Aesthetic medicine includes all treatments resulting in enhancing a visual appearance according to a patient's criteria. Patients want to minimize all imperfections including, for example, unwanted body fat in specific body areas, improve body shape, and remove effects of natural aging. Patients require quick, non-invasive procedures that provide satisfactory results with minimal health risks.
The most common methods used for non-invasive aesthetic applications are based on application of mechanical waves, such as ultrasound or shock wave therapy, or electromagnetic waves, such as radiofrequency treatment or light treatment including laser treatment. The effect of mechanical waves on tissue is based on cavitation, vibration, and/or heat-inducing effects. The effect of applications using electromagnetic waves is based on heat production in the biological structure.
A mechanical treatment using mechanical waves and/or pressure can be used for treatment of cellulite or adipose cells. However, such mechanical treatments have several drawbacks, such as a risk of panniculitis, destruction of untargeted tissues, and/or non-homogenous results.
A thermal treatment including heating is applied to a patient for enhancing a visual appearance of the skin and body by, for example, increasing production of collagen and/or elastin, smoothing the skin, reducing cellulite, and/or removing adipose cells. However, thermal treatment has several drawbacks, such as risk of overheating a patient or even causing thermal damage of unwanted biological structures. A risk of a panniculitis and/or non-homogenous results may be a very common side effect of existing thermal treatments. Further, insufficient blood and/or lymph flow during and/or after the treatment may lead to panniculitis and other health complications after the treatment. Further, the treatment may be uncomfortable, and may be painful.
Muscle stimulation by time-varying magnetic field provides several benefits over known methods for treating biological structures, and allows for non-invasive stimulation of muscles located beneath other muscles. Further, time-varying magnetic fields may be used to provide muscle stimulation to cause muscle contraction through thick layer of adipose tissue. Electrostimulation in order to provide a muscle contraction needs to deliver an electric current from an electrode, through an adipose tissue, to a nerve and/or neuromuscular plate linked with the muscle. The adipose tissue has resistivity higher than the muscle tissue and delivery of electric current from the electrode through insulating adipose tissue to muscle tissue may be less efficient. Targeting of the electric current to an exact muscle may not be precise and stimulating muscle may be very difficult nearly impossible. Additionally, with thicker adipose tissue, electric current delivered by electrotherapy has to be higher and such high amount of electric current propagating and dissipating during long distance may be very uncomfortable for a patient. On the other hand, time-varying magnetic fields induce electric current in the muscle, neuromuscular plate and/or in the nerve, so targeting and muscle stimulation by time-varying magnetic field is easier, more precise, comfortable and more effective. Time-varying magnetic field also enable comfortable stimulation or large number of muscles and/or muscle groups and applicator may not be in direct contact with the patient's body that may also improve hygiene and other parameters of a treatment.
Combination of a radiofrequency (RF) treatment that provides heating up of patient's soft tissue and a magnetic treatment that provides stimulation of patient's muscle tissue may have outstanding synergic effect. Combined treatment may provide improved treatment, may result in shorter treatment periods, increase of patient's comfort during the treatment, enable to combine different treatment effects with a synergic result, improve patient safety and others deeply described later in this document.
To reach the best synergic effect it is preferred to target magnetic treatment providing muscle stimulation and RF treatment to one body area (e.g. same body area) wherein at least one RF electrode providing the RF treatment should be flat and/or correspond with patient's skin to ensure homogenous heating of the patient's soft tissue. To target the RF treatment and the magnetic treatment to the same body area requires to position a magnetic field generating device and an RF electrode nearby each other, e.g. with at least partial overlay of the magnetic field generating device and RF electrode. However, arranging an RF electrode and the magnetic field generating device in close proximity may be problematic, because the time-varying magnetic field generated by the magnetic field generating device may induce unwanted physical effects, such as eddy currents, skin effect and/or other physical effects in the RF electrode. Unwanted physical effects may cause significant energy loss, inefficiency of such device arrangement and also heating of the RF electrode, influencing of the device function, such as incorrect tuning of the device, inaccurate targeting of produced energies, degeneration of produced magnetic, electromagnetic fields and/or other. The RF electrode may be influenced by the magnetic field generating device and vice versa.
A device and method described in this document presents a solution for providing the RF and magnetic treatment with maximized synergic effect and also preserve safety and efficiency of the delivered magnetic and RF (electromagnetic) fields.
The invention provides a treatment device and method for providing one or more treatment effects to at least one biological structure in at least one body area. The treatment device provides a unique opportunity how to shape human or animal bodies, improve visual appearance, restore muscle functionality, increase muscle strength, change (e.g. increase) muscle volume, change (e.g. increase) muscle tonus, cause muscle fibre hypertrophy, cause muscle fibre hyperplasia, decrease number and volume of adipose cells and adipose tissue, remove cellulite and/or other. The treatment device and the method may use the application of a radiofrequency (RF) treatment and a magnetic treatment to cause heating of at least one target biological structure within the body area and cause muscle stimulation including muscle contraction, within the proximate or same body area. The treatment device may use an RF electrode as a treatment energy source to produce RF energy (which may be referred as RF field) to provide RF treatment, and a magnetic field generating device as a treatment energy source for generating a time-varying magnetic field to provide magnetic treatment.
In order to enhance efficiency and safety of the treatment, to minimize energy loss and unwanted physical effect induced in at least one RF electrode and/or magnetic field generating device, the device may use the one or more segmented RF electrodes, wherein the segmented RF electrode means RF electrode with e.g. one or more apertures, cutouts and/or protrusions to minimize the effects of a nearby time-varying magnetic field produced by the magnetic field generating device. Aperture may be an opening in the body of the RF electrode. The cutout may be an opening in the body of the RF electrode along the border of the RF electrode. Openings in the body of the RF electrode may be defined by view from floor projection, which shows a view of the RF electrode from above. The apertures, cutouts and/or areas outside of protrusions may be filed by air, dielectric and/or other electrically insulating material. The apertures, cutouts and/or protrusions of the RF electrode may minimize induction of eddy currents in the RF electrode, minimize energy loss, and inhibit overheating of the treatment device. Further, the apertures, cutouts and/or protrusions may minimize the influence of the magnetic treatment on the produced RF treatment. The proposed design of the RF electrode enables the same applicator to include a magnetic field generating device and the RF electrode with at least partial overlay, according to the applicator's floor projection, while enabling targeting of RF treatment and magnetic treatment to the same area of the patient's body with the parameters described herein. Incorporation of an RF electrode and a magnetic field generating device in one applicator enables enhanced treatment targeting and positive treatment results with minimal negative effects mentioned above.
Also mutual insulation of at least one RF circuit and at least one magnet circuit prevent interaction between electric and/or electromagnetic signals.
The magnetic field generating device in combination with an energy storage device enables production of a magnetic field with an intensity (which may be magnetic flux density) which evokes a muscle contraction. Energy storage device may be used to store electrical energy enabling accumulation of an electric field having a voltage in a range from 500 V to 15 kV. The energy storage device may supply the magnetic field generating device with the stored electrical energy in an impulse of several microseconds to several milliseconds.
The method of treatment enables heating of at least one body area where is also evoked a muscle contraction that minimizes muscle and/or ligament injury, such as tearing or inflammation. Heating of a skin, a contracted muscle, a contracting muscle, a relaxed muscle, adipose tissue, adipose tissue, and/or adjacent biological structure of the treated body area may shift the threshold when a patient may consider treatment to be uncomfortable.
Therefore, heating may allow a higher amount of electromagnetic energy, (e.g. RF and/or magnetic field) to be delivered to the patient's body in order to provide more muscle work through muscle contractions and subsequent relaxation. Another benefit of application of the RF treatment and the magnetic treatment in the same body area is that the muscle work (provided e.g. by repetitive muscle contractions and relaxations) accelerates blood and lymph flow in the targeted area and so improves dissipation of thermal energy created by the RF treatment. Application of the RF treatment and the magnetic treatment also improves homogeneity of biological structure heating that prevents creation of hot spots, edge effects and/or other undesirable effects. The method of treatment causing muscle stimulation and heating to the same body area may result in hyperacidity of extracellular matrix that leads to apoptosis or necrosis of the adipose tissue. The RF treatment may provide selective heating of adipose tissue that leads to at least one of apoptosis, necrosis, decrease of volume of adipose cells, and cellulite removal.
The accompanying drawings, which are incorporated herein and form a part of the specification, illustrate the present disclosure and, together with the description, further serve to explain the principles thereof and to enable a person skilled in the pertinent art to make and use the same.
The present treatment device and method of use provide new physiotherapy and/or aesthetic treatment by combination of RF treatment and treatment providing muscle stimulation targeted to various treatment effects, such as rejuvenate, heal and/or provide remodeling at least part of at least one biological structure of patient's tissue in at least one body area.
The biological structure may be any tissue in a human and/or animal body which may have of identical function, structure and/or composition. The biological structure may include or be at least part of any type of tissue like: connective tissue (e.g. tendons, ligaments, collagen, elastin fibres), adipose tissue (e.g. adipose cells of subcutaneous adipose tissue and/or visceral adipose tissue), bones, dermis and/or other tissue, such as at least one neuron, neuromuscular plate (neuromuscular junction), muscle cell, one or more individual muscles, muscle group, at least part of a muscle fibre, volume of extracellular matrix, endocrine gland, neural tissue (e.g. peripheral neural tissue, neuron, neuroglia, neuromuscular plate) and/or joint or part of joint. For the purpose of this application, the biological structure may be called target biological structure.
A treatment effect provided to at least part of at least one target biological structure may include muscle contraction (including supramaximal contractions and/or tetanic contractions), muscle twitch, muscle relaxation and heating of biological structure. Also, the treatment effect may include e.g. remodelling of the biological structure, reducing a number and/or a volume of adipose cells by apoptosis and/or necrosis, muscle strengthening, muscle volume increase, causing of a muscle fibre hypertrophy, muscle fibre hyperplasia, restoration of muscle functionality, myosatellite cells proliferation and/or differentiation into muscle cells, improvement of muscle shape, improving of muscle endurance, muscle definition, muscle relaxation, muscle volume decrease, restructuring of collagen fibre, neocollagenesis, elastogenesis, collagen treatment, improving of blood and lymph flow, accelerate of at least part of at least one target biological structure and/or other functions or benefits. During treatment of body area by the treatment device, more than one treatment effect may be provided and variable treatment effects may be combined.
The treatment effect provided to target biological structure may results in body shaping, improving contour of the body, body toning, muscle toning, muscle shaping, body shaping, breast lifting, buttock lifting, buttock rounding and/or buttock firming. Further, providing a treatment effect may result in body rejuvenation, such as wrinkle reduction, skin rejuvenation, skin tightening, unification of skin colour, reduction of sagging flesh, lip enhancement, cellulite removing, reduction of stretch marks and/or removing of scars. The treatment effect may also lead to accelerating of healing process, anti-edematic effect and/or other physiotherapeutic and treatment result.
The treatment device may provide one or more types of treatment energy wherein treatment energy may include magnetic field (also referred as magnetic energy) and RF field (also referred as RF energy) and/or magnetic field (also referred as magnetic energy). The magnetic field is provided during magnetic treatment. The RF field provided during RF treatment may include electrical component of RF field and magnetic component of RF field. The electrical component of RF field may be referred as RF wave or RF waves. The RF electrode may generate RF field, RF waves and/or other components of RF field.
The magnetic field and/or RF field may be characterized by intensity. In case of magnetic field, the intensity may include magnetic flux density or amplitude of magnetic flux density. In case of RF field, the intensity may include energy flux density of the RF field or RF waves.
A body area may include at least part of patient's body including at least a muscle or a muscle group covered by other soft tissue structure like adipose tissue, skin and/or other. The body area may be treated by the treatment device. The body area may be body part, such as a buttock, saddlebag, love handle, abdominal area, hip, leg, calf, thigh, arm, torso, shoulder, knee, neck, limb, bra fat, face or chin and/or any other tissue. For the purpose of the description the term “body area” may be interchangeable with the term “body region”.
Skin tissue is composed of three basic elements: epidermis, dermis and hypodermis so called subcutis. The outer and also the thinnest layer of skin is the epidermis. The dermis consists of collagen, elastic tissue and reticular fibres. The hypodermis is the lowest layer of the skin and contains hair follicle roots, lymphatic vessels, collagen tissue, nerves and also fat forming a subcutaneous white adipose tissue (SWAT). Adipose tissue may refer to at least one lipid rich cell, e.g. adipose cell like adipocyte. The adipose cells create lobules which are bounded by connective tissue or fibrous septa (retinaculum cutis).
Another part of adipose tissue, so called visceral adipose tissue, is located in the peritoneal cavity and forms visceral white adipose tissue (VWAT) located between parietal peritoneum and visceral peritoneum, closely below muscle fibres adjoining the hypodermis layer.
A muscle may include at least part of a muscle fibre, whole muscle, muscle group, neuromuscular plate, peripheral nerve and/or nerve innervating of at least one muscle.
Deep muscle may refer to a muscle that is at least partially covered by superficial muscles and/or to a muscle covered by a thick layer of other tissue, such as adipose tissue wherein the thickness of the covering layer may be at least 4, 5, 7, 10 or more centimetres up to 15 cm thick.
Individual muscles may be abdominal muscles including rectus abdominalis, obliquus abdominalis, transversus abdominis, and/or quadratus lumborum. Individual muscles may be muscle of the buttocks including gluteus maximus, gluteus medius and/or gluteus minimus. Individual muscles may be muscles of lower limb including quadriceps femoris, Sartorius, gracilis, biceps femori, adductor magnus longus/brevis, tibialis anterior, extensor digitorum longus, extensor hallucis longus, triceps surae, gastroenemiis lateralis/medialis, soleus, flexor hallucis longus, flexor digitorum longus, extensor digitorum brevis, extensor hallucis brevis, adductor hallucis, abductor halluces, ab/adductor digiti minimi, abductor digiti minimi and/or interossei plantares). Ligament may be Cooper's ligament of breast.
One example may be application of the treatment device and method to patient's abdomen that may provide (or where the treatment may eventually result in) treatment effect such as reducing a number and volume of adipose cells, muscle strengthening, fat removal, restructuring of collagen fibres, accelerate of neocollagenesis and elastogenesis, muscle strengthening, improving of muscle functionality, muscle endurance and muscle shape. These treatment effects may cause circumferential reduction of the abdominal area, removing of saggy belly and/or firming of abdominal area, cellulite reduction, scar reduction and also improving of the body posture by strengthening of the abdominal muscles that may also improve contour of the body, body look and patient's health.
One other example may be application of the treatment device and method to body area comprising buttock that may provide (or where the treatment may eventually result in) treatment effect such as reducing a number and volume of adipose cells, restructuring of collagen fibres, accelerate of neocollagenesis and elastogenesis, muscle strengthening, muscle toning and muscle shaping. These treatment effects may cause waist or buttock circumferential reduction, buttock lifting, buttock rounding, buttock firming and/or cellulite reduction.
Another example may be application of the treatment device and method to body area comprising thighs that may provide (or where the treatment may eventually result in) reduction of a number and volume of adipose cells, muscle strengthening, muscle shaping and muscle toning. The application of the treatment device and method to body area comprising thigh may cause circumferential reduction of the thigh, removing of saggy belly and cellulite reduction.
Still another example may be application of the treatment device and method to body area comprising arm that may provide (or where the treatment may eventually result in) reduction of a number and volume of adipose cells, muscle strengthening, muscle shaping and muscle toning. The application of the treatment device and method to body area comprising arm may cause circumferential reduction of the abdomen, removing of saggy belly and cellulite reduction.
The one or more treatment effects provided to one or more target biological structures may be based on selective targeting of a RF field into one or more biological structures and providing heating together with application of magnetic field causing muscle stimulation (including muscle contraction). The RF treatment may cause selective heating of one or more biological structures, polarizing of extracellular matrix and/or change of cell membrane potential in a patient's body. The magnetic field may be time-varying magnetic field or static magnetic field. When the time-varying magnetic field is used, the magnetic treatment may be referred as time-varying magnetic treatment. The magnetic treatment may cause muscle contraction, muscle relaxation, cell membrane polarization, eddy currents induction and/or other treatment effects caused by generating time-varying magnetic field in at least part of one or more target biological structures. The time-varying magnetic field may induce electric current in biological structure, The induced electric current may lead to muscle contraction. The muscle contractions may be repetitive. Muscle contraction provided by magnetic field may include supramaximal contraction, tetanic contraction and/or incomplete tetanic contraction. In addition, magnetic field may provide muscle twitches.
The treatment effect provided by using of the treatment device and by application of magnetic treatment and RF treatment may be combined. For example, reduction of a number and volume of adipose cells may be achieved together with muscle strengthening, muscle shaping and/or muscle toning during actual treatment or during a time (e.g. three or six months) after treatment. Furthermore, the effect provided by using of the treatment device by application of magnetic treatment and RF treatment may be cumulative. For example, the muscle toning may be achieved by combined reduction of a number and volume of adipose cells may be achieved together with muscle strengthening.
The method of treatment may provide the treatment effect to at least one of target biological structure by thermal treatment provided by RF field in combination with applied magnetic treatment. The treatment effect to a target biological structure may be provided by heating at least one biological structure and evoking at least a partial muscle contraction or muscle contraction of a muscle by magnetic treatment.
The method of treatment may enable heating of the body area where the muscle contraction by the magnetic field is evoked. The heating may minimize muscle injury and/or ligament injury including tearing or inflammation. Heating of a contracting muscle and/or adjacent biological structure may also shift the threshold of uncomfortable treatment. Therefore, heating caused by the RF field may allow a higher amount of magnetic energy to be delivered into patient's biological structure to do more muscle work. Heating of the muscle and/or adjacent biological structure may also improve the quality of and/or level of muscle contraction. Because of heating provided by RF field, more muscle fibres and/or longer part of the muscle fibre may be able to contract during the magnetic treatment. Heating may also improves penetration of muscle stimuli generated by the magnetic treatment. Additionally, when at least partial muscle contraction or muscle contraction is repeatedly evoked, the patient's threshold of uncomfortable heating may also be shifted higher. Such shifting of the threshold may allow more RF energy to be delivered to the patient's body.
Repeated muscle contraction followed by muscle relaxation in combination with heating may suppress the uncomfortable feeling caused by muscle stimulation (e.g. muscle contraction). Muscle stimulation in combination with heating may provide better regeneration after treatment and/or better prevention of panniculitis and other tissue injury.
Repeated muscle contraction followed by muscle relaxation in combination with RF heating (according to preliminary testing) may have positive results in treatment and/or suppressing symptoms of diabetes. The repetitive muscle contraction induced by provided magnetic field together with heating of the biological structure by RF field may also improve the outcome of diabetes symptoms or positively influence results of diabetes symptoms drug treatment. Success of treatment of diabetes symptoms may be caused by penetration of high amount of radiofrequency energy deep to patient's abdomen area. Such penetration may be caused by simultaneous application of magnet treatment that may cause suppressing of patient's uncomfortable feelings related to high amount of RF energy flux density and increased temperature in the tissue. Also, magnet treatment may cause polarization and depolarization of patient's tissue that may also increase RF energy penetration to patient's body. The RF treatment and/or magnetic treatment may influence glucose metabolism or help with weight loss that may suppress diabetes symptoms. It is a believe that weight loss and exercise of patients with diabetes symptoms may help suppress diabetes symptoms.
Application of RF treatment by RF field combined with magnetic treatment by magnetic field may also positively influence proliferation and differentiation of myosatellite cells into muscle cells. Tests suggest that magnet treatment including time periods with different duration, repetition rate and magnetic flux density (e.g. pulses or trains as defined below) may provide a stimulation needed to start proliferation and differentiation of myosatellite cells.
Testing also suggest that method of treatment providing magnetic field including at least two or at least three successive time periods with different duration, repetition rate and magnetic flux density (e.g. pulses, bursts or trains as defined below) may provide a shock to the muscle. As a consequence, the regeneration process resulting in proliferation and differentiation of myosatellite cells may be started and further accelerated by delivered RF field. Proliferation and differentiation of myosatellite cells may result in muscle strengthening, restoration of muscle functionality, increasing muscle volume and improvement of muscle shape, body tone or muscle tone.
The method of application of at least partial muscle stimulation or muscle contraction together with heating to the same body area may result in hyperacidity of the extracellular matrix. Hyperacidity may lead to apoptosis of adipose tissue and acceleration of weight loss and body volume loss. Hyperacidity may be caused by release of fatty acids into the extracellular matrix, wherein the release of fatty acids may be caused by concentrated high intensity muscle work. Concentrated high intensity muscle work may be provided by high number of repetitive muscle contractions causes by application of time-varying magnetic field generated by described magnetic field generating device and treatment device.
The treatment effect of the RF treatment may be enhanced by magnetic treatment, such as by reducing or eliminating the risk of panniculitis or local skin inflammation since any clustering of the treated adipocytes may be prevented by the improved metabolism. The improved blood and/or lymph flow may contribute to removing adipocytes. The removal of adipocytes may be promoted by a higher number of cells phagocytosing the adipocytes as well. Synergic effects of magnetic treatment and radiofrequency (RF) treatment significantly improves metabolism. Therefore, the possibility of adverse event occurrence is limited and treatment results induced by the present invention are reached in shorter time period.
The treatment device and the method of a treatment may provide treatment of the same patient's body area, wherein the magnetic treatment and the RF treatment may be targeted into at least part of one or more biological structures. One or more volumes of patient's body tissue affected by targeted RF and/or magnetic treatment may be in proximity. The volume of at least part of at least one or more affected biological structures of patient's body tissue may be defined as an affected tissue volume wherein the treatment effect provided by treatment device and/or method of treatment described above takes place. The treatment effect may be caused by repeated muscle contraction (provided e.g. magnetic treatment) changing of a tissue temperature (provided e.g. RF treatment), and/or by at least partial polarization and acceleration of molecules in the patient's tissue (preferably provided by RF treatment and magnetic treatment). Changing of a tissue temperature may include e.g. an increasing tissue temperature of at least 3° C. or 4° C. or 5° C. or 6° C. or 7° C. or 10° C. with reference to normal tissue temperature. Further, changing of a tissue temperature may include an increase or decrease of tissue temperature in the range of 1° C. to 50° C. or 2° C. to 30° C. or 2° C. to 25° C. as compared to the untreated tissue located in the same or different body area. Changed tissue temperature may be interpreted as change of temperature in any volume or any area of the biological tissue.
Proximity of affected tissue volumes by at least one RF treatment and/or by at least one magnetic treatment has meaning of a distance between two affected tissue volumes. At least two proximate affected tissue volumes may have at least partial overlay wherein 2% to 15% or 5% to 30% or 2% to 100% or 30% to 60% or 80% to 100% or 40% to 85% of smaller affected tissue volume may be overlaid by larger affected tissue volume. Also the distance between volumes of affected tissue may be in a range of 0.01 cm to 10 cm or in the range of 0.01 cm to 5 cm, 0.01 cm to 3 cm, or 0.01 cm to 1 cm. Alternatively, the overlay in the ranges mentioned above may apply for two or more affected tissue volumes having an identical volume without any differentiation between smaller or larger tissue volumes.
Plurality of treatment energy sources 108 may be coupled to or communicate with at least one treatment cluster 107. Control system 104 may be coupled to and communicate with each treatment cluster.
Shown parts of treatment device in
Input interface 103 may receive input from a user. Input interface may include human machine interface (HMI). The HMI may include one or more displays, such as a liquid crystal display (LCD), a light emitting diode (LED) display, an organic LED (OLED) display, which may also include a touch-screen display. HMI may include one or more controlling elements for adjustment or controlling treatment device. Controlling element may be at least one button, lever, dial, switch, knob, slide control, pointer, touchpad and/or keyboard. The input interface may communicate or be coupled to control system or power network.
The user may be an operator (e.g. medical doctor, technician, nurse) or patient himself, however the treatment device may be operated by patient only. In most cases, the treatment device may be operated by the user having an appropriate training. The user may be any person influencing treatment parameters before or during the treatment in most cases with exception of the patient.
Control system 104 may include a master unit or one or more control units. Control system may be an integral part of the input interface 103. Control system 104 may be controlled through the input interface 103. Control system may include one or more controlling elements for adjustment or controlling any part or electrical elements of treatment device. Master unit is a part of treatment device (e.g. applicator and/or main unit) or electrical element of circuitry that may be selected by the user and/or treatment device in order to provide master-slave communication including high priority instructions to other parts of the treatment device. For example, master unit may be a control unit or part of input interface providing high priority instructions to other parts of the treatment device. The treatment device may include a chain of master-slave communications. For example, treatment cluster 107 may include one control unit providing instructions for electrical elements of the treatment cluster 107, while the control unit of treatment cluster 107 is slave to master unit. Control system 104 may be coupled or communicate with input interface 103, one or all power source 105, power network 106, and/or with one or all treatment clusters present in the treatment device. The control system 104 may include one or more processors (e.g. a microprocessors) or process control blocks (PCBs).
The power source 105 may provide electrical energy including electrical signal to one or more treatment clusters. The power source may include module converting AC voltage to DC voltage.
The power network 106 may represent a plug. The power network may represent a connection to power grid. However, the power network may represent a battery for operation of the treatment device without need of a power grid. The power network may provide electrical energy needed to operation to whole treatment device and/or its parts. As shown on exemplary diagrams in
The treatment cluster 107 may include one or more electrical elements related to generation of respective treatment energy. For example, the treatment cluster for magnetic treatment (referred as HIFEM) may include e.g. an energy storage element and switching device. For another example, the treatment cluster for RF treatment (referred as RF cluster) may include e.g. power amplifier and/or filter.
The treatment energy source 108 may include a specific source of treatment energy. In case of magnetic treatment, the treatment energy source of magnetic field may be a magnetic field generating device e.g. a magnetic coil. In case of RF treatment, the treatment energy source of RF energy (including RF waves) may be RF electrode.
The treatment device may include one or more treatment circuits. One treatment circuit may include a power source, electrical elements of one treatment cluster and one respective treatment energy source. In case of magnetic treatment, the magnetic circuit may include a power source, HIFEM cluster and magnetic field generating device. In case of RF treatment, the RF circuit may include a power source, RF cluster and magnetic field generating device. The electromagnetic signal generated and/or transmitted within a treatment circuit for RF treatment may be referred as RF signal. The wiring connecting respective electrical elements of the one treatment cluster may also be included in the respective cluster. Each of the treatment clusters in
The one or more treatment circuits and/or their parts may be independently controlled or regulated by any part of control system 104. For example, the speed of operation of HIFEM cluster of one treatment circuit may be regulated independently on the operation of HIFEM cluster of another treatment circuit. In another example, the amount of energy flux density of delivered by operation of RF electrode of one treatment circuit may be set independently from the operation of RF electrode of another treatment circuit.
The treatment device may include a remote control 13. Remote control 13 may include a discomfort button for safety purposes so that when a patient feels any discomfort during the treatment, the user may press the discomfort button. When the discomfort button is pressed, remote control 13 may send a signal to a main unit and stop treatment. Also, the remote control 13 may inform the user through a human machine interface (HMI). In order to stop treatment during discomfort, the operation of the discomfort button may override the instructions from master unit. Alternatively, the discomfort button may be coupled to or be part of the main unit 11.
The main unit 11 may be coupled or connected to one or more additional treatment devices 14 that may be powered by the main unit 11. However, the treatment device including main unit 11 may be paired by software with the one or more additional treatment devices 14. Also, one or more additional treatment devices 14 may be also powered by their own source or sources of energy. The communication device 15, additional treatment device 14, remote control 13 and at least one applicator 12 may each communicate with the main unit 11. Communication may include sending and/or receiving information. Communication may be provided by wire and/or wirelessly, such as by internet network, local network, RF waves, acoustic waves, optical waves, 3G, 4G, 5G, GSM, HUB switch, LTE network, GSM network, Bluetooth and/or other communication methods or protocols.
The additional treatment device 14 may be any device that is able to provide at least one type of treatment energy (e.g.: RF field, magnetic field, ultrasound, light, time-varied mechanical pressure, shock wave, or electric current) to a patient's body to cause treatment effect to at least one target biological structure. The additional treatment device 14 may include at least one electrical element generating treatment energy for at least one treatment e.g. magnet, radiofrequency, light, ultrasound, heating, cooling, massage, plasma and/or electrotherapy. The additional treatment device 14 may be able to provide at least one treatment without instructions from the main unit 11. The additional treatment device 14 may communicate with the main unit 11, communication device 15 and/or other additional treatment devices 14. The additional treatment devices 14 may be any other device of the same or other company wherein the device may be able to provide specific one or more type of treatment energy. The additional treatment device 14 may be an extension of the treatment device, wherein the additional treatment device 14 may provide treatment energy with parameters defined by the HMI of the main unit 11.
The communication device 15 may be connected by wire and/or wirelessly to the main unit 11. The communication device 15 may be a computer, such as a laptop or desktop computer, or a mobile electronic device, such as a smartphone, or an electronic tablet. The communication device may send and/or receive information linked with a treatment, functionality of the treatment device, and/or other information. The additional treatment device 14 and/or the communication device 15 may communicate directly with the main unit 11 or indirectly with the main unit 11 through one or more additional or communication devices. In order to provide communication the communication device may include receiver, transmitter and a control unit to process sent and/or received information.
Sent and/or received information from or to an individual part of the treatment device may include data from communication between communication device 15 and the main unit 11, data from communication between applicator 12 and the main unit 11, data from communication between additional treatment device 14 and the main unit 11 and/or data from communication between the remote control 13 and the main unit 11. Sent and/or received information may be stored in a black box, cloud storage space and/or other storage devices. The black box may be part of the main unit 11 or any other part of the treatment device. Other storage device may be USB, other memory device and/or also communication device with internal memory. At least part of sent and/or received information may be also displayed by HMI. Sent and/or received information may be displayed, evaluated and/or changed by the user through the HMI and/or automatically by control system. One type of the sent and/or received information may be predetermined or current value or selection of one or more treatment parameters or patient information. Patient information may include e.g. gender of a patient, age and/or body type of the patient.
Sent and/or received information may also inform external authorities, like a support centre, e.g. a service and/or a sale department, that are also subset of communication devices. Sent and/or received information to external authorities may include information about the condition of the treatment device, history of one or more provided treatments, operational history of the treatment device, software update information, wear out information, durability of the RF electrode, durability of the magnetic field generating device, treatment warnings, treatment credit/billing information, such as information of number of paid treatments or credits, and/or other operation and usage information.
One possible type of sent and/or received information may be recognition of connection of one or more applicators 12, the remote control 13, additional treatment devices 14, and/or communication devices 15, According to information the treatment device may manually or automatically recognize type of connected additional treatment device 14 and/or applicator 12. Automatic recognition may be provided by control system. Based on information about connection of one or more applicators 12, connection of additional treatment devices 14 and/or communication devices 15, the treatment device may provide actualization of HMI, show notification about the connection to applicators and/or possible optimization of new treatment options. Possible optimization of new treatment options may include e.g. adjusting of at least one treatment parameter, implementing additional treatment energy source, change of parameters of new treatment energy source and/or other. The treatment device (e.g. control system) may automatically adjust or offer adjustment of treatment parameters based on newly connected applicator 12 and/or additional treatment devices 14. Recognition of connected applicator 12, additional treatment device 14 and/or communication device 15 may be based on by specific connectors (e.g., a specific pin connector). Also, the recognition of connection may be provided by a specific physical characteristic like an impedance of connected part or by a specific signal provided by the applicator or its connected part to the main unit 11. Connection between individual parts of the treatment device such as the main unit 11, the applicator 12, the remote control 13, the additional treatment device 14 and/or the communication device 15 may be provided by wire and/or wirelessly (e.g. by RFID tag, RF, Bluetooth, and/or light electromagnetic pulses). The applicator 12 may by connected to the main unit 11 by a wire to be powered sufficiently. Alternatively, the application may be connected through a wireless connection in order to communicate with the main unit 11 and/or with communication device 15. Connected applicator 12, additional treatment device 14 and/or communication device 15 may be recognized by software recognition, specific binary ID, manual recognition of the parts selected from the list implemented in the treatment device, and/or by a pairing application.
The connector side in the main unit 11 may include a unit able to read and/or recognize information included in the connector side of the applicator and/or connector side of the additional treatment device. Based on read and/or recognized information, the applicator and/or the additional treatment device may be recognized by main unit 11. The connector side of the main unit 11 may serve as a first side connector of the connection, wherein the connection of the applicator or additional treatment device may serve as a second side connector of the connection. Sending of the information, receiving of the information and/or recognition of the second side connector by the first side connector may be based on binary information received by conductive contact between these two connector sides, by optical reading and/or by recognition provided by the first side connector. Optical recognition may be based on, for example, reading of specific QR codes, barcodes and the like for the specific applicators 12.
The first side connector located in the main unit 11 may include a unit able to read/recognize binary information implemented in the second side connector of a cable from the applicator 12 and/or additional treatment device 14. Implemented information in the second side connector may be stored in an SD card. Based on such implemented information any part of the treatment device may be recognized by the main unit 11.
Communication between individual parts of the treatment device (including e.g. the main unit 11, the remote control, one or more applicators, one or more additional treatment devices and/or communication devices) may be based on peer-to-peer (referred as P2P) and/or master-slave communication. During P2P communication, the individual parts of the treatment device have the same priority of its commands and/or may communicate directly between each other. P2P communication may be used during initial recognition of connected individual parts of the treatment device. P2P communication may be used between some parts of the treatment device during a treatment, such as between communication devices.
Master-slave communication may be used between individual parts of the treatment device for at least a short time during, before and/or after each treatment of individual patient. During master-slave communication, one part of the treatment device may provide commands with the highest priority. The individual part of the treatment device, e.g. as the main unit 11 may provide commands with the highest priority and is referred as master unit. The treatment device may include at least one master-slave communication between an individual electrical element, such as a power source and or one or more control units, where the one or more control units act as master.
The master unit may be selected by a user before, after and/or during the treatment. The user may select master unit from available individual parts or electrical elements of the treatment device. Therefore, the user may select the main unit 11, the applicator 12, the remote control 13, the additional treatment device 14 or the communication device 15 as the master unit. The master unit may be a control unit in selected present in individual part of the treatment device e.g. a control unit in the main unit 11. The user may select the master unit in order to facilitate adjusting of treatment parameters. The user may also select the communication device 15 as a master unit, wherein the communication device selected as master device may provide control of more than one treatment device. The main unit 11 may include a control unit as a master unit that monitor and evaluate at least one parameter of the treatment, such as patient's temperature, voltage on individual elements of the treatment device and/or other, that enable to provide safe treatment even if the connection between. Also, the master unit may be independent electrical element outside of human machine interface. The master unit may be controlled by user through human machine interface.
Alternatively, the master unit may be selected automatically based on a predetermined priority value of the connected parts of the treatment device. Selected master unit may remain unchanged and already selected part of the treatment device may act as the master unit during the whole treatment. However, the selection of master unit may be changed during the treatment based on command priority and/or choice of the user. The master unit may be also determined according to manufacturing configuration or being dependent on factory reset. For example, the remote control 13 may provide command with the highest priority to stop the treatment when patient feels discomfort and the treatment will be stopped without relevance of which individual part of the treatment device was set as the master unit and set parameters of the treatment.
Modifying electrical signal in controlled manner may include e.g. providing and/or controlling impedance adjustment of provided RF treatment based on impedance matching measured across patient's tissue and/or RF electrodes. Actively modified electrical signal may be interpreted such that electrical signal may have different parameters, such as frequency, symmetrisation, amplitude, voltage, phase, intensity, etc. The parameters of electrical signal may be based on requirements of treatment including the type of the patient, treatment parameters. In addition, the parameters of electrical signal may be modified on feedback information, such as measured standing wave ratio of RF energy, temperature of tissue, temperature of RF electrode, temperature of the inside of the applicator, temperature of the surface of the applicator, electric current and voltage of individual elements of the treatment device and/or other.
The diagram of
The security 203 in
The communication interface 204 may include hardware and/or software components that enables to translate electric, electromagnetic, infrared and/or other signal into readable form to enable communication between at least two parts of the treatment device and/or other communicating sides or medium. The communication interface 204 may provide communication and/or coding of the information and/or data. The communication interface 204 may be, for example, a modem or GSM module providing communication between the treatment device and online network or server. The communication interface 204 may be part of the master unit 202, the therapy generator 201, and/or other part of the treatment device.
The communication medium 205 may be medium transferring communication data. The communication medium 205 may be used in communication between the treatment device and the user 208, the service 207 and/or the sale 206. The communication medium 205 may be a wire, SD card, flash memory, coaxial wire, any conductive connection, server, some kind of network on principle, such as RF waves, acoustic waves, optic waves, GSM, 3G, 4G, 5G, HUB switch, Bluetooth, Wi-Fi and/or other medium which may include one or more servers.
Communication data/information may be redirected to the individual parts of the treatment device and/or to individual users or services, such as the user 208, the service 207 and/or the sale 206. Communication data/information may be redirected by the master unit 202, the communication medium 205 and/or the therapy generator 201. For example, server may filter data for the user 208 and filter other communication information that will be redirecting to the service 207, control unit and/or other part of the treatment device.
The element called “user 208” of
The service 207 in
The sale 206 in
The treatment device may include a black box for storing a data regarding the treatment history, operational history, communication between individual parts of the treatment device, data from or for a billing and renting system, operational errors, and/or other information. The data may be accessible to the sale 206, to the service 207 and/or to the user 208 via the communication medium (e.g., a storage cloud and/or server). The treatment device may include a billing and renting system to manage charges for using of the treatment device and/or respective additional treatment devices. The billing and renting system may send such information to a provider in order to prepare the billing invoice. Data from the black box may be downloaded by verified authorized personnel, such as a service technician, accountant and/or other person with administrator access. Verification of the authorized person may be provided by specific key, password, software code of several bits and/or by specific interconnecting cable.
The billing and renting system may be based on credits subtracted from a user account. Credits may be predefined by the provider of the treatment device, e.g. a producer of the treatment device. Credits may be recharged during the time when the treatment device is in operation and/or may be recharged to online account linked with one or more treatment devices of the user and/or provider. Credits may be subtracted according to the selected treatment protocol or body area. Credit value for individual one or more treatments and/or part of the treatment may be displayed to the user before treatment starts, during the treatment and/or after the treatment. If the credit in the user's account runs out, the treatment device may not enable any further treatment until credits are recharged. Credits may be used as a currency changed for individual treatment wherein different treatment may cost a different amount of credits based on the type of the treatment, the duration of the treatment, the number of used applicators, and/or other factors. Credits may be also used for renting or buying individual part of the treatment device, whole treatment device, hardware or software extensions of the treatment device and/or other consumables and spare parts belonging to the treatment device. Interface where the credit system may be recharged may be part of the treatment device, HMI and/or online accessible through website interface.
One or more software extension (e.g. software applications) may be linked with the treatment device and method of treatment. One or more software extensions may be downloaded to any communication device, such as a smartphone, tablet, computer and/or other electronic device. The software extension may communicate with the main unit and/or other part of the treatment device. The communication device with installed software extension may be used for displaying or adjusting of one or more treatment parameters or information associated to the treatment. Such displayable treatment parameters and information associated to the treatment may include e.g. time progress of the treatment, measured size of treated body area before and/or after individual treatments, schematic illustrations of applied bursts or trains, remaining time of the treatment, heart rate of the patient, temperature of patient's body e.g. temperature of the body surface, provided types of treatment, type of the treatment protocol, comparison of patient's body parameters against previous treatment (e.g., body fat percentage) and/or actual treatment effect of the treatment (e.g. muscle contraction or muscle relaxation). The software extension may be also provided to the patient in order to inform them about the schedule of treatments, mapping progress between individual treatments, percentile of treatment results compared to other people and/or recommendations of behaviour before and/or after the treatment. Recommendations of behaviour may include e.g. recommendation what volume of water should patient drink during the day, how should patient's diet look like, what type and volume of exercise should patient provide before and/or after treatment and/or other information that may improve results of treatment.
Communication between individual elements of the communication diagram, such as the therapy generator 201, the master unit 202, the security 203, the communication interface 204, the communication medium 205, the user 208, the service 207 and/or the sale 206 may be bidirectional or multidirectional.
Connection between the user 208, the service 207, the sale 206, communication medium 205 and/or connection between the therapy generator 201 and the master unit 202 may be secured by the security 203 to provide safe communication and eliminate errors. The security 203 may be located between the master unit 202 and the communication interface 204 and/or between the communication medium 205 and the communication interface 204.
As shown on
As shown in
The ventilator grid 62 of the treatment device may be designed as one piece and/or may be divided into multiple ventilator grids 62 to provide heat dissipation. The ventilator grid 62 may be facing toward a person operating the main unit 11, facing the floor and not being visible and/or ventilator grid 62 may be on the sides of the main unit 11. The floor-facing location of the ventilator grid may be used to minimize disturbing noise for the patient, because processes like cooling of the main unit 11 and/or electrical elements powered by electric energy may produce noise. Surface area of all ventilator grids 62 on the surface of the main unit 11 may be in a range from 100 cm2 to 15000 cm2, or from 200 cm2 to 1000 cm2, or from 300 cm2 to 800 cm2.
Manipulation with the main unit 11 may be provided by rotating wheels 68 on the bottom of the main unit 11 and/or by the main unit handle 70. The logo area 71 of the company providing the treatment device may be located below the main unit handle 70 and/or anywhere on the curved cover 67 and HMI 61.
As shown in
Applicator connectors 65a and 65b facing the patient may be closer to patient's body than applicators connected to side facing the operator (e.g. doctor or technician). Accordingly the length of the connecting tube 814 connecting the applicator with the main unit 11 may be minimized. Manipulation with the applicator and/or plurality of the applicators connected by shorter connecting tubes 814 may be easier than with the applicator connected with the longer connecting tube 814. The front side of the main unit 11 may have no corners and/or angles and may include at least partially elliptical and/or circular curvature. The curvature may have a radius of curvature in a range of 20 cm to 150 cm, 30 cm to 100 cm, 30 cm to 70 cm, or 40 to 60 cm, An angle of the main unit 11 front side curvature may be in a range of 30° to 200°, or of 50° to 180°, or of 90° to 180°. The angle of the curvature may be defined with the same principle as it is defined an angle 30 of a section 26 in
The main unit 11 may include one or more an applicator holder e.g. 63a and 63b. Alternatively, one or more applicator holders may be coupled to the main unit 11. Each applicator holder 63a and 63b may have specific design for different types of the applicator. The applicator holder 63a and 63b may each hold a single applicator 12a or 12b. Each applicator holder 63a, 63b may have several functions. For example, the applicator holders 63a and 63b may be used for pre-heating or pre-cooling of at least part of the applicator. Further, the applicator holders 63a and 63b may include another HMI and be used for displaying information about selected treatment, actual value and/or predetermined value of one or more treatment parameters. Also, the applicator holder 63a and/or 63b may provide indication whether an applicator is ready to use. Furthermore, the applicator holder 63a and/or 63b may indicate a current value temperature of at least part of the applicator. The indication may be provided by color flashing or vibration. The applicator holder 63a and/or 63b may be used to set actual value and/or predetermined value of one or more treatment parameters and/or applicator parameters, such as a temperature of applicator's part contacting the patient.
The main unit 11 may include device control 64 for switching on and off the main unit 11, manual setting of power input parameters and/or other functions. The applicator connectors 65a and 65b may be used for transfer of electrical and/or electromagnetic signal from the main unit 11 and applicators. The applicator connectors 65a and 65b may be used for connecting of one or more applicators (via the connecting tube 814), the communication device, the additional treatment device and/or memory storage devices such as USB, SSD disc, diagnostic devices, and/or other memory storage devices known in the state of art. The applicator connectors 65 (e.g. 65a and/or 65b) for connecting of one, two or more applicators may be located in the main unit 11 or on the side of the main unit 11. The length of coaxial cables may be linked with a frequency of transmitted electrical signal. In order to provide easier manipulation with one or more applicators 12a and/or 12b, the length of connection from the main unit 11 to e.g. applicator 12a (and therefore connecting tube 814) should be as long as possible. However, length of at least one coaxial cable between electrical elements in the main unit 11 may be linked with a frequency of transmitted electrical signal (e.g. RF signal) sent to at least treatment energy source (e.g. RF electrode to provide RF energy). Therefore the length of at least one coaxial cable inside the main unit (e.g. between a power source and the applicator connector 65a and/or 65b) may be as short as possible. The length of coaxial cable located in the main unit 11 may be in a range of 3 cm to 40 cm, or 7 cm to 30 cm, or 10 cm to 20 cm. In order to optimize manipulation with one or more applicators 12a or 12b connected to the main unit 11, the applicator connectors 65a and 65b may be located on the curved front side of the main unit 11.
The HMI 61 may include a touch screen display showing actual value and/or predetermined value of one or more treatment parameters. The touch screen may provide option to choose the displayed treatment parameters and/or adjust them. The HMI 61 may be divided into two display sections 61a and selection section 61b. The display section 61a may display actual value and/or predetermined value of one or more treatment parameters and other information for the user. The selection section 61b of the HMI 61 may be used for selection of treatment parameters and/or other adjustment of the treatment. HMI may be included in, coupled to or be part of one or more applicators 12, main unit 11, an additional treatment device 14 and/or in other one or more communication devices 15.
The HMI may be included in the main unit 11. The HMI may be fixed in a horizontal orientation on the main unit 11 or the HMI 61 may be oriented or tilted between 0° to 90° degrees with respect to a floor or other horizontal support surface. The angle between the HMI 61 plane and a floor may be adjusted by at least one joint or may be rotated around at least one Cartesian coordinates. The HMI 61 may be in form of detachable HMI, e.g. a tablet. The HMI 61 may be telescopically and/or rotationally adjusted according to one two or three Cartesian coordinates by a holder that may adjust distance of HMI 61 from the main unit 11 and/or orientation of the HMI 61 with regard to the main unit 11 and the user. The holder may include at least one, two or three implemented joint members.
One HMI 61 may be used for more than one type of the treatment device provided by the provider. The HMI software interface may be part of the main unit software or part of the software included in one or more additional treatment devices and/or communication devices. The software interface may be downloaded and/or actualized by connection with the communication device, the additional treatment device, flash memory device, the remote connection with sales, the service and/or the internet.
The HMI 61 may include one or more sliders which may have several functions. For example, the slider 703 may be used as a navigator for selecting which page of the interface is being used, such as the list 702, a therapy icon 704, or a records 707. Also, the slider 703 may be used to indicate how much time is remaining to the end of the treatment.
The therapy icon 704 may represent the interface illustrated in
Intensity signs 709 may be as illustrated in the form of percentile, number, power and/or in another format. The intensity signs 709 may be located adjacent to an icon that may adjust intensity of the treatment energy source. The intensity signs 709 may be located under, over and/or in an icon (e.g. as a number in an intensity bar 710) and/or as another visualization that may adjust the intensity of the treatment energy source. Each intensity bar 710 representing one treatment energy source of provided energy (e.g. RF field or magnetic field) may have its own intensity signs 709. The treatment device may include multiple applicators 714, for example, a first applicator A and a second applicator B may be connected to the main unit of the treatment device. In this way, applicators A and B may be applied to different muscles in the same muscle group or to pair muscles, such as a left and right buttock, left and right sides of an abdomen, a left and right thigh, among other paired muscles or cooperating muscles. Number of connected applicators and/or additional treatment devices providing the treatment energy may be lower or higher than two.
As shown in
The intensity of each RF field and/or magnetic field may be independently regulated e.g. by scrolling of individual magnetic intensity scroller 719 and/or RF intensity scroller 711 through intensity bars 710. One or more scrollers or intensity bars may be moved independently or may be moved together with another scroller or intensity bar in order to regulate plurality of magnetic fields, plurality of RF fields together and/or plurality of RF and magnetic fields provided by the one applicator together. Also, one or more scrollers or intensity bars may be controlled independently or may be moved together with another scroller or intensity bar in order to regulated plurality of magnetic fields, plurality of RF fields together and/or plurality of RF and magnetic fields provided by two applicators together. One or more intensity bars 710 may be distinguished by a color and may be adjusted by intensity scroller 719 or 711 and/or by an intensity buttons 720. The intensity buttons 720 may change (e.g. increase or decrease) RF field and/or magnetic field intensity by a fixed increment, such as 1% or 2% or 5% or 10% or in a range from 1% to 10% or in a range from 1% to 5% of maximal possible field intensity. Intensity of the magnetic field and/or the RF field may be adjusted independently for each treatment energy source. Also, intensity of the magnetic field and/or RF field may be adjusted by selection and/or connection of one or more applicators, additional treatment devices and/or treatment energy sources.
The operation of one or more RF electrodes and/or magnetic field generating devices may be synchronized and may be controlled by one, two or more intensity scrollers 719 and/or intensity buttons 720. The treatment may be started by a button start 713 that may be automatically (e.g. after starting the treatment) changed into a button pause. The treatment may be restarted and/or stopped by button stop 716 during the treatment. The interface may also show an indicator of a discomfort button 717 that may be activated by patient through a remote control when the treatment is uncomfortable. When the discomfort button 717 is activated treatment may be automatically and immediately interrupted (e.g. paused or stopped). When the discomfort button 717 is activated the treatment device may provide an human perceptible signal including an audible alert, including a sound signal. Further, the human perceptible signal may include a visual alert, including e.g. a flashing color. Based on the discomfort of the patient, the user may adjust e.g. the treatment parameters or treatment protocol, attachment or coupling of the applicator. The interface may also include a software power switch 715 to switch the treatment device on or off.
As shown in
The treatment device may include one or more applicators. The treatment device may include two, three, four, five or more applicators. Each applicator may include at least one, two or more different treatment energy sources, such as one or more RF electrodes providing the RF treatment and one or more magnetic field generating devices providing the magnetic treatment. For example, first applicator may include one RF electrode and one magnetic field generating device, while the second applicator may include another RF electrode and another magnetic field generating device. One applicator may be coupled to the main unit by one connecting tube. The connecting tubes of different applicator may be interconnected or separated for each applicator. Alternatively a plurality of applicators may be coupled to the main unit by one common connecting tube. At least one treatment parameter of at least one applicator may be changed independently from the other one or more applicators and/or additional treatment device.
One or more applicators, additional treatment devices and/or communication devices may be mechanically connected with the main unit by one or more wires and/or by the fluid conduits. One or more wires and/or fluid conduits may be located and lead through the connecting tube. The one or more wires coupled between main unit and the applicator may be used for transfer of electric signal (representing e.g. RF signal) to RF electrode positioned in an applicator in order to generate RF energy. The one or more wires may be used for providing electric current to magnetic field generating device positioned in the applicator in order to generate impulses of the magnetic field. Same wire and/or different wires coupling the applicator and the main unit 11 may be used for communication between the main unit 11 and the applicator 12 and/or for collecting feedback information. Feedback application may include e.g. measured signal parameters and/or impedimetric characteristics of the wire before and/or during the treatment. The fluid conduit between the main unit 11 and the applicator 12 may guide liquid, oil, water, vapors, gas and/or other temperature regulating cooling fluid.
One or more applicators may be coupled to patient's body and/or body area by one or more straps, one or more belts, or by creating vacuum under the applicator. Also, applicator may be coupled to the body area by a supporting matrix or by an adhesive layer located on at least part of the applicator's surface and contacting the patient's body or clothing. The applicator may be coupled to the body area by pushing the applicator to patient's body area or clothing by an adjustable mechanical positioning arm wherein the applicator may be detachably coupled to positioning arm including at least one, two or more joints. The belt may be at least partially elastic and may create a closed loop, such as by hook and loop fasteners (by Velcro), buckles, studs, and/or other fastening mechanisms may be used for adjusting a length. The belt may be coupled to body area and may include a fastening mechanism for coupling the applicator to the belt and/or patient's skin or clothing. Such fastening mechanism may be for example, a belt with pockets for the applicator. Coupling the applicator to the body area may include attaching or positioning of the applicator to the proximity or to the contact with the body area. One or more applicators may be coupled to the body area before or during the application of one or more types of treatment, (e.g. RF treatment or magnetic treatment). Also, the applicator may be coupled to the body area, skin or clothing by a cover from soft material, which may be folded around the applicator and/or the part of the body area. Furthermore, the applicator may be covered in soft material cover providing other coupling points for attachment of belt, folding soft material or any other coupling option mentioned herein.
The belt may be a length adjustable belt which may be at least partially flexible. One or more belts may couple or fix and/or attach one, two or more applicators to the patient's body or body area. The belt may be coupled to one applicator 800 or one belt may couple two or more applicators to the patient's body. When the plurality of applicators (e.g. two, three or more) are used, one applicator may be coupled to the body area of the patient by one belt while another applicator may be coupled to the body area by different belt. Alternatively, a plurality of applicators (e.g. two, three or more) may be coupled to the body area of the patient by one same belt. At least one applicator coupled by the belt may be fixed statically with regard to patient's body for at least part of the treatment. The at least one applicator that is coupled by the belt to patient's body may be repositioned once or more times during the treatment either manually by the operator or automatically to ensure optimal treatment effect and treatment comfort for the patient.
Coupling the applicator and/or additional treatment device to a patient's body may include placing the applicator in proximity of the patient's body and/or body area. In case of proximate coupling, the shortest distance between the applicator and the patient's skin may be in a range of 0.01 cm to 10 cm, or 0.01 cm to 5 cm, or 0.01 to 2 cm, or 0.01 to 1 cm, or 0.01 to 5 mm, or 0.01 to 2 mm. However, the applicator may be also placed in direct contact with the patient's skin. In case of direct contact, there may be no meaningful distance between the application and the patient's skin. In case of proximate or direct contact, the intervening material may be positioned between the applicator and patient's skin or clothing or body area. The intervening material may be an air gap, bolus, supporting matrix, part of the belt, textile, other clothing, gel, liquid absorbing material or metal.
As shown in
The applicator may be designed as shown in exemplary
One or more RF electrodes may be located in the applicator 800 between the magnetic field generating device and patient's body area. The RF electrode may be shaped to at least partially match a curvature of the first side portion 801, a second side portion 802, and/or a curvature of the patient's body area. The magnetic field generating device may at least partially match a curvature of the first side portion 801, the second side portion 802 and/or a curvature of the patient's body area. The RF electrode and/or the magnetic field generating device may be curved in order to focus and/or provide better targeting of the RF treatment and/or magnetic treatment. The first side portion 801 may be configured to maintain the position of the limb within the first side portion 801 during the treatment. The first side portion 801 may provide a stable position and/or equilibrium for the treated body area. The position of the limb of the patient may be maintained in the first side portion 801 even though the limb may move by the muscle contractions. The lateral movement and/or rotation of a limb may be limited due to the first side portion 801 and/or belt 817 in such way that the limb may be in stable position. The rotational movement with respect to the applicator 800 may be limited by coupling the applicator 800 to the body area, at least part the treated body limb by a belt. In addition, when part of the arm is treated by magnetic and/or RF treatment, at least part of the limb may be also attached to patient's trunk to minimize movement of the limb.
The second side portion 802 may be located on the opposite side of the applicator 800 with respect to the first side portion 801. The second side portion 802 may be substantially planar, or the second side portion 802 may be at least partially concave and/or convex. The applicator 800 may be coupled to the patient by a positioning mechanism, such as a belt 817, as it is illustrated in the
As shown in in
The applicator 800 may further include one or more temperature sensors 816 as shown for example in
The second side portion 802 and/or the first side portion 801 may be heated and/or cooled. Heating of the second side portion 802 and/or the first side portion 801 may be used e.g. at the beginning of the treatment to reach treatment temperature sooner. Treatment temperature may include temperature of body area and/or biological structure increased by application of RF waves which may be appropriate for application of magnetic field. Cooling or heating by portions of the applicator may be used for maintaining constant temperature on the patient's skin. Also, cooling or heating by portions of the applicator may be used to achieve higher treatment temperatures in the patient's biological structure deeper than 0.5 cm under the patient's skin. Cooling a part of an applicator that is in contact with the patient (e.g., the second side portion 802 and/or the first side portion 801 of the applicator) may be used for minimizing a patient's sweating. The patient's skin may be cooled by cooling fluid (e.g. air) flowing and/or blowing from the applicator and/or other part of the treatment device. Cooling of the patient's skin may be provided by thermal diffusion between a cooled part of the applicator contacting patient's skin and the patient's skin. The cooled part of the applicator may be cooled by cooling fluid flowing in the applicator and/or by Peltier element using Peltier's effect.
Patient's sweating may be uncomfortable for the patient and may adversely affect feedback information collection, contact with the applicator and patient's skin, and/or lead to lower adhesion of the applicator to the patient's skin. To prevent sweating of the patient's skin, cooling of contact applicator's area (e.g. first side portion 801 and/or second side portion 802) may be used. The second side portion 802 and/or the first side portion 801 may include grooves 819 that may be supplied by cooling fluid through applicator's apertures 820 where liquid and/or gas, (e.g. air, oil or water) may flow as illustrated in
The patient may lay in a supine position or sit on a patient support such as a bed, a couch or a chair. An arm of the patient may be set on the first side portion 801 of the applicator 800. The first side portion 801 may be in direct contact with the patient and RF treatment in combination with magnetic treatment may be applied. Also, a strap or belt may be guided through the concavity 815 to attach the applicator to the patient's body.
The first side portion 801 may have at least partial elliptical or circular shape according to a vertical cross section, wherein the total curvature 25 according to
One or more applicators and/or additional treatment devices may include a bolus 32, as shown for example in
The bolus 32 may also be a fluid absorbing material, such as a foam material, textile material, or gel material to provide better conductivity of the environment between the applicator and a patient's body. Better conductivity of the contact part of the applicator may be useful for better adjusting of the RF signal of the applied RF treatment to the patient's body and/or for better collecting of feedback information. The bolus 32 may mediate conductive contact between the RF electrode and the patient's skin or body area. Also, the bolus 32 may serve as a non-conductive or dielectric material modifying energy transfer to the patient's body, providing cooling of the patient's skin, removing sweat from the patient's skin and/or providing heating, such as capacitive heating of the patient's body. Fluid absorbing material serving as a bolus 32 may also provide better heat conductivity therefore temperature of the biological structure and/or the applicator may be faster, easier and more precisely regulated. The bolus 32 may also include additional RF electrode to provide the RF treatment.
As mentioned previously, the treatment device may include one, two, three, four, six or more applicators and/or additional treatment devices providing the magnetic treatment and/or the RF treatment. Each applicator, additional treatment device and/or treatment energy source (e.g. magnetic field generating device and/or the RF electrode) may have its own treatment circuit for energy transfer, wherein each treatment circuit may be independently regulated in each parameter of provided treatment energy by control system. Each applicator, treatment device, or treatment energy source may be adjusted and provide treatment independently and/or two or more applicators, treatment energy sources, and/or additional treatment devices may be adjusted as a group, and may be adjusted simultaneously, synchronously and/or may cooperate between each other.
When the treatment device includes two or more applicators, they may be coupled to contact or to be proximate to different parts of the body. In one example the first applicator may be coupled to contact or to be proximate to left buttock while the second applicator may be coupled to contact or to be proximate to right buttock. In another example, the first applicator may be coupled to contact or to be proximate to left side of abdominal area while the second applicator may be coupled to contact or to be proximate to right side of abdominal area. In still another example the first applicator may be coupled to contact or to be proximate to left thigh while the second applicator may be coupled to contact or to be proximate to right thigh. In still another example the first applicator may be coupled to contact or to be proximate to left calf while the second applicator may be coupled to contact or to be proximate to right calf. The plurality of applicators may be beneficial for treatment of cooperating muscles and/or pair muscles.
One or more applicators and/or the additional treatment devices may include the magnetic field generating device (e.g. a magnetic coil) generating magnetic field for a magnetic treatment. The magnetic field generating device may generate the RF field for the RF treatment. The essence is that the produced frequencies of the electromagnetic field has far different values. The magnetic field generating device may produce a dominant magnetic field vector for the magnetic treatment during lower frequencies of produced electromagnetic field. However, the magnetic field generating device may produce a dominant electromagnetic field vector for the magnetic treatment during higher frequencies of electromagnetic field which may be used for the RF treatment. The magnetic field generating device in the high frequency electromagnetic field domain may provide RF field similar to the RF field provided by the RF electrode. When one magnetic field generating device may be used for providing both the RF treatment and the magnetic treatment, the difference between frequencies for the RF treatment and the magnetic treatment production may be in a range from 500 kHz to 5 GHz, or from 500 kHz to 2.5 GHz or from 400 kHz to 800 kHz or from 2 GHz to 2.5 GHz. Also, when one magnetic field generating device is used for providing both the RF treatment and the magnetic treatment, the frequencies for the RF treatment may correspond with frequencies in the range of 100 kHz to 3 GHz, 400 kHz to 900 MHz, or 500 kHz to 3 GHz.
One or more applicators and/or additional treatment devices may include one or more RF electrodes and one or more magnetic field generating devices, wherein the RF electrodes have different characteristics, structure and/or design than the magnetic field generating device. The RF electrode may operate as a unipolar electrode, monopolar electrode, bipolar electrode, and/or as a multipolar electrode. One or more RF electrodes may be used for capacitive and/or inductive heating of biological structure or body area.
The applicator may include two bipolar RF electrodes. The bipolar electrodes may transfer the RF field between two bipolar RF electrodes located in at least one applicator. Bipolar electrodes may increase safety and targeting of provided RF treatment, as compared to electrodes of monopolar type. Bipolar electrodes may provide electromagnetic field passing through a patient's tissue located around and between RF electrodes, wherein due to impedance matching, it is possible to prevent creation of standing electromagnetic waves in the patient's tissue and prevent unwanted thermal injury of non-targeted tissue. Also, the distance between bipolar electrodes influences the depth of RF wave penetration allowing for enhanced targeting of the RF treatment.
The applicator may include a monopolar RF electrode or more monopolar electrodes. Monopolar electrodes may transfer radiofrequency energy between an active electrode and a passive electrode, wherein the active electrode may be part of the applicator and the passive electrode having larger surface area may be located at least 5 cm, 10 cm, or 20 cm from the applicator. A grounded electrode may be used as the passive electrode. The grounded electrode may be on the opposite side of the patient's body than the applicator is attached.
The magnetic treatment may be provided by the magnetic field generating device may be made from a conductive material, such as a metal, including for example copper. The magnetic field generating device may be formed as a coil of different size and shape. The magnetic field generating device may be a coil of multiple windings wherein one loop of the coil may include one or multiple wires. An individual loop of one or more wires may be insulated from the other turns or loops of one or more wires. Regarding the magnetic coil, each loop of wiring may be called turn. Further, individual wires in one turn or loop may be insulated from each other. The shape of the magnetic field generating device may be optimized with regard to the applicator size and design. The coil may be wound in order to match at least part of the applicator's shape according to the applicator's floor projection. The coil winding may be at least partially circular, oval and/or may have any other shapes that match to a shape of the applicator or a portion thereof. The loops of winding may be stacked on top of each other, may be arranged side by side, or stacking of the winding may be combined side by side and on top of other windings. The coil may be flat.
The area A1 is associated with dimensions r and d. The area A1 may include no windings of the coil, and may be filled by air, oil, polymeric material. The area A1 may represent a magnetic core wherein the magnetic core may be an air core. Alternatively, the magnetic core may be a permeable material having high field saturation, such as a solid core from soft iron, iron alloys, laminated silicon steel, silicon alloys, vitreous metal, permendur, permalloy, powdered metals or ceramics and/or other materials.
The area A2 is associated with dimensions of outer radius R and outer diameter D.
The dimension of inner radius r may be in the range from 1% to 90% of the dimension of outer radius R, or in the range from 2% to 80% or from 3% to 60% or from 4% to 50%, from 8% to 30%, or from 20% to 40% or from 30% to 50% of the dimension of outer radius R. The dimensions of inner radius r and outer radius R may be used for achieving a convenient shape of the generated magnetic field.
The outer diameter D of the magnetic device may be in a range of 30 mm to 250 mm, or of 40 mm to 150 mm, or of 50 mm to 135 mm or of 90 mm to 125 mm, and the dimension of inner radius r may be in a range of 1% to 70% or 1% to 50% or 30% to 50%, 5% to 25%, or 8% to 16% of the dimension of outer radius R. For example, the dimension of outer radius R may be 50 mm and the dimension r may be 5 mm. The area A1 may be omitted and the magnetic field generating device may include only area A2 with the coil winding.
As discussed, the area A2 may include a plurality of windings. One winding may include one or more wires. The windings may be tightly arranged, and one winding may be touching the adjacent winding to provide magnetic field with high magnetic flux density. The winding area A2 may be in the range from 4 cm2 to 790 cm2, from 15 cm2 to 600 cm2, from 45 cm2 to 450 cm2 or from 80 cm2 to 300 cm2 or from 80 cm2 to 150 cm2 or from 80 cm2 to 130 cm2.
Alternatively, the windings may include a gap between each winding. The gap may be between 0.01% to 50%, or 0.1% to 25%, or 0.1% to 10%, or 0.1% to 5%, or 0.001% to 1% of the dimension R-r. Such construction may facilitate cooling and insulation of individual winding of the magnetic field generating device. Further, the shape of the generated magnetic field may be modified by such construction of the magnetic field generating device.
The wire of the coil winding may have a different cross-section area. The cross-sectional area of the winding wire may be larger at the centre of the winding where the coil winding radius is smaller. Such cross-section area of the wire may be from 2% to 50%, from 5% to 30%, or from 10% to 20% larger than the cross-sectional area of the same wire measured on the outer winding turn of the magnetic field generating device, wherein the coil winding radius is larger. The cross-sectional area of the winding wire of the magnetic field generating device may be larger on the outer coil winding turn of the magnetic field generating device where the coil winding radius is larger. Such cross-sectional area of the wire may be from 2% to 50%, from 5% to 30%, or from 10% to 20% larger than the cross-section area of the same wire measured on the inner turn of the magnetic field generating device wherein the coil winding radius is smaller.
The principles and parameters described above may be used in order to modify the shape of the provided magnetic field to the patient's body, provide a more homogenous and/or targeted muscle stimulation (e.g. muscle contraction), reduce expansion of the magnetic field generating device during the treatment and/or increase durability of the magnetic field generating device. The magnetic field generating device may expand and shrink during generation of time-varying magnetic field and this could cause damage of the magnetic field generating device. Different cross-sectional areas of used conductive material (e.g. wire, metallic stripe or creating winding of the magnetic field generating device) may minimize the destructive effect of expanding and shrinking the magnetic field generating device.
As discussed above, the cross-sectional area of the used conductive material, (e.g. wire, metallic stripe and/or creating winding of the magnetic field generating device) may vary between individual loops of wiring in a range of 2% to 50%, or of 5% to 30%, or of 10% to 20% in order to improve focusation of the provided magnetic treatment, to increase durability of the magnetic field generating device, to minimize heating of the magnetic field generating device, and/or for other reasons.
Further, stacking of the wiring and/or isolating and/or dilatation layer between individual conductive windings of the magnetic field generating device may not be constant and may be different based on the wire cross-sectional area, radius of the winding, required shape of provided magnetic field and/or other parameters.
A thickness 901 of the magnetic field generating device 900 shown on
A total surface of the magnetic field generating device surface according to the applicator's floor projection, i.e. area A1+A2, may be in a range from 5 cm2 to 800 cm2, 10 cm2 to 400 cm2, 20 cm2 to 300 cm2 or 50 cm2 to 150 cm2.
The ratio of the area A1 and winding area A2 may be in a range of 0.01 to 0.8, or 0.02 to 0.5 or 0.1 to 0.3 according to the applicator's floor projection. The ratio between the winding area A2 of the magnetic field generating device and the area of RF electrodes located in same applicator according to the applicator's floor projection may be in a range of 0.01 to 4, or 0.5 to 3, or 0.5 to 2, 0.3 to 1, or 0.2 to 0.5, or 0.6 to 1.7, or 0.8 to 1.5, or 0.9 to 1.2.
One or more RF electrodes 101, 102 may be located inside of the applicator 800, as illustrated in the
As shown in
One or more RF electrodes positioned on the one applicator and/or more the applicators 800 may be placed in contact with the patient. Also, one or more RF electrodes and/or applicators may be separated from the patient by an air gap, bolus, dielectric material, insulating material, gel, and/or other material.
One or more RF electrodes 101, 102 and/or magnetic field generating devices 900 within one applicator may be spaced from each other by an air gap, by material of a printed circuit board, insulator, cooling fluid, and/or other material. The distance between a conductive part of the magnetic field generating device and the nearest RF electrode may be in a range of 0.1 mm to 100 mm or 0.5 mm to 50 mm or 1 mm to 50 mm or 2 mm to 30 mm or 0.5 mm to 15 mm or 0.5 mm to 5 mm. Spacing between the magnetic field generating device and the RF electrode may be also provided in the form of an insulating barrier that separate a RF circuit from a magnetic circuit and prevents affecting one treatment circuit or treatment energy source by other treatment circuit or other treatment energy source. The magnetic field generating device positioned closer to patient's body may be able to stimulate and provide the treatment effect to at least part of at least one target biological structure more effectively and deeply than the magnetic field generating device that is in a larger distance from the patient's body.
The magnetic field generating device and/or one or more RF electrodes included in or on the applicator may be cooled during the treatment. Cooling of the magnetic field generating device and/or one or more RF electrodes may be provided by an element based on the Peltier effect and/or by flowing of a cooling fluid, such as air, water, oil and/or a fluid within the applicator or in proximity of the applicator. The cooling fluid may be flowed or guided around one or more magnetic field generating devices, one or more RF electrodes, between the magnetic field generating device and at least part of at least one RF electrode. Cooling fluid may flow only on the top and/or bottom of the magnetic field generating device. Cooling fluid may be a fluid, such as gas, oil, water and/or liquid. The cooling fluid may be delivered to the applicator from the main unit where the cooling fluid may be tempered. The cooling fluid may be delivered to applicator and to the proximity of magnetic field generating device and/or RF electrode. The cooling fluid may be delivered to the applicator by connecting tube coupled to the main unit. The connecting tube may include the fluid conduit, which may serve as path for the cooling fluid between applicator and the main unit.
The main unit may include one or more cooling tanks where the cooling fluid may be stored and/or cooled. Each cooling tank may include one or more pumps, wherein one pump may provide flow of the cooling fluid to one applicator. Alternatively, one pump may provide flow of the cooling fluid to plurality of applicators (e.g. two applicators). Further, the main unit may include one cooling tank storing and/or cooling the cooling fluid for one respective applicator or plurality of applicators. For example, when the treatment device includes two applicators, the main unit may include one cooling tank providing the cooling fluid for both applicators. In another example, when the treatment device includes two applicators, the main unit may include two cooling tanks providing cooling of the cooling fluid. Each cooling tank may provide cooling of the cooling fluid to one particular applicator either synchronously or independently. Cooling tank or fluid conduit may include a temperature sensor for measuring temperature of cooling fluid.
The fluid conduit may be a plastic tube. The plastic tube may lead from cooling tank to the applicator and then back to cooling tank. When the treatment device includes e.g. two applicators, the fluid conduit may lead from the cooling tank to one applicator and then back to cooling tank while the second fluid conduit may lead from the same or different cooling tank to second applicator and then back to the cooling tank. However, fluid conduit may lead from cooling tank to first applicator, then lead to second applicator and finally to cooling tank.
When the RF electrode is positioned in the proximity of magnetic field generating device, the time-varying magnetic field generated by the magnetic field generating device may induce unwanted physical effects in the RF electrode. Unwanted physical effects induced by time-varying magnetic field may include e.g. induction of eddy currents, overheating of RF electrode, skin effect, and/or causing other electric and/or electromagnetic effects like a phase shift in the RF electrode. Such unwanted physical effects may lead to treatment device malfunction, energy loss, decreased treatment effect, increased energy consumption, overheating of at least applicator's part, e.g., RF electrode, collecting false feedback information, malfunctioning of signal adjustment provided to the RF electrode and/or other unwanted effects.
The described invention provides options, methods or designs how to prevent and/or minimize one or more unwanted physical effects induced in the RF electrode by the magnetic field. The same options methods or designs may help to minimize shielding of magnetic field by RF electrode. One option may include arrangement of the RF electrode in minimal or no overlay with the magnetic field generating device according to the floor projection of the applicator. Another option may include an RF electrode of special design as described below. Still another option may include reducing of thickness of the RF electrode. Still another option may include providing the RF electrode from a conductive material that reduces induction of unwanted physical effects and heating of the RF electrode. One or more RF electrode providing RF energy during the treatment by described treatment device may use at least one of these options, at least two options and or combination of these options and their characterization as described below.
One option of minimizing or eliminating unwanted physical effects induced in the RF electrode by a magnetic field may include arrangement of the RF electrode in minimal or no overlay with the magnetic field generating device according to the floor projection of the applicator.
One or more temperature sensors 816a may be located between bipolar RF electrodes 101a, 101b as illustrated in
A characteristic shape of the RF electrode may create inhomogeneous temperature distribution of the heat during the treatment. It may be useful to place the temperature sensor 816b such that it is not located between RF bipolar electrodes 101a, 101b in such way that the temperature sensor is not encircled by bipolar electrodes 101a, 101b. The temperature sensor may be placed inside applicator or on the surface of the applicator. Also, the temperature sensor 816c may be located under the RF electrode. The material of the first side portion 801 and/or the second side portion 802 covering at least part of the temperature sensor 816 (e.g. 816a, 816b or 816c) and contacting the patient's body may be manufactured from the same material as the first side portion 801 and/or the second side portion 802. However, the material of the first side portion 801 or second side portion 802 covering the temperature sensor 816 may be from a different material than the remainder of the first side portion 801 or second side portion 802, such as a material with a higher thermal conductivity, e.g. ceramic, titanium, aluminum, or other metallic material or alloy. The temperature sensor 816 may be a thermistor. The temperature sensor 816 (e.g. 816a, 816b or 816c) may be fixed or coupled to the first side portion 801 and/or second side portion 802 by thermal conductive material, such as a thermal epoxy layer, with good thermal conductivity. Wire connection between the temperature sensor 816 and rest of the treatment device may be represented by one, two or more conductive wires with diameter in a range of 0.05 mm to 3 mm, or of 0.01 mm to 1 mm, or of 0.1 mm to 0.5 mm. The wire connection including a conductive wire with described diameter may be advantageous because of minimizing of thermal transfer between the wire and the temperature sensor 816. The wire connection to the temperature sensor 816 may have thermal conductivity in a range of 5 W·m−1·K−1 to 320 W·m−1·K−1, or 6 W·m−1·K−1 to 230 W·m−1·K−1, or 6 W·m−1·K−1 to 160 W·m−1·K−1, or 20 W·m−1·K−1 to 110 W·m−1·K−1, or 45 W·m−1·K−1 to 100 W·m−1·K−1, or 50 W·m−1·K−1 to 95 W·m−1·K−1. A material of wire connection may be e.g.: nickel, monel, platinum, osmium, niobium, potassium, steel, germanium, aluminium, cobalt, magnesium copper and/or their alloys. At least part of the wire connection connected to the temperature sensor 816 may be thermally insulated by sheathing or shielding, such as by rubber tubing. The temperature sensor 816 may be an optical temperature sensor, such as an infrared IR thermosensor, which may be part of the applicator and/or in the main unit. During treatment, the optical temperature sensor may be located in contact with the patient's skin or in a range of 0.1 cm to 3 cm, or 0.2 cm to 2 cm from the patient's skin. The optical temperature sensor may collect information from the patient's skin through the optical cable.
One or more RF electrodes located with at least partial overlay under the magnetic field generating device may provide synergic effect of the magnetic treatment and the RF treatment. Stronger or more intensive treatment result may be provided with RF electrodes located with at least partial overlay under the magnetic field generating device. The generated RF field and the magnetic field from treatment energy sources in such configuration may be targeted to the same body area and/or target biological structures. This may result in better heating of stimulated muscles and adjacent tissues, better suppressing of uncomfortable feeling caused by muscle stimulation (e.g. muscle contraction), better regeneration after treatment and/or better prevention of panniculitis and other tissue injury.
Another option of minimizing or elimination of unwanted physical effects induced in the RF electrode by magnetic field may include special design of the RF electrode.
It is a part of the invention, that the unwanted physical effects induced by magnetic field in RF electrode positioned in proximity or at least partial overlay with the magnetic field generating device may be further minimized or eliminated by using a segmented RF electrode. The segmented RF electrode may comprise apertures, cutouts and/or protrusions. The areas of apertures and/or cutouts may be created by air, dielectric and/or other electrically insulating material. The electrode may comprise various protrusions. The plurality of apertures and/or cutouts may be visible from the floor projection of such electrode. Another parameter minimizing or eliminating the presence of the unwanted physical effects may be the thickness of the RF electrode. If a conductive material of the RF electrode is thin and an area of the RF electrode is at least partially separated by an insulator, loops of eddy currents induced by magnetic field may be very small and so induction in such areas is minimized.
The RF electrode may include one or more apertures or cutouts which may segment the conductive area of the RF electrode and/or perimeter of the RF electrode. The RF electrode is therefore segmented in comparison to regular electrode by disruption of the surface area (i.e., an electrode with no apertures or cutouts). The two or more apertures or cutouts of the one RF electrode may be asymmetrical. The one or more aperture and cutout may have e.g. rectangular or circular shape. An aperture may be any hole and/or opening in the electrode area of the RF electrode according to applicator's floor projection. The apertures and/or cutouts may have regular, irregular, symmetrical and/or asymmetrical shape. The apertures and/or cutouts may be filled by e.g. air, dielectric and/or other electrically insulating material (e.g. dielectric material of printed circuit board). When the RF electrode includes two or more apertures or cutouts, the apertures or cutouts may have the same point of symmetry and/or line of symmetry. The distance between two closest points located on the borders of two different apertures and cutouts of RF electrode may be in a range from 0.1 mm to 50 mm or 0.1 mm to 15 mm or from 0.1 mm to 10 mm or from 0.1 mm to 8 mm. When the RF electrode is in at least partial overlay with magnetic field generating device, the RF electrode may include larger apertures and cutouts in part of the conductive surface, which is closer to the center of the magnetic field generating device.
The protrusions 114 or cutouts 115 may have symmetrical, asymmetrical, irregular and/or regular shape. The size, shape and/or symmetry of individual protrusions 114 may be the same and/or different across the RF electrode 101. For example, each protrusion 114 may have the same shape, the same dimensions, and/or symmetry.
The protrusions 114 may be characterized by the hypothetically inscribed circle 118b directly into protrusion. The hypothetically inscribed circle 118b to the protrusion 114 may have diameter in a range of 0.001 mm to 30 mm, or of 0.01 mm to 15 mm, or of 0.2 mm to 10 mm, or of 0.2 mm to 7 mm or of 0.1 to 3 mm. The hypothetically inscribed circle may not cross the border of the protrusion in which it is inscribed. The magnetic flux density B measured on at least part of the RF electrode surface area may be in a range of 0.1 T to 5 T, or in range of 0.2 T to 4 T, or in range of 0.3 T to 3 T, or of 0.5 T to 5 T, or in range of 0.7 T to 4 T, or in range of 1 T to 3 T. The magnetic flux density B measured on at least part of the RF electrode surface area may be measured during the treatment. The RF electrode surface area may include surface area of conductive surface of the RF electrode.
The number of protrusions N#included in one RF electrode means the highest possible number of conductive areas electrically insulated from each other that may be created between and/or by two parallel cuts 111 across the surface of the RF electrode. The distance between two parallel cuts 111 may be in a range of 1 mm to 50 mm or 2 mm to 35 or 5 mm to 20 mm. The number of protrusions N#may be in range of 5 to 1000, or of 10 to 600, or of 20 to 400, or of 50 to 400, or of 100 to 400 or of 15 to 200, or of 30 to 100, or of 40 to 150, or of 25 to 75.
The total number of protrusions in one RF electrode regardless of the parallel cuts 111 may be in the range of 5 to 1000, or of 10 to 600, or of 20 to 400, or of 50 to 400, or of 100 to 400 or of 15 to 200, or of 30 to 100, or of 40 to 150, or of 25 to 140.
The total number of apertures or cutouts in one RF electrode regardless of the parallel cuts 111 may be in the range of 5 to 1000, or of 10 to 600, or of 20 to 400, or of 50 to 400, or of 100 to 400 or of 15 to 200, or of 30 to 100, or of 40 to 150, or of 25 to 140.
The number of apertures, cutouts and/or protrusions in one RF electrode located below the coil including its core may be in a range 5 to 1000, or of 10 to 600, or of 20 to 400, or of 50 to 400, or of 100 to 400 or of 15 to 200, or of 30 to 100, or of 40 to 150, or of 25 to 140.
Number of an individual protrusions included in one RF electrode may be in range of 1 to 8000 or of 2 to 8000 or of 5 to 8000 or of 3 to 5000 or of 5 to 1000 or of 5 to 500 or of 10 to 500 or of 5 to 220 or of 10 to 100 in the area of size 2 cm multiplied 1 cm.
The magnetic flux density B and/or amplitude of magnetic flux density as measured on at least part of the RF electrode 101 may be in a range of 0.1 T to 5 T, 0.2 T to 4 T, 0.3 T to 3 T, 0.7 T to 5 T, 1 T to 4 T, or 1.5 T to 3 T during the treatment. The electrode may be defined by a protrusion density ρp according to Equation 1,
wherein n symbolize a number of a protrusions intersecting a magnetic field line of force of magnetic flux density and symbolizes a length of intersected the magnetic field line of force by these protrusions. The length l may be at least 1 cm long and magnetic field line of force may have a magnetic flux density of at least 0.3 T or 0.7 T. The protrusion density according to the treatment device may be in at least part of the RF electrode in a range of 0.3 cm−1·T−1 to 72 cm−1·T−1, or of 0.4 cm−1·T−1 to 10 cm−1·T−1, or of 0.4 cm−1·T−1 to 7 cm−1·T−1, or of 0.5 cm−1·T−1 to 6 cm−1·T−1, or of 0.8 cm−1·T−1 to 5.2 cm−1·T−1.
Protrusions may be wider (i.e. they may have a greater thickness) where the magnetic flux density is lower and thinner where magnetic flux density is higher. Further, protrusion density ρp may be higher where the magnetic flux density is higher.
An electrode area of one or more RF electrodes in one applicator or one additional treatment device may be in a range from 1 cm2 to 2500 cm2, or 25 cm2 to 800 cm2, or 30 cm2 to 600 cm2, or 30 cm2 to 400 cm2, or from 50 cm2 to 300 cm2, or from 40 cm2 to 200 cm2 according to the applicator's floor projection.
The RF electrode may have a border ratio. Border ratio may be defined as the ratio between circumference and area of the electrode. An example of border ratio is shown in
According to the applicator's floor projection, at least one RF electrode may have a border ratio in a range of 150 m−1 to 20000 m−1 or of 250 m−1 to 10000 m−1 or of 200 m−1 to 4000 m−1 or of 300 m−1 to 1000 m−1 or of 400 m−1 to 4000 m−1 or of 400 m−1 to 1200 m−1 or of 500 m−1 to 2000 m−1 or 10 m−1 to 20 000 m−1 or 20 m−1 to 10 000 m−1 or 30 m−1 to 5 000 m−1 in a locations where a magnetic flux density B on at least part of the RF electrode's surface may be in a range of 0.1 T to 7 T, or of 0.3 T to 5 T, or of 0.5 to 3 T, or of 0.5 T to 7 T, or in a range of 0.7 T to 5 T, or in range of 1 T to 4 T. With increasing magnetic flux density B across the RF electrode area may be an increased border ratio.
The ratio between the border ratio and the magnetic flux density B on RF electrode surface area may be called a charging ratio. The charging ratio may be related to square surface area of RF electrode of at least 1.5 cm2 and magnetic flux density in a range of 0.1 T to 7 T, or of 0.3 T to 5 T, or of 0.5 to 3 T, or of 1 T to 5 T, or of 1.2 T to 5 T. The charging ratio of at least part of the RF electrode may be in a range from 70 m−1·T−1 to 30000 m−1·T−1, or from 100 m−1·T−1 to 5000 m−1·T−1, or from 100 m−1·T−1 to 2000 m−1·T−1, or from 120 m−1·T−1 to 1200 m−1·T−1, or from 120 m−1·T−1 to 600 m−1·T−1 or from 230 m−1·T−1 to 600 m−1·T−1. Square surface area of RF electrode may include a surface area having square shape.
With higher border ratio and/or charging ratio, induced unwanted physical effects in the RF electrode may be lower because the RF electrode may include partially insulated protrusions from each other. With higher border ratio and/or charging ratio, possible hypothetically inscribed circles into protrusions has to be also smaller and so loops of induced eddy current has to be smaller. Therefore, induced eddy currents are smaller and induced unwanted physical effect induced in the RF electrode is lower or minimized.
The ratio between an area of one side of all RF electrodes (floor projection) and one side of all winding areas of all magnetic field generating devices (area A2 as shown in
As illustrated in
The RF electrode may have different sizes and shapes. According to the invention, bipolar electrodes may be parallel electrodes, such as shown in
Shape and arrangement of RF electrodes of at least one applicator may be based on size shape and symmetry of body location (anatomy) where at least one applicator will be attached. Positioning and different shapes of the RF electrode may be beneficial in order to avoid creating of hot spots, provide homogeneous heating of as large treated body area, as possibility to avoid needs of moving with one or more applicators.
According to examples of RF electrodes shown in
As illustrated in
The gap 113 between RF electrodes 101a and 101b may include air, cooling fluid, oil, water, dielectric material, fluid, and/or any other electric insulator, such as a substrate from composite material used in printed board circuits. The RF electrode 101a and 101b may be formed from copper foil and/or layer deposited on such substrate. The gap 113 may influence a shape of the electromagnetic field (e.g. RF field) produced by RF electrodes and the depth of electromagnetic field penetration into a patient's body tissue. Also, the distance between the at least two RF electrodes 101a and 101b may create the gap 113 which may have at least partially circular, elliptic and/or parabolic shape, as illustrated in
The gap 113 between the RF electrodes 101a and 101b may be designed to provide a passage of amount in the range of 2% to 70% or 5% to 50% or 15% to 40% of the magnetic field generated by the magnetic field generating device. The distance between the nearest parts of at least two different RF electrodes in one applicator may be in a range of 0.1 cm to 25 cm, or of 0.2 cm to 15 cm, or of 2 cm to 10 cm, or of 2 cm to 5 cm.
The gap 113 between two RF electrodes may be designed in a plane of the RF bipolar electrodes wherein the gap 113 may at least partially overlay a location where the magnetic flux density generated by the magnetic field generating device has the highest absolute value. The gap 113 may be located in such location in order to optimize treatment efficiency and minimize energy loss.
It should be noted that strong magnetic field having high derivative of the magnetic flux density dB/dt may induce unwanted physical effects even in the RF electrode with protrusions, apertures and/or cutouts. The gap 113 may be positioned or located in the location where the absolute value of magnetic flux density is highest. As a result, the plurality of RF electrodes positioned around the gap 113 may be then affected by lower amount of magnetic flux density.
Plurality of RF electrodes (e.g. two RF electrodes 101a and 101b) may be located on a substrate 113a as shown in the
Another option of minimizing or elimination of unwanted physical effects induced in the RF electrode by magnetic field may include reducing the thickness of the RF electrode.
Thickness of the conductive layer of RF electrode of the invention may be in a range of 0.01 mm to 10 mm, or of 0.01 mm to 5 mm, or of 0.01 mm to 3 mm, or of 0.01 mm to 1 mm, or 0.1 mm to 1 mm, or of 0.005 mm to 0.1 mm, or of 0.01 mm to 0.2 mm. One type of the RF electrode may be designed by a similar method as printed circuit boards (PCB) are prepared, wherein a thin, conductive layer may be deposited into and/or onto a substrate with insulating properties. The substrate may include one, two or more conductive layers from a material such as copper, silver, aluminum, alloys of nickel and zinc, austenitic stainless steel and/or other materials, creating the RF electrode. The thickness of substrate material may be in a range of 0.01 mm to 10 mm, or of 0.01 mm to 5 mm, or of 0.01 mm to 3 mm, or of 0.01 mm to 2 mm, or of 0.1 mm to 2 mm, or of 0.5 mm, to 1.5 mm or of 0.05 mm to 1 mm. The substrate material may be polymeric, ceramic, copolymeric sheet, phenol resin layer, epoxy resin layer, fiberglass fabric other textile fabric, polymeric fabric and/or other. The substrate may be at least partially flexible and/or rigid.
The RF electrode may be system of thin, conductive wires, flat stripes, sheets or the like.
Still another option of minimizing or elimination of unwanted physical effects induced in the RF electrode by magnetic field may include forming the RF electrode from a conductive material that reduces induction of unwanted physical effects and heating of the RF electrode.
The RF electrodes may be made of specific conductive materials reducing induction of unwanted physical effects in the RF electrode. Such materials may have relative permeability in a range of 4 to 1,000,000, or of 20 to 300,000, or of 200 to 250,000, or of 300 to 100,000, or of 300 to 18,000, or of 1,000 to 8,000. Material of the RF electrode may include carbon, aluminum, copper, nickel, cobalt, manganese, zinc, iron, titanium, silver, brass, platinum, palladium and/or others from which may create alloys, such as Mu-metal, permalloy, electrical steel, ferritic steel, ferrite, stainless steel of the same. In addition, the RF electrode may be made from mixed metal oxides and/or fixed powder from metal oxides, metal from m-metal elements to minimize induction of eddy currents and heating of the RF electrode and also in order to minimize energy loss of time-varying magnetic field.
One or more RF electrodes providing RF energy during the treatment by described treatment device may use at least one options, at least two options and or combination of options how to minimize or eliminate unwanted physical effects induced by magnetic field as described above. Also one or more characterization of the option may be used for manufacture, design and operation of the treatment device of invention.
The treatment device combining RF treatment with magnetic treatment may include one or more treatment circuits. The treatment circuit for RF treatment may include power source, RF electrode and/or all electrical elements described herein for RF cluster. The treatment circuit for magnetic treatment may include power source, magnetic field generating device, all electrical elements described herein for magnetic cluster HIFEM. Plurality of treatment circuits providing same or different treatment may include common power source. Alternatively, each treatment circuit may include its own power source. Operation of all treatment circuits may be regulated by one master unit or one or more control units. The HMI, master unit and/or one or more control unit may be used for selection, control and/or adjustment of one or more treatment parameters for each applicator and/or each treatment energy source (e.g. RF electrode or magnetic field generating device. Treatment parameters may be selected, controlled and/or adjusted by HMI, master unit and/or one or more control unit independently for each applicator.
The energy storage device ESD, may accumulate electrical energy, which may be provided to magnetic field generating device in the form of electric signal (e.g. in form of high power impulses) of energy. The ESD may include one, two, three or more capacitors. The ESD may also include one or more other electrical elements such as a safety element, such as a voltage sensor, a high voltage indicator, and/or discharging resistors, as shown in
A capacitance of energy storage device may be in the range of 5 nF to 100 mF, or in the range of 25 nF to 50 mF, or in the range of 100 nF to 10 mF, or in the range of 1 μF to 1 mF, or in the range of 5 μF to 500 μF or in the range of 10 μF to 180 μF, or in the range of 20 μF to 80 μF.
The energy storage device may be charged on a voltage in a range from 250 V to 50 kV, 700 V to 5 kV, 700 V to 3 kV, or 1 kV to 1.8 kV.
The energy storage device may provide a current pulse discharge in a range from 100 A to 5 kA, 200 A to 3 kA, 400 A to 3 kA, or 700 A to 2.5 kA. The current may correspond with a value of the peak magnetic flux density generated by the magnetic field generating device.
By discharging of the energy storage device, a high power current pulse may be produced with an energy in a range of 5 J to 300 J, 10 J to 200 J, or 30 J to 150 J.
The switch SW may include any switching device, such as a diode, pin diode, MOSFET, JFET, IGBT, BJT, thyristor and/or a combination thereof. The switch may include a pulse filter providing modification of the electrical signal. The pulse filter may suppress switching voltage ripples created by the switch during discharging of the ESD.
The magnetic circuit may be commanded to repetitively switch on/off the switch SW and discharge the energy storage device ESD to the magnetic field generating device, e.g. the coil in order to generate the time-varying magnetic field.
An inductance of the magnetic field generating device may be up to 1 H, or in the range of 1 nH to 500 mH, 1 nH to 50 mH, 50 nH to 10 mH, 500 nH to 1 mH, or in the range of 1 μH to 500 μH or in the range of 10 μH to 60 μH.
The magnetic field generating device may emit no radiation (e.g. gamma radiation).
The magnet circuit may include a series connection of the switch SW and the magnetic field generating device. The switch SW and the magnetic field generating device together may be connected in parallel with the energy storage device ESD. The energy storage device ESD may be charged by the power source PS. After that, the energy storage device ESD may be discharged through the switch SW to the magnetic field generating device MFGD. During a second half-period of LC resonance, the polarity on the energy storage device ESD may be reversed in comparison with the power source PS. As a result, there may be twice the voltage of the power source. Hence, the power source and all parts connected in the magnetic circuit may be designed for a high voltage load and protective resistors may be placed between the power source and the energy storage device.
The magnetic field generating device MFGD and an energy storage device ESD may be connected in series. The magnetic field generating device MFGD may be disposed in parallel to the switch SW. The energy storage device ESD may be charged through the magnetic field generating device. To provide an energy impulse to generate a magnetic impulse (or pulse to generate a magnetic pulse), controlled shorting of the power source takes place through the switch SW. In this way the high voltage load at the terminals of the power source PS during the second half-period of LC resonance associated with known devices is avoided. The voltage on the terminals of the power source PS during second half-period of LC resonance may have a voltage equal to the voltage drop on the switch SW.
The switch may be any kind of switching device. Depending on the type of the switch, the load of the power source may be reduced to a few Volts, e.g., 1-10 volts. Consequently, it is not necessary to protect the power source from a high voltage load, e.g., thousands of Volts. Accordingly, the use of protective resistors and/or protection circuits may be reduced or eliminated.
The power source of the RF circuit may provide electric signal of voltage in a range of 1 V to 5 kV, or 5 V to 140 V, or 10 V to 120 V, or 15 V to 50 V, or 20 V to 50 V.
The CURF may control operation of any electrical element of RF circuit. The CURF may regulate or modify parameters of the electrical signal transferred through the RF circuit. Parameters of the signal, e.g., voltage, phase, frequency, envelope, value of the current, amplitude of the signal and/or other may be influenced by individual electrical elements of the RF circuit that may be controlled by CURF, control system and/or electrical properties of individual electrical elements of RF circuit. Electrical elements influencing signal in the RF circuit may be, for example, a power source (PS), a power amplifier (PA), a filter, a SWR+Power meter, a tuning, a splitter, an insulator, symmetrisation element changing unbalanced signal to balanced signal (SYM), pre-match and/or RF electrode generating RF waves. Modification of the electrical signal may include a distortion of signal transmitted in RF circuit, envelope distortion in shape, amplitude and/or frequency domain, adding noise to the transferred electrical signal and/or other degradation of transmitted original signal entering the RF circuit.
The power amplifier PA may produce RF signal of respective frequency for generation of RF waves by RF electrode. The power amplifier may be MOSFET, LDMOS transistor or vacuum tube. The PA may be able to increase an amplitude of provided signal and/or modified signal to electric signal (e.g. RF signal).
The filter may include one or more filters which may suppress unwanted frequency of signal transmitted from the power amplifier. One or more filters may filter and provide treatment with defined band of frequencies. One or more filters may be used to filter the electrical signal such as electric signal in the RF circuit, according to signal frequency domain to let pass only band of wanted frequencies. The filter may be able to filter out unsuitable signal frequencies based on internal software and/or hardware setting of the filter. The filter may operate according to communication with other one or more electrical elements e.g. the CURF. The one or more filters may be located between a power source of RF signal PSRF and the RFE.
The SWR+Power meter may measure output power of RF energy and evaluate the quality of impedance matching between the power amplifier and applicator. The SWR+Power meter may include a SWR meter that may measure the standing wave ratio in a direction of a wave transmission. The SWR+Power meter may include a power meter that may measure amplitude of such standing waves. The SWR+Power meter may communicate with the CURF and/or with the tuning element. The SWR+Power meter may provide a feedback information in order to prevent creation of the standing wave in the patient's body, provide better signal adjustment by the tuning element and to provide safer treatment and energy transfer to biological structure more effectively in more targeted manner.
Tuning element may provide improvement of the impedance matching. The tuning element may include, e.g. capacitor, LC and/or RLC circuit. The tuning element may provide controlled tuning of the RF circuit system capacity, wherein the RF circuit system includes individual electrical elements of the RF circuit and also currently treated tissue of the patient under the influence of the provided RF waves. Tuning of the RF circuit may be provided before and/or during the treatment. The tuning element may also be called a transmatch.
The symmetrisation element SYM may convert the signal from unbalanced input to balanced output. The SYM may be a balun and/or a balun transformer including wound coaxial cable to balance signal between RF electrodes. The SYM element may provide signal symmetrisation between the first and the second bipolar RF electrode e.g. by creating λ/2 phase shift of the RF signal guided through the coaxial cables to the first and the second bipolar RF electrode.
The splitter may split the RF signal transferred/delivered in the RF circuit by a coaxial cable. Divided signal may have the same phase of each divided signal part and/or the divided signals may have constant phase shift from each other. For example, the splitter may provide one part of the RF signal to a first RF electrode and second part of the RF signal to a second RF electrode of a bipolar electrode. The splitter may be shared for one two or more independent RF circuits or each RF circuit may have its own splitter.
An insulator may be combined with the splitter and/or may be located before and/or after splitter with regard of transporting RF signal to the RF electrode. The insulator may be electrical insulation of at least part of the RF circuit from the magnetic circuit. The insulator may be used to minimize influence of the magnetic circuit to the RF circuit.
The pre-match may be used in the devices using coaxial cables. The pre-match may include a small coil, condenser and/or resistor.
The RF electrode (RFE), acting as a treatment energy source, may include one or more unipolar RF electrodes, one or more monopolar RF electrodes and/or one or more pairs of bipolar RF electrodes.
The power source PS of the RF circuit, power amplifier PA, filter, SWR+Power meter, tuning, SYM, splitter, insulator and/or pre-match may be at least partially and/or completely replaced by an HF generator supplying the rest of the circuit, including the RF electrode, with a high frequency electric signal.
The RF circuit and/or the magnetic circuit may be at least partially located in one or more applicators. The wire connection between the applicator, an additional treatment device and/or the main unit may be also considered as a part of the RF circuit and/or magnetic circuit element because of the impedance, resistivity and/or length of the wire connection. One or more electrical elements of the magnetic circuit shown in
Control units may include one or more PCBs or microprocessors. One or more control units may communicate between each other and/or with the master unit that may be selected as a master unit for other control units in master-slave communication. The master unit may be the first or only control unit that communicates with the HMI. The master unit may control units CUM A and CUM B. The master unit may be a control unit including one or more PCBs and/or microprocessors. Master unit or control unit A (CUM A) or control unit B (CUM B) may be coupled to human machine interface. Also, the master unit may be human machine interface HMI or be coupled to the human machine interface HMI.
The RF treatment and/or magnetic treatment may be provided by at least one, two, three, four or more treatment circuit (which may be located in the main unit) and/or applicators wherein one treatment circuit may include RF cluster or magnetic cluster. Each applicator A and B (AP A and AP B) may include at least one electrical element of one, two or more treatment circuits. Each applicator may include at least one, two or more different treatment energy sources, such as one or more RF electrodes providing the RF treatment and one or more magnetic field generating devices providing the magnetic treatment. As shown in
Treatment cluster for magnetic treatment HIFEM A may provide magnetic treatment independently on treatment cluster for magnetic treatment HIFEM B. Alternatively, the treatment device may include just one treatment cluster for magnetic treatment HIFEM or the treatment device may include two or more individual treatment clusters for magnetic treatment HIFEM, wherein some of the treatment cluster for magnetic treatment HIFEM may share individual electrical elements such as a control unit, energy storage device, pulse filter and/or other.
As shown in
The treatment device may include one, two, three or more ESD, wherein each ESD may include one, two, three or more capacitors. One ESD may provide energy to one, two, three or more treatment energy sources, such as magnetic field generating devices providing magnetic treatment. Each coil may be coupled to its own respective ESD or more than one ESD. The ESD may include one or more other electrical elements such as a safety element SE, such as a voltage sensor, a high voltage indicator, and/or discharging resistors, as shown in
Control units CUM A and CUM B may serve as slaves of the master unit which may command both control units CUM A and CUM B to discharge the electrical current to respective magnetic field generating devices (e.g. MFGD A and MFGD B). Therefore, the control of each control unit CUM A and CUM B is independent. Alternatively, CUM B may be slave of the CUM A, while CUM A itself may be slave of master unit. Therefore, when master unit commands the CUM A to discharge electrical current into the magnetic field generating device (e.g. MFGD A), the CUM A may command the CUM B to discharge electrical current to another magnetic field generating device (e.g. MFGD B) positioned in different applicator. In another alternative, additional control unit may be positioned between master unit and control units CUM A and CUM B, wherein such additional control unit may provide e.g. timing of discharges. By both these approaches, the pulses of magnetic field may be applied synchronously or simultaneously.
When the treatment device includes more than one magnetic field generating device and method of treatment include using more than one magnetic field generating device (e.g., a coil), each coil may be connected to respective magnetic circuit. However, one coil may be connected to plurality of magnetic circuits. Also, the power source PSM may be used for at least two magnetic field generating devices.
The power source, e.g. PSM and/or PSRF may provide an electric energy to at least one or at least one individual electrical element of RF circuit, magnetic circuit, and/or to other part of the treatment device e.g. to the master unit, HMI, energy storage device (e.g. ESD A and/or ESD B), to control unit (e.g. CUM A and/or CUM B) and/or to the switch (eg. SW A or SW B). The power source may include one or more elements transforming electric energy from the power network connection PN as illustrated in
One or more electrical elements of the power source for RF treatment (e.g. a steady power source of magnetic circuit (SPSM), an auxiliary power sources APS A and/or APS B, a power pump PP, board power source BPS A and/or BPS B) may provide electric energy to individual electrical elements of the RF circuit and/or magnetic circuit directly and/or indirectly. Directly provided electric energy is provided through conductive connection between two electrical elements wherein no other electrical element of the circuit is in serial connection between directly powered electrical elements. Insulating and/or other electrical elements of the circuits such as resistors, insulating capacitors and the like may be not considered to be an electrical element. Indirectly powered electrical elements may be powered by one or more other elements providing electric energy through any other element that may change parameters of provide electric energy, such as current value, frequency, phase, amplitude and/or other.
The power source PSM illustrated in
One or more auxiliary power sources may be powering one or more control units of the individual circuits. APS may be also powering one or more board power source BPS, e.g. BPS A and/or BPS B. APS may be also powering master unit HMI and/or other elements of the treatment device. Because of APS, at least one control unit and/or master unit may provide processing/adjusting of the electric signal in RF and/or magnet circuit precisely, independently and/or also individual electrical element of the treatment device may be protected from the overload. The board power source (e.g. element BPS A and/or BPS B) may be used as a source of electric energy for at least one element of magnetic circuit (e.g. energy storage device ESD A and/or B). Alternatively, one or more elements of the power source PSM may be combined and/or dismissed.
The power source may serve as high voltage generator providing voltage to a magnetic circuit and/or RF circuit. The voltage provided by power source may be in a range from 500 V to 50 kV, or from 700 V to 5 kV, or from 700 V to 3 kV, or from 1 kV to 1.8 kV. The power source is able to deliver a sufficient amount of electrical energy to each circuit, such as to any electrical element (e.g. the energy storage device ESD A) and to the magnetic field generating device (e.g. MFGD A). The magnetic field generating device may repeatedly generate a time-varying magnetic field with parameters sufficient to cause muscle contraction.
According to
At least one electrical element described as PSM, PSRF, APS, SPSM and/or SPSRF may be shared by at least one RF circuit and magnetic circuit.
Control units CURF may work as slave of the master unit, which may command CURF to provide RF signal through RF circuit to RF electrode. In case of two control units CURF both control units work as slaves of the master unit which may command both control units CURF to provide RF signal to respective RF electrodes. Therefore, the control of each control unit from possible plurality of CURF is independent. Alternatively, first CURF may be slave of second CURF, while first CURF itself may be slave of master unit. Therefore, when master unit commands the first CURF to discharge electrical current into the first RF electrode, the first CURF may command the second CURF to discharge electrical current to second RF electrode positioned in different applicator. In another alternative, additional control unit may be positioned between master unit and plurality of control units CURF, wherein such additional control unit may provide e.g. timing of discharges. By both these principles, the pulses of RF field may be applied continuously or in pulsed manned.
Treatment clusters for magnetic HIFEM A and HIFEM B shown in
Also, treatment cluster for RF treatment RF A and treatment cluster for RF treatment RF B shown in
The treatment device may include two or more applicator, each applicator may include one magnetic field generating device and one or two RF electrodes. Inductance of first magnetic field generating device positioned in first applicator may be identical as inductance of second magnetic field generating device positioned in the second applicator. Also, number of turns, winding area and/or area without winding of the first magnetic field generating device in the first applicator may be identical as number of turns, winding area and/or area without winding of the second magnetic field generating device in the second applicator. The first magnetic field generating device in the first applicator may provide identical magnetic field as the second magnetic field generating device in the second applicator. The identical magnetic fields provided by plurality of magnetic field generating devices during same or another treatment sessions may have same treatment parameters e.g. number of pulses in train, number of pulses in burst, same amplitude of magnetic flux density of impulses, same shape of envelope or other. However, reasonable deviation e.g. from amplitude of magnetic flux density may be tolerated in the identical magnetic field. The deviation of amplitudes of magnetic flux density or average magnetic flux density as measured by fluxmeter or oscilloscope may be in the range of 0.1% to 10% or 0.1% to 5%.
Alternatively, the inductance of magnetic field generating devices in both applicator may be different. Also, magnetic fields provided by plurality of magnetic field magnetic devices during the same or another treatment sessions may have different treatment parameters.
When the treatment device has two or more applicators, each applicator may include one magnetic field generating device and one or two RF electrodes. The size or area of one RF electrode positioned in first applicator may be identical to another RF electrode positioned in the second applicator. First applicator and second applicator may provide identical RF fields provided during same or another treatment sessions, wherein identical RF fields may have same treatment parameters e.g. wavelength, phase, time duration and intensity of RF field.
Alternatively, the size of area of RF electrodes in both applicators may be different. Also, magnetic fields provided by plurality of magnetic field generating devices during the same or another treatment sessions may have different treatment parameters.
As shown in
A magnetic pulse may refer to a time period including impulse and passive time period of the pulse. The magnetic pulse may refer to a time period of one magnetic impulse and passive time period, i.e. time duration between two impulses from rise/fall edge to subsequent of following rise/fall edge. The passive time duration of a pulse may include either applying no treatment energy to the patient's body and/or application of the treatment energy insufficient to cause at least a partial treatment effect due to insufficient treatment energy intensity (e.g. magnetic flux density) and/or frequency of delivered treatment energy. Such time period may be called pulse duration. As shown on
As further shown on
The magnetic train may include plurality of magnetic pulses in the range of 2 magnetic pulses to 200 000 magnetic pulses or 2 magnetic pulses to 150 000 magnetic pulses or 2 magnetic pulses to 100 000 magnetic pulses. Magnetic train may cause multiple at least partial muscle contractions or muscle contractions followed one by one, at least one incomplete tetanus muscle contraction, at least one supramaximal contraction or at least one complete tetanus muscle contraction. During application of one train, magnetic field may provide one muscle contraction followed by muscle relaxation. The muscle relaxation may be followed by another muscle contraction during the application of one train. During one train, the muscle work cycle (which may include muscle contraction followed by muscle relaxation) may be repeated at least twice, three, four or more times.
The burst may refer to one train provided during time period T1 and a time period T2 which may represent a time period when no treatment effect is caused. The time period T2 may be a time period providing passive treatment where no treatment energy is applied to a patient's body and/or applied treatment energy is insufficient to cause the treatment effect. The time period T3 shown in
The magnetic train of a time-varying magnetic field may be followed by a static magnetic field and/or the magnetic train may be followed by a time-varying magnetic field of frequency and/or magnetic flux density insufficient to cause at least a partial muscle contraction or muscle contraction. For example, the burst may provide at least one at least partial muscle contraction followed by no muscle contraction. In another example, the burst may provide at least one muscle contraction followed by no muscle contraction. The treatment may include a number of magnetic bursts in a range of 15 to 25,000, or in a range of 40 to 10,000, or in a range of 75 to 2,500, or in a range of 150 to 1,500, or in a range of 300 to 750 or up 100,000. The repetition rate in the subsequent bursts may incrementally increase/decrease with an increment of 1 to 200 Hz, or of 2 to 20 Hz, or of 5 Hz to 15 Hz, or more than 5 Hz. Alternatively, the amplitude of magnetic flux density may vary in the subsequent bursts, such as incrementally increase/decrease with an increment of at least 1%, 2%, or 5% or more of the previous pulse frequency. During application of one burst, magnetic field may provide one muscle contraction followed by muscle relaxation. The muscle relaxation may be followed by another muscle contraction during the application of same burst. During one burst, the muscle work cycle (which may include muscle contraction followed by muscle relaxation) may be repeated at least twice, three, four or more times.
Also, a treatment duty cycle may be associated with an application of a pulsed treatment energy of the magnetic field as illustrated in
An exemplary treatment duty cycle is illustrated in
An exemplary application of a burst repetition rate of 4 Hz may be the time-varying magnetic field applied to the patient with a repetition rate of 200 Hz and with a treatment duty cycle of 50% in trains lasting 125 ms, i.e. each train includes 25 pulses. An alternative exemplary application of a burst repetition rate of 6 bursts per minute may be the time-varying magnetic field applied to the patient with a repetition rate of 1 Hz and with a treatment duty cycle of 30% in trains lasting 3 s; i.e., each train includes 3 pulses.
The
When the treatment device uses plurality of applicators (e.g. two), each applicator may include one magnetic field generating device. As each magnetic field generating device may provide one respective magnetic field, the plurality of applicators may provide different magnetic fields. In that case the amplitude of magnetic flux density of magnetic impulses or pulses may be same or different, as specified by user through HMI and/or by one or more control units.
The impulses of one magnetic field provided by one magnetic field generating device (e.g. magnetic coil) may be generated and applied synchronously as the impulses of another magnetic field provided by another magnetic field generating device. During treatment session with the treatment device including two magnetic field generating device, the impulses of one magnetic field provided by one magnetic field generating device may be generated synchronously with the impulses of second magnetic field provided by second magnetic field generating device. Synchronous generation may include simultaneous generation.
The synchronous generation of magnetic impulses may be provided by synchronous operation of switches, energy storage devices, magnetic field generating devices and/or other electrical elements of the plurality of magnetic treatment circuit. However, the synchronous operation of electrical elements of magnetic treatment circuit may be commanded, adjusted or controlled by user through HMI, master unit and/or more control unit.
The
The synchronous generation of magnetic fields may include generating a first pulse of the first time-varying magnetic field such that the first pulse lasts for a time period, wherein the time period lasts from a beginning of a first impulse of the first time-varying magnetic field to a beginning of a next consecutive impulse of the first time-varying magnetic field and generating a second pulse of the second time-varying magnetic field by the second magnetic field generating device such that the second pulse lasts from a beginning of a first impulse of the second time-varying magnetic field to a beginning of a next consecutive impulse of the second time-varying magnetic field. Synchronous generation of magnetic field means that the first impulse of the second time-varying magnetic field is generated during the time period of the first pulse.
Beside synchronous generation, the magnetic impulses of plurality of magnetic fields may be generated separately. Separated generation of magnetic impulses of magnetic fields may include generation of impulses of one magnetic field are generated outside of pulse duration of another magnetic field.
All examples of synchronous or separated generation of magnetic impulses may be applied during one treatment session. Also, the impulse shift and/or impulse distance period may be calculated for any magnetic impulse 271b of second or another magnetic field, which may be positioned according to any example given by
The adjustment or control provided by master unit and/or one or more control units may be used for creation or shaping of magnetic envelope or RF envelope. For example, the magnetic impulses or RF impulses may be modulated in amplitude of each impulse or plurality of impulses to enable assembly of various envelopes. Similarly, the amplitude of RF energy may be modulated in amplitude to assemble various envelopes. The master unit and/or one or more control units may be configured to provide the assembly of one or more envelopes described herein. Differently shaped magnetic envelopes and/or RF envelopes (referred herein also as envelopes) may be differently perceived by the patient. The envelope or all envelopes as shown on Figures of this application may be fitted curve through amplitude of magnetic flux density of impulses, pulses or trains and/or amplitudes of power output of RF impulses of RF waves.
The envelope may be a magnetic envelope formed from magnetic impulses. The magnetic envelope formed from impulses may include plurality of impulses, e.g. at least two, three, four or more subsequent magnetic impulses. The subsequent magnetic impulses of such magnetic envelope may follow each other. In case of such envelope, the envelope duration may begin by first impulse and end with the last impulse of the plurality of impulses. The envelope may include one train of magnetic impulses. The envelope may be a fitted curve through amplitudes of magnetic flux density of impulses. The envelope formed by magnetic impulses may therefore define train shape according to modulation in magnetic flux density, repetition rate and/or impulse duration of magnetic impulses. Accordingly, the envelope may be an RF envelope formed by RF impulses and their modulation of envelope, repetition rate or impulse duration of RF impulse of RF wave.
The envelope may be a magnetic envelope formed by magnetic pulses. The magnetic envelope formed by pulses may include plurality of pulses (e.g. at least two, three, four or more subsequent magnetic pulses), wherein pulses follow each other without any missing pulse. In such case, the envelope duration may begin by impulse of first pulse and end with a passive time duration of last impulse of the plurality of pulses. The envelope formed by magnetic pulses may therefore define train shape in according to modulation in magnetic flux density, repetition rate and/or impulse duration. The envelope may include one train of magnetic pulses. The train consists of magnetic pulses in a pattern that repeats at least two times during the protocol. The magnetic envelope may be a fitted curve through amplitudes of magnetic flux density of pulses.
The envelope may be a magnetic envelope formed from magnetic trains. The magnetic envelope formed from trains may include plurality of trains (e.g. at least two, three, four or more subsequent magnetic trains), wherein trains follow each other with time duration between the train. In such case, the envelope duration may begin by impulse of first pulse of the first train and end with a passive time duration of the plurality of pulses. The plurality of trains in one envelope may be separated by missing pulses including impulses. The number of missing pulses may be in a range of 1 to 20 or 1 to 10.
The envelope may be modulated on various offset values of magnetic flux density. The offset value may be in the range of 0.01 T to 1 Tor 0.1 to 1 Tor 0.2 to 0.9 T. The offset value may correspond to non-zero value of magnetic flux density.
During one treatment session, treatment device may apply various number of envelopes. Two or more envelopes of magnetic field may be combined to create possible resulting shape.
In examples mentioned above, the envelope may begin by first impulse. Further, the envelope continue through duration of first respective pulse including first impulse. Further, the envelope may end with a passive time duration of last pulse, wherein the last pulse may follow the first pulse. This option is shown on following figures showing exemplary shapes of envelope of magnetic pulses. As shown on following figures, the shape of envelope may be provided by modulation of magnetic flux density. The shape of RF envelope may be provided by modulation of amplitude of power or impulses of RF waves.
A trapezoidal envelope may be perceived by the patient as the most comfortable for muscle tissue stimulation. Trapezoidal envelope respects natural course of muscle contraction, i.e. the muscle contraction may be time-varying. Strength of natural muscle contraction increases, holds at the highest strength and decreases. The trapezoidal envelope corresponds with natural muscle contraction, i.e. the strength of the muscle contraction may correspond with the magnetic flux density. The magnetic flux density during the duration of the trapezoidal envelope increases, holds and decreases. Same shape of envelope may have RF electrode formed from RF impulses having appropriate amplitude.
The trapezoidal envelope may be at least once interrupted by one or more impulses, pulses, bursts and/or trains that do not fit to the trapezoidal envelope shape, but after this interruption the trapezoidal envelope may continue.
Also, the trapezoidal envelope may include plurality of trains, e.g. two, three four or more trains. In case of trapezoidal shape, the envelope may include three trains. The first train may include impulses with increasing magnetic flux density. Magnetic flux density of one impulse may be higher than magnetic flux density of the second impulse following the first impulse. The second train may include impulses with constant magnetic flux density. However, the operation of the treatment device may not provide strictly constant magnetic flux density for each impulse, therefore the magnetic flux density may oscillate in range of 0.1 to 5%. The third train may include impulses with decreasing magnetic flux density. Magnetic flux density of one impulse may be lower than magnetic flux density of the second impulse following the first impulse.
Furthermore. trapezoidal envelope may include plurality of bursts, e.g. two, three four or more bursts. In case of trapezoidal shape, the envelope may include three bursts. The first burst may include impulses with increasing magnetic flux density. Magnetic flux density of one impulse may be higher than magnetic flux density of the second impulse following the first impulse. The second bursts may include impulses with constant magnetic flux density. However, the operation of the treatment device may not provide strictly constant magnetic flux density for each impulse, therefore the magnetic flux density may oscillate in range of 0.1 to 5%. The third bursts may include impulses with decreasing magnetic flux density. Magnetic flux density of one impulse may be lower than magnetic flux density of the second impulse following the first impulse.
The trapezoidal envelope may decrease energy consumption. Due to lower energy consumption, the trapezoidal shape may enable improved cooling of the magnetic field generating device. Further, the resistive losses may be reduced due to lower temperature of the magnetic field generating device. Different repetition rates may cause different types of muscle contractions. Each type of muscle contraction may consume different amounts of energy.
The envelope may include combined modulation of magnetic flux density and repetition rate.
As mentioned, the envelope may be formed from magnetic trains separated by one or more missing pulses.
During treatment, the magnetic envelopes may be combined.
The RF treatment (RF field) may be generated by treatment energy source (e.g. RF electrode) in continual operation, pulsed operation or operation including cycles. The continual operation is provided during continual RF treatment. The pulsed operation is provided during pulsed RF treatment.
During the continual operation, RF electrode may generate RF field for the whole treatment or in one time duration during the treatment, as commanded by master unit one or more control units. The RF electrode may generate RF wave having a sine shape. In other words, the RF electrode may generate radio frequency waveform having sine shape. Other shapes are possible, e.g. sawtooth, triangle or square according to amplitudes of RF wave.
The continual RF treatment may have one of the highest synergic effects with provided magnetic treatment due to continual heating of the patient's target biological structures, highest effect to polarization of the patient's target biological structures and to ensure deep magnetic field penetration and high effect of generated magnetic field to a patient's tissue, such as to promote muscle contraction.
During the pulsed generation the RF electrode may generate RF field for two or more active time periods of the treatment, wherein the time periods may be separated by passive time periods. Active time period of pulsed RF treatment may represent the time period during which the RF electrode is active and generates RF field. The active time period may be in the range of 1 s to 15 minutes or 30 s to 10 minutes or 5 s to 900 s or 30 s to 300 s or 60 s to 360 s. The passive time period of RF pulsed treatment may represent the time period during which the RF electrode is inactive and does not generate RF field. The passive time period of RF pulsed treatment may be in the range of 1 s to 15 minutes or 10 s to 10 minutes or 5 s to 600 s or 5 s to 300 s or from 10 s to 180 s. Pulsed generation and its parameters may vary during the treatment.
The user may select, control or adjust various treatment protocols of the treatment device through the control unit or the master unit of the treatment device. Also, the master unit and/or control unit may select, control or adjust treatment protocols body area or another option selected by the user. In addition, the master unit and/or control unit may select, control or adjust treatment various treatment parameters according to feedback provided by any sensor mentioned above.
The treatment protocol may include a selection of one or more treatment parameters and their predetermined values as assigned to respective protocol. Further, the treatment protocol may include various types of combined treatment by magnetic treatment and RF treatment.
Regarding the treatment parameters, the user may control or adjust various treatment parameters of the treatment device through the control system including master unit or one or more control units of the treatment device. The master unit and/or control unit may control or adjust treatment parameters according to treatment protocol, body area or another option selected by the user. In addition, the master unit and/or control unit may control or adjust treatment various treatment parameters according to feedback provided by any sensor mentioned above. The master unit or one or more control unit may provide adjustment of treatment parameters of magnetic field including magnetic flux density, amplitude of magnetic flux density, impulse duration, pulse duration, repetition rate of impulses, repetition rate of pulses, train duration, number of impulses and/or pulses in train, burst duration, composition of magnetic burst, composition of magnetic train, number of envelopes, duty cycle, shape of envelopes and/or maximal of the magnetic flux density derivative. The master unit or one or more control unit may provide adjustment of treatment parameters of RF field including frequency of RF field, duty cycle of RF field, intensity of RF field, energy flux provided by RF field, power of RF field, amplitude of power of RF field and/or amplitude of power of RF waves, wherein the RF waves may refer to electrical component of RF field. Treatment parameters may be controlled or adjusted in following ranges.
In addition, treatment parameters may include, for example, the treatment time, temperature of magnetic field generating device, temperature of RF electrode, temperature of the applicator, temperature of the cooling tank, selection of targeted body area, number of connected applicator, temperature of cooling fluid (as measured in a fluid conduit, connecting tube, applicator or cooling tank by an appropriate temperature sensor), selected body area and/or others.
Different magnetic flux density, pulse duration, composition of trains and/or bursts may have different influence on muscle tissue. One part of a magnetic treatment may cause, for example, muscle training in order to increase muscle strength, muscle volume, muscle toning, and other parts of the magnetic treatment may cause muscle relaxation. The signal provided to the RF electrode may be modulated with regard to capacity of the circuit created by two bipolar RF electrodes and the patient's body, preventing creation of standing radiofrequency waves in the applicator and/or a patient, or other. The modulation of the radiofrequency field may be provided in the frequency domain, intensity domain, impulse duration, and/or other parameters. The goal of individual radiofrequency treatment, magnetic treatment and/or their combination is to reach the most complex and/or efficient treatment of the target biological structure. The modulation in the time domain may provide active and passive periods of stimulation. Passive period may occur when the RF treatment and/or magnetic treatment includes a period with no muscle stimulation and/or no change of temperature or other treatment effect provided by RF field of target biological structure. During a passive period, there may not be generated a magnetic field and/or RF field. Also, during a passive period, magnetic field and RF field may be generated but the intensity of the magnetic field and/or the RF field may not be sufficient to provide treatment effect of at least one of the target biological structure.
The magnetic flux density of the magnetic field may be in a range from 0.1 T to 7 T, or in a range from 0.5 T to 7 T, or in a range from 0.5 T to 5 T, or in range from 0.5 T to 4 T, or in range from 0.5 T to 2 T. Such definition may include the amplitude of magnetic flux density of the magnetic field. Shown ranges of magnetic flux density may be used for causing muscle contraction. The magnetic flux density and/or amplitude of the magnetic flux density may be measured by fluxmeter or by oscilloscope.
A repetition rate may refer to a frequency of firing the magnetic impulses. The repetition rate may be derived from the time duration of the magnetic pulse. The repetition rate of the magnetic impulses may be in the range of 0.1 Hz to 700 Hz, or from 1 Hz to 700 Hz, or from 1 Hz to 500 Hz, or in the range of 1 Hz to 300 Hz or 1 Hz to 150 Hz. As each magnetic pulse includes one magnetic impulse, the repetition rate of magnetic pulses is equal to repetition rate of magnetic impulses. The duration of magnetic impulses may be in a range from 1 μs to 10 ms or from 3 μs to 3 ms or from 3 μs to 3 ms or from 3 μs to 1 ms or 10 μs to 2000 μs or 50 μs to 1000 μs or from 100 μs to 800 μs. The repetition rate of impulses may be measured from recording of the oscilloscope measurement.
The train duration may be in the range of 1 ms to 300 s or from 1 ms to 80 s or from 2 ms to 60 s or 4 ms to 30 s, or from 8 ms to 10s, or from 25 ms to 3 s. A time between two subsequent trains may be in a range of 5 ms to 100 s, or of 10 ms to 50 s, or of 200 ms to 25 s, or of 500 ms to 10 s, or of 750 ms to 5 s or from 300 ms to 20 s. The repetition rate may be measured from recording of the oscilloscope measurement.
The burst duration may be in a range of 10 ms to 100 seconds, or from 100 ms to 15 s, or from 500 ms to 7 s, or from 500 ms to 5 s. The repetition rate of magnetic bursts may be in a range of 0.01 Hz to 150 Hz, or of 0.02 Hz to 100 Hz, or in the range of 0.05 Hz to 50 Hz, or 0.05 Hz to 10 Hz, or of 0.05 Hz to 2 Hz. The repetition rate may be measured from recording of the oscilloscope measurement.
Another parameter to provide effective magnetic treatment and causing muscle contraction is a derivative of the magnetic flux density defined by dB/dt, where: dB is magnetic flux density derivative [T] and dt is time derivative [s]. The magnetic flux density derivative is related to magnetic field. The magnetic flux density derivative may be defined as the amount of induced electric current in the tissue and so it may serve as one of the key parameters to in providing muscle contraction. The higher the magnetic flux density derivative, the stronger muscle contraction is. The magnetic flux density derivative may be calculated from the equation mentioned above.
The maximal value of the magnetic flux density derivative may be up to 5 MT/s, or in the ranges of 0.3 to 800 kT/s, 0.5 to 400 kT/s, 1 to 300 kT/s, 1.5 to 250 kT/s, 2 to 200 kT/s, or 2.5 to 150 kT/s.
The frequency of the RF field (e.g. RF waves) may be in the range of hundreds of kHz to tens of GHz, e.g. in the range of 100 kHz to 3 GHz, or 500 kHz to 3 GHz, 400 kHz to 900 MHz or 500 kHz to 900 MHz or around 13.56 MHz, 40.68 MHz, 27.12 MHz, or 2.45 GHz.
An energy flux provided by RF field (e.g. RF waves) may be in the range of 0.001 W/cm2 to 1,500 W/cm2, or 0.001 W/cm2 to 15 W/cm2, or 0.01 W/cm2 to 1,000 W/cm2, or of 0.01 W/cm2 to 5 W/cm2, or of 0.08 W/cm2 to 1 W/cm2 or of 0.1 W/cm2 to 0.7 W/cm2. The term “around” should be interpreted as in the range of 5% of the recited value.
The voltage of electromagnetic signal provided by power source of treatment circuit for RF treatment may be in the range of 1 V to 5 kV, or 5 V to 140 V, or 10 V to 120 V, or 15 V to 50 V, or 20 V to 50 V.
The temperature in the biological structure, temperature on the surface of treated body area, temperature in the body area, temperature of the inside of the applicator, temperature of the RF electrode and/or temperature of the magnetic field generating device may be measured e.g. by the temperature sensor 816 implemented in the applicator shown in
At the beginning of the treatment a starting temperature on the patient's skin and/or in the biological structure may be increased to the starting temperature in range from 42° C. to 60° C., or from 45° C. to 54° C., or from 48° C. to 60° C., or from 48° C. to 52° C. and/or to a temperature 3° C., or 5° C., or 8° C. above the temperature when apoptotic process begins but not over 60° C. After 45 s to 360 s, or after 60 s to 300 s, or after 120 s to 400 s, or after 300 s to 500 s when the starting temperature was reached, the intensity of the RF field may be decreased and a temperature on the patient's skin and/or temperature in the biological structure may be maintained at the temperature in a range from 41° C. to 50° C., or from 42° C. to 48° C. According to another method of the treatment, the temperature of the biological structure may be during the treatment at least two times decreased and increased in a range of 2° C. to 10° C., 2° C. to 8° C., or 3° C. to 6° C. while at least one applicator is attached to the same patient's body area, such as an abdominal area, buttock, arm, leg and/or other body area.
Temperature in the biological structure may be calculated according to mathematic model, correlation function, in combination with at least one or more measured characteristic. Such measured characteristic may include temperature on the patient's skin, capacitance between RF electrodes, Volt-Ampere characteristic of RF bipolar electrodes and/or Volt-Ampere characteristic of connected electrical elements to RF electrodes.
The treatment duration may be from 5 minutes to 120 minutes, or from 5 minutes to 60 minutes, or from 15 minutes to 40 minutes. During one week, one, two or three treatments of the same body area may be provided. Also, one pause between two subsequent treatments may be one, two or three weeks.
The sum of energy flux density of the RF treatment and the magnetic treatment applied to the patient during the treatment, may be in a range from 0.03 mW/mm2 to 1.2 W/mm2, or in the range from 0.05 mW/mm2 to 0.9 W/mm2, or in the range from 0.01 mW/mm2 to 0.65 W/mm2. A portion of the energy flux density of magnetic treatment during the simultaneous application of RF treatment and active magnetic treatment may be in a range from 1% to 70%, 3% to 50%, 5% to 30%, or 1% to 20% of treatment time.
The power output of RF energy (i.e. RF field) provided by one RF electrode may be in a range of 0.005 W to 350 W or 0.1 W to 200 W or 0.1 W to 150 W.
Low repetition rate of the time-varying magnetic field pulses, e.g. in a range of 1 Hz to 15 Hz, may cause a twitch. Low repetition rate may be sufficiently low to enable the treated muscle to fully relax. The energy consumption of the treated muscle may be low due to low repetition rate. However, the low repetition rate may cause for active relaxation of muscle e.g. between two contractions.
Intermediate repetition rate of the time-varying magnetic field pulses may cause incomplete tetanus muscle contraction, intermediate repetition rate may be in a range of 15 Hz to 29 Hz. Incomplete tetanus muscle contraction may be defined by a repetition rate in a range of 10 Hz to 30 Hz. The muscle may not fully relax. The muscle may be partially relaxed. The muscle contraction strength may increase with constant magnetic flux density applied.
Higher repetition rate of the time-varying magnetic field pulses may cause complete tetanus muscle contraction. Higher repetition rates may be for example in a range of 30 Hz to 150 Hz, or 30 Hz to 90 Hz, or 30 Hz to 60 Hz. The complete tetanus muscle contraction may cause the strongest supramaximal muscle contraction. The supramaximal muscle contraction may be stronger than volitional muscle contraction. The energy consumption may be higher. The strengthening effect may be improved. Further, it is believed that at repetition rates of at least 30 Hz, the adipose cells may be reduced in volume and/or in number.
Even higher repetition rate of the time-varying magnetic field pulses over 90 Hz may suppress and/or block pain excitement transmission at different levels or neural system and/or pain receptors. The higher repetition rate may be at least 100 Hz, at least 120 Hz, or at least 140 Hz, or in a range of 100 Hz to 230 Hz, or 120 Hz to 200 Hz, or 140 Hz to 180 Hz. The application of time-varying magnetic field to the muscle of the patient may cause a pain relieving effect.
High repetition rate of the time-varying magnetic field pulses in a range of 120 Hz to 300 Hz, or 150 Hz to 250 Hz, or 180 Hz to 350 Hz, or higher than 200 Hz may cause a myorelaxation effect.
A quality of the muscle contraction caused by the time-varying magnetic field may be characterized by parameters such as a contractile force of the muscle contraction, a muscle-tendon length, a relative shortening of the muscle or a shortening velocity of the muscle.
The contractile force of the muscle contraction may reach a contractile force of at least 0.1 N/cm2 and up to 250 N/cm2. The contractile force may be in a range from 0.5 N/cm2 to 200 N/cm2, or in the range from 1 N/cm2 to 150 N/cm2, or in the range from 2 N/cm2 to 100 N/cm2.
The muscle-tendon length may reach up to 65% of a rest muscle-tendon length. The muscle-tendon length may be in a range of 1 to 65% of the rest muscle-tendon length, or in a range of 3 to 55% of the rest muscle-tendon length, or in a range of 5% to 50% of the rest muscle-tendon length.
The muscle may be shortened during the muscle contraction up to 60% of a resting muscle length. The muscle shortening may be in a range of 0.1% to 50% of the resting muscle length, or in the range of 0.5% to 40% of the resting muscle length, or in the range of 1% to 25% of the resting muscle length.
The muscle may shorten at a velocity of up to 10 cm/s. The muscle shortening velocity may be in a range of 0.1 cm/s to 7.5 cm/s, or in the range of 0.2 cm/s to 5 cm/s, or in the range of 0.5 cm/s to 3 cm/s.
A time-varying magnetic field may be applied to the patient in order to cause a muscle shaping effect by muscle contraction. The muscle may obtain increased tonus and/or volume. Strength of the muscle may increase as well.
Regarding the types of combined treatment by RF treatment and magnetic treatment, the treatment device may be configured to provide different treatment energies (e.g. RF field and magnetic field) in various time periods during one treatment session. The user may control or adjust the treatment through the HMI. HMI may be coupled to master unit and/or one or more control units. Also, the master unit and/or control unit may control or adjust application of different treatment energies according to treatment protocol, body area or another option selected by the user. In addition, the master unit and/or control unit may control or adjust application of different treatment energies according to feedback provided by any sensor mentioned above. Therefore, master unit and/or one or more control units may control or adjust the treatment and providing of treatment energies (e.g. RF treatment and magnetic treatment) in various time periods during one treatment session. All shown types of applications of magnetic treatment and RF treatment may be provided by treatment device.
One type of combined application of magnetic treatment with RF treatment may be simultaneous application. During simultaneous application both magnetic treatment and RF treatment may applied in same time during whole or most of treatment session. In one example, simultaneous application may be achieved by application of one or more sections of magnetic field with application of continuous RF field. In another example, pulsed magnetic treatment may be applied during continual RF treatment. In still another example, simultaneous application may be achieved by continual application of RF treatment together with e.g. one, or two long train of magnetic pulses. In such case, long train of magnetic pulses should include magnetic pulses having repetition rate of values in range of 1 Hz to 15 Hz or 1 Hz to 10 Hz. When only one or two long magnetic trains are used for the whole treatment session, train duration of such trains may be in the range of 5 s to 90 minutes or 10 s to 80 minutes or 15 minutes to 45 minutes.
Muscle contraction caused by the time-varying magnetic field with or during simultaneous RF treatment may include more affected muscle fibres. Also, the targeted biological structure (e.g. muscle) may be more contracted with applied lower magnetic flux density of magnetic field as compared to situation without simultaneous RF treatment.
Simultaneous application of the RF treatment and the magnetic treatment into the same body area may improve dissipation of heat created by the RF treatment. This effect is based on increased blood circulation in treated body area or vicinity of treated area. Also, induced muscle work may improve homogeneity of heating and dissipation of heat induced and provided by RF field.
Another type of combined application of magnetic treatment with RF treatment may be separate application. During separate application both magnetic treatment and RF treatment may applied in different time during treatment session. RF treatment may be provided before, after, and/or between magnetic envelopes, bursts, trains, pulses and/or impulses od magnetic treatment.
The ratio between a time when the magnetic treatment is applied and a time when the RF treatment is applied may be in a range of 0.2% to 80% or 2% to 60% or 5% to 50% or 20% to 60%. The time of applied magnetic treatment for this calculation is the sum of all pulse durations during the treatment.
Another type of combined application of magnetic treatment with RF treatment may be dependent application. Application of one treatment energy may be dependent on start or one or more treatment parameter of another treatment energy. Dependent application may be started or regulated according to feedback from one or more sensor. For example, start of application of RF treatment may be dependent on start of magnetic treatment or start of train, burst and/or envelope. When the thermal dissipation provided by a muscle work (including muscle contraction and/or relaxation) is not provided, health risk of unwanted tissue damage caused by overheating may occur. In another example, start of application of magnetic treatment may be dependent on the start, time duration or intensity of RF treatment. The magnetic treatment may preferably start after the biological structure is sufficiently heated. The magnetic treatment providing at least partial muscle contraction or muscle contraction may improve blood and lymph flow, provide massage of the adjacent tissues and provides better redistribution of the heat induced in the patient's body by the RF treatment.
The treatment protocol may be divided into two or more treatment sections. The number of treatment section may be in the range of 2 to 50 or 2 to 30 or 2 to 15 for one protocol.
Each treatment section of the treatment protocol may include different treatment parameters and/or types of combined treatment of magnetic treatment and RF treatment as described above.
One treatment section may last for a section time, wherein section time may be in a range of 10 s to 30 minutes or 15 s to 25 minutes or 20 s to 20 minutes. Different sections may have different treatment effects in one or more treated biological structures, e.g., a muscle and adipose tissue. For example, one treatment section may provide high intensity muscle exercise where muscle contractions are intensive and a high number of such contractions is provided, wherein a higher repetition rate of magnetic pulses with high energy flux density may be used during one treatment section. Another treatment section may have a muscle relaxation effect, wherein the low and/or the high repetition rate of magnetic pulses may be used and/or also lower magnetic flux density of magnetic field may be used.
Treatment protocol may include different setting of power output of RF treatment, as commanded or controlled by control system of the treatment device. One setting may be a constant power output, wherein the power output during the treatment protocol may be same. Another setting may be an oscillating power output of RF treatment. The power output of RF treatment may oscillate around predetermined value of power output in a range of 0.1% to 5% of predetermined power output. Still another setting may be a varying power output of RF energy, wherein the power output of RF treatment is varied during treatment protocol. The variation of power output of RF treatment may be provided in one or more power output variation steps, wherein one power output variation step may include one change of value of power output of RF treatment applied by one or more RF electrodes. The change of power output of RF treatment from one value to another value during power output variation step may be in the range of 0.1 W to 50 W or 0.1 W to 30 W or 0.1 W to 20 W. The power output variation step may have time duration in the range of 0.1 s to 10 min or 0.1 s to 5 min.
Regarding the variation of power output of RF energy, the power output of RF energy may have different values during different time period of treatment protocol. Therefore, RF treatment may have different value of power output during first time period followed by power output variation step followed by second time period having different value of power output of RF treatment. The first time period having one value of power output of RF treatment may be in a range of 1 s to 15 min or 10 s to 10 min. The second time period having another value of power output of RF treatment may be in a range of 1 s to 45 min or 4 s to 59 min or 5 s to 35 min. For example, RF treatment may have value of power output about 20 W during first time and 10 W during second time period.
First exemplary treatment protocol may include two treatment section. First treatment section may include envelopes of magnetic pulses, wherein the envelopes may include pulses having repetition rate in the range of 1 to 10 Hz. Envelopes of first treatment section may have rectangular or trapezoidal shape. Duration of first treatment section may be from 3 minutes to 15 minutes. Second treatment section may include envelopes of magnetic pulses, wherein the envelopes may include pulses having repetition rate in the range of 15 to 45 Hz. Envelopes of second treatment section may have rectangular or trapezoidal shape. Duration of first treatment section may be from 3 minutes to 15 minutes. The treatment sections may be repeated one after another. The RF treatment may be applied continuously during the whole treatment protocol. The RF treatment may include one or two power output variation steps.
Second exemplary treatment protocol may include three treatment section. First treatment section may include envelopes of magnetic pulses, wherein the envelopes may include pulses having repetition rate in the range of 5 to 50 Hz. Envelopes of first treatment section may have rectangular or trapezoidal shape. Duration of first treatment section may be from 3 minutes to 15 minutes. Second treatment section may include envelopes of magnetic pulses, wherein the envelopes may include pulses having repetition rate in the range of 15 to 45 Hz. Envelopes of second treatment section may have rectangular or trapezoidal shape. Duration of first treatment section may be from 3 minutes to 15 minutes. Third treatment section may include envelopes of magnetic pulses, wherein the envelopes may include pulses having repetition rate in the range of 10 to 40 Hz. Envelopes of third treatment section may have rectangular or trapezoidal shape. Duration of third treatment section may be from 3 minutes to 15 minutes. The treatment sections may be repeated one after another. The RF treatment may be applied continuously during the whole treatment protocol. The RF treatment may include one or two power output variation steps. The one power output variation step may be initiated in a range of 1 or 20 minutes after the start of the treatment protocol. In one example, the one power output variation step may be initiated three minutes after the start of the treatment protocol.
All of the examples, embodiments and methods may be used separately or in any combination.
Novel systems and methods have been described. The invention should be interpreted in the broadest sense, hence various changes and substitutions may be made of course without departing from the spirit and scope of the invention. The invention therefore should not be limited, except by the following claims and their equivalents.
Following patent applications are incorporated herein by reference in their entireties:
U.S. patent application Ser. No. 14/789,156 filed Jul. 1, 2015; U.S. patent application Ser. No. 14/789,658 filed Jul. 1, 2015; U.S. patent application Ser. No. 14/783,110 filed Oct. 1, 2015; U.S. patent application Ser. No. 14/926,365 filed Oct. 29, 2015; U.S. patent application Ser. No. 14/951,093 filed Nov. 24, 2015; U.S. patent application Ser. No. 15/073,318 filed Mar. 17, 2016; U.S. patent application Ser. No. 15/099,274 filed Apr. 14, 2016; U.S. patent application Ser. No. 15/151,012 filed May 10, 2016; U.S. patent application Ser. No. 15/344,811 filed Nov. 7, 2016; U.S. patent application Ser. No. 15/178,455 filed Jun. 9, 2016; U.S. patent application Ser. No. 15/396,073 filed Dec. 30, 2016; U.S. patent application Ser. No. 15/404,384 filed Jan. 12, 2017; U.S. Provisional Patent Application No. 62/357,679 filed Jul. 1, 2016; U.S. Provisional Patent Application No. 62/440,905 filed Dec. 30, 2016; U.S. Provisional Patent Application No. 62/440,912 filed Dec. 30, 2016; U.S. Provisional Patent Application No. 62/440,922 filed Dec. 30, 2016; U.S. Provisional Patent Application No. 62/441,805 filed Jan. 3, 2017; U.S. Provisional Patent Application No. 62/440,936 filed Dec. 30, 2016; U.S. Provisional Patent Application No. 62/440,940 filed Dec. 30, 2016; U.S. patent application Ser. No. 15/446,951 filed Mar. 1, 2017; U.S. patent application Ser. No. 15/473,390 filed Mar. 29, 2017; U.S. patent application Ser. No. 15/601,719 filed May 22, 2017; U.S. patent application Ser. No. 15/677,371 filed Aug. 15, 2017; U.S. patent application Ser. No. 15/860,443 filed Jan. 2, 2018; U.S. patent application Ser. No. 15/862,410 filed Jan. 4, 2018; U.S. patent application Ser. No. 15/954,783 filed Apr. 17, 2018; U.S. patent application Ser. No. 16/034,752 filed Jul. 13, 2018; U.S. patent application Ser. No. 16/034,793 filed Jul. 13, 2018; U.S. patent application Ser. No. 16/042,093 filed Jul. 23, 2018; U.S. patent application Ser. No. 16/196,798 filed Nov. 20, 2018; U.S. patent application Ser. No. 16/196,837 filed Nov. 20, 2018; U.S. patent application Ser. No. 16/218,735 filed Dec. 13, 2018; U.S. patent application Ser. No. 16/219,724 filed Dec. 13, 2018; U.S. Provisional Patent Application No. 62/786,731 filed Dec. 31, 2018; U.S. patent application Ser. No. 16/266,570 filed Feb. 4, 2019; U.S. patent application Ser. No. 16/266,494 filed Feb. 4, 2019; U.S. patent application Ser. No. 16/294,034 filed Mar. 6, 2019; U.S. patent application Ser. No. 16/560,790 filed Sep. 4, 2019; U.S. patent application Ser. No. 16/567,866 filed Sep. 11, 2019; U.S. patent application Ser. No. 16/664,524 filed Oct. 25, 2019; U.S. patent application Ser. No. 16/673,784 filed Nov. 4, 2019; U.S. patent application Ser. No. 16/673,683 filed Nov. 4, 2019; U.S. patent application Ser. No. 16/674,144 filed Nov. 5, 2019; U.S. patent application Ser. No. 16/827,330 filed Mar. 23, 2020 and International Patent Application No. PCT/IB/2016/053930 filed Jun. 30, 2016.
List of abbreviations related to
PS power source
ESD (A/B) energy storage device
SW (A/B) switch
HIFEM (A/B) treatment cluster for magnetic treatment
MFGD (A/B) magnetic field generating device
CUM (A/B) control unit of magnetic circuit
APS RF auxiliary power source of RF circuit
PU power unit
SPSRF steady power source of RF circuit
PNFLT power network filter
PSRF power source for RF treatment
RF (A/B) treatment cluster for RF treatment
SYM (A/B) symmetrisation element
AP (A/B) applicator
RFE (A/B) RF electrode
APS (A/B) auxiliary power source
PSM power source for magnetic treatment
BPS (A/B) board power source
SPSM steady power source of magnetic circuit
PN power network
PF pulse filter
SE safety element
PA power amplifier
CURF control unit of RF circuit
This application is a Continuation of U.S. application Ser. No. 16/844,822, filed Apr. 9, 2020, which claims the benefit of U.S. Provisional Application No. 62/832,738, filed Apr. 11, 2019; U.S. Provisional Application No. 62/832,688, filed Apr. 11, 2019; and U.S. Provisional Application No. 62/932,259, filed Nov. 7, 2019, all of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
1973387 | Neymann et al. | Sep 1934 | A |
2021676 | Wood et al. | Nov 1935 | A |
3163161 | Jacques et al. | Dec 1964 | A |
3566877 | Smith et al. | Mar 1971 | A |
3658051 | Maclean et al. | Apr 1972 | A |
3841306 | Hallgren et al. | Oct 1974 | A |
3915151 | Kraus | Oct 1975 | A |
3946349 | Haldeman, III | Mar 1976 | A |
3952751 | Yarger | Apr 1976 | A |
3971387 | Mantell | Jul 1976 | A |
4068292 | Berry et al. | Jan 1978 | A |
4143661 | LaForge et al. | Mar 1979 | A |
4197851 | Fellus | Apr 1980 | A |
4237898 | Whalley | Dec 1980 | A |
4305115 | Armitage | Dec 1981 | A |
4315503 | Ryaby et al. | Feb 1982 | A |
4392040 | Rand et al. | Jul 1983 | A |
4454883 | Fellus | Jun 1984 | A |
4456001 | Pescatore | Jun 1984 | A |
4550714 | Talish et al. | Nov 1985 | A |
4556056 | Fischer et al. | Dec 1985 | A |
4665898 | Costa et al. | May 1987 | A |
4674482 | Waltonen et al. | Jun 1987 | A |
4674505 | Pauli et al. | Jun 1987 | A |
4723536 | Rauscher et al. | Feb 1988 | A |
4850959 | Findl | Jul 1989 | A |
4889526 | Rauscher et al. | Dec 1989 | A |
4957480 | Morenings | Sep 1990 | A |
4989604 | Fang | Feb 1991 | A |
4993413 | Mcleod et al. | Feb 1991 | A |
5061234 | Chaney | Oct 1991 | A |
5067940 | Liboff et al. | Nov 1991 | A |
5085626 | Frey | Feb 1992 | A |
5143063 | Fellner | Sep 1992 | A |
5156587 | Montone | Oct 1992 | A |
5181902 | Erickson et al. | Jan 1993 | A |
5199951 | Spears | Apr 1993 | A |
5334181 | Rubinsky et al. | Aug 1994 | A |
5344384 | Ostrow et al. | Sep 1994 | A |
5401233 | Erickson et al. | Mar 1995 | A |
5415617 | Kraus | May 1995 | A |
5419344 | Dewitt | May 1995 | A |
5433737 | Aimone | Jul 1995 | A |
5433740 | Yamaguchi | Jul 1995 | A |
5584863 | Rauch et al. | Dec 1996 | A |
5620463 | Drolet | Apr 1997 | A |
5660836 | Knowlton | Aug 1997 | A |
5674218 | Rubinsky et al. | Oct 1997 | A |
5690692 | Fleming | Nov 1997 | A |
5691873 | Masaki | Nov 1997 | A |
5718662 | Jalinous | Feb 1998 | A |
5725471 | Davey et al. | Mar 1998 | A |
5755753 | Knowlton | May 1998 | A |
5766124 | Polson | Jun 1998 | A |
5782743 | Russell | Jul 1998 | A |
5807232 | Espinoza et al. | Sep 1998 | A |
5857957 | Lin | Jan 1999 | A |
5908444 | Azure | Jun 1999 | A |
5919219 | Knowlton | Jul 1999 | A |
5968527 | Litovitz | Oct 1999 | A |
5984854 | Ishikawa et al. | Nov 1999 | A |
6017337 | Pira | Jan 2000 | A |
6032675 | Rubinsky | Mar 2000 | A |
6038485 | Axelgaard | Mar 2000 | A |
6047215 | McClure et al. | Apr 2000 | A |
6063108 | Salansky et al. | May 2000 | A |
6067474 | Schulman et al. | May 2000 | A |
6086525 | Davey et al. | Jul 2000 | A |
6094599 | Bingham et al. | Jul 2000 | A |
6099459 | Jacobson | Aug 2000 | A |
6099523 | Kim et al. | Aug 2000 | A |
6117066 | Abrams et al. | Sep 2000 | A |
6132361 | Epstein et al. | Oct 2000 | A |
6141985 | Cluzeau et al. | Nov 2000 | A |
6155966 | Parker | Dec 2000 | A |
6161757 | Morris | Dec 2000 | A |
6179769 | Ishikawa et al. | Jan 2001 | B1 |
6179770 | Mould | Jan 2001 | B1 |
6179771 | Mueller | Jan 2001 | B1 |
6200259 | March | Mar 2001 | B1 |
6213933 | Lin | Apr 2001 | B1 |
6223750 | Ishikawa et al. | May 2001 | B1 |
6246905 | Mogul | Jun 2001 | B1 |
6255815 | Davey | Jul 2001 | B1 |
6261301 | Knesch et al. | Jul 2001 | B1 |
6273862 | Privitera et al. | Aug 2001 | B1 |
6273884 | Altshuler et al. | Aug 2001 | B1 |
6280376 | Holcomb | Aug 2001 | B1 |
6282448 | Katz et al. | Aug 2001 | B1 |
D447806 | Davey et al. | Sep 2001 | S |
6311090 | Knowlton | Oct 2001 | B1 |
6324430 | Zarinetchi et al. | Nov 2001 | B1 |
6324432 | Rigaux et al. | Nov 2001 | B1 |
6334069 | George et al. | Dec 2001 | B1 |
6334074 | Spertell | Dec 2001 | B1 |
6350276 | Knowlton | Feb 2002 | B1 |
6402678 | Fischell et al. | Jun 2002 | B1 |
6413255 | Stern | Jul 2002 | B1 |
6418345 | Tepper et al. | Jul 2002 | B1 |
6424864 | Matsuura | Jul 2002 | B1 |
6425852 | Epstein et al. | Jul 2002 | B1 |
6443883 | Ostrow et al. | Sep 2002 | B1 |
6445955 | Michelson et al. | Sep 2002 | B1 |
6447440 | Markoll | Sep 2002 | B1 |
6453202 | Knowlton | Sep 2002 | B1 |
6461375 | Baudry et al. | Oct 2002 | B1 |
6491620 | Davey | Dec 2002 | B1 |
6500110 | Davey et al. | Dec 2002 | B1 |
6520903 | Yamashiro | Feb 2003 | B1 |
6527694 | Ishikawa et al. | Mar 2003 | B1 |
6527695 | Davey et al. | Mar 2003 | B1 |
6537197 | Ruohonen et al. | Mar 2003 | B1 |
6569078 | Ishikawa et al. | May 2003 | B2 |
6605080 | Altshuler et al. | Aug 2003 | B1 |
6635053 | Lalonde et al. | Oct 2003 | B1 |
6658301 | Loeb et al. | Dec 2003 | B2 |
6662054 | Kreindel et al. | Dec 2003 | B2 |
6663556 | Barker | Dec 2003 | B2 |
6663659 | McDaniel | Dec 2003 | B2 |
6701185 | Burnett et al. | Mar 2004 | B2 |
6735481 | Bingham et al. | May 2004 | B1 |
6738667 | Deno et al. | May 2004 | B2 |
6749624 | Knowlton | Jun 2004 | B2 |
6827681 | Tanner et al. | Dec 2004 | B2 |
6849040 | Ruohonen et al. | Feb 2005 | B2 |
6860852 | Schonenberger et al. | Mar 2005 | B2 |
6871099 | Whitehurst et al. | Mar 2005 | B1 |
6879859 | Boveja | Apr 2005 | B1 |
6889090 | Kreindel | May 2005 | B2 |
6920883 | Bessette et al. | Jul 2005 | B2 |
6939287 | Ardizzone et al. | Sep 2005 | B1 |
6960202 | Cluzeau et al. | Nov 2005 | B2 |
6990427 | Kirsch et al. | Jan 2006 | B2 |
7024239 | George et al. | Apr 2006 | B2 |
7030764 | Smith et al. | Apr 2006 | B2 |
7041100 | Kreindel | May 2006 | B2 |
7083580 | Bernabei | Aug 2006 | B2 |
7186209 | Jacobson et al. | Mar 2007 | B2 |
7217265 | Hennings et al. | May 2007 | B2 |
7276058 | Altshuler et al. | Oct 2007 | B2 |
7309309 | Wang et al. | Dec 2007 | B2 |
7318821 | Lalonde et al. | Jan 2008 | B2 |
7351252 | Altshuler et al. | Apr 2008 | B2 |
7367341 | Anderson et al. | May 2008 | B2 |
7369895 | Hurtado | May 2008 | B2 |
7372271 | Roozen et al. | May 2008 | B2 |
7376460 | Bernabei | May 2008 | B2 |
7396326 | Ghiron et al. | Jul 2008 | B2 |
7496401 | Bernabei | Feb 2009 | B2 |
7520849 | Simon | Apr 2009 | B1 |
7520875 | Bernabei | Apr 2009 | B2 |
7532926 | Bernabei | May 2009 | B2 |
7571003 | Pozzato | Aug 2009 | B2 |
7591776 | Phillips et al. | Sep 2009 | B2 |
7601115 | Riehl | Oct 2009 | B2 |
7608035 | Farone | Oct 2009 | B2 |
7618429 | Mulholland | Nov 2009 | B2 |
7630774 | Karni et al. | Dec 2009 | B2 |
7643883 | Kreindel | Jan 2010 | B2 |
7697998 | Axelgaard | Apr 2010 | B2 |
7699768 | Kishawi et al. | Apr 2010 | B2 |
7740574 | Pilla et al. | Jun 2010 | B2 |
7744523 | Epstein | Jun 2010 | B2 |
7783348 | Gill et al. | Aug 2010 | B2 |
7785358 | Lach | Aug 2010 | B2 |
7854754 | Ting et al. | Dec 2010 | B2 |
7909786 | Bonnefin et al. | Mar 2011 | B2 |
7914469 | Torbati | Mar 2011 | B2 |
7945321 | Bernabei | May 2011 | B2 |
7946973 | Peterchev | May 2011 | B2 |
7953500 | Bingham et al. | May 2011 | B2 |
7998053 | Aho | Aug 2011 | B2 |
8035385 | Tomiha et al. | Oct 2011 | B2 |
RE43007 | Lalonde et al. | Dec 2011 | E |
8088058 | Juliana et al. | Jan 2012 | B2 |
8128549 | Testani et al. | Mar 2012 | B2 |
8133191 | Rosenberg et al. | Mar 2012 | B2 |
8137258 | Dennis et al. | Mar 2012 | B1 |
8172835 | Leyh et al. | May 2012 | B2 |
8192474 | Levinson | Jun 2012 | B2 |
8204446 | Scheer et al. | Jun 2012 | B2 |
8251986 | Chornenky et al. | Aug 2012 | B2 |
8265763 | Fahey | Sep 2012 | B2 |
8271090 | Hartman et al. | Sep 2012 | B1 |
8275442 | Allison | Sep 2012 | B2 |
8285390 | Levinson et al. | Oct 2012 | B2 |
8335566 | Muller et al. | Dec 2012 | B2 |
8337539 | Ting et al. | Dec 2012 | B2 |
8366756 | Tucek et al. | Feb 2013 | B2 |
8376825 | Guinn et al. | Feb 2013 | B2 |
8376925 | Dennis et al. | Feb 2013 | B1 |
8454591 | Leyh et al. | Jun 2013 | B2 |
8457751 | Pozzato | Jun 2013 | B2 |
8475354 | Phillips et al. | Jul 2013 | B2 |
8523927 | Levinson et al. | Sep 2013 | B2 |
8548599 | Zarsky et al. | Oct 2013 | B2 |
8565888 | Buhlmann et al. | Oct 2013 | B2 |
8579953 | Dunbar et al. | Nov 2013 | B1 |
8588930 | DiUbaldi et al. | Nov 2013 | B2 |
8593245 | Zeng et al. | Nov 2013 | B2 |
8603073 | Allison | Dec 2013 | B2 |
8646239 | Rulon | Feb 2014 | B2 |
8666492 | Muller et al. | Mar 2014 | B2 |
8676338 | Levinson | Mar 2014 | B2 |
8684901 | Zabara | Apr 2014 | B1 |
8700176 | Azar et al. | Apr 2014 | B2 |
8702774 | Baker et al. | Apr 2014 | B2 |
8725270 | Towe | May 2014 | B2 |
8771326 | Myeong et al. | Jul 2014 | B2 |
8788060 | Nebrigic et al. | Jul 2014 | B2 |
8795148 | Schneider et al. | Aug 2014 | B2 |
8834547 | Anderson et al. | Sep 2014 | B2 |
8840608 | Anderson et al. | Sep 2014 | B2 |
8864641 | Riehl et al. | Oct 2014 | B2 |
8868177 | Simon et al. | Oct 2014 | B2 |
8906009 | Nebrigic et al. | Dec 2014 | B2 |
8915948 | Altshuler et al. | Dec 2014 | B2 |
8932338 | Lim et al. | Jan 2015 | B2 |
8979727 | Ron et al. | Mar 2015 | B2 |
8985331 | Guenter et al. | Mar 2015 | B2 |
8998791 | Ron Edoute et al. | Apr 2015 | B2 |
9002477 | Burnett | Apr 2015 | B2 |
9028469 | Jones et al. | May 2015 | B2 |
9037247 | Simon et al. | May 2015 | B2 |
9044595 | Araya et al. | Jun 2015 | B2 |
9061128 | Hall et al. | Jun 2015 | B2 |
9072891 | Rao | Jul 2015 | B1 |
9078634 | Gonzales et al. | Jul 2015 | B2 |
9089719 | Simon et al. | Jul 2015 | B2 |
9101524 | Aghion | Aug 2015 | B2 |
9132031 | Levinson et al. | Sep 2015 | B2 |
9149650 | Shanks et al. | Oct 2015 | B2 |
9168096 | Kreindel | Oct 2015 | B2 |
9233257 | Zabara | Jan 2016 | B1 |
9254395 | Shambayati | Feb 2016 | B1 |
9261574 | Boskamp et al. | Feb 2016 | B2 |
9265690 | Kriksunov et al. | Feb 2016 | B2 |
9308120 | Anderson et al. | Apr 2016 | B2 |
9314368 | Allison et al. | Apr 2016 | B2 |
9326910 | Eckhouse et al. | May 2016 | B2 |
9339641 | Rajguru et al. | May 2016 | B2 |
9358068 | Schomacker et al. | Jun 2016 | B2 |
9358149 | Anderson et al. | Jun 2016 | B2 |
9375345 | Levinson et al. | Jun 2016 | B2 |
9387339 | Sham et al. | Jul 2016 | B2 |
9398975 | Müller et al. | Jul 2016 | B2 |
9408745 | Levinson et al. | Aug 2016 | B2 |
9414759 | Lang et al. | Aug 2016 | B2 |
9433797 | Pilla et al. | Sep 2016 | B2 |
9439805 | Gonzales et al. | Sep 2016 | B2 |
9446258 | Schwarz | Sep 2016 | B1 |
9468774 | Zarsky et al. | Oct 2016 | B2 |
9532832 | Ron Edoute et al. | Jan 2017 | B2 |
9545523 | Nanda | Jan 2017 | B2 |
9561357 | Hall et al. | Feb 2017 | B2 |
9586057 | Ladman et al. | Mar 2017 | B2 |
9596920 | Shalev et al. | Mar 2017 | B2 |
9610429 | Harris et al. | Apr 2017 | B2 |
9610459 | Burnett et al. | Apr 2017 | B2 |
9615854 | Matsushita | Apr 2017 | B2 |
9636516 | Schwarz | May 2017 | B2 |
9636519 | Ladman et al. | May 2017 | B2 |
9649220 | Anderson et al. | May 2017 | B2 |
9655770 | Levinson et al. | May 2017 | B2 |
9694194 | Ron Edoute et al. | Jul 2017 | B2 |
9737238 | Wright et al. | Aug 2017 | B2 |
9737434 | Allison | Aug 2017 | B2 |
9757584 | Burnett | Sep 2017 | B2 |
9782324 | Crunick et al. | Oct 2017 | B2 |
9814897 | Ron Edoute et al. | Nov 2017 | B2 |
9844460 | Weber et al. | Dec 2017 | B2 |
9844461 | Levinson et al. | Dec 2017 | B2 |
9855166 | Anderson et al. | Jan 2018 | B2 |
9861421 | O'Neil et al. | Jan 2018 | B2 |
9861520 | Baker et al. | Jan 2018 | B2 |
9867996 | Zarsky et al. | Jan 2018 | B2 |
9901743 | Ron Edoute et al. | Feb 2018 | B2 |
9919161 | Schwarz et al. | Mar 2018 | B2 |
9937358 | Schwarz et al. | Apr 2018 | B2 |
9962553 | Schwarz et al. | May 2018 | B2 |
9968797 | Sham et al. | May 2018 | B2 |
9974519 | Schwarz et al. | May 2018 | B1 |
9974684 | Anderson et al. | May 2018 | B2 |
9980765 | Avram et al. | May 2018 | B2 |
9981143 | Ron Edoute et al. | May 2018 | B2 |
9999780 | Weyh et al. | Jun 2018 | B2 |
10037867 | Godyak | Jul 2018 | B2 |
10039929 | Schwarz et al. | Aug 2018 | B1 |
10080906 | Schwarz | Sep 2018 | B2 |
10092346 | Levinson | Oct 2018 | B2 |
10111770 | Harris et al. | Oct 2018 | B2 |
10111774 | Gonzales et al. | Oct 2018 | B2 |
10124187 | Schwarz et al. | Nov 2018 | B2 |
10183172 | Ghiron et al. | Jan 2019 | B2 |
10195453 | Schwarz et al. | Feb 2019 | B2 |
10195454 | Yamashiro | Feb 2019 | B2 |
10201380 | Debenedictis et al. | Feb 2019 | B2 |
10245439 | Schwarz et al. | Apr 2019 | B1 |
10271900 | Marchitto et al. | Apr 2019 | B2 |
10342988 | Midorikawa et al. | Jul 2019 | B2 |
10413745 | Riehl | Sep 2019 | B2 |
10463869 | Ron Edoute et al. | Nov 2019 | B2 |
10471269 | Schwarz et al. | Nov 2019 | B1 |
10478588 | Walpole et al. | Nov 2019 | B2 |
10478633 | Schwarz et al. | Nov 2019 | B2 |
10478634 | Schwarz et al. | Nov 2019 | B2 |
10493293 | Schwarz et al. | Dec 2019 | B2 |
10518098 | Hong et al. | Dec 2019 | B2 |
10549109 | Schwarz et al. | Feb 2020 | B2 |
10549110 | Schwarz et al. | Feb 2020 | B1 |
10556121 | Gurfein | Feb 2020 | B2 |
10556122 | Schwarz et al. | Feb 2020 | B1 |
10569094 | Schwarz et al. | Feb 2020 | B2 |
10569095 | Schwarz et al. | Feb 2020 | B1 |
10583287 | Schwarz | Mar 2020 | B2 |
10596386 | Schwarz et al. | Mar 2020 | B2 |
10610696 | Peled | Apr 2020 | B1 |
10632321 | Schwarz et al. | Apr 2020 | B2 |
10639490 | Simon et al. | May 2020 | B2 |
10661093 | Ron Edoute et al. | May 2020 | B2 |
1068831 | Worthington | Jun 2020 | A1 |
10675819 | Li et al. | Jun 2020 | B2 |
10688310 | Schwarz et al. | Jun 2020 | B2 |
10695575 | Schwarz et al. | Jun 2020 | B1 |
10695576 | Schwarz et al. | Jun 2020 | B2 |
10709894 | Schwarz et al. | Jul 2020 | B2 |
10709895 | Schwarz et al. | Jul 2020 | B2 |
10806943 | Sokolowski | Oct 2020 | B2 |
10821295 | Schwarz et al. | Nov 2020 | B1 |
10849784 | Jurna et al. | Dec 2020 | B2 |
11141219 | Schwarz | Oct 2021 | B1 |
11185690 | Schwarz | Nov 2021 | B2 |
11247039 | Schwarz | Feb 2022 | B2 |
20010018547 | Mechlenburg et al. | Aug 2001 | A1 |
20010031906 | Ishikawa et al. | Oct 2001 | A1 |
20020010414 | Coston et al. | Jan 2002 | A1 |
20020049483 | Knowlton | Apr 2002 | A1 |
20020082466 | Han | Jun 2002 | A1 |
20020128686 | Minogue et al. | Sep 2002 | A1 |
20020143365 | Herbst | Oct 2002 | A1 |
20020160436 | Markov et al. | Oct 2002 | A1 |
20020165590 | Crowe et al. | Nov 2002 | A1 |
20030028072 | Fischell et al. | Feb 2003 | A1 |
20030032900 | Ella | Feb 2003 | A1 |
20030032950 | Altshuler et al. | Feb 2003 | A1 |
20030050527 | Fox et al. | Mar 2003 | A1 |
20030074037 | Moore et al. | Apr 2003 | A1 |
20030078646 | Axelgaard | Apr 2003 | A1 |
20030093133 | Crowe et al. | May 2003 | A1 |
20030130711 | Pearson et al. | Jul 2003 | A1 |
20030149451 | Chomenky et al. | Aug 2003 | A1 |
20030153958 | Yamazaki et al. | Aug 2003 | A1 |
20030158585 | Burnett | Aug 2003 | A1 |
20030216729 | Marchitto et al. | Nov 2003 | A1 |
20030220674 | Anderson et al. | Nov 2003 | A1 |
20030236487 | Knowlton | Dec 2003 | A1 |
20040015163 | Buysse et al. | Jan 2004 | A1 |
20040034346 | Stern et al. | Feb 2004 | A1 |
20040039279 | Ruohonen | Feb 2004 | A1 |
20040073079 | Altshuler et al. | Apr 2004 | A1 |
20040077977 | Ella et al. | Apr 2004 | A1 |
20040093042 | Altshuler et al. | May 2004 | A1 |
20040102768 | Cluzeau et al. | May 2004 | A1 |
20040162583 | Bingham et al. | Aug 2004 | A1 |
20040193003 | Mechlenburg et al. | Sep 2004 | A1 |
20040206365 | Knowlton | Oct 2004 | A1 |
20040210214 | Knowlton | Oct 2004 | A1 |
20040210282 | Flock et al. | Oct 2004 | A1 |
20040210287 | Greene | Oct 2004 | A1 |
20040230226 | Bingham et al. | Nov 2004 | A1 |
20050038313 | Ardizzone | Feb 2005 | A1 |
20050049543 | Anderson et al. | Mar 2005 | A1 |
20050075701 | Shafer | Apr 2005 | A1 |
20050075702 | Shafer | Apr 2005 | A1 |
20050090814 | Lalonde et al. | Apr 2005 | A1 |
20050107656 | Jang et al. | May 2005 | A1 |
20050134193 | Myers et al. | Jun 2005 | A1 |
20050187599 | Sharkey et al. | Aug 2005 | A1 |
20050203504 | Wham et al. | Sep 2005 | A1 |
20050215987 | Slatkine | Sep 2005 | A1 |
20050216062 | Herbst | Sep 2005 | A1 |
20050251120 | Anderson et al. | Nov 2005 | A1 |
20060004244 | Phillips et al. | Jan 2006 | A1 |
20060020236 | Ben-Nun | Jan 2006 | A1 |
20060036300 | Kreindel | Feb 2006 | A1 |
20060094924 | Riehl | May 2006 | A1 |
20060106375 | Werneth et al. | May 2006 | A1 |
20060152301 | Rohwedder | Jul 2006 | A1 |
20060184214 | McDaniel | Aug 2006 | A1 |
20060187607 | Mo | Aug 2006 | A1 |
20060195168 | Dunbar et al. | Aug 2006 | A1 |
20060199992 | Eisenberg et al. | Sep 2006 | A1 |
20060206103 | Altshuler et al. | Sep 2006 | A1 |
20060206180 | Alcidi | Sep 2006 | A1 |
20060253176 | Caruso et al. | Nov 2006 | A1 |
20060259102 | Slatkine | Nov 2006 | A1 |
20060271028 | Altshuler et al. | Nov 2006 | A1 |
20060287566 | Zangen et al. | Dec 2006 | A1 |
20060293719 | Naghavi | Dec 2006 | A1 |
20070010766 | Gil et al. | Jan 2007 | A1 |
20070010861 | Anderson et al. | Jan 2007 | A1 |
20070016274 | Boveja et al. | Jan 2007 | A1 |
20070027411 | Ella et al. | Feb 2007 | A1 |
20070083237 | Teruel | Apr 2007 | A1 |
20070088413 | Weber et al. | Apr 2007 | A1 |
20070088419 | Fiorina et al. | Apr 2007 | A1 |
20070135811 | Hooven | Jun 2007 | A1 |
20070142886 | Fischell et al. | Jun 2007 | A1 |
20070173749 | Williams et al. | Jul 2007 | A1 |
20070173805 | Weinberg et al. | Jul 2007 | A1 |
20070179534 | Firlik et al. | Aug 2007 | A1 |
20070198071 | Ting et al. | Aug 2007 | A1 |
20070232966 | Applebaum et al. | Oct 2007 | A1 |
20070244530 | Ren | Oct 2007 | A1 |
20070255355 | Altshuler et al. | Nov 2007 | A1 |
20070255362 | Levinson et al. | Nov 2007 | A1 |
20070260107 | Mishelevich et al. | Nov 2007 | A1 |
20070270795 | Francischelli et al. | Nov 2007 | A1 |
20070270925 | Levinson | Nov 2007 | A1 |
20070282156 | Konings | Dec 2007 | A1 |
20070293911 | Crowe et al. | Dec 2007 | A1 |
20070293918 | Thompson et al. | Dec 2007 | A1 |
20080009885 | Del Giglio | Jan 2008 | A1 |
20080046053 | Wagner et al. | Feb 2008 | A1 |
20080077201 | Levinson et al. | Mar 2008 | A1 |
20080077202 | Levinson | Mar 2008 | A1 |
20080077211 | Levinson et al. | Mar 2008 | A1 |
20080082094 | McPherson et al. | Apr 2008 | A1 |
20080082153 | Gadsby et al. | Apr 2008 | A1 |
20080103565 | Altshuler et al. | May 2008 | A1 |
20080132971 | Pille et al. | Jun 2008 | A1 |
20080183251 | Azar et al. | Jul 2008 | A1 |
20080188915 | Mills et al. | Aug 2008 | A1 |
20080228520 | Day et al. | Sep 2008 | A1 |
20080234534 | Mikas et al. | Sep 2008 | A1 |
20080249350 | Marchitto et al. | Oct 2008 | A1 |
20080255572 | Zeller et al. | Oct 2008 | A1 |
20080255637 | Oishi | Oct 2008 | A1 |
20080262287 | Dussau | Oct 2008 | A1 |
20080262574 | Briefs et al. | Oct 2008 | A1 |
20080287839 | Rosen et al. | Nov 2008 | A1 |
20080287948 | Newton et al. | Nov 2008 | A1 |
20080306325 | Burnett et al. | Dec 2008 | A1 |
20080306326 | Epstein | Dec 2008 | A1 |
20080312647 | Knopp et al. | Dec 2008 | A1 |
20090005631 | Simenhaus et al. | Jan 2009 | A1 |
20090018384 | Boyden et al. | Jan 2009 | A1 |
20090018623 | Levinson et al. | Jan 2009 | A1 |
20090018624 | Levinson et al. | Jan 2009 | A1 |
20090018625 | Levinson et al. | Jan 2009 | A1 |
20090018626 | Levinson et al. | Jan 2009 | A1 |
20090018627 | Levinson et al. | Jan 2009 | A1 |
20090018628 | Burns et al. | Jan 2009 | A1 |
20090024192 | Mulholland | Jan 2009 | A1 |
20090024193 | Altshuler et al. | Jan 2009 | A1 |
20090036958 | Mehta | Feb 2009 | A1 |
20090043293 | Pankratov et al. | Feb 2009 | A1 |
20090099405 | Schneider et al. | Apr 2009 | A1 |
20090108969 | Sims et al. | Apr 2009 | A1 |
20090118722 | Ebbers et al. | May 2009 | A1 |
20090118790 | Van Herk | May 2009 | A1 |
20090149300 | Chen | Jun 2009 | A1 |
20090149929 | Levinson et al. | Jun 2009 | A1 |
20090149930 | Schenck | Jun 2009 | A1 |
20090156958 | Mehta et al. | Jun 2009 | A1 |
20090221938 | Rosenberg et al. | Sep 2009 | A1 |
20090227831 | Burnett et al. | Sep 2009 | A1 |
20090234423 | Vetanze | Sep 2009 | A1 |
20090248004 | Altshuler et al. | Oct 2009 | A1 |
20090254154 | De Taboada et al. | Oct 2009 | A1 |
20090270945 | Markoll et al. | Oct 2009 | A1 |
20090284339 | Choi et al. | Nov 2009 | A1 |
20090306648 | Podhajsky et al. | Dec 2009 | A1 |
20090326571 | Mulholland | Dec 2009 | A1 |
20100004536 | Rosenberg | Jan 2010 | A1 |
20100004715 | Fahey | Jan 2010 | A1 |
20100016761 | Rosenberg | Jan 2010 | A1 |
20100036191 | Walter et al. | Feb 2010 | A1 |
20100036368 | England et al. | Feb 2010 | A1 |
20100049188 | Nelson et al. | Feb 2010 | A1 |
20100069704 | Peterchev | Mar 2010 | A1 |
20100081971 | Allison | Apr 2010 | A1 |
20100087699 | Peterchev | Apr 2010 | A1 |
20100087816 | Roy | Apr 2010 | A1 |
20100121131 | Mathes | May 2010 | A1 |
20100130945 | Laniado et al. | May 2010 | A1 |
20100145399 | Johari et al. | Jun 2010 | A1 |
20100152522 | Roth et al. | Jun 2010 | A1 |
20100152824 | Allison | Jun 2010 | A1 |
20100160712 | Burnett et al. | Jun 2010 | A1 |
20100168501 | Burnett et al. | Jul 2010 | A1 |
20100179372 | Glassman | Jul 2010 | A1 |
20100185042 | Schneider et al. | Jul 2010 | A1 |
20100217253 | Mehta | Aug 2010 | A1 |
20100222629 | Burnett et al. | Sep 2010 | A1 |
20100228250 | Brogna | Sep 2010 | A1 |
20100256438 | Mishelevich et al. | Oct 2010 | A1 |
20100256439 | Schneider et al. | Oct 2010 | A1 |
20100261992 | Axelgaard | Oct 2010 | A1 |
20100274327 | Carroll et al. | Oct 2010 | A1 |
20100274329 | Bradley et al. | Oct 2010 | A1 |
20100280582 | Baker et al. | Nov 2010 | A1 |
20100286470 | Schneider et al. | Nov 2010 | A1 |
20100286691 | Kerr et al. | Nov 2010 | A1 |
20100298623 | Mishelevich et al. | Nov 2010 | A1 |
20100309689 | Coulson | Dec 2010 | A1 |
20100324611 | Deming et al. | Dec 2010 | A1 |
20100331602 | Mishelevich et al. | Dec 2010 | A1 |
20100331603 | Szecsi | Dec 2010 | A1 |
20110004261 | Sham et al. | Jan 2011 | A1 |
20110007745 | Schultz et al. | Jan 2011 | A1 |
20110009737 | Manstein | Jan 2011 | A1 |
20110015464 | Riehl et al. | Jan 2011 | A1 |
20110021863 | Burnett et al. | Jan 2011 | A1 |
20110046432 | Simon et al. | Feb 2011 | A1 |
20110046523 | Altshuler et al. | Feb 2011 | A1 |
20110066216 | Ting et al. | Mar 2011 | A1 |
20110077451 | Marchitto et al. | Mar 2011 | A1 |
20110082383 | Cory et al. | Apr 2011 | A1 |
20110087312 | Shanks et al. | Apr 2011 | A1 |
20110105826 | Mishelevich et al. | May 2011 | A1 |
20110112520 | Michael | May 2011 | A1 |
20110118722 | Lischinsky et al. | May 2011 | A1 |
20110125203 | Simon et al. | May 2011 | A1 |
20110130618 | Ron et al. | Jun 2011 | A1 |
20110130713 | Dufay | Jun 2011 | A1 |
20110130796 | Louise | Jun 2011 | A1 |
20110152967 | Simon et al. | Jun 2011 | A1 |
20110172735 | Johari | Jul 2011 | A1 |
20110172752 | Bingham et al. | Jul 2011 | A1 |
20110190569 | Simon et al. | Aug 2011 | A1 |
20110196438 | Mnozil et al. | Aug 2011 | A1 |
20110202058 | Eder et al. | Aug 2011 | A1 |
20110218464 | Iger | Sep 2011 | A1 |
20110224761 | Manstein | Sep 2011 | A1 |
20110237921 | Askin, III et al. | Sep 2011 | A1 |
20110238050 | Allison et al. | Sep 2011 | A1 |
20110238051 | Levinson et al. | Sep 2011 | A1 |
20110245900 | Turner et al. | Oct 2011 | A1 |
20110263925 | Bratton | Oct 2011 | A1 |
20110273251 | Mishelevich et al. | Nov 2011 | A1 |
20110275927 | Wagner et al. | Nov 2011 | A1 |
20110276108 | Crowe et al. | Nov 2011 | A1 |
20110300079 | Martens et al. | Dec 2011 | A1 |
20110306943 | Dunbar et al. | Dec 2011 | A1 |
20110319700 | Schneider | Dec 2011 | A1 |
20120016359 | Podhajsky | Jan 2012 | A1 |
20120022518 | Levinson | Jan 2012 | A1 |
20120029394 | Babaev | Feb 2012 | A1 |
20120035608 | Marchitto et al. | Feb 2012 | A1 |
20120046598 | Kardos et al. | Feb 2012 | A1 |
20120046653 | Welches et al. | Feb 2012 | A1 |
20120053449 | Moses et al. | Mar 2012 | A1 |
20120101326 | Simon et al. | Apr 2012 | A1 |
20120108883 | Peterchev | May 2012 | A1 |
20120108884 | Bechler et al. | May 2012 | A1 |
20120109241 | Rauscher | May 2012 | A1 |
20120116271 | Caruso et al. | May 2012 | A1 |
20120150079 | Rosenberg | Jun 2012 | A1 |
20120157747 | Rybski et al. | Jun 2012 | A1 |
20120158100 | Schomacker | Jun 2012 | A1 |
20120172653 | Chornenky et al. | Jul 2012 | A1 |
20120197361 | Gonzales et al. | Aug 2012 | A1 |
20120215210 | Brown et al. | Aug 2012 | A1 |
20120226272 | Chernov et al. | Sep 2012 | A1 |
20120226330 | Kolen et al. | Sep 2012 | A1 |
20120239123 | Weber et al. | Sep 2012 | A1 |
20120240940 | Paraschac et al. | Sep 2012 | A1 |
20120245483 | Lundqvist | Sep 2012 | A1 |
20120253098 | George et al. | Oct 2012 | A1 |
20120271206 | Shalev et al. | Oct 2012 | A1 |
20120271294 | Barthe et al. | Oct 2012 | A1 |
20120277587 | Adanny et al. | Nov 2012 | A1 |
20120302821 | Burnett | Nov 2012 | A1 |
20120303076 | Fahey | Nov 2012 | A1 |
20120310033 | Muntermann | Dec 2012 | A1 |
20120310035 | Schneider et al. | Dec 2012 | A1 |
20120310311 | Elkah | Dec 2012 | A1 |
20120330090 | Sham et al. | Dec 2012 | A1 |
20130006039 | Sadler | Jan 2013 | A1 |
20130012755 | Slayton | Jan 2013 | A1 |
20130030239 | Weyh et al. | Jan 2013 | A1 |
20130035745 | Ahmed et al. | Feb 2013 | A1 |
20130053620 | Susedik et al. | Feb 2013 | A1 |
20130066309 | Levinson | Mar 2013 | A1 |
20130079684 | Rosen et al. | Mar 2013 | A1 |
20130096363 | Schneider et al. | Apr 2013 | A1 |
20130103127 | Mueller et al. | Apr 2013 | A1 |
20130116758 | Levinson et al. | May 2013 | A1 |
20130116759 | Levinson et al. | May 2013 | A1 |
20130123568 | Hamilton et al. | May 2013 | A1 |
20130123629 | Rosenberg et al. | May 2013 | A1 |
20130123764 | Zarsky et al. | May 2013 | A1 |
20130123765 | Zarsky et al. | May 2013 | A1 |
20130131764 | Grove | May 2013 | A1 |
20130137918 | Phillips et al. | May 2013 | A1 |
20130144280 | Eckhouse et al. | Jun 2013 | A1 |
20130150653 | Borsody | Jun 2013 | A1 |
20130158440 | Allison | Jun 2013 | A1 |
20130158634 | Ron et al. | Jun 2013 | A1 |
20130158636 | Ting et al. | Jun 2013 | A1 |
20130178764 | Eckhouse et al. | Jul 2013 | A1 |
20130184693 | Neev | Jul 2013 | A1 |
20130190744 | Avram et al. | Jul 2013 | A1 |
20130238043 | Beardall et al. | Sep 2013 | A1 |
20130238061 | Ron Edoute | Sep 2013 | A1 |
20130238062 | Ron Edoute et al. | Sep 2013 | A1 |
20130245731 | Allison | Sep 2013 | A1 |
20130253384 | Anderson et al. | Sep 2013 | A1 |
20130253493 | Anderson et al. | Sep 2013 | A1 |
20130253494 | Anderson et al. | Sep 2013 | A1 |
20130253495 | Anderson et al. | Sep 2013 | A1 |
20130253496 | Anderson et al. | Sep 2013 | A1 |
20130261374 | Elder | Oct 2013 | A1 |
20130261683 | Soikum et al. | Oct 2013 | A1 |
20130267943 | Hancock | Oct 2013 | A1 |
20130289433 | Jin et al. | Oct 2013 | A1 |
20130303904 | Barthe et al. | Nov 2013 | A1 |
20130304159 | Simon et al. | Nov 2013 | A1 |
20130317281 | Schneider et al. | Nov 2013 | A1 |
20130317282 | Ron Edoute et al. | Nov 2013 | A1 |
20130331637 | Greff | Dec 2013 | A1 |
20140005758 | Ben-Yehuda et al. | Jan 2014 | A1 |
20140005760 | Levinson et al. | Jan 2014 | A1 |
20140012064 | Riehl et al. | Jan 2014 | A1 |
20140018767 | Harris et al. | Jan 2014 | A1 |
20140025033 | Mirkov et al. | Jan 2014 | A1 |
20140025142 | Zarksy et al. | Jan 2014 | A1 |
20140046423 | Rajguru et al. | Feb 2014 | A1 |
20140066786 | Naghavi et al. | Mar 2014 | A1 |
20140067025 | Levinson et al. | Mar 2014 | A1 |
20140081359 | Sand | Mar 2014 | A1 |
20140148870 | Burnett | May 2014 | A1 |
20140194958 | Chabal et al. | Jul 2014 | A1 |
20140200388 | Schneider et al. | Jul 2014 | A1 |
20140221990 | Kreindel | Aug 2014 | A1 |
20140235928 | Zangen et al. | Aug 2014 | A1 |
20140243933 | Ginggen | Aug 2014 | A1 |
20140249355 | Martinez | Sep 2014 | A1 |
20140249609 | Zarsky et al. | Sep 2014 | A1 |
20140257071 | Curran et al. | Sep 2014 | A1 |
20140257443 | Baker et al. | Sep 2014 | A1 |
20140276248 | Hall et al. | Sep 2014 | A1 |
20140276693 | Altshuler et al. | Sep 2014 | A1 |
20140277219 | Nanda | Sep 2014 | A1 |
20140277302 | Weber et al. | Sep 2014 | A1 |
20140303425 | Pilla et al. | Oct 2014 | A1 |
20140303525 | Sitharaman | Oct 2014 | A1 |
20140303696 | Anderson et al. | Oct 2014 | A1 |
20140303697 | Anderson et al. | Oct 2014 | A1 |
20140316393 | Levinson | Oct 2014 | A1 |
20140324120 | Bogie et al. | Oct 2014 | A1 |
20140330067 | Jordan | Nov 2014 | A1 |
20140350438 | Papirov et al. | Nov 2014 | A1 |
20140357935 | Ilmoniemi et al. | Dec 2014 | A1 |
20140364841 | Kornstein | Dec 2014 | A1 |
20140371515 | John | Dec 2014 | A1 |
20140378875 | Ron Edoute et al. | Dec 2014 | A1 |
20150005569 | Missoli | Jan 2015 | A1 |
20150005759 | Welches et al. | Jan 2015 | A1 |
20150018667 | Radman et al. | Jan 2015 | A1 |
20150025299 | Ron et al. | Jan 2015 | A1 |
20150080769 | Lotsch | Mar 2015 | A1 |
20150088105 | Fatemi | Mar 2015 | A1 |
20150094788 | Pierenkemper | Apr 2015 | A1 |
20150112412 | Anderson et al. | Apr 2015 | A1 |
20150119849 | Aronhalt et al. | Apr 2015 | A1 |
20150123661 | Yui et al. | May 2015 | A1 |
20150127075 | Ward et al. | May 2015 | A1 |
20150133717 | Ghiron et al. | May 2015 | A1 |
20150133718 | Schneider et al. | May 2015 | A1 |
20150141877 | Feldman | May 2015 | A1 |
20150148858 | Kaib | May 2015 | A1 |
20150157873 | Sokolowski | Jun 2015 | A1 |
20150165226 | Simon et al. | Jun 2015 | A1 |
20150165232 | Altshuler et al. | Jun 2015 | A1 |
20150165238 | Slayton et al. | Jun 2015 | A1 |
20150174002 | Burbank et al. | Jun 2015 | A1 |
20150202454 | Burnett | Jul 2015 | A1 |
20150216719 | Debenedictis et al. | Aug 2015 | A1 |
20150216720 | Debenedictis et al. | Aug 2015 | A1 |
20150216816 | O'Neil et al. | Aug 2015 | A1 |
20150223975 | Anderson et al. | Aug 2015 | A1 |
20150238248 | Thompson et al. | Aug 2015 | A1 |
20150238771 | Zarsk et al. | Aug 2015 | A1 |
20150272776 | Gonzales et al. | Oct 2015 | A1 |
20150283022 | Lee et al. | Oct 2015 | A1 |
20150297909 | Peashock | Oct 2015 | A1 |
20150314133 | Yamashiro | Nov 2015 | A1 |
20150328077 | Levinson | Nov 2015 | A1 |
20150328475 | Kim et al. | Nov 2015 | A1 |
20150342661 | Ron Edoute | Dec 2015 | A1 |
20150342780 | Levinson et al. | Dec 2015 | A1 |
20150360045 | Fischell et al. | Dec 2015 | A1 |
20150367141 | Goetz et al. | Dec 2015 | A1 |
20150375005 | Segal | Dec 2015 | A1 |
20160015995 | Leung et al. | Jan 2016 | A1 |
20160016013 | Capelli et al. | Jan 2016 | A1 |
20160020070 | Kim et al. | Jan 2016 | A1 |
20160022349 | Woloszko et al. | Jan 2016 | A1 |
20160030763 | Midorikawa et al. | Feb 2016 | A1 |
20160045755 | Chun et al. | Feb 2016 | A1 |
20160051401 | Yee et al. | Feb 2016 | A1 |
20160051827 | Ron et al. | Feb 2016 | A1 |
20160066977 | Neal, II et al. | Mar 2016 | A1 |
20160066994 | Shanks | Mar 2016 | A1 |
20160067516 | Schneider et al. | Mar 2016 | A1 |
20160067517 | Burnett | Mar 2016 | A1 |
20160089550 | Debenedictis et al. | Mar 2016 | A1 |
20160106982 | Cakmak et al. | Apr 2016 | A1 |
20160121112 | Azar | May 2016 | A1 |
20160129273 | Park | May 2016 | A1 |
20160129274 | Park | May 2016 | A1 |
20160136462 | Lewis, Jr. et al. | May 2016 | A1 |
20160150494 | Tabet et al. | May 2016 | A1 |
20160151637 | Abe et al. | Jun 2016 | A1 |
20160158574 | Eckhouse et al. | Jun 2016 | A1 |
20160175193 | Jung | Jun 2016 | A1 |
20160184601 | Gleich et al. | Jun 2016 | A1 |
20160193466 | Burnett | Jul 2016 | A1 |
20160213924 | Coleman et al. | Jul 2016 | A1 |
20160220834 | Schwarz | Aug 2016 | A1 |
20160250494 | Sakaki et al. | Sep 2016 | A1 |
20160256702 | Schwarz et al. | Sep 2016 | A1 |
20160256703 | Schwarz et al. | Sep 2016 | A1 |
20160270951 | Martins et al. | Sep 2016 | A1 |
20160317346 | Kovach | Nov 2016 | A1 |
20160317827 | Schwarz et al. | Nov 2016 | A1 |
20160324684 | Levinson et al. | Nov 2016 | A1 |
20160346561 | Ron Edoute et al. | Dec 2016 | A1 |
20160354237 | Gonzales et al. | Dec 2016 | A1 |
20170001024 | Prouza | Jan 2017 | A1 |
20170001025 | Schwarz et al. | Jan 2017 | A1 |
20170001026 | Schwarz et al. | Jan 2017 | A1 |
20170001027 | Ladman et al. | Jan 2017 | A1 |
20170001028 | Ladman et al. | Jan 2017 | A1 |
20170001029 | Pribula et al. | Jan 2017 | A1 |
20170001030 | Pribula et al. | Jan 2017 | A1 |
20170007309 | Debenedictis et al. | Jan 2017 | A1 |
20170036019 | Matsushita | Feb 2017 | A1 |
20170043177 | Ron Edoute et al. | Feb 2017 | A1 |
20170050019 | Ron Edoute et al. | Feb 2017 | A1 |
20170072212 | Ladman et al. | Mar 2017 | A1 |
20170087373 | Schwarz | Mar 2017 | A1 |
20170100585 | Hall et al. | Apr 2017 | A1 |
20170105869 | Frangineas, Jr. | Apr 2017 | A1 |
20170106201 | Schwarz et al. | Apr 2017 | A1 |
20170106203 | Schneider et al. | Apr 2017 | A1 |
20170120067 | Prouza | May 2017 | A1 |
20170143958 | Shalev et al. | May 2017 | A1 |
20170156907 | Harris et al. | Jun 2017 | A1 |
20170173347 | Schwarz et al. | Jun 2017 | A1 |
20170182334 | Altshuler et al. | Jun 2017 | A1 |
20170182335 | Altshuler et al. | Jun 2017 | A1 |
20170189707 | Zabara | Jul 2017 | A1 |
20170196731 | Debenedictis et al. | Jul 2017 | A1 |
20170209708 | Schwarz | Jul 2017 | A1 |
20170239079 | Root et al. | Aug 2017 | A1 |
20170239467 | Shalev et al. | Aug 2017 | A1 |
20170259077 | Jin | Sep 2017 | A1 |
20170280889 | Koch | Oct 2017 | A1 |
20170304642 | Ron Edoute et al. | Oct 2017 | A1 |
20170319378 | Anderson et al. | Nov 2017 | A1 |
20170325992 | Debenedictis et al. | Nov 2017 | A1 |
20170325993 | Jimenez et al. | Nov 2017 | A1 |
20170326042 | Zeng et al. | Nov 2017 | A1 |
20170326346 | Jimenez et al. | Nov 2017 | A1 |
20170333705 | Schwarz | Nov 2017 | A1 |
20170348143 | Rosen et al. | Dec 2017 | A1 |
20170348539 | Schwarz et al. | Dec 2017 | A1 |
20170354530 | Shagdar et al. | Dec 2017 | A1 |
20170361095 | Mueller et al. | Dec 2017 | A1 |
20180000347 | Perez et al. | Jan 2018 | A1 |
20180001106 | Schwarz | Jan 2018 | A1 |
20180001107 | Schwarz | Jan 2018 | A1 |
20180021565 | Dar et al. | Jan 2018 | A1 |
20180028831 | Ron Edoute et al. | Feb 2018 | A1 |
20180036548 | Nusse | Feb 2018 | A1 |
20180043151 | Ejiri et al. | Feb 2018 | A1 |
20180071544 | Ghiron et al. | Mar 2018 | A1 |
20180103991 | Linhart et al. | Apr 2018 | A1 |
20180125416 | Schwarz et al. | May 2018 | A1 |
20180133498 | Chornenky et al. | May 2018 | A1 |
20180153736 | Mills et al. | Jun 2018 | A1 |
20180153760 | Rosen et al. | Jun 2018 | A1 |
20180161197 | Baker et al. | Jun 2018 | A1 |
20180177996 | Gozani et al. | Jun 2018 | A1 |
20180185081 | O'Neil et al. | Jul 2018 | A1 |
20180185189 | Weber et al. | Jul 2018 | A1 |
20180214300 | Anderson et al. | Aug 2018 | A1 |
20180228646 | Gonzales et al. | Aug 2018 | A1 |
20180229048 | Sikora et al. | Aug 2018 | A1 |
20180236254 | Schwarz et al. | Aug 2018 | A1 |
20180250056 | Avram et al. | Sep 2018 | A1 |
20180263677 | Hilton et al. | Sep 2018 | A1 |
20180264245 | Edwards et al. | Sep 2018 | A1 |
20180271767 | Jimenez et al. | Sep 2018 | A1 |
20180296831 | Matsushita | Oct 2018 | A1 |
20180310950 | Yee et al. | Nov 2018 | A1 |
20180345012 | Schwarz et al. | Dec 2018 | A1 |
20180353767 | Biginton | Dec 2018 | A1 |
20190000524 | Rosen et al. | Jan 2019 | A1 |
20190000529 | Kothare et al. | Jan 2019 | A1 |
20190000663 | Anderson et al. | Jan 2019 | A1 |
20190029876 | Anderson et al. | Jan 2019 | A1 |
20190030356 | Schwarz | Jan 2019 | A1 |
20190053941 | Samson | Feb 2019 | A1 |
20190111255 | Errico et al. | Apr 2019 | A1 |
20190117965 | Iger et al. | Apr 2019 | A1 |
20190134414 | Schwarz | May 2019 | A1 |
20190151655 | Hall et al. | May 2019 | A1 |
20190168012 | Biginton | Jun 2019 | A1 |
20190183562 | Widgerow | Jun 2019 | A1 |
20190192219 | Kreindel | Jun 2019 | A1 |
20190192853 | Kim et al. | Jun 2019 | A1 |
20190192872 | Schwarz et al. | Jun 2019 | A1 |
20190192873 | Schwarz et al. | Jun 2019 | A1 |
20190192875 | Schwarz et al. | Jun 2019 | A1 |
20190201705 | Schwarz et al. | Jul 2019 | A1 |
20190201706 | Schwarz et al. | Jul 2019 | A1 |
20190209836 | Yakoub et al. | Jul 2019 | A1 |
20190255346 | Ghiron | Aug 2019 | A1 |
20190269909 | Gozani et al. | Sep 2019 | A1 |
20190275320 | Kim et al. | Sep 2019 | A1 |
20190299018 | Chornenky et al. | Oct 2019 | A1 |
20190314629 | Kreindel | Oct 2019 | A1 |
20190314638 | Kreindel | Oct 2019 | A1 |
20190329065 | Gandel | Oct 2019 | A1 |
20190336783 | Sokolowski | Nov 2019 | A1 |
20190344091 | Fischer | Nov 2019 | A1 |
20190350646 | Kreindel | Nov 2019 | A1 |
20190365462 | Casalino et al. | Dec 2019 | A1 |
20190388698 | Schwarz et al. | Dec 2019 | A1 |
20200001103 | Schwarz et al. | Jan 2020 | A1 |
20200016422 | Ron Edoute et al. | Jan 2020 | A1 |
20200016423 | Ron Edoute et al. | Jan 2020 | A1 |
20200054890 | Schwarz et al. | Feb 2020 | A1 |
20200061385 | Schwarz et al. | Feb 2020 | A1 |
20200061386 | Schwarz et al. | Feb 2020 | A1 |
20200094066 | Heath | Mar 2020 | A1 |
20200114160 | Blendermann | Apr 2020 | A1 |
20200129759 | Schwarz | Apr 2020 | A1 |
20200139148 | Schwarz et al. | May 2020 | A1 |
20200155221 | Marchitto et al. | May 2020 | A1 |
20200171297 | Kirson et al. | Jun 2020 | A1 |
20200197696 | Nagel et al. | Jun 2020 | A1 |
20200206524 | Katznelson et al. | Jul 2020 | A1 |
20200237424 | Hunziker et al. | Jul 2020 | A1 |
20200281642 | Kreindel | Sep 2020 | A1 |
20200289838 | Schwarz et al. | Sep 2020 | A1 |
20200330782 | Zabara | Oct 2020 | A1 |
20200352633 | Treen et al. | Nov 2020 | A1 |
20200353244 | Yamazaki | Nov 2020 | A1 |
20200353273 | Zucco | Nov 2020 | A1 |
20200360681 | Lay | Nov 2020 | A1 |
20210008369 | Crosson | Jan 2021 | A1 |
20210038894 | Mowery et al. | Feb 2021 | A1 |
20210146150 | Frangineas, Jr. et al. | May 2021 | A1 |
20210275825 | Kreindel | Sep 2021 | A1 |
20210283395 | Kreindel | Sep 2021 | A1 |
20210361938 | Gershonowitz | Nov 2021 | A1 |
Number | Date | Country |
---|---|---|
747678 | May 2002 | AU |
2011265424 | Jul 2014 | AU |
2012244313 | Nov 2014 | AU |
2014203094 | Jul 2015 | AU |
2013207657 | Nov 2015 | AU |
PI0812502 | Jun 2015 | BR |
2484880 | Apr 2006 | CA |
2604112 | Jul 2016 | CA |
3019140 | Oct 2017 | CA |
3019410 | Oct 2017 | CA |
3023821 | Nov 2017 | CA |
714113 | Mar 2019 | CH |
86204070 | Sep 1987 | CN |
87203746 | Dec 1987 | CN |
87215926 | Jul 1988 | CN |
1026953 | Dec 1994 | CN |
1027958 | Mar 1995 | CN |
2192348 | Mar 1995 | CN |
1206975 | Jun 2005 | CN |
101234231 | Aug 2008 | CN |
101327358 | Dec 2008 | CN |
201906360 | Jul 2011 | CN |
102319141 | Jan 2012 | CN |
102711706 | Oct 2012 | CN |
102847231 | Jan 2013 | CN |
202637725 | Jan 2013 | CN |
203169831 | Sep 2013 | CN |
102319141 | Aug 2014 | CN |
106540375 | Mar 2017 | CN |
107613914 | Jan 2018 | CN |
108882992 | Nov 2018 | CN |
109310516 | Feb 2019 | CN |
112221015 | Jan 2021 | CN |
718637 | Mar 1942 | DE |
1118902 | Dec 1961 | DE |
2748780 | May 1978 | DE |
3205048 | Aug 1983 | DE |
3340974 | May 1985 | DE |
3610474 | Oct 1986 | DE |
3825165 | Jan 1990 | DE |
3340974 | Jul 1994 | DE |
69318706 | Jan 1999 | DE |
10062050 | Apr 2002 | DE |
102004006192 | Sep 2005 | DE |
60033756 | Jun 2007 | DE |
102009023855 | Dec 2010 | DE |
102009050010 | May 2011 | DE |
102010004307 | Jul 2011 | DE |
102011014291 | Sep 2012 | DE |
102013211859 | Jul 2015 | DE |
102016116399 | Mar 2018 | DE |
202016008884 | Jul 2020 | DE |
102010014157 | Feb 2021 | DE |
0633008 | Mar 1999 | DK |
000494 | Aug 1999 | EA |
002087 | Dec 2001 | EA |
002179 | Feb 2002 | EA |
003851 | Oct 2003 | EA |
007347 | Aug 2006 | EA |
007975 | Feb 2007 | EA |
0048451 | Mar 1982 | EP |
0209246 | Jan 1987 | EP |
0459101 | Dec 1991 | EP |
0459401 | Dec 1991 | EP |
0633008 | Jan 1995 | EP |
0788813 | Aug 1997 | EP |
0633008 | May 1998 | EP |
0692993 | Sep 1999 | EP |
1022034 | Jul 2000 | EP |
1916013 | Apr 2008 | EP |
2124800 | Nov 2010 | EP |
1917935 | Jan 2011 | EP |
2308559 | Apr 2011 | EP |
2139560 | May 2012 | EP |
2461765 | Jun 2012 | EP |
2069014 | Jun 2013 | EP |
2614807 | Jul 2013 | EP |
2676700 | Dec 2013 | EP |
2694159 | Feb 2014 | EP |
2749259 | Jul 2014 | EP |
2814445 | Dec 2014 | EP |
2856986 | Apr 2015 | EP |
3009167 | Apr 2016 | EP |
2501352 | Jul 2016 | EP |
3209246 | Aug 2017 | EP |
3342379 | Jul 2018 | EP |
3389532 | Oct 2018 | EP |
3434323 | Jan 2019 | EP |
3721939 | Oct 2020 | EP |
2118925 | Oct 1998 | ES |
2300569 | Jun 2008 | ES |
2305698 | Nov 2008 | ES |
2359581 | May 2011 | ES |
2533145 | Apr 2015 | ES |
2533145 | Jul 2016 | ES |
2533145 | Oct 2018 | ES |
3041881 | Apr 2017 | FR |
3061012 | Jun 2018 | FR |
260116 | Oct 1926 | GB |
304587 | Mar 1930 | GB |
390500 | Apr 1933 | GB |
871672 | Jun 1961 | GB |
2188238 | Sep 1987 | GB |
2176009 | Dec 1989 | GB |
2261820 | Jun 1993 | GB |
2286660 | Aug 1995 | GB |
2395907 | Dec 2004 | GB |
2504984 | Feb 2014 | GB |
2521240 | Jun 2015 | GB |
2552004 | Jan 2018 | GB |
3027678 | Nov 1998 | GR |
1217550 | Mar 1990 | IT |
RE20120010 | Aug 2013 | IT |
UB20159823 | Jul 2017 | IT |
2003305131 | Oct 2003 | JP |
2006130055 | May 2006 | JP |
4178762 | Nov 2008 | JP |
4324673 | Sep 2009 | JP |
2010207268 | Sep 2010 | JP |
2010533054 | Oct 2010 | JP |
2011194176 | Oct 2011 | JP |
2013063285 | Apr 2013 | JP |
2017518857 | Jul 2017 | JP |
2018501927 | Jan 2018 | JP |
2018018650 | Feb 2018 | JP |
20030065126 | Aug 2003 | KR |
100484618 | Apr 2005 | KR |
100491988 | May 2005 | KR |
200407524 | Jan 2006 | KR |
100556230 | Mar 2006 | KR |
200410065 | Mar 2006 | KR |
100841596 | Jun 2008 | KR |
20090063618 | Jun 2009 | KR |
20090095143 | Sep 2009 | KR |
100936914 | Jan 2010 | KR |
1020100026107 | Mar 2010 | KR |
101022244 | Mar 2011 | KR |
20110123831 | Nov 2011 | KR |
20120037011 | Apr 2012 | KR |
101233286 | Feb 2013 | KR |
101233287 | Feb 2013 | KR |
20130072244 | Jul 2013 | KR |
101292289 | Aug 2013 | KR |
20130128391 | Nov 2013 | KR |
101413022 | Jul 2014 | KR |
101415141 | Jul 2014 | KR |
101447532 | Oct 2014 | KR |
101511444 | Apr 2015 | KR |
20150058102 | May 2015 | KR |
101539633 | Jul 2015 | KR |
20150079619 | Jul 2015 | KR |
20150106379 | Sep 2015 | KR |
101650155 | Aug 2016 | KR |
101673182 | Nov 2016 | KR |
20170090654 | Aug 2017 | KR |
20170107603 | Sep 2017 | KR |
101794269 | Nov 2017 | KR |
20180059114 | Jun 2018 | KR |
20180092020 | Aug 2018 | KR |
101941863 | Jan 2019 | KR |
20190005981 | Jan 2019 | KR |
102000971 | Jul 2019 | KR |
20190001779 | Jul 2019 | KR |
200491572 | May 2020 | KR |
20200000889 | May 2020 | KR |
20200052602 | May 2020 | KR |
20200056692 | May 2020 | KR |
20200056693 | May 2020 | KR |
20200056801 | May 2020 | KR |
20200056802 | May 2020 | KR |
20200057154 | May 2020 | KR |
20210002973 | Jan 2021 | KR |
20210002974 | Jan 2021 | KR |
2012012158 | Apr 2014 | MX |
7510644 | Mar 1977 | NL |
1037451-02 | May 2011 | NL |
2212909 | Sep 2003 | RU |
2226115 | Mar 2004 | RU |
2281128 | Aug 2006 | RU |
2373971 | Nov 2009 | RU |
2392979 | Jun 2010 | RU |
2395267 | Jul 2010 | RU |
2496532 | Oct 2013 | RU |
2529471 | Sep 2014 | RU |
2596053 | Aug 2016 | RU |
2637104 | Nov 2017 | RU |
2645923 | Feb 2018 | RU |
24921 | Aug 2016 | SI |
200423986 | Nov 2004 | TW |
WO-9312835 | Jul 1993 | WO |
WO-9521655 | Aug 1995 | WO |
WO-9527533 | Oct 1995 | WO |
WO-9932191 | Jul 1999 | WO |
WO-0013749 | Mar 2000 | WO |
WO-0044346 | Aug 2000 | WO |
WO-0107111 | Feb 2001 | WO |
WO-0112089 | Feb 2001 | WO |
WO-0193797 | Dec 2001 | WO |
WO-0225675 | Mar 2002 | WO |
WO-03078596 | Sep 2003 | WO |
WO-03079916 | Oct 2003 | WO |
WO-03090863 | Nov 2003 | WO |
WO-03103769 | Dec 2003 | WO |
WO-2004078255 | Sep 2004 | WO |
WO-2004087255 | Oct 2004 | WO |
WO-2004095385 | Nov 2004 | WO |
WO-2004095835 | Nov 2004 | WO |
WO-2004096343 | Nov 2004 | WO |
WO-2004108211 | Dec 2004 | WO |
WO-2005032660 | Apr 2005 | WO |
WO-2005107866 | Nov 2005 | WO |
WO-2006115120 | Nov 2006 | WO |
WO-2007096206 | Aug 2007 | WO |
WO-2007140584 | Dec 2007 | WO |
WO-2008012827 | Jan 2008 | WO |
WO-2008049775 | May 2008 | WO |
WO-2008060494 | May 2008 | WO |
WO-2008109058 | Sep 2008 | WO |
WO-2008127011 | Oct 2008 | WO |
WO-2008145260 | Dec 2008 | WO |
WO-2009011708 | Jan 2009 | WO |
WO-2009013729 | Jan 2009 | WO |
WO-2009036040 | Mar 2009 | WO |
WO-2009042863 | Apr 2009 | WO |
WO-2009044400 | Apr 2009 | WO |
WO-2009047628 | Apr 2009 | WO |
WO-2009083915 | Jul 2009 | WO |
WO-2010007614 | Jan 2010 | WO |
WO-2010022278 | Feb 2010 | WO |
WO-2010007614 | May 2010 | WO |
WO-2010135425 | Nov 2010 | WO |
WO-2010139376 | Dec 2010 | WO |
WO-2011011749 | Jan 2011 | WO |
WO-2011016019 | Feb 2011 | WO |
WO-2011021184 | Feb 2011 | WO |
WO-2011045002 | Apr 2011 | WO |
WO 2011053607 | May 2011 | WO |
WO-2011058565 | May 2011 | WO |
WO-2011156495 | Dec 2011 | WO |
WO-2012005766 | Jan 2012 | WO |
WO-2012029065 | Mar 2012 | WO |
WO-2012040243 | Mar 2012 | WO |
WO-2012073232 | Jun 2012 | WO |
WO-2012103632 | Aug 2012 | WO |
WO-2012119293 | Sep 2012 | WO |
WO-2012138169 | Oct 2012 | WO |
WO-2013021380 | Feb 2013 | WO |
WO-2013026393 | Feb 2013 | WO |
WO-2013035088 | Mar 2013 | WO |
WO-2013074576 | May 2013 | WO |
WO-2013098815 | Jul 2013 | WO |
WO-2013191699 | Dec 2013 | WO |
WO-2014009875 | Jan 2014 | WO |
WO-2014016820 | Jan 2014 | WO |
WO-2014109653 | Jul 2014 | WO |
WO-2014137344 | Sep 2014 | WO |
WO-2014141229 | Sep 2014 | WO |
WO-2014149021 | Sep 2014 | WO |
WO-2014151431 | Sep 2014 | WO |
WO-2014163020 | Oct 2014 | WO |
WO-2014164926 | Oct 2014 | WO |
WO-2015004540 | Jan 2015 | WO |
WO-2015012639 | Jan 2015 | WO |
WO-2015012672 | Jan 2015 | WO |
WO-2015052705 | Apr 2015 | WO |
WO-2015083305 | Jun 2015 | WO |
WO-2015137733 | Sep 2015 | WO |
WO-2015157725 | Oct 2015 | WO |
WO-2015179571 | Nov 2015 | WO |
WO-2016116747 | Jul 2016 | WO |
WO-2016140871 | Sep 2016 | WO |
WO-2017002065 | Jan 2017 | WO |
WO-2017103923 | Jun 2017 | WO |
WO-2017159959 | Sep 2017 | WO |
WO-2017160097 | Sep 2017 | WO |
WO-2017176621 | Oct 2017 | WO |
WO-2017196548 | Nov 2017 | WO |
WO-2017212253 | Dec 2017 | WO |
WO-2018006086 | Jan 2018 | WO |
WO-2018008023 | Jan 2018 | WO |
WO-2018044825 | Mar 2018 | WO |
WO-2018121998 | Jul 2018 | WO |
WO-2018122535 | Jul 2018 | WO |
WO-2017160097 | Sep 2018 | WO |
WO-2018208992 | Nov 2018 | WO |
WO-2019120420 | Jun 2019 | WO |
WO-2019150378 | Aug 2019 | WO |
WO-2019166965 | Sep 2019 | WO |
WO-2019173866 | Sep 2019 | WO |
WO-2019183622 | Sep 2019 | WO |
WO-2020002801 | Jan 2020 | WO |
WO-2020035852 | Feb 2020 | WO |
WO-2020041502 | Feb 2020 | WO |
WO-2020142470 | Jul 2020 | WO |
WO-2020144486 | Jul 2020 | WO |
WO-2020174444 | Sep 2020 | WO |
WO-2020183508 | Sep 2020 | WO |
WO-2020190514 | Sep 2020 | WO |
WO-2020208590 | Oct 2020 | WO |
WO-2020264263 | Dec 2020 | WO |
WO-2021013654 | Jan 2021 | WO |
WO-2021102365 | May 2021 | WO |
Entry |
---|
US 10,398,895 B2, 09/2019, Tomás (withdrawn) |
Jalinous, R., “Technical and Practical Aspects of Magnetic Nerve Stimulation,” Journal of Clinical Neurophysiology 8(1):10-25, Raven Press, Ltd., New York (1991). |
Lumenis Be Ltd. v. BTL Healthcare Technologies A.S., PTAB-IPR2022-00451, U.S. Pat. No. 10,806,943 Petition for Inter Partes Review, Jan. 24, 2022, 87 pages. |
Lumenis Be Ltd. v. BTL Healthcare Technologies A.S., PTAB-IPR2022-00451, Declaration of Dr. Marom Bikson (EX1002), Jan. 24, 2022, 236 pages. |
Lumenis Be Ltd. v. BTL Healthcare Technologies A.S., PTAB-IPR2022-00452, U.S. Pat. No. 10,806,943 Petition for Inter Partes Review, Jan. 24, 2022, 81 pages. |
Lumenis Be Ltd. v. BTL Healthcare Technologies A.S., PTAB-IPR2022-00452, Declaration of Dr. Marom Bikson (EX1002), Jan. 24, 2022, 229 pages. |
Operating Manual: Magstim® 2002, P/N 3001-23-04, The Magstim Company Limited, Mar. 18, 2005, 34 pages. |
Stallknecht, B., et al., “Are blood flow and lipolysis in subcutaneous adipose tissue influenced by contractions in adject muscles in humans?,” Am J Physiol Endocrinol Metab 292: E394-E399 (Feb. 2007). |
Weyh, T., et al., “Marked differences in the thermal characteristics of figure-of-eight shaped coils used for repetitive transcranial magnetic stimulation,” Clinical Neurophysiology 116: 1477-1486, Elsevier Ireland Ltd. (Mar. 2005). |
2018 Cutera University, Clinical Forum, Cutera 20, 26 pages. |
501 (k) K030708 Slendertone Flex Letter from Department of Health and Humane Serivces, Public Health Service, Jun. 25, 2003, 6 pages. |
501 (k) K163165 AM-100 Letter from Department of Health and Human Services, Public Health Service, Feb. 16, 2017, 9 pages. |
Abulhasan, J.F., et al., “Peripheral Electrical and Magnetic Stimulation to Augment Resistance Training,” Journal of Functional Morphology and Kinesiology, 1(3):328-342, (Sep. 2016). |
Accent Radiofrequency System, Operator's Manual, Alma Lasers, Wellbeing Through Technology, 2008, 82 Pages. |
Agilent Technologies, Inc., “Agilent 33500 Series 30 MHz Function/Arbitrary Waveform Generator User's Guide,” Publication No. 33520-90001 (Dec. 2010), 278 pages. |
Agilent Technologies, Inc., “Agilent Announces 30 MHz Function/Arbitrary Waveform Generators,” Microwave J., URL: (Aug. 3, 2010), 8 pages. |
Allergan, Inc. et al. v. BTL Healthcare Technologies A.S., PTAB-PGR2021-00015, Paper 16 (Decision Denying Institution of Post-Grant Review), Jun. 17, 2021, 20 pages. |
Allergan, Inc. et al. v. BTL Healthcare Technologies A.S., PTAB-PGR2021-00016, Paper 16 (Decision Denying Institution of Post-Grant Review), Jun. 17, 2021, 20 pages. |
Allergan, Inc. et al. v. BTL Healthcare Technologies A.S., PTAB-PGR2021-00017, Paper 16 (Decision Denying Institution of Post-Grant Review), Jun. 16, 2021, 33 pages. |
Allergan, Inc. et al. v. BTL Healthcare Technologies A.S., PTAB-PGR2021-00018, Paper 16 (Decision Denying Institution of Post-Grant Review), Jun. 16, 2021, 42 pages. |
Allergan, Inc. et al. v. BTL Healthcare Technologies A.S., PTAB-PGR2021-00020, Paper 16 (Decision Denying Institution of Post-Grant Review), Jun. 16, 2021, 35 pages. |
Allergan, Inc. et al. v. BTL Healthcare Technologies A.S., PTAB-PGR2021-00021, Paper 17 (Decision Denying Institution of Post-Grant Review), Jun. 16, 2021, 33 pages. |
Allergan, Inc. et al. v. BTL Healthcare Technologies A.S., PTAB-PGR2021-00022; PTAB-PGR2021-00023; PTAB-PGR2021-00024; PTAB-PGR2021-00025; PTAB-IPR2021-00296; PTAB-IPR2021-00312, Paper 11 (Decision Settlement Prior to Institution of Trial), Jul. 6, 2021, 4 pages. |
Alma Lasers., “Accent Radiofrequency System, Operator's Manual,” Wellbeing Through Technology, 2008, Chapters 1-8, Appendix A. |
Arjunan, P.A., et al., “Computation and Evaluation of Features of Surface Electromyogram to Identify the Force of Muscle Contraction and Muscle Fatigue,” BioMed research international 2014:197960, Hindawi Pub. Co, United States (2014). |
Avram, M.M and Harry, R.S.,“Cryolipolysis for Subcutaneous Fat Layer Reduction,” Lasers in Surgery and Medicine, 41(10)703-708, Wiley-Liss, United States (Dec. 2009). |
Bachasson, D., et al., “Quadriceps Function Assessment Using an Incremental Test and Magnetic Neurostimulation: a Reliability Study,” Journal of Electromyography and Kinesiology, 23(3):649-658, Elsevier, England, (Jun. 2013). |
Baranov, A., Krion, Whole Body Cryotherapy, Russia, 19 Pages. |
Barker, A.T, “An Introduction to the Basic Principles of Magnetic Nerve Stimulation,” Journal of Clinical Neurophysiology, 8(1):26-37, Lippincott Williams & Wilkins, United States, (Jan. 1991). |
Barker, A.T., et al., “Non-Invasive Magnetic Stimulation of Human Motor Cortex,” Lancet 1(8437):1106-1107, Elsevier, England (May 1985). |
Barker, A.T., “The History and Basic Principles of Magnetic Nerve Stimulation,” Electroencephalography and Clinical Neurophysiology 51:3-21, Elsevier, Netherlands (1999). |
Barrett, J., et al., “Mechanisms of Action Underlying the Effect of Repetitive Transcranial Magnetic Stimulation on Mood: Behavioral and Brain Imaging Studies,” Neuropsychopharmacology 29(6):1172-1189, Nature Publishing Group, England (Jan. 14, 2004). |
Behrens, M., et al., “Repetitive Peripheral Magnetic Stimulation (15 Hz RPMS) of the Human Soleus Muscle did not Affect Spinal Excitability,” Journal of Sports Science and Medicine, 10(1):39-44, Dept. of Sports Medicine, Medical Faculty of Uludag University, Turkey (Mar. 2011). |
Beilin, G., et al., “Electromagnetic Fields Applied to the Reduction of Abdominal Obesity,” Journal of Cosmetic & Laser Therapy, 14(1):24-42, Informa Healthcare, England, (Feb. 2012). |
Belanger, A-Y., “Chapter 13: Neuromuscular Electrical Stimulation,” in Therapeutic Electrophysical Agents: Evidence Behind Practice, 3rd Edition, Lupash, E., ed., pp. 220-255, Lippincott Williams & Wilkins, United States (2015). |
Benton, et al., “Functional Electrical Stimulation—A Practical Clinical Guide,” Second Edition, The Professional Staff Association of the Rancho Los Amigos Hospital, Inc., 42 pages (1981). |
Benton, L.A., et al., “Chapter 2: Physiological Basis of Nerve and Muscle Excitation” and “Chapter 4: General Uses of Electrical Stimulation,” in Functional Electrical Stimulation: A Practical Guide, 2nd Edition, pp. 11-30 and 53-71, Rancho Los Amigos Rehabilitation Engineering Center, Downey, CA (1981), 42 pages. |
Bergh, U., and Ekblom, B., “Influence of Muscle Temperature on Maximal Muscle Strength and Power Output in Human Skeletal Muscles,” Acta Physiologica Scandinavica 107(1):33-37, Blackwell Scientific Publications, England (Aug. 1979). |
Binder-Macleod, S.A., et al., “Force Output of Cat Motor Units Stimulated with Trains of Linearly Varying Frequency,” Journal of Neurophysiology 61(1):208-217, American Physiological Society, United States (Jan. 1989). |
Binder-Macleod, S.A., et al., “Use of a Catchlike Property of Human Skeletal Muscle to Reduce Fatigue,” Muscle & Nerve 14(9):850-857, John Wiley & Sons, United States (Sep. 1991). |
Bio Medical Research Limited., “Slendertone Flex Abdominal Training System, Instructions for Use,” All pages (Aug. 2006). |
Bio Medical Research Limited., “Slendertone Flex Max Instruction Manual,” All pages (Apr. 2006). |
Bio-Medical Research Ltd., K010335, 510(k) Summary, Slendertone Flex, All pages (Sep. 2001). |
Bio-Medical Research Ltd., K022855 510(k) Summary, Slendertone, 1-6 (Mar. 2003). |
Bischoff, C., et al., “Repetitive Magnetic Nerve Stimulation: Technical Considerations and Clinical Use in the Assessment of Neuromuscular Transmission,” Electroencephalography and Clinical Neurophysiology 93(1):15-20, Elsevier, Ireland (Feb. 1994). |
Bourland, J.D., et al., “Transchest Magnetic (Eddy-Current) Stimulation of the Dog Heart,” Medical & Biological Engineering & Computing 28(2):196-198, Springer, United States (Mar. 1990). |
BTL Industries, Inc., K163165 510(k) Summary, AM-100, All pages (Feb. 2017). |
BTL Industries, Inc., K180813 510(k) Summary, Emsculpt, All pages (Mar. 2018). |
BTL Industries, Inc. v. Allergan Ltd. et al. DDE-1-20-cv-01046, Complaint for Patent Infringement and Exhibits 1-38, 821 pages (Aug. 2020). |
BTL Industries, Inc. v. Allergan Ltd. et al., DDE-1-20-cv-01046, Order Administratively Closing Case, Jul. 26, 2021, 1 page. |
BTL Industries, Inc. v. Allergan Ltd. et al DDE-1-20-cv-01046, Order Granting Motion to Stay Pending Resolution of Proceedings at the International Trade Commission (Unopposed), 2 pages (Oct. 2020). |
BTL Industries, Inc. v. Allergan PLC et al DDE-1-19-cv-02356, Complaint for Patent Infringement and Exhibits 1-34, 375 pages (Dec. 2019). |
BTL Industries, Inc. v. Allergan PLC et al DDE-1-19-cv-02356, Order Granting Stipulation to Stay, Oct. 1, 2020, 1 page. |
BTL Industries, Inc. v. Allergan USA, Inc. et al., DDE-1-19-cv-02356, Order Administratively Closing Case, Jul. 26, 2021, 1 page. |
Buenos Aires, Oct. 14, 2014, Venus Concept, Provision No. 7246, 56 pages (With Machine Translation). |
Burge, S.M and Dawber, R.P.,“Hair Follicle Destruction and Regeneration in Guinea Pig Skin After Cutaneous Freeze Injury,” Cryobiology, 27(2):153-163, Elsevier, Netherlands (Apr. 1990). |
Busso, M. and Denkova, R., “Efficacy of High Intensity Focused Electro-Magnetic (HIFEM) Field Therapy When Used For Non-Invasive Buttocks Augmentation and Lifting: A Clinical Study” American Society for Laser Medicine and Surgery Abstracts, 382 (2018). |
Bustamante, V., et al., “Muscle Training With Repetitive Magnetic Stimulation of the Quadriceps in Severe COPD Patients,” Respiratory Medicine, 104(2):237-245, Elsevier, England, (Feb. 2010). |
Bustamante, V., et al., “Redox Balance Following Magnetic Stimulation Training in the Quadriceps of Patients With Severe COPD,” Free Radical Research, 42(11-12):939-948, Informa Healthcare, England, (Nov. 2008). |
Callaghan, M.J., et al., “Electric Muscle Stimulation of the Quadriceps in the Treatment of Patellofemoral Pain,” Archives of Physical Medicine and Rehabilitation 85(6):956-962, W.B. Saunders, United Staes (Jun. 2004). |
Carbonaro, M., et al., “Architectural Changes in Superficial and Deep Compartments of the Tibialis Anterior during Electrical Stimulation over Different Sites,” IEEE transactions on Neural Systems and Rehabilitation Engineering 28(11):2557-2565, IEEE, United States (Nov. 2020). |
Caress, J.B., et al., “A Novel Method of Inducing Muscle Cramps Using Repetitive Magnetic Stimulation,” Muscle Nerve, 23(1):126-128, John Wiley & Sons, United States, (Jan. 2000). |
Certain Non-Invasive Aesthetic Body Contouring Devices, Components Thereof, and Methods of Using the Same, Inv. No. 337-TA-1219, BTL's Statement of Suggested Claim Terms to Be Construed Pursuant to Ground Rule 6b, Nov. 4, 2020, 2 pages. |
Certain Non-Invasive Aesthetic Body Contouring Devices, Components Thereof, and Methods of Using the Same, Inv. No. 337-TA-1219, Complainant BTL's Proposed Construction of Disputed Claim Terms, Dec. 8, 2020, 19 pages. |
Certain Non-Invasive Aesthetic Body Contouring Devices, Components Thereof, and Methods of Using the Same, Inv. No. 337-TA-1219, Complaint, Aug. 5, 2020, 93 pages. |
Certain Non-Invasive Aesthetic Body Contouring Devices, Components Thereof, and Methods of Using the Same, Inv. No. 337-TA-1219, Joint Claim Construction Chart, Dec. 14, 2020, 15 pages. |
Certain Non-Invasive Aesthetic Body Contouring Devices, Components Thereof, and Methods of Using the Same; Inv. No. 337-TA-1219, Joint Claim Construction Chart, Dec. 18, 2020, 15 pages. |
Certain Non-Invasive Aesthetic Body Contouring Devices, Components Thereof, and Methods of Using the Same, Inv. No. 337-TA-1219, Respondents' Allergan Limited, Allergan USA, Inc., Allergan, Inc., Zeltiq Aesthetics, Inc., Zeltiq Ireland Unlimited Company, and Zimmer MedizinSysteme GmbH's Notice of Prior Art, Nov. 20, 2020, 5 pages. |
Certain Non-Invasive Aesthetic Body Contouring Devices, Components Thereof, and Methods of Using the Same, Inv. No. 337-TA-1219, Respondents' List of Claim Terms for Construction, Nov. 4, 2020, 8 pages. |
Certain Non-Invasive Aesthetic Body Contouring Devices, Components Thereof, and Methods of Using the Same; Inv. No. 337-TA-1219, Respondents' List of Proposed Claim Constructions and Their Intrinsic and Extrinsic Support, filed Dec. 15, 2020, 23 pages. |
Certain Non-Invasive Aesthetic Body Contouring Devices, Components Thereof, and Methods of Using the Same, Inv. No. 337-TA-1219, Response of Respondent Zimmer MedizinSysteme GmbH to the Complaint and Notice of Investigation, Oct. 22, 2020, 68 pages. |
Certain Non-Invasive Aesthetic Body Contouring Devices, Components Thereof, and Methods of Using the Same, Inv. No. 337-TA-1219, Response of Respondents Allergan Limited, Allergan USA, Inc., Allergan, Inc., Zeltiq Aesthetics, Inc., and Zeltiq IrelandUnlimited Company to the Complaint and Notice of Investigation, Oct. 22, 2020, 69 pages. |
Certain Non-Invasive Aesthetic Body-Contouring Devices, Components Thereof, and Methods of Using Same, Notice of Institution of Investigation, Inv. No. 337-TA-1219, Notice of Institution of Investigation, Sep. 2, 2020, 21 pages. |
Certain Non-Invasive Aesthetic Body-Contouring Devices, Components Thereof, and Methods of Using the Same, Inv. No. 337-TA-1219, Order No. 21 (Initial Determination), Apr. 28, 2021, 5 pages. |
Certain Non-Invasive Aesthetic Body-Contouring Devices, Components Thereof, and Methods of Using the Same, Inv. No. 337-TA-1219, Order No. 30 (Order Concerning the Procedural Schedule), Aug. 4, 2021, 3 pages. |
Certain Non-Invasive Aesthetic Body-Contouring Devices, Componesnts Thereof, and Methods of Using the Same, Inv. No. 337-TA-1219, Order No. 17: Amending Procedural Schedule, Apr. 9, 2021, 4 pages. |
Certified English Translation of Belyaev, A.G., “Effect of Magnetic Stimulation on the Strength Capacity of Skeletal Muscles,” Ph.D. Thesis Abstract, Smolensk State Academy of Physical Culture, Sport, and Tourism, Dec. 11, 2020, 23 pages. |
Certified English Translation of Belyaev, A.G., “Effect of Magnetic Stimulation on the Strength Capacity of Skeletal Muscles,” Ph.D. Thesis, Smolensk State Academy of Physical Culture, Sport, and Tourism, Dec. 11, 2020, 117 pages. |
Chattanooga Group of Encore Medical, L.P., “Intelect SWD 100 User Manual, Operation & Installation Instructions for Intelect SWD 00—Model 1600,” All pages (2009). |
Chesterton, L.S., et al.,“Skin Temperature Response to Cryotherapy,” Archives of Physical Medicine and Rehabilitation, 83(4):543-549, W.B. Saunders, United States (Apr. 2002). |
Collins, D.F., et al., “Large Involuntary Forces Consistent With Plateau-Like Behavior of Human Motoneurons,” Journal of Neuroscience 21 (11):4059-4065, Society for Neuroscience, United States (Jun. 2001). |
Colson, S., et al., “Re-Examination of Training Effects by Electrostimulation in the Human Elbow Musculoskeletal System,” International Journal of Sports Medicine 21(4):281-288, Stuttgart, Thieme (May 2000). |
Course in Physical Therapy, Presentation, Jan. 4, 2013, 156 pages. |
CR Technologies, “Salus Talent Pop Manual KFDA First Approval Document” (English Translation), Nov. 25, 2011, 47 pages. |
CR Technologies, “Notification of medical device manufacturing item permission, Salus Talent Pop KFDA Approval Document” (English Translation), 3 pages (Sep. 2011). |
CR Technology Co, Ltd., “Salus-Talent Double Sales Brochure” 2 pages, (Oct. 2020). |
CR Technology Co. Ltd., “Medical Laser Irradiator Salus-Talent-Pop User Manual Version 1.00” (Nov. 2020). |
CR Technology Co. Ltd., Salus Talent Pop User Manual, Ver. 1.00, All pages, Approx. 2012. |
CR Technology, Salus-Talent, Technical File of Electro-magnetic Stimulator, Document No. TF-C05, 2008, 241 pages. |
CR Technology, Technology for Health and Business for Human Being, investor relations, 2008, 21 pages. |
Currier, D. P., “Effects of Electrical and Electromagnetic Stimulation after Anterior Cruciate Ligament Reconstruction,” The Journal of Orthopaedic and Sports Physical Therapy 17(4):177-84, Williams And Wilkins, United States (1993). |
Cutera, truSculptflex, Brochure, dated 2019, 2 pages. |
Cynosure, SculpSure TM, The New Shape of Energy-Based bodyContouring, 2015, Cynosure Inc, 2 pages. |
Cynosure,Smooth Shapes XV, Now with Smoothshape petite, Transforming non-invasive Body Shaping,Retrieved from the Internet: (www.cynosure.com), 2011, Cynosure Inc, 8 pages. |
Davies, C.T., et al., “Contractile Properties of the Human Triceps Surae With Some Observations on the Effects of Temperature and Exercise,” European Journal of Applied Physiology and Occupational Physiology 49(2):255-269, Springer Verlag, Germany (Aug. 1982). |
Deng, Z.D., et al., “Electric Field Depth-Focality Tradeoff in Transcranial Magnetic Stimulation: Simulation Comparison of 50 Coil Designs,” Brain stimulation 6(1):1-13, Elsevier, New York (Jan. 2013). |
Depatment of Health and Human Services, 501(k) Letter and Summary for K092476 Body Control System 4M Powered Muscle Stimulator, dated May 7, 2010, 5 pages. |
Depatment of Health and Human Services, 501(k) Letter and Summary for K160992 HPM-6000 Powered Muscle Stimulator, dated Oct. 21, 2016, 9 pages. |
Depatment of Health and Human Services, 501(k) Letter and Summary for K163415 SlimShape System Powered Muscle Stimulator, dated Apr. 20, 2017, 8 pages. |
Depatment of Health and Human Services, 501(k) Letter and Summary for K182106 BTL 799-2T Powered Muscle Stimulator, dated Oct. 23, 2018, 9 pages. |
Depatment of Health and Human Services, 501(k) Letter and Summary for K190456 BTL 799-2L Powered Muscle Stimulator, dated Jul. 5, 2019, 9 pages. |
Depatment of Health and Human Services, 501(k) Letter and Summary for K192224 BTL 899 Powered Muscle Stimulator, dated Dec. 5, 2019, 11 pages. |
Doucet, B., et al., “Neuromuscular Electrical Stimulation for Skeletal Muscle Function,” Yale Journal of Biology & Medicine 85:201-215, Yale Journal of Biology and Medicine, United States (Jun. 2012). |
Dudley, G. and Stevenson, S., “Use of Electrical Stimulation in Strength and Power Training,” Special Problems in Strength and Power Training :426-435 (2003). |
Duncan, D., et al., “Noninvasive Induction of Muscle Fiber Hypertrophy and Hyperplasia: Effects of High-Intensity Focused Electromagnetic Field Evaluated in an In-Vivo Porcine Model: A Pilot Study,” Aesthetic Surgery Journal 40(5):568-574, Oxford University Press, United States (Apr. 2020). |
DuoMAG Magnetic Stimulator, Alien Technik User Manuel, Jun. 26, 2012,48 pages, Version 2.1. |
Dybek, T., et al..“Impact of 10 Sessions of Whole Body Cryostimulation on Aerobic and Anaerobic Capacity and on Selected Blood Count Parameters,” Biology of Sport, 29(1):39-43 (Jan. 2012). |
Dynatronics., “Better Rehab Solutions for Better Outcomes,” Rehabilitation Products Guide 2.3, 2017, 52 pages. |
Effective PEMF Magnetic Fat Reduction Slimming Body Beauty Salon Machine (PEMF Star), Wolfbeauty 1980, PEMF Star, China, Retrieved from the Internet: (URL: https://www.ec21.com/product-details/Effective-PEMF-Magnetic-Fat-Reduction--8928746.html), 2019, 5 pages. |
Elamed, Magnetic Therapeutic Apparatus for Running Pulse Mag-field small-sized ALMAG-01 Manual, allegedly accessed on Nov. 18, 2020, All pages. |
Eliminate Stubborn Fat without Surgery or Downtime and Feel Great From Every Angle, Fear No Mirror®, Consultation Guide, Coolsculpting, 2014, 20 pages. |
Energist Ltd—Acquired Chromogenez—Old Account, iLipo—Laser Liposuction (i-Lipo), Video Screenshots, Aug. 10, 2009, 5 pages. |
Enoka, R.M., “Muscle Strength and Its Development,” Sports Medicine 6:146-168, Springer (Oct. 1988). |
Epstein, C., et al., “The Oxford Handbook of Transcranial Stimulation,” 773 pages (2008). |
European Commission, “Neurogenerative Disorders,” 10 pages printed Dec. 27, 2016. |
European Patent Office, International Search Report and Written Opinion for International Application No. PCT/IB2016/053930, dated Dec. 12, 2016, 19 pages. |
Exilis, Operator's Manual, BTL, 2012, 44 Pages. |
Faghri, P.D., et al., “The Effects of Functional Electrical Stimulation on Shoulder Subluxation, Arm Function Recovery, and Shoulder Pain in Hemiplegic Stroke Patients,” Archives of Physical Medicine and Rehabilitation 75(1):73-79, W.B. Saunders, United States (Jan. 1994). |
Fischer, J., et al., “Precise Subpixel Position Measurement with Linear Interpolation of CMOS Sensor Image Data,” The 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems, 500-504 (Sep. 2011). |
Fisher, R., et al., “ILAE Official Report: a Practical Clinical Definition of Epilepsy,” Epilepsia, 55(4):475-482, Blackwell Science, United States (Apr. 2014). |
Fujimura, K., et al., “Effects of Repetitive Peripheral Magnetic Stimulation on Shoulder Subluxations Caused by Stroke: A Preliminary Study,” Neuromodulation : Journal of the International Neuromodulation Society 23(6):847-851, Wiley-Blackwell, United States (Nov. 2020). |
Gaines, M., “Slendertone Abdominal Training System, the First FDA-Cleared Abdominal Belt, Introduced in United States by Compex Technologies on Time for Holiday Gift-Giving,” Business Wire 44199 (Oct. 2003). |
Geddes, L.A., “History of Magnetic Stimulation of the Nervous System,” Journal of Clinical Neurophysiology 8(1):3-9, Lippincott Williams & Wilkins, United States (Jan. 1991). |
Goetz, S.M., et al., “Coil Design for Neuromuscular Magnetic Stimulation Based on a Detailed 3-D Thigh Model,” IEEE Transactions On Magnetics, 50(6):10, IEEE, (Jun. 2014). |
Goodman, B.E., “Channels Active in the Excitability of Nerves and Skeletal Muscles Across the Neuromuscular Junction: Basic Function and Pathophysiology,” Advances in Physiology Education 32(2):127-135, American Physiological Society, United States (Jun. 2008). |
Gorgey, A., et al., “Effects of Electrical Stimulation Parameters on Fatigue in Skeletal Muscle,” The Journal of Orthopaedic and Sports Physical Therapy 39(9):684-692, Williams And Wilkins, United States (Sep. 2009). |
Gorodnichev, R.M., et al., “The Effect of Electromagnetic Stimulation on the Parameters of Muscular Strength,” Human Physiology 40:65-69 (2014). |
Gorodnichev, R.M., “Magnetic Stimulation of Muscles as New Method to Enhance Their Strength,” Velikie Luki State Academy of Physical Culture and Sport, Velikie Luki, 2016, 5 pages. |
Halaas, Y. and Bernardy, J., “Biochemical Perspective of Fat Physiology after Application of HIFEM Field Technology: Additional Investigation of Fat Disruption Effects in a Porcine Study,” American Society for Laser Medicine and Surgery Abstracts, S4 (2019). |
Hamnegard, C.H., et al., “Quadriceps Strength Assessed by Magnetic Stimulation of the Femoral Nerve in Normal Subjects,” Clinical Physiology and Functional Imaging, 24(5):276-280, Blackwell, England, (Sep. 2004). |
Han, B.H., et al., “Development of four-channel magnetic nerve stimulator,” 2001 Proceedings of the 23rd Annual EMBS International Conference, pp. 1325-1327, Turkey (2001). |
Han, T.R., et al., “Magnetic Stimulation of the Quadriceps Femoris Muscle: Comparison of Pain With Electrical Stimulation,” American Journal of Physical Medicine & Rehabilitation, 85(7):593-599, Lippincott Williams & Wilkins, United States, (Jul. 2006). |
Harkey, M.S., “Disinhibitory Interventions and Voluntary Quadriceps Activation: A Systematic Review,” Journal of Athletic Training 49(3):411-421, National Athletic Trainers' Association, United States (2014). |
Heidland, A., et al., “Neuromuscular Electrostimulation Technigues: Historical Aspects and Current Possibilities in Treatment of Pain and Muscle Waisting,” Clinical Nephrology 79 Suppl 1:S12-S23, Dustri-Verlag Dr. Karl Feistle, Germany (Jan. 2012). |
Heisel, Jurgen, Physikalische Medizin, Stuttgart: Georg Thieme Verlag KG, 2005. ISBN 3-13-139881-7. p. 159. |
Hera Estetik Medikal, “LIPOSTAR” dated Jul. 7, 2014, accessed at https://www.youtube.com/watch?v=R7OnFIK9go, accessed on Dec. 15, 2021. |
Hera Estetik Medikal, “Lipostar Manyetik Incelme”, accessed at https://www.heraestetik.com/en/urundetay/liposter-manyetik-incelme, accessed on Dec. 15, 2021. |
Hill, A., “The Influence of Temperature on the Tension Developed in an Isometric Twitch,” Proceeding of the Royal Society B 138:349-354, (Sep. 1951). |
Hirvonen, H.E., et al.,“Effectiveness of Different Cryotherapies on Pain and Disease Activity in Active Rheumatoid Arthritis. A Randomised Single Blinded Controlled Trial,”Clinical and Experimental Rheumatology, 24(3):295-301, Clinical and Experimental Rheumatology S.A.S, Italy (May-Jun. 2006). |
Hovey, C. and Jalinous, R., “The Guide to Magnetic Stimulation” Magstim, Pioneers in Nerve Stimulation and Monitoring, pp. 1-44 (2016). |
Hovey, C., et al., “The Guide to Magnetic Stimulation,” The Magstim Company Limited, 48 pages (Jul. 2006). |
Huang, Y.Z., et al., “Theta Burst Stimulation of the Human Motor Cortex,” Neuron 45(2):201-206, Cell Press, United States (Jan. 2005). |
I-Lipo by Chromo genex, i-Lipo Ultra is the Intelligent, Non-Surgical Alternative to Liposuction, 2011, 2 pages. |
Increasing Physiotherapy Presence in Cosmetology, Spa Inspirations, Jan. 2012, pp. 34-35. |
Irazoqui P., Post Grant Review of U.S. Pat. No. 10,695,576, PTAB-PGR2021-00024, filed as EX1085, Dec. 14, 2020, 25 pages. |
Iskra Medical, Magneto System, 2012, 2 pages. |
Iskra Medical, “TESLA Stym—Functional Magnetic Stimulation FMS,” Nov. 2013, http://ww.iskramedical.eu/magneto-therapy-medical/tesla-stym, 5 pages. |
Iskra Medical, “TESLA Stym Website,” URL: https://web.archive.org/web/20131106123126/http:/www.iskramedical.eu:80/magneto-therapy-medical/tesla-stym (Nov. 6, 2013). |
Izumiya, Y., et al., “Fast/Glycolytic Muscle Fiber Growth Reduces Fat Mass and Improves Metabolic Parameters in Obese Mice”, Cell Metabolism 7(2):159-172, Cell Press, United States (Feb. 2008). |
Jacob, C., et al., “High Intensity Focused Electro-Magnetic Technology (HIFEM) for Non-Invasive Buttock Lifting and Toning of Gluteal Muscles: A Multi-Center Efficacy And Safety Study,” Journal of Drugs in Dermatology 17(11):1229-1232, Physicians Continuing Education Corporation, United States (Nov. 2018). |
Jacob, C.I., et al., “Safety And Efficacy of a Novel High-Intensity Focused Electromagnetic Technology Device for Noninvasive Abdominal Body Shaping,” Journal of Cosmetic Dermatology, 17(5):783-787, Blackwell Science, United States (Oct. 2018). |
Jacobm C., and Paskova, “A Novel Non-Invasive Technology Based on Simultaneous Induction of Changes in Adipose and Muscle Tissues: Safety and Efficacy of a High Intensity Focused Electro-Magnetic (HIFEM) Field Device Used For Abdominal Body Shaping,” American Society for Laser Medicine and Surgery, 2018 Electronic Posters (ePosters) Town Hall and ePosters, 369, p. 1, Wiley Periodicals, Inc. (2018). |
Johari Digital Healthcare Ltd., 510(k)—K062439 Powertone Letter from Department of Health and Humane Services Summary, Public Health Service, Jan. 8, 2007, 6 pages. |
Johari Digital Healthcare Ltd., “510(k)—K131291 Torc Body Letter from Department of Health and Humane Services”, Public Health Service, Jun. 14, 2013, 10 pages. |
Johari Digital Healthcare Ltd., K131291 510(k) Summary, TorcBody, All pages (Jun. 2013). |
Jutte, L.S., et al.,“The Relationship Between Intramuscular Temperature, Skin Temperature, and Adipose Thickness During Cryotherapy and Rewarming,” Archives of Physical Medicine and Rehabilitation, 82(6):845-850, W.B. Saunders, United States (Jun. 2001). |
Katuscakova, Z.L., et al., High Induction Magnet Therapy in Rehabilitation, Department of Physiactric Rehabilitation, 2012, 72 pages. |
Katz, B., et al., “Changes in Subcutaneous Abdominal Fat Thickness Following High-Intensity Focused Electro-Magnetic (HIFEM) Field Treatments: A Multi Center Ultrasound Study,” American Society for Laser Medicine and Surgery Abstracts, 360-361 (2018). |
Katz, B., et al., “Ultrasound Assessment of Subcutaneous Abdominal Fat Thickness after Treatments with a High-Intensity Focused Electromagnetic Field Device: A Multicenter Study,” Dermatologic Surgery 45(12):1542-1548, Williams & Wilkins, United States (Dec. 2019). |
Kavanagh, S., et al., “Use of a Neuromuscular Electrical Stimulation Device for Facial Muscle Toning: A Randomized, Controlled Trial,” Journal of Cosmetic Dermatology 11(4):261-266, Blackwell Science, United States (Dec. 2012). |
Kent, D., and Jacob C., “Computed Tomography (CT) Based Evidence of Simultaneous Changes in Human Adipose and Muscle Tissues Following a High Intensity Focused Electro-Magnetic Field (HIFEM) Application: A New Method for Non-Invasive Body Sculpting,” American Society for Laser Medicine and Surgery Abstracts, p. 370 (2018). |
Kent, D,E. and Jacob, C.I., Simultaneous Changes in Abdominal Adipose and Muscle Tissues Following Treatments by High-Intensity Focused Electromagnetic HIFEM Technology-Based Device: Computed Tomography Evaluation, Journal of Drugs in Dermatology 18(11):1098-1102, Physicians Continuing Education Corporation, United States (Nov. 2019). |
Kim, Y.H., et al.,“The Effect of Cold Air Application on Intra-Articular and Skin Temperatures in the Knee,” Yonsei Medical Journal, 43(5):621-626, Yonsei University, Korea (South) (Oct. 2002). |
Kinney, B.M. and Lozanova P., “High Intensity Focused Electromagnetic Therapy Evaluated by Magnetic Resonance Imaging: Safety and Efficacy Study of a Dual Tissue Effect Based Non-Invasive Abdominal Body Shaping,” Lasers in Surgery and Medicine 51(1):40-46, Wiley-Liss, United States (Jan. 2019). |
Kocbach et al., “A Simulation Approach to Optimizing Perfermance of Equipment for Thermostimulation of Muscle Tissue using COMSOL Multiphysics” Article in Biophysics & Bioeng. dated 2011, 26 pages. |
Kolin, A., et al., “Stimulation of Irritable Tissues by means of an Alternating Magnetic Field,” Proceedings of the Society for Experimental Biology and Medicine 102:251-253, Blackwell Science, United States (Oct. 1959). |
Korman, P., et al..“Temperature Changes In Rheumatoid Hand Treated With Nitrogen Vapors and Cold Air,” Rheumatology International, 32(10):2987-2992, Springer International, Germany (Oct. 2012). |
Kotz, Y., “Theory and Practice of Physical Culture,” Training of Skeletal Muscle With Method of Electrostimulation, 64-67 (Mar. 1971). |
Kotz, Y., “Theory and Practice of Physical Culture,” Training of Skeletal Muscle With Method of Electrostimulation, 66-72 (Apr. 1971). |
Krueger, N. et al., “Safety and Efficacy of a New Device Combining Radiofrequency and Low-Frequency Pulsed Electromagnetic Fields for the Treatment of Facial Rhytides,” Journal of Drugs in Dermatology 11(11):1306-1309, Physicians Continuing Education Corporation, United States (Nov. 2012). |
Kumar, N. and Agnihotri, R.C., “Effect of Frequency and Amplitude of Fes Pulses on Muscle Fatigue During Toning of Muscles,” Journal of Scientific and Industrial Research 67(4):288-290, (Apr. 2008). |
Lampropoulou, S.I., et al., “Magnetic Versus Electrical Stimulation in the Interpolation Twitch Technique of Elbow Flexors,” Journal of Sports Science and Medicine, 11(4):709-718, Dept. of Sports Medicine, Medical Faculty of Uludag University, Turkey (Dec. 2012). |
Langford, J. and Mccarthy, P.W., “Randomised controlled clinical trial of magnet use in chronic low back pain; a pilot study,” Clinical Chiropractic 8(1):13-19, Elsevier (Mar. 2005). |
Lee, P.B., et al., “Efficacy of Pulsed Electromagnetic Therapy for Chronic Lower Back Pain: a Randomized, Double-blind, Placeb-controlled Study,” The Journal of International Medical Research 34(2):160-167, Cambridge Medical Publications, England (Mar.-Apr. 2006). |
Leitch, M., et al., “Intramuscular Stimulation of Tibialis Anterior in Human Subjects: The Effects of Discharge Variability on Force Production and Fatigue,” Physiological Reports 5(15):e13326, Wiley Periodicals, Inc., United States (Aug. 2017). |
Leon-Salas, W.D., et al., “A Dual Mode Pulsed Electro-Magnetic Cell Stimulator Produces Acceleration of Myogenic Differentiation,” Recent Patents on Biotechnology 7(1):71-81, Bentham Science Publishers, United Arab Emirates (Apr. 2013). |
Letter from Department of Health and Human Services, Public Health Service, Dec. 19, 2014, 7 pages. |
Lin, V.W., et al., “Functional Magnetic Stimulation: A New Modality for Enhancing Systemic Fibrinolysis,” Archives of Physical Medicine and Rehabilitation 80(5):545-550, W.B. Saunders, United States (May 1999). |
Lin, V.W., et al., “Functional Magnetic Stimulation for Conditioning of Expiratory Muscles in Patients with Spinal Cord Injury.,” Archives of Physical medicine and Rehabilitation 82(2):162-166, W.B. Saunders, United States (Feb. 2001). |
Lin, V.W., et al., “Functional Magnetic Stimulation for Restoring Cough in Patients With Tetraplegia,” Archives of Physical Medicine and Rehabilitation, 79(5):517-522, W.B. Saunders, United States, (May 1998). |
Lin, V.W., et al., “Functional Magnetic Stimulation of Expiratory Muscles: a Noninvasive and New Method for Restoring Cough,” Journal of Applied Physiology (1985), 84(4):1144-1150, American Physiological Society, United States, (Apr. 1998). |
Lin, V.W., et al., “Functional Magnetic Stimulation of the Respiratory Muscles in Dogs,” Muscle & Nerve 21(8):1048-1057, John Wiley & Sons, United States (Aug. 1998). |
Linehan, C., et al., Brainwave the Irish EpilepsyAssoication, “The Prevalence of Epilepsy in Ireland” Summary Report,pp. 1-8 (May 2009). |
Lotz, B.P., et al., “Preferential Activation of Muscle Fibers with Peripheral Magnetic Stimulation of the Limb,” Muscle & Nerve, 12(8):636-639, John Wiley & Sons, United States (Aug. 1989). |
Lumenis Be Ltd. v. BTL Healthcare Technologies A.S., PTAB-IPR2021-01402, Declaration of Dr. Marom Bikson (EX1002), Sep. 13, 2021, 244 pages. |
Lumenis Be Ltd. v. BTL Healthcare Technologies A.S., PTAB-IPR2021-01402, U.S. Pat. No. 10,821,295 Petition for Inter Partes Review, Sep. 13, 2021, 81 pages. |
Lumenis Be Ltd. v. BTL Healthcare Technologies A.S., PTAB-IPR2021-01403, Declaration of Dr. Marom Bikson (EX1002), Sep. 13, 2021, 243 pages. |
Lumenis Be Ltd. v. BTL Healthcare Technologies A.S., PTAB-IPR2021-01403, U.S. Pat. No. 10,821,295 Petition for Inter Partes Review, Sep. 13, 2021, 84 pages. |
Lumenis Be Ltd. v. BTL Healthcare Technologies A.S., PTAB-IPR2021-01404, Declaration of Dr. Marom Bikson (EX1002), Sep. 13, 2021, 245 pages. |
Lumenis Be Ltd. v. BTL Healthcare Technologies A.S., PTAB-IPR2021-01404, U.S. Pat. No. 10,124,187 Petition for Inter Partes Review, Sep. 13, 2021, 82 pages. |
Lumenis Be Ltd. v. BTL Healthcare Technologies A.S., PTAB-IPR2021-01405, Declaration of Dr. Marom Bikson (EX1002), Sep. 13, 2021, 247 pages. |
Lumenis Be Ltd. v. BTL Healthcare Technologies A.S., PTAB-IPR2021-01405, U.S. Pat. No. 10,124,187 Petition for Inter Partes Review, Sep. 13, 2021, 86 pages. |
Lumenis Ltd. v. BTL Healthcare Technologies A.S., PTAB-IPR2021-01273, Declaration of Dr. Marom Bikson (EX1002), Aug. 13, 2021, 225 pages. |
Lumenis Ltd. v. BTL Healthcare Technologies A.S., PTAB-IPR2021-01273, U.S. Pat. No. 10,478,634, Petition for Inter Partes Review, Aug. 13, 2021, 70 pages. |
Lumenis Ltd. v. BTL Healthcare Technologies A.S., PTAB-IPR2021-01275, Declaration of Dr. Marom Bikson (EX1002), Aug. 5, 2021, 282 pages. |
Lumenis Ltd. v. BTL Healthcare Technologies A.S., PTAB-IPR2021-01275, U.S. Pat. No. 10,632,321, Petition for Inter Partes Review, Aug. 5, 2021, 92 pages. |
Lumenis Ltd. v. BTL Healthcare Technologies A.S., PTAB-IPR2021-01276, Declaration of Dr. Marom Bikson (EX1002), Aug. 5, 2021, 241 pages. |
Lumenis Ltd. v. BTL Healthcare Technologies A.S., PTAB-IPR2021-01276, U.S. Pat. No. 10,965,575, Petition for Inter Partes Review, Aug. 5, 2021, 79 pages. |
Lumenis Ltd. v. BTL Healthcare Technologies A.S., PTAB-IPR2021-01278, Declaration of Dr. Marom Bikson (EX1002), Aug. 13, 2021, 255 pages. |
Lumenis Ltd. v. BTL Healthcare Technologies A.S., PTAB-IPR2021-01278, U.S. Pat. No. 10,709,894, Petition for Inter Partes Review, Aug. 13, 2021, 85 pages. |
Lumenis Ltd. v. BTL Healthcare Technologies A.S., PTAB-IPR2021-01279, Declaration of Dr. Marom Bikson (EX1002), Aug. 5, 2021, 258 pages. |
Lumenis Ltd. v. BTL Healthcare Technologies A.S., PTAB-IPR2021-01279, U.S. Pat. No. 10,709,895, Petition for Inter Partes Review, Aug. 5, 2021, 88 pages. |
Lumenis Ltd. v. BTL Healthcare Technologies A.S., PTAB-IPR2021-01280, Declaration of Dr. Marom Bikson (EX1002), Aug. 13, 2021, 235 pages. |
Lumenis Ltd. v. BTL Healthcare Technologies A.S., PTAB-IPR2021-01280, U.S. Pat. No. 10,478,634, Petition for Inter Partes Review, Aug. 13, 2021, 69 pages. |
Lumenis Ltd. v. BTL Healthcare Technologies A.S., PTAB-IPR2021-01282, Declaration of Dr. Marom Bikson (EX1002), Aug. 5, 2021, 267 pages. |
Lumenis Ltd. v. BTL Healthcare Technologies A.S., PTAB-IPR2021-01282, U.S. Pat. No. 10,632,321, Petition for Inter Partes Review, Aug. 5, 2021, 89 pages. |
Lumenis Ltd. v. BTL Healthcare Technologies A.S., PTAB-IPR2021-01283, Declaration of Dr. Marom Bikson (EX1002), Aug. 5, 2021, 241 pages. |
Lumenis Ltd. v. BTL Healthcare Technologies A.S., PTAB-IPR2021-01283, U.S. Pat. No. 10,695,575, Petition for Inter Partes Review, Aug. 5, 2021, 84 pages. |
Lumenis Ltd. v. BTL Healthcare Technologies A.S., PTAB-IPR2021-01284, Declaration of Dr. Marom Bikson (EX1002), Aug. 5, 2021, 279 pages. |
Lumenis Ltd. v. BTL Healthcare Technologies A.S., PTAB-IPR2021-01284, U.S. Pat. No. 10,709,895, Petition for Inter Partes Review, Aug. 5, 2021, 93 pages. |
Lumenis Ltd. v. BTL Healthcare Technologies A.S., PTAB-IPR2021-01285, Declaration of Dr. Marom Bikson (EX1002), Aug. 13, 2021, 249 pages. |
Lumenis Ltd. v. BTL Healthcare Technologies A.S., PTAB-IPR2021-01285, U.S. Pat. No. 10,709,894, Petition for Inter Partes Review, Aug. 13, 2021, 79 pages. |
Madariaga, V.B., et al., “[Magnetic Stimulation of the Quadriceps: Analysis of 2 Stimulators Used for Diagnostic and Therapeutic Applications],” Archives De Bronconeumologia, 43(7):411-417, Elsevier Espana, Spain, (Jul. 2007). |
Maffiuletti, N.A., et al., “Activation of Human Plantar Flexor Muscles Increases After Electromyostimulation Training,” Journal of Applied Physiology 92(4):1383-1392, American Physiological Society, United States (Nov. 2001). |
Maffiuletti, N.A., et al., “The Effects of Electromyostimulation Training and Basketball Practice on Muscle Strength and Jumping Ability,” International journal of sports medicine 21(6):437-443, Thieme, Germany (Aug. 2000). |
Mag Venture, Magnetic Stimulation, Accessories Catalogue, Accessories Catalogue, 2011, 54 pages. |
Magstim Company Limited, K051864 510(k) Summary, Magstim Rapid and Magstim Super Rapid, All pages (Dec. 2005). |
Magstim Company US, LLC, K060847 510(k) Summary, Magstim Model 200-2 with Double 70mm Remote Coil, All pages (Sep. 2006). |
Magstim Corporation US, K992911 510(k) Summary, Magstim Rapid, All pages (Jan. 2000). |
MagVenture, MagPro® by MagVenture®, Versatility in Magnetic Stimulation, World Leading Transcranial Magnetic Stimulation Systems, 2011, 6 Pages. |
Man, W.D-C., et al., “Magnetic Stimulation for the Measurement of Respiratory and Skeletal Muscle Function,” The European Respiratory Journal 24(5):846-60, European Respiratory Society, England (2004). |
Manstein, D., et al.,“Selective Cryolysis: A Novel Method of Non-Invasive Fat Removal,” Lasers in Surgery and Medicine, 40(9):595-604, Wiley-Liss, United States (Nov. 2008). |
Mantovani, A., et al., “Applications of Transcranial Magnetic Stimulation to Therapy in Pyschiatry,” Psychiatric Times 21(9), Intellisphere, 29 pages (Aug. 2004). |
Marek Heinfarth, “Lipostar” dated Jan. 9, 2013, accessed at https://www.youtube.com/watch?v=hZurkn8iU_U, accessed on Dec. 15, 2021. |
Markov, M.S., “Pulsed Electromagnetic Field Therapy History, State of the Art and Future,” Environment Systems and Decisions 27(4):465-475, Springer (Dec. 2007). |
MecoTec Freezing Technology, Presentation Cryoair Whole Body Cryotherapy Chambers, Germany, Jul. 2017, 52 Pages. |
Medline, Body Temperature Norms, 2 pages (Year: 2019). |
Mekawy et al., “Influence of Electro-lipolysis on Lipid Profile and Central Obesity in Obese Premenopausal Women” Bull. Fac. Ph. Th. Cairo Univ., vol. 17, No. (1), dated Jan. 2012, pp. 59-68. |
Mettler J.A., et al., “Low-Frequency Electrical Stimulation With Variable Intensity Preserves Torque,” Journal of Electromyography and Kinesiology : Official Journal of the International Society of Electrophysiological Kinesiology 42:49-56, Oxford:Elsevier, England (Oct. 2018). |
Mogyoros, I., et al., “Strength-Duration Properties of Human Peripheral Nerve,” Brain 119(Pt 2):439-447, Oxford University Press, England (Apr. 1996). |
Moon, Chi-Woong“Study on the Pulsed Electromagnetic Fields Effect of Adipocyte Decomposition” Final Report of a Middle-grade Researcher Support Project, Inje University, 2017. |
Morrissey. M., “Electromyostimulation from a Clinical Perspective,” Sports Medicine 6(1):29-41, Springer International, New Zealand (Aug. 1988). |
Mustafa, B., “Design and Construction of a Low Cost dsPIC Controller Based Repetitive Transcranial Magnetic Stimulator TMS,” Journal of medical systems 34(1):15-24, Kluwer Academic/Plenum Publishers, United States (2010). |
Nadler, S.F., et al.,“The Physiologic Basis and Clinical Applications of Cryotherapy and Thermotherapy for the Pain Practitioner,” Pain Physician, 7(3):395-399, American Society of Interventional Pain Physicians, United States (Jul. 2004). |
Nassab, R.,“The Evidence Behind Noninvasive Body Contouring Devices,” Aesthetic Surgery Journal, 35(3):279-293, Oxford University Press, England (Mar. 2015). |
National Institute of Neurological Disorders and Stroke, Epilepsy Information Page, www.ninds.nih.gov/disorders/epilepsy/epilepsy.htm, pp. 1-6 (Feb. 1, 2016). |
Neotonus, Inc., K973096 510(k) Summary, Neotonus Model 1000 Muscle Stimulator System, All pages (Jun. 1998). |
Neotonus, Inc., K973929 510(k) Summary and FDA Correspondence, Neotonus, All pages (May 1998). |
Neuro Star, TMS Therapy, Bringing Hope to Patients with Depression, 2013, 6 Pages. |
Neurosoft, Ivanovo, Since 1992, Magnetic Stimulator, NEURO-MS, Technical Manual, Neurosoft Ltd, Ivanovo, Russia, 2006, 67 Pages. |
Nexstim NBS System, Navigated Brain Stimulation, Noninvasive, direct cortical mapping, 2012, 5 Pages. |
Neyroud, D., et al., “Comparison of Electrical Nerve Stimulation, Electrical Muscle Stimulation and Magnetic Nerve Stimulation to Assess the Neuromuscular Function of the Plantar Flexor Muscles,” European journal of applied physiology 115(7):1429-1439, Springer-Verlag, Germany (2015). |
Nielsen, J.F., et al., “A New High-frequency Magnetic Stimulator With an Oil-cooled Coil,” Journal of Clinical Neurophysiology 12(5):460-467, Lippincott Williams & Wilkins, United States (Sep. 1995). |
Non Final Office Action dated Jun. 23, 2017, in U.S. Appl. No. 15/473,390, Schwarz, T., et al., filed Mar. 29, 2017. |
Novickij, V., et al., “Compact Microsecond Pulsed Magnetic Field Generator for Application in Bioelectronics,” Elektronika ir Elektrotechnika 19(8):25-28 (Oct. 2013). |
Novickij, V., et al., “Design and Optimization of Pulsed Magnetic Field Generator for Cell Magneto-Permeabilization,” Elektronika ir Elektrotechnika(Electronics and Electrical Engineering) 23(2):21-25 (Apr. 2017). |
Novickij, V., et al., “Magneto-Permeabilization of Viable Cell Membrane Using High Pulsed Magnetic Field,” IEEE Transactions on Magnetics 51(9), All pages (Sep. 2015). |
Novickij, V., et al., “Programmable Pulsed Magnetic Field System for Biological Applications,” IEEE Transactions on Magnetics 50(11):5 (Nov. 2014). |
NPF Electroapparat, Amplipulse-5Br Manual, allegedly accessed on Nov. 18, 2020, All pages. |
Nuerosoft Ltd., “Neurosoft—Neuro-MS Transcranial Magnetic Simulator Technical Manual,” All pages (Nov. 2014). |
Obsluze, N.K.,Usage Instructions, User's Manual, Device for high-induction magnetic stimulation of type designation:Saluter Moti, 2016,88 Pages. |
Oliveira, P.De., et al., “Neuromuscular Fatigue After Low-and Medium-frequency Electrical Stimulation in Healthy Adults,” Muscle & Nerve 58(2):293-299, John Wiley & Sons, United States (Aug. 2018). |
Operating Manual: Magstim D702 Coil, MOP06-EN, Revision 01, The Magstim Company Limited, Feb. 2012, 14 Pages. |
Operating Manual: Magstim Magstim 2002, MOP01-EN, Revision 01, The Magstim Company Limited, Sep. 2011, 25 Pages. |
Operating Manual: Magstim, Magstim Alpha Coil Range, MOP11-EN, Revision 01, Oct. 2012, 18 Pages. |
Operating Manual: Magstim, Magstim Bistim2, MOP02-EN, Revision, The Magstim Company Limited, 01, Sep. 2011, 27 Pages. |
Operating Manual, Magstim, Model 200, P/N 3001-01, Double 70mm, Remote Coil, P/N 3190-00, The Magstim Company Limited, 2006, 32 pages. |
Operating Manual: Magstim R, 2nd, Generation Coil Family, 3100-23-02, Magstim Coils, The Magstim Company Limited, Nov. 2002, 14 Pages. |
Operating Manual, Magstim R Air-Cooled Double 70mm Coil System, 1600-23-04, The Magstim Company Limited, 1999, 18 Pages. |
Operating Manual: Magstim R, Bistim System, P/N 3234-23-01, The Magstim Company Limited, Nov. 2004, 30 Pages. |
Operating Manual: Magstim R, Coils & Accessories, 1623-23-07, Magstim Coils & Accessories, May 2010, 24 Pages. |
Operating Manual: MAGSTIM, RAPID2, P/N 3576-23-09, The MAGSTIM Company LTD, Nov. 2009, 61 Pages. |
Operator's Manual: BTL Emsculpt, BTL Industries Ltd, United Kingdom, 2018, 35 pages. |
Operator's Manual: BTL, HPM-6000U, BTL Industries Ltd, United Kingdom, Dec. 2016, 36 pages. |
Otte, J.S., et al.,“Subcutaneous Adipose Tissue Thickness Alters Cooling Time During Cryotherapy,”Archives of Physical Medicine and Rehabilitation, 83(11):1501-1505, W.B. Saunders, United States (Nov. 2002). |
Pain Management Technologies, “Pain Management Technologies Product Catalog,” (2012). |
Papimi, For Scientific Research, Pap Ion Magnetic Inductor, Presentation, Magnetotherapeutic Device, Nov. 2009, 61 Pages. |
Periso SA, CTU mega Diamagnetic Pump 20: Device For Diamagnetic Therapy, CTU Mega 20 Manual, dated Aug. 28, 2019, 44 pages, Pazzallo Switzerland. |
Photograph, Alleged Photograph of Components of a Salus Talent Pop Double Device with An Alleged Manufacture date of Nov. 14, 2012, 1 page. |
Physiomed, MAG-Expert, Physiomed Manual, Dec. 19, 2012. |
Platil, A., “Magnetopneumography Using Optical Position Reference,” Sensor Letters 11(1):69-73, ResearchGate (2013). |
Podebradsky.K., et al., Clinical study of high-inductive electromagnetic stimulator SALUS talent, 2010, 8 pages. |
Pohanka, J., et al., “An Embedded Stereovision System: Aspects of Measurement Precision,” 12th Biennial Baltic Electronics Conference, pp. 157-160 (Oct. 2010). |
Polk, C., “Therapeutic Applications of Low-Frequency Sinusoidal and Pulsed Electric and Magnetic Fields,” The Biomedical Engineering Handbook, vol. 1, 2000, Second edition, CRC Press LLC, pp. 1625-1636. |
Polkey M.I., et al., “Functional Magnetic Stimulation of the Abdominal Muscles in Humans,” American Journal of Respiratory and Critical Care Medicine 160(2):513-522, American Thoracic Society, United States (Aug. 1999). |
Polkey, M.I., et al., “Quadriceps Strength and Fatigue Assessed by Magnetic Stimulation of the Femoral Nerve in Man,” Muscle Nerve 19(5):549-555, John Wiley & Sons, United States, (May 1996). |
Pollogen, Maximus Non-invasive body shaping System, User Manual, dated May 1, 2012, 44 pages. |
Pollogen, TriFractional FAQs, User Manual, dated Aug. 2011, 4 pages. |
Pollogen, TriLipo MED Procedure, Brochure, dated Apr. 7, 2021, 76 pages. |
Porcari, J.P., et al., “Effects of Electrical Muscle Stimulation on Body Composition, Muscle Strength, and Physical Appearance,” Journal of Strength and Conditioning Reasearch 16(2):165-172, Human Kinetics Pub., United States (May 2002). |
Porcari, J.P., et al., “The Effects of Neuromuscular Electrical Stimulation Training on Abdominal Strength, Endurance, and Selected Anthropometric Measures,” Journal of Sports Science and Medicine 4(1):66-75, Dept. of Sports Medicine, Turkey (Mar. 2005). |
Pribula, O. and Fischer, J., “Real Time Precise Position Measurement Based on Low-Cost CMOS Image Sensor,” IEEE, 5 pages (2011). |
Pribula, O., et al., “cost-effective Image Acquisition System for Precise Pc-based Measurements,” Przeglad Elektrotechniczny (Electrical Review), 259-263, 2011. |
Pribula, O., et al., “Optical Position Sensor Based on Digital Image Processing: Magnetic Field Mapping Improvement,” Radioengineering 20 (1):55-60, (Apr. 2011). |
Pribula, O., et al., “Real-Time Video Sequences Matching Spatio-Temporal Fingerprint,” IEEE, 911-916 (Jun. 2010). |
Prouza, O., et al., “High-Intensity Electromagnetic Stimulation Can Reduce Spasticity in Post-Stroke Patients,” International Journal of Physiotherapy 5(3):87-91 (2018). |
Prouza, O., “Ex-Post Analyza Spot Rebnich Dani,” All pages, (2008). |
Prouza, O., “Targeted Radiofrequency Therapy for Training Induced Muscle Fatigue—Effective or Not?,” International Journal of Physiotherapy 3(6):707-710 (Dec. 2016). |
PTAB-IPR2021-00296, U.S. Pat. No. 10,493,293, Petition for Inter Partes Review, Dec. 14, 2020, 117 pages. |
PTAB-IPR2021-00312, U.S. Pat. No. 10,478,634, Petition for Inter Partes Review, Dec. 14, 2020, 108 pages. |
PTAB-PGR2021-00015, U.S. Pat. No. 10,709,895, Petition for Post-Grant Review, Dec. 14, 2020, 140 pages. |
PTAB-PGR2021-00016, U.S. Pat. No. 10,709,895, Petition for Post-Grant Review, Dec. 14, 2020, 144 pages. |
PTAB-PGR2021-00017, U.S. Pat. No. 10,632,321, Petition for Post-Grant Review, Dec. 14, 2020, 121 pages. |
PTAB-PGR2021-00018, U.S. Pat. No. 10,632,321, Petition for Post-Grant Review, Dec. 14, 2020, 140 pages. |
PTAB-PGR2021-00020, U.S. Pat. No. 10,695,575, Petition for Post-Grant Review, Dec. 14, 2020, 112 pages. |
PTAB-PGR2021-00021, U.S. Pat. No. 10,695,575, Petition for Post-Grant Review, Dec. 14, 2020, 117 pages. |
PTAB-PGR2021-00022, U.S. Pat. No. 10,709,894, Petition for Post-Grant Review, Dec. 14, 2020, 119 pages. |
PTAB-PGR2021-00023, U.S. Pat. No. 10,709,894, Petition for Post-Grant Review, Dec. 14, 2020, 136 pages. |
PTAB-PGR2021-00024, U.S. Pat. No. 10,695,576, Petition for Post-Grant Review, Dec. 14, 2020, 136 pages. |
PTAB-PGR2021-00025, U.S. Pat. No. 10,695,576, Petition for Post-Grant Review, Dec. 14, 2020, 135 pages. |
Publication of Medical Device Manufacturing Approval of Salus-TALENT-Pro, approval date Mar. 11, 2014, 39 pages. |
Quick Start Manuals, Magstim Super Rapid Plus Quick Start, Aalto TMS Laboratory, Aalto School of Science, 2013, 7 Pages. |
Radakovic T. and Radakovic N., “The Effectiveness of the Functional Magnetic Stimulation Therapy in Treating Sciatica Syndrome,” Open Journal of Therapy and Rehabilitation 3(3):63-69 (2015). |
Reaction User Manual, Viora, Doc No. MK-004 A, 2008, 53 Pages. |
Reshaping the Future of Your Practice, Cool sculpting, A Revolution in Aesthetic Fat Reduction, 2011, 10 Pages. |
Riehl., M., “Chapters: TMS Stimulator Design” The Oxford Handbook of Transcranial Stimulation, Wasserman, E.M., ed., pp. 13-23, Oxford University Press, 26 pages, United Kingdom (2008). |
Roots, H., and Ranatunga, K.W., “An Analysis of the Temperature Dependence of Force, During Steady Shortening at Different Velocities, in (Mammalian) Fast Muscle Fibres,” Journal of Muscle Research and Cell Motility 29(1):9-24, Springer, Netherlands (Jun. 2008). |
Ruiz-Esparza, J. and J. Barba Gomez., “The Medical Face Lift: A Noninvasive, Nonsurgical Approach to Tissue Tightening in Facial Skin Using Nonablative Radiofrequency,” Dermatologic Surgery 29(4):325-332, Williams & Wilkins, United States (Apr. 2003). |
Russian excerpt of Werner, R., Magnetotherapy, Pulsating energy resonance therapy, 41-67 (Jun. 2007). |
Rutkove, S., “Effects of Temperature on Neuromuscular Electrophysiology,” Muscle & Nerve 24(7):867-882, John Wiley & Sons, United States (Jul. 2001). |
Salus Talent Pop, The first sales bill, Authorization No. 20120221-41000096-66667961, 2 pages, (Feb. 2012). |
Salus Talent-A, Remed, User Guide, High Intensity Electro Magnetic Field Therapy, 2017, 37 pages. |
Sargeant, A.J., “Effect of Muscle Temperature on Leg Extension Force and Short-term Power Output in Humans,” European Journal of Applied Physiology and Occupational Physiology 56(6):693-698, Springer Verlag, Germany (Sep. 1987). |
Schaefer, D.J., et al., “Review of Patient Safety in Time-Varying Gradient Fields,” Journal of Magnetic Resonance Imaging 12:20-29, Wiley-Liss, United States (Jul. 2000). |
Shimada, Y., et al., “Effects of therapeutic magnetic stimulation on acute muscle atrophy in rats after hindlimb suspension,” Biomedical Research 27(1):23-27, Biomedical Research Foundation, Japan (Feb. 2006). |
Silinskas, V., et al., “Effect of Electrical Myostimulation on the Function of Lower Leg Muscles,” Journal of strength and Conditioning Research 31(6):1577-1584, Human Kinetics Pub, United States (2017). |
Sport-Elec S.A., K061914 510(k) Summary, Sport-Elec, All pages (Jul. 2007). |
Sport-Elec S.A., K081026 510(k) Summary, Sport-Elec, All pages (Nov. 2008). |
Starbelle, PEMF Shape, Webpage, dated Feb. 10, 2020, 3 pages, available at http://www.starbelle.cn/info/PEMFShape.html. |
Stedman, T.L., “Aponeurosis—Apparatus,” in Stedman's Medical Dictionary, 27th Edition, Pugh, M.B., ed., pp. 113-114, Lippincott Williams & Wilkins, Baltimore, MD (2000). |
Stevens, J.E., et al., “Neuromuscular Electrical Stimulation for Quadriceps Muscle Strengthening After Bilateral Total Knee Arthroplasty: A Case Series,” Journal of Orthopaedic and Sports Physical Therapy 34(1):21-29, Williams And Wilkins, United States (Jan. 2004). |
Struppler, A., et al., “Facilitation of Skilled Finger Movements by Repetitive Peripheral Magnetic Stimulation (RPMS)—A New Approach In Central Paresis.,” NeuroRehabilitation 18(1):69-82, IOS Press, Amsterdam (2003). |
Struppler, A., et al., “Modulatory Effect of Repetitive Peripheral Magnetic Stimulation on Skeletal Muscle Tone in Healthy Subjects: Stabilization of the Elbow Joint,” Experimental Brain Research 157(1):59-66, Springer Verlag, Germany (Feb. 2004). |
Suarez-Bagnasco, D., et al., “The Excitation Functional for Magnetic Stimulation of Fibers.,” Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE Engineering in Medicine and Biology Society, Annual International Conference, 2010:4829-4833, IEEE, United States (2010). |
Swallow, E.B., et al., “A Novel Technique for Nonvolitional Assessment of Quadriceps Muscle Endurance in Humans,” Journal of Applied Physiology 103(3):739-746, American Physiological Society, United States (Sep. 2007). |
Szecsi, J., et al., “A Comparison of Functional Electrical and Magnetic Stimulation for Propelled Cycling of Paretic Patients,” Archives of Physical Medicine and Rehabilitation 90(4):564-570, W.B. Saunders, United States, (Apr. 2009). |
Szecsi, J., et al., “Force-pain Relationship in Functional Magnetic and Electrical Stimulation of Subjects With Paresis and Preserved Sensation,” Clinical Neurophysiology 121(9):1589-1597, Elsevier, Netherlands, (Sep. 2010). |
Taylor, J.L, “Magnetic Muscle Stimulation Produces Fatigue Without Effort,” Journal of Applied Physiology (1985) 103(3):733-734, American Physiological Society, United States, (Sep. 2007). |
Tesla Stym, Iskra Medical, Tone the inner muscle with FMS Functional Magnetic Stimulation, 2013, 4 pages. |
The Burn Centre Care, Education, 3 pages, printed from internet Nov. 13, 2017. |
The Magstim Company Ltd, K080499 510(k) Summary, Magstim Double 70mm Air Film Coil, All pages (Dec. 2008). |
The Magstim Company Ltd., K130403 510(k) Summary, Magstim D702 coil, All pages (Aug. 2013). |
Thermi Launches Arvati, powered by Thermi, with newest advances in True Temperature Controlled Radiofrequency Technology, 5 pages (2018). |
Thompson, M.T., “Inductance Calculation Techniques—Part II: Approxmiations and Handbook Methods,” Power Control and Intelligent Motion, 11 pages (Dec. 1999) http://www.pcim.com/. |
Thompson, M.T., “Inductance Calculation Techniques—Part II: Classical Methods,” Power Control and Intelligent Motion, 25(12):40-45, (Dec. 1999) http://www.pcim.com/. |
Tomek, J., et al., “Magnetopneumography—Incorporation of optical position reference,” Journal of Electrical Engineering, All pages (2012). |
Torbergsen, T., “Abstracts of the International Course and Symposium in Single Fibre EMG and Quantitative EMG Analysis. Tromsø, Norway, Jun. 4-8, 1984,” Muscle & Nerve 9(6):562-574, John Wiley & Sons, United States (Jul.-Aug. 1986). |
TSEM Med Swiss SA, Diamagnetic Therapy: A Revolutionary Therapy, CTU Mega 20 Catalogue, dated 2016, 24 pages, Lugano Switzerland. |
Turley, J., “Agilent Technologies Announces 30 MHz Function/Arbitrary Waveform Generators with Unparalleled Signal Accuracy,” Elec. Eng'g J., URL: (Aug. 4, 2010), 8 pages. |
Ultra Slim Professional, The very best body Contouring, Wardphotonics LLC, 2018, 16 pages. |
U.S. Appl. No. 60/848,720, inventor Burnett, D., filed Sep. 30, 2006 (Not Published). |
U.S. Appl. No. 62/331,060, inventor Schwarz, T., filed May 3, 2016 (Not Published). |
U.S. Appl. No. 62/331,072, inventor Schwarz, T., filed May 3, 2016 (Not Published). |
U.S. Appl. No. 62/331,088, inventor Schwarz, T., filed May 3, 2016 (Not Published). |
U.S. Appl. No. 62/333,666, inventor Schwarz, T., filed May 9, 2016 (Not Published). |
U.S. Appl. No. 62/351,156, inventor Schwarz, T., filed Jun. 16, 2016 (Not Published). |
U.S. Appl. No. 62/357,679, inventor Schwarz, T., filed Jul. 1, 2016 (Not Published). |
U.S. Appl. No. 62/440,905, inventors Schwarz, T. et al., filed Dec. 30, 2016 (Not Published). |
U.S. Appl. No. 62/440,912, inventors Schwarz, T. et al., filed Dec. 30, 2016 (Not Published). |
U.S. Appl. No. 62/440,922, inventor Schwarz, T., filed Dec. 30, 2016 (Not Published). |
U.S. Appl. No. 62/440,936, inventor Schwarz, T., filed Dec. 30, 2016 (Not Published). |
U.S. Appl. No. 62/440,940, inventor Schwarz, T., filed Dec. 30, 2016 (Not Published). |
U.S. Appl. No. 62/441,805, inventor Prouza, O., filed Jan. 3, 2017 (Not Published). |
U.S. Appl. No. 62/786,731, inventor Schwarz, T., filed Dec. 31, 2018 (Not Published). |
User Guide: Mag Venture, Magpro family, MagPro R30, MagPro R30 with MagOption, MagPro X100, MagPro X100 with MagOption, MagPro software v.5.0, US-edition, MagPro family User Guide, 2010, 52 Pages. |
User Guide, Salus Talent Pro, REMED, High Intensity Electro magnetic Field Therapy—2 Channel, 2017, Version M-1.0.0, 45 pages. |
User Guide, Salus Talent, REMED, High Intensity Electro magnetic Field Therapy, Version. M-1.0.0, 2017, 40 pages. |
User's Manual: BTL-6000, Super Inductive System Elite, BBTL Industries Ltd, United Kingdom, Sep. 2016, 36 pages. |
User Manual: Electro-magnetic Stimulator, Salus-Talent, Version 1.00, Rehabilitation Medical Company,2013, 34 Pages. |
User Manual: Regenetron PRO, System Information, Regenetron PRO User Manual, Nov. 2014, 7 Pages. |
Vance, C., et al., “Effects of Transcutaneous Electrical Nerve Stimulation on Pain, Pain Sensitivity, and Function in People with Knee Osteoarthritis,” Physical Therapy 92:898-910 (2012). |
Vanquish Operator's Manual, BTL, 2012, 48 Pages. |
Venus Concept Ltd., VenusFreeze MP2, User Manual, dated Jun. 2012, 46 pages. |
Venus Concept Ltd., VenusViva, User Manual, dated Aug. 2013, 51 pages. |
Venus Legacy, User Manual International, 2009, Venus Concept, 49 pages. |
Verges S., et al., “Comparison of Electrical and Magnetic Stimulations to Assess Quadriceps Muscle Function,” Journal of Applied Physiology (1985) 106(2):701-710, American Physiological Society, United States, (Feb. 2009). |
Wada, K., et al., “Design and Implementation of Multi-Frequency Magnetic Field Generator Producing Sinusoidal Current Waveform for Biological Researches,” IEEE, 9 pages (2016). |
Wanitphakdeedecha, R., et al., “Treatment of Abdominal Cellulite and Circumference Reduction With Radiofrequency and Dynamic Muscle Activation” Article in Journal of Cosmetic and Laser Therapy, dated Apr. 6, 2015, 7 pages. |
Ward, A.R. and Shkuratova, N., “Russian Electrical Stimulation: The Early Experiments,” Physical therapy 82(10):1019-1030, Oxford University Press, United States (2002). |
Wasilewski, M.L., Academy of Aesthetic and Anti-Aging Medicine, Application of magnetic fields with deep stimulation in the fight against local obesity of lower limbs, BTL, 2012, 4 pages. |
Web MD, what is normal body temperature? 3 pages, printed Mar. 4, 2019. |
Weight to volume aluminum, 2 pages, printed from internet Sep. 25, 2018. |
Weight to volume copper, 2 pages printed from internet Sep. 25, 2018. |
Weiss, R.A., et al., “Induction of Fat Apoptosis by a Non-Thermal Device: Mechanism of Action of Non-Invasive High-Intensity Electromagnetic Technology in a Porcine Model,” Lasers in surgery and medicine 51(1):47-53, Wiley-Liss, United States (Jan. 2019). |
Weng, O., “Electromagnetic Activation of the Calf Muscle Pump,” UMI Dissertation Publishing (2014). |
Woehrle, J., et al., “Dry Needling and its Use in Health Care—A Treatment Modality and Adjunct for Pain Management,” Journal of Pain & Relief 4(5):1-3, (Aug. 2015). |
Yacyshy, A.F., et al., “The Inclusion of Interstimulus Interval Variability Does Not Mitigate Electrically-evoked Fatigue of the Knee Extensors,” European Journal of Applied Physiology 120(12):2649-2656, Springer-Verlag, Germany (Sep. 2020). |
Zao Okb Ritm, Electroneurostimulants, Transdermal Scenar-NT Instructions, All Pages (Nov. 2013). |
Zao Okb Ritm, Percutaneous Electrical Stimulators With Individual Biofeedback Dosing Impact on Reflex Zones, All pages (2017). |
Zelickson, B., et al.,“Cryolipolysis For Noninvasive Fat Cell Destruction: Initial Results From a Pig Model,” Dermatologic Surgery 35(10):1462-1470, Hagerstown, MD Lippincott, Williams & Wilkins, United States (Oct. 2009). |
ZELTIQ System User Manual—Print and Binding Specifications, ZELTIQ Aesthetics, Inc, Mar. 2011, 88 pages. |
Zerona R-Z6 by Erchonia, Specifications,Retrieved from the Internet: (www.myzerona.com), 2015, 1 page. |
Zhang, G., et al., “A Method of Nerve Electrical Stimulation by Magnetic Induction,” Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2009:622-625, IEEE, United States (2009). |
Zhi-De, D., “Electromagnetic Field Modeling of Transcranial Electric and Magnetic Stimulation: Targeting, Individualization, and Safety of Convulsive and Subconvulsive Applications,” Academic Commons (2013). |
Zhu, Y., et al., “Magnetic Stimulation of Muscle Evokes Cerebral Potentials by Direct Activation of Nerve Afferents: A Study During Muscle Paralysis,” Muscle & Nerve 19(12):1570-1575, John Wiley & Sons, United Sates (Dec. 1996). |
Mantis, The non-invasive solution that restores natural beauty, improves health, and offers a renewed psychophysical sense of balance, MR991 theramagnetic, 2020, 8 pages. |
Mantis Theramagnetic Compact: the compact that guarantees utmost efficiency and maximum performance, theramagnetic, 2020, 8 pages. |
Pollegen, K200545, Legend Pro DMA, Indications for use, dated Oct. 20, 2021, 11 pages. |
Pascual-Leone, Alvaro et al. “Handbook of Transcranial Magnetic Stimulation” 2002 Arnold Publishers, Chapters 1-4, 58 pages. |
Number | Date | Country | |
---|---|---|---|
20220168584 A1 | Jun 2022 | US |
Number | Date | Country | |
---|---|---|---|
62832738 | Apr 2019 | US | |
62832688 | Apr 2019 | US | |
62932259 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16844822 | Apr 2020 | US |
Child | 17671191 | US |