridyl]-1-naphthyl]carbamate (50 mg, 85.66 μmol, 1 eq) in DCM (5 mL) was added TFA (7.7 g, 67.53 mmol, 5 mL, 788.37 eq). The mixture was stirred at 25° C. for 1 hr. The reaction mixture was quenched with ice water (10 mL) and saturated Na2CO3 was add to adjust pH=8. The mixture was extracted with DCM (3×15 mL). The combined organic layer was washed with brine (10 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford the title compound (8.6 mg, 17.78 μmol, 20.76% yield, 100% purity) as a white solid.


Route 4: General Scheme (Examples 245-253)



embedded image


embedded image


Preparation of 2-bromo-7-ethoxy-naphthalene



embedded image


To a mixture of 7-bromonaphthalen-2-ol (5. g, 22.4 mmol, 1 eq), Etl (5.2 g, 33.6 mmol, 1.5 eq) and K2CO3 (9.3 g, 67.2 mmol, 3 eq) in MeCN (100 mL). Then the mixture was heated to 90° C. and stirred for 2 hours. Upon completion of the reaction as indicated by TLC, to the reaction mixture was added 30 mL H2O. Then filtered, and concentrated in vacuo to afford the title compound (5.5 g, crude) as a light yellow solid.


Preparation of 7-bromo-2-ethoxy-1-mtro-naphthalene



embedded image


To a solution of 2-bromo-7-ethoxy-naphthalene (5. g, 19.9 mmol, 1 eq) in Ac2O (50 mL) was added HNO3 (3.1 g, 29.9 mmol, 60% purity, 1.5 eq). The mixture was stirred at 0° C. for 4 hours. The reaction mixture was filtered, and concentrated in vacuo to give a residue. The residue was washed with PE (3×10 mL) to afford the title compound (3.6 g, 12.2 mmol, 61.1% yield) as a light yellow solid.


Preparation of 7-bromo-2-ethoxy-naphthalen-1-amine



embedded image


A mixture of 7-bromo-2-ethoxy-1-nitro-naphthalene (3.6 g, 12.2 mmol, 1 eq), NH4Cl (455.2 mg, 8.5 mmol, 0.7 eq) in EtOH (70 mL) and H2O (10 mL) was added Le (3.4 g, 60.8 mmol, 5 eq) in portions at 80° C. The mixture was stirred at 80° C. for 1 hour. The reaction mixture was filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=50/1 to 20/1) to afford the title compound (2.8 g, 10.5 mmol, 86.5% yield) as a light yellow solid.


Preparation of tert-butyl N-(7-bromo-2-ethoxy-1-naphthyl)carbamate



embedded image


A solution of 7-bromo-2-ethoxy-naphthalen-1-amine (2.8 g, 10.5 mmol, 1 eq) in Boc2O (50 mL) was stirred at 50° C. for 10 hours. The reaction mixture was added to 10 mL N′,N′-dimethylethane-1,2-diamine and stirred for 1 hour. Then 50 mL H2O was added and extracted with EtOAc (3×30 mL). The organic phase was separated, washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=30:1 to 10:1) to afford the title compound (2.9 g, 7.9 mmol, 75.3% yield) as a light yellow solid.


Preparation of tert-butyl N-(7-bromo-2-ethoxy-1-naphthyl)-N-(2-cyanoallyl)carbamate



embedded image


A mixture of tert-butyl N-(7-bromo-2-ethoxy-1-naphthyl)carbamate (2. g, 5.5 mmol, 1 eq), 2-(bromomethyl)prop-2-enenitrile (956.6 mg, 6.6 mmol, 1.2 eq), KOH (612.8 mg, 10.9 mmol, 2 eq), and TBAI (806.8 mg, 2.2 mmol, 0.4 eq) in DCM (20 mL) was stirred at 25° C. for 1 hour. The reaction mixture was poured into H2O (100 mL) and extracted with DCM (3×50 mL). The organic phase was separated, washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=50:1 to 10:1) to afford the title compound (2. g, 4.6 mmol, 84.9% yield) as a light yellow solid.


Preparation of tert-butyl N-(2-cyanoallyl)-N-[2-ethoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate



embedded image


A mixture of tert-butyl N-(7-bromo-2-ethoxy-1-naphthyl)-N-(2-cyanoallyl)carbamate (2. g, 4.6 mmol, 1 eq), (BPin)2 (5.9 g, 23.2 mmol, 5 eq), AcOK (2.3 g, 23.2 mmol, 5 eq), and Pd(dppf)Cl2 (339.3 mg, 463.7 μmol, 0.1 eq) in dioxane (10 mL) was stirred at 100° C. for 4 hours. LCMS/TLC showed that the reaction was complete. The reaction mixture was filtered and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=40:1 to 10:1) to afford the title compound (1.9 g, 3.9 mmol, 85.6% yield) as a light yellow solid. LC-MS (ES+, m/z): 423.2 [(M-tBu)+].


Preparation of tert-butyl N-(2-cyanoallyl)-N-[2-ethoxy-7-[4-[(l-methyl-4-piperidyl) carbamoyl]pyrimidin-2-yl]-1-naphthyl]carbamate



embedded image


A mixture of tert-butyl N-(2-cyanoallyl)-N-[2-ethoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate (100 mg, 209.04 μmol, 1 eq), 2-chloro-N-(1-methyl-4-piperidyl)pyrimidine-4-carboxamide (85.2 mg, 334.46 μmol, 1.6 eq), Na2CO3 (66.5 mg, 627.11 μmol, 3 eq), and Pd(dppf)Cl2 (15.3 mg, 20.9 μmol, 0.1 eq) in dioxane (2 mL) and H2O (0.5 mL) was degassed and purged with N2 3 times. The mixture was stirred at 110° C. for 2 hr under N2 atmosphere. LCMS showed that the reaction was complete. To the reaction mixture was added 50 mL saturated EDTA and stirred for 1 h, and was then extracted with EtOAc (3×30 mL). The organic phase was separated, washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound tert-butyl N-(2-cyanoallyl)-N-[2-ethoxy-7-[4-[(l-methyl-4-piperidyl)carbamoyl]pyrimidin-2-yl]-1-naphthyl]carbamate (80 mg, 140.18 μmol, 67.06% yield) as a light yellow oil.


Compound 248: Preparation of 2-[8-(2-cyanoallylamino)-7-ethoxy-2-naphthyl]-N-(1-methyl-4-piperidyl)pyrimidine-4-carboxamide



embedded image


To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-ethoxy-7-[4-[(l-methyl-4-piperidyl) carbamoyl]pyrimidin-2-yl]-1-naphthyl]carbamate (70 mg, 122.66 μmol, 1 eq) in DCM (3 mL) was added TFA (1 mL) dropwise. The mixture was stirred at 25° C. for 1 hr. LCMS showed the reaction was completed. The reaction mixture was poured into ice water (30 mL). Then saturated Na2CO3 was slowly added to adjust the solution to pH=8˜9. The mixture was extracted with DCM (3×30 mL). The organic phase was separated, washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound 2-[8-(2-cyanoallylamino)-7-ethoxy-2-naphthyl]-N-(1-methyl-4-piperidyl)pyrimidine-4-carboxamide (11.4 mg, 24.23 μmol, 19.75% yield, 100% purity) as a light yellow solid.


Preparation of tert-butyl N-(2-cyanoallyl)-N-[2-ethoxy-7-[6-(tetrahydropyran-4-ylcarbamoyl)-2-pyridyl]-1-naphthyl]carbamate



embedded image


To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-ethoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate (50 mg, 105 μmol) in dioxane (2 mL) and water (0.4 mL) were added 6-bromo-N-tetrahydropyran-4-yl-pyridine-2-carboxamide (44.8 mg, 157 μmol), Cs2CO3 (102 mg, 315 μmol) and PdCl2dppf (18 mg, 22.06 μmol). The reaction was heated at 100° C. for 30 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 40 min. The solution was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 10-80% EtOAc/Hexane to afford the title compound (56.9 mg, Yield 97%).


Compound 245: Preparation of 6-[8-(2-cyanoallylamino)-7-ethoxy-2-naphthyl]-N-tetrahydropyran-4-yl-pyridine-2-carboxamide



embedded image


To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-ethoxy-7-[6-(tetrahydropyran-4-ylcarbamoyl)-2-pyridyl]-1-naphthyl]carbamate (56.9 mg, 102. μmol) in DCM (2 mL) was added TFA (0.5 mL) at 0° C. The resulting solution was stirred at 0° C. for 1 hour and r.t. for 1 h. The reaction mixture was concentrated in vacuo and the residue was diluted with DCM. The solution was washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by chromatography on silica gel eluting with 10-90% EtOAc/Hexane to afford the title compound (15 mg, Yield 32%). LC-MS (ES+, m/z): 457 [(M+H)+].


Preparation of tert-butyl N-(2-cyanoallyl)-N-[2-ethoxy-7-[6-[[1-(2-methoxyethyl)-4-piperidyl]carbamoyl]-2-pyridyl]-1-naphthyl]carbamate



embedded image


To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-ethoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate (50 mg, 105 μmol) in dioxane (2 mL) and water (0.4 mL) were added 6-bromo-N-[l-(2-methoxyethyl)-4-piperidyl]pyridine-2-carboxamide (53.7 g, 157 mmol), Cs2CO3 (102 mg, 314 μmol) and PdCl2dppf (18 mg, 22.06 μmol). The reaction was heated at 100° C. for 30 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 40 min. The solution was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 0-20% MeOH/EtOAc to afford the title compound (46.4 mg, Yield 72%).


Compound 246: Preparation of 6-[8-(2-cyanoallylamino)-7-ethoxy-2-naphthyl]-N-[l-(2-methoxyethyl)-4-piperidyl]pyridine-2-carboxamide



embedded image


To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-ethoxy-7-[6-[[l-(2-methoxyethyl)-4-piperidyl]carbamoyl]-2-pyridyl]-1-naphthyl]carbamate (46.4 mg, 75.7 μmol) in DCM (2 mL) was added TFA (0.5 mL) at 0° C. The resulting solution was stirred at 0° C. for 1 hour and r.t. for 1 h. The reaction mixture was concentrated in vacuo and the residue was diluted with DCM. The mixture was washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (6 mg, Yield 15%). LC-MS (ES+, m/z): 514 [(M+H)+]


Route 5: General Scheme (Examples 254-256)



embedded image


embedded image


Preparation of 2-bromo-7-(2-methoxyethoxy)naphthalene



embedded image


To a mixture of 7-bromonaphthalen-2-ol (1 g, 4.48 mmol, 1 eq) and 1-bromo-2-meth oxyethane (934.6 mg, 6.72 mmol, 631 μL, 1.5 eq) in DMF (25 mL) were added K2CO3 (1.86 g, 13.45 mmol, 3 eq) and KI (744.2 mg, 4.48 mmol, 1 eq) in one portion at 25° C. under N2. Then, 1-bromo-2-methoxy-ethane (934.6 mg, 6.72 mmol, 631 μL, 1.5 eq) was added to the mixture. The mixture was stirred at 60° C. for 3 hours. The reaction was poured into ice water (100 mL) and extracted with EtOAc (3×100 mL). The combined organic layer was washed with brine (3×50 mL), dried over anhydrous Na2SO4 and concentrated in vacuo to afford the title compound (1 g, crude) as a yellow solid, which was used directly. LC-MS (ES+, m/z): 377.2 [(M+H)+].


Preparation of 7-bromo-2-(2-methoxyethoxy)-1-nitronaphthalene



embedded image


To a mixture of 2-bromo-7-(2-methoxyethoxy)naphthalene (1 g, 3.56 mmol, 1 eq) in Ac2O (10 mL) was added HNO3 (410.9 mg, 3.91 mmol, 293.50 μL, 60% purity, 1.1 eq) in one portion at 0° C. under N2. The mixture was stirred at 0° C. for 1 hour. The reaction was filtered in vacuo to obtain crude product. The residue was washed with PE (3×50 mL) to afford the title compound as a yellow solid. (0.6 g, 1.84 mmol, 52% yield)


Preparation of 7-bromo-2-(2-methoxyethoxy)naphthalen-1-amine



embedded image


To a mixture of 7-bromo-2-(2-methoxyethoxy)-1-nitronaphthalene (0.6 g, 1.84 mmol, 1 eq) in EtOH (8 mL) was added saturated NH4Cl (2 mL). Then the mixture was heated to 70° C. Le (513.7 mg, 9.2 mmol, 5 eq) was added in one portion at 70° C. The mixture was stirred at 70° C. for 1 hour. The reaction was filtered in vacuo and the filtrate was concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=1:0 to 4:1) to afford the title compound as a yellow solid. (0.4 g, 1.35 mmol, 73% yield).


Preparation of tert-butyl N-[7-bromo-2-(2-methoxyethoxy)naphthalen-1-yl]carbamate



embedded image


To a mixture of 7-bromo-2-(2-methoxyethoxy)naphthalen-1-amine (0.4 g, 1.35 mmol, 1 eq) was added (Boc)2O (10 mL) in one portion at 50° C. under N2. The mixture was stirred at 50° C. for 12 hours. LCMS showed that the reaction was complete. N1,N1-dimethyl ethane-1,2-diamine (4 mL) was added to the reaction mixture and stirred at 25° C. for 1 hour. Then the reaction was poured into water (100 mL) and extracted with EtOAc (3×30 mL). The combined organic layer was dried over anhydrous Na2SO4, concentrated in vacuo. The crude product was used directly without further purification to afford the title compound (0.5 g, crude) as a yellow solid. LC-MS (ES+, m/z): 296.0 [(M+H)+].


Preparation of tert-butyl N-[7-bromo-2-(2-methoxyethoxy)naphthalen-1-yl]-N-(2-cyano-2-methylideneethyl)carbamate



embedded image


To a mixture of tert-butyl N-[7-bromo-2-(2-methoxyethoxy)naphthalen-1-yl]carbamate (0.45 g, 1.14 mmol, 1 eq) in DCM (20 mL) were added KOH (127.4 mg, 2.27 mmol, 2 eq) and TBAI (209.7 mg, 567.79 μmol, 0.5 eq) in one portion at 25° C. under N2. Then, 2-(bromomethyl)prop-2-enenitrile (248.7 mg, 1.7 mmol, 1.5 eq) was added, and the mixture was stirred at 25° C. for 1 hour. The reaction was poured into ice water (100 mL) and extracted with DCM (3×50 mL). The combined organic layer was dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=3:1) to afford the title compound (0.45 g, 975.4 μmol, 86% yield) as a colorless oil. LC-MS (ES+, m/z): 361.0.


Preparation of tert-butyl N-(2-cyano-2-methylideneethyl)-N-[2-(2-methoxyethoxy)-7-(4,4,5,5-tetramethyl-1,3-dioxolan-2-yl)naphthalen-1-yl]carbamate



embedded image


To a mixture of tert-butyl N-[7-bromo-2-(2-methoxyethoxy)naphthalen-1-yl]-N-(2-cyano-2-methylideneethyl)carbamate (0.2 g, 433.51 μmol, 1.0 eq) and (BPin)2 (165.1 mg, 650.27 μmol, 1.5 eq) in dioxane (15 mL) were added KOAc (127.6 mg, 1.3 mmol, 3 eq) and Pd(dppf)Cl2 (31.7 mg, 43.35 μmol, 0.1 eq) in one portion at 100° C. under N2. The mixture was stirred at 100° C. for 0.5 hours. The reaction mixture was concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=2:1) to afford the title compound (0.2 g, 393.38 μmol, 91% yield) as a yellow oil.


Preparation of tert-butyl N-(2-cyano-2-methylideneethyl)-N-[2-(2-methoxyethoxy)-7-(4-{[(1r,4r)-4-(dimethylamino)cyclohexyl]carbamoyl}pyrimidin-2-yl)naphthalen-1-yl]carbamate and tert-butyl N-(2-cyano-2-methylideneethyl)-N-[2-(2-methoxyethoxy)-7-(4-{[(1s,4s)-4-(dimethylamino)cyclohexyl]carbamoyl}pyrimidin-2-yl)naphthalen-1-yl]carbamate



embedded image


To a mixture of tert-butyl N-(2-cyanoallyl)-N-[2-(2-methoxyethoxy)-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate (0.2 g, 393.38 μmol, 1 eq) and 2-chloro-N-[4-(dimethylamino)cyclohexyl]pyrimidine-4-carboxamide (222.5 mg, 786.76 μmol, 2 eq) in dioxane (4 mL) and H2O (1 mL). Then added Na2CO3 (125.1 mg, 1.18 mmol, 3 eq) and Pd(dppf)Cl2 (28.8 mg, 39.34 μmol, 0.1 eq). The reaction was heated to 120° C. under N2 and stirred for 1 h. LCMS showed that the reaction was complete. To the reaction mixture was added saturated EDTA (50 mL) and EtOAc (50 mL) at 25° C. Then stirred at 25° C. for 1 h. Then the mixture was extracted with EtOAc (2×50 mL), washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, DCM:MeOH=6:1) to afford tert-butyl N-(2-cyano-2-methylideneethyl)-N-[2-(2-methoxyethoxy)-7-(4-{[(1r,4r)-4-(dimethylamino)cyclohexyl]carbamoyl}pyrimidin-2-yl)naphthalen-1-yl]carbamate (80 mg, 127.23 μmol, 32.34% yield) as a yellow oil. LC-MS (ES+, m/z): 629.3 [(M+H)+]; and tert-butyl N-(2-cyano-2-methylideneethyl)-N-[2-(2-methoxyethoxy)-7-(4-{[(1s,4s)-4-(dimethylamino)cyclohexyl]carbamoyl}pyrimidin-2-yl)naphthalen-1-yl]carbamate (60 mg, 95.43 μmol, 24.26% yield) as a yellow oil. LC-MS (ES+, m/z): 629.3 [(M+H)+].


Compound 255: Preparation of 2-{8-[(2-cyano-2-methylideneethyl)amino]-7-(2-methoxyethoxy)naphthalen-2-yl}-N-[(1r,4r)-4-(dimethylamino)cyclohexyl]pyrimidine-4-carboxamide



embedded image


To a solution of tert-butyl N-(2-cyano-2-methylideneethyl)-N-[2-(2-methoxyethoxy)-7-(4-{[(1r,4r)-4-(dimethylamino)cyclohexyl]carbamoyl}pyrimidin-2-yl)naphthalen-1-yl]carbamate (80 mg, 127.23 μmol, 1 eq) in DCM (2 mL) was added TFA (770 mg, 6.75 mmol, 0.5 mL, 53.08 eq). The mixture was stirred at 25° C. for 1 h. LCMS showed that the reaction was complete. The reaction mixture was adjusted to pH=8 with saturated NaHCO3. The mixture was extracted with DCM (2×30 mL). The combined organic layers were washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound (7.5 mg, 13.41 μmol, 10% yield) as a white solid. LC-MS (ES+, m/z): 529.3 [(M+H)+].


TABLE 3 shows compounds synthesized using method C described in EXAMPLE 3 above.









TABLE 3









embedded image


















LC-MS


Cpd.


(ES+,


No.
Structure
IUPAC
m/z)





231


embedded image


2-({[7-(pyridin-2-yl)-2-(2,2,2- trifluoroethoxy)naphthalen-1- yl]amino}methyl)prop-2-enenitrile
384  





232


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7-(2,2,2- trifluoroethoxy)naphthalen-2-yl}-N-(1- methylpiperidin-4-yl)pyridine-2- carboxamide
524.1





233


embedded image


N-(2-{8-[(2-cyano-2- methylideneethyl)amino]-7-(2,2,2- trifluoroethoxy)naphthalen-2- yl}pyridin-4-yl)acetamide
441  





234


embedded image


2-({[7-(4-aminopyridin-2-yl)-2-(2,2,2- trifluoroethoxy)naphthalen-1- yl]amino}methyl)prop-2-enenitrile
399  





235


embedded image


N-(2-{8-[(2-cyano-2- methylideneethyl)amino]-7-(2,2,2- trifluoroethoxy)naphthalen-2- yl}pyridin-4-yl)-1-methylpiperidine-4- carboxamide
524.1





236


embedded image


N-(2-{8-[(2-cyano-2- methylideneethyl)amino]-7-(2,2,2- trifluoroethoxy)naphthalen-2- yl}pyridin-4-yl)-3- methoxypropanamide
485.2





237


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- (difluoromethoxy)naphthalen-2-yl}-N- {8-methyl-8-azabicyclo[3.2.1]octan-3- yl}pyridine-2-carboxamide
518.3





238


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- (difluoromethoxy)naphthalen-2-yl}-N- [(1r,4r)-4- (dimethylamino)cyclohexyl]pyridine-2- carboxamide
520.3





239


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- (difluoromethoxy)naphthalen-2-yl}-N- [(1s,4s)-4- (dimethylamino)cyclohexyl]pyridine-2- carboxamide
520.3





240


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- (difluoromethoxy)naphthalen-2-yl}-N- (1-methylpiperidin-4-yl)pyridine-2- carboxamide
492.2





241


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7-(propan-2- yloxy)naphthalen-2-yl}-N-(1- methylpiperidin-4-yl)pyridine-2- carboxamide
484.3





242


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7-(propan-2- yloxy)naphthalen-2-yl}-N-(1- methylpiperidin-3-yl)pyridine-2- carboxamide
484.3





243


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7-(propan-2- yloxy)naphthalen-2-yl}-N-[(1- methylpiperidin-4-yl)methyl]pyridine- 2-carboxamide
498.3





244


embedded image


2-{8-[(2-cyano-2- methylideneethyl)amino]-7-(propan-2- yloxy)naphthalen-2-yl}-N-(1- methylpiperidin-4-yl)pyrimidine-4- carboxamide
485.1





245


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- ethoxynaphthalen-2-yl}-N-(oxan-4- yl)pyridine-2-carboxamide
457  





246


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- ethoxynaphthalen-2-yl}-N-[1-(2- methoxyethyl)piperidin-4-yl]pyridine-2- carboxamide
514  





247


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- ethoxynaphthalen-2-yl}-N-[1-(2- hydroxyethyl)piperidin-4-yl]pyridine-2- carboxamide
500  





248


embedded image


2-{8-[(2-cyano-2- methylideneethyl)amino]-7- ethoxynaphthalen-2-yl}-N-(1- methylpiperidin-4-yl)pyrimidine-4- carboxamide
471.3





249


embedded image


2-{8-[(2-cyano-2- methylideneethyl)amino]-7- ethoxynaphthalen-2-yl}-N-[(1r,4r)-4- (dimethylamino)cyclohexyl]pyrimidine- 4-carboxamide
499.3





250


embedded image


2-{8-[(2-cyano-2- methylideneethyl)amino]-7- ethoxynaphthalen-2-yl}-N-[(1s,4s)-4- (dimethylamino)cyclohexyl]pyrimidine- 4-carboxamide
499.3





251


embedded image


4-{8-[(2-cyano-2- methylideneethyl)amino]-7- ethoxynaphthalen-2-yl}-N-(1- methylpiperidin-4-yl)pyrimidine-2- carboxamide
471.3





252


embedded image


4-{8-[(2-cyano-2- methylideneethyl)amino]-7- ethoxynaphthalen-2-yl}-N-[(1r,4r)-4- (dimethylamino)cyclohexyl]pyrimidine- 2-carboxamide
499.4





253


embedded image


4-{8-[(2-cyano-2- methylideneethyl)amino]-7- ethoxynaphthalen-2-yl}-N-[(1s,4s)-4- (dimethylamino)cyclohexyl]pyrimidine- 2-carboxamide
499.3





254


embedded image


2-{8-[(2-cyano-2- methylideneethyl)amino]-7-(2- methoxyethoxy)naphthalen-2-yl}-N-(1- methylpiperidin-4-yl)pyrimidine-4- carboxamide
501.3





255


embedded image


2-{8-[(2-cyano-2- methylideneethyl)amino]-7-(2- methoxyethoxy)naphthalen-2-yl}-N- [(1r,4r)-4- (dimethylamino)cyclohexyl]pyrimidine- 4-carboxamide
529.3





256


embedded image


2-{8-[(2-cyano-2- methylideneethyl)amino]-7-(2- methoxyethoxy)naphthalen-2-yl}-N- [(1s,4s)-4- (dimethylamino)cyclohexyl]pyrimidine- 4-carboxamide
529.3









Example 4: Method D
Route 1: General Scheme



embedded image


embedded image


Route 1
Preparation of 2-bromo-7-methoxynaphthalene



embedded image


To a mixture of 7-bromonaphthalen-2-ol (2 g, 89.66 mmol, 1 eq) in DMF (200 mL) were added K2CO3 (24.78 g, 179.32 mmol, 2 eq) and MeI (15.27 g, 107.59 mmol, 6.70 mL, 1.2 eq) at 15° C. The mixture was stirred at 15° C. for 18 h. TLC showed that the stating material was consumed. The residue was poured into saturated NH4Cl (300 mL), and the aqueous phase was extracted with EtOAc (3×200 mL). The combined organic phase was washed with brine (3×250 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound (2 g, crude) as a white solid.


Preparation of 7-bromo-2-methoxy-1-nitronaphthalene



embedded image


To a solution of 2-bromo-7-methoxynaphthalene (2 g, 84.36 mmol, 1 eq) in Ac2O (200 mL) was added HNO3 (9.75 g, 92.79 mmol, 6.96 mL, 60% purity, 1.1 eq) at 0° C. The mixture was stirred at 0° C. for 4 h. A yellow solid formed. TLC showed that the stating material was consumed. The reaction mixture was filtered. The filter cake was washed with PE (50 mL) and concentrated to afford the title compound (17 g, crude) as a yellow solid. 1H NMR (400 MHz, DMSO-d6) δ=8.28-8.26 (d, J=9.2 Hz, 1H), 8.05-8.02 (d, J=8.8 Hz, 1H), 7.76-7.74 (d, J=9.2 Hz, 1H), 7.69 (s, 1H), 7.69-7.67 (d, J=7.2 Hz, 1H), 4.05 (s, 1H).


Preparation of 7-bromo-1-nitronaphthalen-2-ol



embedded image


To a mixture of 7-bromo-2-methoxy-1-nitronaphthalene (8 g, 28.36 mmol, 1 eq) in DCM (80 mL) was added BBr3 (35.52 g, 141.8 mmol, 13.7 mL, 5 eq) at 0° C. The mixture was stirred at 0° C. for 4 h. TLC showed no starting material remained. The residue was poured into ice-water (150 mL), and the aqueous phase was extracted with DCM (3×100 mL). The combined organic phase was washed with brine (3×100 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound (8 g, crude) as a yellow solid. 1H NMR (400 MHz, DMSO-d6) δ=11.72 (s, 1H), 8.08-8.06 (d, J=9.2 Hz, 1H), 7.96-7.94 (d, 7=8.4 Hz, 1H), 7.75 (s, 1H), 7.62-7.60 (d, 7=8.8 Hz, 1H), 7.38-7.36 (d, 7=9.2 Hz, 1H).


Preparation of 7-bromo-1-nitronaphthalen-2-yltrifluoromethanesulfonate



embedded image


To a mixture of 7-bromo-1-nitronaphthalen-2-ol (850 mg, 3.17 mmol, 1 eq) in THF (10 mL) were added K2CO3 (876.5 mg, 6.34 mmol, 2 eq) and PhNTf2 (1.36 g, 3.81 mmol, 1.2 eq) at 25° C. The mixture was stirred at 70° C. for 1 h. The residue was poured into water (50 mL), and the aqueous phase was extracted with EtOAc (3×20 mL). The combined organic phase was washed with brine (3×20 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by silica gel chromatography (PE:EtOAc=1/0, 10:1) to afford the title compound (1.3 g, 2.92 mmol, 92.22% yield, 90% purity) as a yellow solid. 1H NMR (400 MHz, DMSO-A) 5=8.56-8.54 (d, 7=9.2 Hz, 1H), 8.26-8.23 (d, 7=8.8 Hz, 1H), 8.20 (s, 1H), 8.02-7.9 (d, 7=8.4 Hz, 1H), 7.94-7.91 (d, 7=9.2 Hz, 1H).


Preparation of 7-bromo-2-methyl-1-nitronaphthalene



embedded image


To a mixture of 7-bromo-1-nitronaphthalen-2-yl trifluoromethanesulfonate (1 g, 2.37 mmol, 1 eq) in dioxane (10 mL) were added trimethyl boroxine (894.2 mg, 3.56 mmol, 995.72 μL, 1.5 eq), Cs2CO3 (1.55 g, 4.75 mmol, 2 eq), and Pd(dppf)Cl2 (173.7 mg, 237.43 μmol, 0.1 eq) at 25° C. under N2. The mixture was stirred at 50° C. for 1.5 h. The residue was poured into saturated EDTA (60 mL) and stirred for 60 min. The aqueous phase was extracted with EtOAc (3×30 mL). The combined organic phase was washed with brine (3×30 mL×3), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by silica gel chromatography (PE:EtOAc=1:0, 20:1) to afford the title compound (330 mg, 1.24 mmol, 52.23% yield) as a light yellow solid.


Preparation of 7-bromo-2-methylnaphthalen-1-amine



embedded image


To a solution of 7-bromo-2-methyl-1-nitronaphthalene (370 mg, 1.39 mmol, 1 eq) in EtOH (5 mL) and saturated NH4Cl (0.5 mL) was added Fe (776.5 mg, 13.91 mmol, 10 eq) at 70° C. The mixture was stirred at 70° C. for 1 h. Upon completion of the reaction as indicated by LCMS and TLC. The residue was poured into water (40 mL). The aqueous phase was filtered with diatomite, and extracted with EtOAc (3×20 mL). The combined organic phase was washed with brine (3×20 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by silica gel chromatography (PE:EtOAc=1/0, 10:1) to afford the title compound (300 mg, 1.21 mmol, 86.8% yield, 95% purity) as a red solid. LC-MS (ES+, m/z): 236.0, 238.0 [(M+H)+].


Preparation of tert-butyl N-(7-bromo-2-methylnaphthalen-1-yl)carbamate



embedded image


A solution of 7-bromo-2-methylnaphthalen-1-amine (280 mg, 1.13 mmol, 1 eq) dissolved in Boc2O (10 mL) was prepared at 25° C. under N2. The mixture was stirred at 110° C. for 3 h. TLC showed no starting material remained. The mixture was concentrated in vacuo. The residue was purified by silica gel chromatography (PE:EtOAc=1/0, 10:1) to afford the title compound (360 mg, 910.11 μmol, 80.8% yield, 85% purity) and di-Boc product (360 mg, 107.26 μmol, 9.52% yield, 13% purity) as a white solid. LC-MS (ES+, m/z): 279.9, 281.9 [(M+H)+].


Preparation of tert-butyl (7-bromo-2-methylnaphthalen-1-yl)(2˜cyanoallyl)carbamate



embedded image


To a mixture of ten-butyl N-(7-bromo-2-methylnaphthalen-1-yl)carbamate (240 mg, 713.81 μmol, 1 eq) in DCM (10 mL) were added KOH (80.1 mg, 1.43 mmol, 2 eq), TBAI (131.8 mg, 356.91 μmol, 0.5 eq), and 2-(bromomethyl)prop-2-enenitrile (114.6 mg, 785.19 μmol, 1.1 eq) at 25° C. under N2. The mixture was stirred at 25° C. for 1 h. The residue was poured into H2O (30 mL). The aqueous phase was extracted with DCM (3×15 mL). The combined organic phase was washed with brine (3×15 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by silica gel chromatography (PE:EtOAc=1:0, 10:1) to afford the title compound (260 mg, 637.58 μmol, 89.32% yield, 98.407% purity) as a white solid. LC-MS (ES+, m/z): 345.0, 347.0 [(M+H)+]


Preparation of tert-butyl N-(2-cyano-2-methylideneethyl)-N-[2-methyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-yl]carbamate



embedded image


To a mixture of ten-butyl (7-bromo-2-methylnaphthalen-1-yl)(2-cyanoallyl)carbamate (210 mg, 514.97 μmol, 1 eq) in dioxane (10 mL) were added Pin2B2 (392.3 mg, 1.54 mmol, 3 eq), KOAc (252.7 mg, 2.57 mmol, 5 eq), and a Pd(dppf)Cl2 (37.7 mg, 51.5 μmol, 0.1 eq) at 25° C. under N2. The mixture was stirred at 100° C. for 2 h. Upon completion of the reaction as indicated by LCMS and TLC. The residue was poured into saturated EDTA (30 mL) and stirred for 60 min. The aqueous phase was extracted with EtOAc (3×30 mL). The combined organic phase was washed with brine (3×30 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by silica gel chromatography (PE:EtOAc=1:0, 10:1). The product was purified by prep-TLC to afford the title compound (180 mg, 361.32 μmol, 70.2% yield, 90% purity) as a colourless oil. LC-MS (ES+, m/z): 393.2 [(M+H)+], 1H NMR (400 MHz, DMSO-A) 5=8.11 (s, 1H), 7.91-7.83 (m, 2H), 7.70-7.68 (d, J=8.4 Hz, 1H), 7.50-7.48 (d, J=8.4 Hz, 1H), 6.03 (s, 1H), 5.87-5.75 (m, 1H), 4.62-4.49 (d, J=14.8, 1H), 4.26-4.19 (d, J=7.6, 1H), 2.38-2.36 (d, 3H), 1.13 (d, 12H), 1.18-1.07 (d, 9H).


Preparation of tert-butyl N-(2-cyano-2-methylideneethyl)-N-[7-(4-acetamido pyridin-2-yl)-2-methylnaphthalen-1-yl]carbamate



embedded image


To a mixture of N-(2-bromopyridin-4-yl)acetamide (41.1 mg, 240.88 μmol, 2 eq) and ten-butyl N-(2-cyano-2-methylideneethyl)-N-[2-methyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) naphthalen-1-yl]carbamate (60 mg, 120.44 μmol, 1 eq) in dioxane (3 mL), H2O (0.75 mL) were added Na2CO3 (25.5 mg, 240.88 μmol, 2 eq), Pd(dppf)Cl2 (8.8 mg, 12.04 μmol, 0.1 eq) at 25° C. The mixture was stirred at 110° C. for 1.5 h. TLC showed no starting material remained. The residue was poured into saturated EDTA (30 mL) and stirred for 60 min. The aqueous phase was extracted with EtOAc (3×30 mL). The combined organic phase was washed with brine (3×30 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC to afford the title compound (50 mg, 98.57 μmol, 81.8% yield, 90% purity) as a colorless oil.


Compound 263: Preparation of N-(2-{8-[(2-cyano-2-methylideneethyl)amino]-7-methylnaphthalen-2-yl}pyridin-4-yl) acetamide



embedded image


To a mixture of tert-butyl N-(2-cyano-2-methylideneethyl)-N-[7-(4-acetamidopyridin-2-yl)-2-methylnaphthalen-1-yl]carbamate (50 mg, 98.57 μmol, 1 eq) in DCM (4 mL) was added TFA (1 mL) at 25° C. under N2. The mixture was stirred at 25° C. for 1 h. The mixture was poured into saturated Na2CO3 (20 mL), and the aqueous phase was extracted with EtOAc (3×30 mL). The combined organic phase was washed with brine (3×30 mL), dried with anhydrous Na2SO4. Then concentrated in vacuo. The residue was purified by prep-HPLC to afford the title compound (4.1 mg, 11.38 μmol, 11.55% yield, 98.967% purity) as a light yellow solid. LC-MS (ES+, m/z): 356.1 [(M+H)+].


Route 2: General Scheme



embedded image


embedded image


embedded image


Preparation of tert-butyl N-(7-hydroxy-1-naphthyl)carbamate



embedded image


A mixture of 8-aminonaphthalen-2-ol (1 g, 62.82 mmol, 1 eq) and Boc2O (15.08 g, 69.1 mmol, 15.88 mL, 1.1 eq) in dioxane (150 mL) was stirred at 100° C. for 7 hours. The reaction was concentrated directly to give crude material. The residue was purified by column chromatography (SiO2, PE:EtOAc=6:1 to 4:1) to afford the title compound (12 g, 46.28 mmol, 73.67% yield) as an off-white solid.


Preparation of 8-(tert-butoxycarbonylamino)-2-naphthyl]trifluoromethanesulfonate



embedded image


To a mixture of tert-butyl N-(7-hydroxy-1-naphthyl)carbamate (1 g, 38.57 mmol, 1 eq) in THF (150 mL) were added K2CO3 (10.66 g, 77.13 mmol, 2 eq) and 1,1,1-trifluoro-N-phenyl-N-(trifluoromethylsulfonyl)methanesulfonamide (16.53 g, 46.28 mmol, 1.2 eq) in one portion, and the reaction was stirred at 60° C. for 3 hours. The reaction was diluted with 200 mL water, and extracted with EtOAc (2×100 mL). The combined organic layer was washed with brine (2×100 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 6:1) to afford the title compound (14 g, 35.77 mmol, 92.76% yield) as a pink solid


Preparation of tert-butyl N-[7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate



embedded image


To a mixture of [8-(tert-butoxycarbonylamino)-2-naphthyl]trifluoro methane sulfonate (14 g, 35.77 mmol, 1 eq) and 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (18.17 g, 71.55 mmol, 2 eq) in dioxane (200 mL) were added KOAc (10.53 g, 107.32 mmol, 3 eq) and Pd(dppf)Cl2 (2.09 g, 2.86 mmol, 0.08 eq) in one portion. The reaction was stirred at 120° C. for 6 hours under N2. The reaction was diluted with 100 mL water, extracted with EtOAc (2×100 mL), and the combined organic layer was washed with brine (2×100 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=8/1 to 4:1) to afford the title compound (9.4 g, 25.46 mmol, 71.16% yield) as an off-white solid. LC-MS (ES+, m/z): 314.1 [(M+H)+].


Preparation of methyl 6-[8-(tert-butoxycarbonylamino)-2-naphthyl]pyridine-2-carboxylate



embedded image


To a mixture of tert-butyl N-[7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate (9.4 g, 25.46 mmol, 1 eq) and methyl 6-bromopyridine-2-carboxylate (6.05 g, 28 mmol, 1.1 eq) in DME (100 mL) and H2O (25 mL) were added CsF (11.6 g, 76.37 mmol, 2.82 mL, 3 eq), Pd(dppf)Cl2 (1.86 g, 2.55 mmol, 0.10 eq) in one portion, and the reaction mixture was stirred at 100° C. for 1.5 hours. TLC and LCMS showed that the reaction was complete. The reaction mixture was poured into saturated EDTA (200 mL) and stirred at 25° C. for 1 h. Then. The mixture was extracted with EtOAc (2×100 mL), washed with brine (2×100 mL), dried over Na2SO4 filtered, and concentrated in vacuo to give a crude residue. The crude material was purified by column chromatography (SiO2, PE:EtOAc=6:1 to 1/1) to afford the title compound (5.5 g, 14.53 mmol, 57.09% yield) as a white solid. LC-MS (ES+, m/z): 379.2 [(M+H)+].


Preparation of methyl 6-(8-amino-2-naphthyl)pyridine-2-carboxylate



embedded image


To a mixture of methyl 6-[8-(tert-butoxycarbonylamino)-2-naphthyl]pyridine-2-carboxylate (5.5 g, 14.53 mmol, 1 eq) in DCM (80 mL) was added TFA (26.06 g, 228.56 mmol, 16 mL, 15 eq) in one portion, and the reaction mixture was stirred at 25° C. for 1 hours. The reaction mixture was adjusted to pH=8 with saturated aq. Na2CO3. The mixture was extracted with EtOAc (2×100 mL). The combined organic layer was washed with brine (2×100 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=6:1 to 4:1) to afford the title compound (3.5 g, 12.58 mmol, 86.53% yield) as a yellow solid. LC-MS (ES+, m/z): 279.1 [(M+H)+].


Preparation of methyl 6-(8-amino-7-chloro-2-naphthyl)pyridine-2-carboxylate



embedded image


To a mixture of methyl 6-(8-amino-2-naphthyl)pyridine-2-carboxylate (3 g, 10.78 mmol, 1 eq) in ACN (8 mL) was added NCS (1.15 g, 8.62 mmol, 0.8 eq) in one portion under N2. The mixture was stirred at 25° C. for 12 hours. LCMS showed that the reaction was complete. The reaction was diluted with 100 mL water and extracted with EtOAc (2×50 mL). The combined organic layer was washed with brine (2×50 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=8/1 to 4:1) to afford the title compound (1.9 g, 6.08 mmol, 56.36% yield) as an off-white solid and the byproduct (1. g, 3.2 mmol, 29.66% yield) as a yellow solid. LC-MS (ES+, m/z): 313.0 [(M+H)+].


Preparation of methyl 6-[8-[bis(tert-butoxycarbonyl)amino]-7-chloro-2-naphthyl]pyridine-2-carboxylate



embedded image


To a mixture of methyl 6-(8-amino-7-chloro-2-naphthyl)pyridine-2-carboxylate (900 mg, 2.88 mmol, 1 eq) in Boc2O (14.25 g, 65.29 mmol, 15 mL, 22.69 eq) was stirred at 125° C. for 4 hours. The reaction was concentrated directly. The crude residue was purified by column chromatography (SiO2, PE:EtOAc=8/1 to 6:1) to obtain 1.2 g of the desired product (˜80% purity). Then purified by prep-HPLC (TFA condition) to afford the title compound (900 mg, 1.75 mmol, 60.97% yield) as an off-white solid.


Preparation of methyl 6-[8-(tert-butoxycarbonylamino)-7-chloro-2-naphthyl]pyridine-2-carboxylate



embedded image


To a mixture of methyl 6-[8-[bis(tert-butoxycarbonyl)amino]-7-chloro-2-naphthyl]pyridine-2-carboxylate (700 mg, 1.36 mmol, 1 eq) in THF (10 mL), MeOH (5 mL) was added K2CO3 (188.6 mg, 1.36 mmol, 1 eq) in one portion under N2. The mixture was stirred at 25° C. for 3 hours. The reaction mixture was filtered to give filtrate and concentrated in vacuo to afford the title compound (550 mg, crude) as an off-white solid.


To a mixture of methyl 6-[8-[bis(tert-butoxycarbonyl)amino]-7-chloro-2-naphthyl]pyridine-2-carboxylate (350 mg, 682.29 μmol, 1 eq) in THF (5 mL) and MeOH (2.5 mL) was added K2CO3 (94.3 mg, 682.29 μmol, 1 eq) in one portion under N2. The mixture was stirred at 25° C. for 3 hours. The reaction mixture was filtered to give filtrate and concentrated in vacuo to give crude to afford the title compound (200 mg, 484.42 μmol, 71.00% yield) as an off-white solid.


Preparation of methyl 6-[8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-chloro-2-naphthyl]pyridine-2-carboxylate



embedded image


To a mixture of methyl 6-[8-(tert-butoxycarbonylamino)-7-chloro-2-naphthyl]pyridine-2-carboxylate (150 mg, 363.31 μmol, 1 eq) in DCM (4 mL) were added KOH (40.8 mg, 726.63 μmol, 2 eq), TBAI (40.3 mg, 108.99 μmol, 0.3 eq) and 2-(bromomethyl)prop-2-enenitrile (68.9 mg, 472.31 μmol, 1.3 eq) in one portion under N2. The mixture was stirred at 25° C. for 60 min. TLC showed that ˜40% of the desired product was formed. The reaction was stirred for another 1 hour. TLC showed ˜60% desired product. The reaction was diluted with 30 mL water and extracted with EtOAc (2×30 mL). The combined organic layer was washed with brine (2×25 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC twice (SiO2, PE:EtOAc=4:1) to afford the title compound (90 mg, 188.31 μmol, 51.8% yield) as a yellow solid.


Preparation of methyl 6-[7-chloro-8-(2-cyanoallylamino)-2-naphthyl]pyridine-2-carboxylate



embedded image


To a mixture of methyl 6-[8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-chloro-2-naphthyl]pyridine-2-carboxylate (90 mg, 188.7 μmol, 1 eq) in DCM (3 mL) was added TFA (1.54 g, 13.51 mmol, 1 mL, 71.57 eq) in one portion. The mixture was stirred at 25° C. for 60 min. The reaction was diluted with 20 mL water and extracted with EtOAc (2×20 mL). The combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=4:1) to afford the title compound (60 mg, 158.8 μmol, 84.16% yield) as a yellow solid.


Preparation of 6-[7-chloro-8-(2-cyanoallylamino)-2-naphthyl]pyridine-2-carboxylic acid



embedded image


To a mixture of methyl 6-[7-chloro-8-(2-cyanoallylamino)-2-naphthyl]pyridine-2-carboxylate (60 mg, 158.8 μmol, 1 eq) in THF (4 mL) H2O (1 mL) was added LiOH·H2O (66.6 mg, 1.59 mmol, 10 eq) in one portion. The mixture was stirred at 25° C. for 60 min. The reaction mixture was adjusted to pH=6 with saturated citric acid and extracted with EtOAc (2×20 mL). The combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo to afford the title compound (50 mg, crude) as a yellow gum.


Compound 258: Preparation of 6-[7-chloro-8-(2-cyanoallylamino)-2-naphthyl]-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide



embedded image


To a mixture of 6-[7-chloro-8-(2-cyanoallylamino)-2-naphthyl]pyridine-2-carboxylic acid (50 mg, 137.44 μmol, 1 eq) and 1-methylpiperidin-4-amine (31.4 mg, 274.88 μmol, 2 eq) in DMF (5 mL) were added Et3N (41.7 mg, 412.32 μmol, 57.39 μL, 3 eq), T3P (131.2 mg, 206.16 μmol, 122.61 μL, 50% purity, 1.5 eq) in one portion, and the reaction was stirred at 25° C. for 1 hours. LCMS showed that the reaction was complete. The reaction was diluted with 30 mL water and extracted with EtOAc (2×30 mL). The combined organic layer was washed with brine (2×25 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford the title compound 6-[7-chloro-8-(2-cyanoallylamino)-2-naphthyl]-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (11.8 mg, 25.65 μmol, 18.67% yield, 100.0% purity) as an off-white solid. LC-MS (ES+, m/z): 286.1 [(M+H)+].


TABLE 4 shows compounds synthesized using methods described in EXAMPLE 4 described above.









TABLE 4









embedded image















Cpd.


LC-MS


No.
Structure
IUPAC
(ES+, m/z)





257


embedded image


2-({[2-chloro-7-(pyridin-2- yl)naphthalen-1- yl]amino}methyl)prop-2-enenitrile
319.9 





258


embedded image


6-{7-chloro-8-[(2-cyano-2- methylideneethyl)amino]naphthalen- 2-yl}-N-(1-methylpiperidin-4- yl)pyridine-2-carboxamide
460   





259


embedded image


6-{7-chloro-8-[(2-cyano-2- methylideneethyl)amino]naphthalen- 2-yl}-N-[(1-methylpiperidin-4- yl)methyl]pyridine-2-carboxamide
475   





260


embedded image


6-{7-chloro-8-[(2-cyano-2- methylideneethyl)amino]naphthalen- 2-yl}-N-methylpyridine-2- carboxamide
377   





261


embedded image


6-{7-chloro-8-[(2-cyano-2- methylideneethyl)amino]naphthalen- 2-yl}-N-[2-(morpholin-4- yl)ethyl]pyridine-2-carboxamide
476   





262


embedded image


2-({[2-methyl-7-(pyridin-2- yl)naphthalen-1- yl]amino}methyl)prop-2-enenitrile
299.377





263


embedded image


N-(2-{8-[(2-cyano-2- methylideneethyl)amino]-7- methylnaphthalen-2-yl}pyridin-4- yl)acetamide
356.429









Example 5: Method E
Route 1: General Scheme



embedded image


Step 1) Preparation of 2-methoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-amine



embedded image


To a solution of 7-bromo-2-methoxy-naphthalen-1-amine (1 g, 39.67 mmol, 1 eq) and 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (30.22 g, 119 mmol, 3 eq) in dioxane (150 mL) were added Pd(dppf)Cl2 (1.45 g, 1.98 mmol, 0.05 eq) and KOAc (11.68 g, 119 mmol, 3 eq). Then the reaction was stirred at 120° C. for 1 h under N2 atmosphere. The reaction mixture was filtered and the filtrated cake was washed with DCM (3×80 mL). The combined filtrate was concentrated. The residue was purified by silica gel chromatography (PE:EtOAc=5/1) and washed with 100 mL PE to afford the title compound (13.8 g, 93.03% yield) as a light yellow solid.


Step 2) Preparation of 2-methoxy-7-(2-pyridyl)naphthalen-1-amine



embedded image


To a solution of 2-methoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-amine (5 g, 16.71 mmol, 1 eq) and 2-bromopyridine (3.96 g, 25.07 mmol, 2.39 mL, 1.5 eq) in dioxane (40 mL) and H2O (10 mL) were added Cs2CO3 (16.34 g, 50.14 mmol, 3 eq) and Pd(dppf)Cl2 (122.3 mg, 167.13 μmol, 0.01 eq). The reaction was stirred at 120° C. for 3 h under N2 atmosphere. The reaction mixture was poured into saturated EDTA (200 mL) and stirred at 25° C. for 1 h. Then the mixture was extracted with EtOAc (3×100 mL). The combined organic layer was washed with brine (3×100 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by silica gel chromatography (PE:EtOAc/DCM=3:1/1) to afford the title compound (3.6 g, 86.06% yield) as a yellow oil.


Step 3) Preparation of 1-amino-7-(2-pyridyl)naphthalen-2-ol



embedded image


To a solution of 2-methoxy-7-(2-pyridyl)naphthalen-1-amine (3. g, 11.99 mmol, 1 eq) in DCM (30 mL) was added BBr3 (46.84 g, 186.98 mmol, 18.02 mL, 15.6 eq) at 0° C. Then the reaction was stirred at 20° C. for 6 h. The reaction was poured into ice-water (300 mL) and adjusted to pH=8 with solid Na2CO3. The reaction was filtered, and the filter cake was washed with water (50 mL) and concentrated to afford the title compound (2. g) as a brown solid, which was used directly in the next step. The filtrate was extracted with DCM (3×50 mL). The combined organic layer was washed with brine (3×40 mL), dried over Na2SO4, filtered, and concentrated to give 600 mg of crude product. Total yield of crude product was 92%.


Step 4) Preparation of tert-butyl N-[2-hydroxy-7-(2-pyridyl)-1-naphthyl]carbamate



embedded image


To a solution of 1-amino-7-(2-pyridyl)naphthalen-2-ol (2. g, 8.46 mmol, 1 eq) in MeOH (20 mL) was added Boc2O (36.95 g, 169.3 mmol, 38.89 mL, 20 eq) at 15° C. The reaction was stirred at 85° C. for 1 h. TLC showed the desired product. 20 mL of N,N-dimethylethane-1,2-diamine was added, and the reaction was stirred at 20° C. for 18 h. LCMS showed 70% of desired compound. The reaction was quenched with water (50 mL) and extracted with DCM (3×30 mL). The combined organic layer was washed with water (3×20 mL) and brine (3×20 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by silica gel chromatography (PE:EtOAc=1/1) to afford the title compound (2.3 g, 68.66% yield) as a yellow solid.


Step 5) Preparation of [1-(tert-butoxycarbonylamino)-7-(2-pyridyl)-2-naphthyl]trifluoromethane sulfonate



embedded image


To a solution of tert-butyl N-[2-hydroxy-7-(2-pyridyl)-1-naphthyl]carbamate (1.3 g, 3.28 mmol, 1 eq) in THF (20 mL) were added K2CO3 (1.3 g, 9.41 mmol, 2.86 eq) and PhNTf2 (1.52 g, 4.25 mmol, 1.30 eq). The reaction was stirred at 70° C. for 2 h. The reaction mixture was concentrated to remove the THF. The residue was quenched with water (100 mL) at 0° C. and extracted with EtOAc (3×30 mL). The combined organic layer was washed with water (3×30 mL) and brine (3×30 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by silica gel chromatography (PE:EtOAc=4:1) to afford the title compound (1.3 g, 71% yield) as a yellow oil.


Step 6) Preparation of methyl 1-(tert-butoxycarbonylamino)-7-(2-pyridyl)naphthalene-2-carboxylate



embedded image


To a sealed tube were added [1-(tert-butoxycarbonylamino)-7-(2-pyridyl)-2-naphthyl]trifluoromethane-sulfonate (570 mg, 973.43 μmol, 1 eq), Pd(dppf)Cl2 (71.2 mg, 97.34 μmol, 0.1 eq) and TEA (610.7 mg, 6.03 mmol, 840.00 μL, 6.20 eq) in DMF (4 mL) and MeOH (4 mL). The reaction was stirred at 60° C. for 20 h under CO (50 Psi) atmosphere. LCMS showed 80% desired compound. The reaction mixture was concentrated to remove MeOH. Then 50 mL Saturated EDTA and 50 mL DCM were added. The mixture was stirred at 20° C. for 1 h. The mixture was extracted with DCM (3×30 mL). The combined organic layer was washed with water (3×30 mL) and brine (3×30 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by silica gel chromatography (PE:EtOAc=4:1) to afford the title compound (300 mg, 65.15% yield) as a yellow solid.


Step 7) Preparation of methyl 1-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-(2-pyridyl)naphthalene-2-carboxylate



embedded image


To a solution of methyl 1-(tert-butoxycarbonylamino)-7-(2-pyridyl)naphthalene-2-carboxylate (270 mg, 713.49 μmol, 1 eq) in DMF (5 mL) were added K2CO3 (247.5 mg, 1.79 mmol, 2.51 eq) and 2-(bromomethyl)prop-2-enenitrile (192.9 mg, 1.32 mmol, 1.85 eq) in 0.5 mL of DMF. The reaction mixture was stirred at 80° C. for 2 h. A solution of 2-(bromomethyl)prop-2-enenitrile (52.1 mg, 356.75 μmol, 0.5 eq) in 0.5 L DMF was added, and the reaction was heated at 80° C. for another 1 h. TLC showed 80% desired compound. The reaction was poured into saturated NH4Cl (50 mL) at 0° C. and extracted with EtOAc (3×30 mL). The combined organic layer was washed with water (3×30 mL) and brine (3×30 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by silica gel chromatography (PE:EtOAc=4:1) to afford the title compound (250 mg, 79.01% yield) as a light yellow oil.


Step 8) Preparation of 1-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-(2-pyridyl)naphthalene-2-carboxylic acid



embedded image


To a solution of methyl 1-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-(2-pyridyl)naphthalene-2-carboxylate (170 mg, 383.32 μmol, 1 eq) in THF (4 mL) and H2O (1 mL) was added LiOH·H2O (170 mg, 4.05 mmol, 10.57 eq). Then the reaction was stirred at 20° C. for 18 h and at 50° C. for 2 h. The reaction mixture was adjusted pH=5 with 1M HCl and extracted with DCM (3×30 mL). The combined organic layer was washed with brine (3×30 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by prep-TLC (SiO2, DCM/MeOH=18/1, Rf=0.4) to afford the title compound (120 mg, 72.89% yield) as a light yellow solid.


Step 9) Preparation of tert-butyl N-[2-carbamoyl-7-(2-pyridyl)-1-naphthyl]-N-(2-cyanoallyl) carbamate



embedded image


To a solution of 1-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-(2-pyridyl)naphthalene-2-carboxylic acid (100 mg, 232.85 μmol, 1 eq) in DCM (6 mL) were added TEA (203.6 mg, 2.01 mmol, 280.00 μL, 8.64 eq) and HATU (200 mg, 526 μmol, 2.26 eq). Then, NH3 (3.57 mL, 61.35 eq) (4M in THF) was added at 0° C. The reaction mixture was stirred at 20° C. for 1 h. The reaction was quenched with water (30 mL) at 0° C. and extracted with DCM (3×10 mL). The combined organic layer was washed with brine (3×10 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by prep-TLC (SiO2, DCM/MeOH=20/1) to afford the title compound (69 mg, 69.16% yield) as a light yellow solid.


Step 10) Compound 265: Preparation of 1-(2-cyanoallylamino)-7-(2-pyridyl)naphthalene-2-carboxamide

To a solution of tert-butyl N-[2-carbamoyl-7-(2-pyridyl)-1-naphthyl]-N-(2-cyanoallyl)carbamate (50 mg, 116.69 μmol, 1 eq) in DCM (3 mL) was added TFA (0.6 mL). The reaction mixture was stirred at 20° C. for 1 h. The reaction was poured into Saturated NaHCO3 (30 mL) and extracted with DCM (4×10 mL). The combined organic layer was washed with brine (3×10 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by prep-TLC (SiO2, DCM/MeOH=18/1, Rf=0.6) to afford the title compound (20 mg, 52.20% yield) as a light yellow solid. LC-MS (ES+, m/z): 329.1 [(M+H)+]


Route 2: General Scheme



embedded image


Step 1) Preparation of 2-methoxy-7-(3-pyridyl)naphthalen-1-amine



embedded image


To a solution of 7-bromo-2-methoxy-naphthalen-1-amine (5. g, 19.83 mmol, 1 eq) and 3-pyridylboronic acid (3.66 g, 29.75 mmol, 1.5 eq) in dioxane (60 mL) and H2O (15 mL) were added Na2CO3 (6.31 g, 59.5 mmol, 3 eq) and Pd(dppf)Cl2 (1.45 g, 1.98 mmol, 0.1 eq). The reaction mixture was stirred at 120° C. for 1 h under N2 atmosphere. TLC showed that the reaction was complete. 100 mL of EtOAc and 200 mL of saturated EDTA were added. The reaction mixture was stirred at 15° C. for 1 h and extracted with EtOAc (3×200 mL). The combined organic layer was washed with brine (3×100 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by silica gel chromatography (PE/EtOAc=1/1 to 100% EtOAc) to afford the title compound (4.5 g, 90.65% yield) as a yellow solid.


Step 2) Preparation of 1-amino-7-(3-pyridyl)naphthalen-2-ol



embedded image


To a solution of 2-methoxy-7-(3-pyridyl)naphthalen-1-amine (2.8 g, 11.19 mmol, 1 eq) in DCM (28 mL) was added BBr3 (14.56 g, 58.12 mmol, 5.60 mL, 5.20 eq) in 1 mL DCM at 0° C. The reaction mixture was stirred at 15° C. for 3 h. The reaction mixture was poured into water (200 mL). The solution was adjusted to pH=8 with solid NaHCO3. A yellow solid formed, and the precipitate was filtered. The filter cake was washed with water (3×150 mL) and dried to afford the title compound (2.5 g, 94% yield) as a yellow solid.


Step 3) Preparation of tert-butyl N-[2-hydroxy-7-(3-pyridyl)-1-naphthyl]carbamate



embedded image


To a solution of 1-amino-7-(3-pyridyl)naphthalen-2-ol (2.2 g, 8.38 mmol, 1 eq) in MeOH (146 mL) was added Boc2O (36.58 g, 167.61 mmol, 38.50 mL, 20 eq). The reaction mixture was stirred at 85° C. for 1.0 h. LCMS showed the desired product. 14.6 mL of N,N-dimethylethane-1,2-diamine was added, and the reaction was stirred at 15° C. for Id. The reaction was concentrated. The residue was diluted with 20 mL of DCM, washed with water (3×40 mL) and brine (3×40 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by silica gel chromatography (PE/EtOAc/DCM=50/50/20) to afford the title compound (2.1 g, 74.5% yield) as a light yellow solid.


Step 4) Preparation of [l-(tert-butoxycarbonylamino)-7-(3-pyridyl)-2-naphthyl]trifluoromethane sulfonate



embedded image


To a solution of tert-butyl N-[2-hydroxy-7-(3-pyridyl)-1-naphthyl]carbamate (1.86 g, 5.53 mmol, 1 eq) and 1,1,1-trifluoro-N-phenyl-N-(trifluoromethylsulfonyl) methanesulfonamide (2.37 g, 6.64 mmol, 1.2 eq) in THF (30 mL) was added K2CO3 (1.53 g, 11.06 mmol, 2 eq). The reaction mixture was stirred at 70° C. for 2 h. The reaction was quenched with water (100 mL) at 0° C. and extracted with EtOAc (3×50 mL). The combined organic layer was washed with water (3×50 mL) and brine (3×50 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by silica gel chromatography (DCM/MeOH=20/1) to afford the title compound (2.15 g, 83% yield) as a yellow oil.


Step 5) Preparation of methyl 1-(tert-butoxycarbonylamino)-7-(3-pyridyl)naphthalene-2-carboxylate



embedded image


To a solution of [1-(tert-butoxycarbonylamino)-7-(3-pyridyl)-2-naphthyl]trifluoromethane-sulfonate (1. g, 2.13 mmol, 1 eq) in DMF (8.3 mL) and MeOH (8.3 mL) were added TEA (1.08 g, 10.67 mmol, 1.49 mL, 5 eq) and Pd(dppf)Cl2 (156.2 mg, 213.47 μmol, 0.1 eq). The reaction mixture was stirred at 60° C. for 24 h under CO (50 Psi) atmosphere. The reaction was concentrated. 50 mL of Saturated EDTA and 20 mL of DCM were added to the mixture. The reaction mixture was stirred at 15° C. for 1 h. Then. The mixture was extracted with DCM/MeOH=10:1 (3×30 mL). The combined organic layer was washed with water (3×30 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by silica gel chromatography (DCM/MeOH=20/1) to afford the title compound (640 mg, 79.2% yield) as a light yellow solid.


Step 6) Preparation of methyl 1-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-(3-pyridyl)naphthalene-2-carboxylate



embedded image


To a solution of methyl 1-(tert-butoxycarbonylamino)-7-(3-pyridyl)naphthalene-2-carboxylate (640 mg, 1.69 mmol, 1 eq) in DMF (10 mL) were added K2CO3 (640 mg, 4.63 mmol, 2.74 eq) and 2-(bromomethyl)prop-2-enenitrile (314 mg, 2.15 mmol, 1.27 eq) in 2 mL of DMF. The reaction mixture was stirred at 15° C. for 2 h. Then, a solution of 2-(bromomethyl)prop-2-enenitrile (170 mg, 1.16 mmol, 0.69 eq) in 0.5 mL of DMF was added, and the reaction was stirred at 15° C. for another 2 h. The reaction was poured into Saturated NH4Cl (50 mL) at 0° C. and the mixture was extracted with EtOAc (3×30 mL). The combined organic layer was washed with water (3×30 mL) and brine (3×10 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by prep-TLC (SiO2, PE/EtOAc=1/1) to afford the title compound (300 mg, 40% yield) as a light yellow oil. Methyl 1-(tert-butoxycarbonylamino)-7-(3-pyridyl)naphthalene-2-carboxylate (180 mg) was recovered.


Step 7) Preparation of 1-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-(3-pyridyl)naphthalene-2-carboxylic acid



embedded image


To a solution of methyl 1-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-(3-pyridyl)naphthalene-2-carboxylate (260 mg, 586.25 μmol, 1 eq) in THF (11.2 mL) and H2O (2.8 mL) was added LiOH·H2O (272.8 mg, 6.5 mmol, 11.09 eq). The reaction mixture was stirred at 50° C. for 4 h. The reaction was adjusted pH=3 with Saturated citric acid (3 mL) and extracted with DCM/MeOH=10:1 (3×50 mL). The combined organic layer was washed with brine (3×30 mL), dried over Na2SO4, filtered, and concentrated. The residue was washed with DCM/MeOH=10:1 (8 mL) to give the desired compound (140 mg). The filtrate was purified by prep-TLC (SiO2, DCM/MeOH=10:1) to afford the title compound (70 mg). The total yield was 83%.


Step 8) Preparation of tert-butyl N-[2-carbamoyl-7-[4-[(1-methyl-4-piperidyl)carbamoyl]pyrimidin-2-yl]-1-naphthyl]-N-(2-cyanoallyl)carbamate



embedded image


To a solution of 1-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-(3-pyridyl)naphthalene-2-carboxylic acid (210 mg, 415.63 μmol, 1 eq) in DCM (6 mL) were added TEA (762 mg, 7.53 mmol, 1.05 mL, 18.12 eq), HATU (316.1 mg, 831.26 μmol, 2 eq) and NH3 (4M NH3 in THF, 6 mL, 57.74 eq). The reaction mixture was stirred at 15° C. for 2 h. The reaction was quenched with ice-water (30 mL) and extracted with DCM (3×15 mL). The combined organic layer was washed with brine (3×15 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by prep-TLC (SiO2, DCM/MeOH=20/1, Rf=0.4) to afford the title compound (160 mg, 89.8% yield) as a light yellow oil.


Step 9) Compound 264: Preparation of 1-((2-cyanoallyl)amino)-7-(pyridin-3-yl)-2-naphthamide



embedded image


To a solution of tert-butyl N-[2-carbamoyl-7-[4-[(l-methyl-4-piperidyl)carbamoyl]pyrimidin-2-yl]-1-naphthyl]-N-(2-cyanoallyl)carbamate (50 mg, 116.69 μmol, 1 eq) in DCM (3 mL) was added TFA (0.5 mL) at 20° C. The reaction mixture was stirred at 20° C. for 1 h. The reaction was poured into Saturated NaHCO3 (30 mL) and extracted with DCM (4×10 mL). The combined organic layer was washed with brine (3×10 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by HPLC to afford the title compound (15 mg, 38% yield) as a white solid. LC-MS (ES+, m/z): 329.1 [(M+H)+].


Route 3: General Scheme



embedded image


embedded image


embedded image


Step 1) Preparation of 7-bromo-1-nitro-naphthalen-2-ol



embedded image


To a solution of 7-bromo-2-methoxy-1-nitro-naphthalene (23 g, 81.53 mmol, 1 eq) in DCM (230 mL) was added BBr3 (61.28 g, 244.6 mmol, 23.57 mL, 3 eq) at 0° C. The mixture was stirred at 0° C. for 4 h. The mixture was poured into ice-water (500 mL) and the aqueous phase was extracted with EtOAc (3×200 mL). The combined organic phase was washed with brine (3×200 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound (22 g, 99% yield) as a light yellow solid, which was used in the next step without further purification.


Step 2) Preparation of 1-amino-7-bromo-naphthalen-2-ol



embedded image


To a solution of 7-bromo-1-nitro-naphthalen-2-ol (5 g, 18.65 mmol, 1 eq) in MeOH (18 mL) and H2O (6 mL) was added sodium dithionite (25.98 g, 149.22 mmol, 32.47 mL, 8 eq). The mixture was stirred at 25° C. for 1 hr. The solid was filtered, washed with water (3×300 mL) to afford the title compound (5 g, crude) as a white solid.


Step 3) Preparation of tert-butyl N-(7-bromo-2-hydroxy-1-naphthyl)carbamate



embedded image


To a solution of 1-amino-7-bromo-naphthalen-2-ol (4.4 g, 18.48 mmol, 1 eq) in MeOH (350 mL) was added Boc2O (32.27 g, 147.85 mmol, 33.97 mL, 8 eq). The reaction mixture was stirred at 85° C. for 14 hrs. LCMS showed di-Boc product was detected. 34 mL of N,N-dimethylethane-1,2-diamine was added and the reaction was stirred at 25° C. for 12 hrs. The reaction mixture was concentrated. The residue was diluted with 20 mL of DCM and washed with water (3×40 mL) and brine (3×40 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by silica gel chromatography (PE:EtOAc=10:1 to 4:1) to afford the title compound (4.7 g, 58.0% yield) as a light yellow solid.


Step 4) Preparation of tert-butyl N-[2-hydroxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate



embedded image


To a solution of 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (5.56 g, 21.88 mmol, 2 eq) and tert-butyl N-(7-bromo-2-hydroxy-1-naphthyl) carbamate (3.7 g, 10.94 mmol, 1 eq) in dioxane (40 mL) were added KOAc (3.22 g, 32.82 mmol, 3 eq) and Pd (dppf)Cl2 (400 mg, 546.67 μmol, 0.05 eq). The mixture was stirred at 120° C. for 1 h under N2. TLC showed that the reaction as completed. The reaction was poured into 150 mL of water and extracted with EtOAc (3×150 mL), washed with brine (3×150 mL), dried over by anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by silica gel chromatography (PE:EtOAc=10:1 to 4:1) and washed with PE (3×150 mL) to afford the title compound (3.8 g, 90.2% yield) as a white solid.


Step 5) Preparation of tert-butyl 6-/8-(tert-butoxycarbonylamino)-7-hydroxy-2-naphthyl/pyridine-2-carboxylate



embedded image


To a solution of tert-butyl N-[2-hydroxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate (2.8 g, 7.27 mmol, 1 eq) and tert-butyl 6-bromopyridine-2-carboxylate (2.06 g, 7.99 mmol, 1.1 eq) in dioxane (40 mL) and H2O (10 mL) were added Na2CO3 (2.31 g, 21.8 mmol, 3 eq) and Pd(dppf)Cl2 (531.8 mg, 726.78 μmol, 0.1 eq). The mixture was stirred at 80° C. for 40 min under N2. The reaction was diluted with 30 mL of EtOAc and 60 mL of Saturated EDTA. The reaction mixture was stirred at 15° C. for 1 h and extracted with EtOAc (3×30 mL). The combined organic layer was washed with brine (3×30 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by silica gel chromatography (PE:EtOAc=10:1 to 4:1) to afford the title compound (2.5 g, 78.8% yield) as an orange solid.


Step 6) Preparation of tert-butyl 6-[8-(tert-butoxycarbonylamino)-7-(trifluoromethylsulfonyloxy)-2-naphthyl]pyridine-2-carboxylate



embedded image


To a solution of tert-butyl 6-[8-(tert-butoxycarbonylamino)-7-hydroxy-2-naphthyl]pyridine-2-carboxylate (2.5 g, 5.73 mmol, 1 eq) in THF (50 mL) were added K2CO3 (1.58 g, 11.45 mmol, 2 eq) and 1,1,1-trifluoro-N-phenyl-N-(trifluoromethylsulfonyl)methanesulfonamide (2.46 g, 6.87 mmol, 1.2 eq). The mixture was stirred at 70° C. for 2 hr. The reaction was poured into 150 mL of water and extracted with EtOAc (3×150 mL). The combined organic layer was washed with brine (3×150 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by silica gel chromatography (PE:EtOAc=10:1 to 4:1) to afford the title compound (2. g, 61.4% yield) as a yellow solid.


Step 7) Preparation of tert-butyl 6-[8-(tert-butoxycarbonylamino)-7-methoxycarbonyl-2-naphthyl]pyridine-2-carboxylate



embedded image


To a solution of tert-butyl 6-[8-(tert-butoxycarbonylamino)-7-(trifluoromethyl-sulfonyloxy)-2-naphthyl]pyridine-2-carboxylate (0.9 g, 1.58 mmol, 1 eq) in DMF (12 mL) and MeOH (12 mL) were added TEA (480.5 mg, 4.75 mmol, 660.98 μL, 3 eq) and Pd(dppf)Cl2 (115.8 mg, 158.29 μmol, 0.1 eq). The reaction mixture was stirred at 60° C. for 12 h under CO (50 Psi) atmosphere. LCMS showed that the reaction was complete. 50 mL of Saturated EDTA and 20 mL of EtOAc were added. The reaction mixture was stirred at 25° C. for 1 h. Then the mixture was extracted with EtOAc (3×30 mL). The combined organic layer was washed with brine (3×30 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by prep-TLC (SiO2, DCM/MeOH=20/1) to afford the title compound (580 mg, 76.6% yield) as a yellow solid.


Step 8) Preparation of tert-butyl 6-[8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-methoxycarbonyl-2-naphthyl]pyridine-2-carboxylate



embedded image


To a solution of tert-butyl 6-[8-(tert-butoxycarbonylamino)-7-methoxycarbonyl-2-naphthyl]pyridine-2-carboxylate (0.48 g, 1 mmol, 1 eq) in DCM (4 mL) were added KOH (112.6 mg, 2.01 mmol, 2 eq), TBAI (185.3 mg, 501.53 μmol, 0.5 eq) and 2-(bromomethyl)prop-2-enenitrile (175.7 mg, 1.2 mmol, 1.2 eq). The reaction mixture was stirred at 25° C. for 1 h. The reaction was poured into water (30 mL) and extracted with DCM (3×20 mL). The combined organic layer was washed with brine (3×20 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by prep-TLC (SiO2, PE:EtOAc=3.5:1) to afford the title compound (290 mg, 53.2% yield) as a yellow solid.


Step 9) Preparation of 1-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-(6-tert-butoxycarbonyl-2-pyridyl)naphthalene-2-carboxylic acid



embedded image


To a solution of tert-butyl 6-[8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-methoxy carbonyl-2-naphthyl]pyridine-2-carboxylate (0.29 g, 533.47 μmol, 1 eq) in THF (13 mL) and H2O (3.2 mL) was added LiOH·H2O (22.4 mg, 533.47 μmol, 1.1 eq). The mixture was stirred at 50° C. for 1 h. Then LiOH·H2O (4.5 mg, 106.69 μmol, 0.2 eq) was added and the reaction mixture was stirred at 50° C. for another 1 h. The reaction was poured into 50 mL of ice water and washed with PE (3×20 mL). The aqueous layer was adjusted to pH=7 with Saturated citric acid. The mixture was extracted with EtOAc (3×20 mL). The combined organic phase was washed with 20 mL of brine, dried over Na2SO4, filtered, and concentrated. The residue was purified by prep-TLC (SiO2, DCM/MeOH=10:1) to afford the title compound (0.2 g, 70.8% yield) as a colorless oil.


Step 10) Preparation of tert-butyl 6-[8-[tert-butoxycarbonyl (2-cyanoallyl)amino]-7-carbamoyl-2-naphthyl]pyridine-2-carboxylate



embedded image


To a solution of 1-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-(3-pyridyl) naphthalene-2-carboxylic acid (0.35 g, 660.9 μmol, 1 eq) in DMF (10 mL) were added TEA (2.1 g, 20.75 mmol, 2.89 mL, 31.40 eq) and HATU (502.6 mg, 1.32 mmol, 2 eq). The mixture was stirred at 25° C. for 10 min. After cooling to 0° C., NH3 (4 M NH3 in THF, 6 mL, 36.4 eq) was added. The reaction mixture was stirred at 0° C. for 20 min. The reaction was quenched with water (15 mL) and extracted with EtOAc (3×15 mL). The combined organic layer was washed with brine (3×15 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1/2) to afford the title compound (200 mg, 57.3% yield) as a white solid.


Step 11) Preparation of 6-(7-carbamoyl-8-((2-cyanoallyl)amino)naphthalen-2-yl)picolinic acid



embedded image


To a solution of tert-butyl 6-[8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-carbamoyl-2-naphthyl]pyridine-2-carboxylate (0.25 g, 472.95 μmol, 1 eq) in DCM (3 mL) was added TFA (1 mL) The reaction mixture was stirred at 25° C. for 6 h. The reaction was poured into 50 mL of ice water and adjusted to pH=6 with Saturated Na2CO3. The mixture was extracted with DCM (3×30 mL). The combined organic layer was washed with brine (3×30 mL), dried over Na2SO4, filtered, and concentrated to afford the title compound (0.16 g, 90% yield) as a yellow solid, which was used in the next step without further purification.


Step 12) Compound 271 and 273: Preparation of 6-{7-carbamoyl-8-[(2-cyano-2-methylideneethyl)amino]naphthalen-2-yl}-N-[(1R,4R)-4-(dimethylamino)cyclohexyl]pyridine-2-carboxamide (P1) and 6-{7-carbamoyl-8-[(2-cyano-2-methylideneethyl)amino]naphthalen-2-yl}-N-[(1S,4S)-4-(dimethylamino)cyclohexyl]pyridine-2-carboxamide



embedded image


To a solution of 6-[7-carbamoyl-8-(2-cyanoallylamino)-2-naphthyl]pyridine-2-carboxylic acid (0.1 g, 268.55 μmol, 1 eq) in DMF (3 mL) were added TEA (135.9 mg, 1.34 mmol, 186.89 μL, 5 eq) and N4,N4-dimethylcyclohexane-1,4-diamine (76.4 mg, 537.09 μmol, 2 eq). Then, T3P (256.3 mg, 402.82 μmol, 239.57 μL, 50% purity, 1.5 eq) was added, and the reaction was stirred at 25° C. for 1 h. LCMS showed that the reaction was complete. The reaction mixture was diluted with H2O (50 mL) and extracted with EtOAc (2×30 mL). The combined organic layers were washed with H2O (2×30 mL) and brine (2×30 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford Compound 271 as a white solid (7.3 mg, 5.07% yield). LC-MS (ES+, m/z): 497.3 [(M+H)+] and Compound 273 (9.5 mg, 7.12% yield) as a white solid. LC-MS (ES+, m/z): 497.3 [(M+H)+].


Route 4: General Scheme



embedded image


embedded image


embedded image


Step 1) Preparation of tert-butyl 2-[8-(tert-butoxycarbonylamino)-7-hydroxy-2-naphthyl]pyrimidine-4-carboxylate



embedded image


To a solution of tert-butyl N-[2-hydroxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate (3 g, 7.79 mmol, 1 eq) in dioxane (78 mL) and H2O (3 mL) were added tert-butyl 2-chloropyrimidine-4-carboxylate (1.84 g, 8.57 mmol, 1.1 eq), Na2CO3 (2.48 g, 23.36 mmol, 3 eq) and Pd (dppf)Cl2 (569.8 mg, 778.69 μmol, 0.1 eq). The mixture was stirred at 80° C. for 40 min under N2. The reaction mixture was poured into saturated EDTA (100 mL) and stirred at 25° C. for 1 h. The mixture was extracted with EtOAc (3×50 mL), washed with brine (3×50 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=1:0 to 10:1) to afford the title compound (2.5 g, 73.39% yield) as a white solid.


Step 2) Preparation of 6-tert-butyl 2-[8-(tert-butoxycarbonylamino)-7-(trifluoromethylsulfonyloxy)-2-naphthyl]pyrimidine-4-carboxylate



embedded image


To a solution of tert-butyl 2-[8-(tert-butoxycarbonylamino)-7-hydroxy-2-naphthyl]pyrimidine-4-carboxylate (2.5 g, 5.71 mmol, 1 eq) in THF (50 mL) were added K2CO3 (1.58 g, 11.43 mmol, 2 eq) and 1,1,1-trifluoro-N-phenyl-N-(trifluoromethylsulfonyl)methanesulfonamide (2.65 g, 7.43 mmol, 1.3 eq). The mixture was stirred at 70° C. for 2 hr. The reaction was poured into 300 mL of water and extracted with EtOAc (3×300 mL). The combined organic phase was washed with brine (3×300 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound (3 g, 92.18% yield) as a light yellow solid.


Step 3) Preparation of 7-tert-butyl 2-[8-(tert-butoxycarbonylamino)-7-methoxycarbonyl-2-naphthyl]pyrimidine-4-carboxylate



embedded image


To a solution of tert-butyl 2-[8-(tert-butoxycarbonylamino)-7-(trifluoromethyl sulfonyloxy)-2-naphthyl]pyrimidine-4-carboxylate (3 g, 5.27 mmol, 1 eq) in DMF (60 mL) and MeOH (60 mL) were added TEA (1.6 g, 15.8 mmol, 2.20 mL, 3 eq) and Pd(dppf)Cl2 (385.4 mg, 526.73 μmol, 0.1 eq). The reaction was stirred at 60° C. for 12 h under CO (50 psi). TLC (PE:EtOAc=4:1) showed that the reaction was complete. 300 mL of saturated EDTA was added and diluted with 150 mL of EtOAc. The mixture was stirred at 25° C. for 1 h and extracted with EtOAc (3×150 mL), and the combined organic phase was washed with brine (3×300 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound (2.1 g, 83.14% yield) as a light yellow solid.


Step 4) Preparation of tert-butyl 2-[8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-methoxy carbonyl-2-naphthyl]pyrimidine-4-carboxylate



embedded image


To a solution of tert-butyl 2-[8-(tert-butoxycarbonylamino)-7-methoxycarbonyl-2-naphthyl]pyrimidine-4-carboxylate (2.1 g, 4.38 mmol, 1 eq) in DCM (210 mL) were added KOH (491.5 mg, 8.76 mmol, 2 eq), TBAI (808.8 mg, 2.19 mmol, 0.5 eq) and 2-(bromomethyl)prop-2-enenitrile (767.2 mg, 5.26 mmol, 1.2 eq). The mixture was stirred at 25° C. for 1 hr. The reaction was poured into 150 mL of water and extracted with EtOAc (3×70 mL). The combined organic phase was washed with brine (3×70 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound (1.4 g, 58.70% yield) as a yellow oil.


Step 5) Preparation of 2-[8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-methoxycarbonyl-2-naphthyl]pyrimidine-4-carboxylic acid



embedded image


To a solution of tert-butyl 2-[8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-methoxycarbonyl-2-naphthyl]pyrimidine-4-carboxylate (0.54 g, 991.56 μmol, 1 eq) in THF (24 mL) and H2O (6 mL) was added LiOH·H2O (41.6 mg, 991.56 μmol, 1 eq). The mixture was stirred at 50° C. for 1 hr. HPLC showed that the reaction was complete. The reaction was poured into 100 mL of ice water and washed with PE (3×50 mL). To the aqueous phase was added saturated citric acid until pH=7, and the mixture was filtered. The filtrate was extracted with EtOAc (3×50 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound (0.2 g, 41.29% yield) as a white solid.


Step 6) Preparation of Methyl 1-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-[4-[(l-methyl-4-piperidyl)carbamoyl]pyrimidin-2-yl]naphthalene-2-carboxylate



embedded image


To a solution of 2-[8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-methoxycarbonyl-2-naphthyl]pyrimidine-4-carboxylic acid (0.2 g, 409.42 μmol, 1 eq) and 1-methylpiperidin-4-amine (70.1 mg, 614.14 μmol, 1.5 eq) in DMF (2 mL) were added Et3N (207.2 mg, 2.05 mmol, 284.94 μL, 5 eq) and T3P (390.8 mg, 614.14 μmol, 365.24 μL, 50% purity, 1.5 eq). The mixture was stirred at 25° C. for 1 hr. The reaction was poured into 50 mL water and extracted with DCM (3×50 mL). The combined organic phase was washed with brine (3×50 mL), dried over Na2SO4, filtered, and concentrated in vacuo to afford the title compound (0.24 g, crude) as a yellow solid, which was used in the next step without further purification.


Step 7) Preparation of 1-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-[4-[(1-methyl-4-piperidyl) carbamoyl]pyrimidin-2-yl]naphthalene-2-carboxylic acid



embedded image


To a solution of methyl 1-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-[4-[(l-methyl-4-piperidyl)carbamoyl]pyrimidin-2-yl]naphthalene-2-carboxylate (0.19 g, 324.97 μmol, 1 eq) in THF (7.6 mL) and H2O (1.9 mL) was added LiOH·H2O (27.3 mg, 649.95 μmol, 2 eq). The mixture was stirred at 50° C. for 1 hr. HPLC showed that the reaction was complete. The reaction was poured into 100 mL of ice water and washed with PE (3×50 mL). To the aqueous phase was added saturated citric acid until pH=7. The mixture was filtered, and the filtrate was extracted with EtOAc (3×50 mL). The combined organic phase was dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford the title compound (0.04 g, 26.67% yield) as a white solid.


Step 8) Preparation of Tert-butyl N-[2-carbamoyl-7-[4-[(1-methyl-4-piperidyl) carbamoyl]pyrimidin-2-yl]-1-naphthyl]-N-(2-cyanoallyl)carbamate



embedded image


To a solution of 1-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-[4-[(l-methyl-4-piperidyl) carbamoyl]pyrimidin-2-yl]naphthalene-2-carboxylic acid (0.01 g, 17.52 μmol, 1 eq) in DMF (2 mL) were added TEA (55.7 mg, 550.26 μmol, 76.59 μL, 31.4 eq) and HATU (13.3 mg, 35.05 μmol, 2 eq). The mixture was stirred at 25° C. for 10 min. Then NH3 (4 M NH3 in THF, 0.5 mL, 117 eq) was added at 0° C. The mixture was stirred at 25° C. for 1 hr. The reaction was poured into 10 mL of water. The mixture was extracted with EtOAc (3×10 mL). The organic phase was washed with brine (3×10 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound (0.015 g, 75.13% yield) as a yellow solid.


Step 9) Compound 274: Preparation of 2-{7-carbamoyl-8-[(2-cyano-2-methylideneethyl)amino]naphthalen-2-yl}-N-(1-methylpiperidin-4-yl)pyrimidine-4-carboxamide



embedded image


To a solution of tert-butyl N-[2-carbamoyl-7-[4-[(l-methyl-4-piperidyl) carbamoyl]pyrimidin-2-yl]-1-naphthyl]-N-(2-cyanoallyl)carbamate (0.015 g, 26.33 μmol, 1 eq) in DCM (2 mL) was added TFA (1.08 g, 9.45 mmol, 0.7 mL, 359.04 eq). The mixture was stirred at 25° C. for 1 hr. The reaction was poured into 10 mL of ice water and 10 mL of DCM. Then to the mixture was added saturated Na2CO3 until pH=8, and the mixture was extracted with DCM (3×10 mL). The combined organic phase was washed with 10 mL of brine, dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford the title compound (3.2 mg, 25.88% yield) as a yellow solid. LC-MS (ES+, m/z): 470.2 [(M+H)+].


TABLE 5 shows compounds synthesized using methods described in EXAMPLE 5.









TABLE 5









embedded image















Cpd.


LC-MS


No.
Structure
IUPAC
(ES+, m/z)





264


embedded image


1-[(2-cyano-2- methylideneethyl)amino]-7-(pyridin- 3-yl)naphthalene-2-carboxamide
329.1





265


embedded image


1-[(2-cyano-2- methylideneethyl)amino]-7-(pyridin- 2-yl)naphthalene-2-carboxamide
329.1





266


embedded image


6-{7-carbamoyl-8-[(2-cyano-2- methylideneethyl)amino]naphthalen- 2-yl}-N-(1-methylpiperidin-4- yl)pyridine-2-carboxamide
469.1





267


embedded image


6-{7-carbamoyl-8-[(2-cyano-2- methylideneethyl)amino]naphthalen- 2-yl}-N-[2-(morpholin-4- yl)ethyl]pyridine-2-carboxamide
485.1





268


embedded image


6-{7-carbamoyl-8-[(2-cyano-2- methylideneethyl)amino]naphthalen- 2-yl}-N-[(1-methylpiperidin-4- yl)methyl]pyridine-2-carboxamide
483.2





269


embedded image


6-{7-carbamoyl-8-[(2-cyano-2- methylideneethyl)amino]naphthalen- 2-yl}-N-(1-methylpiperidin-3- yl)pyridine-2-carboxamide
469.3





270


embedded image


6-{7-carbamoyl-8-[(2-cyano-2- methylideneethyl)amino]naphthalen- 2-yl}-N-[2-(1-methylpiperidin-4- yl)ethyl]pyridine-2-carboxamide
497.3





271


embedded image


6-{7-carbamoyl-8-[(2-cyano-2- methylideneethyl)amino]naphthalen- 2-yl}-N-[(1r,4r)-4- (dimethylamino)cyclohexyl]pyridine- 2-carboxamide
497.3





272


embedded image


6-{7-carbamoyl-8-[(2-cyano-2- methylideneethyl)amino]naphthalen- 2-yl}-N-{8-methyl-8- azabicyclo[3.2.1]octan-3- yl}pyridine-2-carboxamide
495.1





273


embedded image


6-{7-carbamoyl-8-[(2-cyano-2- methylideneethyl)amino]naphthalen- 2-yl}-N-[(1s,4s)-4- (dimethylamino)cyclohexyl]pyridine- 2-carboxamide
497.3





274


embedded image


2-{7-carbamoyl-8-[(2-cyano-2- methylideneethyl)amino]naphthalen- 2-yl}-N-(1-methylpiperidin-4- yl)pyrimidine-4-carboxamide
470.2





275


embedded image


methyl 1-[(2-cyano-2- methylideneethyl)amino]-7-(pyridin- 3-yl)naphthalene-2-carboxylate
344.1





276


embedded image


methyl 1-[(2-cyano-2- methylideneethyl)amino]-7-(pyridin- 2-yl)naphthalene-2-carboxylate
344  





277


embedded image


1-[(2-cyano-2- methylideneethyl)amino]-7-(pyridin- 2-yl)naphthalene-2-carboxylic acid
330.1









Example 6: Method F
Route 1: General Scheme



embedded image


embedded image


Step 1) Preparation of 7-bromo-1-nitro-2-vinyl-naphthalene



embedded image


To a mixture of (7-bromo-1-nitro-2-naphthyl)trifluoromethanesulfonate (5.2 g, 12.5 mmol, 1 eq) and tributyl(vinyl)stannane (4.16 g, 13.12 mmol, 3.82 mL, 1.05 eq) in DMF (130 mL) were added LiCl (1.59 g, 37.49 mmol, 3 eq) and Pd(PPh3)2Cl2 (877.1 mg, 1.25 mmol, 0.1 eq). The reaction was stirred at 25° C. for 12 h under N2. The reaction mixture was diluted with H2O (300 mL). The mixture was extracted with EtOAc (3×200 mL). The combined organic layer was washed with H2O (2×200 mL) and brine (2×200 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc) to afford the title compound (4.4 g, 63.3% yield) as a yellow solid.


Step 2) Preparation of (7-bromo-1-nitro-2-naphthyl)methanol



embedded image


To a mixture of 7-bromo-1-nitro-2-vinyl-naphthalene (5.8 g, 20.86 mmol, 1 eq) in DCM (200 mL) and MeOH (50 mL) was added ozone (1 g, 20.86 mmol, 1 eq). The mixture was stirred at −78° C. for 0.5 h. Then NaBH4 (2.37 g, 62.57 mmol, 3 eq) was added. The mixture was stirred at 25° C. for another 0.5 h. The reaction mixture was diluted with H2O (200 mL). The mixture was extracted with EtOAc (2×100 mL). The combined organic layer was washed with H2O (2×100 mL) and brine (2×100 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound (4.4 g, 74.8% yield) as a white solid.


Step 3) Preparation of (7-bromo-1-nitro-2-naphthyl)methyl methanesulfonate



embedded image


To a solution of (7-bromo-1-nitro-2-naphthyl)methanol (4.4 g, 15.6 mmol, 1 eq) in DCM (50 mL) were added TEA (7.89 g, 77.99 mmol, 10.86 mL, 5 eq) and methanesulfonyl chloride (2.68 g, 23.4 mmol, 1.81 mL, 1.5 eq). The mixture was stirred at 0° C. for 1 h. The reaction mixture was diluted with H2O (200 mL) and extracted with EtOAc (2×100 mL). The combined organic layer was washed with H2O (2×100 mL) and brine (2×100 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound (5.4 g, crude), which was used in the next step without further purification.


Step 4) Preparation of 7-bromo-2-(methoxymethyl)-1-nitro-naphthalene



embedded image


To a solution of (7-bromo-1-nitro-2-naphthyl)methyl methanesulfonate (4 g, 11.11 mmol, 1 eq) in MeOH (60 mL) was added CH3ONa (1.8 g, 33.32 mmol, 3 eq), and the mixture was stirred at 50° C. for 1 h. The reaction mixture was diluted with H2O (200 mL) and extracted with EtOAc (2×100 mL). The combined organic layer was washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 6:1) to afford the title compound (1.5 g, 45.6% yield) as a yellow solid.


Step 5) Preparation of 7-bromo-2-(methoxymethyl)naphthalen-1-amine



embedded image


To a solution of 7-bromo-2-(methoxymethyl)-1-nitro-naphthalene (1.9 g, 6.42 mmol, 1 eq) in EtOH (16 mL) were added saturated NH4Cl (6.42 mmol, 4 mL, 1 eq) and Fe (1.07 g, 19.25 mmol, 3 eq) at 70° C. The mixture was stirred at 70° C. for 1 h. The reaction mixture was diluted with H2O (100 mL) and extracted with EtOAc (3×50 mL). The combined organic layer was washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=20:1 to 8:1) to afford the title compound (1.35 g, 79.1% yield) as a yellow solid.


Step 6) Preparation of tert-butyl N-[7-bromo-2-(methoxymethyl)-1-naphthyl]carbamate



embedded image


To a solution of 7-bromo-2-(methoxymethyl)naphthalen-1-amine (0.3 g, 1.13 mmol, 1 eq) in MeOH (5 mL) was added Boc2O (4.92 g, 22.55 mmol, 5.18 mL, 20 eq). The reaction mixture was stirred at 85° C. for 3 h. The reaction mixture was diluted with H2O (50 mL) and extracted with EtOAc (3×30 mL). The combined organic layer was washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=20/1 to 8/1) to afford the title compound (0.3 g, 819.12 μmol, 72.66% yield) as a white solid.


Step 7) Preparation of tert-butyl N-[7-bromo-2-(methoxymethyl)-1-naphthyl]-N-(2-cyanoallyl) carbamate



embedded image


To a solution of tert-butyl N-[7-bromo-2-(methoxymethyl)-1-naphthyl]carbamate (0.28 g, 764.51 μmol, 1 eq) in DCM (4 mL) were added KOH (85.8 mg, 1.53 mmol, 2 eq), TBAI (84.7 mg, 229.35 μmol, 0.3 eq) and 2-(bromomethyl)prop-2-enenitrile (167.4 mg, 1.15 mmol, 1.5 eq). The mixture was stirred at 25° C. for 1 hr. The reaction mixture was diluted with H2O (50 mL) and extracted with EtOAc (2×30 mL). The combined organic layer was washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=6:1) to afford the title compound (0.3 g, 695.54 μmol, 90.98% yield) as a yellow oil.


Step 8) Preparation of tert-butyl N-(2-cyanoallyl)-N-[2-(methoxymethyl)-7-(4,4,5,5-tetramethyl-1,3,2-(dioxaborolan-2-yl)-1-naphthyl]carbamate



embedded image


To a mixture of tert-butyl N-[7-bromo-2-(methoxymethyl)-1-naphthyl]-N-(2-cyanoallyl) carbamate (0.26 g, 602.8 μmol, 1 eq) and 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (459.2 mg, 1.81 mmol, 3 eq in dioxane (5 mL) were added KOAc (473.3 mg, 4.82 mmol, 8 eq) and Pd(dppf)Cl2 (88.2 mg, 120.56 μmol, 0.2 eq). The reaction mixture was stirred at 85° C. for 5 hr. The mixture was concentrated in vacuo. The residue was washed with DCM (3×5 mL), filtered, and concentrated in vacuo to afford the title compound (0.5 g, crude) as a black brown oil, which was used in the next step without further purification.


Step 9) Preparation of tert-butyl N-(2-cyanoallyl)-N-[2-(methoxymethyl)-7-(2-pyridyl)-1-naphthyl]carbamate



embedded image


To a mixture of tert-butyl N-(2-cyanoallyl)-N-[2-(methoxymethyl)-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthyl]carbamate (130 mg, 271.75 μmol, 1 eq) and RBr (64.4 mg, 407.62 μmol, 38.80 μL, 1.5 eq) in dioxane (4 mL) and H2O (1 mL) were added Na2CO3 (86.4 mg, 815.24 μmol, 3 eq) and Pd(dppf)Cl2 (19.9 mg, 27.17 μmol, 0.1 eq). The mixture was stirred at 100° C. for 1 h. TLC showed that the reaction was complete. Saturated EDTA solution (50 mL) and EtOAc (30 mL) were added and the mixture was stirred at r.t. for 1 h. The mixture was filtered and extracted with EtOAc (2×30 mL). The combined organic layer was washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound (50 mg, 116.41 μmol, 42.84% yield) as a yellow oil.


Step 10) Compound 278: Preparation of 2-[[[2-(methoxymethyl)-7-(2-pyridyl)-1-naphthyl]amino]methyl]prop-2-enenitrile



embedded image


To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-(methoxymethyl)-7-(2-pyridyl)-1-naphthyl]carbamate (50 mg, 116.41 μmol, 1 eq) in DCM (3 mL) was added TFA (1.54 g, 13.51 mmol, 1 mL, 116.02 eq) (DCM:TFA=3:1). The mixture was stirred at 25° C. for 1 h. The reaction mixture was adjusted with saturated NaHCO3 to pH=8 and extracted with EtOAc (2×30 mL). The combined organic layer was washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford the title compound (2 mg, 6.07 μmol, 5.22% yield) as a white solid. LC-MS (ES+, m/z): 330 [(M+H)+].


Route 2: General Scheme



embedded image


embedded image


Step 1) Preparation of 2-(methoxymethyl)-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-amine



embedded image


To a mixture of 7-bromo-2-(methoxymethyl)naphthalen-1-amine (1.1 g, 4.13 mmol, 1 eq) and 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (3.15 g, 12.4 mmol, 3 eq) in dioxane (20 mL) were added KOAc (3.25 g, 33.07 mmol, 8 eq) and Pd(dppf)Cl2 (604.87 mg, 826.65 μmol, 0.2 eq) and the mixture was stirred at 85° C. for 2 h under N2. The reaction mixture was concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound (1.2 g, 92.7% yield) as a yellow oil.


Step 2) Preparation of 7-(2-chloropyrimidin-4-yl)-2-(methoxymethyl)naphthalen-1-amine



embedded image


To a mixture of 2-(methoxymethyl)-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-amine (1.2 g, 3.83 mmol, 1 eq) and 2,4-dichloropyrimidine (1.71 g, 11.49 mmol, 3 eq) in DME (12 mL) and H2O (3 mL) were added NaHCO3 (965.6 mg, 11.49 mmol, 3 eq) and Pd(dppf)Cl2 (280.4 mg, 383.14 μmol, 0.1 eq) and the mixture was stirred at 80° C. for 1 h under N2. TLC showed that the reaction was complete. 50 mL of saturated EDTA solution and EtOAc (50 mL) were added and the mixture was stirred at 25° C. for 1 h. The mixture was extracted with EtOAc (3×50 mL). The combined organic layer was washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 1:1) to afford the title compound (1 g, 87.1% yield) as a yellow solid.


Step 3) Preparation of methyl 4-[8-amino-7-(methoxymethyl)-2-naphthyl]pyrimidine-2-carboxylate



embedded image


To a mixture of 7-(2-chloropyrimidin-4-yl)-2-(methoxymethyl)naphthalen-1-amine (0.8 g, 2.67 mmol, 1 eq) in MeOH (26 mL) and DMF (26 mL) were added TEA (810.2 mg, 8.01 mmol, 1.11 mL, 3 eq) and Pd(dppf)Cl2 (195.3 mg, 266.89 μmol, 0.1 eq). The mixture was stirred at 50° C. for 1 d under CO (50 psi). TLC showed that the reaction was complete. 50 mL of saturated EDTA solution and EtOAc (50 mL) were added and the mixture was stirred at 25° C. for 1 h. The mixture was extracted with EtOAc (2×50 mL). The combined organic layer was washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=8:1 to 4:1) to afford to the title compound (0.33 g, 38.2% yield) as a yellow oil.


Step 4) Preparation of methyl 4-[8-(tert-butoxycarbonylamino)-7-(methoxymethyl)-2-naphthyl]pyrimidine-2-carboxylate



embedded image


To a solution of methyl 4-[8-amino-7-(methoxymethyl)-2-naphthyl]pyrimidine-2-carboxylate (0.33 g, 1.02 mmol, 1 eq) in MeOH (5 mL) was added Boc2O (4.45 g, 20.41 mmol, 4.69 mL, 20 eq). The reaction mixture was stirred at 85° C. for 6 h. The reaction mixture was concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=4:1 to 1:1) to afford the title compound (0.38 g, 87.9% yield) as a yellow oil.


Step 5) Preparation of methyl 4-[8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-(methoxymethyl)-2-naphthyl]pyrimidine-2-carboxylate



embedded image


To a solution of methyl 4-[8-(tert-butoxycarbonylamino)-7-(methoxymethyl)-2-naphthyl]pyrimidine-2-carboxylate (0.33 g, 779.29 μmol, 1 eq) in DCM (4 mL) were added KOH (131.2 mg, 2.34 mmol, 3 eq), TBAI (57.6 mg, 155.86 μmol, 0.2 eq) and 2-(bromomethyl)prop-2-enenitrile (136.5 mg, 935.15 μmol, 1.2 eq), and the mixture was stirred at 25° C. for 1 hr. The reaction mixture was diluted with H2O (50 mL) and extracted with EtOAc (2×30 mL). The combined organic layers were washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1:2) to afford the title compound (0.32 g, 84.1% yield) as a yellow oil.


Step 6) Preparation of 4-[8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-(methoxymethyl)-2-naphthyl]pyrimidine-2-carboxylic acid



embedded image


To a mixture of methyl 4-[8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-(methoxymethyl)-2-naphthyl]pyrimidine-2-carboxylate (0.27 g, 552.67 μmol, 1 eq) in THF (4 mL) and H2O (1 mL) was added LiOH·H2O (231.9 mg, 5.53 mmol, 10 eq). The mixture was stirred at 25° C. for 1 h. The mixture was adjusted to pH=6 with saturated citric acid and extracted with EtOAc (2×30 mL). The combined organic layer was washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound (0.3 g, crude), which was used to the next step without further purification.


Step 7) Preparation of tert-butyl N-(2-cyanoallyl)-N-[2-(methoxymethyl)-7-[2-[(l-methyl-4-piperidyl) carbamoyl]pyrimidin-4-yl]-1-naphthyl]carbamate



embedded image


To a solution of 4-[8-[tert-butoxycarbonyl(2-cyanoallyl)amino]-7-(methoxymethyl)-2-naphthyl]pyrimidine-2-carboxylic acid (0.25 g, 526.86 μmol, 1 eq) in DMF (4 mL) were added TEA (266.6 mg, 2.63 mmol, 366.67 μL, 5 eq), l-methylpiperidin-4-amine (90.2 mg, 790.29 μmol, 1.5 eq), and T3P (502.9 mg, 790.29 μmol, 470.01 μL, 50% purity, 1.5 eq). The reaction was stirred at 25° C. for 1 h. The reaction mixture was diluted with H2O (50 mL) and extracted with EtOAc (2×30 mL). The combined organic layer was washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound (0.22 g, 73.2% yield) as a yellow solid.


Step 8) Compound 283: Preparation of 4-{8-[(2-cyano-2-methylideneethyl)amino]-7-(methoxymethyl)naphthalen-2-yl}-N-(1-methylpiperidin-4-yl)pyrimidine-2-carboxamide



embedded image


To a solution of tert-butyl N-(2-cyanoallyl)-N-[2-(methoxymethyl)-7-[2-[(l-methyl-4-piperidyl) carbamoyl]pyrimidin-4-yl]-1-naphthyl]carbamate (0.1 g, 175.23 μmol, 1 eq) in DCM (2 mL) was added TFA (770 mg, 6.75 mmol, 0.5 mL, 38.54 eq). The mixture was stirred at 25° C. for 1 h. The reaction mixture was adjusted to pH=8 with saturated NaHCO3 and extracted with EtOAc (2×30 mL). The combined organic layer was washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford the title compound (16.6 mg, 20.1% yield) as a white solid. LC-MS (ES+, m/z): 471.2 [(M+H)+].


TABLE 6 shows compounds synthesized using the methods described in EXAMPLE 6 above.









TABLE 6









embedded image















Cpd.


LC-MS


No.
Structure
IUPAC
(ES+, m/z)





278


embedded image


2-({[2-(methoxymethyl)-7- (pyridin-2-yl)naphthalen-1- yl]amino}methyl)prop-2- enenitrile
330  





279


embedded image


2-{8-[(2-cyano-2- methylideneethyl)amino]-7- (methoxymethyl)naphthalen- 2-yl}-N-(1-methylpiperidin- 4-yl)pyrimidine-4- carboxamide
471.3





280


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- (methoxymethyl)naphthalen- 2-yl}-N-(1-methylpiperidin- 4-yl)pyridine-2-carboxamide
470.3





281


embedded image


N-(2-{8-[(2-cyano-2- methylideneethyl)amino]-7- (methoxymethyl)naphthalen- 2-yl}pyridin-4-yl)-1- methylpiperidine-4- carboxamide
470.3





282


embedded image


4-{8-[(2-cyano-2- methylideneethyl)amino]-7- (methoxymethyl)naphthalen- 2-yl}-N-(1-methylpiperidin- 4-yl)-1,3-thiazole-2- carboxamide
476.2





283


embedded image


4-{8-[(2-cyano-2- methylideneethyl)amino]-7- (methoxymethyl)naphthalen- 2-yl}-N-(1-methylpiperidin- 4-yl)pyrimidine-2- carboxamide
471.2





284


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- (methoxymethyl)naphthalen- 2-yl}-N-[(3S,4R)-3-fluoro-1- methylpiperidin-4- yl]pyridine-2-carboxamide
488.3





285


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- (methoxymethyl)naphthalen- 2-yl}-N-[(2S,4R)-1,2- dimethylpiperidin-4- yl]pyridine-2-carboxamide
484.3









Example 7: Method G
Route 1: General Method



embedded image


Step 1) (8-amino-2-naphthyl)trifluoromethanesulfonate



embedded image


To a solution of 8-aminonaphthalen-2-ol (5 g, 31.41 mmol, 1 eq) in THF (50 mL) were added K2CO3 (8.68 g, 62.82 mmol, 2 eq) and 1,1,1-trifluoro-N-phenyl-N-(trifluoro methylsulfonyl) methanesulfonamide (14.59 g, 40.83 mmol, 1.3 eq). The reaction mixture was stirred at 70° C. for 1 hr. TLC (PE:EtOAc=4:1, SM Rf=0.38, SM Rf=0.59) showed that the reaction mixture was completed. The reaction mixture was concentrated to remove the solvent in vacuo to give a residue which was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound (8-amino-2-naphthyl)trifluoromethanesulfonate (7 g, 24.03 mmol, 76.52% yield) as a brown solid.


Step 2) 7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-amine



embedded image


To a solution of (8-amino-2-naphthyl)trifluoromethanesulfonate (5 g, 17.17 mmol, 1 eq) and 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (6.54 g, 25.75 mmol, 1.5 eq) in dioxane (60 mL) was added KOAc (5.05 g, 51.5 mmol, 3 eq) and Pd(dppf)Cl2 (1.26 g, 1.72 mmol, 0.1 eq). The resulting reaction mixture was stirred at 100° C. for 1 hr under N2. TLC showed that the reaction mixture was completed. The reaction mixture was filtered, and the filtrate was concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=20/1 to 10:1) to afford the title compound 7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-amine (1. g, 3.34 mmol, 19.48% yield, 90% purity) as a pink solid. LC-MS (ES+, m/z): 270.1 [(M+H)+], 1H NMR (400 MHz, DMSO-de) 5=8.42 (s, 1H), 7.68 (d, J=8.2 Hz, 1H), 7.61 (d, J=7.9 Hz, 1H), 7.23 (t, J=7.8 Hz, 1H), 7.05 (d, J=8.1 Hz, 1H), 6.68 (d, J=7.3 Hz, 1H), 5.81 (br s, 2H), 1.34 (s, 12H), 1.25-1.07 (m, 2H).


Step 3) General Procedure for Suzuki Coupling



embedded image


To a mixture of 7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-amine (300 mg, 1.11 μmol, 1 eq), bromo derivative (1.34 mmol, 1.2 eq) and Na2CO3 (354.4 mg, 3.34 μmol 3 eq) in dioxane (2 mL) H2O (0.5 mL) was added Pd(dppf)Cl2 (81.6 mg, 111.46 μmol 0.1 eq). The reaction was heated to 110° C. and stirred for 1 h. Upon completion of the reaction as indicated by LCMS, 30 mL saturated EDTA was added to the solution stirred for 1 hour. The mixture was extracted with EtOAc (3×30 mL). The organic phase was separated, washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the desired product.


Step 4) General Procedure for Acylation with Acryloyl Chloride



embedded image


A Mixture of Naphthalene Amine Derivative (100 mg, 253.46 μMol, 1 Eq), Prop-2-Enoyl Chloride (22.9 mg, 253.46 μmol, 1 eq), and TEA (76.9 mg, 760.38 μmol, 3 eq) in DCM (2 mL) at 0° C., and the mixture was stirred at 25° C. for 2 hours. The reaction mixture was poured into H2O (50 mL) and extracted with DCM (3×30 mL). The organic phase was separated, washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the desired compound.




embedded image


Preparation of 3-amino-N-(1-methylpiperidin-4-yl)-6-[8-(prop-2-enamido)naphthalen-2-yl]pyridine-2-carboxamide (Compound 295)

To a solution of 3-amino-6-(8-amino-2-naphthyl)-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (0.1 g, 266.34 μmol, 1 eq) in DCM (5 mL) was added TEA (13.5 mg, 133.17 μmol, 18.54 μL, 0.5 eq), prop-2-enoyl chloride (12.1 mg, 133.17 μmol, 10.86 μL, 0.5 eq) was added to the solution at −60° C. Then stirred at −60° C. for 1 hr. HPLC and LCMS showed that the reaction was complete. The reaction was poured into ˜10 mL ice water and extracted with DCM (3×10 mL. The combined organic phase was washed with brine (3×10 mL), dried over with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1). The residue was purified by prep-HPLC (basic condition) to afford the title compound (0.0166 g, 37.99 μmol, 14.26% yield, 98.3% purity) as a light yellow solid. LC-MS (ES+, m/z): 430.2 [(M+H)+]


Route 2: General Scheme



embedded image


embedded image


Step 1) methyl 6-(8-amino-2-naphthyl)pyridine-2-carboxylate



embedded image


A mixture of 7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-amine (5 g, 18.58 mmol, 1 eq), methyl 6-bromopyridine-2-carboxylate (4.82 g, 22.29 mmol, 1.2 eq), CsF (8.47 g, 55.73 mmol, 2.05 mL, 3 eq), and Pd(dppf)Cl2 (1.36 g, 1.86 mmol, 0.1 eq) in DME (40 mL) and H2O (10 mL) was stirred at 100° C. for 1 hour. Upon completion of the reaction as indicated by LCMS, to the reaction mixture was added 30 mL saturated EDTA solution stirred for 1 hour. The mixture was extracted with EtOAc (3×30 mL). The organic phase was separated, washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give crude product. The residue was purified by column chromatography (SiO2, PE:EtOAc=5:1 to 1:1) to afford the title compound (3.2 g, 11.5 mmol, 61.89% yield) as a light yellow gum. LC-MS (ES+, m/z): 279.2 [(M+H)+].


Step 2) 6-(8-amino-2-naphthyl)pyridine-2-carboxylic acid



embedded image


To a solution of methyl 6-(8-amino-2-naphthyl)pyridine-2-carboxylate (3.2 g, 11.5 mmol, 1 eq) in THF (60 mL) and H2O (12 mL) was added LiOH·H2O (2.41 g, 57.49 mmol, 5 eq). The mixture was stirred at 25° C. for 2 hours. LCMS showed that the reaction was complete. Add the reaction mixture to ice water (100 mL). Then slowly saturated citric acid was added to adjust pH=5˜6. The mixture was extracted with PE (3×30 mL). The organic phase was separated, washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound (3.5 g, crude) as a light yellow solid. LC-MS (ES+, m/z): 265.2 [(M+H)+].


Step 3) N-(4-oxocyclohexyl)-6-[8-(prop-2-enoylamino)-2-naphthyl]pyridine-2-carboxamide



embedded image


A mixture of-6-(8-amino-2-naphthyl)pyridine-2-carboxylic acid (3 g, 9.42 mmol, 1 eq), 4-aminocyclohexanone (1.41 g, 9.42 mmol, 1 eq, HCl), T3P (9 g, 14.14 mmol, 1.5 eq), and TEA (5.72 g, 56.55 mmol, 6 eq) in DMF (30 mL) was stirred at 25° C. for 2 hours. The reaction mixture was added to water (100 mL) and extracted with EtOAc (3×30 mL). The organic phase was separated, washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The crude residue was purified by column chromatography (SiO2, PE:EtOAc=40:1 to 10:1) to afford the title compound (700 mg, 1.69 mmol, 17.96% yield) as a light yellow oil. LC-MS (ES+, m/z): 360.1 [(M+H)+].


Step 4) tert-butyl N-[2-[[4-[[6-(8-amino-2-naphthyl)pyridine-2-carbonyl]amino]cyclohexyl]-methyl-amino]ethyl]-N-methyl-carbamate



embedded image


To a mixture of 6-(8-amino-2-naphthyl)-N-(4-oxocyclohexyl)pyridine-2-carboxamide (700 mg, 1.95 mmol, 1 eq) in DMF (10 mL) were added TMSCl (528.97 mg, 4.87 mmol, 2.5 eq) and tert-butyl N-methyl-N-[2-(methylamino)ethyl]carbamate (1.83 g, 9.74 mmol, 5 eq). The mixture was stirred at 0° C. for 1 hour. Then, BH3·THF (1 M, 5.84 mL, 3 eq) was added and the mixture was stirred at 0° C. for another 12 hours. The reaction mixture was poured into ice-water (50 mL) and extracted with EtOAc (3×30 mL). The organic phase was separated, washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give crude product. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound (360 mg, 677.09 μmol, 34.77% yield) as a light yellow oil. LC-MS (ES+, m/z): 532.3 [(M+H)+].


Step 5) tert-butyl N-methyl-N-[2-[methyl-[4-[[6-[8-(prop-2-enoylamino)-2-naphthyl]pyridine-2-carbonyl]amino]cyclohexyl]amino]ethyl]carbamate



embedded image


To a solution of tert-butyl N-[2-[[4-[[6-(8-amino-2-naphthyl)pyridine-2-carbonyl]amino]cyclohexyl]-methyl-amino]ethyl]-N-methyl-carbamate (360 mg, 677.09 μmol, 1 eq) in DCM (2 mL) was added TEA (205.5 mg, 2.03 mmol, 3 eq) and prop-2-enoyl chloride (61.3 mg, 677.09 μmol, 1 eq) at 0° C. The mixture was stirred at 25° C. for 2 hours. LCMS showed that the reaction was complete. Add the reaction mixture to ice water (50 mL) and extracted with DCM (3×30 mL). The organic phase was separated, washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give crude product. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound-(200 mg, 341.45 μmol, 50.43% yield) as a light yellow oil. LC-MS (ES+, m/z): 586.4 [(M+H)+].


Step 6) Compound 320: N-[4-[methyl-[2-(methylamino)ethyl]amino]cyclohexyl]-6-[8-(prop-2-enoylamino)-2-naphthyl]pyridine-2-carboxamide



embedded image


To a solution of tert-butyl N-methyl-N-[2-[methyl-[4-[[6-[8-(prop-2-enoylamino)-2-naphthyl]pyridine-2-carbonyl]amino]cyclohexyl]amino]ethyl]carbamate (100 mg, 170.73 μmol, 1 eq) in DCM (1 mL) was added HCOOH (2 mL). The mixture was stirred at 25° C. for 12 hours. The reaction mixture was dried by N2 for 1 hour and concentrated in vacuo to give crude product. The residue was purified by prep-HPLC to afford the title compound (15.9 mg, 30.46 μmol, 17.84% yield, 100% purity, HCl) as a light yellow solid. LC-MS (ES+, m/z): 486.3 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) δ=10.97-10.92 (m, 1H), 10.54 (s, 1H), 9.23 (s, 2H), 9.13 (s, 1H), 8.73-8.72 (d, 7=8.60 Hz, 1H), 8.47-8.45 (d, 7=8.60 Hz, 1H), 8.42-8.40 (d, 7=7.50 Hz, 1H), 8.15 (m, 1H), 8.11-8.09 (d, 7=8.80 Hz, 1H), 8.03-8.02 (d, J=7.30 Hz, 1H), 8.01-7.96 (d, 7=7.50 Hz, 1H), 7.84-7.82 (d, 7=7.90 Hz, 1H), 7.59 (s, 1H), 6.88-6.85 (d, 7=16.70 Hz, 1H), 6.39-6.34 (dd, 7=18.8 Hz, 1H), 5.91-5.88 (d, 7=11.60 Hz, 1H), 3.91 (s, 1H), 3.60 (s, 1H) 3.38 (s, 3H), 2.81 (s, 3H), 2.62 (m, 3H) 2.54 (s, 1H), 2.10-2.08 (m, 4H), 1.71-1.68 (m, 4H).


Route 3: General Scheme



embedded image


embedded image


Preparation of Methyl 6-[8-(prop-2-enoylamino)-2-naphthyl]pyridine-2-carboxylate



embedded image


To a solution of methyl 6-(8-amino-2-naphthyl)pyridine-2-carboxylate (0.6 g, 2.16 mmol, 1 eq) in DCM (10 mL) were added TEA (654.5 mg, 6.47 mmol, 900.22 μL, 3 eq) and prop-2-enoyl chloride (195.1 mg, 2.16 mmol, 175.79 μL, 1 eq) at 0° C. The reaction was stirred at 0° C. for 10 min. The reaction was poured into ˜50 mL ice water and extracted with DCM (3×100 mL). The organic phase was washed with brine (3×100 mL), dried over by anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound (0.32 g, 962.83 μmol, 44.66% yield) as a yellow solid. LC-MS (ES+, m/z): 333.0 [(M+H)+].


Preparation of 6-[8-(prop-2-enoylamino)-2-naphthyl]pyridine-2-carboxylic acid



embedded image


To a solution of methyl 6-[8-(prop-2-enoylamino)-2-naphthyl]pyridine-2-carboxylate (0.1 g, 300.89 μmol, 1 eq) in THF (2 mL) and H2O (0.5 mL) was added LiOH·H2O (25.3 mg, 601.77 μmol, 2 eq) and stirred at 25° C. for 1 hr. The reaction was poured into ˜15 mL ice water and washed with EtOAc (3×10 mL). The aqueous phase was adjusted to pH=8 with saturated citric acid and extracted with EtOAc (3×10 mL). The organic phase was washed with brine (3×10 mL), dried over by anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound (0.07 g, crude) as a yellow solid. LC-MS (ES+, m/z): 319.0 [(M+H)+].


General Procedure for Amide Coupling




embedded image


To a solution of 6-[8-(prop-2-enoylamino)-2-naphthyl]pyridine-2-carboxylic acid (0.06 g, 188.49 μmol, 1 eq) and amine derivative (17.2 mg, 245.03 μmol, 18.08 μL, 1.3 eq) in DMF (2 mL) were added Et3N (95.4 mg, 942.43 μmol, 131.17 μL, 5 eq) and T3P (179.9 mg, 282.73 μmol, 168.15 μL, 50% purity, 1.5 eq). The reaction was stirred at 25° C. for 1 hr. The reaction was poured into water (30 mL) and extracted with EtOAc (3×15 mL). The combined organic phase was washed with brine (3×15 mL), dried over by anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC (basic condition) to afford the desired compound as a white solid


Compound 318: Preparation of 6-(8-acrylamidonaphthalen-2-yl)-N—R-picolinamide



embedded image


To a solution of tert-butyl N-[2-[[6-[8-(prop-2-enoylamino)-2-naphthyl]pyridine-2-carbonyl]amino]ethyl]carbamate (0.047 g, 102.06 μmol, 1 eq) in DCM (1 mL) was added formic acid (1.83 g, 39.76 mmol, 1.5 mL, 389.59 eq) and stirred at 25° C. for 1 hr. LCMS showed that the reaction was complete. The reaction was concentrated under N2. The residue was purified by prep-HPLC (FA condition) to afford the title compound (0.0188 g, 50.39 μmol, 49.37% yield, 96.6% purity) as a light yellow solid. LC-MS (ES+, m/z): 361.2 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) Shift=10.91 (br s, 1H), 9.38 (br t, J=5.6 Hz, 1H), 9.18 (s, 1H), 8.49 (d, J=8.6 Hz, 1H), 8.39 (s, 1H), 8.37 (s, 1H), 8.15 (t, J=7.7 Hz, 1H), 8.09 (d, J=8.6 Hz, 1H), 8.03 (br d, J=7.5 Hz, 2H), 7.81 (d, J=8.2 Hz, 1H), 7.57 (t, J=7.9 Hz, 1H), 6.85 (br dd, J=10.1, 17.0 Hz, 1H), 6.36 (dd, J=1.8, 17.0 Hz, 1H), 5.88-5.80 (m, 1H), 3.61 (q, J=5.7 Hz, 2H), 3.03 (br t, J=5.8 Hz, 2H).


Route 4: General Scheme



embedded image


embedded image


6 tert-butyl 2-(6-(8-acrylamidonaphthalen-2-yl)picolinamido)acetate



embedded image


To a solution of 6-[8-(prop-2-enoylamino)-2-naphthyl]pyridine-2-carboxylic acid (0.6 g, 1.88 mmol, 1 eq) in DMF (10 mL) were added tert-butyl 2-aminoacetate (494.5 mg, 3.77 mmol, 2 eq), TEA (572.2 mg, 5.65 mmol, 787.05 μL, 3 eq) and T3P (2.4 g, 3.77 mmol, 2.24 mL, 50% purity, 2 eq). The reaction mixture was stirred for 1 hr at 15° C. under N2. TLC (PE:EtOAc=1:1 SM=0.0, Rf=0.33) showed that the reaction was complete. The reaction mixture was poured into H2O (30 mL) and extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1:1) to afford the title compound (0.5 g, 1.16 mmol, 61.48% yield) as a yellow solid. LC-MS (ES+, m/z): 432.2 [(M+H)+].


2-(6-(8-acrylamidonaphthalen-2-yl)picolinamido)acetic acid



embedded image


To a solution of tert-butyl 2-[[6-[8-(prop-2-enoylamino)-2-naphthyl]pyridine-2-carbonyl]amino]acetate (0.4 g, 927.04 μmol, 1 eq) in DCM (10 mL) was added TFA (15.4 g, 135.06 mmol, 10 mL, 145.69 eq). The reaction mixture was stirred for 6 hr at 15° C. under N2. TLC (PE:EtOAc=1:1 SM=0.41, Rf=0.0) showed that the reaction was complete. The reaction mixture was poured into H2O (100 mL), and the aqueous phase was extracted with DCM:THF=1:2 (3×100 mL). The combined organic layer was washed with brine (2×200 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound (0.45 g, crude) as a yellow solid. LC-MS (ES+, m/z): 376.2 [(M+H)+].


General Procedure for Amide Coupling


N-(2-anilino-2-oxo-ethyl)-6-[8-(prop-2-enoylamino)-2-naphthyl]pyridine-2-carboxamide



embedded image


To a solution of 2-[[6-[8-(prop-2-enoylamino)-2-naphthyl]pyridine-2-carbonyl]amino]acetic acid (0.06 g, 159.84 μmol, 1 eq) in DMF (2 mL) were added amine (RNH2) (319.68 μmol, 29.19 μL, 2 eq), TEA (48.5 mg, 479.52 μmol, 66.74 μL, 3 eq) and T3P (203.4 mg, 319.68 μmol, 190.12 μL, 50% purity, 2 eq). The reaction mixture was stirred for 1 hr at 15° C. under N2. The reaction mixture was poured into H2O (20 mL) and extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by prep-HPLC to afford the desired compound.


Route 5: General Scheme



embedded image


embedded image


Step 1) ethyl 5-amino-2-(8-aminonaphthalen-2-yl)pyrimidine-4-carboxylate



embedded image


To a solution of 7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-amine (1.2 g, 4.46 mmol, 1.5 eq) in 2-methylbutan-2-ol (12 mL) and H2O (3 mL) were added ethyl 5-amino-2-chloro-pyrimidine-4-carboxylate (0.6 g, 2.98 mmol, 1 eq), Cs2CO3 (2.91 g, 8.93 mmol, 3 eq) and ditert-butyl(cyclopentyl)phosphane; dichloro palladium; iron (194.0 mg, 297.6 μmol, 0.1 eq). The reaction mixture was stirred for 3 hr at 80° C. under N2. TLC (PE:EtOAc=1:1; SM=0.63, Rf=0.28) showed that the reaction was complete. The reaction mixture was poured into 50 mL saturated EDTA, and 50 mL EtOAc was added. The solution was stirred at 20° C. for 1 hr. Then the aqueous phase was separated and extracted with EtOAc (3×50 mL). The combined organic layer was washed with 100 mL brine, dried over Na2SO4 and concentrated in vacuo to give a crude product which was washed with DCM (10 mL) to afford the title compound (0.9 g, 2.92 mmol, 98.08% yield) as a yellow solid. LC-MS (ES+, m/z): 309.2 [(M+H)+].


Step 2) ethyl 2-(8-acrylamidonaphthalen-2-yl)-5-aminopyrimidine-4-carboxylate



embedded image


To a solution of ethyl 5-amino-2-(8-amino-2-naphthyl)pyrimidine-4-carboxylate (0.8 g, 2.59 mmol, 1 eq) in DCM (20 mL) were added TEA (787.6 mg, 7.78 mmol, 1.08 mL, 3 eq) and prop-2-enoyl chloride (352.3 mg, 3.89 mmol, 317.34 μL, 1.5 eq). The reaction mixture was stirred for 0.5 hr at 0° C. under N2. LCMS showed that the reaction was complete. The reaction mixture was poured into H2O (50 mL), and the aqueous phase was extracted with DCM (3×50 mL). The combined organic layer was washed with brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was washed with EtOAc (10 mL) to afford the title compound (0.75 g, 2.07 mmol, 79.77% yield) as a yellow solid. LC-MS (ES+, m/z): 363.1 [(M+H)+].


Step 3) 2-(8-acrylamidonaphthalen-2-yl)-5-aminopyrimidine-4-carboxylic acid



embedded image


To a solution of ethyl 5-amino-2-[8-(prop-2-enoylamino)-2-naphthyl]pyrimidine-4-carboxylate (0.65 g, 1.79 mmol, 1 eq) in THE (12 mL) and H2O (3 mL) was added LiOH·H2O (150.5 mg, 3.59 mmol, 2 eq), and the reaction was stirred for 1 hr at 25° C. TLC (PE:EtOAc=1:1; SM=0.45, Rf=0.0) showed that the reaction was complete. The reaction mixture was poured into H2O (30 mL) and adjusted to pH=6 with 1M HCl. The aqueous phase was extracted with EtOAc (3×50 mL). The combined organic layer was washed with brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound (0.6 g, crude) as a yellow solid. LC-MS (ES+, m/z): 335.1 [(M+H)+].


Step 4) 2 tert-butyl 2-[[5-amino-2-[8-(prop-2-enoylamino)-2-naphthyl]pyrimidine-4-carbonyl]amino]acetate



embedded image


To a solution of 5-amino-2-[8-(prop-2-enoylamino)-2-naphthyl]pyrimidine-4-carboxylic acid (0.5 g, 1.5 mmol, 1 eq) in DMF (2 mL) were added tert-butyl 2-aminoacetate (392.4 mg, 2.99 mmol, 2 eq), TEA (454 mg, 4.49 mmol, 624.48 μL, 3 eq) and T3P (1.9 g, 2.99 mmol, 1.78 mL, 50% purity, 2 eq), and the reaction mixture was stirred for 1 hr at 15° C. under N2. TLC (DCM:MeOH=30:1; SM=0.0, Rf=0.32) showed that the reaction was complete. The reaction mixture was poured into H2O (50 mL), and the aqueous phase was extracted with EtOAc (3×50 mL). The combined organic layer was washed with brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound tert-butyl 2-[[5-amino-2-[8-(prop-2-enoylamino)-2-naphthyl]pyrimidine-4-carbonyl]amino]acetate (0.7 g, crude) as a yellow solid. LC-MS (ES+, m/z): 448.1 [(M+H)+].


Step 5) 2-[[5-amino-2-[8-(prop-2-enoylamino)-2-naphthyl]pyrimidine-4-carbonyl]amino]acetic acid



embedded image


To a solution of tert-butyl 2-[[5-amino-2-[8-(prop-2-enoylamino)-2-naphthyl]pyrimidine-4-carbonyl]amino]acetate (0.6 g, 1.34 mmol, 1 eq) in DCM (6 mL) was added TFA (9.24 g, 81.04 mmol, 6 mL, 60.44 eq), and the reaction was stirred for 1.5 hr at 35° C. under N2. TLC (DCM:MeOH=30:1; SM=0.35, Rf=0.0) showed that the reaction was complete. The reaction mixture was poured into H2O (50 mL). The precipitate was collected by filtration, and the filter cake was washed with DCM (5 mL) to afford the title compound 2-[[5-amino-2-[8-(prop-2-enoylamino)-2-naphthyl]pyrimidine-4-carbonyl]amino]acetic acid (0.45 g, 1.15 mmol, 85.75% yield) as a yellow solid. LC-MS (ES+, m/z): 392.1 [(M+H)+].


Step 6) Compound 334: N-{7-[5-amino-4-({[(2-methoxyethyl)carbamoyl]methyl}carbamoyl)pyrimidin-2-yl]naphthalen-1-yl}prop-2-enamide



embedded image


To a solution of 2-[[5-amino-2-[8-(prop-2-enoylamino)-2-naphthyl]pyrimidine-4-carbonyl]amino]acetic acid (0.06 g, 153.3 μmol, 1 eq) in DMF (2 mL) were added 2-methoxyethanamine (23 mg, 306.61 μmol, 26.65 μL, 2 eq), TEA (46.5 mg, 459.91 μmol, 64.01 μL, 3 eq) and T3P (195.1 mg, 306.61 μmol, 182.35 μL, 50% purity, 2 eq), and the reaction was stirred for 1 hr at 15° C. under N2. The reaction mixture was poured into H2O (20 mL). The aqueous phase was extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by prep-HPLC to afford the title compound 5-amino-N-[2-(2-methoxyethylamino)-2-oxo-ethyl]-2-[8-(prop-2-enoylamino)-2-naphthyl]pyrimidine-4-carboxamide (0.0123 g, 25.86 μmol, 16.87% yield, 94.3% purity) as a yellow solid. LC-MS (ES+, m/z): 449.2 [(M+H)+]


Route 6: General Scheme



embedded image


Step 1) tert-butyl N-[2-[(6-bromopyridine-2-carbonyl)amino]ethyl]carbamate



embedded image


To a solution of 6-bromopyridine-2-carboxylic acid (2 g, 9.9 mmol, 1 eq) in DCM (10 mL) were added tert-butyl N-(2-aminoethyl)carbamate (3.17 g, 19.8 mmol, 3.11 mL, 2 eq), TEA (3.01 g, 29.7 mmol, 4.13 mL, 3 eq) and T3P (9.45 g, 14.85 mmol, 8.83 mL, 50% purity, 1.5 eq), and the reaction was stirred for 1 hr at 15° C. under N2. TLC (PE:EtOAc=1:1; SM=0.0, Rf=0.2) showed that the reaction was complete. The reaction mixture was poured into H2O (30 mL). The aqueous phase was extracted with DCM (3×30 mL). The combined organic layer was washed with brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound tert-butyl N-[2-[(6-bromopyridine-2-carbonyl)amino]ethyl]carbamate (4 g, crude) as a yellow oil.


Step 2) N-(2-aminoethyl)-6-bromo-pyridine-2-carboxamide



embedded image


A solution of tert-butyl N-[2-[(6-bromopyridine-2-carbonyl)amino]ethyl]carbamate (0.5 g, 1.45 mmol, 1 eq) in HCl/EtOAc (4 M, 10 mL, 27.54 eq) was stirred for 2 hr at 15° C. under N2. The solvent was removed in vacuo to afford the title compound N-(2-aminoethyl)-6-bromo-pyridine-2-carboxamide (0.35 g, crude) as a white solid. LC-MS (ES+, m/z): 244.0&246.0 [(M+H)+].


Step 3) 6-bromo-N-(2-ureidoethyl)pyridine-2-carboxamide



embedded image


To a solution of N-(2-aminoethyl)-6-bromo-pyridine-2-carboxamide (0.35 g, 1.43 mmol, 1 eq) in THF (10 mL) were added phenyl carbamate (196.6 mg, 1.43 mmol, 1 eq) and TEA (725.5 mg, 7.17 mmol, 997.91 μL, 5 eq). The reaction mixture was stirred for 1 hr at 80° C. under N2. TLC (DCM:MeOH=10:1; SM=0.0, RF=0.19) showed that the reaction was complete. The reaction mixture was poured into saturated Na2CO3 (30 mL). The aqueous phase was extracted with EtOAc (3×30 mL). The combined organic phase was washed with brine (2×30 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue which was washed with 5 mL PE:EtOAc=3:1 to afford the title compound 6-bromo-N-(2-ureidoethyl)pyridine-2-carboxamide (0.2 g, 696.59 μmol, 48.58% yield) as a yellow solid. LC-MS (ES+, m/z): 287.0&289.0 [(M+H)+].


Step 4) 6-(8-amino-2-naphthyl)-N-(2-ureidoethyl)pyridine-2-carboxamide



embedded image


To a solution of 6-bromo-N-(2-ureidoethyl)pyridine-2-carboxamide (0.1 g, 348.29 μmol, 1 eq) in dioxane (2 mL) and H2O (0.5 mL) were added 7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-amine (112.5 mg, 417.95 μmol, 1.2 eq), Cs2CO3 (340.4 mg, 1.04 mmol, 3 eq), dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (16.3 mg, 34.83 μmol, 0.1 eq) and [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium; dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (14.6 mg, 17.41 μmol, 0.05 eq). The reaction mixture was stirred for 1 hr at 100° C. under N2. The reaction mixture was poured into 20 mL saturated EDTA and diluted with 20 mL EtOAc. The solution was stirred at 20° C. for 1 hr, and aqueous phase was separated and extracted with EtOAc (3×20 mL). The combined organic layer was washed with 30 mL brine, dried over Na2SO4 and concentrated in vacuo to give a crude product. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1). 6-(8-amino-2-naphthyl)-N-(2-ureidoethyl)pyridine-2-carboxamide (0.08 g, 228.97 μmol, 65.74% yield) was obtained as a yellow solid


Step 5) Compound 342: 6-[8-(prop-2-enoylamino)-2-naphthyl]-N-(2-ureidoethyl)pyridine-2-carboxamide



embedded image


To a solution of 6-(8-amino-2-naphthyl)-N-(2-ureidoethyl)pyridine-2-carboxamide (0.06 g, 171.73 μmol, 1 eq) in DCM (2 mL) were added TEA (52.1 mg, 515.19 μmol, 71.71 μL, 3 eq) and prop-2-enoyl chloride (18.7 mg, 206.08 μmol, 16.80 μL, 1.2 eq) at 0° C., and the reaction mixture was stirred for 0.5 hr at 0° C. under N2. The reaction mixture was poured into H2O (20 mL). The aqueous phase was extracted with DCM (3×20 mL). The combined organic layer was washed with brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by prep-HPLC to afford the title compound 6-[8-(prop-2-enoylamino)-2-naphthyl]-N-(2-ureidoethyl)pyridine-2-carboxamide (5.10 mg, 12.64 μmol, 7.36% yield, 100.0% purity) as a white solid. LC-MS (ES+, m/z): 404.2 [(M+H)+]


Route 7: General Scheme



embedded image


embedded image


General Procedure for Preparation of 7-(2-chloropyrimidin-4-yl)naphthalen-1-amine



embedded image


To a mixture of 2,4-dichloropyrimidine (0.5 g, 3.36 mmol, 1 eq) and 7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-amine (903.3 mg, 3.36 mmol, 1 eq) in DME (20 mL) H2O (5 mL) were added NaHCO3 (845.8 mg, 10.07 mmol, 391.59 μL, 3 eq) and Pd(dppf)Cl2 (1.23 g, 1.68 mmol, 0.5 eq) in one portion at 25° C. under N2. The mixture was stirred at 60° C. for 30 min. The reaction was poured into 20 mL saturated EDTA and diluted with 20 mL EtOAc. The mixture was stirred at 25° C. for 1 hr and extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine 20 mL, dried with sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=2:1) to afford the title compound (0.25 g, 977.7 μmol, 29.13% yield) as a yellow solid.


General Procedure for Preparation of methyl 4-(8-aminonaphthalen-2-yl)pyrimidine-2-carboxylate



embedded image


To a mixture of 7-(2-chloropyrimidin-4-yl)naphthalen-1-amine (0.2 g, 782.16 μmol, 1 eq) in MeOH (8 mL) DMF (8 mL) were added Pd(dppf)Cl2 (57.2 mg, 78.22 μmol, 0.1 eq) and TEA (237.4 mg, 2.35 mmol, 327 μL, 3 eq) in one portion at 25° C. under CO (50 psi, 195.54 μmol). The mixture was stirred at 60° C. for 12 hours. The reaction was poured into water (100 mL) and extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine 20 mL, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1:2) to afford the title compound (0.18 g, 580.04 μmol, 74.2% yield, 90% purity) as a yellow oil.


General Procedure for Preparation of 4-(8-aminonaphthalen-2-yl)-N-(1-methylpiperidin-4-yl)pyrimidine-2-carboxamide



embedded image


To a mixture of methyl 4-(8-aminonaphthalen-2-yl)pyrimidine-2-carboxylate (0.08 g, 286.44 μmol, 1 eq) in THF (3 mL) was added 1-Methylpiperidin-4-amine (3 mL) in one portion at 100° C. under N2. The mixture was stirred at 100° C. for 6 hours. The reaction was poured into water (100 mL) and extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine 20 mL, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=8:1) to afford the title compound (0.09 g, 249 μmol, 86.93% yield) as a yellow oil.


General Procedure for Preparation of 4-(8-acrylamidonaphthalen-2-yl)-N-(1-methylpiperidin-4-yl)pyrimidine-2-carboxamide (Compound 288)



embedded image


To a mixture of 4-(8-amino-2-naphthyl)-N-(1-methyl-4-piperidyl)pyrimidine-2-carboxamide (0.07 g, 193.67 μmol, 1 eq) in DCM (6 mL) was added TEA (58.8 mg, 581.01 μmol, 81 μL, 3 eq) in one portion at 0° C. under N2. Then, prop-2-enoyl chloride (35.1 mg, 387.34 μmol, 32 μL, 2 eq) was added to the reaction, and the mixture was stirred at 0° C. for 1 hour. LCMS and showed that the reaction was complete. The reaction was poured into water (100 mL) and extracted with DCM (3×20 mL). The combined organic layer was washed with brine 20 mL, dried over sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=8:1) to afford the title compound (0.01 g, 23.01 μmol, 11.88% yield, 95.6% purity) as a white solid. LC-MS (ES+, m/z): 416.2 [(M+H)+].


Route 8: General Scheme



embedded image


Preparation of 2-[8-(2-chloroacetamido)naphthalen-2-yl]-N-(1-methylpiperidin-4-yl)pyrimidine-4-carboxamide (Compound 345)



embedded image


A mixture of 2-(8-amino-2-naphthyl)-N-(1-methyl-4-piperidyl)pyrimidine-4-carboxamide (100 mg, 276.67 μmol, 1 eq), 2-chloroacetyl chloride (62.5 mg, 553.34 μmol, 2 eq), and TEA (84 mg, 830.02 μmol, 3 eq) in DCM (2 mL) was stirred at −60° C. for 1 hour. LCMS showed that the reaction was complete. The reaction mixture was added to ice water (50 mL) and extracted with DCM (3×30 mL). The organic phase was separated, washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give crude product. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound (18.9 mg, 41.86 μmol, 15.13% yield, 97% purity) as a light yellow solid. LC-MS (ES+, m/z): 438.2 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) δ=10.59 (s, 1H), 9.39 (s, 1H), 9.21-9.20 (d, J=5.00 Hz, 1H), 8.91-8.90 (d, J=8.00 Hz, 1H), 8.76-8.74 (d, J=8.60 Hz, 1H), 8.14-8.12 (d, J=8.60 Hz, 1H), 7.96-7.95 (d, J=4.40 Hz, 1H), 7.90-7.88 (d, J=8.40 Hz, 1H), 7.84-7.82 (d, J=6.80 Hz, 1H), 7.65-7.63 (m, 1H), 4.53 (s, 2H), 3.86-3.84 (d, J=8.00 Hz, 1H), 2.87-2.84 (d, J=10.80 Hz, 2H), 2.23 (s, 3H), 2.05 (s, 2H). 1.86 (s, 2H), 1.20-1.81 (m, 2H).


Preparation of 2-{8-[(2E)-but-2-enamido]naphthalen-2-yl}-N-(1-methylpiperidin-4-yl)pyrimidine-4-carboxamide (Compound 344)



embedded image


To a mixture of 2-(8-amino-2-naphthyl)-N-(1-methyl-4-piperidyl)pyrimidine-4-carboxamide (100 mg, 276.67 μmol, 1 eq), and TEA (84 mg, 830.01 μmol, 3 eq) in DCM (2 mL) was added (E)-but-2-enoyl chloride (28.9 mg, 276.67 μmol, 1 eq) at 0° C. The mixture was stirred at 25° C. for 1 hour. The reaction mixture was poured into water (50 mL) and extracted with DCM (3×30 mL). The organic phase was separated, washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound (6.7 mg, 15.6 μmol, 5.64% yield, 100% purity) as a light yellow solid.


Preparation of 2-[8-(2-fluoroprop-2-enamido)naphthalen-2-yl]-N-(1-methylpiperidin-4-yl)pyrimidine-4-carboxamide (Compound 347)



embedded image


A mixture of 2-(8-amino-2-naphthyl)-N-(1-methyl-4-piperidyl)pyrimidine-4-carboxamide (100 mg, 276.67 μmol, 1 eq), 2-fluoroprop-2-enoic acid (37.4 mg, 415.01 μmol, 1.5 eq), 1-methylimidazole (295.3 mg, 3.6 mmol, 13 eq), [chloro(dimethylamino)methylene]-dimethyl-ammonium; hexafluorophosphate (776.3 mg, 2.77 mmol, 10 eq) in MeCN (2 mL) was stirred at 25° C. for 2 hours. The reaction mixture was poured into H2O (50 mL) and extracted with EtOAc (3×30 mL). The organic phase was separated, washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give crude product. The residue was purified by prep-HPLC to afford the title compound (21.3 mg, 49.14 μmol, 17.76% yield, 100% purity) as a light yellow solid. LC-MS (ES+, m/z): 434.2 [(M+H)+].


Route 8: Genera Scheme



embedded image


Step 1) 2-[8-[[(E)-4-bromobut-2-enoyl]amino]-2-naphthyl]-N-(1-methyl-4-piperidyl)pyrimidine-4-carboxamide



embedded image


To a solution of 2-(8-amino-2-naphthyl)-N-(1-methyl-4-piperidyl)pyrimidine-4-carboxamide (0.1 g, 276.67 μmol, 1 eq) and (E)-4-bromobut-2-enoic acid (50.2 mg, 304.34 μmol, 1.1 eq) in DMF (1 mL) were added Et3N (84 mg, 830.01 μmol, 115.53 μL, 3 eq) and T3P (264.1 mg, 415.01 μmol, 246.82 μL, 50% purity, 1.5 eq), and the reaction was stirred at 25° C. for 10 min. The reaction was poured into 10 mL water and extracted with EtOAc (3×10 mL). The combined organic phase was washed with brine (3×10 mL), dried over by anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound 2-[8-[[(E)-4-bromobut-2-enoyl]amino]-2-naphthyl]-N-(1-methyl-4-piperidyl)pyrimidine-4-carboxamide (0.02 g, 39.34 μmol, 14.22% yield) as a white solid. LC-MS (ES+, m/z): 510.2 [(M+H)+]


Step 2) Compound 346: Preparation of 2-{8-[(2E)-4-(dimethylamino)but-2-enamido]naphthalen-2-yl}-N-(1-methylpiperidin-4-yl)pyrimidine-4-carboxamide



embedded image


To a solution of 2-[8-[[(E)-4-bromobut-2-enoyl]amino]-2-naphthyl]-N-(1-methyl-4-piperidyl)pyrimidine-4-carboxamide (0.015 g, 29.5 μmol, 1 eq) and N-methylmethanamine (3.6 mg, 44.26 μmol, 4.05 μL, 1.5 eq, HCl) in DMF (2 mL) was added Et3N (9 mg, 88.51 μmol, 12.32 μL, 3 eq), and the reaction was stirred at 25° C. for 1 hr. The reaction was poured into 10 mL water and extracted with EtOAc (3×10 mL). The combined organic phase was washed with brine (3×10 mL), dried over by anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC (basic condition) to afford the title compound 2-[8-[[(E)-4-(dimethylamino)but-2-enoyl]amino]-2-naphthyl]-N-(1-methyl-4-piperidyl)pyrimidine-4-carboxamide (0.004 g, 7.81 μmol, 26.48% yield, 92.3% purity) as a white solid. LC-MS (ES+, m/z): 473.2 [(M+H)+] 1H NMR (400 MHz, DMSO-d6) Shift=10.34 (s, 1H), 9.45 (s, 1H), 9.20 (d, J=4.9 Hz, 1H), 8.87 (br d, J=8.3 Hz, 1H), 8.71 (d, J=8.8 Hz, 1H), 8.12 (d, J=8.7 Hz, 1H), 8.00 (br d, J=7.8 Hz, 1H), 7.95 (d, J=4.9 Hz, 1H), 7.84 (d, J=8.3 Hz, 1H), 7.62 (t, J=7.9 Hz, 1H), 6.88-6.80 (m, 1H), 6.63 (br d, J=15.2 Hz, 1H), 3.85 (br s, 1H), 3.28-3.21 (m, 2H), 3.13 (br d, J=6.1 Hz, 2H), 2.89-2.79 (m, 2H), 2.22 (s, 9H), 2.03 (brt, J=10.3 Hz, 2H), 1.91-1.75 (m, 4H).


Preparation of 2-{8-[(2-chloroethyl)amino]naphthalen-2-yl}-N-(1-methylpiperidin-4-yl)pyrimidine-4-carboxamide (Compound 349)



embedded image


To a solution of 2-(8-amino-2-naphthyl)-N-(1-methyl-4-piperidyl)pyrimidine-4-carboxamide (0.05 g, 138.34 μmol, 1 eq) and 2-chloroacetaldehyde (54.3 mg, 276.67 μmol, 44.50 μL, 2 eq) in MeOH (3 mL) were added AcOH (83.1 ug, 1.38 μmol, 7.91e−2 μL, 0.01 eq) and NaBH3CN (26.1 mg, 415.01 μmol, 3 eq) after 30 min. The reaction was stirred at 25° C. for 1 hr. The reaction was poured into 10 mL water and extracted with DCM (3×10 mL). The combined organic phase was washed with brine (3×10 mL), dried over by anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=8:1). The residue was purified by prep-HPLC (FA condition) to afford the title compound 2-[8-(2-chloroethylamino)-2-naphthyl]-N-(1-methyl-4-piperidyl)pyrimidine-4-carboxamide (0.017 g, 39.3 μmol, 28.41% yield, 98.0% purity) as a yellow solid. LC-MS (ES+, m/z): 424.2 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) Shift=9.40 (s, 1H), 9.16 (d, J=4.9 Hz, 1H), 8.94-8.87 (m, J=8.2 Hz, 1H), 8.64 (dd, J=1.3, 8.6 Hz, 1H), 8.18 (s, 1H), 7.95-7.89 (m, 2H), 7.40 (t, J=7.9 Hz, 1H), 7.25-7.20 (m, J=8.1 Hz, 1H), 6.77 (br t, J=5.5 Hz, 1H), 6.65 (d, J=7.6 Hz, 1H), 3.93 (t, J=6.4 Hz, 2H), 3.86 (br dd, J=7.2, 15.7 Hz, 1H), 3.66 (q, J=6.1 Hz, 2H), 3.34 (br s, 2H), 2.86 (br d, J=11.6 Hz, 2H), 2.24 (s, 3H), 2.18-2.00 (m, 2H), 1.91-1.79 (m, 4H).


Compound 350: Preparation of 2-[8-(4-chlorobutanamido)naphthalen-2-yl]-N-(1-methylpiperidin-4-yl)pyrimidine-4-carboxamide



embedded image


To a solution of 2-(8-amino-2-naphthyl)-N-(1-methyl-4-piperidyl)pyrimidine-4-carboxamide (0.1 g, 276.67 μmol, 1 eq) in DCM (2 mL) were added TEA (84 mg, 830.02 μmol, 115.53 μL, 3 eq) and 4-chlorobutanoyl chloride (39 mg, 276.67 μmol, 30.96 μL, 1 eq) at −60° C. dropwise. The reaction was stirred at −60° C. for 1 hr. LCMS and HPLC showed that the reaction was complete. The reaction was poured into ˜10 mL ice water and extracted with DCM (3×10 mL). The combined organic phase was washed with brine (3×10 mL), dried over by anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC (FA condition) to afford the title compound 2-[8-(4-chlorobutanoylamino)-2-naphthyl]-N-(1-methyl-4-piperidyl)pyrimidine-4-carboxamide (0.015 g, 31.39 μmol, 48.75% yield, 97.5% purity) as a white solid. LC-MS (ES+, m/z): 466.2 [(M+H)+].


Compound 343: Preparation of N-(1-methylpiperidin-4-yl)-2-[8-(2-methylprop-2-enamido)naphthalen-2-yl]pyrimidine-4-carboxamide



embedded image


To a mixture of 2-(8-amino-2-naphthyl)-N-(1-methyl-4-piperidyl)pyrimidine-4-carboxamide (50 mg, 138.34 μmol, 1 eq) in DCM (1 mL) were added Et3N (70 mg, 691.68 μmol, 96.27 μL, 5 eq) and 2-methylprop-2-enoyl chloride (28.9 mg, 276.67 μmol, 27.03 μL, 2 eq) at 0° C. The mixture was stirred a 25° C. for 1 h. The residue was poured into water (20 mL). The aqueous phase was extracted with DCM (2×20 mL). The combined organic phase was washed with brine (2×20 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford the title compound N-(1-methyl-4-piperidyl)-2-[8-(2-methylprop-2-enoylamino)-2-naphthyl]pyrimidine-4-carboxamide (18.7 mg, 43.54 μmol, 15.74% yield, 100% purity) as a white solid. LC-MS (ES+, m/z): 430.2 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) 5=ppm 10.12 (s, 1H), 9.22 (s, 1H), 9.19 (d, J=5.2 Hz, 1H), 8.80 (br d, J=8.0 Hz, 1H), 8.74 (dd, J=8.8, 1.32 Hz, 1H), 8.13 (d, J=8.8 Hz, 1H), 7.89-7.96 (m, 2H), 7.60-7.69 (m, 2H), 6.09 (s, 1H), 5.62 (s, 1H), 3.83 (ddd, J=10.4, 4.35, 1.65 Hz, 1H), 2.78-2.85 (m, 2H), 2.20 (s, 3H), 2.07 (s, 3H), 1.95-2.04 (m, 2H), 1.73-1.86 (m, 4H).


TABLE 7 shows compounds synthesized using the methods described in EXAMPLE 7 above.









TABLE 7









embedded image















Cpd.


LC-MS


No.
Structure
IUPAC
(ES+, m/z)





286


embedded image


N-(1-methylpiperidin-4-yl)-3- [8-(prop-2- enamido)naphthalen-2- yl]benzamide
414.2





287


embedded image


N-(1-methylpiperidin-4-yl)-2- [8-(prop-2- enamido)naphthalen-2- yl]pyrimidine-4-carboxamide
416.2





288


embedded image


N-(1-methylpiperidin-4-yl)-4- [8-(prop-2- enamido)naphthalen-2- yl]pyrimidine-2-carboxamide
416.2





289


embedded image


2-[8-(prop-2- enamido)naphthalen-2-yl]-N- [(1s,4s)-4- (dimethylamino)cyclohexyl] pyrimidine-4-carboxamide
444.3





290


embedded image


2-[8-(prop-2- enamido)naphthalen-2-yl]-N- [(1r,4r)-4- (dimethylamino)cyclohexyl] pyrimidine-4-carboxamide
444.2





291


embedded image


N-(1-ethylpiperidin-4-yl)-6- [8-(prop-2- enamido)naphthalen-2- yl]pyridine-2-carboxamide
429.2





292


embedded image


N-{8-methyl-8- azabicyclo[3.2.1]octan-3-yl}- 2-[8-(prop-2- enamido)naphthalen-2- yl]pyrimidine-4-carboxamide
442.2





293


embedded image


N-[(3S,4R)-3-fluoro-1- methylpiperidin-4-yl]-6-[8- (prop-2-enamido)naphthalen- 2-yl]pyridine-2-carboxamide
433.2





294


embedded image


3-fluoro-N-(1- methylpiperidin-4-yl)-6-[8- (prop-2-enamido)naphthalen- 2-yl]pyridine-2-carboxamide
433.2





295


embedded image


3-amino-N-(1- methylpiperidin-4-yl)-6-[8- (prop-2-enamido)naphthalen- 2-yl]pyridine-2-carboxamide
430.2





296


embedded image


N-(1-methylpiperidin-4-yl)-4- [8-(prop-2- enamido)naphthalen-2-yl]- 1,3-thiazole-2-carboxamide
421.1





297


embedded image


N-[2-(1-methylpiperidin-4- yl)ethyl]-2-[8-(prop-2- enamido)naphthalen-2- yl]pyrimidine-4-carboxamide
444.2





298


embedded image


3-amino-6-[8-(prop-2- enamido)naphthalen-2-yl]-N- [(1s,4s)-4- (dimethylamino)cyclohexyl] pyridine-2-carboxamide
458.2





299


embedded image


3-amino-6-[8-(prop-2- enamido)naphthalen-2-yl]-N- [(1r,4r)-4- (dimethylamino)cyclohexyl] pyridine-2-carboxamide
458.2





300


embedded image


N-[(2S,4R)-1,2- dimethylpiperidin-4-yl]-2-[8- (prop-2-enamido)naphthalen- 2-yl]pyrimidine-4- carboxamide
430.2





301


embedded image


4-[8-(prop-2- enamido)naphthalen-2-yl]-N- [(1r,4r-4- (dimethylamino)cyclohexyl]- 1,3-thiazole-2-carboxamide
449.2





302


embedded image


4-[8-(prop-2- enamido)naphthalen-2-yl]-N- [(1s,4s)-4- (dimethylamino)cyclohexyl]- 1,3-thiazole-2-carboxamide
449.2





303


embedded image


N-{8-methyl-8- azabicyclo[3.2.1]octan-3-yl}- 4-[8-(prop-2- enamido)naphthalen-2-yl]- 1,3-thiazole-2-carboxamide
447.1





304


embedded image


2-[8-(prop-2- enamido)naphthalen-2-yl]-N- [(1s,4s)-4- [ethyl(methyl)amino] cyclohexyl]pyrimidine-4- carboxamide
458.2





305


embedded image


2-[8-(prop-2- enamido)naphthalen-2-yl]-N- [(1r,4r)-4- [ethyl(methyl)amino] cyclohexyl]pyrimidine-4- carboxamide
458.2





306


embedded image


N-(2-cyanoethyl)-6-[8-(prop- 2-enamido)naphthalen-2- yl]pyridine-2-carboxamide
371.1





307


embedded image


3-amino-6-[8-(prop-2- enamido)naphthalen-2-yl]-N- [(1r,4r)-4-[(2- methoxyethyl)(methyl)amino] cyclohexyl]pyridine-2- carboxamide
502.3





308


embedded image


3-amino-6-[8-(prop-2- enamido)naphthalen-2-yl]-N- [(1s,4s)-4-[(2- methoxyethyl)(methyl)amino] cyclohexyl]pyridine-2- carboxamide
502.3





309


embedded image


3-amino-N-[2-(1- methylpiperidin-4-yl)ethyl]- 6-[8-(prop-2- enamido)naphthalen-2- yl]pyridine-2-carboxamide
458.3





310


embedded image


3-amino-N-[(3S,4R)-3- fluoro-1-methylpiperidin-4- yl]-6-[8-(prop-2- enamido)naphthalen-2- yl]pyridine-2-carboxamide
448.2





311


embedded image


3-amino-N-[(3S)-1- methylpiperidin-3-yl]-6-[8- (prop-2-enamido)naphthalen- 2-yl]pyridine-2-carboxamide
430.2





312


embedded image


1-methyl-N-{6-[8-(prop-2- enamido)naphthalen-2- yl]pyridin-2-yl}piperidine-4- carboxamide
415.3





313


embedded image


3-amino-N-[(3R)-1- methylpiperidin-3-yl]-6-[8- (prop-2-enamido)naphthalen- 2-yl]pyridine-2-carboxamide
430.2





314


embedded image


N-[(1R,3R)-3- (dimethylamino)cyclohexyl]- 2-[8-(prop-2- enamido)naphthalen-2- yl]pyrimidine-4-carboxamide
444.2





315


embedded image


N-[(1R,3S)-3- (dimethylamino)cyclohexyl]- 2-[8-(prop-2- enamido)naphthalen-2- yl]pyrimidine-4-carboxamide
444.2





316


embedded image


N-(7-{6-[(carbamoylmethyl) carbamoyl]pyridin-2- yl}naphthalen-1-yl)prop-2- enamide
375.1





317


embedded image


N-[(1-methylpiperidin-4- yl)methyl]-6-[8-(prop-2- enamido)naphthalen-2- yl]pyridine-2-carboxamide
429.2





318


embedded image


N-(2-aminoethyl)-6-[8-(prop- 2-enamido)naphthalen-2- yl]pyridine-2-carboxamide
361.2





319


embedded image


3-amino-N-[(3R,4S)-3- fluoro-1-methylpiperidin-4- yl]-6-[8-(prop-2- enamido)naphthalen-2- yl]pyridine-2-carboxamide
448.2





320


embedded image


6-[8-(prop-2- enamido)naphthalen-2-yl]-N- [(1r,4r)-4-{methyl[2- (methylamino)ethyl]amino} cyclohexyl]pyridine-2- carboxamide
486.3





321


embedded image


N-{7-[6-({[(2- methoxyethyl)carbamoyl] methyl}carbamoyl)pyridin-2- yl]naphthalen-1-yl}prop-2- enamide
433.2





322


embedded image


N-[7-(6- {[(phenylcarbamoyl)methyl] carbamoyl}pyridin-2- yl)naphthalen-1-yl]prop-2- enamide
451.2





323


embedded image


N-{7-[6-({[(1- methylpiperidin-4- yl)carbamoyl]methyl} carbamoyl)pyridin-2- yl]naphthalen-1-yl}prop-2- enamide
472.2





324


embedded image


N-{7-[6-({[(1- methylpyrrolidin-3- yl)carbamoyl]methyl} carbamoyl)pyridin-2- yl]naphthalen-1-yl}prop-2- enamide
458.2





325


embedded image


N-{7-[6-({[(2- cyanoethyl)carbamoyl] methyl}carbamoyl)pyridin-2- yl]naphthalen-1-yl}prop-2- enamide
428.2





326


embedded image


N-(7-{6-[({[2- (methylamino)ethyl] carbamoyl}methyl) carbamoyl]pyridin-2- yl}naphthalen-1-yl)prop-2- enamide
432.2





327


embedded image


N-{7-[6-({[(2- hydroxyethyl)carbamoyl] methyl}carbamoyl)pyridin-2- yl]naphthalen-1-yl}prop-2- enamide
419.2





328


embedded image


N-{7-[6-({[(pyridin-3- yl)carbamoyl]methyl} carbamoyl)pyridin-2- yl]naphthalen-1-yl}prop-2- enamide
452.2





329


embedded image


N-{7-[6-({[(3- chlorophenyl)carbamoyl] methyl}carbamoyl)pyridin-2- yl]naphthalen-1-yl}prop-2- enamide
485.1





330


embedded image


N-{7-[6-({[(4- fluorophenyl)carbamoyl] methyl}carbamoyl)pyridin-2- yl]naphthalen-1-yl}prop-2- enamide
469.2





331


embedded image


N-{7-[6-({[(3- methoxyphenyl)carbamoyl] methyl}carbamoyl)pyridin-2- yl]naphthalen-1-yl}prop-2- enamide
481.2





332


embedded image


N-{7-[6-({[(3- fluorophenyl)carbamoyl] methyl}carbamoyl)pyridin-2- yl]naphthalen-1-yl}prop-2- enamide
469.2





333


embedded image


N-{7-[6-({[(3- cyanophenyl)carbamoyl] methyl}carbamoyl)pyridin-2- yl]naphthalen-1-yl}prop-2- enamide
476.2





334


embedded image


N-{7-[5-amino-4-({[(2- methoxyethyl)carbamoyl] methyl}carbamoyl)pyrimidin- 2-yl]naphthalen-1-yl}prop-2- enamide
449.2





335


embedded image


N-{7-[5-amino-4-({[(pyridin- 3-yl)carbamoyl]methyl} carbamoyl)pyrimidin-2- yl]naphthalen-1-yl}prop-2- enamide
468.2





336


embedded image


N-{7-[6-({[(2,2,2- trifluoroethyl)carbamoyl] methyl}carbamoyl)pyridin-2- yl]naphthalen-1-yl}prop-2- enamide
457.2





337


embedded image


N-[7-(6- {[(ethylcarbamoyl)methyl] carbamoyl}pyridin-2- yl)naphthalen-1-yl]prop-2- enamide
403.2





338


embedded image


N-{7-[6-({[(2- fluoroethyl)carbamoyl] methyl}carbamoyl)pyridin-2- yl]naphthalen-1-yl}prop-2- enamide
421.2





339


embedded image


6-[8-(prop-2- enamido)naphthalen-2-yl]-N- [2-(thiophen-2- yl)ethyl]pyridine-2- carboxamide
428.1





340


embedded image


N-[7-(6-{[2-(2- methylpropanamido)ethyl] carbamoyl}pyridin-2- yl)naphthalen-1-yl]prop-2- enamide
431.2





341


embedded image


N-{7-[6-({[(2-cyano-2- methylethyl)carbamoyl] methyl}carbamoyl)pyridin-2- yl]naphthalen-1-yl}prop-2- enamide
442.2





342


embedded image


N-[2- (carbamoylamino)ethyl]-6-[8- (prop-2-enamido)naphthalen- 2-yl]pyridine-2-carboxamide
404.2





343


embedded image


N-(1-methylpiperidin-4-yl)-2- [8-(2-methylprop-2- enamido)naphthalen-2- yl]pyrimidine-4-carboxamide
430.2





344


embedded image


2-{8-[(2E)-but-2- enamido]naphthalen-2-yl}-N- (1-methylpiperidin-4- yl)pyrimidine-4-carboxamide
430.2





345


embedded image


2-[8-(2- chloroacetamido)naphthalen- 2-yl]-N-(1-methylpiperidin-4- yl)pyrimidine-4-carboxamide
438.2





346


embedded image


2-{8-[(2E)-4- (dimethylamino)but-2- enamido]naphthalen-2-yl}-N- (1-methylpiperidin-4- yl)pyrimidine-4-carboxamide
473.2





347


embedded image


2-[8-(2-fluoroprop-2- enamido)naphthalen-2-yl]-N- (1-methylpiperidin-4- yl)pyrimidine-4-carboxamide
434.2





348


embedded image


N-(1-methylpiperidin-4-yl)-2- {8-[(2E)-4,4,4-trifluorobut-2- enamido]naphthalen-2- yl}pyrimidine-4-carboxamide
484.2





349


embedded image


2-{8-[(2-chloroethyl)amino] naphthalen-2-yl}-N-(1- methylpiperidin-4- yl)pyrimidine-4-carboxamide
424.2





350


embedded image


2-[8-(4-chlorobutanamido) naphthalen-2-yl]-N-(1- methylpiperidin-4- yl)pyrimidine-4-carboxamide
466.2









Example 8: Method H
Route 1: General Scheme



embedded image


Step 1) Preparation of 7-bromanyl-2-methoxy-naphthalene-1-carboxylic acid



embedded image


To a solution of 7-bromo-2-methoxy-naphthalene-1-carbaldehyde (1. g, 3.77 mmol, 1 eq) in acetone (15 mL) was added a solution of Na2CO3 (2 M, 1.89 mL, 1 eq) in H2O (1.9 mL). Then KMnO4 (640 mg, 4.05 mmol, 1.07 eq) was added to the reaction. The reaction was stirred at 25° C. for 6 h. LCMS showed that the reaction was complete. 300 mL of Saturated Na2SO3 was added, and the reaction was stirred at 25° C. for 15 h. The reaction was washed with EtOAc (100 mL) to remove the impurity. The aqueous layer was adjusted pH=4 with 12 M HCl. The reaction mixture was extracted with EtOAc (3×100 mL). The combined organic layer were washed with brine (3×50 mL), dried over Na2SO4, filtered, and dried to afford the title compound (500 mg, 47.2% yield) as a light yellow solid.


Step 2) Preparation of 7-bromanyl-2-methoxy-naphthalen-1-amine



embedded image


To a solution of 7-bromo-2-methoxy-naphthalene-1-carboxylic acid (430 mg, 1.53 mmol, 1 eq) in THF (10 mL) were added DPPA (442 mg, 1.61 mmol, 348.05 μL, 1.05 eq) and TEA (309.6 mg, 3.06 mmol, 425.83 μL, 2 eq). The reaction was stirred at 25° C. for 16 h. Water (1 mL) was added, and the reaction was stirred at 80° C. for 2 h. The reaction was quenched with ice-water (10 mL) and EtOAc (10 mL) at 0° C. The reaction was filtered and the filter cake was extracted with EtOAc (3×10 mL). The combined organic layer was washed with brine (3×10 mL), dried over Na2SO4, filtered, and dried to afford the title compound (340 mg, 88.2% yield) as a yellow solid.


Step 3) Preparation of N-(7-bromanyl-2-methoxy-1-naphthyl)prop-2-enamide



embedded image


To a solution of 7-bromo-2-methoxy-naphthalen-1-amine (340 mg, 1.35 mmol, 1 eq) in DCM (10 mL) were added TEA (887 mg, 8.77 mmol, 1.22 mL, 6.5 eq) and prop-2-enoyl chloride (264.9 mg, 2.93 mmol, 238.63 μL, 2.17 eq) at 25° C. The reaction was stirred at 25° C. for 15 min. The reaction was quenched with water (5 mL) and extracted with EtOAc (3×20 mL). The combined organic layer were washed with brine (3×20 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by prep-TLC (SiO2, DCM/MeOH=50/1, Rf=0.4) to afford the title compound (160 mg, 38.8% yield) as a light yellow solid.


Step 4) Preparation of N-[2-methoxy-7-[4,4,5,5-tetra(methyl)-1,3,2-dioxaborolan-2-yl]-1-naphthyl]prop-2-enamide



embedded image


To a solution of N-(7-bromanyl-2-methoxy-1-naphthyl)prop-2-enamide (78 mg, 254.77 μmol, 1 eq) and 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (327.6 mg, 1.29 mmol, 5.06 eq) in dioxane (5 mL) were added Pd(dppf)Cl2·CH2Cl2 (20.8 mg, 25.48 μmol, 0.1 eq) and KOAc (125 mg, 1.27 mmol, 5 eq). The reaction was stirred at 120° C. for 40 min under N2 atmosphere. The reaction was filtered, and concentrated. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1/1) to afford the title compound (160 mg, 43% purity, 76.4% yield) as black solid.


Step 5) Compound 351: Preparation of N-[7-(4-aminopyridin-2-yl)-2-methoxynaphthalen-1-yl]prop-2-enamide



embedded image


To a solution of N-[2-methoxy-7-[4,4,5,5-tetra(methyl)-1,3,2-dioxaborolan-2-yl]-1-naphthyl]prop-2-enamide (140 mg, 396.35 μmol, 1 eq) and 2-bromopyridin-4-amine (60 mg, 346.8 μmol, 0.88 eq) in dioxane (4 mL) and H2O (1 mL) were added Pd(dppf)Cl2 (29 mg, 39.64 μmol, 0.1 eq) and Na2CO3 (126 mg, 1.19 mmol, 3 eq). The reaction was stirred at 120° C. for 0.5 h under N2 atmosphere. LCMS showed that the reaction was complete. 20 mL of Saturated EDTA was added, and the reaction was stirred at 25° C. for 1 h. The reaction was filtered and the filtrate was extracted with EtOAc (3×10 mL). The combined organic layer was washed with brine (3×10 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by prep-TLC (SiO2, DCM/MeOH=8/1, Rf=0.3) and prep-HPLC to afford the title compound (5.6 mg, 4.4% yield) as a white solid. LC-MS (ES+, m/z): 320.1 [(M+H)+]


Route 2: General Scheme



embedded image


Step 1) Preparation of 2-methoxy-7-[4,4,5,5-tetra(methyl)-1,3,2-dioxaborolan-2-yl]naphthalen-1-amine



embedded image


To a solution of 7-bromo-2-methoxy-naphthalen-1-amine (800 mg, 3.17 mmol, 1 eq) and 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (960 mg, 3.78 mmol, 1.19 eq) in dioxane (20 mL) were added Pd(dppf)Cl2 (232.2 mg, 317.33 μmol, 0.1 eq) and KOAc (934.3 mg, 9.52 mmol, 3 eq). The reaction was stirred at 120° C. for 0.5 h under N2 atmosphere. The reaction was filtered. The filtrate was concentrated, and the residue was purified by silica gel chromatography (PE:EtOAc=3:1) to afford the title compound (800 mg, 84.3% yield) as a yellow solid.


Step 2) Preparation of 2-methoxy-7-(2-pyridyl)naphthalen-1-amine



embedded image


To a solution of 2-methoxy-7-[4,4,5,5-tetra(methyl)-1,3,2-dioxaborolan-2-yl]naphthalen-1-amine (284 mg, 949.39 μmol, 1 eq) and 2-bromopyridine (150 mg, 949.39 μmol, 90.36 μL, 1 eq) in dioxane (2 mL) and H2O (0.5 mL) were added Pd(dppf)Cl2·CH2Cl2 (77.5 mg, 94.94 μmol, 0.1 eq) and Na2CO3 (301.9 mg, 2.85 mmol, 3 eq). The reaction was stirred at 120° C. for 1 h under N2 atmosphere. LCMS showed that the reaction was complete. 20 mL Saturated EDTA was added, and the reaction was stirred at 25° C. for 1 h. The reaction was extracted with EtOAc (2×10 mL). The combined organic layer was washed with brine (3×10 mL), dried over Na2SO4 and concentrated. The residue was purified by prep-TLC (SiO2, PE/EtOAc=2/1, Rf=0.4) to afford the title compound (100 mg, 42.1% yield) as a yellow oil.


Step 3) Compound 352: Preparation of N-[2-methoxy-7-(pyridin-2-yl)naphthalen-1-yl]prop-2-enamide



embedded image


To a solution of 2-methoxy-7-(2-pyridyl)naphthalen-1-amine (40 mg, 159.81 μmol, 1 eq) in DCM (2.0 mL) were added TEA (48.5 mg, 479.44 μmol, 66.73 μL, 3 eq) and prop-2-enoyl chloride (14.5 mg, 159.81 μmol, 13.03 μL, 1 eq) in 0.3 mL DCM. The reaction was stirred at 25° C. for 1 h. The reaction was poured into ice-water (5 mL) and extracted with EtOAc (3×10 mL). The combined organic layer were washed with brine (3×10 mL), dried over Na2SO4, filtered, and concentrated. The residue was purified by pre-HPLC to afford the title compound (9 mg, 18.4% yield) as a white solid. LC-MS (ES+, m/z): 305.1 [(M+H)+].


Compound 358 and 359: General Procedure for Compound 3-(8-acrylamido-7-methoxynaphthalen-2-yl)-N-((3S,4R)-3-fluoro-1-methylpiperidin-4-yl)benzamide



embedded image


To a mixture of 6-(8-amino-7-methoxy-2-naphthyl)-N-[(3R,4S)-3-fluoro-1-methyl-4-piperidyl]pyridine-2-carboxamide (110 mg, 269.3 μmol, 1 eq) in DCM (3 mL) were added Et3N (136.3 mg, 1.35 mmol, 187.4 μL, 5 eq) and prop-2-enoyl chloride (24.4 mg, 269.3 μmol, 21.95 μL, 1 eq) in one portion. The reaction mixture was stirred at 25° C. for 2 hours. TLC showed ˜50% of the starting material remained. An additional portion of prop-2-enoyl chloride (24.4 mg, 269.3 μmol, 21.95 μL, 1 eq) was added to the reaction mixture and stirred at 25° C. for another 1 hour. TLC showed that the reaction was complete. The reaction was diluted with 30 mL water and extracted with EtOAc (2×30 mL). The combined organic layer was washed with brine (2×25 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1). then purified by chiral SEC to afford example 358 (28.5 mg, 60.82 μmol, 22.6% yield, 98.7% purity) as a white solid. LC-MS (ES+, m/z): 463.2 [(M+H)+], The other enantiomer (Compound 359) was also obtained (30.1 mg, 63.97 μmol, 23.76% yield, 98.3% purity) as a white solid. LC-MS (ES+, m/z): 463.2 [(M+H)+].


Route 3: General Scheme



embedded image



General Procedure for Suzuki Coupling


Preparation of 2-(8-amino-7-methoxy-2-naphthyl)-N-(1-methyl-4-piperidyl)pyrimidine-4-carboxamide



embedded image


To a solution of 2-methoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-amine (0.5 g, 1.67 mmol, 1 eq) and RBr 2-chloro-N-(1-methyl-4-piperidyl)pyrimidine-4-carboxamide (510.8 mg, 2.01 mmol, 1.2 eq) in dioxane (6 mL) and H2O (1.5 mL) were added Na2CO3 (531.4 mg, 5.01 mmol, 3 eq) and Pd(dppf)Cl2 (122.3 mg, 167.13 μmol, 0.1 eq), and the reaction was stirred at 100° C. for 1 hr under N2. The reaction was poured into ˜20 mL saturated EDTA and stirred at 25° C. for 0.5 h. The mixture was extracted with EtOAc (3×20 mL). The combined organic phase was washed with brine (3×20 mL), dried over by anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound (0.3 g, 766.35 μmol, 45.8% yield) as a yellow solid. LC-MS (ES+, m/z): 392.1 [(M+H)+]


General Procedure for Acylation


Compound 357: Preparation of 2-[7-methoxy-8-(prop-2-enamido)naphthalen-2-yl]-N-(1-methylpiperidin-4-yl)pyrimidine-4-carboxamide



embedded image


To a mixture of 2-(8-amino-7-methoxy-2-naphthyl)-N-(1-methyl-4-piperidyl)pyrimidine-4-carboxamide (0.03 g, 76.64 μmol, 1 eq) in DCM (2 mL) were added Et3N (23.3 mg, 229.91 μmol, 32 μL, 3 eq) and prop-2-enoyl chloride (6.9 mg, 76.64 μmol, 6.25 μL, 1 eq), and the reaction was stirred at 25° C. for 1 hr. The reaction was poured into ˜10 mL water and extracted with DCM (3×10 mL. The combined organic phase was washed with brine (3×10 mL), dried over by anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPVC (neutral condition) to afford the title compound (0.0065 g, 14.59 μmol, 19.04% yield, 100% purity) as a white solid. LC-MS (ES+, m/z): 446.2 [(M+H)+].


Preparation of 2-methoxy-7-(1-methylpyrazol-4-yl)naphthalen-1-amine



embedded image


To a solution of 2-methoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) naphthalen-1-amine (200 mg, 668.51 μmol, 1 eq) in dioxane (2 mL) and H2O (0.5 mL) was successively added 4-bromo-1-methyl-pyrazole (215.3 mg, 1.34 mmol, 2 eq), Na2CO3 (212.6 mg, 2.01 mmol, 3 eq) and Pd(dppf)Cl2 (48.9 mg, 66.85 μmol, 0.1 eq) at 25° C. The resulting reaction mixture was stirred at 100° C. for 1 hour. LCMS showed that the reaction was complete. The reaction mixture was poured into 80 mL saturated EDTA and followed by 30 mL EtOAc. The solution was stirred at 20° C. for 2 hours. The aqueous phase was extracted with EtOAc (2×20 mL). The combined organic layer was washed successively with water (2×20 mL) and brine (1×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated to give a residue. The residue was purified by prep-TLC (SiO2, DCM:MeOH=30:1) to afford the title compound (100 mg, 394.79 μmol, 59.06% yield) as a yellow solid. LC-MS (ES+, m/z): 254.1 [(M+H)+].


Compound 377: Preparation of N-[2-methoxy-7-(1-methyl-1H-pyrazol-4-yl)naphthalen-1-yl]prop-2-enamide



embedded image


To a solution of 2-methoxy-7-(1-methylpyrazol-4-yl)naphthalen-1-amine (80 mg, 315.83 μmol, 1 eq) in DCM (4 mL) were added TEA (95.9 mg, 947.5 μmol, 3 eq) and prop-2-enoyl chloride (28.6 mg, 315.83 μmol, 1 eq) at 25° C. The mixture was stirred at 25° C. for 1 hour. The reaction mixture was poured into water (80 mL) and extracted with DCM (3×30 mL). The combined organic layer was washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound (20.4 mg, 66.37 μmol, 21.02% yield, 100% purity) as a light yellow solid. LC-MS (ES+, m/z): 309.1 [(M+H)+], 1H NMR (400 MHz, DMSO-d6)=9.67 (s, 1H), 8.18 (s, 1H), 7.89-7.94 (m, 1H), 7.86 (s, 2H), 7.76 (s, 1H), 7.72-7.79 (m, 1H), 7.43 (d, J=9.04 Hz, 1H), 6.64 (dd, J=16.90, 1H), 6.25 (d, 0.7=17.20 Hz, 1H), 5.78 (d, J=10.10 Hz, 1H).


Route 4: General Scheme



embedded image


Step 1) 6-[7-methoxy-8-(prop-2-enoylamino)-2-naphthyl]-N-[(3R)-1-methyl-3-piperidyl]pyridine-2-carboxamide



embedded image


To a solution of 6-[7-methoxy-8-(prop-2-enoylamino)-2-naphthyl]pyridine-2-carboxylic acid (200 mg, 574.13 μmol, 1 eq) in DMF (2 mL) were added (3R)-1-methylpiperidin-3-amine (78.7 mg, 688.96 μmol, 1.2 eq), T3P (548 mg, 861.2 μmol, 1.5 eq) and TEA (174.3 mg, 1.72 mmol, 3 eq). The mixture was stirred at 20° C. for 2 hours. The reaction mixture was poured into H2O (50 mL) and extracted with EtOAc (3×30 mL). The organic phase was separated, washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give crude product. The residue was purified by prep-HPLC to afford the title compound 6-[7-methoxy-8-(prop-2-enoylamino)-2-naphthyl]-N-[(3R)-1-methyl-3-piperidyl]pyridine-2-carboxamide (10.2 mg, 22.95 μmol, 4.00% yield) as a light yellow solid.


Route 4: General Scheme



embedded image


Step 1—7-Bromo-2-ethoxy-naphthalen-1-amine



embedded image


To a solution of tert-butyl N-(7-bromo-2-ethoxy-1-naphthyl)carbamate (1 g, 2.73 mmol, 1 eq) in DCM (10 mL) was added TFA (2 mL). The mixture was stirred at 25° C. for 1 hour. LCMS showed that the reaction was complete. The reaction mixture was added to ice water (100 mL). Then saturated Na2CO3 was slowly added to the mixture to adjust the mixture to pH=8˜9. The mixture was extracted with DCM (3×30 mL). The organic phase was separated, washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound (700 mg, crude) as a light yellow solid. LC-MS (ES+, m/z): 365.9 [(M+H)+].


Step 2—2-ethoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-amine



embedded image


A mixture of 7-bromo-2-ethoxy-naphthalen-1-amine (700 mg, 2.63 mmol, 1 eq), 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (1.34 g, 5.26 mmol, 2 eq), KOAc (1.29 g, 13.15 mmol, 5 eq), and Pd(dppf)Cl2 (192.5 mg, 263.03 μmol, 0.1 eq) in dioxane (20 mL) was prepared. The mixture was stirred at 100° C. for 2 hours. The reaction mixture was filtered, and concentrated in vacuo to give crude product. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:0 to 8:1) to afford the title compound (800 mg, 2.55 mmol, 97.11% yield) as a light yellow solid. LC-MS (ES+, m/z): 314.1 [(M+H)+].


Step 3—6-(8-amino-7-ethoxy-2-naphthyl)-N-[(1-methyl-4-piperidyl)methyl]pyridine-2-carboxamide



embedded image


A mixture of 6-bromo-N-[(l-methyl-4-piperidyl)methyl]pyridine-2-carboxamide (150 mg, 480.45 μmol, 1 eq), 2-ethoxy-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-amine (180.6 mg, 576.54 μmol, 1.2 eq), Na2CO3 (152.8 mg, 1.44 mmol, 3 eq), and Pd(dppf)Cl2 (35.2 mg, 48.05 μmol, 0.1 eq) in dioxane (2 mL) and H2O (0.5 mL) was heated to 110° C. and stirred for 1 hour. The reaction mixture was added to 30 mL saturated EDTA solution and stirred for 1 hour. The mixture was extracted with EtOAc (3×30 mL). The organic phase was separated, washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound (180 mg, 430.08 μmol, 89.51% yield) as a light yellow solid. LC-MS (ES+, m/z): 419.2 [(M+H)+]


Step 4—Compound 367: Preparation of 6-[7-ethoxy-8-(prop-2-enamido)naphthalen-2-yl]-N-(1-methylpiperidin-4-yl)pyridine-2-carboxamide



embedded image


A mixture of 6-(8-amino-7-ethoxy-2-naphthyl)-N-[(l-methyl-4-piperidyl)methyl]pyridine-2-carboxamide (140 mg, 334.5 μmol, 1 eq), TEA (101.5 mg, 1 μmol, 3 eq) in DCM (2 mL), add prop-2-enoyl chloride (30.3 mg, 334.5 μmol, 1 eq) at 0° C., and the mixture was stirred at 25° C. for 2 hours. The reaction mixture was poured into H2O (50 mL) and the mixture was extracted with DCM (3×30 mL). The organic phase was separated, washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound (27.6 mg, 58.4 μmol, 17.46% yield, 100% purity) as a light yellow solid. LC-MS (ES+, m/z): 459.3 [(M+H)+]


Route 5: General Scheme



embedded image


embedded image


Step 1—7-bromo-1-nitro-2-vinyl-naphthalene



embedded image


To a solution of (7-bromo-1-nitro-2-naphthyl)trifluoromethanesulfonate (6. g, 15 mmol, 1 eq) and tributyl(vinyl)stannane (4.99 g, 15.75 mmol, 1.05 eq) in DMF (100 mL) was added LiCl (1.91 g, 44.99 mmol, 3 eq) and Pd(PPh3)2Cl2 (877.10 mg, 1.25 mmol, 0.1 eq). The reaction mixture was stirred at 25° C. for 12 hours under N2. TLC (PE:EtOAc=10:1, SM/Rf=0.2, TM/Rf=0.4) showed that the reaction was complete. The reaction mixture was poured into H2O (450 mL) and extracted with EtOAc (3×200 mL). The combined organic layers were washed with H2O (2×200 mL) and brine (2×200 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=1:0 to 10:1) to afford the title compound 7-bromo-1-nitro-2-vinyl-naphthalene (4. g, 11.51 mmol, 76.73% yield) as a yellow solid.


Step 2—(7-bromo-1-nitro-2-naphthyl)methanol



embedded image


A solution of 7-bromo-1-nitro-2-vinyl-naphthalene (6. g, 17.26 mmol, 1 eq) in DCM (240 mL) and MeOH (60 mL) was cooled to −78° C. The reaction was bubbled with ozone (828.4 g, 17.26 mmol, 1 eq) at −78° C. for 0.5 h. After that, NaBH4 (1.96 g, 51.78 mmol, 3 eq) was added. The resulting reaction mixture was warmed to 25° C. and stirred at 25° C. for 0.5 h. TLC (PE:EtOAc=4:1, SM/Rf=0.7, TM/Rf=0.3) showed that the reaction was complete. The reaction mixture was poured into H2O (300 mL) and extracted with EtOAc (2×100 mL). The combined organic layers were washed with H2O (2×100 mL) and brine (2×100 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound (7-bromo-1-nitro-2-naphthyl)methanol (3.2 g, 11.34 mmol, 65.72% yield) as a white solid.


Step 3—(7-bromo-1-nitro-2-naphthyl)methyl methanesulfonate



embedded image


To a solution of (7-bromo-1-nitro-2-naphthyl)methanol (1.7 g, 6.03 mmol, 1 eq) in DCM (20 mL) was added TEA (3.05 g, 30.13 mmol, 5 eq) and methanesulfonyl chloride (1.04 g, 9.04 mmol, 1.5 eq) at 0° C. The resulting reaction mixture was stirred at 0° C. for 1 h. TLC (PE:EtOAc=3:1, SM/Rf=0.5, TM/Rf=0.4) showed that the reaction was complete. The reaction mixture was poured into H2O (400 mL) and extracted with EtOAc (2×200 mL). The combined organic layers were washed with H2O (2×100 mL) and brine (2×100 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound (7-bromo-1-nitro-2-naphthyl)methyl methanesulfonate (2. g, crude) as a white solid, which was used for the next step directly without further purification.


Step 4—7-bromo-2-(methoxymethyl)-1-nitro-naphthalene



embedded image


To a solution of (7-bromo-1-nitro-2-naphthyl)methyl methanesulfonate (1.7 g, 4.72 mmol, 1 eq) in MeOH (34 mL) was added CH3ONa (0.76 g, 14.16 mmol, 3 eq) at 25° C. The mixture was stirred at 50° C. for 1 h. TLC (PE:EtOAc=4:1, SM/Rf=0.3, TM/Rf=0.7) showed that the reaction was complete. The reaction mixture was poured into H2O (300 mL) and extracted with EtOAc (2×100 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 6:1) to afford the title compound 7-bromo-2-(methoxymethyl)-1-nitro-naphthalene (0.77 g, 2.6 mmol, 55.09% yield) as a yellow solid.


Step 5—7-bromo-2-(methoxymethyl)naphthalen-1-amine



embedded image


To a solution of 7-bromo-2-(methoxymethyl)-1-nitro-naphthalene (1.5 g, 5.07 mmol, 1 eq) in EtOH (30 mL) was added saturated NH4Cl (4 mL) at 25° C. Then, Fe (1.41 g, 25.33 mmol, 3 eq) was added at 70° C., and the reaction mixture was stirred at 70° C. for 1 h. TLC (PE:EtOAc=4:1, SM/Rf=0.5, TM/Rf=0.3) showed that the reaction was complete. The reaction mixture was poured into H2O (200 mL) and extracted with EtOAc (3×50 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=20:1 to 8:1) to afford the title compound 7-bromo-2-(methoxymethyl)naphthalen-1-amine (1.3 g, 4.88 mmol, 96.43% yield) as a yellow solid. LC-MS (ES+, m/z): 266.0 [(M+H)+]


Step 6—2-(methoxymethyl)-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) Naphthalen-1-amine



embedded image


To a solution of 7-bromo-2-(methoxymethyl)naphthalen-1-amine (0.2 g, 0.75 mmol, 1 eq) and 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (0.57 g, 2.25 mmol, 3 eq) in dioxane (15 mL) were added KOAc (0.59 g, 6.01 mmol, 8 eq) and Pd(dppf)Cl2 (110 mg, 150.3 μmol, 0.2 eq) at 25° C. The resulting reaction mixture was stirred at 85° C. for 2 hours under N2. LCMS showed that the reaction was complete. The reaction mixture was concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound 2-(methoxymethyl)-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) naphthalen-1-amine (1.2 g, 3.83 mmol, 92.70% yield) as a yellow oil. LC-MS (ES+, m/z): 314.1 [(M+H)+]


Step 7—6-[8-amino-7-(methoxymethyl)-2-naphthyl]-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide



embedded image


To a solution of 2-(methoxymethyl)-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) naphthalen-1-amine (180 mg, 574.7 μmol, 1.2 eq) in dioxane (4 mL) and H2O (1 mL) were successively added 6-bromo-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (142.8 mg, 478.93 μmol, 1 eq), Na2CO3 (152.3 mg, 1.44 mmol, 3 eq) and Pd(dppf)Cl2 (35 mg, 47.9 μmol, 0.1 eq) at 25° C. The resulting reaction mixture was stirred at 110° C. for 1 hour. LCMS showed that the reaction was complete. The reaction mixture was poured into 80 mL saturated EDTA and followed by 30 mL EtOAc. The solution was stirred at 20° C. for 2 h. The organic phase was separated, and the aqueous phase was extracted with EtOAc (2×20 mL). The combined organic layer was washed successively with water (2×20 mL) and brine (1×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated to give a residue. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound (160 mg, 395.55 μmol, 82.59% yield) as a light yellow solid. LC-MS (ES+, m/z): 405.3 [(M+H)+].


Step 8—Compound 380: Preparation of 6-[7-(methoxymethyl)-8-(prop-2-enamido)naphthalen-2-yl]-N-(1-methylpiperidin-4-yl)pyridine-2-carboxamide



embedded image


To a solution of 6-[8-amino-7-(methoxymethyl)-2-naphthyl]-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (140 mg, 346.1 μmol, 1 eq) in DCM (4 mL) were added TEA (105.1 mg, 1.04 mmol, 144.52 μL, 3 eq) and prop-2-enoyl chloride (62.7 mg, 692.21 μmol, 2 eq) at 25° C. The mixture was stirred at 25° C. for 1 h. Upon completion of the reaction as indicated by LCMS, the reaction mixture was poured into water and extracted with EtOAc (3×30 mL). The combined organic layer was washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound (22.5 mg, 49.07 μmol, 14.18% yield, 100% purity) as a white solid. LC-MS (ES+, m/z): 459.3 [(M+H)+]. 1H NMR (400 MHz, DMSO-d6)=10.30 (s, 1H), 8.83 (s, 1H), 8.42 (d, J=8.50, 2H), 8.30 (d, J=7.30 Hz, 1H), 8.12-8.18 (m, 1H), 8.11 (d, J=4.20 Hz, 1H), 8.02 (d, J=6.970 Hz, 1H), 7.98 (d, J=8.60 Hz, 1H), 7.69 (d, J=8.40 Hz, 1H), 6.73 (d, J=17.00, 10.27 Hz, 1H), 6.34 (d, J=17.00, 1.71 Hz, 1H), 5.85 (d, J=10.20, 1.65 Hz, 1H), 4.49 (s, 2H), 3.72-3.91 (m, 1H), 3.29-3.32 (m, 2H), 2.81 (d, J=11.50 Hz, 2H), 2.21 (s, 3H), 1.94-2.09 (m, 2H), 1.80-1.90 (m, 2H), 1.67-1.80 (m, 2H).


Route 6: General Scheme



embedded image


embedded image


Step 1—tert-butyl 6-[8-amino-7-(methoxymethyl)-2-naphthyl]pyridine-2-carboxylate



embedded image


To a solution of tert-butyl 6-bromopyridine-2-carboxylate (725.2 mg, 2.81 mmol, 1.1 eq) and 2-(methoxymethyl)-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-amine (0.8 g, 2.55 mmol, 1 eq) in DME (16 mL) and H2O (4 mL) were added Na2CO3 (812.2 mg, 7.66 mmol, 3 eq) and Pd (dppf)Cl2 (1.87 g, 2.55 mmol, 1 eq). The reaction mixture was stirred at 80° C. for 1 hr under N2. TLC (PE:EtOAc=1:1, SM Rf=0.62, TM Rf=0.23) showed that the reaction was complete. The reaction was poured into ˜10 mL saturated EDTA and stirred at 25° C. for 1 h. The mixture was extracted with EtOAc (3×10 mL), and the combined organic layer was washed with brine (3×10 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=20/1 to 1/1) to afford the title compound tert-butyl 6-[8-amino-7-(methoxymethyl)-2-naphthyl]pyridine-2-carboxylate (0.61 g, 1.67 mmol, 65.53% yield) as a yellow oil.


Step 2—tert-butyl 6-[7-(methoxymethyl)-8-(prop-2-enoylamino)-2-naphthyl]pyridine-2-carboxylate



embedded image


To a solution of tert-butyl 6-[8-amino-7-(methoxymethyl)-2-naphthyl]pyridine-2-carboxylate (0.55 g, 1.51 mmol, 1 eq) in DCM (2 mL) were added TEA (763.6 mg, 7.55 mmol, 1.05 mL, 5 eq) and prop-2-enoyl chloride (163.9 mg, 1.81 mmol, 147.67 μL, 1.2 eq). The reaction mixture was stirred at 0° C. for 1 h under N2. TLC (PE:EtOAc=1:1, SM Rf=0.40, TM Rf=0.15) showed that the reaction was complete. The reaction mixture was poured into 50 mL H2O and extracted with DCM (3×50 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1:1) to afford the title compound tert-butyl 6-[7-(methoxymethyl)-8-(prop-2-enoylamino)-2-naphthyl]pyridine-2-carboxylate (0.43 g, 1.03 mmol, 68.08% yield) as a yellow solid.


Step 3—6-[7-(methoxymethyl)-8-(prop-2-enoylamino)-2-naphthyl]pyridine-2-carboxylic acid



embedded image


To a solution of tert-butyl 6-[7-(methoxymethyl)-8-(prop-2-enoylamino)-2-naphthyl]pyridine-2-carboxylate (0.38 g, 908.04 μmol, 1 eq) in DCM (6 mL) was added TFA (4.62 g, 40.52 mmol, 3 mL, 44.62 eq). The reaction mixture was stirred at 15° C. for 12 h. LCMS showed that the reaction was complete. The reaction mixture was concentrated in vacuo to afford the title compound 6-[7-(methoxy methyl)-8-(prop-2-enoylamino)-2-naphthyl]pyridine-2-carboxylic acid (0.5 g, crude, TFA) as a yellow oil, which was used for the next step directly without further purification. LC-MS (ES+, m/z): 363.2 [(M+H)+]


Step 4—methyl 2-[[6-[7-(methoxymethyl)-8-(prop-2-enoylamino)-2-naphthyl]pyridine-2-carbonyl]amino]acetate



embedded image


To a solution of 6-[7-(methoxymethyl)-8-(prop-2-enoylamino)-2-naphthyl]pyridine-2-carboxylic acid (0.5 g, 1.05 mmol, 1 eq, TFA) in DMF (8 mL) were added methyl 2-aminoacetate;hydrochloride (263.6 mg, 2.1 mmol, 2 eq) and TEA (531 mg, 5.25 mmol, 730.41 μL, 5 eq). Then, T3P (1 g, 1.57 mmol, 936.29 μL, 50% purity, 1.5 eq) was added, and the resulting reaction mixture was stirred at 15° C. for 1 h. TLC (DCM:MeOH=10:1, SM Rf=0.00, TM Rf=0.28) showed that the reaction was complete. The reaction mixture was poured into 100 mL H2O, extracted with EtOAc (3×100 mL). The combined organic layer was washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound methyl 2-[[6-[7-(methoxymethyl)-8-(prop-2-enoylamino)-2-naphthyl]pyridine-2-carbonyl]amino]acetate (0.35 g, 807.46 μmol, 76.94% yield) as a white solid.


Step 5—2-[[6-[7-(methoxymethyl)-8-(prop-2-enoylamino)-2-naphthyl]pyridine-2-carbonyl]amino]acetic acid



embedded image


To a solution of methyl 2-[[6-[7-(methoxymethyl)-8-(prop-2-enoylamino)-2-naphthyl]pyridine-2-carbonyl]amino]acetate (0.3 g, 692.11 μmol, 1 eq) in THF (8 mL) andH2O (2 mL) was added LiOH·H2O (87.1 mg, 2.08 mmol, 3 eq). The reaction mixture was stirred at 15° C. for 1 h. TLC (DCM:MeOH=10:1, SM Rf=0.30, TM Rf=0.00) showed that the reaction was complete. The reaction mixture was poured into ˜50 mL water, adjusted to pH=6 with saturated citric acid, and extracted with EtOAc (3×50 mL). The combined organic layer was dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound 2-[[6-[7-(methoxymethyl)-8-(prop-2-enoylamino)-2-naphthyl]pyridine-2-carbonyl]amino]acetic acid (0.32 g, crude) as a yellow solid which was used for the next step directly without further purification.


Step 6—Compound 392: Preparation of N-{7-[6-({[(4-fluoro-3-methoxyphenyl) carbamoyl]methyl}carbamoyl)pyridin-2-yl]-2-(methoxymethyl)naphthalen-1-yl}prop-2-enamide



embedded image


To a solution of 2-[[6-[7-(methoxymethyl)-8-(prop-2-enoylamino)-2-naphthyl]pyridine-2-carbonyl]amino]acetic acid (60 mg, 143.05 μmol, 1 eq) in DMF (3 mL) were added TEA (72.4 mg, 715.26 μmol, 99.56 μL, 5 eq) and 4-fluoro-3-methoxy-aniline (30.3 mg, 214.58 μmol, 1.5 eq). Then, T3P (136.6 mg, 214.58 μmol, 127.62 μL, 50% purity, 1.5 eq) was added, and the reaction was stirred at 15° C. for 1 h. LCMS showed that the reaction was complete. The reaction mixture was poured into 50 mL H2O and extracted with EtOAc (3×50 mL). The combined organic layer was washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound N-[2-(4-fluoro-3-methoxy-anilino)-2-oxo-ethyl]-6-[7-(methoxymethyl)-8-(prop-2-enoylamino)-2-naphthyl]pyridine-2-carboxamide (16.6 mg, 28.97 μmol, 20.25% yield, 94.7% purity) as a white solid. LC-MS (ES+, m/z): 543.2 [(M+H)+]


Route 7: General Scheme



embedded image


embedded image


Route 2: Step 1—7-bromo-2-[bromo(difluoro)methoxy]-1-nitro-naphthalene



embedded image


To a mixture of 7-bromo-1-nitro-naphthalen-2-ol (5 g, 18.65 mmol, 1 eq) in DMF (50 mL) was added NaH (2.24 g, 55.96 mmol, 60% purity, 3 eq) at 0° C. The mixture was stirred at 0° C. for 0.5 h, and KOtBu (2.3 g, 20.52 mmol, 1.1 eq) and dibromodifluoromethane (11.74 g, 55.96 mmol, 5.17 mL, 3 eq) in DMF (50 mL) were added at 0° C. The mixture was stirred at 25° C. for 12 h. HPLC showed ˜30% reactant and ˜60% product was detected. The residue was poured into saturated NH4Cl (100 mL) and the aqueous phase was extracted with EtOAc (4×100 mL). The combined organic phase was washed with brine (4×100 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by silica gel chromatography (SiO2, PE:EtOAc=1:0) to afford the title compound (1 g, 2.28 mmol, 12.22% yield, 90.455% purity) as a yellow solid. Some impure product (3 g, 4.53 mmol, 24.31% yield, 60% purity) was obtained as a yellow solid. 1H NMR (400 MHz, DMSO-d6) δ=8.52 (d, 7=8.8 Hz, 1H), 8.27 (d, 7=8.8 Hz, 1H), 8.10 (s, 1H), 8.01 (dd, J=1.6, 8.8 Hz, 1H), 7.93 (d, 7=9.2 Hz, 1H)


Step 2—7-bromo-1-nitro-2-(trifluoromethoxy)naphthalene



embedded image


To a mixture of 7-bromo-2-[bromo(difluoro)methoxy]-1-nitro-naphthalene (500 mg, 1.26 mmol, 1 eq) in hexane (40 mL) was added AgBF4 (1.47 g, 7.56 mmol, 6 eq) at 25° C. The mixture was stirred at 25° C. for 16 h. HPLC showed the starting material was consumed. The combined organic phase was concentrated in vacuo. The residue was purified by silica gel chromatography (SiO2, PE:EtOAc=1:0 to 10:1) to afford the title compound (150 mg, 446.35 μmol, 35.44% yield) as a white solid. TLC (PE:EtOAc=1:0, SM=0.10, TM=0.14)1H NMR (400 MHz, CDCl3) 5=8.04 (d, 7=9.2 Hz, 1H), 8.00 (s, 1H), 7.83 (d, 7=8.8 Hz, 1H), 7.74 (dd, J=1.2, 8.8 Hz, 1H), 7.61-7.49 (d, 7=9.2 Hz, 1H); F NMR (400 MHz, CDCl3) δ=−56.96.


Step 3—7-bromo-2-(trifluoromethoxy)naphthalen-1-amine



embedded image


To a mixture of 7-bromo-1-nitro-2-(trifluoromethoxy)naphthalene (130 mg, 386.83 μmol, 1 eq) in EtOH (5 mL) and saturated NH4Cl (1 mL) was added Fe (108 mg, 1.93 mmol, 5 eq) at 70° C. The mixture was stirred at 70° C. for 1 h. TLC showed no reactant was remained and product was detected. The residue was poured into H2O (10 mL) and the aqueous phase was filtered with diatomite, and extracted with EtOAc (3×15 mL). The combined organic phase was washed with brine (3×15 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC to afford the title compound (100 mg, 326.71 μmol, 84.46% yield) as a white solid. TLC (PE:EtOAc=1:0, SM=0.14, TM=0.09)


Step 4—7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(trifluoromethoxy)naphthalene-1-amine



embedded image


To a mixture of 7-bromo-2-(trifluoromethoxy)naphthalen-1-amine (80 mg, 261.37 μmol, 1 eq) and Pin2B2 (132.7 mg, 522.74 μmol, 2 eq) in dioxane (3 mL) were added KOAc (77 mg, 784.11 μmol, 3 eq), Pd(dppf)Cl2 (38.3 mg, 52.27 μmol, 0.2 eq) under N2. The mixture was stirred at 100° C. for 1 h. Upon completion of the reaction as indicated by TLC, the residue was poured into H2O (20 mL) and the aqueous phase was extracted with EtOAc (3×20 mL). The combined organic phase was washed with brine (3×20 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC to afford the title compound (90 mg, 254.85 μmol, 97.51% yield) as a yellow oil.


Step 5—6-[8-amino-7-(trifluoromethoxy)-2-naphthyl]-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide



embedded image


To a mixture of 7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(trifluoromethoxy) naphthalen-1-amine (80 mg, 226.54 μmol, 1 eq) and 6-bromo-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (101.3 mg, 339.81 μmol, 1.5 eq) in dioxane (3 mL) and H2O (0.75 mL) were added Na2CO3 (48 mg, 453.07 μmol, 2 eq), Pd(dppf)Cl2 (16.6 mg, 22.65 μmol, 0.1 eq) under N2. The mixture was stirred at 100° C. for 1 h. The residue was poured into saturated EDTA (30 mL) and stirred for 60 min. The aqueous phase was extracted with EtOAc (3×30 mL). The combined organic phase was washed with brine (3×30 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC to afford the title compound (80 mg, 18 μmol, 79.46% yield) as a yellow oil. LCMS (ES+, m/z): 445.2 [(M+H)+].


Step 6—Compound 360: N-(1-methyl-4-piperidyl)-6-[8-(prop-2-enoylamino)-7-(trifluoromethoxy)-2-naphthyl]pyridine-2-carboxamide



embedded image


To a mixture of 6-[8-amino-7-(trifluoromethoxy)-2-naphthyl]-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (60 mg, 135 μmol, 1 eq) in DCM (3 mL) were added TEA (68.3 mg, 674.99 μmol, 93.95 μL, 5 eq) and prop-2-enoyl chloride (24.4 mg, 27 μmol, 22.02 μL, 2 eq) at 0° C. The mixture was stirred at 25° C. for 1 h. LCMS showed ˜60% of the starting material remained. Then, prop-2-enoyl chloride (36.7 mg, 405 μmol, 33.02 μL, 3 eq) was added and the mixture was stirred at 25° C. for 1 h. Upon completion of the reaction as indicated by LCMS, the residue was poured into H2O (15 mL) and the aqueous phase was extracted with EtOAc (3×10 mL). The combined organic phase was washed with brine (3×10 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford the title compound (24.8 mg, 49.4 μmol, 36.59% yield, 99.292% purity) as a white solid. LC-MS (ES+, m/z): 499.2 [(M+H)+]1H NMR (400 MHz, DMSO-d6) δ=10.38 (s, 1H), 8.82 (s, 1H), 8.54 (d, J=8.4 Hz, 1H), 8.43 (br d, J=8.4 Hz, 1H), 8.33 (d, J=8.4 Hz, 1H), 8.22 (d, J=8.6 Hz, 1H), 8.18-8.10 (m, 2H), 8.04 (d, J=7.6 Hz, 1H), 7.67 (br d, J=9.2 Hz, 1H), 6.68 (br dd, J=10.8, 17.2 Hz, 1H), 6.34 (br d, J=16.4 Hz, 1H), 5.86 (br d, J=10.0 Hz, 1H), 3.87-3.77 (m, 1H), 2.86-2.73 (m, 2H), 2.21 (s, 3H), 2.09-1.96 (m, 2H), 1.88-1.80 (m, 2H), 1.79-1.66 (m, 2H).


Route 8: General Scheme



embedded image


Step 1—methyl 6-(8-amino-7-chloronaphthalen-2-yl)picolinate



embedded image


To a mixture of methyl 6-(8-amino-2-naphthyl)pyridine-2-carboxylate (400 mg, 1.44 mmol, 1 eq) in ACN (3 mL) was added NCS (153.5 mg, 1.15 mmol, 0.8 eq). The mixture was stirred at 25° C. for 12 hours. The reaction was diluted with H2O (30 mL). The reaction was extracted with (3×10 mL) EtOAc. The combined organic phase was washed with brine (30 mL), dried over Na2SO4, dried over sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=2:1) to afford the title compound (200 mg, 639.49 μmol, 44.5% yield) as a yellow solid. LC-MS (ES+, m/z): 313.0 [(M+H)+].


Step 2 6-(8-amino-7-chloronaphthalen-2-yl)picolinic acid



embedded image


To a solution of methyl 6-(8-amino-7-chloro-2-naphthyl)pyridine-2-carboxylate (200 mg, 639.49 μmol, 1 eq) in THF (2 mL) and H2O (0.5 mL) was added LiOH·H2O (107.3 mg, 2.56 mmol, 4 eq). The mixture was stirred at 20° C. for 2 h. The reaction mixture was diluted with H2O (30 mL) and EtOAc (30 mL), and saturated citric acid was added to adjust the mixture to pH˜ 6. The mixture was extracted with EtOAc (2×20 mL), washed with brine (30 mL), dried over Na2SO4, dried over sodium sulfate, filtered, and concentrated in vacuo to afford the title compound (160 mg, crude) as a yellow solid. LC-MS (ES+, m/z): 296.9 [(M−H)+].


Step 3—6-(8-amino-7-chloronaphthalen-2-yl)picolinoyl



embedded image


To a mixture of 6-(8-amino-7-chloro-2-naphthyl)pyridine-2-carboxylic acid (80 mg, 267.81 μmol, 1 eq) and 2-(1-methyl-4-piperidyl)ethanamine (76.2 mg, 535.61 μmol, 2 eq) in DMF (2 mL) were added Et3N (81.3 mg, 803.42 μmol, 111.83 μL, 3 eq; drop-wise) and T3P (255.6 mg, 401.71 μmol, 238.91 μL, 50% purity, 1.5 eq). The mixture was stirred at 20° C. for 2 h. The reaction was diluted with H2O (30 mL) and extracted with EtOAc (3×20 mL). The combined organic phase was washed with brine (30 mL), dried over Na2SO4, filtered, and concentrated in vacuo to afford the title compound (60 mg, crude) as a yellow oil.


Step 4—6-(8-acrylamido-7-chloronaphthalen-2-yl)picolinoyl



embedded image


To a solution of 6-(8-amino-7-chloro-2-naphthyl)-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (60 mg, 151.94 μmol, 1 eq) in DCM (2 mL) was added drop-wise Et3N (46.1 mg, 455.82 μmol, 63.44 μL, 3 eq) at 0° C. After about 5 min, prop-2-enoyl chloride (20.6 mg, 227.91 μmol, 18.58 μL, 1.5 eq) was added drop-wise at 0° C. The mixture was stirred at 20° C. for 115 min. Upon completion of the reaction as indicated by LCMS, the reaction was diluted with H2O (20 mL). Then the reaction was extracted with (3×20 mL) DCM. The combined organic phase was washed with brine (30 mL), dried over Na2SO4 and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound 6-[7-chloro-8-(prop-2-enoylamino)-2-naphthyl]-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (5.1 mg, 11.36 μmol, 7.48% yield, 100% purity) as a white


Route 9: General Scheme



embedded image


Step 1 methyl 6-(8-amino-5-chloronaphthalen-2-yl)picolinate



embedded image


To a solution of methyl 6-(8-amino-5-chloro-2-naphthyl)pyridine-2-carboxylate (200 mg, 639.49 μmol, 1 eq) in THF (4 mL) and H2O (1 mL) was added LiOH·H2O (161 mg, 3.84 mmol, 6 eq). The mixture was stirred at 20° C. for 2 h. The reaction mixture was diluted with H2O (30 mL) and EtOAc (30 mL). Then the mixture was adjusted to pH˜6 using saturated citric acid. The organic layer was extracted with EtOAc (2×20 mL) and washed with brine (30 mL), dried over Na2SO4 and concentrated in vacuo to afford the title compound (160 mg, crude) as a yellow solid. LC-MS (ES+, m/z): 297.0 [(M−H)+].


Step 3—6-(8-amino-5-chloronaphthalen-2-yl)picolinic



embedded image


To a mixture of 6-(8-amino-5-chloro-2-naphthyl)pyridine-2-carboxylic acid (80 mg, 267.81 μmol, 1 eq) and 1-methylpiperidin-4-amine (91.7 mg, 803.42 μmol, 3 eq) in DMF (2 mL) were added Et3N (81.3 mg, 803.42 μmol, 111.83 μL, 3 eq; drop-wise) and T3P (255.6 mg, 401.71 μmol, 238.91 μL, 50% purity, 1.5 eq). The mixture was stirred at 20° C. for 2 h. Upon completion of the reaction as indicated by LCMS, the reaction was diluted with H2O (30 mL) and extracted with EtOAc (3×20 mL). The combined organic phase was washed with brine (30 mL), dried over Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified prep-TLC (SiO2, DCM/MeOH=8:1 or 5:1) to afford the title compound 6-(8-amino-5-chloro-2-naphthyl)-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (60 mg, 151.94 μmol, 56.73% yield) as a yellow oil.


Step 4—Compound 401: Preparation of 6-[5-chloro-8-(prop-2-enamido)naphthalen-2-yl]-N-(1-methylpiperidin-4-yl)pyridine-2-carboxamide



embedded image


To a solution of 6-(8-amino-5-chloro-2-naphthyl)-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (60 mg, 151.94 μmol, 1 eq) in DCM (2 mL) was added Et3N (46.1 mg, 455.82 μmol, 63.44 μL, 3 eq; drop-wise) at 0° C. After about 5 min, prop-2-enoyl chloride (13.8 mg, 151.94 μmol, 12.39 μL, 1 eq) was added drop-wise at 0° C. The mixture was stirred at 20° C. for 115 min. The reaction was diluted with H2O (20 mL) and extracted with DCM (3×20 mL). The combined organic phase was washed with brine (30 mL), dried over Na2SO4 and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound 6-[5-chloro-8-(prop-2-enoylamino)-2-naphthyl]-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (13.1 mg, 29.09 μmol, 19.15% yield, 99.7% purity) as a white solid. LC-MS (ES+, m/z): 449.1 [(M+H)+]


TABLE 8 shows compounds synthesized using the methods described in EXAMPLE 8 above.












TABLE 8





Cpd.


LC-MS


No.
Structure
IUPAC
(ES+, m/z)







351


embedded image


N-[7-(4-aminopyridin-2- yl)-2- methoxynaphthalen-1- yl]prop-2-enamide
320.1





352


embedded image


N-[2-methoxy-7- (pyridin-2- yl)naphthalen-1-yl]prop- 2-enamide
305.1





353


embedded image


N-[2-methoxy-7-(4- methoxypyridin-2- yl)naphthalen-1-yl]prop- 2-enamide
335.1





354


embedded image


6-[7-methoxy-8-(prop-2- enamido)naphthalen-2- yl]-N-(1- methylpiperidin-4- yl)pyridine-2- carboxamide
445.2





355


embedded image


3-[7-methoxy-8-(prop-2- enamido)naphthalen-2- yl]-N-(1- methylpiperidin-4- yl)benzamide
444.1





356


embedded image


N-{2-[7-methoxy-8- (prop-2- enamido)naphthalen-2- yl]pyridin-4-yl}-1- methylpiperidine-4- carboxamide
445  





357


embedded image


2-[7-methoxy-8-(prop-2- enamido)naphthalen-2- yl]-N-(1- methylpiperidin-4- yl)pyrimidine-4- carboxamide
446.2





358


embedded image


N-[(3R,4S)-3-fluoro-1- methylpiperidin-4-yl]-6- [7-methoxy-8-(prop-2- enamido)naphthalen-2- yl]pyridine-2- carboxamide
463.2





359


embedded image


N-[(3S,4R)-3-fluoro-1- methylpiperidin-4-yl]-6- [7-methoxy-8-(prop-2- enamido)naphthalen-2- yl]pyridine-2- carboxamide
463.2





360


embedded image


N-(1-methylpiperidin-4- yl)-6-[8-(prop-2- enamido)-7- (trifluoromethoxy) naphthalen-2- yl]pyridine-2- carboxamide
499.2





361


embedded image


3-amino-6-[7-methoxy- 8-(prop-2- enamido)naphthalen-2- yl]-N-[(1r,4r)-4-[(2- methoxyethyl)(methyl) amino]cyclohexyl] pyridine-2-carboxamide
532.3





362


embedded image


3-amino-6-[7-methoxy- 8-(prop-2- enamido)naphthalen-2- yl]-N-[(1r,4r)-4- (dimethylamino) cyclohexyl]pyridine-2- carboxamide
488.3





363


embedded image


6-[7-methoxy-8-(prop-2- enamido)naphthalen-2- yl]-N-[(1- methylpiperidin-4- yl)methyl]pyridine-2- carboxamide
459.2





364


embedded image


6-[7-methoxy-8-(prop-2- enamido)naphthalen-2- yl]-N-[(3R)-1- methylpiperidin-3- yl]pyridine-2- carboxamide
445.2





365


embedded image


N-(2-hydroxyethyl)-6- [7-methoxy-8-(prop-2- enamido)naphthalen-2- yl]pyridine-2- carboxamide
392.1





366


embedded image


6-[7-ethoxy-8-(prop-2- enamido)naphthalen-2- yl]-N-[(1- methylpiperidin-4- yl)methyl]pyridine-2- carboxamide
473.3





367


embedded image


6-[7-ethoxy-8-(prop-2- enamido)naphthalen-2- yl]-N-(1- methylpiperidin-4- yl)pyridine-2- carboxamide
459.3





368


embedded image


6-amino-2-[7-methoxy- 8-(prop-2- enamido)naphthalen-2- yl]-N-(1- methylpiperidin-4- yl)pyrimidine-4- carboxamide
461.2





369


embedded image


6-[7-methoxy-8-(prop-2- enamido)naphthalen-2- yl]-N-[2-(4- methylpiperazin-1- yl)ethyl]pyridine-2- carboxamide
474.3





370


embedded image


6-[7-methoxy-8-(prop-2- enamido)naphthalen-2- yl]-N-[(3S)-1- methylpiperidin-3- yl]pyridine-2- carboxamide
445.2





371


embedded image


3-amino-N-[(3S,4R)-3- fluoro-1- methylpiperidin-4-yl]-6- [7-methoxy-8-(prop-2- enamido)naphthalen-2- yl]pyridine-2- carboxamide
478.2





372


embedded image


3-amino-6-[7-methoxy- 8-(prop-2- enamido)naphthalen-2- yl]-N-(1- methylpiperidin-4- yl)pyridine-2- carboxamide
460.2





373


embedded image


5-[7-methoxy-8-(prop-2- enamido)naphthalen-2- yl]-N-(1- methylpiperidin-4- yl)pyridine-3- carboxamide
445.2





374


embedded image


N-(7-{6- [(carbamoylmethyl) carbamoyl]pyridin-2- yl}-2- methoxynaphthalen-1- yl)prop-2-enamide
405.1





375


embedded image


2-[7-methoxy-8-(prop-2- enamido)naphthalen-2- yl]-N-(1- methylpiperidin-4- yl)pyridine-4- carboxamide
445.2





376


embedded image


5-amino-N-(2- cyanoethyl)-2-[7- methoxy-8-(prop-2- enamido)naphthalen-2- yl]pyrimidine-4- carboxamide
417.1





377


embedded image


N-[2-methoxy-7-(1- methyl-1H-pyrazol-4- yl)naphthalen-1-yl]prop- 2-enamide
308.1





378


embedded image


3-amino-N-[1-(2- hydroxyethyl)piperidin- 4-yl]-6-[7-methoxy-8- (prop-2- enamido)naphthalen-2- yl]pyridine-2- carboxamide
490.3





379


embedded image


N-{2- [(diaminomethylidene) amino]ethyl}-6-[7- methoxy-8-(prop-2- enamido)naphthalen-2- yl]pyridine-2- carboxamide
433.2





380


embedded image


6-[7-(methoxymethyl)-8- (prop-2- enamido)naphthalen-2- yl]-N-(1- methylpiperidin-4- yl)pyridine-2- carboxamide
459.3





381


embedded image


N-[2-(1H-imidazol-5- yl)ethyl]-6-[7-methoxy- 8-(prop-2- enamido)naphthalen-2- yl]pyridine-2- carboxamide
442.2





382


embedded image


6-[7-methoxy-8-(prop-2- enamido)naphthalen-2- yl]-N-[2-(4-methyl-1H- imidazol-5- yl)ethyl]pyridine-2- carboxamide
456.2





383


embedded image


6-[7-(methoxymethyl)-8- (prop-2- enamido)naphthalen-2- yl]-N-[2-(1- methylpiperidin-4- yl)ethyl]pyridine-2- carboxamide
487.3





384


embedded image


6-[7-(methoxymethyl)-8- (prop-2- enamido)naphthalen-2- yl]-N-[(1r,4r)-4- (dimethylamino) cyclohexyl]pyridine-2- carboxamide
487.3





385


embedded image


N-(7-{6- [(carbamoylmethyl) carbamoyl]pyridin-2- yl}-2-(methoxymethyl) naphthalen-1-yl)prop-2- enamide
419.2





386


embedded image


N-{7-[6-({[(3- chlorophenyl) carbamoyl]methyl} carbamoyl)pyridin-2-yl]- 2-(methoxymethyl) naphthalen-1-yl}prop-2- enamide
529.2





387


embedded image


2-[7-(methoxymethyl)-8- (prop-2- enamido)naphthalen-2- yl]-N-[(1r,4r)-4- (dimethylamino) cyclohexyl]pyrimidine- 4-carboxamide
488.3





388


embedded image


6-[7-(hydroxymethyl)-8- (prop-2- enamido)naphthalen-2- yl]-N-(1- methylpiperidin-4- yl)pyridine-2- carboxamide
445.2





389


embedded image


N-{7-[6-({[(2- methoxyethyl) carbamoyl]methyl} carbamoyl)pyridin-2-yl]- 2-(methoxymethyl) naphthalen-1-yl}prop-2- enamide
477.2





390


embedded image


N-[2-(methoxymethyl)- 7-[6-({[(3- methoxyphenyl) carbamoyl]methyl} carbamoyl)pyridin-2- yl]naphthalen-1-yl]prop- 2-enamide
525.2





391


embedded image


N-[2-(methoxymethyl)- 7-[6-({[(1-methyl-1H- pyrazol-4- yl)carbamoyl]methyl} carbamoyl)pyridin-2- yl]naphthalen-1-yl]prop- 2-enamide
499.1





392


embedded image


N-{7-[6-({[(4-fluoro-3- methoxyphenyl) carbamoyl]methyl} carbamoyl)pyridin-2-yl]- 2-(methoxymethyl) naphthalen-1-yl}prop-2- enamide
543.2





393


embedded image


N-{7-[6-({[(3- cyanophenyl)carbamoyl] methyl}carbamoyl) pyridin-2-yl]-2- (methoxymethyl) naphthalen-1-yl}prop-2- enamide
520.1





394


embedded image


N-[2-(methoxymethyl)- 7-[6-({[(thiophen-3- yl)carbamoyl]methyl} carbamoyl)pyridin-2- yl]naphthalen-1-yl]prop- 2-enamide
501.1





395


embedded image


N-(1-methylpiperidin-4- yl)-6-[8-(prop-2- enamido)-7- (trifluoromethoxy) naphthalen-2- yl]pyridine-2- carboxamide
499.2





396


embedded image


N-[2-chloro-7-(pyridin- 3-yl)naphthalen-1- yl]prop-2-enamide
308.9





397


embedded image


6-[7-chloro-8-(prop-2- enamido)naphthalen-2- yl]-N-(1- methylpiperidin-4- yl)pyridine-2- carboxamide
449.1





398


embedded image


6-[7-chloro-8-(prop-2- enamido)naphthalen-2- yl]-N-[2-(1- methylpiperidin-4- yl)ethyl]pyridine-2- carboxamide
477.2





399


embedded image


6-[7-chloro-8-(prop-2- enamido)naphthalen-2- yl]-N-[(1r,4r)-4-[(2- methoxyethyl)(methyl) amino]cyclohexyl] pyridine-2-carboxamide
521.2





400


embedded image


6-[7-chloro-8-(prop-2- enamido)naphthalen-2- yl]-N-[(1s,4s)-4-[(2- methoxyethyl)(methyl) amino]cyclohexyl] pyridine-2-carboxamide
521.2





401


embedded image


6-[5-chloro-8-(prop-2- enamido)naphthalen-2- yl]-N-(1- methylpiperidin-4- yl)pyridine-2- carboxamide
449.1





402


embedded image


6-[5-chloro-8-(prop-2- enamido)naphthalen-2- yl]-N-[2-(1- methylpiperidin-4- yl)ethyl]pyridine-2- carboxamide
477.2





403


embedded image


6-[5-chloro-8-(prop-2- enamido)naphthalen-2- yl]-N-[(1r,4r)-4-[(2- methoxyethyl)(methyl) amino]cyclohexyl] pyridine-2-carboxamide
521.3





404


embedded image


6-[5-chloro-8-(prop-2- enamido)naphthalen-2- yl]-N-[(1s,4s)-4-[(2- methoxyethyl)(methyl) amino]cyclohexyl] pyridine-2-carboxamide
521.3









Example 9: Method I
Route 1: General Scheme



embedded image


Step 1—ethyl 5-amino-2-(4-amino-6-quinolyl)pyrimidine-4-carboxylate



embedded image


To a solution of (4-amino-6-quinolyl)boronic acid (150 mg, 797.91 μmol, 1 eq) and ethyl 5-amino-2-chloro-pyrimidine-4-carboxylate (193 mg, 957.49 μmol, 1.2 eq) in H2O (1 mL) and THF (4 mL) were successively added K3PO4 (338.8 mg, 1.6 mmol, 2 eq) and [2-(2-aminophenyl)phenyl]-chloro-palladium;bis(1-adamantyl)-butyl-phosphane (53.4 mg, 79.79 μmol, 0.1 eq). The reaction mixture was heated to 80° C. under N2 and stirred at 80° C. for 15 h. LCMS showed that the reaction was complete. The reaction mixture was poured into saturated EDTA (50 mL) and diluted with EtOAc (50 mL). The solution was stirred at 25° C. for another 1 h. The mixture was filtered, and the filtrate was washed with EtOAc (3×50 mL). The aqueous phase was concentrated in vacuo to give a residue. The residue was re-dissolved in DCM:MeOH=10:1 then filtered. The filtrate was concentrated to afford the title compound as a mixture of ethyl 5-amino-2-(4-amino-6-quinolyl)pyrimidine-4-carboxylate and 5-amino-2-(4-amino-6-quinolyl)pyrimidine-4-carboxylic acid (140 mg, crude) as a yellow solid. LC-MS (ES+, m/z): 310.1 [(M+H)+]


Step 2—5-amino-2-(4-amino-6-quinolyl)pyrimidine-4-carboxylic acid



embedded image


To a solution of ethyl 5-amino-2-(4-amino-6-quinolyl)pyrimidine-4-carboxylate (0.12 g, 387.95 μmol, 1 eq) in THF (4 mL) and H2O (1 mL) was added LiOH·H2O (48.8 mg, 1.16 mmol, 3 eq). The reaction mixture was stirred at 15° C. for 1 h. TLC (DCM:MeOH:TEA=10:1:0.1, SM Rf=0.35, TM Rf=0.06) showed that the reaction was complete. The reaction mixture was concentrated in vacuo to afford the title compound 5-amino-2-(4-amino-6-quinolyl)pyrimidine-4-carboxylic acid (0.2 g, crude) as a yellow solid, which was used for the next step directly without further purification.


Step 3—5-amino-2-(4-amino-6-quinolyl)-N-(1-methyl-4-piperidyl)pyrimidine-4-carboxamide



embedded image


To a solution of 5-amino-2-(4-amino-6-quinolyl)pyrimidine-4-carboxylic acid (0.15 g, 533.3 μmol, 1 eq) in DMF (4 mL) were added TEA (269.8 mg, 2.67 mmol, 371.14 μL, 5 eq) and 1-methylpiperidin-4-amine (182.7 mg, 1.6 mmol, 3 eq). Then, T3P (509.1 mg, 799.95 μmol, 475.75 μL, 50% purity, 1.5 eq) was added. The reaction mixture was stirred at 15° C. for 3 h. TLC showed that the reaction was complete. The reaction mixture was poured into 50 mL H2O and extracted with EtOAc (2×50 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, DCM:MeOH:TEA=6:1:0.1) to afford the title compound 5-amino-2-(4-amino-6-quinolyl)-N-(1-methyl-4-piperidyl)pyrimidine-4-carboxamide (50 mg, 132.47 μmol, 24.84% yield) as a yellow solid. LC-MS (ES+, m/z): 378.3 [(M+H)+]


Step 4) Compound 438: Preparation of 5-amino-N-(1-methylpiperidin-4-yl)-2-[4-(prop-2-enamido)quinolin-6-yl]pyrimidine-4-carboxamide



embedded image


To a solution of 5-amino-2-(4-amino-6-quinolyl)-N-(1-methyl-4-piperidyl)pyrimidine-4-carboxamide (40 mg, 105.98 μmol, 1 eq) in DCM (2 mL) were added TEA (53.6 mg, 529.88 μmol, 73.75 μL, 5 eq) and prop-2-enoyl chloride (28.8 mg, 317.93 μmol, 25.92 μL, 3 eq). The reaction mixture was stirred at 0° C. for 1 h under N2. LCMS showed that the reaction was complete. The reaction mixture was poured into 50 mL H2O and extracted with EtOAc (50 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound 5-amino-N-(1-methyl-4-piperidyl)-2-[4-(prop-2-enoylamino)-6-quinolyl]pyrimidine-4-carboxamide (5.1 mg, 11.37 μmol, 10.73% yield, 96.2% purity) as a white solid. LC-MS (ES+, m/z): 432.2 [(M+H)+]1H NMR (400 MHz, DMSO-d6) δ=10.70 (s, 1H), 9.30 (d, J=1.76 Hz, 1H), 8.76-8.85 (m, 2H), 8.70 (d, 7=7.90 Hz, 1H), 8.64 (s, 1H), 8.16 (d, 7=5.26 Hz, 1H), 8.07 (d, 7=8.78 Hz, 1H), 7.08 (s, 2H), 6.84-6.92 (m, 1H), 6.40-6.44 (m, 1H), 5.88-5.92 (m, 1H), 3.79-3.81 (m, 1H), 2.80 (br d, J=11.84 Hz, 2H), 2.20 (s, 3H), 1.93-2.06 (m, 2H), 1.75-1.89 (m, 4H).


Route 2: General Scheme



embedded image


Step 1—3-amino-6-chloro-N-(3-fluoro-1-methyl-4-piperidyl)pyridine-2-carboxamide



embedded image


To a solution of 3-amino-6-chloro-pyridine-2-carboxylic acid (1 g, 5.79 mmol, 1 eq) and 3-fluoro-1-methyl-piperidin-4-amine (918.4 mg, 6.95 mmol, 1.2 eq, 2HCl) in DCM (15 mL) were added TEA (1.76 g, 17.37 mmol, 2.42 mL, 3 eq) and T3P (5.53 g, 8.68 mmol, 5.17 mL, 50% purity, 1.5 eq) under N2. The reaction mixture was stirred at 20° C. for 2 hours under N2. The reaction mixture was concentrated directly to give a residue. The residue was purified by column chromatography (SiO2, EtOAc:MeOH=30:1 to 20:1) to afford the title compound 3-amino-6-chloro-N-(3-fluoro-1-methyl-4-piperidyl)pyridine-2-carboxamide (1.25 g, 4.36 mmol, 75.29% yield) as a yellow solid.


Step 2—3-amino-6-(4-amino-6-quinolyl)-N-(3-fluoro-1-methyl-4-piperidyl)pyridine-2-carboxamide



embedded image


To a solution of 6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinolin-4-amine (471.06 mg, 1.74 mmol, 2.5 eq) and 3-amino-6-chloro-N-(3-fluoro-1-methyl-4-piperidyl)pyridine-2-carboxamide (200 mg, 697.51 μmol, 1 eq) in dioxane (2 mL) and H2O (0.5 mL) were added Na2CO3 (221.8 mg, 2.09 mmol, 3 eq) Pd(dppf)Cl2 (51 mg, 69.75 μmol, 0.1 eq) under N2. The reaction mixture was stirred at 110° C. for 5 hours under N2. The reaction mixture was poured into saturated EDTA (50 mL) and 20 mL EtOAc. The mixture was stirred for 1 h, and the aqueous phase was separated and extracted with EtOAc (3×20 mL). The combined organic phase was washed with brine (3×30 mL), dried over anhydrous Na2SO4, filtered, concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, DCM:MeOH:Et3N=10:1:0.1) to afford the title compound 3-amino-6-(4-amino-6-quinolyl)-N-(3-fluoro-1-methyl-4-piperidyl)pyridine-2-carboxamide (70 mg, 177.46 μmol, 25.44% yield) as a yellow gum. LC-MS (ES+, m/z): 395.1 [(M+H)+]


Preparation of 3-amino-N-[(3S,4R)-3-fluoro-1-methylpiperidin-4-yl]-6-[4-(prop-2-enamido)quinolin-6-yl]pyridine-2-carboxamide (Compound 436)



embedded image


To a mixture of 3-amino-6-(4-amino-6-quinolyl)-N-(3-fluoro-1-methyl-4-piperidyl)pyridine-2-carboxamide (50 mg, 126.76 μmol, 1 eq) and TEA (15.4 mg, 152.11 μmol, 21.17 μL, 3 eq) in DCM (1 mL) and DMF (1 mL) was added prop-2-enoyl chloride (11.5 mg, 126.76 μmol, 10.34 μL, 1 eq) in one portion at 0° C. The reaction mixture was stirred at 0° C. for 1 hour. LCMS showed that the conversion was ˜50%. Additional prop-2-enoyl chloride (11.5 mg, 126.76 μmol, 10.34 μL, 1 eq) was added at 0° C. The resulting reaction mixture was stirred at 0° C. for another 1 hour. The reaction was poured into 20 mL water and extracted with DCM (3×20 mL). The combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC (basic condition) to afford the title compound 3-amino-N-(3-fluoro-1-methyl-4-piperidyl)-6-[4-(prop-2-enoylamino)-6-quinolyl]pyridine-2-carboxamide (11.4 mg, 24.17 μmol, 19.07% yield, 95.1% purity) as a white solid. LC-MS (ES+, m/z): 449.2 [(M+H)+]1H NMR (400 MHz, DMSO-de) 5=10.59 (br s, 1H), 8.97 (d, J=1.6 Hz, 1H), 8.79 (d, J=5.2 Hz, 1H), 8.55 (br d, J=8.0 Hz, 1H), 8.44 (dd, J=2.0, 8.8 Hz, 1H), 8.21 (d, J=5.2 Hz, 1H), 8.17 (d, J=8.8 Hz, 1H), 8.06 (d, J=8.8 Hz, 1H), 7.38 (d, J=8.8 Hz, 1H), 7.09 (br s, 2H), 6.86 (dd, J=10.4, 17.2 Hz, 1H), 6.41 (dd, J=1.6, 17.2 Hz, 1H), 5.93-5.84 (m, 1H), 4.96-4.76 (m, 1H), 4.09-3.89 (m, 1H), 3.11-3.00 (m, 1H), 2.82 (br d, J=9.6 Hz, 1H), 2.22 (s, 4H), 2.16-2.01 (m, 2H), 1.77 (br d, J=12.4 Hz, 1H).


Route 3: General Scheme



embedded image


Step 1—6-(4-amino-6-quinolyl)-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide



embedded image


To a solution of 6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinolin-4-amine (906 mg, 3.35 mmol, 2.5 eq) and 6-bromo-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (400 mg, 1.34 mmol, 1 eq) in dioxane (8 mL) and H2O (2 mL) were added Na2CO3 (426.6 mg, 4.02 mmol, 3 eq) and Pd(dppf)Cl2 (98.2 mg, 134.15 μmol, 0.1 eq) in one portion under N2. The reaction mixture was heated to 110° C. and stirred at 110° C. for 30 min under N2. The reaction mixture was poured into saturated EDTA aqueous solution (50 mL) and 20 mL EtOAc. The mixture was stirred for 1 h, and the aqueous phase was separated and extracted with EtOAc (3×20 mL). The combined organic phase was washed with brine (3×20 mL), dried over anhydrous Na2SO4 and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, DCM:MeOH:Et3N=10:1:0 to 10:1:0.1) to afford the title compound 6-(4-amino-6-quinolyl)-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (300 mg, 830.01 μmol, 61.87% yield) as a yellow solid. LC-MS (ES+, m/z): 362.1 [(M+H)+].


Step 2—6-[4-(2-fluoroprop-2-enoylamino)-6-quinolyl]-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (Compound 437)



embedded image


To a mixture of 6-(4-amino-6-quinolyl)-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (80 mg, 221.34 μmol, 1 eq) and 2-fluoroprop-2-enoic acid (39.9 mg, 442.0.67 μmol, 2 eq) in DMF (2 mL) were added Et3N (112 mg, 1.11 mmol, 154.04 μL, 5 eq) and T3P (281.7 mg, 442.67 μmol, 263.27 μL, 50% purity, 2 eq) in one portion under N2. The reaction mixture was stirred at 20° C. for 2 hours. The reaction was poured into 20 mL water, extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by prep-HPLC to afford the title compound 6-[4-(2-fluoroprop-2-enoylamino)-6-quinolyl]-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (19.1 mg, 43.05 μmol, 19.45% yield, 97.7% purity) as a white solid. LC-MS (ES+, m/z): 434.2 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) δ=10.83 (br s, 1H), 9.01 (d, J=1.6 Hz, 1H), 8.93 (d, J=4.8 Hz, 1H), 8.72 (dd, J=2.0, 8.8 Hz, 1H), 8.63 (br d, J=8.4 Hz, 1H), 8.42 (d, J=7.6 Hz, 1H), 8.20-8.13 (m, 2H), 8.05 (d, J=7.6 Hz, 1H), 7.89 (d, J=4.8 Hz, 1H), 5.85 (d, J=4.0 Hz, 1H), 5.97 (d, J=4.0 Hz, 1H), 5.57 (dd, J=4.0, 15.6 Hz, 1H), 3.92-3.78 (m, 1H), 2.82 (br d, J=11.2 Hz, 2H), 2.21 (s, 3H), 2.03 (br t, J=10.8 Hz, 2H), 1.88-1.72 (m, 4H).


Route 4: General Scheme



embedded image


Step 1—6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinolin-4-amine



embedded image


To a mixture of 6-bromoquinolin-4-amine (2 g, 8.97 mmol, 1 eq) and 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (3.42 g, 13.45 mmol, 1.5 eq) in dioxane (20 mL) were added KOAc (2.64 g, 26.9 mmol, 3 eq) and Pd(dppf)Cl2 (656 mg, 896.58 μmol, 0.1 eq). The reaction was stirred at 110° C. for 4 hr under N2. LCMS showed that the reaction was complete. The reaction mixture was concentrated in vacuo to give a residue. The residue was washed with DCM and PE to afford the title compound 6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinolin-4-amine (3.8 g, crude) as a black brown solid. LC-MS (ES+, m/z): 189.0, 271.1 [(M+H)+]


Step 2—tert-butyl 2-(4-amino-6-quinolyl)pyrimidine-4-carboxylate



embedded image


To a mixture of tert-butyl 2-chloropyrimidine-4-carboxylate (1 g, 4.66 mmol, 1 eq) and 6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinolin-4-amine (2.52 g, 9.32 mmol, 2 eq) in dioxane (8 mL) and H2O (2 mL) were added Na2CO3 (1.48 g, 13.98 mmol, 3 eq) and Pd(dppf)Cl2 (340.9 mg, 465.88 μmol, 0.1 eq). The reaction heated to 80° C. under N2 and stirred for 1 h. TLC showed that the reaction was complete. The reaction mixture was stirred by adding saturated EDTA (50 mL) and EtOAc (50 mL) at 25° C. for 1 h. The combined organic phase was washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=1/1 to I/O) to afford the title compound tert-butyl 2-(4-amino-6-quinolyl)pyrimidine-4-carboxylate (1 g, 3.1 mmol, 66.59% yield) as a yellow solid. LC-MS (ES+, m/z): 323.1 [(M+H)+]


Step 3—tert-butyl 2-[4-(prop-2-enoylamino)-6-quinolyl]pyrimidine-4-carboxylate



embedded image


To a mixture of tert-butyl 2-(4-amino-6-quinolyl)pyrimidine-4-carboxylate (0.9 g, 2.79 mmol, 1 eq) in DCM (18 mL) and DMF (18 mL) were added TEA (565 mg, 5.58 mmol, 777.19 μL, 2 eq) and prop-2-enoyl chloride (379 mg, 4.19 mmol, 341.47 μL, 1.5 eq). The reaction mixture was stirred at 0° C. for 1 h under N2. TLC showed that the reaction was complete. The reaction mixture was diluted with H2O and extracted with EtOAc (3×50 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=3:1 to 1/3) to afford the title compound tert-butyl 2-[4-(prop-2-enoylamino)-6-quinolyl]pyrimidine-4-carboxylate (0.9 g, 2.39 mmol, 85.64% yield) as a yellow solid.


Step 4—2-[4-(prop-2-enoylamino)-6-quinolyl]pyrimidine-4-carboxylic acid



embedded image


To a mixture of tert-butyl 2-[4-(prop-2-enoylamino)-6-quinolyl]pyrimidine-4-carboxylate (0.4 g, 1.06 mmol, 1 eq) in THF (8 mL) and H2O (2 mL) was added LiOH·H2O (223 mg, 5.31 mmol, 5 eq). The reaction was stirred at 15° C. for 1 h. TLC showed that the reaction was complete. The reaction was poured into ˜100 mL ice water and adjusted to pH=7 with saturated citric acid. The mixture was extracted with EtOAc (3×50 mL), and the aqueous layer was lyophilized. The residue was washed with DCM:MeOH=10:1, filtered, and concentrated in vacuo to give a residue. The title compound 2-[4-(prop-2-enoylamino)-6-quinolyl]pyrimidine-4-carboxylic acid (550 mg, crude) was obtained as a yellow solid. LC-MS (ES+, m/z): 321.0 [(M+H)+]


Step 5—N-(8-methyl-8-azabicyclo[3.2.1]octan-3-yl)-2-[4-(prop-2-enoylamino)-6-quinolyl]pyrimidine-4-carboxamide



embedded image


To a solution of 2-[4-(prop-2-enoylamino)-6-quinolyl]pyrimidine-4-carboxylic acid (0.1 g, 312.21 μmol, 1 eq) in DMF (2 mL) were added TEA (58.01 mg, 1.56 mmol, 217.27 μL, 5 eq) and 8-methyl-8-azabicyclo[3.2.1]octan-3-amine (87.6 mg, 624.42 μmol, 2 eq). Then, T3P (298 mg, 468.32 μmol, 278.52 μL, 50% purity, 1.5 eq) was added to the reaction, and the reaction was stirred at 15° C. for 1 h. LCMS showed that the reaction was complete. The reaction mixture was diluted with H2O (50 mL) and extracted with EtOAc (2×50 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound N-(8-methyl-8-azabicyclo[3.2.1]octan-3-yl)-2-[4-(prop-2-enoylamino)-6-quinolyl]pyrimidine-4-carboxamide (12.2 mg, 27.13 μmol, 8.69% yield, 98.4% purity) as a white solid.


Route 5: General Scheme



embedded image


Step 2—tert-butyl 6-(4-amino-6-quinolyl)pyridine-2-carboxylate



embedded image


To a mixture of 6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinolin-4-amine (2.3 g, 8.52 mmol, 2.2 eq) and tert-butyl 6-bromopyridine-2-carboxylate (1 g, 3.87 mmol, 1 eq) in dioxane (20 mL) and H2O (5 mL) were added Na2CO3 (1.23 g, 11.62 mmol, 3 eq), Pd(dppf)Cl2 (283.5 mg, 387.43 μmol, 0.1 eq) in one portion under N2. The mixture was stirred at 80° C. for 1.5 hours. The reaction was diluted with 20 mL water and extracted with EtOAc (2×20 mL). The combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, DCM:MeOH=15:1 to 8:1) to afford the title compound tert-butyl 6-(4-amino-6-quinolyl)pyridine-2-carboxylate (0.9 g, 2.8 mmol, 72.28% yield) as a yellow solid. LC-MS (ES+, m/z): 322.2 [(M+H)+]


Step 3—tert-butyl 6-[4-(prop-2-enoylamino)-6-quinolyl]pyridine-2-carboxylate



embedded image


To a mixture of tert-butyl 6-(4-amino-6-quinolyl)pyridine-2-carboxylate (800 mg, 2.49 mmol, 1 eq) in DCM (8 mL) and DMF (8 mL) were added Et3N (755.7 mg, 7.47 mmol, 1.04 mL, 3 eq) and prop-2-enamide (265.4 mg, 3.73 mmol, 257.67 μL, 1.5 eq) in one portion at 0° C. under N2. The mixture was stirred at 0° C. for 60 min. The reaction was diluted with 30 mL water and extracted with EtOAc (3×30 mL). The combined organic layer was washed with brine (2×30 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, DCM:MeOH=1:0) and purified by prep-TLC (SiO2, DCM:MeOH=15:1) to afford the title compound tert-butyl 6-[4-(prop-2-enoylamino)-6-quinolyl]pyridine-2-carboxylate (600 mg, 1.6 mmol, 64.20% yield) as a yellow gum. LC-MS (ES+, m/z): 376.1 [(M+H)+]


Step 4—6-[4-(prop-2-enoylamino)-6-quinolyl]pyridine-2-carboxylic acid



embedded image


To a mixture of tert-butyl 6-[4-(prop-2-enoylamino)-6-quinolyl]pyridine-2-carboxylate (200 mg, 532.74 μmol, 1 eq) in DCM (3 mL) was added TFA (4.62 g, 40.52 mmol, 3 mL, 76.06 eq) in one portion. The mixture was stirred at 20° C. for 7 hours. The reaction was concentrated directly, and the crude material was lyophilized to afford the title compound 6-[4-(prop-2-enoylamino)-6-quinolyl]pyridine-2-carboxylic acid (160 mg, crude) as an off-white solid. LC-MS (ES+, m/z): 320.2 [(M+H)+].


Step 5—N-(2-methoxyethyl)-6-/4-(prop-2-enoylamino)-6-quinolyl/pyridine-2-carboxamide



embedded image


To a mixture of 6-[4-(prop-2-enoylamino)-6-quinolyl]pyridine-2-carboxylic acid (40 mg, 125.27 μmol, 1 eq) and 2-methoxyethanamine (14.1 mg, 187.9 μmol, 16.33 μL, 1.5 eq) in DCM (1.5 mL) and DMF (0.5 mL) were added Et3N (63.4 mg, 626.34 μmol, 87.18 μL, 5 eq) and T3P (119.6 mg, 187.9 μmol, 111.75 μL, 50% purity, 1.5 eq) in one portion. The mixture was stirred at 20° C. for 60 min. The reaction mixture was adjusted to pH=9 with saturated aq. Na2CO3 and extracted with EtOAc (4×15 mL). The combined organic layer was washed with brine (2×15 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) and by prep-HPLC (neutral condition) to afford the title compound N-(2-methoxyethyl)-6-[4-(prop-2-enoylamino)-6-quinolyl]pyridine-2-carboxamide (5.7 mg, 15.14 μmol, 12.09% yield, 100.0% purity) as a white solid.


Step 6—N-(2-cyanoethyl)-6-[4-(prop-2-enoylamino)-6-quinolyl]pyridine-2-carboxamide



embedded image


To a mixture of 6-[4-(prop-2-enoylamino)-6-quinolyl]pyridine-2-carboxylic acid (50 mg, 156.59 μmol, 1 eq) and 3-aminopropanenitrile (13.2 mg, 187.9 μmol, 13.86 μL, 1.2 eq) in DCM (1.5 mL) and DMF (0.5 mL) were added Et3N (79.2 mg, 782.93 μmol, 108.97 μL, 5 eq) and T3P (149.5 mg, 234.88 μmol, 139.69 μL, 50% purity, 1.5 eq) in one portion. The mixture was stirred at 20° C. for 60 min. The reaction was adjusted to pH=9 with saturated aq. Na2CO3 and extracted with EtOAc (4×15 mL). The combined organic layer was washed with brine (2×15 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC (basic condition) to afford the title compound N-(2-cyanoethyl)-6-[4-(prop-2-enoylamino)-6-quinolyl]pyridine-2-carboxamide (6 mg, 15.67 μmol, 10.01% yield, 97.0% purity) as a white solid. LC-MS (ES+, m/z): 372.1 [(M+H)+]1H NMR (400 MHz, DMSO-d6) δ=10.55 (s, 1H), 9.33 (br t, J=6.0 Hz, 1H), 9.16 (s, 1H), 8.90-8.82 (m, 2H), 8.50 (d, J=8.0 Hz, 1H), 8.31 (d, J=5.2 Hz, 1H), 8.21 (t, J=7.8 Hz, 1H), 8.15 (d, J=9.2 Hz, 1H), 8.08 (d, J=7.6 Hz, 1H), 6.89 (dd, J=10.4, 16.8 Hz, 1H), 6.43 (br d, J=16.8 Hz, 1H), 5.94 (br d, J=9.6 Hz, 1H), 3.67 (q, J=6.2 Hz, 2H), 2.90 (t, J=6.5 Hz, 2H).


Route 7: General Scheme



embedded image


Step 1—2-[4-(prop-2-enoylamino)-6-quinolyl]pyrimidine-4-carboxylic acid



embedded image


To a mixture of tert-butyl 2-[4-(prop-2-enoylamino)-6-quinolyl]pyrimidine-4-carboxylate (0.5 g, 1.33 mmol, 1 eq) in THF (6 mL) and H2O (1.5 mL) was added LiOH·H2O (278.7 mg, 6.64 mmol, 5 eq). The reaction was stirred at 15° C. for 1 h. TLC showed that the reaction was complete. The reaction was poured into ˜50 mL ice water and washed with EtOAc (3×50 mL). The aqueous layers were concentrated by lyophilization to afford the title compound 2-[4-(prop-2-enoylamino)-6-quinolyl]pyrimidine-4-carboxylic acid (0.7 g, crude) as a yellow solid.


Step 2—N-[1-(2-methoxyethyl)-4-piperidyl]-2-[4-(prop-2-enoylamino)-6-quinolyl]pyrimidine-4-carboxamide



embedded image


To a mixture of 2-[4-(prop-2-enoylamino)-6-quinolyl]pyrimidine-4-carboxylic acid (200 mg, 624.41 μmol, 1 eq) and 1-(2-methoxyethyl)piperidin-4-amine (182.4 mg, 936.62 μmol, 1.5 eq, HCl) in DCM (2 mL) were added Et3N (315.9 mg, 3.12 mmol, 434.55 μL, 5 eq) and T3P (596 mg, 936.62 μmol, 557.03 μL, 50% purity, 1.5 eq) in one portion under N2. The mixture was stirred at 20° C. for 60 min. The reaction was diluted with 20 mL water and extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (3×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC (basic condition) to afford the title compound N-[l-(2-methoxyethyl)-4-piperidyl]-2-[4-(prop-2-enoylamino)-6-quinolyl]pyrimidine-4-carboxamide (20 mg, 43.43 μmol, 6.96% yield, 100.0% purity) as a white solid. LC-MS (ES+, m/z): 461.3 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) Shift=10.78 (s, 1H), 9.59 (d, J=1.3 Hz, 1H), 9.23 (d, J=5.1 Hz, 1H), 8.99 (dd, J=1.7, 8.9 Hz, 1H), 8.94-8.89 (m, 2H), 8.22 (d, J=5.1 Hz, 1H), 8.16 (d, J=8.8 Hz, 1H), 7.98 (d, J=5.1 Hz, 1H), 6.90 (dd, J=10.3, 17.1 Hz, 1H), 6.43 (dd, J=1.7, 17.1 Hz, 1H), 6.01-5.84 (m, 1H), 3.99-3.79 (m, 1H), 3.45 (t, J=5.8 Hz, 2H), 3.25 (s, 3H), 2.93 (br d, J=11.9 Hz, 2H), 2.52 (br s, 2H), 2.18-2.07 (m, 2H), 1.89-1.77 (m, 4H).


Route 8: General Scheme



embedded image


Preparation of N-(1-methyl-4-piperidyl)-6-[4-(prop-2-enoylamino)-6-quinolyl]pyridine-2-carboxamide (Compound 405)
Step 1) Preparation of N-(6-bromo-4-quinolyl)prop-2-enamide



embedded image


To a mixture of 6-bromoquinolin-4-amine (300 mg, 1.345 mmol) and Et3N (679 mg, 6.725 mmol) in DCM (10 mL) at 0° C. was added a solution of prop-2-enoyl chloride (154 mg, 1.614 mmol) in DCM (1 mL). The resulting mixture was stirred at r.t. for 18 h. The reaction mixture was concentrated in vacuo and the residue was diluted with DCM. The mixture were washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by chromatography on silica gel eluting with 30-100% EtOAc/Hexane to afford the title compound (0.25 g, Yield 66%).


Step 2) Preparation of [4-(prop-2-enoylamino)-6-quinolyl]boronic acid



embedded image


To a solution of N-(6-bromo-4-quinolyl)prop-2-enamide (74.9 mg, 27 μmol) in dioxane (3 mL) were added 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (205 mg, 81 μmol), KOAc (133 mg, 1.35 mmol) and PdCl2dppf (40 mg, 49 μmol). The reaction was heated at 100° C. for 1 h in a microwave. The reaction mixture was passed through a celite pad, and the solvent was removed in vacuo. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (16.9 mg, Yield 26%).


Step 3) Preparation of N-(1-methyl-4-piperidyl)-6-[4-(prop-2-enoylamino)-6-quinolyl]pyridine-2-carboxamide



embedded image


To a solution of [4-(prop-2-enoylamino)-6-quinolyl]boronic acid (16.9 mg, 7 μmol) in dioxane (1 mL) and water (0.2 mL) were added 6-bromo-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (31.3 mg, 105 μmol), Cs2CO3 (68.3 mg, 21 μmol) and PdCl2dppf (15 mg, 18.5 μmol). The reaction was heated at 100° C. for 30 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 30 min. The solution was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (6 mg, Yield 21%). LC-MS: [M+H]+ 416.


Preparation of N-[6-(4-amino-3-cyano-phenyl)-4-quinolyl]prop-2-enamide (Compound 407)



embedded image


To a solution of N-(6-bromo-4-quinolyl)prop-2-enamide (40 mg, 144 μmol) in dioxane (1 mL) and water (0.2 mL) were added 2-amino-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzonitrile (52.9 mg, 271 μmol), Cs2CO3 (140 mg, 432 μmol) and PdCl2dppf (18 mg, 22.4 μmol). The reaction was heated at 100° C. for 30 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 30 min. The solution was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (15 mg, Yield 30%). LC-MS: [M+H]+ 315.


Preparation of N-methyl-5-[4-(prop-2-enoylamino)-6-quinolyl]pyridine-3-carboxamide (Compound 408)



embedded image


To a solution of N-(6-bromo-4-quinolyl)prop-2-enamide (40 mg, 144 μmol) in dioxane (1 mL) and water (0.2 mL) were added N-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolanyl)pyridine-3-carboxamide (71 mg, 271 μmol), Cs2CO3 (140 mg, 432 μmol) and PdCl2dppf (18 mg, 22.4 μmol). The reaction was heated at 100° C. for 30 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 30 min. The solution was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (8 mg, Yield 16%). LC-MS: [M+H]+ 333.


Preparation of N-[6-(5-amino-6-chloro-2-pyridyl)-4-quinolyl]prop-2-enamide (Compound 409)



embedded image


To a solution of N-(6-bromo-4-quinolyl)prop-2-enamide (40 mg, 144 μmol) in dioxane (1 mL) and water (0.2 mL) were added 2-chloro-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-amine (69 mg, 271 μmol), Cs2CO3 (140 mg, 432 μmol) and PdCl2dppf (18 mg, 22.4 μmol). The reaction was heated at 100° C. for 30 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 30 min. The solution was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (5 mg, Yield 11%). FC-MS: [M+H]+ 325.


Preparation of N-[6-(6-amino-5-chloro-3-pyridyl)-4-quinolyl]prop-2-enamide (Compound 411)



embedded image


To a solution of N-(6-bromo-4-quinolyl)prop-2-enamide (40 mg, 144 μmol) in dioxane (1 mF) and water (0.2 mF) were added 3-chloro-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-2-amine (69 mg, 271 μmol), Cs2CO3 (140 mg, 432 μmol) and PdCl2dppf (18 mg, 22.4 μmol). The reaction was heated at 100° C. for 30 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mF of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 30 min. The solution was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (46.8 mg, Yield 100%). FC-MS: [M+H]+ 325.


Preparation of N-[6-(3-chlorophenyl)-4-quinolyl]prop-2-enamide (Compound 414)



embedded image


To a solution of N-(6-bromo-4-quinolyl)prop-2-enamide (50 mg, 18 μmol) in dioxane (1.5 mF) and water (0.3 mF) were added (3-chlorophenyl)boronic acid (42.3 mg, 271 μmol), Cs2CO3 (176 mg, 54 μmol) and PdCl2dppf (20 mg, 24.3 μmol). The reaction was heated at 100° C. for 30 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mF of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 30 min. The solution was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (4 mg, Yield 7%). LC-MS: [M+H]+ 309.


Preparation of N-[3-(dimethylamino)cyclohexyl]-6-[4-(prop-2-enoylamino)-6-quinolyl]pyridine-2-carboxamide (Compound 415)
Step 1) Preparation of 6-(4-amino-6-quinolyl)-N-[3-(dimethylamino)cyclohexyl]pyridine-2-carboxamide



embedded image


To a solution (4-amino-6-quinolyl)boronic acid (124 mg, 459 μmol) in dioxane (2 mL) and water (0.4 mL) were added 6-bromo-N-[3-(dimethylamino)cyclohexyl]pyridine-2-carboxamide (100 mg, 306 μmol), Cs2CO3 (298 mg, 0.918 mmol) and PdCl2dppf (40 mg, 50.5 μmol). The reaction was heated at 100° C. for 35 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 30 min. The solution was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 0-60% MeOH/EtOAc/5% Et3N to afford the title compound (81.9 mg, Yield 69%).


Step 2) Preparation of N-[3-(dimethylamino)cyclohexyl]-6-[4-(prop-2-enoylamino)-6-quinolyl]pyridine-2-carboxamide



embedded image


To a mixture of 6-(4-amino-6-quinolyl)-N-[3-(dimethylamino)cyclohexyl]pyridine-2-carboxamide (81.9 mg, 21 μmol) and Et3N (106 mg, 1.05 mmol) in DCM (5 mL) at 0° C. was added a solution of prop-2-enoyl chloride (26.1 mg, 273 μmol) in DCM (0.5 mL). The resulting mixture was stirred at r.t. for 18 h. The reaction mixture was concentrated in vacuo, and the residue was diluted with DCM. The mixture was washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (4 mg, Yield 4%). LC-MS: [M+H]+ 444.


Preparation of N-(8-methyl-8-azabicyclo[3.2.1]octan-3-yl)-6-[4-(prop-2-enoylamino)-6-quinolyl]pyridine-2-carboxamide (Compound 416)
Step 1) Preparation of 6-bromo-N-(8-methyl-8-azabicyclo[3.2.1]octan-3-yl)pyridine-2-carboxamide



embedded image


To a mixture of 6-bromopyridine-2-carboxylic acid (500 mg, 2.475 mmol), 8-methyl-8-azabicyclo[3.2.1]octan-3-amine (521 mg, 3.713 mmol) and Et3N (1.25 g, 3.713 mmol) in DMF (6 mL) was added T3P (50 wt % in EtOAc, 3.2 mL, 3.713 mmol). The resulting mixture was stirred at r.t. for 18 h and partitioned between EtOAc and water. The aqueous phase was extracted with EtOAc (3×). The combined organic phase was washed with saturated NaHCO3 and brine, dried over (MgSO4), filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 0-20% MeOH/EtOAc/5% Et3N to afford the title compound (442 mg, Yield 55%).


Step 2) Preparation of 6-(4-amino-6-quinolyl)-N-(8-methyl-8-azabicyclo[3.2.1]octan-3-yl)pyridine-2-carboxamide



embedded image


To a solution (4-amino-6-quinolyl)boronic acid (125 mg, 463 μmol) in dioxane (2 mL) and water (0.4 mL) were added 6-bromo-N-(8-methyl-8-azabicyclo[3.2.1]octan-3-yl)pyridine-2-carboxamide (100 mg, 308 μmol), Cs2CO3 (298 mg, 0.918 mmol) and PdCl2dppf (40 mg, 50.5 μmol). The reaction was heated at 100° C. for 35 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 30 min. The solution was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 0-60% MeOH/EtOAc/5% Et3N to afford the title compound (52.1 mg, Yield 44%).


Step 3) Preparation of N-(8-methyl-8-azabicyclo[3.2.1]octan-3-yl)-6-[4-(prop-2-enoylamino)-6-quinolyl]pyridine-2-carboxamide



embedded image


To a mixture of 6-(4-amino-6-quinolyl)-N-(8-methyl-8-azabicyclo[3.2.1]octan-3-yl)pyridine-2-carboxamide (52.1 mg, 134 μmol) and Et3N (67 mg, 67 mmol) in DCM (5 mL) at 0° C. was added a solution of prop-2-enoyl chloride (16.7 mg, 175 μmol) in DCM (0.5 mL). The resulting mixture was stirred at r.t. for 18 h. The reaction mixture was concentrated in vacuo, and the residue was diluted with DCM. The mixture was washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (11 mg, Yield 19%). LC-MS: [M+H]+ 442.


Preparation of N-(8-methyl-8-azabicyclo[3.2.1]octan-3-yl)-6-[4-(prop-2-enoylamino)-6-quinolyl]pyridine-2-carboxamide (Compound 421)
Step 1) Preparation of 6-bromo-N-[2-(1-methyl-4-piperidyl)ethyl]pyridine-2-carboxamide



embedded image


To a mixture of 6-bromopyridine-2-carboxylic acid (500 mg, 3.713 mmol), 2-(1-methyl-4-piperidyl) ethanamine (528 mg, 3.713 mmol) and Et3N (1.279 g, 12.375 mmol) in DMF (5 mL) was added T3P (50 wt % in EtOAc, 3.2 mL, 3.713 mmol). The resulting mixture was stirred at r.t. for 18 h and partitioned between EtOAc and water. The aqueous phase was extracted with EtOAc (3×). The combined organic phase was washed with saturated NaHCO3 and brine, dried over (MgSO4), filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 0-60% MeOH/EtOAc/5% Et3N to afford the title compound (531 mg, Yield 66%).


Step 2) Preparation of 6-(4-amino-6-quinolyl)-N-[2-(1-methyl-4-piperidyl)ethyl]pyridine-2-carboxamide



embedded image


To a solution (4-amino-6-quinolyl)boronic acid (124 mg, 46 μmol) in dioxane (2 mL) and water (0.4 mL) were added 6-bromo-N-[2-(1-methyl-4-piperidyl)ethyl]pyridine-2-carboxamide (100 mg, 306 μmol), Cs2CO3 (298 mg, 0.918 mmol) and PdCl2dppf (20 mg, 25 μmol). The reaction was heated at 100° C. for 35 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 30 min. The solution was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 0-60% MeOH/EtOAc/5% Et3N to afford the title compound (53.4 mg, Yield 45%).


Step 3) Preparation of N-(8-methyl-8-azabicyclo[3.2.1]octan-3-yl)-6-[4-(prop-2-enoylamino)-6-quinolyl]pyridine-2-carboxamide



embedded image


To a mixture of 6-(4-amino-6-quinolyl)-N-[2-(1-methyl-4-piperidyl)ethyl]pyridine-2-carboxamide (53 mg, 136 μmol) and Et3N (68.7 mg, 68 mmol) in DCM (5 mL) at 0° C. was added a solution of prop-2-enoyl chloride (16.9 mg, 177 μmol) in DCM (0.5 mL). The resulting mixture was stirred at r.t. for 18 h. The reaction mixture was concentrated in vacuo and the residue was diluted with DCM, washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (4 mg, Yield 6%). LC-MS: [M+H]+ 444.


Preparation of N-(1-methylazepan-3-yl)-6-[4-(prop-2-enoylamino)-6-quinolyl]pyridine-2-carboxamide (Compound 423)
Step 1) Preparation of 6-bromo-N-(1-methylazepan-4-yl)pyridine-2-carboxamide



embedded image


To a mixture of 6-bromopyridine-2-carboxylic acid (500 mg, 2.475 mmol), 1-methylazepan-4-amine (476 mg, 3.713 mmol) and Et3N (1.279 g, 12.375 mmol) in DMF (5 mL) was added T3P (50 wt % in EtOAc, 3.2 mL, 3.713 mmol). The resulting mixture was stirred at r.t. for 18 h and partitioned between EtOAc and water. The aqueous phase was extracted with EtOAc (3×). The combined organic phase was washed with saturated NaHCO3 and brine, dried over (MgSO4), filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 0-60% MeOH/EtOAc/5% Et3N to afford the title compound (350 mg, Yield 45%).


Step 2) Preparation of 6-(4-amino-6-quinolyl)-N-(1-methylazepan-3-yl)pyridine-2-carboxamide



embedded image


To a solution (4-amino-6-quinolyl)boronic acid (130 mg, 48 μmol) in dioxane (2 mL) and water (0.4 mL) were added 6-bromo-N-(1-methylazepan-3-yl)pyridine-2-carboxamide (100 mg, 32 μmol), Cs2CO3 (312 mg, 0.96 mmol) and PdCl2dppf (40 mg, 5 μmol). The reaction was heated at 100° C. for 35 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 30 min. The solution was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 0-60% MeOH/EtOAc/5% Et3N to afford the title compound (65.1 mg, Yield 54%).


Step 3) Preparation of N-(1-methylazepan-3-yl)-6-[4-(prop-2-enoylamino)-6-quinolyl]pyridine-2-carboxamide



embedded image


To a mixture of 6-(4-amino-6-quinolyl)-N-(1-methylazepan-3-yl)pyridine-2-carboxamide (65.1 mg, 173 μmol) and Et3N (87.4 mg, 865 μmol) in DCM (5 mL) at 0° C. was added a solution of prop-2-enoyl chloride (21.5 mg, 225 μmol) in DCM (0.5 mL). The resulting mixture was stirred at r.t. for 18 h. The reaction mixture was concentrated in vacuo and the residue was diluted with DCM, washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (4 mg, Yield 5%). LC-MS: [M+H]+ 430.


Preparation of 3-amino-N-(1-methyl-4-piperidyl)-6-[4-(prop-2-enoylamino)-6-quinolyl]pyridine-2-carboxamide (Compound 426)
Step 1) Preparation of 3-amino-6-(4-amino-6-quinolyl)-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide



embedded image


To a solution 6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinolin-4-amine (129 mg, 479 μmol) in dioxane (2 mL) and water (0.4 mL) were added 3-amino-6-bromo-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (100 mg, 319 μmol), Cs2CO3 (311 mg, 0.957 mmol) and PdCl2dppf (26 mg, 31.9 μmol). The reaction was heated at 100° C. for 35 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 30 min. The solution was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with 0-60% MeOH/EtOAc/5% Et3N to afford the title compound (82.9 mg, Yield 69%).


Step 2) Preparation of 3-amino-N-(1-methyl-4-piperidyl)-6-[4-(prop-2-enoylamino)-6-quinolyl]pyridine-2-carboxamide



embedded image


To a mixture of tert-butyl 3-amino-6-(4-amino-6-quinolyl)-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (82.9 mg, 22 μmol) and Et3N (111 mg, 1.1 mmol) in DCM (5 mL) at 0° C. was added a solution of prop-2-enoyl chloride (27.3 mg, 286 μmol) in DCM (0.5 mL). The resulting mixture was stirred at r.t. for 18 h. The reaction mixture was concentrated in vacuo and the residue was diluted with DCM, washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (4 mg, Yield 4%). LC-MS: [M+H]+ 431.


TABLE 9 shows compounds synthesized using the methods described in EXAMPLE 9 above.









TABLE 9









embedded image















Cpd.


LC-MS


No.
Structure
IUPAC
(ES+, m/z)





405


embedded image


N-(1-methylpiperidin-4-yl)-6-[4- (prop-2-enamido)quinolin-6- yl]pyridine-2-carboxamide
416.2





406


embedded image


6-{4-[(2-cyano-2- methylideneethyl)amino]quinolin-6- yl}-N-(1-methylpiperidin-4- yl)pyridine-2-carboxamide
427.2





407


embedded image


N-[6-(4-amino-3- cyanophenyl)quinolin-4-yl]prop-2- enamide
315.1





408


embedded image


N-methyl-5-[4-(prop-2- enamido)quinolin-6-yl]pyridine-3- carboxamide
333.1





409


embedded image


N-[6-(5-amino-6-chloropyridin-2- yl)quinolin-4-yl]prop-2-enamide
325.1





410


embedded image


N-[6-(4-amino-3- chlorophenyl)quinolin-4-yl]prop-2- enamide
324.1





411


embedded image


N-[6-(6-amino-5-chloropyridin-3- yl)quinolin-4-yl]prop-2-enamide
325.1





412


embedded image


N-[6-(2-chlorophenyl)quinolin-4- yl]prop-2-enamide
309.1





413


embedded image


N-(1-methylpiperidin-4-yl)-2-[4- (prop-2-enamido)quinolin-6-yl]-1,3- thiazole-4-carboxamide
422.2





414


embedded image


N-[6-(3-chlorophenyl)quinolin-4- yl]prop-2-enamide
309.1





415


embedded image


N-[3-(dimethylamino)cyclohexyl]-6- [4-(prop-2-enamido)quinolin-6- yl]pyridine-2-carboxamide
444.2





416


embedded image


N-{8-methyl-8- azabicyclo[3.2.1]octan-3-yl}-6-[4- (prop-2-enamido)quinolin-6- yl]pyridine-2-carboxamide
442.2





417


embedded image


N-{8-methyl-8- azabicyclo[3.2.1]octan-3-yl}-2-[4- (prop-2-enamido)quinolin-6- yl]pyrimidine-4-carboxamide
443.2





418


embedded image


2-[4-(prop-2-enamido)quinolin-6-yl]- N-[(1r,4r)-4- (dimethylamino)cyclohexyl] pyrimidine-4-carboxamide
445.2





419


embedded image


N-[3-(dimethylamino)cyclohexyl]-2- [4-(prop-2-enamido)quinolin-6- yl]pyrimidine-4-carboxamide
445.2





420


embedded image


N-(1-methylpiperidin-4-yl)-2-[4- (prop-2-enamido)quinolin-6- yl]pyrimidine-4-carboxamide
417.2





421


embedded image


N-[2-(1-methylpiperidin-4-yl)ethyl]-6- [4-(prop-2-enamido)quinolin-6- yl]pyridine-2-carboxamide
444.2





422


embedded image


6-[4-(prop-2-enamido)quinolin-6-yl]- N-[(1r,4r)-4- (dimethylamino)cyclohexyl]pyridine- 2-carboxamide
444.3





423


embedded image


N-(1-methylazepan-3-yl)-6-[4-(prop- 2-enamido)quinolin-6-yl]pyridine-2- carboxamide
430.2





424


embedded image


N-(1-methylpiperidin-4-yl)-2-[4- (prop-2-enamido)quinolin-6-yl]-1,3- thiazole-5-carboxamide
422.1





425


embedded image


2-[4-(prop-2-enamido)quinolin-6-yl]- N-[(1s,4s)-4- (dimethylamino)cyclohexyl] pyrimidine-4-carboxamide
445.2





426


embedded image


3-amino-N-(1-methylpiperidin-4-yl)- 6-[4-(prop-2-enamido)quinolin-6- yl]pyridine-2-carboxamide
431.2





427


embedded image


N-[(3S,4R)-3-fluoro-1- methylpiperidin-4-yl]-2-[4-(prop-2- enamido)quinolin-6-yl]pyrimidine-4- carboxamide
435.2





428


embedded image


N-(1-methylpiperidin-4-yl)-5-[4- (prop-2-enamido)quinolin-6-yl]-1,3- thiazole-2-carboxamide
422.2





429


embedded image


N-(2-methoxyethyl)-6-[4-(prop-2- enamido)quinolin-6-yl]pyridine-2- carboxamide
377.2





430


embedded image


N-[(3S,4R)-3-fluoro-1- methylpiperidin-4-yl]-6-[4-(prop-2- enamido)quinolin-6-yl]pyridine-2- carboxamide
434.2





431


embedded image


N-(1-methylpiperidin-4-yl)-2-[4- (prop-2-enamido)quinolin-6-yl]-1,3- oxazole-5-carboxamide
406.2





432


embedded image


N-(6-{4- [(carbamoylmethyl)carbamoyl] pyrimidin-2-yl}quinolin-4-yl)prop-2- enamide
377.1





433


embedded image


N-(2-cyanoethyl)-6-[4-(prop-2- enamido)quinolin-6-yl]pyridine-2- carboxamide
372.1





434


embedded image


1-methyl-N-{6-[4-(prop-2- enamido)quinolin-6-yl]pyridin-2- yl}piperidine-4-carboxamide
416.2





435


embedded image


N-[1-(2-methoxyethyl)piperidin-4-yl]- 2-[4-(prop-2-enamido)quinolin-6- yl]pyrimidine-4-carboxamide
461.3





436


embedded image


3-amino-N-[(3S,4R)-3-fluoro-1- methylpiperidin-4-yl]-6-[4-(prop-2- enamido)quinolin-6-yl]pyridine-2- carboxamide
449.2





437


embedded image


6-[4-(2-fluoroprop-2- enamido)quinolin-6-yl]-N-(1- methylpiperidin-4-yl)pyridine-2- carboxamide
434.2





438


embedded image


5-amino-N-(1-methylpiperidin-4-yl)- 2-[4-(prop-2-enamido)quinolin-6- yl]pyrimidine-4-carboxamide
432.2









Example 10: Method J
Preparation of N-(1-methyl-4-piperidyl)-6-[5-(prop-2-enoylamino)-3-quinolyl]pyridine-2-carboxamide (Compound 441)
Step 1) Preparation of N-(3-bromo-5-quinolyl)prop-2-enamide



embedded image


To a mixture of 3-bromoquinolin-5-amine (300 mg, 1.345 mmol) and Et3N (679 mg, 6.725 mmol) in DCM (10 mL) at 0° C. was added a solution of prop-2-enoyl chloride (154 mg, 1.614 mmol) in DCM (1 mL). The resulting mixture was stirred at r.t. for 18 h. The reaction mixture was concentrated in vacuo and the residue was diluted with DCM, washed with saturated NaHCO3 and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by chromatography on silica gel eluting with 30-100% EtOAc/Hexane to afford the title compound (0.25 g, Yield 66%).


Step 2) Preparation of [5-(prop-2-enoylamino)-3-quinolyl]boronic acid



embedded image


To a solution of N-(3-bromo-5-quinolyl)prop-2-enamide (108 mg, 39 μmol) in dioxane (3 mL) were added 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (297 mg, 1.169 mmol), KOAc (191 mg, 1.95 mmol) and PdCl2dppf (40 mg, 49 μmol). The reaction was heated at 100° C. for 1 h in a microwave. The reaction mixture was passed through a celite pad, and the solvent was removed in vacuo. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (46.1 mg, Yield 49%).


Step 3) Preparation of N-(1-methyl-4-piperidyl)-6-[5-(prop-2-enoylamino)-3-quinolyl]pyridine-2-carboxamide



embedded image


To a solution of [5-(prop-2-enoylamino)-3-quinolyl]boronic acid (40 mg, 165 μmol) in dioxane (2 mL) and water (0.4 mL) were added 6-bromo-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (73.9 mg, 248 μmol), Cs2CO3 (161 mg, 495 μmol) and PdCl2dppf (18 mg, 22.1 μmol). The reaction was heated at 100° C. for 30 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of 0.5M EDTA was added. The resulting solution was stirred at r.t. for 30 min. The solution was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (10 mg, Yield 15%). LC-MS: [M+H]+ 416.


TABLE 10 shows compounds synthesized using methods described in EXAMPLE 10 above.









TABLE 10









embedded image















Cpd.


LC-MS


No.
Structure
IUPAC
(ES+, m/z)





439


embedded image


N-(1-ethylpiperidin-4-yl)-6-[5- (prop-2-enamido)quinolin-3- yl]pyridine-2-carboxamide
430.2





440


embedded image


6-{5-[(2-cyano-2- methylideneethyl)amino]quinolin- 3-yl}-N-(1-methylpiperidin-4- yl)pyridine-2-carboxamide
427.2





441


embedded image


N-(1-methylpiperidin-4-yl)-6-[5- (prop-2-enamido)quinolin-3- yl]pyridine-2-carboxamide
416.2









Example 11: Method K
Route 1: General Scheme



embedded image


Step 1—7-(2-pyridyl)naphthalen-1-amine



embedded image


To a solution of 2-bromopyridine (915.8 mg, 5.8 mmol, 551.66 μL, 1.3 eq) and 7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-amine (1.2 g, 4.46 mmol, 1 eq) in dioxane (20 mL) and H2O (5 mL) were added Na2CO3 (1.42 g, 13.38 mmol, 3 eq) and Pd(dppf)Cl2 (3.26 g, 4.46 mmol, 1 eq). The reaction mixture was stirred at 100° C. for 1 hr under N2. TLC (PE:EtOAc=1:1, SM Rf=0.47, TM Rf=0.34) showed that the reaction was complete. The reaction mixture was poured into ˜20 mL water and extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give the residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound 7-(2-pyridyl)naphthalen-1-amine (0.52 g, 2.36 mmol, 52.95% yield) as a brown solid.


Step 2—N-(oxiran-2-ylmethyl)-7-(2-pyridyl)naphthalen-1-amine



embedded image


To a solution of 7-(2-pyridyl)naphthalen-1-amine (0.02 g, 90.8 μmol, 1 eq) and 2-(bromomethyl)oxirane (10 mg, 72.64 μmol, 5.99 μL, 0.8 eq) in CH3CN (3 mL) was added K2CO3 (37.7 mg, 272.39 μmol, 3 eq). The reaction mixture was stirred at 50° C. for 1 hr. Then, KI (1.5 mg, 9.08 μmol, 0.1 eq) and additional solution of 2-(bromomethyl)oxirane (49.8 mg, 363.19 μmol, 29.97 μL, 4 eq) in DMF (0.3 mL) were successively added. The resulting reaction mixture was stirred at 80° C. for 12 hr, LCMS showed that the reaction was complete. The reaction mixture was poured into 10 mL water and extracted with EtOAc (3×10 mL). The combined organic layer was washed with brine (3×10 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give the residue. The residue was purified by prep-HPLC (neutral condition) to afford the title compound N-(oxiran-2-ylmethyl)-7-(2-pyridyl) naphthalen-1-amine (4.20 mg, 15.08 μmol, 16.61% yield, 99.2% purity) as ayellow solid. LC-MS (ES+, m/z): 277.1 [(M+H)+] 1H NMR (400 MHz, DMSO-d6) Shift=8.85 (s, 1H), 8.71 (dd, J=0.9, 4.9 Hz, 1H), 8.23 (s, 1H), 8.21 (s, 1H), 7.94 (dt, J=1.9, 7.8 Hz, 1H), 7.86 (d, J=8.6 Hz, 1H), 7.38-7.34 (m, 1H), 7.33-7.28 (m, 1H), 7.15 (d, J=7.9 Hz, 1H), 6.73 (t, J=5.5 Hz, 1H), 6.65 (d, J=7.7 Hz, 1H), 3.60 (dd, J=3.4, 5.6 Hz, 1H), 3.56 (dd, J=3.4, 5.4 Hz, 1H), 3.39-3.34 (m, 1H), 3.28-3.22 (m, 1H), 2.82 (s, 1H), 2.80 (d, J=4.2 Hz, 1H), 2.67 (d, J=2.4 Hz, 1H), 2.65 (br d, J=2.6 Hz, 1H)


Route 3
Step 1—1-chloro-3-[[7-(2-pyridyl)-1-naphthyl]amino]propan-2-ol



embedded image


To a solution of 7-(2-pyridyl)naphthalen-1-amine (0.03 g, 136.2 μmol, 1 eq) in EtOH (2.0 mL) was added 2-(chloromethyl)oxirane (12.6 mg, 136.2 μmol, 10.68 μL, 1 eq). The reaction mixture was stirred at 80° C. for 15 hr. The reaction mixture was concentrated in vacuo to give the residue. The residue was purified by prep-HPLC (FA condition) to afford the title compound 1-chloro-3-[[7-(2-pyridyl)-1-naphthyl]amino]propan-2-ol (0.0058 g, 18.54 μmol, 13.61% yield, 100.0% purity) as a brown solid. LC-MS (ES+, m/z): 313.1 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) Shift=8.83 (s, 1H), 8.72 (td, J=0.9, 4.9 Hz, 1H), 8.25-8.22 (m, 1H), 8.20 (s, 1H), 7.95 (dt, J=1.8, 7.7 Hz, 1H), 7.86 (d, J=8.6 Hz, 1H), 7.41-7.35 (m, 1H), 7.35-7.30 (m, 1H), 7.16 (d, J=7.9 Hz, 1H), 6.62 (d, J=7.5 Hz, 1H), 6.48 (t, J=5.7 Hz, 1H), 5.47 (d, J=5.3 Hz, 1H), 4.14-4.05 (m, 1H), 3.85-3.78 (m, 1H), 3.74-3.66 (m, 1H), 3.51 (s, 1H), 3.47-3.40 (m, 1H), 3.30-3.25 (m, 1H).


TABLE 11 shows compounds synthesized methods described in EXAMPLE 11 above.









TABLE 11









embedded image


















LC-MS


Cpd No.
Structure
IUPAC
(ES+, m/z)





442


embedded image


N-[(oxiran-2-yl)methyl]-7- (pyridin-2-yl)naphthalen-1- amine
277.1





443


embedded image


1-chloro-3-{[7-(pyridin-2- yl)naphthalen-1- yl]amino}propan-2-ol
313.1





444


embedded image


5-(hydroxymethyl)-3-[7- (pyridin-2-yl)naphthalen-1-yl]- 1,3-oxazolidin-2-one
321.1









Example 12: Method L
Route 1: General Scheme



embedded image


embedded image


embedded image


embedded image


Step 1) 5-N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide



embedded image


To a solution of 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (2 g, 91.29 mmol, 1 eq) in DCM (200 mL) was added TEA (27.71 g, 273.86 mmol, 38.12 mL, 3 eq), prop-2-enoyl chloride (12.39 g, 136.93 mmol, 11.17 mL, 1.5 eq) was added to the solution at 0° C. The reaction was stirred at 0° C. for 1 hr under N2. The reaction was poured into 300 mL water and extracted with DCM (3×150 mL). The combined organic phase was dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (14.7 g, 53.82 mmol, 58.96% yield) as a white solid. LC-MS (ES+, m/z): 274.1 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) Shift=10.14 (s, 1H), 7.98 (s, 1H), 7.85 (br d, J=7.5 Hz, 1H), 7.40-7.28 (m, 2H), 6.48-6.34 (m, 1H), 6.31-6.17 (m, 1H), 5.75 (dd, J=1.9, 10.0 Hz, 1H), 1.30 (s, 12H).


Step 2—N-[3-[2-(2-methoxyethylamino)quinazolin-7-yl]phenyl]prop-2-enamide



embedded image


To the solution of 7-bromo-N-(2-methoxyethyl)quinazolin-2-amine (100 mg, 354.4 μmol, 1 eq) in dioxane (4 mL) and H2O (1 mL) were successively added N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (145.2 mg, 531.6 μmol, 1.5 eq), Cs2CO3 (231 mg, 708.88 μmol, 2 eq), RuPhos (16.5 mg, 35.44 μmol, 0.1 eq) and [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (14.8 mg, 17.72 μmol, 0.05 eq) at 25° C. The resulting reaction mixture was stirred at 80° C. for 1 hour. LCMS showed that the reaction was complete. The reaction mixture was poured into 80 mL saturated EDTA and followed by 30 mL EtOAc. The solution was stirred at 20° C. for 2 hours. The aqueous phase was separated and extracted with EtOAc (2×20 mL). The combined organic layer was washed successively with water (2×20 mL) and brine (1×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated to give a residue. The residue was purified by prep-HPLC to afford the title compound (11.5 mg, 33.01 μmol, 9.31% yield, 100% purity) as a light yellow solid. 349.2 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) 5=10.28 (s, 1H), 9.13 (s, 1H), 8.45-8.01 (m, 1H), 7.89 (d, J=8.30 Hz, 1H), 7.71 (d, J=7.70 Hz, 1H), 7.66 (s, 1H), 7.52 (d, J=8.00 Hz, 2H), 7.56-7.50 (m, 1H), 7.40 (s, 1H), 6.56-6.39 (m, 1H), 6.36-6.22 (m, 1H), 5.91-5.56 (m, 1H), 3.70-3.45 (m, 4H), 3.29 (s, 3H).


Step 3—N-[3-(8-amino-2-naphthyl)phenyl]prop-2-enamide



embedded image


To a solution of tert-butyl N-[7-[3-(prop-2-enoylamino)phenyl]-1-naphthyl]carbamate (100 mg, 257.43 μmol, 1 eq) in DCM (4 mL) was added TFA (2 mL). The mixture was stirred at 25° C. for 2 hours. LCMS showed that the reaction was complete. The reaction mixture was poured into 50 mL ice water and adjusted to pH=8˜9 with saturated Na2CO3. The solution was extracted with DCM (3×30 mL). The combined organic layer was washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound (9.4 mg, 32.6 μmol, 12.66% yield, 100% purity) as a light yellow solid. LC-MS (ES+, m/z): 289.1 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) δ=10.26 (s, 1H), 8.33 (s, 1H), 8.05 (s, 1H), 7.82 (d, J=8.60 Hz, 1H), 7.71 (d, J=8.20 Hz, 1H), 7.66 (d, J=8.50 Hz, 1H), 7.56 (d, J=8.00 Hz, 1H), 7.50-7.41 (m, 1H), 7.26-7.17 (m, 1H), 7.10 (d, J=8.00 Hz, 1H), 6.70 (d, J=7.30 Hz, 1H), 6.58-6.43 (m, 1H), 6.33-6.24 (m, 1H), 5.84 (s, 2H), 5.78 (d, J=10.00 Hz, 1H).


Preparation of N-[3-(4-oxo-3H-quinazolin-7-yl)phenyl]prop-2-enamide



embedded image


To the solution of 7-bromo-3H-quinazolin-4-one (100 mg, 444.36 μmol, 1 eq) in EtOH (4 mL) and H2O (1 mL) were successively added N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (133.5 mg, 488.8 μmol, 1.1 eq), K3PO4 (188.7 mg, 888.72 μmol, 2 eq) and ditert-butyl(cyclopentyl)phosphane;dichloropalladium;iron (29 mg, 44.44 μmol, 0.1 eq) at 25° C. The reaction mixture was stirred at 80° C. for 3 hours. The reaction mixture was poured into 80 mL saturated EDTA and followed by 30 mL EtOAc. The solution was stirred at 20° C. for 2 hours. The aqueous phase was separated and extracted with EtOAc (2×20 mL). The combined organic layer was washed successively with water (2×20 mL) and brine (1×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated to give a residue. The residue was purified by prep-HPLC to afford the title compound (9.4 mg, 32.27 μmol, 7.26% yield, 100% purity) as a light yellow solid. LC-MS (ES+, m/z): 486.3 [(M+H)+]. 1H NMR (400 MHz, DMSO-d6) δ=12.29 (s, 1H), 10.33 (s, 1H), 8.21 (d, J=8.40 Hz, 1H), 8.14 (s, 2H), 7.86 (s, 1H), 7.79 (d, J=8.00 Hz, 1H), 7.73 (d, J=6.60 Hz, 1H), 7.43-7.56 (m, 2H), 6.38-6.62 (m, 1H), 6.21-6.36 (m, 1H), 5.80 (d, J=9.70 Hz, 1H).


Route 2: General Scheme



embedded image


Step 1 7-bromo-N,N-bis[(2,4-dimethoxyphenyl)methyl]quinolin-4-amine



embedded image


To a solution of 7-bromo-4-chloro-quinoline (0.3 g, 1.24 mmol, 1 eq) in i-PrOH (3 mL) was added DIPEA (479.7 mg, 3.71 mmol, 646.45 μL, 3 eq) and 1-(2,4-dimethoxyphenyl)-N-[(2,4-dimethoxyphenyl)methyl]methanamine (1.96 g, 6.19 mmol, 5 eq). Then, the mixture was stirred at 100° C. for 12 hr. LCMS showed half of the starting material remained. The reaction was concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE; EtOAc=1:1) to afford the title compound 7-bromo-N,N-bis[(2,4-dimethoxyphenyl)methyl]quinolin-4-amine (0.1 g, 191.05 μmol, 15.44% yield) as a yellow oil. LC-MS (ES+, m/z): 523.2/525.2 [(M+H)+].


Step 2 7N-[3-[4-[bis[(2,4-dimethoxyphenyl)methyl]amino]-7-quinolyl]phenyl]prop-2-enamide



embedded image


To a solution of 7-bromo-N,N-bis[(2,4-dimethoxyphenyl)methyl]quinolin-4-amine (0.1 g, 191.05 μmol, 1 eq) and N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (52.2 mg, 191.05 μmol, 1 eq) in dioxane (2 mL) and H2O (0.5 mL) were added Cs2CO3 (186.8 mg, 573.16 μmol, 3 eq), RuPhos (8.9 mg, 19.11 μmol, 0.1 eq) and RuPhos Pd G3 (8 mg, 9.55 μmol, 0.05 eq). The mixture was heated to 100° C. for 1 h under N2. LCMS showed that the reaction was complete. The reaction mixture was poured into ˜15 mL saturated EDTA and stirred at 25° C. for 1 h. The mixture was extracted with EtOAc (3×10 mL), washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound N-[3-[4-[bis[(2,4-dimethoxyphenyl)methyl]amino]-7-quinolyl]phenyl]prop-2-enamide (0.1 g, 169.58 μmol, 88.76% yield) as a brown oil. LC-MS (ES+, m/z): 590.4 [(M+H)+].


Step 3 N-[3-(4-amino-7-quinolyl)phenyl]prop-2-enamide



embedded image


To a solution of N-[3-[4-[bis[(2,4-dimethoxyphenyl)methyl]amino]-7-quinolyl]phenyl]prop-2-enamide (0.12 g, 203.5 μmol, 1 eq) in DCM (4 mL) was added TFA (2.31 g, 20.26 mmol, 1.5 mL, 99.55 eq), and the mixture was stirred at 25° C. for 1 hr. HPLC showed that the reaction was complete. The reaction mixture was poured into ˜10 mL ice water and adjusted to pH=7 using saturated NaHCO3. The mixture was extracted with EtOAc (3×10 mL), washed with brine (3×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC (basic condition) to afford the title compound N-[3-(4-amino-7-quinolyl)phenyl]prop-2-enamide (10.20 mg, 32.57 μmol, 16.01% yield, 92.4% purity) as a white solid. LC-MS (ES+, m/z): 290.0 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) Shift=10.29 (s, 1H), 8.33 (d, J=5.3 Hz, 1H), 8.24 (d, J=8.8 Hz, 1H), 8.14 (s, 1H), 7.96 (d, J=1.6 Hz, 1H), 7.69-7.68 (m, 1H), 7.71 (br d, J=7.6 Hz, 1H), 7.66 (dd, J=1.9, 8.4 Hz, 1H), 7.56-7.50 (m, 1H), 7.49-7.41 (m, 1H), 6.82 (s, 2H), 6.54 (d, J=5.0 Hz, 1H), 6.52-6.41 (m, 1H), 6.35-6.22 (m, 1H), 5.83-5.75 (m, 1H).


Route 3: General Scheme



embedded image


Step 1 7-bromo-N-methyl-quinolin-4-amine



embedded image


A solution of 7-bromo-4-chloro-quinoline (0.3 g, 1.24 mmol, 1 eq) in MeNH2 (1 M in EtOH, 5 mL, 4.04 eq) was stirred at 80° C. for 12 hr. The reaction was concentrated in vacuo. The crude product was washed with PE (3×10 mL) to afford the title compound 7-bromo-N-methyl-quinolin-4-amine (0.25 g, crude) as a light yellow solid. LC-MS (ES+, m/z): 237.2/239.1 [(M+H)+].


Step 2 N-[3-[4-(methylamino)-7-quinolyl]phenyl]prop-2-enamide



embedded image


To a solution of 7-bromo-N-methyl-quinolin-4-amine (0.1 g, 421.77 μmol, 1 eq) and N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (115.2 mg, 421.77 μmol, 1 eq) in dioxane (2 mL) and H2O (0.5 mL) were added Cs2CO3 (412.3 mg, 1.27 mmol, 3 eq), RuPhos (19.7 mg, 42.18 μmol, 0.1 eq) and RuPhos Pd G3 (17.6 mg, 21.09 μmol, 0.05 eq). Then the mixture was heated to 100° C. for 1 h under N2. The reaction was poured into ˜15 mL saturated EDTA and stirred at 25° C. for 1 h. The mixture was extracted with EtOAc (3×15 mL). The organic phase was washed with brine (3×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC (neutral condition) to afford the title compound N-[3-[4-(methylamino)-7-quinolyl]phenyl]prop-2-enamide (0.0161 g, 49.09 μmol, 11.64% yield, 92.5% purity) as a white solid. LC-MS (ES+, m/z): 304.1 [(M+H)+]. 1H NMR (400 MHz, DMSO-d6) Shift=10.29 (s, 1H), 8.44 (d, J=5.3 Hz, 1H), 8.24 (d, J=8.6 Hz, 1H), 8.15 (s, 1H), 7.99 (d, J=1.5 Hz, 1H), 7.70 (br d, J=7.3 Hz, 2H), 7.57-7.50 (m, 1H), 7.50-7.42 (m, 1H), 7.37 (br d, J=4.4 Hz, 1H), 6.57-6.43 (m, 1H), 6.39 (d, J=5.3 Hz, 1H), 6.34-6.19 (m, 1H), 5.86-5.72 (m, 1H), 2.91 (d, J=4.6 Hz, 3H).


Step 3—1-methyl-N-[5-[3-(prop-2-enoylamino)phenyl]-2H-indazol-3-yl]piperidine-4-carboxamide



embedded image


The solution of 1-methyl-N-[5-[3-(prop-2-enoylamino)phenyl]-2-(2-trimethylsilylethoxymethyl) indazol-3-yl]-N-(2-trimethylsilylethoxymethyl)piperidine-4-carboxamide (80 mg, 120.48 μmol, 1 eq) in EtOH (4 mL) was added concentrated HCl (37%, 2 mL). The reaction mixture was stirred at 50° C. for 3 h. The reaction mixture was poured into H2O (10 mL) then adjusted to pH=7 with saturated NaHCO3. The aqueous phase was extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1, Rf=0.1) then further purified by prep-HPLC to afford the title compound 1-methyl-N-[5-[3-(prop-2-enoylamino)phenyl]-2H-indazol-3-yl]piperidine-4-carboxamide (3.6 mg, 8.7 μmol, 7.22% yield, 97.5% purity) as a white solid. 404.2 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) δ=12.71 (s, 1H), 10.31 (br s, 1H), 10.25 (s, 1H), 7.96 (s, 1H), 7.92 (br s, 1H), 7.68 (br d, J=8.4 Hz, 1H), 7.62 (d, J=8.8 Hz, 1H), 7.55 (d, J=8.8 Hz, 1H), 7.42 (t, J=7.6 Hz, 1H), 7.32 (br d, J=7.6 Hz, 1H), 6.47 (dd, J=10.0, 17.2 Hz, 1H), 6.28 (dd, J=1.6, 17.2 Hz, 1H), 5.80 (dd, J=1.6, 10.0 Hz, 1H), 2.83 (br d, J=11.2 Hz, 2H), 2.45-2.39 (m, 1H), 2.16 (s, 3H), 1.93-1.78 (m, 4H), 1.78-1.65 (m, 2H).


Preparation of N-[3-(4-hydroxy-6-quinolyl)phenyl]prop-2-enamide



embedded image


To a solution of N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (0.25 g, 915.3 μmol, 1 eq) and 6-bromoquinolin-4-ol (164.1 mg, 732.24 μmol, 0.8 eq) in dioxane (4 mL) and H2O (1 mL) were added Cs2CO3 (596.4 mg, 1.83 mmol, 2 eq), dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (42.7 mg, 91.53 μmol, 0.1 eq), and [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (38.3 mg, 45.77 μmol, 0.05 eq). The reaction mixture was stirred at 80° C. for 1 hr under N2. LCMS showed that the reaction was complete. The reaction mixture was poured into ˜15 mL water and extracted with EtOAc (3×15 mL). The combined organic layer was washed with brine (3×15 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give the residue. The residue was purified by prep-TLC (SiO2, DCM:MeOH=8:1) then further purified by prep-HPLC (FA condition) to to afford the title compound N-[3-(4-hydroxy-6-quinolyl)phenyl]prop-2-enamide (0.005 g, 17.22 μmol, 1.88% yield, 100% purity) as a white solid. LC-MS (ES+, m/z): 291.1 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) Shift=11.86 (br s, 1H), 10.28 (s, 1H), 8.34 (d, J=2.1 Hz, 1H), 8.22 (s, 1H), 8.09 (s, 1H), 7.96 (dd, J=2.2, 8.7 Hz, 1H), 7.93 (br s, 1H), 7.71 (dt, J=2.0, 4.6 Hz, 1H), 7.65 (d, J=8.7 Hz, 1H), 7.44 (d, J=5.1 Hz, 2H), 6.52-6.38 (m, 1H), 6.34-6.24 (m, 1H), 6.07 (d, J=7.3 Hz, 1H), 5.83-5.74 (m, 1H)


Preparation of N-[3-[5-[(1-methyl-4-piperidyl)methylamino]-3-isoquinolyl]phenyl]prop-2-enamide



embedded image


To a solution of N-[3-(5-amino-3-isoquinolyl)phenyl]prop-2-enamide (0.08 g, 276.5 μmol, 1 eq) and 1-methylpiperidine-4-carbaldehyde (1.76 g, 1.38 mmol, 10% purity, 5 eq) in EtOH (5 mL) was added Ti(OEt)4 (315.4 mg, 1.38 mmol, 286.69 μL, 5 eq). The reaction mixture was stirred at 70° C. for 1 hr, and NaBH3CN (86.9 mg, 1.38 mmol, 5 eq) was added. The resulting reaction mixture was stirred at 70° C. for further 2 hr. The reaction was poured into ˜50 mL water then 50 mL EtOAc was added. The solution was filtered and the filtrate was extracted with EtOAc (3×50 mL). The combined organic layer was washed with brine (3×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give the residue. The residue was purified by prep-HPLC (FA condition) to afford the title compound N-[3-[5-[(l-methyl-4-piperidyl)methylamino]-3-isoquinolyl]phenyl]prop-2-enamide (0.0162 g, 40.45 μmol, 14.63% yield, 100% purity) as a pink solid. LC-MS (ES+, m/z): 401.2 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) Shift=10.36 (s, 1H), 9.19 (s, 1H), 8.63 (s, 1H), 8.48 (s, 1H), 8.24 (s, 1H), 7.94 (d, J=7.9 Hz, 1H), 7.86 (br d, J=7.9 Hz, 1H), 7.48 (t, J=7.8 Hz, 1H), 7.45-7.45 (m, 1H), 7.44-7.39 (m, 1H), 7.25 (d, J=7.9 Hz, 1H), 6.76 (br t, J=5.5 Hz, 1H), 6.71 (d, J=7.9 Hz, 1H), 6.50 (dd, J=10.0, 16.9 Hz, 1H), 6.29 (dd, J=2.0, 17.0 Hz, 1H), 5.80-5.75 (m, 1H), 3.24-3.08 (m, 2H), 2.93 (brd, J=11.5 Hz, 2H), 2.28 (s, 3H), 2.10 (br t, J=11.6 Hz, 2H), 1.88-1.82 (m, 2H), 1.81-1.73 (m, 1H), 1.38-1.26 (m, 2H).


Preparation of 7-[3-(prop-2-enoylamino)phenyl]quinoline-2-carboxamide



embedded image


To a solution of N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-en amide (60 mg, 219.67 μmol, 1 eq) in dioxane (2 mL) and H2O (0.5 mL) were successively added 7-bromoquinoline-2-carboxamide (44.1 mg, 175.74 μmol, 0.8 eq), Cs2CO3 (143.2 mg, 439.34 μmol, 2 eq), RuPhos (10.3 mg, 21.97 μmol, 0.1 eq) and [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium; dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (9.2 mg, 10.98 μmol, 0.05 eq). The reaction mixture was stirred at 80° C. for 1 hr under N2. LCMS showed that the reaction was complete. The reaction mixture was poured into saturated EDTA (50 mL) and EtOAc (50 mL) was added. The solution was stirred at 25° C. for 1 h. The mixture was extracted with EtOAc (3×100 mL). The combined organic layer was washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC (PA condition) to afford the title compound 7-[3-(prop-2-enoylamino)phenyl]quinoline-2-carboxamide (11.6 mg, 36.55 μmol, 16.64% yield, 100.0% purity) as a white solid. LC-MS (ES+, m/z): 318.1 [(M+H)+]1H NMR (400 MHz, DMSO-d6) δ=10.37 (s, 1H), 8.59 (d, J=8.50 Hz, 1H), 8.39 (br s, 1H), 8.34 (s, 2H), 8.19 (d, J=8.64 Hz, 1H), 8.16 (d, J=8.50 Hz, 1H), 8.03 (dd, J=8.50, 1.76 Hz, 1H), 7.81 (br s, 1H), 7.49-7.68 (m, 3H), 6.49 (dd, J=16.96, 10.08 Hz, 1H), 6.30 (dd, J=16.96, 1.94 Hz, 1H), 5.78-5.84 (m, 1H).


Preparation of-N-[3-(2-amino-7-quinolyl)phenyl]prop-2-enamide



embedded image


To a solution of N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (60 mg, 219.67 μmol, 1 eq) and 7-bromoquinolin-2-amine (44.1 mg, 197.7 μmol, 0.9 eq) in dioxane (2 mL) and H2O (0.5 mL) was added Cs2CO3 (143.2 mg, 439.34 μmol, 2 eq) dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (15.4 mg, 32.95 μmol, 0.15 eq) [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium; dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (18.4 mg, 21.97 μmol, 0.1 eq) under N2. The reaction mixture was stirred at 100° C. for 1 h. LCMS showed that the reaction was complete. The reaction mixture was poured into saturated EDTA (40 mL) and 20 mL EtOAc was added. The solution was stirred for 1 h. After that the aqueous phase was extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (3×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by prep-HPLC (neutral condition) to afford the title compound N-[3-(2-amino-7-quinolyl)phenyl]prop-2-enamide (23.6 mg, 81.57 μmol, 37.13% yield, 100.0% purity) as a white solid. LC-MS (ES+, m/z): 290.1 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) 5=10.27 (s, 1H), 8.09 (s, 1H), 7.91 (d, J=9.2 Hz, 1H), 7.71 (d, J=8.4 Hz, 1H), 7.68 (td, J=2.8, 5.6 Hz, 1H), 7.65 (d, J=1.6 Hz, 1H), 7.46-7.43 (m, 2H), 7.43-7.39 (m, 1H), 6.76 (d, J=8.8 Hz, 1H), 6.52-6.42 (m, 3H), 6.33-6.26 (m, 1H), 5.82-5.77 (m, 1H).


Route 4: General Scheme



embedded image


Step 1 N-[3-(4-chloro-6-quinolyl)phenyl]prop-2-enamide



embedded image


To a solution of 6-bromo-4-chloro-quinoline (0.5 g, 2.06 mmol, 1 eq) and N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (563.2 mg, 2.06 mmol, 1 eq) in dioxane (2 mL) and H2O (0.5 mL) were added Cs2CO3 (2.02 g, 6.19 mmol, 3 eq), RuPhos (96.2 mg, 206.19 μmol, 0.1 eq) and RuPhos Pd Gb (86.2 mg, 103.09 μmol, 0.05 eq) at 25° C. The reaction was stirred at 80° C. for 1 hr under N2. Upon completion of the reaction as indicated by LCMS, to the reaction was added ˜15 mL EtOAc and the mixture was poured into ˜30 mL saturated EDTA and stirred at 25° C. for 1 h. The mixture was extracted with EtOAc (3×15 mL). The combined organic phase was washed with brine (3×10 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC (PA condition) to afford the title compound N-[3-(4-chloro-6-quinolyl)phenyl]prop-2-enamide (0.0235 g, 75.27 μmol, 3.65% yield, 98.9% purity) as a white solid. LC-MS (ES+, m/z): 309.0 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) Shift=10.36 (s, 1H), 8.87 (d, J=4.6 Hz, 1H), 8.36 (d, J=1.2 Hz, 1H), 8.24-8.19 (m, 1H), 8.18-8.15 (m, 2H), 7.83 (d, J=4.6 Hz, 1H), 7.79 (d, J=8.0 Hz, 1H), 7.59-7.55 (m, 1H), 7.54-7.48 (m, 1H), 6.54-6.41 (m, 1H), 6.36-6.25 (m, 1H), 5.80 (dd, J=1.6, 10.0 Hz, 1H).


Step 2—N-[3-[4-(3-pyridyl)-6-quinolyl]phenyl]prop-2-enamide



embedded image


To a solution of N-[3-(4-chloro-6-quinolyl)phenyl]prop-2-enamide (0.14 g, 453.42 μmol, 1 eq) and 3-pyridylboronic acid (55.7 mg, 453.42 μmol, 1 eq) in dioxane (4 mL) and H2O (1 mL) were added Cs2CO3 (443.2 mg, 1.36 mmol, 3 eq), RuPhos (21.2 mg, 45.34 μmol, 0.1 eq) and RuPhos Pd G3 (19 mg, 22.67 μmol, 0.05 eq) at 25° C. Then stirred at 100° C. for 1 hr under N2. The reaction was diluted with 10 mL EtOAc and poured into 20 mL saturated EDTA and stirred at 25° C. for 1 h. The mixture was extracted with EtOAc (3×10 mL), washed with brine (3×10 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC (FA condition) to afford the title compound N-[3-[4-(3-pyridyl)-6-quinolyl]phenyl]prop-2-enamide (0.0253 g, 72 μmol, 15.88% yield, 100.0% purity) as a white solid. LC-MS (ES+, m/z): 352.1 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) Shift=10.26 (s, 1H), 9.01 (d, J=4.4 Hz, 1H), 8.84 (d, J=1.8 Hz, 1H), 8.79-8.75 (m, 1H), 8.25 (d, J=8.4 Hz, 1H), 8.15-8.06 (m, 2H), 7.98-7.90 (m, 2H), 7.75 (d, J=8.0 Hz, 1H), 7.65 (dd, J=5.0, 7.6 Hz, 1H), 7.59 (d, J=4.4 Hz, 1H), 7.48-7.43 (m, 1H), 7.41-7.35 (m, 1H), 6.52-6.39 (m, 1H), 6.36-6.21 (m, 1H), 5.77 (dd, J=1.8, 10.0 Hz, 1H)


Route 5: General Scheme



embedded image


Step 1—[8-[tert-butoxycarbonyl(methyl)amino]-2-naphthyl]trifluoromethanesulfonate



embedded image


To a solution of [8-(tert-butoxycarbonylamino)-2-naphthyl]trifluoromethanesulfonate (0.8 g, 2.04 mmol, 1 eq) in acetone (8 mL) were added Cs2CO3 (2 g, 6.13 mmol, 3 eq) and MeI (435.2 mg, 3.07 mmol, 190.88 μL, 1.5 eq) at 25° C. The reaction was stirred at 50° C. for 1 hr. The reaction was filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound [8-[tert-butoxycarbonyl(methyl)amino]-2-naphthyl]trifluoromethanesulfonate (0.8 g, 1.97 mmol, 96.54% yield) as a white solid. LC-MS (ES+, m/z): 350.1[(M-tBu)+].


Step 2—Tert-butyl N-methyl-N-[7-[3-(prop-2-enoylamino)phenyl]-1-naphthyl]carbamate



embedded image


To a solution of [8-[tert-butoxycarbonyl(methyl)amino]-2-naphthyl]trifluoromethanesulfonate (0.3 g, 740.03 μmol, 1 eq) and N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (202.1 mg, 740.03 μmol, 1 eq) in dioxane (2 mL) and H2O (0.5 mL) were added Cs2CO3 (723.4 mg, 2.22 mmol, 3 eq), RuPhos (34.5 mg, 74 μmol, 0.1 eq) and RuPhos Pd G3 (31 mg, 37 μmol, 0.05 eq) at 25° C. The reaction was stirred at 100° C. for 1 hr under N2. TLC (PE:EtOAc=1:1, SM Rf=0.74, TM Rf=0.33) showed that the reaction was complete. The reaction was diluted with 5 mL EtOAc and poured into ˜30 mL saturated EDTA and stirred at 25° C. for 1 h. The aqueous phase was extracted with EtOAc (3×15 mL). The combined organic phase was washed with brine (3×15 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE;EtOAc=1:1) to afford the title compound Tert-butyl N-methyl-N-[7-[3-(prop-2-enoylamino)phenyl]-1-naphthyl]carbamate (0.28 g, 695.68 μmol, 94.01% yield) as a yellow oil.


Step 3—N-[3-[8-(methylamino)-2-naphthyl]phenyl]prop-2-enamide



embedded image


To a solution of tert-butyl N-methyl-N-[7-[3-(prop-2-enoylamino)phenyl]-1-naphthyl]carbamate (0.1 g, 248.46 μmol, 1 eq) in DCM (3 mL) was added TFA (1.08 g, 9.45 mmol, 0.7 mL, 38.05 eq). The reaction was stirred at 25° C. for 1 hr. The reaction was diluted with 10 mL DCM and the mixture was poured into 20 mL ice water. Then the mixture was adjusted to pH=7 with saturated Na2CO3, extracted with DCM (3×10 mL), washed with brine (3×20 mL), dried over by anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford the title compound N-[3-[8-(methylamino)-2-naphthyl]phenyl]prop-2-enamide (0.0394 g, 130.3 μmol, 52.45% yield, 100.0% purity) as a white solid. LC-MS (ES+, m/z): 303.1 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) Shift=10.26 (s, 1H), 8.37 (s, 1H), 8.05 (s, 1H), 7.85 (d, J=8.6 Hz, 1H), 7.75-7.64 (m, 2H), 7.59-7.52 (m, 1H), 7.50-7.41 (m, 1H), 7.35-7.27 (m, 1H), 7.12 (d, J=8.2 Hz, 1H), 6.54 (br d, J=4.6 Hz, 1H), 6.51-6.46 (m, 1H), 6.45 (s, 1H), 6.29 (dd, J=2.0, 17.0 Hz, 1H), 5.83-5.74 (m, 1H), 2.88 (d, J=4.6 Hz, 3H).


Preparation of N-[3-(7H-pyrrolo[2,3-d]pyrimidin-2-yl)phenyl]prop-2-enamide



embedded image


To a solution of N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (200 mg, 732.24 μmol, 1 eq) and tert-butyl 2-chloropyrrolo[2,3-d]pyrimidine-7-carboxylate (185.8 mg, 732.24 μmol, 1 eq) in dioxane (4 mL) and H2O (1 mL) were added Cs2CO3 (477.2 mg, 1.46 mmol, 2 eq) dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (34.2 mg, 73.22 μmol, 0.1 eq) and [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (49 mg, 58.58 μmol, 0.08 eq) under N2. The reaction mixture was stirred at 100° C. for 1 h under N2. LCMS and TLC showed that the starting material was consumed. The reaction mixture was poured into saturated EDTA (30 mL) and 20 mL of EtOAc was added. The solution was stirred for 1 h. After that the aqueous phase was extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (3×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by Prep-TLC (SiO2, PE:EtOAc=1:1) and prep-HPLC to afford the title compound tert-butyl 2-[3-(prop-2-enoylamino)phenyl]pyrrolo[2,3-d]pyrimidine-7-carboxylate (60 mg, 164.66 μmol, 22.49% yield) as a yellow solid. N-[3-(7H-pyrrolo[2,3-d]pyrimidin-2-yl)phenyl]prop-2-enamide (5.2 mg, 100.0% purity) was obtained as a yellow solid. LC-MS (ES+, m/z): 265.1 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) δ=12.15 (br s, 1H), 10.31 (s, 1H), 9.10 (s, 1H), 8.76 (t, J=1.7 Hz, 1H), 8.15 (td, 7=1.2, 8.0 Hz, 1H), 7.82 (dd, J=1.1, 8.1 Hz, 1H), 7.59 (dd, J=2.1, 3.4 Hz, 1H), 7.45 (t, J=7.9 Hz, 1H), 6.62 (dd, J=1.2, 3.4 Hz, 1H), 6.53-6.44 (m, 1H), 6.34-6.24 (m, 1H), 5.81-5.75 (m, 1H).


Route 6: General Scheme



embedded image


Step 1—N-[3-(5-amino-3-isoquinolyl)phenyl]prop-2-enamide



embedded image


To a solution of N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (50 mg, 183.06 μmol, 1 eq) and 3-chloroisoquinolin-5-amine (32.7 mg, 183.06 μmol, 1 eq) in dioxane (2 mL) and H2O (0.5 mL) were added Cs2CO3 (119.3 mg, 366.12 μmol, 2 eq) dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (12.8 mg, 27.46 μmol, 0.15 eq) and [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium; dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (15.3 mg, 18.31 μmol, 0.1 eq) under N2. The reaction mixture was stirred at 100° C. for 1 h. The reaction mixture was poured into saturated EDTA (40 mL) and 20 mL EtOAc was added. The solution was stirred for 1 h. After that the aqueous phase was extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (3×30 mL), dried over anhydrous Na2SO4 and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound N-[3-(5-amino-3-isoquinolyl)phenyl]prop-2-enamide (12.3 mg, 42.51 μmol, 23.22% yield) as a white solid. LC-MS (ES+, m/z): 290.1 [(M+H)+] 1H NMR (400 MHz, DMSO-d6) Shift=10.31 (s, 1H), 9.19 (s, 1H), 8.53 (s, 1H), 8.49 (t, J=2.0 Hz, 1H), 7.93 (d, J=8.4 Hz, 1H), 7.87-7.81 (m, 1H), 7.46 (t, J=8.0 Hz, 1H), 7.40-7.32 (m, 1H), 7.25 (d, J=8.0 Hz, 1H), 6.87 (dd, J=0.8, 7.6 Hz, 1H), 6.55-6.44 (m, 1H), 6.29 (dd, J=2.0, 17.2 Hz, 1H), 6.15 (s, 2H), 5.81-5.74 (m, 1H).


Step 2—1-methyl-N-[3-[3-(prop-2-enoylamino)phenyl]-5-isoquinolyl]piperidine-4-carboxamide



embedded image


To a solution of N-[3-(5-amino-3-isoquinolyl)phenyl]prop-2-enamide (50 mg, 172.81 μmol, 1 eq) and 1-methylpiperidine-4-carboxylic acid (29.7 mg, 207.37 μmol, 1.2 eq) in DMF (1.5 mL) were added T3P (82.5 mg, 259.22 μmol, 77.08 μL, 1.5 eq) and Et3N (87.4 mg, 864.06 μmol, 120.27 μL, 5 eq) under N2. The reaction mixture was stirred at 20° C. for 1 h. The reaction mixture was poured into 40 mL water and extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by prep-HPLC to afford the title compound 1-methyl-N-[3-[3-(prop-2-enoylamino)phenyl]-5-isoquinolyl]piperidine-4-carboxamide (19.8 mg, 47.77 μmol, 27.64% yield, 100.0% purity) as a white solid. LC-MS (ES+, m/z): 415.3 [(M+H)+] 1H NMR (400 MHz, DMSO-d6) 5=10.35 (s, 1H), 10.08 (s, 1H), 9.41 (s, 1H), 8.58 (s, 1H), 8.42 (s, 1H), 8.03 (d, J=7.5 Hz, 1H), 7.96 (d, J=8.2 Hz, 1H), 7.91 (d, J=8.2 Hz, 1H), 7.81 (br d, J=9.3 Hz, 1H), 7.65 (t, J=7.8 Hz, 1H), 7.51 (t, J=7.8 Hz, 1H), 6.54-6.44 (m, 1H), 6.30 (dd, J=2.0, 17.0 Hz, 1H), 5.82-5.77 (m, 1H), 2.87 (br d, J=11.0 Hz, 2H), 2.69-2.56 (m, 1H), 2.19 (s, 3H), 1.99-1.87 (m, 4H), 1.81-1.71 (m, 1H), 1.72-1.69 (m, 1H)


Preparation of-N-[3-[5-[(l-methyl-4-piperidyl)amino]-3-isoquinolyl]phenyl]prop-2-enamide



embedded image


To a solution of N-[3-(5-amino-3-isoquinolyl)phenyl]prop-2-enamide (60 mg, 207.38 μmol, 1 eq) and 1-methylpiperidin-4-one (70.4 mg, 622.14 μmol, 72.35 μL, 3 eq) in EtOH (2 mL) was added Ti(OEt)4 (236.5 mg, 1.04 mmol, 215.02 μL, 5 eq) under N2. The reaction mixture was stirred at 70° C. for 1 hour. Then NaBH3CN (65.2 mg, 1.04 mmol, 5 eq) was added at 70° C. The resulting reaction mixture was stirred at 70° C. for further 3 hours. The reaction mixture was poured into 40 mL saturated Na2CO3 and 20 mL EtOAc was added. The solution was stirred at 20° C. for 30 mins. The insoluble substance was removed by filtration. The filtrate was extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (2×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by prep-HPLC to afford the title compound N-[3-[5-[(l-methyl-4-piperidyl)amino]-3-isoquinolyl]phenyl]prop-2-enamide (5.1 mg, 12.68 μmol, 6.11% yield, 96.1% purity) as a white solid. LC-MS (ES+, m/z): 387.2 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) δ=10.31 (br s, 1H), 9.19 (s, 1H), 8.61 (s, 1H), 8.45 (br s, 1H), 7.97 (br s, 1H), 7.88 (br d, 7=6.8 Hz, 1H), 7.52-7.36 (m, 2H), 7.25 (br d, 7=7.6 Hz, 1H), 6.78 (br d, 7=7.2 Hz, 1H), 6.57-6.42 (m, 1H), 6.29 (br d, 7=11.6 Hz, 2H), 5.78 (br d, 7=9.2 Hz, 1H), 3.42 (br s, 1H), 2.83 (br s, 2H), 2.21 (br s, 3H), 2.03 (br s, 4H), 1.64 (br d, 7=10.0 Hz, 2H)


Route 7: General Scheme



embedded image


Step 1—7-Methoxynaphthalen-1-amine



embedded image


To a cold (0° C.) suspension of NaH (4.52 g, 113.08 mmol, 60% purity, 1.2 eq) in DMF (225 mL) was added 8-aminonaphthalen-2-ol (15 g, 94.23 mmol, 1 eq) in portions. The reaction was warmed to 25° C. and stirred for 15 min. Then the mixture was cooled to 0° C. MeI (13.37 g, 94.23 mmol, 5.87 mL, 1 eq) was added and the solution was warmed to 25° C. and stirred for 1 hr. TLC (PE:EtOAc=1:1, SM Rf=0.21, TM Rf=0.54) showed that the reaction was complete. The reaction was poured into ˜500 mL saturated NH4Cl slowly. Then, the mixture was extracted with EtOAc (3×300 mL), washed with brine (3×500 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound 7-Methoxynaphthalen-1-amine (1 g, 57.73 mmol, 61.27% yield) as a brown solid. 1H NMR (400 MHz, DMSO-d6)=7.65 (d, J=8.9 Hz, 1H), 7.42 (s, 1H), 7.13-6.82 (m, 3H), 6.72-6.60 (m, 1H), 5.57 (br s, 2H), 3.88 (s, 3H).


Step 2—4-Iodo-7-methoxy-naphthalen-1-amine



embedded image


To a solution of 7-methoxynaphthalen-1-amine (5 g, 28.87 mmol, 1 eq) in dioxane (50 mL) was added pyridine (49 g, 619.47 mmol, 50 mL, 21.46 eq), I2 (8.79 g, 34.64 mmol, 6.98 mL, 1.2 eq) at 0° C. Then the mixture was stirred at 25° C. for 2 hr. The reaction was poured into ˜150 mL water and extracted with EtOAc (3×100 mL). The combined organic phase was washed with water (3×200 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound 4-iodo-7-methoxy-naphthalen-1-amine (5 g, 16.72 mmol, 57.91% yield) as a brown solid. LC-MS (ES+, m/z): 300.0 [(M+H)+], 1H NMR (400 MHz, DMSO-d6)=7.76 (d, J=9.2 Hz, 1H), 7.58 (d, J=8.0 Hz, 1H), 7.43 (d, J=2.4 Hz, 1H), 7.20 (dd, J=2.5, 9.2 Hz, 1H), 6.48 (d, J=8.0 Hz, 1H), 5.85 (br s, 2H), 3.94-3.83 (m, 3H)


Step 3—Tert-butyl N-(4-iodo-7-methoxy-1-naphthyl) carbamate



embedded image


To a solution of 4-iodo-7-methoxy-naphthalen-1-amine (5 g, 16.72 mmol, 1 eq) in dioxane (50 mL) was added Boc2O (18.24 g, 83.58 mmol, 19.20 mL, 5 eq) and the mixture was stirred at 80° C. for 2 hr. LCMS showed that the reaction was complete. The reaction was poured into ˜200 mL water and extracted with EtOAc (3×200 mL). The combined organic phase was washed with brine (3×300 mL), dried over by anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound Tert-butyl N-(4-iodo-7-methoxy-1-naphthyl) carbamate (5.6 g, 14.03 mmol, 83.91% yield) as a brown solid. LC-MS (ES+, m/z): 344.2 [(M-tBu)+]. 1H NMR (400 MHz, DMSO-d6)=9.33 (s, 1H), 7.99-7.84 (m, 2H), 7.41 (d, J=2.4 Hz, 1H), 7.38 (d, J=8.2 Hz, 1H), 7.29 (dd, J=2.5, 9.2 Hz, 1H), 3.92 (s, 3H), 1.51 (s, 9H).


Step 4—Tert-butyl N-(4-iodo-7-methoxy-1-naphthyl)-N-methyl-carbamate



embedded image


To a solution of tert-butyl N-(4-iodo-7-methoxy-1-naphthyl) carbamate (4.5 g, 11.27 mmol, 1 eq) in DMF (40 mL) was added NaH (676.3 mg, 16.91 mmol, 60% purity, 1.5 eq) at 0° C. Then the mixture was stirred at 0° C. for 30 min. CH3I (3.2 g, 22.54 mmol, 1.40 mL, 2 eq) was added to the solution at 0° C. Then the mixture was stirred at 25° C. for 1 hr. LCMS showed that the reaction was complete. The reaction was poured into ˜100 mL saturated NH4Cl and extracted with EtOAc (3×100 mL). The combined organic phase was washed with brine (3×200 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound Tert-butyl N-(4-iodo-7-methoxy-1-naphthyl)-N-methyl-carbamate (4.5 g, 10.89 mmol, 96.61% yield) as a brown solid. LC-MS (ES+, m/z): 358.0 [(M-tBu)+]


Step 5—Methyl 4-[tert-butoxycarbonyl(methyl)amino]-6-methoxy-naphthalene-1-carboxylate



embedded image


To a solution of tert-butyl N-(4-iodo-7-methoxy-1-naphthyl)-N-methyl-carbamate (3.5 g, 8.47 mmol, 1 eq) and Mo(CO)6 (447.2 mg, 1.69 mmol, 228.16 μL, 0.2 eq) in DMSO (35 mL) and MeOH (35 mL) was added TEA (2.57 g, 25.41 mmol, 3.54 mL, 3 eq) and Pd (dppf) Cl2 (619.7 mg, 846.95 μmol, 0.1 eq). Then the mixture was stirred at 50° C. for 3 hr under N2. TLC (PE:EtOAc=4:1, SM Rf=0.36, TM Rf=0.41) showed that the reaction was complete. The reaction was poured into ˜200 mL water and extracted with EtOAc (3×200 mL). The combined organic phase was washed with brine (3×300 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound Methyl 4-[tert-butoxycarbonyl(methyl)amino]-6-methoxy-naphthalene-1-carboxylate (3. g, 6.95 mmol, 82.04% yield, 80% purity) as a yellow solid.


Step 6—4-[Tert-butoxycarbonyl(methyl)amino]-6-methoxy-naphthalene-1-carboxylic acid



embedded image


To a solution of methyl 4-[tert-butoxycarbonyl(methyl)amino]-6-methoxy-naphthalene-1-carboxylate (1.3 g, 3.76 mmol, 1 eq) in H2O (16 mL) and MeOH (32 mL) was added LiOH·H2O (1.58 g, 37.64 mmol, 10 eq), and the mixture was stirred at 50° C. for 1 hr. The reaction was poured into ˜30 mL ice-water, adjusted to pH=8 with saturated citric acid. The mixture was extracted with EtOAc (3×100 mL), washed with brine (3×200 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound 4-[Tert-butoxycarbonyl(methyl)amino]-6-methoxy-naphthalene-1-carboxylic acid (1 g, crude) as a yellow solid, which was used directly without further purification. LC-MS (ES+, m/z): 276.2 [(M-tBu)+].


Step 7—Tert-butyl N-[7-methoxy-4-(methylcarbamoyl)-1-naphthyl]-N-methyl-carbamate



embedded image


To a solution of 4-[tert-butoxycarbonyl(methyl)amino]-6-methoxy-naphthalene-1-carboxylic acid (0.4 g, 1.21 mmol, 1 eq) and methanamine; hydrochloride (163 mg, 2.41 mmol, 2 eq) in DMF (6 mL) were added TEA (610.8 mg, 6.04 mmol, 840.09 μL, 5 eq) and T3P (1.15 g, 1.81 mmol, 1.08 mL, 50% purity, 1.5 eq). The mixture was stirred at 25° C. for 1 hr. The reaction mixture was quenched by adding 10 mL water and extracted with EtOAc (3×10 mL). The combined organic layers were washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, DCM/MeOH=1/0 to 10:1) to afford the title compound Tert-butyl N-[7-methoxy-4-(methylcarbamoyl)-1-naphthyl]-N-methyl-carbamate (0.8 g, 2.32 mmol, 96.21% yield) as a yellow oil. LC-MS (ES+, m/z): 288.9 [(M-tBu)+].


Step 8—Tert-butyl N-[7-hydroxy-4-(methylcarbamoyl)-1-naphthyl]-N-methyl-carbamate



embedded image


To a solution of tert-butyl N-[7-methoxy-4-(methylcarbamoyl)-1-naphthyl]-N-methyl-carbamate (0.5 g, 1.45 mmol, 1 eq) in DCM (5 mL) was added BBr3 (1.49 g, 5.95 mmol, 573.08 μL, 4.10 eq) at 0° C. The mixture was stirred at 0° C. for 1 hr. LCMS showed that the reaction was complete. To the reaction was added ˜3 mL MeOH at 0° C. Then concentrated under N2. The residue was purified by column chromatography (SiO2, DCM/MeOH=20/1 to 10:1) to afford the title compound Tert-butyl N-[7-hydroxy-4-(methylcarbamoyl)-1-naphthyl]-N-methyl-carbamate (0.35 g, 741.58 μmol, 51.08% yield, 70% purity) as a yellow solid. LC-MS (ES+, m/z): 231.3[(M-tBu)+].


Step 9. [8-(Methylamino)-5-(methylcarbamoyl)-2-naphthyl]trifluoromethanesulfonate



embedded image


To a solution of 6-hydroxy-N-methyl-4-(methylamino) naphthalene-1-carboxamide (0.13 g, 564.57 μmol, 1 eq) in THF (3 mL) were added 1,1,1-trifluoro-N-phenyl-N-(trifluoromethylsulfonyl) methanesulfonamide (403.4 mg, 1.13 mmol, 2 eq) and K2CO3 (390 mg, 2.82 mmol, 5 eq) and the mixture was stirred at 70° C. for 12 hr. LCMS showed that the reaction was complete. The reaction was filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound [8-(Methylamino)-5-(methylcarbamoyl)-2-naphthyl]trifluoromethanesulfonate (0.1 g, 276 μmol, 48.89% yield) as a brown solid. LC-MS (ES+, m/z): 363.2 [(M+H)+]


Step 10-N-methyl-4-(methylamino)-6-[3-(prop-2-enoylamino)phenyl]naphthalene-1-carboxamide



embedded image


To a solution of [8-(methylamino)-5-(methylcarbamoyl)-2-naphthyl]trifluoro methane sulfonate (0.09 g, 248.4 μmol, 1 eq) and N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (101.8 mg, 372.6 μmol, 1.5 eq) in dioxane (2 mL) and H2O (0.5 mL) were added Cs2CO3 (242.8 mg, 745.19 μmol, 3 eq), RuPhos (11.6 mg, 24.84 μmol, 0.1 eq) and RuPhos Pd G3 (2.1 mg, 2.48 μmol, 0.01 eq). Then the mixture was stirred at 100° C. for 1 h under N2. LCMS showed that the reaction was complete. The reaction was diluted with 10 mL EtOAc and the mixture was poured into ˜20 mL saturated EDTA. The mixture was stirred at 25° C. for 1 hand extracted with EtOAc (3×20 mL). The combined organic phase was washed with brine (3×40 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC (FA condition) to afford the title compound N-methyl-4-(methylamino)-6-[3-(prop-2-enoylamino)phenyl]naphthalene-1-carboxamide (0.0115 g, 32 μmol, 12.88% yield, 100.0% purity) as a white solid. LC-MS (ES+, m/z): 360.1 [(M+H)+], 1H NMR (400 MHz, DMSO-d6)=10.28 (s, 1H), 8.56-8.51 (m, 1H), 8.40 (d, J=1.3 Hz, 1H), 8.12 (br d, J=4.6 Hz, 1H), 8.03 (s, 1H), 7.74 (br d, J=8.8 Hz, 2H), 7.57 (d, J=7.9 Hz, 1H), 7.54 (d, J=8.2 Hz, 1H), 7.50-7.43 (m, 1H), 6.93 (br d, J=4.6 Hz, 1H), 6.53-6.45 (m, 1H), 6.42 (d, J=8.2 Hz, 1H), 6.29 (dd, J=2.0, 17.0 Hz, 1H), 5.83-5.74 (m, 1H), 2.91 (d, J=4.6 Hz, 3H), 2.81 (d, J=4.4 Hz, 3H)


Route 8: General Scheme



embedded image


Step 1—Methyl 5-(3-aminophenyl)-1-(2-trimethylsilylethoxymethyl)pyrazolo[3,4-c]pyridine-3-carboxylate



embedded image


To a solution of methyl 5-chloro-1-(2-trimethylsilylethoxymethyl)pyrazolo[3,4-c]pyridine-3-carboxylate (0.8 g, 2.34 mmol, 1 eq) and 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (564 mg, 2.57 mmol, 1.1 eq) in dioxane (8 mL) and H2O (2 mL) were added Cs2CO3 (2.29 g, 7.02 mmol, 3 eq), RuPhos (109.2 mg, 234.01 μmol, 0.1 eq) and RuPhos Pd-Gb (97.9 mg, 117.01 μmol, 0.05 eq) at 25° C. then stirred at 100° C. for 1 h under N2. TLC (PE:EtOAc=1:1, SM Rf=0.54, TM Rf=0.28) showed that the reaction was complete. The reaction was diluted with 10 mL EtOAc. Then the mixture was poured into 50 mL saturated EDTA. The mixture was stirred at 25° C. for 1 h. The mixture was extracted with EtOAc (3×30 mL), washed with brine (3×30 mL), dried over by anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound Methyl 5-(3-aminophenyl)-1-(2-trimethylsilylethoxymethyl)pyrazolo[3,4-c]pyridine-3-carboxylate (0.84 g, 2.11 mmol, 90.07% yield) as a yellow solid.


Step 2—Methyl 5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxy methyl)pyrazolo[3,4-c]pyridine-3-carboxylate



embedded image


To a solution of prop-2-enoyl chloride (122.6 mg, 1.35 mmol, 110.48 μL, 2 eq) in DCM (3 mL) were added TEA (205.7 mg, 2.03 mmol, 282.89 μL, 3 eq) and methyl 5-(3-aminophenyl)-1-(2-trimethylsilylethoxymethyl)pyrazolo[3,4-c]pyridine-3-carboxylate (0.27 g, 677.49 μmol, 1 eq) at 0° C. Then the mixture was stirred at 25° C. for 1 hr. The reaction was diluted with 10 mL DCM and the mixture was poured into ˜10 mL water. Then the mixture was extracted with DCM (3×10 mL), washed with brine (3×10 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1:1) to afford the title compound Methyl 5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxy methyl)pyrazolo[3,4-c]pyridine-3-carboxylate (0.21 g, 464.01 μmol, 68.49% yield) as a yellow oil. LC-MS (ES+, m/z): 453.2 [(M+H)+].


Step 3—5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxymethyl) pyrazolo[3,4-c]pyridine-3-carboxylic acid



embedded image


To a solution of methyl 5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxymethyl) pyrazolo[3,4-c]pyridine-3-carboxylate (0.15 g, 331.44 μmol, 1 eq) in THF (4 mL) and H2O (1 mL) was added LiOH·H2O (139.1 mg, 3.31 mmol, 10 eq) and stirred at 30° C. for 3 hr. The reaction was poured into ˜20 mL ice water then the aqueous phase was adjusted to pH=6 with saturated citric acid. The reaction mixture was extracted with EtOAc (3×30 mL). The combined organic phase was washed with brine (3×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound 5-[3-(prop-2-enoyl amino)phenyl]-1-(2-trimethylsilylethoxymethyl)pyrazolo[3,4-c]pyridine-3-carboxylic acid (0.2 g, crude) as a yellow solid. LC-MS (ES+, m/z): 439.2 [(M+H)+].


Step 4—5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxymethyl)pyrazolo[3,4-c]pyridine-3-carboxamide



embedded image


To a solution of 5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxymethyl)pyrazolo[3,4-c]pyridine-3-carboxylic acid (0.18 g, 410.44 μmol, 1 eq) in DMF (12 mL) were added TEA (207.7 mg, 2.05 mmol, 285.64 μL, 5 eq) and HATU (234.1 mg, 615.66 μmol, 1.5 eq). Then, the mixture was stirred at 25° C. for 10 min. NH3 (3 M in THF, 136.81 μL, 1 eq) was added to the solution at 0° C., then stirred at 0° C. for 10 min. The reaction was poured into ˜10 mL water and extracted with EtOAc (3×10 mL), washed with brine (3×10 mL), dried over by anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=15:1) to afford the title compound 5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxymethyl)pyrazolo[3,4-c]pyridine-3-carboxamide (0.17 g, 388.51 μmol, 94.66% yield) as a yellow solid. LC-MS (ES+, m/z): 438.1 [(M+H)+].


Step 5—5-[3-(prop-2-enoylamino)phenyl]-1H-pyrazolo[3,4-c]pyridine-3-carboxamide



embedded image


To a solution of 5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxymethyl)pyrazolo[3,4-c]pyridine-3-carboxamide (0.18 g, 411.37 μmol, 1 eq) in EtOH (3.6 mL) was added concentrated HCl (1.84 g, 18.63 mmol, 1.8 mL, 37% purity, 45.29 eq) and the mixture was stirred at 50° C. for 3 hr. The reaction was concentrated under N2. The residue was purified by prep-HPLC (FA condition) to afford the title compound 5-[3-(prop-2-enoylamino)phenyl]-1H-pyrazolo[3,4-c]pyridine-3-carboxamide (0.0185 g, 60.2 μmol, 14.63% yield, 100.0% purity) as a white solid. LC-MS (ES+, m/z): 308.0 [(M+H)+], 1H NMR (400 MHz, DMSO-d6): 14.14 (br s, 1H), 10.32 (s, 1H), 9.21 (d, J=1.1 Hz, 1H), 8.51 (d, J=1.1 Hz, 1H), 8.39 (s, 1H), 7.95 (s, 1H), 7.82 (br d, J=6.0 Hz, 2H), 7.56 (br s, 1H), 7.45 (t, J=7.9 Hz, 1H), 6.57-6.41 (m, 1H), 6.36-6.18 (m, 1H), 5.86-5.69 (m, 1H).


Route 9: General Scheme



embedded image


Step 1—2-[(6-chloroimidazo[4,5-c]pyridin-3-yl)methoxy]ethyl-trimethyl-silane



embedded image


To a solution of 6-chloro-3H-imidazo[4,5-c]pyridine (0.13 g, 846.53 μmol, 1 eq) in DMF (2 mL) was added NaH (50.8 mg, 1.27 mmol, 60% purity, 1.5 eq) at 0° C. Then the mixture was stirred at 0° C. for 30 min. Then SEMCl (282.3 mg, 1.69 mmol, 299.65 μL, 2 eq) was added to the solution at 0° C., and stirred at 25° C. for 1 hr. TLC (DCM:MeOH=10:1, SM Rf=0.21, TM Rf=0.40) showed that the reaction was complete. The reaction was poured into ˜20 mL water and extracted with EtOAc (3×10 mL). The combined organic phase was washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound 2-[(6-chloroimidazo[4,5-c]pyridin-3-yl) methoxy]ethyl-trimethyl-silane (0.18 g, 634.19 μmol, 74.92% yield) as a yellow oil.


Step 2—3-[3-(2-trimethylsilylethoxymethyl)imidazo[4,5-c]pyridin-6-yl]aniline



embedded image


To a solution of 2-[(6-chloroimidazo[4,5-c]pyridin-3-yl) methoxy]ethyl-trimethyl-silane (0.18 g, 634.19 μmol, 1 eq) and 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (166.7 mg, 761.02 μmol, 1.2 eq) in dioxane (4 mL) H2O (1 mL) were added Cs2CO3 (619.9 mg, 1.9 mmol, 3 eq) and dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (29.6 mg, 63.42 μmol, 0.1 eq), [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium; dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (26.5 mg, 31.71 μmol, 0.05 eq) at 25° C. The mixture was stirred at 100° C. for 1 hr under N2. The reaction was diluted with ˜10 mL EtOAc and poured into ˜15 mL saturated EDTA. Then the mixture was stirred at 25° C. for 1 h and extracted with EtOAc (3×15 mL). The combined organic phase was washed with brine (3×15 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=15:1 to afford the title compound 3-[3-(2-trimethylsilylethoxymethyl)imidazo[4,5-c]pyridin-6-yl]aniline (0.2 g, 587.38 μmol, 92.62% yield) as a yellow oil. LC-MS (ES+, m/z): 341.1 [(M+H)+].


Step 3—N-[3-[3-(2-trimethylsilylethoxymethyl)imidazo[4,5-c]pyridin-6-yl]phenyl]prop-2-enamide



embedded image


To a solution of 3-[3-(2-trimethylsilylethoxymethyl)imidazo[4,5-c]pyridin-6-yl]aniline (0.15 g, 440.54 μmol, 1 eq) in DCM (3 mL) was added TEA (133.7 mg, 1.32 mmol, 183.95 μL, 3 eq). Then, prop-2-enoyl chloride (79.7 mg, 881.07 μmol, 71.84 μL, 2 eq) in 0.5 mL DCM was added to the solution at 0° C. The mixture was stirred at 25° C. for 1 hr. The reaction was poured into ˜10 mL water and extracted with DCM (3×10 mL). The combined organic phase was washed with brine (3×10 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=15:1) to afford the title compound N-[3-[3-(2-trimethylsilylethoxymethyl) imidazo[4,5-c]pyridin-6-yl]phenyl]prop-2-enamide (0.13 g, 329.5 μmol, 74.79% yield) as a yellow oil. LC-MS (ES+, m/z): 395.2 [(M+H)+].


Step 4—N-[3-(3H-imidazo[4,5-c]pyridin-6-yl)phenyl]prop-2-enamide



embedded image


To a solution of N-[3-[3-(2-trimethylsilylethoxymethyl)imidazo[4,5-c]pyridin-6-yl]phenyl]prop-2-enamide (0.09 g, 228.11 μmol, 1 eq) in EtOH (1.2 mL) was added concentrated HCl (612 mg, 6.21 mmol, 0.6 mL, 37% purity, 27.23 eq) and the mixture was stirred at 50° C. for 1 hr. The reaction was concentrated under N2. The residue was purified by prep-HPLC (LA condition) to afford the title compound N-[3-(3H-imidazo[4,5-c]pyridin-6-yl)phenyl]prop-2-enamide (0.0209 g, 77.03 μmol, 33.77% yield, 97.4% purity) as a white solid. LC-MS (ES+, m/z): 265.0 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) Shift=12.91 (br s, 1H), 10.27 (s, 1H), 9.01 (s, 1H), 8.51-8.33 (m, 2H), 8.13 (s, 1H), 8.04 (br s, 1H), 7.85-7.71 (m, 2H), 7.43 (t, J=7.8 Hz, 1H), 6.55-6.41 (m, 1H), 6.29 (dd, J=2.0, 17.1 Hz, 1H), 5.84-5.72 (m, 1H).


Route 10: General Scheme



embedded image


Step 1—5-chloro-3-iodo-1H-pyrazolo[4,3-b]pyridine



embedded image


To a solution of 5-chloro-1H-pyrazolo[4,3-b]pyridine (1.5 g, 9.77 mmol, 1 eq) in DMF (15 mL) was added NIS (4.4 g, 19.54 mmol, 2 eq) and the mixture was stirred at 25° C. for 12 hr. TLC (PE:EtOAc=1:1, SM Rf=0.40, TM Rf=0.52) showed that the reaction was complete. The reaction was poured into ˜50 mL water and extracted with EtOAc (3×50 mL). The combined organic phase was washed with brine (3×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound 5-chloro-3-iodo-1H-pyrazolo[4,3-b]pyridine (2.4 g, 8.59 mmol, 87.92% yield) as a white solid. 1H NMR (400 MHz, DMSO-d6) Shift=13.98 (s, 1H), 8.13 (d, J=8.8 Hz, 1H), 7.50 (d, J=8.8 Hz, 1H).


Step 2—2-[(5-chloro-3-iodo-pyrazolo[4,3-b]pyridin-1-yl)methoxy]ethyl-trimethyl-silane



embedded image


To a solution of 5-chloro-3-iodo-1H-pyrazolo[4,3-b]pyridine (2.1 g, 7.51 mmol, 1 eq) in THF (20 mL) was added NaH (450.9 mg, 11.27 mmol, 60% purity, 1.5 eq) at 0° C. The mixture was stirred at 0° C. for 0.5 h, SEMCl (1.5 g, 9.02 mmol, 1.60 mL, 1.2 eq) was added to the solution at 0° C. and stirred at 25° C. for 0.5 hr. The reaction was poured into ˜25 mL water and extracted with EtOAc (3×20 mL). The combined organic phase was washed with brine (3×20 mL), dried over by anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound 2-[(5-chloro-3-iodo-pyrazolo[4,3-b]pyridin-1-yl)methoxy]ethyl-trimethyl-silane (2.5 g, 6.1 mmol, 81.20% yield) as a white solid. LC-MS (ES+, m/z): 409.9 [(M+H)+].


Step 3—Methyl 5-chloro-1-(2-trimethylsilylethoxymethyl) pyrazolo[4,3-b]pyridine-3-carboxylate



embedded image


To a solution of 2-[(5-chloro-3-iodo-pyrazolo[4,3-b]pyridin-1-yl)methoxy]ethyl-trimethyl-silane (0.5 g, 1.22 mmol, 1 eq) in DMF (4 mL) and MeOH (1 mL) was added TEA (370.5 mg, 3.66 mmol, 509.56 μL, 3 eq) and Pd(dppf)Cl2 (89.3 mg, 122.03 μmol, 0.1 eq). The mixture was stirred at 60° C. under 15 psi CO for 8 h. The reaction was diluted with 10 mL EtOAc and poured into 20 mL water and extracted with EtOAc (3×10 mL). The combined organic phase was washed with brine (3×20 mL), dried over by anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound Methyl 5-chloro-1-(2-trimethyl silyl ethoxy methyl) pyrazolo[4,3-b]pyridine-3-carboxylate (0.28 g, 819.04 μmol, 67.12% yield) as a white solid. LC-MS (ES+, m/z): 342.1 [(M+H)+].


Step 4—Methyl 5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxymethyl)pyrazolo[4,3-b]pyridine-3-carboxylate



embedded image


To a solution of methyl 5-chloro-1-(2-trimethylsilylethoxy methyl)pyrazolo[4,3-b]pyridine-3-carboxylate (0.25 g, 731.28 μmol, 1 eq) and N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (199.7 mg, 731.28 μmol, 1 eq) in H2O (1 mL) and dioxane (4 mL) was added Na2CO3 (232.5 mg, 2.19 mmol, 3 eq) and RuPhos (34.1 mg, 73.13 μmol, 0.1 eq) and RuPhos Pd G3 (30.6 mg, 36.56 μmol, 0.05 eq) at 25° C. The reaction was stirred at 100° C. for 1 hr under N2. TLC (PE:EtOAc=1:1, SM Rf=0.44, TM Rf=0.17) showed that the reaction was complete. The reaction was diluted with 10 mL EtOAc and poured into ˜15 mL saturated EDTA and stirred at 25° C. for 1 hr. Then the mixture was extracted with EtOAc (3×15 mL), washed with brine (3×15 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 1/1) to afford the title compound Methyl 5-[3-(prop-2-enoyl amino)phenyl]-1-(2-trimethylsilylethoxymethyl)pyrazolo[4,3-b]pyridine-3-carboxylate (0.52 g, 1.15 mmol, 78.56% yield) as a yellow oil. LC-MS (ES+, m/z): 453.2 [(M+H)+].


Step 5—5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxymethyl)pyrazolo[4,3-b]pyridine-3-carboxylic acid



embedded image


To a solution of methyl 5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilyl ethoxymethyl) pyrazolo[4,3-b]pyridine-3-carboxylate (0.27 g, 596.58 μmol, 1 eq) in THF (4 mL) and H2O (1 mL) was added LiOH·H2O (250.4 mg, 5.97 mmol, 10 eq) and the mixture was stirred at 25° C. for 3 hr. The reaction was poured into ˜20 mL ice water then adjusted to pH=6 with saturated citric acid. Then the mixture was extracted with EtOAc (3×30 mL). The combined organic phase was washed with brine (3×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound 5-[3-(prop-2-enoyl amino)phenyl]-1-(2-trimethylsilylethoxymethyl)pyrazolo[4,3-b]pyridine-3-carboxylic acid (0.22 g, crude) as a yellow solid. LC-MS (ES+, m/z): 439.1 [(M+H)+].


Step 6—5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxymethyl) pyrazolo[4,3-b]pyridine-3-carboxamide



embedded image


To a solution of 5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxymethyl)pyrazolo[4,3-b]pyridine-3-carboxylic acid (0.16 g, 364.84 μmol, 1 eq) in DMF (8 mL) was added HATU (208.1 mg, 547.26 μmol, 1.5 eq) and TEA (184.6 mg, 1.82 mmol, 253.90 μL, 5 eq). Then stirred at 25° C. for 10 min. NH3 (3 M in THF, 10 mL, 82.23 eq) was added to the solution at 0° C., then stirred at 0° C. for 10 min. LCMS showed that the reaction completed. The reaction was diluted with 10 mL EtOAc and poured into ˜15 mL water. Then the mixture was extracted with EtOAc (3×15 mL), washed with brine (3×15 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound 5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxymethyl)pyrazolo[4,3-b]pyridine-3-carboxamide (0.12 g, 274.24 μmol, 75.17% yield) as a yellow oil. LC-MS (ES+, m/z): 438.2 [(M+H)+].


Step 7—5-[3-(prop-2-enoylamino)phenyl]-1H-pyrazolo[4,3-b]pyridine-3-carboxamide



embedded image


To a solution of 5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxymethyl) pyrazolo[4,3-b]pyridine-3-carboxamide (0.1 g, 228.54 μmol, 1 eq) in EtOH (4 mL) was added concentrated HCl (1.02 g, 10.35 mmol, 1 mL, 37% purity, 45.29 eq) and stirred at 50° C. for 3 hr. The reaction was poured into ˜10 mL saturated NaHCO3 to adjust the pH to 7. Then the mixture was extracted with EtOAc (3×15 mL), washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford the title compound 5-[3-(prop-2-enoylamino)phenyl]-1H-pyrazolo[4,3-b]pyridine-3-carboxamide (20.40 mg, 66.38 μmol, 29.05% yield, 100.0% purity) as a white solid. LC-MS (ES+, m/z): 308.0 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) Shift=12.83 (br s, 1H), 10.36 (s, 1H), 8.44 (s, 1H), 8.26 (d, J=8.8 Hz, 2H), 7.99 (d, J=8.9 Hz, 1H), 7.95 (br s, 1H), 7.84 (dd, J=1.4, 8.0 Hz, 2H), 7.50 (t, J=7.8 Hz, 1H), 6.59-6.43 (m, 1H), 6.36-6.21 (m, 1H), 5.88-5.72 (m, 1H)


Route 10: General Scheme



embedded image


Step 1—2-[(5-chloro-3-vinyl-pyrazolo[3,4-c]pyridin-1-yl) methoxy]ethyl-trimethyl-silane



embedded image


To a solution of 2-[(5-chloro-3-iodo-pyrazolo[3,4-c]pyridin-1-yl)methoxy]ethyl-trimethyl-silane (0.5 g, 1.22 mmol, 1 eq) and tributyl(vinyl)stannane (425.7 mg, 1.34 mmol, 390.51 μL, 1.1 eq) in toluene (5 mL) was added LiCl (134.5 mg, 3.17 mmol, 64.98 μL, 2.6 eq) and dichloropalladium; triphenylphosphane (85.7 mg, 122.03 μmol, 0.1 eq) at 25° C. under N2. Then the mixture was stirred at 100° C. for 1 hr. The reaction was diluted with 10 mL EtOAc and poured into ˜20 mL saturated EDTA. The mixture was stirred at 25° C. for 1 h. The aqueous layer was extracted with EtOAc (3×10 mL), and the combined organic layer was dried over by anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound 2-[(5-chloro-3-vinyl-pyrazolo[3,4-c]pyridin-1-yl) methoxy]ethyl-trimethyl-silane (0.368 g, 1.19 mmol, 97.32% yield) as a yellow oil. LC-MS (ES+, m/z): 310.1 [(M+H)+].


Step 2—2-[(5-chloro-3-ethyl-pyrazolo[3,4-c]pyridin-1-yl)methoxy]ethyl-trimethyl-silane



embedded image


To a solution of 2-[(5-chloro-3-vinyl-pyrazolo[3,4-c]pyridin-1-yl)methoxy]ethyl-trimethyl-silane (0.2 g, 645.44 μmol, 1 eq) in MeOH (2 mL) and CHCl3 (2 mL) was added Pd/C (200 mg, 187.93 μmol, 10% purity, 2.91e−1 eq) at 25° C. Then the mixture was stirred at 25° C. for 3 hr under H2 15 psi. The reaction was filtered and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=4:1) to afford the title compound 2-[(5-chloro-3-ethyl-pyrazolo[3,4-c]pyridin-1-yl)methoxy]ethyl-trimethyl-silane (0.18 g, 577.14 μmol, 89.42% yield) as a yellow oil. LC-MS (ES+, m/z): 312.0 [(M+H)+].


Step 3—3-[3-ethyl-1-(2-trimethylsilylethoxymethyl) pyrazolo[3,4-c]pyridin-5-yl]aniline



embedded image


To the solution of 2-[(5-chloro-3-ethyl-pyrazolo[3,4-c]pyridin-1-yl) methoxy]ethyl-trimethyl-silane (0.21 g, 673.33 μmol, 1 eq) in the mixed solvent of dioxane (4 mL) and H2O (1 mL) were successively added 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (177 mg, 808 μmol, 1.2 eq), Cs2CO3 (658.2 mg, 2.02 mmol, 3 eq), RuPhos (31.4 mg, 67.33 μmol, 0.1 eq) and RuPhos Pd G3 (28.2 mg, 33.67 μmol, 0.05 eq) then degassed with N2 3 times. The resulting reaction mixture was heated to 100° C. and stirred at 100° C. for 1 h under N2. TLC (PE:EtOAc=1:1, SM Rf=0.46, TM Rf=0.31) showed that the reaction was complete. The reaction was poured into ˜15 mL saturated EDTA and stirred at 25° C. for 1 h. The mixture was extracted with EtOAc (3×10 mL), washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1:1) to afford the title compound 3-[3-ethyl-1-(2-trimethylsilyl ethoxymethyl) pyrazolo[3,4-c]pyridin-5-yl]aniline (0.2 g, 542.67 μmol, 80.59% yield) as a brown oil.


Step 4—N-[3-[3-ethyl-1-(2-trimethylsilylethoxymethyl)pyrazolo[3,4-c]pyridin-5-yl]phenyl]prop-2-enamide



embedded image


To a solution of 3-[3-ethyl-1-(2-trimethylsilyl ethoxymethyl)pyrazolo[3,4-c]pyridin-5-yl]aniline (0.2 g, 542.67 μmol, 1 eq) in DCM (4 mL) was added TEA (164.7 mg, 1.63 mmol, 226.60 μL, 3 eq), prop-2-enoyl chloride (98.2 mg, 1.09 mmol, 88.50 μL, 2 eq) was added to the solution at 0° C. Then stirred at 0° C. for 20 min. The reaction was poured into ˜20 mL water then extracted with DCM (3×10 mL), washed with brine (3×10 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1:1) to afford the title compound N-[3-[3-ethyl-1-(2-trimethylsilylethoxymethyl)pyrazolo[3,4-c]pyridin-5-yl]phenyl]prop-2-enamide (0.2 g, 473.27 μmol, 87.21% yield) as a yellow oil. LC-MS (ES+, m/z): 423.2 [(M+H)+].


Step 5—N-[3-(3-ethyl-1H-pyrazolo[3,4-c]pyridin-5-yl)phenyl]prop-2-enamide



embedded image


To a solution of N-[3-[3-ethyl-1-(2-trimethylsilylethoxymethyl)pyrazolo[3,4-c]pyridin-5-yl]phenyl]prop-2-enamide (0.16 g, 378.61 μmol, 1 eq) in EtOH (4 mL) was added concentrated HCl (2.04 g, 20.7 mmol, 2 mL, 37% purity, 54.68 eq) and the mixture was stirred at 50° C. for 3 hr. The reaction was poured into ˜20 mL saturated NaHCO3 to adjust the pH to 7. The mixture was extracted with EtOAc (3×10 mL), washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford the title compound N-[3-(3-ethyl-1H-pyrazolo[3,4-c]pyridin-5-yl)phenyl]prop-2-enamide (0.0316 g, 108.1 μmol, 28.55% yield, 100.0% purity) as a white solid. LC-MS (ES+, m/z): 293.1 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) Shift=10.25 (s, 1H), 9.04 (d, J=1.6 Hz, 1H), 8.40 (t, J=1.8 Hz, 1H), 8.23 (d, J=1.2 Hz, 1H), 7.87-7.80 (m, 1H), 7.77 (dd, J=1.2, 8.0 Hz, 1H), 7.42 (t, J=8.0 Hz, 1H), 6.57-6.40 (m, 1H), 6.29 (dd, J=2.0, 17.0 Hz, 1H), 5.88-5.64 (m, 1H), 3.32 (s, 11H), 3.03 (q, J=7.6 Hz, 2H), 1.36 (t, J=7.6 Hz, 3H).


Route 11: General Scheme



embedded image


Step 1—5-tert-butyl 5-bromo-3-(tert-butoxycarbonylamino) indazole-1-carboxylate



embedded image


To a solution of 5-bromo-1H-indazol-3-amine (1 g, 4.72 mmol, 1 eq) in (Boc)2O (9.5 g, 43.53 mmol, 10 mL, 9.23 eq) and the mixture was stirred at 100° C. for 12 hr. TLC (PE:EtOAc=1:1, SM Rf=0.27, TM Rf=0.76) showed that the reaction was complete. The reaction was concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound tert-butyl 5-bromo-3-(tert-butoxycarbonylamino) indazole-1-carboxylate (0.6 g, 1.46 mmol, 30.86% yield) as a colorless solid.


Step 2—Tert-butyl 5-bromo-3-[tert-butoxycarbonyl(methyl)amino]indazole-1-carboxylate



embedded image


To a solution of tert-butyl 5-bromo-3-(tert-butoxycarbonylamino) indazole-1-carboxylate (0.4 g, 970.22 μmol, 1 eq) in DMF (4 mL) was added Cs2CO3 (632.2 mg, 1.94 mmol, 2 eq). Then, MeI (206.6 mg, 1.46 mmol, 90.60 μL, 1.5 eq) was added to the solution and stirred at 25° C. for 1 hr. TLC (PE:EtOAc=4:1, SM Rf=0.21, TM Rf=0.41) showed that the reaction was complete. The reaction was poured into 10 mL water and extracted with EtOAc (3×15 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound Tert-butyl 5-bromo-3-[tert-butoxycarbonyl(methyl)amino]indazole-1-carboxylate (0.338 g, 792.86 μmol, 81.72% yield) as a colorless solid.


Step 3—Tert-butyl 3-[tert-butoxycarbonyl(methyl)amino]-5-[3-(prop-2-enoylamino)phenyl]indazole-1-carboxylate



embedded image


To a solution of tert-butyl 5-bromo-3-[tert-butoxycarbonyl(methyl)amino]indazole-1-carboxylate (0.2 g, 469.15 μmol, 1 eq) and N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (384.4 mg, 1.41 mmol, 3 eq) in dioxane (6 mL) and H2O (1.5 mL) were added Cs2CO3 (458.6 mg, 1.41 mmol, 3 eq), RuPhos (21.9 mg, 46.91 μmol, 0.1 eq) and RuPhos Pd G3 (19.6 mg, 23.46 μmol, 0.05 eq). Then stirred at 100° C. for 1 hr under N2. LCMS showed that the reaction was complete. The reaction was poured into ˜15 mL saturated EDTA and stirred at 25° C. for 1 h. The mixture was extracted with EtOAc (3×15 mL), washed with brine (3×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1:1) to afford the title compound Tert-butyl 3-[tert-butoxycarbonyl(methyl)amino]-5-[3-(prop-2-enoylamino)phenyl]indazole-1-carboxylate (0.35 g, 355.28 μmol, 75.73% yield, 50% purity) as a yellow oil. LC-MS (ES+, m/z): 493.3 [(M+H)+].


Step 4—N-[3-[3-(methylamino)-1H-indazol-5-yl]phenyl]prop-2-enamide



embedded image


To a solution of tert-butyl 3-[tert-butoxycarbonyl(methyl)amino]-5-[3-(prop-2-enoylamino)phenyl]indazole-1-carboxylate (0.3 g, 609.06 μmol, 1 eq) in DCM (3 mL) was added TFA (1.54 g, 13.51 mmol, 1 mL, 22.18 eq) and stirred at 25° C. for 1 hr. The reaction was poured into ˜10 mL ice water and the mixture was adjusted to pH=8 with saturated Na2CO3. The mixture was extracted with DCM (3×10 mL), washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by prep-HPLC (FA condition) to afford the title compound N-[3-[3-(methylamino)-1H-indazol-5-yl]phenyl]prop-2-enamide (0.0096 g, 32.84 μmol, 5.39% yield, 100.0% purity) as a white solid. LC-MS (ES+, m/z): 293.0 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) δ=11.47 (br s, 1H), 10.22 (s, 1H), 8.03 (s, 1H), 7.95 (s, 1H), 7.56 (br d, J=7.6 Hz, 1H), 7.52 (br d, J=8.3 Hz, 1H), 7.45-7.37 (m, 1H), 7.36-7.27 (m, 2H), 6.52-6.43 (m, 1H), 6.33-6.25 (m, 1H), 6.06 (br d, J=4.8 Hz, 1H), 5.78 (br d, J=10.4 Hz, 1H), 2.88 (br d, J=4.8 Hz, 3H).


Route 12: General Scheme



embedded image


Step 1—tert-butyl 5-bromo-3-(tert-butoxycarbonylamino)indazole-1-carboxylate



embedded image


The solution of 5-bromo-1H-indazol-3-amine (0.3 g, 1.41 mmol, 1 eq) in Boc2O (1.9 g, 8.71 mmol, 2 mL, 6.15 eq) was heated to 110° C. and stirred at 110° C. for 1 hr. LCMS showed that the reaction was complete. The reaction mixture was concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=8/1 to 2/1) to afford the title compound tert-butyl 5-bromo-3-(tert-butoxy carbonylamino)indazole-1-carboxylate (0.21 g, 509.37 μmol, 36.00% yield) as a yellow oil. LC-MS (ES+, m/z): 412.1 [(M+H)+].


Step 2—tert-butyl 3-(tert-butoxycarbonylamino)-5-[3-(prop-2-enoylamino)phenyl]indazole-1-carboxylate



embedded image


To a solution of N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-en amide (0.15 g, 549.18 μmol, 1 eq) in dioxane (4 mL) and H2O (1 mL) were added tert-butyl 5-bromo-3-(tert-butoxycarbonylamino)indazole-1-carboxylate (181.1 mg, 439.34 μmol, 0.8 eq), Na2CO3 (116.4 mg, 1.1 mmol, 2 eq), RuPhos (25.6 mg, 54.92 μmol, 0.1 eq) and [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (23 mg, 27.46 μmol, 0.05 eq). The reaction mixture was stirred at 80° C. for 1 hr under N2. TLC (PE:EtOAc=1:1, SM Rf=0.56, Rf=0.32) showed that the reaction was complete. The reaction mixture was poured into saturated EDTA (50 mL) and EtOAc (50 mL) was added. The solution was stirred at 25° C. for 1 h and extracted with EtOAc (3×50 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1:1) to afford the title compound tert-butyl 3-(tert-butoxycarbonylamino)-5-[3-(prop-2-enoylamino)phenyl]indazole-1-carboxylate (0.15 g, 313.45 μmol, 57.08% yield) as a yellow oil.


Step 3—N-[3-(3-amino-1H-indazol-5-yl)phenyl]prop-2-enamide



embedded image


To a solution of tert-butyl 3-(tert-butoxycarbonylamino)-5-[3-(prop-2-enoylamino)phenyl]indazole-1-carboxylate (0.12 g, 250.76 μmol, 1 eq) in DCM (2 mL) was added TFA (770 mg, 6.75 mmol, 0.5 mL, 26.93 eq). The reaction mixture was stirred at 15° C. for 1 h. LCMS showed that the reaction was complete. The reaction mixture was poured into 50 mL H2O and the pH was adjusted to 7 with saturated NaHCO3. The mixture was extracted with EtOAc (3×50 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC (PA condition) to afford the title compound N-[3-(3-amino-1H-indazol-5-yl)phenyl]prop-2-enamide (16.3 mg, 58.57 μmol, 23.36% yield, 100.0% purity) as a white solid. LC-MS (ES+, m/z): 279.1 [(M+H)+]1H NMR (400 MHz, DMSO-d6) δ=11.49 (s, 1H), 10.21 (s, 1H), 7.96-8.04 (m, 2H), 7.58 (br d, 7=7.70 Hz, 1H), 7.47-7.54 (m, 1H), 7.29-7.44 (m, 3H), 6.47 (dd, J=16.98, 10.00 Hz, 1H), 6.24-6.34 (m, 1H), 5.77 (dd, J=10.04, 1.96 Hz, 1H), 5.42 (br s, 2H).


Route 13: General Scheme



embedded image


embedded image


Step 1—ethyl 2-(5-bromo-2-formyl-anilino)-2-oxo-acetate



embedded image


To a solution of 2-amino-4-bromo-benzaldehyde (2 g, 1 mmol, 1 eq) in DCM (20 mL) was added pyridine (2.37 g, 3 mmol, 2.42 mL, 3 eq) and ethyl 2-chloro-2-oxo-acetate (1.77 g, 13 mmol, 1.45 mL, 1.3 eq) at 0° C. The reaction mixture was stirred at 15° C. for 1 h. TLC (PE:EtOAc=4:1, SM Rf=0.41, TM Rf=0.11) showed that the reaction was complete. The reaction mixture was poured into 100 mL H2O, extracted with DCM (3×100 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound ethyl 2-(5-bromo-2-formyl-anilino)-2-oxo-acetate (3 g, crude) as a white solid, which was used for the next step directly without further purification.


Step 2—ethyl 7-bromoquinazoline-2-carboxylate



embedded image


To a solution of ethyl 2-(5-bromo-2-formyl-anilino)-2-oxo-acetate (3 g, 1 mmol, 1 eq) in AcOH (90 mL) was added CH3COONH4 (7.71 g, 99.97 mmol, 10 eq). The reaction mixture was stirred at 115° C. for 1 h. TLC (PE:EtOAc=1:1, SM Rf=0.50, TM Rf=0.22) showed that the reaction was complete. The reaction mixture was poured into 100 mL H2O. The mixture was adjusted to pH=7 with solid NaOH and extracted with DCM (3×100 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound ethyl 7-bromoquinazoline-2-carboxylate (2.7 g, crude) as a white solid, which was used for the next step directly without further purification.


Step 3—ethyl 7-[3-(prop-2-enoylamino)phenyl]quinazoline-2-carboxylate



embedded image


To a solution of N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-en amide (0.68 g, 2.49 mmol, 1 eq) in dioxane (8 mL) and H2O (2 mL) were added ethyl 7-bromoquinazoline-2-carboxylate (699.8 mg, 2.49 mmol, 1 eq), Cs2CO3 (1.62 g, 4.98 mmol, 2 eq), RuPhos (116.2 mg, 248.96 μmol, 0.1 eq) and [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (104.1 mg, 124.48 μmol, 0.05 eq). The reaction mixture was stirred at 80° C. for 1 hr under N2. LCMS showed that the reaction was complete. The reaction mixture was poured into saturated EDTA (50 mL) and EtOAc (50 mL) was added. The solution was stirred at 25° C. for 1 h, extracted with EtOAc (3×100 mL). The combined organic layer was washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue washed with EtOAc (5 mL) to afford the title compound ethyl 7-[3-(prop-2-enoylamino)phenyl]quinazoline-2-carboxylate (0.7 g, 2.02 mmol, 80.94% yield) as a white solid. LC-MS (ES+, m/z): 348.1 [(M+H)+].


Step 4—7-[3-(prop-2-enoylamino)phenyl]quinazoline-2-carboxylic acid



embedded image


To a solution of ethyl 7-[3-(prop-2-enoylamino)phenyl]quinazoline-2-carboxylate (0.3 g, 863.64 μmol, 1 eq) in MeOH (8 mL) and H2O (2 mL) was added LiOH·H2O (108.7 mg, 2.59 mmol, 3 eq). The reaction mixture was stirred at 15° C. for 1 h. TLC (DCM:MeOH=10:1) showed that the reaction was complete. The reaction mixture was concentrated in vacuo to afford the title compound 7-[3-(prop-2-enoylamino)phenyl]quinazoline-2-carboxylic acid (0.35 g, crude) as a white solid which was used for the next step directly without purification.


Step 5—7-(3-acrylamidophenyl)-N—R-quinazoline-2-carboxamide



embedded image


embedded image


To a solution of 7-[3-(prop-2-enoylamino)phenyl]quinazoline-2-carboxylic acid (0.12 g, 375.81 μmol, 1 eq) in DMF (4 mL) were added acetic acid;ammonia (57.9 mg, 751.61 μmol, 2 eq) and TEA (190.1 mg, 1.88 mmol, 261.54 μL, 5 eq). Then, T3P (358.7 mg, 563.71 μmol, 335.26 μL, 50% purity, 1.5 eq) was added. The reaction mixture was stirred at 15° C. for 1 h. LCMS showed that the reaction was complete. The reaction mixture was poured into 50 mL H2O, extracted with EtOAc (3×50 mL). The combined organic layer was washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC (FA condition) to afford the title compound 7-[3-(prop-2-enoylamino)phenyl]quinazoline-2-carboxamide (10 mg, 30.75 μmol, 8.18% yield, 97.9% purity) as a white solid. 319.1 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) δ=10.38 (s, 1H), 9.76 (s, 1H), 8.30-8.41 (m, 4H), 8.17 (dd, J=8.58, 1.68 Hz, 1H), 7.90 (br s, 1H), 7.71 (d, J=8.00 Hz, 1H), 7.64 (d, J=8.14 Hz, 1H), 7.54 (t, J=7.88 Hz, 1H), 6.49 (dd, J=16.96, 10.08 Hz, 1H), 6.31 (dd, J=17.00, 1.88 Hz, 1H), 5.79-5.83 (m, 1H).


Route 14: General Scheme



embedded image


Step 1—2-[(5-chloro-3-methyl-pyrazolo[4,3-b]pyridin-1-yl) methoxy]ethyl-trimethyl-silane



embedded image


To a solution of 5-chloro-3-methyl-1H-pyrazolo[4,3-b]pyridine (0.3 g, 1.79 mmol, 1 eq) in THF (3 mL), NaH (107.4 mg, 2.69 mmol, 60% purity, 1.5 eq) was added to the solution at 0° C. Then the mixture was stirred at 0° C. for 0.5 h. SEMCl (447.7 mg, 2.69 mmol, 475.21 μL, 1.5 eq) was added to the solution at 0° C. Then stirred at 25° C. for 1 h. TLC (PE:EtOAc=4:1, SM Rf=0.43, TM Rf=0.65) showed that the reaction was complete. The reaction mixture was poured into ˜10 mL saturated NH4Cl. The mixture was extracted with EtOAc (3×10 mL), washed with brine (3×15 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound 2-[(5-chloro-3-methyl-pyrazolo[4,3-b]pyridin-1-yl) methoxy]ethyl-trimethyl-silane (0.5 g, 1.68 mmol, 93.78% yield) as a colorless oil.


Step 2—N-[3-[3-methyl-1-(2-trimethylsilylethoxymethyl) pyrazolo[4,3-b]pyridin-5-yl]phenyl]prop-2-enamide



embedded image


To a solution of 2-[(5-chloro-3-methyl-pyrazolo[4,3-b]pyridin-1-yl) methoxy]ethyl-trimethyl-silane (0.2 g, 671.47 μmol, 1 eq) and N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (183.4 mg, 671.47 μmol, 1 eq) in dioxane (2 mL) and H2O (0.5 mL) were added Cs2CO3 (656.3 mg, 2.01 mmol, 3 eq), RuPhos (31.3 mg, 67.15 μmol, 0.1 eq) and RuPhos Pd G3 (28.1 mg, 33.57 μmol, 0.05 eq). The mixture was stirred at 100° C. for 1 hr under N2. The reaction was poured into ˜15 mL saturated EDTA and stirred at 25° C. for 1 h. The mixture was extracted with EtOAc (3×10 mL), washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1:1) to afford the title compound N-[3-[3-methyl-1-(2-trimethyl silylethoxy methyl) pyrazolo[4,3-b]pyridin-5-yl]phenyl]prop-2-enamide (0.25 g, 611.89 μmol, 91.13% yield) as a yellow oil. LC-MS (ES+, m/z): 409.2 [(M+H)+].


Step 3—N-[3-(3-methyl-1H-pyrazolo[4,3-b]pyridin-5-yl)phenyl]prop-2-enamide



embedded image


To a solution of N-[3-[3-methyl-1-(2-trimethylsilylethoxymethyl) pyrazolo[4,3-b]pyridin-5-yl]phenyl]prop-2-enamide (0.15 g, 367.14 μmol, 1 eq) in EtOH (2 mL) was added concentrated HCl (1.02 g, 10.35 mmol, 1 mL, 37% purity, 28.19 eq), and the mixture was stirred at 50° C. for 4 hr. The reaction was poured into ˜10 mL ice water and saturated NaHCO3 was added to adjust the pH to 7. The mixture was extracted with EtOAc (3×10 mL), washed with brine (3×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford the title compound N-[3-(3-methyl-1H-pyrazolo[4,3-b]pyridin-5-yl)phenyl]prop-2-enamide (0.0156 g, 56.05 μmol, 15.27% yield, 100% purity) as a white solid. LC-MS (ES+, m/z): 279.0 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) Shift=12.94 (br s, 1H), 10.32 (s, 1H), 8.41-8.35 (m, 1H), 8.02 (d, J=8.8 Hz, 1H), 7.87 (d, J=8.9 Hz, 1H), 7.86-7.77 (m, 2H), 7.45 (t, J=7.9 Hz, 1H), 6.56-6.43 (m, 1H), 6.29 (dd, J=2.0, 17.0 Hz, 1H), 5.84-5.71 (m, 1H), 2.59 (s, 3H).


Route 15: General Scheme



embedded image


Step 1—2-[(5-bromo-3-methyl-pyrazolo[3,4-b]pyridin-1-yl) methoxy]ethyl-trimethyl-silane



embedded image


To a solution of 5-bromo-3-methyl-1H-pyrazolo[3,4-b]pyridine (0.3 g, 1.41 mmol, 1 eq) in THF (3 mL) was added NaH (84.9 mg, 2.12 mmol, 60% purity, 1.5 eq) at 0° C. under N2. Then the mixture was stirred at 0° C. for 0.5 h. SEMCl (283.1 mg, 1.7 mmol, 300.48 μL, 1.2 eq) was added to the solution at 0° C. then stirred at 25° C. for 1 hr. LCMS showed that the reaction was complete. The reaction was poured into ˜15 mL saturated NH4Cl and extracted with EtOAc (3×10 mL), washed with brine (3×10 mL), dried over by anhydrous Na2SO4, filtered and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=4:1) to afford the title compound 2-[(5-bromo-3-methyl-pyrazolo[3,4-b]pyridin-1-yl) methoxy]ethyl-trimethyl-silane (0.15 g, 438.2 μmol, 30.97% yield) as a white solid. LC-MS (ES+, m/z): 342.1/344.1 [(M+H)+].


Step 2—N-[3-[3-methyl-1-(2-trimethylsilylethoxymethyl)pyrazolo[3,4-b]pyridin-5-yl]phenyl]prop-2-enamide



embedded image


To a solution of 2-[(5-bromo-3-methyl-pyrazolo[3,4-b]pyridin-1-yl) methoxy]ethyl-trimethyl-silane (0.08 g, 233.71 μmol, 1 eq) and N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (76.6 mg, 280.45 μmol, 1.2 eq) in dioxane (2 mL) and H2O (0.5 mL) were added Cs2CO3 (228.4 mg, 701.13 μmol, 3 eq), RuPhos (10.9 mg, 23.37 μmol, 0.1 eq) and RuPhos Pd G3 (19.6 mg, 23.37 μmol, 0.1 eq) at 25° C. The mixture was stirred at 100° C. for 1 h under N2. TLC (PE:EtOAc=1:1, SM Rf=0.49, TM Rf=0.01) showed that the reaction was complete. The reaction was poured into ˜15 mL saturated EDTA and stirred at 25° C. for 1 h. The mixture was extracted with EtOAc (3×10 mL), washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1:1) to afford the title compound N-[3-[3-methyl-1-(2-trimethylsilylethoxymethyl) pyrazolo[3,4-b]pyridin-5-yl]phenyl]prop-2-enamide (0.08 g, 195.81 μmol, 83.78% yield) as a brown oil.


Step 3—N-[3-(3-methyl-1H-pyrazolo[3,4-b]pyridin-5-yl)phenyl]prop-2-enamide



embedded image


To a solution of N-[3-[3-methyl-1-(2-trimethylsilylethoxymethyl) pyrazolo[3,4-b]pyridin-5-yl]phenyl]prop-2-enamide (0.1 g, 244.76 μmol, 1 eq) in EtOH (4 mL) was added concentrated HCl (2.04 g, 20.7 mmol, 2 mL, 37% purity, 84.58 eq) and the mixture was stirred at 50° C. for 2 hr. The reaction was poured into 10 mL saturated NaHCO3 to adjust the pH to 8. The mixture was extracted with EtOAc (3×15 mL), washed with brine (3×30 mL), dried over by anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC (neutral condition) to afford the title compound N-[3-(3-methyl-1H-pyrazolo[3,4-b]pyridin-5-yl)phenyl]prop-2-enamide (0.025 g, 88.12 μmol, 36.00% yield, 98.1% purity) as a white solid. LC-MS (ES+, m/z): 279.0 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) Shift=13.29 (s, 1H), 10.28 (s, 1H), 8.75 (d, J=2.2 Hz, 1H), 8.40 (d, J=2.2 Hz, 1H), 8.03 (s, 1H), 7.69 (dd, J=2.6, 5.9 Hz, 1H), 7.49-7.42 (m, 2H), 6.57-6.36 (m, 1H), 6.35-6.19 (m, 1H), 5.93-5.65 (m, 1H), 2.55 (s, 3H).


Route 16: General Scheme



embedded image


embedded image


Step 1—Methyl 5-(3-aminophenyl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrazolo[3,4-c]pyridine-3-carboxylate



embedded image


To a solution of methyl 5-chloro-1-(2-trimethylsilylethoxymethyl) pyrazolo[3,4-c]pyridine-3-carboxylate (0.9 g, 2.63 mmol, 1 eq) and 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (634.5 mg, 2.9 mmol, 1.1 eq) in dioxane (8 mL) and H2O (2 mL) were added RuPhos (122.9 mg, 263.26 μmol, 0.1 eq), Cs2CO3 (2.57 g, 7.9 mmol, 3 eq) and [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (110.1 mg, 131.63 μmol, 0.05 eq) at 25° C. under N2. The reaction mixture was stirred at 100° C. for 1 h. The reaction mixture was poured into saturated EDTA (20 mL) and stirred for 20 min. The mixture was extracted with EtOAc (2×20 mL). The combined organic layer was washed with brine (2×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 1/1) to afford the title compound methyl 5-(3-aminophenyl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrazolo[3,4-c]pyridine-3-carboxylate (760 mg, 1.91 mmol, 72.44% yield) as a yellow oil.


Step 2—methyl 5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxy methyl)pyrazolo[3,4-c]pyridine-3-carboxylate



embedded image


To a solution of methyl 5-(3-aminophenyl)-1-(2-trimethylsilyl ethoxymethyl)pyrazolo[3,4-c]pyridine-3-carboxylate (660 mg, 1.66 mmol, 1 eq) in DCM (7 mL) was added TEA (502.7 mg, 4.97 mmol, 691.52 μL, 3 eq) at 0° C. Then, prop-2-enoyl chloride (299.8 mg, 3.31 mmol, 270.07 μL, 2 eq) was added. The reaction mixture was stirred at 25° C. for 0.5 h. Upon completion of the reaction as indicated by LCMS and TLC. The reaction mixture was poured into water (20 mL) and extracted with DCM (2×30 mL). The combined organic layer was washed with brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 1/1) to afford the title compound methyl 5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxy methyl)pyrazolo[3,4-c]pyridine-3-carboxylate (760 mg, crude) as a yellow oil. TLC (PE:EtOAc=1:1, SM=0.45, TM=0.49), LC-MS (ES+, m/z): 453.1 [(M+H)+].


Step 3—5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxymethyl)pyrazolo[3,4-c]pyridine-3-carboxylic acid



embedded image


To a solution of methyl 5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilyl ethoxymethyl) pyrazolo[3,4-c]pyridine-3-carboxylate (610 mg, 1.35 mmol, 1 eq) in THF (12 mL) and H2O (3 mL) was added LiOH·H2O (565.6 mg, 13.48 mmol, 10 eq). The resulting reaction mixture was stirred at 30° C. for 2 h. The reaction mixture was poured into water (20 mL), extracted with EtOAc (2×20 mL). The combined organic layer was washed with brine (2×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound 5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxymethyl)pyrazolo[3,4-c]pyridine-3-carboxylic acid (830 mg, crude) as a yellow solid.


Step 4—N-methyl-5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilyl ethoxymethyl) pyrazolo[3,4-c]pyridine-3-carboxamide



embedded image


To a solution of 5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilyl ethoxymethyl) pyrazolo[3,4-c]pyridine-3-carboxylic acid (70 mg, 159.62 μmol, 1 eq) in DMF (2 mL) were added methanamine;hydrochloride (32.3 mg, 478.85 μmol, 3 eq) and TEA (80.8 mg, 798.08 μmol, 111.08 μL, 5 eq). Then, T3P (152.4 mg, 239.42 μmol, 142.39 μL, 50% purity, 1.5 eq) was added. The reaction mixture was stirred at 15° C. for 1 h. TLC (DCM:MeOH=10:1, SM Rf=0.04, TM Rf=0.36) showed that the reaction was complete. The reaction mixture was poured into 10 mL H2O, extracted with EtOAc (3×50 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound N-methyl-5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilyl ethoxymethyl) pyrazolo[3,4-c]pyridine-3-carboxamide (60 mg, 132.86 μmol, 83.24% yield) as a yellow oil.


Step 5—5-[3-(prop-2-enoylamino)phenyl]-1H-pyrazolo[3,4-c]pyridine-3-carboxamide



embedded image


To a solution of 5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilyl ethoxymethyl) pyrazolo[3,4-c]pyridine-3-carboxamide (50 mg, 114.27 μmol, 1 eq) in EtOH (1 mL) was added concentrated HCl (0.5 mL, 37% purity). The reaction mixture was heated to 50° C. and stirred at 50° C. for 2.5 h. LCMS showed that the reaction was complete. The reaction was concentrated under N2 to give the residue. The residue was purified by prep-HPLC to afford the title compound 5-[3-(prop-2-enoylamino)phenyl]-1H-pyrazolo[3,4-c]pyridine-3-carboxamide (8.6 mg, 26.56 μmol, 23.24% yield, 94.9% purity) as a white solid. 308.0 [(M+H)+], 1H NMR (400 MHz, DMSO-d6), 5 ppm 5.58 (1H, s), 5.68-5.84 (1H, m), 6.30 (1H, dd, J=16.8, 1.87 Hz), 6.47 (1H, dd, J=16.8, 10.14 Hz), 7.25 (1H, s), 7.45 (1H, t, J=8.0 Hz), 7.56 (1H, br s), 7.76-7.87 (2H, m), 7.94 (1H, br s), 8.05-8.26 (1H, m), 8.39 (1H, s), 8.45-8.58 (1H, m), 9.20 (1H, s), 10.31 (1H, s), 14.17 (1H, br s).


Route 17: General Scheme



embedded image


Step 1—tert-butyl 6-chloropyrrolo[3,2-c]pyridine-1-carboxylate



embedded image


To a solution of 6-chloro-1H-pyrrolo[3,2-c]pyridine (0.2 g, 1.31 mmol, 1 eq) in ACN (6 mL) was added Boc2O (343.3 mg, 1.57 mmol, 361.36 μL, 1.2 eq) and DMAP (192.2 mg, 1.57 mmol, 1.2 eq). The reaction mixture was stirred at 25° C. for 2 hr. TLC (PE:EtOAc=4:1, SM Rf=0.12, TM Rf=0.35) showed that the reaction was complete. The reaction mixture was concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, PE:EtOAc=4:1) to afford the title compound tert-butyl 6-chloropyrrolo[3,2-c]pyridine-1-carboxylate (0.24 g, 949.76 μmol, 72.46% yield) as a white solid.


Step 2—tert-butyl 6-[3-(prop-2-enoylamino)phenyl]pyrrolo[3,2-c]pyridine-1-carboxylate



embedded image


To a solution of N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-en amide (0.15 g, 549.18 μmol, 1 eq) in dioxane (4 mL) and H2O (1 mL) were successively added tert-butyl 6-chloropyrrolo[3,2-c]pyridine-1-carboxylate (111 mg, 439.34 μmol, 0.8 eq), Cs2CO3 (357.9 mg, 1.1 mmol, 2 eq), RuPhos (25.6 mg, 54.92 μmol, 0.1 eq) and [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (23 mg, 27.46 μmol, 0.05 eq). The reaction mixture was stirred at 80° C. for 1 hr under N2. TLC (PE:EtOAc=1:1, SM Rf=0.56, TM Rf=0.26) showed that the reaction was complete. The reaction mixture poured into saturated EDTA (50 mL) and EtOAc (50 mL) was added. The solution was stirred at 25° C. for 1 h. The mixture was extracted with EtOAc (3×100 mL). The combined organic layer was washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1:1) to afford the title compound tert-butyl 6-[3-(prop-2-enoylamino)phenyl]pyrrolo[3,2-c]pyridine-1-carboxylate (0.15 g, 412.76 μmol, 75.16% yield) as a yellow oil.


Step 3—N-[3-(1H-pyrrolo[3,2-c]pyridin-6-yl)phenyl]prop-2-enamide



embedded image


To a solution of tert-butyl 6-[3-(prop-2-enoylamino)phenyl]pyrrolo[3,2-c]pyridine-1-carboxylate (0.12 g, 330.21 μmol, 1 eq) in DCM (2 mL) was added TFA (3.08 g, 27.01 mmol, 2 mL, 81.80 eq). The mixture was stirred at 15° C. for 2 h. LCMS showed that the reaction was complete. The reaction mixture was poured into 50 mL H2O and adjusted to pH=7 with saturated NaHCO3, extracted with EtOAc (2×50 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC (FA condition) to afford the title compound N-[3-(1H-pyrrolo[3,2-c]pyridin-6-yl)phenyl]prop-2-enamide (9.6 mg, 36.46 μmol, 11.04% yield, 100% purity) as a white solid. LC-MS (ES+, m/z): 264.1 [(M+H)+]1H NMR (400 MHz, DMSO-d6) δ=12.22 (br s, 1H), 10.37 (s, 1H), 9.10 (s, 1H), 8.39 (s, 1H), 8.00 (s, 1H), 7.67-7.78 (m, 3H), 7.48-7.55 (m, 1H), 6.84 (br s, 1H), 6.49 (dd, 7=16.98, 10.00 Hz, 1H), 6.30 (dd, J=16.98, 1.96 Hz, 1H), 5.78-5.83 (m, 1H).


Route 18: General Scheme



embedded image


embedded image


Step 1—5-bromo-1-(2-trimethylsilylethoxymethyl)indazole-3-carboxylate



embedded image


To a solution of methyl 5-bromo-1H-indazole-3-carboxylate (2 g, 7.84 mmol, 1 eq) and 2-(chloromethoxy)ethyl-trimethyl-silane (1.57 g, 9.41 mmol, 1.67 mL, 1.2 eq) in THF (30 mL) was added NaH (470.4 mg, 11.76 mmol, 60% purity, 1.5 eq) at 0° C. under N2. The reaction mixture was stirred at 0° C. for 2 hours. The reaction was quenched by 20 mL saturated NH4Cl, extracted with EtOAc (3×30 mL), and the combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=4:1 to 2:1) to afford the title compound methyl 5-bromo-1-(2-trimethylsilyl ethoxymethyl) indazole-3-carboxylate (2.1 g, 5.45 mmol, 69.50% yield) as a white solid. LC-MS (ES+, m/z): 385.0/386.9 [(M+H)+].


Step 2—methyl 5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxymethyl) indazole-3-carboxylate



embedded image


To a solution of N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (354.4 mg, 1.3 mmol, 1 eq) and methyl 5-bromo-1-(2-trimethylsilylethoxymethyl)indazole-3-carboxylate (500 mg, 1.3 mmol, 1 eq) in dioxane (8 mL) and H2O (2 mL) was added Na2CO3 (412.6 mg, 3.89 mmol, 3 eq) and Pd(dppf)Cl2 (95 mg, 129.76 μmol, 0.1 eq) under N2. The reaction mixture was stirred at 100° C. for 1 h. TLC showed that the reaction was complete. The reaction mixture was poured into saturated EDTA (40 mL) and 20 mL EtOAc was added. The solution was stirred for 1 h. After that the aqueous phase was extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (3×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. After column chromatography (SiO2, PE:EtOAc=3:1 to 1:1) to afford the title compound methyl 5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxymethyl)indazole-3-carboxylate (900 mg, 1.99 mmol) as a yellow solid. LC-MS (ES+, m/z): 452.0 [(M+H)+].


Step 3—5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxymethyl)indazole-3-carboxylic acid



embedded image


To a solution of methyl 5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxymethyl) indazole-3-carboxylate (450 mg, 996.48 μmol, 1 eq) in THF (8 mL) and H2O (2 mL) was added LiOH·H2O (418.2 mg, 9.96 mmol, 10 eq). The reaction mixture was stirred at 20° C. for 20 hours. LCMS showed that the reaction was complete. The reaction was poured into 40 mL water, adjusting the pH=6 with saturated critic acid. Then the aqueous phase was extracted with EtOAc (3×30 mL), and the combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo to afford the title compound 5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxymethyl)indazole-3-carboxylic acid (320 mg, crude) as a yellow gum. LC-MS (ES+, m/z): 438.0 [(M+H)+].


Step 4—N-[1-(2-hydroxyethyl)-4-piperidyl]-5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxymethyl)indazole-3-carboxamide



embedded image


embedded image


To a solution of 5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxymethyl)indazole-3-carboxylic acid (100 mg, 228.54 μmol, 1 eq) and 3-aminopropanenitrile (24 mg, 342.81 μmol, 25.29 μL, 1.5 eq) in DCM (2 mL) was added Et3N (115.6 mg, 1.14 mmol, 159.05 μL, 5 eq) T3P (218.2 mg, 342.81 μmol, 203.88 μL, 50% purity, 1.5 eq) under N2. The reaction mixture was stirred at 20° C. for 1 h. The reaction mixture was poured into 40 mL water, extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (3×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound N-(2-cyanoethyl)-5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxymethyl)indazole-3-carboxamide (70 mg, 142.96 μmol, 62.55% yield) as a yellow gum. LC-MS (ES+, m/z): 507.1 [(M+H)+].


Step 5—N-[1-(2-hydroxyethyl)-4-piperidyl]-5-[3-(prop-2-enoylamino)phenyl]-1H-indazole-3-carboxamide



embedded image


embedded image


To a solution of N-[1-(2-hydroxyethyl)-4-piperidyl]-5-[3-(prop-2-enoyl amino)phenyl]-1-(2-trimethylsilylethoxymethyl)indazole-3-carboxamide (60 mg, 106.43 μmol, 1 eq) in EtOH (2 mL) was added concentrated HCl (1.02 g, 10.35 mmol, 1 mL, 37% purity, 97.26 eq) under N2. The reaction mixture was stirred at 50° C. for 3 hours. The solvent was removed by blowing with N2 to give the residue. The residue was purified by prep-HPLC (PA condition) to afford the title compound N-[l-(2-hydroxyethyl)-4-piperidyl]-5-[3-(prop-2-enoylamino)phenyl]-1H-indazole-3-carboxamide (6.8 mg, 15.14 μmol, 14.22% yield, 96.5% purity) as a white solid. 434.2. 1H NMR (400 MHz, DMSO-d6) δ=13.63 (br s. 1H), 10.27 (s, 1H), 8.41 (s, 1H), 8.22 (br d, J=8.0 Hz, 1H), 8.17 (s, 1H), 8.06 (s, 1H), 7.74-7.65 (m, 3H), 7.48-7.38 (m, 2H), 6.53-6.42 (m, 1H), 6.34-6.24 (m, 1H), 5.78 (br d, J=12.0 Hz, 1H), 3.84 (br s, 1H), 3.51 (br t, J=6.4 Hz, 2H), 2.92 (br d, J=11.6 Hz, 2H), 2.11 (br t, J=11.6 Hz, 2H), 1.77 (br s, 2H), 1.74-1.63 (m, 2H)


Step 3—N-[4-[2-methoxyethyl(methyl)amino]cyclohexyl]-5-[3-(prop-2-enoylamino)phenyl]-1H-indazole-3-carboxamide



embedded image


To a solution of N-[4-[2-methoxyethyl(methyl)amino]cyclohexyl]-5-[3-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxymethyl)indazole-3-carboxamide (0.08 g, 132.05 μmol, 1 eq) in EtOH (0.3 mL) was added concentrated HCl (102 mg, 1.04 mmol, 0.1 mL, 37% purity, 7.84 eq). The reaction mixture was stirred at 50° C. for 1 hr. The reaction was concentrated under N2 to give a residue. The residue was purified by prep-HPLC (FA condition) to afford the title compound N-[4-[2-methoxyethyl(methyl)amino]cyclohexyl]-5-[3-(prop-2-enoylamino)phenyl]-1H-indazole-3-carboxamide (0.0062 g, 13.04 μmol, 9.87% yield, 100% purity) as a pink solid. LC-MS (ES+, m/z): 476.3 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) Shift=13.63 (br s, 1H), 10.27 (s, 1H), 8.40 (d, J=8.7 Hz, 1H), 8.18 (s, 1H), 8.12 (d, J=8.3 Hz, 1H), 8.05 (s, 1H), 7.88 (br d, J=7.6 Hz, 1H), 7.74-7.66 (m, 3H), 7.47-7.42 (m, 1H), 7.41-7.37 (m, 1H), 6.55-6.39 (m, 1H), 6.33-6.23 (m, 1H), 5.81-5.72 (m, 1H), 4.08 (br s, 1H), 3.87-3.73 (m, 1H), 3.42 (br d, J=2.4 Hz, 2H), 3.25 (s, 3H), 2.69-2.59 (m, 2H), 2.42 (br s, 1H), 2.27 (d, J=5.0 Hz, 3H), 1.91 (br d, J=12.0 Hz, 2H), 1.79 (br d, J=11.2 Hz, 1H), 1.72-1.64 (m, 1H), 1.62-1.50 (m, 2H), 1.50-1.41 (m, 1H), 1.40-1.28 (m, 1H).


Route 19: General Scheme



embedded image


embedded image


Step 1—methyl 2-(6-bromoindazol-1-yl)acetate; methyl 2-(6-bromoindazol-2-yl)acetate



embedded image


To a solution of methyl 2-bromoacetate (1.71 g, 11.17 mmol, 1.05 mL, 1.1 eq), 6-bromo-1H-indazole (2 g, 10.15 mmol, 1 eq) in DMF (20 mL) was added K2CO3 (2.81 g, 20.3 mmol, 2 eq) at 25° C. The reaction mixture was stirred at 25° C. for 3 h. The reaction mixture was poured into ice-water (60 mL) and the aqueous phase was extracted with EtOAc (3×30 mL). The combined organic phase was washed with brine (3×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by silica gel chromatography (SiO2, PE:EtOAc=10:1, 3:1) to afford the title compound methyl 2-(6-bromoindazol-1-yl)acetate (2 g, 7.43 mmol, 73.22% yield) to afford the title compound methyl 2-(6-bromoindazol-2-yl)acetate (0.7 g, 2.6 mmol, 25.63% yield) as a light yellow solid. LCMS (ES+, m/z): 269.1, 271.0 [(M+H)+].


Step 4—methyl 2-[6-(3-aminophenyl)indazol-1-yl]acetate



embedded image


To a solution of 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (800 mg, 3.65 mmol, 1 eq), methyl 2-(6-bromoindazol-1-yl)acetate (1.08 g, 4.02 mmol, 1.1 eq) in dioxane (8 mL) and H2O (2 mL) was added Na2CO3 (774.1 mg, 7.3 mmol, 2 eq), Pd(dppf)Cl2 (267.2 mg, 365.15 μmol, 0.1 eq) under N2. The reaction mixture was stirred at 100° C. for 1 h. The reaction mixture was poured into saturated EDTA (50 mL) and stirred for 60 min. The aqueous phase was extracted with EtOAc (3×50 mL). The combined organic layer was washed with brine (3×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by silica gel chromatography (SiO2, PE:EtOAc=10:1, 3:1) to afford the title compound (0.7 g, 2.49 mmol, 68.15% yield) as a yellow oil. LCMS (ES+, m/z): 282.2 [(M+H)+].


Step 4—methyl 2-[6-[3-(prop-2-enoylamino)phenyl]indazol-1-yl]acetate



embedded image


To a solution of methyl 2-[6-(3-aminophenyl)indazol-1-yl]acetate (200 mg, 710.96 μmol, 1 eq) in DCM (2 mL) were added TEA (143.9 mg, 1.42 mmol, 197.92 μL, 2 eq) and prop-2-enoyl chloride (77.2 mg, 853.15 μmol, 69.57 μL, 1.2 eq) at 0° C. The reaction mixture was stirred at 0° C. for 1 h. LCMS showed ˜20% of the starting material remaining. Then, additional prop-2-enoyl chloride (32.2 mg, 355.48 μmol, 28.99 μL, 0.5 eq) was added and the mixture was stirred at 0° C. for further 1 h. LCMS showed that the reaction was complete. The reaction mixture was poured into H2O (20 mL) and the aqueous phase was extracted with DCM (3×20 mL). The combined organic layer was washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound (220 mg, crude) as a brown solid. LCMS (ES+, m/z): 336.1 [(M+H)+].


Step 4—2-[6-[3-(prop-2-enoylamino)phenyl]indazol-1-yl]acetic acid



embedded image


To a solution of methyl 2-[6-[3-(prop-2-enoylamino)phenyl]indazol-1-yl]acetate (150 mg, 447.29 μmol, 1 eq) in THF (5 mL) and H2O (1.25 mL) was added LiOH·H2O (37.5 mg, 894.57 μmol, 2 eq) at 25° C. The mixture was stirred at 25° C. for 1 h. TLC showed that the reaction was complete. The reaction mixture was poured into H2O (20 mL) and the pH was adjusted to ˜5 with IN HCl. The aqueous phase was extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound (150 mg, crude) as a white solid.


Step 5—N-[3-[1-[2-R-2-oxo-ethyl]indazol-6-yl]phenyl]prop-2-enamide



embedded image


embedded image


To a solution of 2-[6-[3-(prop-2-enoylamino)phenyl]indazol-1-yl]acetic acid (50 mg, 155.6 μmol, 1 eq), l-methylpiperidin-4-amine (26.7 mg, 233.41 μmol, 1.5 eq) in DMF (2 mL) was added TEA (78.7 mg, 778.02 μmol, 108.29 μL, 5 eq) and T3P (148.5 mg, 233.41 μmol, 138.81 μL, 50% purity, 1.5 eq) at 25° C. The reaction mixture was stirred at 25° C. for 1 h. The reaction mixture was poured into H2O (20 mL) and the aqueous phase was extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (3×20 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by prep-HPLC to afford the title compound (17.2 mg, 39.47 μmol, 25.37% yield, 95.810% purity) as a white solid. 418.3. 1H NMR (400 MHz, DMSO-d6) 5=10.28 (s, 1H), 8.25 (d, J=8.0 Hz, 1H), 8.09 (s, 1H), 8.04 (s, 1H), 7.83 (s, 1H), 7.84 (d, J=8.4 Hz, 1H), 7.69 (d, J=6.4 Hz, 1H), 7.48-7.38 (m, 3H), 6.48 (dd, J=10.4 Hz, 17.2 Hz, 1H), 6.31 (dd, J=2.0 Hz, 16.8 Hz, 1H), 5.80 (dd, J=2.0 Hz, 10.0 Hz, 1H), 5.12 (s, 2H), 3.53-3.50 (m, 1H), 2.73 (br d, J=12.0 Hz, 2H), 2.18 (s, 3H), 2.01 (br s, 2H), 1.78-1.71 (m, 2H), 1.52-1.42 (m, 2H)


Route 20: General Scheme



embedded image


Step 1—3-chloro-N-methyl-isoquinolin-5-amine



embedded image


To a solution of 3-chloroisoquinolin-5-amine (0.3 g, 1.68 mmol, 1 eq) in MeOH (5 mL) was added formaldehyde (151.3 mg, 5.04 mmol, 138.80 μL, 3 eq), AcOH (100.9 mg, 1.68 mmol, 96.06 μL, 1 eq) and NaBH3CN (527.7 mg, 8.4 mmol, 5 eq). The reaction mixture was stirred at 50° C. for 1 hr under N2. TLC (PE:EtOAc=3:1; SM=0.34, Rf=0.44) showed 25% of the starting material remained. The reaction mixture was poured into H2O (20 mL), extracted with DCM (3×10 mL). The combined organic layer was washed with brine (2×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, PE:EtOAc=3:1) to afford the title compound 3-chloro-N-methyl-isoquinolin-5-amine (0.13 g, 674.82 μmol, 40.18% yield) as a yellow solid. LC-MS (ES+, m/z): 193.0 [(M+H)+]


Step 2—N-[3-[5-(methylamino)-3-isoquinolyl]phenyl]prop-2-enamide



embedded image


To a solution of N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (119.1 mg, 436.04 μmol, 1.2 eq) in dioxane (2 mL) and H2O (0.5 mL) were added 3-chloro-N-methyl-isoquinolin-5-amine (0.07 g, 363.36 μmol, 1 eq), Cs2CO3 (355.2 mg, 1.09 mmol, 3 eq) dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (17 mg, 36.34 μmol, 0.1 eq) and [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (30.4 mg, 36.34 μmol, 0.1 eq). The reaction mixture was stirred at 120° C. for 3 hr under N2. LCMS showed ˜40% of the starting material remained. The reaction mixture was poured into 20 mL saturated EDTA. Then 20 mL EtOAc was added. The solution was stirred at 20° C. for 1 hr. The aqueous phase was separated and extracted with EtOAc (2×20 mL). The combined organic layer was washed with 30 mL brine, dried over Na2SO4 and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC (FA condition) to afford the title compound N-[3-[5-(methylamino)-3-isoquinolyl]phenyl]prop-2-enamide (0.0106 g, 34.94 μmol, 9.62% yield, 100.0% purity) as a yellow solid. 304.1. 1H NMR (400 MHz, DMSO-d6) 5 ppm 10.297 (s, 1H) 9.208 (s, 1H) 8.560 (s, 1H) 8.498 (s, 1H) 7.922 (d, 7=8.0 Hz, 1H) 7.834 (br d, J=8.0 Hz, 1H) 7.465 (td, J=8.0, 6.11 Hz, 2H) 7.273 (d, J=8.0 Hz, 1H) 6.762-6.813 (m, 1H) 6.645 (d, J=7.6 Hz, 1H) 6.451-6.529 (m, 1H) 6.315 (d, J=2.0 Hz, 1H) 5.751-5.801 (m, 1H) 2.906 (d, J=4.8 Hz, 3H)


Route 21: General Scheme



embedded image


Step 1—2-[6-(3-aminophenyl)indazol-2-yl]acetic acid



embedded image


To a solution of methyl 2-(6-bromoindazol-2-yl)acetate (500.5 mg, 1.86 mmol, 1 eq) and 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (489 mg, 2.23 mmol, 1.2 eq) in dioxane (4 mL) and H2O (1 mL) was added Na2CO3 (591.4 mg, 5.58 mmol, 3 eq) and Pd(dppf)Cl2. CH2Cl2 (30.4 mg, 37.2 μmol, 0.02 eq). The reaction mixture was stirred at 100° C. for 0.5 hr under N2. TLC showed 10% of the starting material remained. The reaction mixture was poured into 40 mL saturated EDTA then 20 mL EtOAc was added. The solution was stirred at 20° C. for 1 hr. The aqueous phase was separated and washed with EtOAc (3×20 mL). After that the aqueous phase was concentrated in vacuo to give a residue. The residue re-dissolved with (DCM:MeOH=10:1, 3×30 mL). Then removing the precipitate by filtration. The filtrate was concentrated in vacuo to afford the title compound 2-[6-(3-aminophenyl)indazol-2-yl]acetic acid (0.24 g, crude) as a yellow oil. LC-MS (ES+, m/z): 268.4 [(M+H)+].


Step 2—2-[6-(3-aminophenyl)indazol-2-yl]-N-(1-methyl-4-piperidyl)acetamide



embedded image


To a solution of 2-[6-(3-aminophenyl)indazol-2-yl]acetic acid (0.18 g, 673.45 μmol, 1 eq) in DMF (2 mL) were added 1-methylpiperidin-4-amine (153.8 mg, 1.35 mmol, 2 eq), TEA (204.4 mg, 2.02 mmol, 281.21 μL, 3 eq) and T3P (857.1 mg, 1.35 mmol, 801.04 μL, 50% purity, 2 eq). The reaction mixture was stirred at 15° C. for 1 hr under N2. TLC (DCM:MeOH=10:1; SM=0.0, Rf=0.12) showed that the reaction was complete. The reaction mixture was poured into H2O (30 mL) and extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (2×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, 5% TEA, DCM:MeOH=10:1) to afford the title compound 2-[6-(3-aminophenyl)indazol-2-yl]-N-(l-methyl-4-piperidyl)acetamide (0.03 g, 82.54 μmol, 12.26% yield) as a light yellow solid. LC-MS (ES+, m/z): 364.4 [(M+H)+].


Step 3—N-[3-[2-[2-[(l-methyl-4-piperidyl)amino]-2-oxo-ethyl]indazol-6-yl]phenyl]prop-2-enamide



embedded image


To a solution of 2-[6-(3-aminophenyl)indazol-2-yl]-N-(1-methyl-4-piperidyl) acetamide (0.025 g, 68.78 μmol, 1 eq) in DCM (2 mL) were added TEA (20.9 mg, 206.35 μmol, 28.72 μL, 3 eq) and prop-2-enoyl chloride (7.5 mg, 82.54 μmol, 6.73 μL, 1.2 eq) at 0° C. The reaction mixture was stirred at 15° C. for 0.5 hr under N2. LCMS showed that the reaction was complete. The reaction mixture was poured into H2O (10 mL), extracted with DCM (3×10 mL). The combined organic layer was washed with brine (2×10 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC (FA condition) to afford the title compound N-[3-[2-[2-[(l-methyl-4-piperidyl)amino]-2-oxo-ethyl]indazol-6-yl]phenyl]prop-2-enamide (0.0077 g, 17.65 μmol, 25.66% yield, 95.7% purity) as a yellow solid. 1H NMR (400 MHz, DMSO-d6) δ ppm 10.26 (s, 1H) 8.37 (s, 1H) 8.32 (br d, J=7.6 Hz, 1H) 8.20 (s, 1H) 8.04 (s, 1H) 7.83 (d, J=8.8 Hz, 1H) 7.76 (s, 1H) 7.63-7.71 (m, 1H) 7.43 (d, J=5.2 Hz, 1H) 7.32 (dd, J=8.8, 1.32 Hz, 1H) 6.41-6.52 (m, 1H) 6.24-6.33 (m, 1H) 5.74-5.81 (m, 1H) 5.11 (s, 2H) 2.77 (br d, J=12.0 Hz, 2H) 2.21 (s, 3H) 2.07 (br t, J=10.8 Hz, 2H) 1.77 (br d, J=10.4 Hz, 2H) 1.40-1.54 (m, 2H).


Route 21: General Scheme



embedded image


Step 1—7-bromo-2-chloro-N—R-quinazolin-4-amine



embedded image


To a solution of 7-bromo-2,4-dichloro-quinazoline (0.3 g, 1.08 mmol, 1 eq) in i-PrOH (2 mL) was added 2-methoxyethanamine (81.1 mg, 1.08 mmol, 93.83 μL, 1 eq) and DIEA (279 mg, 2.16 mmol, 376.02 μL, 2 eq). The reaction mixture was stirred at 15° C. for 1 h. TLC (PE:EtOAc=1:1, SM Rf=0.53, TM Rf=0.05) showed that the reaction was complete. The reaction mixture was poured into 50 mL H2O, extracted with EtOAc (3×50 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL)). Then dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound 7-bromo-2-chloro-N-(2-methoxyethyl)quinazolin-4-amine (0.37 g, crude) as a white solid which was used for the next step directly without further purification.


Step 2—7-bromo-N4-R—N2-methylquinazoline-2,4-diamine



embedded image


To a solution of 7-bromo-2-chloro-N-(2-methoxyethyl)quinazolin-4-amine (0.32 g, 1.01 mmol, 1 eq) in i-PrOH (3 mL) was added methanamine; hydrochloride (1.36 g, 20.22 mmol, 20 eq) and DIEA (2.61 g, 20.22 mmol, 3.52 mL, 20 eq). The reaction mixture was stirred at 100° C. for 24 h. LCMS showed 7% of the starting material remaining. The reaction mixture was poured into 50 mL H2O, extracted with PE:EtOAc (3×50 mL), and the combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL). Then dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound 7-bromo-N4-(2-methoxyethyl)-N2-methyl-quinazoline-2,4-diamine (0.35 g, crude) as a yellow oil which was used for the next step directly without further purification.


Step 3—N-(3-(4-(R-lamino)-2-(methylamino)quinazolin-7-yl)phenyl)acrylamide



embedded image


To a solution of N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (80 mg, 292.9 μmol, 1 eq) in dioxane (2 mL) and H2O (0.5 mL) was added 7-bromo-N4-(2-ethoxyethyl)-N2-methyl-quinazoline-2,4-diamine (72.9 mg, 234.32 μmol, 0.8 eq), Cs2CO3 (190.9 mg, 585.79 μmol, 2 eq), RuPhos (13.7 mg, 29.29 μmol, 0.1 eq) and [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (12.3 mg, 14.64 μmol, 0.05 eq). The reaction mixture was stirred at 80° C. for 1 hr under N2. LCMS showed that the reaction was complete. The reaction mixture was poured into saturated EDTA (50 mL) and EtOAc (50 mL) was added. The solution was stirred at 25° C. for 1 h. The mixture was extracted with EtOAc (3×100 mL), and the combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL). Then dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound N-[3-[4-(2-methoxyethylamino)-2-(methylamino)quinazolin-7-yl]phenyl]prop-2-enamide (11 mg, 28.42 μmol, 9.70% yield, 97.5% purity) as a white solid. 378.1. 1H NMR (400 MHz, DMSO-d6) δ=10.28 (s, 1H), 8.05-8.19 (m, 4H), 7.67 (br d, J=7.08 Hz, 1H), 7.34-7.54 (m, 4H), 6.69 (s, 1H), 6.47 (dd, J=16.96, 10.08 Hz, 1H), 6.29 (dd, J=17.06, 1.90 Hz, 1H), 5.76-5.82 (m, 1H), 3.67 (br s, 2H), 3.53-3.63 (m, 2H), 3.28 (s, 3H), 2.86 (br d, 1=4.40 Hz, 3H).


Route 22: General Scheme



embedded image


Step 1—7-bromo-N2,N4-dimethyl-quinazoline-2,4-diamine



embedded image


To a solution of 7-bromo-2,4-dichloro-quinazoline (0.3 g, 1.08 mmol, 1 eq) in i-PrOH (3 mL) was added DIEA (1.4 g, 10.79 mmol, 1.88 mL, 10 eq). Then methanamine;hydrochloride (1.46 g, 21.59 mmol, 20 eq) was added and the reaction mixture was stirred at 100° C. for 15 h. LCMS showed that the reaction was complete. The reaction mixture was poured into 50 mL H2O, extracted with EtOAc (3×50 mL), and the combined organic layer was washed with H2O (2×50 mL) and brine (2×50 mL). Then dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound 7-bromo-N2,N4-dimethyl-quinazoline-2,4-diamine (0.3 g, crude) as a yellow solid which was used for the next step without further purification. LC-MS (ES+, m/z): 267.0 [(M+H)+]


Step 2—N-[3-[2,4-bis(methylamino)quinazolin-7-yl]phenyl]prop-2-enamide



embedded image


To a solution of N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (80 mg, 292.9 μmol, 1 eq) in dioxane (2 mL) and H2O (0.5 mL) was added 7-bromo-N2,N4-dimethyl-quinazoline-2,4-diamine (62.6 mg, 234.32 μmol, 0.8 eq), Cs2CO3 (190.9 mg, 585.79 μmol, 2 eq), RuPhos (13.7 mg, 29.29 μmol, 0.1 eq) and [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (12.3 mg, 14.64 μmol, 0.05 eq). The reaction mixture was stirred at 80° C. for 1 hr under N2. LCMS showed that the reaction was complete. The reaction mixture was poured into saturated EDTA aqueous solution (50 mL) and EtOAc (50 mL) was added. The solution was stirred at 25° C. for 1 h, extracted with EtOAc (3×100 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL). Then dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC (PA condition) to afford the title compound N-[3-[2,4-bis(methylamino)quinazolin-7-yl]phenyl]prop-2-enamide (12.5 mg, 37.16 μmol, 12.69% yield, 99.1% purity) as a white solid. LC-MS (ES+, m/z): 334.1 [(M+H)+]1H NMR (400 MHz, DMSO-d6) δ=10.26 (s, 1H), 8.19 (s, 1H), 8.13 (br s, 1H), 8.02 (br d, J=8.44 Hz, 2H), 7.66 (br d, J=7.20 Hz, 1H), 7.40-7.53 (m, 3H), 7.33 (dd, J=8.44, 1.60 Hz, 1H), 6.46 (m, 2H), 6.29 (dd, J=16.94, 2.02 Hz, 1H), 5.77-5.81 (m, 1H), 2.97 (br s, 3H), 2.86 (br d, J=4.16 Hz, 3H).


Route 23: General Scheme



embedded image


Step 1—6-bromo-N2,N4-bis[(2,4-dimethoxyphenyl)methyl]quinazoline-2,4-diamine



embedded image


To a solution of 6-bromo-2,4-dichloro-quinazoline (0.3 g, 1.08 mmol, 1 eq) in i-PrOH (5 mL) was added DIEA (2.79 g, 21.6 mmol, 3.76 mL, 20 eq) and (2,4-dimethoxyphenyl) methanamine (3.61 g, 21.6 mmol, 3.25 mL, 20 eq). The reaction mixture was stirred at 100° C. for 4 h. LCMS showed that the reaction was complete. The reaction mixture was poured into 50 mL H2O, extracted with EtOAc (3×50 mL), and the combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL). Then dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=4:1 to 2/1) to afford the title compound 6-bromo-N2,N4-bis[(2,4-dimethoxyphenyl)methyl]quinazoline-2,4-diamine (0.55 g, 1.02 mmol, 94.41% yield) as a yellow solid. LC-MS (ES+, m/z): 539.2 [(M+H)+]


Step 2—N-[3-[2H-bis[(2H-dimethoxyphenyl)methylamino]quinazolin-6-yl]phenyl]prop-2-enamide



embedded image


To a solution of N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (0.15 g, 549.18 μmol, 1 eq) in dioxane (4 mL) and H2O (1 mL) was added 6-bromo-N2,N4-bis[(2,4-dimethoxyphenyl)methyl]quinazoline-2,4-diamine (237 mg, 439.34 μmol, 0.8 eq), Cs2CO3 (357.9 mg, 1.1 mmol, 2 eq), RuPhos (25.6 mg, 54.92 μmol, 0.1 eq) and [2-(2-aminophenyl)phenyl]-methyl sulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (23 mg, 27.46 μmol, 0.05 eq). The reaction mixture was stirred at 80° C. for 1 hr under N2. LCMS showed that the reaction was complete. The reaction mixture was poured into saturated EDTA (50 mL) and EtOAc (50 mL) was added. The solution was stirred at 25° C. for 1 h, extracted with EtOAc (3×100 mL), and the combined organic layer was washed with H2O (2×50 mL) and brine (2×50 mL). Then dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound N-[3-[2,4-bis[(2,4-dimethoxyphenyl)methylamino]quinazolin-6-yl]phenyl]prop-2-enamide (0.2 g, 330.21 μmol, 60.13% yield) as a yellow solid. LC-MS (ES+, m/z): 606.3 (M+H)+]


Step 3—N-[3-(2,4-diaminoquinazolin-6-yl)phenyl]prop-2-enamide



embedded image


To a solution of N-[3-[2,4-bis[(2,4-dimethoxyphenyl)methylamino]quinazolin-6-yl]phenyl]prop-2-enamide (0.1 g, 165.1 μmol, 1 eq) in DCM (3 mL) was added TFA (1.54 g, 13.51 mmol, 1 mL, 81.80 eq). The reaction mixture was stirred at 15° C. for 1 h. LCMS showed that the reaction was complete. The reaction mixture was poured into 50 mL H2O and adjusted to pH=7 with saturated NaHCO3. The mixture was extracted with EtOAc (3×50 mL), and the combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL). Then dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC (basic condition) to afford the title compound N-[3-(2,4-diaminoquinazolin-6-yl)phenyl]prop-2-enamide (10 mg, 31.8 μmol, 19.26% yield, 97.1% purity) as a white solid. LC-MS (ES+, m/z): 306.0 [(M+H)+]1H NMR (400 MHz, DMSO-d6) δ=10.22 (s, 1H), 8.28 (d, J=1.76 Hz, 1H), 7.96 (s, 1H), 7.74 (dd, J=8.70, 1.88 Hz, 1H), 7.64 (br d, J=7.28 Hz, 1H), 7.32-7.49 (m, 4H), 7.27 (d, J=8.60 Hz, 1H), 6.47 (dd, J=16.88, 10.00 Hz, 1H), 6.28 (dd, J=16.98, 1.98 Hz, 1H), 6.02 (s, 2H), 5.74-5.81 (m, 1H).


Route 23: General Scheme



embedded image


Step 1—2-fluoro-N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide



embedded image


To a solution of 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (0.5 g, 2.28 mmol, 1 eq) in DMF (2 mL) was added 2-fluoroprop-2-enoic acid (308.3 mg, 3.42 mmol, 1.5 eq), TEA (692.8 mg, 6.85 mmol, 952.96 μL, 3 eq) and T3P (1.09 g, 3.42 mmol, 1.02 mL, 1.5 eq). The reaction mixture was stirred at 15° C. for 1 hr under N2. TLC (PE:EtOAc=3:1; SM=0.41, Rf=0.51) showed that the reaction was complete. The reaction mixture was poured into H2O (30 mL), extracted with EtOAc (3×30 mL). The combined organic layer was washed with brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was triturated with PE (20 mL) to afford the title compound 2-fluoro-N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (0.5 g, 1.72 mmol, 75.26% yield) as a white solid. LC-MS (ES+, m/z): 292.1 [(M+H)+].


Step 2—N-[3-(2-aminoquinazolin-7-yl)phenyl]-2-fluoro-prop-2-enamide



embedded image


To a solution of 2-fluoro-N-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (0.06 g, 206.1 μmol, 1 eq) in dioxane (2 mL) and H2O (0.5 mL) was added 7-bromoquinazolin-2-amine (46.2 mg, 206.1 μmol, 1 eq), Cs2CO3 (201.5 mg, 618.3 μmol, 3 eq) dicyclohexyl-[2-(2,6-diisopropoxy phenyl)phenyl]phosphane (9.6 mg, 20.61 μmol, 0.1 eq) and [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (8.6 mg, 10.31 μmol, 0.05 eq). The reaction mixture was stirred at 100° C. for 1 hr under N2. LCMS showed that the reaction was complete. The reaction was poured into 20 mL saturated EDTA and 20 mL EtOAc was added. The solution was stirred at 20° C. for 1 hr. Then the aqueous phase was separated, extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine 30 mL, dried over Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC (neutral condition) to afford the title compound N-[3-(2-aminoquinazolin-7-yl)phenyl]-2-fluoro-prop-2-enamide (0.0177 g, 57.41 μmol, 27.86% yield, 100.0% purity) as a white solid. The residue was purified by prep-HPLC to afford the title compound 2-fluoro-N-[3-[2-(methylamino)quinazolin-7-yl]phenyl]prop-2-enamide (0.0155 g, 48.09 μmol, 23.33% yield, 100.0% purity) as a yellow solid. 323.1. 1H NMR (400 MHz, DMSO-d6) δ ppm 10.402 (br s, 1H) 9.119 (br s, 1H) 8.217 (s, 1H) 7.804-7.929 (m, 2H) 7.710 (br s, 1H) 7.602 (br d, 7=7.70 Hz, 1H) 7.509 (q, 7=7.8 Hz, 2H) 7.393 (br s, 1H) 5.822 (d, 7=3.6 Hz, 1H) 5.477 (dd, 7=15.6, 3.61 Hz, 1H) 2.925 (d, 7=4.8 Hz, 3H).


TABLE 12 shows compounds synthesized using methods described in EXAMPLE 12 above.









TABLE 12









embedded image


















LC-MS


Cpd.


(ES+,


No.
Structure
IUPAC
m/z)





445


embedded image


N-(1-methylpiperidin-4-yl)-6-[3-(prop-2- enamido)phenyl]pyridine-2-carboxamide
365.2





446


embedded image


N-[3-(3-methyl-1H-indazol-5-yl)phenyl]prop- 2-enamide
278.2





447


embedded image


N-[3-(1-methyl-1H-indazol-5-yl)phenyl]prop- 2-enamide
278.2





448


embedded image


N-[3-(1-methyl-1H-indazol-6-yl)phenyl]prop- 2-enamide
278.1





449


embedded image


N-[3-(4-acetamidoquinolin-6-yl)phenyl]prop- 2-enamide
332.1





450


embedded image


1-methyl-N-{6-[3-(prop-2- enamido)phenyl]quinolin-4-yl}piperidine-3- carboxamide
415.2





451


embedded image


N-[3-(4-aminoquinolin-6-yl)phenyl]prop-2- enamide
290.1





452


embedded image


N-(1-methylpiperidin-4-yl)-5-[3-(prop-2- enamido)phenyl]-1H-indazole-3-carboxamide
404.2





453


embedded image


N-{3-[3-(thiophen-3-yl)-1H-indazol-5- yl]phenyl}prop-2-enamide
346.1





454


embedded image


4-amino-N-(1-methylpiperidin-4-yl)-6-[3- (prop-2-enamido)phenyl]quinoline-3- carboxamide
430.2





455


embedded image


N-[3-(1-{[(1-methylpiperidin-4- yl)carbamoyl]methyl}-1H-indazol-6- yl)phenyl]prop-2-enamide
418.3





456


embedded image


N-(3-{1-[(methylcarbamoyl)methyl]-1H- indazol-6-yl}phenyl)prop-2-enamide
335.1





457


embedded image


N-[3-(quinolin-6-yl)phenyl]prop-2-enamide
275.1





458


embedded image


N-[3-(2-{[(1-methylpiperidin-4- yl)carbamoyl]methyl}-2H-indazol-6- yl)phenyl]prop-2-enamide
418.2





459


embedded image


N-[3-(quinazolin-7-yl)phenyl]prop-2-enamide
276.1





460


embedded image


N-[3-(8-aminonaphthalen-2-yl)phenyl]prop-2- enamide
289.1





461


embedded image


N-[3-(2-aminoquinazolin-7-yl)phenyl]prop-2- enamide
291.1





462


embedded image


N-[3-(6-aminonaphthalen-2-yl)phenyl]prop-2- enamide
289.1





463


embedded image


N-(1-methylpiperidin-3-yl)-5-[3-(prop-2- enamido)phenyl]-1H-indazole-3-carboxamide
404.2





464


embedded image


N-[4-(dimethylamino)cyclohexyl]-5-[3-(prop- 2-enamido)phenyl]-1H-indazole-3- carboxamide
432.2





465


embedded image


N-[3-(1,5-naphthyridin-2-yl)phenyl]prop-2- enamide
276.2





466


embedded image


N-[3-(isoquinolin-3-yl)phenyl]prop-2-enamide
275.1





467


embedded image


N-[3-(quinolin-2-yl)phenyl]prop-2-enamide
275.1





468


embedded image


N-(3-{3-methyl-1H-pyrazolo[3,4-c]pyridin-5- yl}phenyl)prop-2-enamide
279.1





469


embedded image


N-[3-(5-aminoisoquinolin-3-yl)phenyl]prop-2- enamide
290.1





470


embedded image


N-(1-methylpiperidin-4-yl)-7-[3-(prop-2- enamido)phenyl]naphthalene-1-carboxamide
414.2





471


embedded image


1-methyl-N-{6-[3-(prop-2- enamido)phenyl]quinolin-4-yl}piperidine-4- carboxamide
415.2





472


embedded image


N-(1-methylpiperidin-4-yl)-2-[3-(prop-2- enamido)phenyl]quinoline-8-carboxamide
415.2





473


embedded image


N-[3-(2-chloroquinazolin-7-yl)phenyl]prop-2- enamide
310.1





474


embedded image


N-{3-[2-(methylamino)quinazolin-7- yl]phenyl}prop-2-enamide
305.1





475


embedded image


3-chloro-N-{6-[3-(prop-2- enamido)phenyl]quinolin-4-yl}benzamide
428.1





476


embedded image


3-fluoro-N-{6-[3-(prop-2- enamido)phenyl]quinolin-4-yl}benzamide
412.1





477


embedded image


N-{6-[3-(prop-2-enamido)phenyl]quinolin-4- yl}furan-2-carboxamide
384.1





478


embedded image


N-(1-methylpiperidin-4-yl)-6-[3-(prop-2- enamido)phenyl]quinoline-4-carboxamide
415.2





479


embedded image


1-methyl-N-{3-[3-(prop-2- enamido)phenyl]isoquinolin-5-yl}piperidine-4- carboxamide
415.3





480


embedded image


N-[3-(2-aminoquinolin-7-yl)phenyl]prop-2- enamide
290.1





481


embedded image


N-(3-{5-[(1-methylpiperidin-4- yl)amino]isoquinolin-3-yl}phenyl)prop-2- enamide
387.2





482


embedded image


N-[1-(2-hydroxyethyl)piperidin-4-yl]-5-[3- (prop-2-enamido)phenyl]-1H-indazole-3- carboxamide
434.2





483


embedded image


1-methyl-N-{5-[3-(prop-2-enamido)phenyl]- 1H-indazol-3-yl}piperidine-4-carboxamide
404.2





484


embedded image


N-{3-[2-(ethylamino)quinazolin-7- yl]phenyl}prop-2-enamide
319.1





485


embedded image


N-(3-{2-[(1-methylpiperidin-4- yl)amino]quinazolin-7-yl}phenyl)prop-2- enamide
388.2





486


embedded image


N-{3-[4-(methylamino)quinolin-6- yl]phenyl}prop-2-enamide
304.1





487


embedded image


N-{3-[4-(dimethylamino)quinolin-6- yl]phenyl}prop-2-enamide
318.2





488


embedded image


N-[3-(2-{[(pyrrolidin-3- yl)methyl]amino}quinazolin-7-yl)phenyl]prop- 2-enamide
374.2





489


embedded image


N-[3-(2-oxo-1,2-dihydroquinolin-7- yl)phenyl]prop-2-enamide
291.1





490


embedded image


N-[3-(2-acetamidoquinazolin-7- yl)phenyl]prop-2-enamide
333.1





491


embedded image


N-methyl-7-[3-(prop-2- enamido)phenyl]naphthalene-2-carboxamide
331.1





492


embedded image


N-(3-{7H-pyrrolo[2,3-d]pyrimidin-2- yl}phenyl)prop-2-enamide
265.1





493


embedded image


N-(1-methylpiperidin-4-yl)-7-[3-(prop-2- enamido)phenyl]naphthalene-2-carboxamide
414.2





494


embedded image


N-[3-(2-{[(1r,4r)-4- (dimethylamino)cyclohexyl]amino}quinazolin- 7-yl)phenyl]prop-2-enamide
416.2





495


embedded image


N-[3-(2-{[(1s,4s)-4- (dimethylamino)cyclohexyl]amino}quinazolin- 7-yl)phenyl]prop-2-enamide
416.3





496


embedded image


N-[3-(4-{[(3- chlorophenyl)methyl]amino}quinolin-6- yl)phenyl]prop-2-enamide
414.1





497


embedded image


N-[3-(4-{[(3- methoxyphenyl)methyl]amino}quinolin-6- yl)phenyl]prop-2-enamide
410.2





498


embedded image


N-(3-{4-[(1-methylpiperidin-4- yl)amino]quinolin-6-yl}phenyl)prop-2- enamide
387.2





499


embedded image


N-{4-[(2- methoxyethyl)(methyl)amino]cyclohexyl}-5- [3-(prop-2-enamido)phenyl]-1H-indazole-3- carboxamide
476.3





500


embedded image


N-[3-(5-{[(1-methylpiperidin-4- yl)methyl]amino}isoquinolin-3- yl)phenyl]prop-2-enamide
401.2





501


embedded image


N-[3-(quinoxalin-6-yl)phenyl]prop-2-enamide
276.1





502


embedded image


N-(3-{1H-pyrrolo[3,2-c]pyridin-6- yl}phenyl)prop-2-enamide
264.1





503


embedded image


N-[3-(isoquinolin-7-yl)phenyl]prop-2-enamide
275.1





504


embedded image


N-[3-(quinazolin-2-yl)phenyl]prop-2-enamide
276.1





505


embedded image


N-(3-{3-[(2-carbamoylethyl)carbamoyl]-1H- indazol-5-yl}phenyl)prop-2-enamide
378.1





506


embedded image


N-[3-(3-aminoquinolin-6-yl)phenyl]prop-2- enamide
290.1





507


embedded image


N-methyl-7-[3-(prop-2- enamido)phenyl]quinoline-2-carboxamide
332.1





508


embedded image


N-[3-(3-aminoisoquinolin-6-yl)phenyl]prop-2- enamide
290.2





509


embedded image


N-[3-(4-hydroxyquinolin-6-yl)phenyl]prop-2- enamide
291.1





510


embedded image


N-methyl-7-[3-(prop-2- enamido)phenyl]quinazoline-2-carboxamide
333.1





511


embedded image


7-[3-(prop-2-enamido)phenyl]quinoline-2- carboxamide
318.1





512


embedded image


N-(2-cyanoethyl)-5-[3-(prop-2- enamido)phenyl]-1H-indazole-3-carboxamide
360.1





513


embedded image


N-{3-[4-(ethylamino)quinolin-6- yl]phenyl}prop-2-enamide
318.2





514


embedded image


N-(3-{4-[(2-cyano-2- methylethyl)amino]quinolin-6-yl}phenyl)prop- 2-enamide
357.1





515


embedded image


N-[3-(4-methoxyquinolin-6-yl)phenyl]prop-2- enamide
305.1





516


embedded image


N-[3-(1-methyl-4-oxo-1,4-dihydroquinolin-6- yl)phenyl]prop-2-enamide
305.1





517


embedded image


N-(3-{2-[(2-methoxyethyl)amino]quinazolin- 7-yl}phenyl)prop-2-enamide
349.2





518


embedded image


7-[3-(prop-2-enamido)phenyl]quinazoline-2- carboxamide
319.1





519


embedded image


N-(1-methylpiperidin-4-yl)-7-[3-(prop-2- enamido)phenyl]quinazoline-2-carboxamide
416.2





520


embedded image


N-(1-methylpiperidin-3-yl)-7-[3-(prop-2- enamido)phenyl]quinazoline-2-carboxamide
416.1





521


embedded image


N-[3-(3-methoxy-1H-indazol-5- yl)phenyl]prop-2-enamide
294.1





522


embedded image


N-{3-[2-(methylamino)quinolin-7- yl]phenyl}prop-2-enamide
304.2





523


embedded image


4-amino-N-methyl-6-[3-(prop-2- enamido)phenyl]quinoline-3-carboxamide
347.1





524


embedded image


N-(1-methylpiperidin-4-yl)-7-[3-(prop-2- enamido)phenyl]quinoline-2-carboxamide
415.2





525


embedded image


N-{3-[2-(benzylamino)quinolin-7- yl]phenyl}prop-2-enamide
380.1





526


embedded image


N-(3-{2-[(1-methylpiperidin-4- yl)amino]quinolin-7-yl}phenyl)prop-2- enamide
387.2





527


embedded image


N-[3-(7-chloro-1H-indazol-5-yl)phenyl]prop- 2-enamide
297.9





528


embedded image


N-[3-(1,3-benzoxazol-5-yl)phenyl]prop-2- enamide
265  





529


embedded image


N-[3-(1,3-benzothiazol-5-yl)phenyl]prop-2- enamide
280.9





530


embedded image


N-[3-(1,3-benzothiazol-6-yl)phenyl]prop-2- enamide
280.9





531


embedded image


N-[3-(4-aminoquinazolin-6-yl)phenyl]prop-2- enamide
291  





532


embedded image


N-[3-(4-aminoquinazolin-7-yl)phenyl]prop-2- enamide
290.9





533


embedded image


N-[3-(3-amino-1H-indazol-5-yl)phenyl]prop- 2-enamide
279  





534


embedded image


N-{3-[3-chloro-4-(methylamino)quinolin-6- yl]phenyl}prop-2-enamide
337.9





535


embedded image


N-(3-{2-[(2-hydroxyethyl)amino]quinazolin-7- yl}phenyl)prop-2-enamide
335.1





536


embedded image


N-(3-{2-[(2-cyanoethyl)amino]quinazolin-7- yl}phenyl)prop-2-enamide
344.1





537


embedded image


N-(3-{7-[(methylcarbamoyl)methyl]-7H- pyrrolo[2,3-d]pyrimidin-2-yl}phenyl)prop-2- enamide
336.1





538


embedded image


N-{3-[7-(2-methoxyethyl)-7H-pyrrolo [2,3- d]pyrimidin-2-yl]phenyl}prop-2-enamide
323.1





539


embedded image


N-{3-[2,4-bis(methylamino)quinazolin-7- yl]phenyl}prop-2-enamide
334.1





540


embedded image


N-[3-(2,4-diaminoquinazolin-7- yl)phenyl]prop-2-enamide
306.1





541


embedded image


N-[3-(2-methoxyquinolin-7-yl)phenyl]prop-2- enamide
305.1





542


embedded image


N-(3-{7-[2-(methylcarbamoyl)ethyl]-7H- pyrrolo[2,3-d]pyrimidin-2-yl}phenyl)prop-2- enamide
350.1





543


embedded image


N-[3-(3-aminoquinoxalin-6-yl)phenyl]prop-2- enamide
291.1





544


embedded image


N-[3-(4-oxo-3,4-dihydroquinazolin-7- yl)phenyl]prop-2-enamide
292.1





545


embedded image


N-(3-{4-[(2-methoxyethyl)amino]-2- (methylamino)quinazolin-7-yl}phenyl)prop-2- enamide
378.1





546


embedded image


N-methyl-5-[3-(prop-2-enamido)phenyl]-1H- pyrazolo[3,4-c]pyridine-3-carboxamide
322.1





447


embedded image


N-[3-(2,4-diaminoquinazolin-6- yl)phenyl]prop-2-enamide
306  





548


embedded image


N-(2-methoxyethyl)-5-[3-(prop-2- enamido)phenyl]-1H-pyrazolo[3,4-c]pyridine- 3-carboxamide
366.1





549


embedded image


5-[3-(prop-2-enamido)phenyl]-1H- pyrazolo[3,4-c]pyridine-3-carboxamide
308  





550


embedded image


N-(2-cyanoethyl)-5-[3-(prop-2- enamido)phenyl]-1H-pyrazolo[3,4-c]pyridine- 3-carboxamide
361  





551


embedded image


N-(3-{4-[(2-cyanoethyl)amino]-2- (methylamino)quinazolin-7-yl}phenyl)prop-2- enamide
373.1





552


embedded image


N-{3-[5-(methylamino)isoquinolin-3- yl]phenyl}prop-2-enamide
304.1





553


embedded image


N-[3-(2-aminoquinazolin-7-yl)phenyl]-2- fluoroprop-2-enamide
309.1





554


embedded image


2-fluoro-N-{3-[2-(methylamino)quinazolin-7- yl]phenyl}prop-2-enamide
323.1





555


embedded image


7-[3-(2-fluoroprop-2-enamido)phenyl]-N- methylquinazoline-2-carboxamide
351.1





556


embedded image


N-[3-(2-aminoquinolin-7-yl)phenyl]-2- fluoroprop-2-enamide
308.1





557


embedded image


2-fluoro-N-(3-{3-methyl-1H-pyrazolo[3,4- c]pyridin-5-yl}phenyl)prop-2-enamide
297.1





558


embedded image


2-fluoro-N-{3-[4-(methylamino)quinolin-6- yl]phenyl}prop-2-enamide
322.1





559


embedded image


7-[3-(2-fluoroprop-2- enamido)phenyl]quinazoline-2-carboxamide
337.1









Example 13: Method M
Route 1: General Scheme



embedded image


embedded image


Step 1) Preparation of 5-chloro-3-iodo-1H-pyrazolo[3,4-c]pyridine



embedded image


To a solution of 5-chloro-1H-pyrazolo[3,4-c]pyridine (1 g, 6.51 mmol, 1 eq) in DMF (10 mL) was added NIS (2.2 g, 9.77 mmol, 1.5 eq). The reaction mixture was stirred at 25° C. for 1 hr. The reaction mixture was poured into water (20 mL) and extracted with EtOAc (3×10 mL). The combined organic layer were washed with brine (3×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 1/1) to afford the title compound (1.2 g, 65.9% yield) as a yellow solid.


Step 2) Preparation of 2-[(5-chloro-3-iodo-pyrazolo[3,4-c]pyridin-1-yl)methoxy]ethyl-trimethyl-silane



embedded image


To a solution of 5-chloro-3-iodo-1H-pyrazolo[3,4-c]pyridine (1 g, 3.58 mmol, 1 eq) in THF (2 mL) was added NaH (214.7 mg, 5.37 mmol, 60% purity, 1.5 eq) at 0° C. The reaction mixture was stirred at 0° C. for 0.5 h. Then SEMCl (715.9 mg, 4.29 mmol, 759.96 μL, 1.2 eq) was added. The resulting reaction mixture was stirred at 0° C. for further 1 hr. The reaction mixture was poured into saturated NH4Cl (100 mL) and extracted with EtOAc (3×50 mL). The combined organic layer were washed with brine (3×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound (1.3 g, 88.7% yield) as a yellow solid.


Step 3) Preparation of Methyl 5-chloro-1-(2-trimethylsilylethoxymethyl)pyrazolo[3,4-c]pyridine-3-carboxylate



embedded image


To a solution of 2-[(5-chloro-3-iodo-pyrazolo[3,4-c]pyridin-1-yl)methoxy]ethyl-trimethyl-silane (0.5 g, 1.22 mmol, 1 eq) in DMF (4 mL) and MeOH (1 mL) were added TEA (370.5 mg, 3.66 mmol, 509.56 μL, 3 eq) and Pd(dppf)Cl2 (89.3 mg, 122.03 μmol, 0.1 eq). The reaction mixture was stirred at 50° C. for 8 hrs under CO at 15 psi. LCMS showed that the reaction was complete. The reaction mixture was poured into water (150 mL) and extracted with EtOAc (3×150 mL). The combined organic layer were washed with brine (3×150 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=1/0 to 10:1) to afford the title compound (0.35 g, 83.9% yield) as a yellow solid.


Step 4) Preparation of Methyl 5-(3-amino-5-chloro-phenyl)-1-(2-trimethylsilylethoxymethyl) pyrazolo[3,4-c]pyridine-3-carboxylate



embedded image


To a solution of methyl 5-chloro-1-(2-trimethylsilylethoxymethyl) pyrazolo[3,4-c]pyridine-3-carboxylate (0.2 g, 585.03 μmol, 1 eq) and 3-chloro-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (178 mg, 702.03 μmol, 1.2 eq) in dioxane (4 mL) and H2O (1 mL) were added dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (27.3 mg, 58.5 μmol, 0.1 eq), Cs2CO3 (571.8 mg, 1.76 mmol, 3 eq) and [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (24.5 mg, 29.25 μmol, 0.05 eq). The reaction mixture was stirred at 100° C. for 1 hr under N2. The reaction mixture were poured into water (15 mL) and extracted with EtOAc (3×15 mL). The combined organic layer were washed with brine (3×15 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1:1) to afford the title compound (0.11 g, 43.4% yield) as a yellow oil.


Step 5) Preparation of Methyl 5-(3-amino-5-chloro-phenyl)-1-(2-trimethylsilylethoxymethyl) pyrazolo[3,4-c]pyridine-3-carboxylate



embedded image


To a solution of methyl 5-(3-amino-5-chloro-phenyl)-1-(2-trimethylsilylethoxymethyl)pyrazolo[3,4-c]pyridine-3-carboxylate (0.9 g, 2.08 mmol, 1 eq) in DCM (18 mL) were added TEA (631 mg, 6.24 mmol, 867.96 μL, 3 eq) and prop-2-enoyl chloride (376.3 mg, 4.16 mmol, 338.98 μL, 2 eq) in DCM (0.5 mL) at 0° C. The resulting reaction mixture was stirred at 0° C. for 0.5 hr under N2. The reaction mixture were poured into ice water (100 mL) and extracted with DCM (3×50 mL). The combined organic layer was washed with brine (3×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 1/1) to afford the title compound (0.7 g, 69.2% yield) as a yellow solid.


Step 6) Preparation of 5-[3-chloro-5-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilyl ethoxymethyl)pyrazolo[3,4-c]pyridine-3-carboxylic acid



embedded image


To a solution of methyl 5-[3-chloro-5-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilyl ethoxymethyl)pyrazolo[3,4-c]pyridine-3-carboxylate (0.5 g, 1.03 mmol, 1 eq) in THF (12.5 mL) and H2O (3.1 mL) was added LiOH·H2O (430.8 mg, 10.27 mmol, 10 eq). The reaction mixture was stirred at 30° C. for 3 hrs. The reaction mixture were poured into ice water (20 mL), adjusted to pH=6 with saturated citric acid and extracted with EtOAc (3×30 mL). The combined organic layer were washed with brine (3×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the crude product (0.5 g) as a yellow solid.


Step 7) Preparation of 5-[3-chloro-5-(prop-2-enoylamino)phenyl]-N-(1-methyl-4-piperidyl)-1-(2-trimethylsilylethoxymethyl)pyrazolo[3,4-c]pyridine-3-carboxamide



embedded image


To a solution of 5-[3-chloro-5-(prop-2-enoylamino)phenyl]-1-(2-trimethylsilylethoxymethyl) pyrazolo[3,4-c]pyridine-3-carboxylic acid (0.13 g, 274.84 μmol, 1 eq) and 1-methylpiperidin-4-amine (47.1 mg, 412.27 μmol, 1.5 eq) in DMF (2 mL) were added TEA (83.4 mg, 824.53 μmol, 114.76 μL, 3 eq) and T3P (262.4 mg, 412.27 μmol, 245.19 μL, 50% purity, 1.5 eq). The reaction mixture was stirred at 25° C. for 1 hr under N2. The reaction mixture were poured into water (15 mL) and extracted with EtOAc (3×15 mL). The combined organic layer were washed with brine (3×15 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=8:1) to afford the title compound (0.11 g, 70.3% yield) as a white solid.


Step 8)
Preparation of 5-[3-chloro-5-(prop-2-enamido)phenyl]-N-(1-methylpiperidin-4-yl)-1H-pyrazolo[3,4-c]pyridine-3-carboxamide (Compound 565)



embedded image


To a solution of 5-[3-chloro-5-(prop-2-enoylamino)phenyl]-N-(1-methyl-4-piperidyl)-1-(2-trimethylsilylethoxymethyl)pyrazolo[3,4-c]pyridine-3-carboxamide (0.05 g, 87.85 μmol, 1 eq) in EtOH (0.3 mL) was added concentrated HCl (8.7 mg, 87.85 μmol, 8.49 μL, 37% purity, 1 eq). The reaction mixture was stirred at 50° C. for 1 hr. The reaction mixture was concentrated in vacuo. The residue was purified by prep-HPLC to afford the title compound (23.8 mg, 29.7% yield) as a white solid. LC-MS (ES+, m/z): 439.1.


Route 2: General Scheme



embedded image


Step 1) Preparation of N-[3-chloro-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide



embedded image


To a solution of 3-chloro-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (300 mg, 1.18 mmol) and Et3N (358.5 mg, 3.55 mmol) in DCM (10 mL) at 0° C. was added a solution of prop-2-enoyl chloride (128.5 mg, 1.42 mmol) in DCM (0.5 mL). The resulting solution was stirred at 0° C. for 2 h. The reaction mixture was diluted with water (30 mL) and extracted with DCM (3×20 mL). The combined organic phase was washed with brine (3×20 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by chromatography on silica gel eluting with 0-80% EtOAc/PE to afford the title compound (0.145 g, Yield 39%) as a white solid.


Step 2) (Compound 573) Preparation of N-[3-(4-aminoquinolin-7-yl)-5-chlorophenyl]prop-2-enamide



embedded image


To a solution of 7-bromoquinolin-4-amine (33 mg, 147.94 μmol) in dioxane (2 mL) and water (0.4 mL) were added N-[3-chloro-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (50.1 mg, 162.73 μmol), Cs2CO3 (144.2 mg, 443.81 μmol) and PdCl2dppf (12.1 mg, 14.79 μmol). The reaction was heated at 100° C. for 40 min in a microwave. The reaction mixture was passed through a celite pad, and 2 mL of EDTA was added. The resulting solution was stirred at r.t. for 30 minutes. The solution was washed with brine. The organic phases was dried over anhydrous sodium sulfate. The solvent was removed in vacuo. The residue was purified by reverse phase HPLC using a gradient of water 0.1% FA/acetonitrile 0.1% FA to afford the title compound (9 mg, Yield 18%). FC-MS: [M+H]+323.9


Route 3: General Scheme



embedded image


Step 1—3-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline



embedded image


To a mixture of 3-bromo-5-methyl-aniline (2 g, 10.75 mmol, 1 eq) in dioxane (10 mL) was added KOAc (5.27 g, 53.75 mmol, 5 eq), Pin2B2 (4.09 g, 16.12 mmol, 1.5 eq) and Pd(dppf)Cl2 (786.6 mg, 1.07 mmol, 0.1 eq) under N2. Then the mixture was stirred at 100° C. for 1 h. LCMS showed ˜60% of the starting material remaining. Then additional Pin2B2 (5.46 g, 21.5 mmol, 2 eq) was added and the mixture was stirred at 100° C. for further 2 h. The reaction mixture was poured into saturated EDTA (50 mL) and stirred for 60 min. The aqueous phase was extracted with EtOAc (3×30 mL). The combined organic layer was washed with brine (3×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by silica gel chromatography (SiO2, PE:EtOAc=10:1, 3:1) to afford the title compound (3 g, 7.72 mmol, 71.83% yield, 60% purity) as a white solid. LCMS (ES+, m/z): 234.1 [(M+H)+]1H NMR (400 MHz, DMSO-d6) δ=6.74 (s, 1H), 6.66 (s, 1H), 6.48 (s, 1H), 4.93 (s, 2H), 2.15 (s, 3H), 1.26 (s, 12H).


Step 2—N-[3-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide



embedded image


To a solution of 3-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (2.3 g, 5.92 mmol, 6.20 μL, 1 eq) in DCM (20 mL) was added TEA (1.2 g, 11.84 mmol, 1.65 mL, 2 eq) and prop-2-enoyl chloride (803.7 mg, 8.88 mmol, 724.05 μL, 1.5 eq) at 0° C. The reaction mixture was stirred at 0° C. for 1 h. TLC showed that the reaction was complete. The reaction mixture was poured into H2O (60 mL) and the aqueous phase was extracted with DCM (3×50 mL). The combined organic layer was washed with brine (3×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by silica gel chromatography (SiO2, PE:EtOAc=10:1, 5:1) to afford the title compound (1.3 g, 4.53 mmol, 76.47% yield) as a white solid. 1H NMR (400 MHz, DMSO-d6) 5=10.05 (s, 1H), 7.77 (s, 1H), 7.67 (s, 1H), 7.20 (s, 1H), 6.41 (dd, J=10.0, 17.2 Hz, 1H), 6.24 (dd, J=2.0, 17.2 Hz, 1H), 5.77-5.71 (dd, J=2.0, 10.0 Hz, 1H), 2.29 (s, 3H), 1.28 (s, 12H).


Step 3—N-[3-(4-amino-6-quinolyl)-5-methyl-phenyl]prop-2-enamide



embedded image


To a solution of N-[3-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (100 mg, 348.24 μmol, 1.2 eq), 6-bromoquinolin-4-amine (64.7 mg, 290.2 μmol, 1 eq) in dioxane (3 mL), H2O (0.75 mL) were added Cs2CO3 (283.7 mg, 870.59 μmol, 3 eq), [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium; dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (12.1 mg, 14.51 μmol, 0.05 eq), dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (13.5 mg, 29.02 μmol, 0.1 eq) under N2. The reaction mixture was stirred at 80° C. for 1 h. The reaction mixture was poured into saturated EDTA (20 mL) and stirred for 60 min. The aqueous phase was extracted with EtOAc (3×15 mL). The combined organic layer was washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by prep-HPLC to afford the title compound (10.1 mg, 33.29 μmol, 11.47% yield, 100% purity) as a white solid. 304.1. 1H NMR (400 MHz, DMSO-d6) δ=10.24 (s, 1H), 8.46 (s, 1H), 8.32 (d, J=5.6 Hz, 1H), 7.95-7.79 (m, 3H), 7.55 (s, 1H), 7.38 (s, 1H), 7.28 (s, 2H), 6.60 (d, J=5.6 Hz, 1H), 6.48 (dd, J=10.0, 16.8 Hz, 1H), 6.28 (dd, J=2.0, 17.2 Hz, 1H), 5.78 (dd, J=1.6, 10.0 Hz, 1H), 2.40 (s, 3H)


Step 4—N-[3-methyl-5-(3-methyl-1H-pyrazolo[3,4-c]pyridin-5-yl)phenyl]prop-2-enamide



embedded image


To a solution of N-[3-methyl-5-[3-methyl-1-(2-trimethylsilylethoxymethyl) pyrazolo[3,4-c]pyridin-5-yl]phenyl]prop-2-enamide (80 mg, 189.31 μmol, 1 eq) in EtOH (2 mL) was added concentrated HCl (1 mL). The reaction mixture was stirred at 50° C. for 1 h. The reaction mixture was poured into H2O (10 mL) and adjusted to pH=7 with saturated Na2CO3. The aqueous phase was extracted with EtOAc (3×15 mL). The combined organic layer was washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by prep-HPLC to afford the title compound (6.3 mg, 21.55 μmol, 11.38% yield, 100% purity) as a white solid. 293.1. 1H NMR (400 MHz, DMSO-d6) 5=13.20 (brs, 1H), 10.17 (s, 1H), 9.01 (s, 1H), 8.21 (d, J=4.4 Hz, 2H), 7.67 (s, 1H), 7.60 (s, 1H), 6.47 (dd, J=10.0, 17.2 Hz, 1H), 6.27 (dd, J=2.0, 16.8 Hz, 1H), 5.76 (dd, J=2.0, 10.10 Hz, 1H), 2.59 (s, 3H), 2.39 (s, 3H) PGP-1139 €3


Route 4: General Scheme



embedded image


Step 1—N-[3-methyl-5-[3-methyl-1-(2-trimethylsilylethoxymethyl)indazol-5-yl]phenyl]prop-2-enamide



embedded image


To a solution of N-[3-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (126.2 mg, 439.47 μmol, 1 eq) and 2-[(5-bromo-3-methyl-indazol-1-yl)methoxy]ethyl-trimethyl-silane (0.15 g, 439.47 μmol, 1 eq) in dioxane (4 mL) and H2O (1 mL) was added Na2CO3 (139.7 mg, 1.32 mmol, 3 eq) and Pd(dppf)Cl2 (16.1 mg, 21.97 μmol, 0.05 eq). The reaction mixture was stirred at 80° C. for 1 h under N2. The reaction mixture was poured into 15 mL saturated EDTA and stirred at 25° C. for 1 hr. The mixture was extracted with EtOAc (2×20 mL). The combined organic layer was washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give the residue. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1:1) to afford the title compound N-[3-methyl-5-[3-methyl-1-(2-trimethylsilylethoxymethyl)indazol-5-yl]phenyl]prop-2-enamide (0.12 g, 170.78 μmol, 38.86% yield, 60% purity) as a colorless oil. LC-MS (ES+, m/z): 422.3 [(M+H)+].


Step 2—N-[3-methyl-5-(3-methyl-1H-indazol-5-yl)phenyl]prop-2-enamide



embedded image


To a solution of N-[3-methyl-5-[3-methyl-1-(2-trimethylsilylethoxymethyl)indazol-5-yl]phenyl]prop-2-enamide (0.04 g, 94.88 μmol, 1 eq) in EtOH (0.2 mL) was added aq.HCl (1 M aqueous solution, 800.00 μL, 8.43 eq). The reaction mixture was stirred at 50° C. for 4 hr. TLC showed that the reaction was complete. The reaction was concentrated under N2 to give the residue. The residue was purified by prep-HPLC (FA condition) to afford the title compound N-[3-methyl-5-(3-methyl-1H-indazol-5-yl)phenyl]prop-2-enamide (0.0037 g, 12.26 μmol, 12.92% yield, 96.5% purity) as a white solid. LC-MS (ES+, m/z): 292.1 [(M+H)+]. 1H NMR (400 MHz, DMSO-d6) δ=12.68 (br s, 1H), 10.15 (s, 1H), 7.90 (s, 1H), 7.80 (s, 1H), 7.62-7.57 (m, 1H), 7.55-7.51 (m, 1H), 7.49 (s, 1H), 7.25 (s, 1H), 6.46 (dd, 0.7=10.1, 17.0 Hz, 1H), 6.27 (dd, J=2.0, 17.0 Hz, 1H), 5.79-5.74 (m, 1H), 2.55-2.52 (m, 3H), 2.37 (s, 3H)


Route 4: General Scheme



embedded image


Step 1) Preparation of 3-methoxy-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline



embedded image


To a solution of 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (3.77 g, 14.85 mmol, 1.5 eq) in dioxane (40 mL) were added KOAc (2.91 g, 29.7 mmol, 3 eq), Pd(dppf)Cl2 (724.3 mg, 989.86 μmol, 0.1 eq) and 3-bromo-5-methoxy-aniline (2 g, 9.9 mmol, 1 eq). The mixture was stirred at 100° C. for 2 hrs. LC-MS showed that the reaction completed. The reaction mixture was filtered through celite. The filter cake was washed with EtOAc (2×20 mL) and the filtrate was concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=1/0 to 4:1) to afford the title compound (1.8 g, 70.1% yield) as a white solid.


Step 2) Preparation of N-[3-methoxy-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide



embedded image


To a solution of 3-methoxy-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (600 mg, 2.41 mmol, 1 eq) in DCM (5 mL) were added TEA (731.2 mg, 7.23 mmol, 1 mL, 3 eq) and prop-2-enoyl chloride (436 mg, 4.82 mmol, 392.78 μL, 2 eq) at 0° C. The mixture was stirred at 0° C. for 1 hr. LC-MS showed that the reaction was complete. The reaction mixture was poured into water (50 mL). The mixture was extracted with DCM (3×30 mL). The combined organic layer was washed with brine (30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=1/0 to 4:1) to afford the title compound (380 mg, 52.0% yield) as a yellow solid.


Step 3) (Compound 599) Preparation of N-{3-methoxy-5-[4-(methylamino)quinolin-6-yl]phenyl}prop-2-enamide



embedded image


To a solution of N-[3-methoxy-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (76.7 mg, 253.07 μmol, 1.2 ef) in dioxane (4 mL) and H2O (1 mL) were added Cs2CO3 (206.1 mg, 632.67 μmol, 3 eq), RuPhos (19.7 mg, 42.18 μmol, 0.2 eq), [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (17.6 mg, 21.09 μmol, 0.1 eq) and 6-bromo-N-methyl-quinolin-4-amine (50 mg, 210.89 μmol, 1 eq). The mixture was stirred at 100° C. for 1 hr under N2. LC-MS showed that the reaction was complete. The reaction mixture was poured into saturated EDTA (50 mL) and stirred at 25° C. for 1 hr. The mixture was extracted with EtOAc (3×30 mL). The combined organic layer was washed with brine (30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford the title compound (22.7 mg, 32.3% yield) as a white solid. LC-MS (ES+, m/z): 334.1.


Route 5: General Scheme



embedded image


Step 1—3-fluoro-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline



embedded image


To a solution of 3-bromo-5-fluoro-aniline (1 g, 5.3 mmol, 1 eq) and 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (2.67 g, 10.5 mmol, 2 eq) in dioxane (10 mL) was added KOAc (1.55 g, 15.8 mmol, 3 eq) and Pd(dppf)Cl2 (385 mg, 526 μmol, 0.1 eq) at 25° C. The reaction mixture was stirred at 90° C. for 1 h. TLC showed that the reaction was complete. The reaction mixture was poured into 100 mL water, extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (3×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by prep-TLC (SiO2, PE:EtOAc=3:1) to afford the title compound (2.3 g, crude) as a brown oil. LC-MS (ES+, m/z): 238.1 [(M+H)+].


Step 2—N-[3-fluoro-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide



embedded image


To a solution of 3-fluoro-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (0.6 g, 1.2 mmol, 46% purity, 1 eq) in DCM (5 mL) was added TEA (589 mg, 5.8 mmol, 810 μL, 5 eq) and prop-2-enoyl chloride (116 mg, 1.3 mmol, 105 μL, 1.1 eq) at 0° C. The reaction mixture was stirred at 0° C. for 0.5 hour. The reaction mixture was concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1:1) to afford the title compound (0.34 g, 893 μmol, 76.7% yield, 76.5% purity) as a brown oil. LC-MS (ES+, m/z): 291.1 [(M+H)+].


Step 3—N-[3-(2-aminoquinazolin-7-yl)-5-fluoro-phenyl]prop-2-enamide



embedded image


To a solution of N-[3-fluoro-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (132 mg, 348 μmol, 76.5% purity, 1 eq), 7-bromoquinazolin-2-amine (86 mg, 382 μmol, 1.1 eq) in dioxane (4 mL) H2O (1 mL) was added Cs2CO3 (340 mg, 1. mmol, 3 eq), [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (29.1 mg, 34.75 μmol, 0.1 eq) 2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium; dicyclohexyl-[2-(2,6-isopropoxyphenyl)phenyl]phosphane (16 mg, 35 μmol, 0.1 eq) at 25° C. The reaction mixture was stirred at 90° C. for 1 hour. The reaction mixture was poured into saturated EDTA (60 mL) and stirred for 60 min. The aqueous phase was extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (3×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound (0.08 g, crude) as a light yellow solid. LC-MS (ES+, m/z): 309.1 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) 5=10.51 (s, 1H), 9.15 (s, 1H), 8.18 (s, 1H), 7.90 (d, J=8.4 Hz, 1H), 7.80 (s, 1H), 7.67-7.75 (m, 1H), 7.62 (s, 1H), 7.49 (dd, J=8.4, 1.6 Hz, 1H), 7.36 (d, J=10.0 Hz, 1H), 6.93 (s, 2H), 6.41-6.49 (m, 1H), 6.34 (d, J=2.0 Hz, 1H), 6.30 (d, J=2.0 Hz, 1H), 6.23-6.37 (m, 1H), 5.81-5.86 (m, 1H), 2.52-2.58 (m, 1H).


Step 1—3-fluoro-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline



embedded image


A solution of 3-bromo-5-fluoro-aniline (1.5 g, 7.89 mmol, 1 eq) in dioxane (40 mL) was added 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (4.01 g, 15.8 mmol, 2 eq), KOAc (2.32 g, 23.7 mmol, 3 eq), and Pd(dppf)Cl2 (577 mg, 789 μmol, 0.1 eq). Then degassed and purged with N2 3 times. The resulting reaction mixture was stirred at 100° C. for 2 hours under N2 atmosphere. The reaction mixture was filtered to remove the insoluble substance and the filtrate was concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=5/1 to 0/1) to afford the title compound (1.5 g, 6.33 mmol, 80.15% yield) as a light yellow solid. LC-MS (ES+, m/z): 238.2 [(M+H)+].


Step 2—N-(3-fluoro-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl) acrylamide



embedded image


To a solution of 3-fluoro-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (400 mg, 1.69 mmol, 1 eq) in DCM (10 mL) was added TEA (512 mg, 5.06 mmol, 704 μL, 3 eq) and prop-2-enoyl chloride (167 mg, 1.86 mmol, 151 μL, 1.1 eq). The reaction mixture was stirred at 0° C. for 1 hour. The reaction mixture was concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=20/1 to 10/1) to afford the title compound (400 mg, 1.37 mmol, 81.44% yield) as a white solid.


Step 3—N-(3-fluoro-5-(2-(methylamino)quinazolin-7-yl)phenyl)acrylamide



embedded image


To a solution of N-[3-fluoro-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (58.6 mg, 201 μmol, 1.2 eq) in dioxane (4 mL) and H2O (1 mL) was 7-bromo-N-methyl-quinazolin-2-amine (40 mg, 168 μmol, 1 eq), Cs2CO3 (164.2 mg, 504.02 μmol, 3 eq), RuPhos (15.6 mg, 33.6 μmol, 0.2 eq) and [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (14 mg, 16.8 μmol, 0.1 eq). The reaction mixture was degassed and purged with N2 3 times. Then stirred at 100° C. for 1 hour under N2 atmosphere. The reaction mixture was poured into saturated EDTA (30 mL) and stirred for 1 hour, extracted with EtOAc (3×20 mL). The combined organic layers were washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound (14.6 mg, 44.89 μmol, 26.72% yield, 99.1% purity) as a white solid. 323.1. 1H NMR (400 MHz, DMSO-d6) δ=10.46 (s, 1H), 9.12 (br s, 1H), 7.83-7.94 (m, 2H), 7.65-7.77 (m, 2H), 7.47-7.56 (m, 1H), 7.40 (br d, J=9.6 Hz, 2H), 6.39-6.52 (m, 1H), 6.25-6.37 (m, 1H), 5.77-5.91 (m, 1H), 2.92 (d, J=4.8 Hz, 3H).


Route 5



embedded image


Step 1—3-amino-5-bromo-N-methyl-benzamide



embedded image


To a solution of 3-amino-5-bromo-benzoic acid (2 g, 9.26 mmol, 1 eq) in DCM (40 mL) was added TEA (7.49 g, 74. mmol, 10.3 mL, 8 eq) and MeNH2 (3.13 g, 46.2 mmol, 5 eq, HCl). Then T3P (8.84 g, 13.8 mmol, 8.26 mL, 50% purity, 1.5 eq) was added at 0° C. The resulting reaction mixture was stirred at 20° C. for 2 hours. The reaction mixture poured into water 100 mL at 0° C. Then adjusting pH=8 with solid Na2CO3, extracted with DCM (3×150 mL). The combined organic layers were washed with brine (100 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound (2. g, crude) as a light yellow solid. LC-MS (ES+, m/z): 229.1 [(M+H)+].


Step 2—3-amino-N-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzamide



embedded image


A solution of 3-amino-5-bromo-N-methyl-benzamide (1 g, 3.49 mmol, 80% purity, 1 eq) in dioxane (40 mL) was added 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (1.77 g, 6.98 mmol, 2 eq), KOAc (1.03 g, 10.5 mmol, 3 eq) and Pd(dppf)Cl2 (255 mg, 349 μmol, 0.1 eq). The reaction mixture was degassed and purged with N2 3 times, and the reaction mixture was stirred at 100° C. for 2 hours under N2 atmosphere. The reaction mixture was filtered through Celite and the filter cake was washed with 50 mL EtOAc. The combined filtrates were concentrated to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=5/1 to 0/1) to afford the title product (900 mg, 2.93 mmol, 83.9% yield, 90% purity) as a light yellow solid. LC-MS (ES+, m/z): 277.2 [(M+H)+].


Step 3—3-amino-5-X—N-methylbenzamide



embedded image


A solution of 3-amino-N-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzamide (148 mg, 535 μmol, 1.2 eq) in dioxane (4 mL) and H2O (1 mL) was added 7-bromoquinazolin-2-amine (100 mg, 446 μmol, 1 eq), RuPhos (41 mg, 89 μmol, 0.2 eq), Cs2CO3 (436 mg, 1.34 mmol, 3 eq) and [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (37 mg, 44 μmol, 0.1 eq). The reaction mixture was degassed and purged with N2 3 times. The reaction mixture was stirred at 100° C. for 1 hour under N2 atmosphere. The reaction mixture was poured into saturated EDTA (30 mL) and stirred for 1 hour, extracted with EtOAc (3×20 mL). The combined organic layers were washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was washed with EtOAc (2 mL) to afford the title compound (50 mg, crude) as a light yellow solid. LC-MS (ES+, m/z): 294.2 [(M+H)+]


Step 4—3-acrylamido-5-X—N-methylbenzamide



embedded image


Procedure for R=03: To a solution of 3-amino-5-(2-aminoquinazolin-7-yl)-N-methyl-benzamide (40 mg, 136 μmol, 1 eq) in DCM (4 mL) and DMF (1 mL) was added TEA (41 mg, 409 μmol, 56 μL, 3 eq) and prop-2-enoyl chloride (14 mg, 163 μmol, 13 μL, 1.2 eq) at 0° C. The reaction mixture was stirred at 0° C. for 1 hour. The reaction mixture was poured into 50 mL water then adjusting the pH=8 with saturated Na2CO3. The mixture was extracted with DCM (3×15 mL). The combined organic layers were washed with brine (10 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound (3 mg, 8.35 μmol, 6.12% yield, 96.7% purity) as a white solid. 6.12% yield, LC-MS (ES+, m/z): 348.2 [(M+H)+]1H NMR (400 MHz, DMSO-d6) δ=10.45 (s, 1H), 9.15 (s, 1H), 8.66 (br d, J=4.4 Hz, 1H), 8.32 (s, 1H), 8.15 (s, 1H), 7.88-7.99 (m, 2H), 7.72 (s, 1H), 7.55 (br d, J=8.4 Hz, 1H), 6.91 (s, 2H), 6.40-6.53 (m, 1H), 6.26-6.37 (m, 1H), 5.81 (br d, J=10.8 Hz, 1H), 2.82 (br d, J=4.0 Hz, 3H). 23.2% yield, LC-MS (ES+, m/z): 335.1 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) 5=10.43 (s, 1H), 8.59 (br d, J=4.4 Hz, 1H), 8.24 (s, 1H), 8.12 (s, 1H), 8.09 (s, 1H), 7.91 (d, J=4.4 Hz, 2H), 7.88 (d, J=8.4 Hz, 1H), 7.47 (dd, J=8.4, 1.2 Hz, 1H), 6.42-6.54 (m, 1H), 6.26-6.35 (m, 1H), 5.77-5.86 (m, 1H), 4.12 (s, 3H), 2.83 (d, J=4.4 Hz, 3H).


Route 6: General Scheme



embedded image


Step 1—3-amino-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzonitrile



embedded image


To a solution of 3-amino-5-bromo-benzonitrile (2 g, 10.1 mmol, 1 eq) in dioxane (40 mL) was added 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (5.16 g, 20.3 mmol, 2 eq), KOAc (2.99 g, 30.4 mmol, 3 eq) and Pd(dppf)Cl2 (742 mg, 1.02 mmol, 0.1 eq). The reaction mixture was degassed and purged with N2 3 times. The resulting reaction mixture was stirred at 100° C. for 2 hours under N2 atmosphere. The reaction mixture was filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=5/1 to 0/1) to afford the title compound (1.3 g, 5.33 mmol, 52.47% yield) as a light yellow solid.


Step 2—3-amino-5-(2-X-quinazolin-7-yl)benzonitrile



embedded image


Procedure for R=10: To a solution of 3-amino-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzonitrile (168 mg, 688 μmol, 1.2 eq) in dioxane (4 mL) and H2O (1 mL) was added 7-bromoquinazoline (120 mg, 574 μmol, 1 eq), Cs2CO3 (561 mg, 1.72 mmol, 3 eq), [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (48 mg, 57 μmol, 0.1 eq) and RuPhos (53 mg, 114 μmol, 0.2 eq). The reaction mixture was degassed and purged with N2 3 times. Then stirred at 100° C. for 1 hour under N2 atmosphere. The reaction mixture poured into saturated EDTA (30 mL) and EtOAc (20 mL) was added. The solution was stirred for 1 hour. The insoluble substance was removed by filtration. The filtrate was concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound (40 mg, 154 μmol, 26.8% yield, 95% purity) as a white solid. LC-MS (ES+, m/z): 247.1 [(M+H)+].


Step 3—N-(3-cyano-5-(quinazolin-7-yl)phenyl)acrylamide



embedded image


To a solution of 3-amino-5-quinazolin-7-yl-benzonitrile (30 mg, 121 μmol, 1 eq) in DCM (5 mL) was added TEA (61 mg, 609 μmol, 84 μL, 5 eq) and the solution of prop-2-enoyl chloride (22 mg, 243 μmol, 19 μL, 2 eq) in DCM (1 mL) was added dropwise at 0° C. The resulting reaction mixture was stirred at 0° C. for 0.5 hour. The reaction mixture was poured into ice water (10 mL) at 0° C. The mixture was extracted with DCM (3×15 mL). The combined organic layers were washed with brine (10 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound ((6.3 mg, 18.9 μmol, 15.52% yield, 90.1% purity) as a white solid. LC-MS (ES+, m/z): 301.1 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) δ=10.42 (br s, 1H), 9.65 (s, 1H), 9.35 (s, 1H), 8.39 (s, 1H), 8.30 (s, 1H), 8.31 (d, J=7.6 Hz, 1H), 8.21 (s, 1H), 8.10 (d, J=8.4 Hz, 1H), 8.06 (s, 1H), 6.41-6.51 (m, 1H), 6.31-6.40 (m, 1H), 5.85 (dd, J=10.0, 1.6 Hz, 1H).


TABLE 13 shows compounds synthesized using methods described in EXAMPLE 13 above.









TABLE 13









embedded image


















LC-MS


Cpd. No.
Structure
IUPAC
(ES+, m/z)





560


embedded image


N-(3-chloro-5-{3-methyl-1H- pyrazolo[3,4-c]pyridin-5- yl}phenyl)prop-2-enamide
313.1





561


embedded image


N-[3-(4-aminoquinolin-6-yl)- 5-chlorophenyl]prop-2- enamide
324  





562


embedded image


N-[3-chloro-5-(3-methyl-1H- indazol-5-yl)phenyl]prop-2- enamide
312.1





563


embedded image


N-[3-(2-aminoquinazolin-7- yl)-5-chlorophenyl]prop-2- enamide
325.1





564


embedded image


N-(3-chloro-5-{2-[(1- methylpiperidin-4- yl)amino]quinazolin-7- yl}phenyl)prop-2-enamide
422.2





565


embedded image


5-[3-chloro-5-(prop-2- enamido)phenyl]-N-(1- methylpiperidin-4-yl)-1H- pyrazolo[3,4-c]pyridine-3- carboxamide
439.1





566


embedded image


5-[3-chloro-5-(prop-2- enamido)phenyl]-N-methyl- 1H-pyrazolo[3,4-c]pyridine-3- carboxamide
356.1





567


embedded image


5-[3-chloro-5-(prop-2- enamido)phenyl]-N-(2- methoxyethyl)-1H- pyrazolo[3,4-c]pyridine-3- carboxamide
400.1





568


embedded image


5-[3-chloro-5-(prop-2- enamido)phenyl]-1H- pyrazolo[3,4-c]pyridine-3- carboxamide
342.1





569


embedded image


N-{3-chloro-5-[2- (methylamino)quinazolin-7- yl]phenyl}prop-2-enamide
339  





570


embedded image


5-[3-chloro-5-(prop-2- enamido)phenyl]-N-[4- (dimethylamino)cyclohexyl]- 1H-pyrazolo[3,4-c]pyridine-3- carboxamide
467.2





571


embedded image


5-[3-chloro-5-(prop-2- enamido)phenyl]-N-(1- methylpiperidin-3-yl)-1H- pyrazolo[3,4-c]pyridine-3- carboxamide
439.1





572


embedded image


N-{3-chloro-5-[4- (methylamino)quinolin-6- yl]phenyl}prop-2-enamide
338  





573


embedded image


N-[3-(4-aminoquinolin-7-yl)- 5-chlorophenyl]prop-2- enamide
323.9





574


embedded image


7-[3-chloro-5-(prop-2- enamido)phenyl]quinazoline- 2-carboxamide
352.9





575


embedded image


5-[3-methyl-5-(prop-2- enamido)phenyl]-N-(1- methylpiperidin-4-yl)-1H- indazole-3-carboxamide
418.2





576


embedded image


N-(3-methyl-5-{3-methyl-1H- pyrazolo[3,4-c]pyridin-5- yl}phenyl)prop-2-enamide
293.1





577


embedded image


N-[3-methyl-5-(3-methyl-1H- indazol-5-yl)phenyl]prop-2- enamide
292.1





578


embedded image


N-[3-(4-aminoquinolin-6-yl)- 5-methylphenyl]prop-2- enamide
304.1





579


embedded image


N-[3-fluoro-5-(1-methyl-1H- indazol-6-yl)phenyl]prop-2- enamide
296.1





580


embedded image


N-[3-fluoro-5-(3-methyl-1H- indazol-5-yl)phenyl]prop-2- enamide
296.1





581


embedded image


N-[3-(2-aminoquinazolin-7- yl)-5-fluorophenyl]prop-2- enamide
309.1





582


embedded image


3-(2-aminoquinazolin-7-yl)-N- methyl-5-(prop-2- enamido)benzamide
348.2





583


embedded image


N-methyl-3-(1-methyl-1H- indazol-6-yl)-5-(prop-2- enamido)benzamide
335.1





584


embedded image


N-[3-fluoro-5-(quinazolin-7- yl)phenyl]prop-2-enamide
294.1





585


embedded image


N-{3-fluoro-5-[2- (methylamino)quinazolin-7- yl]phenyl}prop-2-enamide
323.1





586


embedded image


N-[3-cyano-5-(quinazolin-7- yl)phenyl]prop-2-enamide
301.1





587


embedded image


N-{3-fluoro-5-[4- (methylamino)quinolin-6- yl]phenyl}prop-2-enamide
322.1





588


embedded image


5-[3-fluoro-5-(prop-2- enamido)phenyl]-N-(1- methylpiperidin-4-yl)-1H- pyrazolo[3,4-c]pyridine-3- carboxamide
423.1





589


embedded image


N-[4- (dimethylamino)cyclohexyl]-5- [3-fluoro-5-(prop-2- enamido)phenyl]-1H- pyrazolo[3,4-c]pyridine-3- carboxamide
451.2





590


embedded image


5-[3-fluoro-5-(prop-2- enamido)phenyl]-N-(1- methylpiperidin-3-yl)-1H- pyrazolo[3,4-c]pyridine-3- carboxamide
423.2





591


embedded image


N-[3-(2-aminoquinazolin-7- yl)-5-cyanophenyl]prop-2- enamide
316.1





592


embedded image


7-[3-fluoro-5-(prop-2- enamido)phenyl]quinazoline- 2-carboxamide
337  





593


embedded image


N-{3-fluoro-5-[2- (methylamino)quinolin-7- yl]phenyl}prop-2-enamide
322  





594


embedded image


N-{3-fluoro-5-[1- (methylamino)isoquinolin-7- yl]phenyl}prop-2-enamide
322  





595


embedded image


N-[3-(4-aminoquinolin-7-yl)- 5-fluorophenyl]prop-2- enamide
308  





596


embedded image


5-[3-methoxy-5-(prop-2- enamido)phenyl]-N-(1- methylpiperidin-4-yl)-1H- indazole-3-carboxamide
434.2





597


embedded image


N-[3-(2-aminoquinazolin-7- yl)-5-methoxyphenyl]prop-2- enamide
321.2





598


embedded image


N-[3-methoxy-5-(1-methyl- 1H-indazol-6-yl)phenyl]prop- 2-enamide
308.1





599


embedded image


N-{3-methoxy-5-[4- (methylamino)quinolin-6- yl]phenyl}prop-2-enamide
334.1





600


embedded image


N-{3-methoxy-5-[2- (methylamino)quinazolin-7- yl]phenyl}prop-2-enamide
335.1





601


embedded image


7-[3-methoxy-5-(prop-2- enamido)phenyl]-N- methylquinazoline-2- carboxamide
363.1





602


embedded image


N-[3-(4-aminoquinolin-7-yl)- 5-methoxyphenyl]prop-2- enamide
319.9





603


embedded image


N-{3-methoxy-5-[1- (methylamino)isoquinolin-7- yl]phenyl}prop-2-enamide
333.9









Example 14: Method N



embedded image


Step 1—2-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline



embedded image


A mixture of 5-bromo-2-methyl-aniline (2 g, 10.75 mmol, 1 eq), 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (4.09 g, 16.12 mmol, 1.5 eq), KOAc (3.16 g, 32.25 mmol, 3 eq), Pd(dppf)Cl2 (786.6 mg, 1.07 mmol, 0.1 eq) in dioxane (30 mL), was degassed and purged with N2 3 times, and the mixture was stirred at 100° C. for 2 hours under N2 atmosphere. The reaction mixture was filtered through Celite and the filter cake was washed with EtOAc (2×20 mL). The combined organic layer was concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=0/1 to 8/1) to afford the title compound (1 g, 4.29 mmol, 50.00% yield) as a white solid. LC-MS (ES+, m/z): 234.2 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) δ ppm 6.98 (s, 1H), 6.91 (d, J=12 Hz, 1H), 6.79 (d, J=7.06 Hz, 1H), 6.77-6.79 (m, 1H), 4.80 (s, 2H), 2.05 (s, 3H), 1.26 (s, 12H).


Step 2—N-[2-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide



embedded image


To a solution of 2-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (500 mg, 2.14 mmol 1 eq) in DCM (5 mL) was added TEA (651.1 mg, 6.43 mmol, 895 μL, 3 eq). Then prop-2-enoyl chloride (213.5 mg, 2.36 mmol, 192 uL 1.1 eq) at was added dropwise 0° C. The mixture was stirred at 0° C. for 1 h. The reaction mixture was poured into water (50 mL). The mixture was extracted with EtOAc (3×30 mL). The combined organic layers were washed with brine (1×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=1/0 to 8/1) to afford the title compound (380 mg, 1.32 mmol, 61.70% yield) as a light yellow solid. LC-MS (ES+, m/z): 288.2 [(M+H)+]


Step 3—N-[2-[6-methyl-2-(2-pyridyl)pyrimidin-4-yl]sulfanylethyl]furan-2-carboxamide



embedded image


To a solution of N-[2-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (66.3 mg, 231.01 μmol, 1.1 eq) in dioxane (4 mL) and H2O (1 mL) was successively added Cs2CO3 (205.3 mg, 630. μmol, 3 eq), 7-bromo-N-methyl-quinazolin-2-amine (50 mg, 210. μmol, 1 eq), [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (17.6 mg, 21 μmol, 0.1 eq), RuPhos (19.6 mg, 42 μmol, 0.2 eq). The resulting reaction mixture was stirred at 100° C. for 1 hr under N2. LC-MS showed that the reaction was complete. The reaction mixture was poured into saturated EDTA (50 mL). The mixture was stirred at 25° C. for 1 h. The mixture was extracted with EtOAc (3×30 mL). The combined organic layers were washed with brine (1×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound (12.7 mg, 39.89 μmol, 18.99% yield, 100% purity) as a yellow solid. 319.1. 1H NMR (400 MHz, DMSO-d6) 5=9.59 (brs, 1H), 9.00-9.22 (m, 1H), 8.01 (br s, 1H), 7.86 (br d, J=7.6 Hz, 1H), 7.62-7.70 (m, 1H), 7.53 (br dd, J=20.0, 7.6 Hz, 2H), 7.27-7.40 (m, 2H), 6.49-6.73 (m, 1H), 6.29 (br d, J=17.2 Hz, 1H), 6.21-6.25 (m, 1H), 2.91 (br d, J=2.8 Hz, 3H), 2.22-2.32 (m, 3H).


Route 2: General Scheme



embedded image


Step 1—2-methoxy-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline



embedded image


A mixture of 5-bromo-2-methoxy-aniline (2 g, 9.9 mmol, 1 eq), 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (3.77 g, 14.85 mmol, 1.5 eq), KOAc (2.91 g, 29.7 mmol, 3 eq), Pd(dppf)Cl2 (724.3 mg, 989.86 μmol, 0.1 eq) in dioxane (30 mL), was degassed and purged with N2 3 times, and the mixture was stirred at 100° C. for 2 hr under N2 atmosphere. The reaction mixture was filtered through Celite and the filter cake was washed with EtOAc (2×20 mL). The combined filtrates were concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=0/1 to 8/1) to afford the title compound (2 g, 7.23 mmol, 90.00% yield, 90% purity) as a white solid. 1H NMR (400 MHz, DMSO-d6) δ=7.00 (d, J=1.6 Hz, 1H), 6.88-6.93 (m, 1H), 6.77 (d, 7=8.0 Hz, 1H), 4.66 (s, 2H), 3.77 (s, 3H), 1.25 (s, 12H).


Step 2—N-[2-methoxy-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide



embedded image


To a solution of 2-methoxy-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (500 mg, 2.01 mmol, 1 eq) in DCM (3 mL) was added TEA (609.3 mg, 6.02 mmol, 838 μL, 3 eq) and prop-2-enoyl chloride (199.8 mg, 2.21 mmol, 180 μL, 1.1 eq) at 0° C. The mixture was stirred at 0° C. for 1 hr. TLC indicated the reaction was complete. The reaction mixture was poured into cold water (50 mL). The mixture was extracted with DCM (3×30 mL). The combined organic layers were washed with brine (1×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=1/0 to 8/1) to afford the title compound (350 mg, 1.15 mmol, 57.52% yield) as a white solid.


Step 3—N-[5-(2-amino-7-quinolyl)-2-methoxy-phenyl]prop-2-enamide



embedded image


To a solution of N-[2-methoxy-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]prop-2-enamide (81.5 mg, 268.98 μmol, 1.2 eq) in dioxane (4 mL) and H2O (1 mL) was successively added Cs2CO3 (219.1 mg, 672.44 μmol, 3 eq), RuPhos (20.9 mg, 44.83 μmol, 0.2 eq), [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (18.8 mg, 22.41 μmol, 0.1 eq) and 7-bromoquinolin-2-amine (50 mg, 224.15 μmol, 1 eq). The mixture was stirred at 100° C. for 1 hr under N2 atmosphere. LC-MS showed that the reaction was complete. The reaction mixture was poured into saturated EDTA (50 mL). The mixture was stirred at 25° C. for 1 hr. The mixture was extracted with EtOAc (3×30 mL). The combined organic layers were washed with brine (1×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound (7.7 mg, 23.27 μmol, 10.38% yield, 96.5% purity) as a white solid. 1H NMR (400 MHz, DMSO-d6) 5=9.50 (s, 1H), 8.51 (br d, J=1.2 Hz, 1H), 7.89 (d, J=8.8 Hz, 1H), 7.68 (d, J=8.4 Hz, 1H), 7.61 (d, J=1.2 Hz, 1H), 7.49 (dd, J=8.4, 2.4 Hz, 1H), 7.39 (dd, J=8.0, 1.6 Hz, 1H), 7.17 (d, J=8.8 Hz, 1H), 6.70-6.80 (m, 2H), 6.43 (s, 2H), 6.27 (dd, J=16.0 Hz, 1H), 5.59-5.86 (m, 1H), 3.91 (s, 3H).


TABLE 14 shows compounds prepared using the methods described in EXAMPLE 14 above.









TABLE 14









embedded image


















LC-MS


Cpd. No.
Structure
IUPAC
(ES+, m/z)





604


embedded image


N-[2-methoxy-5-(1-methyl-1H- indazol-6-yl)phenyl]prop-2- enamide
308.1





605


embedded image


6-[4-methoxy-3-(prop-2- enamido)phenyl]-N-(1- methylpiperidin-4-yl)pyridine- 2-carboxamide
395.2





606


embedded image


N-[5-(2-aminoquinolin-7-yl)-2- methylphenyl]prop-2-enamide
304.1





607


embedded image


N-[5-(2-aminoquinolin-7-yl)-2- methoxyphenyl]prop-2-enamide
320.1





608


embedded image


N-{2-methyl-5-[2- (methylamino)quinazolin-7- yl]phenyl}prop-2-enamide
319.1





609


embedded image


N-{2-methoxy-5-[2- (methylamino)quinazolin-7- yl]phenyl}prop-2-enamide
335.1





610


embedded image


N-{2-methoxy-5-[4- (methylamino)quinolin-6- yl]phenyl}prop-2-enamide
334  





611


embedded image


6-[4-methoxy-3-(prop-2- enamido)phenyl]quinazoline-2- carboxamide
349  





612


embedded image


N-[5-(2,4-diaminoquinazolin-7- yl)-2-methoxyphenyl]prop-2- enamide
336  





613


embedded image


N-{5-[4- (dimethylamino)quinolin-6-yl]- 2-methoxyphenyl}prop-2- enamide
348  









Example 15: Method O
Route 1: General Scheme



embedded image


Step 1—N-(2-bromo-4-pyridyl)prop-2-enamide



embedded image


To a solution of 2-bromopyridin-4-amine (0.9 g, 5.2 mmol, 1 eq) in DCM (10 mL) was added TEA (2.63 g, 26.01 mmol, 3.62 mL, 5 eq) and prop-2-enoyl chloride (565 mg, 6.24 mmol, 509.00 μL, 1.2 eq). The reaction mixture was stirred at 0° C. for 1 h under N2. LCMS showed that the reaction was complete. The reaction mixture was poured into 100 mL H2O. The mixture was extracted with DCM (3×50 mL). The combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound N-(2-bromo-4-pyridyl)prop-2-enamide (0.88 g, 2.33 mmol, 44.70% yield, 60% purity) as a white solid. LC-MS (ES+, m/z): 227.2 [(M+H)+]


Step 2—N-(2-R-pyridin-4-yl)acrylamide



embedded image


To a solution of N-(2-bromo-4-pyridyl)prop-2-enamide (0.2 g, 880.83 μmol, 1 eq) and 6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinolin-4-amine (594.9 mg, 2.2 mmol, 2.5 eq) in dioxane (4 mL) and H2O (1 mL) was added Na2CO3 (280.1 mg, 2.64 mmol, 3 eq) and Pd(dppf)Cl2 (64.5 mg, 88.08 μmol, 0.1 eq). The reaction was heated to 100° C. under N2 and stirred for 1 h. LCMS showed that the reaction was complete. The reaction mixture was poured into saturated EDTA (50 mL) and stirred for 60 min. The mixture was extracted with EtOAc (3×30 mL), and the combined organic layers were washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC (PA condition) to afford the title compound N-[2-(4-amino-6-quinolyl)-4-pyridyl]prop-2-enamide (14.4 mg, 48.36 μmol, 5.49% yield, 97.5% purity) as a white solid. 291.1. 1H NMR (400 MHz, DMSO-d6) 5===10.75 fs, 1H), 8.82 (d, j 1.63 Hz, 1H), 8.60 (d, J=5.50 Hz, 1H), 8.33 (d, J=5.45 Hz, 1H), 8.31 (s, 1H), 8.21-8.28 (m, 2H), 7.87 (d, J=8.88 Hz, 1H), 7.66 (dd, J=5.50, 1.75 Hz, 1H), 7.35 (s, 2H), 6.61 (d, J=5.38 Hz, 1H), 6.52 (dd, J=16.95, 10.07 Hz, 1H), 6.36 (dd, J=17.01, 1.88 Hz, 1H), 5.84-5.92 (m, 1H).


To a solution of N-(2-bromo-4-pyridyl)prop-2-enamide (50 mg, 220.21 μmol, 1 eq), 7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinazolin-2-amine (119.4 mg, 440.42 μmol, 2 eq) in dioxane (3 mL), H2O (0.75 mL) was added Cs2CO3 (215.2 mg, 660.63 μmol, 3 eq), [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium; dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (9.2 mg, 11.01 μmol, 0.05 eq) and dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (10.3 mg, 22.02 μmol, 0.1 eq) at 25° C. The reaction mixture was stirred at 100° C. for 1 h. The reaction mixture was poured into saturated EDTA (20 mL) and stirred for 60 min. The aqueous phase was extracted with EtOAc (3×20 mL). The combined organic phase was washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by prep-TLC. Then further purified by prep-HPLC to afford the title compound N-[2-(2-aminoquinazolin-7-yl)-4-pyridyl]prop-2-enamide (6.3 mg, 21.63 μmol, 9.82% yield, 100% purity) as a white solid. 292.1. 1H NMR (400 MHz, DMSO-d6) 5=10.65 (s, 1H), 9.15 (s, 1H), 8.61 (d, J=5.6 Hz, 1H), 8.30 (d, J=1.2 Hz, 1H), 7.96 (s, 1H), 7.92 (d, J=4.8 Hz, 1H), 7.82 (dd, J=1.6, 8.4 Hz, 1H), 7.67 (dd, J=1.6, 5.2 Hz, 1H), 6.91 (s, 2H), 6.48 (dd, J=10.0, 16.8 Hz, 1H), 6.36 (dd, J=2.0, 17.2 Hz, 1H), 5.91 (dd, J=1.6, 9.6 Hz, 1H)


Route 2: General Scheme



embedded image


Step 1—methyl 6-tributylstannylpyridine-2-carboxylate



embedded image


To a solution of methyl 6-bromopyridine-2-carboxylate (1 g, 4.63 mmol, 1 eq) in dioxane (20 mL) was added 4-ditert-butylphosphanyl-N,N-dimethyl-aniline;dichloropalladium (262.2 mg, 370.32 μmol, 262.21 μL, 0.08 eq) and tributyl(tributylstannyl)stannane (5.37 g, 9.26 mmol, 4.63 mL, 2 eq). The reaction mixture was stirred at 100° C. for 4 h under N2. LCMS showed that the reaction was complete. The reaction mixture was poured into H2O (50 mL). The mixture was extracted with EtOAc (2×30 mL), and the combined organic layers were washed with H2O (2×30 mL) and brine (2×30 mL). Then dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound methyl 6-tributylstannylpyridine-2-carboxylate (6 g, crude) as an black brown oil which was used for the next step directly without further purification. LC-MS (ES+, m/z): 428.1 [(M+H)+]


Step 2—6-(4-amino-2-pyridyl)pyridine-2-carboxylic acid



embedded image


To a solution of 2-bromopyridin-4-amine (0.5 g, 2.89 mmol, 1 eq) and methyl 6-tributyl stannylpyridine-2-carboxylate (4.93 g, 11.56 mmol, 4 eq) in DMF (5 mL) was added Pd(PPh3)4 (334 mg, 289 μmol, 0.1 eq) and CuI (55 mg, 289 μmol, 0.1 eq). The reaction mixture was heated to 100° C. under N2 and stirred at 100° C. for 5 h. LCMS showed that the reaction was complete. The reaction mixture was poured into saturated EDTA (60 mL) and stirred for 60 min, extracted with EtOAc (3×40 mL), and the combined organic layer was washed with H2O (2×40 mL) and brine (2×50 mL). Then dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound 6-(4-amino-2-pyridyl)pyridine-2-carboxylic acid (100 mg, 464.67 μmol, 16.08% yield) as a white solid. LC-MS (ES+, m/z): 216.0 [(M+H)+]


Step 3—6-(4-amino-2-pyridyl)-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide



embedded image


To a solution of 6-(4-amino-2-pyridyl)pyridine-2-carboxylic acid (80 mg, 371.73 μmol, 1 eq) in DMF (3 mL) was added DIPEA (240.2 mg, 1.86 mmol, 323.75 μL, 5 eq) and 1-methylpiperidin-4-amine (50.9 mg, 446.08 μmol, 1.2 eq). Then HATU (212 mg, 557.6 μmol, 1.5 eq) was added. The resulting reaction mixture was stirred at 15° C. for 1 h. LCMS showed that the reaction was complete. The reaction mixture was poured into H2O (20 mL). The mixture was extracted with EtOAc (3×20 mL), and the combined organic layers were washed with H2O (2×20 mL) and brine (2×50 mL). Then dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound 6-(4-amino-2-pyridyl)-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (60 mg, crude) as a yellow oil which was used for the next step directly without further purification. LC-MS (ES+, m/z): 312.1 [(M+H)+]


Step 4—Compound N-(1-methyl-4-piperidyl)-6-[4-(prop-2-enoylamino)-2-pyridyl]pyridine-2-carboxamide



embedded image


To a solution of 6-(4-amino-2-pyridyl)-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (50 mg, 160.58 μmol, 1 eq) in DCM (2 mL) was added TEA (81.2 mg, 802.88 μmol, 111.75 μL, 5 eq) and prop-2-enoyl chloride (72.7 mg, 802.88 μmol, 65.47 μL, 5 eq) at 0° C. The reaction mixture was stirred at 15° C. for 8 h under N2. LCMS showed that the reaction was complete. The reaction mixture was poured into H2O (20 mL). The mixture was extracted with DCM (3×15 mL), and the combined organic layers were washed with H2O (2×15 mL) and brine (2×15 mL). Then dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC (basic condition) to afford the title compound N-(1-methyl-4-piperidyl)-6-[4-(prop-2-enoylamino)-2-pyridyl]pyridine-2-carboxamide (7.1 mg, 19.43 μmol, 12.10% yield, 100.0% purity) as a white solid. LC-MS (ES+, m/z): 366.1 [(M+H)+]1H NMR (400 MHz, DMSO-d6) 5=10.69 (br s, 1H), 8.69 (s, 1H), 8.60 (d, J=5.38 Hz, 1H), 8.52 (dd, J=7.76, 1.00 Hz, 1H), 8.36 (br d, J=8.38 Hz, 1H), 8.01-8.18 (m, 2H), 7.83 (br d, J=3.88 Hz, 1H), 6.52 (dd, J=17.00, 10.14 Hz, 1H), 6.36 (dd, J=17.00, 1.76 Hz, 1H), 5.85-5.91 (m, 1H), 3.78-3.89 (m, 1H), 2.68-2.81 (m, 2H), 2.20 (s, 3H), 1.96-2.14 (m, 2H), 1.83-1.92 (m, 2H), 1.61-1.76 (m, 2H).


Route 3: General Scheme



embedded image


Step 1—Trimethyl-[2-[[3-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)indazol-1-yl]methoxy]ethyl]silane



embedded image


To a solution of 2-[(5-bromo-3-methyl-indazol-1-yl)methoxy]ethyl-trimethyl-silane (0.25 g, 732.45 μmol, 1 eq) and 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (241.8 mg, 952.19 μmol, 1.3 eq) in dioxane (2 mL) was added KOAc (215.7 mg, 2.2 mmol, 3 eq) and Pd(dppf)Cl2 (53.6 mg, 73.25 μmol, 0.1 eq). The reaction mixture was stirred at 100° C. for 1 hr under N2. TLC (PE:EtOAc=4:1, SM Rf=0.38, TM Rf=0.49) showed that the reaction was complete. The reaction mixture was filtered and the filtrate was concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, PE:EtOAc=4:1) to afford the title compound Trimethyl-[2-[[3-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)indazol-1-yl]methoxy]ethyl]silane (0.25 g, 643.69 μmol, 87.88% yield) as a colorless oil.


Step 2—N-[2-[3-methyl-1-(2-trimethylsilylethoxymethyl)indazol-5-yl]-4-pyridyl]prop-2-enamide



embedded image


To a solution of trimethyl-[2-[[3-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)indazol-1-yl]methoxy]ethyl]silane (0.27 g, 695.19 μmol, 1 eq) and N-(2-bromo-4-pyridyl)prop-2-enamide (157.9 mg, 695.19 μmol, 1 eq) in dioxane (4 mL) and H2O (1 mL) was added Na2CO3 (221.1 mg, 2.09 mmol, 3 eq) and Pd(dppf)Cl2 (50.9 mg, 69.52 μmol, 0.1 eq). The reaction mixture was stirred at 80° C. for 1 hr under N2. LCMS showed that the starting material was converted to the desired product. The reaction mixture was poured into ˜15 mL saturated EDTA and stirred at 25° C. for 1 hr. The mixture was extracted with EtOAc (3×15 mL). The combined organic layer was washed with brine (3×15 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1:1) to afford the title compound N-[2-[3-methyl-1-(2-trimethylsilylethoxymethyl)indazol-5-yl]-4-pyridyl]prop-2-enamide (0.11 g, 269.23 μmol, 38.73% yield) as a brown oil. LC-MS (ES+, m/z) 409.1 [(M+H)+]


Step 3—N-[2-(3-methyl-1H-indazol-5-yl)-4-pyridyl]prop-2-enamide



embedded image


To a solution of N-[2-[3-methyl-1-(2-trimethylsilylethoxymethyl)indazol-5-yl]-4-pyridyl]prop-2-enamide (0.09 g, 220.28 μmol, 1 eq) in EtOH (3 mL) was added concentrated HCl (1.02 g, 10.35 mmol, 1 mL, 37% purity, 46.99 eq). The reaction mixture was stirred at 50° C. for 1 hr. The reaction mixture was concentrated under N2 to give a residue. The residue was purified by prep-HPLC to afford the title compound N-[2-(3-methyl-1H-indazol-5-yl)-4-pyridyl]prop-2-enamide (0.0057 g, 20.48 μmol, 9.30% yield, 100% purity) as a white solid. LC-MS (ES+, m/z) 249.1 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) J=12.79 (br s, 1H), 10.66 (br s, 1H), 8.54 (d, J=5.6 Hz, 1H), 8.30 (s, 1H), 8.22 (d, J=1.5 Hz, 1H), 8.13 (s, 1H), 7.99 (dd, J=1.3, 8.8 Hz, 1H), 7.62 (br d, J=3.9 Hz, 1H), 7.57 (d, J=8.7 Hz, 1H), 6.53-6.44 (m, 1H), 6.34 (d, J=1.8 Hz, 1H), 6.38 (d, J=1.8 Hz, 1H), 5.91-5.86 (m, 1H), 2.57-2.54 (m, 3H).


Route 4: General Scheme



embedded image


embedded image


Step 1—methyl 5-bromo-1-(2-trimethylsilylethoxymethyl)indazole-3-carboxylate



embedded image


To a solution of methyl 5-bromo-1H-indazole-3-carboxylate (1 g, 3.92 mmol, 1 eq) in THF (10 mL) was added NaH (235.2 mg, 5.88 mmol, 60% purity, 1.5 eq) at 0° C. The reaction mixture was stirred at 0° C. for 0.5 h. Then SEMCl (784.4 mg, 4.7 mmol, 832.65 μL, 1.2 eq) was added and the resulting reaction mixture was stirred at 0° C. for further 1 h. The reaction mixture was poured into saturated NH4Cl (30 mL) and stirred for 15 min. The aqueous phase was extracted with EtOAc (3×30 mL). The combined organic layer was washed with brine (3×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by silica gel chromatography (SiO2, PE:EtOAc=10:1, 3:1) to afford the title compound methyl 5-bromo-1-(2-trimethylsilylethoxymethyl)indazole-3-carboxylate (1. g, 2.6 mmol, 66.20% yield) as a colorless oil. LC-MS (ES+, m/z) 385.1, 387.0 [(M+H)+]


Step 2—methyl 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-(2-trimethylsilylethoxymethyl) indazole-3-carboxylate



embedded image


To a solution of methyl 5-bromo-1-(2-trimethylsilylethoxymethyl)indazole-3-carboxylate (900 mg, 2.34 mmol, 1 eq) in dioxane (10 mL) was added Pin2B2 (889.7 mg, 3.5 mmol, 1.5 eq), KOAc (1.15 g, 11.68 mmol, 5 eq) and Pd(dppf)Cl2 (85.5 mg, 116.78 μmol, 0.05 eq) under N2. The reaction mixture was stirred at 100° C. for 1 h. The reaction mixture was poured into saturated EDTA (50 mL) and stirred for 60 min. The mixture was extracted with EtOAc (3×50 mL). The combined organic layer was washed with brine (3×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by silica gel chromatography (SiO2, PE:EtOAc=10:1, 3:1) to afford the title compound methyl 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-(2-trimethylsilyl ethoxy methyl)indazole-3-carboxylate (1 g, 2.31 mmol, 99.02% yield) as a white solid, LC-MS (ES+, m/z) 433.1 [(M+H)+]


Step 3—methyl 5-[4-(prop-2-enoylamino)-2-pyridyl]-1-(2-trimethylsilylethoxymethyl) indazole-3-carboxylate



embedded image


To a solution of N-(2-bromo-4-pyridyl)prop-2-enamide (250 mg, 1.1 mmol, 1 eq), methyl, 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-(2-trimethylsilylethoxymethyl)indazole-3-carboxylate (476.1 mg, 1.1 mmol, 1 eq) in dioxane (10 mL), H2O (2.5 mL) was added Cs2CO3 (1.08 g, 3.3 mmol, 3 eq), [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (46 mg, 55 μmol, 0.05 eq) and dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (51.4 mg, 11 μmol, 0.1 eq). The reaction mixture was stirred at 100° C. for 1 h. The reaction mixture was poured into saturated EDTA (60 mL) and stirred for 60 min. The aqueous phase was extracted with EtOAc (3×20 mL). The combined organic phase was washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by silica gel chromatography (SiO2, PE:EtOAc=10:1, 1/1) to afford the title compound methyl 5-[4-(prop-2-enoylamino)-2-pyridyl]-1-(2-trimethylsilylethoxy methyl)indazole-3-carboxylate (300 mg, 464.01 μmol, 42.18% yield, 70% purity) as a white solid. LC-MS (ES+, m/z) 453.1 [(M+H)+]


Step 4—5-[4-(prop-2-enoylamino)-2-pyridyl]-1-(2-trimethylsilylethoxymethyl) indazole-3-carboxylic acid



embedded image


To a solution of methyl 5-[4-(prop-2-enoylamino)-2-pyridyl]-1-(2-trimethylsilylethoxymethyl) indazole-3-carboxylate (260 mg, 574.49 μmol, 1 eq) in THF (10 mL) and H2O (2.5 mL) was added LiOH·H2O (241.1 mg, 5.74 mmol, 10 eq) at 25° C. The reaction mixture was stirred at 25° C. for 12 h. The reaction mixture was poured into ice-water (10 mL) and adjusting the pH to 5 with concentrated HCl. The aqueous phase was extracted with EtOAc (3×15 mL). The combined organic layer was washed with brine (3×15 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound 5-[4-(prop-2-enoylamino)-2-pyridyl]-1-(2-trimethylsilylethoxy methyl)indazole-3-carboxylic acid (240 mg, crude) as a white solid. LC-MS (ES+, m/z) 439.2 [(M+H)+]


Step 5—N-[4-(dimethylamino)cyclohexyl]-5-[4-(prop-2-enoylamino)-2-pyridyl]-1-(2-trimethylsilyl ethoxymethyl)indazole-3



embedded image


To a solution of 5-[4-(prop-2-enoylamino)-2-pyridyl]-1-(2-trimethylsilylethoxymethyl) indazole-3-carboxylic acid (120 mg, 273.63 μmol, 1 eq), N4,N4-dimethyl cyclohexane-1,4-diamine (77.8 mg, 547.26 μmol, 2 eq) in DMF (3 mL) was added Et3N (55.4 mg, 547.26 μmol, 76.17 μL, 2 eq) and T3P (261.2 mg, 410.44 μmol, 244.10 μL, 50% purity, 1.5 eq) at 25° C. The reaction mixture was stirred at 25° C. for 1 h. The reaction mixture was poured into H2O (15 mL) and the aqueous phase was extracted with EtOAc (3×15 mL). The combined organic layer was washed with brine (3×15 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound N-[4-(dimethylamino)cyclohexyl]-5-[4-(prop-2-enoylamino)-2-pyridyl]-1-(2-trimethylsilylethoxymethyl)indazole-3-carboxamide (120 mg, crude) as a yellow solid. LC-MS (ES+, m/z) 563.3 [(M+H)+]


Step 6—N-[4-(dimethylamino)cyclohexyl]-5-[4-(prop-2-enoylamino)-2-pyridyl]-1H-indazole-3-carboxamide



embedded image


To a solution of N-[4-(dimethylamino)cyclohexyl]-5-[4-(prop-2-enoylamino)-2-pyri dyl]-1-(2-trimethylsilylethoxymethyl)indazole-3-carboxamide (40 mg, 71.08 μmol, 1 eq) in EtOH (1 mL) was added concentrated HCl (0.5 mL) and the reaction mixture was stirred at 50° C. for 1 h. The solvent was removed by blowing with N2 to give a residue. The residue was purified by prep-HPLC to afford the title compound N-[4-(dimethylamino)cyclohexyl]-5-[4-(prop-2-enoylamino)-2-pyridyl]-1H-indazole-3-carboxamide (3.5 mg, 7.46 μmol, 10.50% yield, 100% purity, HCl salt) as a white solid. 433.2. 1H NMR (400 MHz, DMSO-d6) 5=14.08 (s, 1H), 11.95 (s, 1H), 10.55 (s, 1H), 10.41 (s, 1H), 8.79-8.73 (m, 1H), 8.68 (d, J=6.8 Hz, 1H), 8.52 (s, 1H), 8.49-8.42 (m, 0.5H), 8.22 (br d, J=6.8 Hz, 0.7H), 8.12 (br s, 1H), 8.04-7.95 (m, 1H), 7.94-7.83 (m, 1H), 6.68 (dd, J=4.8 Hz, 10.0 Hz, 1H), 6.50 (d, J=16.4 Hz 1H), 5.99 (br d, J=10.8 Hz, 1H), 4.22 (m, 1H), 3.96-3.84 (m, 1H), 3.21-3.21 (m, 1H), 2.75-2.70 (m, 6H), 2.16-1.94 (m, 3H), 1.92-1.80 (m, 3H), 1.70 (br d, J=12.2 Hz, 1H), 1.63-1.55 (m, 1H); 1H NMR (400 MHz, DMSO-d6) δ=8.72 (s, 1H), 8.63 (d, J=6.4 Hz, 1H), 8.42 (s, 1H), 7.99 (dd, J=1.6, 6.4 Hz, 1H), 7.97-7.92 (m, 1H), 7.90-7.83 (m, 1H), 6.58 (dd, J=5.6 Hz, 16.8 Hz, 1H), 6.48 (dd, J=1.6 Hz, 16.8 Hz, 1H), 6.00 (dd, J=1.6 Hz, 16.8 Hz, 1H), 4.19 (br t, J=3.2 Hz, 1H), 3.93-3.82 (m, 1H), 3.23-3.09 (m, 1H), 2.75-2.70 (m, 6H), 2.09-1.90 (m, 3H), 1.89-1.77 (m, 3H), 1.71-1.70 (m, 1H), 1.60-1.50 (m, 1H)


Route 6: Genera Scheme



embedded image


Step 1—N-(2-bromo-4-pyridyl)-2-fluoro-prop-2-enamide



embedded image


To a solution of 2-fluoroprop-2-enoic acid (500 mg, 5.55 mmol, 1 eq) in DCM (10 mL) was added DMF (40.6 mg, 555 μmol, 42.72 μL, 0.1 eq) and (COCl)2 (704.7 mg, 5.55 mmol, 486.02 μL, 1 eq) at 0° C. The reaction mixture was stirred at 25° C. for 3 h. Then 2-bromopyridin-4-amine (960.2 mg, 5.55 mmol, 1 eq), Et3N (1.68 g, 16.65 mmol, 2.32 mL, 3 eq) was added at 0° C. and the reaction mixture was stirred at 25° C. for further 3 h. LCMS showed ˜45% of the starting material remained. The reaction mixture was poured into ice-water (25 mL) and the aqueous phase was extracted with EtOAc (3×20 mL). The combined organic phase was washed with brine (3×25 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by silica gel chromatography (SiO2, PE:EtOAc=4:1, 4:1) to afford the title compound N-(2-bromo-4-pyridyl)-2-fluoro-prop-2-enamide (0.22 g, 897.78 μmol, 16.18% yield) as a white solid. LC-MS (ES+, m/z) 245.0, 246.9 [(M+H)+]


Step 2—2-fluoro-N-(2-quinazolin-7-yl-4-pyridyl)prop-2-enamide



embedded image


To a solution of N-(2-bromo-4-pyridyl)-2-fluoro-prop-2-enamide (40 mg, 163.23 μmol, 1 eq), 7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinazoline (50.2 mg, 195.88 μmol, 1.2 eq) in dioxane (2 mL) and H2O (0.25) was added Cs2CO3 (159.6 mg, 489.7 μmol, 3 eq), [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (6.9 mg, 8.16 μmol, 0.05 eq) and dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (7.6 mg, 16.32 μmol, 0.1 eq) under N2. The reaction mixture was stirred at 95° C. for 1 h. The reaction mixture was poured into saturated EDTA (20 mL) and stirred for 60 min. The aqueous phase was extracted with EtOAc (3×20 mL). The combined organic phase was washed with brine (3×20 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo to afford a residue. The residue was purified by prep-HPLC to afford the title compound 2-fluoro-N-(2-quinazolin-7-yl-4-pyridyl)prop-2-enamide (18.6 mg, 63.07 μmol, 38.64% yield, 99.795% purity) as a white solid. 295.1. 1H NMR (400 MHz, DMSO-d6) δ=9.67 (s, 1H), 9.36 (s, 1H), 8.71 (d, J=5.6 Hz, 1H), 8.54 (s, 2H), 8.43 (dd, J=1.6, 8.4 Hz, 1H), 8.31 (d, J=8.4 Hz, 1H), 7.89 (dd, J=2.0, 5.6 Hz, 1H), 5.93-5.74 (m, 1H), 5.57 (dd, J=4.0, 15.6 Hz, 1H)


Step 1—(E)-N-(2-bromo-4-pyridyl)but-2-enamide



embedded image


To a solution of 2-bromopyridin-4-amine (1 g, 5.78 mmol, 1 eq) in DCM (10 mL) was added Py (914.4 mg, 11.56 mmol, 933.06 μL, 2 eq), (E)-but-2-enoyl chloride (1.21 g, 11.56 mmol, 1.11 mL, 2 eq) at 0° C. and the reaction mixture was stirred at 0° C. for 2 h. HPLC showed that the reaction was complete. The reaction mixture was poured into H2O (60 mL) and the aqueous phase was extracted with DCM (3×30 mL). The combined organic phase was washed with brine (3×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by silica gel chromatography (SiO2, PE:EtOAc=5/1, 4:1 to afford the title compound (E)-N-(2-bromo-4-pyridyl)but-2-enamide (0.8 g, 3.32 mmol, 57.41% yield) as a white solid. 1H NMR (400 MHz, DMSO-d6) δ=10.51 (br s, 1H), 8.22 (d, J=5.6 Hz, 1H), 7.96 (d, J=2.0 Hz, 1H), 7.51 (dd, J=1.6, 5.6 Hz, 1H), 6.92-6.87 (m, 1H), 6.10 (br dd, J=1.6, 15.2 Hz, 1H), 1.89 (dd, J=1.6, 6.8 Hz, 3H)


Step 2—(E)-N-(2-quinazolin-7-yl-4-pyridyl)but-2-enamide



embedded image


To a solution of (E)-N-(2-bromo-4-pyridyl)but-2-enamide (40 mg, 165.92 μmol, 1 eq), 7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinazoline (63.7 mg, 248.88 μmol, 1.5 eq), in dioxane (2 mL) and H2O (0.5 mL) was added Cs2CO3 (162.2 mg, 497.75 μmol, 3 eq), [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium; dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (7 mg, 8.3 μmol, 0.05 eq) and dicyclohexyl-[2-(2,6-diisopropoxy phenyl)phenyl]phosphane (7.7 mg, 16.59 μmol, 0.1 eq) under N2. The mixture was stirred at 95° C. for 1 h. The reaction mixture was poured into saturated EDTA (30 mL) and stirred for 60 min. The aqueous phase was extracted with EtOAc (3×15 mL). The combined organic layer was washed with brine (3×15 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound (E)-N-(2-quinazolin-7-yl-4-pyridyl) but-2-enamide (10.9 mg, 37.5 μmol, 22.60% yield, 99.876% purity) as a white solid. 291.1. 1H NMR (400 MHz, DMSO-d6) 5=10.51 (s, 1H), 9.67 (s, 1H), 9.36 (s, 1H), 8.64 (d, J=5.6 Hz, 1H), 8.51 (s, 1H), 8.44-8.38 (m, 2H), 8.29 (d, J=8.4 Hz, 1H), 7.69 (dd, J=2.0, 5.6 Hz, 1H), 6.96-6.90 (m, 1H).


Step 1—N-(2-bromo-4-pyridyl)-2-methyl-prop-2-enamide



embedded image


To a solution of 2-bromopyridin-4-amine (2 g, 11.56 mmol, 1 eq) in DCM (20 mL) was added TEA (3.51 g, 34.68 mmol, 4.83 mL, 3 eq), 2-methylprop-2-enoyl chloride (2.42 g, 23.12 mmol, 2.26 mL, 2 eq) at 0° C. and the reaction mixture was stirred at 0° C. for 1 h. The reaction mixture was poured into ice-water (60 mL) and the aqueous phase was extracted with DCM (3×20 mL). The combined organic layer was washed with brine (3×25 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by silica gel chromatography (SiO2, PE/EtOAc=4:1, 4:1) to afford the title compound N-(2-bromo-4-pyridyl)-2-methyl-prop-2-enamide (2. g, 8.3 mmol, 71.76% yield) as a white solid. LC-MS (ES+, m/z) 240.9, 242.9 [(M+H)+] 1H NMR (400 MHz, DMSO-d6) δ=10.31 (s, 1H), 8.24 (d, J=6.0 Hz, 1H), 7.99 (d, J=1.6 Hz, 1H), 7.69 (dd, J=2.0, 5.6 Hz, 1H), 5.88 (s, 1H), 5.66 (d, J=1.2 Hz, 1H), 1.94 (s, 3H)


Step 2—2-methyl-N-(2-quinazolin-7-yl-4-pyridyl)prop-2-enamide



embedded image


To a solution of N-(2-bromo-4-pyridyl)-2-methyl-prop-2-enamide (50 mg, 207.4 μmol, 1 eq), 7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinazoline (53.1 mg, 207.4 μmol, 1 eq) in dioxane (2 mL), H2O (0.25) was added Cs2CO3 (202.7 mg, 622.19 μmol, 3 eq), [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium; dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (8.7 mg, 10.37 μmol, 0.05 eq) and dicyclohexyl-[2-(2,6-diisopropoxy phenyl)phenyl]phosphane (9.7 mg, 20.74 μmol, 0.1 eq). The reaction mixture was stirred at 95° C. for 1 h. The reaction mixture was poured into saturated EDTA (20 mL) and stirred for 60 min. The aqueous phase was extracted with EtOAc (3×15 mL). The combined organic layer was washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound 2-methyl-N-(2-quinazolin-7-yl-4-pyridyl)prop-2-enamide (12.6 mg, 43.4 μmol, 20.93% yield, 100.0% purity) as a white solid. 291.1. 1H NMR (400 MHz, DMSO-d6) 5=10.40 (br, s, 1H), 9.67 (s, 1H), 9.36 (s, 1H), 8.66 (d, J=5.6 Hz, 1H), 8.53 (s, 1H), 8.50 (d, J=1.6 Hz, 1H), 8.42 (dd, J=1.6, 8.8 Hz, 1H), 8.30 (d, J=8.8 Hz, 1H), 7.85 (dd, J=2.0, 5.6 Hz, 1H), 5.95 (s, 1H), 5.68 (d, J=1.2 Hz, 1H), 2.00 (s, 3H)




embedded image


Route 9
Step 1—2-quinazolin-7-ylpyridin-4-amine



embedded image


To a solution of 2-bromopyridin-4-amine (100 mg, 578 μmol, 1 eq), 7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinazoline (162.8 mg, 635.8 μmol, 1.1 eq) in dioxane (4 mL), H2O (1 mL) was added Cs2CO3 (565 mg, 1.73 mmol, 3.0 eq), [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium; dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (24.2 mg, 28.9 μmol, 0.05 eq) and dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (27 mg, 57.8 μmol, 0.1 eq) under N2. The reaction mixture was stirred at 95° C. for 1 h. LCMS showed ˜10% of the starting material remained. The reaction mixture was poured into saturated EDTA (20 mL) and stirred for 1 h. The aqueous phase was extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was washed with DCM (3×5 mL) to afford the title compound 2-quinazolin-7-ylpyridin-4-amine (80 mg, crude) as a light yellow solid. LC-MS (ES+, m/z) 223.2 [(M+H)+]


Step 2—(E)-4,4,4-trifluoro-N-(2-quinazolin-7-yl-4-pyridyl)but-2-enamide



embedded image


To a solution of (E)-4,4,4-trifluorobut-2-enoic acid (50 mg, 356.99 μmol, 1 eq) in DCM (1 mL) was added DMF (2.6 mg, 35.7 μmol, 2.75 μL, 0.1 eq) and (COCl)2 (49.8 mg, 392.69 μmol, 34.37 μL, 1.1 eq) at 0° C. and the reaction mixture was stirred at 0° C. for 1 h. Then 2-quinazolin-7-ylpyridin-4-amine (20 mg, 89.99 μmol, 2.52e−1 eq), TEA (108.4 mg, 1.07 mmol, 149.07 μL, 3 eq) was added at 0° C. and the reaction mixture was stirred at 0° C. for further 1 h. LCMS and HPLC showed that the reaction was complete. The reaction mixture was poured into ice-water (25 mL) and the aqueous phase was extracted with DCM (3×20 mL). The combined organic layer was washed with brine (3×25 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound (E)-4,4,4-trifluoro-N-(2-quinazolin-7-yl-4-pyridyl)but-2-enamide (2.7 mg, 7.6 μmol, 2.13% yield, 96.967% purity) as a pink solid. 345.1. 1H NMR (400 MHz, DMSO-d6) δ=9.68 (s, 1H), 9.37 (s, 1H), 8.72 (br d, J=5.2 Hz, 1H), 8.53 (s, 1H), 8.48-8.37 (m, 2H), 8.31 (br d, J=8.0 Hz, 1H), 7.71 (br d, J=4.8 Hz, 1H), 7.12-6.97 (m, 2H)


Step 3—tert-butyl N-[7-(4-amino-2-pyridyl) quinazolin-2-yl]carbamate



embedded image


To a mixture of 2-bromopyridin-4-amine (650 mg, 3.76 mmol, 1 eq), [2-(tert-butoxy carbonylamino)quinazolin-7-yl]boronic acid (2.72 g, 9.39 mmol, 2.5 eq) in dioxane (10 mL), H2O (2.5 mL) was added Cs2CO3 (3.67 g, 11.27 mmol, 3 eq), [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (157.1 mg, 187.85 μmol, 0.05 eq), dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (175.3 mg, 375.7 μmol, 0.1 eq) under N2. The mixture was stirred at 95° C. for 1 h. TLC showed no starting material remained. The residue was poured into saturated EDTA (100 mL) and stirred for 60 min. The aqueous phase was extracted with EtOAc (3×60 mL). The combined organic phase was washed with brine (3×80 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by silica gel chromatography (SiO2, DCM/MeOH=50:1, 20:1) to afford the title compound tert-butyl N-[7-(4-amino-2-pyridyl) quinazolin-2-yl]carbamate (0.7 g, 2.07 mmol, 55.23% yield) as black brown solid. LC-MS (ES+, m/z): 338.2 [(M+H)+]


Step 4—tert-butyl N-[7-[4-[[(E)-4,4,4-trifluorobut-2-enoyl]amino]-2-pyridyl]quinazolin-2-yl]carbamate



embedded image


To a mixture of (E)-4,4,4-trifluorobut-2-enoyl chloride (469.8 mg, 2.96 mmol, 5 eq) in DCM (5 mL), DMF (1 mL) was added tert-butyl N-[7-(4-amino-2-pyridyl) quinazolin-2-yl]carbamate (200 mg, 592.81 μmol, 1 eq), Et3N (180 mg, 1.78 mmol, 247.54 μL, 3 eq) at 0° C. and the mixture was stirred at 0° C. for 1 h. TLC showed no starting material remained. The residue was poured into ice-water (20 mL) and the aqueous phase was extracted with DCM (3×15 mL). The combined organic phase was washed with brine (3×15 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC to afford the title compound tert-butyl N-[7-[4-[[(E)-4,4,4-trifluorobut-2-enoyl]amino]-2-pyridyl]quinazolin-2-yl]carbamate (90 mg, 195.9 μmol, 33.05% yield) as a yellow solid. LC-MS (ES+, m/z): 460.2 [(M+H)+]


Step 5—(E)-N-[2-(2-aminoquinazolin-7-yl)-4-pyridyl]-4,4,4-trifluoro-but-2-enamide



embedded image


To a mixture of tert-butyl N-[7-[4-[[(E)-4,4,4-trifluorobut-2-enoyl]amino]-2-pyridyl]quinazolin-2-yl]carbamate (80 mg, 174.13 μmol, 1 eq) in DCM (4 mL) was added TFA (1 mL) at 25° C. and the mixture was stirred at 25° C. for 1 h. HPLC showed no starting material remained. The reaction mixture was poured into saturated Na2CO3 (20 mL) and the aqueous phase was extracted with DCM (3×15 mL). The combined organic phase was washed with brine (3×15 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford the title compound (E)-N-[2-(2-aminoquinazolin-7-yl)-4-pyridyl]-4,4,4-trifluoro-but-2-enamide (10 mg, 27.53 μmol, 15.81% yield, 98.923% purity) as a white solid. LC-MS (ES+, m/z): 360.1 [(M+H)+] 1H NMR (400 MHz, DMSO-d6) δ=11.03 (s, 1H), 9.16 (s, 1H), 8.66 (d, J=5.6 Hz, 1H), 8.28 (d, J=1.6 Hz, 1H), 7.96 (s, 1H), 7.93 (d, J=8.4 Hz, 1H), 7.83 (dd, J=1.6, 8.4 Hz, 1H), 7.64 (dd, J=2.0, 5.6 Hz, 1H), 7.08-6.96 (m, 2H), 6.91 (s, 2H)


Route 7: General Scheme



embedded image


Step 1—ethyl 7-(4-amino-2-pyridyl)quinazoline-2-carboxylate



embedded image


To a mixture of 2-bromopyridin-4-amine (350 mg, 2.02 mmol, 1 eq), (2-ethoxycarbonyl quinazolin-7-yl)boronic acid (1.49 g, 6.07 mmol, 3 eq) in DME (10 mL), H2O (2.5 mL) was added CsF (1.32 g, 4.05 mmol, 2 eq), Pd(dppf)Cl2 (148 mg, 202.3 μmol, 0.1 eq) under N2. The mixture was stirred at 95° C. for 0.5 h. LCMS showed ˜50% starting material remained. Then the mixture was stirred at 95° C. for 0.5 h. The residue was poured into saturated EDTA (100 mL) and stirred for 60 min. The aqueous phase was extracted with EtOAc (3×60 mL). The combined organic phase was washed with brine (3×80 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by silica gel chromatography (SiO2, DCM/MeOH=30:1, 20/1) to afford the title compound ethyl 7-(4-amino-2-pyridyl)quinazoline-2-carboxylate (300 mg, 1.02 mmol, 50.39% yield) as a brown solid. LC-MS (ES+, m/z) 295.2 [(M+H)+]


Step 2—7-(4-amino-2-pyridyl)-N-methyl-quinazoline-2-carboxamide




embedded image


To a mixture of ethyl 7-(4-amino-2-pyridyl)quinazoline-2-carboxylate (100 mg, 339.78 μmol, 1 eq) in MeOH (3 mL) was added MeNH2 (2 M in THF, 33.98 mL, 200 eq) in THF (3 mL). The mixture was stirred at 50° C. for 3 h. LCMS showed no starting material remained. The reaction mixture was concentrated in vacuo to afford the title compound 7-(4-amino-2-pyridyl)-N-methyl-quinazoline-2-carboxamide (100 mg, crude) as black brown solid. LC-MS (ES+, m/z) 280.2 [(M+H)+].


Step 3—methyl-7-[4-(prop-2-enoylamino)-2-pyridyl]quinazoline-2-carboxamide



embedded image


To a mixture of prop-2-enoyl chloride (51.9 mg, 572.87 μmol, 46.71 μL, 2 eq) in DCM (3 mL), DMF (0.6 mL) was added 7-(4-amino-2-pyridyl)-N-methyl-quinazoline-2-carboxamide (80 mg, 286.43 μmol, 1 eq), Et3N (87 mg, 859.3 μmol, 119.61 μL, 3 eq) at 0° C. and the mixture was stirred at 0° C. for 1 h. LCMS and showed no starting material remained. The residue was poured into ice-water (20 mL) and the aqueous phase was extracted with DCM (3×20 mL). The combined organic phase was washed with brine (3×15 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford the title compound N-methyl-7-[4-(prop-2-enoylamino)-2-pyridyl]quinazoline-2-carboxamide (8.6 mg, 24.44 μmol, 8.53% yield, 94.722% purity) as a white solid. 334.0. 1H NMR (400 MHz, DMSO-d6) 5=10.75 (s, 1H), 9.79 (s, 1H), 9.09 (br d, J=4.8 Hz, 1H), 8.68 (d, J=5.6 Hz, 1H), 8.64 (s, 1H), 8.56 (d, J=1.6 Hz, 1H), 8.51 (dd, J=1.6, 8.8 Hz, 1H), 8.38 (d, J=8.8 Hz, 1H), 7.64 (dd, J=2.0, 5.2 Hz, 1H), 6.50 (dd, J=10.4, 17.2 Hz, 1H), 6.38 (dd, J=1.6, 16.8 Hz, 1H), 5.91 (dd, J=1.6, 10.0 Hz, 1H), 2.90 (d, J=4.8 Hz, 3H)


N-[2-[4-(methylamino)-6-quinolyl]-4-pyridyl]prop-2-enamide



embedded image


To a mixture of N-(2-bromo-4-pyridyl)prop-2-enamide (80 mg, 352.33 μmol, 1 eq), [4-(methylamino)-6-quinolyl]boronic acid (474.5 mg, 704.67 μmol, 30% purity, 2 eq) in dioxane (3 mL), H2O (0.75 mL) was added Cs2CO3 (344.4 mg, 1.06 mmol, 3 eq), [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (14.7 mg, 17.62 μmol, 0.05 eq), dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (16.4 mg, 35.23 μmol, 0.1 eq) under N2. The mixture was stirred at 95° C. for 1 h. The residue was poured into saturated EDTA (20 mL) and stirred for 60 min. The aqueous phase was extracted with EtOAc (3×15 mL). The combined organic phase was washed with brine (3×20 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-HPLC to afford the title compound N-[2-[4-(methylamino)-6-quinolyl]-4-pyridyl]prop-2-enamide (20.8 mg, 53.9 μmol, 15.30% yield, 90.791% purity, FA) as a white solid. 305.0. 1H NMR (400 MHz, DMSO-d6) 5=10.67 (s, 1H), 8.79 (d, J=1.6 Hz, 1H), 8.60 (d, J=5.6 Hz, 1H), 8.44 (d, J=5.6 Hz, 1H), 8.28 (d, J=1.6 Hz, 1H), 8.19 (dd, J=2.0, 9.2 Hz, 1H), 7.88 (d, J=8.8 Hz, 1H), 7.73 (br d, J=4.4 Hz, 1H), 7.63 (dd, J=1.6, 5.6 Hz, 1H), 6.50 (dd, J=10.0, 16.8 Hz, 1H), 6.45 (d, J=5.6 Hz, 1H), 6.41 (dd, J=2.0, 17.2 Hz, 1H, 1H), 5.91 (dd, J=1.6, 9.6 Hz, 1H), 2.93 (d, J=4.4 Hz, 3H)


N-[2-[2-(methylamino)-7-quinolyl]-4-pyridyl]prop-2-enamide



embedded image


A mixture of N-(2-bromo-4-pyridyl)prop-2-enamide (100 mg, 440.42 μmol, 1 eq), N-methyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinolin-2-amine (187.7 mg, 660.63 μmol, 1.5 eq), Cs2CO3 (287 mg, 880.83 μmol, 2 eq), RuPhos (20.6 mg, 44.04 μmol, 0.1 eq) and [2-(2-aminophenyl)phenyl]-methylsulfonyloxy-palladium;dicyclohexyl-[2-(2,6-diisopropoxyphenyl)phenyl]phosphane (18.4 mg, 22.02 μmol, 0.05 eq) in dioxane (21 mL) and H2O (0.5 mL). The mixture was stirred at 100° C. for 1 hr under N2. LCMS (ET21787-677-P1A) showed that the reaction was complete. The reaction mixture was added to saturated EDTA and the mixture was stirred at 25° C. for 1 h. Then the mixture was extracted with EtOAc (3×30 mL). The organic phase was separated, washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-HPLC to afford the title compound N-[2-[2-(methylamino)-7-quinolyl]-4-pyridyl]prop-2-enamide (17.5 mg, 57.5 μmol, 13.06% yield, 100% purity) as a light yellow solid. 305.1. 1H NMR (400 MHz, DMSO-d6) δ=10.59 (s, 1H), 8.57 (d, J=5.4 Hz, 1H), 8.36 (d, J=1.5 Hz, 1H), 8.10 (d, J=0.9 Hz, 1H), 7.87 (d, J=8.9 Hz, 1H), 7.82 (d, J=8.3 Hz, 1H), 7.72 (d, J=8.4 Hz, 1H), 7.59 (d, J=5.5 Hz, 1H), 6.78 (d, J=8.9 Hz, 1H), 6.55-6.41 (m, 1H), 6.40-6.30 (m, 1H), 5.90-5.89 (m, 1H), 5.87 (m, 1H), 2.93 (d, J=4.60 Hz, 3H).


Route 10



embedded image


Step 4—methyl 7-(4-amino-2-pyridyl)quinazoline-2-carboxylate



embedded image


To a mixture of 2-bromopyridin-4-amine (350 mg, 2.02 mmol, 1 eq), (2-methoxycarbonyl quinazolin-7-yl)boronic acid (1.41 g, 6.07 mmol, 3 eq) in DME (10 mL), H2O (2.5 mL) was added CsF (1.32 g, 4.05 mmol, 2 eq), Pd(dppf)Cl2 (148 mg, 202.3 μmol, 0.1 eq). The mixture was stirred at 95° C. for 1 h. The reaction mixture was poured into saturated EDTA (20 mL) and stirred for 60 min. The aqueous phase was extracted with EtOAc (3×15 mL). The combined organic phase was washed with brine (3×20 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by silica gel chromatography (SiO2, DCM/MeOH=50/1, 10:1) to afford the title compound methyl 7-(4-amino-2-pyridyl)quinazoline-2-carboxylate (300 mg, 1.07 mmol, 52.91% yield) as a white solid. LC-MS (ES+, m/z) 281.1 [(M+H)+].


Step 5—methyl 7-[4-(prop-2-enoylamino)-2-pyridyl]quinazoline-2-carboxylate



embedded image


To a mixture of methyl 7-(4-amino-2-pyridyl)quinazoline-2-carboxylate (0.1 g, 356.78 μmol, 1 eq) in DCM (6 mL), DMF (3 mL) was added TEA (108.3 mg, 1.07 mmol, 148.98 μL, 3 eq), prop-2-enoyl chloride (96.9 mg, 1.07 mmol, 87.28 μL, 3 eq) at 0° C. The mixture was stirred at 0° C. for 1 h. The residue was poured into H2O (20 mL) and the aqueous phase was extracted with DCM (3×20 mL). The combined organic phase was washed with brine (3×20 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. methyl 7-[4-(prop-2-enoylamino)-2-pyridyl]quinazoline-2-carboxylate (60 mg, crude) was obtained, 40 mg of the residue was purified by prep-HPLC to afford the title compound methyl 7-[4-(prop-2-enoylamino)-2-pyridyl]quinazoline-2-carboxylate (5.2 mg, 15.13 μmol, 12.65% yield, 97.304% purity) as a white solid. 335.1. 1H NMR (400 MHz, DMSO-d6) 5=10.72 (s, 1H), 9.82 (s, 1H), 8.68 (d, J=5.6 Hz, 1H), 8.64 (s, 1H), 8.53 (dd, J=1.6, 8.6 Hz, 1H), 8.49 (s, 1H), 8.41 (d, J=8.6 Hz, 1H), 7.70 (dd, J=1.6, 5.6 Hz, 1H), 6.50 (dd, J=10.0, 17.2 Hz, 1H), 6.40 (dd, J=2.0, 16.8 Hz, 1H), 5.93-5.87 (dd, J=2.0, 10.0 Hz, 1H), 3.99 (s, 3H).


Step 6—7-[4-(prop-2-enoylamino)-2-pyridyl]quinazoline-2-carboxylic acid



embedded image


To a mixture of methyl 7-[4-(prop-2-enoylamino)-2-pyridyl]quinazoline-2-carboxy late (100 mg, 299.11 μmol, 1 eq) in THF (10 mL), H2O (2.5 mL) was added LiOH·H2O (25.1 mg, 598.21 μmol, 2 eq). The mixture was stirred at 25° C. for 1 h. The reaction mixture was poured into H2O (20 mL) and the aqueous phase was adjusted to pH=2 with saturated citric acid (2 mL), but the product can not be extracted. Then the solution was adjusted to pH=7 with saturated Na2CO3 (2 mL), and the solution was lyophilized. 7-[4-(prop-2-enoylamino)-2-pyridyl]quinazoline-2-carboxylic acid (1.4 g, crude) was obtained as a white solid. The residue was purified by prep-HPLC to afford the title compound 7-[4-(prop-2-enoylamino)-2-pyridyl]quinazoline-2-carboxylic acid (4.4 mg, 13.58 μmol, 3.11e−1% yield, 98.893% purity) as a white solid. 321.1. 1H NMR (400 MHz, DMSO-d6) δ=11.06 (s, 1H), 9.72 (br s, 1H), 8.67 (br d, J=5.6 Hz, 2H), 8.57 (s, 2H), 8.50-8.46 (m, 1H), 8.40-8.30 (m, 1H), 7.82 (br d, J=5.2 Hz, 1H), 6.57 (dd, J=10.0, 16.8 Hz, 1H), 6.39 (dd, J=1.6, 17.2 Hz, 1H), 5.90 (dd, J=1.6, 10.0 Hz, 1H).


TABLE 15 shows compounds synthesized using methods described in EXAMPLE 15.












TABLE 15








LC-MS


Cpd. No.
Structure
IUPAC
(ES+, m/z)







614


embedded image


N-[2-(1-methyl-1H-indazol-6- yl)pyridin-4-yl]prop-2-enamide
279.1





615


embedded image


N-[2-(4-aminoquinolin-6- yl)pyridin-4-yl]prop-2-enamide
291.1





616


embedded image


N-[2-(3-methyl-1H-indazol-5- yl)pyridin-4-yl]prop-2-enamide
279.1





617


embedded image


N-(1-methylpiperidin-4-yl)-4′- (prop-2-enamido)-[2,2′- bipyridine]-6-carboxamide
366.1





618


embedded image


N-[4- (dimethylamino)cyclohexyl]-5- [4-(prop-2-enamido)pyridin-2- yl]-1H-indazole-3-carboxamide
433.2





619


embedded image


N-[2-(quinazolin-7-yl)pyridin-4- yl]prop-2-enamide
277.1





620


embedded image


N-(1-methylpiperidin-4-yl)-5-[4- (prop-2-enamido)pyridin-2-yl]- 1H-indazole-3-carboxamide
405.2





621


embedded image


N-[2-(2-aminoquinazolin-7- yl)pyridin-4-yl]prop-2-enamide
292.1





622


embedded image


N-[2-(2-aminoquinazolin-7- yl)pyridin-4-yl]-2-fluoroprop-2- enamide
310.1





623


embedded image


N-{2-[2- (methylamino)quinazolin-7- yl]pyridin-4-yl}prop-2-enamide
306.1





624


embedded image


N-[2-(2-aminoquinolin-7- yl)pyridin-4-yl]prop-2-enamide
291.1





625


embedded image


2-fluoro-N-[2-(quinazolin-7- yl)pyridin-4-yl]prop-2-enamide
295.1





626


embedded image


2-methyl-N-[2-(quinazolin-7- yl)pyridin-4-yl]prop-2-enamide
291.1





627


embedded image


N-[2-(2-aminoquinazolin-7- yl)pyridin-4-yl]-2-methylprop-2- enamide
306.1





628


embedded image


(2E)-N-2-(quinazolin-7- yl)pyridin-4-yl]but-2-enamide
291.1





629


embedded image


(2E)-N-[2-(2-aminoquinazolin-7- yl)pyridin-4-yl]but-2-enamide
306.2





630


embedded image


(2E)-4,4,4-trifluoro-N-[2- (quinazolin-7-yl)pyridin-4-yl]but- 2-enamide
345.1





631


embedded image


methyl 7-[4-(prop-2- enamido)pyridin-2- yl]quinazoline-2-carboxylate
335  





632


embedded image


7-[4-(prop-2-enamido)pyridin-2- yl]quinazoline-2-carboxylic acid
321.1





633


embedded image


N-methyl-7-[4-(prop-2- enamido)pyridin-2- yl]quinazoline-2-carboxamide
334  





634


embedded image


(2E)-N-[2-(2-aminoquinazolin-7- yl)pyridin-4-yl]-4,4,4- trifluorobut-2-enamide
360.1





635


embedded image


7-[4-(prop-2-enamido)pyridin-2- yl]quinazoline-2-carboxamide
320  





636


embedded image


N-{2-[2-(methylamino)quinolin- 7-yl]pyridin-4-yl}prop-2-enamide
305.1





637


embedded image


N-{2-[4-(methylamino)quinolin- 6-yl]pyridin-4-yl}prop-2-enamide
305  





638


embedded image


N-[2-(4-aminoquinolin-7- yl)pyridin-4-yl]prop-2-enamide
290.9





639


embedded image


N-{2-[1-(methylamino)isoquinolin-7- yl]pyridin-4-yl}prop-2-enamide
305  





640


embedded image


N-[2-(3-chloroquinolin-7- yl)pyridin-4-yl]prop-2-enamide
309.9





641


embedded image


N-{2-[1,5- bis(methylamino)isoquinolin-7- yl]pyridin-4-yl}prop-2-enamide
334.2









Example 16: Synthesis of Intermediates
Route 1



embedded image


2-(2-amino-5-bromo-phenoxy)acetonitrile



embedded image


To a mixture of 2-amino-5-bromo-phenol (1 g, 5.32 mmol, 1 eq) in acetone (10 mL) was added K2CO3 (1.1 g, 7.98 mmol, 1.5 eq). Then 2-chloroacetonitrile (481.8 mg, 6.38 mmol, 404.91 μL, 1.2 eq) was added to the mixture. The mixture was heated to 60° C. and stirred at 60° C. for 4 h. The reaction mixture was poured into ice-water (100 mL). The aqueous phase was extracted with EtOAc (3×50 mL). The combined organic phase was washed with brine (3×50 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by silica gel chromatography (PE:EtOAc=1/0, 1/1) to afford the title compound (1 g, 4.4 mmol, 82.81% yield) as a brown solid.


2-[2-amino-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenoxy]acetonitrile



embedded image


To a mixture of (BPin)2 (503.3 mg, 1.98 mmol, 1.5 eq) and 2-(2-amino-5-bromo-phenoxy) acetonitrile (300 mg, 1.32 mmol, 1 eq) in dioxane (5 mL) was added POTASSIUM ACETATE (389 mg, 3.96 mmol, 3 eq) and Pd(dppf)Cl2 (48.3 mg, 66.06 μmol, 0.05 eq) under N2. The mixture was heated to 120° C. and stirred for 2 hours. TLC and LCMS (ET16123-1094-P1A) showed that the reaction was complete. The reaction was filtered, and concentrated in vacuo. The crude was the desired product. The crude was purified by prep-TLC (SiO2, PE:EtOAc=3:1) to afford the title compound 2-[2-amino-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenoxy]acetonitrile (200 mg, 729.6 μmol, 55.22% yield) as a white solid


Route 2



embedded image


6-chloro-4-nitro-pyridine-2-carboxylic acid



embedded image


To a mixture of 2-chloro-6-methyl-4-nitro-pyridine (4 g, 23.18 mmol, 1 eq) in H2SO4 (40 mL) was added CrO3 (9.27 g, 92.72 mmol, 3.43 mL, 4 eq) at 25° C. Then the mixture was stirred at 25° C. for 1 h. Then heated to 60° C. for 1 h. TLC showed no starting material remained. The reaction mixture was poured into ice-water (50 mL) and a lot of solid came out, filtered. Then the aqueous phase was extracted with EtOAc (3×50 mL). The combined organic phase was washed with brine (3×50 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound 6-chloro-4-nitro-pyridine-2-carboxylic acid (4 g, crude) as a white solid.


6-chloro-N-methyl-4-nitro-pyridine-2-carboxamide



embedded image


To a mixture of 6-chloro-4-nitro-pyridine-2-carboxylic acid (1 g, 4.94 mmol, 1 eq) in DMF (10 mL) was added MeNH2·HCl (1 g, 14.81 mmol, 3 eq, HCl), TEA (2.5 g, 24.69 mmol, 3.44 mL, 5 eq) at 25° C. Then T3P (2.36 g, 7.41 mmol, 2.20 mL, 1.5 eq) was added and the mixture was stirred at 25° C. for 1 h. The reaction mixture was poured into ice-water (30 mL) and the aqueous phase was extracted with EtOAc (3×30 mL). The combined organic phase was washed with brine (3×20 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound (650 mg, crude) as a yellow solid.


4-amino-6-chloro-N-methyl-pyridine-2-carboxamide



embedded image


To a mixture of 6-chloro-N-methyl-4-nitro-pyridine-2-carboxamide (550 mg, 2.55 mmol, 1 eq) in EtOH (10 mL) was added saturated NH4Cl (2 mL) at 25° C. Then the mixture was heated to 70° C. Le (1.42 g, 25.51 mmol, 10 eq) was added and the mixture was stirred at 70° C. for 1 h. The residue was poured into H2O (15 mL) and EtOAc (15 mL) was added. The mixture was filtered with diamate. The aqueous phase was extracted with EtOAc (3×15 mL). The combined organic phase was washed with brine (3×15 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound 4-amino-6-chloro-N-methyl-pyridine-2-carboxamide (450 mg, crude) as a yellow solid.


4-acetamido-6-chloro-N-methyl-pyridine-2-carboxamide



embedded image


To a mixture of 4-amino-6-chloro-N-methyl-pyridine-2-carboxamide (250 mg, 1.35 mmol, 1 eq) in DCM (6 mL) was added TEA (408.9 mg, 4.04 mmol, 562.42 μL, 3 eq), AcCl (422.9 mg, 5.39 mmol, 384.47 μL, 4 eq) at 0° C. The mixture was stirred at 25° C. for 2 h. TLC showed two spot was detected. Then the mixture was stirred at 40° C. for 0.5 h. The reaction mixture was poured into H2O (15 mL) and the aqueous phase was extracted with EtOAc (3×20 mL). Some solid come out and filtered. The combined organic phase was washed with brine (3×15 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound 4-acetamido-6-chloro-N-methyl-pyridine-2-carboxamide (200 mg, crude) as a white solid.


Route 3



embedded image


tert-butyl N-tert-butoxycarbonyl-N-[2-chloro-6-(methylcarbamoyl)-4-pyridyl]carbamate



embedded image


To a mixture of 4-amino-6-chloro-N-methyl-pyridine-2-carboxamide (500 mg, 2.69 mmol, 1 eq) in DCM (6 mL) was added TEA (817.8 mg, 8.08 mmol, 1.12 mL, 3 eq), Boc2O (1.76 g, 8.08 mmol, 1.86 mL, 3 eq), DMAP (32.9 mg, 269.38 μmol, 0.1 eq) at 25° C. The mixture was stirred at 25° C. for 2 h. The reaction mixture was poured into H2O (15 mL) and the aqueous phase was extracted with DCM (3×15 mL). The combined organic phase was washed with brine (3×15 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by silica gel chromatography (PE:EtOAc=1/0, 4:1) to afford the title compound (600 mg, 1.48 mmol, 54.84% yield, 95% purity) as a white solid.


tert-butyl N-[2-chloro-6-(methylcarbamoyl)-4-pyridyl]carbamate



embedded image


To a mixture of tert-butyl N-tert-butoxycarbonyl-N-[2-chloro-6-(methylcarbamoyl)-4-pyridyl]carbamate (550 mg, 1.43 mmol, 1 eq) in MeOH (10 mL) was added K2CO3 (788 mg, 5.7 mmol, 4 eq) at 25° C. The mixture was stirred at 25° C. for 1 h. The residue was filtered, and concentrated in vacuo to afford the title compound tert-butyl N-[2-chloro-6-(methylcarbamoyl)-4-pyridyl]carbamate (350 mg, crude) as a white solid.


tert-butyl N-[2-chloro-6-(methylcarbamoyl)-4-pyridyl]-N-methyl-carbamate



embedded image


To a mixture of tert-butyl N-[2-chloro-6-(methylcarbamoyl)-4-pyridyl]carbamate (180 mg, 629.97 μmol, 1 eq) in DMF (2 mL) was added NaH (30.2 mg, 755.97 μmol, 60% purity, 1.2 eq) at 0° C. The mixture was stirred at 0° C. for 0.5 h. MeI (89.4 mg, 629.97 μmol, 39.22 μL, 1 eq) was added and the mixture was stirred at 0° C. for 0.5 h. The reaction mixture was poured into saturated NH4Cl (10 mL) and the aqueous phase was extracted with EtOAc (3×10 mL). The combined organic phase was washed with brine (3×10 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC to afford the title compound tert-butyl N-[2-chloro-6-(methylcarbamoyl)-4-pyridyl]-N-methyl-carbamate (120 mg, 240.2 μmol, 38.13% yield, 60% purity) as a white solid.


Route 4



embedded image


2-chloro-N-(1-methylpyrazol-4-yl)pyridin-4-amine



embedded image


To a solution of 1-methylpyrazol-4-amine (365 mg, 3.76 mmol, 3 eq), 2-chloro-4-iodo-pyridine (300 mg, 1.25 mmol, 1 eq) in dioxane (10 mL) was added Cs2CO3 (816.5 mg, 2.51 mmol, 2 eq). Then Pd2(dba)3 (57.4 mg, 62.65 μmol, 0.05 eq) and (5-diphenyl phosphanyl-9,9-dimethyl-xanthen-4-yl)-diphenyl-phosphane (72.5 mg, 125.29 μmol, 0.1 eq) was added to the reaction. The reaction was stirred at 95-100° C. for 1.5 h under N2 atmosphere. The reaction was poured into ice-water (10 mL) and extracted with EtOAc (3×10 mL). The combined organic layer was washed with water (3×10 mL) and brine (3×10 mL), dried over Na2SO4, filtered, and concentrated. The crude was purified by silica gel chromatography (EtOAc) and purified by prep-TLC (SiO2, DCM/MeOH=18/1, Rf=0.5) to afford the title compound (150 mg, 575.13 μmol, 85.71% yield, 80% purity) as black oil.


2-chloro-N-(3-methoxyphenyl)pyridin-4-amine



embedded image


To a mixture of 2-chloro-4-iodo-pyridine (300 mg, 1.25 mmol, 1 eq), 3-methoxyaniline (185.2 mg, 1.5 mmol, 168.33 μL, 1.2 eq) in Tol. (7 mL) was added Cs2CO3 (816.5 mg, 2.51 mmol, 2 eq), BINAP (156 mg, 250.58 μmol, 0.2 eq), Pd(OAc)2 (28.1 mg, 125.29 μmol, 0.1 eq) at 25° C. The mixture was stirred at 90° C. for 10 h. LCMS showed no starting material remained. The reaction mixture was poured into H2O (15 mL) and the aqueous phase was extracted with EtOAc (3×20 mL). The combined organic phase was washed with brine (3×15 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by silica gel chromatography (PE:EtOAc=1:0, 4:1) to afford the title compound 2-chloro-N-(3-methoxyphenyl)pyridin-4-amine (260 mg, 997.1 μmol, 79.58% yield, 90% purity) as a yellow oil.


Route 5



embedded image


1-methylpyrazole-4-carbonyl chloride



embedded image


To a solution of 1-methylpyrazole-4-carboxylic acid (300 mg, 2.38 mmol, 1 eq) in DCM (6 mL) was added (COCl)2 (603.9 mg, 4.76 mmol, 416.46 μL, 2 eq). Then DMF (17.4 mg, 237.88 μmol, 18.30 μL, 0.1 eq) was added to the reaction and the reaction was stirred at 15° C. for 3 h. The reaction mixture was concentrated to afford the title compound 1-methylpyrazole-4-carbonyl chloride (340 mg, crude) as a yellow oil, which was used directly.


N-(2-bromo-4-pyridyl)-1-methyl-pyrazole-4-carboxamide



embedded image


To a solution of 2-bromopyridin-4-amine (300 mg, 1.73 mmol, 1 eq) in DMF (2.5 mL) was added NaH (180 mg, 4.5 mmol, 60% purity, 2.60 eq) at 0° C. Then the reaction mixture was stirred at 0° C. for 30 min. Then 1-methylpyrazole-4-carbonyl chloride (340 mg, 2.35 mmol, 1.36 eq) in 1.5 mL DMF was added to the reaction and the reaction was stirred at 15° C. for 30 min. The reaction was poured into ice-water (10 mL) and extracted with EtOAc (3×10 mL). The combined organic layer was washed with water (3×10 mL) and brine (3×10 mL), dried over Na2SO4, filtered, and concentrated to afford the title compound (500 mg, crude) as a light yellow solid used directly.


N-(6-bromopyrimidin-4-yl)acetamide



embedded image


A solution of 6-bromopyrimidin-4-amine (200 mg, 1.15 mmol, 1 eq) in Ac2O (1 mL) was stirred at 140° C. for 3 h. TLC showed that the reaction was complete. After cooled to 20° C. The reaction mixture was treated with Saturated NaHCO3 (50 mL, keep PH to 8-9) and stirred at 20° C. for 20 min. The reaction mixture was extracted with DCM (3×30 mL). The combined organic layer was washed with brine (3×20 mL), dried over Na2SO4, filtered, and concentrated to afford the title compound N-(6-bromopyrimidin-4-yl)acetamide (210 mg, crude) as a light yellow solid without further purification.


3-amino-6-chloro-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide



embedded image


To a mixture of 3-amino-6-chloro-pyridine-2-carboxylic acid (200 mg, 1.16 mmol, 1 eq) in DMF (6 mL) was added 1-methylpiperidin-4-amine RNH2 (264.7 mg, 2.32 mmol, 265.41 μL, 2 eq), Et3N (586.4 mg, 5.79 mmol, 806.57 μL, 5 eq), T3P (1.11 g, 1.74 mmol, 1.03 mL, 50% purity, 1.5 eq) at 25° C. The mixture was stirred at 25° C. for 1 h. The reaction mixture was poured into H2O (20 mL) and the aqueous phase was extracted with EtOAc (3×15 mL). The combined organic phase was washed with brine (3×15 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound (260 mg, crude) as a brown oil. ET8911-1347


Route 6



embedded image


6-chloro-4-nitro-pyridine-2-carboxylic acid



embedded image


To a solution of 2-chloro-6-methyl-4-nitro-pyridine (3 g, 17.38 mmol, 1 eq) in H2SO4 (30 mL) was added CrO3 (6.95 g, 69.54 mmol, 2.58 mL, 4 eq). The mixture was stirred at 25° C. for 1 h, stirred at 60° C. for 1 h. LCMS showed that the reaction was complete. The residue was poured into ice-water (200 mL) and a lot of solid came out, filtered. Then the aqueous phase was extracted with EtOAc (3×100 mL). The combined organic phase was washed with brine (3×100 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The crude was used directly to afford the title compound 6-chloro-4-nitro-pyridine-2-carboxylic acid (4 g, crude) as a gray solid.


6-chloro-N-(1-methyl-4-piperidyl)-4-nitro-pyridine-2-carboxamide



embedded image


To a solution of 6-chloro-4-nitro-pyridine-2-carboxylic acid (1 g, 4.94 mmol, 1 eq) in DMF (10 mL) was added TEA (2.5 g, 24.69 mmol, 3.44 mL, 5 eq) and 1-methylpiperidin-4-amine (845.6 mg, 7.41 mmol, 1.5 eq). Then T3P (4.71 g, 7.41 mmol, 4.40 mL, 50% purity, 1.5 eq) was added to the reaction and the reaction was stirred at 25° C. for 1 h. LCMS showed that the reaction was complete. The reaction mixture was diluted with H2O (200 mL). The mixture was extracted with EtOAc (3×100 mL), and the combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue to afford the title compound 6-chloro-N-(1-methyl-4-piperidyl)-4-nitro-pyridine-2-carboxamide (1.5 g, crude) as a yellow solid, which was used directly.


4-amino-6-chloro-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide



embedded image


To a mixture of 6-chloro-N-(1-methyl-4-piperidyl)-4-nitro-pyridine-2-carboxamide (1.3 g, 4.35 mmol, 1 eq) in EtOH (10 mL) was added saturated NH4Cl (4.35 mmol, 2.5 mL, 1 eq) and the reaction mixture was heated to 70° C. Then Fe (729.1 mg, 13.06 mmol, 3 eq) was added and the mixture was stirred for 1 hr. TLC showed that the reaction was complete. The reaction mixture was diluted with H2O (100 mL). The mixture was extracted with EtOAc (2×100 mL), and the combined organic layers were washed with H2O (2×100 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue to afford the title compound 4-amino-6-chloro-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (1.1 g, crude) as a yellow solid which was used directly without further purification.


4-acetamido-6-chloro-N-(1-methylpiperidin-4-yl)picolinamide



embedded image


To a mixture of 4-amino-6-chloro-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (0.2 g, 744.21 μmol, 1 eq) in DCM (4 mL) was added TEA (225.9 mg, 2.23 mmol, 310.76 μL, 3 eq) and acetyl chloride (584.2 mg, 7.44 mmol, 531.08 μL, 10 eq) at 0° C. The reaction was stirred at 50° C. for 24 hr. LCMS showed that the reaction was complete. The reaction mixture was adjusted with saturated Na2CO3 to pH=8. The mixture was extracted with EtOAc (2×100 mL), and the combined organic layers were washed with H2O (2×100 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound 4-acetamido-6-chloro-N-(1-methylpiperidin-4-yl)picolinamide (0.16 g, 514.84 μmol, 69.18% yield) as a yellow solid.


1-methylpiperidine-4-carbonyl chloride



embedded image


To a mixture of 1-methylpiperidine-4-carboxylic acid (1 g, 5.57 mmol, 825.32 μL, 1 eq, HCl) in SOCl2 (4.41 g, 37.08 mmol, 2.69 mL, 6.66 eq) and the mixture was stirred until the solid was dissolved and stirred for another 60 min at 20° C. The reaction was concentrated directly to give crude product to afford the title compound (1 g, crude, HCl) as an off-white solid.


N-(2-bromo-4-pyridyl)-1-methyl-piperidine-4-carboxamide



embedded image


To a mixture of 2-bromopyridin-4-amine (300 mg, 1.73 mmol, 1 eq) in DCM (10 mL) was added Et3N (875.3 mg, 8.65 mmol, 1.20 mL, 5 eq), l-methylpiperidine-4-carbonyl chloride (685.4 mg, 3.46 mmol, 2 eq, HCl) in one portion at 0° C. under N2. The mixture was stirred at 20° C. for 60 min. TLC showed ˜30% starting material remained. The reaction mixture was diluted with 30 mL water, extracted with EtOAc (3×30 mL), and the combined organic layer was washed with brine (2×25 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was by prep-TLC (SiO2, DCM:MeOH=10:1) to afford the title compound N-(2-bromo-4-pyridyl)-1-methyl-piperidine-4-carboxamide (320 mg, 1.07 mmol, 62.03% yield) as a colorless gum.


N-(2-bromo-4-pyridyl)-3-methoxy-benzamide



embedded image


To a mixture of 2-bromopyridin-4-amine (300 mg, 1.73 mmol, 1 eq) in DCM (10 mL) was added Et3N (526.4 mg, 5.2 mmol, 724.06 μL, 3 eq), 3-methoxybenzoyl chloride (443.7 mg, 2.6 mmol, 354.97 μL, 1.5 eq) in one portion at 0° C. under N2. The mixture was stirred at 20° C. for 30 min. TLC showed the starting material was consumed. The reaction was diluted with 30 mL water, extracted with EtOAc (3×30 mL), and the combined organic layer was washed with brine (2×30 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=20:1) to afford the title N-(2-bromo-4-pyridyl)-3-methoxy-benzamide compound (350 mg, 1.14 mmol, 65.72% yield) as a colorless gum.


1-methylpiperidine-4-carbonyl chloride



embedded image


To a mixture of 1-methylpiperidine-4-carboxylic acid (1 g, 5.57 mmol, 1 eq, HCl) in SOCl2 (3.27 g, 27.48 mmol, 1.99 mL, 4.94 eq) and the mixture was stirred until the solid was dissolved and stirred for another 60 min at 20° C. The reaction was concentrated directly to give crude to afford the title compound 1-methylpiperidine-4-carbonyl chloride (1 g, crude, HCl) as an off-white solid


6-bromo-N-methyl-4-[(l-methylpiperidine-4-carbonyl)amino]pyridine-2-carboxamide



embedded image


To a mixture of 4-amino-6-bromo-N-methyl-pyridine-2-carboxamide (200 mg, 869.33 μmol, 1 eq) in DCM (5 mL) was added Et3N (263.9 mg, 2.61 mmol, 363.00 μL, 3 eq), 1-methylpiperidine-4-carbonyl chloride (281 mg, 1.74 mmol, 2 eq). The mixture was stirred at 20° C. for 1 hour. TLC showed that the reaction was complete. The reaction was diluted with 20 mL water, extracted with EtOAc (3×20 mL), and the combined organic layer was washed with water (2×20 mL) and brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=5:1) to afford the title compound 6-bromo-N-methyl-4-[(l-methylpiperidine-4-carbonyl)amino]pyridine-2-carboxamide (150 mg, 422.26 μmol, 48.57% yield) as a yellow solid.


N-(2-chloropyrimidin-4-yl)acetamide



embedded image


To a mixture of 2-chloropyrimidin-4-amine (200 mg, 1.54 mmol, 1 eq) in DCM (4 mL) was added Et3N (468.7 mg, 4.63 mmol, 644.65 μL, 3 eq), acetyl chloride (1.21 g, 15.44 mmol, 1.10 mL, 10 eq) in one portion at 0° C. under N2. The mixture was stirred at 20° C. for 2 hours. The reaction was diluted with 20 mL water, extracted with EtOAc (3×30 mL), and the combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1:1) to afford the title compound N-(2-chloropyrimidin-4-yl)acetamide (130 mg, 757.65 μmol, 49.08% yield) as an off-white solid.


N-(2-bromo-4-pyridyl)-3-methoxy-propanamide



embedded image


To a mixture of 3-methoxypropanoic acid (601.7 mg, 5.78 mmol, 542.09 μL, 5 eq) in DCM (5 mL) was added DMAP (42.4 mg, 346.8 μmol, 0.3 eq), DCC (477 mg, 2.31 mmol, 467.67 μL, 2 eq) and 2-bromopyridin-4-amine (200 mg, 1.16 mmol, 1 eq) was added to the reaction and stirred for 14 hours at 20° C. The reaction was diluted with 20 mL water, extracted with EtOAc (2×20 mL), and the combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo to afford the title compound N-(2-bromo-4-pyridyl)-3-methoxy-propanamide (220 mg, crude) as an off-white solid.


4-bromo-2-((difluoromethoxy)aniline



embedded image


To a mixture of 1-bromopyrrolidine-2,5-dione (134.2 mg, 754.09 μmol, 1.2 eq) in DMF (1 mL) was added 2-(difluoromethoxy)aniline (100 mg, 628.4 μmol, 1 eq) at 0° C. The mixture was stirred at 0° C. for 2 h. Then the mixture was stirred for 3 h at 20° C. TLC and LCMS (ET16123-1101-P1A) showed that the reaction was complete. The residue was poured into ice-water (50 mL). The aqueous phase was extracted with EtOAc (3×20 mL). The combined organic phase was washed with brine (3×20 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=3:1) to afford the title compound 4-bromo-2-(difluoromethoxy)aniline (80 mg, 336.09 μmol, 53.48% yield) as a brown oil.


N-(2-bromo-4-pyridyl)propanamide



embedded image


To a mixture of 2-bromopyridin-4-amine (100 mg, 578 μmol, 1 eq) in acetone (2 mL) was added K2CO3 (239.7 mg, 1.73 mmol, 3 eq). Then propanoyl chloride (80.2 mg, 867 μmol, 80.22 μL, 1.5 eq) was added to the mixture. The mixture was stirred at 20° C. for 4 h. LCMS (ET16123-1129-P1A) and HPLC (ET16123-1129-P1A) showed that the reaction was not completed. The residue was poured into ice-water (100 mL). The aqueous phase was extracted with EtOAc (3×50 mL). The combined organic phase was washed with brine (3×50 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound N-(2-bromo-4-pyridyl)propanamide (150 mg, crude) as white oil, which was used directly without further purification.


N-(2-bromo-4-pyridyl)benzamide



embedded image


To a stirred solution of 2-bromopyridin-4-amine (100 mg, 578 μmol, 1 eq) in acetone (1 mL) was added K2CO3 (239.7 mg, 1.73 mmol, 3 eq). Benzoyl chloride (121.9 mg, 867 μmol, 100.72 μL, 1.5 eq) in acetone (1 mL) was added into the solution. Then the reaction was stirred at 20° C. for 16 hr. TLC (PE:EtOAc=1:1, Rf=0.55) and LCMS showed that the reaction was not completed. The mixture was diluted with DCM (5 mL) and filtrated. The filtrate was concentrate in vacuo. The crude product was purified by prep-TLC (PE:EtOAc=1:1) to afford the title compound N-(2-bromo-4-pyridyl)benzamide (62 mg, 223.73 μmol, 38.71% yield) as a yellow solid


N-(2-bromo-4-pyridyl)methanesulfonamide



embedded image


To a mixture of 2-bromopyridin-4-amine (200 mg, 1.16 mmol, 1 eq) in DCM (3 mL) was added TEA (584.9 mg, 5.78 mmol, 804.51 μL, 5 eq). Then methanesulfonyl chloride (132.4 mg, 1.16 mmol, 89.47 μL, 1 eq) was added to the mixture. The mixture was stirred at 20° C. for 4 h. LCMS (ET16123-1141-P1W) showed that the reaction was complete. The residue was poured into ice-water (100 mL). The aqueous phase was extracted with EtOAc (3×50 mL). The combined organic phase was washed with brine (3×50 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound N-(2-bromo-4-pyridyl)methanesulfonamide (300 mg, crude) as white oil, which was used directly without further purification.


General Procedure for 4-bromo-2-methylsulfonyl-aniline



embedded image


To a solution of 2-methylsulfonylaniline (100 mg, 584.06 μmol, 1 eq) in DMF (2 mL) was added NBS (114.3 mg, 642.11 μmol, 1.10 eq) (in 1 mL DMF) at 0° C. under N2 atmosphere. Then the reaction was stirred at 15° C. for 3 h. The reaction was quenched with Saturated NH4Cl (10 mL) at 0° C. and the reaction mixture was extracted with EtOAc (3×10 mL). The combined organic layer was washed with water (3×10 mL) and brine (3×10 mL), dried over Na2SO4, filtered, and concentrated. The crude was purified by prep-TLC (SiO2, PE:EtOAc=3:1) to afford the title compound 4-bromo-2-methylsulfonylaniline (120 mg, 479.78 μmol, 82.15% yield) as a light yellow solid.


3-amino-6-chloro-N-((1-methylpiperidin-4-yl)methyl)picolinamide



embedded image


To a mixture of 3-amino-6-chloropicolinic acid (200 mg, 1.16 mmol, 1 eq) in DMF (5 mL) was added T3P (1.11 g, 1.74 mmol, 1.03 mL, 50% purity, 1.5 eq), Et3N (351.8 mg, 3.48 mmol, 483.9 μL, 3 eq), (1-methyl-4-piperidyl)methanamine (297.2 mg, 2.32 mmol, 2 eq) in one portion. The mixture was stirred at 25° C. for 1 hour. The reaction was diluted with 20 mL water, extracted with EtOAc (2×20 mL), and the combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo to afford the title compound 3-amino-6-chloro-N-((l-methylpiperidin-4-yl)methyl)picolinamide (240 mg, crude) as a yellow gum. LC-MS (ES+, m/z): 283.1 [(M+H)+]




embedded image


tert-butyl 4-[(6-bromopyridine-2-carbonyl)amino]piperidine-1-carboxylate



embedded image


To a mixture of 6-bromopyridine-2-carboxylic acid (1 g, 4.95 mmol, 1 eq) in DMF (15 mL) was added T3P (4.73 g, 7.43 mmol, 4.42 mL, 50% purity, 1.5 eq), Et3N (1.5 g, 14.85 mmol, 2.1 mL, 3 eq) and tert-butyl 4-aminopiperidine-1-carboxylate (1.49 g, 7.43 mmol, 1.5 eq). The reaction mixture was stirred at 25° C. for 1 hour. The reaction was diluted with 30 mL water, extracted with EtOAc (2×30 mL), and the combined organic layer was washed with brine (2×30 mL), dried over Na2SO4, filtered, and concentrated in vacuo to afford the title compound tert-butyl 4-[(6-bromopyridine-2-carbonyl)amino]piperidine-1-carboxylate (1.8 g, crude) as a yellow oil.


6-bromo-N-(4-piperidyl)pyridine-2-carboxamide



embedded image


To a solution of compound tert-butyl 4-[(6-bromopyridine-2-carbonyl)amino]piperidine-1-carboxylate (1.8 g, 4.68 mmol, 1 eq) was added HCl/EtOAc (4 M, 30 mL, 25.62 eq) in one portion. The mixture was stirred at 25° C. for 2 hours. The reaction mixture was concentrated directly in vacuo to give crude to afford the title compound 6-bromo-N-(4-piperidyl)pyridine-2-carboxamide (1.2 g, crude) as an off-white solid.


6-bromo-N-[1-(2-hydroxy-3-methoxy-propyl)-4-piperidyl]pyridine-2-carboxamide



embedded image


To a mixture of 6-bromo-N-(4-piperidyl)pyridine-2-carboxamide (200 mg, 703.85 μmol, 1 eq) in ACN (6 mL) was added K2CO3 (291.8 mg, 2.11 mmol, 3 eq), 2-(methoxy methyl)oxirane (310.1 mg, 3.52 mmol, 313.2 μL, 5 eq) in one portion. The mixture was stirred at 50° C. for 12 hours. The reaction was diluted with 20 mL water, extracted with EtOAc (2×20 mL), and the combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, DCM:MeOH=20:1) to afford the title compound 6-bromo-N-[l-(2-hydroxy-3-methoxy-propyl)-4-piperidyl]pyridine-2-carboxamide (180 mg, 483.54 μmol, 68.7% yield) as a colorless oil. LC-MS (ES+, m/z): 372.1 [(M+H)+]




embedded image


tert-butyl 4-[2-[(6-bromopyridine-2-carbonyl)amino]ethyl]piperidine-1-carboxylate



embedded image


To a solution of compound 6-bromopyridine-2-carboxylic acid (1 g, 4.95 mmol, 1 eq) in DMF (15 mL), Et3N (1.5 g, 14.85 mmol, 2.1 mL, 3 eq) and T3P (4.72 g, 7.43 mmol, 4.42 mL, 50% purity, 1.5 eq) and tert-butyl 4-(2-aminoethyl)piperidine-1-carboxylate (1.36 g, 5.94 mmol, 1.2 eq) was added dropwise. Then the mixture was stirred at 25° C. for 1 h. TLC (DCM:MeOH=10:1) indicated starting material was consumed completely and one new spot formed. The reaction was clean according to TLC. The reaction mixture was quenched by adding H2O (100 mL), and extracted with EtOAc 120 mL (3×40 mL). The combined organic layers were washed with brine 60 mL, dried over Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 0/1) to afford the title compound tert-butyl 4-[2-[(6-bromopyridine-2-carbonyl)amino]ethyl]piperidine-1-carboxylate (1.7 g, 4.12 mmol, 83.3% yield) as a colorless oil.


6-bromo-N-[2-(4-piperidyl)ethyl]pyridine-2-carboxamide



embedded image


To a solution of compound tert-butyl 4-[2-[(6-bromopyridine-2-carbonyl)amino]ethyl]piperidine-1-carboxylate (1.7 g, 4.12 mmol, 1 eq) in HCl/EtOAc (4 M, 30 mL, 29.10 eq). The mixture was stirred at 25° C. for 1 h. LC-MS showed starting material was consumed completely and one main peak with desired mass was detected. The reaction mixture was concentrated in vacuo to give a residue to afford the title compound 6-bromo-N-[2-(4-piperidyl)ethyl]pyridine-2-carboxamide (1.3 g, crude, HCl) as a white solid. LC-MS (ES+, m/z): 12.1 [(M+H)+].


N-[2-(1-acetyl-4-piperidyl)ethyl]-6-bromo-pyridine-2-carboxamide



embedded image


To a mixture of 6-bromo-N-[2-(4-piperidyl)ethyl]pyridine-2-carboxamide (250 mg, 800.76 μmol, 1 eq) in DCM (5 mL) was added TEA (243.1 mg, 2.4 mmol, 334.4 μL, 3 eq) acetyl chloride (125.7 mg, 1.6 mmol, 114.3 μL, 2 eq) at 0° C. under N2. The reaction was stirred at 25° C. for 1 hour. The reaction was diluted with 30 mL water, extracted with EtOAc (2×30 mL), and the combined organic layer was washed with brine (2×30 mL), dried over Na2SO4, filtered, and concentrated in vacuo to afford the title compound N-[2-(1-acetyl-4-piperidyl)ethyl]-6-bromo-pyridine-2-carboxamide (260 mg, crude) as a brown oil.




embedded image


tert-butyl (3R,4R)-4-[(6-bromopyridine-2-carbonyl)amino]-3-fluoro-piperidine-1-carboxylate



embedded image


To a mixture of 6-bromopyridine-2-carboxylic acid (250 mg, 1.24 mmol, 1 eq) in DMF (5 mL) was added T3P (1.18 g, 1.86 mmol, 1.11 mL, 50% purity, 1.5 eq), Et3N (376.4 mg, 3.72 mmol, 517.8 μL, 3 eq), tert-butyl (3R,4R)-4-amino-3-fluoro-piperidine-1-carboxylate (297.7 mg, 1.36 mmol, 1.1 eq) in one portion. The reaction was stirred at 25° C. for 1 hour. The reaction was diluted with water (20 mL), extracted with EtOAc (2×200 mL), and the combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo to afford the title compound tert-butyl (3R,4R)-4-[(6-bromopyridine-2-carbonyl)amino]-3-fluoro-piperidine-1-carboxylate (500 mg, crude) as an off-white solid.


6-bromo-N-(3-fluoropiperidin-4-yl)picolinamide



embedded image


The solution of compound tert-butyl (3R,4R)-4-[(6-bromopyridine-2-carbonyl)amino]-3-fluoro-piperidine-1-carboxylate (250 mg, 621.49 μmol, 1 eq) was added HCl/EtOAc (4 M, 10 mL, 64.36 eq) in one portion. The reaction mixture was stirred at 25° C. for 1 hour. The reaction was concentrated to give crude to afford the title compound 6-bromo-N-(3-fluoropiperidin-4-yl)picolinamide (150 mg, crude) as an off-white solid. LC-MS (ES+, m/z): 302.0 [(M+H)+].


6-bromo-N-[(3R,4R)-3-fluoro-1-methyl-4-piperidyl]pyridine-2-carboxamide



embedded image


To a mixture of 6-bromo-N-[(3R,4R)-3-fluoro-4-piperidyl]pyridine-2-carboxamide (150 mg, 496.46 μmol, 1 eq) and HCHO (80.6 mg, 992.91 μmol, 73.9 μL, 2 eq) in DCM (3 mL) was added NaBH(OAc)3 (210.4 mg, 992.91 μmol, 2 eq) in one portion. The mixture was stirred at 25° C. for 2 hours. The reaction was diluted with water (20 mL), extracted with EtOAc (2×20 mL), and the combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo to afford the title compound (130 mg, crude) as a yellow oil. LC-MS (ES+, m/z): 316.0 [(M+H)+]




embedded image


tert-butyl 4-[(6-bromopyridine-2-carbonyl)amino]-3-methoxy-piperidine-1-carboxylate



embedded image


To a solution of 6-bromopyridine-2-carboxylic acid (0.35 g, 1.73 mmol, 1 eq) in DMF (4 mL) was added TEA (876.6 mg, 8.66 mmol, 1.21 mL, 5 eq) and tert-butyl 4-amino-3-methoxy-piperidine-1-carboxylate (518.7 mg, 2.25 mmol, 1.3 eq). Then T3P (1.65 g, 2.6 mmol, 1.55 mL, 50% purity, 1.5 eq) was added to the reaction and the reaction was stirred at 25° C. for 1 h. TLC showed that the reaction was complete. The reaction mixture was diluted with H2O (50 mL). The mixture was extracted with EtOAc (2×50 mL), and the combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 6:1) to afford the title compound tert-butyl 4-[(6-bromopyridine-2-carbonyl)amino]-3-methoxy-piperidine-1-carboxylate (0.65 g, 1.57 mmol, 90.6% yield) as a yellow oil.


6-bromo-N-(3-methoxy-4-piperidyl)pyridine-2-carboxamide



embedded image


To a solution of tert-butyl 4-[(6-bromopyridine-2-carbonyl)amino]-3-methoxy-piperidine-1-carboxylate (0.3 g, 724.12 μmol, 1 eq) in HCl/EtOAc (4 M, 3 mL, 16.57 eq). The mixture was stirred at 25° C. for 1 h. LCMS showed that the reaction was complete. The reaction mixture was filtered, and concentrated in vacuo to give a residue. The crude product used was directly without further purification to afford the title compound 6-bromo-N-(3-methoxy-4-piperidyl)pyridine-2-carboxamide (0.22 g, crude, HCl) as a white solid. LC-MS (ES+, m/z): 314.0 [(M+H)+]


6-bromo-N-(3-methoxy-1-methyl-4-piperidyl)pyridine-2-carboxamide



embedded image


To a solution of 6-bromo-N-(3-methoxy-4-piperidyl)pyridine-2-carboxamide (0.15 g, 477.44 μmol, 1 eq) in DCM (3 mL) was added formaldehyde (77.5 mg, 954.87 μmol, 71.1 μL, 2 eq) and NaBH(OAc)3 (202.4 mg, 954.87 μmol, 2 eq). The mixture was stirred at 25° C. for 1 hr. LCMS showed that the reaction was complete. The reaction mixture was quenched with saturated Na2CO3 (100 mL), extracted with EtOAc (2×50 mL). Then washed with brine (2×50 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, DCM:MeOH=8:1) to afford the title compound 6-bromo-N-(3-methoxy-1-methyl-4-piperidyl)pyridine-2-carboxamide (0.11 g, 335.16 μmol, 70.2% yield) as a yellow oil. LC-MS (ES+, m/z): 328.0 [(M+H)+]


General Procedure for Preparation of Compound 6-bromo-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide



embedded image


To a solution of 6-bromopyridine-2-carboxylic acid (0.85 g, 4.21 mmol, 1 eq) in DMF (10 mL) was added TEA (2.13 g, 21.04 mmol, 2.93 mL, 5 eq) and 1-methylpiperidin-4-amine (720.7 mg, 6.31 mmol, 1.5 eq). Then T3P (4.02 g, 6.31 mmol, 3.75 mL, 50% purity, 1.5 eq) was added to the reaction and the reaction was stirred at 25° C. for 1 h. TLC showed that the reaction was complete. The reaction mixture was diluted with H2O (100 mL). The mixture was extracted with EtOAc (3×100 mL), and the combined organic layers were washed with H2O (2×100 mL) and brine (2×100 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue which was used directly without further purification to afford the title compound 6-bromo-N-(1-methyl-4-piperidyl)pyridine-2-carboxamide (1.5 g, crude) as a yellow oil.




embedded image


tert-butyl 4-[(6-bromopyridine-2-carbonyl)amino]-3,3-difluoro-piperidine-1-carboxylate



embedded image


To a solution of compound 6-bromopyridine-2-carboxylic acid (800 mg, 3.96 mmol, 1 eq) in DMF (10 mL) was added drop-wise tert-Butyl 4-amino-3,3-difluoropiperidine-1-carboxylate (1.12 g, 4.75 mmol, 1.2 eq) and Et3N (1.2 g, 11.88 mmol, 1.65 mL, 3 eq) and T3P (3.78 g, 5.94 mmol, 3.53 mL, 50% purity, 1.5 eq). The reaction mixture was stirred at 25° C. for 1 hr. TLC showed that the reaction was complete. The reaction mixture was quenched by adding H2O (60 mL), and extracted with EtOAc (3×40 mL). The combined organic layer was washed with brine (2×30 mL×2), dried over Na2SO4, filtered, and concentrated to afford the title compound tert-butyl 4-[(6-bromopyridine-2-carbonyl)amino]-3,3-difluoro-piperidine-1-carboxylate (1.5 g, crude) as a yellow oil.


General Procedure for 6-bromo-N-(3,3-difluoro-4-piperidyl)pyridine-2-carboxamide



embedded image


A mixture of tert-butyl 4-[(6-bromopyridine-2-carbonyl)amino]-3,3-difluoro-piperidine-1-carboxylate (1.2 g, 2.86 mmol, 1 eq) in DCM (12 mL) and TFA (4.62 g, 40.52 mmol, 3 mL, 14.19 eq) was added drop-wise. The mixture was stirred at 25° C. for 1 hr. TLC (PE:ethyl aectate=1:1) indicated Reactant 1 was consumed completely and one new spot formed. The reaction mixture was quenched by adding H2O 50 mL at 0° C., and extracted with DCM (3×40 mL). The combined organic layers were washed with brine 60 mL, dried over Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=1/0 to 0/1) to afford the title compound 6-bromo-N-(3,3-difluoro-4-piperidyl)pyridine-2-carboxamide (800 mg, 2.5 mmol, 87.52% yield) as a yellow solid


6-bromo-N-(3,3-difluoro-1-methyl-4-piperidyl)pyridine-2-carboxamide



embedded image


To a solution of compound 6-bromo-N-(3,3-difluoro-4-piperidyl)pyridine-2-carboxamide (100 mg, 312.37 μmol, 1 eq) in DCM (3 mL) was added drop-wise formaldehyde (50.7 mg, 624.74 μmol, 46.51 μL, 2 eq) and NaBH(OAc)3 (99.3 mg, 468.56 μmol, 1.5 eq). Then the mixture was stirred at 25° C. for 2 h. LCMS showed that the reaction was complete. The reaction mixture was quenched by adding H2O (30 mL), and extracted with DCM (5×20 mL). The combined organic layer was washed with brine (60 mL), dried over Na2SO4, filtered, and concentrated to give a residue which was purified by prep-TLC (PE:EtOAc=1:2) to afford the title compound 6-bromo-N-(3,3-difluoro-1-methyl-4-piperidyl)pyridine-2-carboxamide (80 mg, 239.41 μmol, 76.6% yield) as a colorless oil. LC-MS (ES+, m/z): 334.0 [(M+H)+]


2-chloro-N-((3R,4S)-3-fluoro-1-methylpiperidin-4-yl)pyrimidine-4-carboxamide



embedded image


To a solution of compound 2-chloropyrimidine-4-carboxylic acid (150 mg, 946.12 μmol, 1 eq) in DMF (3 mL) was added dropwise (3R,4S)-3-fluoro-1-methyl-piperidin-4-amine (239.3 mg, 1.42 mmol, 1.5 eq, HCl) and Et3N (287.2 mg, 2.84 mmol, 395.07 μL, 3 eq) and T3P (903.1 mg, 1.42 mmol, 844.03 μL, 50% purity, 1.5 eq). The reaction mixture was stirred at 25° C. for 1 hr. LCMS showed that the reaction was complete. The reaction mixture was quenched by adding H2O (40 mL), and extracted with EtOAc (6×15 mL). The combined organic layer was washed with brine (3×20 mL), dried over Na2SO4, filtered, and concentrated to afford the title compound 2-chloro-N-((3R,4S)-3-fluoro-1-methylpiperidin-4-yl)pyrimidine-4-carboxamide (130 mg, crude) as a yellow solid. LC-MS (ES+, m/z): 273.1 [(M+H)+]




embedded image


tert-butyl (2S,4R)-4-[(2-chloropyrimidine-4-carbonyl)amino]-2-methyl-piperidine-1-carboxylate



embedded image


To a solution of compound 2-chloropyrimidine-4-carboxylic acid (250 mg, 1.58 mmol, 1 eq) in DMF (4 mL) was added dropwise tert-butyl 4-amino-2-methyl-piperidine-1-carboxylate (506.9 mg, 2.37 mmol, 1.5 eq) and Et3N (478.7 mg, 4.73 mmol, 658.44 μL, 3 eq) and T3P (1.51 g, 2.37 mmol, 1.41 mL, 50% purity, 1.5 eq). The reaction mixture was stirred at 25° C. for 1 hr. TLC showed that the reaction was complete. The reaction mixture was quenched by adding H2O (40 mL), and extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated to give a residue. The residue was purified by prep-TLC (SiO2, PE:EtOAc=2:1) to afford the title compound tert-butyl (2S,4R)-4-[(2-chloropyrimidine-4-carbonyl)amino]-2-methyl-piperidine-1-carboxylate (500 mg, 1.41 mmol, 89.4% yield) as a colourless oil.


2-chloro-N-[(2S,4R)-2-methyl-4-piperidyl]pyrimidine-4-carboxamide



embedded image


To a solution of compound tert-butyl (2S,4R)-4-[(2-chloropyrimidine-4-carbonyl)amino]-2-methyl-piperidine-1-carboxylate (450 mg, 1.27 mmol, 1 eq) in HCl/EtOAc (4 M, 20 mL, 63.08 eq). Then the mixture was stirred at 25° C. for 1 h. LCMS showed that the reaction was complete. The reaction mixture was concentrated to afford the title compound 2-chloro-N-[(2S,4R)-2-methyl-4-piperidyl]pyrimidine-4-carboxamide (350 mg, crude, HCl) as a white solid. LC-MS (ES+, m/z): 255.1 [(M+H)+]


2-chloro-N-[(2S,4R)-1,2-dimethyl-4-piperidyl]pyrimidine-4-carboxamide



embedded image


To a solution of compound 2-chloro-N-[(2S,4R)-2-methyl-4-piperidyl]pyrimidine-4-carboxamide (200 mg, 686.87 μmol, 1 eq, HCl) and formaldehyde (111.5 mg, 1.37 mmol, 102.28 μL, 2 eq) in DCM (3 mL) was added NaBH(OAc)3 (218.4 mg, 1.03 mmol, 1.5 eq) in one portion under N2. Then the mixture was stirred at 25° C. for 1 h. TLC showed that the reaction was complete. The reaction mixture was quenched by adding saturated Na2CO3 (30 mL) at 0° C., and extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated to give a residue which was purified by prep-TLC (DCM:MeOH=10:1) to afford the title compound 2-chloro-N-[(2S,4R)-1,2-dimethyl-4-piperidyl]pyrimidine-4-carboxamide (160 mg, 595.37 μmol, 86.7% yield) as a yellow oil. LC-MS (ES+, m/z): 269.1 [(M+H)+]


tert-butyl N-[4-(2-oxa-6-azaspiro[3.3]heptan-6-yl)cyclohexyl]carbamate



embedded image


To a solution of tert-butyl N-(4-oxocyclohexyl)carbamate (0.4 g, 1.88 mmol, 400 μL, 1 eq) and 2-oxa-6-azaspiro[3.3]heptane;oxalic acid (1.06 g, 5.63 mmol, 3 eq) in THF (5 mL) was added i-Pr2NH (1.9 g, 18.76 mmol, 2.65 mL, 10 eq). Then the mixture was stirred at 50° C. for 0.5 h. Then NaBH(OAc)3 (1.19 g, 5.63 mmol, 3 eq) was added and the reaction was heated to 50° C. under N2 and stirred for 1 h. TLC showed that the reaction was complete. The reaction mixture was diluted with saturated Na2CO3 to adjust to pH=8. The mixture was extracted with EtOAc (2×50 mL), and the combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. N/A (used the crude product directly) to afford the title compound tert-butyl N-[4-(2-oxa-6-azaspiro[3.3]heptan-6-yl)cyclohexyl]carbamate (0.6 g, crude) as a white oil.


4-(2-oxa-6-azaspiro[3.3]heptan-6-yl)cyclohexanamine



embedded image


To a solution of tert-butyl N-[4-(2-oxa-6-azaspiro[3.3]heptan-6-yl)cyclohexyl]carbamate (0.5 g, 1.69 mmol, 1 eq) in DCM (2 mL) was added TFA (770 mg, 6.75 mmol, 0.5 mL, 4 eq). The mixture was stirred at 25° C. for 1 hr. TLC showed that the reaction was complete. The reaction mixture was diluted with saturated Na2CO3 to adjust to pH=8. The mixture was extracted with EtOAc (2×50 mL), and the combined organic layers were washed with H2O (2×50 mL) and brine (2×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. N/A (used the crude product directly) to afford the title compound 4-(2-oxa-6-azaspiro[3.3]heptan-6-yl)cyclohexanamine (0.7 g, crude) as a white oil.




embedded image


tert-butyl (2S,4R)-4-(benzyloxycarbonylamino)-2-methyl-piperidine-1-carboxylate



embedded image


To a mixture of tert-butyl (2S,4R)-4-amino-2-methyl-piperidine-1-carboxylate (400 mg, 1.87 mmol, 1 eq) and K2CO3 (386.9 mg, 2.8 mmol, 1.5 eq) in THF (7 mL) H2O (2 mL) was added benzyl carbonochloridate (350.3 mg, 2.05 mmol, 291.88 μL, 1.1 eq) in one portion at 0° C. under N2. The mixture was stirred at 25° C. for 1 hour. The reaction was diluted with 20 mL water, extracted with EtOAc (2×20 mL), and the combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1:1) to afford the title compound tert-butyl (2S,4R)-4-(benzyloxycarbonylamino)-2-methyl-piperidine-1-carboxylate (440 mg, 1.26 mmol, 67.66% yield) as a colourless oil. no spectra data for this compound, just by TLC.


benzyl N-[(2S,4R)-2-methyl-4-piperidyl]carbamate



embedded image


The solution of tert-butyl (2S,4R)-4-(benzyloxycarbonylamino)-2-methyl-piperidine-1-carboxylate (200 mg, 573.99 μmol, 1 eq) in HCl/EtOAc (4 M, 4 mL, 27.87 eq) was stirred at 25° C. for 2 hour. TLC showed that the reaction was complete. The reaction was diluted with 20 mL EtOAc, concentrated directly to give crude to afford the title compound benzyl N-[(2S,4R)-2-methyl-4-piperidyl]carbamate (200 mg, crude, HCl) as an off-white solid, no spectra data for this compound, just by TLC (SiO2, I2, PE:EtOAc=1:1, Rf SM=0.63, Rf TM=0.00)


benzyl N-[(2S,4R)-1,2-dimethyl-4-piperidyl]carbamate



embedded image


To a mixture of benzyl N-[(2S,4R)-2-methyl-4-piperidyl]carbamate (200 mg, 805.41 μmol, 1 eq) in DCM (4 mL) was added HCHO (196.1 mg, 2.42 mmol, 179.89 μL, 3 eq) NaBH(OAc)3 (512.1 mg, 2.42 mmol, 3 eq). The mixture was stirred at 25° C. for 2 hour. The reaction was diluted with 20 mL water, adjust to pH=9 with saturated aq. Na2CO3, extracted with EtOAc (2×20 mL), and the combined organic layer was washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo to afford the title compound benzyl N-[(2S,4R)-1,2-dimethyl-4-piperidyl]carbamate (100 mg, 381.18 μmol, 47.33% yield) as a colourless oil. LC-MS (ES+, m/z): 263.2 [(M+H)+]


(2S,4R)-1,2-dimethylpiperidin-4-amine



embedded image


To a solution of [[(2S,4R)-1,2-dimethyl-4-piperidyl]amino]methyl benzoate (100 mg, 381.17 μmol, 1 eq) in MeOH (3 mL) was added 10% Pd—C (138.9 mg, 114.35 μmol, 10% purity, 0.3 eq). The suspension was degassed in vacuo and purged with H2 several times. The mixture was stirred under H2 (768.40 ug, 381.17 μmol, 1 eq) (15 psi) at 25° C. for 3 hours. The reaction mixture was diluted with 10 mL MeOH, heated to 50° C. and filtered to give filtrate. The filtrate was concentrated to give crude to afford the title compound (2S,4R)-1,2-dimethylpiperidin-4-amine (30 mg, crude) as a colourless gum. no spectra data for this compound, just by TLC (SiO2, I2, DCM:MeOH=10:1, Rf SM=0.58, Rf TM


3-amino-2-methyl-propanenitrile



embedded image


The solution of 2-methylprop-2-enenitrile (2 g, 29.81 mmol, 2.50 mL, 1 eq) in NH3·H2O (9.1 g, 72.71 mmol, 10 mL, 28% purity, 2.44 eq) was stirred for 3 hr at 135° C. (no monitor). The reaction mixture was cooled to 15° C. Then distilled at 130° C. to give the crude product. The crude product was concentrated in vacuo for 0.5 hr at 0° C. to remove the remaining NH3·H2O to afford the title compound 3-amino-2-methyl-propanenitrile (0.2 g, crude) as a colorless liquid which was used for the next step directly without further purification.


tert-butyl N-[1-(2-hydroxyethyl)-4-piperidyl]carbamate



embedded image


To a solution of tert-butyl N-(4-piperidyl)carbamate (5 g, 24.97 mmol, 1 eq) in ACN (100 mL) was added K2CO3 (27.6 g, 199.72 mmol, 8 eq) and 2-bromoethanol (9.36 g, 74.9 mmol, 5.32 mL, 3 eq) at 25° C. under N2. The reaction mixture was stirred at 80° C. for 5 h. TLC showed that the reaction was complete. The reaction mixture was filtered, and the filtrated cake was washed with DCM (3×30 mL). The combined filtrate was concentrated to afford the title compound tert-butyl N-[1-(2-hydroxyethyl)-4-piperidyl]carbamate (9 g, crude) as a yellow oil. LC-MS (ES+, m/z): 245.3 [(M+H)+].


2-(4-amino-1-piperidyl)ethanol



embedded image


The solution of tert-butyl N-[l-(2-hydroxyethyl)-4-piperidyl]carbamate (4.5 g, 18.42 mmol, 1 eq) in 4N HCl/EtOAc (18.42 mmol, 45 mL, 4% purity, 1 eq) and the mixture was stirred at 25° C. for 1 h. LCMS showed that the reaction was complete. The reaction mixture was concentrated in vacuo to afford the title compound 2-(4-amino-1-piperidyl)ethanol (5 g, crude, 2HCl) as a yellow solid. LC-MS (ES+, m/z): 217.2 [(M+H)+].


3-amino-6-chloro-N-[1-(2-hydroxyethyl)-4-piperidyl]pyridine-2-carboxamide



embedded image


To a solution of 3-amino-6-chloro-pyridine-2-carboxylic acid (1 g, 5.79 mmol, 1 eq) and 2-(4-amino-1-piperidyl)ethanol (3.15 g, 14.49 mmol, 2.5 eq, 2HCl) in DMF (10 mL) was added T3P (5.53 g, 8.69 mmol, 5.17 mL, 50% purity, 1.5 eq) and Et3N (2.93 g, 28.97 mmol, 4.03 mL, 5 eq). The resulting reaction mixture was stirred at 25° C. for 1 h. TLC showed that the reaction was complete. The reaction mixture was poured into water (30 mL), extracted with EtOAc (2×30 mL). The combined organic layer was washed with brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound 3-amino-6-chloro-N-[l-(2-hydroxyethyl)-4-piperidyl]pyridine-2-carboxamide (4 g, crude) as a white solid.


LC-MS (ES+, m/z): 299.2 [(M+H)+].


7-bromo-N-methyl-quinoline-2-carboxamide



embedded image


To a solution of 7-bromoquinoline-2-carboxylic acid (200 mg, 793.45 μmol, 1 eq), MeNH2 (80.4 mg, 1.19 mmol, 1.5 eq, HCl) in DMF (2 mL) was added TEA (401.5 mg, 3.97 mmol, 552.19 μL, 5 eq) and T3P (757.38 mg, 1.19 mmol, 707.83 μL, 50% purity, 1.5 eq) at 25° C. The reaction mixture was stirred at 25° C. for 1 h. The reaction mixture was poured into H2O (15 mL) and the aqueous phase was extracted with EtOAc (3×15 mL). The combined organic layer was washed with brine (3×15 mL), dried with anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound 7-bromo-N-methyl-quinoline-2-carboxamide (200 mg, crude) as a yellow solid. LCMS (ES+, m/z): 265.0, 267.0 [(M+H)+]


6-bromo-1-methyl-quinolin-4-one (SM 55A)



embedded image


To a solution of 6-bromoquinolin-4-ol (200 mg, 892.64 μmol, 384.62 μL, 1 eq) in acetone (5 mL) was added K2CO3 (370.1 mg, 2.68 mmol, 3 eq) and MeI (253.4 mg, 1.79 mmol, 111.14 μL, 2 eq) at 25° C. The reaction mixture was stirred at 70° C. for 1 h. The reaction mixture was concentrated in vacuo to give the residue. The residue was purified by prep-TLC to afford the title compound 6-bromo-1-methyl-quinolin-4-one (150 mg, 630.04 μmol, 70.58% yield) as a white solid and confirmed by 1H NMR, C NMR, HSQC. 1H NMR (400 MHz, DMSO-d6) 5=8.24 (d, J=2.4 Hz, 1H), 8.00 (d, J=7.6 Hz, 1H), 7.90 (dd, J=2.4, 9.2 Hz, 1H), 7.66 (d, J=9.2 Hz, 1H), 6.09 (d, J=7.6 Hz, 1H), 3.81 (s, 3H),


6-bromo-4-methoxy-quinoline



embedded image


To a solution of 6-bromo-4-chloro-quinoline (200 mg, 824.74 μmol, 384.62 μL, 1 eq) in MeOH (6 mL) was added NaOMe (445.6 mg, 8.25 mmol, 10 eq) at 25° C. The reaction mixture was stirred at 70° C. for 2 h. The reaction mixture was concentrated in vacuo to give the residue. The residue was poured into H2O (6 mL) and the aqueous phase was extracted with EtOAc (3×10 mL). The combined organic layer was washed with brine (3×10 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound 6-bromo-4-methoxy-quinoline (180 mg, crude) as a white solid, confirmed by 1H NMR. TLC (PE:EtOAc=0:1, SM=0.86, TM=0.20) 1H NMR (400 MHz, DMSO-d6) 5=8.78 (d, J=5.6 Hz, 1H), 8.25 (d, J=2.0 Hz, 1H), 7.93-7.83 (m, 2H), 7.09 (d, J=5.6 Hz, 1H), 4.05 (s, 3H)


7-bromo-2-methoxy-quinoline



embedded image


To a solution of 7-bromo-2-chloro-quinoline (1 g, 4.12 mmol, 1 eq) in MeOH (10 mL) was added NaOMe (2.23 g, 41.24 mmol, 10 eq). The reaction mixture was heated to 65° C. and stirred at 65° C. for 2 h. The reaction mixture was concentrated in vacuo to give the residue. The residue was poured into H2O (20 mL) and the aqueous phase was extracted with EtOAc (3×10 mL). The combined organic layer was washed with brine (3×10 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound 7-bromo-2-methoxy-quinoline (0.9 g, crude) as a white solid, confirmed by 1H NMR. TLC (PE:EtOAc=1:0, SM=0.20, TM=0.30) 1H NMR (400 MHz, DMSO-d6) δ=8.27 (d, J=8.8 Hz, 1H), 7.96 (d, J=2.0 Hz, 1H), 7.86 (d, J=8.8 Hz, 1H), 7.59 (dd, J=2.0, 8.4 Hz, 1H), 7.07 (d, J=8.8 Hz, 1H), 3.98 (s, 3H)


Step 1 6-bromo-N-phenyl-quinolin-4-amine



embedded image


6-bromo-4-chloro-quinoline (0.3 g, 1.24 mmol, 1 eq) was dissolved in aniline (3.06 g, 32.86 mmol, 3 mL, 26.56 eq) in a 10 mL single-necked round bottom flask at 25° C. The mixture was stirred reflux at 100° C. for 1 h. The reaction was diluted with 10 mL EtOAc and poured into 20 mL water and extracted with EtOAc (3×15 mL), washed with brine (3×15 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 1/1) to afford the title compound 6-bromo-N-phenyl-quinolin-4-amine (0.3 g, 1 mmol, 81.06% yield) as a brown solid. LC-MS (ES+, m/z): 298.9/300.8 [(M+H)+].


7-bromo-N-phenyl-quinazolin-2-amine



embedded image


To a solution of 7-bromo-2-chloro-quinazoline (0.3 g, 1.23 mmol, 1 eq) in aniline (3.06 g, 32.86 mmol, 3 mL, 26.67 eq) was stirred at 100° C. for 1 hr. TLC (PE:EtOAc=1:1, SM Rf=0.58, TM Rf=0.51) showed that the reaction was complete. The reaction was diluted with ˜10 mL EtOAc and poured into 20 mL water and extracted with EtOAc (3×20 mL), washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was washed with PE (3×15 mL) to afford the title compound 7-bromo-N-phenyl-quinazolin-2-amine (0.25 g, crude) as a yellow solid. LC-MS (ES+, m/z): 300.1/302.1 [(M+H)+]


Route 3f
Step 1 7-bromo-N-methyl-isoquinolin-1-amine



embedded image


To a solution of 7-bromo-1-chloro-isoquinoline (0.3 g, 1.24 mmol, 1 eq) in MeNH2 (116.4 mg, 1.24 mmol, 2 mL, 33% purity in EtOH, 1 eq) and the mixture was stirred at 85° C. for 8 hr. TLC (PE:EtOAc=4:1, SM Rf=0.53, TM Rf=0.25) showed that the reaction was complete. The reaction was concentrate in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 4:1) to afford the title compound 7-bromo-N-methyl-isoquinolin-1-amine (0.24 g, 1.01 mmol, 81.82% yield) as a yellow solid.


7-Bromo-2-methoxy-quinazoline



embedded image


To a solution of 7-bromo-2-chloro-quinazoline (0.3 g, 1.23 mmol, 1 eq) in MeOH (3 mL) was added NaOMe (0.15 g, 2.78 mmol, 2.25 eq) at 25° C. Then stirred at 70° C. for 1 hr. TLC (PE:EtOAc=3:1, SM Rf=0.51, TM Rf=0.45) showed that the reaction was complete. The reaction was poured into ˜20 mL water. The mixture was extracted with EtOAc (3×10 mL), washed with brine (3×10 mL), dried over by anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound 7-Bromo-2-methoxy-quinazoline (0.23 g, crude) as a yellow solid.


7-bromo-N,N-dimethyl-isoquinolin-1-amine



embedded image


To a solution of 7-bromo-1-chloro-isoquinoline (0.3 g, 1.24 mmol, 1 eq) in N-methyl methan amine (2 M in THF, 6 mL, 9.70 eq) and the mixture was stirred at 70° C. for 8 hr. LCMS showed some starting material remained. Then stirred at 70° C. for further 8 h, LCMS showed that the reaction was complete. The reaction was concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=4:1) to afford the title compound 7-bromo-N,N-dimethyl-isoquinolin-1-amine (0.27 g, 1.08 mmol, 86.91% yield) as a yellow oil. LC-MS (ES+, m/z): 251.1/253.1 [(M+H)+].


6-bromo-4-(4-methylpiperazin-1-yl)quinoline



embedded image


A solution of 6-bromo-4-chloro-quinoline (1 g, 4.12 mmol, 1 eq) in i-PrOH (10 mL) was added DIPEA (2.66 g, 20.62 mmol, 3.59 mL, 5 eq) and 1-methylpiperazine (2.48 g, 24.74 mmol, 2.74 mL, 6 eq). Then the mixture was stirred at 100° C. for 1 h. The reaction was poured into ˜50 mL water and extracted with EtOAc (3×50 mL), washed with brine (3×100 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=30:1 to 10:1) to afford the title compound 6-bromo-4-(4-methylpiperazin-1-yl)quinoline (1 g, 3.27 mmol, 79.20% yield) as a yellow solid. LC-MS (ES+, m/z): 305.9/307.8 [(M+H)+].


4-(6-bromo-4-quinolyl)morpholine



embedded image


To a solution of 6-bromo-4-chloro-quinoline (1 g, 4.12 mmol, 1 eq) in i-PrOH (10 mL) was added DIPEA (1.6 g, 12.37 mmol, 2.15 mL, 3 eq) and morpholine (1.8 g, 20.62 mmol, 1.81 mL, 5 eq) and the mixture was stirred at 100° C. for 12 h in a 100 mL of sealed tube. LCMS showed some starting material remained. Then stirred at 100° C. for further 12 hr. The reaction was poured into ˜50 mL water and extracted with EtOAc (3×50 mL), washed with brine (3×100 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=30:1 to 10:1) to afford the title compound 4-(6-bromo-4-quinolyl)morpholine (1 g, 3.41 mmol, 82.72% yield) as a yellow solid. LC-MS (ES+, m/z): 292.8/294.8 [(M+H)+].


7-bromo-2-(4-methylpiperazin-1-yl)quinoline



embedded image


To a solution of 7-bromo-2-chloro-quinoline (0.3 g, 1.24 mmol, 1 eq) in i-PrOH (6 mL) was added 1-methylpiperazine (619.6 mg, 6.19 mmol, 686.11 μL, 5 eq) and DIPEA (799.4 mg, 6.19 mmol, 1.08 mL, 5 eq) and the mixture was stirred at 100° C. for 12 hr. The reaction was poured into ˜20 mL water and extracted with EtOAc (3×15 mL), washed with brine (3×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, DCM/MeOH=20/1 to 10:1) to afford the title compound 7-bromo-2-(4-methylpiperazin-1-yl)quinoline (0.27 g, 881.78 μmol, 71.28% yield) as a yellow solid. LC-MS (ES+, m/z): 306.2/308.2 [(M+H)+].


7-bromo-2-chloro-N-methyl-quinazolin-4-amine



embedded image


To a solution of 7-bromo-2,4-dichloro-quinazoline (0.4 g, 1.44 mmol, 1 eq) in i-PrOH (4 mL) was added DIEA (372 mg, 2.88 mmol, 501.36 μL, 2 eq) and methanamine; hydrochloride (97.2 mg, 1.44 mmol, 1 eq). Then the mixture was stirred at 25° C. for 1 h. LCMS showed that the reaction was complete. The reaction mixture was poured into water (100 mL) and extracted with EtOAc (3×30 mL), washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 1:1) to afford the title compound 7-bromo-2-chloro-N-methyl-quinazolin-4-amine (0.33 g, 1.21 mmol, 84.14 yield) as a light yellow solid.


7-bromo-N2-[(2,4-dimethoxyphenyl)methyl]-N4-methyl-quinazoline-2,4-diamine



embedded image


To a solution of 7-bromo-2-chloro-N-methyl-quinazolin-4-amine (0.15 g, 550.4 μmol, 1 eq) in i-PrOH (3 mL) was added DIEA (355.7 mg, 2.75 mmol, 479.35 μL, 5 eq) and (2,4-dimethoxyphenyl)methanamine (460.2 mg, 2.75 mmol, 414.55 μL, 5 eq). Then the mixture was stirred at 100° C. for 8 hr. The reaction was poured into 10 mL water and extracted with EtOAc (3×10 mL), washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1:1) to afford the title compound 7-bromo-N2-[(2,4-dimethoxyphenyl)methyl]-N4-methyl-quinazoline-2,4-diamine (0.2 g, 495.94 μmol, 90.11% yield) as a yellow solid. LC-MS (ES+, m/z): 403.2/405.2 [(M+H)+].


7-Bromo-2-chloro-N-(2-methoxyethyl)quinazolin-4-amine



embedded image


To a solution of 7-bromo-2,4-dichloro-quinazoline (0.4 g, 1.44 mmol, 1 eq) in i-PrOH (4 mL) was added DIEA (372 mg, 2.88 mmol, 501.36 μL, 2 eq) and 2-methoxyethanamine (108.1 mg, 1.44 mmol, 125.11 μL, 1 eq). Then the mixture was stirred at 25° C. for 1 h. The reaction mixture was poured into water (100 mL) and extracted with EtOAc (3×30 mL), washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 1:1) to afford the title compound 7-Bromo-2-chloro-N-(2-methoxyethyl) quinazolin-4-amine (0.38 g, 1.2 mmol, 83.40% yield) as alight yellow solid. LC-MS (ES+, m/z): 316.0/318.0 [(M+H)+].


7-bromo-N2-[(2,4-dimethoxyphenyl)methyl]-N4-(2-methoxyethyl) quinazoline-2,4-diamine



embedded image


To a solution of 7-bromo-2-chloro-N-(2-methoxyethyl) quinazolin-4-amine (0.18 g, 568.57 μmol, 1 eq) in i-PrOH (3 mL) was added DIEA (367.4 mg, 2.84 mmol, 495.18 μL, 5 eq) and (2,4-dimethoxyphenyl)methanamine (475.3 mg, 2.84 mmol, 428.24 μL, 5 eq). Then stirred at 100° C. for 8 hr. The reaction was poured into 10 mL water and extracted with EtOAc (3×10 mL), washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by prep-TLC (SiO2, PE:EtOAc=1:1) to afford the title compound 7-bromo-N2-[(2,4-dimethoxyphenyl)methyl]-N4-(2-methoxyethyl) quinazoline-2,4-diamine (0.2 g, 447.1 μmol, 78.64% yield) as a yellow solid. LC-MS (ES+, m/z): 447.2/449.2 [(M+H)+].


2-[(7-bromoquinazolin-2-yl)amino]ethanol



embedded image


To the solution of 7-bromo-2-chloro-quinazoline (260 mg, 1.07 mmol, 1 eq) in i-PrOH (5 mL) was added 2-aminoethanol (326.1 mg, 5.34 mmol, 5 eq), DIPEA (690 mg, 5.34 mmol, 5 eq). The reaction mixture was stirred at 90° C. for 2 hours. The reaction mixture was poured into water (80 mL) and extracted with EtOAc (3×30 mL). The combined organic layer was washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound (200 mg, crude) which was used for the next step directly without further purification.




embedded image


2-(2-chloropyrrolo[2,3-d]pyrimidin-7-yl)-N-methyl-acetamide



embedded image


To a solution of 2-chloro-7H-pyrrolo[2,3-d]pyrimidine (220 mg, 1.43 mmol, 1 eq) in DMF (5 mL) was added NaH (114.6 mg, 2.87 mmol, 60% purity, 2 eq). The reaction mixture was stirred at 0° C. for 30 min. Then 2-bromo-N-methyl-acetamide (653.2 mg, 4.3 mmol, 3 eq) was added at 0° C. The resulting reaction mixture was stirred at 0° C. for 1 hour. The reaction mixture was poured into saturated NH4Cl (80 mL) and extracted with EtOAc (3×30 mL). The combined organic layers were washed with brine (3×20 mL), dried over Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by prep-TLC (SiO2, DCM:MeOH=30:1) to afford the title compound 2-(2-chloropyrrolo[2,3-d]pyrimidin-7-yl)-N-methyl-acetamide (250 mg, 1.11 mmol, 77.68% yield) as a white solid.


Route 1c: methyl 3-(2-chloropyrrolo[2,3-d]pyrimidin-7-yl)propanoate



embedded image


To a solution of 2-chloro-7H-pyrrolo[2,3-d]pyrimidine (800 mg, 5.21 mmol, 1 eq) in ACN (6 mL) was added DBU (396.5 mg, 2.6 mmol, 0.5 eq) and methyl prop-2-enoate (538.2 mg, 6.25 mmol, 1.2 eq) at 25° C. The reaction mixture was stirred at 80° C. for 16 hours. The reaction mixture was poured into water (80 mL) and extracted with EtOAc (3×30 mL). The combined organic layer was washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=20:1 to 1/1) to afford the title compound methyl 3-(2-chloropyrrolo[2,3-d]pyrimidin-7-yl)propanoate (1 g, 4.17 mmol, 80.10% yield) as a white solid. LC-MS (ES+, m/z): 240.1 [(M+H)+]


3-(2-chloropyrrolo[2,3-d]pyrimidin-7-yl)propanoic acid



embedded image


To a solution of methyl 3-(2-chloropyrrolo[2,3-d]pyrimidin-7-yl)propanoate (500 mg, 2.09 mmol, 1 eq) in THF (8 mL) and H2O (2 mL) was added LiOH·H2O (262.7 mg, 6.26 mmol, 3 eq). The mixture was stirred at 25° C. for 2 hours. TLC (MeOH:DCM=10:1, SM/Rf=0.7, TM/Rf=0.2) showed that the reaction was complete. The reaction mixture was poured into ice water (80 mL). Then adjusting the pH=5˜6 with saturated citric acid. The solution was extracted with EtOAc (3×30 mL), washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound (400 mg, crude) as a white solid, which was used directly.


3-(2-chloropyrrolo[2,3-d]pyrimidin-7-yl)-N-methyl-propanamide



embedded image


To the solution of 3-(2-chloropyrrolo[2,3-d]pyrimidin-7-yl)propanoic acid (350 mg, 1.55 mmol, 1 eq) in DMF (5 mL) was successively added methanamine (523.7 mg, 7.76 mmol, 5 eq, HCl), T3P (1.48 g, 2.33 mmol, 50% purity, 1.5 eq) and TEA (470.9 mg, 4.65 mmol, 3 eq). The resulting reaction mixture was stirred at 25° C. for 1 hour. The reaction mixture was poured into water (80 mL) and extracted with EtOAc (3×30 mL), washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound (300 mg, crude) as a light yellow solid. LC-MS (ES+, m/z): 239.1 [(M+H)+]


7-bromoquinoxalin-2-amine



embedded image


To the solution of 7-bromo-2-chloro-quinoxaline (500 mg, 2.05 mmol, 1 eq) in i-PrOH (10 mL) was added NH3·H2O (2.4 g, 20.53 mmol, 2.64 mL, 30% purity, 10 eq) and DIPEA (2.65 g, 20.53 mmol, 10 eq). The reaction mixture was stirred at 90° C. for 2 hours. The reaction mixture was poured into water (80 mL) and extracted with EtOAc (3×30 mL). The combined organic layer was washed with H2O (2×30 mL) and brine (2×30 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to give a residue. The residue was purified by column chromatography (SiO2, PE:EtOAc=5:1 to 1:1) to afford the title compound (110 mg, 490.95 μmol, 23.91% yield) as a white solid. LC-MS (ES+, m/z): 223.9 [(M+H)+]


7-bromo-N2,N4-dimethyl-quinazoline-2,4-diamine



embedded image


To a solution of 7-bromo-2,4-dichloro-quinazoline (0.3 g, 1.08 mmol, 1 eq) in i-PrOH (3 mL) was added DIEA (1.4 g, 10.79 mmol, 1.88 mL, 10 eq). Then methanamine;hydrochloride (1.46 g, 21.59 mmol, 20 eq) was added and the reaction mixture was stirred at 100° C. for 15 h. LCMS showed that the reaction was complete. The reaction mixture was poured into 50 mL H2O, extracted with EtOAc (3×50 mL), and the combined organic layer was washed with H2O (2×50 mL) and brine (2×50 mL). Then dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound 7-bromo-N2,N4-dimethyl-quinazoline-2,4-diamine (0.3 g, crude) as a yellow solid which was used for the next step without further purification. LC-MS (ES+, m/z): 267.0 [(M+H)+]




embedded image


Methyl 2-(5-bromo-2-formyl-anilino)-2-oxo-acetate



embedded image


To a solution of 2-amino-4-bromo-benzaldehyde (8 g, 39.99 mmol, 1 eq) in DCM (120 mL) was added pyridine (9.49 g, 119.98 mmol, 9.68 mL, 3 eq) and methyl 2-chloro-2-oxo-acetate (6.37 g, 51.99 mmol, 4.79 mL, 1.3 eq) at 0° C. Then the mixture was stirred at 0° C. for 1 hr. The reaction was poured into water (300 mL) and extracted with DCM (3×150 mL), washed with brine (3×150 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound Methyl 2-(5-bromo-2-formyl-anilino)-2-oxo-acetate (12.8 g, crude) as a yellow solid. LC-MS (ES+, m/z): 285.9/288.0 [(M+H)+]. 1H NMR (400 MHz, DMSO-de) 5=12.27 (s, 1H), 10.00 (s, 1H), 8.68 (d, J=1.6 Hz, 1H), 7.95 (d, J=8.2 Hz, 1H), 7.67 (dd, J=1.8, 8.3 Hz, 1H), 3.90 (s, 3H).


Methyl 7-bromoquinazoline-2-carboxylate



embedded image


To a mixture of methyl 2-(5-bromo-2-formyl-anilino)-2-oxo-acetate (10.6 g, 37.05 mmol, 1 eq) in AcOH (106 mL) was added CH3COONH4 (28.56 g, 370.53 mmol, 10 eq) at 25° C. and the reaction mixture was stirred at 115° C. for 1 h. The reaction was poured into 20 mL water and added NaOH solid until pH=8. The mixture was extracted with EtOAc (3×200 mL), washed with brine (3×200 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to afford the title compound Methyl 7-bromoquinazoline-2-carboxylate (6.9 g, crude) as a yellow solid. LC-MS (ES+, m/z): 267.0/269.0 [(M+H)+]. 1H NMR (400 MHz, DMSO-d6) δ=9.80 (s, 1H), 8.46 (s, 1H), 8.25 (d, J=8.8 Hz, 1H), 8.10-8.04 (m, 1H), 3.97 (s, 3H)


7-bromoquinazoline-2-carboxamide



embedded image


To a solution of methyl 7-bromoquinazoline-2-carboxylate (3 g, 11.23 mmol, 1 eq) in MeOH (30 mL) was added NH3·H2O (6.83 g, 54.53 mmol, 7.5 mL, 28% purity, 4.85 eq) at 25° C. Then stirred at 50° C. for 1 hr. The reaction was concentrated in vacuo. Then the residue was washed with EtOAc (3×20 mL) to afford the title compound 7-bromoquinazoline-2-carboxamide (3.1 g, crude) as a yellow solid. LC-MS (ES+, m/z): 251.9/253.9 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) Shift=9.76 (s, 1H), 8.37 (s, 1H), 8.35-8.31 (m, 1H), 8.34 (br s, 1H), 8.23 (d, J=8.6 Hz, 1H), 8.03 (dd, J=1.8, 8.6 Hz, 1H), 7.93 (br s, 1H)


To a solution of methyl 7-bromoquinazoline-2-carboxylate (3.1 g, 11.61 mmol, 1 eq) in MeOH (36 mL) was added methanamine (6.6 g, 70.13 mmol, 9 mL, 33% purity in EtOH, 6.04 eq) at 25° C. Then stirred at 50° C. for 1 hr. The reaction was concentrated in vacuo, and washed with PE (3×50 mL) to afford the title compound 7-bromo-N-methyl-quinazoline-2-carboxamide (2.5 g, crude) as a yellow solid. LC-MS (ES+, m/z): 266.0/268.0 [(M+H)+], 1H NMR (400 MHz, DMSO-d6) Shift=9.77 (s, 1H), 9.04 (br d, J=3.9 Hz, 1H), 8.38 (s, 1H), 8.23 (d, J=8.6 Hz, 1H), 8.04 (dd, J=1.8, 8.7 Hz, 1H), 2.87 (d, J=4.8 Hz, 3H).


3-iodo-6-methyl-1H-indazole



embedded image


To a solution of 6-methyl-1H-indazole (0.5 g, 3.78 mmol, 1 eq) in DMF (5 mL) was added NIS (1.28 g, 5.67 mmol, 1.5 ef) and the mixture was stirred at 25° C. for 1 hr. TLC (PE:EtOAc=4:1, SM Rf=0.40, TM Rf=0.58) showed that the reaction was complete. The reaction was poured into ˜10 mL water and extracted with EtOAc (3×10 mL), washed with brine (3×10 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, PE:EtOAc=10:1 to 1/1) to afford the title compound 3-iodo-6-methyl-1H-indazole (0.9 g, 3.49 mmol, 92.19% yield) as a white solid.


(2-aminoquinazolin-7-yl)boronic acid



embedded image


To a mixture of 7-bromoquinazolin-2-amine (500 mg, 2.23 mmol, 1 eq) in dioxane (5 mL) was added Pin2B2 (736.7 mg, 2.9 mmol, 1.3 eq), KOAc (1.1 g, 11.16 mmol, 5 eq), Pd(dppf)Cl2 (81.6 mg, 111.58 μmol, 0.05 eq) under N2. The mixture was stirred at 100° C. for 1 h. The reaction mixture was concentrated in vacuo. The residue was dissolved in DCM (20 mL), filtered and the liquid was desired. The liquid was washed with PE (3×10 mL) to afford the title compound (2-aminoquinazolin-7-yl)boronic acid (500 mg, crude) as black brown solid. LC-MS (ES+, m/z) 190.0 [(M+H)+]


7-bromo-N-methyl-quinolin-2-amine



embedded image


To a mixture of 7-bromo-2-chloro-quinoline (1 g, 4.12 mmol, 1 eq) in DMSO (5 mL) was added MeNH2 (6.4 g, 61.86 mmol, 30% purity in EtOH, 15 eq). The mixture was stirred at 100° C. for 2 h. The reaction mixture was poured into H2O (20 mL) and the aqueous phase was filtered. The solid was collected. Then the solid was dissolved in PE:EtOAc=10:1 (20 mL) and stirred at 25° C. for 0.5 h. Then filtered. The solid was collected to afford the title compound 7-bromo-N-methyl-quinolin-2-amine (800 mg, crude) as a white solid. LC-MS (ES+, m/z) 236.9, 238.9 [(M+H)+]


(2-(methylamino)quinolin-7-yl)boronic acid



embedded image


A mixture of 7-bromo-N-methyl-quinolin-2-amine (400 mg, 1.69 mmol, 1 eq), 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (514.1 mg, 2.02 mmol, 1.2 eq), KOAc (331.2 mg, 3.37 mmol, 2 eq), Pd(dppf)Cl2 (123.4 mg, 168.71 μmol, 0.1 eq) in dioxane (8 mL). The mixture was stirred at 100° C. for 2 hours. The reaction mixture was filtered, and concentrated in vacuo to give a residue and washed with DCM (3×10 mL) to afford the title compound (2-(methylamino)quinolin-7-yl)boronic acid (600 mg, crude) as black brown oil. LC-MS (ES+, m/z) 202.9 [(M+H)+]


Example 17: Additional Compounds of the Disclosure

Compounds that bind to mutant p53 and restore DNA binding activity of the mutant p53 include compounds of TABLE 16.












TABLE 16








MW


Cpd No.
Structure
IUPAC
(g/mol)


















642


embedded image


3′-methoxy-3-(prop-2- enamido)-[1,1′-biphenyl]-4- carboxamide
296.3





643


embedded image


1-[6-(5-chloropyridin-3-yl)- 2,3-dihydro-1H-indol-1- yl]prop-2-en-1-one
284.7





644


embedded image


1-[6-(5-methoxypyridin-3-yl)- 2,3-dihydro-1H-indol-1- yl]prop-2-en-1-one
280.3





645


embedded image


3-methoxy-5-[1-(prop-2- enoyl)-2,3-dihydro-1H-indol- 6-yl]benzonitrile
304.3





646


embedded image


N-[6-(1-methyl-1H-indazol-6- yl)-1H-indol-4-yl]prop-2- enamide
316.4





647


embedded image


4-(1-methyl-1H-indazol-6- yl)-2-(prop-2- enamido)benzamide
320.4





648


embedded image


N-[2-methoxy-7-(pyridin-2- yl)naphthalen-1-yl]prop-2- enamide
304.3





649


embedded image


2-({[2-methoxy-7-(pyridin-2- yl)naphthalen-1- yl]amino}methyl)prop-2- enenitrile
315.4





650


embedded image


2-({[2-methoxy-7-(4- methoxypyridin-2- yl)naphthalen-1- yl]amino}methyl)prop-2- enenitrile
345.4





651


embedded image


2-amino-5-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- methylbenzamide
386.5





652


embedded image


N-[2-cyano-7-(pyridin-2- yl)naphthalen-1-yl]prop-2- enamide
299.3





653


embedded image


2-({[7-(6-aminopyridin-3-yl)- 2-methoxynaphthalen-1- yl]amino}methyl)prop-2- enenitrile
330.4





654


embedded image


2-({[7-(6-amino-5- chloropyridin-3-yl)-2- methoxynaphthalen-1- yl]amino}methyl)prop-2- enenitrile
364.8





655


embedded image


2-({[2-methoxy-7-(1-methyl- 1H-indazol-6-yl)naphthalen- 1-yl]amino}methyl)prop-2- enenitrile
368.4





656


embedded image


1-[(2-carbamoyl-2- methylideneethyl)amino]-7- (pyridin-3-yl)naphthalene-2- carboxamide
346.4





657


embedded image


2-({[7-(5-amino-6- chloropyridin-2-yl)-2- methoxynaphthalen-1- yl]amino}methyl)prop-2- enenitrile
364.8





658


embedded image


3-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- methyl-5- (trifluoromethoxy)benzamide
455.4





659


embedded image


3-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-5- methoxybenzonitrile
369.4





660


embedded image


2-amino-5-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2- yl}pyridine-3-carboxamide
373.4





661


embedded image


2-amino-5-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- methylpyridine-3- carboxamide
387.4





662


embedded image


2-({[2-methoxy-7-(5- methoxypyridin-2-yl) naphthalen-1- yl]amino}methyl)prop-2- enenitrile
345.4





663


embedded image


2-({[2-methoxy-6-(pyridin-3- yl)naphthalen-1- yl]amino}methyl)prop-2- enenitrile
315.4





664


embedded image


2-({[2-cyano-7-(pyridin-3- yl)naphthalen-1- yl]amino}methyl)prop-2- enamide
328.4





665


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2- yl}pyridine-3-carbonitrile
340.4





666


embedded image


2-({[7-(5-aminopyridin-2-yl)- 2-methoxynaphthalen-1- yl]amino}methyl)prop-2- enenitrile
330.4





667


embedded image


2-({[6-(6-aminopyridin-3-yl)- 2-methoxynaphthalen-1- yl]amino}methyl)prop-2- enenitrile
330.4





668


embedded image


2-[({2-methoxy-7-[4- (methylamino)pyridin-2- yl]naphthalen-1- yl}amino)methyl]prop-2- enenitrile
344.4





669


embedded image


2-({[2-methoxy-6-(pyridin-2- yl)naphthalen-1- yl]amino}methyl)prop-2- enenitrile
315.4





670


embedded image


2-({[2-methoxy-7-(1-methyl- 1H-pyrazol-4-yl)naphthalen- 1-yl]amino}methyl)prop-2- enenitrile
318.4





671


embedded image


2-({[2-methoxy-7-(3-methyl- 1H-indazol-5-yl)naphthalen- 1-yl]amino}methyl)prop-2- enenitrile
368.4





672


embedded image


2-({[7-(5-fluoropyridin-2-yl)- 2-methoxynaphthalen-1- yl]amino}methyl)prop-2- enenitrile
333.4





673


embedded image


N-(2-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2- yl}pyridin-4-yl)acetamide
372.4





674


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- methylpyridine-2- carboxamide
372.4





675


embedded image


2-({[6-(6-amino-5- chloropyridin-3-yl)-2- methoxynaphthalen-1- yl]amino}methyl)prop-2- enenitrile
364.8





676


embedded image


2-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- methylpyridine-4- carboxamide
372.4





677


embedded image


5-amino-2-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- methylpyridine-4- carboxamide
387.4





678


embedded image


3-amino-6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- methylpyridine-2- carboxamide
387.4





679


embedded image


2-[({7-[4-amino-3- (cyanomethoxy)phenyl]-2- methoxynaphthalen-1- yl}amino)methyl]prop-2- enenitrile
384.4





680


embedded image


2-amino-5- {8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- phenylpyridine-3- carboxamide
449.5





681


embedded image


2-amino-5-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- (1-methyl-1H-pyrazol-4- yl)pyridine-3-carboxamide
453.5





682


embedded image


2-chloro-N-[2-methoxy-7- (pyridin-3-yl)naphthalen-1- yl]acetamide
326.8





683


embedded image


2-[({7-[4-amino-3- (difluoromethoxy)phenyl]-2- methoxynaphthalen-1- yl}amino)methyl]prop-2- enenitrile
395.4





684


embedded image


3-amino-6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- ethylpyridine-2-carboxamide
401.5





685


embedded image


2-amino-5-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- (1-methylpiperidin-4- yl)pyridine-3-carboxamide
470.6





686


embedded image


2-({[7-(4-amino-3- methanesulfonylphenyl)-2- methoxynaphthalen-1- yl]amino}methyl)prop-2- enenitrile
407.5





687


embedded image


2-[({2-methoxy-7-[4- (phenylamino)pyridin-2- yl]naphthalen-1- yl}amino)methyl]prop-2- enenitrile
406.5





688


embedded image


2-amino-5-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- (1-methylpiperidin-3- yl)pyridine-3-carboxamide
470.6





689


embedded image


N-(2-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2- yl}pyridin-4-yl)propanamide
386.5





690


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2- yl}pyridine-2-carboxamide
358.4





691


embedded image


N-(2-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2- yl}pyridin-4-yl)benzamide
434.5





692


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- phenylpyridine-2- carboxamide
434.5





693


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- ethylpyridine-2-carboxamide
386.5





694


embedded image


N-(2-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2- yl}pyridin-4-yl) methanesulfonamide
408.5





695


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- (1-methyl-1H-pyrazol-4- yl)pyridine-2-carboxamide
438.5





696


embedded image


N-(6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2- yl}pyridin-2-yl)acetamide
372.4





697


embedded image


2-({[7-(pyridin-3- yl)naphthalen-1- yl]amino}methyl)prop-2- enenitrile
285.4





698


embedded image


tert-butyl N-(2-cyano-2- methylideneethyl)-N-[7-[5- methanesulfonamidopyridin- 2-yl)-2-methoxynaphthalen-1- yl]carbamate
508.6





699


embedded image


2-({[7-(4-aminopyridin-2-yl)- 2-methoxynaphthalen-1- yl]amino}methyl)prop-2- enenitrile
330.4





700


embedded image


2-[({2-methoxy-7-[5- (methylsulfanyl)pyridin-2- yl]naphthalen-1- yl}amino)methyl]prop-2- enenitrile
361.5





701


embedded image


N-(4-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2- yl}pyridin-2-yl)acetamide
372.4





702


embedded image


2-[({2-methoxy-7-[5- (methylamino)pyridin-3- yl]naphthalen-1- yl}amino)methyl]prop-2- enenitrile
344.4





703


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- (1-methylpiperidin-4- yl)pyridine-2-carboxamide
455.6





704


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- (2-hydroxyethyl)pyridine-2- carboxamide
402.5





705


embedded image


2-({[7-(pyridin-2- yl)naphthalen-1- yl]amino}methyl)prop-2- enenitrile
285.4





706


embedded image


5-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- methylpyridine-3- carboxamide
372.4





707


embedded image


N-(6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2- yl}pyridin-3- yl)methanesulfonamide
408.5





708


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-4- acetamido-N-methylpyridine- 2-carboxamide
429.5





709


embedded image


2-[({7-[5- (dimethylamino)pyridin-3- yl]-2-methoxynaphthalen-1- yl}amino)methyl]prop-2- enenitrile
358.4





710


embedded image


N-(2-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2- yl}pyridin-4-yl)-1- methylpiperidine-4- carboxamide
455.6





711


embedded image


2-({[7-(5- methanesulfonylpyridin-2-yl)- 2-methoxynaphthalen-1- yl]amino}methyl)prop-2- enenitrile
393.5





712


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- methyl-4- (methylamino)pyridine-2- carboxamide
401.5





713


embedded image


methyl 1-[(2-cyano-2- methylideneethyl)amino]-7- (pyridin-3-yl)naphthalene-2- carboxylate
343.4





714


embedded image


1-[(2-cyano-2- methylideneethyl)amino]-7- (pyridin-3-yl)naphthalene-2- carboxamide
328.4





715


embedded image


2-{[(2-methoxy-7-{4- [(pyridin-3-yl)amino]pyridin- 2-yl}naphthalen-1- yl)amino]methyl}prop-2- enenitrile
407.5





716


embedded image


2-{[(8-bromo-2- methoxynaphthalen-1- yl)amino]methyl}prop-2- enenitrile
317.2





717


embedded image


N-(2-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2- yl}pyridin-4-yl)-3- methoxybenzamide
464.5





718


embedded image


methyl 4-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2- yl}pyridine-2-carboxylate
373.4





719


embedded image


2-[({7-[4- (benzylamino)pyridin-2-yl]-2- methoxynaphthalen-1- yl}amino)methyl]prop-2- enenitrile
420.5





720


embedded image


2-({[2-methoxy-7-(pyridin-3- yl)naphthalen-1- yl](methyl)amino}methyl) prop-2-enenitrile
329.4





721


embedded image


2-{[(2-methoxy-7-{4- [(propan-2-yl)amino]pyridin- 2-yl}naphthalen-1- yl)amino]methyl}prop-2- enenitrile
372.5





722


embedded image


4-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2- yl}pyridine-2-carboxamide
358.4





723


embedded image


2-{[(2-methoxy-7-{4-[(3- methoxyphenyl)amino]pyridin- 2-yl}naphthalen-1- yl)amino]methyl}prop-2- enenitrile
436.5





724


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(1-methylpiperidin-4- yl)methyl]pyridine-2- carboxamide
469.6





725


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- (2-cyanoethyl)pyridine-2- carboxamide
411.5





726


embedded image


2-{[(7-{4-[(4- chlorophenyl)amino]pyridin- 2-yl}-2-methoxynaphthalen- 1-yl)amino]methyl}prop-2- enenitrile
440.9





727


embedded image


N-(2-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2- yl}pyridin-4-yl)-1-methyl- 1H-pyrazole-4-carboxamide
438.5





728


embedded image


2-({[7-(4-hydroxypyridin-2- yl)-2-methoxynaphthalen-1- yl]amino}methyl)prop-2- enenitrile
331.4





729


embedded image


2-({[7-(6-aminopyrimidin-4- yl)-2-methoxynaphthalen-1- yl]amino}methyl)prop-2- enenitrile
331.4





730


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- (2-methoxyethyl)pyridine-2- carboxamide
416.5





731


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- (2- methanesulfonylethyl) pyridine-2-carboxamide
464.5





732


embedded image


2-[(6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2- yl}pyridin-2- yl)formamido]acetamide
415.5





733


embedded image


2-({[7-(6-aminopyridin-2-yl)- 2-methoxynaphthalen-1- yl]amino}methyl)prop-2- enenitrile
330.4





734


embedded image


4-amino-6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- (1-methylpiperidin-4- yl)pyridine-2-carboxamide
470.6





735


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- methyl-4-(1- methylpiperidine-4- amido)pyridine-2- carboxamide
512.6





736


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- (oxan-4-yl)pyridine-2- carboxamide
442.5





737


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- cyclopentylpyridine-2- carboxamide
426.5





738


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- ethoxynaphthalen-2-yl}-N- (oxan-4-yl)pyridine-2- carboxamide
456.5





739


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2- yl}pyridine-2-carboxylic acid
359.4





740


embedded image


2-{[(2-methoxy-7-{4-[(1- methyl-1H-pyrazol-4- yl)amino]pyridin-2- yl}naphthalen-1- yl)amino]methyl}prop-2- enenitrile
410.5





741


embedded image


N-(6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2- yl}pyrimidin-4-yl)acetamide
373.4





742


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-4- acetamido-N-(1- methylpiperidin-4- yl)pyridine-2-carboxamide
512.6





743


embedded image


N-(2-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2- yl}pyrimidin-4-yl)acetamide
373.4





744


embedded image


2-({[2-chloro-7-(pyridin-2- yl)naphthalen-1- yl]amino}methyl)prop-2- enenitrile
319.8





745


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [1-(2-hydroxyethyl)piperidin- 4-yl]pyridine-2-carboxamide
485.6





746


embedded image


methyl 1-[(2-cyano-2- methylideneethyl)amino]-7- (pyridin-2-yl)naphthalene-2- carboxylate
343.4





747


embedded image


2-({[7-(2-aminopyrimidin-4- yl)-2-methoxynaphthalen-1- yl]amino}methyl)prop-2- enenitrile
331.4





748


embedded image


1-[(2-cyano-2- methylideneethyl)amino]-7- (pyridin-2-yl)naphthalene-2- carboxamide
328.4





749


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [2-(morpholin-4- yl)ethyl]pyridine-2- carboxamide
471.6





750


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(1r,4r)-4- hydroxycyclohexyl]pyridine- 2-carboxamide
456.5





751


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [2-(oxan-4-yl)ethyl]pyridine- 2-carboxamide
470.6





752


embedded image


N-(1-acetylpiperidin-4-yl)-6- {8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2- yl}pyridine-2-carboxamide
483.6





753


embedded image


N-[2-chloro-7-(pyridin-3- yl)naphthalen-1-yl]prop-2- enamide
308.8





754


embedded image


2-({[2-methyl-7-(pyridin-2- yl)naphthalen-1- yl]amino}methyl)prop-2- enenitrile
299.4





755


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(1-methylpyrrolidin-3- yl)methyl]pyridine-2- carboxamide
455.6





756


embedded image


1-[(2-cyano-2- methylideneethyl)amino]-7- (pyridin-2-yl)naphthalene-2- carboxylic acid
329.4





757


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [2-(4-methylpiperazin-1- yl)ethyl]pyridine-2- carboxamide
484.6





758


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(1s,4s)-4- (dimethylamino)cyclohexyl] pyridine-2-carboxamide
483.6





759


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(1r,4r)-4- (dimethylamino)cyclohexyl] pyridine-2-carboxamide
483.6





760


embedded image


N-(2-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2- yl}pyridin-4-yl)-3- methoxypropanamide
416.5





761


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- (1-methylpiperidin-3- yl)pyridine-2-carboxamide
455.6





762


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- (2-hydroxypropyl)pyridine-2- carboxamide
416.5





763


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [2- (dimethylamino)ethyl]pyridine- 2-carboxamide
429.5





764


embedded image


3-amino-6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- (1-methylpiperidin-4- yl)pyridine-2-carboxamide
470.6





765


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- (2-hydroxy-3- methoxypropyl)pyridine-2- carboxamide
446.5





766


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- (2,2,2-trifluoroethyl)pyridine- 2-carboxamide
440.4





767


embedded image


2-({[2-methoxy-8-(pyridin-2- yl)naphthalen-1- yl]amino}methyl)prop-2- enenitrile
315.4





768


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(3S,4R)-3-fluoro-1- methylpiperidin-4- yl]pyridine-2-carboxamide
473.6





769


embedded image


4-amino-6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- (2-hydroxyethyl)pyridine-2- carboxamide
417.5





770


embedded image


3-[(6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2- yl}pyridin-2- yl)formamido]propanamide
429.5





771


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- (1,5-dihydroxypentan-3- yl)pyridine-2-carboxamide
460.5





772


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [2-(1-methylpiperidin-4- yl)ethyl]pyridine-2- carboxamide
483.6





773


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [1-(2-methoxyethyl)piperidin- 4-yl]pyridine-2-carboxamide
499.6





774


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- ethoxynaphthalen-2-yl}-N-[1- (2-methoxyethyl)piperidin-4- yl]pyridine-2-carboxamide
513.6





775


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- ethoxynaphthalen-2-yl}-N-[1- (2-hydroxyethyl)piperidin-4- yl]pyridine-2-carboxamide
499.6





776


embedded image


6-{8-[bis(2-cyano-2- methylideneethyl)amino]-7- ethoxynaphthalen-2-yl}-N-[1- (2-hydroxyethyl)piperidin-4- yl]pyridine-2-carboxamide
564.7





777


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- (1-ethylpiperidin-4- yl)pyridine-2-carboxamide
469.6





778


embedded image


2-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- methylpyrimidine-4- carboxamide
373.4





779


embedded image


2-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- (1-methylpiperidin-4- yl)pyrimidine-4-carboxamide
456.6





780


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [2-(morpholin-4-yl)-2- oxoethyl]pyridine-2- carboxamide
485.5





781


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}- N,N-dimethylpyridine-2- carboxamide
386.5





782


embedded image


3-amino-6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(1-methylpiperidin-4- yl)methyl]pyridine-2- carboxamide
484.6





783


embedded image


2-[(6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2- yl}pyridin-2-yl)formamido]- N-methylacetamide
429.5





784


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(pyridin-3- yl)methyl]pyridine-2- carboxamide
449.5





785


embedded image


N-(2-{8-[(2-cyano-2- methylideneethyl)amino]-7- methylnaphthalen-2- yl}pyridin-4-yl)acetamide
356.4





786


embedded image


2-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2- yl}pyrimidine-4-carboxamide
359.4





787


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(3R)-1-methylpiperidin-3- yl]pyridine-2-carboxamide
455.6





788


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(3S)-1-methylpiperidin-3- yl]pyridine-2-carboxamide
455.6





789


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-1-yl}-N- (1-methylpiperidin-4- yl)pyridine-2-carboxamide
455.6





790


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(3R,4S)-3-fluoro-1- methylpiperidin-4- yl]pyridine-2-carboxamide
473.6





791


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- {1- [(methylcarbamoyl)methyl] piperidin-4-yl}pyridine-2- carboxamide
512.6





792


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- (3,3-difluoro-1- methylpiperidin-4- yl)pyridine-2-carboxamide
491.5





793


embedded image


4-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- (1-methylpiperidin-4- yl)pyrimidine-2-carboxamide
456.6





794


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(3R,4R)-3-methoxy-1- methylpiperidin-4- yl]pyridine-2-carboxamide
485.6





795


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(3S,4R)-1,3- dimethylpiperidin-4- yl]pyridine-2-carboxamide
469.6





796


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(3R,4R)-1,3- dimethylpiperidin-4- yl]pyridine-2-carboxamide
469.6





797


embedded image


2-({[7-(pyridin-2-yl)-2-(2,2,2- trifluoroethoxy)naphthalen-1- yl]amino}methyl)prop-2- enenitrile
383.4





798


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- (2,2,2- trifluoroethoxy)naphthalen-2- yl}-N-(1-methylpiperidin-4- yl)pyridine-2-carboxamide
523.6





799


embedded image


2-[(6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2- yl}pyridin-2-yl)formamido]- N-(1-methylpiperidin-4- yl)acetamide
512.6





800


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [1-(2-hydroxy-3- methoxypropyl)piperidin-4- yl]pyridine-2-carboxamide
529.6





801


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- methyl-N-(1-methylpiperidin- 4-yl)pyridine-2-carboxamide
469.6





802


embedded image


N-(1-acetyl-3-fluoropiperidin- 4-yl)-6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2- yl}pyridine-2-carboxamide
501.6





803


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [3-fluoro-1-(oxan-4- yl)piperidin-4-yl]pyridine-2- carboxamide
543.6





804


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(2S,4R)-1,2- dimethylpiperidin-4- yl]pyridine-2-carboxamide
469.6





805


embedded image


4-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- methylpyrimidine-2- carboxamide
373.4





806


embedded image


N-{2-[1- (carbamoylmethyl)piperidin- 4-yl]ethyl}-6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2- yl}pyridine-2-carboxamide
526.6





807


embedded image


N-(2-{8-[(2-cyano-2- methylideneethyl)amino]-7- (2,2,2- trifluoroethoxy)naphthalen-2- yl}pyridin-4-yl)acetamide
440.4





808


embedded image


2-({[7-(4-aminopyridin-2-yl)- 2-(2,2,2- trifluoroethoxy)naphthalen-1- yl]amino}methyl)prop-2- enenitrile
398.4





809


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(3R,4R)-3-fluoro-1- methylpiperidin-4- yl]pyridine-2-carboxamide
473.6





810


embedded image


N-[2-(1-acetylpiperidin-4- yl)ethyl]-6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2- yl}pyridine-2-carboxamide
511.6





811


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [1-(2-methoxyethyl)piperidin- 3-yl]pyridine-2-carboxamide
499.6





812


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [1-(2-hydroxyethyl)piperidin- 3-yl]pyridine-2-carboxamide
485.6





813


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- (1-methanesulfonylpiperidin- 4-yl)pyridine-2-carboxamide
519.6





814


embedded image


6-{5-chloro-8-[(2-cyano-2- methylideneethyl)amino] naphthalen-2-yl}-N-(1- methylpiperidin-4- yl)pyridine-2-carboxamide
460.0





815


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- (3- methanesulfonylpropyl) pyridine-2-carboxamide
478.6





816


embedded image


2-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(3R,4S)-3-fluoro-1- methylpiperidin-4- yl]pyrimidine-4-carboxamide
474.5





817


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [1-(3- methoxypropanoyl)piperidin- 4-yl]pyridine-2-carboxamide
527.6





818


embedded image


N-(2-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2- yl}pyridin-4-yl)-3- hydroxypropanamide
402.5





819


embedded image


2-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- (1-methylpiperidin-3- yl)pyrimidine-4-carboxamide
456.6





820


embedded image


2-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- (2-hydroxypropyl)pyrimidine- 4-carboxamide
417.5





821


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- (2-oxopiperidin-4- yl)pyridine-2-carboxamide
455.5





822


embedded image


2-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(2S,4R)-1,2- dimethylpiperidin-4- yl]pyrimidine-4-carboxamide
470.6





823


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- (propan-2-yloxy)naphthalen- 2-yl}-N-(1-methylpiperidin- 4-yl)pyridine-2-carboxamide
483.6





824


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- (2-{1- [(dimethylcarbamoyl)methyl] piperidin-4-yl}ethyl)pyridine- 2-carboxamide
554.7





825


embedded image


6-{7-chloro-8-[(2-cyano-2- methylideneethyl)amino] naphthalen-2-yl}-N-(1- methylpiperidin-4- yl)pyridine-2-carboxamide
460.0





826


embedded image


6-{7-chloro-8-[(2-cyano-2- methylideneethyl)amino] naphthalen-2-yl}-N-[(1- methylpiperidin-4- yl)methyl]pyridine-2- carboxamide
474.0





827


embedded image


6-{7-chloro-8-[(2-cyano-2- methylideneethyl)amino] naphthalen-2-yl}-N- methylpyridine-2- carboxamide
376.8





828


embedded image


N-(2-{8-[(2-cyano-2- methylideneethyl)amino]-7- (2,2,2- trifluoroethoxy)naphthalen-2- yl}pyridin-4-yl)-1- methylpiperidine-4- carboxamide
523.6





829


embedded image


N-(2-{8-[(2-cyano-2- methylideneethyl)amino]-7- (2,2,2- trifluoroethoxy)naphthalen-2- yl}pyridin-4-yl)-3- methoxypropanamide
484.5





830


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(1r,4r)-4-[(2- methoxyethyl)(methyl)amino] cyclohexyl]pyridine-2- carboxamide
527.7





831


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(1s,4s)-4-[(2- methoxyethyl)(methyl)amino] cyclohexyl]pyridine-2- carboxamide
527.7





832


embedded image


N-(2-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2- yl}pyridin-4-yl)-1- methylpiperidine-3- carboxamide
455.6





833


embedded image


N-[(3R)-1-acetylpiperidin-3- yl]-6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2- yl}pyridine-2-carboxamide
483.6





834


embedded image


N-(2-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2- yl}pyridin-4-yl)-1- methylpyrrolidine-3- carboxamide
441.5





835


embedded image


6-[7-methoxy-8-(prop-2- enamido)naphthalen-2-yl]-N- (1-methylpiperidin-4- yl)pyridine-2-carboxamide
444.5





836


embedded image


N-[(2R)-1-[(6-{8-[(2-cyano- 2-methylideneethyl)amino]-7- methoxynaphthalen-2- yl}pyridin-2- yl)formamido]propan-2- yl]acetamide
457.5





837


embedded image


N-[(3S)-1-acetylpiperidin-3- yl]-6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2- yl}pyridine-2-carboxamide
483.6





838


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- (propan-2-yloxy)naphthalen- 2-yl}-N-(1-methylpiperidin- 3-yl)pyridine-2-carboxamide
483.6





839


embedded image


6-{7-carbamoyl-8-[(2-cyano- 2- methylideneethyl)amino] naphthalen-2-yl}-N-(1- methylpiperidin-4- yl)pyridine-2-carboxamide
468.6





840


embedded image


N-{2-[(6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2- yl}pyridin-2- yl)formamido]ethyl} acetamide
443.5





841


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- {8-methyl-8- azabicyclo[3.2.1]octan-3- yl}pyridine-2-carboxamide
481.6





842


embedded image


N-[2-(8-amino-7- methoxynaphthalen-2- yl)pyridin-4-yl]-1- methylpiperidine-4- carboxamide
390.5





843


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-3- fluoro-N-[(3R)-1- methylpiperidin-3- yl]pyridine-2-carboxamide
473.6





844


embedded image


4-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- (1-methylpiperidin-4-yl)-1,3- thiazole-2-carboxamide
461.6





845


embedded image


6-{7-chloro-8-[(2-cyano-2- methylideneethyl)amino] naphthalen-2-yl}-N-[2- (morpholin-4- yl)ethyl]pyridine-2- carboxamide
476.0





846


embedded image


N-(2-cyano-2-methylethyl)-6- {8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2- yl}pyridine-2-carboxamide
425.5





847


embedded image


N-[(2S)-1-[(6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2- yl}pyridin-2- yl)formamido]propan-2- yl]acetamide
457.5





848


embedded image


6-{7-carbamoyl-8-[(2-cyano- 2- methylideneethyl)amino] naphthalen-2-yl}-N-[2- (morpholin-4- yl)ethyl]pyridine-2- carboxamide
484.6





849


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-3- fluoro-N-[(3S)-1- methylpiperidin-3- yl]pyridine-2-carboxamide
473.6





850


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-3- fluoro-N-[(1r,4r)-4- (dimethylamino)cyclohexyl] pyridine-2-carboxamide
501.6





851


embedded image


4-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- (2-hydroxypropyl)pyrimidine- 2-carboxamide
417.5





852


embedded image


4-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(3R)-1-methylpiperidin-3- yl]pyrimidine-2-carboxamide
456.6





853


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- (2-{1- [(methylcarbamoyl)methyl] piperidin-4-yl}ethyl)pyridine-2- carboxamide
540.7





854


embedded image


3-[7-methoxy-8-(prop-2- enamido)naphthalen-2-yl]-N- (1-methylpiperidin-4- yl)benzamide
443.5





855


embedded image


4-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(3S,4R)-3-fluoro-1- methylpiperidin-4- yl]pyrimidine-2-carboxamide
474.5





856


embedded image


4-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [2-(1-methylpiperidin-4- yl)ethyl]pyrimidine-2- carboxamide
484.6





857


embedded image


2-({[2-(methoxymethyl)-7- (pyridin-2-yl)naphthalen-1- yl]amino}methyl)prop-2- enenitrile
329.4





858


embedded image


2-{8-[(2-cyano-2- methylideneethyl)amino]-7- (propan-2-yloxy)naphthalen- 2-yl}-N-(1-methylpiperidin- 4-yl)pyrimidine-4- carboxamide
484.6





859


embedded image


N-{2-[7-methoxy-8-(prop-2- enamido)naphthalen-2- yl]pyridin-4-yl}-1- methylpiperidine-4- carboxamide
444.5





860


embedded image


2-[7-methoxy-8-(prop-2- enamido)naphthalen-2-yl]-N- (1-methylpiperidin-4- yl)pyrimidine-4-carboxamide
445.5





861


embedded image


6-{7-carbamoyl-8-[(2-cyano- 2- methylideneethyl)amino] naphthalen-2-yl}-N-[(1- methylpiperidin-4- yl)methyl]pyridine-2- carboxamide
482.6





862


embedded image


6-{7-carbamoyl-8-[(2-cyano- 2- methylideneethyl)amino] naphthalen-2-yl}-N-(1- methylpiperidin-3- yl)pyridine-2-carboxamide
468.6





863


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-3- fluoro-N-(1-methylpiperidin- 4-yl)pyridine-2-carboxamide
473.6





864


embedded image


2-{8-[(2-cyano-2- methylideneethyl)amino]-7- ethoxynaphthalen-2-yl}-N-(1- methylpiperidin-4- yl)pyrimidine-4-carboxamide
470.6





865


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-3- fluoro-N-[(1-methylpiperidin- 4-yl)methyl]pyridine-2- carboxamide
487.6





866


embedded image


2-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(1r,4r)-4- (dimethylamino)cyclohexyl] pyrimidine-4-carboxamide
484.6





867


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(1s,4s)-4-{2-oxa-6- azaspiro[3.3]heptan-6- yl}cyclohexyl]pyridine-2- carboxamide
537.7





868


embedded image


2-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(1r,4r)-4-[(2- methoxyethyl)(methyl)amino] cyclohexyl]pyrimidine-4- carboxamide
528.7





869


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- (difluoromethoxy)naphthalen- 2-yl}-N-(1-methylpiperidin- 4-yl)pyridine-2-carboxamide
491.5





870


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(1r,40-4-{2-oxa-6- azaspiro[3.3]heptan-6- yl}cyclohexyl]pyridine-2- carboxamide
537.7





871


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [2-(1H-imidazol-2- yl)ethyl]pyridine-2- carboxamide
452.5





872


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- (1-methyl-2-oxopiperidin-4- yl)pyridine-2-carboxamide
469.5





873


embedded image


N-(1-methylpiperidin-4-yl)-3- [8-(prop-2- enamido)naphthalen-2- yl]benzamide
413.5





874


embedded image


N-(1-methylpiperidin-4-yl)-2- [8-(prop-2- enamido)naphthalen-2- yl]pyrimidine-4-carboxamide
415.5





875


embedded image


4-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(3S)-1-methylpiperidin-3- yl]pyrimidine-2-carboxamide
456.6





876


embedded image


4-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(2S)-2-hydroxypropyl]-1,3- thiazole-2-carboxamide
422.5





877


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(1R,3S)-3- acetamidocyclohexyl]pyridine- 2-carboxamide
497.6





878


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(1R,3R)-3- acetamidocyclohexyl]pyridine- 2-carboxamide
497.6





879


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [4-(pyrrolidin-1- yl)cyclohexyl]pyridine-2- carboxamide
509.7





880


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(2R)-2- hydroxypropyl]pyridine-2- carboxamide
416.5





881


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(2S)-2- hydroxypropyl]pyridine-2- carboxamide
416.5





882


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- {1,4-dioxaspiro[4.5]decan-8- yl}pyridine-2-carboxamide
498.6





883


embedded image


N-(1-methylpiperidin-4-yl)-6- [4-(prop-2-enamido)quinolin- 6-yl]pyridine-2-carboxamide
415.5





884


embedded image


2-({[7-(4-aminopyrimidin-2- yl)-2-methoxynaphthalen-1- yl]amino}methyl)prop-2- enenitrile
331.4





885


embedded image


6-{7-carbamoyl-8-[(2-cyano- 2- methylideneethyl)amino] naphthalen-2-yl}-N-[2-(1- methylpiperidin-4- yl)ethyl]pyridine-2- carboxamide
496.6





886


embedded image


2-{8-[(2-cyano-2- methylideneethyl)amino]-7- ethoxynaphthalen-2-yl}-N- [(1r,4r)-4- (dimethylamino)cyclohexyl] pyrimidine-4-carboxamide
498.6





887


embedded image


2-{8-[(2-cyano-2- methylideneethyl)amino]-7- ethoxynaphthalen-2-yl}-N- [(1s,4s)-4- (dimethylamino)cyclohexyl] pyrimidine-4-carboxamide
498.6





888


embedded image


2-{8-[(2-cyano-2- methylideneethyl)amino]-7- (methoxymethyl)naphthalen- 2-yl}-N-(1-methylpiperidin- 4-yl)pyrimidine-4- carboxamide
470.6





889


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- (1-methylpiperidin-4- yl)pyrimidine-4-carboxamide
456.6





890


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-3- fluoro-N-[2-(1- methylpiperidin-4- yl)ethyl]pyridine-2- carboxamide
501.6





891


embedded image


5-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- (1-methylpiperidin-4-yl)- 1,3,4-thiadiazole-2- carboxamide
462.6





892


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- (methoxymethyl)naphthalen- 2-yl}-N-(1-methylpiperidin- 4-yl)pyridine-2-carboxamide
469.6





893


embedded image


N-(2-{8-[(2-cyano-2- methylideneethyl)amino]-7- (methoxymethyl)naphthalen- 2-yl}pyridin-4-yl)-1- methylpiperidine-4- carboxamide
469.6





894


embedded image


2-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(1s,4s)-4-[(2- methoxyethyl)(methyl)amino] cyclohexyl]pyrimidine-4- carboxamide
528.7





895


embedded image


2-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(1s,4s)-4- (diethylamino)cyclohexyl] pyrimidine-4-carboxamide
512.7





896


embedded image


2-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(1r,4r)-4- (diethylamino)cyclohexyl] pyrimidine-4-carboxamide
512.7





897


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-3- fluoro-N-[2-(1- methylpiperidin-3- yl)ethyl]pyridine-2- carboxamide
501.6





898


embedded image


2-{8-[(2-cyano-2- methylideneethyl)amino]-7- (2- methoxyethoxy)naphthalen-2- yl}-N-(1-methylpiperidin-4- yl)pyrimidine-4-carboxamide
500.6





899


embedded image


N-(1-methylpiperidin-4-yl)-4- [8-(prop-2- enamido)naphthalen-2- yl]pyrimidine-2-carboxamide
415.5





900


embedded image


N-[(3R,4S)-3-fluoro-1- methylpiperidin-4-yl]-6-[7- methoxy-8-(prop-2- enamido)naphthalen-2- yl]pyridine-2-carboxamide
462.5





901


embedded image


N-[(3S,4R)-3-fluoro-1- methylpiperidin-4-yl]-6-[7- methoxy-8-(prop-2- enamido)naphthalen-2- yl]pyridine-2-carboxamide
462.5





902


embedded image


2-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- (1-ethylpiperidin-4-yl)-1,3- oxazole-4-carboxamide
459.6





903


embedded image


6-{8-[(-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- (4-oxocyclohexyl)pyridine-2- carboxamide
454.5





904


embedded image


N-(1-methylpiperidin-4-yl)-6- [5-(prop-2-enamido)quinolin- 3-yl]pyridine-2-carboxamide
415.5





905


embedded image


6-amino-2-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- (1-methylpiperidin-4- yl)pyrimidine-4-carboxamide
471.6





906


embedded image


4-{8-[(2-cyano-2- methylideneethyl)amino]-7- (methoxymethyl)naphthalen- 2-yl}-N-(1-methylpiperidin- 4-yl)-1,3-thiazole-2- carboxamide
475.6





907


embedded image


4-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(1r,4r)-4- (dimethylamino)cyclohexyl]- 1,3-thiazole-2-carboxamide
489.6





908


embedded image


4-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(1s,4s)-4- (dimethylamino)cyclohexyl]- 1,3-thiazole-2-carboxamide
489.6





909


embedded image


4-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(1s,4s)-4-[(2- methoxyethyl)(methyl)amino] cyclohexyl]-1,3-thiazole-2- carboxamide
533.7





910


embedded image


4-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(1r,4r)-4-[(2- methoxyethyl)(methyl)amino] cyclohexyl]-1,3-thiazole-2- carboxamide
533.7





911


embedded image


4-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(3R)-1-(2- methoxyethyl)piperidin-3- yl]pyrimidine-2-carboxamide
500.6





912


embedded image


2-[8-(prop-2- enamido)naphthalen-2-yl]-N- [(1s,4s)-4- (dimethylamino)cyclohexyl] pyrimidine-4-carboxamide
443.6





913


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(1r,4r)-4- (dimethylamino)cyclohexyl] pyrimidine-4-carboxamide
484.6





914


embedded image


4-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(3S)-1-(2- methoxyethyl)piperidin-3- yl]pyrimidine-2-carboxamide
500.6





915


embedded image


4-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(2S,4R)-1,2- dimethylpiperidin-4-yl]-1,3- thiazole-2-carboxamide
475.6





916


embedded image


3-amino-6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- {8-methyl-8- azabicyclo[3.2.1]octan-3- yl}pyridine-2-carboxamide
496.6





917


embedded image


2-[8-(prop-2- enamido)naphthalen-2-yl]-N- [(1r,4r)-4- (dimethylamino)cyclohexyl] pyrimidine-4-carboxamide
443.6





918


embedded image


3-amino-6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(1s,4s)-4- (dimethylamino)cyclohexyl] pyridine-2-carboxamide
498.6





919


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- {9-methyl-9- azabicyclo[3.3.1]nonan-3- yl}pyridine-2-carboxamide
495.6





920


embedded image


6-{4-[(2-cyano-2- methylideneethyl)amino] quinolin-6-yl}-N-(1- methylpiperidin-4- yl)pyridine-2-carboxamide
426.5





921


embedded image


6-{5-[(2-cyano-2- methylideneethyl)amino] quinolin-3-yl}-N-(1- methylpiperidin-4- yl)pyridine-2-carboxamide
426.5





922


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [3- (dimethylamino)cyclohexyl] pyridine-2-carboxamide
483.6





923


embedded image


N-(1-ethylpiperidin-4-yl)-6- [5-(prop-2-enamido)quinolin- 3-yl]pyridine-2-carboxamide
429.5





924


embedded image


N-(1-ethylpiperidin-4-yl)-6- [8-(prop-2- enamido)naphthalen-2- yl]pyridine-2-carboxamide
428.5





925


embedded image


N-[6-(4-amino-3- cyanophenyl)quinolin-4- yl]prop-2-enamide
314.3





926


embedded image


N-methyl-5-[4-(prop-2- enamido)quinolin-6- yl]pyridine-3-carboxamide
332.4





927


embedded image


N-[6-(5-amino-6- chloropyridin-2-yl)quinolin- 4-yl]prop-2-enamide
324.8





928


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- (difluoromethoxy)naphthalen- 2-yl}-N-[(1s,4s)-4- (dimethylamino)cyclohexyl] pyridine-2-carboxamide
519.6





929


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- (difluoromethoxy)naphthalen- 2-yl}-N-[(1r,4r)-4- (dimethylamino)cyclohexyl] pyridine-2-carboxamide
519.6





930


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- (difluoromethoxy)naphthalen- 2-yl}-N-{8-methyl-8- azabicyclo[3.2.1]octan-3- yl}pyridine-2-carboxamide
517.6





931


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(1r,4r)-4-{6-methyl-2,6- diazaspiro[3.3]heptan-2- yl}cyclohexyl]pyridine-2- carboxamide
550.7





932


embedded image


2-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- (1-methylpiperidin-4-yl)-1,3- thiazole-5-carboxamide
461.6





933


embedded image


N-{8-methyl-8- azabicyclo[3.2.1]octan-3-yl}- 2-[8-(prop-2- enamido)naphthalen-2- yl]pyrimidine-4-carboxamide
441.5





934


embedded image


3-amino-6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(1r,4r)-4- (dimethylamino)cyclohexyl] pyridine-2-carboxamide
498.6





935


embedded image


N-(6-bromoquinolin-4- yl)prop-2-enamide
277.1





936


embedded image


N-[6-(4-amino-3- chlorophenyl)quinolin-4- yl]prop-2-enamide
323.8





937


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(1s,4s)-4-{6-methyl-2,6- diazaspiro[3.3]heptan-2- yl}cyclohexyl]pyridine-2- carboxamide
550.7





938


embedded image


3-amino-6-{8-[(2-cyano-2- methylideneethyl)amino] naphthalen-2-yl}-N-(1- methylpiperidin-4- yl)pyridine-2-carboxamide
440.6





939


embedded image


2-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- (1-methylpiperidin-4-yl)-1,3- thiazole-4-carboxamide
461.6





940


embedded image


N-[(3S,4R)-3-fluoro-1- methylpiperidin-4-yl]-6-[8- (prop-2-enamido)naphthalen- 2-yl]pyridine-2-carboxamide
432.5





941


embedded image


3-fluoro-N-(1- methylpiperidin-4-yl)-6-[8- (prop-2-enamido)naphthalen- 2-yl]pyridine-2-carboxamide
432.5





942


embedded image


N-[6-(6-amino-5- chloropyridin-3-yl)quinolin- 4-yl]prop-2-enamide
324.8





943


embedded image


N-(1-methylpiperidin-4-yl)-6- [3-(prop-2- enamido)phenyl]pyridine-2- carboxamide
364.4





944


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino] naphthalen-2-yl}-N-[(3S,4R)-3- fluoro-1-methylpiperidin-4- yl]pyridine-2-carboxamide
443.5





945


embedded image


3-amino-N-(1- methylpiperidin-4-yl)-6-[8- (prop-2-enamido)naphthalen- 2-yl]pyridine-2-carboxamide
429.5





946


embedded image


3-amino-6-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(2S,4R)-1,2- dimethylpiperidin-4- yl]pyridine-2-carboxamide
484.6





947


embedded image


4-{8-[(2-cyano-2- methylideneethyl)amino]-7- ethoxynaphthalen-2-yl}-N-(1- methylpiperidin-4- yl)pyrimidine-2-carboxamide
470.6





948


embedded image


6-amino-2-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(1r,4r)-4- (dimethylamino)cyclohexyl] pyrimidine-4-carboxamide
499.6





949


embedded image


6-amino-2-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(1s,4s)-4- (dimethylamino)cyclohexyl] pyrimidine-4-carboxamide
499.6





950


embedded image


4-{8-[(2-cyano-2- methylideneethyl)amino]-7- ethoxynaphthalen-2-yl}-N- [(1r,4r)-4- (dimethylamino)cyclohexyl] pyrimidine-2-carboxamide
498.6





951


embedded image


4-{8-[(2-cyano-2- methylideneethyl)amino]-7- ethoxynaphthalen-2-yl}-N- [(1s,4s)-4- (dimethylamino)cyclohexyl] pyrimidine-2-carboxamide
498.6





952


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino] naphthalen-2-yl}-3-fluoro-N-(1- methylpiperidin-4- yl)pyridine-2-carboxamide
443.5





953


embedded image


2-{8-[(2-cyano-2- methylideneethyl)amino] naphthalen-2-yl}-N-(1- methylpiperidin-4- yl)pyrimidine-4-carboxamide
426.5





954


embedded image


N-(1-methylpiperidin-4-yl)-4- [8-(prop-2- enamido)naphthalen-2-yl]- 1,3-thiazole-2-carboxamide
420.5





955


embedded image


6-{7-carbamoyl-8-[(2-cyano- 2- methylideneethyl)amino] naphthalen-2-yl}-N-(1r,4r)-4- (dimethylamino)cyclohexyl] pyridine-2-carboxamide
496.6





956


embedded image


6-{7-carbamoyl-8-[(2-cyano- 2- methylideneethyl)amino] naphthalen-2-yl}-N-{8-methyl-8- azabicyclo[3.2.1]octan-3- yl}pyridine-2-carboxamide
494.6





957


embedded image


6-{7-carbamoyl-8-[(2-cyano- 2- methylideneethyl)amino] naphthalen-2-yl}-N-[(1s,4s)-4- (dimethylamino)cyclohexyl] pyridine-2-carboxamide
496.6





958


embedded image


2-{8-[(2-cyano-2- methylideneethyl)amino]-7- (2- methoxyethoxy)naphthalen-2- yl}-N-[(1r,4r)-4- (dimethylamino)cyclohexyl] pyrimidine-4-carboxamide
528.7





959


embedded image


2-{8-[(2-cyano-2- methylideneethyl)amino]-7- (2- methoxyethoxy)naphthalen-2- yl}-N-[(1s,4s)-4- (dimethylamino)cyclohexyl] pyrimidine-4-carboxamide
528.7





960


embedded image


4-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(3R,4S)-3-fluoro-1- methylpiperidin-4- yl]pyrimidine-2-carboxamide
474.5





961


embedded image


4-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(1r,4r)-4-[(2- methoxyethyl)(methyl)amino] cyclohexyl]pyrimidine-2- carboxamide
528.7





962


embedded image


4-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(1s,4s)-4-[(2- methoxyethyl)(methyl)amino] cyclohexyl]pyrimidine-2- carboxamide
528.7





963


embedded image


N-[2-(1-methylpiperidin-4- yl)ethyl]-2-[8-(prop-2- enamido)naphthalen-2- yl]pyrimidine-4-carboxamide
443.6





964


embedded image


3-amino-6-[8-(prop-2- enamido)naphthalen-2-yl]-N- [(1s,4s)-4- (dimethylamino)cyclohexyl] pyridine-2-carboxamide
457.6





965


embedded image


3-amino-6-[8-(prop-2- enamido)naphthalen-2-yl]-N- [(1r,4r)-4- (dimethylamino)cyclohexyl] pyridine-2-carboxamide
457.6





966


embedded image


N-[(2S,4R)-1,2- dimethylpiperidin-4-yl]-2-[8- (prop-2-enamido)naphthalen- 2-yl]pyrimidine-4- carboxamide
429.5





967


embedded image


4-[8-(prop-2- enamido)naphthalen-2-yl]-N- [(1r,4r)-4- (dimethylamino)cyclohexyl]- 1,3-thiazole-2-carboxamide
448.6





968


embedded image


4-[8-(prop-2- enamido)naphthalen-2-yl]-N- [(1s,4s)-4- (dimethylamino)cyclohexyl]- 1,3-thiazole-2-carboxamide
448.6





969


embedded image


5-amino-2-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(1s,4s)-4- (dimethylamino)cyclohexyl] pyrimidine-4-carboxamide
499.6





970


embedded image


N-{8-methyl-8- azabicyclo[3.2.1]octan-3-yl}- 4-[8-(prop-2- enamido)naphthalen-2-yl]- 1,3-thiazole-2-carboxamide
446.6





971


embedded image


6-[7-chloro-8-(prop-2- enamido)naphthalen-2-yl]-N- (1-methylpiperidin-4- yl)pyridine-2-carboxamide
449.0





972


embedded image


6-[7-chloro-8-(prop-2- enamido)naphthalen-2-yl]-N- [2-(1-methylpiperidin-4- yl)ethyl]pyridine-2- carboxamide
477.0





973


embedded image


6-[5-chloro-8-(prop-2- enamido)naphthalen-2-yl]-N- (1-methylpiperidin-4- yl)pyridine-2-carboxamide
449.0





974


embedded image


4-{8-[(2-cyano-2- methylideneethyl)amino]-7- (methoxymethyl)naphthalen- 2-yl}-N-(1-methylpiperidin- 4-yl)pyrimidine-2- carboxamide
470.6





975


embedded image


5-amino-2-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- (1-methylpiperidin-4- yl)pyrimidine-4-carboxamide
471.6





976


embedded image


5-amino-2-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(1r,4r)-4- (dimethylamino)cyclohexyl] pyrimidine-4-carboxamide
499.6





977


embedded image


N-[3-(3-methyl-1H-indazol-5- yl)phenyl]prop-2-enamide
277.3





978


embedded image


N-[3-(1-methyl-1H-indazol-5- yl)phenyl]prop-2-enamide
277.3





979


embedded image


N-(1-methylpiperidin-4-yl)- 5′-(prop-2-enamido)-[2,3′- bipyridine]-6-carboxamide
365.4





980


embedded image


N-(1-methylpiperidin-4-yl)-6- [8-(prop-2-enamido)-7- (trifluoromethoxy)naphthalen- 2-yl]pyridine-2-carboxamide
498.5





981


embedded image


2-[8-(prop-2- enamido)naphthalen-2-yl]-N- [(1s,4s)-4- [ethyl(methyl)amino] cyclohexyl]pyrimidine-4- carboxamide
457.6





982


embedded image


2-{7-carbamoyl-8-[(2-cyano- 2- methylideneethyl)amino] naphthalen-2-yl}-N-(1- methylpiperidin-4- yl)pyrimidine-4-carboxamide
469.5





983


embedded image


2-[8-(prop-2- enamido)naphthalen-2-yl]-N- [(1r,4r)-4- [ethyl(methyl)amino] cyclohexyl]pyrimidine-4- carboxamide
457.6





984


embedded image


N-(2-cyanoethyl)-6-[8-(prop- 2-enamido)naphthalen-2- yl]pyridine-2-carboxamide
370.4





985


embedded image


3-amino-6-[8-(prop-2- enamido)naphthalen-2-yl]-N- [(1r,4r)-4-[(2- methoxyethyl)(methyl)amino] cyclohexyl]pyridine-2- carboxamide
501.6





986


embedded image


3-amino-6-[8-(prop-2- enamido)naphthalen-2-yl]-N- [(1s,4s)-4-[(2- methoxyethyl)(methyl)amino] cyclohexyl]pyridine-2- carboxamide
501.6





987


embedded image


3-amino-N-[2-(1- methylpiperidin-4-yl)ethyl]-6- [8-(prop-2- enamido)naphthalen-2- yl]pyridine-2-carboxamide
457.6





988


embedded image


2-[8-(but-3- enamido)naphthalen-2-yl]-N- (1-methylpiperidin-4- yl)pyrimidine-4-carboxamide
429.5





989


embedded image


2-{8-[(2E)-but-2- enamido]naphthalen-2-yl}-N- (1-methylpiperidin-4- yl)pyrimidine-4-carboxamide
429.5





990


embedded image


2-[8-(2- chloroacetamido)naphthalen- 2-yl]-N-(1-methylpiperidin-4- yl)pyrimidine-4-carboxamide
437.9





991


embedded image


6-[5-chloro-8-(prop-2- enamido)naphthalen-2-yl]-N- [2-(1-methylpiperidin-4- yl)ethyl]pyridine-2- carboxamide
477.0





992


embedded image


6-[7-chloro-8-(prop-2- enamido)naphthalen-2-yl]-N- [(1r,4r)-4-[(2- methoxyethyl)(methyl)amino] cyclohexyl]pyridine-2- carboxamide
521.1





993


embedded image


6-[7-chloro-8-(prop-2- enamido)naphthalen-2-yl]-N- [(1s,4s)-4-[(2- methoxyethyl)(methyl)amino] cyclohexyl]pyridine-2- carboxamide
521.1





994


embedded image


N-(1-methylpiperidin-4-yl)-2- [4-(prop-2-enamido)quinolin- 6-yl]-1,3-thiazole-4- carboxamide
421.5





995


embedded image


4-{8-[(2-cyano-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- [(2S,4R)-1,2- dimethylpiperidin-4- yl]pyrimidine-2-carboxamide
470.6





996


embedded image


N-[6-(3- chlorophenyl)quinolin-4- yl]prop-2-enamide
308.8





997


embedded image


N-[3- (dimethylamino)cyclohexyl]- 6-[4-(prop-2- enamido)quinolin-6- yl]pyridine-2-carboxamide
443.6





998


embedded image


N-(1-methylpiperidin-4-yl)-6- [7-(prop-2- enamido)naphthalen-1- yl]pyridine-2-carboxamide
414.5





999


embedded image


N-{8-methyl-8- azabicyclo[3.2.1]octan-3-yl}- 6-[4-(prop-2- enamido)quinolin-6- yl]pyridine-2-carboxamide
441.5





1000


embedded image


2-{8-[(2E)-4- (dimethylamino)but-2- enamido]naphthalen-2-yl}-N- (1-methylpiperidin-4- yl)pyrimidine-4-carboxamide
472.6





1001


embedded image


6-[5-chloro-8-(prop-2- enamido)naphthalen-2-yl]-N- [(1r,4r)-4-[(2- methoxyethyl)(methyl)amino] cyclohexyl]pyridine-2- carboxamide
521.1





1002


embedded image


6-[5-chloro-8-(prop-2- enamido)naphthalen-2-yl]-N- [(1s,4s)-4-[(2- methoxyethyl)(methyl)amino] cyclohexyl]pyridine-2- carboxamide
521.1





1003


embedded image


3-amino-N-[(3S,4R)-3-fluoro- 1-methylpiperidin-4-yl]-6-[8- (prop-2-enamido)naphthalen- 2-yl]pyridine-2-carboxamide
447.5





1004


embedded image


3-amino-N-[(3S)-1- methylpiperidin-3-yl]-6-[8- (prop-2-enamido)naphthalen- 2-yl]pyridine-2-carboxamide
429.5





1005


embedded image


N-{8-methyl-8- azabicyclo[3.2.1]octan-3-yl}- 2-[4-(prop-2- enamido)quinolin-6- yl]pyrimidine-4-carboxamide
442.5





1006


embedded image


2-[4-(prop-2- enamido)quinolin-6-yl]-N- [(1r,4r)-4- (dimethylamino)cyclohexyl] pyrimidine-4-carboxamide
444.5





1007


embedded image


1-methyl-N-{6-[8-(prop-2- enamido)naphthalen-2- yl]pyridin-2-yl}piperidine-4- carboxamide
414.5





1008


embedded image


3-amino-N-[(3R)-1- methylpiperidin-3-yl]-6-[8- (prop-2-enamido)naphthalen- 2-yl]pyridine-2-carboxamide
429.5





1009


embedded image


2-[8-(2-fluoroprop-2- enamido)naphthalen-2-yl]-N- (1-methylpiperidin-4- yl)pyrimidine-4-carboxamide
433.5





1010


embedded image


N-[(1R,3R)-3- (dimethylamino)cyclohexyl]- 2-[8-(prop-2- enamido)naphthalen-2- yl]pyrimidine-4-carboxamide
443.6





1011


embedded image


N-[(1R,3S)-3- (dimethylamino)cyclohexyl]- 2-[8-(prop-2- enamido)naphthalen-2- yl]pyrimidine-4-carboxamide
443.6





1012


embedded image


N-[3- (dimethylamino)cyclohexyl]- 2-[4-(prop-2- enamido)quinolin-6- yl]pyrimidine-4-carboxamide
444.5





1013


embedded image


N-(1-methylpiperidin-4-yl)-2- [4-(prop-2-enamido)quinolin- 6-yl]pyrimidine-4- carboxamide
416.5





1014


embedded image


N-[3-(1-methyl-1H-indazol-6- yl)phenyl]prop-2-enamide
277.3





1015


embedded image


N-[2-(1-methylpiperidin-4- yl)ethyl]-6-[4-(prop-2- enamido)quinolin-6- yl]pyridine-2-carboxamide
443.6





1016


embedded image


6-[4-(prop-2- enamido)quinolin-6-yl]-N- [(1r,4r)-4- (dimethylamino)cyclohexyl] pyridine-2-carboxamide
443.6





1017


embedded image


N-(1-methylazepan-3-yl)-6- [4-(prop-2-enamido)quinolin- 6-yl]pyridine-2-carboxamide
429.5





1018


embedded image


N-(7-{6- [(carbamoylmethyl)carbamoyl] pyridin-2-yl}naphthalen-1- yl)prop-2-enamide
374.4





1019


embedded image


N-[(1-methylpiperidin-4- yl)methyl]-6-[8-(prop-2- enamido)naphthalen-2- yl]pyridine-2-carboxamide
428.5





1020


embedded image


3-amino-6-[7-methoxy-8- (prop-2-enamido)naphthalen- 2-yl]-N-[(1r,4r)-4-[(2- methoxyethyl)(methyl)amino] cyclohexyl]pyridine-2- carboxamide
531.7





1021


embedded image


N-(1-methylpiperidin-4-yl)-2- {8-[(2E)-4,4,4-trifluorobut-2- enamido]naphthalen-2- yl}pyrimidine-4-carboxamide
483.5





1022


embedded image


3-amino-6-[7-methoxy-8- (prop-2-enamido)naphthalen- 2-yl]-N-[(1r,4r)-4- (dimethylamino)cyclohexyl] pyridine-2-carboxamide
487.6





1023


embedded image


N-{2-[(1E)-2-(5-amino-6- chloropyridin-2- yl)ethenyl]phenyl}prop-2- enamide
299.8





1024


embedded image


N-(1-methylpiperidin-4-yl)-2- [4-(prop-2-enamido)quinolin- 6-yl]-1,3-thiazole-5- carboxamide
421.5





1025


embedded image


2-[4-(prop-2- enamido)quinolin-6-yl]-N- [(1s,4s)-4- (dimethylamino)cyclohexyl] pyrimidine-4-carboxamide
444.5





1026


embedded image


N-[3-(4-acetamidoquinolin-6- yl)phenyl]prop-2-enamide
331.4





1027


embedded image


1-methyl-N-{6-[3-(prop-2- enamido)phenyl]quinolin-4- yl}piperidine-3-carboxamide
414.5





1028


embedded image


N-[3-(4-aminoquinolin-6- yl)phenyl]prop-2-enamide
289.3





1029


embedded image


3-amino-N-(1- methylpiperidin-4-yl)-6-[4- (prop-2-enamido)quinolin-6- yl]pyridine-2-carboxamide
430.5





1030


embedded image


N-(1-methylpiperidin-4-yl)-6- [2-(prop-2- enamido)phenyl]pyridine-2- carboxamide
364.4





1031


embedded image


N-(1-methylpiperidin-4-yl)-6- [5-(prop-2-enamido)-1H- indol-3-yl]pyridine-2- carboxamide
403.5





1032


embedded image


N-[3-(5-amino-6- chloropyridin-2-yl)-1H-indol- 5-yl]prop-2-enamide
312.8





1033


embedded image


N-(2-aminoethyl)-6-[8-(prop- 2-enamido)naphthalen-2- yl]pyridine-2-carboxamide
360.4





1034


embedded image


6-[7-methoxy-8-(prop-2- enamido)naphthalen-2-yl]-N- [(1-methylpiperidin-4- yl)methyl]pyridine-2- carboxamide
458.6





1035


embedded image


6-[7-methoxy-8-(prop-2- enamido)naphthalen-2-yl]-N- [(3R)-1-methylpiperidin-3- yl]pyridine-2-carboxamide
444.5





1036


embedded image


N-[(3S,4R)-3-fluoro-1- methylpiperidin-4-yl]-2-[4- (prop-2-enamido)quinolin-6- yl]pyrimidine-4-carboxamide
434.5





1037


embedded image


N-(1-methylpiperidin-4-yl)-5- [4-(prop-2-enamido)quinolin- 6-yl]-1,3-thiazole-2- carboxamide
421.5





1038


embedded image


N-[2-(1-methylpiperidin-4- yl)ethyl]-6-[(1E)-2-[2-(prop- 2- enamido)phenyl]ethenyl] pyridine-2-carboxamide
418.5





1039


embedded image


N-(1-methylpiperidin-4-yl)-6- [(1E)-2-[2-(prop-2- enamido)phenyl]ethenyl] pyridine-2-carboxamide
390.5





1040


embedded image


3-amino-N-(1- methylpiperidin-4-yl)-6- [(1E)-2-[2-(prop-2- enamido)phenyl]ethenyl] pyridine-2-carboxamide
405.5





1041


embedded image


N-(2-hydroxyethyl)-6-[7- methoxy-8-(prop-2- enamido)naphthalen-2- yl]pyridine-2-carboxamide
391.4





1042


embedded image


6-{8-[(2-carbamoyl-2- methylideneethyl)amino]-7- methoxynaphthalen-2-yl}-N- (1-methylpiperidin-4- yl)pyridine-2-carboxamide
473.6





1043


embedded image


6-[7-ethoxy-8-(prop-2- enamido)naphthalen-2-yl]-N- [(1-methylpiperidin-4- yl)methyl]pyridine-2- carboxamide
472.6





1044


embedded image


6-[7-ethoxy-8-(prop-2- enamido)naphthalen-2-yl]-N- (1-methylpiperidin-4- yl)pyridine-2-carboxamide
458.6





1045


embedded image


3-amino-N-[(3R,4S)-3-fluoro- 1-methylpiperidin-4-yl]-6-[8- (prop-2-enamido)naphthalen- 2-yl]pyridine-2-carboxamide
447.5





1046


embedded image


6-amino-2-[7-methoxy-8- (prop-2-enamido)naphthalen- 2-yl]-N-(1-methylpiperidin-4- yl)pyrimidine-4-carboxamide
460.5





1047


embedded image


N-(2-methoxyethyl)-6-[4- (prop-2-enamido)quinolin-6- yl]pyridine-2-carboxamide
376.4





1048


embedded image


N-[(3S,4R)-3-fluoro-1- methylpiperidin-4-yl]-6-[4- (prop-2-enamido)quinolin-6- yl]pyridine-2-carboxamide
433.5





1049


embedded image


N-(1-methylpiperidin-4-yl)-2- [4-(prop-2-enamido)quinolin- 6-yl]-1,3-oxazole-5- carboxamide
405.5





1050


embedded image


N-(1-methylpiperidin-4-yl)-5- [3-(prop-2-enamido)phenyl]- 1H-indazole-3-carboxamide
403.5





1051


embedded image


3-amino-N-(1- methylpiperidin-4-yl)-6-[5- (prop-2-enamido)-1H-indol- 3-yl]pyridine-2-carboxamide
418.5





1052


embedded image


N-[4- (dimethylamino)cyclohexyl]- 6-[5-(prop-2-enamido)-1H- indol-3-yl]pyridine-2- carboxamide
431.5





1053


embedded image


6-[7-methoxy-8-(prop-2- enamido)naphthalen-2-yl]-N- [2-(4-methylpiperazin-1- yl)ethyl]pyridine-2- carboxamide
473.6





1054


embedded image


6-[7-methoxy-8-(prop-2- enamido)naphthalen-2-yl]-N- [(3S)-1-methylpiperidin-3- yl]pyridine-2-carboxamide
444.5





1055


embedded image


N-(6-{4- [(carbamoylmethyl)carbamoyl] pyrimidin-2-yl}quinolin-4- yl)prop-2-enamide
376.4





1056


embedded image


3-amino-N-[(3S,4R)-3-fluoro- 1-methylpiperidin-4-yl]-6-[7- methoxy-8-(prop-2- enamido)naphthalen-2- yl]pyridine-2-carboxamide
477.5





1057


embedded image


3-amino-6-[7-methoxy-8- (prop-2-enamido)naphthalen- 2-yl]-N-(1-rnethylpiperidin-4- yl)pyridine-2-carboxamide
459.6





1058


embedded image


N-(2-cyanoethyl)-6-[4-(prop- 2-enamido)quinolin-6- yl]pyridine-2-carboxamide
371.4





1059


embedded image


1-methyl-N-{6-[4-(prop-2- enamido)quinolin-6- yl]pyridin-2-yl}piperidine-4- carboxamide
415.5





1060


embedded image


N-[2-methoxy-5-(1-methyl- 1H-indazol-6-yl)phenyl]prop- 2-enamide
307.4





1061


embedded image


6-[4-methoxy-3-(prop-2- enamido)phenyl]-N-(1- methylpiperidin-4- yl)pyridine-2-carboxamide
394.5





1062


embedded image


6-[8-(prop-2- enamido)naphthalen-2-yl]-N- [(1r,4r)-4-{methyl[2- (methylamino)ethyl]amino} cyclohexyl]pyridine-2- carboxamide
485.6





1063


embedded image


N-[3-(pyridin-3- yl)isoquinolin-5-yl]prop-2- enamide
275.3





1064


embedded image


5-[7-methoxy-8-(prop-2- enamido)naphthalen-2-yl]-N- (1-methylpiperidin-4- yl)pyridine-3-carboxamide
444.5





1065


embedded image


N-(7-{6- [(carbamoylmethyl)carbamoyl] pyridin-2-yl}-2- methoxynaphthalen-1- yl)prop-2-enamide
404.4





1066


embedded image


2-[7-methoxy-8-(prop-2- enamido)naphthalen-2-yl]-N- (1-methylpiperidin-4- yl)pyridine-4-carboxamide
444.5





1067


embedded image


N-[1-(2- methoxyethyl)piperidin-4-yl]- 2-[4-(prop-2- enamido)quinolin-6- yl]pyrimidine-4-carboxamide
460.5





1068


embedded image


5-amino-N-(2-cyanoethyl)-2- [7-methoxy-8-(prop-2- enamido)naphthalen-2- yl]pyrimidine-4-carboxamide
416.4





1069


embedded image


N-{3-[3-(thiophen-3-yl)-1H- indazol-5-yl]phenyl}prop-2- enamide
345.4





1070


embedded image


4-amino-N-(1- methylpiperidin-4-yl)-6-[3- (prop-2- enamido)phenyl]quinoline-3- carboxamide
429.5





1071


embedded image


N-[3-(1-{[(1-methylpiperidin- 4-yl)carbamoyl]methyl}-1H- indazol-6-yl)phenyl]prop-2- enamide
417.5





1072


embedded image


N-(3-{1- [(methylcarbamoyl)methyl]- 1H-indazol-6-yl}phenyl)prop- 2-enamide
334.4





1073


embedded image


N-[3-(quinolin-6- yl)phenyl]prop-2-enamide
274.3





1074


embedded image


N-[2-methoxy-7-(1-methyl- 1H-pyrazol-4-yl)naphthalen- 1-yl]prop-2-enamide
307.4





1075


embedded image


3-amino-N-[(3S,4R)-3-fluoro- 1-methylpiperidin-4-yl]-6-[4- (prop-2-enamido)quinolin-6- yl]pyridine-2-carboxamide
448.5





1076


embedded image


6-[4-(2-fluoroprop-2- enamido)quinolin-6-yl]-N-(1- methylpiperidin-4- yl)pyridine-2-carboxamide
433.5





1077


embedded image


5-amino-N-(1- methylpiperidin-4-yl)-2-[4- (prop-2-enamido)quinolin-6- yl]pyrimidine-4-carboxamide
431.5





1078


embedded image


3-amino-N-[1-(2- hydroxyethyl)piperidin-4-yl]- 6-[7-methoxy-8-(prop-2- enamido)naphthalen-2- yl]pyridine-2-carboxamide
489.6





1079


embedded image


17-methoxy-11-thia-8,15,25- triazatetracyclo[14.6.2.12,6.020,24] pentacosa- 1(23),2,4,6(25),16(24),17,19, 21-octaene-7,14-dione
407.5





1080


embedded image


N-[2-(1-methyl-1H-indazol-6- yl)pyridin-4-yl]prop-2- enamide
278.3





1081


embedded image


N-[3-(2-{[(1-methylpiperidin- 4-yl)carbamoyl]methyl}-2H- indazol-6-yl)phenyl]prop-2- enamide
417.5





1082


embedded image


N-[2-(quinazolin-7- yl)phenyl]prop-2-enamide
275.3





1083


embedded image


N-[3-(quinazolin-7- yl)phenyl]prop-2-enamide
275.3





1084


embedded image


N-[2-(2-aminoquinazolin-7- yl)phenyl]prop-2-enamide
290.3





1085


embedded image


N-[2-(4-aminoquinolin-6- yl)phenyl]prop-2-enamide
289.3





1086


embedded image


N-[3-(8-aminonaphthalen-2- yl)phenyl]prop-2-enamide
288.4





1087


embedded image


N-[3-(2-aminoquinazolin-7- yl)phenyl]prop-2-enamide
290.3





1088


embedded image


N-[2-(4-aminoquinolin-6- yl)pyridin-4-yl]prop-2- enamide
290.3





1089


embedded image


N-[3-(6-aminonaphthalen-2- yl)phenyl]prop-2-enamide
288.4





1090


embedded image


N-{7-[6-({[(2- methoxyethyl)carbamoyl] methyl}carbamoyl)pyridin-2- yl]naphthalen-1-yl}prop-2- enamide
432.5





1091


embedded image


N-{2- [(diaminomethylidene)amino] ethyl}-6-[7-methoxy-8-(prop- 2-enamido)naphthalen-2- yl]pyridine-2-carboxamide
432.5





1092


embedded image


6-[7-(methoxymethyl)-8- (prop-2-enamido)naphthalen- 2-yl]-N-(1-methylpiperidin-4- yl)pyridine-2-carboxamide
458.6





1093


embedded image


N-[4- (dimethylamino)cyclohexyl]- 5-[3-(prop-2- enamido)phenyl]-1H- indazole-3-carboxamide
431.5





1094


embedded image


N-{7-[6-({[(1- methylpiperidin-4-yl) carbamoyl]methyl}carbamoyl) pyridin-2-yl]naphthalen- 1-yl}prop-2-enamide
471.6





1095


embedded image


N-(3-chloro-5-{3-methyl-1H- pyrazolo[3,4-c]pyridin-5- yl}phenyl)prop-2-enamide
312.8





1096


embedded image


N-{7-[6-({[(1- methylpyrrolidin-3-yl) carbamoyl]methyl}carbamoyl) pyridin-2-yl]naphthalen- 1-yl}prop-2-enamide
457.5





1097


embedded image


N-[3-methyl-5-(3-methyl-1H- indazol-5-yl)phenyl]prop-2- enamide
291.4





1098


embedded image


N--[2-[3-methyl-1H-indazol-5- yl)pyridin-4-yl]prop-2- enamide
278.3





1099


embedded image


6-[7-methoxy-8-(prop-2- enamido)naphthalen-2-yl]-N- [2-(4-methyl-1H-imidazol-5- yl)ethyl]pyridine-2- carboxamide
455.5





1100


embedded image


N-[3-(isoquinolin-3- yl)phenyl]prop-2-enamide
274.3





1101


embedded image


N-[3-(quinolin-2- yl)phenyl]prop-2-enamide
274.3





1102


embedded image


N-[3-(4-aminoquinolin-6-yl)- 5-chlorophenyl]prop-2- enamide
323.8





1103


embedded image


N-(1-methylpiperidin-4-yl)- 4′-(prop-2-enamido)-[2,2′- bipyridine]-6-carboxamide
365.4





1104


embedded image


N-(3-{3-methyl-1H- pyrazolo[3,4-c]pyridin-5- yl}phenyl)prop-2-enamide
278.3





1105


embedded image


6-[7-(methoxymethyl)-8- (prop-2-enamido)naphthalen- 2-yl]-N-[2-(1- methylpiperidin-4- yl)ethyl]pyridine-2- carboxamide
486.6





1106


embedded image


N-[3-chloro-5-(3-methyl-1H- indazol-5-yl)phenyl]prop-2- enamide
311.8





1107


embedded image


5-[3-methoxy-5-(prop-2- enamido)phenyl]-N-(1- methylpiperidin-4-yl)-1H- indazole-3-carboxamide
433.5





1108


embedded image


N-[3-(5-aminoisoquinolin-3- yl)phenyl]prop-2-enamide
289.3





1109


embedded image


6-[7-(methoxymethyl)-8- (prop-2-enamido)naphthalen- 2-yl]-N-[(1r,4r)-4- (dimethylamino)cyclohexyl] pyridine-2-carboxamide
486.6





1110


embedded image


N-{7-[6-({[(2- cyanoethyl)carbamoyl]methyl} carbamoyl)pyridin-2- yl]naphthalen-1-yl}prop-2- enamide
427.5





1111


embedded image


N-(7-{6-[({[2- (methylamino)ethyl]carbamoyl} methyl)carbamoyl]pyridin- 2-yl}naphthalen-1-yl)prop-2- enamide
431.5





1112


embedded image


N-(3-methyl-5-{3-methyl-1H- pyrazolo[3,4-c]pyridin-5- yl}phenyl)prop-2-enamide
292.3





1113


embedded image


5-[3-methyl-5-(prop-2- enamido)phenyl]-N-(1- methylpiperidin-4-yl)-1H- indazole-3-carboxamide
417.5





1114


embedded image


N-[3-(2-aminoquinazolin-7- yl)-5-methoxyphenyl]prop-2- enamide
320.4





1115


embedded image


N-(1-methylpiperidin-4-yl)-7- [3-(prop-2- enamido)phenyl]naphthalene- 1-carboxamide
413.5





1116


embedded image


1-methyl-N-{6-[3-(prop-2- enamido)phenyl]quinolin-4- yl}piperidine-4-carboxamide
414.5





1117


embedded image


N-(1-methylpiperidin-4-yl)-2- [3-(prop-2- enamido)phenyl]quinoline-8- carboxamide
414.5





1118


embedded image


N-[3-(2-chloroquinazolin-7- yl)phenyl]prop-2-enamide
309.8





1119


embedded image


N-{3-[2- (methylamino)quinazolin-7- yl]phenyl}prop-2-enamide
304.4





1120


embedded image


3-chloro-N-{6-[3-(prop-2- enamido)phenyl]quinolin-4- yl}benzamide
427.9





1121


embedded image


3-fluoro-N-{6-[3-(prop-2- enamido)phenyl]quinolin-4- yl}benzamide
411.4





1122


embedded image


N-{6-[3-(prop-2- enamido)phenyl]quinolin-4- yl}furan-2-carboxamide
383.4





1123


embedded image


N-(1-methylpiperidin-4-yl)-6- [3-(prop-2- enamido)phenyl]quinoline-4- carboxamide
414.5





1124


embedded image


N-{7-[6-({[(2- hydroxyethyl)carbamoyl] methyl}carbamoyl)pyridin-2- yl]naphthalen-1-yl}prop-2- enamide
418.5





1125


embedded image


N-{7-[6-({[(pyridin-3- yl)carbamoyl]methyl}carbamoyl) pyridin-2-yl]naphthalen- 1-yl}prop-2-enamide
451.5





1126


embedded image


N-{7-[6-({[(3- chlorophenyl)carbamoyl] methyl}carbamoyl)pyridin-2- yl]naphthalen-1-yl}prop-2- enamide
484.9





1127


embedded image


N-{7-[6-({[(4- fluorophenyl)carbamoyl] methyl}carbamoyl)pyridin-2- yl]naphthalen-1-yl}prop-2- enamide
468.5





1128


embedded image


N-[4- (dimethylamino)cyclohexyl]- 5-[4-(prop-2- enamido)pyridin-2-yl]-1H- indazole-3-carboxamide
432.5





1129


embedded image


N-(7-{6- [(carbamoylmethyl)carbamoyl] pyridin-2-yl}-2- (methoxymethyl)naphthalen- 1-yl)prop-2-enamide
418.5





1130


embedded image


N-{7-[6-({[(3- chlorophenyl)carbamoyl] methyl}carbamoyl)pyridin-2-yl]- 2-(methoxymethyl)naphthalen- 1-yl}prop-2-enamide
529.0





1131


embedded image


1-methyl-N-{3-[3-(prop-2- enamido)phenyl]isoquinolin- 5-yl}piperidine-4- carboxamide
414.5





1132


embedded image


N-[3-(2-aminoquinolin-7- yl)phenyl]prop-2-enamide
289.3





1133


embedded image


N-[2-(quinazolin-7- yl)pyridin-4-yl]prop-2- enamide
276.3





1134


embedded image


N-(3-{5-[(1-methylpiperidin- 4-yl)amino]isoquinolin-3- yl}phenyl)prop-2-enamide
386.5





1135


embedded image


N-[1-(2- hydroxyethyl)piperidin-4-yl]- 5-[3-(prop-2- enamido)phenyl]-1H- indazole-3-carboxamide
433.5





1136


embedded image


2-[7-(methoxymethyl)-8- (prop-2-enamido)naphthalen- 2-yl]-N-[(1r,4r)-4- (dimethylamino)cyclohexyl] pyrimidine-4-carboxamide
487.6





1137


embedded image


6-[7-(hydroxymethyl)-8- (prop-2-enamido)naphthalen- 2-yl]-N-(1-methylpiperidin-4- yl)pyridine-2-carboxamide
444.5





1138


embedded image


N-{7-[6-({[(2- methoxyethyl)carbamoyl] methyl}carbamoyl)pyridin-2-yl]- 2- (methoxymethyl)naphthalen- 1-yl}prop-2-enamide
476.5





1139


embedded image


N-[2-(methoxymethyl)-7-[6- ({[(3- methoxyphenyl)carbamoyl] methyl}carbamoyl)pyridin-2- yl]naphthalen-1-yl]prop-2- enamide
524.6





1140


embedded image


N-(1-methylpiperidin-4-yl)-5- [4-(prop-2-enamido)pyridin- 2-yl]-1H-indazole-3- carboxamide
404.5





1141


embedded image


N-[2-(2-aminoquinazolin-7- yl)pyridin-4-yl]prop-2- enamide
291.3





1142


embedded image


1-methyl-N-{5-[3-(prop-2- enamido)phenyl]-1H-indazol- 3-yl}piperidine-4- carboxamide
403.5





1143


embedded image


N-{3-[2- (ethylamino)quinazolin-7- yl]phenyl}prop-2-enamide
318.4





1144


embedded image


N-[3-(2-aminoquinazolin-7- yl)-5-chlorophenyl]prop-2- enamide
324.8





1145


embedded image


N-(3-{2-[(1-methylpiperidin- 4-yl)amino]quinazolin-7- yl}phenyl)prop-2-enamide
387.5





1146


embedded image


N-{3-[4- (methylamino)quinolin-6- yl]phenyl}prop-2-enamide
303.4





1147


embedded image


N-{3-[4- (dimethylamino)quinolin-6- yl]phenyl}prop-2-enamide
317.4





1148


embedded image


N-(3-chloro-5-{2-[(1- methylpiperidin-4- yl)amino]quinazolin-7- yl}phenyl)prop-2-enamide
421.9





1149


embedded image


N-[3-(2-{[(pyrrolidin-3- yl)methyl]amino}quinazolin- 7-yl)phenyl]prop-2-enamide
373.5





1150


embedded image


N-[3-(2-oxo-1,2- dihydroquinolin-7- yl)phenyl]prop-2-enamide
290.3





1151


embedded image


N-[3-(2-acetamidoquinazolin- 7-yl)phenyl]prop-2-enamide
332.4





1152


embedded image


N-methyl-7-[3-(prop-2- enamido)phenyl]naphthalene- 2-carboxamide
330.4





1153


embedded image


N-{7-[6-({[(3- methoxyphenyl)carbamoyl] methyl}carbamoyl)pyridin-2- yl]naphthalen-1-yl}prop-2- enamide
480.5





1154


embedded image


N-{7-[6-({[(3- fluorophenyl)carbamoyl] methyl}carbamoyl)pyridin-2- yl]naphthalen-1-yl}prop-2- enamide
468.5





1155


embedded image


N-(3-{7H-pyrrolo [2,3- d]pyrimidin-2- yl}phenyl)prop-2-enamide
264.3





1156


embedded image


N-[3-fluoro-5-(1-methyl-1H- indazol-6-yl)phenyl]prop-2- enamide
295.3





1157


embedded image


N-(1-methylpiperidin-4-yl)-7- [3-(prop-2- enamido)phenyl]naphthalene- 2-carboxamide
413.5





1158


embedded image


N-[3-(2-{[(1r,4r)-4- (dimethylamino)cyclohexyl] amino}quinazolin-7- yl)phenyl]prop-2-enamide
415.5





1159


embedded image


N-[3-(2-{[(1s,4s)-4- (dimethylamino)cyclohexyl] amino}quinazolin-7- yl)phenyl]prop-2-enamide
415.5





1160


embedded image


N-[3-(4-{[(3- chlorophenyl)methyl]amino} quinolin-6-yl)phenyl]prop-2- enamide
413.9





1161


embedded image


N-[3-(4-{[(3- methoxyphenyl)methyl]amino} quinolin-6-yl)phenyl]prop-2- enamide
409.5





1162


embedded image


N-[3-fluoro-5-(3-methyl-1H- indazol-5-yl)phenyl]prop-2- enamide
295.3





1163


embedded image


N-(3-{4-[(1-methylpiperidin- 4-yl)amino]quinolin-6- yl}phenyl)prop-2-enamide
386.5





1164


embedded image


N-{7-[6-({[(3- cyanophenyl)carbamoyl] methyl}carbamoyl)pyridin-2- yl]naphthalen-1-yl}prop-2- enamide
475.5





1165


embedded image


N-{7-[5-amino-4-({[(2- methoxyethyl)carbamoyl] methyl}carbamoyl)pyrimidin-2- yl]naphthalen-1-yl}prop-2- enamide
448.5





1166


embedded image


N-{7-[5-amino-4-({[(pyridin- 3- yl)carbamoyl]methyl} carbamoyl)pyrimidin-2- yl]naphthalen-1-yl}prop-2- enamide
467.5





1167


embedded image


N-[2-(2-aminoquinazolin-7- yl)pyridin-4-yl]-2-fluoroprop- 2-enamide
309.3





1168


embedded image


N-{4-[(2- methoxyethyl)(methyl)amino] cyclohexyl}-5-[3-(prop-2- enamido)phenyl]-1H- indazole-3-carboxamide
475.6





1169


embedded image


N-[3-(5-{[(1-methylpiperidin- 4- yl)methyl]amino}isoquinolin- 3-yl)phenyl]prop-2-enamide
400.5





1170


embedded image


N-[3-(quinoxalin-6- yl)phenyl]prop-2-enamide
275.3





1171


embedded image


N-(3-{1H-pyrrolo[3,2- c]pyridin-6-yl}phenyl)prop-2- enamide
263.3





1172


embedded image


N-[3-(isoquinolin-7- yl)phenyl]prop-2-enamide
274.3





1173


embedded image


N-[3-(quinazolin-2- yl)phenyl]prop-2-enamide
275.3





1174


embedded image


N-[3-(2-aminoquinazolin-7- yl)-5-fluorophenyl]prop-2- enamide
308.3





1175


embedded image


N-(3-{3-[(2- carbamoylethyl)carbamoyl]- 1H-indazol-5-yl}phenyl)prop- 2-enamide
377.4





1176


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- (methoxymethyl)naphthalen- 2-yl}-N-[(3S,4R)-3-fluoro-1- methylpiperidin-4- yl]pyridine-2-carboxamide
487.6





1177


embedded image


N-{7-[6-({[(2,2,2- trifluoroethyl)carbamoyl] methyl}carbamoyl)pyridin-2- yl]naphthalen-1-yl}prop-2- enamide
456.4





1178


embedded image


N-[7-(6- {[(ethylcarbamoyl)methyl] carbamoyl}pyridin-2- yl)naphthalen-1-yl]prop-2- enamide
402.5





1179


embedded image


N-[3-(3-aminoquinolin-6- yl)phenyl]prop-2-enamide
289.3





1180


embedded image


N-methyl-7-[3-(prop-2- enamido)phenyl]quinoline-2- carboxamide
331.4





1181


embedded image


N-[3-(3-aminoisoquinolin-6- yl)phenyl]prop-2-enamide
289.3





1182


embedded image


N-{2-[2- (methylamino)quinazolin-7- yl]pyridin-4-yl}prop-2- enamide
305.3





1183


embedded image


N-[2-(2-aminoquinolin-7- yl)pyridin-4-yl]prop-2- enamide
290.3





1184


embedded image


2-fluoro-N-[2-(quinazolin-7- yl)pyridin-4-yl]prop-2- enamide
294.3





1185


embedded image


N-[3-(4-hydroxyquinolin-6- yl)phenyl]prop-2-enamide
290.3





1186


embedded image


N-methyl-7-[3-(prop-2- enamido)phenyl]quinazoline- 2-carboxamide
332.4





1187


embedded image


3-(2-aminoquinazolin-7-yl)- N-methyl-5-(prop-2- enamido)benzamide
347.4





1188


embedded image


N-methyl-3-(1-methyl-1H- indazol-6-yl)-5-(prop-2- enamido)benzamide
334.4





1189


embedded image


7-[3-(prop-2- enamido)phenyl]quinoline-2- carboxamide
317.3





1190


embedded image


N-[3-methoxy-5-(1-methyl- 1H-indazol-6-yl)phenyl]prop- 2-enamide
307.4





1191


embedded image


N-(2-cyanoethyl)-5-[3-(prop- 2-enamido)phenyl]-1H- indazole-3-carboxamide
359.4





1192


embedded image


N-[3-fluoro-5-(quinazolin-7- yl)phenyl]prop-2-enamide
293.3





1193


embedded image


N-{3-[4- (ethylamino)quinolin-6- yl]phenyl}prop-2-enamide
317.4





1194


embedded image


N-(3-{4-[(2-cyano-2- methylethyl)amino]quinolin- 6-yl}phenyl)prop-2-enamide
356.4





1195


embedded image


N-[3-(4-methoxyquinolin-6- yl)phenyl]prop-2-enamide
304.3





1196


embedded image


N-[3-(1-methyl-4-oxo-1,4- dihydroquinolin-6- yl)phenyl]prop-2-enamide
304.3





1197


embedded image


2-methyl-N-[2-(quinazolin-7- yl)pyridin-4-yl]prop-2- enamide
290.3





1198


embedded image


N-[2-(2-aminoquinazolin-7- yl)pyridin-4-yl]-2- methylprop-2-enamide
305.3





1199


embedded image


5-[3-chloro-5-(prop-2- enamido)phenyl]-N-(1- methylpiperidin-4-yl)-1H- pyrazolo[3,4-c]pyridine-3- carboxamide
438.9





1200


embedded image


5-[3-chloro-5-(prop-2- enamido)phenyl]-N-methyl- 1H-pyrazolo[3,4-c]pyridine- 3-carboxamide
355.8





1201


embedded image


N-(3-{2-[(2- methoxyethyl)amino]quinazolin- 7-yl}phenyl)prop-2- enamide
348.4





1202


embedded image


7-[3-(prop-2- enamido)phenyl]quinazoline- 2-carboxamide
318.3





1203


embedded image


N-[2-(methoxymethyl)-7-[6- ({[(1-methyl-1H-pyrazol-4- yl)carbamoyl]methyl}carbamoyl) pyridin-2-yl]naphthalen- 1-yl]prop-2-enamide
498.5





1204


embedded image


N-(1-methylpiperidin-4-yl)-7- [3-(prop-2- enamido)phenyl]quinazoline- 2-carboxamide
415.5





1205


embedded image


N-{7-[6-({[(4-fluoro-3- methoxyphenyl)carbamoyl] methyl}carbamoyl)pyridin-2- yl]-2- (methoxymethyl)naphthalen- 1-yl}prop-2-enamide
542.6





1206


embedded image


N-(1-methylpiperidin-3-yl)-7- [3-(prop-2- enamido)phenyl]quinazoline- 2-carboxamide
415.5





1207


embedded image


N-{7-[6-({[(2- fluoroethyl)carbamoyl]methyl} carbamoyl)pyridin-2- yl]naphthalen-1-yl}prop-2- enamide
420.4





1208


embedded image


6-[8-(prop-2- enamido)naphthalen-2-yl]-N- [2-(thiophen-2- yl)ethyl]pyridine-2- carboxamide
427.5





1209


embedded image


N-[3-(3-methoxy-1H-indazol- 5-yl)phenyl]prop-2-enamide
293.3





1210


embedded image


N-{3-[2- (methylamino)quinolin-7- yl]phenyl}prop-2-enamide
303.4





1211


embedded image


4-amino-N-methyl-6-[3- (prop-2- enamido)phenyl]quinoline-3- carboxamide
346.4





1212


embedded image


N-(1-methylpiperidin-4-yl)-7- [3-(prop-2- enamido)phenyl]quinoline-2- carboxamide
414.5





1213


embedded image


N-{3-[2- (benzylamino)quinolin-7- yl]phenyl}prop-2-enamide
379.5





1214


embedded image


N-(3-{2-[(1-methylpiperidin- 4-yl)amino]quinolin-7- yl}phenyl)prop-2-enamide
386.5





1215


embedded image


N-[3-(7-chloro-1H-indazol-5- yl)phenyl]prop-2-enamide
297.7





1216


embedded image


N-[3-(1,3-benzoxazol-5- yl)phenyl]prop-2-enamide
264.3





1217


embedded image


N-[3-(1,3-benzothiazol-5- yl)phenyl]prop-2-enamide
280.4





1218


embedded image


N-[3-(1,3-benzothiazol-6- yl)phenyl]prop-2-enamide
280.4





1219


embedded image


N-[3-(4-aminoquinazolin-6- yl)phenyl]prop-2-enamide
290.3





1220


embedded image


N-[3-(4-aminoquinazolin-7- yl)phenyl]prop-2-enamide
290.3





1221


embedded image


N-[3-(3-amino-1H-indazol-5- yl)phenyl]prop-2-enamide
278.3





1222


embedded image


N-{3-[3-chloro-4- (methylamino)quinolin-6- yl]phenyl}prop-2-enamide
337.8





1223


embedded image


N-[3-(7-amino-1-oxo-2,3- dihydro-1H-isoindol-4- yl)phenyl]prop-2-enamide
293.3





1224


embedded image


6-{8-[(2-cyano-2- methylideneethyl)amino]-7- (methoxymethyl)naphthalen- 2-yl}-N-[(2S,4R)-1,2- dimethylpiperidin-4- yl]pyridine-2-carboxamide
483.6





1225


embedded image


N-[7-(6-{[2-(2- methylpropanamido)ethyl] carbamoyl}pyridin-2- yl)naphthalen-1-yl]prop-2- enamide
430.5





1226


embedded image


N-{7-[6-({[(2-cyano-2- methylethyl)carbamoyl]methyl} carbamoyl)pyridin-2- yl]naphthalen-1-yl}prop-2- enamide
441.5





1227


embedded image


5-[3-chloro-5-(prop-2- enamido)phenyl]-N-(2- methoxyethyl)-1H- pyrazolo[3,4-c]pyridine-3- carboxamide
399.8





1228


embedded image


5-[3-chloro-5-(prop-2- enamido)phenyl]-1H- pyrazolo[3,4-c]pyridine-3- carboxamide
341.8





1229


embedded image


N-(3-{2-[(2- hydroxyethyl)amino]quinazolin- 7-yl}phenyl)prop-2- enamide
334.4





1230


embedded image


N-(3-{2-[(2- cyanoethyl)amino]quinazolin- 7-yl}phenyl)prop-2-enamide
343.4





1231


embedded image


N-(3-{7- [(methylcarbamoyl)methyl]- 7H-pyrrolo[2,3-d]pyrimidin- 2-yl}phenyl)prop-2-enamide
335.4





1232


embedded image


N-{3-[7-(2-methoxyethyl)- 7H-pyrrolo[2,3-d]pyrimidin- 2-yl]phenyl}prop-2-enamide
322.4





1233


embedded image


N-{7-[6-({[(3- cyanophenyl)carbamoyl] methyl}carbamoyl)pyridin-2-yl]- 2-(methoxymethyl)naphthalen- 1-yl}prop-2-enamide
519.6





1234


embedded image


N-{3-[2,4- bis(methylamino)quinazolin- 7-yl]phenyl}prop-2-enamide
333.4





1235


embedded image


N-[3-(2,4-diaminoquinazolin- 7-yl)phenyl]prop-2-enamide
305.3





1236


embedded image


N-[2-(methoxymethyl)-7-[6- ({[(thiophen-3-yl) carbamoyl]methyl}carbamoyl) pyridin-2-yl]naphthalen- 1-yl]prop-2-enamide
500.6





1237


embedded image


N-{3-chloro-5-[2- (methylamino)quinazolin-7- yl]phenyl}prop-2-enamide
338.8





1238


embedded image


N-{3-fluoro-5-[2- (methylamino)quinazolin-7- yl]phenyl}prop-2-enamide
322.3





1239


embedded image


N-[5-(2-aminoquinolin-7-yl)- 2-methylphenyl]prop-2- enamide
303.4





1240


embedded image


N-[5-(2-aminoquinolin-7-yl)- 2-methoxyphenyl]prop-2- enamide
319.4





1241


embedded image


N-{2-methyl-5-[2- (methylamino)quinazolin-7- yl]phenyl}prop-2-enamide
318.4





1242


embedded image


N-[3-(2-methoxyquinolin-7- yl)phenyl]prop-2-enamide
304.3





1243


embedded image


(2E)-N-[2-(quinazolin-7- yl)pyridin-4-yl]but-2-enamide
290.3





1244


embedded image


(2E)-N-[2-(2- aminoquinazolin-7- yl)pyridin-4-yl]but-2-enamide
305.3





1245


embedded image


N-[3-(2-aminoquinazolin-7- yl)phenyl]-2-fluoroprop-2- enamide
308.3





1246


embedded image


2-fluoro-N-{3-[2- (methylamino)quinazolin-7- yl]phenyl}prop-2-enamide
322.3





1247


embedded image


5-[3-chloro-5-(prop-2- enamido)phenyl]-N-[4- (dimethylamino)cyclohexyl]- 1H-pyrazolo[3,4-c]pyridine- 3-carboxamide
467.0





1248


embedded image


5-[3-chloro-5-(prop-2- enamido)phenyl]-N-(1- methylpiperidin-3-yl)-1H- pyrazolo[3,4-c]pyridine-3- carboxamide
438.9





1249


embedded image


N-(3-{7-[2- (methylcarbamoypethyl]-7H- pyrrolo[2,3-d]pyrimidin-2- yl}phenyl)prop-2-enamide
349.4





1250


embedded image


N-[3-(3-aminoquinoxalin-6- yl)phenyl]prop-2-enamide
290.3





1251


embedded image


N-[3-(4-oxo-3,4- dihydroquinazolin-7- yl)phenyl]prop-2-enamide
291.3





1252


embedded image


N-(3-{4-[(2- methoxyethyl)amino]-2- (methylamino)quinazolin-7- yl}phenyl)prop-2-enamide
377.4





1253


embedded image


N-[3-cyano-5-(quinazolin-7- yl)phenyl]prop-2-enamide
300.3





1254


embedded image


N-methyl-5-[3-(prop-2- enamido)phenyl]-1H- pyrazolo[3,4-c]pyridine-3- carboxamide
321.3





1255


embedded image


N-[3-(2,4-diaminoquinazolin- 6-yl)phenyl]prop-2-enamide
305.3





1256


embedded image


N-{3-chloro-5-[4- (methylamino)quinolin-6- yl]phenyl}prop-2-enamide
337.8





1257


embedded image


N-(2-methoxyethyl)-5-[3- (prop-2-enamido)phenyl]-1H- pyrazolo[3,4-c]pyridine-3- carboxamide
365.4





1258


embedded image


5-[3-(prop-2- enamido)phenyl]-1H- pyrazolo[3,4-c]pyridine-3- carboxamide
307.3





1259


embedded image


N-(2-cyanoethyl)-5-[3-(prop- 2-enamido)phenyl]-1H- pyrazolo[3,4-c]pyridine-3- carboxamide
360.4





1260


embedded image


N-(3-{4-[(2- cyanoethyl)amino]-2- (methylamino)quinazolin-7- yl}phenyl)prop-2-enamide
372.4





1261


embedded image


N-{2-methoxy-5-[2- (methylamino)quinazolin-7- yl]phenyl}prop-2-enamide
334.4





1262


embedded image


N-{3-fluoro-5-[4- (methylamino)quinolin-6- yl]phenyl}prop-2-enamide
321.4





1263


embedded image


N-{3-methoxy-5-[4- (methylamino)quinolin-6- yl]phenyl}prop-2-enamide
333.4





1264


embedded image


N-{3-[5- (methylamino)isoquinolin-3- yl]phenyl}prop-2-enamide
303.4





1265


embedded image


2-fluoro-N-{7-[6-({[(2- methoxyethyl)carbamoyl] methyl}carbamoyl)pyridin-2- yl]naphthalen-1-yl}prop-2- enamide
450.5





1266


embedded image


N-[2- (carbamoylamino)ethyl]-6-[8- (prop-2-enamido)naphthalen- 2-yl]pyridine-2-carboxamide
403.4





1267


embedded image


methyl 7-[4-(prop-2- enamido)pyridin-2- yl]quinazoline-2-carboxylate
334.3





1268


embedded image


7-[4-(prop-2- enamido)pyridin-2- yl]quinazoline-2-carboxylic acid
320.3





1269


embedded image


N-(3-{3H-imidazo[4,5- c]pyridin-6-yl}phenyl)prop-2- enamide
264.3





1270


embedded image


N-{3-[3- (methylamino)quinoxalin-6- yl]phenyl}prop-2-enamide
304.4





1271


embedded image


N-[3-(4-methylquinolin-7- yl)phenyl]prop-2-enamide
288.4





1272


embedded image


N-{3-[2,4- bis(methylamino)quinazolin- 6-yl]phenyl}prop-2-enamide
333.4





1273


embedded image


5-[3-fluoro-5-(prop-2- enamido)phenyl]-N-(1- methylpiperidin-4-yl)-1H- pyrazolo[3,4-c]pyridine-3- carboxamide
422.5





1274


embedded image


N-[4- (dimethylamino)cyclohexyl]- 5-[3-fluoro-5-(prop-2- enamido)phenyl]-1H- pyrazolo[3,4-c]pyridine-3- carboxamide
450.5





1275


embedded image


N-[2-(dimethylamino)ethyl]- 5-[3-(prop-2- enamido)phenyl]-1H- pyrazolo[3,4-c]pyridine-3- carboxamide
378.4





1276


embedded image


5-[3-fluoro-5-(prop-2- enamido)phenyl]-N-(1- methylpiperidin-3-yl)-1H- pyrazolo[3,4-c]pyridine-3- carboxamide
422.5





1277


embedded image


N-[3-(2-aminoquinazolin-7- yl)-5-cyanophenyl]prop-2- enamide
315.3





1278


embedded image


N-{3-methoxy-5-[2- (methylamino)quinazolin-7- yl]phenyl}prop-2-enamide
334.4





1279


embedded image


7-[3-methoxy-5-(prop-2- enamido)phenyl]-N- methylquinazoline-2- carboxamide
362.4





1280


embedded image


N-(2-hydroxyethyl)-5-[3- (prop-2-enamido)phenyl]-1H- pyrazolo[3,4-c]pyridine-3- carboxamide
351.4





1281


embedded image


N-{2-methoxy-5-[4- (methylamino)quinolin-6- yl]phenyl}prop-2-enamide
333.4





1282


embedded image


7-[3-(2-fluoroprop-2- enamido)phenyl]-N- methylquinazoline-2- carboxamide
350.4





1283


embedded image


N-[3-(2-aminoquinolin-7- yl)phenyl]-2-fluoroprop-2- enamide
307.3





1284


embedded image


2-fluoro-N-(3-{3-methyl-1H- pyrazolo[3,4-c]pyridin-5- yl}phenyl)prop-2-enamide
296.3





1285


embedded image


2-fluoro-N-{3-[4- (methylamino)quinolin-6- yl]phenyl}prop-2-enamide
321.4





1286


embedded image


7-[3-(2-fluoroprop-2- enamido)phenyl]quinazoline- 2-carboxamide
336.3





1287


embedded image


N-{4′-amino-3′,5′-dichloro- [1,1′-biphenyl]-3-yl}prop-2- enamide
307.2





1288


embedded image


N-[3-(2-amino-4-oxo-3,4- dihydroquinazolin-7- yl)phenyl]prop-2-enamide
306.3





1289


embedded image


N-[3-(2-methyl-1,3- benzoxazol-5-yl)phenyl]prop- 2-enamide
278.3





1290


embedded image


N-[3-(2-amino-1,3- benzoxazol-5-yl)phenyl]prop- 2-enamide
279.3





1291


embedded image


N-[3-(2-amino-4- methylquinolin-7- yl)phenyl]prop-2-enamide
303.4





1292


embedded image


N-(3-{2-[(2- methoxyethyl)amino]-4- (methylamino)quinazolin-7- yl}phenyl)prop-2-enamide
377.4





1293


embedded image


N-{5-[4- (dimethylamino)quinolin-6- yl]-2- (methoxymethyl)phenyl} prop-2-enamide
361.4





1294


embedded image


6-[4-methoxy-3-(prop-2- enamido)phenyl]quinazoline- 2-carboxamide
348.4





1295


embedded image


N-[5-(2,4-diaminoquinazolin- 7-yl)-2-methoxyphenyl]prop- 2-enamide
335.4





1296


embedded image


N-{5-[4- (dimethylamino)quinolin-6- yl]-2-methoxyphenyl}prop-2- enamide
347.4





1297


embedded image


N-{5-[4- (dimethylamino)quinolin-6- yl]pyridin-3-yl}prop-2- enamide
318.4





1298


embedded image


N-methyl-7-[4-(prop-2- enamido)pyridin-2- yl]quinazoline-2-carboxamide
333.4





1299


embedded image


(2E)-N-[2-(2- aminoquinazolin-7- yl)pyridin-4-yl]-4,4,4- trifluorobut-2-enamide
359.3





1300


embedded image


7-[4-(prop-2- enamido)pyridin-2- yl]quinazoline-2-carboxamide
319.3





1301


embedded image


N-[(1-methylpiperidin-4- yl)methyl]-6-[3-(prop-2- enamido)phenyl]quinazoline- 2-carboxamide
429.5





1302


embedded image


N-[(3S,4R)-3-fluoro-1- methylpiperidin-4-yl]-6-[3- (prop-2- enamido)phenyl]quinazoline- 2-carboxamide
433.5





1303


embedded image


N-[3-(6-methyl-1H-indazol-3- yl)phenyl]prop-2-enamide
277.3





1304


embedded image


N-(3-{2-[(2- cyanoethyl)amino]-4- (methylamino)quinazolin-7- yl}phenyl)prop-2-enamide
372.4





1305


embedded image


N-{5-[4- (methylamino)quinolin-6- yl]pyridin-3-yl}prop-2- enamide
304.4





1306


embedded image


N-(2-methoxy-5-{3-methyl- 1H-pyrazolo[3,4-c]pyridin-5- yl}phenyl)prop-2-enamide
308.3





1307


embedded image


N-[3-(6-amino-1H-indazol-3- yl)phenyl]prop-2-enamide
278.3





1308


embedded image


6-[4-methoxy-3-(prop-2- enamido)phenyl]-N- methylquinazoline-2- carboxamide
362.4





1309


embedded image


N-[3-(6-methoxy-1H-indazol- 3-yl)phenyl]prop-2-enamide
293.3





1310


embedded image


N-[3-(4-amino-3- chloroquinolin-6- yl)phenyl]prop-2-enamide
323.8





1311


embedded image


N-{3-[4- (methylamino)quinazolin-7- yl]phenyl}prop-2-enamide
304.4





1312


embedded image


N-[3-(2-oxo-2,3-dihydro-1H- 1,3-benzodiazol-5- yl)phenyl]prop-2-enamide
279.3





1313


embedded image


5-[3-(2-fluoroprop-2- enamido)phenyl]-N-methyl- 1H-pyrazolo[3,4-c]pyridine- 3-carboxamide
339.3





1314


embedded image


4-(methylamino)-6-[3-(prop- 2- enamido)phenyl]quinazoline- 2-carboxamide
347.4





1315


embedded image


4-amino-N-methyl-3′-(prop- 2-enamido)-[1,1′-biphenyl]-3- carboxamide
295.3





1316


embedded image


N-{3-[4-(pyridin-3- yl)quinolin-6-yl]phenyl}prop- 2-enamide
351.4





1317


embedded image


N-{3-[4- (phenylamino)quinolin-6- yl]phenyl}prop-2-enamide
365.4





1318


embedded image


N-[3-(4-chloroquinolin-6- yl)phenyl]prop-2-enamide
308.8





1319


embedded image


N-(3-{4-amino-2-[(2- methoxyethyl)amino]quinazolin- 7-yl}phenyl)prop-2- enamide
363.4





1320


embedded image


N-(3-{4-amino-2-[(2- cyanoethyl)amino]quinazolin- 7-yl}phenyl)prop-2-enamide
358.4





1321


embedded image


N-(3-{2-[(2- hydroxypropyl)amino]-4- (methylamino)quinazolin-7- yl}phenyl)prop-2-enamide
377.4





1322


embedded image


N-{2-[2- (methylamino)quinolin-7- yl]pyridin-4-yl}prop-2- enamide
304.4





1323


embedded image


7-[4-methoxy-3-(prop-2- enamido)phenyl]quinazoline- 2-carboxamide
348.4





1324


embedded image


5-[4-methoxy-3-(prop-2- enamido)phenyl]-N-methyl- 1H-pyrazolo[3,4-c]pyridine- 3-carboxamide
351.4





1325


embedded image


N-(3-{4-[(2- methoxyethyl)(methyl)amino] quinolin-6-yl}phenyl)prop-2- enamide
361.4





1326


embedded image


N-(2-methoxyethyl)-6-[3- (prop-2- enamido)phenyl]quinazoline- 2-carboxamide
376.4





1327


embedded image


N-[4- (dimethylamino)cyclohexyl]- 6-[3-(prop-2- enamido)phenyl]quinazoline- 2-carboxamide
443.6





1328


embedded image


N-(2-methoxyethyl)-7-[3- (prop-2- enamido)phenyl]quinazoline- 2-carboxamide
376.4





1329


embedded image


N-{2-[4- (methylamino)quinolin-6- yl]pyridin-4-yl}prop-2- enamide
304.4





1330


embedded image


N-[2-(methoxymethyl)-5-[4- (methylamino)quinolin-6- yl]phenyl]prop-2-enamide
347.4





1331


embedded image


N-methyl-7-[5-(prop-2- enamido)pyridin-3- yl]quinazoline-2-carboxamide
333.4





1332


embedded image


N-[5-(2-aminoquinolin-7-yl)-2- (methoxymethyl)phenyl]prop- 2-enamide
3314





1333


embedded image


7-[4-(methoxymethyl)-3- (prop-2-enamido)phenyl]-N- methylquinazoline-2- carboxamide
376.4





1334


embedded image


5-[3-(2-fluoroprop-2- enamido)phenyl]-1H- pyrazolo[3,4-c]pyridine-3- carboxamide
325.3





1335


embedded image


5-[3-(prop-2- enamido)phenyl]-1H- pyrazolo [4,3-b]pyridine-3- carboxamide
307.3





1336


embedded image


N-{3-[2- (phenylamino)quinazolin-7- yl]phenyl}prop-2-enamide
366.4





1337


embedded image


N-{3-[1- (methylamino)isoquinolin-7- yl]phenyl}prop-2-enamide
303.4





1338


embedded image


N-(3-{4-amino-2-[(2- hydroxypropyl)amino] quinazolin-7-yl}phenyl) prop-2-enamide
363.4





1339


embedded image


N-[3-(2-{[2- (dimethylamino)ethyl]amino}- 4-(methylamino)quinazolin- 7-yl)phenyl]prop-2-enamide
390.5





1340


embedded image


N-[5-(2-aminoquinolin-7- yl)pyridin-3-yl]prop-2- enamide
290.3





1341


embedded image


7-[4-methoxy-3-(prop-2- enamido)phenyl]-N- methylquinazoline-2- carboxamide
362.4





1342


embedded image


N-{5-[3-chloro-4- (methylamino)quinolin-6-yl]- 2-methoxyphenyl}prop-2- enamide
367.8





1343


embedded image


N-{2-methoxy-5-[2- (methylamino)quinolin-7- yl]phenyl}prop-2-enamide
333.4





1344


embedded image


N-[4- (dimethylamino)cyclohexyl]- 7-[3-(prop-2- enamido)phenyl]quinazoline- 2-carboxamide
443.6





1345


embedded image


N-[(1-methylpiperidin-4- yl)methyl]-7-[3-(prop-2- enamido)phenyl]quinazoline- 2-carboxamide
429.5





1346


embedded image


N-[(3R)-1-methylpiperidin-3- yl]-7-[3-(prop-2- enamido)phenyl]quinazoline- 2-carboxamide
415.5





1347


embedded image


N-[3-(2-methylquinazolin-7- yl)phenyl]prop-2-enamide
289.3





1348


embedded image


7-[5-(prop-2- enamido)pyridin-3- yl]quinazoline-2-carboxamide
319.3





1349


embedded image


7-[4-(methoxymethyl)-3- (prop-2- enamido)phenyl]quinazoline- 2-carboxamide
362.4





1350


embedded image


N-(3-{1-methyl-1H- pyrrolo[3,2-c]pyridin-6- yl}phenyl)prop-2-enamide
277.3





1351


embedded image


N-[3-(1-methyl-1H-1,3- benzodiazol-6- yl)phenyl]prop-2-enamide
277.3





1352


embedded image


N-{3-[3-(hydroxymethyl)-4- (methylamino)quinolin-6- yl]phenyl}prop-2-enamide
333.4





1353


embedded image


N-{2-fluoro-5-[4- (methylamino)quinolin-6- yl]phenyl}prop-2-enamide
321.4





1354


embedded image


N-{4-fluoro-3-[4- (methylamino)quinolin-6- yl]phenyl}prop-2-enamide
321.4





1355


embedded image


4-amino-6-[3-(prop-2- enamido)phenyl]quinazoline- 2-carboxamide
333.4





1356


embedded image


N-{3-[3-(pyridin-3-yl)-1H- pyrazolo[3,4-c]pyridin-5- yl]phenyl}prop-2-enamide
341.4





1357


embedded image


N-methyl-7-[5-(prop-2- enamido)pyridin-3- yl]quinoline-2-carboxamide
332.4





1358


embedded image


N-[5-(2,4-diaminoquinazolin- 7-yl)pyridin-3-yl]prop-2- enamide
306.3





1359


embedded image


N-[3-(2-methoxyquinazolin- 7-yl)phenyl]prop-2-enamide
305.3





1360


embedded image


N-{3-[8- (methylamino)naphthalen-2- yl]phenyl}prop-2-enamide
302.4





1361


embedded image


N-(3-{3-ethyl-1H- pyrazolo[3,4-c]pyridin-5- yl}phenyl)prop-2-enamide
292.3





1362


embedded image


N-(3-{2- [(carbamoylmethyl)amino]-4- (methylamino)quinazolin-7- yl}phenyl)prop-2-enamide
376.4





1363


embedded image


N-(3-{2-[(2- carbamoylethyl)amino]-4- (methylamino)quinazolin-7- yl}phenyl)prop-2-enamide
390.4





1364


embedded image


N-methyl-7-[1-(prop-2- enoyl)-2,3-dihydro-1H-indol- 6-yl]quinazoline-2- carboxamide
358.4





1365


embedded image


N-[3-(5-fluoroquinazolin-7- yl)phenyl]prop-2-enamide
293.3





1366


embedded image


5-[3-(prop-2- enamido)phenyl]-1,3- benzoxazole-2-carboxamide
307.3





1367


embedded image


N-{3-[6-(methylamino)-1H- indazol-3-yl]phenyl}prop-2- enamide
292.3





1368


embedded image


N-(5-{3-methyl-1H- pyrazolo[3,4-c]pyridin-5- yl}pyridin-3-yl)prop-2- enamide
279.3





1369


embedded image


7-[2-(prop-2- enamido)pyridin-4- yl]quinazoline-2-carboxamide
319.3





1370


embedded image


N-(3-fluoro-1- methylpiperidin-4-yl)-7-[3- (prop-2- enamido)phenyl]quinazoline- 2-carboxamide
433.5





1371


embedded image


N-[(3S)-1-methylpiperidin-3- yl]-7-[3-(prop-2- enamido)phenyl]quinazoline- 2-carboxamide
415.5





1372


embedded image


N-(2-cyanoethyl)-7-[3-(prop- 2- enamido)phenyl]quinazoline- 2-carboxamide
371.4









EMBODIMENTS

The following non-limiting embodiments provide illustrative examples of the invention, but do not limit the scope of the disclosure.


Embodiment 1. A compound of the formula:




embedded image




    • wherein:
      • X1 is CR7 or N;
      • X2 is CR2 or N;
      • each of R1 and R2 is independently alkyl, —NR8R9, —C(O)NR8R9, —NR8C(O)R9, —OR10, —SR11, —C(O)R12, —C(O)OR12, —S(O)2R13, CN, each of which is unsubstituted or substituted, or hydrogen or halogen;
      • Q is







embedded image






      •  or NR3R4, wherein each of R3 and R4 is independently alkyl, cycloalkyl, alkenyl, —C(O)R13, —C(O)OR13, —S(O)2R13, —S(O)2R13, each of which is unsubstituted or substituted; or hydrogen, or R3 and R4 together with the nitrogen atom to which R3 and R4 are bound form a ring, wherein the ring is unsubstituted or substituted;

      • R7 is alkyl, alkenyl, cycloalkyl, aryl, heteroaryl or heterocyclyl, each of which is unsubstituted or substituted, or hydrogen or halogen; each of R8 and R9 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R8 and R9 together with the nitrogen atom to which R8 and R9 are bound form a ring, wherein the ring is unsubstituted or substituted;

      • each of R10, R11, R12 and R13 is independently is alkyl, alkenyl, cycloalkyl, aryl, heteroaryl or heterocyclyl, each of which is unsubstituted or substituted, or hydrogen or halogen.



    • Embodiment 2. The compound of embodiment 1, wherein:

    • when Q is







embedded image



then each of R5 and R6 is independently aryl or heteroaryl, each of which is unsubstituted or substituted, or hydrogen or halogen; or R5 and R6 together with the carbon atoms to which R5 and R6 are bound form a ring, wherein the ring is unsubstituted or substituted.


Embodiment 3. The compound of embodiment 1 or embodiment 2, wherein

    • when Q is




embedded image



then R5 and R6 together with the carbon atoms to which R5 and R6 are bound form the ring, wherein the ring is unsubstituted or substituted.


Embodiment 4. The compound of any one of embodiments 1-3, wherein

    • when Q is




embedded image



then R5 is hydrogen or halogen, and R6 is aryl or heteroaryl, which is unsubstituted or substituted.


Embodiment 5. The compound of any one of embodiments 1-4, wherein

    • when Q is




embedded image




    •  then R5 and R6 together with the carbon atoms to which R5 and R6 are bound form the ring, and the compound has the structure:







embedded image






      • wherein
        • R5a, R5b and R5d are each independently aryl or heteroaryl, each of which is substituted or unsubstituted, or hydrogen or halogen, and
        • R5c is









embedded image








        • wherein
          • each of custom character is independently a single bond or a double bond;
          • Y1 is CR6a, N, NR6a, O or S;
          • Y2 is CR6b, N, NR6b, O or S;
          • Y3 is CR6c, N, NR6c, O or S;
          • Y4 is CR6d, N, NR6d, O or S;
          • Y5 is CR6e, N, NR6e, O or S;
          • Y6 is CR6f, N, NR6f, O or S;
          • Y7 is CR6g, N, NR68, O or S;
          • Y8 is CR6h, N, NR6h, O or S; and
          • Y9 is CR6i, N, NR6i, O or S,
          • wherein
          •  each of R6a, R6b, R6c, R6d, R6e, R6f, R6g, R6h and R6i is independently alkyl, cycloalkyl, —N14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
          •  R6a and R6b together with the carbon atoms to which R6a and R6b are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6c, R6d, R6e, R6f, R6g, R6h and R6i is independently alkyl, cycloalkyl, —N14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
          •  R6b and R6c together with the carbon atoms to which R6b and R6c are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6a, R6d, R6e, R6f, R6g, R6h and R6i is independently alkyl, cycloalkyl, —N14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
          •  R6c and R6d together with the carbon atoms to which R6c and R6d are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6a, R6b, R6e, R6f, R6g, R6h and R6i is independently alkyl, cycloalkyl, —N14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
          •  R6d and R6e together with the carbon atoms to which R6d and R6e are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6a, R6b, R6c, R6f, R6g, R6h and R6i is independently alkyl, cycloalkyl, —N14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
          •  R6f and R6g together with the carbon atoms to which R6f and R6g are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6a, R6b, R6c, R6d, R6e, R6h and R6i is independently alkyl, cycloalkyl, —N14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
          •  R6g and R6h together with the carbon atoms to which R6g and R6h are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6a, R6b, R6c, R6d, R6e, R6f, and R6i is independently alkyl, cycloalkyl, —N14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
          •  R6h and R6i together with the carbon atoms to which R6h and R6i are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6a, R6b, R6c, R6d, R6e, R6f, and R6g is independently alkyl, cycloalkyl, —N14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen.









Embodiment 6. The compound of any one of embodiments 1-5, provided that:

    • when Q is not




embedded image




    •  then R5 and R6 together with the carbon atoms to which R5 and R6 are bound form the ring, and compound has the structure:







embedded image






      • wherein:
        • R5a, R5b and R5d are each independently aryl or heteroaryl, each of which is substituted or unsubstituted, or hydrogen or halogen; and
        • each of R6a, R6b, R6c, R6d, and R6e is independently alkyl, cycloalkyl, —N14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; wherein at least one of R6a, R6b, R6c, R6d, and R6e is —C(O)NR14R15, NR14R15, or NR14C(O)R15, and

      • each of R14 and R15 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, or heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R14 and R15 together with the nitrogen atom to which R14 and R15 are bound form a ring, wherein the ring is unsubstituted or substituted; and

      • each of R16, R17, R18 and R19 is independently is alkyl, alkenyl, cycloalkyl, aryl, heteroaryl or heterocyclyl, each of which is unsubstituted or substituted, or hydrogen or halogen;



    • or a pharmaceutically-acceptable salt thereof.





Embodiment 7. The compound of any one of embodiments 1-6, wherein X1 is CR7.


Embodiment 8. The compound of any one of embodiments 1-6, wherein X1 is N.


Embodiment 9. The compound of any one of embodiments 1-8, wherein R1 is H.


Embodiment 10. The compound of any one of embodiments 1-8, wherein R1 is —C(O)NR8R9, —OR10, or CN, each of which is unsubstituted or substituted.


Embodiment 11. The compound of any one of embodiments 1-10, wherein X2 is CR2 and R2 is H.


Embodiment 12. The compound of any one of embodiments 1-10, wherein X2 is CR2 and R2 is —OR10.


Embodiment 13. The compound of any one of embodiments 1-10, wherein X2 is CR2 and R2 is halogen.


Embodiment 14. The compound of any one of embodiments 1-10, wherein X2 is CR2 and R2 is —C(O)NH2.


Embodiment 15. The compound of embodiment 1, wherein Q is NR3R4, and wherein R3 is hydrogen.


Embodiment 16, The compound of embodiment 1, wherein Q is NR3R4, and wherein one or both of R3 and R4 is




embedded image


Embodiment 17. The compound of embodiment 1, wherein the compound has the formula:




embedded image




    • wherein each of R14 and R15 is independently alkyl, which is unsubstituted or substituted, or hydrogen.





Embodiment 18. The compound of embodiment 1 or 17, wherein the compound has the formula:




embedded image


Embodiment 19. The compound of embodiment 1, wherein the compound has the formula:




embedded image


Embodiment 20. The compound of embodiment 1, wherein the compound has the formula:




embedded image


Embodiment 21. The compound of embodiment 1, wherein the compound has the formula:




embedded image


Embodiment 22. The compound of embodiment 1 or 19, wherein the compound has the formula:




embedded image


Embodiment 23. The compound of embodiment 1 or 20, wherein the compound has the formula:




embedded image


Embodiment 24. The compound of any one of embodiments 1, 3, or 5-23, wherein the compound has the formula:




embedded image




    • wherein
      • R5a, R5b, R5c, and R5d are each independently aryl or heteroaryl, each of which is substituted or unsubstituted, or hydrogen or halogen.





Embodiment 25. The compound of embodiment 24, wherein at least one of R5a, R5b, R5c, and R5d is




embedded image




    • wherein
      • each of custom character is independently a single bond or a double bond;
      • Y1 is CR6a, N, NR6a, O or S;
      • Y2 is CR6b, N, NR6b, O or S;
      • Y3 is CR6c, N, NR6c, O or S;
      • Y4 is CR6d, N, NR6d, O or S;
      • Y5 is CR6e, N, NR6e, O or S;
      • wherein
        • each of R6a, R6b, R6c, R6d, and R6e is independently alkyl, cycloalkyl, —NR14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
        • R6a and R6b together with the carbon atoms to which R6a and R6b are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6c, R6d, and R6e is independently alkyl, cycloalkyl, —NR14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
        • R6b and R6c together with the carbon atoms to which R6b and R6c are bound form a ring, wherein the ring is unsubstituted or substituted; and each of R6a, R6d, and R6e is independently alkyl, cycloalkyl, —NR14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
        • R6c and R6d together with the carbon atoms to which R6c and R6d are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6a, R6b, and R6e is independently alkyl, cycloalkyl, —NR14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
        • R6d and R6e together with the carbon atoms to which R6d and R6e are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6a, R6b, and R6c is independently alkyl, cycloalkyl, —NR14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen.





Embodiment 26. The compound of embodiment 24, wherein at least one of R5a, R5b, R5c, and R5d is




embedded image




    • wherein
      • each of custom character independently a single bond or a double bond;
      • Y6 is CR6f, N, NR6f, O or S;
      • Y7 is CR6g, N, NR6ga, O or S;
      • Y8 is CR6h, N, NR6h, O or S; and
      • Y9 is CR6i, N, NR6i, O or S;
      • wherein
        • each of R6f, R6g, R6h, and R6i is independently alkyl, cycloalkyl, —NR14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
        • R6f and R6g together with the carbon atoms to which R6f and R6g are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6h and R6i is independently alkyl, cycloalkyl, —NR14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
        • R6g and R6h together with the carbon atoms to which R6g and R6h are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6f and R6i is independently alkyl, cycloalkyl, —NR14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen; or
        • R6h and R6i together with the carbon atoms to which R6h and R6i are bound form a ring, wherein the ring is unsubstituted or substituted, and each of R6f, and R6g is independently alkyl, cycloalkyl, —NR14R15, —OR16, —SR17, —C(O)NR14R15, —NHC(O)R14R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen.





Embodiment 27. The compound of embodiment 25, wherein the compound has the formula:




embedded image


Embodiment 28. The compound of embodiment 25, wherein the compound has the formula:




embedded image


Embodiment 29. The compound of embodiment 25, wherein the compound has the formula:




embedded image


Embodiment 30. The compound of any one of embodiments 24-29, wherein at least one of R6a, R6b, R6c, R6d, and R6e is —C(O)NR14R15, —NR14C(O)R15, or —NR14R15.


Embodiment 31. The compound of embodiment 30, wherein R6b is —C(O)NR14R15.


Embodiment 32. The compound of embodiment 30, wherein R6b is —NR14R15.


Embodiment 33. The compound of embodiment 30, wherein R6b is —NR14C(O)R15.


Embodiment 34. The compound of any one of embodiments 30-33, wherein R14 is hydrogen.


Embodiment 35. The compound of embodiment 25 or 26, wherein —NR14C(O)R15 is




embedded image


Embodiment 36. The compound of embodiment 25 or 26, wherein R15 is cycloalkyl that is unsubstituted or substituted.


Embodiment 37. The compound of embodiment 36, wherein R15 is cycloalkyl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.


Embodiment 38. The compound of embodiment 25 or 26, wherein R15 is heteroaryl that is unsubstituted or substituted.


Embodiment 39. The compound of embodiment 38, wherein R15 is heteroaryl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.


Embodiment 40. The compound of embodiment 25 or 26, wherein R15 is heterocyclyl that is unsubstituted or substituted.


Embodiment 41. The compound of embodiment 40, wherein R15 is heterocyclyl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.


Embodiment 42. The compound of embodiment 41, wherein R15 is piperidinyl that is unsubstituted or substituted.


Embodiment 43. The compound of embodiment 41, wherein R15 is




embedded image




    • wherein
      • R15a is independently alkyl that is unsubstituted or substituted, or hydrogen or halogen;
      • each R15x is independently halogen or hydrogen; and
      • n is independently 0, 1, 2, 3, 4, 5, 6, 7, or 8.





Embodiment 44. The compound of embodiment 43, wherein R15a is methyl.


Embodiment 45. The compound of embodiment 41, wherein R15 is




embedded image




    • wherein
      • each of R15b is independently alkyl that is unsubstituted or substituted, or hydrogen or halogen;
      • each R15x is independently halogen or hydrogen; and
      • n is independently 0, 1, 2, 3, 4, 5, 6, 7, or 8.





Embodiment 46. The compound of embodiment 45, wherein R15b is methyl.


Embodiment 47. The compound of embodiment 41, wherein R15 is




embedded image




    • wherein
      • each R15c is independently alkyl that is unsubstituted or substituted, or hydrogen or halogen;
      • each R15x is independently halogen or hydrogen; and
      • n is independently 0, 1, 2, 3, 4, 5, 6, 7, or 8.





Embodiment 48. The compound of embodiment 47, wherein R15c is methyl.


Embodiment 49. The compound of embodiment 25 or 26, wherein R15 is alkyl that is unsubstituted or substituted.


Embodiment 50. The compound of embodiment 49, wherein R15 is alkyl that is substituted with a heterocyclyl group.


Embodiment 51. The compound of embodiment 50, wherein R15 is alkyl that is substituted with a morpholinyl or piperidinyl group, each of which is substituted or unsubstituted.


Embodiment 52. The compound of embodiment 25 or 26, wherein R15 is alkyl that is substituted with an unsubstituted or substituted heteroaryl group.


Embodiment 53. The compound of embodiment 52, wherein R15 is alkyl that is substituted with an unsubstituted or substituted imidazolyl group.


Embodiment 54. The compound of embodiment 25, wherein the compound has the formula:




embedded image


Embodiment 55. The compound of embodiment 54, wherein at least one of R6b, R6c, R6d, and R6e is —C(O)NR14R15, —NR14C(O)R15, or —NR14R15.


Embodiment 56. The compound of embodiment 55, wherein R6b is —C(O)NR14R15.


Embodiment 57. The compound of embodiment 55, wherein R6b is —NR14R15.


Embodiment 58. The compound of embodiment 55, wherein R6b is —NR14C(O)R15.


Embodiment 59. The compound of embodiment 55, wherein R14 is hydrogen.


Embodiment 60. The compound of embodiment 55 or 58, wherein —NR14C(O)R15 is




embedded image


Embodiment 60a. The compound of embodiment 55, wherein R15 is cycloalkyl that is unsubstituted or substituted.


Embodiment 61. The compound of embodiment 60a, wherein R15 is cycloalkyl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.


Embodiment 62. The compound of embodiment 55, wherein R15 is heteroaryl that is unsubstituted or substituted.


Embodiment 63. The compound of embodiment 55, wherein R15 is heteroaryl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.


Embodiment 64. The compound of embodiment 55, wherein R15 is heterocyclyl that is unsubstituted or substituted.


Embodiment 65. The compound of embodiment 64, wherein R15 is heterocyclyl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.


Embodiment 66. The compound of embodiment 65, wherein R15 is piperidinyl that is unsubstituted or substituted.


Embodiment 67. The compound of embodiment 66, wherein R15 is




embedded image




    • wherein
      • R15a is independently alkyl that is unsubstituted or substituted, or hydrogen or halogen;
      • each R15x is independently halogen or hydrogen; and
      • n is independently 0, 1, 2, 3, 4, 5, 6, 7, or 8.





Embodiment 68. The compound of embodiment 67, wherein R15a is methyl.


Embodiment 69. The compound of embodiment 66, wherein R15 is




embedded image




    • wherein
      • each of R15b is independently alkyl that is unsubstituted or substituted, or hydrogen or halogen;
      • each R15x is independently halogen or hydrogen; and
      • n is independently 0, 1, 2, 3, 4, 5, 6, 7, or 8.





Embodiment 70. The compound of embodiment 69, wherein R15b is methyl.


Embodiment 71. The compound of embodiment 66, wherein R15 is




embedded image




    • wherein
      • each R15c is independently alkyl that is unsubstituted or substituted, or hydrogen or halogen;
      • each R15x is independently halogen or hydrogen; and
      • n is independently 0, 1, 2, 3, 4, 5, 6, 7, or 8.





Embodiment 72. The compound of embodiment 71, wherein R15c is methyl.


Embodiment 73. The compound of embodiment 55, wherein R15 is alkyl that is unsubstituted or substituted.


Embodiment 74. The compound of embodiment 73, wherein R15 is alkyl that is substituted with a heterocyclyl group.


Embodiment 75. The compound of embodiment 55, wherein R15 is alkyl that is substituted with a morpholinyl or piperidinyl group, each of which is substituted or unsubstituted.


Embodiment 76. The compound of embodiment 55, wherein R15 is alkyl that is substituted with an unsubstituted or substituted heteroaryl group.


Embodiment 77. The compound of embodiment 55, wherein R15 is alkyl that is substituted with an unsubstituted or substituted imidazolyl group.


Embodiment 78. The compound of embodiment 25, wherein the compound has the formula:




embedded image


Embodiment 79. The compound of embodiment 78, wherein at least one of R6a, R6c, R6d, and R6e is —C(O)NR14R15, —NR14C(O)R15, or —NR14R15.


Embodiment 80. The compound of embodiment 79, wherein R6b is —C(O)NR14R15.


Embodiment 81. The compound of embodiment 79, wherein R6b is —NR14R15.


Embodiment 82. The compound of embodiment 79, wherein R6b is —NR14C(O)R15.


Embodiment 83. The compound of embodiment 79, wherein R14 is hydrogen.


Embodiment 84. The compound of embodiment 79, wherein —NR14C(O)R15 is




embedded image


Embodiment 85. The compound of embodiment 79, wherein R15 is cycloalkyl that is unsubstituted or substituted.


Embodiment 86. The compound of embodiment 85, wherein R15 is cycloalkyl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.


Embodiment 87. The compound of embodiment 79, wherein R15 is heteroaryl that is unsubstituted or substituted.


Embodiment 88. The compound of embodiment 87, wherein R15 is heteroaryl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.


Embodiment 89. The compound of embodiment 79, wherein R15 is heterocyclyl that is unsubstituted or substituted.


Embodiment 90. The compound of embodiment 89, wherein R15 is heterocyclyl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.


Embodiment 91. The compound of embodiment 90, wherein R15 is piperidinyl that is unsubstituted or substituted.


Embodiment 92. The compound of embodiment 91, wherein R15 is




embedded image




    • wherein
      • R15a is independently alkyl that is unsubstituted or substituted, or hydrogen or halogen;
      • each R15x is independently halogen or hydrogen; and
      • n is independently 0, 1, 2, 3, 4, 5, 6, 7, or 8.





Embodiment 93. The compound of embodiment 92, wherein R15a is methyl.


Embodiment 94. The compound of embodiment 91, wherein R15 is




embedded image




    • wherein
      • each of R15b is independently alkyl that is unsubstituted or substituted, or hydrogen or halogen;
      • each R15x is independently halogen or hydrogen; and
      • n is independently 0, 1, 2, 3, 4, 5, 6, 7, or 8.





Embodiment 95. The compound of embodiment 94, wherein R15b is methyl.


Embodiment 96. The compound of embodiment 91, wherein R15 is




embedded image




    • wherein
      • each R15c is independently alkyl that is unsubstituted or substituted, or hydrogen or halogen;
      • each R15x is independently halogen or hydrogen; and
      • n is independently 0, 1, 2, 3, 4, 5, 6, 7, or 8.





Embodiment 97. The compound of embodiment 96, wherein R15c is methyl.


Embodiment 98. The compound of embodiment 79, wherein R15 is alkyl that is unsubstituted or substituted.


Embodiment 99. The compound of embodiment 98, wherein R15 is alkyl that is substituted with a heterocyclyl group.


Embodiment 100. The compound of embodiment 99, wherein R15 is alkyl that is substituted with a morpholinyl or piperidinyl group, each of which is substituted or unsubstituted.


Embodiment 101. The compound of embodiment 79, wherein R15 is alkyl that is substituted with an unsubstituted or substituted heteroaryl group.


Embodiment 102. The compound of embodiment 101, wherein R15 is alkyl that is substituted with an unsubstituted or substituted imidazolyl group.


Embodiment 103. The compound of embodiment 25, wherein the compound has the formula:




embedded image


Embodiment 104. The compound of embodiment 103, wherein at least one of R6a, R6b, R6d, and R6e is —C(O)NR14R15, —NR14C(O)R15, or —NR14R15.


Embodiment 105. The compound of embodiment 104, wherein R6b is —C(O)NR14R15.


Embodiment 106. The compound of embodiment 104, wherein R6b is —NR14R15.


Embodiment 107. The compound of embodiment 104, wherein R6b is —NR14C(O)R15.


Embodiment 108. The compound of embodiment 104, wherein R14 is hydrogen.


Embodiment 109. The compound of embodiment 104, wherein —NR14C(O)R15 is




embedded image


Embodiment 110. The compound of embodiment 104, wherein R15 is cycloalkyl that is unsubstituted or substituted.


Embodiment 111. The compound of embodiment 104, wherein R15 is cycloalkyl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.


Embodiment 112. The compound of embodiment 104, wherein R15 is heteroaryl that is unsubstituted or substituted.


Embodiment 113. The compound of embodiment 112, wherein R15 is heteroaryl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.


Embodiment 114. The compound of embodiment 104, wherein R15 is heterocyclyl that is unsubstituted or substituted.


Embodiment 115. The compound of embodiment 114, wherein R15 is heterocyclyl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.


Embodiment 116. The compound of embodiment 115, wherein R15 is piperidinyl that is unsubstituted or substituted.


Embodiment 117. The compound of embodiment 116, wherein R15 is




embedded image




    • wherein
      • R15a is independently alkyl that is unsubstituted or substituted, or hydrogen or halogen;
      • each R15x is independently halogen or hydrogen; and
      • n is independently 0, 1, 2, 3, 4, 5, 6, 7, or 8.





Embodiment 118. The compound of embodiment 117, wherein R15a is methyl.


Embodiment 119. The compound of embodiment 116, wherein R15 is




embedded image




    • wherein
      • each of R15b is independently alkyl that is unsubstituted or substituted, or hydrogen or halogen;
      • each R15x is independently halogen or hydrogen; and
      • n is independently 0, 1, 2, 3, 4, 5, 6, 7, or 8.





Embodiment 120. The compound of embodiment 119, wherein R15b is methyl.


Embodiment 121. The compound of embodiment 116, wherein R15 is




embedded image




    • wherein
      • each R15c is independently alkyl that is unsubstituted or substituted, or hydrogen or halogen;
      • each R15x is independently halogen or hydrogen; and
      • n is independently 0, 1, 2, 3, 4, 5, 6, 7, or 8.





Embodiment 122. The compound of embodiment 121, wherein R15c is methyl.


Embodiment 123. The compound of embodiment 104, wherein R15 is alkyl that is unsubstituted or substituted.


Embodiment 124. The compound of embodiment 123, wherein R15 is alkyl that is substituted with a heterocyclyl group.


Embodiment 125. The compound of embodiment 124, wherein R15 is alkyl that is substituted with a morpholinyl or piperidinyl group, each of which is substituted or unsubstituted.


Embodiment 126. The compound of embodiment 104, wherein R15 is alkyl that is substituted with an unsubstituted or substituted heteroaryl group.


Embodiment 127. The compound of embodiment 126, wherein R15 is alkyl that is substituted with an unsubstituted or substituted imidazolyl group.


Embodiment 128. The compound of embodiment 25, wherein the compound has the formula:




embedded image


Embodiment 129. The compound of embodiment 128, wherein at least one of R6b, R6c, and R6d is —C(O)NR14R15, —NR14C(O)R15, or —NR14R15.


Embodiment 130. The compound of embodiment 129, wherein R6b is —C(O)NR14R15.


Embodiment 131. The compound of embodiment 129, wherein R6b is —NR14R15.


Embodiment 132. The compound of embodiment 129, wherein R6b is —NR14C(O)R15.


Embodiment 133. The compound of embodiment 129, wherein R14 is hydrogen.


Embodiment 134. The compound of embodiment 129, wherein —NR14C(O)R15 is




embedded image


Embodiment 135. The compound of embodiment 129, wherein R15 is cycloalkyl that is unsubstituted or substituted.


Embodiment 136. The compound of embodiment 135, wherein R15 is cycloalkyl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.


Embodiment 137. The compound of embodiment 129, wherein R15 is heteroaryl that is unsubstituted or substituted.


Embodiment 138. The compound of embodiment 137, wherein R15 is heteroaryl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.


Embodiment 139. The compound of embodiment 129, wherein R15 is heterocyclyl that is unsubstituted or substituted.


Embodiment 140. The compound of embodiment 139, wherein R15 is heterocyclyl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.


Embodiment 141. The compound of embodiment 140, wherein R15 is piperidinyl that is unsubstituted or substituted.


Embodiment 142. The compound of embodiment 141, wherein R15 is




embedded image




    • wherein
      • each of R15a is independently alkyl that is unsubstituted or substituted, or hydrogen or halogen;
      • each R15x is independently halogen or hydrogen; and
      • n is independently 0, 1, 2, 3, 4, 5, 6, 7, or 8.





Embodiment 143. The compound of embodiment 142, wherein R15a is methyl.


Embodiment 144. The compound of embodiment 141, wherein R15 is




embedded image




    • wherein
      • each of R15b is independently alkyl that is unsubstituted or substituted, or hydrogen or halogen;
      • each R15x is independently halogen or hydrogen; and
      • n is independently 0, 1, 2, 3, 4, 5, 6, 7, or 8.





Embodiment 145. The compound of embodiment 144, wherein R15b is methyl.


Embodiment 146. The compound of embodiment 141, wherein R15 is




embedded image




    • wherein
      • R15c is independently alkyl that is unsubstituted or substituted, or hydrogen or halogen;
      • each R15x is independently halogen or hydrogen; and
      • n is independently 0, 1, 2, 3, 4, 5, 6, 7, or 8.





Embodiment 147. The compound of embodiment 146, wherein R15c is methyl.


Embodiment 148. The compound of embodiment 129, wherein R15 is alkyl that is unsubstituted or substituted.


Embodiment 149. The compound of embodiment 148, wherein R15 is alkyl that is substituted with a heterocyclyl.


Embodiment 150. The compound of embodiment 149, wherein R15 is alkyl that is substituted with a morpholinyl or piperidinyl, each of which is substituted or unsubstituted.


Embodiment 151. The compound of embodiment 129, wherein R15 is alkyl that is substituted with an unsubstituted or substituted heteroaryl group.


Embodiment 152. The compound of embodiment 141, wherein R15 is alkyl that is substituted with an unsubstituted or substituted imidazolyl group.


Embodiment 153. The compound of embodiment 25, wherein the compound has the formula:




embedded image


Embodiment 154. The compound of embodiment 153, wherein at least one of R6b, R6d, and R6e is —C(O)NR14R15, —NR14C(O)R15, or —NR14R15.


Embodiment 155. The compound of embodiment 154, wherein R6b is —C(O)NR14R15.


Embodiment 156. The compound of embodiment 154, wherein R6b is —NR14R15.


Embodiment 157. The compound of embodiment 154, wherein R6b is —NR14C(O)R15.


Embodiment 158. The compound of embodiment 154, wherein R14 is hydrogen.


Embodiment 159. The compound of embodiment 154, wherein —NR14C(O)R15 is




embedded image


Embodiment 160. The compound of embodiment 154, wherein R15 is cycloalkyl that is unsubstituted or substituted.


Embodiment 161. The compound of embodiment 160, wherein R15 is cycloalkyl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.


Embodiment 162. The compound of embodiment 154, wherein R15 is heteroaryl that is unsubstituted or substituted.


Embodiment 163. The compound of embodiment 162, wherein R15 is heteroaryl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.


Embodiment 164. The compound of embodiment 154, wherein R15 is heterocyclyl that is unsubstituted or substituted.


Embodiment 165. The compound of embodiment 164, wherein R15 is heterocyclyl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.


Embodiment 166. The compound of embodiment 165, wherein R15 is piperidinyl that is unsubstituted or substituted.


Embodiment 167. The compound of embodiment 166, wherein R15 is




embedded image




    • wherein
      • each of R15a is independently alkyl that is unsubstituted or substituted, or hydrogen or halogen;
      • each R15x is independently halogen or hydrogen; and
      • n is independently 0, 1, 2, 3, 4, 5, 6, 7, or 8.





Embodiment 168. The compound of embodiment 167, wherein R15a is methyl.


Embodiment 169. The compound of embodiment 166, wherein R15 is




embedded image




    • wherein
      • each of R15b is independently alkyl that is unsubstituted or substituted, or hydrogen or halogen;
      • each R15x is independently halogen or hydrogen; and
      • n is independently 0, 1, 2, 3, 4, 5, 6, 7, or 8.





Embodiment 170. The compound of embodiment 169, wherein R15b is methyl.


Embodiment 171. The compound of embodiment 166, wherein R15 is




embedded image




    • wherein
      • R15c is independently alkyl that is unsubstituted or substituted, or hydrogen or halogen;
      • each R15x is independently halogen or hydrogen; and
      • n is independently 0, 1, 2, 3, 4, 5, 6, 7, or 8.





Embodiment 172. The compound of embodiment 171, wherein R15c is methyl.


Embodiment 173. The compound of embodiment 154, wherein R15 is alkyl that is unsubstituted or substituted.


Embodiment 174. The compound of embodiment 173, wherein R15 is alkyl that is substituted with a heterocyclyl.


Embodiment 175. The compound of embodiment 173, wherein R15 is alkyl that is substituted with a morpholinyl or piperidinyl, each of which is substituted or unsubstituted.


Embodiment 176. The compound of embodiment 173, wherein R15 is alkyl that is substituted with an unsubstituted or substituted heteroaryl group.


Embodiment 177. The compound of embodiment 176, wherein R15 is alkyl that is substituted with an unsubstituted or substituted imidazolyl group.


Embodiment 178. The compound of embodiment 25, wherein the compound has the formula:




embedded image


Embodiment 179. The compound of embodiment 178, wherein at least one of R6b, R6c, and R6e is —C(O)NR14R15, —NR14C(O)R15, or —NR14R15.


Embodiment 180. The compound of embodiment 179, wherein R6b is —C(O)NR14R15.


Embodiment 181. The compound of embodiment 179, wherein R6b is —NR14R15.


Embodiment 182. The compound of embodiment 179, wherein R6b is —NR14C(O)R15.


Embodiment 183. The compound of embodiment 179, wherein R14 is hydrogen.


Embodiment 184. The compound of embodiment 179, wherein —NR14C(O)R15 is




embedded image


Embodiment 185. The compound of embodiment 179, wherein R15 is cycloalkyl that is unsubstituted or substituted.


Embodiment 186. The compound of embodiment 185, wherein R15 is cycloalkyl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.


Embodiment 187. The compound of embodiment 179, wherein R15 is heteroaryl that is unsubstituted or substituted.


Embodiment 188. The compound of embodiment 187, wherein R15 is heteroaryl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.


Embodiment 189. The compound of embodiment 179, wherein R15 is heterocyclyl that is unsubstituted or substituted.


Embodiment 190. The compound of embodiment 189, wherein R15 is heterocyclyl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.


Embodiment 191. The compound of embodiment 190, wherein R15 is piperidinyl that is unsubstituted or substituted.


Embodiment 192. The compound of embodiment 191, wherein R15 is




embedded image




    • wherein
      • each of R15a is independently alkyl that is unsubstituted or substituted, or hydrogen or halogen;
      • each R15x is independently halogen or hydrogen; and
      • n is independently 0, 1, 2, 3, 4, 5, 6, 7, or 8.





Embodiment 193. The compound of embodiment 192, wherein R15a is methyl.


Embodiment 194. The compound of embodiment 191, wherein R15 is




embedded image




    • wherein
      • each of R15b is independently alkyl that is unsubstituted or substituted, or hydrogen or halogen;
      • each R15x is independently halogen or hydrogen; and
      • n is independently 0, 1, 2, 3, 4, 5, 6, 7, or 8.





Embodiment 195. The compound of embodiment 194, wherein R15b is methyl.


Embodiment 196. The compound of embodiment 191, wherein R15 is




embedded image




    • wherein
      • R15c is independently alkyl that is unsubstituted or substituted, or hydrogen or halogen;
      • each R15x is independently halogen or hydrogen; and
      • n is independently 0, 1, 2, 3, 4, 5, 6, 7, or 8.





Embodiment 197. The compound of embodiment 196, wherein R15c is methyl.


Embodiment 198. The compound of embodiment 179, wherein R15 is alkyl that is unsubstituted or substituted.


Embodiment 199. The compound of embodiment 198, wherein R15 is alkyl that is substituted with a heterocyclyl.


Embodiment 200. The compound of embodiment 198, wherein R15 is alkyl that is substituted with a morpholinyl or piperidinyl, each of which is substituted or unsubstituted.


Embodiment 201. The compound of embodiment 198, wherein R15 is alkyl that is substituted with an unsubstituted or substituted heteroaryl group.


Embodiment 202. The compound of embodiment 201, wherein R15 is alkyl that is substituted with an unsubstituted or substituted imidazolyl group.


Embodiment 203. The compound of embodiment 25, wherein the compound has the formula:




embedded image


Embodiment 204. The compound of embodiment 203, wherein at least one of R6a, R6b, R6c, R6d, and R6e is —C(O)NR14R15, —NR14C(O)R15, or —NR14R15.


Embodiment 205. The compound of embodiment 204, wherein R6b is —C(O)NR14R15.


Embodiment 206. The compound of embodiment 204, wherein R6b is —NR14R15.


Embodiment 207. The compound of embodiment 204, wherein R6b is —NR14C(O)R15.


Embodiment 208. The compound of embodiment 204, wherein R14 is hydrogen.


Embodiment 209. The compound of embodiment 204, wherein —NR14C(O)R15 is




embedded image


Embodiment 210. The compound of embodiment 204, wherein R15 is cycloalkyl that is unsubstituted or substituted.


Embodiment 211. The compound of embodiment 210, wherein R15 is cycloalkyl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.


Embodiment 212. The compound of embodiment 204, wherein R15 is heteroaryl that is unsubstituted or substituted.


Embodiment 213. The compound of embodiment 212, wherein R15 is heteroaryl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.


Embodiment 214. The compound of embodiment 204, wherein R15 is heterocyclyl that is unsubstituted or substituted.


Embodiment 215. The compound of embodiment 214, wherein R15 is heterocyclyl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.


Embodiment 216. The compound of embodiment 215, wherein R15 is piperidinyl that is unsubstituted or substituted.


Embodiment 217. The compound of embodiment 216, wherein R15 is




embedded image




    • wherein
      • each of R15a is independently alkyl that is unsubstituted or substituted, or hydrogen or halogen;
      • each R15x is independently halogen or hydrogen; and
      • n is independently 0, 1, 2, 3, 4, 5, 6, 7, or 8.





Embodiment 218. The compound of embodiment 217, wherein R15a is methyl.


Embodiment 219. The compound of embodiment 216, wherein R is




embedded image




    • wherein
      • each of R15b is independently alkyl that is unsubstituted or substituted, or hydrogen or halogen;
      • each R15x is independently halogen or hydrogen; and
      • n is independently 0, 1, 2, 3, 4, 5, 6, 7, or 8.





Embodiment 220. The compound of embodiment 219, wherein R15b is methyl.


Embodiment 221. The compound of embodiment 216, wherein R15 is




embedded image




    • wherein
      • R15c is independently alkyl that is unsubstituted or substituted, or hydrogen or halogen;
      • each R15x is independently halogen or hydrogen; and
      • n is independently 0, 1, 2, 3, 4, 5, 6, 7, or 8.





Embodiment 222. The compound of embodiment 221, wherein R15c is methyl.


Embodiment 223. The compound of embodiment 204, wherein R15 is alkyl that is unsubstituted or substituted.


Embodiment 224. The compound of embodiment 223, wherein R15 is alkyl that is substituted with a heterocyclyl.


Embodiment 225. The compound of embodiment 224, wherein R15 is alkyl that is substituted with a morpholinyl or piperidinyl, each of which is substituted or unsubstituted.


Embodiment 226. The compound of embodiment 223, wherein R15 is alkyl that is substituted with an unsubstituted or substituted heteroaryl group.


Embodiment 227. The compound of embodiment 226, wherein R15 is alkyl that is substituted with an unsubstituted or substituted imidazolyl group.


Embodiment 228. The compound of embodiment 25, wherein the compound has the formula:




embedded image




    • wherein each of R5x and R5y is each independently alkyl, cycloalkyl, —NR14R15, —OR16, —SR17, —C(O)NR14R15, —NR14C(O)R15, —CN, —C(O)OR18, —S(O)2R19, —NHS(O)2R19, each of which is unsubstituted or substituted, or hydrogen or halogen.





Embodiment 229. The compound of embodiment 228, wherein R5x or R5y is —C(O)NR14R15.


Embodiment 230. The compound of embodiment 228, wherein R5x or R5y is —NR14R15.


Embodiment 231. The compound of embodiment 228, wherein R5x or R5y is —NR14C(O)R15.


Embodiment 232. The compound of embodiment 228, wherein R14 is hydrogen.


Embodiment 233. The compound of embodiment 228, wherein —NR14C(O)R15 is




embedded image


Embodiment 234. The compound of embodiment 228, wherein R15 is cycloalkyl that is unsubstituted or substituted.


Embodiment 235. The compound of embodiment 234, wherein R15 is cycloalkyl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.


Embodiment 236. The compound of embodiment 234, wherein R15 is heteroaryl that is unsubstituted or substituted.


Embodiment 237. The compound of embodiment 236, wherein R15 is heteroaryl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.


Embodiment 238. The compound of embodiment 234, wherein R15 is heterocyclyl that is unsubstituted or substituted.


Embodiment 239. The compound of embodiment 238, wherein R15 is heterocyclyl substituted by —C(O)NR20R21, —NR20C(O)R21, or —NR20R21, wherein each of R20 and R21 is alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, each of which is unsubstituted or substituted, or hydrogen; or R20 and R21 together with the nitrogen atom to which R20 and R21 are bound form a ring, wherein the ring is unsubstituted or substituted.


Embodiment 240. The compound of embodiment 239, wherein R15 is piperidinyl that is unsubstituted or substituted.


Embodiment 241. The compound of embodiment 240, wherein R15 is




embedded image




    • wherein
      • R15c is independently alkyl that is unsubstituted or substituted, or hydrogen or halogen;
      • each of R15x is independently halogen or hydrogen; and
      • n is independently 0, 1, 2, 3, 4, 5, 6, 7, or 8.





Embodiment 242. The compound of embodiment 241, wherein R15c is methyl.


Embodiment 243. The compound of embodiment 240, wherein R15 is




embedded image




    • wherein
      • R15a is independently alkyl that is unsubstituted or substituted, or hydrogen or halogen;
      • each of R15x is independently halogen or hydrogen; and
      • n is independently 0, 1, 2, 3, 4, 5, 6, 7, or 8.





Embodiment 244. The compound of embodiment 243, wherein R15a is methyl.


Embodiment 245. The compound of embodiment 240, wherein R15 is




embedded image




    • wherein
      • R15b is independently alkyl that is unsubstituted or substituted, or hydrogen or halogen;
      • each of R15x is independently halogen or hydrogen; and
      • n is independently 0, 1, 2, 3, 4, 5, 6, 7, or 8.





Embodiment 246. The compound of embodiment 245, wherein R15b is methyl.


Embodiment 247. The compound of embodiment 228, wherein R15 is alkyl that is unsubstituted or substituted.


Embodiment 248. The compound of embodiment 247, wherein R15 is alkyl that is substituted with a heterocyclyl group.


Embodiment 249. The compound of embodiment 248, wherein R15 is alkyl that is substituted with a morpholinyl or piperidinyl group, each of which is substituted or unsubstituted.


Embodiment 250. The compound of embodiment 247, wherein R15 is alkyl that is substituted with an unsubstituted or substituted heteroaryl group.


Embodiment 251. The compound of embodiment 250, wherein R15 is alkyl that is substituted with an unsubstituted or substituted imidazolyl group.


Embodiment 252. The compound of embodiment 26, which has the structure:




embedded image


Embodiment 253. The compound of embodiment 26 which has the structure:




embedded image


Embodiment 254. The compound of embodiment 1, which has the formula:




embedded image




    • wherein R5b, R5c, and R5d are each independently aryl, heteroaryl, each of which is substituted or unsubstituted, or hydrogen or halogen3





Embodiment 255. The compound of embodiment 1, wherein the compound has the formula:




embedded image




    • wherein
      • Z2 is N or CH;
      • Z3 is N or CR22;
      • Z4 is N or CR23;
      • Z5 is N or CR24; and
      • Z6 is N or CR25,

    • wherein each of R22, R23, R24, and R25 is independently, alkyl, heteroaryl, —NR14R15, —C(O)NR14R15, —NR14C(O)R15, —OR16, —SR17, —C(O)R18, —C(O)OR18, —S(O)2R19, or —CN, each of which is unsubstituted or substituted, or hydrogen or halogen.





Embodiment 256. The compound of embodiment 255, wherein Z6 is CR25, wherein R25 is —C(O)NR14R15, —NR14C(O)R15, or —NR14R15.


Embodiment 257. The compound of embodiment 255, wherein Z2 is CR21, wherein R21 is —C(O)NR14R15, —NR14C(O)R15, or —NR14R15.


Embodiment 258. The compound of embodiment 255, wherein Z3 is CR22, wherein R22 is —C(O)NR14R15, —NR14C(O)R15, or —NR14R15.


Embodiment 259. The compound of embodiment 255, wherein Z4 is CR23, wherein R23 is —C(O)NR14R15, —NR14C(O)R15, or —NR14R15.


Embodiment 260. The compound of embodiment 255, wherein Z5 is CR24, wherein R24 is —C(O)NR14R15, —NR14C(O)R15, or —NR14R15.


Embodiment 261. The compound of embodiment 255 wherein Z6 is CH.


Embodiment 262. The compound of embodiment 1, wherein the compound has the formula:




embedded image




    • wherein Z8 is N or CR27; Z13 is N or CR32; and Z14 is N or CR33, wherein each of R27, R30, R32, and R33 is independently, alkyl, heteroaryl, —NR14R15, —C(O)NR14R15, —NR14C(O)R15, —OR16, —SR17, —C(O)R18, —C(O)OR18, —S(O)2R19, or —CN, each of which is unsubstituted or substituted, or hydrogen or halogen.





Embodiment 263. The compound of embodiment 262, wherein R27, R29, R30, R32, or R33 is —C(O)NR14R15.


Embodiment 264. The compound of embodiment 262, wherein R27, R29, R30, R32, or R33 is —NR14R15.


Embodiment 265. The compound of embodiment 262, wherein R27, R29, R30, R32, or R33 is —NR14C(O)R15.


Embodiment 266. The compound of embodiment 262, wherein Z8 is CR27; Z13 is CR32; and Z14 is CR33.


Embodiment 267. The compound of embodiment 262, wherein Z8 is N; Z13 is CR32; and Z14 is CR33.


Embodiment 268. The compound of embodiment 262, wherein Z8 is CR27; Z13 is N; and Z14 is CR33.


Embodiment 269. The compound of embodiment 262, wherein Z8 is CR27; Z13 is CR32; and Z14 is N.


Embodiment 270. The compound of embodiment 262, wherein X1 is CH.


Embodiment 271. The compound of embodiment 261, wherein X1 is N.


Embodiment 272. The compound of embodiment 1, wherein the compound has the formula:




embedded image




    • wherein Z8 is N or CR27; Z13 is N or CR32; and Z14 is N or CR33, wherein each of R27, R28, R30, R32, and R33 is independently, alkyl, heteroaryl, —NR14R15, —C(O)NR14R15, —NR14C(O)R15, —OR16, —SR17, —C(O)R18, —C(O)OR18, —S(O)2R19, or —CN, each of which is unsubstituted or substituted, or hydrogen or halogen.





Embodiment 273. The compound of embodiment 272, wherein R27, R28, R29, R30, R32, or R33 is —C(O)NR14R15.


Embodiment 274. The compound of embodiment 272, wherein R27, R28, R29, R30, R32, or R33 is —NR14R15.


Embodiment 275. The compound of embodiment 272, wherein R27, R28, R29, R30, R32, or R33 is —NR14C(O)R15.


Embodiment 276. The compound of embodiment 272, wherein Z8 is N; Z13 is CR32; and Z14 is CR33.


Embodiment 277. The compound of embodiment 272, wherein Z8 is CR27; Z13 is N; and Z14 is CR33.


Embodiment 278. The compound of embodiment 272, wherein Z8 is CR27; Z13 is CR32; and Z14 is N.


Embodiment 279. The compound of embodiment 272, wherein X1 is CH.


Embodiment 280. The compound of embodiment 272, wherein X1 is N.


Embodiment 281. The compound of embodiment 1, wherein the compound has the formula:




embedded image




    • wherein Z8 is N or CR27; Z13 is N or CR32; and Z14 is N or CR33, wherein each R27, R29, R32, and R33 is independently alkyl, heteroaryl, —NR14R15, —C(O)NR14R15, —NR14C(O)R15, —OR16, —SR17, —C(O)R18, —C(O)OR18, —S(O)2R19, or —CN, each of which is unsubstituted or substituted, or hydrogen or halogen.





Embodiment 282. The compound of embodiment 281, wherein R27, R32, or R33 is —C(O)NR14R15.


Embodiment 283. The compound of embodiment 281, wherein R27, R32, or R33 is —NR14R15.


Embodiment 284. The compound of embodiment 281, wherein R27, R32, or R33 is —NR14C(O)R15.


Embodiment 285. The compound of embodiment 281, wherein Z8 is N; Z13 is CR32; and Z14 is CR33.


Embodiment 286. The compound of embodiment 281, wherein Z8 is CR27; Z13 is N; and Z14 is CR33.


Embodiment 287. The compound of embodiment 281, wherein Z8 is CR27; Z13 is CR32; and Z14 is N.


Embodiment 288. The compound of embodiment 281, wherein X1 is CH.


Embodiment 289. The compound of embodiment 281, wherein X1 is N.


Embodiment 290. The compound of embodiment 1, wherein the compound has the formula:




embedded image




    • wherein Z8 is N or CR27; Z13 is N or CR32; and Z14 is N or CR33, wherein each R27, R29, R32, and R33 is independently alkyl, heteroaryl, —NR14R15, —C(O)NR14R15, —NR14C(O)R15, —OR16, —SR17, —C(O)R18, —C(O)OR18, —S(O)2R19, or —CN, each of which is unsubstituted or substituted, or hydrogen or halogen.





Embodiment 291. The compound of embodiment 290, wherein R27, R32, or R33 is —C(O)NR14R15.


Embodiment 292. The compound of embodiment 290, wherein R27, R32, or R33 is —NR14R15.


Embodiment 293. The compound of embodiment 290, wherein R27, R32, or R33 is —NR14C(O)R15.


Embodiment 294. The compound of embodiment 290, wherein Z8 is N; Z13 is CR32; and Z14 is CR33.


Embodiment 295. The compound of embodiment 290, wherein Z8 is CR27; Z13 is N; and Z14 is CR33.


Embodiment 296. The compound of embodiment 290, wherein Z8 is CR27; Z13 is CR32; and Z14 is N.


Embodiment 297. The compound of embodiment 290, wherein X1 is CH.


Embodiment 298. The compound of embodiment 290, wherein X1 is N.


Embodiment 299. The compound of embodiment 1, wherein the compound has the formula:




embedded image




    • wherein Z8 is N or CR27; Z13 is N or CR32; and Z14 is N or CR33, wherein each R27, R29, R32, and R33 is independently alkyl, heteroaryl, —NR14R15, —C(O)NR14R15, —NR14C(O)R15, —OR16, —SR17, —C(O)R18, —C(O)OR18, —S(O)2R19, or —CN, each of which is unsubstituted or substituted, or hydrogen or halogen.





Embodiment 300. The compound of embodiment 299, wherein R27, R32, or R33 is —C(O)NR14R15.


Embodiment 301. The compound of embodiment 299, wherein R27, R32, or R33 is —NR14R15.


Embodiment 302. The compound of embodiment 299, wherein R27, R32, or R33 is —NR14C(O)R15.


Embodiment 303. The compound of embodiment 299, wherein Z8 is N; Z13 is CR32; and Z14 is CR33.


Embodiment 304. The compound of embodiment 299, wherein Z8 is CR27; Z13 is N; and Z14 is CR33.


Embodiment 305. The compound of embodiment 299, wherein Z8 is CR27; Z13 is CR32; and Z14 is N.


Embodiment 306. The compound of embodiment 299, wherein X1 is CH.


Embodiment 307. The compound of embodiment 299, wherein X1 is N.


Embodiment 308. The compound of embodiment 1, wherein the compound has the formula:




embedded image




    • wherein
      • each R16b is independently alkyl that is unsubstituted or substituted, or hydrogen or halogen;
      • R29 is alkyl, —NR14R15, —C(O)NR14R15, —NR14C(O)R15, or —OR16, each of which is unsubstituted or substituted, or hydrogen or halogen; and
      • m is 0, 1, 2, or 3.





Embodiment 309. The compound of embodiment 308, wherein R29 is —C(O)NR14R15.


Embodiment 310. The compound of embodiment 308, wherein R29 is —NR14R15.


Embodiment 311. The compound of embodiment 308, wherein R29 is —NR14C(O)R15.


Embodiment 312. The compound of embodiment 308, wherein X1 is CH.


Embodiment 313. The compound of embodiment 308, wherein X1 is N.


Embodiment 314. The compound of embodiment 1, wherein the compound has the formula:




embedded image




    • wherein
      • each R16b is independently alkyl that is unsubstituted or substituted, or hydrogen or halogen;
      • R29 is alkyl, —NR14R15, —C(O)NR14R15, —NR14C(O)R15, or —OR16, each of which is unsubstituted or substituted, or hydrogen or halogen; and
      • m is 0, 1, 2, or 3.





Embodiment 315. The compound of embodiment 314, wherein R29 is —C(O)NR14R15.


Embodiment 316. The compound of embodiment 314, wherein R29 is —NR14R15.


Embodiment 317. The compound of embodiment 314, wherein R29 is —NR14C(O)R15.


Embodiment 318. The compound of embodiment 314, wherein X1 is CH.


Embodiment 319. The compound of embodiment 314, wherein X1 is N.


Embodiment 320. The compound of embodiment 1, wherein the compound has the formula:




embedded image




    • wherein
      • each R16b is independently alkyl that is unsubstituted or substituted, or hydrogen or halogen;
      • R29 is alkyl, —NR14R15, —C(O)NR14R15, —NR14C(O)R15, or —OR16, each of which is unsubstituted or substituted, or hydrogen or halogen; and
      • m is 0, 1, 2, or 3.





Embodiment 321. The compound of embodiment 320, wherein R29 is —C(O)NR14R15.


Embodiment 322. The compound of embodiment 320, wherein R29 is —NR14R15.


Embodiment 323. The compound of embodiment 320, wherein R29 is —NR14C(O)R15.


Embodiment 324. The compound of embodiment 320, wherein X1 is CH.


Embodiment 325. The compound of embodiment 320, wherein X1 is N.


Embodiment 326. The compound of embodiment 1, which has the formula:




embedded image




    • wherein
      • each R16b is independently alkyl that is unsubstituted or substituted, or hydrogen or halogen;
      • each of R16x and R16y is independently alkyl, —NR14R15, —C(O)NR14R15, —NR14C(O)R15, or —R16, each of which is unsubstituted or substituted, or hydrogen or halogen; and
      • m is 0, 1, or 2.





Embodiment 327. The compound of embodiment 326, wherein Rx or Ry is —C(O)NR14R15.


Embodiment 328. The compound of embodiment 326, wherein Rx or Ry is —NR14R15.


Embodiment 329. The compound of embodiment 326, wherein Rx or Ry is —NR14C(O)R15.


Embodiment 330. The compound of embodiment 326, wherein X1 is CH.


Embodiment 331. The compound of embodiment 326, wherein X1 is N.


Embodiment 332. The compound of embodiment 1, which has the formula:




embedded image




    • wherein
      • each R16b is independently alkyl that is unsubstituted or substituted, or hydrogen or halogen;
      • each of R16x, R16y, and R16z is independently alkyl, —NR14R15, —C(O)NR14R15, —NR14C(O)R15, —OR16, each of which is unsubstituted or substituted, or hydrogen or halogen; and
      • m is 0, 1, or 2.





Embodiment 333. The compound of embodiment 332, wherein R16x, R16y, or R16z is —C(O)NR14R15.


Embodiment 334. The compound of embodiment 332, wherein R16x, R16y, or R16z is —NR14R15.


Embodiment 335. The compound of embodiment 332, wherein R16x, R16y, or R16z is —NR14C(O)R15.


Embodiment 336. The compound of embodiment 332, wherein X1 is CH.


Embodiment 337. The compound of embodiment 332, wherein X1 is N.


Embodiment 338. The compound of embodiment 1, which has the formula:




embedded image




    • wherein
      • R16b is alkyl that is unsubstituted or substituted, or hydrogen or halogen; and
      • each of R16x R16y, and R16z is independently alkyl, —NR14R15, —C(O)NR14R15, —NR14C(O)R15, or —OR16, each of which is unsubstituted or substituted, or hydrogen or halogen.





Embodiment 339. The compound of embodiment 338, wherein R16x, R16y, or R16z is —C(O)NR14R15.


Embodiment 340. The compound of embodiment 338, wherein R16x, R16y, or R16z is —NR14R15.


The compound of embodiment 334, wherein R16x, R16y, or R16z is —NR14C(O)R15.


Embodiment 341. The compound of embodiment 338, wherein X1 is CH.


Embodiment 342. The compound of embodiment 338, wherein X1 is N.


Embodiment 343. The compound of embodiment 1, which has the formula:




embedded image




    • wherein
      • each R16b is independently alkyl that is unsubstituted or substituted, or hydrogen or halogen;
      • each of R16x and R16y is each independently alkyl, —NR14R15, —C(O)NR14R15, —NR14C(O)R15, —OR16, each of which is unsubstituted or substituted, or hydrogen or halogen; and
      • n is independently 0, 1, 2, or 3.





Embodiment 344. The compound of embodiment 343, wherein Rx or Ry is —C(O)NR14R15.


Embodiment 345. The compound of embodiment 343, wherein Rx or Ry is —NR14R15.


Embodiment 346. The compound of embodiment 343, wherein Rx or Ry is —NR14C(O)R15.


Embodiment 347. The compound of embodiment 343, wherein X1 is CH.


Embodiment 348. The compound of embodiment 343, wherein X1 is N.


Embodiment 349. The compound of embodiment 1, which has the formula:




embedded image




    • wherein
      • each R16a is independently alkyl that is unsubstituted or substituted, or hydrogen or halogen;
      • R16x is each independently alkyl, —NR14R15, —C(O)NR14R15, —NR14C(O)R15, —OR16, each of which is unsubstituted or substituted, or hydrogen or halogen; and
      • n is independently 0, 1, 2, or 3.





Embodiment 350. The compound of embodiment 349, wherein Rx or Ry is —C(O)NR14R15.


Embodiment 351. The compound of embodiment 349, wherein Rx or Ry is —NR14R15.


Embodiment 352. The compound of embodiment 349, wherein Rx or Ry is —NR14C(O)R15.


Embodiment 353. The compound of embodiment 349, wherein X1 is CH.


Embodiment 354. The compound of embodiment 349, wherein X1 is N.


Embodiment 355. A pharmaceutical composition comprising a compound of any one of embodiments 1-355 and a pharmaceutically-acceptable excipient.


Embodiment 356. A method of inducing apoptosis in a cell, the method comprising contacting the cell with a therapeutically-effective amount of a compound of any one of embodiments 1-355.


Embodiment 357. The method of embodiment 356, wherein the compound increases an ability of a mutant p53 protein to bind DNA.


Embodiment 358. The method of embodiment 356 or 357, wherein the cell expresses a mutant p53 protein.


Embodiment 359. The method of any one of embodiments 356-358, wherein the mutant p53 protein has a mutation at amino acid R248.


Embodiment 360. The method of embodiment 359, wherein the mutant p53 protein is p53 R248Q.


Embodiment 361. The method of embodiment 359, wherein the mutant p53 protein is p53 R248W.


Embodiment 362. The method of any one of embodiments 356-361, wherein the mutant p53 protein has a mutation at amino acid R273.


Embodiment 363. The method of embodiment 362, wherein the mutant p53 protein is p53 R273C.


Embodiment 364. The method of embodiment 362, wherein the mutant p53 protein is p53 R273H.


Embodiment 365. The method of any one of embodiments 356-364, wherein the compound selectively binds the mutant p53 protein as compared to a wild type p53 protein.


Embodiment 366. The method of any one of embodiments 356-365, wherein the therapeutically-effective amount is from about 50 mg to about 3,000 mg.


Embodiment 367. The method of any one of embodiments 356-366, wherein the therapeutically-effective amount is about 600 mg.


Embodiment 368. The method of any one of embodiments 356-366, wherein the therapeutically-effective amount is about 1,200 mg.


Embodiment 369. A method of treating a condition, the method comprising administering to a subject in need thereof a therapeutically-effective amount of a compound of any one of embodiments 1-355.


Embodiment 370. The method of embodiment 369, wherein the condition is a cancer.


Embodiment 371. The method of embodiment 370, wherein the cancer is ovarian cancer.


Embodiment 372. The method of embodiment 370, wherein the cancer is breast cancer.


Embodiment 373. The method of embodiment 370, wherein the cancer is lung cancer.


Embodiment 374. The method of embodiment 370, wherein the cancer is pancreatic cancer.


Embodiment 375. The method of any one of embodiments 369-374, wherein the administering is oral.


Embodiment 376. The method of any one of embodiments 369-374, wherein the administering is intravenous.


Embodiment 377. The method of any one of embodiments 369-374, wherein the administering is subcutaneous.


Embodiment 378. The method of any one of embodiments 369-374, wherein the administering is topical.


Embodiment 379. The method of any one of embodiments 369-378, wherein the subject is human.


Embodiment 380. The method of any one of embodiments 369-379, wherein the therapeutically-effective amount is from about 50 mg to about 3,000 mg.


Embodiment 381. The method of any one of embodiments 369-380, wherein the therapeutically-effective amount is about 600 mg.


Embodiment 382. The method of any one of embodiments 369-380, wherein the therapeutically-effective amount is about 1,200 mg.


Embodiment 383. The method of any one of embodiments 369-382, wherein the compound increases a stability of a biologically-active conformation of a p53 mutant relative to a stability of the biologically-active conformation of the p53 mutant in an absence of the compound.


Embodiment 384. The method of any one of embodiments 369-383, wherein the compound selectively binds a mutant p53 protein as compared to a wild type p53 protein.


Embodiment 385. The method of any one of embodiments 369-384, wherein the compound increases an ability of a mutant p53 protein to bind DNA.


Embodiment 386. The method of any one of embodiments 369-385, wherein the mutant p53 protein has a mutation at amino acid R248.


Embodiment 387. The method of embodiment 386, wherein the mutant p53 protein is p53 R248Q.


Embodiment 388. The method of embodiment 385, wherein the mutant p53 protein is p53 R248W.


Embodiment 389. The method of any one of embodiments 369-385, wherein the mutant p53 protein has a mutation at amino acid R273.


Embodiment 390. The method of embodiment 389, wherein the mutant p53 protein is p53 R273C.


Embodiment 391. The method of embodiment 389, wherein the mutant p53 protein is p53 R273H.

Claims
  • 1. A compound of formula:
  • 2. The compound of claim 1, wherein X1 is CR7.
  • 3. The compound of claim 1, wherein X1 is N.
  • 4. The compound of claim 1, wherein R1 is H.
  • 5. The compound of claim 1, wherein R1 is —C(O)NR8R9, —OR10, or CN.
  • 6. The compound of claim 1, wherein at least one of R6a, R6b, R6c, R6d and R6e is —C(O)NR14R15, —NR14C(O)R15, or —NR14R15.
  • 7. The compound of claim 1, wherein R6b is —C(O)NR14R15.
  • 8. The compound of claim 1, wherein R6b is —NR14R15.
  • 9. The compound of claim 1, wherein R6b is —NR14C(O)R15.
  • 10. The compound of claim 1, wherein R7 is H.
  • 11. The compound of claim 1, wherein NR3R4 is
  • 12. The compound of claim 1, wherein NR3R4 is
CROSS-REFERENCE

This application claims the benefit of U.S. Provisional Application No. 63/042,252, filed Jun. 22, 2020, which is incorporated herein by reference.

US Referenced Citations (5)
Number Name Date Kind
6159677 Haraguchi Dec 2000 A
9120749 Matsuo Sep 2015 B2
20130165458 Huang et al. Jun 2013 A1
20140256717 Fernández et al. Sep 2014 A1
20230056253 Vu et al. Feb 2023 A1
Foreign Referenced Citations (16)
Number Date Country
103044446 Apr 2013 CN
108373462 Aug 2018 CN
WO-2005120509 Dec 2005 WO
WO-2007022241 Feb 2007 WO
WO-2009155121 Dec 2009 WO
WO-2012016082 Feb 2012 WO
WO-2012156756 Nov 2012 WO
WO-2016077656 May 2016 WO
WO-2017023905 Feb 2017 WO
WO-2017097182 Jun 2017 WO
WO-2019018584 Jan 2019 WO
WO-2019192954 Oct 2019 WO
WO-2019229765 Dec 2019 WO
WO-2020051235 Mar 2020 WO
WO-2020215037 Oct 2020 WO
WO-2021165346 Aug 2021 WO
Non-Patent Literature Citations (18)
Entry
Shao et al., European Journal of Medicinal Chemistry, 2014, 75, pp. 96-105. (Year: 2014).
Chemical Abstracts Registry No. 2127059-67-8, indexed in the Registry file on STN CAS Online Sep. 13, 2017. (Year: 2017).
Chemical Abstracts Registry No. 2127239-78-3, indexed in the Registry file on STN CAS Online Sep. 14, 2017. (Year: 2017).
A machine generated English translation of CN 103044446 A, 2013 (Year: 2013).
Eldar et al., Structural studies of p53 inactivation by DNA-contact mutations and its rescue by suppressor mutations via alternative protein-DNA interactions. Nucleic Acids Res. Oct. 2013;41(18):8748-59.
International Search Report and Written Opinion Issued in PCT/US2021/038249 dated Nov. 10, 2021.
PubChem SID: 128196206 Deposit Date: Dec. 4, 2011 pp. 1-7.
PubChem CID: 10376659 Deposit Date: Dec. 18, 2015 pp. 1-6.
PubChem SID: 374412121 Deposit Date: Jun. 23, 2018 pp. 1-8.
Hei, Y. et al., “Alkylsulfonamide-containing quinazoline derivatives as potent and orally bioavailable PI3Ks inhibitors,” Bioorganic & Medicinal Chemistry, 2019, vol. 27, pp. 1-11.
Kundu, B. et al., “Development of a metabolically stable topoisomerase I poison as anticancer agent,” European Journal of Medicinal Chemistry, 2020, vol. 202, 112551.
Nishimura, N. et al., “Phospshoinositide 3-Kinase (PI3K)/Mammalian Target of Rapamycin (mTOR) Dual Inhibitors: Discovery and Structure-Activity Relationships of a Series of Quinoline and Quinoxaline Derivatives,” Journal of Medicinal Chemistry, 2011, vol. 54, No. 13, pp. 4735-4751.
Xiao, H. et al., “Biologic-like In Vivo Efficacy with Small Molecule Inhibitors of TNFα Identified Using Scaffold Hopping and Structure-Based Drug Design Approaches,” Journal of Medicinal Chemistry, 2020, vol. 63, No. 23, pp. 15050-15071.
Yang, W. et al., “3D-QSAR and docking studies of 3-Pyridine heterocyclic derivatives as potent PI3K/mTOR inhibitors,” Journal of Molecular Structure, 2013, vol. 1054-1055, pp. 107-116.
Degorce et al.: Discovery of Novel 3-Quinoline Carboxamides as Potent, Selective, and Orally Bioavailable Inhibitors of Ataxia Telangiectasia Mutated (ATM) Kinase. J. Med. Chem. 59(13):6281-6292 (2016).
Hoffer et al.: Antifertility, spermicidal and ultrastructural effects of gossypol and derivatives administered orally and by intratesticular injections. Contraception. 37(3):301-331 (1988).
Venkateswarlu et al.: 4-(N-Phenyl-N′-substituted benzenesulfonyl)-6-(4-hydroxyphenyl)quinolines as inhibitors of mammalian target of rapamycin. Bioorganic & Medicinal Chemistry. 23(15):4237-4247 (2015).
Zhang et al.: Rhodium-Catalyzed Oxidative Benzannulation of N-Pivaloylanilines with Internal Alkynes through Dual C—H Bond Activation: Synthesis of Highly Substituted Naphthalenes. Chemistry. 11(22):3241-3250 (2016).
Related Publications (1)
Number Date Country
20230046427 A1 Feb 2023 US
Provisional Applications (1)
Number Date Country
63042252 Jun 2020 US